
A multi-modal device for
application in microsleep detection

Simon Knopp

A thesis presented for the degree of
Doctor of Philosophy

in
Electrical and Computer Engineering

at the
University of Canterbury,

Christchurch, New Zealand.

May 2015





ABSTRACT

Microsleeps and other lapses of responsiveness can have severe, or even fatal, con-
sequences for people who must maintain high levels of attention on monotonous
tasks for long periods of time, e.g., commercial vehicle drivers, pilots, and air-traffic
controllers. This thesis describes a head-mounted system which is the first proto-
type in the process of creating a system that can detect (and possibly predict) these
lapses in real time. The system consists of a wearable device which captures multiple
physiological signals from the wearer and an extensible software framework for imple-
menting signal processing algorithms. Proof-of-concept algorithms are implemented
and used to demonstrate that the system can detect simulated microsleeps in real
time.

The device has three sensing modalities in order to get a better estimate of the
user’s cognitive state than by any one alone. Firstly, it has 16 channels of EEG (8
currently in use) captured by 24-bit ADCs sampling at 250 Hz. The EEG is acquired
by custom-built dry electrodes consisting of spring-loaded, gold-plated pins. Sec-
ondly, the device has a miniature video camera mounted below one eye, providing
320× 240 px greyscale video of the eye at 60 fps. The camera module includes infrared
illumination so that it can operate in the dark. Thirdly, the device has a six-axis IMU
to measure the orientation and movement of the head. These sensors are connected
to a Gumstix computer-on-module which transmits the captured data to a remote
computer via Wi-Fi. The device has a battery life of about 7.4 h.

In addition to this hardware, software to receive and analyse data from the head-
mounted device was developed. The software is built around a signal processing
pipeline that has been designed to encapsulate a wide variety of signal processing
algorithms; feature extractors calculate salient properties of the input data and a
classifier fuses these features to determine the user’s cognitive state. A plug-in system
is provided which allows users to write their own signal processing algorithms and to
experiment with different combinations of feature extractors and classifiers. Because
of this flexible modular design, the system could also be used for applications other
than lapse detection—any application which monitors EEG, eye video, and head
movement can be implemented by writing appropriate signal processing plug-ins,
e.g., augmented cognition or passive BCIs. The software also provides the ability to
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configure the device’s hardware, to save data to disk, and to monitor the system in
real time. Plug-ins can be implemented in C++ or Python.

A series of validation tests were carried out to confirm that the system operates
as intended. Most of the measured parameters were within the expected ranges: EEG
amplifier noise = 0.14 µVRMS input-referred, EEG pass band = DC to 47 Hz, camera
focus = 2.4 lp/mm at 40 mm, and total latency < 100 ms. Some parameters were worse
than expected but still sufficient for effective operation: EEG amplifier CMRR ≥ 82 dB,
EEG cross-talk = −17.4 dB, and IMU sampling rate = 10 Hz. The contact impedance
of the dry electrodes, measured to be several hundred kilohms, was too high to obtain
clean EEG.

Three small-scale experiments were done to test the performance of the device in
operation on people. The first two demonstrated that the pupil localization algorithm
produces PERCLOS values close to those from a manually-rated gold standard and
is robust to changes in ambient light levels, iris colour, and the presence of glasses.
The final experiment demonstrated that the system is capable of capturing all three
physiological signals, transmitting them to the remote computer in real time, extracting
features from each signal, and classifying simulated microsleeps from the extracted
features. However, this test was successful only when using conventional wet EEG
electrodes instead of the dry electrodes built into the device; it will be necessary to
find replacement dry electrodes for the device to be useful.

The device and associated software form a platform which other researchers can
use to develop algorithms for lapse detection. This platform provides data capture
hardware and abstracts away the low-level software details so that other researchers
are free to focus solely on developing signal processing techniques. In this way, we
hope to enable progress towards a practical real-time, real-world lapse detection
system.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

Many occupations and activities require people to maintain a constant state of high
alertness or risk serious consequences. For instance, pilots, truck drivers, air traffic
controllers, process control operators, and medical workers risk causing fatal mishaps
if their level of alertness drops while on the job [Sigurdson and Ayas 2007, Torsvall
and Åkerstedt 1987]. As the level of automation in many systems increases, the role
of the operator becomes more supervisory. Such jobs can involve extended periods
with little happening, but the operator must be ready to respond to abnormal events
quickly [Bainbridge 1983]. Compounding the situation, many of these occupations
involve night shifts and require prolonged periods of minimal physical activity.

Creating a device capable of detecting when people become unresponsive and
alerting them has the potential to avert fatalities. Unfortunately, creating such a device
is not trivial. As described in Chapter 2, there is no one measurable signal that has
been proven to be a reliable indicator of alertness. A robust measure of alertness, then,
must incorporate several distinct signals that in combination give a full picture of the
subject’s state.

The types of signals that are useful for detecting lapses of responsiveness could
also be used for detecting other aspects of the user’s cognitive state. If we are going
to the effort of developing a device for lapse detection, it would be desirable to make
it possible to implement other state/event detection algorithms on the device as well.

1.2 TERMINOLOGY

Before reviewing the relevant literature, it is necessary to define some terminology.
Terminology in this field varies widely and there is little standardization between
research groups.

Lapses Complete transient disruptions in sensory-motor/cognitive performance from
∼0.5–15 s during an active task [Jones et al. 2010]. These can be further categorized as:
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Behavioural microsleeps (BMs)
A brief period of suspension of performance and appearing asleep. Also
referred to as “microsleeps”, though they should not be confused with
EEG microsleeps which are short periods of EEG-defined sleep (see sleep
below) [Peiris et al. 2006]. EEG microsleeps can occur without a drop
in performance and BMs can occur without typical EEG sleep markers
[Davidson et al. 2007].

Sustained-attention lapses
Commonly called “attention lapses” [Weissman et al. 2006], these are not
directly related to the level of arousal and can occur when alert, fatigued,
or drowsy.

Diverted-attention lapses
When attention is diverted from the task at hand without a reduction in
alertness.

Sleep “Nodding off” for more than 15 s. Sleep is considered distinct from microsleeps
because of its duration and because responsiveness is recovered quickly after
microsleeps [Jones et al. 2010].

Sleep can also be defined by EEG features. As sleep deepens, EEG activity
moves to lower frequency bands, followed by the appearance of sleep spindles
and K-complexes [Álvarez-Estévez et al. 2009].

Alertness A measure of how awake someone is [Knipling and Wierwille 1994], that is,
the opposite of drowsiness [Berka et al. 2007, Johnson et al. 2011]. A necessary
but not sufficient condition for performing a task.

Attention Whether a person is focusing on their assigned task rather than being
distracted or absent-minded [Knipling and Wierwille 1994].

Sleepiness It is mostly agreed [e.g., Crummy et al. 2008, Shen et al. 2006, Vanlaar
et al. 2008] that sleepiness is the propensity to fall asleep and can be reduced
by getting sleep. Levels of sleepiness are affected by sleep deprivation, dura-
tion of wakefulness, sleep disorders, circadian rhythm, stimulants/depressants,
adrenaline (excitement, fear), and external stimulation (visual, auditory, tactile,
etc.).

Drowsiness Some consider drowsiness to be synonymous with sleepiness [Vanlaar
et al. 2008], while others consider it a distinct concept. For instance, Shen et al.
[2006] define drowsiness (or somnolence) as “the transitional state between
wakefulness and sleep associated with a number of subjective feelings and
symptoms, sometimes referred to as ‘subjective sleepiness’.”
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Fatigue There are many different definitions of fatigue. Crummy et al. [2008] give
a loose definition, calling it a broader term than sleepiness, possibly including
physical and psychological effects as well as effects from sleepiness.

Shen et al. [2006] make distinctions between acute and chronic fatigue, physio-
logical and psychological fatigue, and central and peripheral fatigue. Their
overarching definition, however, is “an overwhelming sense of tiredness, lack of
energy and a feeling of exhaustion, associated with impaired physical and/or
cognitive functioning”. This definition describes only the effect, making no
claims about the cause.

Vanlaar et al. [2008] define fatigue as “a disinclination to continue performing the
task at hand, caused by physical labour or repetitive and monotonous activities,
such as monitoring a display screen or driving long distances”. By this definition,
fatigue is not necessarily associated with feeling tired.

May and Baldwin [2009] define sleep-related fatigue as well as active and passive
task-related fatigue. Sleep-related fatigue matches the definition of sleepiness
given above. Active task-related fatigue is caused by mental overload due to
high-demand conditions such as busy traffic or poor visibility. Passive task-
related fatigue is caused by mental under-load due to low-demand conditions
such as driving on monotonous roads with little traffic.

The precise definition of terms such as drowsiness and fatigue is not required for this
project. The effects of drowsiness, sleepiness, and fatigue—by any definition—are
similar and detrimental to maintaining attention on a task. All kinds of lapses of
responsiveness have the potential to cause accidents.

1.3 OBJECTIVES

A primary aim of the Christchurch Neurotechnology Research Programme (NeuroTech)
is to produce a device that can detect lapses in real time in the real world. It is not
feasible to complete this whole task within a single PhD project, so the aim of this
project is to lay the groundwork for others to build on. Specifically, this project has
the following objectives:

• Design and build biosignal acquisition hardware to monitor multiple signals
relevant to lapse detection,

• Implement a software structure to enable experimenting with combinations of
signal processing and classification algorithms,

• Start implementing some of these algorithms as proof of concept,
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• Ensure the system is able to operate in real time in environments typical of
real-world usage,

• Design the system to be generalizable to cognitive monitoring applications other
than lapse detection.

Note that the project objectives refer to “lapse detection”, which is broader than
just the “microsleep detection” mentioned in the title. Microsleeps are a subset of
lapses, and the ultimate aim of NeuroTech’s lapse research programme is to detect as
many lapses of responsiveness as possible. Each type of lapse has different underlying
physiological and behavioural changes which will require different approaches to
their detection. For the purposes of this project, though, as long as each type of lapse
can be detected from the same raw signals, all types of lapses (and drowsiness too)
can be lumped into one category. The system developed over the course of this project
will acquire the raw signals required for lapse detection in general; other projects will
investigate how to process those signals to detect each type of lapse.

1.4 STRUCTURE

Chapter 2 provides an overview of relevant literature about devices and techniques for
detecting lapses and measuring drowsiness, as well as for other cognitive monitoring
applications. Chapter 3 describes the system that has been designed to meet the
objectives given above and the rationale for the design decisions. In Chapter 4 the
implementation of some signal processing algorithms is presented to operate on data
collected from the device. Chapters 5 and 6 describe a series of measurements and
experiments designed to test the performance of the hardware, the software, and
the system as a whole. A discussion of the outcomes of the project is presented in
Chapter 7, along with suggestions for future work.



Chapter 2

BACKGROUND

The dangers of lapses and drowsiness are well recognized, and research into how to
prevent, predict, and detect them has been going on for several decades. The following
sections outline the current state of this research, first examining the signals that are
used and then how those signals are processed. A brief overview of research into
other cognitive monitoring applications is also presented.

2.1 SIGNALS FOR DETECTING MICROSLEEPS

Drowsiness and lapses of responsiveness are changes in cognitive state. In the absence
of a direct “window into the mind” to measure cognitive state directly, we must rely
on measurable signals that are correlated with lapses in order to detect them. These
signals can be physiological measures that change with the underlying cognitive state,
or behavioural measures that identify the resulting changes in performance. The most
commonly used signals for identifying lapses and drowsiness are described below.

2.1.1 EEG

Electroencephalography (EEG) is the measurement of voltages on the scalp generated
by ionic currents flowing in the brain’s neurons. The firing of neurons generates
circulating ionic currents and an associated electric field, and an array of electrodes
distributed over the scalp samples the potential in space and time. If enough similarly-
aligned neurons fire simultaneously, the voltage between pairs of electrodes will be of
a measurable magnitude—the amplitude of normal alert EEG is usually in the range
of 40–80 µV [Santamaria and Chiappa 1987].

As a signal that is generated directly by neurons, EEG is the most direct measure
we have of brain activity, making it a logical choice when trying to measure changes
in cognitive state.
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2.1.1.1 Dry electrodes

Given its low amplitude (tens of microvolts), EEG is a difficult signal to acquire.
Conventional wet EEG electrodes consist of a silver–silver chloride (Ag–AgCl) plate
electrically coupled to the scalp through an electrolyte gel or paste. These electrodes
must be placed by a trained technician who can check for correct placement and
contact impedance. Also, the scalp must be abraded to remove any dead skin and
ensure good electrical contact before recordings.

While the electrolyte solution helps to obtain a clean signal, it does have draw-
backs. The solution evaporates over time, reducing its conductivity and leaving a
crusty residue in the subject’s hair. This limits the length of time for which EEG can
be continuously monitored as well as subjects’ receptiveness to the process. The elec-
trolyte also requires an ongoing investment of time and money; keeping a continuous
supply of solution costs money, and applying it to each electrode before every session
takes time.

To eliminate these costs and make EEG suitable for a wider range of applications,
several researchers have been investigating dry electrodes. The technologies they have
been researching can be categorized as dry contact (with or without skin penetration),
capacitive, and electro-optic.

Dry contact electrodes

Dry contact electrodes are much like conventional wet electrodes without the elec-
trolyte gel. For example, Fonseca et al. [2007] developed an active electrode made
from TiO2-coated stainless steel. Each electrode has a unity-gain op-amp with very
high input impedance. They found that the contact impedance drops substantially
after a layer of perspiration builds up under the sensor surface. In fact, Searle and
Kirkup [2000] found that movement artefacts for dry electrodes are less than those for
wet electrodes after a layer of perspiration has formed, though they are substantially
higher before this.

Achieving reliable contact with the scalp through hair can be very difficult. To
address this, Tsai et al. [2009] developed a dry contact electrode with ten protruding
arcs of Ag–AgCl that reach through the hair to contact the scalp. They mounted
these electrodes around the bottom band of a cap as the basis for a drowsiness
detection device. Their paper does not compare the performance of their electrodes
to conventional ones but does say that they were able to detect an increase in low-
frequency EEG power with drowsiness. Some of their subjects required the electrodes
to be adjusted several times to get a good quality signal.

The g.sahara active dry electrodes from g.tec1 have multiple gold-plated pins

1http://www.gtec.at

http://www.gtec.at
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that reach through the hair to contact the scalp, as well as an amplifier built into
the electrode [Guger et al. 2011]. Placing an amplifier with a high input impedance
directly on the electrode itself makes the design more resistant to movement artefacts
and tolerates a higher contact impedance. The electrodes are available with pins either
7 mm or 16 mm long to accommodate a range of hair styles.

Mindo2 has developed two dry electrode designs. The first has multiple gold-
plated pins that are individually sprung and are mounted on a thin flexible plate
[Liao et al. 2011]. The springs and plate allow the electrode to conform to the user’s
head under pressure, making it less likely to be painful than those that have rigid
pins. The second design consists of a block of conductive polymer foam wrapped in
conductive fabric, making them comfortable and inexpensive [Liao et al. 2012]. This
type of electrode is only suitable for use on non-hairy sites like the forehead. The
impedance of both of these sensors stayed between 4 kΩ and 14 kΩ over the course
of a 2 h recording. Data recorded using the pin-based electrode on the forehead
had a correlation of 95.26 % with data from an adjacent wet electrode, and the same
experiment with the foam electrode yielded a correlation of 95.56 %. With the pin-
based electrode placed on a hairy site, POz, the correlation was 91.47 %.

Electrodes that use multiple metal pins to reach through the hair and push on the
scalp can be uncomfortable for the user. Grozea et al. [2011] designed an electrode that
uses silver-coated flexible bristles, somewhat reminiscent of a toothbrush. The bristles
can reach through the hair, won’t penetrate the skin, and distribute the pressure on the
scalp “more uniformly and more flexibly” than pin-based electrodes. Using a large
number of bristles provides a degree of redundancy to help maintain electrical contact.
The authors note that the silver coating starts to wear off the bristles after several
months of regular use. A typical skin–electrode impedance of 80 kΩ (at DC) was
measured with these electrodes, and when compared to conventional wet electrodes
the average coherence between a dry–wet pair was found to be over 80 % that of a
wet–wet pair from 7–44 Hz.

Another interesting design which avoids the problems with metal pins is presented
by Chi et al. [2013]. They have developed a spider-like active electrode made from
a flexible plastic substrate with a conductive coating. As pressure is applied to the
electrode, the legs flex outwards, pushing aside the hair to make contact with the
scalp. This also makes the design safer than those that use metal pins since the
electrode can squash flat under pressure. These electrodes have been shown to have
comparable performance to conventional electrodes when measuring event-related
potentials (ERPs) [Mullen et al. 2013].

2http://mindo.com.tw

http://mindo.com.tw
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Penetrating electrodes

The outer layer of the skin, the stratum corneum, consists of dry, dead cells with high
electrical resistivity. The electrolyte solution and scalp abrasion used with conventional
electrodes aims to bridge this layer in order to make contact with the more conductive
epidermis. An alternative approach is to construct an electrode that can pierce the
dry outer layer and directly contact the epidermis so that a current can be transduced
without the need for conductive gel.

This is the approach taken by Silva [2006]. He developed an array of carbon nano-
tubes bound to a silicon substrate and tipped with silver chloride. This arrangement
can penetrate the ∼13 µm stratum corneum and provides direct electrical contact
to the epidermis. Unfortunately, the carbon nanotubes are weakly bonded to the
substrate and can break off, with potential toxicological effects.

Chiou et al. [2006] developed a similar design using etched silicon spikes coated
with titanium/platinum. They compared the signals from these electrodes to those
from adjacent conventional electrodes and found them to be comparable. Unfortu-
nately, electrodes of this type are limited to use on bare skin since the 200 µm spikes
are not long enough to reach through the hair. This is a significant limitation since it
means that the majority of the brain cannot be monitored.

Capacitive electrodes

Whereas dry contact electrodes make direct electrical contact with the scalp, capacitive
sensors couple to the scalp without direct contact with the skin. Their input stage
is a capacitor with one plate formed by the electrode and the other by the scalp.
These electrodes work through hair since, by definition, capacitors require separation
between the two halves. By the parallel-plate capacitor equation, the coupling capaci-
tance is inversely proportional to the distance between the scalp and the electrode,
and directly proportional to the relative permittivity of the intervening material. That
is, if the distance between the scalp and the electrode changes over time or as the
subject moves, the output signal will be distorted. Such movement artefacts could be
minimized by good electrode design, but the relative permittivity is more difficult to
control since it will change with levels of perspiration under the electrode [Searle and
Kirkup 2000].

To avoid these problems, Chi and Cauwenberghs [2009] developed a non-contact
electrode with active input-capacitance cancellation circuitry to make the electrode
gain independent of coupling capacitance. Their paper indicates that the gain is
indeed almost constant with varying separation. They later improved the design by
developing a custom amplifier IC which minimized the problems caused by parasitic
capacitance that occur when using discrete off-the-shelf components [Chi et al. 2012].
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When tested on 10 subjects, the signals from these non-contact electrodes had a
mean correlation of 0.80 with signals from adjacent wet electrodes. They were also
able to achieve an information transfer rate of 19 bit/min on a steady-state visually-
evoked potential (SSVEP) brain–computer interface (BCI) task using the non-contact
electrodes.

Quasar3 have developed a hybrid capacitive/resistive electrode for measuring
EEG [Matthews et al. 2007]. These electrodes have an array of metal pins to reach
through the hair, providing a combination of capacitive and high impedance resistive
contact to the scalp. In a small study of five participants, Matthews et al. [2007] found
a correlation of 0.99 between the power spectral density (PSD) of the dry electrodes
and adjacent wet electrodes, though the correlation was lower in the time domain due
to skin noise. An independent group [Wilson 2009] did a validation study of these
electrodes and also concluded that they provide a signal comparable to conventional
electrodes.

Electro-optic sensors

The Photrode, developed by SRICO,4 is an electro-optic sensor that detects EEG using
an optical device known as a Mach-Zehnder interferometer. These devices split a beam
of light into two lithium niobate waveguides which pass between pairs of electrodes.
The voltage picked up by the electrodes causes the refractive indices of the two
waveguides to change slightly, thereby modulating the intensity of the light when it is
recombined. The result is a sensor with an extremely high input impedance (1014 Ω)
capable of detecting microvolt signals. Kingsley et al. [2004] compare the Photrode to
conventional EEG electrodes, though only by visual comparison of waveforms, and it
is difficult to tell from their paper whether the design is as effective as they claim.

2.1.1.2 Commercial wireless EEG devices

A list of some of the commercially-available devices for wireless EEG acquisition is
given below. This list does not include every device available for sale but covers a
range of devices targeted at a range of markets.

• The Emotiv EPOC5 is a 14-channel headset designed for gaming and BCI
research. Its electrodes are felt pads which must be soaked in saline solution
before each use. The device captures 14-bit data at 128 Hz and offers 12 h of
battery life. The latest model includes a 9-axis inertial measurement unit.

3http://www.quasarusa.com
4http://www.srico.com/node/11
5http://emotiv.com

http://www.quasarusa.com
http://www.srico.com/node/11
http://emotiv.com
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• The NeuroSky MindWave6 is a single-channel headset designed for gaming. It
has one dry contact electrode positioned on the forehead at Fp1. The device
offers 6–8 h battery life.

• The Holst Centre and Imec7 have developed an 8-channel headset based around
their custom ultra-low-power application-specific integrated circuit (ASIC) for
EEG acquisition [Patki et al. 2011]. Its electrodes are a dry Ag–AgCl design
which also allow the addition of electrolyte paste if required. The device captures
11-bit data at up to 1024 Hz and offers 45 h of battery life. This system is targeted
at health monitoring and BCI applications.

• The Quasar DSI 10/208 is a 20-channel headset using the hybrid resistive/
capacitive electrodes described earlier in this chapter. The device captures 16-bit
data at 240 Hz or 960 Hz and offers 24 h of battery life.

• The B-Alert X24 from Advanced Brain Monitoring9 is a 20-channel headset
aimed at research applications. No information is available about the electrodes
used in this system, so presumably they are conventional wet electrodes. The
device captures 16-bit data at 256 Hz and offers 6 h of battery life. It also includes
a 3-axis accelerometer for monitoring head movement.

• The Mindo-64 Coral10 is a 64-channel headset using the sprung-pin electrodes
described earlier in this chapter. The device captures 12-bit data at 256 Hz and
offers 23 h of battery life.

• The Cognionics HD-7211 is a 64-channel headset using the spider-like electrodes
described earlier in this chapter. The device captures 24-bit data at 500 Hz and
offers 4 h of battery life. It also includes a 3-axis accelerometer and support for 8
auxiliary analogue channels for, e.g., ECG/EMG/respiration, etc.

As this list shows, there was a variety of wireless EEG acquisition systems available
at the time of writing: from 1 to 64 channels, using wet or dry electrodes, for research
and recreation. Some have been optimized for ease-of-use, some for low power, and
some for data quality. It would have been interesting to compare the cost of each
system, too, but prices were not published for most of the devices.

6http://neurosky.com
7http://www.imec-nl.nl
8http://www.quasarusa.com
9http://www.b-alert.com

10http://www.mindo.com.tw
11http://www.cognionics.com

http://neurosky.com
http://www.imec-nl.nl
http://www.quasarusa.com
http://www.b-alert.com
http://www.mindo.com.tw
http://www.cognionics.com
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2.1.2 Eye movement

Much like EEG, the eyes provide several useful cues regarding sleep/wake state.
The eyes can be monitored with a video camera, mounted either remotely or on the
subject’s head, or by electrooculography.

2.1.2.1 Remote video of face

One technique for gathering data from the eyes is to use a camera mounted at a
distance from the subject. This approach is obviously limited to situations where the
subject’s head is always facing the camera and cannot leave its field of view. One
important such situation is driving, and consequently quite a lot of research has been
done into using dash- or visor-mounted cameras to detect driver drowsiness.

The Driver State Sensor from Seeing Machines12 has a camera mounted on the
dashboard which monitors the driver’s face. The system measures the position and
orientation of the driver’s head, their gaze direction, and eye closure. It initializes
itself automatically, requiring no interaction from the driver. When the system detects
a microsleep (from eye closure) or a lapse of attention (from gaze direction), it sounds
an audible alert, vibrates the seat, and sends a notification to the vehicle operator’s
fleet management system. This system has been adopted in large mining trucks as
well as transportation vehicles.

The Smart Eye AntiSleep13 is a similar device, though targeted more at automotive
research applications. It has a camera mounted on the dashboard, along with infrared
(IR) illumination so that it is not affected by ambient light levels. The system is capable
of tracking the driver’s head within a volume of 40 cm× 40 cm× 30 cm. Initialization
is automatic, requiring no interaction from the driver. The system tracks the driver’s
head orientation to within 3°, gaze direction to within 1.5°, and the degree of eye
closure to within 1 mm.

2.1.2.2 Head-mounted video of eyes

Another technique for gathering data from the eyes is to use a camera mounted on
the subject’s head. By using a camera in a fixed position relative to the eyes, the face
localization step required when processing remote-mounted video is unnecessary.
This reduces the computational requirements, thus reducing latency and/or hardware
requirements. It also has the added benefit of guaranteeing that the eyes can never
leave the camera’s field of view.

Remote-mounted camera systems must balance the competing requirements of
the subject’s range of motion and the apparent size of the face region; if the field of

12http://www.seeingmachines.com
13http://www.smarteye.se

http://www.seeingmachines.com
http://www.smarteye.se
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view is enlarged to allow tracking the subject over a wider area, the size of the subject’s
face in the image is reduced. For a driver monitoring system, the eye openings are
typically 10–15 pixels high [Hammoud and Zhang 2008, Malla et al. 2010] which limits
the accuracy of eye measurement algorithms. Mounting the camera on the subject’s
head provides a much higher resolution image of the eyes, even if a lower resolution
camera is used. Higher resolution images enable more accurate and sophisticated
measurements.

On the other hand, head-mounted camera systems require the subject to take
the time to put on and remove a device and to put up with any inconvenience or
discomfort it may cause them. The device requires either a power cable connected to a
base unit or regular battery charging. These factors may make head-mounted devices
more suitable for use on the job, where they could be considered part of standard
safety equipment, rather than for the general public.

Nishiyama et al. [2007] developed a head-mounted device capable of recording
images of both eyes and used it to test subjects in a driving simulator. They confirmed
prior research that large, low-frequency fluctuations in pupil diameter are present
when the subject feels sleepy [Lüdtke et al. 1998] but, more importantly, they found
patterns present before this phenomenon. In 80 % of their subjects, a gradual decrease
in pupil diameter occurred over the minutes preceding the large fluctuations. Subjects
did not feel sleepy during this period, suggesting that the gradual decrease could
be an effective predictor of drowsiness. However, 3 out of 14 subjects displayed the
gradual decrease without becoming sleepy afterwards.

Instead of using a video camera to monitor the eyes, Johns et al. [2007] use infrared
reflectance oculography. Their device, the Optalert Eagle,14 consists of a glasses frame
with an IR LED and phototransistor mounted below the eyes. This device samples at
500 Hz—much faster than a video camera—which is possible because it only measures
a single value; a one-pixel image, as it were. This very high sampling rate allows the
velocity of eyelid movements during blinks to be determined accurately. The glasses
are connected to an off-body unit, either by a cable or wirelessly, which provides
visual feedback of the user’s drowsiness level.

Outside of the field of lapse and drowsiness monitoring, there are several com-
mercial head-mounted eye-tracking systems available. These are often used for gaze
tracking in psychological research into the way people interact with advertising, user
interfaces, and each other.

SensoMotoric Instruments (SMI)15 has created a pair of eye tracking glasses16—a
head-mounted, video-based, binocular gaze-tracking system. The device looks like an
over-sized pair of ordinary glasses with small cameras mounted in the bottom edge of

14http://www.optalert.com
15http://www.smivision.com
16http://www.eyetracking-glasses.com

http://www.optalert.com
http://www.smivision.com
http://www.eyetracking-glasses.com
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the rims facing the eyes and a scene camera mounted in the bridge. It is available in
both wired and wireless configurations, although it appears that the wireless version
still has a cable between the glasses and an off-head unit. The system provides 60 Hz
binocular gaze tracking with no manual calibration required. SMI have recently
integrated these glasses with the Emotiv EPOC EEG headset to provide unified access
to eye tracking and EEG data with a common time base. This combination comes close
to meeting the objectives of this project—it offers real-time EEG and eye video from a
wearable device—however it is only suitable for research applications. It requires the
user to put on two devices, the glasses and the headset, and to apply saline solution
to the EEG electrodes before each use.

The Tobii17 eye tracking glasses are a similar product, providing head-mounted,
video-based, binocular gaze tracking. Unusually, these glasses have four eye-tracking
cameras mounted very close to the face, as opposed to the more common design of a
single camera per eye. Perhaps using multiple cameras allows them to compensate for
the reduced field of view which must result from mounting the cameras so close to
the eyes. Like the SMI glasses, this product has a cable connected to an off-head unit
which provides the data recording functionality and wireless interface. The system
provides 30 Hz gaze tracking and requires a one-point calibration routine. The battery
provides 2 h of recording time.

Many other commercial head-mounted eye trackers (e.g., Polhemus VisionTrak,18

Applied Science Laboratories H7,19 SR Research EyeLink II20) are bulky units with
large cameras and partial mirrors mounted in front of the user’s eyes. These are
clearly limited to laboratory research settings.

Babcock and Pelz [2004] describe how to build a simple monocular eye tracking
system from off-the-shelf components. The resulting device is much more bulky than
the commercial devices described above but it demonstrates that it is feasible to create
such a device from readily available parts. There have been dramatic advances in
miniature camera and mobile multimedia-processing technologies since 2004, so even
better results should be possible today.

2.1.2.3 Electrooculography

Electrooculography (EOG) is a common technique for monitoring eye movements in
a clinical or laboratory setting. The eye forms an electric dipole, the orientation of
which can be detected by placing electrodes near the eyes. The application of EOG to
drowsiness/lapse detection is generally limited to research settings because it requires
electrodes to be attached to the subject’s face. Golz et al. [2007] used EOG as part of

17http://www.tobii.com
18http://www.polhemus.com
19http://www.asleyetracking.com
20http://www.sr-research.com

http://www.tobii.com
http://www.polhemus.com
http://www.asleyetracking.com
http://www.sr-research.com
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an automated multi-input system for detecting microsleep events and found vertical
EOG to be particularly useful. Conversely, Peiris et al. [2005] found that EOG was of
little value to expert raters identifying lapses during a psychomotor vigilance task
(PVT). Whether it is useful for detecting lapses or not, the intrusive requirement of
fixing electrodes near the subject’s eyes limits its suitability for a commercial device.
However, it is possible to use independent component analysis (ICA) on the frontal
EEG channels to extract much of the EOG signal without the need for electrodes on
the face.

2.1.3 Head position/movement

Useful information can be obtained from the orientation and motion of the head in
scenarios where the head position is usually fixed. For instance, the head is usually
relatively still and facing straight ahead when driving. If the head is detected to
be facing down or to the side for some time, this could indicate that the driver is
distracted, i.e., having a lapse of task-oriented attention, or is having a long BM.
Popieul et al. [2003] add that the head also tends to droop as muscle tone reduces
with drowsiness, and the variability in position and speed increases as the subject
yawns and moves around to get comfortable. They measured head position using a
magnetic head tracker as well as driver performance indicators such as speed, lateral
lane position, and steering wheel angle in a driving simulator. They found that the
variability in head movements was as useful as driver performance indicators for
detecting drowsiness and was less influenced by inter-individual differences and the
road environment. While this variability is useful for detecting drowsiness, it does
not detect lapse events. As Hartley et al. [2000] state, using head-nod events alone
to detect BMs is of limited use since the subject’s level of performance has probably
decreased markedly by the time their head nods. Nevertheless, head position and
movement measures may be useful as part of a multi-modal detection system.

2.1.4 Other physiological signals

Tsuchida et al. [2009] used electrocardiography (ECG) to measure heart rate variability
as an indicator of autonomic nerve activity. Feeding this into a multi-class classifier
along with eyelid closure, they were able to achieve a drowsiness level classification
accuracy of 89 % with a resolution of 10 s. However, they gave no indication of how
much heart rate variability contributed to their classifier’s accuracy, so we can not tell
if it was any improvement over eye closure alone. Additionally, conventional ECG
electrodes would be far too intrusive for use in a real-world device, though some
advances have been made towards non-invasive signal acquisition through clothes
[Leonhardt and Aleksandrowicz 2008]. However, very few researchers have found
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compelling reasons to incorporate ECG in drowsiness detection systems over the
many years of research in the field.

Kar et al. [2011] measured blood biochemical parameters as part of an EEG
study into driver fatigue. Subjects were kept awake for 36 h and completed regular
simulated driving tasks. Blood samples were taken five times over the course of
the experiment and analysed for glucose, urea, and creatinine. They found a strong
correlation between EEG changes and the blood parameters at successive stages
of the experiment, suggesting that these blood parameters could indicate fatigue.
Although this investigation used invasive methods, it may eventually be possible to
use lab-on-a-chip technology to measure blood parameters continuously.

2.1.5 Driver-specific signals

Driving a vehicle is a common and fairly well characterized task: a driver sits down,
makes minimal movements, and usually looks straight ahead. Their task is to maintain
appropriate vehicle speed and lane position. These clear requirements mean that an
appropriately instrumented vehicle may be able to detect changes in performance
stemming from driver drowsiness. Knipling and Wierwille [1994] suggested that useful
parameters could include corrective steering movements, lateral acceleration, lateral
lane position (measured using computer vision), and yaw rate. These parameters are
widely used to detect drowsiness in driving simulators where they can be calculated
exactly from the computer-generated environment [e.g. Chiou et al. 2006, Popieul
et al. 2003, Tsuchida et al. 2009] but measuring them in the real world is much more
difficult.

Several vehicle manufacturers are starting to include advanced driver assistance
systems such as lane departure warnings and forward collision warnings. These
systems, such as those developed by Mobileye,21 visually identify the boundaries of
the current lane and can apply corrective force to the steering wheel to maintain lane
position unless the driver is indicating their intention to change lanes. These features
will surely help to reduce on-road fatalities due to lapses of responsiveness. This class
of systems detects driver errors as they occur—e.g., beginning to drift out of a lane—
but before they become too severe or cause an accident. A lapse detection system
based on physiological signals, by contrast, aims to detect the change in cognitive
state that caused the behavioural change that caused the change in vehicle dynamics,
and therefore to respond earlier than a vehicle-based system possibly could.

Park [2011] proposed driver grip force as a measurable indicator of driver fatigue.
They inferred grip force by measuring the bending radiation loss in a plastic optical
fibre wound around a steering wheel. While they showed that optical power decreases
as a function of the grip force, they gave no evidence to support the claim that driver

21http://www.mobileye.com

http://www.mobileye.com
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grip strength is correlated with fatigue. Many drivers barely grip the steering wheel
at all, making variations in grip force a questionable measure at best.

2.2 SIGNAL ANALYSIS TECHNIQUES

The following sections describe some common techniques for analysing these signals
in order to measure drowsiness and detect lapses of responsiveness.

2.2.1 EEG

2.2.1.1 Measuring drowsiness

Observation of EEG has led to activity being divided into five frequency bands
(Figure 2.1) [Papadelis et al. 2007] that help to explain common features. Changes in
the amplitude of activity in these bands are known to be correlated with, among many
other things, drowsiness and sleepiness. Santamaria and Chiappa [1987] describe
the following characteristic changes: an increase in alpha during restful wakefulness
with eyes closed, followed by a disappearance of alpha as drowsiness deepens; a
decrease in amplitude by approximately half; and a reduction in frequency of 3–6 Hz
(α→ θ). They also noted an increase in synchrony between channels as drowsiness
increases. These patterns vary significantly between individuals, and even between
sleep/drowsiness episodes of the same individual, making it difficult to reliably
determine the level of drowsiness from EEG alone.

Rather than trying to develop a single model of EEG activity, Johnson et al. [2011]
suggest that there may be three or more “phenotypes” which people’s patterns of
drowsiness fall into. For instance, some people are barely affected by sleep deprivation,
while others become drowsy quickly even when normally rested. Developing models
for each of these groups could provide the advantages of having better results than a
single model while not requiring the training of individualized models.

To avoid the need to train a classifier on either individuals or large populations, Pal
et al. [2008] developed an unsupervised adaptive approach. Their system establishes
a baseline alert model by measuring several minutes of EEG when the subject starts
driving. It is assumed that they remain alert during this period. When testing
subjects in a driving simulator, they observed that deviations in EEG power from the
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Figure 2.1 Standard EEG frequency bands.
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alert baseline measurement corresponded to changes in driving performance. This
relationship can be used to detect changes in the subject’s alertness. Note that this
approach does not actually estimate the level of drowsiness (decreased alertness), but
rather changes in alertness. For instance, a change could be detected if the subject
has an excited conversation with a passenger. Pal et al. claim that it is valid to give a
warning in such situations because the driver is distracted from the task of driving.

Golz et al. [2007] compared the periodogram, delayed vector variance (DVV), and
a combination of the two for extracting features from EEG. The periodogram is an
estimator of the true PSD and assumes linearity and stationarity of the signal. DVV,
on the other hand, estimates to what extent the signal has non-linear or stochastic
components. The features obtained by these techniques were fed into neural networks
(Section 2.2.3) for classification. They found that the periodogram was more effective
than DVV for extracting features, and even adding DVV to the periodogram provided
only minor improvement.

2.2.1.2 Detecting lapses & microsleeps

Compared to the number of drowsiness estimation approaches in the literature, of
which the previous section contains only a small sample, there have been compara-
tively few attempts at detecting lapses of responsiveness.

Peiris et al. [2011] developed a detector based on spectral power features aimed
at detecting lapses with second-scale resolution. This method has comparable per-
formance to the recurrent neural network implementation from their earlier paper
[Davidson et al. 2007], indicating that non-linear techniques may not provide any
more useful information than simpler linear ones. This, along with the results of Golz
et al. [2007] above, seems to imply that traditional linear techniques may be sufficient
for extracting features from EEG. It should be noted, however, that their method
cannot be applied in real time since the entire EEG feature vector is required for a
normalization step. They suggest that it may be possible to remove this limitation by
using mean values from previous sessions but that approach has not been tested.

The alertness classification model developed by Berka et al. [2004] uses discrimi-
nant function analysis based on a database from a large population but is individual-
ized by taking several baseline readings. This algorithm is used by the B-Alert device
mentioned in Section 2.1.1.2. The system classifies each second of EEG into one of
four states of alertness: high vigilance, low vigilance, relaxed wakefulness, and sleepy.
Berka et al. [2004] claim that the system is capable of identifying second-by-second
lapses of alertness that are predictive of errors in a vigilance task. Unfortunately the
headset uses wet electrodes, limiting its usefulness outside of a laboratory setting.
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2.2.2 Eye video

2.2.2.1 Remote video of face

Wierwille and Ellsworth [1994] defined a set of criteria for manually rating driver
drowsiness from video of their face. These criteria consider features such as facial
tone, speed of blinks and eye closure, and gestures like rubbing the eyes. Despite
rather subjective descriptions (e.g., “normal facial tone”), they found that ratings
both between and within raters tend to be consistent and that the ratings consistently
discriminate between conditions. A manual approach is not suitable for widespread
usage but is useful as a gold standard when evaluating other drowsiness detection
techniques in a research setting.

The computer vision technique developed by Malla et al. [2010] automatically
measures eye closure in real-time. It uses a cascade of detectors to narrow down the
search area for more efficient computation. They begin with a Haar classifier for face
detection [Lienhart and Maydt 2002, Viola and Jones 2004] and smooth the result
with a Kalman filter. Typical anthropometric proportions are used to place regions of
interest around the eyes, and then weighted template matching is applied in these
regions to locate the centres of the eyes. The local extrema of the vertical gradient in
these regions mark the upper and lower eyelids, from which the eye closure can be
measured relative to a known eyes-open condition. This approach had limited success
since the cascaded nature of the algorithm compounds the errors in each stage. They
were only able to discriminate between three degrees of eye closure, and unreliably at
that.

Sigari [2009] developed a similar technique but without an explicit eye-detection
stage. After using a Haar classifier to locate the face, he calculates the horizontal
projection of the top half of the face image. After 1–2 min of training, the state of the
eyes can be calculated by correlating the current projection with the known projection
of open eyes. The horizontal projection of open eyes is constantly updated using
a fuzzy running average. This adaptive method is reportedly robust to skin color,
glasses, and illumination, though no quantitative measures of this robustness are
provided. The system provides no external illumination, so one would expect it to
perform poorly in low-light conditions.

Grace [2001] takes an entirely different approach, exploiting the so-called red-eye
effect. The pupils of human eyes have a distinct glow when lit with IR light at a
wavelength of 850 nm but not at 950 nm. By synchronizing two IR sources with a
video camera it is possible to obtain frames with alternating light and dark pupils.
Subtracting a frame with dark pupils from the previous one (with light pupils) leaves
an image with only the pupils visible. The proportion of time that the eyes are closed
can be calculated by tracking the visibility of the pupils over time. This technique
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completely relies on the red-eye effect, which may be interfered with if there are high
levels of ambient IR or the driver is wearing glasses that block infrared.

All of the above eye-based techniques measure, among other things, percentage
eye closure (PERCLOS), the percentage of time in a minute that the eyes are at least
80 % closed [Wierwille and Ellsworth 1994]. This measure has been deemed the best
predictor of PVT lapses22 by the US Department of Transportation Federal Highway
Administration and National Highway Traffic Safety Administration. Dinges et al.
[1998] compared PERCLOS to two EEG algorithms, two eye blink monitors, and a
head position monitor. They found that PERCLOS was the only one to correlate
highly with PVT lapses both within and between subjects. However, PERCLOS has
a temporal resolution of 1 min at best, and that is sometimes increased up to 20 min
[Dinges et al. 1998]. This is fine for estimating drowsiness but means it cannot detect
BMs as they occur.

In summary, measuring oculometrics with a remote-mounted camera can only be
done in situations where the subject is primarily stationary. Complex computation is
needed to locate and track the face and eyes, and the output of the system tends to be
low resolution. However, a big advantage of such systems is that they are completely
non-invasive, requiring no interaction from the subject.

2.2.2.2 Head-mounted video of eyes

Hirata et al. [2009] used a head-mounted eye-video system to measure changes in
reflexive eye movements. The vestibulo-ocular reflex (VOR) counter-rotates the eyes to
maintain gaze direction during head movement. The performance of this reflex can be
measured by comparing head movements to the actual compensatory eye movements.
The movement of the eyes is measured by tracking the pupil positions in the eye
images, and head movement is detected in six degrees of freedom by accelerometers
and gyroscopes. They found that the VOR gain decreases and standard deviation
increases before the subject feels drowsy, so these two measures can be used as
predictors of drowsiness.

Li et al. [2005] developed a “starburst” algorithm for locating the pupil in video
of the eye captured from the Babcock and Pelz [2004] head-mounted eye tracker
(Section 2.1.2.2). This process sends out rays from a starting point which stop when
the image gradient exceeds a threshold. More rays are then sent back from these end
points in the opposite direction, again stopping when the gradient exceeds a threshold.
These end points define a set of candidate features for the pupil boundary. An ellipse
is then fitted to the feature points using a random sample consensus (RANSAC)

22The psychomotor vigilance task (PVT) is commonly used for detecting the effects of drowsiness/
fatigue/sleepiness. The subject must respond to a series of visual stimuli presented at random intervals
of 2–10 s. A lapse is defined as a response time of more than 500 ms [Drummond et al. 2005].
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[Fischler and Bolles 1981], a shape-fitting algorithm which is robust to the presence of
outliers (Section 4.1.2).

Świrski et al. [2012] developed a pupil localization algorithm inspired by “star-
burst” which takes into account the difficulties arising from using video taken at
a very oblique angle to the eye. After identifying a region of interest around the
pupil using Haar-like features, they use k-means clustering on the image histogram to
segment the dark pupil from the lighter iris. A Canny edge detector is then applied
to locate the edges of the segmented region and a modified version of RANSAC is
used to fit an ellipse to the edge points. This algorithm was able to locate the pupil
within 5 px of a manually annotated gold standard in 87 % of the 600 frames in their
test data set. By contrast, “starburst” achieved 15 % on the same data set.

The Optalert device described in Section 2.1.2.2 infers the degree of eye closure
by shining an IR LED at the eye and measuring the reflectance [Johns et al. 2007].
They have developed a drowsiness metric based on the ratio of the amplitude to the
velocity of eyelid movements during blinks and eye closure. This ratio is apparently
consistent between alert subjects and changes with drowsiness. When tested on
sleep-deprived subjects in a driving simulator, the device has been shown to predict
that the vehicle will completely leave the road within the next 15 min with sensitivity
83.3 % and specificity 60.9 %. No figures are given for non-sleep-deprived subjects,
however, so we cannot know the false alarm rate under normal conditions or how
often non-sleep-deprived people have driving errors.

2.2.3 Multi-modal techniques

Several research groups have come to the conclusion that a single signal is not sufficient
to identify drowsiness or lapses reliably [Álvarez-Estévez et al. 2009, Golz et al. 2007,
Hussain et al. 2008, Kaefer et al. 2003]. Golz et al. [2007] developed a multi-modal
classifier for detecting microsleeps from seven channels of EEG, horizontal and vertical
EOG, pupil size, and eye-gaze coordinates. Features are extracted from these signals,
and a support vector machine is used to decide whether the fused features represent
a microsleep event. Using all of these features, test errors (a measure of the classifier’s
generalizability) were reduced to 9 %. They found that vertical EOG is more useful
than horizontal, pupil diameter is more useful than gaze direction, and that Cz is the
most useful EEG channel. This group has made the most promising advances towards
detecting microsleeps using multiple signal sources.

From the related field of sleep studies, Álvarez-Estévez et al. [2009] developed
a fuzzy-logic approach to detect sleep stages from polysomnograms (EEG + ECG +
EOG + EMG). The usual method of quantifying sleep stages uses six discrete stages
ranging from awake, through S1–4, to REM sleep. To calculate a more useful measure
than discrete stages, Álvarez-Estévez et al. used fuzzy logic to determine the degree of
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membership of each stage and so obtain a continuous measure of sleep stage. While
their work is not directly applicable to identifying lapses, the general approach of
using fuzzy rules to classify states may be.

2.3 NEUROTECH’S LAPSE RESEARCH PROGRAMME

To put this project in context, it is useful to review the prior research undertaken
as part of NeuroTech’s lapse research programme. Over the last eight years the
group has carried out three studies to investigate the nature and causes of lapses
of responsiveness. Using the data from these studies, a range of techniques to
automatically identify lapses from physiological signals have been, and continue to
be, developed.

2.3.1 Study 1: EEG

The first study involved 15 participants completing two 1-h sessions of a one-dimensional
tracking task. They were seated in front of a computer monitor with a sinusoidal
target scrolling down the screen, and used a steering wheel to keep an arrow on top
of the target. 16 channels of EEG were recorded, along with video of the subject’s
face from a remote camera. Subjects were normally rested for both sessions. The gold
standard for identifying lapses was generated by manually examining the tracking
response and video of the face. A lapse was defined as either an inappropriate flat
spot in tracking response (disregarding periods where the target velocity was near
zero) or prolonged eye closure.

Peiris et al. [2006] found that 14 of the 15 subjects had at least one lapse, with an
overall rate of 39.3± 1.9 h−1 (mean ± SE) and duration of 3.4± 0.5 s. During lapses,
they found an increase in EEG power in the delta, theta, and alpha spectral bands,
and a decrease in the beta and gamma bands.

Davidson et al. [2007] developed a long short-term memory (LSTM) recurrent
neural network to classify lapses from the log-power spectrum of the EEG with
1 s resolution. Using only two bipolar channels, they were able to achieve similar
performance to using all 16 channels—an area under the curve of the receiver operating
characteristic (AUC-ROC) of 0.84± 0.02. This was the first application of a LSTM
to EEG analysis and achieved performance equivalent to the best tapped delay-line
multilayer perceptron (TDL-MLP) they compared it to.

Peiris et al. [2008] used linear discriminant analysis (LDA) to develop an individual
classifier for each of eight subjects and then used stacked generalization to combine
these into an overall detection model. When this overall classifier was run on the
concatenated set of data from all eight subjects, it achieved a sensitivity = 73.5 %,
selectivity = 25.5 %, and accuracy = 61.2 %. As above, this classifier had a resolution
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of 1 s. They later [Peiris et al. 2011] developed a selection of linear and non-linear
lapse detectors based on the power spectrum, fractal dimension, approximate entropy,
and Lempel-Ziv complexity of the EEG. The best performance was achieved using
the detector based on power spectral features, achieving similar performance to the
LSTM RNN of Davidson et al. [2007]. This indicates that simpler linear techniques
may be sufficient for identifying lapses of responsiveness from EEG.

2.3.2 Study 2: EEG + fMRI

The second study involved 20 participants completing a 50-min two-dimensional
tracking task [Poudel et al. 2008] in a 3 T MRI scanner. This study collected functional
MRI (fMRI) data, eye video, vertical EOG, and 64 channels of EEG in addition to the
tracking data. The participants kept sleep diaries and wore wrist actigraphs for the six
days preceding the MRI session to confirm that they were normally rested. The gold
standard was defined by manually rating the tracking response and eye video, with
BMs defined as poor tracking with full or partial eye closure lasting less than 15 s.

16 of the 20 subjects had BMs during the session, with 14 having more than 43 h−1

[Innes et al. 2010]. 8 subjects had sleep episodes lasting ≥ 15 s. The overall rate of
BMs was high but variable, 79.1± 66.2 h−1 (range 0–225.6 h−1), with each one lasting
3.3± 1.6 s. They found a moderate correlation between the number and duration of
BMs and self-rated sleep propensity. There was no correlation between the number of
BMs and circadian type or the quality, duration, or efficiency of sleep.

In the fMRI data, Poudel et al. [2009, 2014] found a decrease in blood-oxygen-level
dependent (BOLD) activity in the thalamus (related to arousal) and the posterior
cingulate gyrus and medial frontal cortex (part of the default-mode network which
deactivates during the transition to sleep). They also found an unexpected increase
in activity in sensory-motor areas, possibly related to some form of compensation
mechanism.

Also from this study, Poudel et al. [2010] found that posterior theta-band activity
in the EEG is correlated with the occurrence of behavioural microsleeps.

2.3.3 Study 3: EEG + fMRI with sleep restriction

The third study had a similar structure to the second, with the primary difference
being that participants completed two sessions: one after a normal night’s sleep and
one after a restricted sleep period of 4 h. Again, 20 participants completed a 2 D
tracking task in an MRI scanner, though this time the protocol included an arterial
spin labelling (ASL) sequence.

This study found that participants who were drowsy after the sleep-restricted
night had decreased cerebral blood flow (CBF) in both arousal-promoting and at-
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tentional brain regions. On the other hand, participants who were not drowsy after
sleep restriction were able to maintain the level of activity in attentional regions and
increase activity in arousal-promoting regions [Poudel et al. 2012].

After sleep restriction, participants exhibited a decline in tracking performance
as a function of time-on-task [Poudel et al. 2013]. Sleep restriction was also related
to a time-on-task decrease in BOLD activity in task-related brain regions. Transient
tracking errors, though, were associated with BOLD activations in different regions
which did not vary with time-on-task, indicating that there are distinct processes
governing short- and long-term changes in alertness after sleep restriction.

By comparing tracking performance to actigraphy data and sleep questionnaires,
Innes et al. [2013] found that people with regular sleeping patterns are more prone
to microsleeps following sleep restriction. Those that went to sleep at a similar time
each day, fell asleep quickly, and had few arousals had a greater number of BMs
during the sleep-restricted session. Interestingly, they found no correlation between
performance on a 10-min PVT task completed directly before each session and the
number of microsleeps during the tracking task.

2.3.4 Current and future research

Most current work in the lapse research programme is focused on developing signal
processing and classification techniques to identify lapses of responsiveness from
physiological signals. Jonmohamadi et al. [2014] developed a technique called source-
space independent component analysis (ICA) to locate the source of EEG activity deep
within the brain. It performs better than the more common sensor-space ICA because
it allows weak signals to be reconstructed, even in the presence of stronger ones.

LaRocco et al. [2014] have designed a feature-reduction technique to select the
best spectral features to pass into a classifier. Using this technique to select the single
best feature, they were able to create a classifier with a phi correlation of ϕ = 0.94
when tested on an artificial data set (2-s periods of a 15 Hz sinusoid overlaid on
EEG with a signal-to-noise ratio of 0.3). By contrast, principal component analysis
(PCA) achieved ϕ = 0.00 on the same data. Ayyagari et al. [2014] have developed an
echo-state network (ESN) with a leaky-integrator neuron structure which achieved
ϕ = 0.92 on the same artificial data set. Further testing is being carried out on real
data sets.

It is in this context that the current project is being carried out. Prior research
has revealed useful information about the changes that occur in the brain during
lapses and progress is being made towards developing automated lapse detection
techniques. This project aims to capitalize on the earlier research in order to assist
future research, using the understanding of lapses that has been gained to inform the
design of hardware and software for lapse detection.



24 CHAPTER 2 BACKGROUND

2.4 ALERTING TECHNIQUES

Of course, a device that is capable of detecting lapses in real-time is of little use unless
something is done with the information. The device’s output needs to either trigger an
alert to rouse the subject or intervene in what they are controlling in some way. Several
methods of providing alerts have been proposed, including: an audible tone, beep,
or buzz, recorded voice messages, a visual gauge of drowsiness, a peppermint scent,
vibrations, and temperature changes [Dinges et al. 1998, Grace 2001]. These alerts must
be presented in a way that does not startle the user. Alternatively, or in addition, the
device could intervene in the task the operator is meant to be performing—bringing a
train to a stop, for instance.

Jung et al. [2010] explored the effect of auditory lane-departure warnings on
subjects in a driving simulator. The simulated vehicle was subjected to random drifts
away from the centre of the lane which the participant was required to correct. In half
of the cases in which a participant’s reaction time to these events was much longer
than an alert baseline response time, the system sounded an audible alert (1750 Hz
tone, ∼68.5 dB). They found that the reaction time for events immediately following
those in which an alert was given were significantly shorter than those for which no
alert was given. They also found that EEG power in the alpha and theta bands was
closer to the baseline for the events following an alert, indicating that audible alerts
are effective at improving responsiveness. This theta-band power suppression lasted
for at least 35 s following the audible alert [Lin et al. 2013].

2.5 OTHER COGNITIVE MONITORING APPLICATIONS

In recent years, the number of applications of cognitive monitoring technologies
has increased dramatically, driven by the availability of small, low-power, low-cost,
biosignal sensors, and advances in signal processing and neuroscience. The term
“cognitive state” is a broad term which can be used to refer to almost any aspect
of a person’s mental state: attention, arousal, alertness, anxiety, drowsiness, fatigue,
vigilance, workload, boredom, excitement, etc. The applications below each provide
an estimate of one or more of these aspects of the user’s cognitive state.

“Augmented cognition” is a form of adaptive automation in which information
about the user’s cognitive state is used to modify their interaction with a computerized
system in real time [Stanney et al. 2009]. The inputs to such a system are taken from
one or more sensors—usually a selection of EEG, ECG, EOG, functional near-infrared
(fNIR), galvanic skin response, and video oculometry. After processing these signals
to determine the user’s cognitive state, the information is used to adapt the task that
the user is completing with the aim of maximizing their performance. Depending on
the situation, this adaptation could involve modifying the level of task automation
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or altering the quantity, sequence, timing, or form of the information presented to
the user. For example, during periods of high workload some information could
be presented as auditory cues instead of visual, or low-priority information could
be delayed until the workload decreases. Of the 17 implementations of augmented
cognition technology listed by Reeves et al. [2007], the three main areas of application
are military command and control, dismounted soldier operations, and vehicle control.

In a slightly different application of the same technology, Stevens et al. [2006]
used EEG to quantify the engagement, distraction, and mental workload of students
as they solved scientific problems. Neural feedback allows the investigators to track
students as they progress through the stages of learning with more accuracy than
can be achieved by merely tracking their performance on the task. For example, this
information can be used to differentiate between students that perform well as a result
of high mental effort and those that perform well with little mental effort. Using this
information, the novelty and difficulty of problem solving tasks could be optimized to
improve the students’ learning outcomes.

Passive brain–computer interfaces (pBCIs) are a related concept to augmented
cognition but are not necessarily targeted at improving the user’s performance on a
task. A typical active BCI such as the P300 speller [Donchin et al. 2000] acts as a user’s
primary input to a computer and requires the user to actively interact with the device
by trying to control their brain activity or responding to a stimulus. By contrast, a
passive BCI is intended to complement another input device such as a keyboard or an
active BCI. It provides a secondary stream of information by monitoring the user’s
cognitive state while they interact with the primary input device. This difference also
reflects a shift in the target user base from the physically disabled to the able-bodied.
Bos et al. [2010] give the example of changing the story-line, presentation, or difficulty
of a computer game based on the player’s emotional state or mental workload [Saari
et al. 2009]. A passive BCI could also enhance interaction with an active BCI by using
error-related potentials to detect and correct mistakes [Dal Seno et al. 2010].

In the area of workload monitoring, Borghini et al. [2014] present a review of
research into the effect of mental workload, fatigue, and drowsiness on the EEG and
task performance of car drivers and airplane pilots. They found that the accuracy of
the best currently-available techniques for classifying the cognitive state of drivers
and pilots is about 90 %. However, these techniques operate offline and “no device or
convincing algorithm has been published or practically applied for a robust online
recognition of such mental states to date”. Nevertheless, this is an active area of re-
search that will no doubt see advances in the coming years. An interesting suggestion
that they raise for future research in this field is monitoring the collective cognitive
state of an aircraft crew so that human–machine interactions can be optimized over
all of the available crew members.
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Marshall [2007] describes an index of cognitive activity that uses wavelet analysis
to identify small, rapid increases in pupil diameter that occur during periods of high
cognitive workload. This index is not affected by changes in lighting conditions; the
pupil’s response to increased light is rapid constriction, and to decreased light, slow
dilation. The index considers only small, rapid increases in diameter, so is unaffected
by the pupil’s light response. Using this index, along with several others derived
from pupil measurements, they were able to develop classifiers that could distinguish
a relaxed state from an engaged state, distracted from focused driving, and fatigue
from alertness. The accuracy of the three classifiers ranged from 69 % to 92 %. This
work is noteworthy because it uses only eye video from head-mounted cameras as
input—the majority of other techniques rely, at least in part, on EEG. The SMI eye
tracking glasses mentioned in Section 2.1.2.2 include a software module to calculate
Marshall’s index of cognitive activity.

The fields of augmented cognition and passive BCI are still in their infancy and
undergoing active research. There is an overlap between the signals that are used in
these fields and those used for detecting lapses. It could be useful, therefore, to take
these other applications into account when designing a device for lapse and drowsiness
detection. If supported by careful software design, the hardware developed for lapse
detection could be used by other research groups for other cognitive monitoring
applications.

2.6 SUMMARY

Detecting lapses of responsiveness is difficult. There is no one signal which is a
reliable indicator of lapse events, so we will use a combination of signals in an attempt
to achieve an acceptable level of accuracy. The two physiological signals used most
often in prior research are EEG and video of the eyes, while behavioural signals can be
used in specific situations such as driving. There are other areas of research which use
these same signals for other purposes, for example, to augment a human–computer
interface. If we are going to the effort of developing hardware for lapse detection, it
would be sensible to design it to be applicable to these other areas as well.
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THE ELAPSE PLATFORM

In light of the motivation outlined in Chapter 1 and the research presented in Chapter 2,
we have developed a platform for cognitive monitoring, with a particular focus on
lapse detection. The Elapse platform consists of a wearable device which measures
multiple physiological signals, and a software framework for analysing these signals
to classify the user’s cognitive state.

The focus of this project was not to create a system that is itself capable of detecting
lapses (or any other cognitive state/events), but rather to develop the infrastructure
to enable others to do so. The aim was to produce a system that abstracts away the
low-level details and common functionality, allowing other researchers to concentrate
on the unique aspects of their application.

This chapter describes the development of the Elapse platform: the requirements
for each subsystem, the design decisions and rationale, and details of the implementa-
tion.

3.1 SYSTEM DESIGN OVERVIEW

At a high level, the Elapse platform has a two-part architecture: a head-mounted
device which acquires and transmits biosignals, and a software framework running on
a remote computer which receives and analyses these signals. On top of the software
framework are user-supplied plug-ins which implement the actual signal processing
required for an application such as lapse detection. This structure is illustrated in
Figure 3.1.

The head-mounted device has three sensing modalities: i) EEG to measure brain
activity, ii) video of the eye to measure pupil and eyelid dynamics, and iii) an inertial
measurement unit (IMU) to measure head movement. This combination of sensors was
chosen based on the literature reviewed in Chapter 2 as well as previous experience
at the Christchurch Neurotechnology Research Programme (NeuroTech). Eye video
alone is insufficient, since not all types of lapses are accompanied by eye closure
[Jones et al. 2010] or other visual signs of decreased arousal [Davidson et al. 2007].
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Figure 3.1 Concept drawing of the Elapse platform. A head-mounted device captures biosignals
and transmits them to a remote computer where they are analysed by an extensible signal processing
application.

Even in the case of microsleeps, which by definition involve eye closure, current
eye-video-based systems can only detect microsleeps several seconds after their onset
[Peiris et al. 2011]. EEG alone may, in theory, be sufficient to detect (or even predict)
lapses, but the current state of the art has room for improvement—for example, not all
EEG-defined microsleeps are accompanied by decreased performance. By capturing
both eye video and EEG it should be possible to detect lapses with greater accuracy
than by either one alone. The IMU was added because the additional effort required
to include it was low—it may or may not prove to be useful.

The physical form of the device follows from the choice of sensors. Because it
is capturing EEG, at least part of it must be mounted on the head. Using a head-
mounted camera also makes it easier to acquire high resolution video of the eyes from
a consistent angle compared to a remote-mounted camera.

However, having the device mounted on the head places an upper limit on the
allowable size and power consumption of the device’s processor. It must be small
enough to be contained within the head-mounted device and efficient enough to
run on batteries for several hours. By using the head-mounted device solely for
data acquisition and off-loading the signal processing to a remote computer, these
constraints do not limit the performance of the system as much as if it was a stand-
alone device. Separating the acquisition from the analysis minimizes the computation
done on the device itself, and therefore reduces the load on the embedded processor.
It also provides greater freedom to experiment with computationally-intensive signal
processing algorithms since these run on a PC rather than the embedded processor.
An additional minor advantage to the two-part design is the relative ease of debugging
software running locally rather than on an embedded device.

Although there are several advantages to dividing the system in two, there are
also disadvantages. All of the data captured by the device needs to be transmitted
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to the remote computer in real time. This must be done over a wireless connection
since a cable could interfere with the user’s activities. Transmitting data takes time,
so this increases the latency of the overall system. Raw video has a very high data
rate, so it must be compressed to a rate that is able to be transmitted over the wireless
interface. It is possible that the additional power required for video encoding and
wireless transmission could negate savings from moving the signal analysis to a
remote computer. Doing the signal analysis remotely also adds the cost of the remote
computer to the total cost of the system. On balance, however, the flexibility that
the two-part design provides to experiment freely with complex signal processing
algorithms outweighs these disadvantages.

Using a two-part design now does not eliminate the possibility of moving to a self-
contained design in the future. If the system was to be developed into a commercial
lapse detector, for example, the flexibility afforded by a two-part design would be less
important than the total cost of the system.

3.2 HARDWARE

As described above, the Elapse head-mounted device serves solely as a data acquisition
device. It captures signals from its sensor subsystems and streams them to a remote
computer for analysis. The following sections describe the design of the Elapse device
hardware, beginning with the base board containing the main processor, followed by
the sensor subsystems. Complete schematics are provided in Appendix A.

3.2.1 Base board

The Elapse base board hosts the main system processor, the IMU, and ancillary
electronics such as power supplies and status LEDs. An annotated photograph of the
board is provided in Figure 3.2, shown at actual size.

Battery
connector

Power
switch

LEDs IMU

USB
serial

Power supplies Gumstix Overo COM

Figure 3.2 The Elapse base board (scale 1:1).
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The base board is a four-layer printed circuit board (PCB) with all components
and most routing on the top layer. A continuous ground plane runs directly under
this layer to minimise electromagnetic emissions. The remaining internal plane is split
among supply voltages, and the bottom layer has a connector for a daughter board.
With this stack-up, there are two copper planes held at fixed potentials and several
millimetres of physical separation between the electrically noisy components on top
of the base board and any sensitive components on the daughter board.

Three LEDs provide information about the status of the system: i) green—the
system is powered on; ii) blue—the device has finished booting and the server is
running; iii) red—an error has occurred (steady) or the battery is low (flashing).

3.2.1.1 Processor

The head-mounted device is based around a Gumstix1 Overo Fire computer-on-
module (COM). The Gumstix is, in turn, based around a Texas Instruments2

OMAP3530 system-on-chip (SoC). The OMAP3530 is a heterogeneous multi-core
SoC combining a 720 MHz ARM Cortex-A8 core, a TMS320C64x+ DSP, and an image
signal processor (ISP). To the OMAP3530 the Overo Fire adds 512 MB each of SDRAM
and NAND flash, IEEE 802.11g Wi-Fi, Bluetooth, and a µSD card slot. Importantly, the
OMAP3530 has a camera interface which the Gumstix COM exposes on a dedicated
connector. The overall dimensions of the Gumstix are 58 mm× 17 mm× 4.2 mm.

Several alternatives to the Gumstix Overo were also considered, including single-
board computers such as the BeagleBoard3 and IGEPv2,4 and COMs such as the
Torpedo from Logic PD.5 The Gumstix was chosen over these options because it is
smaller than the BeagleBoard and IGEPv2, and has a more active user community than
the Torpedo. The limiting factor in the choice of device was the ability to analyse or
encode video in real time, while still being small enough to be wearable. Rather than
using a powerful SoC to encode video, it would also be possible to use a less powerful
microcontroller with an external video encoder IC such as the ASC8850A from NXP
Semiconductors6 or a field-programmable gate array (FPGA). This approach was not
taken because it would have involved more complex hardware design.

3.2.1.2 Power supplies

If the Elapse device is to be wearable, there can be no cables tethering the user to any
remote equipment. As a result, the device must be battery powered. A rechargeable

1http://www.gumstix.com
2http://www.ti.com
3http://www.beagleboard.org
4http://www.isee.biz
5http://www.logicpd.com
6http://www.nxp.com

http://www.gumstix.com
http://www.ti.com
http://www.beagleboard.org
http://www.isee.biz
http://www.logicpd.com
http://www.nxp.com
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lithium-ion polymer (LiPo) battery was chosen because it has the highest energy
density among the widely available battery chemistries. The LiPo cell voltage is
nominally 3.6 V, though the usable range is about 3.0–4.2 V. The Gumstix requires a
system supply of VSoC = 3.3 V. Given the range of battery voltage and accounting
for dropout voltage, a step-down voltage regulator cannot effectively supply VSoC

from a single LiPo cell—only about half the cell’s capacity would be usable. The EEG
analogue front-end requires VAFE = 5.0 V. Two cells could be connected in series
to provide 7.2 V (6.0–8.4 V), which would be high enough for both VSoC and VAFE,
however it proved easier to source a 3.6 V battery than a 7.2 V battery of the required
capacity. The Elapse device therefore uses a 3.6 V battery with a step-up DC–DC
converter to VSYS = 5.2 V. This provides some headroom to derive both VSoC and VAFE

from VSYS.

The hierarchy of power supply voltages is illustrated in Figure 3.3. Each letter
A–D refers to one of the following voltage regulators:

A. A TPS63000 DC–DC converter steps the battery voltage VBAT up to VSYS = 5.2 V.
All other voltages are derived from VSYS.

B. A TPS62291 buck converter steps VSYS down to VSoC = 3.3 V. VSoC is the main
supply for the Gumstix COM and the camera board.

C. An LP5900 linear regulator steps VSoC down to VIO = 1.8 V. All digital input/
output (I/O) on the device is at VIO.

D. This is a voltage regulator dedicated to the EEG module and is described in
Section 3.2.2.2.

Soft shutdown

The base board has a soft-shutdown circuit that completely powers off the device
when switched off, but allows the Gumstix to complete its shutdown sequence first.
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3.0–4.2 V

VSYS = 5.2 V

VSoC = 3.3 V

VIO = 1.8 V

VAFE = 5.0 V

Figure 3.3 Power supply voltages. Each letter A–D corresponds to a voltage regulator.
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Figure 3.4 Soft shutdown circuit design. pwr_en is the logical OR of the power switch and soc_on.

The schematic for this circuit is shown in Figure 3.4a, where switch S1 and connector
H1 are the power switch and battery connector visible on the left side of the PCB in
Figure 3.2. The circuit’s functionality is based around a common-cathode diode pair
acting as an OR-gate. Figure 3.4b shows the operation: when the switch is closed,
pwr_en goes high which enables the main system regulator. When the Gumstix boots,
it drives the soc_on line high. The vbat_sense line is connected to an analogue-to-
digital converter (ADC) on the Gumstix which allows the Elapse software to monitor
the battery voltage. When the switch is opened, the software detects that vbat_sense

is pulled to gnd and triggers a system shutdown. At this point, soc_on is still driving
pwr_en high. The last instruction executed by the processor is to drive soc_on low,
disabling the system regulator and powering off the system.

The common cathode diode pair in this circuit are Schottky diodes because they
must have a low forward voltage drop, Vf . The Gumstix uses 1.8 V I/O and the
system regulator’s “enable” input high threshold VIH = 1.2 V, requiring Vf < 0.6 V.
The forward voltage of the Schottky diodes is less than 0.2 V.

The power dissipated in this circuit is negligible in the context of the device as a
whole. In the worst case, with a fully charged battery (VBAT ≈ 4 V), the circuit draws
approximately 8 µA.

3.2.1.3 USB console

The Elapse base board includes a USB interface to the serial console of the Gumstix.
This provides a reliable connection to the SoC which is particularly useful for de-
bugging issues with the bootloader or device drivers. The interface is based around
the FTDI7 FT230X USB to UART IC in a bus-powered configuration. Powering the
interface circuit over USB ensures that it only draws power when needed—when
connected to a USB host.

7http://www.ftdichip.com

http://www.ftdichip.com
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It is important to note that operating the device with the USB cable connected
introduces a small potential for an electrical hazard. Connecting the cable to a
grounded computer ties the “ground” of the device to earth. Although there is no
exposed ground on the device, it is possible that if a fault developed within the device
and the user was exposed to an external voltage, the USB cable could provide a path
to ground via the user’s head. As unlikely as this may be, it could be possible if,
for instance, a damaged active electrode shorted the exposed electrode to the device
ground. To be sure of the user’s safety, the device should not be worn when the USB
debugging interface is attached.

3.2.1.4 Inertial measurement unit

A six-axis inertial measurement unit (IMU) is mounted on the Elapse base board to
track the orientation of the user’s head. The IMU is an LSM330DLC from STMicro-
electronics8 which integrates a 3D accelerometer and a 3D gyroscope with an I2C
interface. Using an IC which includes both accelerometers and gyroscopes in a single
package avoids the need to compensate for axis misalignment caused by inaccuracies
during PCB assembly.

3.2.1.5 Daughter board interface

On the bottom side of the Elapse base board is a connector for interfacing with a
daughter board. This connector carries power, I2C, serial peripheral interface (SPI)
with two chip selects, and eight general-purpose input/output (GPIO) lines, making
it suitable to connect to a wide variety of peripherals. The connector is placed near the
centre of the board and the board has screw holes in the corners, providing a secure
mechanical connection.

3.2.2 EEG module

3.2.2.1 Requirements

Choosing the number of EEG channels to include on the device is a trade-off between
spatial resolution and the practicalities of a wearable device. The device must have
enough channels to acquire a meaningful representation of neural activity, but having
a large number of electrodes increases the time and effort required to put the device
on and ensure all electrodes have low contact impedance. This is a significant
drawback for a device that is intended to be used in real-world situations. On the
other hand, having more electrodes provides a degree of redundancy if the contact
impedance of one or more electrodes degrades over time. With this in mind, and from

8http://www.st.com

http://www.st.com
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previous experience at NeuroTech, a target of 16 channels was chosen as a reasonable
compromise.

The device should be able to acquire EEG up to and including the gamma band,
i.e., f ≤ 40 Hz. It must therefore have a sampling rate fs > 80 Hz to satisfy the
Nyquist criterion, along with appropriate anti-aliasing filters.

The device is intended to operate in unshielded real-world environments, so it
should have sufficiently high common-mode rejection to acquire usable data in the
presence of external electromagnetic interference (EMI).

3.2.2.2 Implementation

The EEG module is based around a pair of ADS1299 analogue front-ends (AFEs)
from Texas Instruments. The ADS1299 features eight low-noise programmable-gain
amplifiers (PGAs) and eight simultaneous-sampling ∆Σ ADCs (Table 3.1). Although
the PGAs have a maximum gain of only 24, in combination with the 24-bit ADCs this
equates to a resolution of 22 nV when using the internal voltage reference.

The Elapse device uses two ADS1299s to provide a total of 16 input channels. One
of the AFEs is configured as a master and provides the ADC clock and reference volt-
age to the other, ensuring they share common voltage and time references. The inputs
are wired in a referential configuration—each channel has an electrode connected to
its positive input and all negative inputs are connected to one reference electrode.

All electrodes have single-pole RC filters with a cut-off frequency of 72 Hz. Such
simple analogue filters can be used because the digital decimation filters in the AFEs
also provide anti-alias filtering. The RC filter cut-off was chosen so that EEG bands
up to and including gamma have minimal attenuation. This cut-off is also comparable
to the typical low-pass frequency of 70 Hz used in clinical EEG recordings [Duffy et al.
1989, p. 35].

Table 3.1 ADS1299 EEG analogue front-end specifications.

Feature Description

Channels 8 (simultaneously sampled)
ADC resolution 24 bit
ADC data rate 250 Hz to 16 kHz
Amplifier gain 1 to 24
Input-referred noise 1.0 µVp-p
CMRR −110 dB
Power dissipation 5 mW/channel
Digital interface SPI
Package TQFP-64
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For maximum interference rejection, inputs to differential amplifiers should have
equal impedances. This way, any interfering electromagnetic field induces the same
voltage in both conductors and the differential amplifier can reject the common-mode
voltage. In the referential EEG montage used here, however, the reference electrode
is connected to 16 amplifiers in parallel, reducing the impedance on that line. To
counteract this effect, a unity-gain buffer amplifier is placed between the reference
electrode and the AFEs to provide the same input impedance as for the measurement
electrodes. This buffer can be enabled or disabled by changing jumpers in order to test
how much of an effect it has on common-mode rejection. When enabled, the buffer
acts as an extra noise source in the signal path, so any improvement in common-mode
rejection must be balanced against an increased noise level.

Clinical EEG systems usually ground the patient in order to reduce the amplitude
of 50 Hz mains interference present on the body [Duffy et al. 1989, p. 56]. This is,
of course, not possible in a battery-powered device; the whole system is floating
relative to ground. The ADS1299 provides a way to emulate this technique by using a
patient bias amplifier, similar to the right-leg-drive circuit used in ECG systems. This
approach uses another electrode to drive the body with an inverted common-mode
signal from the measurement electrodes. There is provision for a bias electrode on the
Elapse device, though it is not used in the current configuration.

A TPS73250 low-dropout voltage regulator (LDO) is used to provide a low-noise
analogue supply for the AFEs (VAFE = 5.0 V). The system supply voltage VSYS = 5.2 V
was chosen so that the difference between it and VAFE is slightly greater than the worst
case dropout voltage of the TPS73250. Using a linear regulator in this way filters out
the switching noise generated by the VSYS boost converter, while minimizing power
dissipation by using the lowest possible input voltage to the LDO.

PCB layout

Like the Elapse base board, the EEG board is a four layer PCB. It is attached to
the base board’s daughter board connector and oriented so that the sensitive EEG
AFEs are on the side furthest from the base board (Figure 3.5). A dedicated analogue
ground plane is placed directly underneath the AFEs and star-connected to the system
ground near the output of the LDO. The remaining internal plane is split among
supply voltages and digital ground. Most digital signals are routed on the back side
of the board, over a digital ground plane and away from the analogue components.
The input traces between the electrode connectors and the AFEs are surrounded by a
copper fill tied to analogue ground to minimize cross-talk between channels.

The electrode connectors were designed with future extensibility in mind. The
connectors accept a ribbon cable with conductors split into groups of three, one group
going to each electrode. Each group carries 5 V and ground as well as the electrode
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EEG electrode connectors

(a) EEG board mounted under the base board. (b) Bottom view of the EEG board.

Gumstix
Base board

EEG board

Electrode
connectors

Screws

SoC
IMU

EEG AFE

(c) End view of the assembled boards.

Figure 3.5 Assembled Elapse electronics. The EEG board is mounted under the Elapse base board,
with the electrode connectors positioned along one side.

signal, allowing for possible future expansion to an active electrode design. Having
power and ground conductors interleaved between the signals on the ribbon cable also
provides some shielding, reducing the capacitive coupling between adjacent channels.

Alternative AFE

The ADS1299 was the only commercially-available single-IC solution specifically de-
signed for EEG acquisition at the time the EEG module was being developed. Another
product, the RHD2000 from Intan Technologies,9 was released shortly afterwards
and is comparable in many ways. It is better than the ADS1299 in that it has 32
channels and programmable on-chip analogue filters. It is worse in that it has a single
multiplexed 16 bit ADC and a higher noise floor. One very favourable point, though,
is that it is available on a small, self-contained board that has electrode connectors on
one side and SPI out the other. Had it been available at the time, the RHD2000 may
have been a better choice than the ADS1299.

3.2.2.3 Safety

The Elapse device is a wireless, battery-powered system that has no connection to
ground. The highest voltage present on the device is 5.2 V. The EEG electrodes are
connected to differential amplifier inputs and so are not even referenced to the device’s

9http://www.intantech.com

http://www.intantech.com


3.2 HARDWARE 37

battery. As a result, there is no risk of electric shock from this device unless the USB
cable is connected, as described in Section 3.2.1.3.

3.2.3 Dry electrodes

3.2.3.1 Requirements

Because the Elapse device is intended for use outside of the laboratory, it cannot
rely on conventional wet electrodes that require skin preparation, electrolyte gel, and
placement by a trained operator. The device, including electrodes, must be able to be
taken on and off by the user with minimal training.

The electrodes must be able to make contact with the scalp for a wide variety of
hair styles. That is, whether the user is bald or has thick curly hair, the electrodes
should still be able to make electrical contact with the scalp.

The device may be worn for several hours at a time, so the electrodes must not
cause discomfort to the user when worn for extended periods. Also, the contact
impedance should not degrade over time.

EEG electrodes are, of course, mounted on the head, so it is important to ensure
that their design does not introduce any hazard to the user’s head. The design of the
electrodes and their mounting hardware should ensure that if the user bumps their
head while wearing the device the electrodes will not cause any harm.

3.2.3.2 Implementation

As described in Section 2.1.1.1, a number of companies and research groups are
developing dry electrodes, though none have yet emerged as a clear competitor to
conventional wet electrodes. Until a quality commercial electrode is available, the
Elapse device uses dry electrodes of my own design.

(a) Cross-section of the dry electrode (scale 3:2). (b) An electrode mounted in the fabric cap.

Figure 3.6 The dry electrode design. Gold-plated, spring-loaded prongs reach through the hair to
contact the scalp.
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As depicted in Figure 3.6 the dry electrodes have 2 mm diameter prongs with
rounded ends, mounted on a sprung platform, which push through the hair. The
prongs are made of brass with a gold-over-nickel plating to provide good electrical
conductivity and biocompatibility. The sprung platform allows the prongs to retract
fully into the plastic housing. This design bears some similarity to the g.sahara

electrodes from g.tec, except those are not retractable.

On the current prototype of the Elapse device there are eight electrodes positioned
at F3, F4, C3, C4, P3, P4, O1, and O2, plus a reference electrode at Cz (Figure 3.7). This
reduced set of electrodes was chosen, rather than using all of the device’s 16 channels,
because this electrode design is a temporary solution. It allows us to capture EEG in
the early stages of development, but it is likely that the design will need to be either
revised or swapped for a commercial design if a suitable one becomes available. In
future revisions it may be useful to add frontal channels to capture some EOG-like
information.

The electrodes are mounted in a stretchable fabric cap (modified NRS Mystery11

kayak helmet liner), allowing the device to conform to a range of head shapes and
sizes. The elastic fabric pulls the electrodes towards the head so that the electrode
prongs reach through the hair to contact the scalp.

3.2.3.3 Safety

As mentioned earlier, given the intended real-world applications of the Elapse device,
it is important that the EEG electrodes do not present a hazard to the user’s head. To
ensure this, the fabric cap in which the electrodes are mounted is suspended inside
a standard safety helmet. If the user receives a blow to the head, the fabric cap is
pushed against the scalp and the electrode prongs retract into their housings. Because

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2

Figure 3.7 10/20 system EEG electrode positions.10 Electrodes used on the Elapse device are shaded.

10Adapted from https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_
10-20_system_for_EEG.svg.

11http://www.nrs.com

https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_EEG.svg
https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_EEG.svg
http://www.nrs.com
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of the way the cap is suspended inside the helmet, no external force can be transmitted
directly through the electrode prongs to the head.

3.2.4 Camera module

3.2.4.1 Requirements

Since the device is intended to monitor people in real-world situations, it must be as
unobtrusive to the wearer as possible. The camera module must therefore be small
(∼10 mm wide) and positioned in such a way that it does not impair their vision.

The video frame rate must be sufficiently high to differentiate between normal
blinks and slower drowsy eye closure. The mean time that the eyes remain completely
closed in the middle of a blink increases from 0.3 ms when alert to 144 ms when
drowsy, and also becomes more variable [Tucker and Johns 2005]. The target frame
rate is 60 fps, which gives a span of ∼9 frames over an average eye closure when
drowsy.

The camera should be positioned close to the face, preferably no further away
than the tip of the nose, to make the device as compact as possible. This requires the
camera lens to focus at a distance of less than 40 mm.

The device must operate under a wide range of lighting conditions, from office
lighting to direct sunlight to a dark night. The camera subsystem must be able to
capture video across this dynamic range, providing illumination if necessary.

3.2.4.2 Implementation

An extensive search revealed no commercially available camera modules that satisfied
all of these requirements. Most of the cameras that met the size requirement had
a maximum frame rate of 30 fps. The cameras that supported higher frame rates
were too large or had auto-focus mechanisms that cannot focus at such a short object
distance. Therefore, there was little choice but to develop a new camera module to
meet all of these requirements.

The Elapse camera module is based around the OV7735 image sensor from
OmniVision Technologies.12 The key specifications of the OV7735 are given in Table 3.2
[OmniVision 2011a]. Note that the sensor is capable of producing 60 fps at its full
resolution (and even higher rates at lower resolutions). It outputs data over a 10-bit
parallel interface at 1.8 V logic levels, which is compatible with the camera interface
on the Gumstix. The sensor has good low-light sensitivity which is important for
capturing low-noise video at night.

12http://www.ovt.com

http://www.ovt.com


40 CHAPTER 3 THE ELAPSE PLATFORM

Table 3.2 OV7735 image sensor specifications.

Feature Description

Technology CMOS
Chroma Colour
Array size 640× 480 (VGA)
Frame rate 60 fps at VGA
Output formats 8/10 bit RGB

8 bit YCbCr 4:2:2
Output interface Parallel
Sensitivity 3300 mV lx−1 s−1

Active power 100 mW
Package size 3.99 mm× 3.64 mm

A colour sensor is not necessary for this device. In fact, it would be preferable
to have a greyscale sensor because a coloured Bayer filter over the pixels reduces the
amount of light reaching the sensor. Also, under monochromatic illumination the
colour information has little meaning so bandwidth could be saved by only capturing
greyscale video. Manufacturers, however, produce a much wider range of colour
image sensors than greyscale ones, and often at a lower price. In this case, the sensor
that best matched the requirements was a colour one.

The OV7735 has an on-chip image signal processor (ISP) which implements several
useful image processing algorithms in hardware. It supports automatic exposure, gain,
white balance, flicker, and black level controls. It allows control of frame rate, mirror
and flip, scaling, cropping, and subsampling. It also has some image quality controls
that allow adjustment of colour saturation, hue, gamma, sharpness, and lens shading
correction. The automatic exposure and gain controls are particularly useful for the
Elapse device since it needs to operate under a wide range of ambient illumination
levels.

Another reason for choosing the OV7735 was that it is available with an integrated
lens assembly on a small module (6.0 mm× 20.5 mm) with a board-to-board connector.
Designing an interface board to accommodate such a module seemed like an easier
prospect than placing a ball grid array (BGA) component by hand and manually
aligning the lens mount. However, these modules must be specially ordered from
OmniVision, as they are built to order. A month after placing the order, OmniVision’s
contract manufacturers informed us that the module could not be manufactured
because the lens it used was no longer available. OmniVision had to re-design the
module to use a different lens, so the total time from order to delivery came to almost
five months. In hindsight, it would probably have been easier and faster to design for
the BGA part directly, even considering the difficulty of manual assembly.

The complete camera module is shown in Figure 3.8. For the sake of having a
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(a) Top side of the CAMEL module. The camera
is on the left with the edge of the IR LED just
visible behind it.

(b) Bottom side of the CAMEL module. The
ambient light sensor is on the right and the cable
connector on the left.

Figure 3.8 The CAMEL module: a camera for measuring eye-related lapse indicators.

convenient name, it is known as “CAMEL”: a CAmera for Measuring Eye-related
Lapse indicators. The CAMEL module incorporates the OV7735 image sensor, an
IR LED, an ambient light sensor, and associated voltage regulators, etc. It measures
11 mm× 41 mm; the minimum width is limited by the size of the cable connector, as
seen in Figure 3.8b.

The IR LED has a peak wavelength of 850 nm and is positioned so that it illumi-
nates the eye area. Under near-infrared (NIR) illumination, the iris appears lighter
than under visible light [Daugman 2004] which has the desirable effect of increasing
the contrast between the pupil and the iris (Figure 3.9). NIR illumination also allows
the camera to capture video in the dark, where using visible light would otherwise
interfere with the wearer’s vision.

The ambient light sensor is positioned on the back side of the CAMEL module,
facing away from the face. This sensor has two sensing elements which allow separate
measurements of visible and infrared irradiance. Communication is done over an
I2C interface which allows it to connect to the camera control bus, avoiding the need
for additional I/O lines. The sensor was initially intended to be used as part of an
adaptive illumination system, altering the power of the IR LED according to ambient
light levels, though this was ultimately found to be unnecessary. The sensor may still
be useful to compensate for lighting conditions when monitoring pupil diameter.

(a) Ambient lighting only, with low-contrast
pupil.

(b) Ambient + NIR with improved contrast
between pupil and iris.

Figure 3.9 The effect of NIR illumination on pupil–iris contrast.
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Infrared illumination

Since CMOS image sensors are naturally sensitive to NIR, colour cameras usually
have an IR filter in the lens assembly to avoid colour distortion. This was the case with
the camera module from OmniVision. Of course, this filter renders the IR illumination
ineffective. The glued-in lens assembly had to be carefully removed and the IR filter
pried off so that the sensor could capture infrared images.

Eyes under infrared illumination can exhibit either the bright- or dark-pupil effect
depending on the distance between the IR source and the optical axis of the camera [Ji
and Yang 2002]. The bright-pupil effect occurs when the source is close to the camera
and IR enters the pupil, reflects off the retina, and passes back through the pupil to the
camera. The dark-pupil effect occurs when the IR source is positioned away from the
camera. In this case the narrow aperture of the pupil prevents any reflected IR from
reaching the camera. A dark pupil arrangement is easier to implement since there
is no need for ring lights or beam splitters to provide co-axial illumination [Babcock
and Pelz 2004]. On the CAMEL module, the IR LED was initially mounted close to
the camera in an effort to induce the bright pupil effect, but at the typical camera–eye
distance of ∼35 mm only about one third of the pupil appeared bright. Instead, the
LED was moved further away from the camera so that the pupil appeared uniformly
dark.

Electrical interface

The cable between the CAMEL module and the Gumstix is a 27-conductor, 0.3 mm
pitch, flat flexible cable (FFC). It carries the parallel data interface, the I2C control bus,
and the power supply for the camera. Besides being difficult to source because of its
unusual pin count and pitch, this type of cable is not well suited to carrying video
data over a long distance. To reach from below the eye to the side of the head, the
cable must be at least 150 mm long. Having many parallel conductors carrying high-
frequency single-ended signals over long distances without shielding goes against
good electronics design. Unfortunately, there is not a lot of room to work around
these short-comings because the choice of cable is constrained by the camera interface
connector on the Gumstix.

A much better solution would be to use an interface that makes use of differential
signalling. In fact, both the OV7735 image sensor and the OMAP3530 SoC support
the MIPI CSI-1 serial camera interface. The CSI-1 interface is designed specifically
for interfacing cameras to host processors and carries the data and clock over two
SubLVDS differential pairs. At the time that the CAMEL module was being developed,
however, Linux platform driver support was not available for the CSI-1 interface on
the OMAP3530, and the OV7735 datasheet provided almost no technical information
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about the CSI-1 interface.

3.2.4.3 Safety

To ensure that the infrared radiation from the CAMEL module will not cause harm
to the wearer, the following calculations were carried out to compare the theoretical
infrared irradiance to standardized exposure limits. These calculations are based on
an application note from the IR LED manufacturer [Jäger 2010], which in turn is based
on IEC standards 62471:2006 and 60825-1:2007.

There are three hazards to account for when irradiating the eye area: damage to
the cornea, the skin, and the retina. This damage is caused by overheating the tissue,
destroying cells. Because different tissues respond to IR differently, these hazards
must be assessed separately.

Cornea hazard

The maximum allowable irradiance13 of the cornea for exposure times exceeding
1000 s is Ee,max = 100 W m−2. The irradiance Ee from the IR LED can be found from
the inverse square law

Ee =
Ie

d2 (3.1)

where the radiant intensity Ie is calculated from the datasheet [Osram 2012] to be
Ie ≤ 4.38 mW sr−1 given a forward current I f = 25 mA. Assuming a worst-case
eye–LED distance of d = 30 mm, the irradiance is

Ee =
4.38 mW sr−1

(30 mm)2 = 4.87 W m−2 (3.2)

Clearly Ee < Ee,max; the corneal irradiance is less than one twentieth of the exposure
limit.

The maximum allowable irradiance of the skin is slightly higher than that of the
cornea, so we are well within the limit here also.

Retina hazard

Since the lens of the eye focuses light onto the retina, the radiance14 limit is a function
of the angular subtense α of the light source.

α =
Z
d

with Z =
l + w

2
(3.3)

13Radiant power per unit area
14Radiant power per unit solid angle per unit projected source area
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where l = w = 0.2 mm are the dimensions of the emitter. There is a minimum effective
value imposed on α due to physical characteristics of the eye, so for exposure times
exceeding 10 s this becomes

αeff = max(α, 0.011) =⇒ αeff = max
(

0.2
30

, 0.011
)
= 0.011 rad (3.4)

The maximum allowable radiance is then given by

LIR,max =
6000
αeff

= 545 mW mm−2 sr−1 (3.5)

The radiance of the IR LED is approximated by

LIR ≈
Ie · R(λ)(

l+w
2

)2 (3.6)

where

R(λ) = 10(700−λ)/500 (3.7)

is a wavelength-dependent burn hazard weighting function. Using the value of Ie

from earlier and λ = 850 nm, we find that the radiance of the IR LED is

LIR ≈
4.38 mW sr−1 × 0.5

(0.2 mm)2 = 54.8 mW mm−2 sr−1 (3.8)

Again, we see that LIR < LIR,max for a factor of safety of 10.

These calculations indicate that the IR exposure from the CAMEL module is well
below safety limits for the cornea, the skin, and the retina.

3.2.5 Complete wearable device

Now that the electronics have been described, this section describes how all of the sub-
systems are combined into a complete wearable device, along with the requirements
for the device as a whole.

3.2.5.1 Requirements

The connection between the Elapse device and the remote computer must be wireless.
A cable would interfere with the user’s ability to carry out their tasks in some
occupations.

For the device to be useful for monitoring people as they go about their jobs, it
should be able to run off batteries for several hours—ideally for a typical eight-hour
shift.
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There are other “soft” requirements which are difficult to measure but which are
nevertheless important for the device to succeed practically. For example, if it is to be
worn for hours at a time, it should not cause discomfort to the user. It should also
not be difficult or time-consuming to put on and take off, perhaps after some initial
training on how to achieve good electrode and camera placement.

3.2.5.2 Implementation

The Gumstix has two wireless interfaces which can be used to transmit data to a
remote computer: IEEE 802.11g Wi-Fi and Bluetooth v2.0+EDR. The Elapse device
uses the Wi-Fi interface. Wi-Fi has the higher data rate of the two interfaces, at
54 Mbit s−1, but also uses significantly more power. By contrast, Bluetooth EDR has a
nominal rate of about 3 Mbit s−1, and on the Gumstix the maximum rate is even lower
(921 kbit s−1) due to limitations in the Bluetooth driver. Higher rates are available in
recent versions of the Linux kernel but the device is bound to an older kernel for the
reasons outlined in Section 3.3.1. It would be preferable to use the Bluetooth interface
because it uses less power, but because the data rate of video is very high, even when
compressed (Section 3.3.1.3), the Elapse device uses the faster Wi-Fi interface for
communication.

The first prototype of the Elapse device is constructed around a standard safety
helmet, Figure 3.10. This provides a convenient sturdy base to build on, while also
representing one form that the final device could take. Some occupations for which a
lapse detection device would be beneficial require wearing a safety helmet anyway—
e.g., crane operators, some truck drivers—so building the device into something the
user must already wear makes sense. The structure of the helmet has been left intact
as much as possible in an effort to keep the device functional as a safety helmet.

The camera is mounted on an adjustable arm which positions it under the right
eye near the end of the nose, looking up at the eye. It is positioned as low as possible
to avoid encroaching on the user’s field of view while still providing a clear view of
the eye. It would be easier to mount the camera above the eye looking down, e.g., on
the brim of a hat, but that position was found to be unsuitable for users with bushy
eyebrows or long eyelashes. The lower position also provides a better view of the eye
when the user is looking down or their eyelids start to droop.

The device is powered by a 3.6 V, 6 Ah LiPo battery, providing a power budget of
2.7 W if the battery is to last for 8 h. The battery measures 54 mm× 60 mm× 19 mm
and weighs 110 g. This is a similar size to the electronics module. The electronics
module is mounted on the right side of the helmet and the battery is mounted on the
left, balancing the design both physically and visually. The battery can be removed
from the device, allowing a fresh one to be swapped in so that the device can be used
while the other battery recharges.
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Figure 3.10 The current prototype of the Elapse device.

The total cost of the parts required to build the Elapse device was about $650.
Most of these components cost significantly less when ordered in volume, so the price
per device when assembling multiple devices would be less. In addition to the Elapse
device, a laptop is required to run the signal processing software which should be
considered as part of the total cost of the system.

Besides the safety helmet, other form factors were also considered for the device.
The most promising alternative was a glasses-based design which mounted the camera
in the frame of a pair of glasses and had EEG electrodes positioned on semi-flexible
arms, much like the Emotiv EPOC headset. While this would have made it easier to
mount the camera in a good position, it provides less space to mount electronics and
would be more difficult to manufacture.

3.3 SOFTWARE

The Elapse device hardware provides the necessary electronics to acquire and transmit
biosignals. The next requirement is for software to both manage the hardware and
process the acquired signals. As described in Section 3.1, the functionality of the
Elapse platform is split between the wearable device and a remote computer. Given
this structure, it follows that the software on the device needs to capture data, encode
or compress it if necessary, and transmit it to the remote computer. It should also
provide a configuration and control interface. This is described in Section 3.3.1. The
software on the remote computer, in turn, needs to receive the data transmitted from
the device, decode or decompress it, and analyse the resulting signals, as well as
providing a user interface. This is described in Section 3.3.2.
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Programming languages

Before describing the design of the Elapse software, it is worth mentioning the
rationale behind the choice of programming language. The first prototype of the
software was written in Python15 because it is succinct and expressive and well suited
to rapid application development. After implementing some proof-of-concept code,
however, it became clear that the Python interpreter’s lack of true multithreading
was a significant bottleneck. Internally, the Python interpreter is not thread-safe; it
uses a global interpreter lock (GIL) to ensure that only one thread executes at a time.
Paradoxically, the GIL can cause multithreaded Python code to perform slower on
multi-core processors than on single-core processors [Beazley 2010]. Since the goal was
to develop a framework that involves both a lot of I/O and a lot of computation—a
combination which particularly stresses the GIL—it seemed unwise to limit the design
to a single thread of execution when multi-core processors are so readily available.

Consequently, a different language was chosen—C++ with the Qt libraries. Qt16

is a cross-platform framework which provides several useful application development
features, including a graphical user interface (GUI) toolkit, support for dynamically-
loadable plug-ins, and high-level networking classes. Both the server running on the
device and the client running on a laptop are implemented in C++ with Qt, allowing
some code reuse between the two.

C++ was chosen over other languages because it is more expressive than C, faster
than Python and other interpreted languages, and has direct interoperability with
system libraries, unlike Java. The structure of this software—a chain/pipeline of signal
processing functions—would be well suited to implementation in a functional lan-
guage like Scala,17 however for the sake of maintainability it seemed more important
to choose a language that is widely known.

3.3.1 Embedded software

The embedded software running on the device consists of several layers. At the lowest
level is the operating system (OS) and the device drivers for interacting with hardware.
On top of that are the system libraries, the Qt framework, and finally the server
application which implements the device’s functionality. Of these, I customized the
operating system, implemented two device drivers, and wrote the server application.

A simplified block diagram of the server application is shown in Figure 3.11.
Data is read from each sensor via the device drivers described in Section 3.3.1.2 and
transmitted to a remote computer as described in Section 3.3.1.3. A control interface is

15http://www.python.org
16http://qt-project.org
17http://www.scala-lang.org

http://www.python.org
http://qt-project.org
http://www.scala-lang.org
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Figure 3.11 Server application architecture.

also provided which allows the remote computer to configure the sensors as necessary
(Section 3.3.1.4).

3.3.1.1 Operating system

The Elapse device uses the Linux operating system. The kernel has been customized
to remove all unnecessary features and modules in order to decrease boot time and
memory utilization. Similarly, the set of software included on the root filesystem has
been reduced to the Elapse server and its dependencies, along with some debugging
tools.

The device is running the Ångström Linux distribution, based on version 2.6.34
of the Linux kernel, and built by the OpenEmbedded-Classic build system. This
is in contrast to the more recent combination of the Poky distribution, based on
version 3.x of the Linux kernel, built by OpenEmbedded-Core from the Yocto Project.18

Development of the Elapse device began during the transition from the 2.6 to the 3.x
kernel series. The older and more stable kernel and build tools were chosen, despite
being obsolescent, because they were more widely supported at the time. The pace
of embedded Linux development is such that it is impractical to keep up with all
upstream changes; it is better to reach a working configuration and build upon that.

As a data acquisition system, the device may be more suited to a real-time
operating system (RTOS) than a traditional OS, but the range of RTOSs supporting
the OMAP3530 is very limited. Given the abundance of existing software available
for Linux and minimal support for other OSs, Linux was the clear choice. It may be
possible to use the preempt_rt patch to enable hard real-time support for the Linux
kernel, though it is unclear whether this would provide any measurable benefit.

18http://www.yoctoproject.org

http://www.yoctoproject.org
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3.3.1.2 Device drivers

Two of the key components of the Elapse device, the ADS1299 EEG AFE and the
OV7735 image sensor, did not have existing Linux device drivers. I implemented
these two drivers myself.

Camera driver

The OV7735 image sensor driver is modelled on an existing driver for the Aptina
MT9V032. The MT9V032 is the sensor used on the Gumstix Caspa camera board and
is therefore well supported within the Gumstix community.

The structure of camera drivers within the Linux kernel is complex and was under-
going changes during development of the OV7735 driver. The kernel’s Video4Linux
(V4L2) application programming interface (API) has had to adapt in order to better
support the complex video processing hardware present on modern SoCs. In more
recent kernels (≥ 2.6.37), the media controller framework and the v4l2_subdev API
are used to control the interaction of image sensors with the video capture and pro-
cessing hardware modules on SoCs. At the time the CAMEL was designed, however,
these systems were still in active development and not stable. Instead, the OV7735
driver uses the older v4l2_int_device API in the same way as the MT9V032 driver it
is based on. This provided a stable target at the time, but this API has been declared
obsolete by the V4L2 community. If, in the future, the device needs to be updated to
use a newer kernel for any reason, the OV7735 driver will need to be ported to the
v4l2_subdev API.

To be able to use a particular image sensor with a particular SoC, the ker-
nel requires two drivers—a platform driver for the SoC’s camera interface and
a device driver for the image sensor (Figure 3.12). Each of these abstracts away
hardware-specific details and conforms to the generic V4L2 API. On the Gumstix,
the omap34xxcam platform driver supports the OMAP3530’s ISP [OMAPpedia 2012].
The platform driver handles the actual capture of frame data, since that is specific to
the SoC and not affected by the type of image sensor producing the data. The device

SoC
ISP Image

sensor

Linux kernel

Video4Linux

Platform
driver

Device
driver

Figure 3.12 Video4Linux camera driver structure. The device driver provides a V4L2-compatible
interface to the OV7735 image sensor.
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driver for the OV7735 is responsible for configuring the sensor to produce data in the
format requested by an application.

The OV7735 device driver implements the minimum functionality necessary to
acquire video in the required format. As described in Section 3.3.1.3, the captured
video is currently scaled on the SoC. The OV7735 supports these operations directly
on the sensor, which would reduce the load on the host processor but, given the time
constraints on the project, we chose to leave the driver at that point and only come
back to it if further optimization proved necessary.

Although OmniVision provided a datasheet for the OV7735 [OmniVision 2011a],
after configuring the sensor as the datasheet described, it did not function as expected.
Upon request, OmniVision provided a full table of register values to achieve the
configuration required for the Elapse device. Interestingly, about 48 % of these
registers were not documented in the datasheet. This influenced the decision to not
implement more functionality in the driver than absolutely necessary.

EEG analogue front-end driver

The driver for the ADS1299 EEG AFE was written from scratch, with some reference
to existing drivers for SPI devices. It was designed to work with an arbitrary number
of ADS1299 ICs configured as a single multi-channel device as shown in Figure 3.13.
The primary IC is configured to provide the ADC clock and reference voltage to the
other ICs so that they all operate from a common time and voltage reference. Each
IC has its own SPI chip select so that it can be individually addressed by the host
processor.

A GPIO line on the host processor is connected to the start input of all of the
ADS1299s to trigger conversions simultaneously. The ADS1299s are configured for
continuous conversion, so they sample data continuously until start is driven low.
When a sample is ready, the primary AFE triggers an interrupt on the host processor.
The corresponding interrupt handler immediately begins an asynchronous SPI read
from each of the AFEs. The completion handler for the SPI transaction pushes the
received data into a first-in first-out queue (FIFO). In the meantime, the driver’s
read() function blocks pending data. When the FIFO is full, read() wakes up, copies
the contents of the FIFO to user-space, and goes back to waiting for data.

In addition to the blocking read() described above, the driver supports non-
blocking read() and implements the poll() function. This gives user-space code
the flexibility to interact with the device file by any of the standard POSIX methods:
using poll() or select() to watch for readability, and using read() with or without
blocking the calling thread.

Several samples are buffered in the FIFO before waking up read() to pass the
data to user-space. There is some overhead associated with the context switch between
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Figure 3.13 Multi-chip configuration supported by the ADS1299 driver. The first ADS1299 provides a
reference voltage and clock to the other AFEs and sends a data-ready interrupt to the host. Data is read
out over SPI with one chip select per AFE.

the kernel and user-space, so returning “blocks” of samples is more efficient than
returning one at a time. The number of samples in each block can be configured
through sysfs or when loading the driver into the kernel, and Section 3.3.1.3 explains
how the block size was optimized for the Elapse device.

Most of the configuration registers on the ADS1299 are exposed through a sysfs

interface. Simple, readable statements can be used to configure the AFEs, for example
to set the gain of channel 1: “echo 24 > /sys/class/eeg/ads1299/channel/1/gain”.
When compiled in debug mode, the driver also supports direct access to individual
registers through the ioctl() system call.

IMU driver

STMicroelectronics provides a Linux device driver for the LSM330DLC IMU. It
exposes the accelerometer and gyroscope as two input devices and provides a sysfs

configuration interface. However, this driver is poorly implemented, almost to the
point of being unusable. Indeed, when sampling at 10 Hz it uses approximately
50 % of the CPU. Time constraints precluded fixing or writing a replacement for this
defective driver. After some experimentation, however, it was found to be possible to
configure the driver with very reduced functionality to avoid the extreme CPU load.
The only properly-functioning configuration is with the accelerometers sampling at
10 Hz and the gyroscopes completely disabled. Increasing the sampling rate beyond
this does not result in an increase in the actual output data rate, and enabling the
gyroscopes loads the CPU as described above. While this configuration is far from
ideal, it does provide some inertial data to work with until the driver can be fixed or
replaced.
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3.3.1.3 Data transmission

The Elapse device’s Wi-Fi is configured to make it simple to connect to the device.
Each device provides an ad hoc Wi-Fi network and runs a DHCP server. With this
arrangement, connecting to the device from the remote computer is as simple as
selecting the device’s name from the list of available Wi-Fi networks. No manual
configuration is required—the DHCP server on the device will assign the remote
computer an IP address on the device’s network. Every Elapse device is configured
with the same static IP address, so no DNS server or multicast DNS is required to
resolve the address of the device.

All data from the sensors is transmitted over UDP. Unlike TCP, UDP has no
acknowledge/retransmit mechanism to handle dropped packets. While this means
that any dropped packets are irrecoverable, it also means that it has less protocol
overhead and lower latency. In a real-time situation, retransmitting data would simply
delay the next packet waiting to be transmitted. In the Elapse platform, dropped
packets can be detected at the application level by inspecting the sequence numbers
or timestamps of the samples once they have been received by the client. With that
knowledge, signal processing algorithms may interpolate or otherwise handle any
missing data.

Video compression

Video comprises 99.9 % of the data captured by the device; the uncompressed video
has a bit rate of 184 Mbit s−1. This is more than three times the nominal bit rate of the
device’s Wi-Fi interface, so the bit rate of the video needs to be reduced significantly
before transmission.

The first step of the bit rate reduction is to scale the video down by a factor of
two in each dimension, from its original 640× 480 to 320× 240 pixels. This is done
efficiently in hardware by the OMAP’s ISP. The scaled video is then encoded to a
compressed format. Texas Instruments provides an encoder for the H.264 format
that is optimized to run on the DSP core of the OMAP3530, reducing the load on
the CPU. As a whole, this video compression pipeline reduces the video bit rate to
approximately 960 kbit s−1—an overall reduction of 192:1 resulting in an average of
0.2 bits per pixel. The encoded video is transmitted to the remote computer using the
real-time transport protocol (RTP), a UDP-based protocol for transmitting real-time
video over IP networks.

In the version used on the Elapse device, GStreamer,19 the multimedia processing
library with which the video compression pipeline is implemented, has a bug in its
handling of video timestamps. It ignores the original timestamp which gets applied

19http://gstreamer.freedesktop.org

http://gstreamer.freedesktop.org
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to each frame when it is captured and instead generates a new one. Additionally,
the H.264 encoder ignores the timestamps of the input frames and generates new
timestamps for the encoded output. For the Elapse device, accurate timestamps are
important for maintaining synchronization between the signals captured from the
different sensors. To work around this bug, the video source element in GStreamer
had to be patched to extract the correct timestamps from the captured frames and
then re-apply these to the encoded video. This patch is not good software design but
it is required to ensure that each frame of video has an accurate timestamp.

EEG block size

As described in Section 3.3.1.2, the number of samples returned by each read() from
the EEG driver is configurable. This parameter has been tuned for the Elapse device
so that each block of data that is read can be sent directly as a UDP packet of the
optimum size. It is desirable to put as much data as possible into each packet to
reduce network overhead, but packets larger than the maximum transmission unit
(MTU) will be split into multiple fragments at the IP layer, adding more overhead.
The default MTU for the Wi-Fi adapter on the Gumstix is 1500 B. By configuring the
EEG driver to return 20 samples from each read(), and adding 42 B for the UDP and
IP headers, the packet size comes to 1362 B.

The maximum MTU for Wi-Fi is actually 7981 B but the Wi-Fi adapter on the
Gumstix uses the maximum MTU of Ethernet by default. This makes sense in most
situations since Wi-Fi is usually used as a wireless access point to a larger Ethernet
network. In the case of the Elapse platform, however, there is a direct Wi-Fi link
between the device and the remote computer with no Ethernet involved. Because of
this, it may be possible to increase the MTU of the device’s Wi-Fi adapter and thus
allow larger packets to be transmitted, reducing overhead.

3.3.1.4 Control interface

The server application exposes a configuration and control interface to the remote
computer. This allows the client software to configure the device’s sensors, monitor
hardware state such as battery voltage, and trigger actions such as starting and
stopping data capture.

This interface is implemented using DBus over TCP. DBus is a message-passing
inter-process communication (IPC) and remote procedure call (RPC) mechanism
that is widely used in Linux software. The Qt framework has good support for
DBus, including automatically generating C++ interface code from XML interface
descriptions. Using a well-established RPC system makes it easy to test the interface
from shell scripts or DBus debuggers since the tools already exist. DBus is usually used
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for communication between processes on the same computer, but all communication
is done over sockets so it works equally well communicating with remote processes
over TCP.

The server is configured to launch automatically at boot, so the remote interface
is available as soon as the device has finished booting. This state is indicated to the
user by turning on the device’s blue “ready” LED.

3.3.2 Client software

As described so far, we have a wearable device that acquires biosignals and embedded
software to transmit those signals to a remote computer. All that remains to complete
the platform is some client software running on that computer to receive and analyse
the incoming signals.

The purpose of the client software is to do everything that a user of the Elapse
platform may need to do except for the actual signal processing. That is, it needs to
handle communication with the device, decoding of the incoming data, the ability
to save and load data, and provide a graphical user interface (GUI). It should also
provide a framework into which the user can load signal processing plug-ins for their
specific application.

As a point of clarification, the client software is described as a “framework”
throughout this document. To quote Pree [1994, p. 152]:

Application frameworks consist of ready-to-use and semi-finished building
blocks. The overall architecture is predefined as well. Producing specific
applications usually means to adjust building blocks to specific needs by
overriding some methods in subclasses.

In our case, the Elapse framework provides the core application functionality and
connects several signal processing “blocks” together to produce a cognitive state/event
detection application. The user of this framework can implement a specific application
(e.g., lapse detection) by providing suitable signal processing blocks.

3.3.2.1 Signal processing pipeline

At the centre of the Elapse framework is a configurable signal processing pipeline de-
signed to encapsulate a wide variety of signal processing and classification algorithms.
The pipeline has five stages, illustrated in Figure 3.14:

Data source Receives the data transmitted from the device and outputs a byte stream
for each signal type. As described later, it may alternatively load saved data
from a file.
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Figure 3.14 Object diagram of the Elapse signal processing pipeline. Arrows represent data flow and
are annotated with the data types being passed (cf. Figure 3.15).
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Sample decoder Decodes a byte stream into Samples. For example, the video sample
decoder decodes the compressed video byte stream into video frames. There is
one SampleDecoder per signal type.

Feature extractor Extracts meaningful features from a sequence of Samples. For
example, an EEG feature extractor could calculate the power in the standard
EEG bands over a window of Samples. There is one FeatureExtractor per
signal type.

Classifier Classifies the user’s cognitive state based on the latest set of Feature-

Vectors. There is one Classifier that operates on the FeatureVectors from
all of the signal types.

Output action Takes some action based on the classified cognitive state. For example,
this could sound an alarm or send a message to a fleet management system.

In addition to these elements there is a DataSink which can capture data at any point
in the pipeline and save it to disk.

Each element in the pipeline knows nothing about any of the other elements. All
inter-element interactions are mediated by the Pipeline object. This loose coupling is
achieved using Qt’s “signals and slots” mechanism. Signals and slots are essentially
a generalization of callbacks or the observer pattern [Gamma et al. 1994]; a signal is
an observable event and a slot is an event handler. Signals may be connected to slots
so that when an object emits a signal all connected slots are executed. In this case,
each element in the pipeline implements an input slot and an output signal and the
Pipeline object connects these together per Figure 3.14. The connections between
pipeline elements are made indirectly by queueing signals in Qt’s event loop. This
way, elements are free to use background worker threads internally and emit output
signals from those threads, but the input slot to the following element will always be
called from the main thread.

The following sections describe each element of the pipeline in more detail.

Data source

The purpose of the DataSource element is to push data into the pipeline. The default
implementation listens for incoming data on three UDP ports, one per biosignal type
as described in Section 3.3.1.3. When data is received on any port, the DataSource

emits the received array of bytes via the Qt signal corresponding to the biosignal type,
e.g., eegReady(bytes). It is also possible to implement offline data sources which,
instead of receiving data from the device, load previously saved data from disk. This
is particularly useful for research situations, where data can be saved during a study
and “re-played” later to experiment with different signal processing algorithms.
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Sample decoder

Each SampleDecoder receives the byte arrays emitted by the DataSource correspond-
ing to one signal type. Its purpose is to decode those bytes into structures representing
the samples captured by the device. These structures are defined in Figure 3.15. All
Samples have a timestamp recording the time at which that sample was captured by
the device, though the other fields are specific to each signal type. The EegSample

contains a vector of EEG channel readings in microvolts, as well as a sequence number
which is added by the EEG AFE device driver for detecting missed samples. The
VideoSample contains the dimensions of the video frame as well as the 8-bit greyscale
frame data. The ImuSample contains two three-dimensional vectors of the accelerom-
eter readings in metres per second squared and gyroscope readings in degrees per
second. Depending on how the device encodes each type of data, a SampleDecoder

may emit multiple Samples for each byte array it receives from the DataSource.

Feature extractor

The FeatureExtractor for each signal type must extract meaningful features from
a sequence of Samples emitted by a SampleDecoder. Most interesting features in the
signals we are using involve changes over time, so the FeatureExtractor must be
able to analyse a sequence of several Samples. To achieve this, a BaseFeatureEx-

tractor class is provided for users to inherit from that implements a windowing
algorithm internally. When the input slot of a subclass of BaseFeatureExtractor is
called with a new sample, the sample gets pushed into an internal queue. When a
sample arrives with a timestamp beyond the end of the current window, the virtual
analyseWindow() method is called with the contents of the queue. This method must
extract features from the queued data (e.g., PERCLOS, blink duration) and emit them

Sample
timestamp : uint64

EegSample
values : vector<double>
seqnum : uint

VideoSample
width : uint
height : uint
data : vector<byte>

ImuSample
acc : vec3D<double>
gyr : vec3D<double>

FeatureVector
type : enum SignalType
timestamp : uint64
features : vector<double>

CognitiveState
timestamp : uint64
state : vector<double>

Figure 3.15 Class diagram of the types passed through the pipeline.
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Algorithm 3.1 BaseFeatureExtractor windowing algorithm.

function BaseFeatureExtractor::onSample(sample)
windowEnd← windowStart + windowLength
nextWindowStart← windowStart + windowStep

» If we’ve reached the end of the current window
if sample.timestamp > windowEnd then

» then extract features from the window of stored samples
features← analyseWindow(window)
emit features
» and update the window start point
windowStart← nextWindowStart
RemoveDataBefore(window, windowStart)

end if

» otherwise store the sample for later.
Append(window, sample)

end function

as a FeatureVector. The starting point of the window is then updated, data in the
queue from before that point is removed, and analysis continues. The length and
step size of the window are independently configurable so it is possible to have, for
example, a 2 s window that moves in steps of 500 ms. This process is perhaps easier
to understand with reference to the pseudocode in Algorithm 3.1.

The FeatureVector class contains a vector of floating-point values. Both the num-
ber and meaning of these values is up to the implementor of the FeatureExtractor

to decide. Additionally, a FeatureVector contains the timestamp of the first sample
in the window from which it was extracted and a tag identifying the type of signal it
was extracted from (Figure 3.15).

Classifier

The Classifier receives the FeatureVectors emitted by all of the FeatureExtractors
and classifies the CognitiveState of the wearer. The FeatureExtractors may take
different amounts of time to analyse their windows of samples, so a BaseClassifier

class is provided which hides this complexity from anyone implementing a Classi-

fier. When the input slot of a BaseClassifier is called with a new FeatureVector,
it matches up that FeatureVector with others that it has received recently. If it has
received one FeatureVector for each signal type in a given time window, the virtual
classify() method is called with those FeatureVectors.

Much like a FeatureVector, the CognitiveState class contains a vector of
floating-point values, with the number and meaning left up to the implementor
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of the Classifier (Figure 3.15). It also contains the timestamp of the first sample in
the window from which the corresponding FeatureVectors were extracted.

Output action

The OutputAction can take some action based on the classified CognitiveState of
the user. This could range from displaying a message, to sounding an alarm, to
disabling machinery, or whatever is appropriate for a given application.

Data sink

The DataSink observes the connections between all of the other elements in the
pipeline. DataSink implementations may choose to save data at any of these points—
raw bytes, Samples, FeatureVectors, CognitiveState—in some meaningful format
on disk. With this mechanism it is possible to, for example, dump all raw data, save
EEG in a Matlab file, or log a text file of classified CognitiveStates. While this is
useful for keeping logs and doing further offline analysis, it is particularly useful
when combined with a DataSource that is able to read this data back into the pipeline
again to enable further investigation within the Elapse framework itself.

3.3.2.2 Plug-in architecture

All of the elements in the signal processing pipeline are provided by plug-ins. Plug-ins
are discovered dynamically at run-time and the user can select which elements to
use interactively through the GUI. A core plug-in is provided with the framework
which provides standard DataSources and SampleDecoders. These elements should
not generally need to be overridden by users since they are tied to the implementation
of the device’s embedded software. The core plug-in also provides placeholder
implementations for the other elements which simply ignore their inputs and produce
dummy outputs.

Using plug-ins to provide signal processing algorithms is the key to the flexibility
of the Elapse platform. It allows the framework to provide all of the common
functionality—device connectivity, user interface, data I/O, etc.—while users of the
platform need only implement the signal processing code specific to their application.
Additionally, it makes experimenting with different combinations of feature extractors
and classifiers easy.

For maximum flexibility in the implementation of plug-ins, the plug-in manage-
ment code has been designed to also support plug-ins written in languages other than
C++. This means that, given appropriate language bindings for the Elapse base classes,
it would be possible to write signal processing algorithms in high-level languages such
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Figure 3.16 Class diagram of the Elapse plug-in manager. PluginHost is an abstract factory that
instantiates classes provided by plug-ins. “Foo plugin” is implemented in C++ and “Bar plugin” is
implemented in Python.

as Python, Matlab, or Julia.20 The PluginManager class uses the abstract factory pat-
tern [Gamma et al. 1994] to create instances of classes provided by plug-ins. A diagram
of this structure is given in Figure 3.16. The plug-in manager has one or more plug-in
hosts, each of which is able to load plug-ins written in a particular language and in-
stantiate the classes provided by those plug-ins. For example, the NativePluginHost

loads C++ shared libraries and instantiates C++ classes, and the PythonPluginHost

starts a Python interpreter and imports Python modules. Each plug-in contains one or
more implementations of Elapse base classes, e.g., FeatureExtractor, Classifier, as
well as some metadata identifying those classes. For C++ plug-ins, the classes inherit
directly from the Elapse base classes, while other languages require some glue code
(bindings) to translate to and from C++. To implement support for a new language,
it is only necessary to implement a new plug-in host and bindings for the Elapse
base classes, as the shaded region in Figure 3.16 shows for Python. At the time of
writing, the NativePluginHost and PythonPluginHost are implemented, supporting
plug-ins written in C++ and Python respectively. The Python host makes it possible to
write signal processing algorithms using the extensive SciPy21 numerical computing
libraries.

20http://julialang.org
21http://www.scipy.org

http://julialang.org
http://www.scipy.org


3.3 SOFTWARE 61

Binary compatibility

When designing the API for a shared library, it is important to consider the issue
of binary compatibility. That is, if a new version of the library is released, will
software compiled against the previous version work with the new version without
needing to be recompiled? In our case, it is desirable that plug-ins compiled against
one version of the Elapse framework continue to work without recompilation if the
framework is updated. To maintain a stable application binary interface (ABI), there
are several types of changes that must not be made to public interfaces, such as
changing method parameters and adding class members. One common technique to
help with achieving this, and what is used in the Elapse element base classes, is the
pointer-to-implementation (pimpl) idiom. Using this approach, all private data and
methods are moved to a private class which is hidden behind an opaque pointer in the
base class. Data members and methods can then be freely added, removed, or changed
in the private class while the public interface remains unchanged. External code can
never instantiate or directly access the modified private class, so ABI compatibility is
maintained.

3.3.2.3 Core application

The Elapse client application ties together the signal processing pipeline and plug-in
management code, handles communication with the device, and provides a graph-
ical user interface (GUI). A diagram of the structure of the application is given in
Figure 3.17. The following paragraphs describe a typical session using the program,
outlining both the user’s perspective and how it operates internally.

When the user first launches the application they must choose a set of signal
processing elements to work with. Clicking the Load Elements button launches the
PluginManager’s plug-in selection dialog (Figure 3.18). This window displays a list of
the available implementations for each type of pipeline element and allows the user
to select which ones to load from plug-ins. Once the user has made their selection,
the PluginManager creates an instance of each selected element class (Section 3.3.2.2)
and returns them as an ElementSet. This is simply a container holding a complete
set of pipeline elements. The ElementSet is passed to the Pipeline object which
connects the corresponding signals and slots between the elements (Section 3.3.2.1).
The selected set of elements is also saved to the application’s configuration file so that
it can be loaded automatically the next time the application is launched.

Having loaded a set of elements from plug-ins, the user can click Connect to
connect to the device. The client application has a DeviceProxy which is a transparent
proxy object for the configuration interface on the device (Section 3.3.1.4). That is,
when a method is called on the DeviceProxy, the call is passed to the device over
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Figure 3.17 High-level class diagram of the Elapse framework.
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DBus and the result returned to the caller as if it had been a normal method call.
When the user clicks Connect, this proxy makes its initial connection to the device.

If the user chose to use an OfflineDataSource, this connection happens a little
differently to normal. There are two types of data that must be passed from the device
to the client: the hardware configuration and the captured biosignals. Ordinarily,
the DeviceProxy reads the configuration from an Elapse device over DBus and the
device transmits data from its sensors to a DataSource, as in Figure 3.20a. When
using an OfflineDataSource, however, both configuration data and signal data are
loaded from a file. There is no device to connect to in this case. Instead, the
OfflineDataSource has an adapter which makes it look like a Device. It exposes
this adapter on the local DBus session bus so that when the DeviceProxy attempts to
read the hardware configuration, it actually gets read from the OfflineDataSource’s
data file (Figure 3.20b). By using this approach, the only special case that needs
to be handled to differentiate between online and offline DataSources is within the
DeviceProxy—it needs to know whether to connect to a remote or a local DBus server.
No other code within the Elapse framework needs to know whether the DataSource

is online or offline because the same interfaces are implemented in both cases.

If the application successfully connects to the device, the GUI shows something
similar to Figure 3.19. All of the widgets in the main area of the window are
provided by the pipeline elements loaded from plug-ins. Pipeline elements may
choose to implement the Displayable interface which simply exposes a GUI widget
representing the state of the element in some way. In Figure 3.19, the EEG strip-chart,
eye video, and 3D head widget are provided by the default SampleDecoders in the
core plug-in, and display the raw data as it is decoded. The battery gauge widget is
a special case—it is provided by the application itself. All of these widgets may be
rearranged and resized within the window to suit the user’s taste.

Depending on the DataSink that the user selected, it may be necessary to take
one more step before beginning data capture. DataSinks support the concept of
“capture info”—arbitrary metadata associated with a captured data set. This could be
as simple as selecting a filename for the saved data, or as complex as recording the test
conditions and participant ID for a research study. The capture info system is flexible,
supporting DataSinks that never require capture info, that only require info once, that
require new info for every capture, and that are able to load info from a configuration
file. The user can click the Set capture info button to enter any required information, or
if they attempt to start data capture without entering required information they will
be prompted for it then.

At this point the device’s hardware gets configured. This happens in two stages.
Firstly, any hardware settings that the user wishes to override are read from the appli-
cation’s configuration file. These are used to configure the corresponding properties
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Figure 3.18 The Elapse plug-in selection window.

Figure 3.19 The Elapse main window during operation.
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ElapseClient Pipeline
«interface»
DataSource

DeviceProxy
«interface»

Device

Online
DataSource

Elapse
Device

Sensors
Remote
DBus

Wi-Fi

(a) Normally the DeviceProxy reads the hardware configuration from an Elapse device over DBus. The
device reads data from its sensors and transmits it to the DataSource.

ElapseClient Pipeline
«interface»
DataSource

DeviceProxy
«interface»

Device

Offline
DataSource

DBus
Adaptor

File

Local
DBus

(b) When using an OfflineDataSource, both the configuration and sensor data are read from a file. The
OfflineDataSource exposes the configuration to the DeviceProxy via a DBus adaptor.

Figure 3.20 Comparison of online and offline data sources. Most of the Elapse framework is oblivious
to whether the data is received from a device or loaded from a file.
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of the device’s sensors. Secondly, the complete hardware configuration is read back
from the device. This is passed to each element in the Pipeline so that they can
configure themselves as necessary. For example, the EEG SampleDecoder needs to
know the gain of each channel in order to correctly decode the measured voltages
from the incoming byte stream. Similarly, the DataSink can save the configuration to
disk alongside the captured data for later reference.

To start capturing data, the users clicks the Capture button. This triggers the
server to start acquiring and transmitting data, and starts the Pipeline receiving and
processing data. The Pipeline object presents a simplified facade for managing the
pipeline elements. It provides the application with simple methods like start() and
stop() which internally handle starting/stopping/resetting the individual pipeline
elements. During data capture the DataSource receives data from the device and feeds
it through the signal processing pipeline as described in Section 3.3.2.1. As data passes
through each element it can update its GUI widget if it is Displayable, for example,
overlaying the detected pupil region on the eye video or plotting a spectrogram of the
EEG. When the data capture has finished, the user can click Stop and either begin a
new capture or Disconnect from the device.

3.3.2.4 Developer tools

Particular effort was put into providing tools to assist new developers working on
both the Elapse framework and signal processing plug-ins. Comprehensive API
documentation is extracted from the source code as browsable HTML, including class
and state diagrams. Example code is also provided for implementing plug-ins in both
C++ and Python. Much of the Elapse framework has unit tests for regression testing.
Time constraints have prevented better test coverage, but the most important classes
have associated test suites.

3.4 SUMMARY

The Elapse platform provides an extensible framework for developing real-time
cognitive monitoring applications. The head-mounted device captures EEG, eye video,
and head motion, and transmits these signals to a remote computer. Software on the
remote computer receives the data and feeds it through a signal processing pipeline.
Users of the framework may implement custom feature extraction and classification
algorithms as plug-ins, along with custom file formats for saving data, and actions
to take based on the classified cognitive state. Documentation and examples are
provided to assist those developing signal processing plug-ins.



Chapter 4

LAPSE DETECTION SOFTWARE

Although the primary focus of this project was on developing the Elapse platform
itself and not on the actual detection of lapses or any other specific cognitive states,
some signal processing and classification algorithms needed to be implemented as
proof of concept. Other students in NeuroTech are working on EEG feature extraction
and classification algorithms, so this project focused primarily on developing an
eye-video feature extraction algorithm. The EEG and IMU feature extractors described
here are deliberately simple, intended only to demonstrate that is is possible to extract
meaningful information from the data that the device acquires.

4.1 EYE VIDEO

Many eye-related parameters have been found to relate to drowsiness and lapses.
PERCLOS, the percentage of time that the eyes are more than 80 % closed during a
one-minute window, is correlated with lapses of responsiveness on the psychomotor
vigilance task [Wierwille and Ellsworth 1994]. The durations of the closing, dwell, and
reopening phases of eye closure increase and become more variable with drowsiness
[Schleicher et al. 2008, Tucker and Johns 2005]. Similarly, the ratio of the amplitude
of eye closure to eyelid speed is correlated with drowsiness [Johns et al. 2007], as is
the proportion of blinks that are “long” (300–500 ms) [Caffier et al. 2003]. Lüdtke et al.
[1998] found large low-frequency fluctuations in the diameter of the pupil when a
subject feels sleepy, and these are possibly preceded by a gradual decrease in pupil
diameter occurring over several minutes [Nishiyama et al. 2007]. A decrease in the
gain of the vestibulo-ocular reflex (reflexive compensatory eye movement in response
to head movement) has been observed before subjects reported feeling drowsy [Hirata
et al. 2009]. For detecting non-drowsiness-related lapses, gaze direction may be
an indicator of diverted attention if the subject is carrying out a task that requires
visual attention in a known direction. Measurements of gaze direction also provide
information about the duration of visual fixations which may be related to drowsiness
[Schleicher et al. 2008].
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Some of these parameters cannot be measured solely from video of one eye. For
example, measuring VOR gain requires knowledge of the relative motion of the visual
target, and gaze direction can only be measured accurately by observing both eyes
and knowing the orientation of the head.

Most of the remaining parameters, however, can be calculated by locating the
boundary of the visible pupil region in video of the eye. The proportion of the pupil
that is visible can be used to calculate PERCLOS, the number of frames in which
the pupil is partly covered can be used to approximate the speed of eye closure, and
the size of the visible pupil region can be used to calculate the pupil diameter. The
eye-video processing algorithm described in this section aims to locate the boundary
of the pupil accurately so that all of these parameters can be measured from the eye
video.

The following section describes the pupil localization algorithm which has been
developed, followed by a comparison to alternative methods.

4.1.1 Pupil localization algorithm

The algorithm developed for locating the pupil is based on flood-filling about a dark
seed point. Flood-filling is a common process for locating connected components in
an image which we have applied to pupil localization. The output of the process is
an instance of the data structure given in Figure 4.1b—the boundary of the pupil is
represented as a rotated ellipse (Figure 4.1a) and the state of eye closure is classified
as open/partial/closed. The parameters defining the pupil ellipse are given in image
coordinates and measured in pixels. The criteria for assigning each of the eye states
are explained later in this section.

x

y

w
h

a

(a) Definition of pupil ellipse parameters.

struct Pupil {
struct Ellipse {

int x, y;
int w, h;
float angle;

} boundary;
enum { Open, Partial, Closed } state;

};

(b) Software representation of a pupil.

Figure 4.1 Representation of a pupil. The image on the left illustrates the definition of the parameters
in the code on the right.
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(a) The captured frame. (b) Weighted by distance
from the centre, global
minimum marked.

(c) Flood-filled pupil
region.

(d) Pupil ellipse and
seed point for next
frame.

Figure 4.2 Pupil localization algorithm: flood-filling about a dark seed point.

Initialization

In the very first frame of video, a dark point near the centre of the frame is defined as
the seed point. To exclude dark areas which occur, for instance, where the face curves
back away from the IR LED, the brightness of each pixel is linearly weighted by its
distance from the centre of the image. That is, for each pixel a value proportional to
its distance from the centre of the frame is added to its intensity. The seed point is
defined as the global minimum of the resulting weighted image (Figure 4.2b).

The gradient of this weighting function is defined such that at the edge of the
frame half of the full-scale brightness range is added. This value was experimentally
determined to provide a balance between brightening dark areas near the edge of the
frame enough so that they do not pose a problem and avoiding saturating too much
of the image.

Threshold

To determine whether the eye is completely closed, the brightness at the seed point
is compared to a fixed threshold. If the brightness at the seed point exceeds the
threshold, we conclude that it cannot be part of the pupil. Further, because the seed
point is the darkest point near where the pupil is likely to be, we conclude that the
pupil is not visible. In this case, the eye is considered to be closed and the rest of the
pupil localization process is skipped.

It is possible to use a fixed threshold for this comparison because the camera’s
automatic black-level, exposure, and gain controls ensure that the dynamic range
of every frame is within fixed limits. That is, the illumination arrangement ensures
that the pupil appears black, the camera’s automatic controls ensure that “black”
lies within a fixed range of digital brightness values, and so the image processing
algorithms can use a fixed threshold. The actual value of the threshold was chosen by
manually examining several frames captured in a range of lighting conditions and
selecting a threshold based on the average brightness of the skin.
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Pupil shape

The shape of the pupil region is defined by flood-filling about the seed point (Fig-
ure 4.2c). This process starts at a point and recursively fills all adjacent pixels which
have a brightness within a specified range. This range can be fixed, in which case the
brightness of the adjacent pixel is compared to the seed point, or floating, in which
case it is compared to the current pixel. In this case, a fixed range relative to the seed
point is used so that any blurring of the pupil–iris boundary resulting from a slightly
out of focus image will not affect the extent of the fill. If a floating range was used, the
flood could continue too far in a de-focused image because the difference between the
brightness of adjacent pixels is reduced when the image is blurred. By using a fixed
range flood fill, obtaining a correctly filled area relies on there being some contrast
between the pupil and the iris but does not rely on a sharp edge delineating the two.

The pupil is considered to be partly covered under two conditions: i) if the widest
point is close to the top of the filled region, or ii) if the width of the region is more than
twice its height. An example of each of these cases is shown in Figure 4.3. If, by these
criteria, the pupil is not partly covered, the boundary of the pupil is approximated by
fitting an ellipse to the boundary of the flood-filled region (Figure 4.2d). This reduces
the description of the pupil to five parameters: coordinates of the centre, lengths of
major and minor axes, and rotation angle. The ellipse is fitted to the filled region
using a direct least-squares method [Fitzgibbon et al. 1999].

Finally, the bounding ellipse and closure state of the pupil are returned. This
information is passed back into the algorithm to be used as a starting point for the
next frame.

Adjustment

When the next frame is ready for processing, an adjustment step takes place to
optimize the location of the seed point before beginning the flood-fill. Since the eye
can rotate between frames, the centre of the pupil ellipse from the previous frame
may not be the best seed point from which to begin the flood-fill in the current frame.

(a) A partly covered pupil during a blink. (b) A proportionally wide pupil region.

Figure 4.3 Criteria for classifying the pupil as partly covered.
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Instead, a window around the previous pupil centre is examined and the seed point
is defined to be the darkest point therein. In this way, if the eye moved between
frames such that the previous pupil centre now lay on a brighter area—perhaps from
reflected ambient light or a stray eyelash—the flood-fill will still begin from a dark
point. A seed point which accurately represents the brightness of the region of interest
is important since the extent of the flood-fill is defined by brightness relative to the
seed point. Without this adjustment, an unfortunately-placed glint could throw off
the flood-fill process entirely. The size of the window that is searched is fixed at
approximately half of the average size of the pupil.

Once the position of the seed point has been adjusted, the process continues
from “Pupil shape” above. A pseudo-code representation of this process is given
in Algorithm 4.1. Section 6.1 describes the methods and results of two experiments
designed to test the performance and robustness of this pupil localization algorithm.

Algorithm 4.1 Pupil localization.

function LocatePupil(frame, prev)→ pupil
if prev = null then . This is the first frame

seed← FindCentralDarkPoint(frame)
else

seed← FindNearbyDarkPoint(frame, prev.centre)
end if

if frame[seed] > Tclosed then . Seed point is too bright to be the pupil
pupil.state← closed

pupil.boundary← null

return pupil
end if

region← FloodFill(frame, seed, Tpupil)

if HasFlatTop(region) or IsWide(region) then . Pupil is partly covered
pupil.state← partial

pupil.boundary← prev.boundary
else . Pupil is fully visible

pupil.state← open

pupil.boundary← FitEllipse(region)
end if

return pupil
end function



72 CHAPTER 4 LAPSE DETECTION SOFTWARE

4.1.2 Comparison with other approaches

The algorithm described in the previous section is the result of several iterations of
development. In this section it is compared to some of the alternative approaches that
were explored during that process, as well as some techniques from the literature.

The design of the CAMEL module introduces some constraints on the techniques
that can be used to process the video that it produces. Because it is mounted well
below the natural gaze direction of the eye, any approach that assumes that the
pupil appears circular cannot be used [e.g., Lüdtke et al. 1998, Pérez et al. 2003].
Techniques originating from the field of biometrics assume high resolution images
taken in controlled lighting conditions from directly in front of the eye [Daugman
2004]. Clearly the CAMEL module does not satisfy these assumptions.

Likewise, techniques relying on the bright pupil effect cannot be used because
the CAMEL cannot produce a bright pupil. To induce the bright pupil effect, IR
illumination must be provided coaxial with the camera (Section 3.2.4.2). This generally
requires either a ring of IR LEDs around the camera lens [Ji and Yang 2002] or a
beam splitter in front of the lens. The CAMEL module was designed to be as small
as possible and so uses a single IR LED. This LED was initially mounted close to the
camera lens in an attempt to induce the bright pupil effect but, because the module is
mounted close to the eye, even this small distance limited the effect to only about one
third of the pupil. It is not feasible to mount multiple IR LEDs around the camera,
at least on the current version of the hardware, so the LED was moved further away
from the camera to avoid the bright pupil effect entirely and instead rely on the dark
pupil effect.

Gaze tracking is usually done by supplying an external IR source which causes a
specular reflection on the surface of the eye. The orientation of the eye is measured by
comparing the positions of either the reflections off the outer surface of the cornea and
the inner surface of the lens (first and fourth Purkinje images), or of the first Purkinje
image relative to the centre of the pupil [Crane and Steele 1985]. The relative position
of these points is invariant to translation but changes with eye rotation. In the Elapse
device, however, the lower eyelid blocks the reflection of the IR LED most of the
time, except when looking sharply downwards. Measuring gaze by tracking Purkinje
images, then, is not an option. It may be possible to approximate gaze direction by
comparing the position of the pupil to the corners of the eye, the canthi, though this is
not without difficulty—the canthi deform when the eye moves, so make poor reference
points. Alternatively, it may be possible to back-project the detected pupil ellipse in
two dimensions to the original circle in three dimensions to identify the orientation of
the eye relative to the camera and so infer gaze direction. This is the approach taken
by Nishino and Nayar [2004], although they use the limbus rather than the pupil. The
geometry involved has inherent ambiguities but these could perhaps be overcome
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with some well-chosen heuristics. This geometrical approach is probably the most
promising for future development of gaze estimation from pupil shape.

Many pupil detection techniques treat eye closure as noise to be filtered out or
model it very simply as a binary open/closed state. For example, Li et al. [2005]
attempt to fit an ellipse to the pupil in every frame and if the fit fails to converge
they assume the eye is closed. Świrski et al. [2012] simply exclude frames in which
the pupil is covered from their dataset. Without explicitly taking eye closure into
account in the pupil detection process, it is difficult to differentiate between a change
in pupil size and a change in the degree of eye closure [Lüdtke et al. 1998]. Because the
Elapse device is intended to be used for lapse detection, eye closure is an important
parameter and must be measured as accurately as possible. While there is certainly
room for improvement over the algorithm described in the previous section, the
criteria for detecting partial eye closure shown in Figure 4.3 at least provide some
more information than just whether the eye is open or closed.

The pupil localization algorithm developed here is simple. The algorithm was
developed before the two-part device + remote computer design (Section 3.1) was
chosen for the Elapse platform. At that stage we were still considering the possibility
of running the video processing software on the head-mounted device. Because of
the limited capacity of the device’s processor, the algorithm was designed to be as
simple as possible while still producing acceptable results. This simplicity is justified
below by comparing the flood-fill approach to two other classes of shape-fitting
algorithms—searching and voting.

Search-based shape fitting algorithms include the Hough transform [Duda and
Hart 1972] and variations of Daugman’s integro-differential operator [Daugman 2004,
Nishino and Nayar 2004]. The characteristic feature of these techniques is the process
of searching for the combination of parameters which produce the best fitting shape.
Take, for instance, a circle given by the equation (x − x0)2 + (y − y0)2 = r2. The
Hough transform takes a binary edge image and, for each edge pixel (x, y), searches
the (x0, y0, r) parameter space for triples that would produce a circle passing through
(x, y). These triples are added to an accumulator and, after all edge points have been
processed, the parameters defining the “best” circle are given by the coordinates of the
largest accumulated value. The integro-differential operator searches for the (x0, y0, r)
triple that maximizes

max
r,x0,y0

∣∣∣∣G ∗ ∂

∂r

∮
r,x0,y0

I(x, y)
2πr

ds
∣∣∣∣ (4.1)

This finds the mean integral of the image I along a circular arc ds of radius r about
(x0, y0), differentiates to find the radial gradient, smooths the result by convolution
with a Gaussian kernel G, and then searches for the peak gradient. In other words, it
finds the strongest circular edge in the image. Nishino and Nayar [2004] generalize
this operator to ellipses. Both of these techniques involve an exhaustive search over the
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n-dimensional parameter space which becomes prohibitively expensive as n increases;
for an ellipse, n = 5. It is possible to reduce the necessary computation by limiting
the span of each dimension, reducing the quantization resolution of each dimension,
or doing both by iteratively refining the scope of the search. Nevertheless, these
techniques are computationally intensive.

Voting-based shape fitting algorithms include those from Li et al. [2005] (“Star-
burst”) and Świrski et al. [2012]. These are both based on the random sample
consensus (RANSAC) method [Fischler and Bolles 1981]. RANSAC takes a small
random sample of edge pixels from a binary edge image and fits the desired shape
model to them. The “consensus set” is then formed by finding the remaining edge
points that match the fitted model well according to some support function. This
function could be as simple as the distance between the point and the fitted shape,
or it may be something more complex that takes into account other properties of the
original image like brightness or gradient. This process is repeated until a sufficiently
large consensus set is found or a limit on the number of iterations is reached. This is
more efficient than performing an exhaustive search of the parameter space although
still involves fitting a potentially large number of shape models to edge points and
evaluating support functions. Since it uses random sampling, the time it will take
to satisfactorily fit a shape, or indeed whether it will manage to fit one at all, is
non-deterministic. RANSAC’s main advantage is its robustness to outliers in the edge
image that it takes as input.

The pupil localization process described earlier does not use either of these
computationally intensive techniques, instead using a simple least-squares fit. This is
possible because of the nature of the edge image that flood-filling produces compared
to the usual Canny edge detector or Starburst technique used in the previous examples.
Typical edge detectors locate strong gradients in the image. These gradients may
occur at the pupil boundary, or may be parts of eyelashes, eyelids, reflections, and so
on. To locate shapes in such an edge image requires a technique that is robust to these
outliers, such as RANSAC. The flood-fill process, however, produces a region with a
continuous outline; there cannot be any outliers. This makes it possible to directly fit
an ellipse to the boundary of the filled region using a least-squares approach, with
no need for complex voting or searching algorithms. Of course, if the filled region
is not elliptical this will still produce a poor fit. A non-elliptical region can occur for
one of two reasons: the pupil is partly covered, or the threshold was inappropriate
and the fill extended to non-pupil regions or did not fill the whole pupil. The first is
accounted for by examining the shape of the filled region to detect partial eye closure.
The second has not proven to be much of a problem in practice because the automatic
image controls on the camera maintain the contrast between the pupil and the iris.

To summarize, by providing external IR illumination, exploiting the automatic
image adjustment controls on the camera to maintain constant contrast, and using
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an edge detection technique that avoids outliers, we have developed a simple and
comparatively efficient method for locating the pupil.

4.2 OTHER FEATURE EXTRACTORS

As mentioned at the beginning of this chapter, the remaining signal processing
elements are deliberately simplistic, intended only to demonstrate that it is possible
to extract some meaningful information from the captured signals.

4.2.1 EEG

The EEG feature extractor calculates the power in each of the standard frequency
bands described in Section 2.1.1. In each window of EEG data that the feature extractor
receives (Section 3.3.2.1), the PSD is estimated by calculating the squared magnitude
of the fast Fourier transform (FFT) of each channel. The mean power in each frequency
band is calculated by integrating the estimated PSD over the relevant frequencies and
dividing by the width of the band.

Changes in these features—the power in each band for each channel—are known
to be correlated with cognitive changes. For example, Lin et al. [2005] found that the
power in the 10–14 Hz band had a positive correlation with increased driving errors
in a simulator. They also found strong correlations in more complex features, such as
the log power spectrum of ICA components. Future development of the EEG feature
extractor could explore the use of more complex features like these, but simple band
power features suffice for the purposes of this project.

4.2.2 IMU

The purpose of the IMU is to measure the orientation of the head and its variation
over time. Because of the problems with the IMU driver outlined in Section 3.3.1.2,
the gyroscopes are currently disabled, leaving only the accelerometers active. Since
accelerometers are unable to measure rotation about the gravitational field vector, it
is only possible to measure the “tilt” of the head. That is, it is possible to measure
rotations about the axes parallel to the ground plane (pitch and roll) but not about the
vertical axis (yaw).

To estimate tilt from acceleration, it is necessary to assume that the measured
acceleration is entirely due to gravity and points straight down, i.e.,~a ≡ [0 0 −1]T g
in world coordinates. This is a crude approximation, especially when the device is
used in a moving vehicle, but is necessary for the mathematics to work. Figure 4.4
illustrates how the tilt is calculated from the measured acceleration vector. The angle
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Figure 4.4 Calculating head tilt from the acceleration vector using YαXβ extrinsic angles.

convention used is a rotation of α about the y axis followed by a rotation of β about
the x axis.

The IMU feature extractor exposes a GUI widget to the Elapse application which
depicts the measured head orientation as the orientation of a 3D model head (Fig-
ure 3.19).

4.3 SUMMARY

This chapter has presented a simple and computationally efficient method for locating
the pupil in video of the eye. The shape of the pupil can be used to measure several
parameters that are known to correlate with lapses and drowsiness. The method takes
eye closure into account in its calculations in order to differentiate between changes in
pupil diameter and changes in eye closure.

This chapter has also demonstrated simple EEG and IMU feature extractors as
proof of concept. The EEG feature extractor calculates the power in each frequency
band for each channel. The IMU feature extractor is currently limited to measuring
head rotation about two axes because of hardware limitations.
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SYSTEM EVALUATION

Having presented the development of the Elapse platform, it is necessary to demon-
strate that the system meets the requirements set out in Chapter 3. This chapter
describes the methods and results of several measurements taken to evaluate the
performance of each of the device’s subsystems, as well as the integration of these
systems into a complete device. These measurements are intended to quantify the
device’s performance and demonstrate that it meets the requirements.

5.1 EEG SUBSYSTEM CHARACTERISTICS

5.1.1 Noise

When developing an acquisition system for signals with very low magnitude such as
EEG, it is important to consider how much noise the acquisition system itself adds to
the measurements. The majority of the noise in the system comes from thermal and
flicker noise within the amplifiers and passive components, and quantization noise
from the ADC. This noise can be measured by shorting the amplifier’s inputs and
measuring the output voltage (Figure 5.1a).

The EEG analogue front-end (AFE) noise was measured in two ways: i) the input
multiplexer of the ADS1299 was configured to short both amplifier inputs to the
mid-rail voltage (2.5 V), and ii) a measurement electrode was shorted to the reference
electrode on the device itself. The first of these configurations measures the noise

−

+

(a) Noise

−

+

(b) CMRR

−

+

(c) Frequency response

−

+

−

+

(d) Cross-talk

Figure 5.1 Circuits for measuring EEG AFE performance parameters.
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contributed by the ADS1299 and the second includes any noise and interference from
the rest of the system as well. Three 10 s periods of data were captured for every
combination of the two input conditions and amplifier gains G ∈ {1, 2, 4, 12, 24}. The
noise for each combination was found by calculating the root mean square (RMS)
of the measured voltage for each of the three periods and selecting the median. All
measurements were taken at room temperature.

Figure 5.2 shows the measured RMS voltage as a function of PGA gain. (Note that
the gain is on a log scale for clarity.) As expected, the noise measured with the inputs
internally shorted to mid-rail is close to the values given in the datasheet, differing by
less than 6 % across the full range of gains. The expected decrease in input-referred
noise with increasing gain is also clearly visible.

The measurements with an external short show more noise, most likely due to
mains interference picked up over the length of the electrode cables. The magnitude
of any mains interference would be constant, independent of the amplifier gain, since
it is caused by an unchanging external source. RMS noise from multiple sources is not
additive but combines as the root sum of squares, so the total noise tends to be close
to the noise from the largest source. Thus, in this case, at low gains the amplifier noise
dominates and the total noise is close to that measured with an internal short. At
higher gains, the input-referred amplifier noise decreases and the 50 Hz interference
dominates.

In summary, the EEG AFEs contribute 0.14 µVRMS of input-referred noise to the
system at G = 24, compared to a typical EEG signal amplitude of tens of microvolts.
With the current arrangement of electrodes and cables on the device, mains interference
raises the noise floor up to 0.36 µV.

5.1.2 Common-mode rejection

The common-mode rejection of a differential amplifier is a measure of how well it
amplifies only the difference between its inputs and rejects any signal that is common
to both inputs. This is an important parameter for EEG amplifiers because EEG
typically has an amplitude of a few tens of microvolts, while the common-mode signal
on the body from 50 Hz mains interference can be several orders of magnitude larger.

To measure the common-mode rejection ratio (CMRR) of the ADS1299, both inputs
of one channel were driven with a 2 Vp-p sinusoid centered about the mid-rail voltage
of 2.5 V (Figure 5.1b). Ten seconds of data were captured for each combination of input
frequencies f ∈ [1, 100]Hz and amplifier gains G ∈ {1, 12, 24}. This was repeated
with the buffer amplifier on the reference electrode both disabled and enabled. The
CMRR was calculated as 20 log10(Vout/Vin), where Vout is the peak-to-peak voltage
of the captured signal and Vin the input from the signal generator. The results are
plotted in Figure 5.3.
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Figure 5.2 Measured EEG AFE noise compared to specified values.
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Figure 5.3 Measured EEG AFE common-mode rejection, with and without a buffer on the reference
electrode.
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Figure 5.4 Measured common-mode rejection compared to the values specified in the ADS1299
datasheet.

With the reference buffer disabled, the CMRR spanned the range 82–110 dB
depending on frequency and gain. With the buffer enabled it spanned 75–104 dB,
a decrease of 7 dB. The decrease in CMRR when enabling the reference buffer was
unexpected; enabling the buffer should increase the CMRR. That is, after all, the
reason for putting a buffer on the reference electrode (Section 3.2.2.2). The cause of this
unexpected behaviour is likely to be an error in the circuit design—the buffer amplifier
was mistakenly placed before the input RC filter instead of after it. Because of this
mistake, enabling the buffer actually increases the impedance mismatch between the
reference electrode input and the measurement electrode inputs. Fixing this error
should stop the CMRR decreasing when the buffer is enabled and hopefully cause it
to increase as intended.

Figure 5.4 shows the difference between the CMRR values specified in the
ADS1299 datasheet and those measured in this experiment. If these values are directly
comparable then the CMRR is ∼32 dB lower than expected at G = 24 and f = 10 Hz,
or equivalently, the amplitude of the common-mode signal in the output is 40× higher
than expected. However, it is likely that the values can not be meaningfully compared.
The circuit used to measure the CMRR values in the datasheet is not specified but it
is safe to assume that it was designed to avoid any input impedances and imbalances.
By contrast, when measuring the CMRR on the Elapse device, the input RC filters,
electrode cables, and PCB layout have an effect on the measured values. These effects
can not be avoided entirely in real systems, only minimized. Using a right-leg-drive
circuit to bias the subject with an inverted common-mode signal (Section 3.2.2.2) can
help to minimize the effect of a reduced CMRR by reducing the magnitude of the
common mode signal, although this is not currently implemented on the device.
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Two features of Figure 5.4 are unexplained: i) the upward trend in CMRR at
frequencies above 50–60 Hz, and ii) the lack of spread in CMRR as a function of gain
compared to the datasheet. Regarding the upward trend in CMRR, it is possible
that the factors that are causing the CMRR to be worse than specified have some
frequency-dependent effect and start to dominate at higher frequencies. The reason
for the lack of spread in measured CMRR compared to the values specified in the
datasheet is unknown.

5.1.3 Cross-talk

Cross-talk is an unwanted phenomenon where a signal in one channel, the “driven
channel”, is coupled into another channel, the “susceptible channel”. It is quantified
by the ratio of the amplitude of the unwanted signal in the susceptible channel to
the amplitude of the original signal in the driven channel. The circuit shown in
Figure 5.1d was used to measure the cross-talk of the Elapse device. One channel was
driven with a 100 mVp-p, 10 Hz sinusoid, and the voltage induced in another channel
was measured. 10 kΩ resistors were placed in series with the electrodes to simulate a
typical electrode impedance and ensure that the driven and susceptible channels had
matching impedances.

Most of the cross-talk was expected to occur along the length of the ribbon cable
that connects the electrodes to the AFEs. To verify this, the signal generator was
connected to channel 2 and channels 3 to 7 were measured in turn. Channel 2 was
chosen as the driving channel to avoid any difference in cross-talk that may occur
for the outermost conductor in a ribbon cable. The gain of the amplifiers for the
driven and susceptible channels were set to G = 1 and all of the other channels were
internally shorted to mid-rail and disabled. The results of these measurements are
given in Table 5.1.

The ADS1299 datasheet states that the cross-talk is −110 dB at 50 Hz. This is very
different to the values measured here. However, the datasheet gives no information
about the circuit used to measure the cross-talk, the amplitude of the driving signal, or
the physical arrangement of the components in the circuit. Without this information,
we cannot know whether the values in the datasheet and these measured values are

Table 5.1 Measured EEG cross-talk.

Channel separation Cross-talk (dB)

1 −17.53
2 −17.27
3 −17.32
4 −17.37
5 −17.36
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Figure 5.5 More accurate cross-talk measurement circuit diagram.

directly comparable. Figure 5.5 shows a more realistic diagram of the circuit used
to measure the cross-talk which makes it easier to see where some differences may
arise. Firstly, because the driving signal and the input resistors were connected to
the electrodes on the helmet, there was about 30 cm of ribbon cable between the
signal source and the amplifier inputs, creating some capacitive coupling between the
input conductors. The ribbon cable has power and ground lines interspersed between
each electrode conductor to reduce this coupling as much as possible. Secondly, it is
possible that using a mains-powered signal generator with a battery-powered device
contributed to the difference.

It is surprising that the measured cross-talk between channels did not change as
a function of the separation between the channels. Despite each increase in channel
separation representing a distance of three conductors on the ribbon cable (3.8 mm),
the cross-talk remained constant at approximately −17.4 dB. The phase shift between
the driven and induced voltages was also constant at 2π/5 rad (72°), indicating a
constant coupling capacitance. This may indicate that the cross-talk is not primarily
occurring in the ribbon cable; perhaps it could be occurring on the PCB where there
traces run close together near the AFE inputs. Although the measured cross-talk is
considerably higher than the value stated in the datasheet, it is probably still a useful
separation.

5.1.4 Frequency response

The frequency response of the EEG AFE was measured by connecting a signal gen-
erator between the reference electrode and one measurement electrode (Figure 5.1c).
The signal generator was configured to output a 100 mVp-p sinusoid at a range of
frequencies between 1 Hz and 100 Hz. Ten seconds of data were captured at each
frequency with PGA gain G = 1. The peak-to-peak voltage Vout was calculated by
finding the difference between the median of the local maxima and the median of the
local minima of the captured signal. A plot of magnitude (Vout/Vin) vs. frequency is
given in Figure 5.6.

The theoretical frequency response can be calculated by taking the product of the
transfer functions of the two filters in the system. The decimation stage of the ∆Σ
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Figure 5.6 EEG AFE frequency response at a sampling rate of 250 Hz.

ADC consists of a third-order sinc filter with the frequency response

|Hsinc( f )| =

∣∣∣∣∣∣
sin Nπ f

fmod

N sin π f
fmod

∣∣∣∣∣∣
3

(5.1)

where fmod = 1024 kHz is the modulator frequency and N is the decimation ratio. For
an output data rate of 250 Hz, N = 4096 and the cut-off frequency fc = 65 Hz. The
inputs have single-pole RC filters with frequency response

|HRC( f )| = 1√
1 + (2π f RC)2

(5.2)

and cut-off frequency fc = 72 Hz. The combination of these two filters,

|H( f )| = |Hsinc( f )| · |HRC( f )| (5.3)

has a cut-off frequency fc = 47 Hz and is plotted in Figure 5.6.

The measured frequency response is close to the theoretical value; the cut-off
frequency differs by only 2.3 Hz. The higher frequencies are approaching the Nyquist
frequency, which explains the increasing negative error since there is less chance that
a sample will be taken near the peak of the input waveform.

5.1.5 Electrode impedance

The contact impedance of EEG electrodes needs to be as low as possible in order to
capture a good signal. In a clinical setting using wet electrodes, an EEG technician
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will usually aim for an impedance of 5 kΩ or less at frequencies of 10–30 Hz [Duffy
et al. 1989, p. 49]. When using dry contact electrodes, though, an impedance on the
order of 100 kΩ is often considered acceptable.

To ensure that the electrodes on the Elapse device make good contact with the
scalp, it would be useful to measure the electrode impedance while the user is donning
the helmet. The ADS1299 AFE has a hardware module to enable just this; by driving
a known alternating current through two electrodes and measuring the voltage across
them, the impedance can be inferred. Unfortunately this feature does not function
correctly on the Elapse hardware—connecting a resistor between two electrodes and
measuring its impedance gave nonsense results. With a 10 kΩ resistor the measured
impedance was correct but both larger and smaller resistors also measured close to
10 kΩ. One possible explanation for this error is that the current source has been
damaged by unintentionally short-circuiting the two driven electrodes.

As a work-around, an external impedance meter was used instead. To measure
the electrode impedance the meter was connected between a pair of the dry electrodes
while a subject wore the device. Over five trials in which the subject simply pulled the
helmet on and gave it a wiggle to seat the electrodes, measuring between the same
pair of electrodes each time, the measured impedance ranged from 340 kΩ to greater
than 1 MΩ at 10 Hz. By pushing down very hard on the electrode housings it was
possible to reduce the impedance to 100 kΩ, though the force required to do so was
painful where the electrode prongs pushed on the scalp. When the electrodes were
released after having been pushed down hard, the impedance gradually increased to
∼500 kΩ over the course of about 30 s.

The impedance of the electrodes on the Elapse device is significantly higher than
is typically required for capturing EEG, and is unpredictable. If a user takes the device
off and puts it on again, even when trying to replicate their technique, the impedance
can be markedly different each time. It is no surprise that we have had difficulty
achieving low-impedance contact with dry electrodes—as described in Sections 2.1.1.1
and 3.2.3.2, the dry electrode design currently used on the device is an interim solution
until an effective electrode is found. It is possible that one of the electrodes from
Cognionics [Chi et al. 2013, 2012] or Quasar [Matthews et al. 2007], for example, would
be suitable.

5.1.6 Sampling rate

The ADS1299 EEG AFEs in the Elapse device are configured for an output data rate of
250 Hz. The highest frequency of interest in the EEG is approximately 40 Hz, so this is
well above the Nyquist rate. It is also the lowest data rate for which the ADS1299 can
be configured. While it is possible to sample at a faster rate, doing so would require
transmitting at least twice as much EEG data yet would provide no clear benefit.
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5.2 CAMERA SUBSYSTEM CHARACTERISTICS

5.2.1 Frame rate and image size

The speed of the device’s processor and the bandwidth of its Wi-Fi interface place an
upper limit on the data rate of the video that the device captures. If the data rate is
too high then the video encoder will not be able to encode each frame before the next
one is captured and the Wi-Fi interface will not be able to transmit the encoded video
as fast as it is produced. The data rate of the video stream is given by:

bits
second

=
bits

pixel
× pixels

frame
× frames

second
× compression ratio (5.4)

This means that in order to achieve a given bit rate there is a trade-off to be made
between the bit depth, the frame size, and the frame rate of the video.

The bit rate of the encoded video is some fraction of the bit rate of the raw video.
From the perspective of the Elapse software, the video encoder is a black box with no
way to choose the balance between the output data rate and the CPU/DSP utilization
required to achieve it. This means that the compression ratio is essentially fixed and
the only way to change the bit rate of the encoded video is to change the bit rate of
the raw video according to (5.4).

The actual rate at which frames arrived at the laptop was measured while the
camera was configured to output full-resolution 640× 480 frames at 60 fps. The
measured rate was less than 60 fps, indicating that the video encoder or the Wi-Fi
interface or both were unable to handle the full video data rate and that the rate
therefore had to be reduced. The requirements for the video subsystem given in
Section 3.2.4.1 state that the minimum frame rate is 60 fps, so reducing the frame rate
is not an option. This leaves the options of reducing the number of bits per pixel and
the number of pixels per frame.

First, consider the number of bits per pixel. The camera outputs a raw Bayer
pattern with 10 bit/px. The ISP captures this, reduces the bit depth to 8 bit/px,
de-mosaics it to interpolate RGB colour for each pixel, and converts the colour
space to YCbCr. The YCbCr colour space has a luma (brightness) channel and two
chrominance channels. The luma channel contains the greyscale image and each
chrominance channel contains the difference between a colour channel and the luma
channel. Because the scene is lit with monochromatic illumination, the video contains
little meaningful colour information. It would be preferable to make the most of this
by configuring the ISP to output greyscale which would reduce the bit rate further, but
the H.264 encoder requires YCbCr input. The unavoidable overhead of including the
chrominance channels is minimized by the use of “4:2:0” chroma sub-sampling—the
chrominance channels have half the horizontal and vertical resolution of the luma
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channel.

The second part of reducing the bit rate is to reduce the number of pixels per frame.
The ISP is configured to downsample the original image from 640× 480 to 320× 240
pixels. A reduction of 2× in each dimension was chosen because it allows efficient
resampling and still provides ample resolution for locating eye features. Measuring
the actual received frame rate with this configuration demonstrated that the encoder
is able to operate at the full 60 fps at this resolution and that the Wi-Fi interface is able
to transmit the encoded video along with the data from the other sensors. As stated
in Section 3.3.1.3, the total bit rate of the encoded video is approximately 960 kbit s−1.

5.2.2 Focus

As described in Section 3.2.4.1, the camera is mounted close to the eye—approximately
in line with the end of the nose. This means that the camera must be able to focus
at a distance of about 40 mm. Most small camera modules with fixed lenses such as
the one used on the CAMEL are designed to focus from ∼300 mm to infinity. It is
possible to adjust the focus of these units by adjusting how far the lens module is
screwed into its threaded mount, though the amount of adjustment is limited.

Theoretical calculations

Some definitions of optical terms are required before calculating the theoretical focus
limits of the camera. The near and far depth-of-field limits, DN and DF, are the lens-
to-object distances between which all objects appear acceptably sharp. The hyperfocal
distance, H, is the near depth-of-field limit when the lens is focused at infinity. Both
of these quantities are defined in terms of the circle of confusion limit, c, which is the
maximum diameter that the image of a point may have while still being considered
“acceptably sharp”. The field of view is the angular extent of the scene visible to the
camera, governed by the size of the image sensor and the focal length of the lens.

The closest that the lens on the CAMEL module can be focused is at d ≈ 52 mm,
given the physical constraints of the lens mount. Using the lens parameters in Table 5.2
[OmniVision 2011b], we can calculate the near and far depth-of-field limits DN and

Table 5.2 CAMEL lens specifications.

Parameter Symbol Value

Effective focal length f 1.92 mm
f -number N 2.4
Hyperfocal distance H 300 mm
Diagonal field of view θ 63.9°
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DF as

DN =
Hd

H + d
= 44.3 mm (5.5a)

DF =
Hd

H − d
= 62.9 mm (5.5b)

respectively [Merklinger 1992, p. 15]. That is, objects between 44.3 mm and 62.9 mm
from the camera will be in focus.

To calculate what spatial resolution this corresponds to, consider the circle of
confusion limit, c. We can calculate what value of c OmniVision used to design the
camera module by the definition of the hyperfocal distance [Merklinger 1992, p. 14]

H =
f 2

Nc
+ f =⇒ c =

f 2

N(H − f )
= 5.15 µm (5.6)

This is slightly larger than the diagonal length of a pixel, which is reasonable. Using
similar triangles, we can calculate the size C of the object at distance d which will
produce an image of size c:

C
d
=

c
f

=⇒ C =
cd
f
= 0.14 mm (5.7)

This corresponds to a spatial resolution of 3.58 line pairs per millimetre (lp/mm).
Combined with the depth-of-field limits calculated in (5.5), this means that the camera
should be able to resolve features as small as 3.58 lp/mm and that objects at distances
of 44.3–62.9 mm will appear sharp.

The near depth-of-field limit calculated here, DN = 44.3 mm, is greater than the
required object distance of 40 mm. To calculate whether this matters in practice, we
need to consider the minimum size of the features of interest in the scene. Supposing
that the camera can be considered to be in focus if it can resolve individual eyelashes,
then we can repeat the calculations using the diameter of an eyelash as the circle
of confusion limit. Elder [1997] reports that the mean width of an upper eyelash is
205± 28 µm. Substituting this value for C above, we find that the camera can resolve
205 µm features (2.44 lp/mm) between DN = 41.5 mm and DF = 69.7 mm. This is
close to the 40 mm requirement.

Spatial resolution measurements

To verify these calculations, a test pattern consisting of parallel horizontal black and
white lines with a range of widths was used. Only horizontal lines were used for
measurement; the lens is circularly symmetric and the pixels are square, so the results
should generalize to vertical lines. The test pattern was positioned in front of the
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camera at distances between 30 mm and 100 mm in increments of 10 mm. At each
distance an image was captured with the pattern centred in the frame.

For each frame, a region of interest (ROI) was defined around each band of line
pairs between 1 and 4 lp/mm. The median of each row of the ROI was computed,
reducing it to a column vector. The contrast of the ROI was then defined as the
difference between the median of the local maxima and the median of the local
minima of the column vector. This process is summarized in Figure 5.7. (The 5 lp/mm
band visible in Figure 5.7a was not analysed because it could not be printed with
sufficient accuracy.)

Figure 5.8 plots the measured contrast of each ROI as a function of distance from
the camera and line density. As expected, the contrast between black and white lines
is highest near the focal distance of ∼52 mm and decreases as the distance changes.
The contrast also decreases as line density increases and the lines blur together. If
we define the threshold of what is considered “in focus” to be a contrast of half the
full-scale range, we see that the 3 lp/mm band is in focus between 45–63 mm which
is the same result as the theoretical calculations in (5.5). We also see that near the
focal distance d ≈ 52 mm the camera can resolve about 3.4 lp/mm which is within 5 %
of the theoretical value from (5.7). Using the same focus threshold, we can see from
Figure 5.8 that the camera is able to resolve about 2.4 lp/mm at a distance of 40 mm.
This equates to a feature size of 210 µm, which is close to the eyelash diameter stated
above. That is, the camera can almost resolve individual eyelashes at a distance of
40 mm, which comes very close to meeting the focus requirement. It may be possible
to improve the focus slightly further in software using some kind of deconvolution
process if necessary.

(a) Captured image of the
test pattern.

(b) Extracted ROI around the
2 lp/mm band.

0 1

Intensity

R
ow

(c) Median of the ROI rows
with extrema marked.

Figure 5.7 Example analysis of a test pattern ROI.
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Figure 5.8 Measured spatial resolution of the CAMEL. Contrast is given as a proportion of the full-scale
brightness range.

5.3 IMU SUBSYSTEM CHARACTERISTICS

The problems with the IMU device driver described in Section 3.3.1.2 made it difficult
to test the performance of the IMU. As mentioned in that section, the driver only
operates correctly with the gyroscopes disabled and the IMU sampling rate set to
10 Hz. Increasing the data rate beyond 10 Hz did not result in an increase in the actual
output data rate from the driver.

The driver that STMicroelectronics provides for the LSM330DLC ignores the
data-ready interrupts from the IMU and instead polls the device at its output data
rate. That is, the driver reads a sample from the device, then sleeps for the sampling
period before reading the next sample. This assumes that it takes no time to wake
up the process, read a sample, pass the data to user-space, schedule the next read,
and return the process to sleep. That assumption is, of course, false, meaning that the
driver’s sampling rate is lower than the hardware’s sampling rate. This is likely to be
part of the reason why the driver performs so poorly.

5.4 SYSTEM-LEVEL CHARACTERISTICS

The following experiments were done to evaluate the performance of the system as a
whole.

5.4.1 Synchronization

The Elapse device has multiple sensors. To be able to implement a classifier which
uses data from multiple sensors, the data must be synchronized. That is, two samples
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Camera EEG IMU

Elapse
Device

Figure 5.9 Synchronization and latency measurement apparatus. The laptop triggers an event that is
visible to all of the sensors, and measures the time until that event appears in the captured data.

captured by different sensors at the same moment in time must have the same
timestamp. The experimental apparatus depicted in Figure 5.9 was used to measure
the synchronization of the sensors on the Elapse device.

The illustrated circuit generates an event which is visible to all of the device’s
sensors at the same time: i) an LED positioned in front of the camera lights up, ii) a
voltage pulse is applied between two EEG electrodes, and iii) a servo rotates to tap the
IMU. As the device reads data from each sensor, each sample is timestamped with
the current value of the system clock. The signals are transmitted to a laptop as usual
and stored to disk for later analysis. This system was used to generate and record 20
events.

For each recorded event, the signal from each sensor was thresholded to locate
the sample in which the event occurred, and the timestamp of that sample was noted.
We will call this the “event timestamp”. The synchronization of each sensor was then
defined as the difference between the event timestamp for that sensor and the earliest
event timestamp from all three sensors. A box plot of the measured synchronization
values is given in Figure 5.10. Box plots have boxes indicating the inter-quartile range,
a line indicating the median, and whiskers extending to the most extreme data point
within 1.5× the inter-quartile range.

The measured synchronization was expected to be within the sampling period
of each sensor, i.e., 4 ms for EEG, 16.7 ms for video, and 100 ms for the IMU. The
median synchronization for EEG was zero because it has the highest sampling rate
and therefore is usually the first sensor to detect the event. The median values for EEG
and video are both less than their respective sampling periods, as expected, though
the maxima are greater. This is likely to be due to the non-deterministic interrupt



5.4 SYSTEM-LEVEL CHARACTERISTICS 91

EEG Video IMU
Minimum 0.0 0.0 85.0
Median 0.0 9.2 144.2
Maximum 22.6 23.4 210.9

0

50

100

150

200

250

Sy
nc

hr
on

iz
at

io
n

(m
s)

Figure 5.10 Measured synchronization.

latency of the non-real-time Linux kernel. The synchronization delay of the IMU is
much longer than its sampling period. Much of this delay can probably be explained
by limitations in the design of the event trigger—it takes time for the servo to rotate
and physically move the device, meaning that the event actually occurs slightly later
for the IMU. Adding to this delay is the fact that it can take up to 40 ms between
commanding a movement and the servo beginning to move because of the servo
controller’s update rate. The span of the IMU synchronization values is reasonably
close to its sampling period, so it is likely that the vertical offset is mainly due to
this delay between triggering the event and the detectable motion occurring. To get
more accurate synchronization values for the IMU it would be necessary to use a
mechanism with a shorter response time—perhaps a solenoid. To get a smaller range
of IMU synchronization values it would be necessary to increase its sampling rate,
though this is not possible with the current driver.

The measured synchronization of the EEG and video are acceptable—few samples
are delayed for longer than the sampling period of each sensor. If we assume that the
vertical offset of the measured IMU synchronization in Figure 5.10 is due to shortcom-
ings of the experiment design (slow servo response), then the IMU also has acceptable
synchronization for the same reason. It is important that the synchronization error
is less than the sampling period for each sensor, otherwise samples from different
sensors that were captured at the same time may not have the same timestamp, which
could be problematic for a classifier.
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Figure 5.11 Measured latency.

5.4.2 Latency

The second important timing-related parameter for the Elapse system is latency, the
time between when an event occurs and when it is processed. The system latency
was measured at the same time as the synchronization using the same experimental
apparatus (Figure 5.9). The latency for each sensor is defined as the time between the
laptop triggering the event and the sample containing that event being emitted by
the corresponding SampleDecoder in the Elapse client software. That is, it is the total
round-trip time for the laptop to trigger the event, the sensor to sample the event,
the server to capture and transmit the sample containing the event, and the client to
receive and decode that sample. It does not include the time taken to process the
sample through the FeatureExtractors and Classifier.

To measure latency, the laptop recorded the time according to its system clock
immediately before triggering the event. Similarly, it recorded the time at which each
Sample was emitted by the SampleDecoders. The captured samples were thresholded
to locate the event in the same way as for the synchronization measurements in the
previous section. The latency is the difference between these two times. A box plot of
the measured latency values is given in Figure 5.11.

The range of EEG latencies is related to the block size of the ADS1299 driver
(Section 3.3.1.2). Because the driver captures several samples before passing them
to user-space, several sampling periods can pass between the sample containing the
event being captured and it being transmitted to the laptop. As configured for this
experiment, the EEG sampling rate was 250 Hz and the block size was 20, giving
a block duration of 80 ms. The measured EEG latencies fall within this expected
value, spanning a range of 75 ms. The minimum EEG latency of 16.3 ms indicates the
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minimum round-trip time taken to capture, transmit, receive, and decode an EEG
sample.

Compared to EEG, the video latency has a higher minimum latency and smaller
range, but similar worst case performance. The increased minimum latency is due
to the time it takes to encode and decode each frame of video before and after
transmission. The video latency spans a smaller range than that for EEG because
each frame is transmitted individually as soon as it is encoded, rather than being
aggregated into blocks. What variation there is may be explained by the difference
in the time that the H.264 encoder requires to encode intra-frames (whole images)
versus inter-frames (difference images).

The measured latency of the IMU is similar to its synchronization. That is, it is
poor and can probably be explained by a combination of limitations in the experiment
design and the buggy driver implementation that can’t exceed 10 Hz.

The classifier requires data from all three of the sensors, so the latency of the
whole system is limited by the worst latency of the three. Assuming that the latency
of the IMU could be improved with a replacement device driver, the total worst-case
latency of the system is approximately 100 ms. In practice, when simultaneously
watching a user wearing the device and the real-time data display on the laptop, the
offset between the two is barely perceptible to the human eye. A lapse detection
device needs to detect and respond to events lasting > 500 ms, so a latency of 100 ms
allows detection soon after lapse onset.

5.4.3 Power

To measure the total power usage of the device, it was connected to a bench-top power
supply through an ammeter. The supply voltage was set to 3.6 V—the nominal battery
voltage—and the supply current was measured during three stages of operation.
During the boot process, the peak power draw was 2.53 W. When sitting idle with
the server running but no data capture in process, the average power was 2.35 W.
When fully operational, with data being captured and transmitted to the remote
computer, the power draw was 2.92 W. Given these measurements, and simplistically
assuming a flat discharge curve, the 6 Ah battery should be able to power the device
for approximately 6 Ah× 3.6 V/2.92 W = 7.4 h while continuously capturing data.
This falls slightly short of the target run time of 8 h stated in Section 3.2.5.1.

The power drawn by the laptop was not measured because it was assumed that an
external power source would always be available. The situations in which a lapse and
drowsiness detector would be useful all involve the subject sitting in a fixed position.
Whether this is in the cab of a truck or an industrial control room, there is generally a
power source available within the range of the device’s wireless interface.
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5.4.4 Weight

The total weight of the Elapse device is 1020 g, while the unmodified helmet upon
which it is built weighs 600 g. The battery contributes 110 g of this and the enclosures
and mounting hardware contribute the majority of the remainder. Weight was not con-
sidered during the design stage, though it may have some effect on how comfortable
the device is to wear for long periods of time.

5.4.5 Data rate

The Elapse device transmits a total of ∼3.2 MB min−1 (195 MB h−1). This was mea-
sured by capturing 5 min of data, saving it to disk using the default SimpleRaw-

DataSink, and examining the size of the resulting file. At this rate, hundreds of hours
of data could be recorded on a typical hard drive. Note that this measure is only
important in a research setting when data is saved for later analysis—a commercial
lapse detector would not save the raw data to disk.

5.4.6 Boot time

The time it takes to boot the Elapse device is defined as the time from when the
power switch is turned on to when the server is ready to accept a connection. This
was measured using a stopwatch, starting when the switch was closed and stopping
when the “ready” LED was lit. The average of three such trials was 25 s, with all
three falling within a 1 s range. It is likely that this time could be reduced by further
optimizing the boot process—statically linking all kernel modules, removing kernel
features that are only useful during development, disabling the bootloader timeout,
and so on. These optimizations have not yet been made because the time it takes to
boot the device is negligible compared to the length of time the device is typically
operated for.

5.5 SUMMARY

Most of the subsystems of the Elapse device operate as expected and meet the
requirements laid out in Chapter 3. The EEG front-end has less than 1 µVp-p of noise
and a 3 dB bandwidth of 47 Hz. The CMRR was not as good as expected, though
was still 82 dB at worst. The impedance of the dry electrodes was several hundred
kΩ—too high to be useful for a passive electrode—so a different electrode design will
need to be sourced.

The camera is able to resolve features as small as 2.4 lp/mm at a distance of
40 mm. When down-sampled to 320× 240 px and encoded, 60 fps of video can be
transmitted to the remote computer.
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The overall system has a latency of less than 100 ms (disregarding the defective
IMU). Its battery should be able to provide approximately 7.4 h of operation.





Chapter 6

EXPERIMENTAL EVALUATION

The previous chapter examined the performance of the Elapse device hardware
in isolation. This chapter describes experiments that quantify the performance of
the device when in use on a person. The first two of these evaluate the eye video
processing software. The third is a brief integration test to ensure that the system as a
whole can capture data from which the user’s cognitive state could be inferred.

6.1 EYE VIDEO ANALYSIS

The following sections describe two small-scale experiments undertaken as a proof
of concept to determine whether the eye-video processing algorithm developed in
Section 4.1 can identify eye features as accurately as a human can.

6.1.1 Measuring PERCLOS

As discussed in Sections 2.1.2 and 4.1, a commonly-used indicator of drowsiness is
PERCLOS, the percentage of time that the eyes are > 80 % closed in a one minute
window. PERCLOS is easy (albeit time consuming) to measure manually and simple
to generate from pupil location data. For these reasons, the first experiment aimed
to compare PERCLOS values generated from the output of the pupil localization
algorithm to manually rated values.

6.1.1.1 Experiment design

Two sessions lasting 15 min each were recorded with a single subject. The tests were
carried out at 1:00 pm and midnight after 6 and 17 hours of wakefulness respectively.
The subject was seated in front of a computer screen and instructed to visually track
a dot moving around the screen for the duration of the session, similar to the 2D
tracking task of Poudel et al. [2008].

The pupil localization algorithm was run on the resulting video to extract the
location and size of the pupil and the eye closure state (Section 4.1.1). The algorithm
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Figure 6.1 Percentage eye closure categories: (a) shows the categories assigned by the pupil localization
algorithm, (c) the categories used for PERCLOS calculations, and (b) the categories used to map between
the two.

uses a different definition of “open” and “closed” to that used for PERCLOS, so
further sub-categories were introduced in order to map between the two systems.
These categories are illustrated in Figure 6.1b. Categories I and IV correspond directly
to the “open” and “closed” states from the pupil localization algorithm. Frames with
“partial” pupils were assigned to category II or III according to whether the height
of the visible pupil region was greater than 20 % of the height of the pupil region
in the most recent frame in which the pupil was not partly covered. For PERCLOS
calculations, categories I and II are considered “open” and III and IV “closed”:

PERCLOS =
III + IV

I + II + III + IV
× 100 % (6.1)

PERCLOS is measured over a one-minute window, so the assigned category for
each frame was pushed into a buffer of 60 s× 60 fps = 3600 elements. The PERCLOS
value is then simply the percentage of values in the buffer belonging to categories III
or IV.

Four one-minute windows evenly spaced throughout each session were manually
rated as a gold standard against which the output of the software could be compared.
Unfortunately it was not feasible to manually rate the whole data set because of the
time required to do so. Using four windows was a more achievable target, though
still required manually classifying 2 sessions × 4 windows/session × 60 s/window ×
60 fps = 28800 frames.

6.1.1.2 Results

The categories assigned by the pupil localization software were compared to those
assigned manually in two ways. Firstly, for each frame that was manually classified,
the automatically-assigned category was compared to the manually-assigned gold
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standard. Secondly, the PERCLOS values for the four manually-rated one-minute
windows were compared to the automatically-rated values.

Frame-by-frame comparison

Each element of the confusion matrix in Table 6.1 contains the number of frames
manually categorized as being in that row and automatically categorized as being
in that column. That is, if the algorithm produced the same results as a human, all
off-diagonal entries would be zero. The table includes the categories of all frames
from the eight one-minute periods.

Several of the frames manually classified as category I (open) were automatically
classified as category II (partly covered) and vice versa. Many of these errors are due
to the ambiguity around which dark pixels belong to the pupil and which to the dark
line between the eyelid and the cornea. Note, though, that these errors have no effect
on the PERCLOS value since categories I and II are both “open”.

Many of the errors for frames manually classified as category III (mostly covered)
are due to having to estimate whether the visible pupil region is less than 20 % of
the full pupil height when manually assigning a category. The frames manually
classified as category I and automatically classified as category IV are those in which
the algorithm failed to detect a pupil that was actually visible.

The process of assigning these categories to video frames can be considered a
binary classification problem where the two classes are the PERCLOS open/closed
states. Using this idea, and considering “closed” to be a positive result, the pupil
localization software has an accuracy = 0.998, precision = 0.815, and recall = 0.918.
The accuracy is very high because the large imbalance in class sizes obscures the
errors. The precision is lower, pulled down by the frames where the algorithm failed
to locate the pupil despite it being visible (manual I/II, auto IV). The reasonably
high recall indicates that most frames in which the pupil was mostly covered were
identified as such.

Table 6.1 Comparison of manual vs. automatic pupil classification.

Automatic
I II III IV

M
an

ua
l I 27 673 375 0 42

II 190 285 0 6
III 0 17 2 15
IV 0 2 0 195
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Figure 6.2 Measured PERCLOS.

PERCLOS comparison

Figure 6.2 plots the automatically measured PERCLOS values over time for the two
sessions. As expected, PERCLOS was both substantially higher and more variable in
the second session when the subject was drowsy. Also visible in the second session is
a large spike in PERCLOS centred at about 380 s. This was caused by a microsleep.
A period of eye closure lasting 2.5 s caused a jump of 4 % in PERCLOS, and 60 s
later, when the 1-min window moved past that period of eye closure, the PERCLOS
dropped back down to its previous level.

The values for the four manually classified windows for each session are marked
with crosses on Figure 6.2. Note that they appear as points because only at the end
of the window is there enough data to generate a PERCLOS value. If the windows
for manual classification had been longer than 60 s then the results would appear as
lines rather than points. As the figure shows, there is a reasonable level of agreement
between the manually and automatically measured values.

6.1.2 Robustness to environment

The second experiment was designed to test the robustness of the pupil localization
algorithm to several external factors that could be expected in typical real-world
usage.

6.1.2.1 Experiment design

A total of eight input conditions were tested, representing every combination of three
binary variables:
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• eye colour — one subject with light irises, one with dark,

• ambient lighting — office lighting and a darkened room,

• glasses — with and without prescription eye glasses.

From previous experience, these three variables were expected to have the most effect
on the system’s performance.

Subjects completed a task for each set of conditions to emulate a typical range of
eye movements—saccades, tracking, and eye closure. They were seated in front of a
computer screen and instructed to watch a dot as it moved around the screen. Initially
the dot jumped to each corner of the screen at 1 s intervals. This was followed by a
random 2D tracking task similar to that of Poudel et al. [2008] for 3.5 s. At that point
a beep sounded, instructing the subject to close their eyes. After 1.5 s another beep
sounded, the subject opened their eyes and resumed tracking for the remaining 3 s.
This task induces a wider range of eye movements than the purely smooth tracking
used in the experiment of Section 6.1.1.

Every frame of video from the eight 12 s sessions (5760 frames) was manually
annotated with the position and diameter of the pupil. Each frame was also assigned
one of four categories: “invalid”, if the data was visibly corrupted, “open” if the pupil
was completely visible, “partly closed” if the pupil was partly covered by an eyelid, or
“closed” if the pupil was not visible at all. Because of the way the data capture software
was implemented for this experiment, recording was not synchronized to the video
encoder and could therefore start at any point during an encoded group of pictures.
This caused several frames at the start of each session to contain meaningless data
until the first intra-frame was received, and it is these meaningless frames that were
classified as “invalid”. The remaining three categories correspond directly to those
used by the pupil localization software. This experiment did not involve calculating
PERCLOS, so there was no need to introduce the 20 % eye closure threshold as for the
previous experiment.

6.1.2.2 Results

As before, box plots in this section have boxes indicating the inter-quartile range, a
line indicating the median, and whiskers extending to the most extreme data point
within 1.5× the inter-quartile range. For sizes given in pixels, 1 px ≈ 0.15 mm. Subject
1 had light-coloured irises, subject 2 dark.

Pupil position

The error in the pupil position is defined as the Euclidean distance between the
manually annotated centre of the pupil and the centre of the pupil detected by the
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Figure 6.3 Measured pupil position error.
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Figure 6.4 Measured pupil diameter error.



6.1 EYE VIDEO ANALYSIS 103

software. For six of the eight sets of input conditions the median pupil position
error was less than 0.7 pixels (Figure 6.3). The remaining two were both for subject
1 with glasses. This could be because subject 1’s glasses affect the accuracy of the
pupil detection algorithm or because the camera was poorly positioned for those
measurements—further investigation would be needed to determine the cause.

Note that measurements of gaze derived from the pupil location are unlikely to be
useful when detecting microsleeps but may be useful for detecting diverted attention.

Pupil diameter

Figure 6.4 shows the differences between the pupil diameter measured by the software
and that measured manually for each set of input conditions. Since the projection
of the pupil is elliptical, the diameter is equivalent to the length of the major axis of
the ellipse. For all of the eight combinations of input conditions, the median absolute
error is less than 1.8 %.

Marshall [2007] describes an index of cognitive activity that uses wavelet analysis
to identify small, rapid changes in pupil diameter that occur during periods of high
cognitive workload. Without further testing, it is unclear whether such a technique
could be used on the output of our pupil localization algorithm or whether the errors
shown in Figure 6.4 would obscure the important high-frequency features.

Eye closure

For lapse detection, the accuracy with which the software detects eye closure is the
most important performance metric for the eye video subsystem. The confusion
matrix in Table 6.2 compares the category that each frame was assigned manually
(Section 6.1.2.1) against the category assigned by the image processing software
(Section 4.1). Of the 5706 valid frames, the software categorized 38 incorrectly (0.7 %).
Most of these errors, though, occurred during eye closure, which is when accurate
classification is most important. 33 of these 38 errors occurred when the software
classified a “partly closed” frame as either “open” or “closed”. That is, during a blink
the software tends to keep classifying frames as “open” for longer, and then jumps
straight to “closed”. In practical terms, if the length of time that the eyes are closed

Table 6.2 Comparison of manual classification to software output.

Automatic
Open Partial Closed

M
an

ua
l Open 5016 4 0

Partial 26 26 7
Closed 1 0 626
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is being used as a drowsiness indicator, categorizing a “partly closed” eye as “open”
has little effect because the number of frames categorized as “closed” remains the
same. As can be observed in Figure 6.4, the errors were evenly distributed across the
combinations of input conditions—no condition or combination of conditions was
found to increase the error rate.

6.2 INTEGRATION TEST

This final experiment aimed to demonstrate that all of the parts of the Elapse system
work together as a whole and that the system is capable of detecting events in the
captured signals.

6.2.1 Experiment design

The experiment was carried out with a single subject. The subject completed a two-part
task while wearing the device. In the first part of the task, the subject looked at a fixed
point in front of him while keeping his eyes open for 15 s, followed by closing his eyes
for 15 s. This sequence was repeated three times. In the second part of the task, the
subject performed an exaggerated simulation of a microsleep: slowly closing his eyes
and allowing his head to droop forward before quickly opening his eyes and jerking
his head back to a neutral position. This was performed three times, separated by 15 s
intervals in which he maintained gaze on a fixed point. The simulated microsleep
task was designed to induce measurable changes in all of the signals that the Elapse
device measures: eye closure in the eye video, a spike in the angle of the head from
the IMU, and changes in the power of the EEG frequency bands.

We initially tried to use the dry electrodes on the Elapse device to capture EEG
while conducting this experiment. As described in Section 5.1.5, however, it is
very difficult to achieve reliable, low-impedance contact with the scalp using these
electrodes. In an attempt to improve the chances of achieving adequate contact, a
bald subject was recruited for the experiment. Even though the subject had no hair
under the device’s electrodes, we were unable to achieve a sufficiently low contact
impedance and so were forced to conduct the experiment using wet electrodes instead.
Two of the dry electrodes on the device—the reference electrode and one measurement
electrode—were disconnected and replaced with gold disc electrodes. Because only
two disc electrodes were connected to the Elapse device, the experiment described in
the previous section was carried out twice, once with the measurement electrode at O1
and once at Fp1. The reference electrode was placed at Cz in both cases. In all of these
positions, the scalp was prepared using an abrasive gel (Nuprep, Weaver & Co.1), the
electrode was filled with electrolyte paste (Ten20 conductive paste, Weaver & Co.1)

1http://www.doweaver.com

http://www.doweaver.com
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and taped in place, and then the helmet was put on over the top. The impedance of
the gold disc electrodes with electrolyte paste was measured to be 7.7 kΩ which is
reasonably close to the usual target of 5 kΩ used in clinical practice.

The feature extractors described in Chapter 4 were used to process the captured
data. The window size was set to 2 s with a step size of 0.5 s. The pupil localization
algorithm from Section 4.1 was used to calculate a variant of PERCLOS in each
2 s window of data (not the usual one minute window) which we will denote as
PERCLOS 2. The EEG power-band feature extractor from Section 4.2.1 was used to
calculate the total power between 4 Hz and 40 Hz. The IMU feature extractor from
Section 4.2.2 was used to calculate the cumulative change in the pitch (nod) angle of
the head in each window.

A basic classifier was implemented which simply thresholds these three features
and considers an event to have occurred if all three features exceed their respective
thresholds. That is, it classifies a window of data as containing a simulated microsleep
if there is sufficient eye closure and increase in total EEG power and forward head
tilt. This is a very simplistic design and does not reflect the subtleties of detecting real
microsleeps, yet it is sufficient to demonstrate the concept of classifying some state
based on a set of features from multiple modalities.

6.2.2 Results

The first part of the experiment, in which the subject alternately opened and closed
his eyes, was designed to test that the Elapse device can capture clean EEG. In the
majority of people (∼80 %), an increase in posterior alpha activity occurs during restful
wakefulness with the eyes closed compared to the eyes-open condition [Santamaria
and Chiappa 1987]. Additionally, some EOG is usually visible in anterior channels
during eye movement. Capturing data at O1 and Fp1 while alternately opening
and closing the eyes was intended to show the presence of these features and so
demonstrate that the captured data is actually EEG.

Figure 6.5 shows a spectrogram of the EEG captured at O1 during 2.5 periods of
alternating eyes open and closed. The increase in alpha-band power (8–12 Hz) during
eye closure is clearly visible. Figure 6.6 shows the same data in the time domain,
bandpass filtered between 4 Hz and 40 Hz, as two 10 s windows centred at the onset
of each of the periods of eye closure in Figure 6.5. Again, the increase in alpha activity
is clearly visible when the eyes are closed. In Figure 6.7, 25 s of data captured at Fp1
is displayed, bandpass filtered between 1 Hz and 40 Hz. Eye movement artefacts are
visible as the eyes open and close, as are smaller transients during blinks.

The second part of the experiment, with the simulated microsleeps, was designed
to test the operation of the system as a whole. As described in the previous section,
features were extracted from each captured signal and a classifier used these features to
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Figure 6.5 Spectrogram of occipital EEG (O1), showing increased alpha power during eye closure.
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Figure 6.8 Detecting simulated microsleeps. The upper three plots show the features extracted from
each signal. The classifier thresholds each feature and considers an event to have occurred when all
features exceed their respective thresholds.

identify the simulated microsleeps. In Figure 6.8 the three features—PERCLOS 2, EEG
power, and head pitch—are plotted over the course of three simulated microsleeps.
The threshold that the classifier used for each signal is overlaid on each with a dashed
line. The output of the classifier is illustrated in the bottom trace, measuring ‘1’ when
it identifies a simulated microsleep, defined as all three of the features exceeding their
thresholds. While this is not a compelling demonstration of biosignal classification,
it does demonstrate that the system as a whole operates as intended. The hardware
captures signals from the user’s body, the captured data is transmitted to a remote
computer, salient features are extracted from each signal, and a multi-modal classifier
combines the features to produce an output that indicates the state of the user.

Careful inspection of Figure 6.8 shows that the head pitch measured by the IMU
peaks at the onset of the lapse, rather than at the end as would be expected from
the experiment description. As a result of either a poor description of the task or
a poor understanding of what was required, the subject actually nodded his head
sharply while closing his eyes and then straightened up slowly while opening his
eyes. Any future experiments involving simulated microsleeps should ensure that
subjects understand the required sequence of events in order to avoid this happening.

6.3 SUMMARY

The output of the pupil localization algorithm described in Section 4.1 can be used to
classify the PERCLOS open/closed states with precision = 0.815, and recall = 0.918.
For six of the eight tested combinations of input conditions—ambient lighting, eye
colour, and presence of glasses—the median pupil position error was less than 0.7 px
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(∼0.1 mm); further investigation is needed to determine the cause of the slightly
higher error in the other two cases. The median absolute error in the pupil diameter
was less than 1.8 % for all combinations of input conditions.

The first part of the integration test demonstrated that the dry electrodes on
the Elapse device can not achieve the reliable low-impedance contact necessary for
capturing EEG, as outlined in Section 5.1.5. When conventional wet electrodes are
used, though, the captured EEG clearly shows frontal eye blink artefacts and increased
posterior alpha during eye closure, as expected. This shows that the EEG acquisition
electronics operate as expected but that the dry electrodes do not.

The second part of the integration test showed that the system as a whole can
capture multiple biosignals, transmit them to a remote computer, extract features
from the data, and combine multiple features to classify the cognitive state of the
user. Creating a system with this functionality was the primary objective of this
project. With the foundation now in place, it remains for others to implement the more
complex feature extraction and classification algorithms necessary to detect lapses of
responsiveness.



Chapter 7

DISCUSSION & FINAL REMARKS

7.1 DISCUSSION

This thesis has presented the development of a multi-modal device for application in
lapse detection. The wearable device captures EEG, eye video, and head movement
and transmits the data to a remote computer in real time. It has also presented the
development of associated software that incorporates an extensible framework for
real-time, multi-modal signal processing and classification. The result, the Elapse
platform, is the only system existing at this time with this combination of features.

7.1.1 Hardware

To the best of our knowledge, the combination of sensors present on the Elapse device
is unique. SensoMotoric Instruments’ pairing of their eye-tracking glasses with the
Emotiv EPOC EEG headset (Section 2.1.2.2) is the most similar system that is currently
available (although it wasn’t available when this project began). That system is only
suitable for use in a research setting; it requires the user to don both the glasses and
the EEG headset as well as the separate wireless interface module for the glasses. By
contrast, the Elapse system requires the user to wear a single device which they can
put on without assistance.

7.1.1.1 EEG

Physically, the dry electrode design used on the Elapse device resembles aspects of
g.tec’s g.sahara electrode, Mindo’s pin-style electrode, and Quasar’s dry electrode
(Section 2.1.1.1). It has an array of rigid pins, like the g.sahara, mounted on a sprung
base, somewhat like Quasar’s. It is a passive design, like Mindo’s, lacking the active
buffer amplifier that the other two have. Unlike all of the other three, the pins on the
Elapse electrodes can retract fully into their housing, making it a safer design.

Unfortunately, a clean EEG recording was not able to be obtained using these
electrodes. From the research reviewed in Section 2.1.1.1, the most successful dry
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contact electrodes have amplifiers mounted directly on the electrodes with careful
shielding. Without this buffering and shielding, the high contact impedance makes the
electrode too susceptible to movement artefacts and electromagnetic interference to be
useful. There is some evidence that if a delay of 10 min or more had been introduced
before taking measurements then the impedance would have been lower [Liao et al.
2011, Searle and Kirkup 2000]. Nevertheless, it will be necessary to find replacement
dry electrodes in order for the Elapse device to be useful.

On the other hand, the EEG acquisition electronics were demonstrated to function
correctly. The measured CMRR and cross-talk values were poorer than expected, but
the experiment in Section 6.2 showed that the device can capture clean EEG containing
typical spectral features (when using appropriate electrodes).

The EEG subsystem of the Elapse device offers similar features to the commercial
EEG headsets listed in Section 2.1.1.2. It has 16 channels (8 currently in use) and
captures 24-bit data at 250 Hz. Data is transmitted wirelessly to a remote computer in
real time.

7.1.1.2 Eye video

The Elapse device has a camera mounted below one eye, capturing 320× 240 px
greyscale video of the eye at 60 fps and streaming it to the remote computer in real
time. This is a subset of the functionality offered by the commercial head-mounted
eye trackers listed in Section 2.1.2.2. The SensoMotoric Instruments and Tobii glasses
both do binocular gaze tracking and include an outward-facing scene camera. The
Elapse camera operates at the same frame rate as the SMI glasses and twice the rate
of the Tobii glasses. The Elapse device has the video capture and wireless interface
hardware integrated into an on-head unit rather than using a cable to connect to a
unit on the user’s belt like the two commercial devices.

Compared to the head-mounted eye tracker that Babcock and Pelz [2004] devel-
oped, the Elapse device is very compact. Where their device had a backpack full
of electronics to save video for later offline analysis, the Elapse device has a small
module on the side of the head that transmits the video for real-time analysis.

Although intended for a similar purpose to the Elapse device, the Optalert
Eagle uses a different paradigm to the Elapse eye-video camera. Optalert’s infrared
reflectance oculometry measures eye closure with high temporal resolution; the eye-
video camera measures more information—pupil location and size as well as eye
closure—but at a lower temporal resolution.
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7.1.1.3 IMU

The problems with the device driver for the IMU outlined in Section 3.3.1.2 have
prevented extensive testing of the IMU hardware. However, the IMU does currently
provide an estimate of the head orientation with two degrees of freedom at 10 Hz. It
will be necessary to fix the driver or write a replacement in order to make better use
of the IMU in the future.

7.1.1.4 Wearable device

The current prototype of the Elapse device is built around a safety helmet. This pro-
vided a convenient rigid platform for developing the first generation of the hardware.
If the device is eventually developed into a commercial lapse detector, it will not
necessarily take this form. However, given some of the potential application areas for
a lapse detector, building it into a safety helmet may be advantageous (Section 3.2.5.2).
As it stands, the device, the wearable portion of the system, is a single unit that the
user can don without external assistance.

The battery life of the Elapse device (7.4 h) is not as good as the best of the
commercial wireless EEG headsets listed in Section 2.1.1.2 (6–45 h). The inclusion of
the eye video camera increases the power requirements substantially above what is
required for EEG alone. Conversely, the battery life of the Elapse device is longer than
the commercial eye tracking glasses listed in Section 2.1.2.2 (2–3 h). To achieve this
battery life, though, the device has a relatively large and heavy battery which may
make it less comfortable to wear for extended periods.

The current dry electrodes are moderately uncomfortable where the pins push
on the scalp. In a sense, this issue is moot since the electrodes need to be replaced
anyway, but it is a factor to consider when selecting a replacement. Electrodes made
from bristles [Grozea et al. 2011] or a flexible polymer [Chi et al. 2013] or that don’t
contact the scalp at all [Chi et al. 2012] show promise on this front.

7.1.2 Software

The Elapse client software takes care of all the non-application-specific details related
to using the device, while allowing users to supply their own application-specific
signal processing code. The client software handles all of the communication with
the device: it can read hardware configuration from a file and configure the device’s
sensors accordingly; it can start and stop data capture; it monitors the device’s battery
voltage. The signal processing pipeline was designed to encapsulate a range of
algorithms—almost anything that can be represented as feature extraction followed
by classification. The plug-in system allows users to write signal processing code to
fill the slots in the pipeline and to choose which plug-ins to load at runtime. Plug-ins
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can be written in C++ or Python and future extension to other languages is possible.
The data flowing between elements at any point in the pipeline can be saved to disk
for later analysis and this data can also be re-loaded back into the pipeline to “replay”
it. The client software also provides a graphical user interface to load plug-ins and
monitor the system.

7.1.2.1 Signal processing

The pupil localization algorithm presented in Section 4.1 is computationally simpler
than many alternatives [Daugman 2004, Li et al. 2005, Świrski et al. 2012] while still
providing reasonable performance. Initial experiments indicate that it is robust to eye
colour, ambient lighting, and the presence of glasses, and that it can be used to measure
PERCLOS accurately. However, the system needs to be tested on a wider range of
people in a wider range of environments to confirm these results. In particular, it has
not yet been tested in sunlight or rapidly changing lighting conditions such as may be
encountered when driving. The pupil localization algorithm currently provides no
estimation of gaze direction which could be useful for detecting diverted attention
lapses.

Since signal processing was not the focus of this project, only simple proof-of-
concept feature extractors have been implemented for the EEG and IMU. Initial
experiments indicate that it is possible to extract meaningful features from both of
these signals (given suitable EEG electrodes) which is promising for future develop-
ment.

7.1.3 Usefulness

The Elapse platform will enable NeuroTech to further progress their research into
detecting and predicting lapses of responsiveness. It will enable others to focus on
developing signal processing algorithms by providing a complete data acquisition
and analysis platform to test their designs.

The Elapse device captures EEG so that lapses can be detected earlier than is
possible with a dash-mounted camera system. It combines the EEG with eye video so
that lapses can be detected with potentially higher accuracy than by either one alone.
It uses a fast update rate in order to detect short lapses rather than just long-term
drowsiness. Hopefully it is the first step towards a better real-world lapse detector
than what is currently available.



7.2 REVIEW OF OBJECTIVES 113

7.2 REVIEW OF OBJECTIVES

Design and build biosignal acquisition hardware to monitor multiple signals
relevant to lapse detection.

The Elapse device captures EEG, video of the eye, and head movement, and streams
the data to a remote computer wirelessly in real time. These three signals have been
shown to be useful for lapse detection in the prior research reviewed in Chapter 2. To
the best of our knowledge, no other single device exists that captures this combination
of biosignals.

Implement a software structure to enable experimenting with combinations of
signal processing and classification algorithms.

The Elapse client software provides a framework for implementing a wide range
of signal processing algorithms. It is structured in a way which is suitable for
encapsulating a wide variety of algorithms: a feature extraction stage for each signal
type followed by a classifier to combine the features and produce a meaningful output.
The software also handles all of the communication with the device, the receiving,
saving, and loading of data, and provides a graphical user interface.

Start implementing some of these algorithms as proof of concept.

A pupil localization algorithm has been developed which identifies the location and
size of the pupil and whether it is partially or completely covered by the eyelids.
Simple feature extractors have been written for the EEG and IMU which extract the
power in the standard frequency bands and the head orientation respectively. A simple
classifier has also been written which identifies simulated microsleeps by thresholding
these features.

Ensure the system is able to operate in real time in environments typical of
real-world usage.

The Elapse system has been tested on people with different eye colours, with and
without glasses, in light and dark ambient conditions. It successfully detected simu-
lated microsleeps, and the latency of the system was measured to be less than 100 ms.
These positive results were only able to be obtained when using wet EEG electrodes;
the current dry electrodes are inadequate and will need to be replaced for the device
to be usable in the real world.

Design the system to be generalizable to cognitive monitoring applications other
than lapse detection.



114 CHAPTER 7 DISCUSSION & FINAL REMARKS

The signals that the device acquires can be used for applications other than lapse
detection, such as augmented cognition, workload monitoring, and passive BCIs. The
software framework makes it equally possible to implement algorithms for these
applications as for lapse detection.

7.3 FUTURE WORK

There is plenty of scope for future work to build on the results of this project. There
are opportunities to improve the system itself and opportunities to apply the system
to new areas.

7.3.1 Fixes and improvements

The Elapse device has two problems that need to be corrected in order for it to be of
practical use: i) the dry EEG electrodes need to be replaced with a better-performing
design, and ii) the IMU device driver needs to be fixed or replaced in order to enable
the gyroscopes and increase the sampling rate.

In addition to these fixes, there are a number of improvements that could be made
to the system. As far as the design of the signal processing pipeline is concerned, it
could be useful to provide coupling between feature extractors. This could enable
an EEG feature extractor to use the output of the eye video feature extractor to help
remove eye blink artefacts, for example. This is difficult to implement when the user
is allowed to select any combination of plug-ins, though, because of the possibility
of circular dependencies. It may also be useful to allow the user to select multiple
output actions to execute in parallel—e.g., display an alert and sound an alarm and
activate a vibration motor.

Regarding the signal processing code that has been implemented so far, it would
be useful to explicitly track the position of the eyelids in the eye video. This would
provide more accurate measurement of eye closure and eyelid speed, rather than
relying only on the size and shape of the visible pupil region. Once the IMU driver
has been fixed, it would also be useful to implement a better orientation estimation
algorithm, e.g., Madgwick et al. [2011].

To improve the usability of the Elapse client software it would be useful to be able
to load complete system configurations from a file, including hardware configuration
and plug-in selection. This would allow a project to define all of its settings in one
place and conveniently load them in one step. Currently only the most recently used
settings are loaded from file. For developers that are unfamiliar with C++ and Python,
it could be useful to implement a Matlab plug-in host to enable them to write plug-ins
in Matlab. It may also be useful to provide a scripting interface to the client so that, for
example, external stimulus presentation software could start and stop data capture.
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If it becomes necessary to update the operating system on the Elapse device,
the OV7735 camera driver will need to be ported to the new v4l2_subdev API, the
ADS1299 driver may need to be updated, and the video encoding pipeline will need
to be adjusted to use the updated GStreamer DSP H.264 encoder element. The
server software could also be updated to use Qt 5 instead of Qt 4. Most of the
work to implement these changes is likely to be in understanding the differences
between the current and updated systems; the actual implementation should be fairly
straightforward once the required changes are understood.

7.3.2 Extensions and applications

The primary purpose of this project was to develop a system that can be used for
detecting lapses. The most important extension of this project, then, is to implement
the feature extractors, classifier, and output actions necessary to make a complete
lapse detection device. This work will be carried on by students in NeuroTech. One of
the important questions that they will need to investigate is whether all of the sensors
are required for detecting lapses. It may turn out that using ICA to extract EOG from
frontal EEG is sufficient for measuring eye closure, making the eye video camera
unnecessary. It may also turn out that a reduced set of EEG electrodes is sufficient
which could affect the form of the device on the head. If this happened, the Elapse
device would continue to be useful as a research tool and for non–lapse-detection
applications, even if the ultimate form of a commercial lapse detection device ended
up being different.

A secondary aim of this project was to design the system to be useful for appli-
cations other than lapse detection. The Elapse device and signal processing pipeline
design are sufficiently general to allow this, so it would be possible to use the system
for the applications listed in Section 2.5—e.g., workload monitoring or augmented
cognition.





Appendix A

ELECTRONICS SCHEMATICS

The schematics for all of the electronics developed for this project are included in
this appendix. For a detailed description of the hardware functionality and design
rationale, see Section 3.2.

Contents
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