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Abstract

Here we present the results of a large-scale bioinformatic annotation of non-coding RNA loci in 48 avian

genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer

conserved RNA families within each avian genome. We supplement these annotations with predictions from the

tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. We show that a number of

lncRNA-associated loci are conserved between birds and mammals, including several intriguing cases where the

reported mammalian lncRNA function is not conserved in birds. We also demonstrate extensive conservation of

classical ncRNAs (e.g., tRNAs) and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs) in birds.

Furthermore, we describe numerous “losses” of several RNA families, and attribute these to genuine loss,

divergence or missing data. In particular, we show that many of these losses are due to the challenges associated

with assembling Avian microchromosomes. These combined results illustrate the utility of applying

homology-based methods for annotating novel vertebrate genomes.
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Introduction

Non-coding RNAs (ncRNAs) are an important class of genes, responsible for the regulation of many key

cellular functions. The major RNA families include the classical, highly conserved RNAs, sometimes called

“molecular fossils”, such as the transfer RNAs, ribosomal RNAs, RNA components of RNase P and the

signal recognition particle [1]. Other classes appear to have have evolved more recently, e.g. the small

nucleolar RNAs (snoRNAs), microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) [2].

The ncRNAs pose serious research challenges, particularly for the field of genomics. For example, they lack

the strong statistical signals associated with protein coding genes, e.g. open reading frames, G+C content

and codon-usage biases [3].

New sequencing technologies have dramatically expanded the rate at which ncRNAs are discovered and

their functions are determined [4]. However, in order to determine the full range of ncRNAs across multiple

species we require multiple RNA fractions (e.g. long and short), in multiple species, in multiple

developmental stages and tissues types. The costs of this approach are still prohibitive in terms of

researcher-time and finances. Consequently, in this study we concentrate on bioinformatic approaches,

primarily we use homology-based methods (i.e. covariance models (CMs)). However, we do validate the

majority of these predictions using RNA-seq. The bioinformatic approaches we use remain state of the art

for ncRNA bioinformatic analyses [5–7] and have well established sensitivity and specificity rates [8]. For

example, the CM based approach for annotating ncRNAs in genomes requires reliable alignments and

consensus secondary structures of representative sequences of RNA families, many of which can be found

at Rfam [9–13]. These are used to train probabilistic models that score the likelihood that a database

sequence is generated by the same evolutionary processes as the training sequences based upon both

sequence and structural information [5–7]. The tRNAscan-SE software package uses CMs to accurately

predict transfer RNAs [14,15].

Independent benchmarks of bioinformatic annotation tools have shown that the CM approaches

out-perform alternative methods [8], although their sensitivity can be limited for rapidly evolving families

such as vault RNAs or telomerase RNA [16].

The publication of 48 avian genomes, including the previously published chicken [17], zebra finch [18] and

turkey [19] with the recently published 45 avian genomes [20–26], provides an exciting opportunity to

explore ncRNA conservation in unprecedented detail.

In the following we explore the conservation patterns of the major classes of avian ncRNA loci in further

detail. Using homology search tools and evolutionary constraints, we have produced a set of genome
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annotations for 48 predominantly non-model bird species for ncRNAs that are conserved across the avian

species. This conservative set of annotations is expected to contain the core avian ncRNA loci. We focus

our report on the unusual results within the avian lineages. These are either unexpectedly well-conserved

ncRNAs or unexpectedly poorly-conserved ncRNAs. The former are ncRNA loci that were not expected to

be conserved between the birds and the other vertebrates, particularly those ncRNAs whose function is not

conserved in birds. The latter are apparent losses of ncRNA loci expected to be conserved; Here, we

consider three categories of such “loss”: First, genuine gene losses in the avian lineage where ncRNAs well

conserved in other vertebrates are completely absent in birds. Second, “divergence” where ncRNAs have

undergone such significant sequence and structural alternations that homology search tools can no longer

detect a relationship between other vertebrate exemplars and avian varieties. Third, “missing” ncRNAs

that failed to be captured in the available, largely fragmented, avian genomes. We postulate that the latter

category is likely to be prevalent in comparative avian genome studies given the distinctive organisation of

the avian genome. Namely, the avian karyotype is characterised by a large number of chromosomes

(average 2n ≈ 80) generally consisting of approximately 5 larger “macrochromosomes” and many smaller

“microchromosomes” [27]. This ’so many, so small’ pattern presents significant assembly challenges [28].

Indeed, of the 48 published avian genomes, 20 of which are high-coverage (> 50X), only two are

chromosomally assembled (chicken and zebra finch; [18,20]).

Results

There is substantial gain and loss of lncRNAs and other ncRNA loci over evolutionary time [2, 29,30]. It is

difficult to assess how many of these “gains” and “losses” are due to limited bioinformatic sequence

alignment tools (these generally fail align correctly below 60-50% sequence identity [31]) or due to genuine

gains and losses. Nevertheless, sequence conservation, generally speaking, provides useful evidence for gene

and function conservation.

We have identified 66,879 loci in 48 avian genomes that share sequence similarity with previously

characterised ncRNAs and are conserved in > 10% of these avian genomes. These loci have been classified

into 626 different families, the majority of which correspond to miRNAs and snoRNAs (summarised in

Table 1). Out of necessity we have selected the most charismatic families for further discussion. These

include the lncRNAs that appear to be conserved between Mammals and Aves and the cases of apparent

loss of genes that conserved in most other Vertebrates.
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Unusually well conserved RNAs

The bulk of the “unusually well conserved RNAs” belong to the long non-coding RNA (lncRNA) group.

The lncRNAs are a diverse group of RNAs that have been implicated in a multitude of functional

processes [32–35]. These RNAs have largely been characterised in mammalian species, particularly human

and mouse. Consequently, we generally do not expect these to be conserved outside of Mammals. Notable

examples include Xist [36] and H19 [37]. There is emerging evidence for the conservation of “mammalian”

lncRNAs in Vertebrates [38,39]), however, like most lncRNAs, the function of these lncRNAs remains

largely unknown. Here, we show the conservation of several lncRNAs that have been well-characterised in

humans.

The CM based approach is appropriate for most classes of ncRNA, but the lncRNAs are a particular

challenge [34]. CMs cannot model the exon-intron structures of spliced lncRNAs, nor do they deal

elegantly with the repeats that many lncRNAs host. Consequently in the latest release of Rfam the

lncRNA families that were added were composed of local conserved (and possibly structured elements)

within lncRNAs, analogous to the “domains” housed within protein sequences [13]. Whilst some these

regions may not reflect functional RNA elements but instead regulatory regions, enhancers or insulators,

their syntenic conservation still provides an indication of lncRNA conservation [40].

When analysing the RNA-domain annotations it is striking that many of the lncRNAs with multiple

RNA-domains are consistently preserved in the birds. The annotations of these domains lie in the same

genomic region, in the same order as in the mammalian homologs. Thus they support a high degree of

evolutionary conservation for the entire lncRNA. In particular the HOXA11-AS1, PART1, PCA3, RMST,

Six3os1, SOX2OT and ST7-OT3 lncRNAs have multiple, well conserved RNA-domains (See Figure 1). The

syntenic ordering of these seven lncRNAs and the flanking genes are also preserved between the human and

chicken genomes (data not shown). We illustrate this in detail for the HOTAIRM1 lncRNA (See

Supplemental Figures 13&14).

The conservation of these “human” lncRNAs among birds suggests they may also be functional in birds.

But what these functions may be is not immediately obvious. For example, PART1 and PCA3 are both

described as prostate-specific lncRNAs that play a role in the human androgen-receptor pathway [41–43].

Birds lack a prostate but both males and females express the androgen receptor (AR or NR3C4) in gonadal

and non- gonadal tissue [44–47]. Thus, we postulate that PART1 and PCA3 also play a role in the

androgen-receptor pathway in birds but whether the expression of these lncRNAs are tissue specific is

unknown at present.
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The HOX cluster lncRNAs HOTAIRM1 (5 RNA-domains), HOXA11-AS1 (6 RNA-domains), and HOTTIP

(4 RNA domains) are conserved across the Mammalian and Avian lineages. In the human genome they are

located in the HOXA cluster (hg coordinates chr7:27135743-27245922), one of the most highly conserved

regions in vertebrate genomes [48], in antisense orientation between HoxA1 and HoxA2, between HoxA11

and HoxA13, and upstream of HoxA13, respectively. Conservation and expression of HOTAIRM1 and

HOXA11-AS1 within the HOXA cluster has been studied in some detail in marsupials [49]. Of the 15

RNA-domains five and six representing all three lncRNAs were recovered in the alligator and turtle

genomes. All of them appear in the correct order at the expected, syntenically conserved positions within

the HOXA cluster. In the birds, where two or more of the HOX cluster lncRNA RNA-domains were

predicted on the same scaffold, this gene order and location within HOX was also preserved.

The majority (> 80%) of genome-wide association studies of cancer identify loci outside of protein-coding

genes [50]. Many of these are loci are now known to be transcribed into lncRNAs. Furthermore, many

lncRNAs are differentially expressed in tumorous tissues [51], suggesting further mechanistic links with the

aberrant gene expression associated cancer progression. In our work we have identified three examples of

these that are also conserved in the birds are described below.

The RMST (Rhabdomyosarcoma 2 associated transcript) RNA-domains 6, 7, 8, and 9 are conserved across

the birds. In each bird the gene order was also consistent with the human ordering. In the alligator and

turtle an additional RNA-domain was predicted in each, these were RNA-domains 2 and 4 respectively,

again the ordering of the domains was consistent with human. This suggests that the RMST lncRNA is

highly conserved. However, little is known about the function of this RNA. It was originally identified in a

screen for differentially expressed genes in two Rhabdomyosarcoma tumor types [51].

In addition, the lncRNA DLEU2 is well conserved across the vertebrates, it is a host gene for two miRNA

genes, miR-15 and miR-16, both of which are also well conserved across the vertebrates (See Supplemental

Figure 2). DLEU2 is thought to be a tumor-suppressor gene as it is frequently deleted in malignant

tumours [52,53].

The NBR2 lncRNA and BRCA1 gene share a bidirectional promotor [54]. Both are expressed in a broad

range of tissues. Extensive research on BRCA1 has shown that it is involved in DNA repair [55]. The

function of NBR2 remains unknown, yet its conservation across the vertebrates certainly implies a function

(See Figure 1). We note that the function for this locus may be at the DNA level, however, function at the

RNA level cannot be ruled out at this stage.

Of the other classes of RNAs, none showed an unexpected degree of conservation or expansion within the
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avian lineage. The only exception being the snoRNA, SNORD93. SNORD93 has 92 copies in the tinamou

genome, whereas it only has 1-2 copies in all the other vertebrate genomes.

Unexpectedly poorly conserved ncRNAs: genuine loss, divergence or missing data?
Genuine loss

The overall reduction in avian genomic size has been extensively discussed elsewhere [56]. Unsurprisingly,

this reduction is reflected in the copy-number of ncRNA genes. Some of the most dramatic examples are

the transfer RNAs and pseudogenes which average ∼ 900 and ∼ 580 copies in the human, turtle and

alligator genomes, the average copy-numbers of these drop to ∼ 280 and ∼ 100 copies in the avian

genomes. In addition to reduction in copy-number, the absence of several, otherwise ubiquitous vertebrate

ncRNAs, in the avian lineage are suggestive of genuine gene loss.

Namely, mammalian and amphibian genomes contain three loci of clustered microRNAs from the mir-17

and mir-92 families [57]. One of these clusters (cluster II, with families mir-106b, mir-93 and mir-25) was

not found in turtles, crocodiles and birds (see Supplemental Figure 6). In addition, the microRNA family

let-7 is the most diverse microRNA family with 14 paralogs in human. These genes also localize in 7

genomic clusters, together with mir-100 and mir-125 miRNA families (see previous study on the evolution

of the let-7 miRNA cluster in [58]). In Sauropsids we observed that cluster A - which is strongly conserved

in vertebrates has been completely lost in the avian lineage. Another obvious loss in birds is cluster F,

containing two let-7 microRNA paralogs. Cluster H, on the other hand has been retained in all oviparous

animals and completely lost later, after the split of Theria (see Supplemental Figure 7).

Divergence

In order to determine to what extent the absence of some ncRNAs from the infernal-based annotation is

caused by sequence divergence beyond the thresholds of the Rfam CMs, we complemented our analysis by

dedicated searches for a few of these RNA groups. Our ability to find additional homologs for several RNA

families that fill gaps in the abundance matrices (Figure 1) strongly suggests that conspicuous absences, in

particular of LUCA and LECA RNAs, are caused by incomplete data in the current assemblies and

sequence divergence rather then genuine losses.

Vertebrate Y RNAs typically form a cluster comprising four well-defined paralog groups Y1, Y3, Y4, and

Y5. In line with [59] we find that the Y5 paralog family is absent from all bird genomes, while it is still

present in both alligator and turtle, see Supplemental Figure 4. Within the avian lineage, we find a
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conserved Y4-Y3-Y1 cluster. Apparently, broken-up clusters are in most cases consistent with breaks (e.g.

ends of contigs) in the available sequence assemblies. In several genomes we observe one or a few additional

Y RNA homologs unlinked to the canonical Y RNA cluster. These sequences can be identified

unambiguously as derived members of one of the three ancestral paralog groups, they almost always fit less

well to the consensus (as measured by the CM bit score of paralog group specific covariance models) than

the paralog linked to cluster, and there is no indication that any of these additional copies is evolutionarily

conserved over longer time scales. We therefore suggest that most or all of these interspersed copies are in

fact pseudogenes (see below).

Missing data

Seven families of ncRNAs were found in some avian genomes but not others (Figure 1). These families

range in conservation level from being ubiquitous to cellular-life (RNase P and tRNA-sec), present in most

Bilateria (vault), present in the majority of eukaryotes (RNase MRP, U4atac and U11) and present in all

vertebrates (telomerase) [2]. Therefore, the genuine loss or even diversification of these ncRNA families in

the avian lineage is unlikely. Rather, this lack of phylogenetic signal, combined with the fragmented nature

of the vast majority of these genomes described above (i.e., of the 48 avian genomes, only the chicken and

zebra finch are chromosomally assembled [18,20]), suggests the most likely explanation is that these

ncRNA families are indicative of missing data. Indeed, of the seven missing ncRNA families, six where

found in the chicken genome and three were found in the zebra finch genome. Furthermore, only one of

these (RNase MRP) is found on a macrochromosome, and all remaining missing ncRNAs are found on

microchromosomes (see Supplemental Table 1). A Fisher’s exact test showed that there is significantly

more missing ncRNAs on microchromosomes than macrochromosomes (P < 1016 for both the chicken and

zebra finch). Thus, we suggest that many of these ncRNAs families are missing because: (1) they are

predominantly found on microchromosomes [this study] and (2) the vast majority of avian

microchromosomes remain unassembled [20,28].

To wit, we performed dedicated searches for a selection of these missing ncRNA families. Here, tRNAscan

is tuned for specificity and thus misses several occurrences of tRNA-sec that are easily found in the

majority of genomes by blastn with E ≤ 10−30. In some cases the sequences appear degraded at the ends,

which is likely due to low sequence quality at the very ends of contigs or scaffolds. A blastn search also

readily retrieves additional RNase P and RNAse MRP RNAs in the majority of genomes, albeit only the

best conserved regions are captured. In many cases these additional candidates are incomplete or contain
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undetermined sequence, which explains why they are missed by the CMs [60,61].

Pseudogenes

Non-coding RNA derived pseudogenes are a major problem for many ncRNA annotation projects. The

human genome, for example, contains > 1 million Alu repeats, which are derived from the SRP RNA [62].

The existing Rfam annotation of the human genome, in particular, contains a number of problematic

families that appear to have been excessively pseudogenised. The U6 snRNA, SRP RNA and Y RNA

families have 1,371, 941 and 892 annotations in the human genome. These are a heterogenous mix of

pseudogenised, paralogous, diverged or functional copies of these families. Unfortunately, a generalised

model of RNA pseudogenes has not been incorporated into the main covariance model package, Infernal.

An approach used by tRNAscan [14], is, in theory, generalisable to other RNA families but this remains a

work in progress.

It is possible that the avian annotations also contains excessive pseudogenes. However, it has previously

been noted that avian genomes are significantly smaller than other vertebrate species [17]. We have also

noted a corresponding reduction in the number of paralogs and presumed ncRNA-derived pseudogenes in

the avian genomes (See Supplemental Figure 12). The problematic human families, U6 snRNA, SRP RNA

and Y RNA have, for example, just 26, 4 and 3 annotations respectively in the chicken genome and 13, 3

and 3 annotations respectively, on average, in the 48 avian genomes used here. Therefore, we conclude that

the majority of our annotations are in fact functional orthologs.

Experimentally confirmed ncRNAs

The ncRNAs presented here have been identified using homology models and are evolutionarily conserved

in multiple avian species. In order to further validate these predictions we have used strand-specific total

RNA-seq and small RNA-seq of multiple chicken tissues. After mapping the RNA-seq data to the chicken

genome (see Methods for details), we identified a threshold for calling a gene as expressed by limiting our

estimated false-positive rate to approximately 10%. This FDR was estimated using a negative control of

randomly selected, un-annotated regions of the genome. Since some regions may be genuinely expressed,

the true FDR is potentially lower than 10%. Overall, the number of ncRNAs we have identified in this

work that are expressed above background levels is 865 (72.4%) (see Table 1). This shows that 7.0 times

more of our ncRNAs are expressed than expected by chance (Fisher’s exact test: P < 1016). This number

is an underestimate of the fraction of our annotations that are genuinely expressed, as only a fraction of
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the developmental stages and tissues of chicken have been characterized with RNA-seq. Furthermore, some

ncRNAs are expressed in highly specific conditions [63,64].

The classes of RNAs where the majority of our annotations were experimentally confirmed includes

microRNAs, snoRNAs, cis-regulatory elements, tRNAs, SRP RNA and RNase P/MRP RNA. The RNA-seq

data could not provide evidence for a telomerase RNA transcript, which are only generally only expressed

in embryonic, stem or cancerous tissues. Only a small fraction of the 7SK RNA, the minor spliceosomal

RNAs and the lncRNAs could be confirmed with the 10% FDR threshold. There are a number of possible

explanations for this: the multiple copies of the 7SK RNA may be functionally redundant and can therefore

compensate for one another; The minor spliceosome is, as the name suggests, a rarely used alternative

spliceosome; and the lncRNAs are generally expressed at low levels under specific conditions [63,65].

Conclusions

In this work we have provided a comprehensive annotation of non-coding RNAs in genome sequences using

homology-based methods. The homology-based tools have distinct advantages over experimental-based

approaches as not all RNAs are expressed in any particular tissue-type or developmental-stage, in fact

some RNAs have extremely specific expression profiles, e.g. the lsy-6 microRNA [66]. We have identified

previously unrecognised conservation of ncRNAs in avian genomes and some surprising “losses” of

otherwise well conserved ncRNAs. We have shown that most of these losses are due to difficulties

assembling avian microchromosomes rather than bona fide gene loss. A large fraction of our annotations

have been confirmed using RNA-seq data, which also showed a 7-fold enrichment of expression within our

annotations relative to unannotated regions.

The collection of ncRNA sequences is generally biased towards model organisms [2, 67]. However, we have

shown that using data from well studied lineages such as mammals can also result in quality annotations of

sister taxa such as Aves.

In summary, these results indicate we are in the very early phases of determining the functions of many

RNA families. This is illustrated by the fact that the reported functions of some ncRNAs are

mammal-specific, yet these are also found in bird genomes.

Methods

The 48 bird genome sequences used for the following analyses are available from the phylogenomics

analysis of birds website [68].
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Bird genomes were searched using the cmsearch program from INFERNAL 1.1 and the covariance models

from the Rfam database v11.0 [12,13]. All matches above the curated GA threshold were included.

Subsequently, all hits with an E-value greater than 0.0005 were discarded, so only matches which passed

the model-specific GA threshold and had an E-value smaller than 0.0005 were retained. The Rfam

database classifies non-coding RNAs into hierarchical groupings. The basic units are “families” which are

groups of homologous, alignable sequences; “clans” which are groups of un-alignable (or functionally

distinct), homologous families; and “classes” which are groups of clans and families with related biological

functions e.g. spliceosomal RNAs, miRNAs and snoRNAs [9–13]; these categories have been used to

classify our results.

In order to obtain good annotations of tRNA genes we ran the specialist tRNA-scan version 1.3.1

annotation tool. This method also uses covariance models to identify tRNAs. However it also uses some

heuristics to increase the search-speed, annotates the Isoacceptor Type of each prediction and uses

sequence analysis to infer if predictions are likely to be functional or tRNA-derived pseudogenes [14,15].

Rfam matches and the tRNA-scan results for families belonging to the same clan were then “competed” so

that only the best match was retained for any genomic region [12]. To further increase the specificity of our

annotations we filtered out families that were identified in four or fewer of the 51 vertebrate species we

have analysed in this work. These filtered families largely corresponded to bacterial contamination within

the genomic sequences.

999 microRNA sequence families, previously annotated in at least one vertebrate, were retrieved from

miRBase (v19). Individual sequences or multiple sequence alignments were used to build covariance models

with INFERNAL (v1.1rc3), and these models were searched against the 48 bird genomes, and the genomes

of the American alligator and the green turtle as outgroups. Hits with e-value < 10 realigned with the

query sequences and the resultant multiple sequence alignments manually inspected and edited using

RALEE.

An additional snoRNA homology search was performed with snoStrip [69]. As initial queries we used

deutorostomian snoRNA families from human [70], platypus [71], and chicken [72].

The diverse sets of genome annotations were combined and filtered, ensuring conservation in 10% or more

of the avian genomes. We collapsed the remaining overlapping annotations into a single annotation. We

also generated heatmaps for different groups of ncRNA genes (see Figure 1 and Supplemental Figure 1-3).

All the scripts and annotations presented here are available from Github [73].

Chicken ncRNA predictions were validated using two separate RNA-seq data sets. The first data set
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(Bioproject PRJNA204941) contains 971 million reads and comprises 27 samples from 14 different chicken

tissues sequenced on Illumina HiSeq2000 using a small RNA-seq protocol. The second data set (SRA

accession SRP041863) contains 1,46 billion Illumina HiSeq reads sequenced from whole chicken embryo

RNA from 7 stages using a strand-specific dUTP protocol. Raw reads were checked for quality and

adapters clipped if required by the protocol. Preprocessed reads were mapped to the galGal4 reference

genome using SEGEMEHL short read aligner [74] and then overlapped with the ncRNA annotations.
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Figures
Figure 1 - Heatmaps

Heatmaps showing the presence/absence and approximate genomic copy-number of “unusually, well

conserved RNAs” (particularly the lncRNAs) on the left and families that have been identified as RNA

losses, divergence or missing data. In several cases functionally related families have also been included,

e.g. the RNA components of the major and minor spliceosomes: U1, U2, U4, U5 and U6; and U11, U12,

U4atac, U5 and U6atac, respectively.
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ncRNA genes in human, chicken and all bird genomes
Chicken ncRNAs

Number in human median(48 birds) Number in chicken confirmed with RNA-seq RNA type
62 25.0 34 12 (35.3%) Long non-coding RNA

356 499.5 427 280 (65.6%) microRNA
281 120.0 106 90 (84.9%) C/D box snoRNA
336 85.5 68 48 (70.6%) H/ACA box snoRNA
34 13.0 12 12 (100.0%) Small cajal body RNA

1754 48.5 71 32 (45.1%) Major spliceosomal RNA
58 3.0 6 3 (50.0%) Minor spliceosomal RNA

525 82.0 122 88 (72.1%) Cis-regulatory element
316 6.5 9 3 (33.3%) 7SK RNA

1 0.0 2 0 (0.0%) Telomerase RNA
9 0.0 2 1 (50.0%) Vault RNA

892 3.0 3 2 (66.7%) Y RNA
1084 173.5 300 278 (92.7%) Transfer RNA

80 9.5 4 2 (50.0%) Transfer RNA pseudogene
941 3.0 4 2 (50.0%) SRP RNA
607 7.0 22 10 (45.5%) Ribosomal RNA

4 1.0 2 2 (100.0%) RNase P/MRP RNA
7340 1080.0 1194 865 (72.4%) Total

Table 1:

Table 1 - A summary of ncRNA genes in human, chicken and all bird genomes

This table contains the total number of annotated ncRNAs from different RNA types in human, the

median number for each of the 48 birds and chicken. The number of chicken ncRNA that show evidence for

expression is also indicated (the percentage is given in parentheses). The threshold for determining

expression was selected based upon a false positive rate of less than 10%.
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