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Abstract

The principle of parsimonious modelling of Internet traffic states that a minimal

number of descriptors should be used for its characterization. Until early 1990s,

the conventional Markovian models for voice traffic had been considered suitable

and parsimonious for data traffic as well. Later with the discovery of strong

correlations and increased burstiness in Internet traffic, various self-similar count

models have been proposed. But, in fact, such models are strictly mono-fractal

and applicable at coarse time scales, whereas Internet traffic modelling is about

modelling traffic at fine and coarse time scales; modelling traffic which can be

mono and multi-fractal; modelling traffic at interarrival time and count levels;

modelling traffic at access and core tiers; and modelling all the three structural

components of Internet traffic, that is, packets, flows and sessions.

The philosophy of this thesis can be described as: “the renewal of renewal theory
in Internet traffic modelling”. Renewal theory has a great potential in modelling

statistical characteristics of Internet traffic belonging to individual users, access

and core networks. In this thesis, we develop an Internet traffic modelling

framework based on fractal renewal processes, that is, renewal processes with

underlying distribution of interarrival times being heavy-tailed. The proposed

renewal framework covers packets, flows and sessions as structural components

of Internet traffic and is applicable for modelling the traffic at fine and coarse

time scales. The properties of superposition of renewal processes can be used

to model traffic in higher tiers of the Internet hierarchy. As the framework is

based on renewal processes, therefore, Internet traffic can be modelled at both

interarrival times and count levels.
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Chapter 1

Introduction

“ What information consumes is rather obvious: it consumes the attention of
its recipients. Hence a wealth of information creates a poverty of attention,
and a need to allocate that attention efficiently among the overabundance
of information sources that might consume it.

”
Herbert Simon, Noble Prize winner economist, 1977

1.1 Importance of Internet Traffic Modelling

The survival and prosperity of human society depends on various important facilities

like health care, financial systems, education, entertainment, transportation, security and

communication. In the present era, all of these major services are becoming more and more

operationally dependent on Internet for their accessibility and availability. Therefore, any

disruption or degradation in access to the Internet affects access to these vital facilities.

Internet is now ubiquitous in every aspect of human life to the extent of survivability. To

cater for the growing needs of society, there has been a significant amount of research and

development targeted at increasing the provisioning and capacity of Internet access services.

Broadband Internet access technologies like Gigabit Local Area Networks (LAN), Very-high-

bit-rate Digital Subscriber Lines (VDSL), fibre access networks, wireless hotspot networks,

Wimax and Long Term Evolution (LTE) technologies are part of these efforts.



2 Introduction

Traditional telecommunication services (wired and mobile) are also being replaced by the

quality of service enabled Internet based applications, for example, Skype, Vibre, Whatsapp

and various other multimedia communication applications. The underlying carrier protocol

of Internet is the Internet Protocol (IP) which is a non-guaranteed best effort delivery service

for any kind of data transfer, whether it is a file transfer or an application requiring real time

delivery service. In spite of the insecure and non-guaranteed nature of the Internet packet

delivery protocol, the dependability and trust of our society on the Internet is increasing.

This is mainly due to the low cost structure and the ability of the Internet to provide service

provider- and user-programmable services in a unified framework.

The Internet with its ARPANET origin is less than 50 years old. Now it is impossible to

imagine a world without its services. In 2014, this largest-ever system built by our civiliza-

tion is expected to have over 3 billion users and its further growth will be proportionate

to the world population and its requirements. This is so because access to Internet is now

considered as one of the basic necessities of human life, at least for its prosperity. However,

despite its current significance, the present embodiment of the Internet has approached its

engineering limits. A number of national and international research initiatives have focused

on designing the Future Internet (FI). Some of the projects in this regard are Future Internet
Forum1, G-Lab project2 and the GENI project3.The Internet in its future shape is expected to

be robust in offering arbitrary information services of the required quality, regardless of the

number of active users or routing devices and their distribution around the globe.

Over 100 years ago, studies of the processes occurring in telephone networks formed

the foundations for the mathematical theory of queues, that allowed engineering large

telephone networks of the 20th century. Now, the intelligent design of the future Inter-

net requires new scientific methodologies, referred to as Internet mathematics, Internet

measurements and Internet statistics [Baccelli, 2008]. In spite of numerous attempts for

developing such methodologies, both by theoretical studies of processes occurring in the

Internet and by statistical investigations of real and simulated data traffic of the Internet, it

is still a long way from a full understanding of the dynamics of these processes, and for

developing mathematical and simulation models that can be used both by scientists and

practitioners in their performance evaluation studies of the current and future incarnations

of Internet and information services they can offer.

1http://www.fif.kr
2http://www.german-lab.de
3http://www.geni.net

http://www.fif.kr
http://www.german-lab.de
http://www.geni.net
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1.2 Principles of Internet Traffic Modelling

Here we identify some general principles which are useful for developing a model of Internet

traffic.

1.2.1 Approximations and Assumptions

A model is a simplified abstraction of system which captures all or part of its properties.

Various approximations and simplifying assumptions can be used in developing a model.

A careful record of these approximations and assumptions is an essential part of model

formulation and description. This record is necessary due to various reasons [Daellenbach

et al., 2013]:

• To make a model usable by practitioners, simplicity in the model is necessary. Sim-

plicity comes with its own advantages (for example, powerful analytical techniques,

predictability) and limitations which should be recorded so that practitioners are

aware of the model’s capabilities and limitations.

• Approximations and assumptions can be modified to assess change (performance

improvement or degradation) in system behaviour.

• A future modification in a model is not possible without clear understanding of any

approximations and assumptions.

Due to the huge volume of Internet traffic data and its dynamics, Internet traffic modelling

requires various approximations and simplifying assumptions.

1.2.2 Approaches to Modelling

In general there are two main approaches that can be used to derive a model for a system.

Namely, a structural approach and a process approach [Daellenbach et al., 2013].

In the structural approach, the components or all parts of a system are known along with

their controllability, interaction points and boundaries. For example, to study mean delay

experienced by Internet packets at a switch or router, the model structure can be a queue

with a packet processor. Some components of a structural model can be controllable and

others uncontrollable.
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In the process approach, the underlying structure of the system under study is not known

or difficult to observe. Therefore, no prior assumptions can be made about the models

or its components. In this approach, a model is traced by observing the transformation

process between inputs (which can be controlled and uncontrolled) and output(s). In

[Daellenbach et al., 2013], the following four rules are described which are useful in

identifying the components, inputs and outputs of a model derived from a process based

modelling approach:

• Any controllable or uncontrollable aspect, which affects the system behaviour but in

turn is not affected by it, can be treated as model input.

• Any aspect that is only affected by the transformation process either directly or indi-

rectly is a model output provided that it further does not affect any other component

of the system.

• Any aspect which is influenced by inputs and other components of the system and

causes a partial or full change (output) in system behaviour can be treated as a

component or a relationship..

• Any aspect which remains unchanged independent of system dynamics is irrelevant

and can be ignored.

Internet traffic modelling cannot be limited to any one of the above two approaches,

especially when Internet traffic is viewed as a process in itself independent of various

Internet devices (links, routers or switches), which it traverses. Analysis of a traffic trace is

an integral component of Internet traffic modelling and, most of the time, it is unclear how

may links and queues the traffic passed through and under what conditions. Therefore,

a purely structural approach of modelling may not be possible. Nevertheless, it is clear

that Internet traffic is always an active mixture or superposition of Internet traffic streams1

belonging to various users. Using a process based approach, the variants and invariants of

Internet traffic can be identified and assessed in a partial structural framework of modelling.

Moreover, the process based modelling framework ignores the invariants, but in the case

of Internet traffic modelling invariants can play an important role; see [Zhang & Duffield,

2001]. Therefore, Internet traffic modelling is a hybrid combination of the structural and

process based approaches.

1By this term we mean all sorts of data encapsulated and routed by IP; for example, text, voice, video and
control data.
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1.2.3 Specific Issues in Internet Traffic Modelling

As described above, Internet traffic modelling can benefit from the general approaches

used for system modelling. Nevertheless, there are also specific issues in Internet traffic

modelling which should be considered while developing a model for Internet traffic.

• An important issue in Internet traffic modelling is whether to follow the principle of
parsimony or not. The principle of parsimony favours the model which has a smaller

number of parameters [Andersen & Nielsen, 1998]. Additionally, this principle

requires that a model is simple and universal enough to be applicable in a wide variety

of conditions without requiring too many initial guesses for setting or optimizing the

parameters of the model [Willinger & Paxson, 1998].

• The properties of Internet traffic at fine time scales can be markedly different from the

properties at coarse time scales. It is, therefore, difficult to develop a single unified

model applicable for both fine and coarse time scales.

• A model can succeed in capturing the properties of a real Internet traffic trace, but

it may not capture the observed traffic characteristics from a different traffic trace

[Muscariello et al., 2005]. Therefore, in order for an Internet traffic model to have a

larger domain of applicability, it should have some invariant physical justifications

(for example, based on user access patterns) along with an appropriate mathematical

formulation of any transformation processes faced by Internet traffic.

1.3 Internet Traffic Modelling: A Renewed Vision

Fundamentally, the Internet was designed as a content retrieval network. That is, the

incoming traffic to an access network was significantly higher than the outgoing traffic

because users were meant to act as information sinks (generating no data except requests).

This is no longer the case now. There have been major technological developments like

extensive use of hand-held Internet enabled smart phones or computing devices, an increase

in on-line social networking, and the off-loading of mobile teletraffic data to various wireless

access networks. Therefore, the notion of Internet traffic asymmetry is undergoing a change.

The outgoing traffic originating from access networks to the global Internet is growing

faster in volume than the growth in the volume of incoming traffic. Therefore, the balance

of the traditional Internet traffic asymmetry is undergoing a reverse trend. That is, the
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outgoing traffic may become equal to or even greater than the incoming traffic.

The continuing growth in Internet traffic volume has caused the network over-provisioning

policies to reach near their limitations. Therefore, there has been a renewed interest in

traffic analysis and modelling. With the advent of new access technologies and the increase

in traffic volume originating from access networks, it has become necessary to re-assess

the performance of existing traffic models. The literature on Internet traffic modelling is

divided into two distinct categories. Earlier literature employed classical Markovian models

(for example, Poisson process based models) for both voice and data traffic. Later, with

the discovery of self-similar behaviour in Internet traffic, the models capable of capturing

strong correlations (for example, Fractional Brownian Motion) were proposed.

Classical teletraffic models are based on the notion of the independence of the arrivals

of voice streams. Therefore, they are naturally based on renewal theory and have been

analytically tractable. The classical traffic modelling framework was also extended to the

modelling of Internet traffic until the work of [Paxson & Floyd, 1995], which was based

on new measurements, and questioned the appropriateness of Poisson count models for

packet arrivals in Internet traffic. The measurements in [Paxson & Floyd, 1995; Willinger

& Paxson, 1998] indicated that unlike Poisson counts, the packet arrival counts observed

in Internet traffic traces were not smoothed by time dilation (viewing aggregate traffic at

higher time scales, for example, 1 second, 10 seconds and so on). This phenomenon has

been attributed to the increased burstiness and the persistence of strong correlations in

Internet traffic data over various time scales. The focus of Internet traffic modelling, then,

shifted to self-similar and long-range dependent processes which have the ability to capture

strong correlations and dependencies in the data.

Long-range dependent models like Fractional Brownian Motion (FBM), fractional Gaussian

noise (FGN) and fractional autoregressive processes were proposed as they capture strong

correlations from fine to coarse time scales. LRD models did fit the correlation structure of

Internet traffic at various time scales but they lacked physical justifications. That is, what are

the exact physical mechanisms (for example, bursty or correlated nature of traffic streams or

protocol dynamics), which cause correlation to persist despite aggregation in time and space.

A partial physical justification for a rescaled version of FBM model has been that it results

from the superposition of heavy-tailed ON/OFF traffic sources (resembling traffic generated

from individual users), which converges to FBM in the asymptotic limit [Taqqu et al.,
1997]. However, the ON/OFF traffic models focus on second order traffic characteristics

and have been extensively used to model LRD traffic, but they are not appropriate for traffic
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generation at switching and queueing levels [Riedi et al., 1999].

Moreover, the LRD phenomenon, being asymptotic in nature, also suffers from detection and

estimation issues. That is, various kinds of non-stationarities (for example, a sudden shift

in mean level) can cause false positives in the detection of LRD behaviour. The strength of

the LRD in the traffic data is estimated by evaluating the Hurst parameter, which measures

the persistence effect of the temporal correlations in the data. Several methods to estimate

the Hurst parameter have been proposed (for example, R/S, Whittle’s, Periodogram and

Abry-Veitch’s wavelet based estimators), but they can produce conflicting estimates when

applied to the real and simulated traffic data; see [Karagiannis et al., 2006; Molnar & Dang,

2000; Rea et al., 2013; Ritke et al., 2001], for example.

Interestingly, the classical teletraffic models did not completely lose their applicability. In

[Cao et al., 2003] and [Karagiannis et al., 2004b], comparatively recent Internet backbone

traffic at packet level was investigated and it was reported to be nearly uncorrelated or

short range dependent. A fast decay of correlations was observed due to the high degree

of multiplexing effects in the backbone core network. Thus, depending upon the level of

multiplexing (access or core network) and the statistical behaviour of the traffic streams,

LRD and SRD can coexist at access and backbone core tiers of the Internet hierarchy.

Therefore, there is a need of a traffic modelling framework that can capture a relationship

between LRD and SRD as traffic moves from access to core networks.

1.4 Problem Formulation

1.4.1 Background

Starting from the late nineties, the strong emphasis on LRD based modelling of Internet

traffic has resulted in the over-looking of the capabilities of renewal processes, in spite

of the fact that there have been new developments in renewal theory, especially in the

case of heavy-tailed (fractal) renewal streams; see [Lowen & Teich, 1993; McShane et al.,
2008; Mitov & Yanev, 2006], for example. Heavy-tailed distributions are inherent in various

attributes of Internet traffic (for example, in interarrival times, file sizes, count data); see

[Clegg et al., 2010; Leland et al., 1994; Willinger et al., 1997], for example. Therefore, in

this thesis, we exploit the capabilities of renewal processes and propose simple renewal

models for Internet traffic data.
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Renewal processes are simple to use and analytically tractable. In [Grossglauser & Bolot,

1999], it has been emphasized that the marginal distribution of Internet traffic arrival

processes need to be considered for traffic modelling because processes having the same

second order characteristics (strength of auto-correlation or long-range dependence) can

produce contradictory queueing performance [Grossglauser & Bolot, 1999].

The aim of this thesis is to fill the basic gaps in our understanding of the traffic processes

occurring in the Internet. This includes a challenging issue of the formulation of a par-
simonious structural model for Internet traffic. The underlying principle of parsimonious
modelling is to limit the number of parameters used to specify a model [Andersen & Nielsen,

1998]. The objective here is to develop a model which can capture the structural com-

position of Internet traffic at packet, flow and session levels at different time scales. We

also plan to investigate distributional convergence of data streams as they are subjected to

various transformations on their way from access networks to the ISP core and backbone

core networks.

In this thesis, we are mainly focused on developing interarrival time, count and scaling

models for the arrival process of Internet traffic in terms of its structural components, that

is, packets, flows and sessions. The main objective is to develop simple and analytically

tractable models with physical justifications.

1.4.2 Thesis Goals and Contributions

Single and multiple time scale views of Internet traffic count data at fine and coarse time

scales produce four different regimes for Internet traffic modelling. In each of these traffic

modelling regimes, the statistical characteristics of interarrival time and count data of

Internet traffic at packet, flow and session levels can be different. Moreover, as Internet

traffic traverses from an access network to a backbone core network, the statistical profiles

of the traffic in these four regimes can change. Therefore, it is challenging to develop a

single traffic model which can account for the dynamic statistical characteristics of packets,

flows and sessions in these four traffic modelling regimes. A network practitioner is mostly

interested in raw traffic characteristics, that is, traffic characteristics at fine time scales, as

they directly affect network performance at switching or queueing level. In this thesis, we

primarily focus on the single and fine time scale statistical behaviour of Internet traffic for

model development. We also assess and compare coarse and multiple time scale behaviour

of the proposed models with real Internet traffic in access and ISP core networks. The
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Figure 1.1: Characteristics of Internet traffic in four modelling regimes. Here LRD means
Long-Range Dependent and SRD means Short-Range Dependent. P, F and S mean Packets,
Flows and Sessions, respectively.

main goal of this thesis is to establish a unified and simple framework capable of modelling

Internet traffic belonging to users, access and ISP core network tiers of the Internet hierarchy.

In this direction, this thesis aims at the following contributions:

• Developing a unified traffic modelling framework for characterizing the three struc-

tural components of Internet traffic, that is, streams of packets, flows and sessions.

• Establishing practical models of interarrival times and counts for Internet traffic in

access and ISP core networks, by taking into account the asymptotic properties of

superpositions of fractal renewal processes.

• Analyzing the burstiness and global and local scaling properties of Internet traffic at

packet, flow and session levels in access and ISP core networks. The proposed traffic

models based on fractal renewal processes and their superpositions exhibit a similar

burstiness and scaling behaviour at global and local levels, as that of real Internet

traffic.

Our analysis is unique in the sense that the traffic data analysed in this thesis belong to three

different access networks and their multiplexing in ISP core network. Figure 1.1 presents a

visual clarification of the objectives of this thesis. Based on the available traffic traces, our

analysis applies to access and ISP core networks (left side of Figure 1.1). Nevertheless, using

available theory, we shall also describe the applicability of our results to the Internet traffic

in backbone core networks (right part of Figure 1.1). Here, the term LRD or SRD denotes

long-range or short-range dependence, which refers to the strength of autocorrelations in

traffic. The term locally Poisson means that traffic is Poisson in time intervals smaller than
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the mean interarrival times. The question mark “?” in Figure 1.1 refers to the characteristic

of Internet traffic to be investigated at both fine and coarse time scales. The terminologies

like LRD/SRD, heavy tails and renewal processes, and their applicability in Internet traffic

will be described in Chapter 2.

1.5 Methodology

Packets, flows and sessions are the structural components of Internet traffic. In this section,

the methodologies of identifying packets, flows and sessions from an anonymized traffic

trace are described.

1.5.1 Packets

Physically, Internet traffic consists of streams of packets which carry payload bytes, the

maximum size of which is governed by the Maximum Transmission Unit (MTU) of the

underlying physical medium (wired or wireless). A packet contains an Internet Protocol

(IP) and a transport layer header, that is, a Transmission Control Protocol (TCP) header,

User Datagram Protocol (UDP) or Internet Control Message Protocol (ICMP) header. An

IP header helps in routing of the packet to its destination with the help of IP addresses of

source and destination. A TCP or UDP header helps to deliver the packet to an appropriate

application with the help of source and destination port numbers. Several tools are available

which can help in capturing packets from network interfaces and traffic trace files; see

[Alcock et al., 2012] and references therein, for example. In this thesis, we consider

outgoing packets and incoming packets as a separate series of traffic data.

1.5.2 Flows

Unlike a packet, a flow is not a physical entity. Rather, it is a logical entity which refers to

a series of packets belonging to a source and destination pair with the same IP addresses

and TCP or UDP port numbers. Flows can be classified as TCP or UDP flows separately or

they can be considered irrespective of the transport protocol for a combined analysis. For

the combined analysis, a new flow can be identified on the basis of every newly observed

5-tuple ([source,destination]×[address,port],protocol) in both directions by maintaining a
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flow table for both directions. In this thesis, we assess both the TCP and the UDP flows in a

combined framework, that is, a flow arrival means an arrival of either a new TCP or a new

UDP 5-tuple in each direction. In this thesis, we treat outgoing flows and incoming flows

separately and independently of each other.

1.5.3 Sessions

A session is a user initiated process. Therefore, we assess it in terms of outgoing traffic only.

The beginning of a user-session marks the starting point of incoming and outgoing flows

and packets all of which belong to that session. The identification of a session faces both

logical and technological challenges. Namely:

• The term session has been perceived differently among researchers. For some, it refers

to the whole duration of one log-in of a user to the Internet. For others, it refers to a

web-page’s browsing duration. For some others, sessions are separated by the long

breaks in the individual user’s activity.

• Unlike layer 4 flows, sessions cannot be identified by a 5-tuple. The only exception

being the sessions having one flow only.

• It is difficult to map sessions quantitatively to flows due to an ever growing application

mix. The number of flows in a session have been reported to be heavy-tailed [Bianco

et al., 2005].

• Application layer traffic classification can help in identification of user sessions but it

is still not a fully solved research problem. Existing traffic classification tools, even

payload based, do suffer from various accuracy and false positives issues; see [Alcock

& Nelson, 2013], for example.

• Grouping flows belonging to a session is also not trivial as the traffic traces contain

both Peer-to-Peer (P2P) and Skype traffic and, for such a traffic, the 5-tuple changes

(these applications do port hopping in the same flow) even for the same flow. Thus, a

single flow can appear as multiple and totally different flows.

• Inter-flow correlations can help identify user sessions as suggested in [Ricciato et al.,
2009] and used by us; see [Arfeen et al., 2013]. Such a practice is computationally

expensive and suffers from fuzziness in defining the boundary between “high” and

“low” correlations.



12 Introduction

Both the flow and the super-flow structures (sessions) are important entities in structural

modelling of Internet traffic. Therefore, observing the difficulties in identifying user sessions,

we refer to the TCP session’s outgoing SYN segment, and observe the following:

• From the SYN flag in the header of outgoing packet, the start of a TCP session can be

easily identified without maintaining any flow table.

• The time stamps of outgoing TCP SYN segments keep track of all sessions and sub-

sessions resulting from single application. Long breaks in outgoing TCP SYN segments

can identify user think times.

• Monitoring of TCP SYN segments is an established technique and has been of great

technical importance in congestion control and the identification of denial of service

attacks (TCP SYN flooding).

Therefore, based on the assumption that the time stamp of the outgoing TCP SYN segment

has a one-to-one correspondence with the actual user session arrival time, we propose

to use it as a user-session time stamp. From here on, we use the term session to refer to

an outgoing TCP SYN segment. Even though it is likely that there exists a many-to-one

correspondence between outgoing TCP SYN segments and an actual user session, the

TCP SYN segment arrival process, in itself, is an important engineering component of the

structural modelling of Internet traffic, as well as in various monitoring applications.

It is worth mentioning that a new technique, if implemented in web browsers, makes

our definition of session very close to the actual user- web-browsing-session. Namely,

several HTTP requests can be multiplexed over a single TCP connection to optimize traffic.

An example of such project is SPDY (pronounced as ”SPeeDY”)1, which is a part of new

improvements in the Chrome web browser project. In such a technique, the TCP connection

which is multiplexing related TCP connections initiated by various HTTP requests will

act as a TCP session for a complete user-web-session. Therefore, in such a case the time

stamp of TCP SYN segment can be regarded as time stamp of a user-session with with more

confidence. The preferred web browsers in mobile environment, for example Opera Turbo2,

are already using a single TCP connection for entire website access through cloud based

data compression proxy servers.

1http://www.chromium.org/spdy/spdy-whitepaper
2http://www.opera.com/turbo

http://www.chromium.org/spdy/spdy-whitepaper
http://www.opera.com/turbo
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1.6 Assumptions

Here we list some assumptions which we have used in this thesis.

• Throughout this thesis we use anonymized traffic traces from three different access

networks and their multiplexing in ISP core network. Practically speaking, depending

upon the topological structure of each access network, the corresponding traffic may

traverse through more than one queues in the access network’s switches or routers

before reaching the queue of ISP core network router. Here, we assume a single

queue for every access network and their ISP core network. That is, the traffic from

different access networks traverses through the corresponding queues (whose service

times can be different) before multiplexing at the queue of the ISP core network. The

assumption is appropriate in the sense that a queue can be configured to represent

overall queueing behaviour (for example, delay) of an access network.

• As access network switches or routers are provisioned with large buffers to prevent

packet losses, we further assume that the sizes of the access and ISP core network

queues are unlimited (or infinite).

• As outlined in previous section, flows are identified based on the time stamps of

unique 5-tuples, separately in outgoing and incoming directions. Whereas, sessions

are identified based on time stamps of the outgoing TCP SYN segments.

1.7 Description of Traffic Traces

The traffic traces of an unnamed New Zealand ISP were captured in 2012 by the WAND

Research Group at the University of Waikato. The trace files can be obtained from the

website of Waikato Internet Traffic Archive (WITS)1. A DAG 3.7g card has been used for

packet capture. The DAG card is a high precision network measurement card which has

a packet capturing time resolution of less than one microsecond. See the website for

the details of the DAG project2. The ISP provides Wireless hotspot, DSL and Ethernet

connectivity in an urban environment. The 24 hour traffic was captured on the 20th of

January 2012. The traffic belongs to three different Internet access networks, that is,

Ethernet, DSL and Wireless hotspot networks. All traffic of these three access networks

1http://research.wand.net.nz/wits
2http://dag.cs.waikato.ac.nz

http://research.wand.net.nz/wits
http://dag.cs.waikato.ac.nz
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traverses through the ISP core network where it was captured and filtered out into the

respective access network traffic on the basis of IP subnet masks. This has enabled us to

analyse both the separate and multiplexed traffic of the access networks. Figure 1.2 shows

a block diagram of the network configuration used in measurements. We use 30 minutes

traffic segments of Ethernet, DSL and Wireless hotspot networks and their ISP core network,

in a time window from 3pm to 3:30pm of New Zealand Standard Time, for analysis.

To the best of our knowledge this is the first study which reports the results of analysis

of the Internet traffic belonging to three different access networks and their multiplexing

or aggregation point in an ISP core network. The traffic traces archived by the WAND

Research Group at the University of Waikato have been extensively used world-wide for

research purposes. The traffic traces of WITS archive are also mirrored at RIPE Network

Coordination Centre (NCC)1 and Center for Applied Internet Data Analysis (CAIDA)2.

It is relevant here to look at general representativeness of traffic traces used in this study.

Internet traffic in other parts of world can be different and may not be fully compatible

with the profile of traffic traces obtain from a New Zealand urban city. A major change in

characteristics of Internet was caused by emergence of Peer-to-Peer services (such as Bit-

Torrent) which evolved during 2000 to 2009; see [Karagiannis et al., 2004a], for example.

Recently it has been reported that the Peer-to-Peer traffic is experiencing a significant

decrease in volume. In [Maier et al., 2009], traffic from 20,000 European residential DSL

customers was assessed and it is reported that “HTTP, not peer-to-peer, traffic dominates by

a significant margin”. A similar observation has been made in the USA [Erman et al., 2009].

In New Zealand, due to enforcement of CAA (Copyright Amendment Act 2011), the use of

P2P traffic has been significantly reduced; see [Alcock & Nelson, 2012].

In fact, properties of traffic in different parts of the world can be different and they are

based on various factors, including the size of population, user interests etc. Nevertheless,

it can be observed that HTTP traffic is still dominant and will continue to be dominant as

various services are being implemented over HTTP. Therefore, we believe that traffic traces

used in this study are representative for a typical Internet traffic in an access or ISP core

network. Nonetheless, we believe that traffic modelling is not a data fitting exercise in its

entirety. We have tried to find invariants and used theory of superposition for developing

traffic models. Therefore, even if our traffic traces are not completely representative, the

proposed models will continue to be relevant for modelling Internet traffic in other parts of

1https://labs.ripe.net/datarepository/data-sets
2http://www.caida.org/data/external

https://labs.ripe.net/datarepository/data-sets
http://www.caida.org/data/external
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Figure 1.2: Traffic capture at DSL, Ethernet, Wireless hotspot network and at their multi-
plexing point (ISP core network) of a New Zealand urban ISP.

the world.

It is important to note that traffic analysis at two different tiers of Internet hierarchy,

that is at access networks and ISP core network did help us in understanding a relevant

superposition theory and its implications for future network traffic modelling.

Our study is based on the traffic traces archived by WAND group because of their availability.

These traces have been used by many researchers world wide.

Tables 1.1, 1.2 and 1.3 show the packet count, interarrival time and byte count level statistics

corresponding to Ethernet, DSL, Wireless hotspot and their ISP core network. It should be

noted that here the term outgoing refers to the traffic (packets, flows or sessions) originating

from subscribers of access networks to global Internet, and the term incoming refers to

traffic coming from global Internet to access networks. Statistically speaking, outgoing

traffic results from superposition of multiple streams of data and incoming traffic faces

splitting in substreams in ISP core network. In this thesis, we are mainly concerned with

traffic modelling in terms of superposition process. Nevertheless, we have also presented

empirical analysis for the incoming traffic (splitted traffic) as well.

Table 1.1: Summary of packet, flow and session level traffic counts

Traffic volume (M=106, K=103)

Access networks Outgoing packets Incoming packets Outgoing flows Incoming flows Sessions

Ethernet 27.68M 40.72M 942K 612K 361K
DSL 14.96M 22.38M 449K 145K 288K
Wireless hotspot 3.894M 5.783M 92K 26K 58K

ISP core network 46.54M 68.89M 1.484M 784K 708K
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Table 1.2: Summary of packet, flow and session level traffic interarrivals

Mean interarrival times (milliseconds)

Access networks Outgoing packets Incoming packets Outgoing flows Incoming flows Sessions

Ethernet 0.065 0.044 1.9 2.9 4.9
DSL 0.12 0.08 4.0 12.0 6.2
Wireless hotspot 0.4 0.3 19.5 67.0 30.7

ISP core network 0.039 0.1 1.2 2.3 2.5

Table 1.3: Summary of byte level traffic

Traffic volume (GB)

Access networks Outgoing Incoming
bytes bytes

Ethernet 10.07 31.53
DSL 3.17 20.82
Wireless hotspot 0.969 4.5

ISP core network 14.22 56.87

1.8 Limitations

Here we present some limitations of the work in this thesis.

• Throughout this thesis, we define time stamp of a session as the time stamp of outgoing

TCP SYN segment. A TCP session will be, of course, a more suitable term here. In the

absence of any standard definition of session and methodology to identify it, we refer

to outgoing TCP SYN segment as start of a user session. An actual application layer

session can have more than one outgoing TCP sessions. Therefore, the actual number

of user-session counts will be less than what we have reported in this thesis.

• We treat both incoming flows and outgoing flows independent of each other. Such a

methodology can have both pros and cons in various applications.

• We have assessed queueing performance of the proposed models assuming buffers

of infinite capacity since we were interested in approximated results only. Access

networks have switches and routers with interfaces having large buffers which are,

nonetheless, are finite in capacity. Due to legal restrictions, the technical information

of Internet service provider’s infrastructure and user identities are kept confidential.
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1.9 Thesis Outline

This thesis is organized as follows. In Chapter 1, we have discussed the need for an appro-

priate unified modelling framework of Internet traffic . We have outlined the governing

principles to be used in Internet traffic modelling. We have presented the problem formu-

lation with thesis objectives and contributions. The methodology of Internet traffic data

analysis, underlying assumptions and limitations of this thesis work are also discussed.

The access networks, their traffic traces used in thesis are also described along with their

representativeness.

Chapter 2 develops the main direction of the thesis by describing renewal processes and

their importance in Internet traffic modelling. The theory of renewal process and long-

range dependence is described. Various heavy-tailed distributions and their role in renewal

processes generating long-range dependent count data is described. The theory of superpo-

sition is explained in terms of interarrival times and count data. Renewal approximations

for a non-renewal superposed output process are also described.

In Chapter 3 a brief survey of models of source, access and backbone core network level

traffic is given. A heavy-tailed superposition model with both approximate renewal and

non-renewal output is developed with the objective of developing a unified traffic modelling

framework. An extensive analysis of interarrival time data at session, outgoing and incoming

flow and packet level, belonging to the various access networks and their ISP core network,

is presented. The fitness and approximation capabilities of various heavy-tailed renewal

models like Weibull, log-normal and exponential are described. A discussion on the utility of

the heavy-tailed Weibull distribution is also presented. Finally, the queueing performance of

the proposed models and the traffic traces (under the assumptions described in the section

1.6) is presented for various utilization levels, for both the exponential and deterministic

servers.

In Chapter 4, a multiple time scale fluctuating behaviour of traffic at packet, flow and session

count level is described. A brief survey of various self-similar and renewal count models is

presented. Limitations of self-similar count models are outlined with an explanation of how

renewal count models overcome them. Performance of various renewal count models is

assessed with respect to Internet traffic and it has been found that the heavy-tailed Weibull

count model provides a good fit to Internet traffic count data distribution. Moreover, it

is flexible enough to capture non-Poisson characteristics of Internet traffic count data at

packet, flow and session levels.
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In Chapter 5, scaling models of Internet traffic have been developed. The concept of

burstiness, and global and local scaling have been defined in appropriate contexts. A

multiple time scale analysis of the burstiness in Internet traffic count data is presented with

the observation that at lower time scales the variance-mean relation is linear, as compared

to higher time scales where it becomes quadratic. This supports the application of fractal

renewal models (for example, heavy-tailed Weibull) at lower time scales. The global and

local scaling properties of structural components of the Internet traffic in access and ISP

core networks are analysed. Also, the global and local scaling properties exhibited by the

earlier proposed multiplexing models and heavy-tailed Weibull renewal models have been

described and their correspondence with Internet traffic data has been established for all

the three structural components of Internet traffic.

Finally, Chapter 6 presents conclusions of the thesis with a description of the avenues of

future research.

1.10 Summary of the Chapter

Internet traffic modelling has been a challenging and an active area of research since many

decades. The dependence of human society on Internet to the extent of survivability will

keep this area always active in research. Internet traffic can exhibit drastically different

characteristics from time to time and from region to region. Different models can capture

different properties of Internet traffic under specific conditions but may not capture other

properties of Internet traffic belonging to the same or different traffic traces. This thesis is

an effort towards developing a unified, simple, structural (for packets, flows and sessions)

and analytically tractable model for Internet traffic that can find its applicability in most of

traffic situations.

Internet traffic modelling can benefit from the general principles of mathematical modelling

of a system. A hybrid of structural and process based modelling approaches is suitable

for developing models of Internet traffic. However, it should be noted that Internet

traffic modelling has its own specific issues which should be considered when developing

models.



Chapter 2

Towards Modelling of Internet Traffic by
Renewal Processes

“ In a system of material particles under the influence of forces which depends
only on spatial coordinates, a given initial state must, in general, recur, not
exactly, but to any desired degree of accuracy, infinitely often, provided the
system always remains in the finite part of the phase space.

”
Chandrasekhar, 1943

2.1 Introduction

Internet traffic structurally consists of packets, flows and sessions which can be represented

as events in a point process framework. Modelling of interarrival times of these events

and their counts is the primary objective of Internet traffic modelling. The modelling of

interarrival time data and count data can be done independently of each other. Such an

approach can result in different models. For example, fractional Gaussian noise (FGN) has

been proposed as an Internet traffic model for packet counts per unit time interval. FGN is

a model for count data with no specification of the distribution of underlying interarrival

times. Several methods to infer interarrival times from the FGN based count data have

been proposed, which result in different interarrival time models; see [Paxson, 1997], for
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example. These interarrival time models correspond to the same FGN count data, but they

are stochastically different and can produce different queueing behaviours.

The advantage of the framework of renewal processes is that it allows a joint modelling

of interarrival times and associated count data. Although this framework is based on a

restrictive assumption of the independence of interarrival times of events which, nonetheless,

should not undermine its utility in Internet traffic modelling. A variety of statistical

distributions is available for modelling interarrival times which can generate a variety of

counting processes useful in Internet traffic modelling.

This chapter is organized as follows. Section 2.2 introduces the concept of renewal processes

and tests for confirming renewal behaviour. In Section 2.3 the count data dispersion

properties of renewal processes is discussed. The Section 2.4 defines the concept of

stochastic self-similarity and long-range dependence. In Section 2.5, various heavy-tailed

distributions are described with their applicability in Internet traffic modelling. In Section

2.6, the process of superposition is described along with its relation to renewal processes.

Section 2.7 describes the long-range dependence in counts generated by certain types of

renewal processes. Finally, Section 2.8 presents a summary of the chapter.

2.2 Renewal Processes

2.2.1 Definition

A Poisson process is a counting process for which the corresponding interarrival times of

events are independent and represent identically distributed exponential random variable.

A renewal process can be considered as a generalisation of the distribution of the interarrival

times corresponding to a Poisson process by relaxing it to be any arbitrary continuous

distribution (that is, not necessarily an exponential distribution). For example, a Weibull

renewal process is a renewal process where interarrival times are drawn from the Weibull

distribution.

More specifically a renewal process can be defined as a counting process {N(t), t > 0} which

counts the total number of renewals till time t with interarrival times being non-negative

random variables X1, X2, · · · , Xn drawn from a continuous probability distribution.

The term renewal in a renewal process is context dependent and generally speaking it

refers to arrival of an event. In reliability analysis the term renewal refers to failure of a
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device and interrenewal time refers to the life time of a device. In Internet traffic, the term

renewal refers to the arrival of a packet, flow or session. From here on, we will use the term

interarrival times when referring to interrenewal times.

2.2.2 Renewal Process: Interarrival Times and Counts

Let Xi be a random variable denoting the ith interarrival time. Then we can define Sn to be

the time to the nth renewal event, that is:

S0 = 0, Sn =
n

∑
i=1

Xi, n>1.

That is, S1 is the time of the first renewal event; S2 = X1 + X2 is the time to the second

renewal event and so on. As Sn denotes the time to the nth renewal, therefore, the renewal

counting process N(t) can also be defined as

N(t) = max{n : Sn6t}. (2.1)

This means that the total number of renewal events by time t is greater than or equal to n
provided that the nth renewal occurs occurs before or at time t. This correspondence can be

written in terms of number of renewal events as

N(t)>n ⇐⇒ Sn6t. (2.2)

Therefore, the distribution of N(t) can be written as

P[N(t) = n] = P[N(t) > n]−P[N(t) > n + 1]. (2.3)

Alternatively,

P[N(t) = n] = P[Sn 6 t]−P[Sn+1 6 t]. (2.4)

Since the interarrival time random variables Xi are independent and are drawn from a
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common continuous distribution function F, therefore the distribution of Sn is Fn, which is

an n-fold convolution of interarrival time distribution F with itself. Therefore, Equation 2.4

can be written as

P[N(t) = n] = Fn(t)− Fn+1(t). (2.5)

The above equation can be used to derive the expression for probability mass function of the

counts of a renewal process based on any continuous time distribution for the interarrival

times. For example, the convolution of exponential random variables leads to Gamma

distribution and by substituting the distribution function of Gamma distribution in Equation

2.5, we get the Poisson counting process as follows.

The n-fold convolution of an exponential random variable with its distribution function

1− e−λt is given as

Fn(t) = 1−
n−1

∑
i=0

(λt)i

i!
e−λt. (2.6)

Substituting Fn and Fn+1 in Equation 2.5, we obtain

P[N(t) = n] =
(λt)n

n!
e−λt, (2.7)

which is, in fact, a Poisson renewal counting process. It should be noted that unlike the

exponential distribution, a closed form expression for the convolution of other continuous

time distributions may or may not exist. Therefore, the renewal counting processes corre-

sponding to other continuous distributions may not be simple as there can be iterative steps

to calculate their respective n-fold convolutions; see, [Rinne, 2008], for example.

2.2.3 Renewal Process in Equilibrium

A renewal process is said to be an equilibrium renewal process if it has been started and

considered far away from its time origin, as compared to the mean time between its renewal

events. It should be noted that a renewal process can be started from arrival of an event

and then taken far in time to establish it in equilibrium [Cox & Smith, 1954].
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2.2.4 Fractal Renewal Process

Fractal renewal process is defined as a renewal process based on heavy-tailed interarrival

time distribution. We allow all heavy-tailed distributions, whether they have infinite or

finite moments, in our formulation of fractal renewal processes. Such renewal processes

are called fractal because they can produce counts with strong correlations. Examples of

fractal renewal processes are renewal processes based on interarrival times following Pareto,

Weibull (shape parameter less than 1) and log-normal distributions. These distributions are

described in Section 2.5 along with their applicability in Internet traffic modelling.

2.2.5 Tests for Renewal Behaviour

A fairly general and qualitative approach to assess the strength of renewal behaviour of a

point process is to look for fluctuations or smoothness in the index of dispersion for intervals

and counts which are dimensionless quantities [Torab & Kamen, 2001].

The index of dispersion for intervals (IDI), I(k), is defined as

I(k) =
Var(X1 + X2 + . . . + Xk)

kE(X)2 , k = 1, 2, . . ., (2.8)

where Xk denotes the kth interarrival time. For a renewal process, the value of index of

dispersion for intervals remains constant (that is, equal to Var(X)/E(X)2) for all values of

k.

Alternatively, the index of dispersion for counts (IDC), It, is defined as

It =
Var(Nt)

E(Nt)
, (2.9)

where Nt denotes the number of counts in a time interval of length t. It should be noted

that in limit, the IDI and IDC are equal, that is, limk→∞ I(k) = limt→∞ I(t).

Indices of dispersion for intervals and counts are dimensionless quantities, that is, their

estimation does not depend on the dimension of the respective variables. These indices

have been introduced to assess variability or burstiness of arrival processes; see [Gusella,

1991], for example.



24 Towards Modelling of Internet Traffic by Renewal Processes

2.3 Renewal Processes and Dispersion

Arrival of a packet, flow or session are events in Internet traffic. These events can form

statistically dependent or independent arrival processes. This statistical dependence is

caused by any or both of the two phenomena described as follows. That is, the dependence

can be caused by correlated arrivals of events or non-exponential duration between arrivals

of successive events. This statistical dependence is called arrival dependence (also referred

to as occurrence dependence) or duration dependence, respectively.

In the case of arrival dependence, the probability of an arrival depends on previous event

arrivals. Count models with arrival dependence can display contagion which can be positive

or negative. If arrival of an event increases the probability of arrival of the next event,

then the count model is said to display positive contagion. Positive contagion results in

overdispersion (that is, variance of counts exceeds its mean). On the other hand, if arrival of

an event decreases the probability of arrival of the next event, then the count model is said

to exhibit negative contagion. Negative contagion causes underdispersion (that is, variance

of counts is less than its mean). In case of underdispersion, a greater number of counts is

clustered around their mean. An example of a count model with arrival dependence based

on positive contagion is the negative binomial count model.

Duration dependence can also generate various types of dispersion in count data. Duration

dependence refers to the distribution of interarrival time between events which are indepen-

dent but not necessarily exponentially distributed. Duration dependence can be assessed in

terms of hazard rate h(t), which is defined as the ratio of probability density function of

interarrival times and its complementary cumulative distribution function, that is,

h(t) =
f (t)

1− F(t)
. (2.10)

Exponential distribution has a constant hazard rate which means equidispersion. If the

hazard rate is an increasing function of time, then the interarrival time distribution displays

positive duration dependence which leads to underdispersion. Whereas, if the hazard

rate is a decreasing function of time, then the interarrival time distribution will generate

overdispersed counts. For example, the Weibull distribution can exhibit both positive and

negative duration dependence based on the values of its shape parameter.

The following theorem is due to [Winkelmann, 1995].
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Theorem 1 1 The negative (positive) duration dependence in interarrival time distribution
causes over(under)-dispersion in the distribution of corresponding count data.

Internet traffic is mostly overdispersed in access networks and tends towards equidispersed

as the level of traffic multiplexing increases [Cao et al., 2003].

2.4 Self-Similarity and Long-Range Dependence

The behaviour of Internet traffic under time rescaling is necessary to understand for

performance evaluation of networks at macro level (higher time scales). Namely, traffic

management and control actions like buffering or bandwidth provisioning are based on

rescaled traffic processes. Here, we briefly explain the notion of self-similarity and long-

range dependence

2.4.1 Self-Similarity

The notion of self-similarity can be deterministic or stochastic in nature. Deterministic
self-similarity is restricted to a geometrical sense and can be defined as if an object or

data looks exactly similar when the same self is viewed at different time scales or ag-

gregation levels. The notion of deterministic self-similarity needs to be generalized for

traffic modelling purposes where stochastic measures are essential components. Therefore,

stochastic self-similarity refers to the relaxation of the strict recursive regularity condition

of deterministic self-similarity to similarity in stochastic measures (for example, variance,

autocorrelation).

Scale invariance or scaling is an important phenomenon which makes a process stochastically
self-similar. To formulate it, we first define the aggregated process or aggregated time series

X(m)(i) of a stochastic process X(t) as

X(m)(i) =
1
m

mi

∑
t=m(i−1)+1

X(t), i > 1, (2.11)

where m is the aggregation level which controls the size of non-overlapping blocks or time

intervals of the time series where averaging is performed and i is the block index. The

1The theorems in this thesis are numbered independent of the source and starts from the number 1.



26 Towards Modelling of Internet Traffic by Renewal Processes

(a) Aggregation level m=1 (b) Aggregation level m=2 (c) Aggregation level m=3

Figure 2.1: An illustration of deterministic self-similarity by a fern leaf.

process X(t) can be interpreted as the number of packets or bytes per unit time interval.

The process X(t) will be stochastically self-similar if it satisfies the following distributional

equality

X d
= m1−HX(m), (2.12)

where H is the index of self-similarity called the Hurst parameter. The Hurst parameter is a

second-order scaling exponent which is used to measure the strength of autocorrelation in

the time series or data generated by the process X(t).

Figure 2.1 illustrates the concept of deterministic self-similarity and interpretation of m (in

terms of aggregation in space) in Equation 2.12.

A both qualitative and quantitative method to assess LRD and its onset is the Log-scale

Diagram plot (called LD plot), which has been described in [Abry et al., 1998].
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2.4.2 Long-Range Dependence

A process X(t) will be second order self-similar or Long-Range Dependent (LRD) if

m1−HX(m) has the same variance and autocorrelation as X for all values of aggregation

level m.

The autocorrelation function of an LRD process decays hyperbolically, that is:

γ(k) ∼ H(2H − 1)k2H−2, k→ ∞. (2.13)

Here γ(k) is the autocorrelation coefficient at lag k, and H is the Hurst parameter. For

the Hurst parameter in the range 1/2 < H 6 1, γ(k) asymptotically behaves as ck−β for

0 < β < 1, where c > 0 is a constant and β = 2− 2H.

Equation 2.13 can also characterize an LRD process in terms of its sum of autocorrelation

coefficients. Namely, for an LRD process, the autocorrelation coefficients at various lags are

non-summable, that is,

∞

∑
k=−∞

γ(k)→ ∞. (2.14)

Equation 2.14 can be used as a definition of an LRD process but it does not tell much about

the specific autocorrelation structure of an LRD process. Whereas, Equation 2.13 gives

more information about the autocorrelation structure of an LRD process. That is why, it is a

more widely used definition of an LRD process.

The Hurst parameter of an LRD process lies in the range 1/2 < H 6 1. For short range

dependent processes (whose autocorrelation function decays fast and its coefficients are

summable), the value of the Hurst parameter is 1/2. For the range 0 < H < 1/2, the

sum of auto correlation function coefficients at all lags tends to zero. This is a case of

anti-persistence and has been rarely found in practical applications.

A commonly used LRD model for Internet traffic is Fractional Brownian Motion (FBM).

The definition and a critical overview of FBM based modelling of Internet traffic will be

described in Chapter 4.
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Figure 2.2: Probability density function of the Pareto distribution.

2.5 Heavy-tailed Distributions

Continuous valued heavy-tailed distributions are related to LRD in count data [Park &

Willinger, 2002]. In this section, we define and briefly explain some important heavy-tailed

distributions.

Let X1, X2, ..., Xn be a sequence of n independent and identically distributed observations

with the cumulative distribution function F which is heavy-tailed, if it satisfies:

1− F(x) = L(x)x−α, α > 0, x → ∞. (2.15)

Here, L(x) > 0 is a slowly varying function at infinity, and α > 0 is the tail index which

controls the rate of decay of F. In general, if the rate of decay of F is slower than exponential,

then F is called a heavy-tailed distribution. Hence, the value of tail index characterizes the

tail behaviour and contains useful information about extremes of the distribution.

Some commonly used heavy-tailed distributions are Pareto, Weibull and log-normal distri-

butions. Here, we present a brief statistical profile of these heavy-tailed distributions and

their applicability in Internet traffic modelling.

2.5.1 Pareto Distribution

Pareto distribution is one of the simplest and commonly used heavy-tailed distribution in

Internet traffic modelling. All moments of the Pareto distribution can be infinite, which
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makes it useful in modelling interarrival times which generate LRD counts similar to LRD

exhibited by Internet traffic count data. This is due to the fact that the infinite mean or

infinite variance interarrival times can generate highly correlated counts. Interarrival times

in a single user’s sessions and flows may have excessively long values (for example, due to

user think times). Therefore, the Pareto distribution can also be used to model interarrival

times at session and flow levels of individual user or traffic source.

The Pareto type I distribution has probability density function given by

f (x) =

{
α aα

xα+1 , x≥a > 0,
0 , x < a;

(2.16)

where a is the scale parameter and α > 0 is the tail index which controls the rate of decay of

Pareto probability density function. Figure 2.2(a) shows the probability density function of

the Pareto type I distribution. Pareto distribution has infinite mean and infinite variance for

the tail index range 0 < α ≤ 1, and has finite mean and infinite variance for the tail index

range 1 < α ≤ 2. Variance, skewness, ex-kurtosis and other higher moments start becoming

finite as the value of tail index increases in integer steps (α > 2, α > 3,α > 4, . . .).

Another useful form of Pareto distribution is the Pareto type II distribution (also called as

Lomax distribution) which, unlike Pareto type I, has support on zero. The density function

of the Pareto type II distribution is given as ([Abd-El-Hakim & Sultan, 2004])

f (x) =

{
αKα(x + K)−α−1 , x≥0,
0 , otherwise;

(2.17)

where K is a normalization constant. Figures 2.2 (b) and (c) show the probability density

function of Pareto type II distribution for different values of α and K. It should be noted

that the Pareto type II distribution is more general than Pareto type I in modelling tail parts

of distribution. The tail of the Pareto type II distribution can be controlled through two

parameters, that is, the tail becomes heavier as K increases and α decreases. Whereas, in

the Pareto type I distribution, the tail is controlled using α only.

Compared with the type II, the type I form of the Pareto distribution has been extensively

used in describing Internet user’s access patterns. Nevertheless, the type II form of the

Pareto distribution has a larger domain with support on zero which makes it applicable in
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modelling interarrival times in the components and superposed output of a superposition

process. Whereas, the Pareto type I distribution, in its standard non-rescaled form, cannot

be used to model interarrival times in the superposed output because it has no support on

zero.

It should be noted that if X is from the Pareto type I distribution with parameters α and

a, then Y = K(X/a− 1) follows the Pareto type II distribution with parameter α and K
[Fishman & Adan, 2006]. We shall discuss the applicability of the Pareto type II distribution

in the Chapter 3.

2.5.2 Weibull Distribution

The Weibull distribution has been extensively used in reliability analysis for the study of

life times. The first study using the Weibull distribution in Internet traffic modelling can be

found in [Feldmann, 2002]. Accordingly, the heavy-tailed Weibull distribution can capture

short as well as long interarrival times of TCP connections of data sources and multiplexed

traffic.

The Weibull distribution has the probability density function given by

f (x) =

{
c
b
( x

b
)c−1 e−(x/b)c

, x≥0,
0 , x < 0;

(2.18)

where c is a shape parameter and b is a scale parameter. The Weibull distribution is quite

flexible and can represent different shapes of the body and tail parts of a data distribution

based on the value of the shape parameter as shown in Figure 2.3. Exponential and Rayleigh

distributions are special cases of the Weibull distribution. Maximum Likelihood Estimates

(MLE) of the shape parameter c and the scale parameter b can be obtained by the solution

of the following simultaneous equations [Qureishi, 1964]:

c =
n

1
b ∑n

i=1 xc
i log xi −∑n

i=1 log xi
, (2.19)

and

b =

[
1
n

n

∑
i=1

xc
i

]1/c

. (2.20)
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Figure 2.3: Probability density function of the Weibull distribution.

MLEs are asymptotically normal, therefore, the confidence intervals of the estimate can be

derived by using the normal approximation.

It should be noted that, apart from maximum likelihood estimators, there are also other

methods to estimate model parameters from experimental data. Namely, one can apply the

method of moments or the method of percentiles (quantiles).

The method of moments is the oldest method to estimate parameters from an experimental

data set if one wants to fit the parametric distribution to the data set. The idea here is to

equate sample moments to the theoretical moments of the distribution and solve for the

parameters. Clearly as many moments are required as there are number of parameters to

be estimated.

Suppose µ′r; r = 1, 2, . . . be the r moments about zero of a distribution function and µ̂′r be

the corresponding sample moments obtained from data as follows,

µ̂′r =
1
n

n

∑
i=1

Xi
r. (2.21)
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Hence the method of moments can be used to estimate model parameters from data

by equating µ′r to µ̂′r and solving the resulting set of simultaneous equations. For the

2-parameter Weibull distribution, the first two moments are given as,

µ′1 = bΓ(1 + 1/c), (2.22)

µ′2 = b2Γ(1 + 2/c). (2.23)

It should be noted that the method of moments for parameter estimation from experimental

data is not an optimization technique. Moments estimators are asymptotically normal and

consistent, but they are not efficient nor sufficient [Rinne, 2008].

The method of percentiles (also known as the method of quantiles) is similar to the method

of moments. Here, the moments are replaced by percentiles (quantiles). One need to

consider as many percentiles as the number of parameters to be estimated. For a given

cumulative probability P, 0 < P < 1, the 100% percentile xP of the Weibull distribution is

given as,

xP = b[− ln(1− P)]1/c (2.24)

Hence, the method of percentiles can be used to estimate Weibull distribution parameters

(shape and scale) from experimental data by equating two sample quantiles from data to the

quantiles of the Weibull distribution given by equation 2.24. The crucial point here is the

selection of appropriate quantiles for estimation of the Weibull shape and scale parameters.

According to [Rinne, 2008] the 17th and 97th percentiles asymptotically yield the percentile

estimator of the Weibull shape parameter. As compared to the MLE estimates of the shape

and scale parameters of the Weibull distribution, the shape and scale parameter estimators

based on the method of percentiles have the efficiency of 66% and 82%, respectively.

It is important to note that it is only the maximum likelihood estimators which can achieve

the Cramer-Rao lower bound (the minimum possible bound on the variance of an estimator).

Therefore, throughout the thesis, we use the maximum likelihood estimators to obtain

model parameters (for example, Weibull shape parameter) from our traces of Internet

traffic.
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By substituting λ = 1/bc in Equation 2.18, another useful parametrization of the Weibull

distribution can be obtained which is given as ([Hamada, 2008])

f (x) =

{
λcxc−1e−λxc

, x≥0,
0 , x < 0.

(2.25)

The Weibull distribution with shape parameter c < 1 is heavy-tailed, and has all the

moments finite for all values of the shape parameter c > 0. This makes the Weibull

distribution a suitable candidate for convergence modelling of both the body and tail parts

of the interarrival time data distribution in a heavy-tailed multiplexing environment [Mitov

& Yanev, 2006]. Also, as described in [Yannaros, 1994], the heavy-tailed Weibull renewal

process is useful in modelling overdispersed and irregular count data. As Internet traffic

is mostly overdispersed, therefore, interarrival times drawn from the heavy-tailed Weibull

distribution can produce count data with irregular and bursty profile. A closed form count

model corresponding to the Weibull interarrival times will be described in Chapter 4 along

with its application in Internet traffic modelling.
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Figure 2.4: Probability density function of the log-normal distribution.

2.5.3 Log-normal Distribution

According to [Feldmann, 2002], the log-normal distribution is better than exponential and

Pareto distributions in modelling interarrival times of the multiplexed traffic in traffic traces.

In an earlier work [Paxson, 1994], TCP connection sizes and durations are reported to be

log-normal in most of the traffic traces considered.

Log-normal distribution is an appropriate distribution for the data which is generated by

multiplicative processes. A multiplicative process can be defined as a process that fragments

or divides a set into smaller subsets in a recursive manner [Feldmann et al., 1998]. The

generation pattern of the structural components of Internet traffic can be thought of as a

multiplicative process. That is, a user initiates a session, which in turn results in number of

flows, and a flow consists of a number of packets.

If a random variable X follows log-normal distribution, then its probability density function
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given by

f (x) =

 1
xσ
√

2π
e−

(ln x−µ)2

2σ2 , x≥0,

0 , x < 0;
(2.26)

where µ is the location and σ is the scale parameter of the log-normal distribution. The

maximum likelihood estimates of the location and scale parameters can be calculated

as,

µ̂ =
∑n

k=1 ln xk

n
, (2.27)

σ̂2 =
∑n

k=1(ln xk − µ̂)2

n
. (2.28)

Figure 2.4 shows the probability density function of the log-normal distribution. Log-normal

distribution is directly related to the normal distribution. That is, if a random variable Y is

normally distributed, then X = ln(Y) will follow the log-normal distribution.

It should be noted that the log-normal distribution has been classified as heavy-tailed in

[Willekens & Teugels, 1992] because of its sub-exponential tail decay, whereas, [Paxson

& Floyd, 1995] do not classify it as heavy-tailed because the log-normal distribution

does not satisfy the condition imposed by Equation 2.15; whereas, the Pareto and the

Weibull distributions do satisfy this condition. Nevertheless, following [Willekens & Teugels,

1992], we treat the log-normal distribution as heavy-tailed because of its tail decay being

slower than the exponential one. Also according to [Mitzenmacher, 2004], the log-normal

distribution has much similarity in shape to the power law distributions in spite of the

fact that all the moments of a log-normal distribution are finite. In [Hannig et al., 2003],

it has been shown that interarrival times based on log-normal distribution can generate

long-range dependent count data which can resemble Internet traffic.

2.6 Superposition

Due to the multi-tier or hierarchical structure of the Internet, the traffic in the Internet

undergoes superposition at several tiers during its end-to-end journey. In this section, we
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Figure 2.5: The process of superposition in terms of interarrival times.

describe the process of superposition, superposition of renewal processes, and appropriate

methods to approximate a non-renewal superposed process by a renewal process.

2.6.1 Superposed Process

The process of superposition can be assessed in terms of counts and interarrival times of

the superposed output. In terms of counts, the superposition process is simply the sum of

counts from the component processes in a defined time interval. That is, the superposed

output process N(t) of n component processes can be written as

N(t) = N1(t) + N2(t) + . . . + . . . + Nn(t). (2.29)

The superposed counting process is easier to analyse than the superposed interarrival times

or associated partial sums [Whitt, 1982]. Nevertheless, in terms of interarrival times,
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the process of superposition is statistically richer than its counting counterpart because

the arrival times of events are recorded, and the entire pooled output and its stochastic

behaviour is the objective of analysis and corresponding counting process can be formulated.

The converse is not possible, of course.

Figure 2.5 shows the process of superposition of n component streams in terms of interar-

rival times. A simple algorithm to implement a superposition process in terms of interarrival

times can be implemented as:

1. Generate interarrival times of n components X(n) using real world data or an appro-

priate continuous probability distribution.

2. For each component X(n), calculate a series of cumulative sums.

3. Concatenate the cumulative sum series of all the components.

4. Sort the concatenated cumulative sum series.

5. Taking the difference of the adjacent values in the sorted series will generate interar-

rival times of the superposed output Y(n).

One can see that the process of superposition in terms of interarrival times becomes

computationally more expensive as the number of components increases. Therefore, various

limiting superposition theorems have been proposed to model the output of a superposition

process under certain assumptions and approximations; see [Albin, 1982; Çinlar, 1968; Cox

& Smith, 1954; Mitov & Yanev, 2006], for example. In Chapter 3, we assess the properties

of various superposition models and see how well they match the characteristics of the

Internet traffic.

2.6.2 Superposition of Renewal Processes

Due to resource sharing, Internet traffic undergoes superposition at several interfaces during

its end-to-end traversal. Modelling the stochastic behaviour of this superposition process is

of vital importance in designing and provisioning of the resources in both the access and

the core links of the Internet architecture. Two facets of the superposition process which are

important for modelling purposes are: possible distributional invariance and distributional

convergence. It should be noted that, if the component streams of superposition are Poisson

streams, only then is the phenomenon of distributional invariance observed. In other

cases, even the renewal property is not preserved due to the dependencies of events in the
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superposed process. Nevertheless, modelling by weak convergence to renewal processes

such as Poisson or to any other statistical distributional models has been advocated in [Cao

et al., 2001; Veitch et al., 2005].

Cox’s superposition theorem in [Cox & Smith, 1954] can be used to describe traffic at

high multiplexing levels, that is, in the backbone core networks. Cox considered the

superposition of n independent renewal sequences as

N(t) = N1(t) + N2(t) + . . . + . . . + Nn(t), (2.30)

and proved that as n→ ∞, the count process in the superposed count sequence N(t) tends

to Poisson and corresponding interarrival time distribution tends to be negative exponential

given as

P[N(t) = k]→ e−λt(λt)k

k!
, (2.31)

where λ = λ1 + λ2 + · · ·+ λn.

E. Çinlar (1968) [Çinlar, 1968] generalised the same result to m-dimensional point pro-

cesses. For finite n, it has been shown in [Fishman, 1978] and [Albin, 1982] that the rate of

convergence in distribution to Poisson is n−1, and if component streams are heterogeneous

(that is, with different intensities), then this rate of convergence in distribution is of the

order of ∑n
i=1(

λi
λ )

2, where λi is the intensity of the ith component process of n processes

and λ = λ1 + λ2 + · · ·+ λn.

In [Daley & Vere-Jones, 2008], an extended Palm’s theorem is presented as: A process

obtained by superposition of n independent replicates of a stationary point process, and

then by dilating the time scale by a factor k, will converge weakly in distribution to a

Poisson process. In [Cao et al., 2001], it has been argued (empirically) that this applies to a

point process even if the interarrival times have a heavy-tailed distribution. But this applies

to very high levels of superposition or multiplexing (that is, in backbone core network

links).

E. Çinlar also formulated that the superposition of a large number of independent point

processes can be approximated by a Poisson process. He also provided an upper bound

on the error in the Poisson approximation (see p.583-584 of [Çinlar, 1972]). It should be

noted that Çinlar’s and Palm’s approximation did not impose any renewality restriction on



2.6 Superposition 39

component processes Nn(t) but do require them to have finite second order moments.

It should be noted that unless component streams have exponential interarrival times,

the superposed output cannot be renewal. In other words, Poisson processes are the only

processes which retain renewal character under superposition. Nevertheless, in the case

of the superposition of N equilibrium renewal processes, the probability density of the

interarrival times in the superposed output, that is fY(y), has been derived in [Cox & Smith,

1954], and is given as

fY(y) = −
d

dy

[
Fc(y)

{ ∫ ∞

y

Fc(x)
µ

dx
}N−1

]
, (2.32)

where N is the number of component equilibrium renewal processes (homogeneous)

each with an expected value of interarrival time as being µ. Fc(y) is the complementary

cumulative distribution function of component streams’ interarrival times. The Cox’s

formula, that is Equation 2.32, requires only the finiteness of the mean interarrival time of

component renewal processes in equilibrium, whereas the variance can be finite or infinite.

It is important to note that Equation 2.32 cannot fully characterize the superposed output

as it is not renewal, in general.

2.6.3 Renewal Approximations for Superpositions

It is only the Poisson processes that retain their renewal character under superposition. In

all other cases, the superposed output cannot be renewal due to dependencies in interarrival

times between events.

Poisson process has been also used as an approximation for superpositions when component

streams have finite variance for interarrival time distribution [Çinlar, 1972]. Internet

traffic is a superposition of heterogeneous traffic streams, hence non-renewal, and it

shows more variability than the Poisson process. Therefore, for approximating Internet

traffic data we need other renewal processes that can display more variability than a

Poisson process. For Internet traffic modelling, it is worthwhile obtaining an overview

from the literature concerning the suitability of a renewal approximation to a non-renewal

superposed output.

In Section 3.4.1, we shall see that the superposition of heavy-tailed renewal processes can be

approximated by heavy-tailed Weibull renewal processes [Mitov & Yanev, 2006]. Renewal
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approximations for non-renewal processes have also been advocated in [Albin, 1984; Kuehn,

1979; Whitt, 1982]. A comparison of these methodologies to approximate non-renewal

processes by renewal processes has been presented in [Balcıog˜lu et al., 2008a].

In [Kuehn, 1979], the superposition of N + 1 renewal processes has been considered in N
steps. In each step, superposition of two processes is performed and its output superposed

process becomes input to the next step. Obviously the output superposed process in every

step is non-renewal. All non-renewal processes, in every step, are substituted by renewal

processes that preserve the first two moments of the marginal interarrival time distributions

of the original non-renewal superposed processes.

In the renewal approximation approach proposed in [Whitt, 1982], the dependence in

successive interarrival times is also considered. This is done by matching the first m mo-

ments of the approximating renewal counting process with the corresponding moments of

the original counting process over a long interval of time. As the superposition counting

process is the sum of the independent counting processes (components), this approxima-

tion methodology can be applied to the non-renewal output of superposition process as

well.

It should be noted that the approximation methodologies in [Kuehn, 1979] and [Whitt,

1982] agree on the first moment of superposition but the method in [Whitt, 1982] yields

higher second moment for the superposed output. According to [Balcıog˜lu et al., 2008a],

the method in [Whitt, 1982] has a better performance in a heavy traffic regime, and the

approximation by [Kuehn, 1979] becomes correct as the number of component processes

increases asymptotically. [Albin, 1984] proposed a renewal approximation method which

can be considered as a hybrid of the approaches proposed in [Kuehn, 1979] and [Whitt,

1982]. This approach is based on matching the squared coefficient of variation of interarrival

times for the approximating renewal process with the original non-renewal process.

Another approach for approximating non-renewal processes by renewal processes has been

proposed in [Araghi & Balcıog˜lu, 2008]. This approach is limited to non-renewal processes

having limiting index of dispersion for counts (IDC) less than unity.

2.7 Renewal Processes and Long-Range Dependence

Based on distribution of interarrival times, a renewal process can generate counts which can

exhibit short-range or long-range dependence. If the tail of interarrival time distribution
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decays quickly like the exponential distribution, then the resulting counts will be short-

range dependent. whereas, if the interarrival time distribution is heavy-tailed, then the

corresponding counts will exhibit long-range dependence [Daley et al., 2000]. Such

renewal processes are also termed as fractal renewal processes in [Ryu & Lowen, 1996]. The

autocorrelation function of a fractal renewal process decays slower than that of the Poisson

process.

An example of a fractal renewal process is the Pareto renewal process in which interarrival

times are drawn from Pareto distribution with infinite mean and infinite variance (that is,

tail index range of 0 < α < 1. Such a process is fully fractal as the corresponding counting

process exhibits second-order self-similar behaviour at all time scales. If the interarrival

times are Pareto distributed with finite mean and infinite variance (that is , the tail index

range is 1 < α < 2), then the resulting counting process, again, exhibits second-order

self-similar behaviour or scaling over a range of time scales.

The renewal processes based on an interarrival time distribution with infinite mean can

have a zero rate of arrivals. This means that once such a process reaches its steady state, the

probability of no arrival in fixed time intervals will be 1, irrespective of the value of the scale

parameter (the minimum value). Therefore, for such a renewal process, the autocorrelation

function will be zero at all lags, and hence will be summable. This violates the condition

for a process to be second-order self-similar or long-range dependent (see Equation 2.14).

Nevertheless, the Pareto renewal process with infinite or finite mean and infinite variance

has been used as a model of self-similar traffic [Gordon, 1995]. This can be justified using

the following reasoning: That is, such a renewal process can be conditioned to start from

an event, that is, there should be an event at time t = 0. Therefore, a finite segment of such

a renewal process contains a positive number of arrivals with the density of the number of

renewals decreasing (page 373, [Feller, 1971]) . In other words, such a renewal process

should be considered over a finite time interval, that is, before it enters its steady state

[Paxson & Floyd, 1995].

The following theorem is due to [Daley, 1999].

Theorem 2 A renewal process with interarrival time distribution function F that has
∫ ∞

0 x2dF(x) =
∞,
∫ ∞

0 xdF(x) < ∞ and moment index α, is long-range dependent and has Hurst parameter
(H) given as

H =
3− α

2
. (2.33)
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It should be noted that if the interarrival times follow the heavy-tailed Weibull distribution

(that is, shape parameter less than one) then the resulting counting process also displays

fractal like characteristics, for example, overdispersion and irregularity [Yannaros, 1994].

The statistical characteristics of counts resulting from the heavy-tailed Weibull renewal

process and their applicability in Internet traffic modelling will be discussed in Chapters 4

and 5.

2.8 Summary of the Chapter

The modelling of count data can be done independent of underlying interarrival time data.

In case of Internet traffic, an example of such a model is fractional Gaussian noise, which

models autocorrelation structure of count data. There can be various stochastically different

realizations of interarrival times corresponding to such count models.

Renewal processes offers a joint modelling framework for interarrival times and the asso-

ciated count data. Long-range dependence in count data refer to strong autocorrelations

in count data or slow decay of its autocorrelation function. Certain renewal processes

based on heavy-tailed interarrival times can generate counts which can exhibit long-range

dependence. Therefore, renewal processes have a great potential in modelling Internet

traffic.

Except Poisson processes, the superposition of renewal processes results in a non-renewal

process due to the dependencies between interarrival times. Internet traffic is a superpo-

sition of traffic streams from various users. Therefore, the theory of superposition can be

used to study the stochastic behaviour of Internet traffic. Appropriate renewal processes

can also be used to approximate the non-renewal superposed process.



Chapter 3

Interarrival Time Models for Internet
Traffic

“ If intervals between successive points are judged important, it will be natural
to look for renewal process, or extensions thereof.

”
D. R. Cox, 1980

3.1 Introduction

Internet traffic is essentially a superposition or an active mixture of various traffic streams

which are stochastic in nature. These traffic streams can originate from various users

subscribing to the Internet via different access networks or from various short haul links

traversing to a backbone link. Structurally, the traffic in the Internet consists of packets,

flows and sessions. The study of interarrival times of structural components of Internet

traffic is interesting due to the following reasons:

• Specification of interarrival time distribution is an essential part of any network

performance evaluation study based on queueing models.

• Models of interarrival time data can produce count data as a series of counts in any

desired duration of time aggregation. The converse is not possible, of course.
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• Investigating an appropriate interarrival time distribution which can model interarrival

times of traffic belonging to a typical user can help us to invoke related superposition

theorems to assess properties of the superposed process. The superposed process can

be used as a model for interarrival times and counts of aggregated Internet traffic.

• A superposition model based on interarrival times can be parametrized to reflect

properties of packets, flows and sessions in Internet traffic.

Nevertheless, the study of interarrival times is challenging due to the following rea-

sons:

• Interarrival times in an Internet traffic stream may or may not be independent,

depending on the intensity and stochastic behaviour of the component streams or

user traffic.

• The dependencies in the interarrival times cannot be captured by simple renewal

process (e.g., Poisson) based modelling. Nevertheless, renewal processes based on

heavy-tailed distributions of interarrival times can display a similar dependence

structure in counts as that exhibited by Internet traffic.

• Interarrival time processes do not produce summarized or time binned data like count

processes. Compared to the data generated by count processes, the size of interarrival

time data for analysis is huge and continuous valued.

• Self-similar traffic count models, like fractional Gaussian noise (FGN) and fractional

autoregressive integrated moving average (FARIMA) models do not specify the distri-

bution or stochastic behaviour of underlying interarrival times.

Our objective in this and the subsequent chapters is focused on developing a simple

and unified traffic modelling framework that can model both interarrival time and count

processes, at both access and ISP core tiers of Internet’s hierarchy. In this chapter we focus

on:

• Theoretical and empirical analysis of a Weibull renewal approximation for the super-

position of fractal renewal streams having infinite mean and infinite variance.

• Developing a non-renewal model for the superposition of fractal renewal streams1

with finite mean and infinite variance. We call it a superposed Pareto II model (that is,

1we use the word stream in the sense of a series of interarrival times values. For example, a Pareto renewal
stream (also sometimes called as simply Pareto stream in this thesis), generates a series of interarrival time
values being Pareto distributed.
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a model based on Pareto type II distribution).

• Developing a non-renewal model for the superposition of fractal renewal streams with

heavy-tailed Weibull distributed interarrival times.

• Modelling interarrival times of packets, flows and sessions in various access and the

ISP core networks using renewal approximations.

• Investigating packet level queueing delay performance of the approximate renewal

models and non-renewal superposed Pareto II model with respect to the queueing

delay exhibited by the traffic traces from various access and ISP core networks.

3.2 Source Modelling

Modelling fluctuations of Internet traffic at access networks is challenging due to various

associated human, social and technological factors. Viewing this traffic as just a physical

phenomenon, ignoring the influence of these factors would be quite specific or limiting to

the network under study. According to [Floyd & Paxson, 2001]: “a source model at the

level of individual connections would miss the Poisson nature of the arrival of individual

sessions”.

3.2.1 Sessions, Flows and Packets

An application layer user-session refers to a time interval during which various applications

and their mixtures are accessed by a user; for example, web browsing, email, online

multimedia and Internet based telecommunication services. A user-session translates into

one or more flows which in turn consist of many packets. The distribution of interarrival

times of sessions, flows and packets belonging to individual users is governed by their

activity and inactivity periods. An activity period is a time duration in which a user generates

and receives data, whereas an inactivity period consists of user think-times or idle-times.

The stochastic behaviour of a traffic source in terms of sessions, flows and packets is

associated with the distribution of its periods of activity and inactivity. It is important to

assess these time periods of individual user activity and inactivity, because being human

factors they are invariants and play an important role in Internet traffic modelling [Leland

et al., 1994].
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Until now no standard method to measure the time periods of individual user activity

and inactivity has been proposed. Researchers have used different statistical models for

characterizing user activity and silent time periods. For example, the heavy-tailed ON/OFF

models assume an individual user’s periods of activity and inactivity as being heavy-tailed

with infinite variance [Taqqu et al., 1997]. Interrupted Poisson Process (IPP) has been

used a traffic source model in [Arvidsson, 1991]. It is a 2-state switched Poisson process

with one state having zero arrival rate, representing inactivity period of a given user. A

2-state threshold model (TH) with an active state and a silent state of a traffic source has

been introduced in [Arvidsson & Harris, 1993]. In this model the interarrival times of a

traffic source are drawn from two distributions F1 and F2. That is, the interarrival times are

initially drawn from distribution F1. If an interarrival time is greater than a threshold value

T, the silent state starts for a independent time duration with distribution F2 > T. The

range of interarrival times of F1 and F2 is (0,A1) and (T,A2), respectively. Therefore, this

model has three parameters A1, A2 and T. Further models characterizing a traffic source,

like Switched Bernoulli process (SBP), the Markov-Hyperexponential model and Erlang-r

model, have been discussed in [Arvidsson & Harris, 1993].

A framework based on pure renewal processes can also be used for source traffic modelling.

Namely, we can generalize the ON/OFF model, assuming that a single arrival represents an

ON or activity period of a traffic source or a user [Erramilli et al., 1996a]. Here we look

at periods of activity and inactivity of individual users as a sequence of interarrival times.

Therefore, an arrival of a TCP or UDP flow represents a user activity and time between their

arrivals represent inactivity or OFF period. This generates a simple point process with TCP

or UDP flows as events. The advantage of such an approach is that pure renewal processes

can be considered to model such a point process. Also the theorems regarding superposition

of ON/OFF processes can be generalized to assess properties of their superposition under

relevant conditions; see [Gaigalas & Kaj, 2003; Kaj, 1999], for example.

We assess the periods of activity and inactivity of individual users in terms of flow interarrival

times. We have selected some random private IP addresses (representing users) from the

traffic traces under our investigation and filtered out their traffic at packet level. The

time stamps of the selected individual use’r flows were then determined by maintaining a

flow table based on 5-tuple. We have assessed the flows originating from some randomly

selected subscribers of DSL and Wireless hotspot Internet access networks and found that

flow interarrival times are heavy-tailed with the tail index in the range 0.3 ≤ α ≤ 1.7. Figure

3.1 shows the log-log empirical distribution (EMD) plots and Pareto quantile-quantile plots

for flow interarrival times of users. In log-log EMD plots, a straight line with negative slope
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Figure 3.1: Plot of log-log complementary Empirical Distribution (EMD) and the correspond-
ing (beneath every log-log plot) Pareto quantile-quantile plots for user flow interarrival
times.

indicates heavy-tailed behaviour [Crovella & Taqqu, 1999]. In log-log EMD plots of Figure

3.1, we can observe that each curve can be fitted by two lines with different negative slopes

which correspond to the periods of activity and inactivity in access patterns of a user. The

Pareto quantile-quantile plots further confirm the heavy-tailed behaviour in access patterns

of individual users. A plausible explanation for this heavy-tailed behaviour is that when a

user clicks on a web page, the browser opens a flurry of TCP connections within a short time

to fetch all the objects like text, graphics, video and advertisements from various sources

and then there is a comparatively long think time.

In [Crovella & Bestavros, 1997], it has been concluded that compared to the machine

induced delays (routing or queueing delays, for example), user think times are more
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responsible for the heavy-tails in interarrival times found in the aggregate traffic. They also

reported that the URL interarrival times at a web server are heavy-tailed. In [Janevski &

Goseva-Popstojanova, 2012], think times of individual users have been modelled as being

Pareto distributed with tail index, 1 < α < 2. In [Meier-Hellstern et al., 1991], interarrival

times of packets generated by individual users are examined and classified into three states;

namely, machine generated packets, active typing and think-time state. They suggested

to use heavy-tailed distributions like Pareto distribution with tail index α < 1, for packet

interarrival times in these states. It is important to mention the practical interpretation of

infinite mean distributions; that is, sample means will not become stable as sample size

increases. Therefore, such distributions are useful in modelling interarrival times of packets

generated by a user [Meier-Hellstern et al., 1991]. An interesting commentary on the

usefulness and applicability of distributions with infinite moments can be seen in [Berger &

Mandelbrot, 1963].

The periods of activity and inactivity of individual users control the individual user session,

flow and packet interarrival times. Therefore, heavy-tailed nature of activity and inactivity

durations makes interarrival times of packets, flows and session more bursty than being

negative exponentially distributed [Hohn et al., 2002]. Therefore, interarrival times at

packet, flow and session levels can be modelled by renewal processes based on heavy-tail

distributions (also called fractal renewal processes in [Lowen & Teich, 1993]). These models

are simple and have a physical interpretation. Until now, such a modelling technique,

though previously advocated in [Hohn et al., 2002; Veitch et al., 2005], has not been

employed mainly due to the lack of analytical results in handling mixture of the heavy-

tailed distributions. We advocate this direction for Internet traffic modelling and, later in

this chapter, we describe some approximations based on fractal renewal processes since

they can result in a unified traffic modelling framework for access, ISP core and backbone

core networks.

3.2.2 Infinite Mean and Variance in Source Traffic Interarrival Times

: A Justification

According to [Floyd & Paxson, 2001]: “Some statisticians argue that infinite variance is

an inherently slippery property-how can it ever be verified? But then, independence can

never be proven in the physical world, either, and few have difficulty accepting its use in

modelling.”
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Section 2.7 and the above discussion provide an empirical justification for the use of heavy-

tail distributions for modelling interarrival times of packets, flows and sessions belonging

to individual sources. In fact, heavy-tail distributions with infinite mean and variance are

natural for modelling interarrival times in individual user streams since they allow very long

think times or idle periods which are naturally present in a general user’s access pattern.

Nevertheless, there should be some mathematical justification to allay concerns regarding

the use of distributions having infinite moments. We address this issue as follows.

Theoretically, for the heavy-tail index range 0 < α 6 1, both mean and variance of

interarrival times are infinite. Therefore, the mean rate of events is zero, that is, probability

of no arrival in a finite interval of time is 1, giving the impression of a traffic source

generating no traffic. This argument is valid if the renewal process based on heavy-tailed

distribution is in equilibrium state and does not apply if the renewal process starts from an

event such as the arrival of a packet, a flow or the start of a session [Lowen & Teich, 1993].

A segment of such a renewal process starting from an event contains a positive number of

arrivals with density of the number of renewals decreasing.

Suppose Z(t) is a random variable representing forward recurrence time (residual interar-

rival time measured from a randomly selected time epoch t till next arrival) of a renewal

process based on a distribution having infinite mean and infinite variance interarrival times.

Then, the probability density function of Z(t), that is, fZ(z) is given as [Lowen & Teich,

1993]:

fZ(z) =
tαsin(πα)z−α

π(z + t)
. (3.1)

This shows that a renewal process, based on an interarrival time distribution having all

moments infinite, produces a non-zero arrival rate (for any time epoch t) provided that

it starts from from an event (packet, flow or session). A similar argument follows for the

renewal processes based on interarrival time distributions having finite mean but infinite

variance, that is, for the range 1 < α ≤ 2. In this case, the expected number of renewals

or arrivals increases linearly with high fluctuations around the expected value (see pages

373-374 in [Feller, 1971]).
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3.3 Traffic in Access and Core Networks

In [Cao et al., 2003], Internet traffic at packet level in an Internet backbone link was

analysed and the authors reported that in such a heavy traffic multiplexing environment,

the packet count process tends to a Poisson process locally, despite the observation that

packet counts have a power-lay decaying autocorrelation function at higher time scales.

The index of dispersion (variance to mean ratio) of packet counts decreases to unity.

Accordingly, the packet level temporal correlations become weak due to high multiplexing.

Their empirical study shows that the distribution of packet interarrival times converges to

a negative exponential distribution leading to a Poisson packet count process as the load

increases. Thus, the multiplexing gains (smoothness of traffic) are eventually observed in a

backbone core networks which one does not observe in Internet traffic within an access

network.

According to [Floyd & Paxson, 2001], in an access network, the packet count process has

strong autocorrelations. But the increased level of multiplexing as the traffic traverses to a

backbone core network weakens its autocorrelation, making packet counts uncorrelated

in the backbone core network. Also in [Zhang et al., 2003], sub-second (1ms - 100ms)

scaling behaviour of Internet backbone packet level traffic has been reported to be nearly

uncorrelated (that is, the scaling exponent is close to 0.5). In [Karagiannis et al., 2004b],

packet traffic from two Internet backbone links, that is, from an OC48 (2.5Gbps) and a

Trans-Pacific link (100Mbps), was analysed and packet interarrival times were reported to

be exponentially distributed despite the fact that the two backbone links have significantly

different bandwidth.

On the other hand, in [Jiang & Dovrolis, 2005] the packet traffic in an OC48 link has

been examined and found to be more bursty1 when compared to a Poisson process at

sub-RTT (Round Trip Time) scales. Hence, the Internet backbone level packet traffic has

been reported to be both bursty and smooth at fine time scales.

In [Feldmann, 2002], 10 different traffic traces (belonging to Ethernet access networks)

have been analysed and the Weibull distribution (with shape parameters less than 1) was

found to provide a best fit to the interarrival time distribution of TCP connections. It has

been reported that 50% of the individual user’s HTTP request interarrival times have Weibull

shape parameters less than 0.65, which implies the presence of heavy-tails in individual

user’s HTTP request interarrival process. They have also reported the much better (than the

1See definition of burstiness in Section 5.2.
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HTTP request interarrival time process of individual users) fit of the Weibull distribution in

the case of the pooled or superposed HTTP request interarrival times. Thus, modelling the

pooled or superposed HTTP request interarrival times with Weibull distributions (shape

parameter less than one) preserves the inherent burstiness of the HTTP arrival count process

in access network’s aggregated traffic.

In [Jusak & Harris, 2011, 2012], UDP traffic from various Internet backbone core networks

(Trans Pacific backbone links1) was captured and investigated at packet and byte count

levels. Based on a wavelet based multiple time scale analysis of higher moments (skewness

and kurtosis), it has been reported that the marginal distribution of packet and byte

counts is non-Gaussian at fine time scales. The scaling properties of UDP traffic have also

been investigated and packet and byte counts of UDP traffic were found to be long-range

dependent.

3.4 Superposition of Fractal Renewal Processes

This section is concerned with the theory related to the Internet traffic arriving at interfaces

of access and ISP core networks. In access networks, the traffic has been reported to be

both bursty and correlated, with the distribution of underlying interarrival times being

heavy-tailed [Floyd & Paxson, 2001]. In renewal theory, there exist many statistical results

addressing the convergence of the superposition of non-heavy-tailed point processes but

few have addressed the case when the component streams have heavy-tailed interarrival

times, as in this case the superposed point process may not even be renewal [Çinlar, 1972;

Cox & Smith, 1954; Mitov & Yanev, 2006].

3.4.1 Pareto Superposition Model

The superposition of fractal renewal processes, that is, renewal processes with heavy-tailed

interarrival times (0 < α 6 2), is important for modelling distributional convergence of

interarrival times in Internet access network traffic. It is analytically difficult to generalise

the Poisson distribution approximation result if the renewal sequences taking part in the

superposition process have heavy-tailed interarrival times. In such a case, the superposed

process is not renewal. Nevertheless, appropriate approximations can be made based

1http://mawi.wide.ad.jp/mawi/

http://mawi.wide.ad.jp/mawi/
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on renewal processes having heavy-tailed interarrival time distributions. Such renewal

processes can generate counts which are highly correlated and long-range dependent

[Greiner et al., 1999]. Section 3.5 shows the goodness-of-fit capabilities of various heavy-

tailed renewal processes for packet, flow and session interarrival times in various access

and ISP core networks.

Assume that there are various component streams which represent individual users. On

the basis of the analysis in Section 3.2, the interarrival times characterizing behaviour of

a user at packet, flow and session levels can be modelled by heavy-tailed distributions.

There are two possible cases for distribution of interarrival times in component streams

representing users. Namely, the one with an infinite mean of it’s interarrival times and the

other with finite mean but infinite variance of it’s interarrival times, that is, for 0 < α 6 1
and 1 < α 6 2, respectively.

3.4.1.1 Case I: Infinite Mean and Infinite Variance

In [Mitov & Yanev, 2006], an approximation has been proposed for the case where compo-

nent streams consist of a renewal process based on heavy-tailed interarrival time distribution

with infinite mean and infinite variance, that is, for the tail index range 0 < α 6 1. In

renewal theory, backward (or forward) recurrence time is defined as time measured from a

random point in time to the immediately preceding (or next) event. Mitov showed that the

distribution of backward and forward recurrence times in such a superposition converges

asymptotically to the heavy-tailed Weibull distribution.

The following theorem is due to [Mitov & Yanev, 2006]:

Theorem 3 If Rn(t) denotes the forward or backward recurrence times resulting from the
superposition of n homogeneous and independent renewal streams with infinite mean and
infinite variance, then the distribution of recurrence times is given as

lim
n→∞,t→∞

P[Rn(t) 6 y] = 1− e−C sin πα
π(1−α)

y1−α

, y > 0, (3.2)

provided that n → ∞ and t → ∞ simultaneously, and nt−(1−alpha) → C. Here C is a finite
constant, that is, 0 < C < ∞.

Equation 3.2 can be compared with a cumulative distribution function of the alternate

parametrization of the Weibull distribution, which can be obtained from Equation 2.25
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as

FY(y) = 1− e−λyc
, y > 0, (3.3)

where λ is the scale parameter and c is the shape parameter. Comparing the above

two equations gives the expressions for scale and shape parameter of recurrence times

(backward and forward) in the superposed output as

λ = C
sin πα

π(1− α)
, (3.4)

and

c = 1− α. (3.5)

In [Mitov & Yanev, 2006], it has been concluded that the heavy-tailed Weibull distributions

can be used as an approximation for the superposed interarrival times in the case when

component streams have infinite mean and infinite variance. It is defined in [Gusella, 1991]

that the backward recurrence times can be used as interarrival times for packets, provided

that the processing time of the previous packet is included in the interarrival time.

The unique feature of Mitov’s approximation is that here t→ ∞ and n→ ∞ simultaneously.

Here we conduct a non-asymptotic empirical analysis of the Mitov’s approximation. For

various values of the heavy-tail index α, the superposition experiment has been conducted

using the methodology described in Section 2.6.1; see Figure 2.5. Figure 3.2 shows the

results of Mitov’s Weibull approximation in the case of finite superposition of heavy-tailed

streams, representing user traffic. The Weibull shape parameters are estimated by using the

maximum likelihood estimation method, as described in Section 2.5.2. The 95% confidence

intervals of the estimated shape parameters are calculated on the basis of 1000 independent

replications. It should be noted that maximum likelihood estimators are asymptotically

normal [Rinne, 2008]. One can see that if the number of the homogeneous component

streams is finite and have tail index less than or equal to 0.5, then shape parameter of

superposed interarrival times tends to the exact value 1− α, as formulated by Mitov’s

approximation. For component streams having the tail index greater than 0.5, the shape

parameter of interarrival times in superposed output tends to the Mitov’s predicted value

1− α, for an asymptotically large number of component streams.
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For Internet traffic modelling, we are concerned with finite (but large, of course) number

of traffic streams in a finite interval of time, therefore, in general, we propose to use the

heavy-tailed Weibull distributions for modelling interarrival times in Internet traffic which

can be regarded as a mixture of heavy-tailed interarrival times of packets, flows and sessions

originating from various users in a finite time.
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Figure 3.2: Case 0 < α ≤ 1 : Effect of the superposition of streams with Pareto distributed
heavy-tailed interarrival times on Weibull shape parameter.
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Figure 3.2: (Continued) Case 0 < α ≤ 1 : Effect of the superposition of streams with Pareto
distributed heavy-tailed interarrival times on Weibull shape parameter.
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3.4.1.2 Case II: Finite Mean and Infinite Variance

To the best of our knowledge, no distributional approximation for interarrival times in

the superposed output has been proposed if the component streams have finite mean but

infinite variance, that is, for the tail index range of 1 < α 6 2.

Assume N homogeneous renewal processes based on interarrival time distribution with

finite mean and infinite variance. Examples of such renewal processes are Pareto renewal

processes with tail index in the range 1 < α 6 2. Here we assume a Pareto renewal process

based on the Pareto type II distribution because, unlike Pareto type I, it has support on zero.

The distribution of superposed interarrival times must have a support on zero, even if we

superpose only two renewal processes having all moments infinite.

Let Y be a random variable representing interarrival times. Let H(y) be the cumulative

distribution function of interarrival times Y. The complementary cumulative distribution

function of the Pareto type II distribution (see Section 2.5.1) can be written as

1− H(y) = Kα(y + K)−α, (3.6)

where K is the normalization constant and 1 < α 6 2 is the heavy-tail index of component

streams’ interarrival times which has the finite mean µ given as

µ =
K

α− 1
. (3.7)

The complementary cumulative distribution function of the superposed interarrival times

resulting from superposition of N independent renewal processes can be obtained from

Equation 2.32 as

1− F(y) = (1− H(y))
{ ∫ ∞

y

(1− H(x))
µ

dx
}N−1

, (3.8)

where F(y) denotes the cumulative distribution function of superposed interarrival times.

Substituting Equations 3.6 and 3.7 in Equation 3.8, we get the CCDF of the superposed

interarrival time as

1− F(y) = K(α−1)N+1(y + K)−[(α−1)N+1], y > 0, (3.9)
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[Jackson, 2004]. The above equation perfectly matches with Equation 3.6. Therefore, it

can be concluded that the superposition of N independent Pareto renewal processes in

equilibrium produces interarrival times with a marginal distribution that is also Pareto with

tail index

α? = (α− 1)N + 1, (3.10)

and normalization constant as

K? = K. (3.11)

Therefore, the probability density function of the superposed interarrival times can be

written as

fY(y) = α?(K?)α?(y + K?)−α?−1, (3.12)

where α? = (α− 1)N + 1 and K? = K. The equilibrium mean of the interarrival times in

the superposed output is given as

µ? =
K?

α? − 1
. (3.13)

Substituting α? = (α− 1)N + 1 and K? = K, we get

µ? =
K

(α− 1)N
. (3.14)

We call Equation 3.12 the superposed Pareto II model for the superposed interarrival times.

We outline the properties of this model as follows:

• The marginal distribution of the superposed interarrival times is Pareto type II.

• The superposed output is non-renewal and cannot be fully characterized by Equation

3.12.

• For N < 1/(α− 1), the interarrival times in the superposed output will have infinite

variance and, therefore, will generate counts which are long-range dependent. For

N > 1/(α − 1), the interarrival times in the superposed output will have finite

variance, hence the resulting counts will not exhibit long-range dependence.
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Figure 3.3: Interarrival time densities resulting from the superposition of Pareto renewal
streams for K = 0.001.
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Figure 3.4: Interarrival time densities resulting from the superposition of Pareto renewal
streams for K = 1.
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• Figures 3.3 and 3.4 show that as the number of components in the superposition

increases the tail of interarrival time distribution decays accordingly. For higher K
and lower α, the rate of tail decay is slower.

The behaviour of the empirical mean (calculating the mean of the superposed interarrival

times, following the superposition algorithm in Section 2.6) and equilibrium mean (as given

in Equation 3.14) resulting from the superposition of the Pareto type II renewal processes

has been shown in Figure 3.5. Two possible cases can be considered regarding the length of

superposed output in the case of empirical superposition; namely, the fixed sample case and

the proportionate sample case. In the fixed sample case, the size of all superposed outputs is

set fixed and equal to the length of one component stream (here ten thousand interarrival

times) and the rest of the interarrival time data is truncated. Whereas, in the proportionate
sample case, the size of every superposed output is assessed in full. It can be observed that

the empirical mean is smoother in the fixed sample case as compared with the proportionate

sample case. In both cases, it can be seen that as the value of tail index α of the component

streams increases beyond 1.1, the empirical mean gets closer to the equilibrium mean. This

has implications for applying the superposed Pareto type II model as an arrival process in

queueing simulations of networks. The tail index α of component streams should be higher

than 1.3 to reflect the fact that the mean of the interarrival time of the superposed output

remains close enough to the equilibrium mean. Moreover, for the number N of component

streams, N = 200 appears to be an optimal value between the lower and upper empirical

limits on the number of component streams. We justify this as follows:

• As traffic intensity increases, the probability mass of interarrival times (especially

in the case of packet interarrival times) tends to zero. As shown in Figures 3.3 and

3.4, N = 200 component streams are enough to reach a probability mass near zero,

irrespective of the value of the normalization constant K.

• The plots in Figure 3.5 show that for any value of α of component streams, as N
increases the deviation of the empirical superposition mean and equilibrium mean

increases. For α > 1.5, an acceptable closeness of empirical mean and equilibrium

mean can be observed for N 6 200.

The queueing delay analysis of the superposed Pareto II model versus various traffic traces

has been conducted in Section 3.6.
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Figure 3.5: Empirical mean v.s. equilibrium mean of the superposed interarrival times
obtained from the superposition of Pareto renewal streams. Blue colour lines (smooth
curves) represent equilibrium mean; and, red colour lines (non-smooth) represent mean
obtained from empirical superposition of Pareto type II streams.

3.4.2 Weibull Superposition Model

The Weibull distribution, for any value of the shape parameter, has all the moments finite.

This means that even in the heavy-tail region (shape parameter less than one), Weibull

renewal process has interarrival times whose mean and variance are finite. Therefore, for

the superposition of Weibull renewal streams, Cox’s formula in Equation 3.8 is applicable,

and the probability density function of superposed interarrival times fY(y) can be written

as

fY(y) = −
d

dy

[
(1− H(y))

{ ∫ ∞

y

(1− H(x))
µ

dx
}N−1]

. (3.15)

Here H(y) represents the cumulative distribution function of the component streams’

interarrival times, which we suppose to be Weibull distributed being given as

1− H(y) = e−(
y
b )

c

, y > 0, (3.16)
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Figure 3.6: Interarrival time densities resulting from superposition of Weibull renewal
streams.
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where b is the scale parameter and c is the shape parameter of the component streams’

interarrival times which have finite mean µ given as

µ = bΓ(1 + 1/c). (3.17)

Substituting Equations 3.16 and 3.17 in Equation 3.15, and after simple differentiation and

integration, we get the probability density function of the superposed interarrival times

fY(y) as

fY(y) = e−2( y
b )

c

∫ ∞

y

e−(
x
b )

c

bΓ
(

1 + 1
c

) dx

N−2
 N − 1

bΓ
(

1 + 1
c

) +
e(

y
b )

c

c
( y

b
)c ∫ ∞

y
e−(

x
b )

c

bΓ(1+ 1
c )

dx

y

 .

(3.18)

The interarrival time densities resulting from the superposition of Weibull streams are

shown in Figure 3.6. An interesting observation is that for lower values of the Weibull

shape parameter c of component streams, the densities of superposed interarrival times do

not change significantly and remain close to each other as the number of components in

superposition increases. We attribute this phenomena as a generalisation of Mitov’s Weibull

approximation. This has implications for the traffic in backbone core tiers of Internet

hierarchy where the number of multiplexing “multiplexed” links are comparatively smaller.

For example, a backbone core network router multiplexes a few but heavy loaded links. That

is, the shape parameter of interarrival time density in a higher tier multiplexed backbone

link remains approximately the same as that of the interarrival times in its component

links.

We have established the underlying theory of superposition model based on heavy-tailed

Weibull renewal processes. This model can be considered as an appropriate model for traffic

in Internet backbone core networks. Nevertheless, to validate this model an analysis of

traffic belonging to Internet backbone core networks is needed.
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3.5 Modelling Interarrival Times in Access and ISP Core

Networks

In this section, we investigate the distribution of interarrival time data of sessions, outgoing

flows, incoming flows, outgoing packets and incoming packets belonging to Ethernet, DSL

and Wireless hotspot networks and their ISP core network. The data set has been described

in Section 1.7.

3.5.1 Index of Dispersion for Intervals Analysis

It seems to be natural to use renewal processes or their extensions when one is interested in

modelling of interarrival times [Cox & Smith, 1954]. Nevertheless, it is essential to test how

much the real interarrival time data under consideration deviates from renewal behaviour.

In this regard, we apply a general qualitative method based on assessment of fluctuations

in the index of dispersion for intervals (IDI) curve as described in Section 2.2. Figure 3.7

shows the IDI plots for interarrival times of various structural components of Internet traffic

(packets, flows and sessions) in various access networks and their ISP core network. For

each structural component, a trace of 26000 values is used for analysis. It should be noted

that due to the decreasing number of terms used in calculation of the variance of the sum as

the number of component interarrival times values, k, increases, the IDI curves will become

inaccurate for larger values of k. In this regard, [Gusella, 1991] suggested to use not more

than 20% of the length of original interarrival time data.

From the plots depicted in Figure 3.7, one can see that:

• In Ethernet, DSL and ISP networks, the IDI curves for session, outgoing flows, outgoing

packet and incoming packet interarrival times are almost horizontal. This means that

the IDI values do not change as k increases. Therefore, a renewal model can be used as

a good approximation. Whereas, for incoming flow interarrival times, the IDI curves

appear to be monotonically increasing. It should be noted that a stationary point

process with positive autocorrelation coefficients for interarrival times, generates

a monotonically increasing IDI curve; see [Gusella, 1991]. Therefore, a renewal

approximation may not capture all (non-renewal) characteristics of the flow arrival

process. Nevertheless, it will be noted in Chapter 4 that a renewal process with high

overdispersion can be useful for characterizing the flow arrival processes.
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• In the Wireless hotspot network, IDI curves for outgoing and incoming packet inter-

arrival times are also approximately horizontal conforming with renewal behaviour.

For session as well as outgoing and incoming flow interarrival times, the IDI curves

increase but not strictly monotonically. According to [Gusella, 1991], decreasing

patterns in IDI curves are caused by large interarrival time values which are clustered

together. This behaviour is plausible because in a Wireless hotspot network, traffic

appears to be more bursty because users of such networks have longer think times

or access patterns with less (in volume) data access as compared with user access

patterns in a corresponding wired Internet access network like DSL or Ethernet.
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Figure 3.7: Index of dispersion for interval (IDI) curves for interarrival time traffic in
Ethernet, DSL, Wireless hotspot and ISP core networks.
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3.5.2 Renewal Approximations and Goodness-of-fit Tests

Having assessed the renewal character of Internet traffic in the previous sub-section, let

us select the Weibull, exponential and log-normal distributions as candidate distributions

for modelling the interarrival times of packets, flows and sessions. The parameters of the

selected candidate distributions are evaluated from the corresponding network’s interarrival

time data using maximum likelihood estimation methods as described in Section 2.5.

3.5.2.1 CDF Plot based Goodness-of-fit Tests

The cumulative distribution functions of interarrival times of sessions, outgoing flows,

incoming flows, outgoing packets and incoming packets are examined and compared with

the candidate distributions in Figures 3.8, 3.9, 3.10 and 3.11. In all of the cases a good

fit of the Weibull distribution with shape parameter less than one is evident in modelling

both body and tail parts of interarrival time distribution. The exponential distribution does

keep a good track of the body of interarrival time distributions of Internet traffic but, due

to fast tail decay, it cannot model the tail part of the session-,flow- and packet interarrival

time distributions. Although the log-normal distribution appears to be more heavy-tailed, it

provides a poor fit to the body part of the distribution of interarrival times.

Let us further assess the CDF goodness-of-fit plots for the interarrival time data of packets,

flows and sessions in various access and ISP core networks in Figures 3.8, 3.9, 3.10 and

3.11 in conjunction with their corresponding index of dispersion for interval plots in Figure

3.7.

Traffic in the Ethernet network has the largest volume as compared to the traffic in the DSL

and Wireless hotspot networks; see Table 1.1. The IDI curves for the traffic in Ethernet

network (1st column in Figure 3.7) show that, except for incoming flow interarrival

times, all other structural components of Internet traffic have approximately horizontal

IDI, confirming a near-renewal character. Figure 3.8 shows goodness of fit of various

statistical distributions to the Ethernet traffic. For sessions, outgoing flows and outgoing

packets, a heavy-tailed Weibull distribution provides the best fit. The IDI curve for Ethernet

incoming flow interarrival times shows a non-renewal behaviour; see Figure 3.7. Figure

3.8 shows that in the case of incoming flow interarrival times, both heavy-tailed Weibull

and exponential models provide a good fit to this non-renewal interarrival time data.

Nevertheless, as noted earlier the IDI curves can be inaccurate for increasing values of k.
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Therefore, additional tests based on index of dispersion for counts and the autocorrelation

function also needs to be applied to our traffic data in order to have a conclusive evidence

for the suitability of renewal approximations. In Chapter 5, we shall see that for incoming

flow arrivals, the index of dispersion for counts curve is approximately horizontal and

that the autocorrelation function decays rapidly. Hence, a renewal approximation can be

applied to incoming flow interarrival time data. A similar reasoning applies for the fitness

of renewal models to the DSL and the ISP core network interarrival time data obtained

from our traffic traces.

In the case of the Wireless hotspot network, only packet interarrival time data has ap-

proximately straight IDI curves. For session and flow interarrival time data, IDI curves

are monotonically increasing with decreasing patterns as well. Nevertheless, we shall see

in Chapter 5 that these structural components have approximately horizontal index of

dispersion for count curves and fast decaying autocorrelation functions at fine time scales.

Therefore, renewal approximations can be applied without a significant loss in capturing

traffic characteristics.
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Figure 3.8: Interarrival times in an Ethernet network (Continued).
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Figure 3.8: Interarrival times in an Ethernet network (Continued).
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Figure 3.8: Interarrival times in an Ethernet network.
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Figure 3.9: Interarrival times in a DSL network (Continued).
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Figure 3.9: Interarrival times in a DSL network (Continued).
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Figure 3.9: Interarrival times in a DSL network.
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Figure 3.10: Interarrival times in a Wireless hotspot network (Continued).
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Figure 3.10: Interarrival times in a Wireless hotspot network (Continued).
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Figure 3.10: Interarrival times in a Wireless hotspot network.
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Figure 3.11: Interarrival times in ISP core network (Continued).
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Figure 3.11: Interarrival times in ISP core network (Continued).
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Figure 3.11: Interarrival times in ISP core network.

3.5.2.2 Kolmogorov-Smirnov and Quantile Matching Tests

Kolmogorov-Smirnov (KS) goodness-of-fit test is based on the maximum difference between

empirical CDF of data and CDF of fitted distribution. Another test to assess the fitness

of data is based on difference between quantiles of actual data and data from proposed

distribution. We call this the quantile matching (QM) test. In the QM test, we evaluate the

mean of the mean of the absolute differences between data quantiles and 1000 replications

of candidate distribution quantiles.

For KS and QM tests, we use a subset of every traffic trace, that is, 26000 interarrival times

values. For full interarrival data sets, we have obtained similar results, but p-values (the

observed significance level) for KS tests have been negligibly small (which is obvious due

to having larger data sets). Tables 3.1, 3.2, 3.3, 3.4 and 3.5 show the results from the

Kolmogorov-Smirnov tests and quantile matching tests. It can be seen that the Kolmogorov-

Smirnov goodness-of-fit test statistics show a better closeness of the heavy-tailed Weibull

distribution to the interarrival time data of sessions, flows and packets, as compared

to the exponential and log-normal distributions. The quantile matching (QM) test also
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supports the better fit of the heavy-tailed Weibull distribution for modelling interarrival

time data.

Table 3.1: Goodness-of-fit tests for session interarrival times

Kolmogorov-Smirnov test-statistic Quantile matching test
(p-value) (mean absolute quantile difference)

Access network Weibull Exponential Log-normal Weibull Exponential Log-normal

Ethernet 0.0295 0.0785 0.1108 0.3×10−3 0.6×10−3 6.7×10−3

(0.0615) (3.9× 10−11) (< 2.2× 10−16)

DSL 0.05 0.0785 0.0668 0.23×10−3 0.79×10−3 3.4×10−3

(9× 10−5) (3.94× 10−11) (3.63× 10−8)

Wireless hotspot 0.0402 0.1685 0.1068 4×10−3 6.8×10−3 74.5×10−3

(0.003) (< 2.2× 10−16) (< 2.2× 10−16)

ISP core network 0.0255 0.0475 0.0968 7.14×10−5 20.4×10−5 180×10−5

(0.1483) (0.00024) (< 2.2× 10−16)

Table 3.2: Goodness-of-fit tests for outgoing flow interarrival times

Kolmogorov-Smirnov test-statistic Quantile matching test
(p-value) (mean absolute quantile difference)

Access network Weibull Exponential Log-normal Weibull Exponential Log-normal

Ethernet 0.0235 0.1068 0.0982 7.89×10−5 20.6×10−5 15.9×10−3

(0.2193) (< 2.2× 10−16) (< 2.2× 10−16)

DSL 0.0402 0.0748 0.086 2.57×10−5 34.5×10−5 1.46×10−3

(0.003) (3.93× 10−10) (2.83× 10−13)

Wireless hotspot 0.057 0.198 0.122 3.5×10−3 4.9×10−3 68.7×10−3

(4.5× 10−6) (< 2.2× 10−16) (< 2.2× 10−16)

ISP core network 0.0198 0.0703 0.0908 3.09×10−5 6.74×10−5 61.4×10−5

(0.4163) (5.34× 10−9) (9.8× 10−15)
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Table 3.3: Goodness-of-fit tests for incoming flow interarrival times

Kolmogorov-Smirnov test-statistic Quantile matching test
(p-value) (mean absolute quantile difference)

Access network Weibull Exponential Log-normal Weibull Exponential Log-normal

Ethernet 0.0112 0.0372 0.083 4.62×10−5 10.7×10−5 90.5×10−5

(0.9619) (0.00777) (2.5× 10−12)

DSL 0.0318 0.1188 0.0522 0.37×10−3 1.4×10−3 6.7×10−3

(0.03547) (< 2.2× 10−16) (3.6× 10−5)

Wireless hotspot 0.0368 0.03 0.1132 0.5×10−3 2.4×10−3 45.5×10−3

(0.009) (0.05465) (< 2.2× 10−16)

ISP core network 0.015 0.0372 0.0892 2.97×10−5 6.98×10−5 67.2×10−5

(0.7591) (0.0077) (2.9× 10−14)

Table 3.4: Goodness-of-fit tests for outgoing packet interarrival times

Kolmogorov-Smirnov test-statistic Quantile matching test
(p-value) (mean absolute quantile difference)

Access network Weibull Exponential Log-normal Weibull Exponential Log-normal

Ethernet 0.0378 0.139 0.0745 0.56×10−5 1.29×10−5 5.43×10−5

(0.0067) (< 2.2× 10−16) (4.5× 10−10)

DSL 0.0555 0.0858 0.1205 1.3×10−5 1.29×10−5 13.1×10−5

(8.9× 10−6) (3.3× 10−13) (< 2.2× 10−16)

Wireless hotspot 0.0438 0.0755 0.1275 5.8×10−5 3.4×10−5 69.5×10−5

(0.00094) (2.5× 10−10) (< 2.2× 10−16)

ISP core network 0.0332 0.0965 0.0752 2.2×10−6 6.02×10−6 22.9×10−6

(0.02401) (< 2.2× 10−16) (2.9× 10−10)

Table 3.5: Goodness-of-fit tests for incoming packet interarrival times

Kolmogorov-Smirnov test-statistic Quantile matching test
(p-value) (mean absolute quantile difference)

Access network Weibull Exponential Log-normal Weibull Exponential Log-normal

Ethernet 0.1212 0.172 0.1468 5.32×10−6 9.6×10−6 12.6×10−6

(< 2.2× 10−16) (< 2.2× 10−16) (< 2.2× 10−16)

DSL 0.1358 0.2055 0.1138 1.19×10−5 2.56×10−5 1.97×10−5

(< 2.2× 10−16) (< 2.2× 10−16) (< 2.2× 10−16)

Wireless hotspot 0.0842 0.205 0.096 3.7×10−5 8.69×10−5 30×10−5

(9.3× 10−13) (< 2.2× 10−16) (< 2.2× 10−16)

ISP core network 0.1025 0.1395 0.126 3.49×10−6 4.6×10−6 7.12×10−6

(< 2.2× 10−16) (< 2.2× 10−16) (< 2.2× 10−16)
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Table 3.6: Weibull shape parameter of packet, flow and session interarrival times

Weibull shape parameter (interarrival times)

Access networks Sessions Outgoing flows Incoming flows Outgoing packets Incoming packets

Ethernet 0.74 0.69 0.8 0.75 0.8
DSL 0.79 0.8 0.93 0.77 0.8
Wireless hotspot 0.59 0.56 0.88 0.76 0.67

ISP core network 0.8 0.78 0.8 0.8 0.6

3.5.3 A Discussion on the Weibull Renewal Approximation

Table 3.6 presents a summary of results obtained for the Weibull shape parameter of the

interarrival times for sessions, flows and packets belonging to the access and ISP core

networks that we have investigated in the previous subsections. In general, one can see

that the Weibull shape parameter of interarrival times increases as traffic moves from the

access network to the ISP core network. Also, it can be observed that the interarrival

times of structural components of Internet traffic in the Wireless hotspot network have

comparatively smaller values of the Weibull shape parameter. Sometimes it is interesting

to infer the knowledge of underlying access media from an anonymous traffic trace. This

is an open research problem; see [Ridoux et al., 2006], for example. In our case, unless

we assess more traffic from other Wireless hotspot networks, it is difficult to establish that

lower values of the Weibull shape parameter can act as a signature of traffic in Wireless

hotspot network.

The heavy-tailed Weibull distributions have both analytical [Mitov & Yanev, 2006], and

empirical superiority over other continuous distributions for modelling interarrival times as

shown in previous subsections. The renewal processes based on Weibull distributions also

have the following attractive features:

• Weibull distribution is flexible in modelling as its probability density function can

assume a variety of shapes.

• As the value of the shape parameter decreases the probability of values in its body

part (lower values) and tail part (higher values or extremes) increases, making data

more bursty.

• Weibull distributions includes the exponential distribution as a special case. For the

Weibull shape parameter equal to 1, the Weibull distribution becomes exponential.

Furthermore, if X is Weibull distributed with shape parameter c, then Xc is exponen-
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tially distributed. For example, the Weibull random variables with shape parameter

equal to 0.5 are the squares of the unit exponential random variables.

• The Weibull distribution falls under the class of minimum stable distributions [Rinne,

2008]. If Xi are Weibull distributed random variables with shape parameter c, then the

distribution of their minimum converges to Weibull as: n1/c min{X1, X2, · · · , Xn} →
X.

• A Taylor series based count model corresponding to the Weibull interarrival times has

been recently formulated by [McShane et al., 2008]. Thus, Weibull continuous variates

have an analytically tractable discrete counting counterpart, similar to exponential

ones which have the Poisson distribution as a counting counterpart.

• According to [Gurland & Sethuraman, 1995], under certain conditions, the super-

position of component streams with Weibull distributed interarrival times with all

component streams having c < 1 or all component streams having c > 1 can result in

Weibull distributed interarrival times with c < 1.

Therefore, a wide variety of superposition data, including Internet traffic data, can be

modelled by renewal processes based on heavy-tailed Weibull interarrival times. Here,

we also present our plausible explanation of why session and flow level interarrival time

data have distributions close to the heavy-tailed Weibull distributions. Namely, most of

the content of the Internet is web based and users generally access web pages to retrieve

desired information. The web pages can be classified as interesting and non-interesting

for a user. The interesting web pages result in long think times, whereas non-interesting

web pages are quickly closed, resulting in short think times. Therefore, the think time data

has both higher and smaller values with high probabilities, which is consistent with the

interarrival times generated by a heavy-tailed Weibull renewal process. The pooling or

superposition of such interarrival time data retains the marginal heavy-tailed distribution

of interarrival times. This is one possible explanation why heavy-tailed Weibull renewal

processes can be good approximations in a wide variety of Internet traffic multiplexing

environments, for example in access and ISP core networks.

3.5.3.1 On the Cox Character of Weibull Renewal Processes

A Poisson process with stochastic intensity is called a doubly stochastic Poisson process or

a Cox process. In Internet traffic data, the intensity or load levels varies across the whole

traffic trace, and estimating an average intensity will miss significant modelling information
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rendering a traffic model based on a homogeneous Poisson process as inaccurate. Making

the intensity as a stochastic variable in itself does make the resulting process close to the real

Internet traffic. But the models based on stochastic intensity (such as Markov Modulated

Poisson Processes including, for example, the Switched Poisson Process and the Interrupted

Poisson Process) are complex because they require many states and parametrization [Mallor

et al., 2007]. Heavy-tailed Weibull renewal processes can be used a simple alternative to

such models having stochastic intensity. In [Yannaros, 1994], it has been shown that the

heavy-tailed Weibull renewal processes satisfy the conditions of the Cox processes, and

proved the following theorems:

Theorem 4 The Weibull renewal process is a Cox process if and only if it shape parameter c
satisfies 0 < c 6 1. For the case c > 1, the Weibull renewal process is not a Cox process.

Theorem 5 For the shape parameter range 0 < c 6 1, the Weibull distribution generates
interarrival times whose counting distribution is overdispersed, that is, it has variance greater
than the mean.

Thus, the Weibull renewal process with shape parameter less than or equal to 1, being

a Cox process, is a better modelling tool. It has non-Poisson properties and can model

irregular and overdispersed count data. As we have seen in Figures 3.8, 3.9, 3.10 and 3.11

that interarrival times of packets, flows and sessions fit well to the Weibull distribution with

shape parameter c < 1, and their corresponding counts are overdispersed (see Chapter

4 and 5), therefore, we recommend to use renewal processes based on the heavy-tailed

Weibull distribution for modelling interarrival times of the structural components of Internet

traffic.

3.6 Queueing Delay Performance of Interarrival Time Mod-

els

We have considered fitness of various interarrival time models for modelling Internet traffic

at packet, flow and session levels. These include renewal processes based on the Weibull,

log-normal and exponential distribution of interarrival times. The objective of this section

is to examine the validity of these renewal models and a superposed Pareto II model (non-

renewal model proposed in Section 3.4.1.2 as Equation 3.9) with respect to the packet level

outgoing traffic in various queueing situations. The performance metric under consideration
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is mean waiting time for a packet in a queue which includes its queueing time and service

time.

There is an upper limit on packet sizes due to the maximum transmission unit (MTU) of the

underlying access media. Packet sizes are usually closer to that limit. This implies smaller

variation in packet sizes and, therefore, in packet service times. Therefore, for simulating

a queue with a real packet trace driven input and the corresponding model driven input,

the service times can be assumed to be either deterministic or exponentially distributed.

Moreover, the packet buffers in switches or routers of access networks are quite large as

compared to the buffers in the routers of Internet backbone core networks [Lakshmikantha

et al., 2011; Wischik & McKeown, 2005]. Here we are interested in simulating queues of

the access networks (DSL, Ethernet, Wireless hotspot) and the ISP core network, therefore,

we assume infinite buffer sizes (or queue lengths) while simulating queues of the access

networks under our consideration.

We conducted the outgoing packet level queueing simulations in R1. First, we simulated

queues with exponential service times for every access network under our consideration.

The mean interarrival times of the outgoing packets in the Ethernet, DSL, Wireless hotspot

and ISP core network were 0.065, 0.12, 0.4 and 0.039 milliseconds, respectively. We

injected these packet traces into queues representing the DSL, Ethernet, Wireless hotspot

and ISP core networks under low (0.2), medium (0.5) and high utilization (0.8), and

calcualted the mean waiting time for a packet as the sum of its queueing time and service

time. Then, we replaced the traffic traces by artificial traffic genereated according to the

models we considered and calculated the corresponding mean waiting times of packets

again. The artificial traffic models were represented by renewal processes based on the

Weibull, exponential, log-normal interarrival times and superposed Pareto II process (non-

renewal). Each simulated case was repeated 1000 times. The mean waiting times along

with its 95% confidence intervals are reported in Figures 3.12-3.14 (top section) for every

case we considered. The parameters of the renewal processes were evaluated from the

corresponding traffic traces by applying the corresponding maximum likelihood methods

on the packet interarrival time data of each network under our consideration; see Section

2.5 for the description of the MLE methods. The evaluated MLE estimates of the renewal

models considered can be seen in part (d) of Figures 3.8-3.11. Superposed Pareto II is a

non-renewal process with interarrival times governed by the complementary cumulative

distribution function given in Equation 3.9. It is specified by the number of homogeneous

1www.r-project.org

www.r-project.org
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component streams N, the value of tail index α, and the normalization constant K of

interarrival times in component streams. Following Section 3.4.1.2, we set N = 200. One

can see that the superposed Pareto II arrival process is more sensitive to the variations in α,

as compared to N. For networks with large traffic volumes (Ethernet and ISP core network),

a higher value of α is required for component streams. The experimental range for heavy-

tail indices of outgoing packet interarrival times in every Pareto component stream of our

simulations was 1.5 6 α 6 2.5. The normalization constant K for every component stream

was set to N times the mean interarrival time of traffic in the corresponding network.

Apart from considering exponential service times, we also conducted the same simulations,

as described above, under deterministic service times in the case of low (0.2), medium

(0.5) and high utilization (0.8). As before, each simulation run was repeated 1000 times,

and the mean waiting times with corresponding 95% confidence intervals are reported in

Figures 3.12-3.14 (bottom section).

Our two queueing scenarios can be treated as cases of GI/M/1 and GI/D/1 queues. Before

discussing the queue waiting time results, it is important to mention that the outgoing packet

arrival process is not exactly renewal. Nevertheless, the index of dispersion for intervals

curves for the outgoing packet traffic in all networks, under our consideration, shown in

Figure 3.7 are almost horizontal, implying that the arrival process can be approximated by

a renewal process. For the traffic traces under our consideration, we present a discussion of

queueing delay results as depicted in Figures 3.12, 3.13 and 3.14.

• For both exponential and deterministic server queueing cases, renewal processes

based on exponential interarrival times perform the worst in capturing packet delay

characteristics exhibited by traffic traces. This is plausible because exponential distri-

bution cannot capture bursty interarrival time data having long and small interarrival

times. Internet traffic is essentially a superposition of arrival processes from various

users. Exponential distribution can be used to approximate the superposed arrival

process. But according to [Albin, 1982], the quality of exponential approximation as

an arrival process to a queue decreases under high utilization.

• It can be observed that under low and medium utilization, the arrival processes based

on log-normal interarrival times outperform other renewal processes based on heavy-

tailed Weibull and exponential interarrival times in capturing delay characteristics

of the traffic traces. In the case of high utilization, the performance of log-normal

renewal model decreases except for the case of the DSL network with deterministic

service time.
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• Among other renewal approximations (log-normal and exponential), the heavy-tailed

Weibull renewal process performs best in keeping track of waiting times experienced

by traffic traces under high utilization in case of exponetial service times. Whereas

under the same utilization, the Weibull and log-normal perform similar in case of

deterministic service times.

• Superposed Pareto II model, being a non-renewal process, performs the best in

capturing delay characteristics of all traffic traces. This model can also capture global

and local scaling properties of Internet traffic under the condition that variance

of superposed interarrival times remains infinite. We discuss scaling properties of

superposed Pareto II model in Chapter 5. It should be noted that this model is less

parsimonious than its renewal counterparts because it requires more parameters, that

is N, α and K. Based on the type of network and traffic load, an initial guess of N
and α for the component streams is also required.

Since it is better to overprovision buffers or queues in the Internet access networks, the

models producing large delays can be considered safer. It can be seen from plots in Figures

3.12, 3.13 and 3.14 that among the renewal processes under consideration, the renewal

processes based on heavy-tailed Weibull and log-normal interarrival times perform better

overall when all queueing scenarios are considered together.

For the traffic traces under our consideration, we can make the following conclusions:

• For modelling queueing delay, superposed Pareto II is the best model. However, it is a

non-renewal model which is less parsimonious than its renewal counterparts, both in

terms of the number of parameters and their estimation.

• Among renewal models the log-normal model performs the best in all cases, except

the case of queues with high utilization.

• In the case of queues with high utilization, Weibull renewal model appears to be

more close to the average packet delay experienced by packets from the traffic traces.

Weibull renewal model has an additional advantage that, among all renewal models

under consideration, it offers the closest data fit to the interarrival times of the packets

originating from the networks under our consideration (see Section 3.5).
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Figure 3.12: Queueing delay analysis for utilization 0.2
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Figure 3.13: Queueing delay analysis for utilization 0.5
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Figure 3.14: Queueing delay analysis for utilization 0.8
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3.7 Summary of the Chapter

Internet traffic is the superposition of various heterogeneous traffic streams, hence non-

renewal. Nevertheless, approximating Internet traffic by appropriate renewal processes

can offer many advantages. The main advantage being that renewal processes specify

the distribution of interarrival times. The analysis of interarrival times is one of the most

fundamental aspects of Internet traffic modelling and performance evaluation studies.

Internet traffic at packet, flow and session levels has non-renewal characteristics due

to dependencies between interarrival times resulting from superposition of traffic from

various users. For modelling traffic belonging to individual users, renewal processes

based on Pareto type II distributions satisfy most of the assumptions regarding user access

patterns. Superposition of Pareto renewal streams results in a non-renewal process, the

properties of which we have described. In order to model aggregate traffic in access and

ISP core networks, fractal renewal processes based on heavy-tailed Weibull distributions

are proposed. For heavy multiplexing environments like Internet backbone core networks,

a multiplexed heavy-tailed Weibull model can be used. We have developed the underlying

theory for a model based on multiplexed heavy-tailed Weibull renewal processes. It needs

further validation using traffic traces belonging to Internet backbone core networks.

We have also performed an index of dispersion for intervals analysis to assess how much

Internet traffic at packet, flow and session levels depart from renewal behaviour. We have

found that in most of the cases, approximating non-renewal Internet traffic by renewal

processes will not lead to a significant loss of information.

In short, the framework based on fractal renewal processes has a great potential in modelling

Internet traffic. We have assessed the goodness-of-fit capabilities of exponential, log-normal

and heavy-tailed Weibull renewal processes and found that the renewal processes based

on heavy-tailed Weibull interarrival time distributions provide a good fit to the interarrival

time of Internet traffic data at packet, flow and session levels. Heavy-tailed Weibull renewal

and log-normal renewal processes also offer better overall queueing results with regard

to different queueing scenarios. The superposed Pareto II model is a non-renewal model

which can provide a similar queueing delay behaviour to that of the packet level traffic. This

model is less parsimonious than the renewal models in terms of the number of parameters

used for its specification.
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Chapter 4

Count Models for Internet Traffic

“ In probability theory discrete problems are usually easier to handle than
continuous problems, it might be thought that the development of general
models for a discrete distribution would precede those for a continuous
distribution, but in fact the reverse seems to be the case.

”
D. J. Daley, 1980

4.1 Introduction

A count model is based on a discrete statistical distribution which models the probabilistic

behaviour of a number of events in a fixed interval of time. In case of Internet traffic mod-

elling, two aspects of a count model are important for consideration. Namely, the required

length of time interval for recording counts, and the probability mass which a model assigns

to the quantiles in body and tail (extreme values) parts of the distribution.

The statistical features of traffic counts (for example, burstiness and autocorrelation) at

coarse time scales are different from those at fine time scales. Count models for Internet

traffic data at coarse time scales are suitable for assessing strengths of temporal correla-

tions (long-range or short-range dependence) and are useful for tasks such as bandwidth

provisioning and network dimensioning. Whereas, the count models for Internet traffic

data at fine time scales are suitable for network performance modelling at switching or
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queueing levels.

It should be noted that, by definition, a count data model is used to model event counts

without recording the timing of individual events. Without doubt it can be stated that

the statistical properties of count data are inherited from the statistical properties of the

underlying interarrival time distribution [Winkelmann & Baetschmann, 2014]. Therefore,

the relation between a count model and its timing process (if it is known) can be very useful

in augmenting the capabilities of a count model.

The statistical relationship between interarrival times and counts exists in the case of Poisson

(for counts) and exponential (for interarrival times) distributions, but such a relation is

analytically difficult to establish in a closed form between other continuous and discrete

distributions. The Poisson-exponential based modelling, though analytically tractable, is not

appropriate for modelling Internet traffic data (especially in the case of access networks) as

it can be bursty and highly skewed.

The probability mass which a count model assigns to the values in the body and tail parts

of the count data distribution is important for modelling Internet traffic in different tiers of

the Internet hierarchy. A count model which assigns significantly low probabilities to the

values which are a few standard deviations away from the mean in the data distribution,

for example, Poisson and Gaussian, cannot account for bursty and highly skewed Internet

traffic data in access networks. Traffic count models are needed which, besides modelling

the body part, can also assign appropriately high probabilities to the extreme values in the

tail part of a traffic count data distribution, as this part of a distribution can significantly

affect network performance, influencing congestion prevention, buffer overflows, etc.

The main contributions of this chapter are:

• A critical analysis of count models based on self-similar and renewal processes with

their applicability to Internet traffic modelling.

• Renewal process based count data modelling of Internet traffic at packet, flow and

session levels in access and ISP core networks.

4.2 Time aggregation of Internet Traffic Counts

A graphical representation of Internet traffic count data as a function of increasing time

interval for traffic aggregation has been introduced in [Paxson & Floyd, 1995; Willinger &
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Paxson, 1998]. These plots display the count data at various increasing time scales to assess

the influence of time aggregation on traffic fluctuations. The multiple time scale view of

fluctuations in Internet traffic is qualitative in nature, nevertheless, it can serve as the first

step to understand the behaviour of Internet traffic count data.

The multiple time scale view of Internet traffic has been applied on a time series of packet

and bytes counts in [Willinger & Paxson, 1998]. Here, we extend the domain of analysis to

flow and session counts as well. We present a visual analysis of fluctuations of packet, flow

and session counts obtained from DSL, Ethernet, Wireless hotspot networks and ISP core

networks. The data is described in Section 1.7. Plots in Figures 4.1, 4.2, 4.3, 4.4 and 4.5

show a multiple time scale view of the outgoing and incoming packets, flows and sessions.

The plots can be read both horizontally, vertically and across the figures. The horizontal

view shows multiplexing or superposition of traffic from Ethernet, DSL and Wireless hotspot

network into their ISP core network at a given time scale. The vertical view (bottom to

top) shows the effect of time dilation on the traffic counts (packets, flows and sessions) in

the corresponding network. The corresponding plots in these Figures show differences in

fluctuations of traffic counts as packets, flows or sessions at a certain time scale. Here, we

present a visual analysis of the traffic in access and ISP core networks. The minimum and

maximum aggregation time intervals are 10 milliseconds and 100 seconds, respectively. In

every figure, the last column shows the time aggregation behaviour of Poisson count data

parametrized by average rate obtained from the corresponding data obtained from ISP core

network. Therefore, plots in the last column can act as a reference for assessing departure

from Poisson behaviour of traffic in ISP core network.

Outgoing packets: One can see that in Figure 4.1, in all of the networks except the Wireless

hotspot network, the time dilation from fine to coarse time scales makes the packet counts

smoother like Poisson counts. In the DSL and Wireless hotspot networks, the peaks appear

to be highly correlated at fine time scales. Whereas, in Ethernet network, independent

spikes can be observed at fine time scales, apart from a segment of correlated peaks. The

multiplexing of outgoing packets in the ISP core network makes the data smoother but

preserves the spikes of the Ethernet network as this access network is the most loaded as

compared to the DSL and the Wireless hotspot networks.

Incoming packets: One can see in Figure 4.2 that, similar to the outgoing packets, the

incoming packets are bursty at all time scales in the Wireless hotspot network. The peaks

appear to be highly correlated in all of the access networks and in the ISP core network. No

convergence to Poisson behaviour can be observed at any time scale.
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Outgoing flows: It can be seen in Figure 4.3 that the flow count data appear to be burstier

than the outgoing packet count data. Nevertheless, the peaks here tend to be independent

of each other at fine time scales. Also the time dilation makes the traffic smoother, except for

the case of the Wireless hotspot network. Here also, no convergence to Poisson behaviour

can be observed at any time scale.

Incoming flows: One can see in Figure 4.4 that more correlated peaks are present in every

access network than those in outgoing flow count plots. Traffic multiplexing in the ISP core

network reduces the duration of correlated peaks. Here, the time dilation operation seems

to have a little impact on the bursty nature of the counts in all networks. The traffic count

data here appears highly non-Poisson over all. Nevertheless, some segments of data having

locally Poisson features can be observed, for example, in Ethernet and ISP core networks

(first and fourth column).

Session counts: One can see in Figure 4.5 that session count data are more bursty than

packet and flow count data. Nevertheless, the peaks here tend to be independent of each

other. The count data here significantly departs from Poisson at all time scales.

We have presented a visual multiple time scale analysis of the fluctuations of traffic data

used in this study. Our observations are based on a qualitative analysis and are important

but cannot be conclusive regarding the choice of suitable traffic models, at this stage. More

extensive statistical analysis is needed to quantify the properties of Internet traffic and to

propose appropriate models at packets, flow and session levels. In this thesis, the main

focus is to develop a framework based on renewal processes to model interarrival time and

count data jointly, in terms of packets, flows and sessions.
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Figure 4.1: Multiple time scale fluctuations of outgoing packet counts.
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Figure 4.2: Multiple time scale fluctuations of incoming packet counts.
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Figure 4.3: Multiple time scale fluctuations of outgoing flow counts.



100 Count Models for Internet Traffic

Figure 4.4: Multiple time scale fluctuations of incoming flow counts.
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Figure 4.5: Multiple time scale fluctuations of session counts.
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4.3 Count Models based on Self-Similarity

Self-similar count models have been developed to account for the strength of temporal

correlations in Internet traffic. In this category the most commonly used count models are

fractional Brownian motion (FBM), fractional Gaussian noise (FGN), fractional autoregres-

sive integrated moving average (FARIMA) and a count model based on superposition of the

heavy-tailed ON/OFF traffic sources.

4.3.1 Fractional Brownian Motion

A Gaussian process is a natural choice for modelling count data if one is interested in

second-order properties [Norros, 1995]. This is due to the central limit theorem; see [Addie,

1998], for example. For modelling variations in Internet traffic, fractional Brownian motion

(FBM) is a commonly used model for capturing strong correlations in data. It was first

formulated by [Kolmogorov, 1940] in his study about “spirals of Wiener”. Further statistical

properties of this model were developed in [Mandelbrot & Ness, 1968]. The FBM process

BH(t) is defined as

BH(t) =
1

Γ(H + 1/2)

[ ∫ 0

−∞
(|t− τ|H−1/2−|τ|H−1/2)dB(τ)+

∫ t

0
|t− τ|H−1/2dB(τ)

]
, t ∈ R.

(4.1)

where H is the Hurst parameter, BH(0) = 0. For H = 1/2, we get B1/2(t) = B(t), which is

the distribution of Brownian motion. Therefore, FBM can be regarded as a generalization

of Brownian motion.

The covariance function of FBM, RBH , is given by

RBH(s, t) = Cov(BH(s), BH(t)) =
VH

2
(|s|2H + |t|2H − |t− s|2H), s, t ∈ R, (4.2)

where,

VH = var[BH(1)] =
−Γ(2− 2H) cos(πH)

πH(2H − 1)
. (4.3)
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It is clear from the covariance structure of BH that its increments are stationary and

self-similar; that is for a > 0 and t0 ∈ R,

BH(t0 + aτ)− BH(t0)
d
= aHBH(τ); τ ∈ R, (4.4)

where d
= refers to the equality of finite dimensional distributions. This means that BH(t) has

the same distribution in all time scales [Barton & Poor, 1988]. Hence, BH(t) is a self-similar

process.

Internet traffic is inherently connectionless, that is, it is based on Internet Protocol’s best

effort delivery service. For such traffic, [Norros, 1995] proposed a normalized FBM with

Hurst parameter H ∈ [1/2, 1) which is denoted by Zt. Normalized FBM (Zt) plays an

important role in modelling fluctuations in accumulated traffic A(t), that is, amount of

traffic (bytes or packets) accumulated till time t. The cumulative traffic A(t) is given

as

A(t) = mt +
√

amZt, (4.5)

where m > 0 is the mean input rate and a is the variance coefficient.

FBM (BH(t)) is characterized by the following features:

1. BH(t) has stationary increments.

2. The increment process is Fractional Gaussian Noise (FGN) which is dependent and

correlated except for the Hurst parameter value of 0.5.

3. BH(t) has continuous paths, that is , no jumps are allowed.

4. The finite dimensional marginal distributions of BH(t) are Gaussian.

Normalized FBM (Zt) has the following additional features:

1. Z0 = 0, and E[Zt] = 0 for all t.

2. E[Zt]2 = |t|2H for all t.

In [Norros, 1995] a notion of free traffic has been developed. It is defined as a traffic facing

unlimited network resources or arriving at an uncongested link. Accordingly, a general

model for free traffic aggregated from a large number of independent traffic sources is

FBM. Several studies reported that the LAN traffic at byte and packet count levels shows a
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dependence structure (power law decay of autocorrelation function) close to that of FBM

with Hurst parameter values higher than 0.5; see [Erramilli et al., 1996b; Taqqu et al., 1997;

Willinger et al., 1997], for example.

4.3.2 Fractional Gaussian Noise

The increment process of Brownian motion is white Gaussian noise. Similarly, the increment

process of fractional Brownian motion is a stationary sequence , known as fractional

Gaussian noise (FGN). Fractional Gaussian noise Yk is defined as

Yk = BH(k + 1)− BH(k), k ∈ I, (4.6)

where BH(.) is the FBM process defined in Equation 4.1. FGN is a second-order stationary

process with zero mean, and its variance E[Yj
2] = E[BH(1)] = σ0

2 can be derived from

FBM. The autocovariance function r(k) of FGN is given as

r(k) =
σ0

2

2
[
|k + 1|2H − 2|k|2H + |k− 1|2H]. (4.7)

For the Hurst parameter value H = 1/2, the FGN sequence reduces to white Gaussian noise.

Realizations of FGN exhibit long-range dependence for 1/2 < H 6 1. This can be observed

by the asymptotic behaviour of its autocovariance function, as k→ ∞ in

r(k) = σ0
2H(2H − 1)k2H−2. (4.8)

Hence, the autocovariance function of FGN has a power-law form and is non-summable.

This shows that FGN exhibits long-range dependence for 1/2 < H 6 1.

4.3.3 Fractional ARIMA Processes

Autoregressive models define the next random variable in a time series as a function of

previous values [Frost & Melamed, 1994]. Examples of such models are moving average

(MA), autoregressive moving average (ARMA) and autoregressive integrated moving av-

erage (ARIMA). An advantage of the ARIMA family of models is that they are applicable
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in time series modelling. That is, unlike fractional Gaussian noise processes, the models

based on ARIMA processes can be combined in a natural way with various established

Box-Jenkins time series models [Leland et al., 1994]; for Box-Jenkin models, see [Box et al.,
2013].

It should be noted that fractional Gaussian noise is a strictly second order self-similar

process with specification of autocovariance at all lags. Internet traffic can be LRD, but

it can also exhibit short-range correlations at small lags. Therefore, FGN is not flexible

enough to capture both short-range dependence and long-range dependence in Internet

traffic [Taqqu, 2003]. In [Hosking, 1981], a need for a family of models with the following

properties was recognized:

• explicit characterization of long-range dependence;

• flexibility to model both short-range and long-range dependence in data;

• ability to generate synthetic data from the model.

In [Hosking, 1981], the ARIMA model has been generalized to introduce a family of models

called fractional ARIMA (p, d, q) processes which meet the above requirements. In case of

fractional ARIMA (FARIMA) processes, the level of differencing d is allowed to take any real

value rather than being restricted to integer values. For the range 0 < d ≤ 1/2, FARIMA

processes exhibit long-range dependence.

The FARIMA (p, d, q) model is defined as

φ(B)4dXn = Θ(B)εn, (4.9)

where Xn is the fractional differenced random variable, εn is an independent and identically

distributed normal random variable having zero mean and variance σε
2. The polynomials φ

and Θ are of order p and q, and are given as

φ(B) = 1− ϕ1B− · · · − ϕpBp,

Θ(B) = 1 + θ1B + · · ·+ θqBq,
(4.10)

in terms of the backward shift operator B, defined as B(Xn) = Xn−1. These polynomials

control the short-range dependence in Xn. The fractional differencing operator is 4d =
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(1− B)d, given as

4d = (1− B)d =
∞

∑
j=0

Γ(j + d)
Γ(d)Γ(j + 1)

. (4.11)

If 0 < d ≤ 1/2, the FARIMA process exhibits long-range dependence with Hurst parame-

ter

H = d +
1
2

. (4.12)

It should be noted that the explicit formulae for the autocovariance function of general

FARIMA processes are rather complicated ([Hosking, 1981]). In a simple case, FARIMA

(0, d, 0) behaves like a fractional noise with autocovariance function r(k) given by

r(k) = σε
2 (−1)kΓ(1− 2d)

Γ(k− d + 1)Γ(1− k− d)
. (4.13)

Though FARIMA models can capture long-range and short-range dependence in Internet

traffic, it requires several iterative steps to generate a series which can match the statistical

properties of an actual traffic trace; see the steps mentioned in [Liu et al., 1999], for

example.

4.3.4 Superposition of Heavy-tailed ON/OFF Sources

Fractional Brownian motion, its increment process Fractional Gaussian noise and FARIMA

models do capture the observed long-range dependence in Internet traffic, but they lack

any physical justification. In other words, these are models for aggregate traffic only

with no account for statistical behaviour of individual traffic sources. Internet traffic is a

superposition of traffic streams from various users and links. Therefore, a self-similar count

model is needed which, besides modelling aggregate traffic, also assumes a user-oriented

statistical behaviour of traffic sources.

In [Taqqu et al., 1997], a self-similar count model has been developed which is based

on the superposition of traffic sources having heavy-tailed ON and OFF periods of data

transmission. This superposition model converges asymptotically to a rescaled form of

fractional Brownian motion.
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The following theorem is due to [Taqqu et al., 1997]:

Theorem 6 Assume m traffic sources having heavy-tailed ON and OFF periods with tail indices
α1, α2 and mean values µ1, µ2, respectively. Let m→ ∞ (vertical aggregation), and then time
t→ ∞ (horizontal aggregation), then the aggregate cumulative packet count process A(Tt)
behaves statistically like

A(Tt)→ Tm
µ1

µ1 + µ2
t︸ ︷︷ ︸

traffic mean level

+ TH
√

L(T)mσlimBH(t).︸ ︷︷ ︸
fluctuations around traffic mean level

(4.14)

Where T is a time rescaling factor, H is the Hurst parameter and BH(t) is an FBM process.

For an estimation procedure for L(T) and σlim, see [Taqqu et al., 1997].

Taqqu’s theorem further states that the Hurst parameter of the converged FBM process is

given as

H =
3− α

2
, (4.15)

where α is the minimum of tail indices of ON and OFF periods. The practical observability of

the above relation in Internet traffic has been discussed in [Abry et al., 2010a] and [Loiseau

et al., 2010]. It was found that though the heavy-tail index and the Hurst parameter depend

on each other, the relationship predicted by Equation 4.15 is not practically observable in

current Internet traffic. Therefore, this relation should not be used as quantitative estimator

of LRD parameters from heavy-tail index of traffic streams.

In [Taqqu et al., 1997], it has been shown that, if the order of limits in the theorem is

reversed, then the converged process is a Stable Levy Motion. That is, if time t → ∞
(horizontal aggregation) and then m → ∞ (vertical aggregation), then the aggregate

cumulative packet count process A(Tt) behaves statistically like a Stable Levy Motion.

The theorem by [Taqqu et al., 1997] has been extended by [Kaj, 1999] for superposition of

m renewal processes with heavy-tailed interarrival time distributions in the range 1 < α ≤ 2,

and a similar FBM approximation has been proposed, though with a different scaling and

centring.
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4.4 Count Models based on Renewal Processes

The connection between a count model and its timing process (that is, interarrival time

distribution) is an important tool for researchers who are faced with the analysis of both

count data and interarrival time data. Using such a relationship, a researcher can develop

a model based on one form (counting or timing) and using its parameters, statistical

characteristics of the data in the other form can be reported. For example, a model for

interarrival time data can be established and from it predictions can be made about the

number of arrivals in a certain time interval. It is remarkable to note that over the years

thousands of count models have been developed; see [Wimmer & Altmann, 1999] for a

detailed description of various count models based on discrete univariate distributions. But

the connection between a count model and its timing process (interarrival time distribution)

has been addressed by very few [McShane et al., 2008].

The objective of this section is to describe properties of count models having a corresponding

timing process which can be used to capture statistical characteristics of Internet traffic

count data at fine time scales. Different count models assign a different probability mass

to integer values, representing traffic counts, in the body and tail part of a distribution.

A counting dataset can be equi-, over- or underdispersed depending on its variance to

mean relation. There are various count models which have been formulated to account

for a variety of dispersion in count data. Internet traffic at packet, flow and session level

is mostly overdispersed but under certain conditions (at sub-millisecond time scales, for

example) it can display equidispersion or even underdispersion (variance-mean curves to

assess dispersion can be seen in the next Chapter in Section 5.2.2). Below, we describe

some of the selected count data models (along with their associated timing processes)

which can be used in modelling Internet traffic count data.

4.4.1 Poisson Count Model

The Poisson distribution with its intensity parameter λ > 0 is a probability measure which

assigns a probability mass of e−λλk/(k!) to integers k ∈ N. In other words, the Poisson

count model is a model for increments, in time interval t, in which increments are assigned

probabilities according to a Poisson distribution. If N(t) denotes the number of counts in
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the interval (0, t], then the Poisson count model is given by

P[N(t) = k] =
e−λt(λt)k

k!
, k = 0, 1, 2, . . . , λ > 0. (4.16)

The time durations between the successive Poisson events, that is interarrival times, follow

an exponential distribution with probability density fucntion fT given as

fT(t) = λe−λt, t > 0. (4.17)

The Poisson count model exhibits a constant hazard rate. This model is also known for its

memoryless property. The distribution of counts and corresponding interarrival times are

independent of the choice of origin (starting time). The mean of the number of events,

E[N(t)], in a unit interval of time, and the mean of duration between successive arrivals,

E[T], is given by

E[N(t)] = λ,

E[T] =
1
λ

.

The Poisson count model has the following features:

• The Poisson count model generates stationary counts with no trends, that is, event

probabilities do not change with time.

• The Poisson count model implies an exponential distribution for the underlying

interarrival process and the cumulative interarrival process can be represented by the

Erlang distribution.

• The counts resulting from the Poisson count model are independent or uncorrelated.

• The counts resulting from the Poisson count model are equidispersed, that is, the

variance of counts is equal to their mean.

According to [Cameron & Trivedi, 1996], the Poisson count model, though a benchmark

model for count data, may not be an appropriate model for count data always. For example,

in case of dependence between events, the probability of an arrival of event can increase

the likelihood of further arrivals. Also, the Poisson count model over-predicts the number
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of zero and under-predicts the number of non-zero counts away from the mean.

Nevertheless, the Poisson count model has been found to be useful in modelling the Internet

backbone packet level traffic due to the high degree of traffic multiplexing [Cao et al.,
2003]. The applicability of the Poisson count model in Internet traffic and further theorems

has been discussed in Sections 2.6.2 and 3.3.

The Poisson process can be tailored to make its intensity a function dependent on time.

The resulting process is non-stationary and is called a time-dependent Poisson process

or doubly stochastic Poisson process. In Internet traffic count data, the intensity varies

from time to time. Therefore, for modelling Internet traffic, this non-stationary process is

better than a Poisson process with constant intensity. Nevertheless it should be noted that

describing a point process in terms of its intensity function obscures the discrete nature of

the arrival process [Lam, 1997]. An interesting alternative to the doubly stochastic Poisson

process is a renewal process based on the heavy-tailed Weibull interarrival times [Yannaros,

1994]; see also Sections 4.4.3 and 4.6 for relevant theory and Internet traffic count data

modelling.

4.4.2 Negative Binomial Count Model

The Poisson count model assigns significantly low probabilities to the values far away

from the mean. Moreover, the Poisson count data is always equidispersed. To overcome

these limitations a negative binomial count model can be used [Lawless, 1987]. If the rate

parameter λ of the Poisson count model is not constant and distributed according to the

Gamma distribution, then the resulting distribution of counts will be negative binomial.

In other words, the negative binomial count model is based on interarrival times being

exponentially distributed having rate parameter following a Gamma distribution.

Besides the classical parametrization of the negative binomial distribution, a mean specified

parametrization is more useful here, which can be written as

P(N = k) =
Γ(k + d)
k!Γ(d)

(
µ

µ + d

)k(
1

1 + µd−1

)d

, k = 0, 1, 2, ..., (4.18)

where µ is the mean and d > 0 is the dispersion parameter which controls the variance to

mean relation of the data produced by the negative binomial count model. The variance of

count model is Var(N) = µ + µ2/d. As d→∞, the variance of the data tends to become
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equal to its mean, that is, Var(N)→µ so that the resulting distribution ultimately becomes

Poisson. For 0 < d < ∞, the variance of the data will exceed its mean µ. Thus, for the

dispersion values in the range 0 < d < ∞, the negative binomial distribution produces

overdispersed count data. It should be noted that the negative binomial distribution cannot

produce underdispersed data (variance less than mean) for any value of the dispersion

parameter d.

In summary, negative binomial count model has the following features:

1. The model allows arrival dependence based on positive contagion, that is, an arrival

(non-arrival) of an event increases (decreases) the probability of the next arrival.

2. The model can handle overdispersed data.

3. The model allows likelihood ratio and other standard maximum likelihood tests to be

implemented.

4. The convolution of the negative binomial random variables with the same overdis-

persion is also negative binomial, irrespective of the mean of the component random

variables (see page 459 in [Wilkinson, 1956]). The analytical form of the convolution

of negative binomial random variables has been derived in [Furman, 2007].

According to [Cameron & Trivedi, 1996], an alternate derivation of negative binomial

distribution assumes the underlying process to be non-stationary in the sense that an arrival

of an event increases the probability of further arrivals.

In the case of count data modelling, it is a sound practice to to evaluate the performance

of both the Poisson and negative binomial count models [Cameron & Trivedi, 1996]. We

have shown in Section 4.6 that negative binomial count model assigns appropriately high

probabilities to higher quantiles of Internet traffic count data. Assigning high probabilities to

higher quantiles or traffic counts in the tail region is important in Internet traffic modelling

because this regime affects network performance.

4.4.3 Weibull Count Model

The cumulative distribution function of a Weibull random variable X, representing interar-

rival times, can be written as

FX(x) = 1− e−λxc
, x > 0, c > 0, (4.19)
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where c is the shape parameter and λ is the rate parameter. The probability density function

of the Weibull distribution is given as

fX(x) = λcxc−1e−λxc
, x > 0, c > 0. (4.20)

The hazard rate of Weibull distribution admits a closed form expression as follows:

h(t) =
f (t)

1− F(t)
= λctc−1. (4.21)

The hazard rate of the Weibull distribution can be a constant, increasing or a decreasing

function of time based on the value of the shape parameter c. Therefore, Weibull distributed

interarrival times can generate equidispersed (for c = 1), underdispersed (for c > 1) and

overdispersed (for c < 1) count data.

In [Cameron & Trivedi, 1996], it has been emphasized that a count model is needed which

is dual to the continuous Weibull distribution. Such a count model can accommodate data

with time varying intensity. Considering such a requirement, a count model corresponding

to Weibull interarrival times has been formulated in [McShane et al., 2008]. It offers

a similar conceptual elegance and mathematical usefulness to that of the exponential-

Poisson connection. The model is applicable for all possible values of shape parameter

and can model counts resulting from heavy-tailed and non-heavy-tailed Weibull distributed

interarrival times.

If N(t) denotes the number of arrivals in time interval (0, t] with interarrival times being

Weibull distributed, then the Weibull count model is given as

P[N(t) = n] =
∞

∑
j=n

(−1)j+n(λtc)jαn
j

Γ(cj + 1)
, n = 0, 1, 2, . . . , (4.22)

with

α0
j = Γ(cj + 1)/Γ(j + 1), j = 0, 1, 2, . . . ,

αn+1
j =

j−1

∑
m=n

αn
mΓ(cj− cm + 1)/Γ(j−m + 1),

where n = 0, 1, 2, . . .; j = n + 1, n + 2, n + 3, . . .; c is the Weibull shape parameter and λ
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is the rate parameter. Although the number of terms in Equation 4.22 is infinite, due to

Taylor series expansion, a finite number of terms between 5 to 20 are sufficient for a good

approximation. We have truncated the series after 90 terms so as to obtain more accurate

results.

The Weibull count model has been derived by noting that an n-fold convolution of an

interarrival time distribution with itself gives the probability of time to the nth arrival.

Subtracting this probability (the n-fold convolution) with (n+1)-fold convolution of the

same interarrival time distribution gives the count model, that is, the probability of n counts

in time t. According to [McShane et al., 2008], the model is based on the use of Taylor series

expansion as there is no simple way to obtain a convolution of two or more continuous

Weibull random variables.

[McShane et al., 2008] has outlined the following features of the Weibull count model:

1. The model allows overdispersed, equidispersed and underdispersed count data.

2. The model is directly connected to the continuous time Weibull distribution for all

values of the shape parameter.

3. The model is computationally better than the iterative algorithms to calculate proba-

bility of counts resulting from the Weibull interarrival times; see [Rinne, 2008], for

such algorithms.

It is important to note that computation of the probabilities using Weibull count model

requires operations on gamma function, that involves factorials. Any attempt to use raw

factorials can lead to numerical instabilities. In order to overcome this issue, we recommend

to use log-gamma function and to calculate the gamma function using,

Γ(z) = eln Γ(z), (4.23)

where ln Γ(z) denotes the log-gamma function, a good approximation of which is given by

[Rocktaeschel, 1922], as

ln Γ(z) ≈
(
z− 1

2
)

ln z− z +
1
2

ln(2π). (4.24)

Some more approximations for log-gamma function can be found in [Espinosa & Moll,

2004].
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Additionally, using recurrence relation for the gamma function can be often very useful for

performance optimization of the count model, that is,

Γ(z + 1) = zΓ(z). (4.25)

The Weibull distribution has also an event prediction feature within a fixed sample size of

data. Assume that interarrival times between events follow the Weibull distribution and the

total number of events is N. The prediction of the number of arrivals N f in a future time

interval (tc, tw), provided that Nc (out of N) arrivals occurred by the time tc, is given as

([Nelson, 2000])

N f = N × q̂ (4.26)

where q̂ is given as

q̂ =

[
1− Nc

N

]
−
[

1− Nc

N

]( tw
tc )

α

(4.27)

The bounds on precision of the Weibull in-sample prediction estimator can be seen in

[Nordman & Meeker, 2002].

Our data analysis in this chapter is based on real Internet traffic from different networks.

The intensity in our traces vary from time to time as can be seen in Figures 4.1 to 4.5. Our

results in Section 4.6 shows that the Weibull count model can be regarded as a simple

counterpart of any non-Gaussian traffic model which can assign high probabilities to higher

quantiles at fine time scales. We have reported that a renewal process based heavy-tailed

Weibull interarrival times has a great potential in modelling packet, flow and session counts

in different networks.
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4.4.4 Gamma Count Model

If interarrival times X follow the Gamma distribution, then their probability density function

can be written as

f (x; α, β) =
βα

Γ(α)
xα−1e−βx, x > 0, α > 0, β > 0, (4.28)

where α is the shape parameter and β is the scale parameter of the Gamma distribu-

tion.

It should be noted that the hazard rate function of the Gamma distribution cannot be

expressed in a closed form. According to [Winkelmann, 1995], the hazard rate function of

the Gamma distribution satisfies the following relation:

1
h(t)

=
∫ ∞

0
e−βu(1 +

u
t
)α−1du. (4.29)

It follows from the above relation that the hazard rate h(t) of the Gamma distribution is

monotonically increasing for α > 1, decreasing for α < 1, and remains constant for α = 1.

Thus, the Gamma distributed interarrival times can generate underdispersed, overdispersed

and equidispersed count data.

In [Winkelmann, 1995], an expression for the probability of counts, in an interval of time t,
denoted as N(t), when the interarrival times follow the Gamma distribution, is formulated

as

P[N(t) = n] = e−βt
α−1

∑
i=0

(βt)αn+i

(αn + i)!
, n = 0, 1, 2, . . . . (4.30)

For α = 1, the Gamma count model reduces to the Poisson count model. For α > 1, the

model displays underdispersion, and for α < 1, the model results in overdispersed count

data [Winkelmann, 1995]. It should be noted that no closed form expression for the

Gamma count model is available for non-integer α. Therefore, for non-integer α, numerical

evaluation of the integral (which replaces the summation in Equation 4.30) is required.

This has performance implications for using this count model for modelling Internet traffic

count data which are mostly overdispersed (as can be observed from variance-mean curves

in Section 5.2.2).
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4.4.5 Mittag-Leffler Count Model

Another possible distribution, which displays overdispersion and equidispersion, is Mittag-

Leffler distribution. This distribution falls under the domain of attraction of stable laws

[Jose & Abraham, 2011].

The cumulative distribution function of a random variable X, representing interarrival

times, drawn from the Mittag-Leffler distribution is given as

F(x; α, k) =
∞

∑
k=1

(−1)k−1xkα

Γ(1 + kα)
, x > 0, 0 < α 6 1, (4.31)

and its probability density function is given by

f (x; α, k) =
∞

∑
k=1

(−1)k−1kαxkα−1

Γ(1 + kα)
, x > 0, 0 < α 6 1, (4.32)

where α is the shape parameter of this distribution.

The hazard rate of the Mittag-Leffler distribution can be written as

h(t) =
∑∞

k=1

[
(−1)k−1kαxkα−1

Γ(1+kα)

]
∑∞

k=0

[
(−1)k−1xkα

Γ(1+kα)

]
.

(4.33)

In [Jose & Abraham, 2011], an expression for probability of the counts, in an interval of

time (0, t] denoted as N(t), resulting from interarrival times based on the Mittag-Leffler

distribution, is formulated as

P[N(t) = n] =
∞

∑
j=1

[
( j

n)(−1)j−ntjα

Γ(1 + jα)

]
, n = 0, 1, 2, . . . . (4.34)

According to [Jose & Abraham, 2011], the Mittag-Leffler count model has the following

properties:

• Poisson count model results as a special case for α = 1.

• All moments of Mittag-Leffler count model are finite for any α.
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• For the range 0 < α < 1, the hazard rate of Mittag-Leffler count model is a decreasing

function of time. Therefore, the distribution exhibits negative duration dependence

which causes overdispersion in the count data.

4.4.6 Selecting Renewal Count Models for Internet Traffic

In Chapter 3, we have considered the analytical and goodness of fit capabilities of expo-

nential, Weibull and log-normal distributions for modelling interarrival times of packets,

flows and sessions. The heavy-tailed Weibull distributions were found to provide a best fit

to their interarrival time distributions, as well as they displayed an overall better queueing

performance at packet level.

Various types of arrival dependence and duration dependence1 can cause equi-dispersion,

over-dispersion and under-dispersion in count data. Internet traffic at packet, flow and

session count levels can have both arrival dependence and duration dependence. Therefore,

we need count models which can display all the three types of dispersion in the Internet

traffic count data.

On the basis of our discussion of count models and the interarrival time models, we now

present a joint analysis for selecting appropriate renewal count models.

• The cumulative distribution function of log-normal distribution is not defined in a

closed form expression. This implies that a count model corresponding to log-normal

distributed interarrival times cannot be derived in a closed form. The probability of

such counts cannot be evaluated without an algorithm based on numerical solution.

This has performance implications for modelling Internet traffic count data.

• The Poisson, Weibull count models have hazard rate in a closed form expression. On

the contrary, the hazard rate of the Gamma and Mittag-Leffler count models cannot

be expressed in closed form.

• The Gamma count model has no closed form expression of hazard rate for the case of

negative duration dependence (overdispersion). In this case, a numerical evaluation

of integral is required. This has performance implications for modelling Internet

traffic count data.

• Negative binomial count model can display over- and equidispersion. This model has

1See Section 2.3 for the description of the phenomena of arrival dependence and duration dependence.
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underlying interarrival times being exponentially distributed with Gamma distributed

rate parameter. It cannot exhibit underdispersion. Nevertheless, the negative binomial

count model offers a large range of overdispersed count data. Therefore, it can be

useful in modelling overdispersed count data of Internet traffic.

• The Weibull distributed interarrival times offers all the three types of dispersion in

the resulting count data, and the distribution has a formulation for its count model

[McShane et al., 2008].

In a backbone core network, Internet traffic tends to Poisson due to the increased level

of multiplexing [Cao et al., 2003]. Whereas, the traffic in access networks exhibits non-

Poisson features. The Weibull distribution has analytical justification because it is a limiting

distribution for interarrival times resulting from superposition of heavy-tailed streams

[Mitov & Yanev, 2006]. It also offers the best goodness of fit capabilities for packet, flow

and session interarrival times and an overall better queueing performance (as can be seen

in the previous Chapter).

Based on the above discussion and results in Chapter 3, we have selected the Poisson,

Weibull and negative binomial count models as candidate models for Internet traffic count

data modelling in our analysis of traffic at packet, flow and session levels in access and ISP

core networks.

4.5 Self-Similar Count Models versus Renewal Count Mod-

els

In this section, we present a critique on the applicability of count models based on self-

similar processes and renewal processes for Internet traffic count data modelling.

4.5.1 Applicability of Self-Similar Count Models

Taking into account the scope of research presented in this thesis, we outline the issues

concerning the applicability of self-similar count models in Internet traffic as follows:

• The FGN model allows the possibility of negative values which is not realistic in

modelling of packet or byte counts unless the mean of data is significantly greater

than its standard deviation [Norros, 1995].
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• Regarding the convergence to a pure Gaussian process under superposition, the

following remark is noteworthy. Namely, a distribution with heavy tail index greater

than two, that is, α > 2, even with a million convolutions of it with itself it will

eventually behave like Gaussian up to around three standard deviations but will retain

the heavy-tailed attributes outside of such a regime [Taleb, 2009] .

• The fractal properties introduced by the FGN process degenerate. The computational

efficiency of FGN for traffic generation decreases as the value of the Hurst parameter

increases to one [Riedi et al., 1999].

• The heavy tailed ON/OFF superposition models, leading to FBM in the limit, are

accurate only in the regime of coarser time scales, and they do not account for actual

queueing and multiplexing occurring in a network at fine time scales [Riedi et al.,
1999].

• The FBM model abandons the classical framework of point arrival processes in favour

of modelling the “net” work or cumulative input process. That is, instead of defining

packet arrival times, FBM models the cumulative traffic arriving up to a certain

defined time instant. Therefore, the superposition models using FBM or FGN as a

limit counting process cannot be used in studies of the converged stochastic behaviour

of interarrival times [Gordon, 1996].

• The FBM and Gaussian processes can be expressed in discrete or continuous time.

The sampling rate required in a discrete time Gaussian model makes it quite different

from the corresponding continuous time Gaussian model [Addie, 1999]. For the

correlated interarrival times (of packets, flows or sessions), continuous time Gaussian

models are inappropriate due to fast tail decay. For discrete time Gaussian models,

there is a trade off in the choice of sampling interval. Long sampling intervals ensures

that discrete values (for example, packet counts per unit sampling interval) are not

negative but are not suitable for performance evaluation at the time scales concerning

traffic queueing or switching, and vice versa.

• Although the phenomena of burstiness and LRD are complementary to each other,

they in fact are different. A LRD process may or may not be bursty at fine time scales

[Tian et al., 2002]. Therefore, care should be taken in using self-similar count models

if one wants to generate bursty traffic data only.

• Traffic modelling based on self-similar count models should also specify an appro-

priate estimator for the degree of self-similarity. This is necessary because different
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estimators of Hurst parameter can provide different and even conflicting estimates for

the strength of self-similarity in traffic count data [Rea et al., 2013].

• The sudden changes in mean levels of count data can also cause LRD estimators to

provides false positives regarding strength of long-range dependence [Beran et al.,
2013a]. Therefore, data should be carefully assessed with the help of appropriate

qualitative estimators of LRD (for example, the wavelet based estimator proposed in

[Abry et al., 1998]) to confirm the presence of self-similarity, and therefore, to justify

the applicability of self-similar count models.

• In [Addie et al., 1999], it has been shown that fitting the mean, variance and Hurst

parameter is not sufficient to consistently characterize Internet traffic count data

which exhibits long-range dependence. A fourth parameter defining the level of

aggregation is also required. This affects the parsimony of self-similar count models.

• Autoregressive models like FARIMA can capture the empirical second-order corre-

lations in data, but they do not generally fit the empirical marginal distribution of

traffic count data [Frost & Melamed, 1994].

4.5.2 Applicability of Renewal Count Models

Here, we outline some of the advantages which the renewal process framework offers if

one uses them in modelling Internet traffic count data.

• A traffic modelling framework has strong physical meanings if it is based on point

processes [Veitch et al., 2005]. Such a modelling framework can account for various

statistical characteristics of Internet traffic in a consistent manner. Renewal processes

can play an important role in establishing such a modelling framework. The self-

similar count modelling framework suffers from detection and estimation issues

regarding the strength of self-similarity. On the other hand, a traffic modelling

framework based on renewal processes has consistent methodologies to assess renewal

behaviour of traffic data and how much it deviates from it; see Section 2.2.

• Long-range dependence can be physically justified as the result of superposition of

renewal processes with heavy-tailed interarrival times, which in turn can be physically

justified by the access patterns of users. The superposition of such renewal processes

can generate long-range dependence or induce strong temporal correlations in the

superposed count process [Beran et al., 2013a].
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• Non-renewal processes can be approximated by appropriate renewal processes by

fitting a few lower order moments [Kuehn, 1979; Whitt, 1982].

• Point process based analysis offers a unified framework for modelling of the different

structural components of Internet traffic at packet, flow and session levels [Arfeen

et al., 2013].

• Count models based on various renewal processes can generate different types of

dispersion in count data. This is useful in modelling Internet traffic count data under

various load conditions. For example, renewal processes based on Weibull interarrival

times can generate underdispersed, equidispersed and overdispersed data, depending

on the value of the Weibull shape parameter.

• A renewal process based on heavy-tailed Weibull interarrival times has similar sta-

tistical properties as those of doubly stochastic Poisson processes or Cox processes

(Poisson processes with stochastic intensity) which is suitable for modelling variations

in Internet traffic count data [Yannaros, 1994].

• Renewal processes have also been used to develop switched Poisson processes with

time varying rates and dependencies between interarrival times. These models are

shown to exhibit a similar long-range dependence behaviour as that of Internet traffic.

They include Markov-modulated Poisson process (MMPP) and Pareto-modulated

Poisson process (PMPP); see [Fischer & Meier-Hellstern, 1993; Muscariello et al.,
2005] and [Le-Ngoc & Subramanian, 2000], for example. These models are multi-state

and highly parametrized to fit properly to Internet traffic [Mallor et al., 2007]. Pure

renewal processes with heavy-tailed interarrival times provide a simple alternative to

such models.

• Renewal processes can be considered as a generalization of ON/OFF processes where

each ON period consists of one event (packet, flow or session). In such a case,

they are known as singular renewal processes in [Erramilli et al., 1996a]. Hence,

theorems regarding superposition of ON/OFF processes can also be generalized to

assess properties of superposition of pure renewal processes under relevant conditions;

see [Gaigalas & Kaj, 2003; Kaj, 1999], for example.

• Renewal processes can also be aggregated to implement approximate self-similar

processes with normal marginal distribution. An example of such a method is based

on spatial renewal process (SRP) which is a mixture of two independent renewal

processes with one of them having desired marginal distribution of traffic [Taralp
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et al., 1998].

4.6 Modelling Counts in Access and ISP Core Networks

As noted earlier, self-similar count models are applicable at coarse time scales. These time

scales are not relevant for network performance evaluation at switching or queueing levels.

For network performance evaluation we need traffic models which can model Internet

traffic at fine time scales (for example, micro or millisecond time scales). Such models are

required to produce interarrival time or count data having similar statistical characteristics

as that of Internet traffic, so that these models can also be used in simulations.

In this section, we compare the probability mass of traffic counts observed in access and

ISP core networks at fine time scales with the probability mass assigned by Poisson, Weibull

and negative binomial count models. Our experimental data set is the same as that used in

Chapter 3 and has been described in Section 1.7.

Here we describe the configuration of the count model plots in Figures 4.6, 4.7, 4.8 and

4.9. The rate parameters for Poisson, Weibull and negative binomial count models are

evaluated by applying maximum likelihood methods on traffic count data. Based on our

data analysis, we select dispersion parameter, d = 10, for the negative binomial count

model as it provides a good approximation to the traffic count data. The shape parameters

for the Weibull count models should ideally have exactly the same values for traffic counts

as that of the corresponding interarrival time data shown in Table 3.6. But due to truncation

of the infinite Taylor series in the Weibull count model, the values of the shape parameter

in Table 3.6 do not always provide an optimal fit to the corresponding count data. Based

on our analysis, we have observed that for the traffic count data, in general, lower values of

Weibull shape parameters, than those shown in Table 3.6, provide a better approximation to

the count data for all quantiles. The Weibull shape parameters for count data are shown in

Table 4.1. It can also be observed from Table 4.1 and Table 3.6 that the differences between

shape parameter of corresponding counts and interarrival times decreases as traffic moves

from access to ISP core network.

The plots in Figures 4.6, 4.7, 4.8 and 4.9 allow a comparative analysis of various count

models for session, flow and packet counts in case of Ethernet, DSL, Wireless hotspot

networks and their ISP core network. The tail region (higher quantiles) in each plot

has been shown separately in a sub-plot. The Weibull count model with value of shape
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Table 4.1: Weibull shape parameter of packet, flow and session traffic counts

Weibull shape parameter (counts)

Access networks Sessions Outgoing flows Incoming flows Outgoing packets Incoming packets

Ethernet 0.5 0.8 0.8 0.5 0.5
DSL 0.5 0.6 0.81 0.8 0.5
Wireless hotspot 0.3 0.5 0.5 0.6 0.5

ISP core network 0.8 0.8 0.8 0.5 0.6

parameters less than one, as summarized in Table 4.1, assigns more probability mass to

the count values in the tail region. Compared with the empirical probability mass of traffic

counts (sessions, flows and packets), it can be observed that the Weibull count model has

much better performance than Poisson and negative binomial count models. In the body

part of the traffic count data distribution (lower values), Poisson and negative binomial

count models provide better fits, but they cannot capture the probability mass of the higher

count values in the tail part of Internet traffic count data distribution at packet, flow and

session levels. On the other hand, the Weibull count model performs best in the tail part

and assigns higher probability mass to the higher quantiles. The negative binomial count

model is better than Poisson count model and can be considered as a close competitor of the

Weibull count model. This is due to the fact that the underlying interarrival times of negative

binomial counts are exponential with rate parameter being Gamma distributed.

Due to the ever increasing number of users and application mixture, it is expected that

a large part of probability mass in traffic count data distribution will shift more towards

the tail side. Therefore, the count models which can assign appropriately large probability

mass to higher quantiles at fine time scales can play an important role in modelling future

Internet traffic at packet, flow and session levels.

In case of the Ethernet, DSL and ISP core networks, one can see from the plots in Figures

4.6, 4.7 and 4.9 that the Weibull count model provides a very good fit to the higher values

of counts in the tail part of our count data distribution. The counts in the tail parts can have

a significant impact on the network performance at fine time scales. The Figure 4.8 shows

that in the case of a Wireless hotspot network, the Weibull count model provides a better fit

to count data in both body and tail parts of the count data distribution as compared with

the Poisson and negative binomial count models.

Also it can also be observed from Table 4.1 that, in general, the Weibull shape parameter for

counts of sessions, flows and packets increases as traffic moves from various access networks
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to the ISP core network. This implies that, in general, the strength of overdispersion

decreases as traffic moves from access to ISP core network (that is, increased multiplexing).

Exceptions are also possible as can be seen in the case of outgoing packet counts. Here, the

shape parameter of packet counts in ISP core network is less than the shape parameter of

the components. This means that it is also possible that the strength of overdispersion can

increase due to the increased multiplexing of traffic.

Similar to Table 3.6, Table 4.1 shows that the Weibull shape parameter for the counts of

structural components of Internet traffic in Wireless hotspot network has comparatively

smaller values as compared to Ethernet and DSL networks. As noted in the previous chapter

concerning interarrival time models, we restate the need for more traffic analysis from other

Wireless hotspot networks to establish if the lower values of the Weibull shape parameter

can act as a signature for traffic in Wireless hotspot networks.

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 27 32 34 56

Ethernet network (Sessions)

Session counts (10ms)

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

16 18 20 22 24 31 33 42

0.
00

00
0

0.
00

01
0

0.
00

02
0

Session counts in Ethernet network
Poisson count model (λ = 2.01)
Weibull count model (c = 0.5, λ = 2.01)
Negative binomial count model (d = 10, µ = 2.01)

(a)

Figure 4.6: Counts in Ethernet network.
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Figure 4.6: Counts in Ethernet network (Continued).
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Figure 4.6: Counts in Ethernet network (Continued).
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Figure 4.6: Counts in Ethernet network (Continued).
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Figure 4.6: Counts in Ethernet network (Continued).
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Figure 4.7: Counts in DSL network.
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Figure 4.7: Counts in DSL network (Continued).
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Figure 4.7: Counts in DSL network (Continued).
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Figure 4.8: Counts in Wireless hotspot network.
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Figure 4.8: Counts in Wireless hotspot network (Continued).
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Figure 4.8: Counts in Wireless hotspot network (Continued).
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Figure 4.9: Counts in ISP core network.
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Figure 4.9: Counts in ISP core network (Continued).
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Figure 4.9: Counts in ISP core network (Continued).
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Figure 4.9: Counts in ISP core network (Continued).
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Figure 4.9: Counts in ISP core network (Continued).



4.6 Modelling Counts in Access and ISP Core Networks 139

4.6.1 Assessing Probability Mass for Higher Quantiles

Here we present a comparative analysis regarding the sum of the probability mass of higher

quantiles of the traffic count data and that of the probability mass assigned to the same

quantiles by Poisson, Weibull and negative binomial count models. For every access and

ISP core networks under consideration, Table 4.2 shows the sum of the probability mass

of session count quantiles, denoted as C0.25, which are greater than the 0.25 quantiles

of session count data. The sum of the probability mass assigned by count models to the

same quantiles, denoted as P0.25, is shown in the following columns. It can be seen that

the sum of the probability mass assigned by the Weibull count model is closest to the

sum of probability mass of session count data in every network. Negative binomial and

Poisson count models assign relatively low probability masses to higher quantiles. Similar

observation can be made from Tables 4.3, 4.4, 4.5 and 4.6 regarding outgoing flow counts,

incoming flow counts, outgoing packet counts and incoming packet counts, respectively.

As higher quantiles of count data affect network performance, therefore, we recommend

to use the Weibull count model as it assigns larger probability mass to higher quantiles as

well as appropriate probability mass to quantiles in the body part of the traffic count data

distribution.

The Weibull count model with shape parameter less than one gives irregular and overdis-

persed counts, so we recommend its use in Internet traffic modelling. Varying the shape

parameter in the range 0 to 1 gives a variety of statistical irregularity (burstiness) and

overdispersion and this flexibility enables the Weibull count model to perform better in

modelling counts of various structural components of Internet traffic (packets, flows and

sessions) at fine time scales. Also, the Weibull distribution has an in-sample prediction

feature which can be used for a limited traffic forecasting. The Weibull count model can also

be easily used in computer simulations of various access, ISP and backbone core networks to

generate traffic loads similar to real Internet traffic at packet, flow and session levels.
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4.6.2 Closeness Metrics

It is important to use statistical metrics in order to assess closeness of a given count model

to the count data of packets, flows and sessions. A simple metric can be defined as ratio of

the probability mass assigned to counts greater than 0.25 quantile to the corresponding

actual counts. If R denotes the ratio in percentage, P0.25 denotes sum of the probability

mass assigned by count model to counts greater than 0.25 quantile and C0.25 denotes the

corresponding sum of the probability mass for actual counts, then the closeness metric R
can be defined as,

R =
P0.25

C0.25
. (4.35)

Here a ratio of R = 1.0 means a perfect match between the actual counts and the counts

resulting from proposed count model. R greater than 1.0 represents over-estimation whereas

R smaller than 1.0 represents under-estimation of the counts.

Another simple metric to assess the closeness is absolute error, denoted by E, and defined

as,

E = |P0.25 − C0.25|. (4.36)

Tables 4.2-4.6 show values of both closeness metrics for the corresponding count data

obtained from the access and ISP core networks under consideration. The ratio metric

has been presented in percentage. A perfect match of 100% is difficult to observe as we

are approximating non-renewal data with renewal models. However, one can see that the

Weibull count model offers a better approximation in 16 out of 20 cases considered.

4.7 Summary of the Chapter

An important step in understanding Internet traffic at packet, flow and session levels is to

assess its fluctuations at various increasing time scales. Such a qualitative multiple time

scale analysis is very helpful for selecting appropriate statistical analysis techniques and

models for traffic counts which can exhibit short-range or long-range dependencies.

Self-similar count models like FBM have been successfully applied in capturing long or short
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range dependence (scaling properties) of Internet traffic data at packet count level. Such

models are suitable for traffic modelling at coarse time scales. Internet traffic modelling

at fine time scales is a different scenario where strong correlations (if any) cannot fully

manifest themselves. Nevertheless, the Internet traffic count data at packet, flow and

session levels cannot be treated as entirely independent or having Poisson features at fine

time scales.

We have seen that based on arrival or duration dependence, various renewal processes

can generate a variety of dispersion in count data. Internet traffic at packet, flow and

session count levels is mostly overdispersed in access networks and tends to equidispersed

in backbone core networks. Moreover, under certain conditions (for example, low level

traffic aggregation) Internet traffic can also display underdispersion.

We have described the theoretical properties of various count models offering various

types of dispersion. These models include Poisson, negative binomial, Weibull, Gamma

and Mittag-Leffler count models. We conclude that among the models considered in this

study, the count model based on Weibull distributed interarrival times performs the best

in modelling Internet traffic counts at packet, flow and session level at fine time scales in

various access and ISP core networks.



Chapter 5

Scaling Models for Internet Traffic

“ Teletraffic is indeed a phenomenon of scales. Rarely do we find a quantity, of
any kind, spread across such a broad range. What is even more significant
is that this range will continue to grow, with the inevitable improvements,
closely following those of computing, in the bandwidth of connections and
the capacity of switches, and all this without any limit known to science.

”
Darryl Veitch, 2009

5.1 Introduction

The term scale has different interpretations in various disciplines of science and engineering.

In Physics, it has been used as a standard reference to quantify measurements of the physical

quantities. In signal processing, the term scale can be used to refer to the serial correlation

lengths in data, for example. Scaling as a reference measure has been applied in terms of

time and space. Scaling in time means that properties of a system can be defined specific

to the observation time scale, which can change if the observation time scale changes.

Whereas, scaling in space means that properties of a system can be specified in terms of its

geometry. Two main objectives in time and space specific scaling analysis are (i) to study

system or process properties which are specific to various scales and (ii) to study transfer

mechanisms between scales. According to [Abry et al., 2010b], the concept of scaling or



148 Scaling Models for Internet Traffic

scale invariance is converse of the scaling concept as a reference measure of time or space.

That is, the behaviour of a system cannot be characterized by a single scale of time or space

only, and the observed phenomenon or the behaviour of a system depends on all relevant

time or space scales. According to [Abry et al., 2010b], this “non-property” (the effect of all

scales instead of a single or specific scale of time or space) is referred to as scaling law or

scaling behaviour, or in the teletraffic context, simply scaling. Accordingly, scaling can also

be regarded as a signature of strong organization based on the time or space invariance of

a certain key behaviour of a given system or process.

In Internet traffic modelling literature, the term scaling has been used interchangeably with

such terms as self-similarity, long-range dependence or fractals. Though, in a global sense

these terms can be regarded as synonymous, nevertheless, the distinction should be made

clear. Namely, the terms fractal and self-similarity have geometric origins, whereas the terms

scaling and long-range dependence refer to statistical properties. It is, in fact, the fractal

behaviour which makes a process or an object to appear self-similar over a range of scales

of time or space. In this thesis, we undertake a statistical definition of these terminologies.

To be more precise, a strictly second-order self-similar process is referred as mono-fractal

process or long-range dependent process. Scaling refers to the multiple time scale view

of strength of long-range dependence which can demarcate regions where LRD is weak or

strong with mono-fractal or multi-fractal behaviour. The latter means that there exists more

than one scaling exponents to characterize data.

In most of the literature concerning Internet traffic analysis and modelling, the term scaling
has been used in the global context, that is, a multiple time scale view of LRD in traffic

count data, to characterize it by a single scaling exponent, that is, Hurst parameter. The

scaling analysis can also be performed in a local context. The local scaling analysis helps in

identification of local irregularities in data. More specifically, it allows us to investigate the

presence of multi-fractal behaviour.

The main contributions of this chapter are:

• Investigating burstiness, global and local scaling behaviour of packet, flow and session

counts in access networks. The impact of traffic transformation under access to ISP

core network is also reported.

• Proposing suitable traffic models based on renewal processes which can capture

overall burstiness and the scaling profile of Internet traffic.
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5.2 Burstiness in Internet Traffic

In the literature concerning Internet traffic modelling, the concept of burstiness has been

extensively used but rarely defined in an appropriate context because there is still no

standard definition of burstiness [Wischik, 2006]. According to [Gusella, 1991], mostly

the term burstiness has been invoked for data which shows more variability than a Poisson

process. It is true that a process having more variability than a Poisson process is bursty.

Nevertheless, in order to define burstiness and to avoid any vagueness surrounding it,

a characterization of variability is needed, at least in an appropriate context. It should

be noted that temporal structures in data affect variability, which cannot be captured

by simple indices like coefficient-of-variation and peak-to-average ratio of rates. In fact,

peak-to-average ratio of rates can be considered as a crude measure of burstiness, but it is

significantly dependent on the length of time interval used for rate measurement [Frost &

Melamed, 1994]. In [Gusella, 1991], it has been suggested to use the index of dispersion

for intervals (IDI) and index of dispersion for counts (IDC) for characterizing burstiness;

see Section 2.2 for the definition of these indices.

While characterizing Internet traffic as LRD, it is even more important to define burstiness.

This is necessary because, without an approximate definition of burstiness, some contra-

dictory interpretations regarding statistical behaviour of Internet traffic can emerge [Tian

et al., 2002]. Namely, one can find reports that the Internet traffic is long-range dependent

and bursty. However, there are also claims that it is showing near-Poisson and non-bursty

nature. See the difference between the findings reported in [Jiang & Dovrolis, 2005] and

[Cao et al., 2003]. The apparent dichotomy can be resolved if we do not equate the concept

of burstiness with long-range dependence. A long-range dependent time series or data can

appear either bursty or smooth at a given time scale. Therefore, the concept of burstiness is

about characterizing variability at a given time scale. As shown in [Tian et al., 2002], the

concept of burstiness and long-range dependence (or scaling) are complementary to each

other. In fact, the apparent contradictory conclusions of earlier works also complement

each other.

The measures of burstiness proposed by [Gusella, 1991] are indices of dispersion for

intervals and counts (IDI and IDC). We have presented the results of IDI analysis of Internet

traffic in Chapter 3. Here, we present our IDC analysis of Internet traffic belonging to access

and their ISP core networks. We have also presented a multiple time scale analysis based on

variance-mean method to assess burstiness. This method can be considered as a multiple
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time scale extension of the method in [Tian et al., 2002].

5.2.1 Burstiness: Index of Dispersion for Counts Analysis

As we have already mentioned, the indices of dispersion for intervals and counts (IDI and

IDC) can be used to characterize burstiness of Internet traffic arrival process. In this section,

we use IDC to characterize traffic burstiness as suggested by [Casale et al., 2012]. We assess

burstiness of packet, flow and session counts in access and ISP core networks.

The index of dispersion for counts (IDC), It, was defined by Equation 2.9 in Section 2.2. An

IDC curve can be interpreted as follows. Namely, an IDC curve which is horizontal and

equal to 1 for all t is the signature of a Poisson process. An IDC curve which is horizontal

above I(t) = 1 shows a behaviour which is renewal and signifies that the process has more

variability than a Poisson process. Also, fluctuations in an IDC curve can be regarded as a

qualitative measure of burstiness. These fluctuations are caused by nonstationarities like a

sudden change in the mean or variance of counts.

Figure 5.1 depicts the IDC curves for packet, flow and session counts in the Ethernet, DSL,

Wireless hotspot and their ISP core networks under investigation in this study. Interpreting

the plots horizontally allows to assess the multiplexing of traffic from access networks into

the ISP core network. By observing the fluctuations in the IDC curves, the traffic in Ethernet

and Wireless hotspot networks is found to be more bursty than the corresponding traffic

in the DSL network. Also, it can be observed that the average value of IDC for ISP core

network traffic is smaller than that for the access network traffic which has the highest

average value of the IDC. The same traffic multiplexing view of IDC curves (that is, having

read the plots in Figure 5.1 horizontally) shows that for a given structural component of

traffic (packet, flow or session), the fluctuations shown in the IDC curve for the ISP core

network traffic are smaller than in the traffic of the access network which shows the highest

IDC fluctuations. This leads us to a conclusion that the multiplexing or superposition of

traffic from the access networks reduces the burstiness of traffic in the ISP core network

under our investigation. Such a multiplexing gain is observed for the counts of all the

structural components of Internet traffic, that is, packets, flows and sessions.
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Figure 5.1: Index of dispersion for counts (IDC) curves of traffic in Ethernet, DSL, Wireless
hotspot and ISP core networks.
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5.2.2 Burstiness: Variance-Mean Analysis

Burstiness can also be assessed in terms of the relation between the variance and mean,

that is, plotting variance versus mean of the counts in non-overlapping windows of fixed

size. If such a plot is linear, then this implies smooth traffic. If the variance-mean plot is

quadratic, then it implies bursty traffic [Tian et al., 2002]. The variance-mean relation can

also be used in implementing traffic management policies [Kawahara et al., 2013].

We extend the variance-mean analysis technique to assess this relation at multiple time

scales. Such a multiple time scale analysis of the variance-mean relation can be more

informative as it can partially reveal the presence of any correlations in data. It should be

emphasized that the presence of burstiness at multiple time scales can be indicative of the

presence of a scaling phenomenon. Nevertheless, any conclusion about presence of scaling

or its strength in data should not be entirely based on analysis of variance-mean relation at

single or multiple time scales. Relevant methodologies (such as discussed in Section 5.3)

should be applied to assess scaling, its onset or strength in data.

In this section, we analyse the variance-mean relation of traffic counts of packets, flows and

sessions belonging to the access network and ISP core networks under our consideration.

The lowest time scale is 100 microseconds and the highest time scale is 200 milliseconds

(that is, equal to a typical round trip time). The plots in Figures 5.2, 5.3 and 5.4 show the

variance-mean behaviour of packet, flow and session counts in the Ethernet, DSL, Wireless

hotspot networks and their ISP core network, under our investigation, at the aggregation

time scales of 100 microseconds, 10 milliseconds and 200 milliseconds, respectively. Each

figure reports the behaviour of variance-mean relation at a given time scale. The effect of

multiplexing or superposition of the traffic belonging to various access networks in the ISP

core network can be observed in the last column of these figures.

The following observations can be made from a multiple time scale investigation of the

variance-mean plots in these figures:

• The traffic multiplexing in the ISP core network at any time scale makes the variance-

mean relation appear more linear as compared to the variance-mean relation of traffic

in the access networks.

• The slope of variance-mean relation in the ISP core network is dominated by the

largest traffic contributor access network, that is, the Ethernet network.

• The variance-mean relations for the packets, flows and sessions (belonging to the
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traffic traces under our consideration) appear to be linear at the fine time scales of

100 microseconds and 10 milliseconds, as shown in Figures 5.2 and 5.3. For 200

milliseconds aggregation time interval, the variance-mean relations deviate from

linearity, especially in the case of incoming and outgoing packet counts, as can be

seen in Figure 5.4. A plausible reason for this behaviour is that correlations are not

obvious at fine time scales, but they can manifest themselves at coarser time scales.

• The packet, flow and session counts appear to be over-dispersed in all networks for

all time scales. The amount of over-dispersion increases with increasing time scale for

traffic aggregation.
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Figure 5.2: Variance-mean plots for session, flow and packet counts in access and ISP core
networks at 100 microseconds time aggregation.
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Figure 5.3: Variance-mean plots for session, flow and packet counts in access and ISP core
networks at 10 milliseconds time aggregation.
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Figure 5.4: Variance-mean plots for session, flow and packet counts in access and ISP core
networks at 200 milliseconds time aggregation.
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5.2.3 Burstiness: Count Models

The variance-mean plots of the proposed count models, described in Chapter 4, have been

depicted in Figure 5.5. The Poisson count model generates data with variance equal to it’s

mean. Negative binomial count model exhibits overdispersion. The plots for the Weibull

count model show that, depending on the value of the shape parameter , it has the flexibility

to generate counts which can exhibit various types of variability and burstiness similar to

that exhibited by packet, flow and session counts in access and ISP core networks. The

burstiness profile of all count models shown in the figure matches with burstiness profile of

traffic data at fine time scales as shown in Figures 5.2 and 5.3. The Weibull count model

is more flexible than Poisson and negative binomial count models because it can generate

data with linear variance mean relation having both positive and negative slopes.
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Figure 5.5: A comparison of a sample variance-mean relation for various count models
(“mean” denotes the rate parameter).
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5.3 Scaling in Internet Traffic

The concept of scaling is not directly related to burstiness at a given time scale [Wischik &

Ganesh, 2007]. Burstiness at multiple time scales can provide an indication of the presence

of scaling phenomenon. Nevertheless, it is essential to assess strength of any dependency

structure in data. The most important factor which can help in determining the presence

of scaling is the strength of autocorrelations in data at various lags. A slow decay of

autocorrelation function (ACF) shows the presence of scaling behaviour in data.

The autocorrelation function plots for our investigated traffic in access and ISP core networks

are shown in Figure 5.6 and 5.7. It should be noted that a slow decay of autocorrelation

functions (ACF) at a particular time scale can be used as evidence of the presence of strong

scaling or LRD (see Equations 2.13 and 2.14). A note of caution here is that a fast decay

of ACF at a particular time scale cannot be used as a justification for absence of scaling.

This is because data can be highly correlated at other time scales. Figure 5.6 shows that

ACF decays fast for session and flow counts at 10 milliseconds aggregation time interval,

implying short range dependence or absence of scaling. In the same figure, the ACF for

packet counts decays very slow, implying long-range dependence or presence of scaling.

The plots in Figure 5.7 show that if we estimate the ACF for the same traffic data at a

coarser time scale of 200 milliseconds, the ACF of session and flow counts decay slow which

implies onset of scaling. Therefore, ACF should be assessed at multiple time scales in order

to have an appropriate evidence of scaling in data.

The plots in Figures 5.6 and 5.7 also show that the superposition of the traffic from access

networks maintains the slow ACF decay in ISP core network traffic. It can be observed that

the autocorrelation function of traffic counts (packets, flows and sessions) in the ISP core

network is dominated by autocorrelations from the access network that contributes the

largest volume of traffic, that is, the Ethernet network.

Having seen that burstiness and slow ACF decay can be considered as an indication of

scaling or long-range dependence, provided that they are assessed at multiple time scales,

it should be noted that one can distinguish two types of scaling:

• Global scaling

• Local scaling

Global scaling means that a single scaling exponent or Hurst parameter is sufficient to

characterize the data at all time scales. Local scaling refers to the situations when a single
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scaling exponent cannot characterize the data at all time scales.

As we show in the next section, using the theory of wavelets, the phenomenon of global

and local scaling can be investigated in both a qualitative and a quantitative manner. This

theory allows for easier and more conclusive analysis than purely time domain analysis,

which we we have conducted so far.
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Figure 5.6: Autocorrelation function (ACF) of traffic in Ethernet, DSL, Wireless hotspot and
ISP core network at 10 milliseconds time aggregation.
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Figure 5.7: Autocorrelation function (ACF) of traffic in Ethernet, DSL, Wireless hotspot and
ISP core network at 200 milliseconds time aggregation.
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5.3.1 Background on Global and Local Scaling

Global scaling is induced by long-range dependence (high temporal correlations) in traffic

counts in such a way that counts are strictly mono fractal (or deterministically self-similar).

This means that a single scaling exponent can characterize the strength of autocorrelations.

There are various quantitative estimators to evaluate strength of LRD using the Hurst pa-

rameter, such as Rescaled Range, Periodogram, Whittle’s and Aggregated-Variance methods.

Due to different procedures and assumptions for underlying data, these estimators produce

different estimates of Hurst parameter when applied to the same data [Karagiannis et al.,
2006; Molnar & Dang, 2000; Rea et al., 2013; Ritke et al., 2001]. Hence, we adopt quali-

tative aspects of the wavelet-based estimator for our analysis regarding global and local

scaling. In fact, as compared with the other quantitative estimators of LRD, the wavelet

based global scaling analysis provides a multiple time scale view of long-range dependence

in a time series. This technique can quantify the global scaling exponent as well as it can be

used to demarcate time scales over which LRD strength is low, medium or high. Here, we

describe the wavelet based detection and estimation method for global scaling.

Global scaling can be investigated by a wavelet based multiresolution analysis technique

proposed in [Abry et al., 1998]. It is based on plotting wavelet energy as a function of

increasing time scales. The resulting plot is called Log-scale Diagram (LD) plot. This method

is non-parametric and based on the Discrete Wavelet transform (DWT). The wavelet basis

functions, such as Haar wavelets, possess scaling property themselves. Therefore, they

are suitable for the detection and estimation of scaling in data generated by the processes

having long memory or significant autocorrelations. The wavelet based global scaling

method measures the energy of time series at various fine and coarse time scales. The value

of this energy is a function of the variance of the wavelet coefficients at various time scales.

The method is described below.

Consider a time series, representing traffic counts, X(t) of length n. Let Ts be the reference

or sampling time scale (smallest time scale). For example, X(t) can be a series representing

the number of packets, flows or sessions recorded at a time granularity of Ts. The same

process X(t) can be viewed (in terms of wavelet coefficients) at increasingly coarser time

scales, that is, at Tj = 2jTs for j = 1, 2, . . . , Nj. Increasing values of j correspond to

increasing coarser time scales Tj, where Nj is the number of wavelet coefficients at octave

j = 1, ..., Nj = blog2(n)c. The octave j corresponds to the time scale 2jTs that defines the

width of time bin for the process X(t) viewed at octave j. Let 4tj
k be the kth bin time

interval at scale j. Then4tj
k consists of the intervals4tj−1

2k and4tj−1
2k+1. If X j

k is the amount
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of traffic in 4tj
k, then X j

k = X j−1
2k + X j−1

2k+1. The Haar wavelet coefficients d(j, k) at scale j
are defined as

d(j, k) =
X j−1

2k − X j−1
2k+1

2j/2 , k = 1, ..., Nj. (5.1)

The square of wavelet coefficient, |d(j, k)|2, measures the amount of energy (function of

variance of wavelet coefficients) in the time series at the time instant 2jk. The magnitude of

energy at scale j increases with the variance of the wavelet coefficients at previous scale

j− 1. The energy function at octave j is defined as

(Energy)j =
∑

Nj
k=1 d(j, k)2

Nj
. (5.2)

The confidence intervals are derived from the variance of the energy based on Gaussian

assumption. The variance of the Energy is given as

var(log2(Energy)j) ∼
2

Nj ln2 2
. (5.3)

According to [Abry et al., 1998], the second order global scaling behaviour of a time series

is captured by the variation of log2(Energy) with j, which can be observed by plotting

log2(Energy) versus j. A straight line with positive slope gives an indication of scaling

behaviour between different time scales of width 2jk and 2j(k + 1). The presence of varying

slopes between different time scales provides a qualitative indication of the changing

strength of scaling. Here, an estimate for Hurst parameter (H), which can be calculated by

using weighted linear regression, is given as

Ĥ =
1
2

[
1 +

j2

∑
j=j1

wj(Energy)j

]
, (5.4)

where the coefficients wj are the weights which satisfy the constraints of linear regression:

∑
j2
j=j1

jwj = 1 and ∑
j2
j=j1

wj = 0. The choice of value of j1 (the lowest octave) and j2 (the

largest octave) for estimating Hurst parameter is a delicate issue and is affected by length of

data and requires a bias-variance trade-off. Different choices of j1 and j2 for the same data

can provide different estimates for Hurst parameter. A discussion on selecting appropriate
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values for j1 and j2 is given in [Abry et al., 2010a; Veitch & Abry, 2001].

Although the global scaling analysis is more informative than the purely quantitative

estimators of the LRD, it does not provide any information about the local scaling behaviour

of the time series or data [Gilbert et al., 1999]. The temporal structures (sudden peak,

for example) in data can have significant or non-significant effects. The significance of

temporal structures in data can be unveiled by higher order scaling exponents.

The objective of the local scaling analysis is to assess if there exists more than one scaling

exponent (that is, multi fractals), to find their strengths and locations [Feldmann et al.,
1999]. Accordingly, the local scaling characteristics of the data can be captured by the

wavelet partition functions, S(q, j), which are defined by the summation of the qth moments

(for q > 0) of the absolute values of the normalized wavelet coefficients at each octave j.
The wavelet partition function is defined as

S(q, j) =
Nj

∑
k=1
|2−j/2dj,k|q. (5.5)

According to [Feldmann et al., 1999], the graphical features of the partition function can

reveal qualitatively the local scaling behaviour of data. The partition function is a family of

curves obtained by plotting log2 S(q, j) versus j for q > 0. The local scaling behaviour can

be multi-fractal or mono-fractal. If for the smaller values of q, the plot of log2 S(q, j) versus

j is approximately linear over the range of time scales governed by the octaves j, then it

means that scaling is present. Whether this scaling is multi-fractal or mono-fractal, can

be assessed by the dependence seen in the slope of these plots as a function of q. A linear

dependence on q implies mono-fractal scaling, that is, a single value of Hurst parameter is

sufficient to characterize the the autocorrelation strength in the data. On the other hand, if

the slope of plots of log2 S(q, j) versus j depends non-linearly on q, then this implies the

presence of non-trivial scaling, that is, more than one scaling exponent, which means that

the data is multi-fractal and cannot be fully characterized by a single value of the scaling

exponent or the Hurst parameter.

5.3.2 Global Scaling in Internet Traffic

In this section, we report our global scaling analysis of the Internet traffic traces obtained

from various access networks (DSL, Ethernet and Wireless hotspot) and their superposed
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traffic in the ISP core network. We use the LD based method for global scaling analysis.

The details of the data set have been given in Section 1.7.

The LD plots for sessions, outgoing and incoming flows and packets belonging to access

and ISP core networks are shown in Figure 5.8. The traffic has been captured at the time

resolution of 10ms. It can be seen that as the aggregation time scale increases, the energy

(function of variance of wavelet coefficients) in LD plots increases too. The global scaling

plots show the energy levels at various time scales, from fine to coarse. Among access

networks, traffic at packet, flow and session count levels in the Wireless hotspot network

has the lowest energy and traffic in Ethernet network has the highest one. The aggregation

of the traffic (packets, flows and sessions) in the ISP core network increases the magnitude

of energy but keeps the scaling behaviour (slope) unchanged. The similarity in scaling

in the access and ISP core network traffic can also be attributed to the forward available

bandwidth and coupling or dependence between the two networks, that is, the access and

its ISP core network. Nevertheless, we do not generalize the apparent similarity in scaling

behaviour of access network traffic and ISP core network traffic, as it is possible that the

global scaling in ISP core network becomes weak at both lower and higher time scales due

to the increased multiplexing (for example, peak hour traffic in a highly populated urban

area).

It should be noted that a close investigation of scaling regions in the plots of Figure 5.8

leads to the conclusion that there is no mutual dependency among global scaling behaviours

manifested by session, flow and packet counts despite the observation that global scaling

is exhibited by all structural components of Internet traffic. On the other hand, we have

found that the packet and byte level global scaling appear to be similar at all time scales

for the same data set; see [Arfeen et al., 2014]. This is due to the fact that the variance of

the total number of bytes in packets is limited due to the maximum transmission limit of

underlying media, hence there exists some natural correlation between byte counts and

packet counts.
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Figure 5.8: Global scaling analysis of session, flow and packet counts.
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Figure 5.8: (Continued) Global scaling analysis of session, flow and packet counts.
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Figure 5.8: (Continued) Global scaling analysis of session, flow and packet counts.

5.3.3 Local Scaling in Internet Traffic

The local scaling behaviour of the structural components of the traffic in the access and ISP

core networks is shown in Figure 5.9. A non-linear dependence of log2 S(q, j) versus j for

the values of q = 1, 2, ..., 10 can be observed for the session, incoming and outgoing flow

counts. This implies the presence of non-trivial scaling or multi-fractals, that is, the presence

of more than one scaling exponent. Whereas, for the incoming and outgoing packet counts,

the dependence of log2 S(q, j) versus j for the values of q = 1, 2, ..., 10 appears to be strictly

linear. This means that the packet level traffic in both directions is mono-fractal. Thus, it

can be characterized be a single value of the scaling exponent or Hurst parameter.

In summary, the global and local scaling analysis of the structural components of the

Internet traffic in various access networks and their ISP core network leads us to the

following conclusions.

• Session, outgoing and incoming flow counts are found to exhibit both global and local
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scaling, with the local scaling being multi-fractal.

• Outgoing and incoming packet counts are found to exhibit only global scaling, with

local scaling behaviour being mono-fractal.

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Session counts
Ethernet Network

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Session counts
DSL Network

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12
−

2
0

1
0

4
0

T s = 10ms

Session counts
Wireless hotspot

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Session counts
ISP Core Network

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Incoming flow counts

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Incoming flow counts

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Incoming flow counts

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Incoming flow counts

Octave (j)
L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Outgoing flow counts

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Outgoing flow counts

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Outgoing flow counts

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0
T s = 10ms

Outgoing flow counts

Octave (j)

L
o
g

2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Incoming packet counts

Octave (j)

L
o

g
2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Incoming packet counts

Octave (j)

L
o

g
2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Incoming packet counts

Octave (j)

L
o

g
2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Incoming packet counts

Octave (j)

L
o

g
2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Outgoing packet counts

Octave (j)

L
o

g
2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Outgoing packet counts

Octave (j)

L
o

g
2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Outgoing packet counts

Octave (j)

L
o

g
2
S

(q
,j
)

2 4 6 8 12

−
2

0
1

0
4

0

T s = 10ms

Outgoing packet counts

Octave (j)

L
o

g
2
S

(q
,j
)

Figure 5.9: Analysis of local scaling of the traffic in Ethernet, DSL, Wireless hotspot and ISP
core networks, for first 10 higher moments of wavelet partition function.
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5.4 Superposition and Scaling

In this section, we assess the global and the local scaling behaviour exhibited by the by the

following traffic models:

• Fractional Gaussian Noise (FGN)

• Superposed Pareto model (non-renewal model)

• Heavy-tailed Weibull renewal model (and superposition thereof)

The objective here is to investigate which of these models generates global and local scaling

behaviour similar to that of Internet traffic at packet, flow and session levels.

5.4.1 Fractional Gaussian Noise

Figure 5.10 shows the global scaling behaviour of an FGN series for different values of

Hurst parameter. Comparing it with the global scaling behaviour of the Internet traffic as

shown in Figure 5.8, we see that FGN is an appropriate model for all structural components

of Internet traffic. This behaviour of FGN agrees with earlier findings [Mikosch et al., 2002].

But such a similarity holds from the perspective of global scaling only.

The local scaling behaviour of an FGN series has been depicted in Figure 5.11 which shows

a strictly mono-fractal scaling. As the value of the Hurst parameter increases to one, the

strength of mono-fractal scaling increases and ultimately the family of plots log2 S(q, j)
versus j for the values of q = 1, 2, ..., 10 tends to become parallel to each other, that is,

become strictly mono-fractal. Such a strict mono-fractal scaling has been observed for

the packet counts (outgoing and incoming) only, whereas the session and the flow counts

(outgoing and incoming) are not found to exhibit strict mono-fractal scaling as shown

in Figure 5.9. Therefore, FGN is a good scaling model for packet counts but it is not an

appropriate model for flow and session counts since they show multi-fractal behaviour.

There are also other limitations of FGN if it were used as a model for Internet traffic.

For example, FGN is suitable for count data where the mean is significantly greater than

standard deviation because it can produce negative counts in the situations otherwise. FGN

becomes computationally expensive for higher values of Hurst parameter. Additionally,

there is no standardization for interarrival times corresponding to FGN counts. These

limitations of FGN have been discussed in Section 4.5.1
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values of Hurst parameter.
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Figure 5.11: Local scaling analysis of Fractional Gaussian Noise (FGN), for first 10 higher
moments of wavelet partition function, showing strict mono-fractal scaling as Hurst param-
eter tends to 1.
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5.4.2 Superposed Pareto Model

It is known that infinite variance interarrival times generate LRD counts [Greiner et al.,
1999]. Therefore, until the interarrival times in a superposition process have infinite

variance, the resulting counts will exhibit global scaling. Superposition of Pareto renewal

streams is an appropriate Internet traffic modelling framework in this regard.

For the superposition of Pareto renewal streams with heavy-tail index in the range 0 < α ≤ 1,

the interarrival times will always have infinite variance, irrespective of the number of

component streams. Therefore, for this range of α, superposed Pareto process will generate

counts that will exhibit global scaling.

For the superposition of N Pareto renewal streams with heavy-tail index in the range

1 < α ≤ 2, the interarrival times will have infinite variance if N < 1/(α− 1); see Section

3.4.1.2. Therefore, interarrival times in this case will generate LRD counts provided the

condition is met. If the number of component streams exceeds the limit imposed by that

condition, then the interarrival times will have finite variance and the resulting counts will

not be LRD [Jackson, 2004].

The global scaling analysis of the multiplexed Pareto model is shown in Figure 5.12. It

can be observed that as the component streams’ heavy tail index α increases and for larger

number of component streams (N = 200), the energy levels at various time scales (octaves)

are consistent with the observed energy levels of the session, outgoing flow, incoming flow,

outgoing packet and incoming packet counts, as can be seen in Figure 5.8. For example,

Figure 5.12 (a) and (b) shows the superposition of the Pareto traffic streams with the tail

index α = 0.3 and 0.5, respectively. These figures show global scaling behaviour and energy

levels at various time scales (octaves) similar to that of the session and flow counts as can

be seen in Figure 5.8 (a), (b) and (c).

The local scaling behaviour of the multiplexed Pareto model has been shown in Figure 5.13

which is consistent with the observed local scaling behaviour of the Internet traffic in our

access and ISP core networks as shown in Figure 5.9. For example Figure 5.13 shows that

as the value of tail index of component streams becomes closer to 1, the superposed output

tends to be mono-fractal. Therefore higher values of tail index for component streams

produce superposed output with similar local scaling behaviour exhibited by packet counts

as shown in Figure 5.13 (last two rows).
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Figure 5.12: Global scaling analysis of the superposition of Pareto renewal traffic streams.
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Figure 5.12: (Continued) Global scaling analysis of the superposition of Pareto renewal
traffic streams.
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Figure 5.13: Local scaling analysis of the superposition of Pareto renewal traffic streams for
the first 10 higher moments of wavelet partition function.
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5.4.3 Heavy-tailed Weibull Model

As we have demonstrated in earlier chapters, the heavy-tailed Weibull renewal processes

are found to generate interarrival time and count data which are found to provide the best

fit to Internet traffic data at packet, flow and session levels.

For the heavy-tail index range 0 < α ≤ 1, the superposed Pareto model converges in an

asymptotic limit to a heavy-tailed Weibull renewal process; see Section 3.4.1. Therefore, it

is interesting to assess the global and local scaling profile of a Weibull stream, as well as

several multiplexed Weibull streams.

The plots in Figure 5.14 show a decaying global scaling behaviour of the multiplexed Weibull

streams. These plots ultimately become horizontal which signifies that correlations become

negligible at coarse time scales. This behaviour is not observed for traffic in access networks.

Nevertheless, it should be noted that the theory in Section 3.4.1 and 3.4.2 supports the

Weibull renewal process as a candidate model for heavy multiplexing environments. In

such environments, for example in a backbone core network, the correlation effects can

be negligible, which can result in traffic to be nearly uncorrelated as reported in [Cao

et al., 2003; Zhang et al., 2003]. Therefore, the decaying global scaling behaviour of the

multiplexed Weibull model makes it a suitable candidate for modelling traffic in a heavy

multiplexing environment of an Internet backbone core network. The lower values of the

Weibull shape parameter in multiplexed Weibull model are suitable for modelling session

and flow level traffic and the higher values (≈ 1) are suitable for packet level traffic.

The local scaling behaviour of a single and multiple multiplexed Weibull streams has been

shown in Figure 5.15. The local scaling behaviour of a heavy-tailed Weibull renewal stream

is found to be consistent with the observed local scaling behaviour of session and flow

counts of traffic in various networks as shown in Figure 5.9 (top three rows). Figure

5.15 also shows that for a large superposition (N = 200) of heavy-tailed Weibull renewal

streams, the local scaling behaviour tends to become mono-fractal which is required for

packet level traffic.
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Figure 5.14: Global scaling analysis of the superposition of the Weibull renewal traffic
streams.
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Figure 5.15: Local scaling analysis of the superposition of Weibull renewal traffic streams
for the first 10 higher moments of wavelet partition function.



5.5 Summary of the Chapter 179

5.5 Summary of the Chapter

The concept of burstiness is important for characterizing Internet traffic but it is not directly

related to the phenomenon of scaling or long-range dependence. Burstiness can be assessed

in terms of indices of dispersion for counts or intervals and variance-mean relation. The

renewal processes with heavy-tailed interarrival times (having all moments finite) like a

Weibull renewal process, they can generate burstiness in data similar to that observed in

Internet traffic.

Burstiness at multiple time scales can be considered as an indication of scaling, but it

cannot be used as a quantitative or qualitative evidence for the presence of scaling in

Internet traffic. The phenomenon of scaling refers to strong autocorrelations in traffic data.

Scaling can be global or local. In global scaling, the data can be characterized by a single

scaling exponent, that is, the Hurst parameter. The local scaling refers to a situation when

more than one higher order scaling exponents are required to characterize the data due to

significance of local effects (for example, sudden peaks).

Internet traffic is found to exhibit both global and local scaling. Namely, packet level

traffic is mono-fractal. This means that packet counts exhibit global scaling and can be

characterized by FGN, which displays strictly mono-fractal scaling and is parametrized

by the Hurst parameter only. It should be noted that FGN is applicable at coarse time

scales and is not an appropriate model for Internet traffic at fine time scales. Flow and

session counts are found to exhibit non-trivial local scaling behaviour in access and ISP core

networks at all time scales. The superposed Pareto model and heavy-tailed Weibull renewal

models can generate a variety of global and local scaling behaviour and are applicable for

fine time scales as well. Therefore, for simulation or experimental studies involving effects

of global and local scaling, it is recommended to use simple models like superposed Pareto

or heavy-tailed Weibull renewal models for Internet traffic. These models are close to the

principle of parsimony in terms of the number of parameters and underlying assumptions.

Also, these simple models work well at various multiplexing levels involving fine and coarse

time scales and can account for the characteristics of Internet traffic at packet, flow and

session levels.
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Chapter 6

Conclusions & Future Work

“ What does it mean to have a statistical characterization of connectionless
traffic? Obviously, there cannot be a single generally true characterization,
since the traffic certainly depends both on the application environment and
on the network environment.

”
Ilkka Norros, 1995

6.1 Thesis Summary

The ever decreasing cost for accessing the Internet and the ever increasing spectrum

of services that are offered have caused a tremendous growth in Internet traffic. Hence,

Internet traffic modelling has re-emerged as an important and critical area of research.

The traditional Markovian models could not account for the observed burstiness and

correlation in Internet traffic. Therefore, the focus of Internet traffic modelling research

moved towards developing traffic models, which can capture long-range dependence, such

as Fractional Brownian Motion. This LRD based direction of research has the following

limitations:

• The focus on the second order global scaling properties exhibited by Internet traffic

has led to an over-looking of the capabilities of other renewal non-Markovian models,

despite the fact that there have been new developments in renewal theory as well.
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• The theory of LRD focuses on capturing second order correlation structures (for

example, the strength or slow decay of autocorrelations) of Internet traffic. However,

processes having the same autocorrelation strength or Hurst parameter can generate

vastly different and even contradictory queueing performance; see [Grossglauser &

Bolot, 1999; Ritke et al., 2001], for example.

• The observed LRD in Internet traffic should have a physical justification. Although the

presence of heavy-tails in various attributes of Internet traffic (for example, in packet

interarrival times and file sizes) have been described as possible causes of the LRD

phenomenon, the heavy-tailed renewal process framework in itself has rarely been

used for Internet traffic modelling purposes.

According to [Wischik & Ganesh, 2007], the theory of LRD is not “terribly” informative in

practice due to its asymptotic mathematical construction and, therefore, in practice the

modelling based on simple traffic statistics such as the mean and variance will be more

useful and meaningful. On the basis of traffic analysis presented in this thesis, we partially

agree with this notion. LRD cannot be vitally important in queueing applications. In this

thesis, nevertheless, we do not undermine the importance of LRD. Instead of modelling

traffic purely as LRD processes, we propose that LRD should be taken as a driving factor in

selecting appropriate stochastic processes for modelling Internet traffic at both interarrival

time and count levels.

This thesis is primarily concerned with the analysis and modelling of Internet traffic

represented by fractal renewal processes. We have assessed the structural components of

Internet traffic, that is, packets, flows and sessions separately, and in both outgoing and

incoming directions. Although we do keep track of short and long-range dependence in

traffic data, the main modelling theme has been based on both the previously over-looked

capabilities of renewal theory, as well as on new developments especially in the heavy-tailed

distributions and their superposition models.

We have shown that fractal renewal processes can model the interarrival times, counts,

global and local scaling behaviour as that of the structural components of Internet traffic in

access and ISP core networks. Based on available theory, we have also extended our results

to the traffic in Internet backbone core networks. We have found that the heavy-tailed

Weibull renewal process has the flexibility to model the interarrival times and counts of

traffic at packet, flow and session levels. We have justified the usage of the heavy-tailed

Weibull renewal process empirically as well as analytically, by considering the superposition

models for heavy-tailed or fractal renewal processes. We have also shown that the heavy-
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Figure 6.1: Internet traffic characteristics and models for access, ISP core and backbone
core networks. P, F and S mean Packets, Flows and Sessions, respectively.

tailed Weibull renewal process can also be used as an appropriate model for packet arrival

processes in a variety of different queueing scenarios.

The Internet traffic data set used in this thesis for analysis consisted of large and repre-

sentative traffic traces, captured from three different access networks and their ISP core

network. Figures 6.1 (a) and (b) summarize our conclusions about the characteristics and

models for the structural components of Internet traffic in access, ISP core and backbone
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core networks, filling the gaps in knowledge of the properties of Internet traffic that have

been indicated in Chapter 1, in Figure 1.1.

In short, the findings in this thesis support the use of a framework based on fractal renewal

processes for Internet traffic modelling. Namely, for modelling traffic at individual user

levels, we propose the use of Pareto renewal processes. For modelling traffic in access and

ISP core tiers of Internet hierarchy, heavy-tailed Weibull renewal processes are proposed.

For modelling traffic in heavily multiplexed backbone core networks, models based on

multiplexed heavy-tailed Weibull renewal processes are appropriate. This framework covers

packets, flows and sessions as structural components of Internet traffic and can model

traffic at both interarrival time and count levels.

Our analysis in this thesis is based on traffic from two tiers of the Internet hierarchy, that is

access networks and their ISP core network. Based on available theory, we also extend our

results to traffic in Internet backbone core networks which multiplexes highly aggregated

traffic from access networks as shown on the right hand side of Figures 6.1 (a) and (b).

We emphasize the need for analysis of traffic belonging to consecutive higher tiers of the

Internet hierarchy, so that more conclusive investigations can be conducted to develop

traffic models applicable at all tiers of Internet hierarchy.

6.2 On the Tractability of the Proposed Traffic Models

Tractability of traffic models is important for their practical engineering applications in

such tasks of network performance and network planning. Network performance is related

to analysis of arrival processes and their impact on queueing metrics at fine time scales.

On the other hand, network planning relates to the analysis of traffic data at coarse time

scales. The analytical tractability of our proposed traffic models has been discussed in

Sections 3.5.3 and 4.5. Here we briefly summarize the tractability of the traffic models in

our proposed renewal process based framework:

• There are standard mathematical methods to detect the presence of renewal be-

haviour and any deviations from it. Index of dispersion for counts (IDC) and index of

dispersion for intervals (IDI) are second order metrics which can be easily used to

decide, both analytically and graphically, how much a data set conforms to renewal

behaviour [Gusella, 1991]. On the other hand, analysis and detection of second-order

self-similarity in a data set lacks a consistent estimation procedure as various estima-
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tors for the degree of self-similarity (the Hurst parameter) can produce conflicting

estimates when applied to the same data set; see [Rea et al., 2013; Ritke et al., 2001],

for example.

• For modelling user sessions or user think times, we have proposed to use traffic

models based on interarrival times with infinite mean and/or infinite variance. In

order to have non-zero arrival rates for such processes we condition them by assuming

occurrence of an event representing the beginning of a session or a flow. Nonetheless

such models are not supposed to represent direct inputs to queues because this can

result in drastically inaccurate queueing performance. For an input to queue or for

an analysis of the traffic data aggregated from various users in access or ISP core

networks, we have suggested to use their multiplexing models in approximation.

• Our model based on the Weibull renewal processes can be analytically related back to

the physical mechanism which generates such renewal processes by the superposition

of traffic streams with infinite mean interarrival times [Mitov & Yanev, 2006].

• Our multiplexed Pareto type II model has been derived from the Cox’s equation [Cox

& Smith, 1954] which provides analytically tractable solution for modelling arrival

process in a queue. This model is given by equation 3.9. Here the number of traffic

streams N required to generate finite or infinite second order moment can be easily

calculated. That is, the second moment will be finite for N > 1/(α− 1), and will be

infinite otherwise. Global scaling requires the second moment of interarrival times

to be infinite, whereas queueing analysis requires that at least the second moment is

finite. Hence this model can be tailored, based on appropriate number of component

streams, to be used for both queueing and global scaling analysis.

• The proposed model based on the Weibull renewal processes allows both analysis of

interarrival times and count processes; see equations 2.25 and 4.22.

• The proposed model based on the heavy-tailed Weibull renewal processes satisfies the

conditions of a Cox process and can be used as the simple and analytically tractable

alternative to stochastic processes with time varying arrival rates, such as for example

Doubly Stochastic Poisson Process [Yannaros, 1994]. Other examples of processes

offering time varying arrival rates include MAP (Markovian Arrival Process) and MMPP

(Markov Modulated Poisson Process). These models are based on multiple states

(representing arrival rates) and are not parsimonious because of the requirement of

the higher number of parameters to be estimated as compared to the simple Weibull
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renewal process based model.

• Our models of teletraffic based on the Weibull renewal processes are analytically

flexible for generating different types of bursty or irregular data streams by varying

the Weibull shape parameter. Note that if the Weibull shape parameter equals to

1, the Weibull distribution becomes negative exponential distribution, generating

Poisson counting process (suitable for traffic modelling in backbone core networks).

Furthermore, if a random variable X is governed by a Weibull distribution with shape

parameter c, then Xc is exponentially distributed. For example, the Weibull random

variable with its shape parameter equal to 0.5 represents a squared exponential

random variable.

6.3 Future Work

Figure 6.1 is an attempt to answer the questions raised in Figure 1.1. Analysis of more

traffic traces from various types of access and core networks is needed in order to have a

thorough understanding of the variants and invariants of Internet traffic. Here, we outline

some of the important research avenues emanating from this thesis.

6.3.1 Splitting Process in Internet Traffic

This thesis was mainly concerned with the modelling of Internet traffic created by superpo-

sition of data substreams. The reverse of the superposition process, that is, the splitting

process is also an integral part of Internet traffic modelling,because Internet traffic under-

goes superposition and splitting at various points throughout its end-to-end journey. The

process of splitting has also been referred to in classical literature as thinning or random

erasure.

Throughout this thesis we have presented analysis of outgoing and incoming traffic. In

fact, it is the incoming traffic in access networks from the ISP core network which can be

treated as the splitted traffic. Table 3.6 can be seen to observe variations in the Weibull

shape parameter as traffic splits from the ISP core network to the Ethernet, the DSL and

the Wireless hotspot access networks. A first empirical observation is that Weibull shape

parameter increases as traffic splits from the ISP core network to any of the access networks.

Nonetheless, any such conclusion needs more careful investigation because any dependency
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in splitting process also affects splitted traffic streams. Other factors like goodness-of-fit of

splitted stream need also be carefully assessed. Therefore, a careful analysis of the process

of splitting is an important topic for future work.

It should be noted that splitting of a count process can result in higher variability in splitted

count processes; see page 306 of [Whitt, 2002], for example. While assessing Internet

traffic traces for splitting, it is important to consider any dependency or independency so

that the relevant theory can be applied for modelling such phenomenon.

Another important reference for process of splitting or thinning is [Chandramohan &

Liang, 1985] in which Bernoulli, multinomial and Markov chain splitting/thinning of

delayed renewal processes or doubly stochastic Poisson processes has been considered. A

three parameter renewal approximation for the analysis of splitting and superposition of

autocorrelated processes and their impact on queueing performance have been studied in

[Balcıog˜lu et al., 2008b]. Hence our framework, based on fractal renewal processes, can

also be extended to studies of Internet traffic splitting.

6.3.2 Modelling Sessions

The identification of user-sessions suffers from various interpretation and contextual issues,

as described in Section 1.5.3. Traffic classification at Application Layer can help in correct

identification and time stamping of sessions. But Internet traffic classification is still an

active area of research and existing tools (even payload based) suffer from various false

positive issues [Alcock & Nelson, 2013]. It will be interesting to use new developments in

Internet traffic classification research to establish a more user-centric definition of a session.

Actual user-session interarrival time data can be more skewed than the data obtained from

our outgoing TCP SYN segment based interpretation for sessions. Therefore, we believe

that the proposed heavy-tailed Weibull renewal process can provide a good fit to actual

user-session interarrival times and counts.

It is also important to characterize user session and flow durations. For elastic (TCP) traffic,

the end or termination of a user-session can be identified by the TCP FIN segment. However

it is more challenging to measure the duration of unelastic (UDP) user flows and their

corresponding sessions from a traffic trace. Based on the 5-tuple, an active flow table can be

maintained for the identification of new elastic and unelastic flows. The challenge here is to

identify an appropriate timeout value for the expiry of the unelastic flows. Our analysis in

Section 3.2 can be further extended to model duration of elastic and unelastic flows. User
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flow durations, being governed by activity and inactivity periods, can be modelled by using

distributions with infinite mean and/or infinite variance, provided that the corresponding

renewal process is conditioned to start from an event (for example, start of a flow or session)

[Lowen & Teich, 1993]. Other useful candidate models for such an investigation can be

Interrupted Poisson Process (IPP), 2-state Threshold model (TH), Markov-Hyperexponential

model and Erlang-r model, as discussed in [Arvidsson & Harris, 1993].

6.3.3 Queueing Performance Evaluation of the Proposed Models

In section 3.6 we report the results from queueing performance evaluation of our renewal

and non-renewal models, and compare them with the results obtained for outgoing packet

traffic traces obtained from the Ethernet, DSL, Wireless hotspot and ISP core networks.

Additionally, it is important to assess the performance of the models under other metrics,

including higher moments of the waiting times and interdeparture times. Analysis of

the renewal behaviour of the output streams and matching of them or their moments to

appropriate renewal processes is also important for communication engineering [Neuts,

1979].

Analysis of the packet loss rates recorded under the models we considered, and comparing

them with the rates under traces of real traffic is also important to investigate if we assume

finite queue lengths in our simulations. A challenge in such a study is to identify accurate

timing and location of packet losses in a traffic trace. This is due the fact that a loss being

detected at the capture point of a traffic trace may not have necessarily occurred at the

point of capture [Alcock & Nelson, 2011].

6.3.4 Inferring Full Characteristics of Traffic from Partial Measure-

ments

Due to data storage limitations, network operators prefer to capture traffic count data at

coarser time scales or after fixed time intervals few minutes apart. It is some times required

to infer traffic characteristics at lower time scales (for example, milliseconds) from coarse

time scale data, for example, to identify a hidden peak or burstiness behaviour causing

congestion. Obviously, accurate mapping from coarse to fine time scale traffic is impossible

without storing any other statistical information which can help in such zooming in time.

Thus, the main challenge is to find out what extra information is needed which can help
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in mapping traffic from coarse to fine time scales with minimum error. We propose a few

strategies to address this issue as follows.

• Calculate the Hurst parameter of traffic data at coarse time scale and use this value to

generate data at lower time scales using various self-similar traffic generators; see

[Jeong et al., 1999], for example. A simple method to generate such a fine time scale

data is to use the FGN generator based on spatial renewal processes; see [Taralp et al.,
1998] for spatial renewal processes. Such an approach can generate fine time scale

data which can show a similar second-order scaling behaviour as of the data at coarse

time scale, but this approach cannot account for timings of peaks or fluctuations in

data.

• Another approach to handle this issue and save storage requirements to handle large

amounts of data is to store a few discrete Fourier transform coefficients of the traffic

count data at a fine time scale in desired time windows and then use an inverse Fourier

transform to re-generate the actual data at fine time scales which can be aggregated

to generate data at coarse time scales. The few discrete Fourier transform coefficients

can be fixed time intervals apart, for increased real time performance, or they can

be stored based on their magnitude, for increased accuracy. Alhough this approach

does not require any raw data storage at coarse and fine time scales, it does require

calculation of fast Fourier transforms in real-time for fine time scale traffic data and

may suffer from accuracy issues while re-generating data. Moreover, operators may

not be ready to capture traffic data for calculation of fast Fourier transforms at fine

time scales.

• Based on our finding that the heavy-tailed Weibull renewal processes provide the

best fit to Internet traffic data at both interarrival time and count level, the issue

can be handled as follows. Namely, divide the coarse time scale count data into

appropriate fixed length segments and calculate the Weibull shape parameter of the

count data. Using this value of shape parameter, fine time scale count data in the

corresponding time window can be inferred by using a lower value of Weibull scale

parameter that can correspond to the time scale of interest. It should be noted that

fine time scale data may not have exactly the same distribution of counts as that

of the coarse time scale data, but such an approach can offer a reasonable way of

inference. The methods to estimate the Weibull shape parameter from interarrival

time data (continuous valued) exist (see Section 2.5.2), but a method to calculate

the Weibull shape parameter from count data (discrete valued) does not exist at the
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moment. Nevertheless, it is not impossible as the Weibull count model has recently

been proposed by [McShane et al., 2008]. Therefore, estimating the Weibull shape

parameter from count data is an interesting statistical task. A method to evaluate

Weibull shape parameter from count data may find a widespread usage in other areas

of science and engineering dealing with count data.

An extensive analysis of the above proposed methodologies is needed to arrive at the best

possible approach for inferring fine time scale data from coarse time scale data which can

map coarse time scale count data to its corresponding fine time scale count data.

6.3.5 Further Research in Count Data Modelling

In this thesis, we have shown the flexibility of the Weibull count model in characterizing

Internet traffic at the packet, flow and session levels. The Weibull count model can be

used as an alternative to doubly stochastic Poisson process [Yannaros, 1994]. Count data

modelling is one of the fundamental concerns in Internet traffic modelling, simulation

and generation. There have been many new developments in statistics regarding count

data modelling. Therefore, more research is needed in assessing the capabilities of these

count models in Internet traffic. Here we outline some interesting research tasks in this

direction.

• The Weibull count model (see Equation 4.22) is based on Taylor series truncation and

a finite number of terms are required to compute the probability of counts. There

is a need to define the optimal number of terms which can yield an estimate of the

probability within desired accuracy. Moreover for higher values of the counts, the

count model is more computationally time consuming due to calculation of large

factorials. Using optimization and approximation techniques (for example, Stirling

approximation for large factorials or recursion techniques using the ratios of previous

terms in the series to generate the next term) , the performance of the Weibull count

model can be improved.

• Calculation of effective bandwidth of Weibull stream is another important statistical

issue, addressing which can be useful for bandwidth or resource provisioning algo-

rithms. The concept of the effective bandwidth has been introduced by [Kelly, 1996].

Effective bandwidth formulates the amount of traffic load which a traffic source based

on a statistical model generates in a defined interval of time. The effective bandwidth

for Levy processes, that is, processes with stationary increments such as Poisson and
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fractional Brownian motion has been formulated in [Kelly, 1996]. Considering the

widespread applicability of the Weibull renewal process in Internet traffic modelling,

it will be interesting to derive an expression for the effective bandwidth of the Weibull

count model described by Equation 4.22 and assess its properties.

• The application of other flexible count models, permitting specification of the variance

and the mean is needed as proposed in [King, 1989]. It would be interesting to

assess the performance of the self-exciting point processes with limited memory, as

proposed in [Snyder & Miller, 1991]. Moreover, Poisson processes can be transformed

to simulate nonstationary arrivals due to methods reported in [Gerhardt & Nelson,

2009]. It will be interesting to test the applicability of these methods in the context of

Internet traffic.

6.3.6 Sequential Estimation of Heavy-tail Index

After an extensive literature review, we are able to identify three estimators of tail index

proposed by [Paulauskas, 2003], [Stoev et al., 2011] and [Zhaozhi & Fan, 2004] which

support sequential evaluation. A performance comparison of these real-time estimators of

tail index, in the context of teletraffic is an interesting research problem to identify the best

estimator in terms of speed and accuracy.

In [Paulauskas, 2003], a recursive estimator of tail index has been presented. This estimator

was investigated with reference to the world-wide-web traffic by [Markovich, 2005]. Some

modifications in this estimator are described in [Paulauskas & Vaičiulis, 2011]. This

recursive estimator is based on a principle that the average of ratios of the second largest to

the largest values in fixed size groups in data converges asymptotically to α/(α + 1).

In [Stoev et al., 2011], an interesting estimator of tail index α has been proposed which

can be updated sequentially in a real-time fashion with minimum storage requirements.

This estimator relies on the concept of max self-similarity. The governing principle which

motivated the development of this estimator is explained in [Stoev et al., 2011] as: “Block
maxima of block sizes m, scale at a rate of m1/α as m−→∞”.

Another estimator of heavy-tail index α has been proposed in [Zhaozhi & Fan, 2004]. The

stable distributions are closed under convolution. Using this standard property of the

stable distributions, [Zhaozhi & Fan, 2004] proposed that the ratio of the logarithm of sum

of heavy-tailed random variables to the logarithm of the number of values tends to α−1,
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asymptotically.

These sequential estimators can have a great potential in real-time analysis of Internet

traffic. Therefore, it will be interesting to have a comparison of these estimators of heavy-

tail index and identify which one works optimal in the context of Internet traffic data. The

sequential estimators can be compared with respect to different criteria of their quality. For

example, one can look at their variances, unbiasedness, robustness, speed of convergence,

memory or data window size requirements.

6.3.7 Sequential Estimation of the Hurst Parameter

The theory of long-range dependence is asymptotic in nature, therefore, the task of evaluat-

ing the Hurst parameter in sequential fashion is challenging. Even the offline estimators of

the Hurst parameter suffer from accuracy issues in large sample sizes. It should be noted

that the Hurst parameter can also provide misleading estimates when there is an abrupt

change in mean level or non-stationarity in data [Beran et al., 2013b]. A purely recursive

or sequential estimator of the Hurst parameter is difficult to develop. A wavelet based

real-time estimator of Hurst parameter is proposed in [Roughan et al., 2000].

It will be interesting to combine the idea of sequential estimation of Hurst parameter with

change point detection techniques. Such a technique has been used in [Chatterjee et al.,
2008]. Some sequential versions of change point detection methods for non-stationary

time series have been proposed in [Choi et al., 2000]. It will be interesting to develop

a sequential estimator of Hurst parameter based on sequential change point detection

methods.
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