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Abstract:  This study uses Monte Carlo analysis to investigate the performances of five 
different meta-analysis (MA) estimators: the Fixed Effects (FE) estimator, the Weighted 
Least Squares (WLS) estimator, the Random Effects (RE) estimator, the Precision Effect Test 
(PET) estimator, and the Precision Effect Estimate with Standard Errors (PEESE) estimator.  
We consider two types of publication bias: publication bias directed against statistically 
insignificant estimates, and publication bias directed against wrong-signed estimates.  
Finally, we consider three cases concerning the distribution of the “true effect”: the Fixed 
Effects case, where there is only estimate per study, and all studies have the same true effect; 
the Random Effects case, where there is only one estimate per study, and there is 
heterogeneity in true effects across studies; and the Panel Random Effects case, where studies 
have multiple estimates, and true effects are random both across and within studies.  Our 
simulations produce a number of findings that challenge results from previous research.   
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I.  INTRODUCTION 
 
A meta-analysis (MA) is a systematic evaluation of a body of research that measures some 

“effect,” such as the effect of minimum wages on unemployment, or the effect of an increase 

in electricity prices on residential demand.  It is no exaggeration to say that most areas of 

empirical study in economics are characterized by disparate, and often conflicting, estimates.  

Meta-analysis is an attempt to summarize and “make sense” of these disparate findings.  

Meta-analyses have a long tradition in the medical sciences, and are increasingly popular in 

economics.   

 A major concern in the MA literature is the problem of “publication bias.”  

Publication bias occurs when the sample of research that gets “published” does not represent 

the population of studies that measure the effect.1  This can happen when journals reject 

studies that report statistically insignificant estimates, or that are “wrong-signed.”  It can also 

happen when researchers anticipate rejection by journals due to undesirable results, and 

choose either to not submit their work to journals (the “file drawer” effect); or submit only 

those regressions that are most supportive of their hypothesis.2 

 While small sample size/statistical insignificance has received the preponderance of 

attention, both types of publication bias have been identified in the literature as important.  

For example, three of the four cases analysed in-depth by Stanley and Doucouliagos (2012) – 

namely:  Dalhuisen et al. (2003); Bellavance et al. (2009) and Doucouliagos and Stanley  

(2009) – focus on publication bias due to (perceived) wrong signs. 

 Despite a voluminous literature, there are relatively few studies that examine the 

performance of meta-analysis procedures designed to address publication bias.  Stanley 

(2008) compares the performance of meta-analysis estimators on the dimensions of power, 
                                                 
1 Following conventional usage, we use “publication bias” to refer both to (i) the sample selection that occurs 
when research is non-randomly selected into publication outlets, and (ii) the bias in estimated effects that arises 
from that selection process. 
2 The latter kind of publication bias can be reduced by journals insisting on extensive robustness checks and 
meta-analysts including all such robustness checks in their analysis. 
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size, and mean squared error.  His analysis produces a relatively sanguine evaluation of the 

ability of meta-analysis estimators to reliably detect, and estimate, variable effects in the 

presence of publication bias:  “Meta-regression methods are found to be robust against 

publication selection. Even if a literature is dominated by large and unknown 

misspecification biases, precision-effect testing and joint precision-effect and meta-

significance testing can provide viable strategies for detecting genuine empirical effects” 

(Stanley, 2008, p. 103).   

 Moreno et. al (2009) compares a large number of meta-analysis estimators on the 

dimensions of bias, coverage rates, mean squared error, and variance.  They also come to an 

overall positive evaluation, at least for a subset of the estimators: “In this paper we have 

compared some novel and existing methods for adjusting for publication bias through an 

extensive simulation study. Results are encouraging, with several of the regression methods 

displaying good performance profiles” (Moreno et al. 2009, p. 12).   

 Two recent papers by Stanley and Doucouliagos (2014a, 2014b) follow on earlier 

work by Koetse et al. (2010) and promote another meta-analysis estimator that they call the 

“Weighted Least Squares” (WLS) meta-analysis estimator.3  Stanley and Doucouliagos argue 

that this estimator outperforms both the conventional fixed effects estimator and the random 

effects estimator in the presence of publication bias. 

 While all these studies make important contributions, they leave significant gaps in 

their coverage.  For example, it is common to only consider two scenarios, “no effect” and 

“effect”, and to ignore the interaction of effect size and publication bias.  Previous studies 

that focus on publication bias assume each study only produces one estimate.  They do not 

consider scenarios where studies produce multiple estimates of an effect, a common feature 

                                                 
3 See Section 3.3 in Koetse et al. (2010), specifically footnote 6. 
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of economic studies.  Finally, there is typically little effort made to ensure that the simulated 

samples “look like” the kinds of samples used in actual meta-analysis studies. 

 Our research simulates populations of studies, and subjects those studies to 

publication bias.  It will then compare a variety of estimators for measuring the “true” effect, 

or the mean “true” effect, when the meta-analyst’s sample is subject to publication bias. The 

analysis will focus on three cases.  The “Fixed Effects” case arises when all studies have the 

same effect in the population, but sampling variation causes different studies to produce 

different estimates of that effect.  In this case, the meta-analyst attempts to identify the single 

“true” effect.  Given the common heterogeneity across studies in economics, this case is the 

least interesting but it provides a useful benchmark.  The “Random Effects” case occurs when 

studies estimate different population effects, but with a common expected value.  In this case, 

the meta-analyst attempts to identify this expected value, i.e. the average of the individual 

“true” effects.   

 These first two cases examine scenarios where only one estimated effect is produced 

by/taken from each study.  The third case addresses the situation where studies contain 

multiple estimates.  In this case, each study has a different “true” effect that varies both 

within and across studies due to specification and other issues.  This is arguably the most 

common case in economics.   

 The results presented in this study are based on the particular specifications of the 

data-generation process used in our Monte Carlo simulations.  However, they are sufficient to 

support the following conclusions.  First, MA estimators that correct for publication bias 

sometimes perform worse than those that do not.  Second, MA estimators perform poorly 

when there is substantial heterogeneity in true effects, and publication bias affects the most 

precise estimates.  Third, while random effects estimators are often more biased than other 

MA estimators, they sometimes are more efficient.  And finally, hypothesis testing about the 
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mean true effect is generally unreliable for all MA estimators.  While previous research has 

identified specific experimental settings which demontrate the superiority of one or more MA 

estimators, our results provide a demonstration that these results do not generalize to all 

settings.  There are variations in the experimental design of existing simulation studies whose 

impact on the small sample characteristics of meta-analysis estimators are unknown. A 

general conclusion therefore remains elusive for now. 

 
II.  FIXED EFFECTS 

 
IIA.  FIXED EFFECTS: DESIGN OF MONTE CARLO EXPERIMENTS 
 
SIMULATING THE STUDIES.  All of our Monte Carlo experiments follow a two-stage 

procedure.  The first stage consists of generating a population of “studies.” In the Fixed 

Effect (FE) case, we construct a population of M studies.  Each meta-analysis study has one 

estimated effect based on a sample of T observations (later we will generalise this to multiple 

estimates per study).  The DGP generating the simulated observations for a given study i is 

given by: 

(1) yit = 1 + α xit + eit, t = 1,2,…,T, 

where the “true” effect a is a parameter that we vary across Monte Carlo experiments. 

 At the level of the individual study, these observations are used to estimate the 

following specification: 

(2) yit = βi0 + βi1·xit + errorit , t = 1,2,…,T. 

The estimated effect for study i is given by the OLS estimate of βi1 in Equation (2). The 

assumptions regarding eit in Equation (1) imply that OLS will in each study yield a best linear 

unbiased estimate of α. 

 While the true effect is the same for all studies, and the distribution of the x’s are the 

same (x~NID(0,1)), the studies differ in the variances of their respective error terms.  This 

causes the OLS estimates across different studies to have different standard errors. 
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 A critical component in our Monte Carlo simulations is the specification of the error 

term in Equation (2). We choose parameter values that attempt to satisfy three criteria: 

1. Produce a realistic range of t-values for the estimated effects in the population of 
studies 
 

2. Produce realistic-looking funnel graphs 

3. Cause the percent of studies that “disappear” through publication bias to range 
between 0 and 80 percent. 
 

 In the FE case, the error term for study i is simulated by 

(3.A) eit = λi· NID(0,1), t = 1,2…,T, where  

(3.B) λi = 0.2 + 30*UID(0,1), i = 1,2,…,M; 

where UID(0,1) indicates that this component of the error term is uniformly and 

independently distributed on support [0,1].  This formulation allows a floor to be set for the 

minimum value of the variance of the error term (0.04).  This prevents small error variances 

from generating unreasonably large t-statistics for the estimated effects. 

 For each study i, we record the estimated value of βi1 and its standard error.  In the 

Fixed Effects case, we repeat the above process M times, so that there is a sample of M 

studies, each with its own estimated effect and standard error (but common true effect).  This 

sample constitutes the population of all estimated effects.  In the actual simulations, we will 

set T = 100 and M = 300. 

 PUBLICATION BIAS.  Two types of publication bias are modelled.  The first type 

assumes that the publication process discriminates in favour of studies that have statistically 

significant estimates, indicated by t-statistics with absolute values greater than or equal to 2.  

Studies with insignificant estimates can still get “published,” but only with probability equal 

to 0.10.  The second type of publication bias discriminates against studies that have estimated 

effects of the “wrong sign.”  Without loss of generality, we assume that economic theory 

posits that the correct sign of β1 should be positive (as in value of life), so that negative 
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estimated values have a much harder time getting published.  Their probability of getting 

published is again set equal to 0.10.  

 SIX DIFFERENT ESTIMATORS OF EFFECT SIZE.  The second stage of our 

analysis simulates the meta-analysis procedure.  Given a set of studies, meta-analysis aims to 

measure the true effect of x on y.  There are a variety of ways to do this.  Our Monte Carlo 

analysis compares the performances of six different estimators: “Unadjusted” average (= 

OLS), and five different MA estimators, two of which are specifically designed to address 

publication bias. 

 The “Unadjusted” estimator:  This estimator calculates a simple average of the 

reported estimated effects from the publication-biased sample of studies available to the 

meta-analyst.  Let �̂�𝑖 be the estimated effect from study i.  The Unadjusted estimator of the 

true effect is the OLS estimate of α in the equation below: 

(4) �̂�𝑖1 = α + νi, i = 1,2,…,M, 

where M is the number of published studies available to the meta-analyst. Clearly, the 

unadjusted estimator simply calculates the arithmetic mean of estimated effects across 

studies. 

 The “Fixed Effects” (FE) estimator.  The FE estimator weights all the observations by 

the inverse of the estimated standard error of �̂�𝑖, SEi.  It assumes that any variation in the 

estimated effects across studies is due solely to sampling error.  The FE estimator of the true 

effect is the weighted least squares estimate of α in Equation (4): 

(5) 
𝛽�𝑖1
𝑆𝐸𝑖

 = α∙� 1
𝑆𝐸𝑖
� + 𝜈𝑖

𝑆𝐸𝑖
 ,  i = 1,2,…,M; 

except that the residuals are standardized to produce a sample variance of 1.   

 The “Weighted Least Squares” (WLS) estimator.  The WLS estimator is identical to 

the FE estimator except that the residuals remain unstandardized.  Note that the FE and WLS 
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estimators produce identical estimates of α, but the associated estimates have different 

standard errors. 

 The “Random Effects” (RE) estimator.  The “RE” estimator allows for heterogeneity 

in effects above and beyond what would be expected from sampling variation.  It assumes 

that differences in estimated effects across studies are due to (i) sampling variation, and (ii) 

genuine differences in the underlying effects.  This second component is represented by 𝜏, 

which is the standard deviation of underlying effects across studies.  If the two error 

components are independent, then the s.e.( �̂�𝑖) = �(𝑆𝐸𝑖)2 + 𝜏2 = 𝜔𝑖. The RE estimator of the 

mean true effect (the mean of the distribution of random true effects), is given by weighted 

least squares estimation of α in Equation (4), with weights = 𝜔𝑖:  

(6) 
𝛽�𝑖1
𝜔𝑖

 = α∙� 1
𝜔𝑖
� + 𝜈𝑖

𝜔𝑖
 ,  i = 1,2,…,M. 

 The Precision Effect Test (PET) estimator:  The first of two MA estimators designed 

to address publication bias is the “PET” estimator.  The name of this estimator derives from 

the fact that it is associated with a particular test for publication bias known as the Precision 

Effect Test (PET).  The PET adds the ith  study’s estimated standard error of the estimated 

effect, (SEi) to Equation (4): 

(7) �̂�𝑖1 = α + α1∙𝑆𝐸𝑖 + νi, i = 1,2,…,M. 

WLS estimation of α in Equation (7) provides an estimate of the true effect of x on y, α, 

adjusting for publication bias α1: 

(8) 
𝛽�𝑖1
𝑆𝐸𝑖

 = α∙�
1
𝑆𝐸𝑖
�  + α1 + 

𝜈𝑖
𝑆𝐸𝑖

,  i = 1,2,…,M). 

 The Precision Effect Estimator with Standard Errors (PEESE) estimator:  The second 

MA estimator designed to address publication bias is the “PEESE” estimator.  This estimator 

is identical to the PET estimator, except that it replaces 𝑆𝐸𝑖 with (𝑆𝐸𝑖)2 in Equation (7).  This 

yields the following weighted least squares specification,  
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 (9) 
𝛽�𝑖1
𝑆𝐸𝑖

 = α0∙�
1
𝑆𝐸𝑖
�  + 𝛼1 ∙ 𝑆𝐸𝑖 + 

𝜈𝑖
𝑆𝐸𝑖

,  i = 1,2,…,M. 

Note that there are no constant terms in the specifications of Equations (5), (6) and (9). 

 Both the PET and PEESE estimators correct for publication bias by adding some form 

of the effect's standard error to the regression specification.  The rationale for this approach is 

loosely linked to Heckman-type procedures for correcting sample selection bias (Stanley and 

Doucouliagos, 2012, pp. 117ff.).4   

 PERFORMANCE MEASURES.  Our analysis employs three performance measures: 

(i) Bias, (ii) Mean Squared Error (MSE), and (ii) accuracy of hypothesis testing, as measured 

by Type I error rates associated with testing the hypothesis: 𝐻0: 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 =  𝛼.  We 

simulate 1,000 meta-analysis studies, where each meta-analysis study is generated as 

discussed above.  Further, we do this for 9 different values of true effects, 𝑎 = 0.0, 0.5, 1.0, 

1.5, 2.0, 2.5, 3.0, 3.5, and 4.0.5  

 Note that the extent of publication bias is affected by the value of α.  When α = 0, 

there will be more studies with statistically insignificant estimated effects, and more studies 

with wrong-signed estimated effects, than when α = 4.  However, the consequences will 

differ depending on the type of publication bias.  For example, when α = 0, publication bias 

based on statistical insignificance will not produce biased estimates of α.  In contrast, 

publication bias against wrong-signed estimates will have its greatest impact on estimator 

bias when α = 0. 

 
IIB. FIXED EFFECTS: AN EXAMPLE META-ANALYSIS SAMPLE (α = 1) 
 
TABLE 1 reports the distribution across studies of (i) estimated effects, (ii) t-statistics, and 

(iii) precisions of the estimated effect for a representative meta-analysis sample, where 

                                                 
4 While it may be semantically more accurate to refer to the PET and PEESE as alternative specifications of the 
WLS estimator, we will refer to them as estimators for ease of exposition. 
5 The Stata programs for generating the results of Tables 2, 3, 5, 6, 8, and 9 are included in the Appendix to this 
paper.  Additional programs are available from the corresponding author upon request. 
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representative is defined as average values across 1000 simulations.6  The sample was 

constructed using the design parameters described above, with the true effect set to one (α = 

1).  The “pre-publication bias” panel of the table reports sample characteristics for the 

population of 300 studies potentially available to the meta-analyst.  The next two panels in 

the table summarize the “published literature” available to the meta-analyst after each type of 

publication truncation is applied to the population of studies.   

 When α = 1, the two types of publication bias cause, respectively, approximately 68 

percent and 19 percent of the population studies to be omitted from the meta-analyst’s sample 

of studies.   The average minimum and maximum values of estimated effects in the 

population are [-5.74,7.76].7  In the publication-biased samples, the average ranges are  

[-5.01,7.65] and [-3.10,7.72], respectively.  The average estimation bias associated with the 

median study in the two population-biased samples is approximately 20%.  

 The median t-statistic in the population of studies is 0.94.  This compares to median t 

values of 2.62 and 1.27 in the two publication-biased samples. Note that even when 

publication bias discriminates against insignificant results, there are still some studies that 

have low t-statistics due to the assumed probabilistic nature of the bias/selection process 

(10% are still published). The precision (1/SE) is used in a number of MA procedures to 

weight individual observations (see above).  Relative weights across different observations 

can differ by a factor of 50 or more.  The differences in t-statistics and precisions across the 

publication-biased samples illustrates that the standard error variable, used in the PET and 

PEESE corrections for publication bias, is itself endogenous to publication bias. 

 The purpose of TABLE 1 is to demonstrate that the parameters chosen for our Monte 

Carlo experiments produce samples that approximately “look like” those used in actual meta-

                                                 
6 Empirical results are based on computer programs using Stata, version 13.1.  The associated .do files for all 
tables and figures are included in the Appendix. 
7 These are “average” minimum and maximum values because they are the minimum and maximum values 
averaged over the 1000 simulated meta-analysis samples. 
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analyses.  While meta-analysis samples certainly differ, the range of estimated effects, t-

statistics, and precision values in TABLE 1 would not attract attention for being unusual.  

Since external validity is always an issue with Monte Carlo studies, good practice should 

ensure that the samples under study are similar to ones that occur in actual empirical work. 

 FIGURE 1 presents a series of representative funnel graphs for each of the three 

samples, assuming the same parameter values used in TABLE 1.  The solid vertical line 

represents the true effect (α = 1).  The top figure shows a funnel graph for the population of 

300 studies prior to any publication bias.  The figure demonstrates the classic funnel shape, 

with the distribution of estimates being centered around the true effect, and approximately 

equal numbers of studies on either side of the true effect for a given SE value.   

 The next figure shows the same set of studies after they have been subject to 

publication bias against statistical insignificance.  As noted in TABLE 1, publication bias 

against statistical insignificance has a large impact on the meta-analysis sample when α = 1, 

with approximately 68% of studies, on average, never seeing the light of day.  The remaining 

32% present a skewed sample of estimated effects. While the most precise estimates are still 

centered closely around the true effect, less precise estimates are disproportionately 

distributed to the right of the true effect.   

 The last funnel graph works with the same population of studies represented in the top 

figure, but applies a selection criterion that disproportionately favors studies that have the 

correct/positive sign.  Again, the most precise estimates are closely clustered around the true 

effect, while less precise estimates are disproportionately located to the right of the true 

effect.  One thing that is immediately apparent from these funnel graphs is that any estimation 

procedure that heavily weights more precise estimates is likely to produce unbiased estimates 
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of the true effect. While this is often the case, as we show below, it is particularly true for the 

fixed effects case.8 

 
IIC.  FIXED EFFECTS:  PERFORMANCE TESTS 
 
TABLES 2 and 3 compare the six different estimators across three performance dimensions: 

(i) Mean Estimate of True Effect, (ii) Mean Squared Error (MSE), and (iii) Type I error rates 

associated with the hypothesis 𝐻0: 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 =  𝛼.  We use a significance level of 5 

percent, so rejection rates should likewise be equal to 5 percent.  TABLE 2 reports the results 

when publication bias is directed against statistical insignificance.  TABLE 3 examines 

publication bias against wrong-signed estimates.  Each of the estimators is studied for a set of 

true effect values (= α) ranging from 0.0 to 4.0 in half unit steps. 

 TABLE 2. The top panel reports the average estimated effects for the respective 

estimators.  The first two columns report the value of the true effect (α) and the percent of 

studies included in a typical meta-analysis study (N).   The first thing to note is that there is a 

strong relationship between the size of the true effect and the number of studies that survive 

publication bias against statistical insignificance.  When α = 0, less than 15% of all studies 

appear in the meta-analyst’s sample.  As α increases and the mean of the distribution of 

estimated effects moves away from zero, more and more studies produce signicant estimates.  

When  α = 4, approximately three-fourths of all studies survive publication bias and are 

included in the meta-analyst’s sample. 

 The next column reports results for the Unadjusted estimator.  When α = 0 and 

publication bias discriminates against insignificant estimates, the Unadjusted estimator 

remains an unbiased estimator of the true effect.  This is because sampling error is equally 

likely to produce significant estimates that are above and below the true effect.  However, as 

α increases, publication bias disproportionately omits studies with estimates below the true 

                                                 
8 This highlights a point previously made by Stanley, Jarrell, and Doucouliagos (2010). 
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effect since, ceteris paribus, studies with small estimated effects are more likely to have small 

t-values.  When α = 1.0, the Unadjusted estimator overestimates the true effect by 

approximately 57 percent.  As α increases, fewer and fewer studies are affected by 

publication bias.  While the table does not show this, further increases in α would cause the 

publication bias associated with the Unadjusted estimator to eventually disappear.   

 Continuing with the top panel of TABLE 2, we turn our attention to the performances 

of the five MA estimators (PET, PEESE, FE, WLS, and RE).  We are particularly interested 

in the first two estimators, which are specifically designed to address publication bias.  With 

respect to estimation bias, both estimators do very well.  When α = 1, the mean estimates of 

the true effect for the PET and PEESE estimators are 0.96 and 1.01, respectively.  When α = 

2, the estimates are 1.96 and 2.00, respectively.  In fact, for every value of α, the PET and 

PEESE estimators virtually eliminate estimation bias.  This success seemingly validates the 

ability of the PET and PEESE estimators to correct for publication bias. 

 However, the next three columns demonstate that the other MA estimators also 

perform very well, even though they do not explicitly correct for publication bias.  The 

explanation lies in how the study estimates are weighted.  In one way or another, all five MA 

estimators weight by the inverse of the estimated coefficient’s standard error.  As seen from 

the funnel graphs in FIGURE 1, any estimator that heavily weights precise estimates is likely 

to produce estimated effects close to the true effect, at least in the Fixed Effects case.  In 

other words, while the PET and PEESE estimators are successful in eliminating publication 

bias, their success has little to do with the inclusion of an SE term in the specification (see 

Equations (7) through (9)).   

 Turning to the middle panel of TABLE 2, which focuses on MSE performance, we 

see that the Unadjusted estimator, unsurprisingly, performs by far the worst.  All five MA 

estimators are substantially more efficient.  Of the two MA estimators designed to correct for 
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publication bias, the PEESE estimator is most efficient.  However, it is, at best, only 

marginally better than the FE/WLS estimator.9   

 However, and turning now to the bottom panel, we see that the PEESE estimator 

struggles with reliability in hypothesis testing, as do several of the other MA estimators.  

Type I error rates associated with the hypothesis 𝐻0: 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 =  𝛼 are often far in excess 

of their expected value of 5%.  Of the five MA estimators, only the FE estimator produces 

realiable hypothesis test results.  

 In summary, while all five MA estimators perform better than the Unadjusted 

estimator, there is little to recommend the PET and PEESE estimators over the FE estimator 

in these experiments.  Indeed, when it comes to hypothesis testing, the FE estimator, which 

does not specifically address publication bias, has clear advantages, with relatively little, or 

no cost, in terms of efficiency.   

 TABLE 3.  TABLE 3 continues investigating the Fixed Effects case, where all studies 

share a common true effect, but it analyzes publication bias that is targeted towards wrong-

signed estimates. As evidenced by the top panel, the Unadjusted estimator again produces 

effect estimates that can be substantially biased.  In contrast to publication bias against 

statistical insignificance, the bias is greatest for small values of α.  As α increases, studies 

estimate fewer negative effects, so more studies get “published.”  When α is very large (= 4), 

almost all studies gets published (98.0 percent), and the Unadjusted estimator 

correspondingly has a relatively small estimation bias. 

 Turning now to the PET and PEESE estimators, we see that their relative performance 

on the dimensions of estimation bias and MSE depends on whether α = 0 or α > 0.  When α = 

0, the PET estimator is superior on these dimensions; when α > 0, the PEESE estimator 

                                                 
9 As noted above, the FE and WLS estimators produce identical coefficient estimates, differing only in the 
standard errors of the coefficients. 
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dominates.10  As before, the other three MA estimators generally also do a good job of 

eliminating estimation bias; and have MSE performance similar to the PET and PEESE 

estimators, except when α is small.  When it comes to hypothesis testing, the MA estimators 

that do not correct for publication bias generally do a better job than the PET and PEESE 

estimators, except, again, when α is small.  None of the estimators are reliable for hypothesis 

testing for small values of α. 

 
III.  RANDOM EFFECTS 

 
IIIA.  RANDOM EFFECTS: DESIGN OF MONTE CARLO EXPERIMENTS 

SIMULATING THE STUDIES.  The Monte Carlo experiments for the Random Effects case 

follow the same two-stage procedure used in the Fixed Effects case.  In the first stage, 300 

individual studies are simulated.  In the second stage, samples are subjected to publication 

bias, analysed using meta-analysis procedures, and evaluated for estimator performance.  The 

only difference is how study effects are simulated.  In the Fixed Effects case, all studies were 

assumed to have the same true effect, with different estimated effects due solely to sampling 

error.  In the Random Effects case, studies differ in their true effects, although their true 

effects have the same expected  value. 

 In our simulations, we generate heterogeneity in true effects across studies by letting 

the true effect be random, with a mean value of α.  Thus Equation (1) from the FE case 

becomes: 

(1'.A) yit = 1 + αi ·xit + eit, t = 1,2,…,T, where 

(1'.B)  αi = N(α,τ2). 

Study-specific effects are obtained the same as in the Fixed Effects case, see Equation (2), by 

estimating the specification yit = βi0 + βi1·xit + errorit . 

                                                 
10 This is consistent with the recommendations of Stanley and Doucouliagos (2012, cf.page 78f.) 



15 
 

 The only other difference with the Fixed Effects case for the Monte Carlo simulations 

concerns the generation of the error terms in (1'.A).  In the Fixed Effects case, we generated 

the error terms following Equations (3.A) and (3.B), repeated below.  

(3.A) eit = λi· NID(0,1), where  

(3.B) λi = 0.2 + 30*UID(0,1). 

In the Random Effects case, Equation (3.B) is changed to  

(3'.B) λi = 0.5 + 30*UID(0,1) 

Similar to the FE case, we choose parameter values for the DGP that aim to satisfy the three, 

previously mentioned criteria: 

1. Produce a realistic range of t-values for the estimated effects in the population of 
studies 
 

2. Produce realistic-looking funnel graphs 

3. Cause the percent of studies that “disappear” through publication bias to range 
between 0 and 80 percent. 
 

In addition, we add a fourth criterion: 
 

4. Produce realistic values of “effect heterogeneity” 

“Effect heterogeneity” consists of differences in true effects across studies.  A measure of 

effect heterogeneity is I², which provides an estimate of the total percent of variation in 

estimated effects that is due to factors other than sampling error (Higgins and Thompson, 

2002; Higgins et al., 2003).  I2 values of 70-95% are common in economics studies.  For 

example, Stanley and Doucouliagos (2014a, p. 14) report that “among minimum wage 

elasticities, I2 is 90% (Doucouliagos and Stanley, 2009); it is 93% among estimates of the 

value of statistical life (Doucouliagos, Stanley and Giles, 2012) and 97% among the partial 

correlations of CEO pay and corporate performance (Doucouliagos, Haman and Stanley, 

2012).”  The RE DGP parameter values are set so generate I2 values between 70-95%, while 

simultaneously satisfying the other three criteria.  
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IIIB. RANDOM EFFECTS: AN EXAMPLE META-ANALYSIS SAMPLE (α = 1) 
 
TABLE 4 does the same thing for the Random Effects case that TABLE 1 did for Fixed 

Effects, reporting the distribution of (i) estimated effects, (ii) t-statistics, and (iii) precisions 

of estimated effects for a representative meta-analysis sample.  In addition, the table adds 

information about the distribution of I2, a measure of effect hetereogeneity.  Whereas TABLE 

1 reported the average of simulated meta-analysis samples when the true effect was 1, 

TABLE 4 reports average characteristics when the mean of the distribution of true effects is 

1.   

 The sample characteristics do not look dramatically different.  The two types of 

publication biases reduce the population of 300 studies to samples of approximately 100 and 

225 studies, respectively.  These are close to the values reported in TABLE 1.  However, the 

size of the bias is somewhat larger, with publication bias generating overestimates of 81 and 

55 percent for the median study, respectively.  The range of estimated effects is also 

somewhat larger than in the case of fixed effects.  The average [minimum, maximum] range 

is [-6.24,8.25] in the population, compared to [-5.90,8.26] and [-3.50,8.30] in the publication-

biased samples.  The average t-statistics for the median study is 0.79 in the population, and 

2.55 and 1.28 in the two population-biased samples.  The distribution of precision weights are 

somewhat more evenly distributed in TABLE 4 compared to TABLE 1. 

  TABLE 4 shows that our meta-analysis samples are characterized by a substantial 

amount of non-sampling-error-related heterogeneity, as measured by I².  In the “population” 

of 300 individual studies, 84% of the variation in the estimated effects is attributed to RE 

heterogeneity for the median study.  The corresponding percentages for the publication-

biased samples are 93% and 79%.  As noted above, these values are typical for economics 

studies. 
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 FIGURE 2 is the Random Effects analogue to FIGURE 1, showing funnel plots both 

before and after publication selection.  The vertical line now reports the mean true effect 

(=1).  The top figure shows the population of effects estimated by the 300 studies.  A 

important difference with previous funnel graphs is immediately apparent: In the Fixed 

Effects case, the funnel graphs were tightly clustered around the true effect for small SE 

values.  In the Random Effects case, the fact that there are now multiple “true effects” causes 

the top of the funnel graph to be diffused. The same diffuse pattern is evident in both of the 

post-publication bias funnel graphs.  This has important consequences for the ability of the 

different MA estimators to correct for publication bias.  As in the Fixed Effect case, it is 

apparent from the funnel graphs that publication selection distorts the distribution of 

estimates around the mean true effect, inducing a bias.   

 
IIIC.  RANDOM EFFECTS:  PERFORMANCE TESTS 
 
 TABLE 5. TABLE 5 is the Random Effects analogue to TABLE 2.  It investigates 

estimator performance in the presence of publication bias against insignificance.  As in the 

Fixed Effects case, when α = 0, the Unadjusted estimator remains an unbiased estimator of 

the true effect.  As α increases, estimation bias at first worsens, then eventually improves 

when more studies are “published.”  A major difference with TABLE 2 is that many of the 

MA estimators produce biased estimates of the mean effect for nonzero values of α.  

Subsequent Random Effects experiments will produce similar outcomes. 

 On the dimension of estimation bias, when 0 < α < 2, the PET performs best of all 

MA estimators.  For α > 2, the PEESE and FE/WLS estimators perform best.  The RE 

estimator consistently overestimates the mean true effect for nonzero values of α.  For 

example, when α = 1, the RE estimator overestimates the mean true effect by 57 percent.   

 With respect to MSE performance, the FE/WLS estimator performs as well, or better, 

than either the PET or the PEESE estimators for all values of α, even though it at times has a 
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larger bias.  It is important to keep in mind that an estimator can be inferior with respect to 

estimation bias, but superior with respect to MSE performance.  We shall have more to say 

about this below. 

 Finally, when it comes to hypothesis testing, the lesson from the bottom panel of 

TABLE 5 could perhaps be summarized as “don’t.”  In almost every case, the Type I error 

rates are so much larger than 5% that any results from hypothesis testing about the mean true 

effect should be regarded as highly dubious. 

 TABLE 6.  TABLE 6 repeats the preceding analysis for the case when publication 

bias discriminates against negative effect estimates.  Like previous cases, the Unadjusted 

estimator produces substantially biased estimates of the mean true effect.  All the MA 

estimators produce biased estimates of the mean effect for small values of α.  These biases 

eventually disappear as the proportion of included samples becomes large.   

 TABLE 6 tells a story for MSE performance that is similar to TABLE 5.  The 

FE/WLS estimator often performs as well, or better, than either the PET or the PEESE 

estimators.  Interestingly, when α ≥ 2, the RE estimator is most efficient, despite being the 

most biased.  The explanation has to do with the fact that RE estimates have generally 

smaller variance than the other MA estimators.11  This is illustrated in FIGURE 3, which 

plots the distribution of estimated RE and PEESE estimates when α = 3.  FIGURE 3 makes 

the general point that the MA estimators can have substantially different variances, so that a 

single focus on biasedness can be insufficient when comparing estimator performance.12,13  

Finally, as in TABLE 5, hypothesis testing is highly unreliable and should be avoided.   

                                                 
11 The RE estimator divides the estimated effects by (SEi + τ2), while the other MA estimators divide by SEi.  
The effect of adding a large, constant value to SEi serves to reduce the variation in the weighting term.  As a 
result, the RE estimator will generally have smaller variance than the other MA estimators. 
12 For example, in their response to Mekasha and Tarp (2013), Doucouliagos and Paldam (2013, p. 586) state, 
“One fundamental difference is that M&T13 strongly advocate the use of the random effects model, whereas 
D&P08 draw statistical inferences from the fixed effects models. Stanley (2008) and Stanley and Doucouliagos 
(2012) show that while both fixed and random effects weighted averages are biased in the presence of 
publication selection, fixed effects averages are less biased (this explains why M&T13 find significantly larger 
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 Summarizing the Random Effects case, we find that the MA estimators that do not 

explicitly correct for publication bias often perform as well, if not better, than those that do.  

While the MA estimators always reduce estimation bias in our experiments, they do not 

always eliminate it – in contrast to the Fixed Effects case.  And while the RE estimator is 

generally the most biased, it sometimes offers substantial efficiency gains over the other MA 

estimators.  Finally, the results with respect to hypothesis testing are generally excessively 

poor.  

 Monte Carlo simulations and external validity.  A problem with Monte Carlo analyses 

is that it is difficult to determine if the associated artificial data represent empirical situations 

that a researcher would actually encounter.  We have tried to address that concern in 

reporting representative sample characteristics for the simulated data in TABLE 1 (Fixed 

Effects case) and TABLE 4 (Random Effects case).  Another approach to determine whether 

the funnel plots of FIGURES 1 and 2 are realistic is to compare them with funnel plots 

published in the literature.   

 FIGURES 4 and 5 present examples of funnel graphs from the MA literature.  These 

can be compared with the funnel graphs of FIGURES 1 and 2.  The four funnel plots 

presented in FIGURE 1 are all taken from Stanley and Doucouliagos’s excellent treatise on 

meta-regression analysis (Stanley and Doucouliagos, 2012).  They represent funnel graphs 

from a variety of different sources, although in each case publication bias is likely not a 

concern.  Accordingly, these would be comparable to Panel A of FIGURE 1.14   

 FIGURE 5 presents a number of funnel graphs that portray the random effects case.  

Panel A shows little evidence of publication bias and is most comparable to Panel A of 

FIGURE 2.  Panel B shows some evidence of bias against statistical significance and is most 
                                                                                                                                                        
meta-averages with the random effects weighted average).”  Our results show that just because the FE estimator 
is less biased than the RE estimator, that does not imply that the associated estimates are “better.” 
13 The same phenomenon can be observed for the Unadjusted estimator.  For large values of α, the Unadjusted 
estimator has lower MSE than all but the RE estimator.   
14 Note, however that the scale on the vertical axis in FIGURE 4 is (1/SE) rather than SE, as in FIGURE 1.  
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comparable to Panel B of FIGURE 2.  Panel C shows clear evidence of publication bias 

against wrong-signed estimates (since this is a price elasticity, positive coefficients would be 

regarded as “wrong-signed”) and is therefore comparable to Panel C of FIGURE 2.  

Together, these funnel graphs provide additional evidence that the artificial data we have 

created is similar to data encountered by meta-analysis researchers.  

 

IV.  PANEL RANDOM EFFECTS 

IVA.  PANEL RANDOM EFFECTS: DESIGN OF MONTE CARLO EXPERIMENTS 

SIMULATING THE STUDIES.  Our last set of experiments examines the performance of 

the respective MA estimators when studies have multiple estimates, and true effects differ 

both across and within studies.  To the best of our knowledge, this is the only time that Monte 

Carlo analysis has been used to evaluate studies with multiple estimates in the presence of 

publication bias.15 

 There is a debate in the literature as to whether MA studies should include all 

estimates from a study, or just one, or a selected few.  To the extent a consensus exists, it is 

that meta-analysis estimators should include all the estimates, but correct for error correlation 

across estimates within studies (Stanley and Doucouliagos, 2012; Ringquist, 2013).  

Accordingly, we do this for the PET and PEESE estimators.   In contrast, we do not report 

clustered standard errors for the other MA estimators.  Most researchers are likely to obtain 

FE, and especially RE, estimates from a canned program such as Stata.  Typically, these 

programs do not allow for clustering in calculating standard errors.  As a result, we report 

estimates for the other MA estimators as researchers are likely to obtain them from canned 

                                                 
15 Bijmolt and Pieters (2001) use Monte Carlo simulations to analyze meta-analysis estimators under single and 
multiple sampling, but they do not incorporate publication bias. 
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programs, without adjusted standard errors.  We note that our findings are qualitatively 

unaffected when we do adjust the standard errors for clustering.16 

 The Monte Carlo experiments assume a population of 30 studies, each with 10 

estimates per study, where each estimate is based upon 100 observations.  We model panel 

random effects by assuming that estimates within a given study are random, but have the 

same mean true effect.  Estimates from different studies have different mean true effects.  

Equations (1'.A) and (1'.B) from the Random Effects case are modified accordingly to be: 

(1''.A)   αi = α + 2*N(0,1) , i = 1,2,…,30 

(1''.B)   αij = αi + 0.5*N(0,1) , j = 1,2,…,10. 

(1''.C)   yijt = 1 + αij ·xij,t + eijt, t = 1,2,…,100. 

The different weights on the standard normal variates in (1''.A) and (1''.B) are designed to 

capture the idea that effects are more likely to be similar within a study than across studies. 

 We model the error terms similarly, with error variances differing both within and 

across studies, but with most of the variation occurring across studies.  Equations (3.A) and 

(3'.B) are modified from the Random Effects case to be: 

(3''.A)    eijt = λij· NID(0,1), where  

(3''.B1)  λi = 0.5 + 30*UID(0,1), and  

(3''.B2)  λij = λi  + UID(0,1). 

As in the RE case, these DGP parameters are designed to simultaneously the four criteria 

listed above.  

 A second difference with previous studies concerns publication bias.  Our 

experiments assume that the bias works at the level of the study, and not the individual 

estimate.  In the case of bias against statistical insignificance, we assume that in order to be 

published, a study must have most of its estimates (7 out of 10, or more) be statistically 
                                                 
16 For example, the Type I error rates in TABLE 8 for the WLS estimator fall from approximately 80 percent to 
approximately 25 percent when standard errors are clustered.  While this is a large decrease, it does not 
qualitatively change the conclusions we draw from these experiments. 
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significant.  If the study meets that selection criterion, all the estimates from that study are 

“published.”  If the study does not meet that criterion, none of the estimates from that study 

are published.  An identical “7 out of 10, or more” rule applies to publication bias against 

wrong-signed estimates. 

 A third difference has to do with the specification of our MA regressions.  We modify 

Equation (4) to include multiple estimates per study, and allow study-specific fixed effects in 

the error term: 

(10) �̂�𝑖𝑗1 = α + 𝜆𝑖 + 𝜈𝑖𝑗,  

where 𝜆𝑖 ≡ 𝛼 − 𝛼𝑖 (cf. Equation 1’’.A).  Dividing through by the appropriate standard error 

(either SEij or 𝜔𝑖𝑗 = �(𝑆𝐸𝑖𝑗)2 + 𝜏2) produces the FE, WLS, and RE estimators as described 

above. 

 For the PET estimator, we model our specification after the recommendations of 

Stanley and Doucouliagos (2012, see (i) Equation 5.5, p. 85, and (ii) Equation 5.9, p. 101) to 

obtain the following “panel fixed effects” specification for the PET estimator when studies 

have more than one estimate: 

(11) �̂�𝑖𝑗1 = α + ∑ 𝛾𝑖𝑆𝐸𝑖𝑗𝐷𝑖𝑗𝑖 + 𝜆𝑖 + 𝜈𝑖𝑗,  

where Dij is a dummy variable that takes the value 1 for study i and 0 for other studies, and 

noting again that 𝜆𝑖 ≡ 𝛼 − 𝛼𝑖. Dividing through by 𝑆𝐸𝑖𝑗 produces the following 

specification: 

(12) 
𝛽�𝑖𝑗1
𝑆𝐸𝑖𝑗

 = 𝛼 � 1
𝑆𝐸𝑖𝑗

�  + ∑ 𝛾𝑖𝐷𝑖𝑗𝑖 + 
�𝜆𝑖+𝜈𝑖𝑗�
𝑆𝐸𝑖𝑗

 . 

The panel version of the PEESE estimator is given by: 

(13) 
𝛽�𝑖𝑗1
𝑆𝐸𝑖𝑗

 = α + ∑ 𝛾𝑖𝑆𝐸𝑖𝑗𝐷𝑖𝑗𝑖 + 
�𝜆𝑖+𝜈𝑖𝑗�
𝑆𝐸𝑖𝑗

 . 

Coefficient standard errors are adjusted to allow for within-study correlation of error terms.  
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IVB. PANEL RE: AN EXAMPLE META-ANALYSIS SAMPLE (α = 1) 
 
TABLE 7 does the same thing for the Panel Random Effects case that TABLES 1 and 4 did 

for the Fixed Effects and Random Effects cases.  It reports average characteristics of an 

example MA sample with an overall mean true effect of one (α = 1).  A total of 30 studies (= 

300 effect estimates since each study has 10 estimates) is included in the population of 

studies prior to publication bias.  An average of only 21.8 and 56.2 percent of studies are 

included in the meta-analysis study due to the two types of publication bias.  For this 

particular example, the respective publication biases generate estimated effect biases of 124% 

for the median study when publishing is biased against statistical insignificance, and 122% 

when the bias is against “wrong-signed” (= negative) estimates.   

 The range of estimated effects and t-statistics is somewhat narrower than in previous 

cases, while the median t-statistics for the two publication-biased samples are somewhat 

larger.  The measure of effect heterogeneity, I2, is approximately the same as in the Random 

Effects case. 

 FIGURE 6 shows corresponding funnel graphs for the pre- and post-publication bias 

samples for this example.  The vertical line reports the overall mean of true effects across 

estimates and studies (α = 1).  The top figure shows the population of 300 estimated effects.  

We know from the preceding analysis that the degree of diffusion at the top of the funnel will 

be problematic for the MA estimators.  The task of identifying the mean true effect is 

hampered when there exists a wide range of estimated effects with small standard errors.   

 The other noteworthy characteristic of FIGURE 6, which is particularly evident in 

Panel B, is the degree of clustering in the estimates.  Because all of the estimates from a 

given study are published, even if some individual estimates do not satisfy the publication 

criterion, a given study’s estimates cluster together.  This emphasizes the importance of 

controlling for lack of independence across estimates from the same study.  As in previous 
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cases, the distorting effects of publication bias are clearly evident in the two post-publication 

bias funnel graphs.  

 
IVC.  PANEL RANDOM EFFECTS:  PERFORMANCE TESTS 

 TABLE 8. As we have seen in previous cases, the Unadjusted estimator provides an 

unbiased estimate of the mean true effect when publication bias discriminates against 

statistical insignificance and α = 0 .  As α increases, publication bias at first worsens, then 

eventually improves when more studies are “published.”  The estimation bias for the 

Unadjusted estimator in the Panel Random Effects case can be quite substantial.  Consistent 

with TABLE 5, the RE estimator is positively biased for positive α.  The major difference 

between TABLE 8 and TABLE 5 is that the other MA estimators now also show substantial 

bias.  For example, when α = 2.0, the average estimated effects for the PET, PEESE, and 

FE/WLS estimators are 2.41, 2.42, and 2.50.  These are, however, much better than the 

Unadjusted and RE values of 3.37 and 3.10, respectively. 

 Superiority in unbiasedness does not necessarily translate into superiority in MSE 

performance.  Despite having larger bias, the RE estimator always has lower MSE than the 

PET and PEESE estimators, and does better than the FE/WLS estimator for most values of α.  

This seeming anomaly was previously addressed in the discussion around FIGURE 3. And, 

as we also saw in the Random Effects case, the performance of all the estimators are 

extremely poor when it comes to hypothesis testing.  Type I error rates for all of the MA 

estimators substantially exceed their expected values of 5 percent.   

 TABLE 9.  When publication bias is directed against wrong-signed estimates, the 

story is much the same.  TABLE 9 provides further evidence of the positive bias of all five of 

the meta-analysis estimators.  While the MA estimators always produce estimates that are 

less biased than the Unadjusted estimator, the reduction in estimation bias is often quite 

small.  For example, α = 2.0, the Unadjusted estimator produces a mean estimate of 2.90, 
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while the PET, PEESE, and FE/WLS estimators produce estimates of 2.63, 2.64, and 2.66, 

respectively.  The bias in estimated effects disappears only as publication bias becomes less 

severe and more studies are included in the meta-analysis sample.  In contrast to TABLE 8, 

the RE estimator is now either best or close to best on the dimension of MSE for all values of 

α.  It is worth noting that the Unadjusted estimator often has lower MSE than all but the RE 

estimator, and even dominates the RE estimator when α = 4.  Reliability in hypothesis testing 

for all the estimators continues to be abysmal across the full range of α values. 

 The overall poor performance of the respective MA estimators is graphically 

represented in FIGURE 7.  The figure represents the case when α = 1 and publication bias 

discriminates against wrong-signed estimates.  As in previous figures, the solid vertical line 

represents the mean true effect in the population.  The Unadjusted estimator demonstrates the 

greatest bias, followed closely by the RE estimator, which only marginally improves on the 

OLS estimator in this case.  The other four MA estimators (PET, PEESE, and FE/WLS), are 

less biased, but are also more dispersed.   

 
V.  CONCLUSION 

This study uses Monte Carlo analysis to investigate the performances of five different meta-

analysis (MA) estimators: the Precision Effect Test (PET) estimator, the Precision Effect 

Estimate with Standard Errors (PEESE) estimator, the Fixed Effects (FE) estimator, the 

Weighted Least Squares (WLS) estimator, and the Random Effects (RE) estimator.  We 

consider two types of publication bias: publication bias directed against statistically 

insignificant estimates, and publication bias directed against wrong-signed estimates.  

Finally, we consider three cases concerning the distribution of the “true effect”: the Fixed 

Effects case, where there is only estimate per study, and all studies have the same true effect; 

the Random Effects case, where there is only one estimate per study, and there is 
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heterogeneity in true effects across studies; and the Panel Random Effects case, where studies 

have multiple estimates, and true effects are heterogeneous both across and within studies. 

 While our simulations employ a specific set of DGP parameter values, they allow the 

following four conclusions.  First, MA estimators that correct for publication bias (the PET 

and PEESE estimators) sometimes perform worse than those that do not correct for 

publication bias.  Second, when publication bias exists and there is substantial heterogeneity 

in true effects across studies, MA estimators may only moderately reduce estimation bias.  

Third, while the RE estimator is often more biased than other MA estimators, it sometimes is 

the most efficient.  And finally, hypothesis testing about the mean true effect is generally 

unreliable for all MA estimators. 

 These findings lead us to make two recommendations to meta-analysts interested in 

identifying “true effects” from publication-biased samples.  The first is that meta-analysts 

should use a variety of MA estimators in their research, not just one or two.  The second is 

that hypothesis testing about true mean effects should be avoided because it is too unreliable. 

 A final takeaway from our study is that much work remains to be done on meta-

analysis.  While current meta-analysis procedures do, for the most part, offer improvements 

on naïve averaging of published estimates, it is clear from the findings reported here that 

there is much room for improvement.  It is hoped that this research will stimulate future 

efforts in this direction. 
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TABLE 1 
Sample Characteristics for a Simulated Meta-Analysis Data Set: Fixed Effects (α = 1) 

 

Variable Median Minimum P5% P95% Maximum 

PRE-PUBLICATION BIAS (100 percent of estimates): 

Estimated effect 1.00 -5.74 -1.98 4.00 7.76 

t-statistic 0.94 -2.31 -0.95 6.23 36.69 

Precision (1/SE) 0.66 0.28 0.34 6.04 36.63 

PUBLICATION BIAS AGAINST INSIGNIFICANCE (31.8 percent of estimates): 

Estimated effect 1.19 -5.01 -0.93 5.13 7.65 

t-statistic 2.62 -2.15 -0.47 15.19 36.23 

Precision (1/SE) 1.66 0.31 0.37 15.11 36.19 

PUBLICATION BIAS AGAINST NEGATIVE EFFECTS (80.6 percent of estimates): 

Estimated effect 1.21 -3.10 0.12 4.25 7.72 

t-statistic 1.27 -1.37 0.08 7.38 36.93 

Precision (1/SE) 0.76 0.28 0.34 7.24 36.89 
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FIGURE 1 
Example of Funnel Graphs for a Simulated Meta-Analysis Data Set: Fixed Effects 

 
A. Pre-Publication Bias 

 

 
 

B. Post-Publication Bias (against statistical insignificance) 
 

 
 

C. Post-Publication Bias (against wrong-signed estimates) 
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TABLE 2 
Comparative Performance of Meta-Analysis Estimators: 

Fixed Effects/Publication Bias against Insignificance 
 
α Percent Unadjusted PET PEESE FE WLS RE 

Mean Estimate of True Effect 
0.0 14.4 0.02 0.00 0.00 0.00 0.00 0.00 
0.5 23.0 0.91 0.48 0.51 0.51 0.51 0.56 
1.0 31.7 1.57 0.96 1.01 1.01 1.01 1.05 
1.5 40.0 2.14 1.46 1.50 1.51 1.51 1.54 
2.0 47.5 2.67 1.96 2.00 2.01 2.01 2.04 
2.5 54.6 3.17 2.46 2.49 2.51 2.51 2.53 
3.0 61.1 3.65 2.97 2.99 3.01 3.01 3.02 
3.5 66.9 4.12 3.47 3.49 3.51 3.51 3.52 
4.0 72.4 4.57 3.97 3.99 4.01 4.01 4.01 

Mean Squared Error 
0.0 14.4 0.1827 0.0227 0.0134 0.0108 0.0108 0.0365 
0.5 23.0 0.2419 0.0010 0.0005 0.0006 0.0006 0.0053 
1.0 31.7 0.3683 0.0018 0.0003 0.0005 0.0005 0.0040 
1.5 40.0 0.4317 0.0021 0.0003 0.0004 0.0004 0.0027 
2.0 47.5 0.4667 0.0021 0.0003 0.0004 0.0004 0.0021 
2.5 54.6 0.4623 0.0020 0.0003 0.0004 0.0004 0.0016 
3.0 61.1 0.4347 0.0018 0.0003 0.0003 0.0003 0.0010 
3.5 66.9 0.3944 0.0015 0.0003 0.0003 0.0003 0.0007 
4.0 72.4 0.3404 0.0013 0.0003 0.0003 0.0003 0.0005 

Type I Error Rates 
0.0 0.06 0.25 0.25 0.23 0.04 0.02 0.06 
0.5 0.39 0.25 0.18 0.16 0.06 0.13 0.39 
1.0 0.84 0.45 0.11 0.14 0.07 0.18 0.84 
1.5 0.99 0.53 0.10 0.12 0.07 0.15 0.99 
2.0 1.00 0.50 0.12 0.13 0.07 0.14 1.00 
2.5 1.00 0.52 0.11 0.11 0.08 0.12 1.00 
3.0 1.00 0.48 0.13 0.10 0.08 0.08 1.00 
3.5 1.00 0.44 0.14 0.09 0.09 0.08 1.00 
4.0 1.00 0.40 0.15 0.07 0.07 0.06 1.00 
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TABLE 3 
Comparative Performance of Meta-Analysis Estimators: 

Fixed Effects/Publication Bias against Wrong Sign 
 
α Percent Unadjusted PET PEESE FE WLS RE 

Mean Estimate of True Effect 
0.0 55.1 1.01 0.00 0.06 0.09 0.09 0.11 
0.5 71.7 1.21 0.47 0.50 0.52 0.52 0.52 
1.0 80.6 1.56 0.97 1.00 1.01 1.01 1.01 
1.5 86.5 1.94 1.48 1.50 1.51 1.51 1.51 
2.0 90.6 2.35 1.98 2.00 2.00 2.00 2.01 
2.5 93.5 2.76 2.49 2.50 2.50 2.50 2.50 
3.0 95.5 3.20 2.99 3.00 3.00 3.00 3.00 
3.5 96.9 3.65 3.49 3.50 3.50 3.50 3.50 
4.0 98.0 4.10 4.00 4.00 4.00 4.00 4.00 

Mean Squared Error 
0.0 55.1 1.0280 0.0004 0.0049 0.0099 0.0099 0.0156 
0.5 71.7 0.5201 0.0015 0.0003 0.0006 0.0006 0.0007 
1.0 80.6 0.3242 0.0011 0.0003 0.0004 0.0004 0.0004 
1.5 86.5 0.1985 0.0007 0.0002 0.0003 0.0003 0.0003 
2.0 90.6 0.1274 0.0007 0.0003 0.0003 0.0003 0.0003 
2.5 93.5 0.0754 0.0005 0.0003 0.0003 0.0003 0.0003 
3.0 95.5 0.0465 0.0004 0.0003 0.0003 0.0003 0.0003 
3.5 96.9 0.0319 0.0004 0.0003 0.0003 0.0003 0.0003 
4.0 98.0 0.0200 0.0003 0.0002 0.0002 0.0002 0.0003 

Type I Error Rates 
0.0 55.1 1.00 0.14 0.81 0.97 0.97 0.98 
0.5 71.7 1.00 0.49 0.11 0.20 0.25 0.20 
1.0 80.6 1.00 0.42 0.11 0.11 0.14 0.10 
1.5 86.5 1.00 0.27 0.09 0.08 0.11 0.07 
2.0 90.6 0.99 0.25 0.12 0.07 0.09 0.07 
2.5 93.5 0.86 0.18 0.11 0.07 0.08 0.06 
3.0 95.5 0.56 0.14 0.10 0.05 0.06 0.05 
3.5 96.9 0.36 0.14 0.12 0.07 0.08 0.06 
4.0 98.0 0.19 0.11 0.09 0.04 0.05 0.04 
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TABLE 4 
Sample Characteristics for a Simulated Meta-Analysis Data Set: Random Effects (α = 1) 

 

Variable Median Minimum P5% P95% Maximum 

PRE-PUBLICATION BIAS (100 percent of estimates): 

Estimated effect 1.00 -6.24 -2.38 4.37 8.25 

t-statistic 0.79 -8.12 -1.48 5.98 31.79 

Precision (1/SE) 0.65 0.28 0.33 5.06 17.66 

I2 0.84 0.65 0.74 0.92 0.95 

PUBLICATION BIAS AGAINST INSIGNIFICANCE (32.9 percent of estimates): 

Estimated effect 1.81 -5.90 -2.09 5.64 8.26 

t-statistic 2.55 -8.15 -2.29 12.77 31.50 

Precision (1/SE) 1.25 0.31 0.37 9.63 17.26 

I2 0.93 0.72 0.87 0.97 0.99 

PUBLICATION BIAS AGAINST NEGATIVE EFFECTS (74.7 percent of estimates): 

Estimated effect 1.55 -3.50 0.01 4.76 8.30 

t-statistic 1.28 -2.93 0.01 7.40 31.57 

Precision (1/SE) 0.70 0.28 0.34 5.57 17.03 

I2 0.79 0.41 0.63 0.90 0.95 
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FIGURE 2 
Example of Funnel Graphs for a Simulated Meta-Analysis Data Set: Random Effects 

 
A. Pre-Publication Bias 

 

 
  

B. Post-Publication Bias (against statistical insignificance) 
 

 
 

C. Post-Publication Bias (against wrong-signed estimates) 
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TABLE 5 
Comparative Performance of Meta-Analysis Estimators: 
Random Effects/Publication Bias against Insignificance 

 
α Percent Unadjusted PET PEESE FE WLS RE 

Mean Estimate of True Effect 
0.0 27.1 0.01 0.00 0.00 0.00 0.00 0.01 
0.5 28.8 1.00 0.51 0.59 0.60 0.60 0.88 
1.0 33.2 1.82 1.04 1.14 1.17 1.17 1.57 
1.5 39.2 2.44 1.51 1.62 1.65 1.65 2.08 
2.0 46.0 2.94 1.93 2.05 2.09 2.09 2.53 
2.5 52.7 3.40 2.41 2.51 2.55 2.55 2.95 
3.0 59.1 3.84 2.91 3.00 3.04 3.04 3.39 
3.5 65.1 4.28 3.41 3.49 3.53 3.53 3.84 
4.0 70.4 4.71 3.95 4.00 4.04 4.04 4.29 

Mean Squared Error 
0.0 27.1 0.0871 0.1749 0.1089 0.1032 0.1032 0.0437 
0.5 28.8 0.3272 0.1840 0.1230 0.1192 0.1192 0.1822 
1.0 33.2 0.7382 0.1649 0.1220 0.1232 0.1232 0.3522 
1.5 39.2 0.9210 0.1366 0.0990 0.1027 0.1027 0.3605 
2.0 46.0 0.9117 0.1343 0.0811 0.0806 0.0806 0.2916 
2.5 52.7 0.8252 0.1375 0.0787 0.0750 0.0750 0.2187 
3.0 59.1 0.7246 0.1357 0.0807 0.0753 0.0753 0.1649 
3.5 65.1 0.6272 0.1420 0.0851 0.0780 0.0780 0.1298 
4.0 70.4 0.5222 0.1164 0.0733 0.0682 0.0682 0.0944 

Type I Error Rates 
0.0 27.1 0.04 0.12 0.10 0.88 0.44 0.04 
0.5 28.8 0.43 0.16 0.15 0.88 0.51 0.49 
1.0 33.2 0.92 0.15 0.17 0.88 0.58 0.93 
1.5 39.2 1.00 0.14 0.14 0.89 0.59 0.99 
2.0 46.0 1.00 0.15 0.12 0.87 0.57 1.00 
2.5 52.7 1.00 0.14 0.11 0.86 0.58 0.98 
3.0 59.1 1.00 0.15 0.12 0.86 0.60 0.96 
3.5 65.1 1.00 0.14 0.12 0.89 0.62 0.92 
4.0 70.4 1.00 0.12 0.10 0.86 0.60 0.83 
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TABLE 6 

Comparative Performance of Meta-Analysis Estimators: 
Random Effects/Publication Bias against Wrong Sign 

 
α Percent Unadjusted PET PEESE FE WLS RE 

Mean Estimate of True Effect 
0.0 55.1 1.26 0.60 0.66 0.69 0.69 0.90 
0.5 65.5 1.53 0.89 0.94 0.97 0.97 1.18 
1.0 74.5 1.81 1.21 1.26 1.29 1.29 1.49 
1.5 82.0 2.12 1.58 1.62 1.64 1.64 1.84 
2.0 87.5 2.48 2.01 2.04 2.06 2.06 2.23 
2.5 91.3 2.86 2.49 2.51 2.53 2.53 2.66 
3.0 93.9 3.27 2.96 2.99 3.00 3.00 3.11 
3.5 95.9 3.70 3.49 3.50 3.51 3.51 3.58 
4.0 97.2 4.15 3.98 3.99 4.00 4.00 4.05 

Mean Squared Error 
0.0 55.1 1.6156 0.4676 0.5072 0.5436 0.5436 0.8234 
0.5 65.5 1.0664 0.2415 0.2583 0.2795 0.2795 0.4696 
1.0 74.5 0.6631 0.1304 0.1272 0.1367 0.1367 0.2499 
1.5 82.0 0.3915 0.0959 0.0749 0.0758 0.0758 0.1215 
2.0 87.5 0.2375 0.1081 0.0749 0.0709 0.0709 0.0635 
2.5 91.3 0.1400 0.1064 0.0721 0.0665 0.0665 0.0347 
3.0 93.9 0.0852 0.1099 0.0736 0.0668 0.0668 0.0211 
3.5 95.9 0.0518 0.1127 0.0763 0.0692 0.0692 0.0138 
4.0 97.2 0.0370 0.1075 0.0735 0.0668 0.0668 0.0116 

Type I Error Rates 
0.0 55.1 1.00 0.75 0.85 1.00 0.98 1.00 
0.5 65.5 1.00 0.42 0.60 0.98 0.95 1.00 
1.0 74.5 1.00 0.21 0.31 0.93 0.82 1.00 
1.5 82.0 1.00 0.14 0.15 0.84 0.66 0.96 
2.0 87.5 1.00 0.13 0.12 0.86 0.65 0.74 
2.5 91.3 0.93 0.12 0.11 0.86 0.67 0.44 
3.0 93.9 0.73 0.12 0.10 0.86 0.65 0.24 
3.5 95.9 0.45 0.13 0.12 0.85 0.65 0.13 
4.0 97.2 0.28 0.13 0.11 0.86 0.63 0.09 
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FIGURE 3 
Distribution of RE and PEESE Estimates in the 

RE Case, α=3, Publication Bias against Wrong Sign 
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FIGURE 4 
Examples of Funnel Graphs from the Meta-Analysis Literature (Fixed Effects) 

 

 
 
   SOURCE: Stanley & Doucouliagos (2012, Figure 4.5, page 58) 
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FIGURE 5 
Examples of Funnel Graphs from the Meta-Analysis Literature (Random Effects) 

 
 

A. Mekasha and Tarp (2013, Figure 1, page 571) 

 
 

B. Ringquist (2013, Figure 6.7, page 252) 
 

 
 

 
C. Nelson (2014, Figure 1, page 184) 
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TABLE 7 
Sample Characteristics for a Simulated Meta-Analysis Data Set: Panel Data/Random Effects (α = 1) 

 

Variable Median Minimum P5% P95% Maximum 

PRE-PUBLICATION BIAS (100 percent of estimates): 

Estimated effect 0.96 -7.50 -3.47 5.47 9.43 

t-statistic 0.67 -10.16 -3.17 7.44 20.69 

Precision (1/SE) 0.65 0.27 0.33 4.05 8.82 

I2 0.86 0.46 0.68 0.97 0.99 

PUBLICATION BIAS AGAINST INSIGNIFICANCE (21.8 percent of estimates): 

Estimated effect 2.24 -3.03 -2.18 5.73 7.03 

t-statistic 3.62 -8.81 -6.08 15.56 20.66 

Precision (1/SE) 1.98 0.70 0.77 6.62 8.37 

I2 0.92 0.00 0.71 0.99 1.00 

PUBLICATION BIAS AGAINST NEGATIVE EFFECTS (56.2 percent of estimates): 

Estimated effect 2.22 -3.99 -0.84 6.17 9.33 

t-statistic 1.75 -2.11 -0.50 11.28 20.66 

Precision (1/SE) 0.72 0.29 0.34 4.49 7.48 

I2 0.74 0.11 0.43 0.94 0.98 
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FIGURE 6 
Example of Funnel Graphs for a Simulated Meta-Analysis Data Set:  

Panel Random Effects 
 

A. Pre-Publication Bias 
 

 
 

B. Post-Publication Bias (against statistical insignificance) 
 

 
 

C. Post-Publication Bias (against wrong-signed estimates) 
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TABLE 8 
Comparative Performance of Meta-Analysis Estimators: 

Panel Random Effects/Publication Bias against Insignificance 
 
α Percent Unadjusted PET PEESE FE WLS RE 

Mean Estimate of True Effect 
0.0 19.4 0.01 -0.05 -0.03 -0.03 -0.03 0.00 
0.5 19.5 1.11 0.64 0.65 0.70 0.70 1.01 
1.0 22.0 2.05 1.36 1.37 1.41 1.41 1.88 
1.5 25.3 2.81 1.86 1.86 1.94 1.94 2.59 
2.0 29.7 3.37 2.41 2.42 2.50 2.50 3.10 
2.5 34.1 3.86 2.90 2.90 2.96 2.96 3.57 
3.0 40.4 4.23 3.27 3.27 3.34 3.34 3.94 
3.5 46.4 4.66 3.71 3.71 3.79 3.79 4.36 
4.0 52.7 5.03 4.16 4.16 4.23 4.23 4.74 

Mean Squared Error 
0.0 19.4 1.951 3.565 2.967 2.289 2.289 1.683 
0.5 19.5 2.058 3.646 3.071 2.362 2.362 1.773 
1.0 22.0 2.328 3.580 2.918 2.188 2.188 1.870 
1.5 25.3 2.505 3.505 2.897 2.060 2.060 1.907 
2.0 29.7 2.397 2.773 2.266 1.657 1.657 1.703 
2.5 34.1 2.231 2.430 2.018 1.459 1.459 1.547 
3.0 40.4 1.828 2.410 1.980 1.314 1.314 1.211 
3.5 46.4 1.597 2.341 1.945 1.332 1.332 1.024 
4.0 52.7 1.277 2.193 1.805 1.145 1.145 0.799 

Type I Error Rates 
0.0 19.4 0.55 0.38 0.40 0.96 0.76 0.56 
0.5 19.5 0.62 0.36 0.38 0.95 0.77 0.61 
1.0 22.0 0.69 0.40 0.41 0.96 0.79 0.66 
1.5 25.3 0.81 0.41 0.42 0.95 0.79 0.78 
2.0 29.7 0.88 0.41 0.43 0.96 0.81 0.83 
2.5 34.1 0.92 0.42 0.43 0.94 0.81 0.86 
3.0 40.4 0.93 0.41 0.41 0.95 0.81 0.87 
3.5 46.4 0.95 0.39 0.40 0.96 0.82 0.85 
4.0 52.7 0.94 0.39 0.39 0.93 0.79 0.83 
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TABLE 9 

Comparative Performance of Meta-Analysis Estimators: 
Panel Random Effects /Publication Bias against Wrong Sign 

 
α N Unadjusted PET PEESE FE WLS RE 

Mean Estimate of True Effect 
0.0 37.5 2.02 1.72 1.73 1.77 1.77 1.86 
0.5 47.9 2.19 1.89 1.90 1.94 1.94 2.04 
1.0 56.8 2.41 2.16 2.16 2.17 2.17 2.29 
1.5 65.6 2.64 2.41 2.42 2.43 2.43 2.53 
2.0 73.7 2.90 2.63 2.64 2.66 2.66 2.79 
2.5 80.7 3.17 3.00 3.00 3.00 3.00 3.09 
3.0 86.0 3.51 3.30 3.30 3.31 3.31 3.43 
3.5 90.4 3.88 3.74 3.73 3.74 3.74 3.82 
4.0 93.5 4.27 4.13 4.13 4.14 4.14 4.22 

Mean Squared Error 
0.0 37.5 4.2298 4.7255 3.9699 3.6705 3.6705 3.6813 
0.5 47.9 2.9717 3.5415 2.9473 2.6395 2.6395 2.5511 
1.0 56.8 2.1057 2.8652 2.3275 1.9743 1.9743 1.8267 
1.5 65.6 1.4099 2.5001 2.0126 1.5324 1.5324 1.2030 
2.0 73.7 0.9137 1.9479 1.5622 1.1244 1.1244 0.7801 
2.5 80.7 0.5638 1.9217 1.5449 1.0095 1.0095 0.4990 
3.0 86.0 0.3661 1.8169 1.4526 0.8716 0.8716 0.3317 
3.5 90.4 0.2682 1.8823 1.5031 0.9291 0.9291 0.2593 
4.0 93.5 0.2026 1.9301 1.5745 0.9216 0.9216 0.2129 

Type I Error Rates 
0.0 37.5 1.00 0.61 0.77 1.00 1.00 1.00 
0.5 47.9 1.00 0.54 0.66 0.99 0.99 1.00 
1.0 56.8 1.00 0.52 0.60 0.97 0.93 1.00 
1.5 65.6 1.00 0.48 0.50 0.96 0.90 0.98 
2.0 73.7 0.97 0.47 0.48 0.95 0.85 0.92 
2.5 80.7 0.88 0.46 0.48 0.94 0.85 0.82 
3.0 86.0 0.75 0.41 0.41 0.94 0.84 0.71 
3.5 90.4 0.61 0.38 0.40 0.93 0.85 0.59 
4.0 93.5 0.51 0.39 0.40 0.93 0.83 0.55 
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FIGURE 7 
Distribution of All Estimators: 

Panel RE Case, α=1, Publication Bias against Wrong Sign 
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APPENDIX: 
Stata .do files to produce all tables and figures in the paper 

 
 

 
 
Note #1:  These .do files are included to make it possible for readers to confirm this study’s 
findings, and investigate alternative DGP specifications.  Many of the programs perform 
1000 simulations and take several hours to run.  However, the running time can be decreased 
without substantially affecting the results by reducing the number of replications to 100.   
 
 
Note #2:  Some programs consist of two parts.  Part A should be run first. 
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.do file for TABLE 1 – Part A 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  
 
clear 
set more off 
set seed 52256 
program drop _all 
program define sample, rclass 
version 13.1 
 
syntax, alpha(real) studies(integer) select(real) obs(integer) 
 
// Remove existing variables 
drop _all 
 
//We first create the matrix to store the results of each study 
matrix A = J(`studies',1,0) 
matrix B = J(`studies',1,0) 
matrix C = J(`studies',1,0) 
   

forvalues i = 1/`studies' { 
clear 
// STEP ONE: Create the data for each study and estimate an effect 
set obs `obs' 
generate x = rnormal() 
// Note that each "study" has the same number of observations (100) 
// but differ in the variance of their respective error terms.  This 
// causes the estimate of the effect to be estimated with varying degrees  
// of precision 
scalar lambda = 0.2+30*runiform() 
generate e = lambda*rnormal() 
generate y = 1 + `alpha'*x + e 
 
quiety regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = coef/secoef 
     
// First run this program once to get the pre-publication bias sample data 
// To get post-publication bias sample data, uncomment one of the two sections 
// below. 
   

/*if abs(tcoef) < 2 { 
scalar dummy = cond(runiform()<`select',1,.) 
scalar coef = dummy*coef 
scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
 } 
*/ 
 
/*if coef < 0 { 
scalar dummy = cond(runiform()<`select',1,.) 
scalar coef = dummy*coef 
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scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
} 
*/ 

   
matrix A[`i',1] = coef 
matrix B[`i',1] = secoef 
matrix C[`i',1] = tcoef 
} 

   
   
matrix bob = A,B,C  
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
generate pet = (1/seeffect) 
   
summ effect, detail 
return scalar effectMED = r(p50) 
return scalar effectMIN = r(min)   
return scalar effectP5 = r(p5) 
return scalar effectP95 = r(p95) 
return scalar effectMAX = r(max) 
return scalar N = r(N) 
   
summ teffect, detail 
return scalar teffectMED = r(p50) 
return scalar teffectMIN = r(min)   
return scalar teffectP5 = r(p5) 
return scalar teffectP95 = r(p95) 
return scalar teffectMAX = r(max) 
  
summ pet, detail 
return scalar petMED = r(p50) 
return scalar petMIN = r(min)   
return scalar petP5 = r(p5) 
return scalar petP95 = r(p95) 
return scalar petMAX = r(max) 
 
end  
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.do file for TABLE 1 – Part B 
 

// This program takes about 20 minutes to run on my laptop for each section 
etime, start 
drop _all 
clear 
graph drop _all 
set more off 
set seed 52256 
matrix RESULTS = J(3,6,0) 
local studies = 300 
// Select is used to set the probability of being included in the data set 
// when the study is subject to publication bias, either because (i) abs(tstat) < 2, or 
// coef < 0.  
local select = 0.10 
local obs = 100 
local alpha = 1 
 
simulate effectMED = r(effectMED) effectMIN = r(effectMIN) effectP5 = r(effectP5) /// 
effectP95 = r(effectP95) effectMAX = r(effectMAX)  /// 
teffectMED = r(teffectMED) teffectMIN = r(teffectMIN) teffectP5 = r(teffectP5) /// 
teffectP95 = r(teffectP95) teffectMAX = r(teffectMAX)  ///        
petMED = r(petMED) petMIN = r(petMIN) petP5 = r(petP5) /// 
petP95 = r(petP95) petMAX = r(petMAX)  N = r(N), /// 
reps(1000): sample, alpha(`alpha') studies(`studies') select(`select') obs(`obs')     
        
summ effectMED, meanonly 
matrix RESULTS[1,1] = r(mean) 
summ effectMIN, meanonly 
matrix RESULTS[1,2] = r(mean) 
summ effectP5, meanonly 
matrix RESULTS[1,3] = r(mean) 
summ effectP95, meanonly 
matrix RESULTS[1,4] = r(mean) 
summ effectMAX, meanonly 
matrix RESULTS[1,5] = r(mean) 
summ N, meanonly 
matrix RESULTS[1,6] = r(mean) 
     
summ teffectMED, meanonly 
matrix RESULTS[2,1] = r(mean) 
summ teffectMIN, meanonly 
matrix RESULTS[2,2] = r(mean) 
summ teffectP5, meanonly 
matrix RESULTS[2,3] = r(mean) 
summ teffectP95, meanonly 
matrix RESULTS[2,4] = r(mean) 
summ teffectMAX, meanonly 
matrix RESULTS[2,5] = r(mean) 
summ N, meanonly 
matrix RESULTS[2,6] = r(mean) 
         
summ petMED, meanonly 
matrix RESULTS[3,1] = r(mean) 
summ petMIN, meanonly 
matrix RESULTS[3,2] = r(mean) 
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summ petP5, meanonly 
matrix RESULTS[3,3] = r(mean) 
summ petP95, meanonly 
matrix RESULTS[3,4] = r(mean) 
summ petMAX, meanonly 
matrix RESULTS[3,5] = r(mean) 
summ N, meanonly 
matrix RESULTS[3,6] = r(mean)       
     
matrix colnames RESULTS = MED MIN P5 P95 MAX N 
matrix rownames RESULTS = EFFECT TEFFECT PET 
matrix list RESULTS 
 
etime  
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.do file for FIGURE 1 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  

 
clear 
set seed 52256 
set more off 
local studies = 300 
local alpha = 1 
local select = 0.10 
matrix A = J(`studies',1,0) 
matrix B = J(`studies',1,0) 
matrix C = J(`studies',1,0) 
   

forvalues i = 1/`studies' { 
// STEP ONE: Create the data for each study and estimate an effect 
clear 
set obs 100 
generate x = rnormal() 
scalar lambda = 0.2+30*runiform() 
// Note that each "study" has a difference error variance, causing the estimate  
// of the effect to be estimated with varying degrees of precision 
generate e = lambda*rnormal() 
generate y = 1 + `alpha'*x + e 
 
quietly regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = abs(coef/secoef) 
  
// First run this program once to get the pre-publication study sample data 
// To get post-publication study sample data, uncomment one of the two sections 
// below. 
   

/*if tcoef < 2 { 
scalar dummy = cond(runiform()<`select',1,.) 
scalar coef = dummy*coef 
scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
} 
*/ 
 
/*if coef < 0 { 
scalar dummy = cond(runiform()<`select',1,.) 
scalar coef = dummy*coef 
scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
} 
*/ 

   
matrix A[`i',1] = coef 
matrix B[`i',1] = secoef 
matrix C[`i',1] = tcoef 
} 
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matrix bob = A,B,C  
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
generate pet = (1/seeffect) 
   
metafunnel effect seeffect, xline(`alpha') ylabel(#8) nolines  
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.do file for TABLES 2 and 3 – Part A 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative (TABLE 2 = bias against insignificance; TABLE 3 = bias against wrong 
sign) 
 
set more off 
program drop _all 
program define FEpbias, rclass 
version 13.1 
 
syntax, alpha(real) studies(integer) select(real) obs(integer) 
 
// Remove existing variables 
drop _all 
 
//We first create the matrix to store the results of each study 
matrix A = J(`studies',1,0) 
matrix B = J(`studies',1,0) 
matrix C = J(`studies',1,0) 
  
// Create the data for each study and estimate an effect 
  

forvalues i = 1/`studies' { 
clear 
set obs `obs' 
generate x = rnormal() 
scalar lambda = 0.2 + 30*runiform() 
// Note that each "study" has the same number of observations (100) 
// but differ in the variance of their respective error terms.  This 
// causes the estimate of the effect to be estimated with varying degrees  
// of precision 
generate e = lambda*rnormal() 
generate y = 1 + `alpha'*x + e 
 
quietly regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = coef/secoef 
   

if abs(tcoef) < 2 { 
   
// An alternative criterion is that results that show a negative effect 
// have a harder time getting published.  To study that case, substitute 
// the line below for the line above 
 
// if coef < 0 { 
 
scalar dummy = cond(runiform()<`select',1,.) 
// The statement above creates a dummy variable that randomly selects which 
// studies will get "published" if they fail to meet the "publication criterion" 
// either (i) abs(tcoef) >= 2 or (ii) if coef >= 0.  Studies that are not "published" 
// receive missing values and thus are not included in the "meta-analysis." 
scalar coef = dummy*coef 
scalar secoef = dummy*secoef 
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scalar tcoef = dummy*tcoef 
} 

     
       
matrix A[`i',1] = coef 
matrix B[`i',1] = secoef 
matrix C[`i',1] = tcoef 
} 

   
 
// The next set of commands moves the data out of matrices and reformats them as  
// standard Stata data series.  We have now completed generating our individual 
// studies and we now move into the "meta-analysis" stage. 
matrix bob = A,B,C  
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
generate pet = (1/seeffect) 
  
// This estimate produces the OLS estimate of the effect 
regress effect  
return scalar effect_OLS = _b[_cons] 
test _b[_cons] = `alpha' 
return scalar pvalue_OLS = r(p) 
  
// This estimate produces the PET version of the "publication bias"-  
// corrected effect estimate 
regress teffect pet, vce(robust) 
return scalar effect_PET = _b[pet] 
test pet = `alpha' 
return scalar pvalue_PET = r(p) 
   
// This estimate produces the PEESE version of the "publication bias"-  
// corrected effect estimate 
regress teffect seeffect pet, noc vce(robust) 
return scalar effect_PEESE = _b[pet] 
test pet = `alpha' 
return scalar pvalue_PEESE = r(p) 
   
// This estimate produces the FE estimate of the effect 
generate constant = 1 
vwls effect constant, sd(seeffect) nocon 
return scalar effect_FE = _b[constant] 
test _b[constant] = `alpha' 
return scalar pvalue_FE = r(p) 
   
// This estimate produces the WLS estimate of the effect 
regress teffect pet, noc 
return scalar effect_WLS = _b[pet] 
test pet = `alpha' 
return scalar pvalue_WLS = r(p) 
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// This estimate produces the RE estimate of the effect 
// NOTE: We use the Method of Moments (mm) option of metareg 
// because the maximum likelihood procedure had too many instances 
// of failure to optimize.  Method of Moments does not require 
// iteration and thus avoids this problem. 
metareg effect , wsse(seeffect) mm 
matrix bill = e(b) 
return scalar effect_RE = bill[1,1] 
test _cons = `alpha' 
return scalar pvalue_RE = r(p) 
   
// This last command keeps track of how many studies are in our "meta-analysis" 
return scalar N = e(N) 
  
end 
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.do file for TABLES 2 and 3 – Part B 
 

// This program takes about 3 hours to run on my computer 
etime, start 
drop _all 
clear 
graph drop _all 
set more off 
set seed 52256 
matrix EFFECT = J(9,7,0) 
matrix MSE = J(9,7,0) 
matrix TEST = J(9,7,0) 
local studies = 300 
 
// Select is used to set the probability of being included in the data set 
// when the study is subject to publication bias, either because (i) abs(tstat) < 2, or 
// coef < 0.  
local select = 0.10 
local obs = 100 
 

local i = 1 
foreach alpha in 0 0.5 1 1.5 2 2.5 3 3.5 4 { 
simulate effect_OLS = r(effect_OLS) effect_FE = r(effect_FE) effect_RE = r(effect_RE) /// 
effect_PET = r(effect_PET) effect_PEESE = r(effect_PEESE)  /// 
pvalue_OLS = r(pvalue_OLS) pvalue_FE = r(pvalue_FE) pvalue_RE = r(pvalue_RE) /// 
pvalue_PET = r(pvalue_PET) pvalue_PEESE = r(pvalue_PEESE) N = r(N) /// 
effect_WLS = r(effect_WLS) pvalue_WLS = r(pvalue_WLS) , /// 
reps(1000): FEpbias, alpha(`alpha') studies(`studies') select(`select') obs(`obs')  
        
summ N, meanonly 
matrix EFFECT[`i',1] = r(mean) 
summ effect_OLS, meanonly 
matrix EFFECT[`i',2] = r(mean) 
summ effect_PET, meanonly 
matrix EFFECT[`i',3] = r(mean) 
summ effect_PEESE, meanonly 
matrix EFFECT[`i',4] = r(mean) 
summ effect_FE, meanonly 
matrix EFFECT[`i',5] = r(mean) 
summ effect_WLS, meanonly 
 matrix EFFECT[`i',6] = r(mean) 
 summ effect_RE, meanonly 
 matrix EFFECT[`i',7] = r(mean) 
                     
summ N, meanonly 
matrix MSE[`i',1] = r(mean) 
generate mse_OLS = (effect_OLS - `alpha')^2 
summ mse_OLS, meanonly 
matrix MSE[`i',2] = r(mean) 
generate mse_PET = (effect_PET - `alpha')^2 
summ mse_PET, meanonly 
matrix MSE[`i',3] = r(mean) 
generate mse_PEESE = (effect_PEESE - `alpha')^2 
summ mse_PEESE, meanonly 
matrix MSE[`i',4] = r(mean) 
generate mse_FE = (effect_FE - `alpha')^2 
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summ mse_FE, meanonly 
matrix MSE[`i',5] = r(mean) 
generate mse_WLS = (effect_WLS - `alpha')^2 
summ mse_WLS, meanonly 
matrix MSE[`i',6] = r(mean) 
generate mse_RE = (effect_RE - `alpha')^2 
summ mse_RE, meanonly 
matrix MSE[`i',7] = r(mean)               
                       
summ N, meanonly 
matrix TEST[`i',1] = r(mean) 
generate RROLS = 0 
replace RROLS = cond(pvalue_OLS<0.05,1,0)  
summ RROLS, meanonly 
matrix TEST[`i',2] = r(mean) 
generate RRPET = 0 
replace RRPET = cond(pvalue_PET<0.05,1,0)  
summ RRPET, meanonly 
matrix TEST[`i',3] = r(mean)  
generate RRPEESE = 0 
replace RRPEESE = cond(pvalue_PEESE<0.05,1,0)  
summ RRPEESE, meanonly 
matrix TEST[`i',4] = r(mean) 
generate RRFE = 0 
replace RRFE = cond(pvalue_FE<0.05,1,0)  
summ RRFE, meanonly 
matrix TEST[`i',5] = r(mean)  
generate RRWLS = 0 
replace RRWLS = cond(pvalue_WLS<0.05,1,0)  
summ RRWLS, meanonly 
matrix TEST[`i',6] = r(mean)  
generate RRRE = 0 
replace RRRE = cond(pvalue_RE<0.05,1,0)  
summ RRRE, meanonly 
matrix TEST[`i',7] = r(mean)                        
     
local `++i' 
} 

 
matrix colnames EFFECT = N OLS PET PEESE FE WLS RE  
matrix rownames EFFECT = A0 A0P5 A1 A1P5 A2 A2P5 A3 A3P5 A4 
matrix colnames MSE = N OLS PET PEESE FE WLS RE 
matrix rownames MSE = A0 A0P5 A1 A1P5 A2 A2P5 A3 A3P5 A4 
matrix colnames TEST = N OLS PET PEESE FE WLS RE 
matrix rownames TEST = A0 A0P5 A1 A1P5 A2 A2P5 A3 A3P5 A4 
matrix list EFFECT 
matrix list MSE 
matrix list TEST 
 
etime 
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.do file for TABLE 4 – Part A 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  
 
clear 
set more off 
program drop _all 
program define sample, rclass 
version 13.1 
 
syntax, alpha(real) studies(integer) select(real) obs(integer) 
 
// Remove existing variables 
drop _all 
 
//We first create the matrix to store the results of each study 
matrix A = J(`studies',1,0) 
matrix B = J(`studies',1,0) 
matrix C = J(`studies',1,0) 
   

forvalues i = 1/`studies' { 
clear 
// STEP ONE: Create the data for each study and estimate an effect 
set obs `obs' 
generate x = rnormal() 
// Note that each "study" has the same number of observations (100) 
// but differ in the variance of their respective error terms.  This 
// causes the estimate of the effect to be estimated with varying degrees  
// of precision 
scalar lambda = 0.5+30*runiform() 
generate e = lambda*rnormal() 
scalar alpha = `alpha' + rnormal() 
generate y = 1 + alpha*x + e 
 
quietly regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = coef/secoef 
     
// First run this program once to get the pre-publication study sample data 
// To get post-publication study sample data, uncomment one of the two sections 
// below. 
   

/*if abs(tcoef) < 2 { 
scalar dummy = cond(runiform()<`select',1,.) 
scalar coef = dummy*coef 
scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
} 
*/ 
 
/*if coef < 0 { 
scalar dummy = cond(runiform()<`select',1,.) 
scalar coef = dummy*coef 
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scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
} 
*/ 

   
matrix A[`i',1] = coef 
matrix B[`i',1] = secoef 
matrix C[`i',1] = tcoef 
} 

 
matrix bob = A,B,C  
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
generate pet = (1/seeffect) 
 
metareg effect , wsse(seeffect) mm 
return scalar I2 = e(I2) 
 
summ effect, detail 
return scalar effectMED = r(p50) 
return scalar effectMIN = r(min)   
return scalar effectP5 = r(p5) 
return scalar effectP95 = r(p95) 
return scalar effectMAX = r(max) 
return scalar N = r(N) 
   
summ teffect, detail 
return scalar teffectMED = r(p50) 
return scalar teffectMIN = r(min)   
return scalar teffectP5 = r(p5) 
return scalar teffectP95 = r(p95) 
return scalar teffectMAX = r(max) 
   
summ pet, detail 
return scalar petMED = r(p50) 
return scalar petMIN = r(min)   
return scalar petP5 = r(p5) 
return scalar petP95 = r(p95) 
return scalar petMAX = r(max) 
 
end 
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.do file for TABLE 4 – Part B 
 

// This program takes about 20 minutes to run on my laptop for each section 
etime, start 
drop _all 
clear 
graph drop _all 
set more off 
set seed 52256 
matrix RESULTS = J(4,6,0) 
local studies = 300 
// Select is used to set the probability of being included in the data set 
// when the study is subject to publication bias, either because (i) abs(tstat) < 2, or 
// coef < 0.  
local select = 0.10 
local obs = 100 
local alpha = 1 
 
simulate effectMED = r(effectMED) effectMIN = r(effectMIN) effectP5 = r(effectP5) /// 
effectP95 = r(effectP95) effectMAX = r(effectMAX)  /// 
teffectMED = r(teffectMED) teffectMIN = r(teffectMIN) teffectP5 = r(teffectP5) /// 
teffectP95 = r(teffectP95) teffectMAX = r(teffectMAX)  ///        
petMED = r(petMED) petMIN = r(petMIN) petP5 = r(petP5) /// 
petP95 = r(petP95) petMAX = r(petMAX)  N = r(N) I2 = r(I2), /// 
reps(1000): sample, alpha(`alpha') studies(`studies') select(`select') obs(`obs')       
        
summ effectMED, meanonly 
matrix RESULTS[1,1] = r(mean) 
summ effectMIN, meanonly 
matrix RESULTS[1,2] = r(mean) 
summ effectP5, meanonly 
matrix RESULTS[1,3] = r(mean) 
summ effectP95, meanonly 
matrix RESULTS[1,4] = r(mean) 
summ effectMAX, meanonly 
matrix RESULTS[1,5] = r(mean) 
summ N, meanonly 
matrix RESULTS[1,6] = r(mean) 
     
summ teffectMED, meanonly 
matrix RESULTS[2,1] = r(mean) 
summ teffectMIN, meanonly 
matrix RESULTS[2,2] = r(mean) 
summ teffectP5, meanonly 
matrix RESULTS[2,3] = r(mean) 
summ teffectP95, meanonly 
matrix RESULTS[2,4] = r(mean) 
summ teffectMAX, meanonly 
matrix RESULTS[2,5] = r(mean) 
summ N, meanonly 
matrix RESULTS[2,6] = r(mean) 
         
summ petMED, meanonly 
matrix RESULTS[3,1] = r(mean) 
summ petMIN, meanonly 
matrix RESULTS[3,2] = r(mean) 
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summ petP5, meanonly 
matrix RESULTS[3,3] = r(mean) 
summ petP95, meanonly 
matrix RESULTS[3,4] = r(mean) 
summ petMAX, meanonly 
matrix RESULTS[3,5] = r(mean) 
summ N, meanonly 
matrix RESULTS[3,6] = r(mean)  
    
summ I2, detail 
matrix RESULTS[4,1] = r(mean) 
matrix RESULTS[4,2] = r(min)   
matrix RESULTS[4,3] = r(p5) 
matrix RESULTS[4,4] = r(p95) 
matrix RESULTS[4,5] = r(max) 
 
summ N, meanonly 
matrix RESULTS[4,6] = r(mean)  
     
matrix colnames RESULTS = MED MIN P5 P95 MAX N 
matrix rownames RESULTS = EFFECT TEFFECT PET HETERO 
matrix list RESULTS 
 
etime  
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.do file for FIGURE 2 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  
 
 
clear 
set seed 52256 
set more off 
local studies = 300 
local alpha = 1 
local select = 0.10 
matrix A = J(`studies',1,0) 
matrix B = J(`studies',1,0) 
matrix C = J(`studies',1,0) 
   

forvalues i = 1/`studies' { 
// STEP ONE: Create the data for each study and estimate an effect 
clear 
set obs 100 
generate x = rnormal() 
// Note that each "study" has a difference error variance, causing the estimate  
// of the effect to be estimated with varying degrees of precision 
scalar lambda = 0.5+30*runiform() 
generate e = lambda*rnormal() 
scalar alpha = `alpha' + rnormal() 
generate y = 1 + alpha*x + e 
 
quietly regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = abs(coef/secoef) 
   
// First run this program once to get the pre-publication study sample data 
// To get post-publication study sample data, uncomment one of the two sections 
// below. 
   

/*if tcoef < 2 { 
scalar dummy = cond(runiform()<`select',1,.) 
scalar coef = dummy*coef 
scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
} 
*/ 
 
/*if coef < 0 { 
scalar dummy = cond(runiform()<`select',1,.) 
scalar coef = dummy*coef 
scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
} 
*/ 
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matrix A[`i',1] = coef 
matrix B[`i',1] = secoef 
matrix C[`i',1] = tcoef 
} 

 
matrix bob = A,B,C  
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
generate pet = (1/seeffect) 
  
metafunnel effect seeffect, xline(`alpha') ylabel(#8) nolines   
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.do file for TABLES 5 and 6 – Part A 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative (TABLE 5 = bias against insignificance; TABLE 6 = bias against wrong 
sign) 
 
set more off 
program drop _all 
program define REpbias, rclass 
version 13.1 
 
syntax, alpha(real) studies(integer) select(real) obs(integer) 
 
// Remove existing variables 
drop _all 
 
//We first create the matrix to store the results of each study 
matrix A = J(`studies',1,0) 
matrix B = J(`studies',1,0) 
matrix C = J(`studies',1,0) 
 

forvalues i = 1/`studies' { 
clear 
// STEP ONE: Create the data for each study and estimate an effect 
set obs `obs' 
generate x = rnormal() 
// Note that each "study" has the same number of observations (100) 
// but differ in the variance of their respective error terms.  This 
// causes the estimate of the effect to be estimated with varying degrees  
// of precision 
scalar lambdai = 0.5+30*runiform() 
generate e = lambdai*rnormal() 
scalar alphai = `alpha' + rnormal() 
generate y = 1 + alphai*x + e 
 
quietly regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = coef/secoef 
   

//if abs(tcoef) < 2 { 
// An alternative criterion is that results that show a negative effect 
// have a harder time getting published.  To study that case, substitute 
// the line below for the line above 
//if coef < 0 { 
scalar dummy = cond(runiform()<`select',1,.) 
// The statement above creates a dummy variable that randomly selects which 
// studies will get "published" if they fail to meet the "publication criterion" 
// either (i) abs(tcoef) >= 2 or (ii) if coef >= 0.  Studies that are not "published" 
// receive missing values and thus are not included in the "meta-analysis." 
scalar coef = dummy*coef 
scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
} 
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matrix A[`i',1] = coef 
matrix B[`i',1] = secoef 
matrix C[`i',1] = tcoef 
} 

   
// The next set of commands moves the data out of matrices and reformats them as  
// standard Stata data series.  We have now completed generating our individual 
// studies and we now move into the "meta-analysis" stage. 
matrix bob = A,B,C  
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
generate pet = (1/seeffect) 
   
// This estimate produces the OLS estimate of the effect 
regress effect  
return scalar effect_OLS = _b[_cons] 
test _b[_cons] = `alpha' 
return scalar pvalue_OLS = r(p) 
  
// This estimate produces the PET version of the "publication bias"-  
// corrected effect estimate 
regress teffect pet, vce(robust) 
return scalar effect_PET = _b[pet] 
test pet = `alpha' 
return scalar pvalue_PET = r(p) 
   
// This estimate produces the PEESE version of the "publication bias"-  
// corrected effect estimate 
regress teffect seeffect pet, noc vce(robust) 
return scalar effect_PEESE = _b[pet] 
test pet = `alpha' 
return scalar pvalue_PEESE = r(p) 
 
// This estimate produces the FE estimate of the effect 
generate constant = 1 
vwls effect constant, sd(seeffect) nocon 
return scalar effect_FE = _b[constant] 
test _b[constant] = `alpha' 
return scalar pvalue_FE = r(p) 
  
// This estimate produces the WLS estimate of the effect 
regress teffect pet, noc 
return scalar effect_WLS = _b[pet] 
test pet = `alpha' 
return scalar pvalue_WLS = r(p) 
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// This estimate produces the RE estimate of the effect 
// NOTE: We use the Method of Moments (mm) option of metareg 
// because the maximum likelihood procedure had too many instances 
// of failure to optimize.  Method of Moments does not require 
// iteration and thus avoids this problem. 
metareg effect , wsse(seeffect) mm 
matrix bill = e(b) 
return scalar effect_RE = bill[1,1] 
test _cons = `alpha' 
return scalar pvalue_RE = r(p) 
   
// This last command keeps track of how many studies are in our "meta-analysis" 
return scalar N = e(N) 
 
end   
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.do file for TABLES 5 and 6 – Part B 
 

// This program takes about 3 hours to run on my computer 
etime, start 
drop _all 
clear 
graph drop _all 
set more off 
set seed 52256 
matrix EFFECT = J(9,7,0) 
matrix MSE = J(9,7,0) 
matrix TEST = J(9,7,0) 
local studies = 300 
// Select is used to set the probability of being included in the data set 
// when the study is subject to publication bias, either because (i) abs(tstat) < 2, or 
// coef < 0.  
local select = 0.10 
local obs = 100 
 
local i = 1 
 

foreach alpha in 0 0.5 1 1.5 2 2.5 3 3.5 4 { 
simulate effect_OLS = r(effect_OLS) effect_FE = r(effect_FE) effect_RE = r(effect_RE) /// 
effect_PET = r(effect_PET) effect_PEESE = r(effect_PEESE)  /// 
pvalue_OLS = r(pvalue_OLS) pvalue_FE = r(pvalue_FE) pvalue_RE = r(pvalue_RE) /// 
pvalue_PET = r(pvalue_PET) pvalue_PEESE = r(pvalue_PEESE) N = r(N) /// 
effect_WLS = r(effect_WLS) pvalue_WLS = r(pvalue_WLS) , /// 
reps(1000): REpbias, alpha(`alpha') studies(`studies') select(`select') obs(`obs')  
        
summ N, meanonly 
matrix EFFECT[`i',1] = r(mean) 
summ effect_OLS, meanonly 
matrix EFFECT[`i',2] = r(mean) 
summ effect_PET, meanonly 
matrix EFFECT[`i',3] = r(mean) 
summ effect_PEESE, meanonly 
matrix EFFECT[`i',4] = r(mean) 
summ effect_FE, meanonly 
matrix EFFECT[`i',5] = r(mean) 
summ effect_WLS, meanonly 
matrix EFFECT[`i',6] = r(mean) 
summ effect_RE, meanonly 
matrix EFFECT[`i',7] = r(mean) 
                 
summ N, meanonly 
matrix MSE[`i',1] = r(mean) 
generate mse_OLS = (effect_OLS - `alpha')^2 
summ mse_OLS, meanonly 
matrix MSE[`i',2] = r(mean) 
generate mse_PET = (effect_PET - `alpha')^2 
summ mse_PET, meanonly 
matrix MSE[`i',3] = r(mean) 
generate mse_PEESE = (effect_PEESE - `alpha')^2 
summ mse_PEESE, meanonly 
matrix MSE[`i',4] = r(mean) 
generate mse_FE = (effect_FE - `alpha')^2 
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summ mse_FE, meanonly 
matrix MSE[`i',5] = r(mean) 
generate mse_WLS = (effect_WLS - `alpha')^2 
summ mse_WLS, meanonly 
matrix MSE[`i',6] = r(mean) 
generate mse_RE = (effect_RE - `alpha')^2 
summ mse_RE, meanonly 
matrix MSE[`i',7] = r(mean) 
     
summ N, meanonly 
matrix TEST[`i',1] = r(mean) 
generate RROLS = 0 
replace RROLS = cond(pvalue_OLS<0.05,1,0)  
summ RROLS, meanonly 
matrix TEST[`i',2] = r(mean) 
generate RRPET = 0 
replace RRPET = cond(pvalue_PET<0.05,1,0)  
summ RRPET, meanonly 
matrix TEST[`i',3] = r(mean)  
generate RRPEESE = 0 
replace RRPEESE = cond(pvalue_PEESE<0.05,1,0)  
summ RRPEESE, meanonly 
matrix TEST[`i',4] = r(mean) 
generate RRFE = 0 
replace RRFE = cond(pvalue_FE<0.05,1,0)  
summ RRFE, meanonly 
matrix TEST[`i',5] = r(mean)  
generate RRWLS = 0 
replace RRWLS = cond(pvalue_WLS<0.05,1,0)  
summ RRWLS, meanonly 
matrix TEST[`i',6] = r(mean)  
generate RRRE = 0 
replace RRRE = cond(pvalue_RE<0.05,1,0)  
summ RRRE, meanonly 
matrix TEST[`i',7] = r(mean)  
    
local `++i' 
} 

 
matrix colnames EFFECT = N OLS PET PEESE FE WLS RE  
matrix rownames EFFECT = A0 A0P5 A1 A1P5 A2 A2P5 A3 A3P5 A4 
matrix colnames MSE = N OLS PET PEESE FE WLS RE 
matrix rownames MSE = A0 A0P5 A1 A1P5 A2 A2P5 A3 A3P5 A4 
matrix colnames TEST = N OLS PET PEESE FE WLS RE 
matrix rownames TEST = A0 A0P5 A1 A1P5 A2 A2P5 A3 A3P5 A4 
matrix list EFFECT 
matrix list MSE 
matrix list TEST 
 
etime  
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.do file for FIGURE 3 – Part A 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  
 
 
set more off 
program drop _all 
program define REfig, rclass 
version 13.1 
 
syntax, alpha(real) studies(integer) select(real) obs(integer) 
// Remove existing variables 
drop _all 
 
//We first create the matrix to store the results of each study 
matrix A = J(`studies',1,0) 
matrix B = J(`studies',1,0) 
matrix C = J(`studies',1,0) 
   

forvalues i = 1/`studies' { 
clear 
// STEP ONE: Create the data for each study and estimate an effect 
set obs `obs' 
generate x = rnormal() 
// Note that each "study" has the same number of observations (100) 
// but differ in the variance of their respective error terms.  This 
// causes the estimate of the effect to be estimated with varying degrees  
// of precision 
scalar lambda = 0.5+30*runiform() 
generate e = lambda*rnormal() 
scalar alpha = `alpha' + rnormal() 
generate y = 1 + alpha*x + e 
 
regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = coef/secoef 
   

// if abs(tcoef) < 2 { 
// An alternative criterion is that results that show a negative effect 
// have a harder time getting published.  To study that case, substitute 
// the line below for the line above 
if coef < 0 { 
scalar dummy = cond(runiform()<`select',1,.) 
// The statement above creates a dummy variable that randomly selects which 
// studies will get "published" if they fail to meet the "publication criterion" 
// either (i) abs(tcoef) >= 2 or (ii) if coef >= 0.  Studies that are not "published" 
// receive missing values and thus are not included in the "meta-analysis." 
scalar coef = dummy*coef 
scalar secoef = dummy*secoef 
scalar tcoef = dummy*tcoef 
} 
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matrix A[`i',1] = coef 
matrix B[`i',1] = secoef 
matrix C[`i',1] = tcoef 
} 

   
// The next set of commands moves the data out of matrices and reformats them as  
// standard Stata data series.  We have now completed generating our individual 
// studies and we now move into the "meta-analysis" stage. 
matrix bob = A,B,C  
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
generate pet = (1/seeffect) 
 
// This estimate produces the RE estimate of the effect 
metareg effect , wsse(seeffect) mm 
matrix bill = e(b) 
return scalar effect_RE = bill[1,1] 
  
// This estimate produces the PEESE version of the "publication bias"-  
// corrected effect estimate.   
regress teffect seeffect pet, noc 
return scalar effect_PEESE = _b[pet] 
  
end   
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.do file for FIGURE 3 – Part B 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  
 
 
// This program takes about 3 minutes to run on my laptop 
etime, start 
drop _all 
clear 
graph drop _all 
set more off 
set seed 52256 
matrix EFFECT = J(9,6,0) 
matrix MSE = J(9,6,0) 
matrix TEST = J(9,6,0) 
local studies = 300 
// Select is used to set the probability of being included in the data set 
// when the study is subject to publication bias, either because (i) abs(tstat) < 2, or 
// coef < 0.  
local select = 0.10 
local obs = 100 
 
local i = 1 
 

foreach alpha in 3  { 
simulate effect_RE = r(effect_RE) effect_PEESE = r(effect_PEESE), /// 
reps(100): REfig, studies(`studies') alpha(`alpha') select(`select') obs(`obs')    
  
local `++i' 
} 

 
kdensity effect_PEESE  , xline(4) name(PEESE) //xlabel(-4(1) 4) 
kdensity effect_RE , xline(4) name(Combined) addplot(kdensity effect_PEESE) //xlabel(-4(1) 4) 
 
etime  
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.do file for TABLE 7 – Part A 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  
 
set more off 
program drop _all 
program define PANELsample, rclass 
version 13.1 
 
syntax, studies(integer) estperstudy(integer) totalobs(integer) alpha(real) /// 
theta(real) obs(integer) 
         
// Remove existing variables 
drop _all 
 
//We first create the matrix to store the results of each study 
set matsize 10000 
matrix A = J(`totalobs',1,.) 
matrix B = J(`totalobs',1,.) 
matrix C = J(`totalobs',1,.) 
matrix D = J(`totalobs',1,.) 
   

forvalues i = 1/`studies' { 
scalar lambdai = 0.5+30*runiform() 
scalar alphai = `alpha'+2*rnormal() 
 

forvalues j = 1/`estperstudy' { 
// STEP ONE: Create the data for each study and estimate an effect 
clear 
set obs 100 
generate x = rnormal() 
// Note that each "study" has a difference error variance, causing the estimate  
// of the effect to be estimated with varying degrees of precision 
// This is for random effects 
scalar lambdaij = lambdai+`theta'*runiform() 
scalar alphaij = alphai+0.5*rnormal() 
generate e = lambdaij*rnormal() 
generate y = 1 + alphaij*x + e 
 
quietly regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = coef/secoef 
scalar ID = `i' 
scalar obsno = (`i'-1)*`estperstudy'+`j' 
  
matrix A[obsno,1] = coef 
matrix B[obsno,1] = secoef 
matrix C[obsno,1] = tcoef 
matrix D[obsno,1] = ID 
} 

}  
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matrix bob = A,B,C,D 
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
rename bob4 ID 
generate pet = (1/seeffect) 
 
// First run this program once to get the pre-publication study sample data 
// To get post-publication study sample data, uncomment one of the two sections 
// below. 
generate dummy = 1 
//replace dummy = 0 if abs(teffect) < 2 
//replace dummy = 0 if effect < 0 
by ID, sort: egen select = mean(dummy) 
replace effect = cond(select<0.65,.,effect) 
replace seeffect = cond(select<0.65,.,seeffect) 
replace teffect = cond(select<0.65,.,teffect) 
replace pet = cond(select<0.65,.,pet) 
 
metareg effect , wsse(seeffect) mm 
return scalar I2 = e(I2) 
   
summ effect, detail 
return scalar effectMED = r(p50) 
return scalar effectMIN = r(min)   
return scalar effectP5 = r(p5) 
return scalar effectP95 = r(p95) 
return scalar effectMAX = r(max) 
return scalar N = r(N) 
  
summ teffect, detail 
return scalar teffectMED = r(p50) 
return scalar teffectMIN = r(min)   
return scalar teffectP5 = r(p5) 
return scalar teffectP95 = r(p95) 
return scalar teffectMAX = r(max) 
  
summ pet, detail 
return scalar petMED = r(p50) 
return scalar petMIN = r(min)   
return scalar petP5 = r(p5) 
return scalar petP95 = r(p95) 
return scalar petMAX = r(max) 
   
end  
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.do file for TABLE 7 – Part B 
 

// This program takes approximately 35 minutes to run on my computer 
etime, start 
drop _all 
clear 
graph drop _all 
set more off 
set seed 52256 
matrix RESULTS = J(4,6,0) 
local studies = 30 
local estperstudy = 10 
local totalobs = `studies'*`estperstudy' 
local alpha = 1 
local theta = 1 
local obs = 100 
 
simulate effectMED = r(effectMED) effectMIN = r(effectMIN) effectP5 = r(effectP5) /// 
effectP95 = r(effectP95) effectMAX = r(effectMAX)  /// 
teffectMED = r(teffectMED) teffectMIN = r(teffectMIN) teffectP5 = r(teffectP5) /// 
teffectP95 = r(teffectP95) teffectMAX = r(teffectMAX)  ///        
petMED = r(petMED) petMIN = r(petMIN) petP5 = r(petP5) /// 
petP95 = r(petP95) petMAX = r(petMAX)  N = r(N) I2 = r(I2), /// 
reps(1000): PANELsample, studies(`studies') estperstudy(`estperstudy') totalobs(`totalobs') alpha(`alpha') /// 
theta(`theta') obs(`obs')         
        
summ effectMED, meanonly 
matrix RESULTS[1,1] = r(mean) 
summ effectMIN, meanonly 
matrix RESULTS[1,2] = r(mean) 
summ effectP5, meanonly 
matrix RESULTS[1,3] = r(mean) 
summ effectP95, meanonly 
matrix RESULTS[1,4] = r(mean) 
summ effectMAX, meanonly 
matrix RESULTS[1,5] = r(mean) 
summ N, meanonly 
matrix RESULTS[1,6] = r(mean) 
     
summ teffectMED, meanonly 
matrix RESULTS[2,1] = r(mean) 
summ teffectMIN, meanonly 
matrix RESULTS[2,2] = r(mean) 
summ teffectP5, meanonly 
matrix RESULTS[2,3] = r(mean) 
summ teffectP95, meanonly 
matrix RESULTS[2,4] = r(mean) 
summ teffectMAX, meanonly 
matrix RESULTS[2,5] = r(mean) 
summ N, meanonly 
matrix RESULTS[2,6] = r(mean) 
         
summ petMED, meanonly 
matrix RESULTS[3,1] = r(mean) 
summ petMIN, meanonly 
matrix RESULTS[3,2] = r(mean) 
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summ petP5, meanonly 
matrix RESULTS[3,3] = r(mean) 
summ petP95, meanonly 
matrix RESULTS[3,4] = r(mean) 
summ petMAX, meanonly 
matrix RESULTS[3,5] = r(mean) 
summ N, meanonly 
matrix RESULTS[3,6] = r(mean)  
    
summ I2, detail 
matrix RESULTS[4,1] = r(mean) 
matrix RESULTS[4,2] = r(min)   
matrix RESULTS[4,3] = r(p5) 
matrix RESULTS[4,4] = r(p95) 
matrix RESULTS[4,5] = r(max) 
summ N, meanonly 
matrix RESULTS[4,6] = r(mean)  
     
matrix colnames RESULTS = MED MIN P5 P95 MAX N 
matrix rownames RESULTS = EFFECT TEFFECT PET HETERO 
matrix list RESULTS 
 
etime 
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.do file for FIGURE 6 
 

 
NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  
 
 
// This program takes about 5 seconds to run for each section 
etime, start 
clear 
set seed 52256 
set more off 
local studies = 30 
local estperstudy = 10 
local totalobs = `studies'*`estperstudy' 
local alpha = 1 
local theta = 1 
set matsize 10000 
matrix A = J(`totalobs',1,.) 
matrix B = J(`totalobs',1,.) 
matrix C = J(`totalobs',1,.) 
matrix D = J(`totalobs',1,.) 
   

forvalues i = 1/`studies' { 
scalar lambdai = 0.5+30*runiform() 
scalar alphai = `alpha'+2*rnormal() 
 

forvalues j = 1/`estperstudy' { 
// STEP ONE: Create the data for each study and estimate an effect 
clear 
set obs 100 
generate x = rnormal() 
// Note that each "study" has a difference error variance, causing the estimate  
// of the effect to be estimated with varying degrees of precision 
// This is for random effects 
scalar lambdai = lambdai+`theta'*runiform() 
scalar alphaij = alphai+0.5*rnormal() 
generate e = lambdai*rnormal() 
generate y = 1 + alphaij*x + e 
 
quietly regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = coef/secoef 
scalar ID = `i' 
scalar obsno = (`i'-1)*`estperstudy'+`j' 
  
matrix A[obsno,1] = coef 
matrix B[obsno,1] = secoef 
matrix C[obsno,1] = tcoef 
matrix D[obsno,1] = ID 
} 

 
} 
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matrix bob = A,B,C,D 
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
rename bob4 ID 
generate pet = (1/seeffect) 
 
// First run this program once to get the pre-publication study sample data 
// To get post-publication study sample data, uncomment one of the two sections 
// below.   
generate dummy = 1 
//replace dummy = 0 if abs(teffect) < 2 
//replace dummy = 0 if effect < 0 
by ID, sort: egen select = mean(dummy) 
replace effect = cond(select<0.65,.,effect) 
replace seeffect = cond(select<0.65,.,seeffect) 
replace teffect = cond(select<0.65,.,teffect) 
replace pet = cond(select<0.65,.,pet) 
 
metafunnel effect seeffect, xline(1) nolines ylabel(#8)  
   
etime  
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.do file for TABLES 8 and 9 – Part A 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative (TABLE 8 = bias against insignificance; TABLE 9 = bias against wrong 
sign) 
 
set more off 
program drop _all 
program define PANELpbias, rclass 
version 13.1 
 
syntax, studies(integer) estperstudy(integer) totalobs(integer) alpha(real) /// 
theta(real) obs(integer) 
         
// Remove existing variables 
drop _all 
 
//We first create the matrix to store the results of each study 
set matsize 10000 
matrix A = J(`totalobs',1,.) 
matrix B = J(`totalobs',1,.) 
matrix C = J(`totalobs',1,.) 
matrix D = J(`totalobs',1,.) 
   

forvalues i = 1/`studies' { 
scalar lambdai = 0.5+30*runiform() 
scalar alphai = `alpha'+2*rnormal() 
 

forvalues j = 1/`estperstudy' { 
// STEP ONE: Create the data for each study and estimate an effect 
clear 
set obs 100 
generate x = rnormal() 
// Note that each "study" has a difference error variance, causing the estimate  
// of the effect to be estimated with varying degrees of precision 
// This is for random effects 
scalar lambdaij = lambdai+`theta'*runiform() 
scalar alphaij = alphai+0.5*rnormal() 
generate e = lambdaij*rnormal() 
generate y = 1 + alphaij*x + e 
// This is for fixed effects 
// scalar lambda = 0.2+30*runiform() 
// generate e = lambda*rnormal() 
// generate y = 1 + `alpha'*x + e 
quietly regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = coef/secoef 
scalar ID = `i' 
scalar obsno = (`i'-1)*`estperstudy'+`j' 
  
// First run this program once to get the pre-publication study sample data 
// To get post-publication study sample data, uncomment one of the two sections 
// below. 
matrix A[obsno,1] = coef 
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matrix B[obsno,1] = secoef 
matrix C[obsno,1] = tcoef 
matrix D[obsno,1] = ID 
} 

 
} 

 
// The next set of commands moves the data out of matrices and reformats them as  
// standard Stata data series.  We have now completed generating our individual 
// studies and we now move into the "meta-analysis" stage. 
matrix bob = A,B,C,D 
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
rename bob4 ID 
generate pet = (1/seeffect) 
 
// This set of commands imposese the publication bias, where the publication criterion 
// is either that (i) the t-stat must be greater than or equal to 2, or (ii) the  
// estimated effect is positive.  The commands below implement the assumption that a 
// study must have at least 7 out of 10 estimates that satisfy the publication  
// criterion in order for the study to be "published." 
generate dummy = 1 
//replace dummy = 0 if abs(teffect) < 2 
//replace dummy = 0 if effect < 0 
by ID, sort: egen select = mean(dummy) 
// Not sure why this happens, but if I put select<0.70, it kicks out the studies that 
// have 7 estimates that satisfy the publication criterion.  So I set select<0.65.   
// Studies are omitted from the "meta-analysis" sample by replacing the relevant variables 
// with missing values. 
replace effect = cond(select<0.65,.,effect) 
replace seeffect = cond(select<0.65,.,seeffect) 
replace teffect = cond(select<0.65,.,teffect) 
replace pet = cond(select<0.65,.,pet) 
  
// This creates dummy variables for each of the 30 studies 
// The dummy variables take names dum1 to dum30 
tab ID, gen(dum) 
  

// This creates study-specific SE terms for use in the PEESE 
// according to equation 5.7 on page 85 of S&D 
forvalues i = 1/30 { 
generate SE`i' = seeffect*dum`i' 
} 

   
// This estimate produces the OLS estimate of the effect 
regress effect  
return scalar effect_OLS = _b[_cons] 
test _b[_cons] = `alpha' 
return scalar pvalue_OLS = r(p) 
 
// This estimate produces the PET version of the "publication bias"-  
// corrected effect estimate 
// NOTE1:  According to equation 5.6 on page 85 of S&D, the bias-corrected 
// effect is given by the coefficients on the respective precision terms, pet*. 
// The specification below forces all the effects to be the same, while 
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// allowing for fixed effects to correct for bias-associated with estimate SEs. 
// NOTE2: Also note that while all the dummy variables will not be included in the 
// meta-analysis sample, this is not a problem because STATA will automatically  
// kick out the ones that don't belong.   
regress teffect dum1-dum30 pet, vce(cluster ID) 
return scalar effect_PET = _b[pet] 
test pet = `alpha' 
return scalar pvalue_PET = r(p) 
  
// This estimate produces the PEESE version of the "publication bias"-  
// corrected effect estimate.  It is based on equation 5.7 on page 85 of S&D. 
// See notes from above. 
regress teffect SE1-SE30 pet, noc vce(cluster ID) 
return scalar effect_PEESE = _b[pet] 
test pet = `alpha' 
return scalar pvalue_PEESE = r(p) 
   
// This estimate produces the FE estimate of the effect 
generate constant = 1 
vwls effect constant, sd(seeffect) nocon 
return scalar effect_FE = _b[constant] 
test _b[constant] = `alpha' 
return scalar pvalue_FE = r(p) 
   
// This estimate produces the WLS estimate of the effect 
regress teffect pet, noc  
return scalar effect_WLS = _b[pet] 
test pet = `alpha' 
return scalar pvalue_WLS = r(p) 
     
// This estimate produces the RE estimate of the effect 
// NOTE: We use the Method of Moments (mm) option of metareg 
// because the maximum likelihood procedure had too many instances 
// of failure to optimize.  Method of Moments does not require 
// iteration and thus avoids this problem. 
metareg effect , wsse(seeffect) mm 
matrix bill = e(b) 
return scalar effect_RE = bill[1,1] 
test _cons = `alpha' 
return scalar pvalue_RE = r(p) 
  
// This last command keeps track of how many estimates are in our "meta-analysis" 
return scalar N = e(N) 
  
end   
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.do file for TABLES 8 and 9 – Part B 
 

// This program takes about 5 hours to run on my computer 
etime, start 
drop _all 
clear 
graph drop _all 
set more off 
set seed 52256 
matrix EFFECT = J(9,7,0) 
matrix MSE = J(9,7,0) 
matrix TEST = J(9,7,0) 
local studies = 30 
local estperstudy = 10 
local totalobs = `studies'*`estperstudy' 
local theta = 1 
local obs = 100 
 
local i = 1 
 

foreach alpha in 0 0.5 1 1.5 2 2.5 3 3.5 4 { 
simulate effect_OLS = r(effect_OLS) effect_FE = r(effect_FE) effect_RE = r(effect_RE) /// 
effect_PET = r(effect_PET) effect_PEESE = r(effect_PEESE)  /// 
pvalue_OLS = r(pvalue_OLS) pvalue_FE = r(pvalue_FE) pvalue_RE = r(pvalue_RE) /// 
pvalue_PET = r(pvalue_PET) pvalue_PEESE = r(pvalue_PEESE) N = r(N) /// 
effect_WLS = r(effect_WLS) pvalue_WLS = r(pvalue_WLS) , /// 
reps(1000): PANELpbias, studies(`studies') estperstudy(`estperstudy') /// 
totalobs(`totalobs') alpha(`alpha') theta(`theta') obs(`obs')  
        
summ N, meanonly 
matrix EFFECT[`i',1] = r(mean) 
summ effect_OLS, meanonly 
matrix EFFECT[`i',2] = r(mean) 
summ effect_PET, meanonly 
matrix EFFECT[`i',3] = r(mean) 
summ effect_PEESE, meanonly 
matrix EFFECT[`i',4] = r(mean) 
summ effect_FE, meanonly 
matrix EFFECT[`i',5] = r(mean) 
summ effect_WLS, meanonly 
matrix EFFECT[`i',6] = r(mean) 
summ effect_RE, meanonly 
matrix EFFECT[`i',7] = r(mean) 
    
summ N, meanonly 
matrix MSE[`i',1] = r(mean) 
generate mse_OLS = (effect_OLS - `alpha')^2 
summ mse_OLS, meanonly 
matrix MSE[`i',2] = r(mean) 
generate mse_PET = (effect_PET - `alpha')^2 
summ mse_PET, meanonly 
matrix MSE[`i',3] = r(mean) 
generate mse_PEESE = (effect_PEESE - `alpha')^2 
summ mse_PEESE, meanonly 
matrix MSE[`i',4] = r(mean) 
generate mse_FE = (effect_FE - `alpha')^2 
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summ mse_FE, meanonly 
matrix MSE[`i',5] = r(mean) 
generate mse_WLS = (effect_WLS - `alpha')^2 
summ mse_WLS, meanonly 
matrix MSE[`i',6] = r(mean) 
generate mse_RE = (effect_RE - `alpha')^2 
summ mse_RE, meanonly 
matrix MSE[`i',7] = r(mean) 
     
 summ N, meanonly 
 matrix TEST[`i',1] = r(mean) 
generate RROLS = 0 
replace RROLS = cond(pvalue_OLS<0.05,1,0)  
summ RROLS, meanonly 
matrix TEST[`i',2] = r(mean) 
generate RRPET = 0 
replace RRPET = cond(pvalue_PET<0.05,1,0)  
summ RRPET, meanonly 
matrix TEST[`i',3] = r(mean)  
generate RRPEESE = 0 
replace RRPEESE = cond(pvalue_PEESE<0.05,1,0)  
summ RRPEESE, meanonly 
matrix TEST[`i',4] = r(mean) 
generate RRFE = 0 
replace RRFE = cond(pvalue_FE<0.05,1,0)  
summ RRFE, meanonly 
matrix TEST[`i',5] = r(mean)  
generate RRWLS = 0 
replace RRWLS = cond(pvalue_WLS<0.05,1,0)  
summ RRWLS, meanonly 
matrix TEST[`i',6] = r(mean)  
generate RRRE = 0 
replace RRRE = cond(pvalue_RE<0.05,1,0)  
summ RRRE, meanonly 
matrix TEST[`i',7] = r(mean)  
    
local `++i' 
} 

 
matrix colnames EFFECT = N OLS PET PEESE FE WLS RE  
matrix rownames EFFECT = A0 A0P5 A1 A1P5 A2 A2P5 A3 A3P5 A4 
matrix colnames MSE = N OLS PET PEESE FE WLS RE 
matrix rownames MSE = A0 A0P5 A1 A1P5 A2 A2P5 A3 A3P5 A4 
matrix colnames TEST = N OLS PET PEESE FE WLS RE 
matrix rownames TEST = A0 A0P5 A1 A1P5 A2 A2P5 A3 A3P5 A4 
matrix list EFFECT 
matrix list MSE 
matrix list TEST 
 
etime 
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.do file for FIGURE 7 – Part A 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  
 
 
set more off 
program drop _all 
program define PANELfig, rclass 
version 13.1 
 
syntax, studies(integer) estperstudy(integer) totalobs(integer) alpha(real) /// 
theta(real) obs(integer) 
         
// Remove existing variables 
drop _all 
 
//We first create the matrix to store the results of each study 
set matsize 10000 
matrix A = J(`totalobs',1,.) 
matrix B = J(`totalobs',1,.) 
matrix C = J(`totalobs',1,.) 
matrix D = J(`totalobs',1,.) 
   

forvalues i = 1/`studies' { 
scalar lambdai = 0.5+30*runiform() 
scalar alphai = `alpha'+2*rnormal() 
 

forvalues j = 1/`estperstudy' { 
// STEP ONE: Create the data for each study and estimate an effect 
clear 
set obs 100 
generate x = rnormal() 
// Note that each "study" has a difference error variance, causing the estimate  
// of the effect to be estimated with varying degrees of precision 
// This is for random effects 
scalar lambda = lambdai+`theta'*runiform() 
scalar alphaij = alphai+0.5*rnormal() 
generate e = lambda*rnormal() 
generate y = 1 + alphaij*x + e 
 
quietly regress y x  
scalar coef = _b[x] 
scalar secoef = _se[x] 
scalar tcoef = coef/secoef 
scalar ID = `i' 
scalar obsno = (`i'-1)*`estperstudy'+`j' 
   
// First run this program once to get the pre-publication study sample data 
// To get post-publication study sample data, uncomment one of the two sections 
// below. 
matrix A[obsno,1] = coef 
matrix B[obsno,1] = secoef 
matrix C[obsno,1] = tcoef 
matrix D[obsno,1] = ID 



83 
 

} 
} 

 
// The next set of commands moves the data out of matrices and reformats them as  
// standard Stata data series.  We have now completed generating our individual 
// studies and we now move into the "meta-analysis" stage. 
matrix bob = A,B,C,D 
svmat bob 
rename bob1 effect  
rename bob2 seeffect  
rename bob3 teffect  
rename bob4 ID 
generate pet = (1/seeffect) 
 
// This set of commands imposese the publication bias, where the publication criterion 
// is either that (i) the t-stat must be greater than or equal to 2, or (ii) the  
// estimated effect is positive.  The commands below implement the assumption that a 
// study must have at least 7 out of 10 estimates that satisfy the publication  
// criterion in order for the study to be "published." 
generate dummy = 1 
//replace dummy = 0 if abs(teffect) < 2 
//replace dummy = 0 if effect < 0 
by ID, sort: egen select = mean(dummy) 
// Not sure why this happens, but if I put select<0.70, it kicks out the studies that 
// have 7 estimates that satisfy the publication criterion.  So I set select<0.70.   
// Studies are omitted from the "meta-analysis" sample by replacing the relevant variables 
// with missing values. 
replace effect = cond(select<0.65,.,effect) 
replace seeffect = cond(select<0.65,.,seeffect) 
replace teffect = cond(select<0.65,.,teffect) 
replace pet = cond(select<0.65,.,pet) 
 
// This creates dummy variables for each of the 30 studies 
// The dummy variables take names dum1 to dum30 
tab ID, gen(dum) 
  

// This creates study-specific SE terms for use in the PEESE 
// according to equation 5.7 on page 85 of S&D 
forvalues i = 1/30 { 
generate SE`i' = seeffect*dum`i' 
} 

   
// This estimate produces the OLS estimate of the effect 
regress effect  
return scalar effect_OLS = _b[_cons] 
 
// This estimate produces the FE estimate of the effect 
generate constant = 1 
vwls effect constant, sd(seeffect) nocon 
return scalar effect_FE = _b[constant] 
 
// This estimate produces the RE estimate of the effect 
// NOTE: We use the Method of Moments (mm) option of metareg 
// because the maximum likelihood procedure had too many instances 
// of failure to optimize.  Method of Moments does not require 
// iteration and thus avoids this problem. 
metareg effect , wsse(seeffect) mm 
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matrix bill = e(b) 
return scalar effect_RE = bill[1,1] 
 
// This estimate produces the PET version of the "publication bias"-  
// corrected effect estimate 
// NOTE1:  According to equation 5.6 on page 85 of S&D, the bias-corrected 
// effect is given by the coefficients on the respective precision terms, pet*. 
// The specification below forces all the effects to be the same, while 
// allowing for fixed effects to correct for bias-associated with estimate SEs. 
// NOTE2: Also note that while all the dummy variables will not be included in the 
// meta-analysis sample, this is not a problem because STATA will automatically  
// kick out the ones that don't belong.   
regress teffect dum1-dum30 pet, vce(cluster ID) 
return scalar effect_PET = _b[pet] 
   
// This estimate produces the PEESE version of the "publication bias"-  
// corrected effect estimate.  It is based on equation 5.7 on page 85 of S&D. 
// See notes from above. 
regress teffect SE1-SE30 pet, noc 
return scalar effect_PEESE = _b[pet] 
  
end  
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.do file for FIGURE 7 – Part B 
 

NOTE: The yellow-highlighted part of the code determines which type of publication 
bias is operative  
 
 
// This program takes approximately 3 minutes to run 
etime, start 
drop _all 
clear 
graph drop _all 
set more off 
set seed 52256 
matrix EFFECT = J(9,6,0) 
matrix MSE = J(9,6,0) 
matrix TEST = J(9,6,0) 
local studies = 30 
local estperstudy = 10 
local totalobs = `studies'*`estperstudy' 
local theta = 1 
local obs = 100 
 
local i = 1 
 

foreach alpha in 1  { 
simulate effect_FE = r(effect_FE) effect_RE = r(effect_RE) effect_OLS = r(effect_OLS) /// 
effect_PET = r(effect_PET) effect_PEESE = r(effect_PEESE), /// 
reps(100): PANELfig, studies(`studies') estperstudy(`estperstudy') totalobs(`totalobs') /// 
alpha(`alpha') theta(`theta') obs(`obs')   
    
local `++i' 
} 

 
kdensity effect_OLS , xline(1) name(AllMeta) addplot(kdensity effect_PET ||  kdensity effect_PEESE /// 
|| kdensity effect_FE || kdensity effect_RE) 
 
etime 
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