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This paper develops a new way to help solve difficult linear and nonlinear discrete-optimization decision
models more efficiently by introducing a problem-difficulty metric that uses the concept of entropy from

information theory. Our entropy metric is employed to devise rules for problem partitioning within an implicit
enumeration method, where branching is accomplished based on the subproblem complexity. The only require-
ment for applying our metric is the availability of (upper) bounds on branching subproblems, which are often
computed within most implicit enumeration methods such as branch-and-bound (or cutting-plane-based) meth-
ods. Focusing on problems with a relatively small number of constraints, but with a large number of variables,
we develop a hybrid partitioning and enumeration solution scheme by combining the entropic approach with
the recently developed improved surrogate constraint (ISC) method to produce the new method we call ISCENT.
Our computational results indicate that ISCENT can be an order of magnitude more efficient than commercial
solvers, such as CPLEX, for convex instances with no more than eight constraints. Furthermore, for nonconvex
instances, ISCENT is shown to be significantly more efficient than other standard global solvers.
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1. Introduction
We propose a new solution concept that may be
embedded within an implicit enumeration solution
scheme for discrete-optimization problems, both lin-
ear and nonlinear, wherein the information theoretic
concept of entropy is used to estimate the complexity
of solving a potential subproblem, given an available
scheme for computing an upper bound. This entropy
metric is a proxy for the time required to solve the
subproblem, and this information is then used to both
partition the problem and determine how the sub-
problem is to be solved. Information theory has pre-
viously been used to establish the complexity of a
sorting algorithm (Takaoka 1998); however, to the best
of our knowledge, this is the first attempt to use
information theory for estimating the difficulty of a

complex combinatorial optimization problem within
an optimization framework.

Our proposed approach is general in that the
entropy-based partitioning scheme can be used in
solution algorithms that use bounds as the primary
fathoming criteria, such as the case in branch-and-
bound methods, because the theory utilizes upper-
bound information. To demonstrate the potential
of our approach as a foundation for developing
improved computational algorithms, we focus on
the class of discrete mathematical optimization mod-
els referred to as multidimensional knapsack prob-
lems, which are widely known to be of practical
importance in several areas of managerial decision
making, e.g., capacity planning in computer net-
works (Gerla and Kleinrock 1977), capital budget-
ing (Mathur et al. 1983), and production-distribution
system design (Elhedhli and Goffin 2005), to name
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a few. The essential restriction in this class, com-
pared with general discrete-optimization models, is
that the knapsack problem has an objective and con-
straints that are separable (but possibly nonlinear) in
the variables.

More particularly, our focus is on the general
multidimensional nonlinear knapsack (MNK) prob-
lem, which has broader applications than the multi-
dimensional knapsack problem but is considerably
more difficult to solve. Within this domain, we
devote attention to both convex and nonconvex MNK
instances with a relatively small number of con-
straints, problems for which the improved surro-
gate constraint (ISC) method has proven efficient (see
Nakagawa 2003). We have coupled our entropic mea-
sure approach with the ISC to produce a solution
scheme we call the improved surrogate constraint
method with entropy (ISCENT). We show that for
MNKs with a large number of variables and with up
to eight constraints our ISCENT procedure improves
solution time by an order of magnitude relative to a
solution using standard commercial software such as
CPLEX (in the linear and quadratic case) and relative
to global solvers such as Bonmin (in the convex case)
under the guarantee of exact solutions.

1.1. Additional Relevant Background
It may be noted that separable MNK models can
be reformulated as mixed-integer linear programs
(MILPs), but with a considerable increase in prob-
lem size. However, solving such MILPs using a
branch-and-cut approach can become notoriously
slow because of difficulties stemming from limitations
in memory and processing power (Ralphs 2006). In
contrast, our approach works directly on MNKs with
convex or nonconvex objectives, thus avoiding size
increases due to problem transformations.

It must also be noted that the proposed entropy
concept can potentially be embedded within branch-
and-cut solution schemes, such as those implemented
under commercial software for solving problems with
a large number of constraints, for further enhance-
ment of computational efficiency. However, such a
computational exercise is outside the scope of the
present paper.

The ISC method incorporated within our ISCENT
procedure is a branch-and-bound technique for the
solution of nonlinear separable discrete-optimization
problems and designed to find an exact optimal solu-
tion of the problem. Although ISC has been shown
to be efficient for problems with a large number of
variables, its efficiency deteriorates as the number of
constraints in the problem grows. Intriguingly, some
large-sized problems are more easily solved by ISC
than some small-sized problems, indicating that the
problem size, measured in terms of the number of

variables or constraints, is not the sole determinant
of problem difficulty. This observation has motivated
our development of an entropic measure of problem
difficulty, which we then use to partition the problem
into easier subproblems. The entropy model proposed
in this paper is a modified and improved version
of the early approach in Nakagawa (2004), wherein
an entropy measure is developed only for linear 0–1
multidimensional knapsack problems. In contrast, our
extended entropy model can handle general integer
problems with nonlinear (separable) functions. More-
over, we use our proposed entropy measure to per-
form variable aggregation (as well as to partition the
problem) to develop an efficient branch and bound
solution scheme. We show through computational
experiment that our entropy metric is strongly corre-
lated with the expected CPU time required to solve
a subproblem, thus confirming its effectiveness as a
measure of problem difficulty.

2. Nonlinear Separable
Discrete-Optimization Model

Given n projects and m resources, each project i
has ki + 1 levels (items). If project i ∈ 81121 0 0 0 1n9
is adopted at level xi ∈ 80111 0 0 0 1 ki9, then gji4xi5 is
the amount of resource j consumed and fi4xi5 is the
return, where the total resource availability is bj . The
MNK problem can then be stated as

P: max f 4x5=

n
∑

i=1

fi4xi5

s.t. gj4x5=

n
∑

i=1

gji4xi5≤ bj 4j ∈M51

xi ∈Ki 4i ∈N51

where x = 4x11x21 0 0 0 1 xn5 is the vector of decision vari-
ables, M = 81121 0 0 0 1m9 is a set of constraint indices,
N = 81121 0 0 0 1n9 is the set of decision-variable indices,
and Ki = 8011121 0 0 0 1 ki9 identifies the (allowable) item
set for each variable xi. Without loss of generality, we
assume that

(A1)
fi4xi5≥ 0 for xi ∈Ki1 i ∈N1

gji4xi5≥ 0 for xi ∈Ki1 i ∈N1 j ∈M0

Note that any separable discrete-optimization prob-
lem can be transformed into problem P. When m= 1,
P is simply called a nonlinear knapsack problem. Fur-
thermore, problem P is a 0–1 (linear) knapsack prob-
lem when ki = 1 for i ∈ N , provided fi4xi5 and gji4xi5
are monotone nondecreasing functions. In the sequel,
we focus on problem P in full generality under (A1),
but without any monotonicity assumptions.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

18
1.

20
3.

18
8]

 o
n 

16
 N

ov
em

be
r 

20
14

, a
t 1

5:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Nakagawa et al.: Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models
Management Science 60(3), pp. 695–707, © 2014 INFORMS 697

2.1. Historical Perspective on Solution Methods
for the Nonlinear Knapsack Problem

The nonlinear knapsack problem and its multidimen-
sional extension have received considerable atten-
tion in the literature; see Cooper (1981) for a survey
of solution algorithms for the pure integer version
of problem P. Marsten and Morin (1978) combine
dynamic programming and branch-and-bound tech-
niques to produce a hybrid algorithm for problems
with multiple constraints. The multiple-choice knap-
sack problem (Nauss 1978) is a linearization of the
single-constraint nonlinear knapsack problem. Sinha
and Zoltners (1979), Armstrong et al. (1983), and
Dyer et al. (1984) present algorithms for solving
the multiple-choice knapsack problem. Ibaraki and
Katoh (1988) consider the resource allocation prob-
lem (RAP), which is the minimization of a nonlin-
ear function with a single constraint and bounded
integer variables. The separable version of the RAP
is a special case of the nonlinear knapsack problem.
Bretthauer and Shetty (1995) develop a branch-and-
bound algorithm to solve separable problems involv-
ing nonlinear resource allocation. Hochbaum (1995)
discusses the computational complexity of convex
quadratic knapsack problems subject to a single linear
constraint.

In recent years, much progress has been made in
developing exact methods for 0–1 (linear) knapsack
problems and in developing near-optimal (heuris-
tic) methods for variants of knapsack problems.
Kellerer et al. (2004) summarize the different types
of knapsack problems and various solution method-
ologies, both heuristic and exact, explored over
the years. In particular, the multidimensional 0–1
knapsack problem has received greater attention,
possibly because of its increased solution complex-
ity under higher correlations among problem data.
This research spans several years, as the following
citations show: Gavish and Pirkul (1985), Freville
and Plateau (1994), Chu and Beasley (1998), Freville
(2004), Freville and Hanafi (2005), Vasquez and
Vimont (2005), and Puchinger et al. (2010). Martello
et al. (1999) present a combination of two new algo-
rithms, which is shown to outperform all previous
methods, for solving a single-constraint 0–1 knapsack
problem exactly. Bertsimas and Demir (2002) present
an approximate dynamic programming approach for
the multidimensional knapsack problem. Martello
and Toth (2003) present an exact algorithm for 0–1
knapsack problems with two constraints.

One promising line of research, first proposed by
Balas and Zemel (1980) for single-constraint knapsack
problems, is the concept of a “core” problem defined
by a set of variables that determine how difficult the
problem is to solve. Once these core variables are
identified, then determining their solution was the

key to solving the entire problem. The core concept
was recently generalized to the multiconstraint case
by Puchinger et al. (2010) and used as a basis for both
optimal and heuristic solution techniques. In a similar
vein, Vasquez and Vimont (2005) used variable fixing
to obtain “good” families of solutions in their heuris-
tic. The core problem and good solution are both
defined on a particular subset of the variables. The
entropy-based metric developed in this paper simi-
larly is used to reduce the original problem to those
variables for which it is hard to decide whether or
not they will appear in an optimal solution. However,
although the core variables must be determined prior
to solving the problem, in our method variables are
eliminated successively one at a time in the course of
solving the problem.

To generalize the problem from a single-constraint
problem to a multidimensional problem, Puchinger
et al. (2010) proposed using surrogate multipliers to
combine the constraints to calculate the efficiency
measures required for determining the core variables.
Our entropy-based approach too relies on a simi-
lar mechanism where the constraints of the prob-
lem are combined into a single surrogate constraint
as a first step. Our computational results show that
the surrogate-constraint method is good for problems
having approximately eight (or fewer) constraints.
To solve problems with larger numbers of constraints,
other techniques, such as cutting planes, can be intro-
duced. Combining cutting planes and surrogate con-
straints is addressed, for instance, in Osorio et al.
(2002). Several heuristic approaches have also been
proposed in the literature for MNK problems; see
e.g., Coit and Smith (1996a, b), Ng and Sancho (2001),
Hsieh (2002), and Liang and Smith (2004). Because
the MNK problem is a general separable discrete-
optimization problem, any efficient solution technique
for MNK would be invaluable in all other special
cases as well.

In the context of global optimization, the MNK
problem is a nonsmooth, discontinuous, nonlinear,
nonconvex constrained model with integer variables.
When the objective function and all the constraints
(except for the integer restrictions) are differen-
tiable nonlinear functions of the decision variables,
the problem is called an integer nonlinear smooth
optimization program. A number of solvers exist
for determining global optimal solutions of smooth
nonlinear convex or nonconvex problems; see e.g.,
Bonmin (Bonami and Lee 2006, Bonami et al. 2005),
Baron (Tawarmalani and Sahinidis 2004), and the
commercial software Frontline Systems Premium
Solver Platform (Frontline Systems 2005). When the
objective or any of the constraints are nondifferen-
tiable, the resulting problem is a nonsmooth opti-
mization model, which is the most difficult class of
optimization problems to solve.
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2.2. The Surrogate-Constraint Framework
As discussed earlier, the proposed entropy-based
branch-and-bound scheme relies on the Surrogate
Constraint (SC) method as a basic building block, a
method that was first introduced by Glover (1965)
for solving 0–1 integer programs. In its simplest
form, when the SC method is applied to multicon-
strained optimization problems, a sequence of single-
constraint (knapsack) subproblems is solved. These
subproblems are created by replacing the original
problem constraints with a single surrogate constraint
generated by a weighted combination of the original
constraints. Optimal weights, called surrogate mul-
tipliers, can be calculated for the constraints using
the algorithm proposed by Dyer (1980) or the cut-off
polyhedron (COP) method proposed by Nakagawa
and Miyazaki (1981) and Nakagawa et al. (1984). Also,
a specialized procedure for two-constraint problems
is presented by Gavish et al. (1991).

Surrogate-constraint methods, which generally
yield stronger relaxations than Lagrangian methods,
can encounter a duality gap, implying that an optimal
solution to a surrogate-constraint relaxation may fail
to produce an optimal solution to the original prob-
lem. To overcome this difficulty, Nakagawa (2003)
proposed an ISC method for the solution of nonlin-
ear separable discrete-optimization problems, which
often provides an exact solution to relatively large-
sized problems.

By developing the information-theoretic entropy
metric to assess the difficulty of a discrete-optimiza-
tion model, the ISCENT algorithm in this paper
makes a substantial improvement on the pure ISC
method. The basic premise of the entropy hypothe-
sis, for instance, in the case of binary problems, is
that if assuming either 0 or 1 for a given binary vari-
able provides similar characteristics to the remainder
of the problem, then there is an equal likelihood of
this binary variable taking on either value at an opti-
mal solution. On the other hand, if there is evidence
to the contrary that resulting properties from assum-
ing one value is quite different from the second, then
one value may be somewhat more likely than the
other to be included in an optimal solution. A diffi-
cult problem is typically one that includes many vari-
ables that have similar properties with respect to the
possible values, and hence, it is difficult to ascertain
whether one value is more likely to be a member of
an optimal solution. The entropy metric in this paper
is designed to objectively assign an index value to the
latter difficulty.

In contrast, one competing approach for measuring
problem complexity is the percent gap closure (PGC)
value developed by Karwan et al. (1987). The authors
suggest that problems with a large surrogate gap (i.e.,
a small PGC value) are more difficult to solve, as

demonstrated in certain problems. Indeed, the PGC
value is a relatively good measure for instances gener-
ated by using uniform random numbers (Nakagawa
2003). However, our computational experience with
more difficult (correlated problem) instances suggests
that there are many cases where the ISC method
yields an efficient solution even though the associated
PGC value is small. It will be shown that our entropy-
based difficulty index, on the other hand, remains
monotonic with respect to solution time, and thus it is
more robust when compared with PGC as a measure
of problem difficulty.

The notable advantage of using an entropy-based
complexity index is that it can be used to determine
if a given subproblem (say, in a branch-and-bound
tree) is expected to be computationally tedious and,
if so, to partition the problem into smaller problems.
Determining which variables to use for partitioning is
also a part of the proposed entropic-based approach.
In the event it is concluded that the subproblem is of
“affordable complexity,” then it can be attempted for
direct solution using an exact solver, such as the ISC
method. Such an approach, therefore, allows efficient
use of computer memory, as opposed to using a direct
branch-and-bound method with breadth-first search,
which generally consumes a significant amount of
memory. In particular, when coupled with the ISC
method, our entropy-based approach achieves sub-
stantial gains in the solution time relative to stan-
dard solution techniques, including the standalone
ISC method, as demonstrated by our computational
experiments.

3. The Entropy Concept
In information theory, entropy is a measure of the
uncertainty associated with a random variable tak-
ing a finite number of possible values. In this context,
entropy usually refers to the expected value of infor-
mation contained in a message—a concept introduced
by Shannon (1948). The entropy of a random vari-
able is defined in terms of its probability distribution
and can be shown to be a good measure of random-
ness or uncertainty. Solving a discrete-optimization
problem can be difficult because of many factors
inherent to problem size and characteristics of prob-
lem data, which affect different solution techniques
differently. However, we take an alternative view
by hypothesizing that the difficulty of solving a
discrete-optimization problem depends on the diffi-
culty of optimally selecting each variable value in
the problem. Based on this hypothesis, we develop
the entropy metric to estimate the difficulty for each
variable.

Consider a (generic) branch and bound method for
solving the MNK problem P, in which subproblems

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

18
1.

20
3.

18
8]

 o
n 

16
 N

ov
em

be
r 

20
14

, a
t 1

5:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Nakagawa et al.: Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models
Management Science 60(3), pp. 695–707, © 2014 INFORMS 699

are typically defined via restrictions placed on the
decision variables. Given a current problem at a node
(say, the root node), the entropy values of the vari-
ables are computed (as presented subsequently), and
these, in turn, are used to simplify the problem using
the following two major steps:
Step 1: Variable-aggregation process. Combine two

variables into a single new variable considering all
item combinations of two variables (and eliminating
dominated combinations), thus reducing the number
of variables in the current problem. The entropy val-
ues of the variables are used to determine which two
variables are to be combined.
Step 2: Partitioning. The total entropy index of the

nodal problem is used to determine whether the prob-
lem needs to be partitioned further to reduce its com-
plexity before being attempted by a solver.

The above two steps are elaborated in the sections
that follow after the entropic view of problem com-
plexity is developed.

3.1. Entropy of Subproblem Complexity
Consider a variable xi that can take on values xi = k
for k ∈Ki. Let the probability that xi = k appears in the
optimal solution be denoted by pi4k5, k ∈ Ki, herein
referred to as the item probability. The higher the item
probability, the lower the uncertainty that the associ-
ated variable will be in the optimal solution at that
item value; thus, the information content is expressed
as log41/pi4k55. The so-called Shannon entropy for vari-
able xi is then a measure of the expected information
content of not knowing the optimal value of variable
xi, and it is given by

hi 2= h4xi5 =
∑

k∈Ki

pi4k5 log2

(

1
pi4k5

)

= −
∑

k∈Ki

pi4k5 log24pi4k550

The value of hi, herein referred to as the variable
entropy for xi, is maximized when the probability pi4k5
is near 1/ki and minimized when pi4k5 is near 0 or 1.
The value of hi is indicative of the difficulty of opti-
mizing the current problem on the variable xi. That is,
it is difficult to determine an optimal value of a vari-
able when the variable entropy is high. Conversely, an
optimal value of a variable is relatively easily deter-
mined when its variable entropy is small. It is our
contention that problems consisting of many variables
with high entropy are more difficult to solve. By con-
trast, problems containing a large number of variables
with low levels of variable entropy should be easier
to solve. Hence, an objective measure of the overall
solution difficulty of the current problem is the joint
entropy of the variable set xi, i ∈N , expressed as

¹H4x11x21 0 0 0 1 xn5=
∑

i∈N

h4xi5−C4x11x21 0 0 0 1 xn51

where C4x11x21 0 0 0 1 xn5 is the total correlation of the
variables xi (Watanabe 1960), and it is given by

C4x11x21 0 0 0 1 xn5

=
∑

a1∈K1

∑

a2∈K2

· · ·
∑

an∈Kn

p4x1 = a11 0 0 0 1 xn = an5

· log2

p4x1 = a11 0 0 0 1 xn = an5

p14a151 0 0 0 1 pn4an5
0

The value of C is usually difficult to estimate directly
because it depends on the interactions among differ-
ent variables in the problem. Indeed, C = 0 should
result if all decision variables take on their respec-
tive values independently of each other. Our strat-
egy is to upper bound the joint entropy by using the
property of nonnegativity of the total correlation; i.e.,
C4x11x21 0 0 0 1 xn5≥ 0. This leads to the following upper
estimate on the joint entropy as the model of problem
difficulty, herein referred to as the problem entropy, and
it is denoted by H :

H4x11x21 0 0 0 1 xn5 2=
∑

i∈N

h4xi5≥ ¹H4x11x21 0 0 0 1 xn50

Therefore, the problem entropy H4x11x21 0 0 0 1 xn5 is
the sum of all variable-entropy values. As shown in
our computational experiments, this problem-entropy
metric disregarding the correlation term C still proves
effective as a measure of problem difficulty. Although
the inclusion of the correlation term may induce fur-
ther improvements, to the best of our knowledge,
there is no plausible way to compute C. The reason is
that it involves estimating joint probabilities p4x1 = a11
0 0 0 1 xn = an5 of different variables taking on different
item values. This is an interesting and open problem
that deserves further investigation as methodologies
to determine C may prove worthwhile in improving
the above problem-entropy metric.

To compute the entropy metric H , developing a
theoretical probability model for pi4k5, k ∈ Ki, is an
onerous task in itself because it depends on the char-
acteristics of problem and underlying data. Thus, we
resort to an empirical estimation approach, which is
presented in the subsequent section based on a class
of test problems. This procedure is based on a condi-
tioning event that specifies whether xi = k is fixed or
xi 6= k in the current problem (at a node of a branch-
and-bound tree). To this end, the existence of an
upper-bound generation process for the current prob-
lem is crucial.

Consider an upper bound vUB6•7 on a given prob-
lem •; i.e., vUB6•7 ≥ vOpt6•7, where vOpt6•7 denotes
the optimal value of problem •. Then, f UB ≡ vUB6P7
is an upper bound on problem P, and vUB6P2 xi = k7
denotes an upper bound on problem P with the
restriction that the variable xi is fixed at value k. Not-
ing that vOpt6P7 ≥ vOpt6P2 xi = k7 holds, we assume
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the upper bound to be consistent in that vUB6P7 ≥

vUB6P2 xi = k7 holds as well. Furthermore, suppose f LB

is a lower bound on problem P. Define the normal-
ized difference of the upper bounds, denoted �ik, by

�i4k5 2=
f UB − �UB6P2 xi = k7

f UB − f LB
1 k ∈Ki1 i ∈N0

Note that �UB6P2 xi = k7 ≥ f LB must hold; otherwise,
the branch xi = k should have been fathomed. Thus,
it follows that 0 ≤ �i4k5 ≤ 1. If xi = k is optimal,
denoted by x∗

i = k, then �UB6P2 xi = k7 is expected to
be larger (than f LB), and thus �i4k5 would be smaller.
Conversely, observing a larger �i4k5 is indicative of a
relatively smaller chance of xi = k being optimal in
problem P. This �-metric is utilized as a conditioning
argument in the empirical estimation of item proba-
bilities, and hence, the entropy of a variable.

4. Upper Bounds via Surrogate
Constraints and Entropy Estimation

Surrogate-constraint relaxation provides an effective
approach to compute an upper bound f UB on the opti-
mal value of problem P, which is an essential cor-
nerstone of our method to estimate problem entropy.
Let u = 4u11u21 0 0 0 1um5 be a vector of nonnegative
weights associated with constraints in problem P.
Upon taking a row aggregation of the constraints,
with u being the aggregating multipliers, the follow-
ing surrogate problem PS4u5 is obtained as a relax-
ation of the original problem P:

PS4u52 max f 4x5

s.t.
∑

j∈M

ujgj4x5≤
∑

j∈M

ujbj

xi ∈Ki 4i ∈N51

and thus vOpt6P7≤ vOpt6PS4u57 for any u ≥ 0. Note that
vOpt6PS4u57 = vOpt6PS4�u57 for any scalar � > 01 and
thus u may be normalized. Consequently, the best
surrogate upper bound is determined by the surro-
gate dual problem defined by

PSD2 min
{

vOpt6PS4u572 u ∈ U
}

1

where

U =

{

u ∈Rm2
m
∑

j=1

uj = 11 u ≥ 0
}

0

Suppose u∗ = 4u∗
11u

∗
21 0 0 0 1u

∗
m5 denotes an optimal (sur-

rogate) multiplier of PSD. Then, the upper bound f UB

on P, is determined by f UB = vOpt6PS4u∗57. An optimal
multiplier u∗ is obtained by solving the surrogate dual
PSD using the efficient algorithms proposed by Dyer
(1980), Nakagawa and Miyazaki (1981), or Nakagawa
et al. (1984). (Details are omitted here, and the reader
is referred to the latter references.)

Let an optimal solution of the surrogate problem
PS4u∗5 be denoted by xSD. If xSD is feasible in prob-
lem P, then vOpt6P7 = f UB = f 4xSD5 follows and the
given problem is solved. However, when xSD is infea-
sible in problem P, then a surrogate duality gap exists;
i.e., vOpt6P7 < f UB.

An improved upper bound, which may be com-
putationally more expensive to obtain, is expected
to provide a more accurate estimate of problem dif-
ficulty via the entropy so-computed. In our imple-
mentation, we shall follow the modular approach
developed in Nakagawa and Iwasaki (1999) to im-
prove the bound f UB.

4.1. Empirical Estimation of Item Probability
Estimation of the item probability pi4k5 is crucial for
determining the entropy measure of problem diffi-
culty. The � metric presented earlier using the preced-
ing upper-bound generating process is used for this
purpose. Recall that the magnitude of �i4k5 is indica-
tive of the likelihood that xi = k is optimal in the
problem. However, to convert �i4k5 to the probabil-
ity of variable xi = k in the final solution, (pi4k5), we
need a (transformation) distribution, pi4k5 = F 4�i4k55,
which will be empirically estimated. To develop this
distribution F , our approach is to use a certain test
set of problems of the class under discussion in this
paper with optimal solutions that are known. Then,
the �i4k5 values of these problems are grouped into
sets of increasingly more “difficult” variables to esti-
mate the transformation distribution.

A representative set of 30 classic multidimensional
0–1 knapsack benchmark problems presented in Chu
and Beasley (1998)1 was analyzed, and problems
with five constraints and 250 binary variables, herein
referred to as set A1, are used for the estimation pur-
poses. This test set of problems is divided into three
groups of 10 problems each, where each group is
characterized by a different constraint-tightness ratio �,
which refers to how restrictive the constraint is. The
values of the right-hand side are generated as of
the sum of constraint coefficients cji in every knap-
sack; i.e., bj = �

∑n
i=1 cji. As the constraint becomes

tighter, i.e., a smaller tightness ratio, an optimal solu-
tion is likely to contain fewer positive values. The
three groups have constraint tightness � = 0025, 0.5,
and 0.75, and these problems are referred to by the
identifiers 00 ∼ 09, 10 ∼ 19, and 20 ∼ 29, respectively,
within the three groups. Moreover, all problems are
generated using correlated random numbers, yield-
ing instances that are significantly more difficult to
solve than problems generated by independent uni-
form random numbers. Within each problem group,

1 These test instances are currently available at http://people
.brunel.ac.uk/~mastjjb/jeb/info.html (last accessed October 18,
2013).
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Table 1 Relationship Between the Error Function � and the
Upper-Bound Ratio �

Proportion of variables in the range
where the largest upper bound is
generated with a nonoptimal item

Approximated
Problem number (size 5 × 250 × 2) error function

�i 4k5 00 ∼ 09 10 ∼ 19 20 ∼ 29 �i 4k5

005
0.00 ∼ 005469 005517 004098 004756
0.01 ∼ 0028 002937 003085 003030
0.10 ∼ 001161 001008 001221 001113
0.20 ∼ 000421 000382 00049 000409
0.30 ∼ 000265 000167 000187 000150
0.40 ∼ 000074 0 0 000055
0.50 ∼ 0 0 0 000020
0.60 ∼ 0 0 0 000007
0.70 ∼ 0 0 0 000003
0.80 ∼ 0 0 0 000001
0.90 ∼ 1.0 0 0 0 000000

� is calculated for k ∈ 80119, i ∈ N , and � is catego-
rized into 10 subintervals of equal length from the
interval [011]. For each of these categories and prob-
lem groups, we define the error function �4�5 as the
proportion of problems in which a nonoptimal item is
associated with the largest upper bound. These pro-
portions are presented in Table 1, where a total of
2,500 variables are classified from the 10 sample prob-
lem instances in each column.

To illustrate, consider the problem group 00 ∼ 09
and the category range 0000 ∼ 0001 for �. There were
a total of 64 variables with � values that fell into
this category. For 35 of these 64 variables, the smaller
upper bound was generated when the variable was
set to its known optimal value; i.e., for these vari-
ables, �UB6P2 xi 6= k∗7 > �UB6P2 xi = k∗7. For the remain-
ing 29 variables, the known optimal value pro-
duced a larger upper bound; i.e., for these variables,
�UB6P2 xi = k∗7≥ �UB6P2 xi 6= k∗7, where k∗ is the known
optimal value of variable xi. Thus, the error pro-
portion �4�5 is sample estimated using the fraction
35/64 = 005469.

It is evident from Table 1 that �4�5 is decreasing
in � and the decay of �4�5 in � is more prominent at
higher levels of �. This justifies the use of an exponen-
tial function to fit the empirical proportions, denoted
by � as well. It is determined that the model

�4�5= 005 × e−100017 ∗�

fits the empirical proportions closely, as shown by
the last column of Table 1. The proportion �4�5 may
be viewed as an error function that decays exponen-
tially as � increases. Similar exponential decays (in
strength) are commonplace in many natural phenom-
ena, e.g., radioactive substances, chemical reactions,

electric charges, and many enzyme-catalyzed reac-
tions, in these cases, with respect to time.

4.2. Item Probability Transformation Function
Whereas the above empirical analysis was focused
on binary problems, we extend the error proportion
decay function � (which has a range from 0 to 0.5)
to nonbinary (general integer) problems as well. We
first convert the error proportions to a likelihood func-
tion, �4�5 = �4�5/41 −�4�55. Note that �4�5 = 1 when
� = 0 and �4�5 ≈ 0 when � = 1. For a given vari-
able xi, and an item k ∈ Ki, let the observed value
of normalized difference be �i4k5. Let us denote the
associated error likelihood by �i4k5 ≡ �4�i4k55. Recall
that if x∗

i = k, then �i4k5 is expected to be smaller
with a high probability. Therefore, �i4k5 may be inter-
preted as the conditional probability that � = �i4k5 is
observed given that the optimal solution is x∗

i = k; i.e.,
�i4k5 = Pr4� = �i4k5 � x∗

i = k5. Then, using Bayes’ theo-
rem, the item probability function is obtained as

pi4k5 = Pr4x∗

i = k � �= �i4k55

=
�i4k5

∑

s∈Ki
�i4s5

1 ∀k ∈Ki1 i ∈N0

4.3. Validation of the Entropy Model
We use the ISCENT algorithm, to be developed in the
subsequent sections, to provide a motivation for and
justification of the validity of the entropy metric. For
this, we employ an empirical approach using 30 sam-
ple test problems, each having five constraints and 500
variables, referred to as problem set A2 in §6.1. A per-
sonal computer (dual-core i5-2520M CPU 2.5 GHz)
was used for these experiments.

Under the preceding entropy metric of problem
difficulty, ISCENT is used to obtain the exact opti-
mum solution of each test problem. The relationship
between the entropy H and the (natural) logarithm of
CPU time is depicted in Figure 1(a), yielding a cor-
relation coefficient of 0.9663. This indicates a strong
association between the entropy metric and the solu-
tion time of the problem.

As mentioned previously, an alternative metric of
problem difficulty is the PGC proposed by Karwan
et al. (1987). Our entropy metric is superior to the
PGC metric in the class of problems addressed here.
To demonstrate this, we apply the PGC model of
problem difficulty as defined by

f UB − �Opt6PSD7

f UB − �Opt6P7
× 1001

where �Opt6 7 denotes the optimal objective function
value of problem •1 and PSD is the surrogate dual
problem of the original problem P. The upper bound
f UB is computed using the same procedure used in the
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Figure 1 (a) Solution Time and the Entropy Metric; (b) Solution Time
and the PGC Value

 

 

entropy metric. The resulting correlation coefficient
between the PGC value and the logarithm of the (ISC)
CPU time is weak at −0.1525; see Figure 1(b). To the
best of our knowledge, there are no other metrics
(except for the PGC) for estimating problem difficulty
for nonlinear separable non-0–1 discrete optimization
including the 0–1 knapsack problem.

5. Entropy-Based Improved
Surrogate-Constraint Method

The proposed entropy-based method operates on a
candidate list, L, of subproblems, initialized with the
original problem P. Consider a particular subproblem
PS from the list L, of which the problem entropy is
first evaluated. If the problem entropy H falls below
a given threshold � , the problem PS is judged easy
enough to be solved directly, in our case, employing
the ISC method. Otherwise, a variable with the max-
imum variable entropy, hi, is selected from the vari-
ables in problem PS . The subproblem PS is then par-
titioned into several problems by fixing the selected
variable xi at specific item values in the set Ki. The
resulting new subproblems are added to the candi-
date list L. This is referred to as the problem partitioning
(PP) step within the implicit enumeration scheme.

The above maximum-entropy variable-selection
policy is similar in spirit to the score-based branch-
selection process implemented in an LP-based branch-
and-bound used method in modern MIP solvers
(Achterberg et al. 2005). In the latter case, a score
based on the change in the objective function of the

LP relaxations of the child subproblems and that of
the parent subproblem is used. The variable having
the best score is usually selected for the next branch
for search. In contrast, ours is based on the entropy
metric of problem difficulty.

5.1. Fathoming and Variable Aggregation
The second major step of the implicit enumeration
method under the entropic view of problem com-
plexity is the fathoming and variable-aggregation (FVA)
step in the ISC method. Our approach to FVA is a
modification of the modular approach described in
Nakagawa and Iwasaki (1999), which is a method for
reducing the decision space and number of variables.
Our modification is that the variable-entropy measure
is utilized as the criterion for selecting which two
variables are to be combined (or aggregated) into one.
A small variable-entropy value generally signals that
the variable’s optimal value can be determined eas-
ily. We follow a simple aggregation policy in which
the variable having the minimum entropy and the
variable having the maximum entropy are combined
considering all item combinations of two variables.
We refer to this as the min-max aggregation policy.
After aggregating a sufficient number of variables,
easy variables disappear from the problem and diffi-
cult variables with high entropy remain in the prob-
lem. The min-max policy is preferred over a policy
of aggregating two variables with maximum entropy
because the latter tends to result in more difficult vari-
ables that require more memory. Likewise, an argu-
ment can be made against aggregating easy variables
because this also results in more difficult variables
requiring relatively more memory. Although there are
other heuristic policies one may consider, for the pur-
poses of this paper, the min-max aggregation policy is
implemented. The fathoming part of the FVA step is
applied to narrow the decision space (i.e., item space)
of the variables of the subproblem PS . Two fathoming
tests are employed:

(i) Feasibility test. If the subproblem PS does not in-
clude any feasible solutions, the problem has been
fathomed.

(ii) Bounding test. If an upper bound of the subprob-
lem PS is less than the objective function value of the
current solution, the problem has been fathomed.

The basic intent in the FVA step is to use fathoming
and variable aggregation repeatedly until the prob-
lem size is reduced in the decision space and/or in
the number of variables to a level that meets a given
threshold, or until no further reduction is possible. It
is noteworthy that even in the event the PP step is not
executed because the problem entropy H falls below
the given threshold � , the FVA step would still be
executed based on the variable-entropy values.
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Figure 2 Schematic of the ISCENT Method

Procedure ISCENT (L, XExact , f Exact , �)
While (L is not empty) do

PS ← ProblemExtraction (L)
PS ← FathomingTest (PS)
�← ProblemDifficultyEstimate (PS)
If (�< �)

x ← ISC 4PS5
If (f 4x5 > f Exact)
f Exact ← f 4x5;
xExact ← x;

Endif
Else

i ← FixedVariableSelection (PS)
Partition PS into several subproblems by setting the

value of variable xi to each of the allowed values;
Add the new subproblems obtained to the

candidate list L;
Endif

Endwhile
End.

5.2. The ISCENT Algorithm
The overall solution scheme encompassing entropy-
based problem partitioning, fathoming, and variable
aggregation, along with ISC-based exact solution of
reduced subproblems, is referred to as ISC with
ENTropy, or the ISCENT algorithm. The pseudocode
for the ISCENT method is presented in Figure 2, using
the required component routines that follow.

Definitions of the Required Component Routines:
i. ProblemExtraction (L)—returns one problem, PS ,

out of the problem candidate list L based on a depth-
first strategy that preferentially selects the subprob-
lem with the lowest entropy value.

ii. FathomingTest (PS)—applies the feasibility and
bounding tests on the problem PS and returns the
reduced problem PS .

iii. ProblemDifficultyEstimate (PS)—returns an esti-
mate of the problem difficulty, �, of the problem PS ,
according to the criterion defined by our entropy met-
ric of problem difficulty.

iv. FixedVariableSelection (PS)—selects one vari-
able xi from the subproblem PS based on the variable
with the highest entropy value and returns the vari-
able index, i.

v. ISC (PS5—executes the ISC method (Nakagawa
2003) and returns an exact optimal solution, x to the
problem PS .

6. Computational Experience with
ISCENT

Our computational tests show that the ISCENT
method can solve several important classes of prob-
lems more efficiently than commercial software, such
as IBM ILOG’s CPLEX V12.2. Although ISCENT can
solve all problems to optimality, CPLEX failed to
solve certain instances of our test problems because
of memory limitations. All computational tests were

carried out on a dual-core i5-2520M CPU 2.5 GHz per-
sonal computer with 8 GB of memory (Windows 7,
64-bit OS). ISCENT uses one thread (CPU) and 2 GB
of memory, whereas CPLEX uses one thread (CPU)
and 8 GB of memory, except for problems of class C1
in which four threads are used. All test problems are
characterized with variables having the same number
of items (i.e., ki = � for all i ∈ N ). Therefore, problem
sizes are expressed as m×n×�.

6.1. Test Problem Sets
A test bank of 326 mutidimensional (linear and non-
linear) knapsack instances is used for the experiments.
Instances are classified into one of three distinct sets
(A, B, and C), and within each set, there are sev-
eral subsets of problems. Set A contains 210 prob-
lems consisting of three subsets (A1, A2, and A3) of
0–1 linear knapsack problems from Chu and Beasley
(1998). These instances are known to be more diffi-
cult to solve than arbitrary instances of similar size.
Subsets A2a and A2b have the last one and two con-
straints removed from set A2, respectively. Subsets
A3a and A3b also have the last one and two con-
straints removed from set A3, respectively.

Problem sets B and C contain non-0–1 (integer-
valued) convex and nonconvex instances, respec-
tively. Set B1 contains knapsack problems based on
Petersen (1967), in which 11.6% of the coefficients are
zero. These instances are generated by using variables
restrictions of xi = 0111 0 0 0, or 10 instead of the orig-
inal restriction xi = 0 or 1, and the following convex
quadratic objective function is used:

min f 4x5=

n
∑

i=1

ci4xi − 10521

where ci are coefficients of objective function of the
Petersen (1967) problem. The right-hand sides of the
constraints in the instances are set to

bj =

⌊

�
n
∑

i=1

ajiki

/

2
⌋

0

Then, using � = 00601 0.65, 00701 0 0 0 11055, 20 prob-
lem instances are generated. Set B is organized into
sets B1 and B2, and set C is organized into sets C1
and C2. Instances in B2 and C1 are generated from
Chu and Beasley’s (1998) 0–1 knapsack instances by
using variables restrictions of xi = 0, 1, 2, or 3 instead
of the original restriction xi = 0 or 1. Subset B2 uses
the quadratic objective function:

min f 4x5=

n
∑

i=1

c′

i4xi − 10521

and subset C1 uses the cubic objective function:

max f 4x5=

n
∑

i=1

c′

ixi + a′

1ix
2
i + a′

2ix
3
i 1
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Table 2 Characteristics of Test Problems

Test Number of Size
set instances m× n× � Type

A1 30 5 × 250 × 2 Linear
A2 30 5 × 500 × 2 Linear
A2a 30 4 × 500 × 2 Linear
A2b 30 3 × 500 × 2 Linear
A3 30 10 × 100 × 2 Linear
A3a 30 9 × 100 × 2 Linear
A3b 30 8 × 100 × 2 Linear
B1 20 5 × 50 × 11 Smooth convex quadratic
B2 30 5 × 250 × 4 Smooth convex quadratic
C1 30 5 × 250 × 4 Smooth concave cubic
C2 36 5 × 250 × 11 Nonsmooth nonmonotone

where c′
i, a

′
1i, and a′

2i are the coefficients of the objec-
tive function, first constraint, and second constraint
of the Chu and Beasley (1998) problem, respectively.
Problem sets B and C1 are integer-valued smooth
(differentiable) optimization problems. Problem set
C2 consists of nonsmooth, nonmonotone, nonlinear
knapsack instances. These are generated by amalga-
mating problem instances with five constraints and
100 variables from Chu and Beasley (1998). Ten
problem instances are used to produce one non-
monotone MNK problem instance with 11 alterna-
tive items for each variable. For example, the coef-
ficients for the items of variable xi are 0, the ith
coefficient from instance 1, ith item instance 21 0 0 0,
or ith item of instance 10. This produces three dif-
ferent sets of constraint coefficients. The right-hand
side is modified by using 12 constraint tightness
ratios 00110021 0 0 0 1102. The 36 instances generated
are derived from correlated random numbers and,
therefore, are considerably more difficult than prob-
lems generated by independent random numbers.
The characteristics of the test bed are summarized in
Table 2.

6.2. Computational Analysis
Recall that the entropy threshold (�) is an algo-
rithmic parameter to determine whether a subprob-
lem should be further partitioned based on problem
difficulty. Ideally, the choice of � should be prob-
lem dependent; however, determining this threshold
a priori is difficult, and it would require extensive
empirical analysis. As such, developing effective pro-
cedures for determining the value of � is left as
a topic of future research. For the present compu-
tational experiments, a constant threshold is used
within each major problem class, where we fixed
� = 35 for set A and subset C1 and � = 20 for set B
and subset C2. Our test results based on the cho-
sen values of � are summarized in this section. (For
additional details, see http://www.res.kutc.kansai-u
.ac.jp/~nakagawa/orlib/MS/, which also contains
raw data for all problem sets.)

Problems in set A, despite their relatively small
size, are characteristically more difficult to solve than
arbitrary instances of similar size because of the inher-
ent correlation among objective and constraint coeffi-
cients. For a comparative analysis, we provide results
for ISCENT and CPLEX V12.2. Results for subsets A1,
A2, and A3 are summarized in Table 3(a). Note that
the problem difficulty metric PGC is not used for
our analysis because PGC does not work well for
our instances (just as in the example illustrated in
Figure 1(b)).

Both ISCENT and CPLEX yield the exact optimal
solutions for all 90 test instances of subsets A1, A2,
and A3. CPLEX required an order of magnitude more
computation time than ISCENT in sets A1 and A2.
The effectiveness of our method in these subsets is
especially noteworthy because these problems with
up to five constraints are generally considered to be at
the outer limits of computational capabilities of stan-
dard SC methods, including ISC (Nakagawa 2003).
This underscores the effectiveness of the proposed
entropy metric. However, problems in subset A3 have
10 constraints, making them more difficult for SC
methods relative to the straightforward use of CPLEX.

To determine the influence of the number of con-
straints on solution time, we use problem subsets A2a,
A2b, A3a, and A3b, derived by removing constraints
from sets A2 and A3, as described earlier. As the
results in Table 3(b) illustrate, ISCENT appears to out-
perform CPLEX for problems having eight or fewer
constraints.

From these experiments, we conclude that the num-
ber of constraints in the problem can have a sig-
nificant impact on the performance of ISCENT. We
also note that instances with more constraints may
efficiently be solved if cutting-plane techniques were
incorporated into the ISCENT method as they are
in CPLEX. Development of methods that combine
cutting-plane techniques within ISCENT is a poten-
tially beneficial avenue for future research.

Problem sets B and C are the more difficult instances
because they include nonlinearities and nonbinary dis-
crete conditions. As such, we compare ISCENT with
major global optimization solvers, such as the global
MINLP, LINDOGlobal, Couennet, Bonmin, Baron, and
the Interval Global Solver in the Frontline Systems Pre-
mium Solver Platform 6.5. Bonmin and CPLEX were
found to be much more efficient and effective than
the rest; hence, we only report results for Bonmin and
CPLEX here, and the results of the remaining solvers
are available at http://www.res.kutc.kansai-u.ac.jp/
~nakagawa/orlib/MS/.

The computational results for sets B and C are sum-
marized in Table 4. Recall that subsets B1 and B2 are
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Table 3(a) Summary Results for Problem Subsets A1, A2, and A3

CPU time

Entropy value (H) ISCENT CPLEXProportion
Test of problems
set Avg. Min Max using PP Avg. Min Max Avg. Min Max

A1 2607 1805 3108 0/30 109 002 808 5607 208 26100
A2 3406 2704 4105 14/30 5201 204 19405 83301 5807 2141407
A3 3104 2404 3601 8/30 8808 306 56100 1206 100 4009

Table 3(b) Summary Results for Problem Subsets A2a, A2b, A3a, and A3b

CPU time

Entropy value (H) ISCENT CPLEXProportion
Test of problems
set Avg. Min Max using PP Avg. Min Max Avg. Min Max

A2a 2502 1702 3102 0/30 106 007 502 7306 406 22703
A2b 1700 901 2102 0/30 005 004 007 1309 002 5806
A3a 2901 2107 3502 1/30 2202 201 16002 1003 007 7300
A3b 2604 1802 3209 0/30 707 105 7403 901 003 10602

convex quadratic problems with sizes 5 × 50 × 11 and
5 × 250 × 4, respectively, and B1 problems have 11.6%
zero coefficients.

For subset B1, containing only 50 variables, CPLEX
is clearly the most efficient solver, requiring less
than 2 seconds to solve each of the 20 problems,
whereas ISCENT and Bonmin take on average 174.2
and 101.4 seconds, respectively. However, it must be
noted that ISCENT’s average solution time would
have been only 63.9 CPU seconds had it not been for
the single-problem instance B1-14, which took 2,269.8
seconds.

The use of cutting planes in CPLEX versus surro-
gate-constraint relaxations as used in ISCENT, both
with the purpose of evaluating the upper (or lower)
bound of a subproblem in the branch-and-bound tree,
is an essential difference between the two solvers. It
is apparent from Table 4 that the successes of the
cutting-plane strategies of CPLEX in solving subset
B1 do not transfer to subset B2. The CPLEX quadratic
solver uses much less memory when using four CPU
threads rather than one. The CPLEX quadratic solver
does not solve any instance of subset B2 because it

Table 4 Summary Results for Problem Sets B and C

CPU time (sec)

ISCENT Bonmin CPLEX
Test Fraction
set using PP Avg. Min Max Avg. Min Max Avg. Min Max

B1 14/20 17402 0002 2126908 101.4∗ 15.1∗ 326.0∗ 0.6 0.1 1.6
B2 30/30 3189709 3800 17113503 >1 day∗∗ >1 day∗∗ >1 day∗∗ >3,258.4∗∗∗ >2,483.8∗∗∗ >4,798∗∗∗

C1 30/30 1131905 1001 4112806 — — — — — —
C2 34/36 3127603 001 40116301 — — — — — —

∗Bonmin failed to find an exact optimal solution for three of the 20 instances.
∗∗Bonmin was stopped after one day (86,400 seconds) using one CPU thread and 8 GB of RAM.
∗∗∗CPLEX caused out-of-memory condition when using four CPU threads and 8 GB of RAM.

ran out of memory even with 8 GB of RAM. Bonmin
cannot find any exact solution within the time limit of
one day (86,400 seconds). On the other hand, ISCENT
solved all B2 instances exactly in a reasonable amount
of CPU time. We contend that the success of ISENT
here is due to its entropy-based problem partitioning
and variable aggregation techniques.

As for the nonconvex instances in problem set C,
both Bonmin and CPLEX failed to solve these
instances to optimality. Subset C1 has cubic concave
(differentiable) knapsack instances, which are diffi-
cult to solve because of the nonconvexities. Subset C2
contains instances in which both the objective func-
tion and the five constraints are nonsmooth and non-
monotone. We are unaware of any other solver that
can yield exact optimal solutions for problems with
nonconvex functions similar to those solved in sub-
set C. All instances in set C are solved to optimality
by ISCENT.

The correlation coefficients between the problem
difficulty metric (i.e., entropy value) and common
logarithm of CPU time for ISCENT and CPLEX for all
problem sets are given in Table 5.
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Table 5 Correlation Between the Entropy
and the Logarithm of CPU Time

Correlation with entropy
Test
set ISCENT CPLEX

A1 0.95 0.91
A2 0.97 0.77
A2a 0.88 0.90
A2b 0.61 0.84
A3 0.94 0.89
A3a 0.89 0.88
A3b 0.82 0.89
B1 0.68 0.40
B2 0.94 —
C1 0.90 —
C2 0.95 —

The CPU time of ISCENT is highly correlated with
the entropy metric, except for subset A2b and B1. For
ISCENT, the A2b instances have almost the same dif-
ficulty, as indicated by the small difference between
the minimum and maximum CPU time. For set B1,
some of the instances become dramatically easier to
solve after partitioning them into smaller problems.
For example, instance B1-01 has a large entropy value
of 54.5, but this can be solved in 12.3 seconds by
ISCENT because constraint coefficients have few dig-
its, 12% zeros, 44% with one digit, 40% with two
digits, and 4% with three digits.

The correlation between entropy and CPLEX is
relatively good except for the cases where the
cutting-plane strategies within CPLEX work well (e.g.,
subset B1). In passing, we also observe that instances
that take more than 1,000 seconds of CPU time have
an entropy value of more than 35, but instanes with
an entropy value of less than 35 take less than
1,000 seconds.

7. Concluding Remarks
It is widely known that problem size is not the only
factor that makes an optimization problem difficult
to solve. In combinatorial optimization, where the
feasible solution space is discrete, it is important to
find effective techniques to reduce problem complex-
ity in a manner that makes it possible to combat the
effect of the intrinsic combinatorial explosion. Typ-
ically, problem size (and especially the number of
domain variables) is taken as an indicator of the
likely computational complexity (or difficulty) of the
problem. In this paper, we propose a new method
to estimate problem difficulty based on the concept
of variable uncertainty as measured by entropy. The
variable uncertainty identifies the degree of difficulty
in determining the value a variable should receive
in the optimal solution. Problem difficulty is a func-
tion of this uncertainty defined over the set of all

problem variables. Analyses carried out on various
benchmark problems prove the effectiveness of the
proposed technique to estimate problem difficulty,
revealing that the underlying entropy metric provides
an appropriate foundation for such an estimate.

The success of the proposed method is achieved by
embedding the entropy metric within a problem par-
titioning and variable-aggregation approach that we
have joined with the ISC method for solving multi-
dimensional nonlinear knapsack problems. More pre-
cisely, the gains achieved by our approach are based
on three interacting processes: (1) successive partition-
ing of the problem into smaller problems, induced
by the variable of maximum entropy, to mitigate the
combinatorial explosion; (2) iterative aggregation of
variables based on variable entropy that reduces the
problem to a smaller set of “difficult” variables; and
(3) employing a specialized procedure (in this case,
the ISC method) to solve the problem on a restricted
set of variables. Computational testing demonstrates
the efficiency of ISCENT for solving MNK problems
compared with standard commercial solvers, most
notably in the case of nonconvex problems.

There are multiple directions in which our method-
ology can be extended. First, our entropy metric estab-
lishes an upper bound on entropy by ignoring the total
correlation term. A nonzero lower bound on the total
correlation can improve the entropy metric, thereby
resulting in more precise problem-partitioning and
variable-aggregation steps and thus a more efficient
solution of a given problem. Second, the proposed
entropic view of problem difficulty is general enough
to embed it within any branch-and-bound algorithm
that uses bounds as its primary fathoming test. Devel-
opment and specialization of the entropy concept
within other solver technologies is thus a potential
area for future research. Third, because ISCENT’s
performance is adversely affected beyond eight or
so constraints (because of the embedded surrogate-
constraint technique for computing bounds), it is con-
ceivable that more efficient cutting-plane techniques
(such as those in CPLEX) might be used to compute
more efficient bounds in the presence of a larger num-
ber of constraints.

Because computing the entropy metric requires an
existing upper-bounding process internal to a solution
algorithm, it is a measure of problem difficulty intrin-
sic to the solution algorithm. For instance, such an
entropy metric may be computed for CPLEX, intrin-
sic to its own bounding computations, for further
computational enhancement. In such cases, the key
challenge will be to calibrate the entropy model by
performing trial runs on a sample set of problem
instances to determine the decay constant and, hence,
the item probability function of concern. Although
this exercise is carried out with relative ease for MNK
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problems, it may become more difficult for more gen-
eral optimization problems.
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