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Abstract 

 

Attenuation and damping in elastography are naturally of great interest as the presence of 

these effects in biological tissue goes without question and therefore must be addressed if 

quantitative assessment of tissue elastic properties is to be achieved. Additionally, given the 

change in the tissue structure present in the diseases that elastographic imaging seeks to 

detect and diagnose, there is every reason to expect that the resulting lesions will also 

exhibit a change in their attenuation behaviour, indicating diagnostic value to any 

description of the damping property distribution elastographic methods are able to provide. 

 

This thesis will present the unique contribution of the development of several Elastographic 

models for MR based reconstructions of soft tissue. A method for the reconstruction of both 

Viscoelastic and Rayleigh damping based damped elastic properties has been developed for 

use with MR detected time-harmonic motion data and has been shown to lead to 

reasonable results in both homogeneous and heterogeneous phantoms of varying material 

types. 

 

A poro-elastic modelling is thought to provide a more accurate description of tissue 

structure by accounting for, in part, the complex interactions between the solid and fluid 

phases present in vivo. The foundation for a poro-elastic material behaviour will be explored 

and presented to support the premise. A meaningful mapping of the orthotropic shear 

moduli distributions in three directions has demonstrated enough evidence that the 

orthotropic MRE can be a feasible technique to determine orthotropic elasticity parameters 

of a biological tissue, noninvasively. The orthotropic achievements throughout this project 

can be useful for future clinical cancer diagnostics by augmenting the information obtained 

from the orthotropic MRE reconstructions between normal tissue and tumours. 
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Chapter 1 
 

Introduction 

 

1.1 Breast Cancer 
 

Breast cancer occurs due to the development and interactions of a defective gene. Healthy cells 

divide as many times as the body requires and then stop at sufficient levels. These healthy cells 

attach to other cells forming specific structures within the tissue. Cells become cancerous when 

mutations destroy their ability to stop dividing, or to attach to other cells and form normal 

structures and to remain integrated into the tissue structure, (American Cancer Society, 2005 

[1] & Jemal et al, 2008 [2]).  

 

Normal cells will die when they are no longer needed, and be replaced with healthy cells. While 

cells are required by the body, they are protected by several protein clusters and pathways, 

cancer cells may also be protected by these protein clusters and pathways preventing these 

corrupted cells from dying and being replaced, (American Cancer Society, 2005 [1] & Jemal et 

al, 2008 [2]).  

 

As one of the leading causes of death, cancer is obviously a major health concern. Worldwide, 

in 2008, breast cancer comprised 22.9% of all cancers (excluding non-melanoma skin cancers) 

found in women and breast cancer caused 458,503 deaths (13.7% of cancer deaths in women), 

(IARC, 2008 [5]). Figure 1.1 displays a vector map of international breast cancer deaths, per 100 

000 people, in 2004, (WHO, 2009 [6]). 
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Figure 1.1: Vector map of Breast Cancer Deaths per 100 000 in 2004 [6] 

 

Figure 1.2 and 1.3 show cancer statics for women in the USA, for the year 2008. These pie 

charts indicate that 26% of all cancers found in women are breast cancers and that, 15% of 

cancer related mortality is a direct result of breast cancer. Early detection and diagnosis has the 

potential to significantly impact mortality rates and possibly even cure breast cancer by 

identifying and treating at risk patients before severe tissue damage has been done, (American 

Cancer Society, 2007 [7]). 

 

 

 
Figure 1.2: Pie Chart of Cancer Occurrence in Females in 2008 [2] 
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Figure 1.3: Pie Chart of Cancer Mortality in Females in 2008 [2] 

 

1.2 Breast Tissue 

 

The internal structures within the breast include the milk glands (lactiferous ducts), connective 

tissue (collagen, elastin), adipose tissue (white fat), and the suspensory Cooper's ligaments 

(Tortora et al, 2001 [10]). Figure 1.4 displays an anotomical cross section of the human breast. 

The primary regions are identified in the Key, labelled 1 through 10. The Figure clearly depicts 

the complex internal tissue structure, and organs.  
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Figure 1.4: Cross section of female breast anatomy [183] 

 

1.3 Medical Imaging 
 

Mammography is a common screening method and is currently the medical standard for 

screening breast cancer. Figure 1.5 illustrates the clinical procedure as well as a smple 

mammogram screening image. The most aggressive breast cancers are found in dense breast 

tissue, which mammograms can not image (Gøtzsche et al, 2009 [11]). Computer-aided 

detection and digital mammography are methods used to reduce the human error in 

1 Chest wall

2 Pectoralis 

muscles

3 Lobules

4 Nipple 

surface

5 Areola

6 Lactiferous 

duct

7 Fatty 

tissue

8 Skin
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interpretation of mammographic images. Computers digitally analyze the the images from the 

mammogram and identify regions of interest automatically. Alternatively computers are able to 

calculate a thickkness correction to enhance the periphery of the mammographic image 

(Snoeren et al, 2004 [43]). 

 

 

Figure 1.5: A) Example of patient positioning for a craniocaudal mammogram. B) A healthy breast, left, and a breast 

tumour, right, as seen on a image from a mammogram. 

 

1.4 Magnetic Resonance Elastography (MRE) 
 

Elasticity imaging comprises three basic steps: applying a known static or cyclic mechanical load through 

an object, measuring the deformation of the medium as the displacement pattern, and then calculating 

the elasticity modulus. MRE as an imaging technique has been developed to measure the elastic 

properties of soft tissue (Van Houten et al, 2003 [90], 2003 [91] & 2001 [92] and Samani et al, 2004 

[93]). There are two dominant MRE methods currently prevalent in research, namely quasi-static and 

dynamic. The dynamic method uses shear wave propagation to produce the desired motion within the 

tissue. This method was developed as a phase-contrast technique by using harmonic shear vibrations 

and synchronized cyclic motion gradients to map the motion as a displacement field. The recorded data 

is utilized to reconstruct the image. The quasi-static technique uses a phase-contrast technique as well, 

however the data acquisition in this method is often slow (Perrinez, 2005 [94]). 

 

The MRI applies a sequence of radiofrequency excitation pulses and a series of magnetic field gradients 

to produce an image by locating and encoding the spatial position of hydrogen nuclei (spins) in volume 

elements (voxels) within a tissue (Hornak, 1996 [95] and Morrow, 2000 [96] and Thomas et al, 1988 

[97]). Furthermore, the MRE method integrates a motion encoding gradient (MEG) to other magnetic 

field gradients at the same frequency and direction as the actuator (Perrinez, 2005 [94]). 
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In dynamic MRE, a piezoelectric actuator is used to actuate the tissue sample being imaged with a 

sinusoidal driving signal. The MRI can scan the resulting harmonic motions within the volume of the 

tissue using the phase contrast motion encoding gradients (Hornak, 1996 [95]) which record the 

accumulated phase shift of the spins at different points along the sinusoidal signal (Kruse, 2000 [98]). 

These motions can be mapped in a 3D space to describe the motion at every point in the measured 

volume within the tissue. This method generates a complex displacement value at each point on a grid 

within the sample volume (Muthupillai et al, 1995 [99]). The wavelength of shear waves produced by an 

actuator can be defined as:  

 

  
 

 
 
 

 
   

eq. 2.1 

 

where λ  is the shear wavelength, f is the actuation frequency in Hz, μ is the shear modulus of the 

material, ρ is the density (Engan et al, 1988 [100]). 
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Chapter 2 
 

Theory 

 

2.1 The Inverse Problem 
 

In elastography the material properties of an object can be determined given the mechanical 

response. The forward problem can be defined as, determine the mechanical response, u, given 

the material property distribution, θ, and boundary condition data. While the inverse problem 

is defined as, determine the material property distribution, η, given the mechanical response, u, 

and boundary condition data.  The inverse problem can be solved by a direct inversion of the 

elasticity equation, as long as there are at least as many measurements as unknown 

parameters. Inverse problem systems, arising from image reconstruction methods, are usually 

large and ill-conditioned. The inverse problem formula is given as: 

 

                

eq. 2.13 

 

where Z(u) is the inverse matrix containing terms related to known MR-detected displacements 

obtained from the MRE imaging procedure, unknown material properties η and Rinv the direct 

inversion of the RHS vector (Samarskii et al, 2007 [140] and Aster et al, 2005 [141] and Vogel, 

2002 [142]). This can be a conversion of the displacement solution obtained from equation 

(2.12) as a set of measurements into an estimate of elasticity parameters throughout the 

domain. The inverse problem in MRE mostly involves finding a shear modulus, μ(x) which can 

satisfy the equation (2.12) given measurements of the displacement field amplitude obtained 

from an MRI at discrete locations and boundary condition data (Weaver et al, 2001 [105] and 

Glaser et al, 2003 [106] and Wall et al, 2006 [107] and Paulsen et al 2005 [108]). 
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A typical issue that arises in the solution of an inverse problem is that a very small amount of 

noise in the data can cause large errors in the estimates. This instability phenomenon defines 

the problem as ill-posed. By definition a problem is well posed when a solution exists and it is 

unique. For a real data set, the image reconstruction by a computed solution suffers, as, in a 

physical sense the solution is not exact but an approximation of the real data. The noise in the 

experimental data increases the error preventing the computation from reproducing the 

original data completely. This problem is ill posed even for a small perturbation, which 

produces a large oscillation for a small change in the data (Bertaja et al, 2000 [109]). Another 

concern regarding the inverse problem is the condition number K(A) of a matrix A which is 

defined as: 

 

           
     

eq. 2.14 

 

where     is the size of matrix A given by absolute maximum row summation as: 

 

        
       

       

 

 

  

eq. 2.15 

 

Suppose, Ax = b, where x is the exact solution to the linear system defined by A and b and 

similarly Axc = bc , where xc is the calculated solution and bc is the corresponding RHS. By 

definition, the relationship between relative error 
      

   
 and relative residual 

      

   
 can be 

shown as: 

 

      

   
     

      

   
   

eq. 2.16 
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The condition number determines the value of error. If K(A)   1, the system is well conditioned 

and it means the small inaccuracies in the residual give small errors, but if K(A)   1, the system 

is ill-conditioned and with a small perturbation in the residual causes a large error (Long-ji et al, 

1991 [110]).  

 

2.2 Conjugate Gradient (CG) Method 

 

The conjugate gradient (CG) method (Shewchuk, 1994 [17]) is a more efficient formulation of 

the steepest descent method. In the minimization problem the gradient of the error function 

     can take the general form as:  

 

              

eq. 2.23 

 

where A is an n×n matrix that is symmetric and a positive definite. By introducing error vector 

            , which shows the distance from the actual solution, and residual rk in equation 

(2.23) that represents the distance from the correct value of b , the equation (2.23) is 

transformed to: 

 

        

eq. 2.24 

 

This shows the residual is the error transformed by A into the same space as b . As the error is 

unknown, it can be transformed to the known residual space.  An interesting property of the CG 

method is its ability to produce a set of linearly independent conjugate vectors {p0, p1, ...pl} with 

respect to the symmetric positive definite matrix A. The conjugacy property is shown as: 

 

  
       

eq. 2.25 
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As will be shown, linear CG is an iterative method for solving linear systems with positive 

definite matrices and the conjugacy property guarantees successively minimization of the 

function along the individual directions after n steps by setting the iterative sequence as 

              , where αk is the step length along the search direction pk . The value of αk 

can be obtained using the fact that the error e(k+1) should be orthogonal to the previous search 

direction pk because this not only avoids the skipping in the direction of pk again, but also 

corresponds to the minimum point along pk . This leads to: 

 

  
        

eq. 2.26 

  
             

eq. 2.27 

   
  
   

  
   

 

eq. 2.28 

 

As the ek is unknown so by using (2.24) the ek can be transformed to the rk, space which is 

known as: 

 

   
  
   

  
    

 

eq. 2.29 

 

If the search direction pk will be set up in the direction of gradient or rk the value of αk can take 

the form of the same value in the steepest descent, given by: 
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eq. 2.30 

 

This iterative minimization is updated along both error and residual space. This leads to: 

 

                        

eq. 2.31 

              

eq. 2.32 

             

eq. 2.33 

 

CG is based on conjugate direction but with a very special property that means it is able to 

generate the next search direction pk+1 using a linear combination of the current gradient, 

     known as residual, rk and the previous search direction, pk . This advantage of the CG 

method is remarkable because it does not need to know all the previous elements, thus it 

requires little storage and computation. This concept is expressed as: 

 

                 

eq. 2.34 

 

The constant βk is being chosen so that pk and pk+1 will form as they must be, and be conjugate 

with respect to A. By pre-multiplying (2.34) by   
   and applying the condition of conjugacy 

  
        , it is found that: 
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eq. 2.35 

 

As the matrix A is difficult to calculate, to remove it from the equation (2.35) the term Apk is 

replaced by            from equation (2.32). Now by using (2.34) and substituting the 

equation (2.35) and applying the two facts that each residual is orthogonal to the previous 

search direction, and also orthogonal to the previous residuals as they are shown in (2.36) and 

(2.37), leads to βk as a ratio of a new and previous gradient norm as it is shown in (2.38).  

 

  
        

eq. 2.36 

  
        

eq. 2.37 

     
    
     

  
   

 

eq. 2.38 

 

The algorithm proceeds by producing vector sequences iteratively to approximate and update 

the solution, residuals, and search directions, successively. (Wolfe, 1969 [134] and Fu et al, 

1997 [135] and Gill et al, 1979 [136] and Shapira, 2008 [137]).  

 

2.3 The Adjoint Gradient Calculation 
 

Although the CG technique requires calculating the gradient to obtain the search direction in 

each iteration, calculating the Jacobian to build the residual is computationally intensive. The 

adjoint gradient method has been recently developed to provide a very efficient method to 

compute the gradient. In gradient based optimization, the adjoint technique is widely utilized 

for the gradient computation when there is a problem dealing with a large number of 
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parameters. While other methods, such the Jacobian matrix or a finite difference 

approximation use as many forward solutions as there are parameters, the adjoint approach 

requires only two forward solutions to obtain the gradient for any number of reconstructed 

parameters.  Here the discrete adjoint gradient calculation for MRE is expressed. By definition 

the variation of a function F(x) in the direction δx is denoted by δF and it is given by, 

 

   
  

  
    

 

  
   
   

         

eq. 2.58 

 

where 
  

  
 which also is shown by this notation DxF is a directional derivative of the function F(x) 

and represents the perturbation rate of the function by the presence of small changes in the 

variable. The general weak form of the forward problem can be defined as 

 

         
                

eq. 2.59 

 

where            is a bilinear operator which represents an equivalent weak form of the 

elasticity equation which represents the inner product between two tensors w and u 

respectively and depends on the elasticity parameter vector η. The discretized weighting 

function w is expressed as                         
 
   and the approximation of the 

calculated displacement field can be shown as    
                              

 
   . The 

RHS shows the traction on the boundaries obtained from Green’s theorem. The inverse adjoint 

elasticity formulation for the TK discretized function is introduced as follows: 

 

    
 

 
    

     
 
 
   
 

      
           

                

eq. 2.60 

 



14 
 

The variation of the equation (2.60) is computed by using the functional derivative defined in 

equation (2.58) and can be written as: 

 

     
  

   
    

  

    
     

  

    
       

eq. 2.61 

 

Assuming the presence of TK regularization, the variation of the equation (2.61) due to w is:  

 

  

    
               

                

eq. 2.62 

 

Setting this variation to be equal to zero (i.e. = 
  

    
      ) leads to    

  satisfying the weak 

form of the elasticity equation. On the constraint boundaries of the equation (2.62), the 

equation (2.60) reduces to the original objective function (2.52). Equation (2.61) can be further 

simplified if the weighting function is chosen so that 
  

   
     . This leads to: 

 

          
            

      

eq. 2.63 

 

As the elasticity operator A is self-adjoint and symmetric, thus it is equal to its transposed AT. 

Therefore, the equation (2.63) can be rewritten as, 

 

       
                

      

eq. 2.64 
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From (2.61) and (2.52) it can be shown that: 

 

   
  

    
     

 

    
          

       
   
 

      
       

eq. 2.65 

   
  

    
              

                 

eq. 2.66 

 

Now this gradient will be minimized by setting 
  

    
       this follows as: 

 

         
                 

q. 2.67 

 

 

2.4 Finite Element (FE) Approximation  
 

One of the most efficient numerical approaches for computing the displacements in a forward 

solution, or the material properties in an inverse problem, is the finite element method. In the 

forward problem approach, this method approximates the governing equations (2.12) over a 

continuous medium as a mesh of elements.  

 

Ultimately, for an N-node mesh system, the problem will reach the solution of a matrix 

equation of the form [A(η)]{u} = {Rfwd}, where [A] is an n×n matrix, sparse as it is involved with 

basis functions which are strictly non zero at each node, over the domain. Usually a basis 

function, or a shape function, Φi(x, y, z) if is centered on each node and the magnitude of the 
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parameter of interest is measured at every point in the meshed area as a weighted sum of 

these basis functions given as: 

 

                       

 

   

 

eq. 2.76 

 

where the index “ap” here represents the approximate functions in the finite dimensional space 

and uap(x, y, z) is the approximate displacement value at a point (x, y, z), Φi(x, y, z) are known FE 

basis functions corresponding with ith node and ui is the displacement value at node i.  

 

In the inverse problem approach, the FE approximation of the matrix equation [Z(u)]{η} = {Rinv}, 

takes the form as implementation of nodal material property distribution using basis functions 

for the element as: 

 

                       

 

   

 

eq. 2.77 

 

where            is the approximate material property value at a point (x, y, z) that can be 

calculated as the sum of N basis functions that are valued by N constants,             is FE 

basis function corresponding with ith node. ηi is material parameter at node i which is unknown. 

The expansion of this equation for the approximation of elasticity parameters μap(x, y, z), λap(x, 

y, z), and ρap(x, y, z) on the nodes will take the form  
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eq. 2.78 

 

where the index “ap” again represents the approximate functions in the finite dimensional 

space and μi, λi, ρi, ui are the discrete parameter values at node i of the N total nodes within the 

FE mesh, known as shear modulus, bulk modulus, and density respectively. The weighted 

residual method is a useful approach, which is widely applied in MRE finite element 

approximation. This method takes the weak form of the general forward problem, multiplies 

the error, ‘r’ due to substituting the approximate solution,           , in a weighted function 

ωj(x, y, z), then the product is integrated over the domain, Ω, and ultimately the result is set to 

equal zero which can be written as                
 

.  

 

One simple way to solve a FE weak form is using Galerkin method which chooses a linear basis 

function, Φi(x, y, z) as the weighting function, Φap which leads to                       

            
 
   . 

 

In the MRE time harmonic case, the solution is naturally oscillatory, and applying fine and 

suitable meshes regarding the physical geometry of the problem plays an important role in 

accurately capturing the convergence of the solution with respect to the mesh size. (Maniatty 

et al, 2005 [150] and Grandin, 1991 [151] and Cuvelier et al, 1986 [152] and Zienkiewicz et al, 

1994 [153]) 

 

2.5 The Sub-Zone Method 
 
 
A subzone based reconstruction method is used to in order to reconstruct the material property 

distribution for very large MRI datasets.  
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This technique works efficiently to solve an iterative inverse reconstruction across a large 

parameter set with reasonable computational load. The 3D subzone procedure for the sub-

domain inverse problem uses the known internal displacements to solve an iterative inversion 

process on small partitions of the total problem domain. This approach generates a high degree 

of spatial discretization and, utilizes the data rich environment obtained from MRI. The image 

reconstructions show that the zoned inversion strategy is capable of producing accurate 

elasticity modulus distribution images from displacement data obtained from MR even in the 

presence of high noise.  

 

This method has proven successful in reconstructing stiffness distributions using MR-detected 

motion datasets from both gelatine phantoms and real patients. (Van Houten et al, 1999 [22], 

2000 [23] & 2001 [24]). 
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Figure 2.1: Schematic & FE Mesh representation of subzone concept  

 

In Figure 2.1 the global problem domain is represented by Ω with boundary Γ, and the domain 

of the subzone is represented by Ωz with boundary Γz 

 
eq. 2.79 

 

Equation (2.79) defines the global minimisation problem, where θz is the nodal parameter 

distribution for all nodes within the region of subzone z. 
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eq. 2.80 

 

The global minimisation process is then performed under the assumption presented in that 

equation (2.80). There are many advantages to this distributed approach, such as reducing the 

enormous size of the inversion problem which must be solved. 

 

Each subzone inversion works independently, so the total procedure involves so many different 

minimizations that a failure on one of the subzones due to local error minima in the error 

minimization process does not mean the entire reconstruction will fail. This advantage of the 

subzone technique increases the reliability of the reconstructions, because if a solution from a 

subzone fails, another set of subzones can be made to cover the region of the failed subzone 

and this subzone solution can simply be ignored. 

 

At each global iterate, the centre point (the seed location) for the grid of overlapping subzones 

is determined randomly. In each round of dividing the geometry into the subzone grid, a 

different set of subzones will be implemented. This will reduce the boundary related artefacts 

in the final material property image. When the master processor receives the solution obtained 

from each zone it will be located into the correct place in the global solution arrays. There are 

several subzone geometry parameters which may affect the improvement of the subzone 

reconstruction such as zone size (subzone edge length factor), zone shape and the subzone grid 

overlapping. Figure 2.2 is a flowchart representing the processes employed by the algorithm. 
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Figure 2.2: Flowchart of Subzone Inversion Algorithm 

 

 

Experience has shown there is an optimum size for building the subzone grid for better 

reconstruction results. For example, by increasing the number of subzones in one domain and 

reducing the size of the each subzone, the time to run a reconstruction in one subzone will be 

decreased as the problem is being solved in a smaller area. However, this may cause loss of 

accuracy of the results as most of the internal nodes inside each subzone have sufficient data to 

accurately determine the underlying parameter distribution. Technically, the nodes on the 

boundaries are less useful in the minimization process. Thus, raising the number of subzones in 

one grid will lead to a higher overall ratio of boundary nodes, and this means the information 

from internal nodes possibly lead to reduced accuracy. In fact, the sensitivity of the boundary 

nodes is lower than internal nodes as they receive relatively less information. The internal 

nodes are surrounded on all sides by motion data while the boundary nodes only have motion 

data on one side. This may be shown by calculating the ratio between the internal and external 

nodes in one grid.  Another factor is the geometry of the grid, especially in a 3-D case, which 

should be compatible with the physical geometry of the problem. The geometric size should be 

defined so that each subzone comprises at least a half wave length of the mechanical shear 

wave.  
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Chapter 3 
 

Rayleigh Damped MRE 

 

Both the Rayleigh Damped and Viscoelastic forms of the elastic equilibrium conditions can be 

investigated by considering the basic elastic shear-wave equation 

 
             

[Eq. 3.14] 
 

Where μ represents the shear modulus, u represents the displacement vector, ω represents the 

angular frequency and ρ represents the density. A Rayleigh Damped system contains both 

complex valued shear modulus and density, such that 

 

                   
[Eq. 3.15] 

 

To consider the equivalent viscoelastic material (i.e. when density is purely real), we can 

substitute Eq. 3.14 into Eq. 3.15 and multiply both sides by 
  

 
, which results in 

 

    
   

  
 
        

[Eq.3.16] 
 

Expanding the divergence of the product     leads to the following 
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 [Eq. 3.17] 
 

Given the product rule                                        we can 

expand the first derivative term in Eq. 3.17 to 

 

    
     

  
 

      
  
 
        

  
 

        

 [Eq. 3.18] 
 

Defining a new, effective viscoelastic complex shear modulus,    
  

 
  and substituting into Eq. 

3.18, leads to 

 

    
                       

  
 
      

[Eq. 3.19] 
 

where it can be seen that only the final term, with the spatial derivative   
  

 
 , is all that 

differentiates Eq. 3.19 from an equivalent viscoelastic system, 

 

    
                            

 [Eq. 3.20] 
 

Eq. 3.19 shows that, without spatial variation in density (either in the real or complex 

components), there is no way of distinguishing the Rayleigh Damped system described in Eq. 

3.14 from the equivalent viscoelastic system described in Eq. 3.20. Therefore, the significance 

of the Rayleigh Damping attenuation model will only be seen at material boundaries, along the 

edges of material heterogeneities.  

 

Hence Rayleigh Composition is defined as, 
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[Eq. 3.13] 
 

Where RC = 0 is a system with 0% viscoelastic behavior or RC = 1 for a 100% viscoelastic 

behavior.  

 

The presence of damping forces proportional to the inertial terms in an elastic system will lead 

to artefacts in a viscoelastic property reconstruction of the real shear modulus. These forces in 

non-homogeneous regions of a material mean that the viscoelastic equilibrium equations 

cannot fully characterize the system dynamics. While a Rayleigh Damped approach is still a 

simplified model of complex materials, such as soft tissue, it will account for an additional 

component of the damping effect.  

 

3.1 Gel Phantom Studies 
 

3.1.1 Viscoelastic Reconstruction 
 

A phantom study was conducted on a silicon phantom with two inclusions. The background 

material was designed to have viscoelastic behaviour manufactured with 7.8% gelatine and 10% 

glycerol, while the inclusions are purely elastic with 10% gelatine and CuSO4 content, in the 

larger inclusion, and 20% gelatine and CuSO4 in the smaller inclusion. This composition is 

designed to craft a phantom with a soft background and two stiff inclusions with the smaller 

inclusion being highly damped, while the latter is undamped.  

 

Figure 3.1 shows the MR image of the phantom, with 11 coronal slices, and a 128x128 Field of 

View (FOV). This phantom was imaged at an actuation frequency of 125Hz in a Phillips 1.5T MRI 

scanner using a spin echo based phase-contrast sequence with 2mm isotropic voxels.      
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Figure 3.1: MRI of Gelatine 2 Inclusion Phantom 

 

Figures 3.2 and 3.3 show the results from a Viscoelastic reconstruction. Figure 3.2 shows the 

reconstructed real shear modulus, which identifies the 2 stiffer inclusions accordingly. Figure 

3.3 shows the reconstructed damping ratio which identifies the highly damped “smaller” 

inclusion in the top left of the phantom.  
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Figure 3.2: Real Shear Modulus, Viscoelastic Reconstruction on 2 Inclusion Phantom 

 
Figure 3.3: Damping Ratio, Viscoelastic Reconstruction on 2 Inclusion Phantom 
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3.1.2 A Simulated Rayleigh Damped Reconstruction 
 

As a Viscoelastic reconstruction does not account for any Rayleigh damping effects, a 

simulation study was done for the purpose of comparison. A mesh was created to imitate the 

phantom under consideration. Figure 3.4 shows the simulated real shear modulus which 

identifies the stiff regions located in the same locations as the phantom’s inclusions.  

 

Figure 3.5 shows the simulated damping ratio, which identifies higher damping in both of the 

stiffer regions. This is due to the simplistic nature of the simulation. Once again the result is 

indicative of the actual phantom structure. Figure 3.6 is the simulated Rayleigh composition, 

which as expected identifies both of the stiffer regions.  

 

 
 

 
Figure 3.4: Real Shear Modulus, Simulated RD reconstruction on 2 Inclusion Phantom 
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Figure 3.5: Damping Ratio, Simulated RD reconstruction on 2 Inclusion Phantom 

 
Figure 3.6: Rayleigh Composition, Simulated RD reconstruction on 2 Inclusion Phantom 
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3.1.3 Rayleigh Damped Reconstruction 
 

Figure 3.7 shows the reconstructed real shear modulus which identifies both of the stiffer 

inclusions. Figure 3.8 shows the reconstructed damping ratio, which identifies high damping in 

the smaller inclusion, similarly to the Viscoelastic reconstruction. Figure 3.9 is the reconstructed 

Rayleigh composition, which shows a distribution of artefacts in the homogenous background 

material. According to the original proof and the inherent nature of a Rayleigh Damped 

approximation this result is appropriate. However despite the presence of artefacts the 

phantoms actual structure and the presence of two inclusions is still clear. 

 

Enforcing a Total Variation Minimization (TV) should improve the condition of solutions for the 

Rayleigh Composition within the homogeneous regions by penalizing movement away from 

well defined values ascertained at material boundaries. The current reconstruction was done 

with a TV threshold of 1e-9. 

 

  

 
Figure 3.7: Real Shear Modulus, Rayleigh Damped reconstruction on 2 Inclusion Phantom 
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Figure 3.8: Damping Ratio, Rayleigh Damped reconstruction on 2 Inclusion Phantom 

 
Figure 3.9: Rayleigh Composition, Rayleigh Damped reconstruction on 2 Inclusion Phantom 
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3.1.4 Rayleigh Damped Reconstruction with High TV 
 

A TV threshold of 1e-6 was established to be the highest TV at which the reconstruction 

converged on a suitable solution. Figure 3.10 shows the reconstructed real shear modulus 

which identifies both of the stiffer inclusions. However the smoothing effects of the TV are 

apparent, though the overall structure of the phantom is not compromised.  

 

Figure 3.11 shows the reconstructed damping ratio, which once again identifies high damping in 

the smaller inclusion. However the result is less clearly defined due to the applied TV 

minimisation. Figure 3.12 is the reconstructed Rayleigh composition, which shows a distribution 

of artefacts in the homogenous background material. With the higher TV applied the resulting 

reconstruction is more clearly defined, with a noticeable correlation to the phantom structure. 

 

 

 
Figure 3.10: Rayleigh Composition, Rayleigh Damped reconstruction (high TV) on 2 Inclusion Phantom 
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Figure 3.11: Rayleigh Composition, Rayleigh Damped reconstruction (high TV) on 2 Inclusion Phantom 

 
Figure 3.12: Rayleigh Composition, Rayleigh Damped reconstruction (high TV) on 2 Inclusion Phantom 
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Figure 3.13: Superimposed MRI of sample regions, background, large inclusion and small inclusion respectively 

 
 

 

Table 3.1: Table of gel phantom reconstruction results analysed from sample regions 

 

Figure 3.13 show select regions used to conduct a numerical analysis of all the aforementioned 

reconstructions. These results are displayed in Table 3.1. The numerical results indicate that the 

separate inclusions are poorly distinguished by the Viscoelastic reconstruction as well as the 

Rayleigh Damped reconstruction with the low TV threshold (1e-9).  

 

mean std dev max min mean std dev max min mean std dev max min

Phantom Properties

Background 1500

Small Inclusion 3500

Large Inclusion 4000

Viscoelastic

Background 2113 37.49 2177 3727 0.111 0.0101 0.193 0.057

Small Inclusion 4065 381.22 5381 2874 0.382 0.227 0.827 0.143

Large Inclusion 4256 477.13 5582 1852 0.167 0.104 0.4 0.0899

Simulated RD

Background 4112 27.23 4196 4004 0.1004 0.0649 0.1927 0.0305 0.1151 0.0713 0.15667 0.000131

Small Inclusion 4919 210.34 5676 4021 0.2444 0.1712 0.3512 0.181826 0.309409 0.214521 0.808158 0.103056

Large Inclusion 5997 379.11 7112 5226 0.39821 0.2272 0.44301 0.24298 0.639107 0.346034 0.902233 0.210732

Rayleigh Damped (TV = 1e-9)

Background 1835 56.75 2579 1337 0.054191 0.0337 0.44513 0.00209 0.2843 0.21842 0.97724 0.001752

Small Inclusion 3873 406.57 4911 1902 0.27831 0.21581 1.4331 0.01153 0.3206 0.20909 0.95787 0.096606

Large Inclusion 4171 245.58 4759 3443 0.06319 0.04539 0.43966 0.005017 0.330375 0.29553 0.91141 0.010115

Rayleigh Damped (TV = 1e-6)

Background 1647 126.6667 2130 1290 0.0658 0.0413 0.4896 0.003 0.23516 0.22099 0.98165 0.00102

Small Inclusion 3216 216.07 3583 2679 0.22885 0.12781 0.7445 0.03692 0.13268 0.11323 0.75764 0.00241

Large Inclusion 3633 267.43 4382 2829 0.059188 0.0913 0.6574 0.00202 0.33759 0.31059 0.99382 0.001579

Real Shear Modulus (Pa) Damping Ratio (%/100) Rayleigh Composition (%/100)
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The Rayleigh Damped reconstruction with a higher TV threshold (1e-6) had very promising 

results. The reconstructed real shear modulus values were lower than actual phantom values, 

most likely due to the applied smoothing such as the TV minimisation, mixing of the inclusion 

and background material during construction and the continuity requirements of the finite 

element based elastic modulus description. 

 

 If we consider the numerical result for each parameter, the real shear modulus values from the 

reconstruction are within 10% of the estimated phantom values. The three regions within the 

phantom have only two clear damping ratios, i.e. the larger undamped inclusion melds with the 

softer background. The Rayleigh Composition values, however, have the inclusions varying by 

approximately 50% increase or decrease with respect to the background for the undamped and 

highly damped inclusions respectively. Hence the three material regions in the phantom are 

individually defined by shear stiffness, a high or low damped response and a percentage 

measure of Viscoelastic behaviour.  

 

3.2 Tofu Phantom Studies 
 

A tofu phantom study was conducted to investigate the different attenuation behaviour in 

phantoms with separate material compositions. The two tofu phantoms considered were 

crafted from Mori-Nu Silken Soft tofu, to form the soft background material. Tofu is a 

commonly used material in elastography as it has a poro-elastic structure with high water 

content, similar in nature to soft tissue. The phantoms were all imaged at a frequency of 100 

Hz, in a Phillips 1.5T MRI scanner using a spin echo based phase-contrast sequence with 2mm 

isotropic voxels, and 128x128 FOV. The stiff gelatine inclusions were mixed from 10% Sigma 

Aldrich porcine skin gelatine. A complete homogenous gelatine phantom was also made to 

determine the various material properties of this mixture for better numerical analysis. The 

results from a Rayleigh Damped and Viscoelastic reconstructions and DMA analysis are 

presented in Table 3.2. 

 

 
Table 3.2: Homogeneous 10% gelatine phantom properties 

 

mean std dev mean std dev mean std dev

RD Recon 8056 623 7.52 5.07 64.18 25.08

VE Recon 8952 1634 9.56 10.43

DMA 8800 900 6.09 0.13

Damping Ratio (%) Rayleigh Composition (%)Real Shear Modulus (Pa)
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3.2.1 Single Inclusion Tofu Phantom (T-16) 
 

The single inclusion tofu phantom was created as rectangular tofu volume with a cylindrical 

gelatine inclusion located in the centre. Figure 3.14 shows the MR image of the phantom, with 

17 coronal slices.  

 

 
Figure 3.14:  MRI of Tofu T-16 Single Inclusion phantom 

 

The Rayleigh Damped reconstruction results are presented in Figures 3.15 through 3.17, with 

real shear modulus, damping ratio and Rayleigh composition respectively. The reconstruction 

clearly identifies the stiffer inclusion in the real shear modulus image, however only minor 

damping effects are observed near the boundaries. The Rayleigh composition image identifies 

the phantom structure with the expected presence of some artefacts.  
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Figure 3.15: Rayleigh Damped reconstruction of Real Shear Modulus 

 
Figure 3.16: Rayleigh Damper reconstruction of the Damping Ratio 
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Figure 3.17: Rayleigh Damped reconstruction of the Rayleigh Composition 

 

 

The Viscoelastic reconstruction results are presented in Figures 3.18 and 3.19, with real shear 

modulus and damping ratio respectively. The results are similar to the Rayleigh Damped 

reconstruction. The stiffer inclusion is clearly represented in the real shear modulus image. 

Again the damping ratio only exhibits minor effects near the material boundaries. This most 

likely caused by the adhesion between the tofu and the gel inclusions. 
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Figure 3.18: Viscoelastic reconstruction of Real Shear Modulus 

 

 
Figure 3.19: Viscoelastic reconstruction of the Damping Ratio 
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Figure 3.20: Superimposed MRI of sample regions, background and inclusion respectively 

 
 

 
Table 3.3: Table of single inclusion tofu phantom reconstruction results analysed from sample regions 

 

Figure 3.20 show select regions used to conduct a numerical analysis of all the aforementioned 

reconstructions. These results are displayed in Table 3.3. The Rayleigh Damped and Viscoelastic 

reconstructions had similar results for real shear modulus and damping ratio, though both 

reconstructions were numerically lower than the measured phantom properties, this is likely a 

result of mixing between the stiff gelatine material and the surrounding soft tofu as well as the 

continuity requirements of the finite element based elastic modulus description. The Rayleigh 

composition however showed approximately a 242% increase within the inclusion providing a 

strong contrast between the materials. 

 

mean std dev mean std dev mean std dev

RD Recon

Tofu 4863 556 4.75 2.45 14 12.3

Gel Incl. 9021 1039 1.06 0.95 33.86 22.39

VE Recon

Tofu 4810 667 2.35 1.17

Gel Incl. 9470 1176 0.81 0.8

DMA

Tofu 7203 989 11.2 4.45

Gel Incl. 10236 3860 10.94 14.9

Real Shear Modulus (Pa) Damping Ratio (%) Rayleigh Composition (%)
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3.2.2 Two Inclusion Tofu Phantom (T-21) 
 

The second tofu phantom was created as a rectangular tofu volume with two cylindrical 

gelatine inclusion located. Figure 3.14 shows the MR image of the phantom, with 15 coronal 

slices. The top inclusion is highly damped for this phantom while the lower inclusion remains 

similar to the tofu, as in the T-16 phantom case above. 

 

 
Figure 3.21: MRI of Tofu T-21 Two Inclusion Phantom 

 

The Rayleigh Damped reconstruction results are presented in Figures 3.22 through 3.24, with 

real shear modulus, damping ratio and Rayleigh composition respectively. The reconstruction 

identifies the two stiffer inclusions in the real shear modulus image, with TV set to 1e-6 the 

image displays some melding effects. The damping effects observed show nearly no contrast 

between the tofu and either inclusion except near the base of the top cylinder, shown in the 

later slices. This is most likely due to a “settling” effect from mixing a highly damped gelatine 

cylinder. The Rayleigh composition image identifies both inclusions with noticeable response to 

the change in damping in the top cylinder.  
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Figure 3.22: Rayleigh Damped reconstruction of Real Shear Modulus 

 
Figure 3.23: Rayleigh Damped reconstruction of the Damping Ratio 
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Figure 3.24: Rayleigh Damped reconstruction of the Rayleigh Composition 

 

The Viscoelastic reconstruction results are presented in Figures 3.25 and 3.26, with real shear 

modulus and damping ratio respectively. The results are similar to the Rayleigh Damped 

reconstruction. The stiffer inclusions are more clearly represented in this reconstruction of the 

real shear modulus image, (TV here is set to 1e-9). The damping ratio again, only exhibits minor 

effects throughout except near the base of the top cylinder which is highly damped. 
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Figure 3.25: Viscoelastic reconstruction of the Real shear Modulus 

 

 
Figure 3.26: Viscoelastic reconstruction of the Damping Ratio 
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Figure 3.27: Superimposed MRI of sample regions, background and inclusion respectively 

 
 

 
Table 3.4: Table of two inclusion tofu phantom reconstruction results analysed from sample regions 

 

Figure 3.27 show select regions used to conduct a numerical analysis of all the aforementioned 

reconstructions. These results are displayed in Table 3.4.  The Rayleigh Damped and Viscoelastic 

reconstructions had similar results for real shear modulus and damping ratio, as before the 

reconstructions are numerically lower than the measured phantom properties. The damping 

ratios in both reconstructions identify the highly damped inclusion, with approximately double 

the damping of the tofu background. The Rayleigh composition has a 280% contrast between 

the inclusion and the background. This is approximately 40% higher than T-16 phantom result, 

which could be attributed the higher damping value. 

mean std dev mean std dev mean std dev

RD Recon

Tofu 4195 351 13.64 9.45 10.7 16.3

Gel Incl. 5015 348 24.98 18.65 29.95 18.37

VE Recon

Tofu 3986 390 13.16 9.06

Gel Incl. 5646 451 25.2 16.19

DMA

Tofu 7203 989 11.2 4.45

Gel Incl. 10236 3860 10.94 14.9

Real Shear Modulus (Pa) Damping Ratio (%) Rayleigh Composition (%)
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3.3. In Vivo Results 
 

A Rayleigh damped reconstruction was performed on motion data obtained from a cancer 

patient undergoing neoadjuvant chemotherapy. This data was captured at 85 Hz with similar 

MRI setting to the previous studies outlined above. The reconstruction result were compared to 

the mechanical properties of breast tissue determined by Viscoelastic based MRE result from 

(Sinkus et al, 2005 [25]). Taken at 65 Hz. Figure 3.28 shows the MR image for the patient, with 7 

coronal slices. 

 

 
Figure 3.28: T2* MRI of Patient 3004-S2 

 

Figures 3.29, 3.30 and 3.31 present the reconstruction results for real shear modulus, damping 

ratio and Rayleigh composition respectively. The tumour is clearly visible, in the real shear 

modulus image, as the bright stiff region on the left hand side. The damping ratio is almost 

uniformly low throughput the breast with no noticeable damping effects in the region of the 

tumour. The Rayleigh composition appears to respond to the presence of a tumour, however as 

previously determined there are some artefacts in the image as well. 
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Figure 3.29: Rayleigh Damped Reconstruction of the Real Shear Modulus 

 
Figure 3.30: Rayleigh Damped Reconstruction of the Damping Ratio 
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Figure 3.31: Rayleigh Damped Reconstruction of the Rayleigh Composition 

 

Figures 3.32 and 3.33 show the regions selected to represent healthy and cancerous tissue 

respectively. These results are compared in Table 3.5 to the tissue properties presented (Sinkus 

et al, 2005 [25]).  
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Figure 3.32: Superimposed MRI of sample region of healthy tissue 

 

 
Figure 3.33: Superimposed MRI of sample region of cancerous tissue 
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Table 3.5: Patient data reconstruction results analysed from sample regions, tissue properties from [25]. 
 

The numerical results from the Rayleigh Damped reconstruction are much higher than the 

tissue values determined by (Sinkus et al, 2005 [25]). This could be due to several factors, 

namely the actuation frequency 65 Hz as opposed to 85 Hz, the actuation methods including 

the pre-compression of the tissue, excitation source and mode (Xydeas et al, 2005 [26]).  

 

The reconstructed real shear modulus shows cancer to be three times stiffer than healthy 

breast tissue. While not numerically similar, there is a consistent ratio in both cases. The 

Rayleigh damped model however has much lower damping in the cancer and much higher 

damping in the healthy tissue, this is most likely due to the differences in measurement 

methods, however could also be attributed to the regions under consideration. The selected 

“healthy” tissue region is comprised of fatty tissue, which is highly saturated. Hence it is 

reasonable to expect higher levels of damping as opposed to the fibrous tissue located 

immediately adjacent to the tumour. The Rayleigh composition result is very promising showing 

approximately 150% contrast between health and cancerous tissue. 

 

The reconstructions presented clearly show that the Rayleigh damped method produced 

comparable results to the Viscoelastic method. The additional parameter, Rayleigh 

composition, had a distinct contrast in different material regions and identified the pathology in 

the patient. This would suggest that there is great potential for Rayleigh composition to 

contribute to a diagnostic model, which uniquely characterizes malignant breast cancer from at 

least three reconstructed parameters. 

 

 

 

 

mean std dev mean std dev mean std dev

RD Recon

Healthy 2964 3100 173.45 186.13 43.57 37.58

Cancer 10681 4247 73.36 62.99 63.81 28.61

VE Recon

Healthy 870 150 12.8 0.61

Cancer 2900 300 158.31 103.33

Real Shear Modulus (Pa) Damping Ratio (%) Rayleigh Composition (%)
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Chapter 4 
 

Scattering and Dispersion 

 

4.1 Rayleigh Scattering Simulation 
 

A simulation study was designed to analyse scattering and dispersive effects from an elastic 

shear wave in soft tissue, where the complex internal structure of fibrous tissue could 

potentially produce scattering behaviour. A highly one dimensional mesh was generated (i.e. a 

mesh with a distinct principle length), with a single boundary surface. The mesh used standard 

4-node tetrahedral elements. The mesh length was selected to be approximately ten 

wavelengths. Two separate cases were considered, firstly a mesh with scatterers present in the 

initial half of the mesh, and secondly a mesh with scatterers present throughout a lateral half of 

the mesh. 

 

These mesh characteristics can be seen in Figures 4.1 through 4.3. The boundary surface was 

actuated at 100 Hz to propagate an elastic shear wave. The mesh material had a Young’s 

modulus of 15 KPa and poison’s ratio of 0.48 with approximately 5% damping, similar to soft 

tissue.  
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Figure 4.1: Simulation Boundary Surface 

 
 

 
Figure 4.2: Simulation Node Mesh with Scatterers in the initial half 

 
 

 
Figure 4.3: Simulation Node Mesh with Scatterers in the lateral half 

 

Four possible scattering conditions were simulated, namely 10% or 20% scatterer density and 

scatterers that 10 or 100 times stiffer than the background.  
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[Eq. 4.1] 
 

Scatterer size was equivalent to a single element, which ensured the scatterer size was much 

less than 1 according to the Rayleigh scattering formulation in Eq. 4.1, where x is the scatterer 

size, r the characteristic dimension and λ the wavelength. 

 

The simulation results were converted into an MRI voxel format and transposed onto hex27 

mesh to be reconstructed using the Rayleigh damped algorithm. This follows the standard 

reconstruction methods used for phantom and in vivo analysis. 

 

4.1.1 Initial Half Scattering Reconstruction   
 

This simulation placed scatterers in the initial half of the phantom so that the shear wave would 

travel through sections of scattering and no scattering in series. Figure 4.4 shows the artificial 

MR image for the reconstruction. There are 9 coronal slices with the actuated boundary located 

at the top of the slice as displayed in the image. 

  

 
Figure 4.4: Artificial MRI image for reconstructed mesh 

 



53 
 

The first set of scattering conditions is a scattering density of 10% with all scatterers 

approximately 10 times stiffer than the background. Figure 4.5 displays the damping ratio, 

which is almost entirely unaffected by the presence of scatterers, with low damping throughout 

the mesh. Figure 4.6 displays the Rayleigh composition which appears to respond to the 

scatterers, suggesting higher viscoelastic behaviour in the scattering region. Figure 4.7 displays 

the reconstructed real shear modulus which is mostly homogeneous with a slight increase in 

stiffness in the scattering region. 

 

 

 
Figure 4.5: Damping Ratio 10% scattering 10x stiffer 

 
 

 
Figure 4.6: Rayleigh Composition 10% scattering 10x stiffer 
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Figure 4.7: Real Shear Modulus 10% scattering 10x stiffer 

 
The second set of scattering conditions is a scattering density of 20% with all scatterers 

approximately 10 times stiffer than the background. Figure 4.8 displays the damping ratio, 

which displays very little affect from the presence of scatterers, with low damping throughout 

the mesh. Figure 4.9 displays the Rayleigh composition which appears to respond to the 

scatterers. The Rayleigh composition here has slightly higher values than the 10% simulation. 

Figure 4.10 displays the reconstructed real shear modulus which, as before, is mostly 

homogeneous with a slight increase in stiffness in the scattering region, due to a distributed 

increased stiffness from the scatterers. 

 

 
Figure 4.8: Damping Ratio 20% scattering 10x stiffer 
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Figure 4.9: Rayleigh Composition 20% scattering 10x stiffer 

 

 
Figure 4.10: Real Shear Modulus 20% scattering 10x stiffer 

 
The third set of scattering conditions is a scattering density of 10% with all scatterers 

approximately 100 times stiffer than the background. Figure 4.11 displays the damping ratio, 

which remains consistently unaffected by the presence of scatterers, with low damping 

uniformly throughout the mesh. Figure 4.12 displays the Rayleigh composition which shows a 

significant increase in the region compared to the softer scatterers presented previously. Figure 

4.13 displays the reconstructed real shear modulus which displays an almost two tone mesh 

with the scattered region appearing much stiffer. The distribution of the stiff scatterers and 
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smoothing effects in the reconstruction, such as total variation, cause the region to appear 

more homogenous.  

 

 
Figure 4.11: Damping Ratio 10% scattering 100x stiffer 

 

 
Figure 4.12: Rayleigh Composition 10% scattering 100x stiffer 

 
 

 



57 
 

 
Figure 4.13: Real Shear Modulus 10% scattering 100x stiffer 

 

The fourth and final set of scattering conditions is a scattering density of 20% with all scatterers 

approximately 100 times stiffer than the background. Figure 4.14 displays the damping ratio, 

which, similarly to the previous simulations, is seemingly unaffected by the presence of 

scatterers, with low damping throughout the mesh. Figure 4.15 displays the Rayleigh 

composition which shows a significant increase in the scattered region compared with only a 

minor increase to the previous condition. Figure 4.16 displays the reconstructed real shear 

modulus which displays a similar two tone result with only minor increases to the previous 

condition.   

  

 
Figure 4.14: Damping Ratio 20% scattering 100x stiffer 
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Figure 4.15: Rayleigh Composition 20% scattering 100x stiffer 

 

 
Figure 4.16: Real Shear Modulus 20% scattering 100x stiffer 

 

 
Table 4.1: Table of reconstruction results, for initial half simulation 

mean stddev max min mean stddev max min mean stddev max min

10%10x

Scatter 0.1021 0.002 0.3002 0.017 0.5171 0.0622 0.6773 0.4918 1691 18.38 1703 1613

Back Ground 0.10174 0.0017 0.3011 0.024 0.35828 0.0257 0.4101 0.1634 1507 11.111 1542 1488

20%10x

Scatter 0.1036 0.0018 0.30303 0.016 0.5521 0.0478 0.7415 0.4469 1804 23.3333 1837 1751

Back Ground 0.10201 0.0022 0.3107 0.019 0.29272 0.02212 0.4457 0.1337 1492 10.5758 1515 1473

10%100x

Scatter 0.1026 0.0014 0.2706 0.013 0.7216 0.1023 0.89796 0.5547 2034 42.306 2217 1768

Back Ground 0.1028 0.0011 0.02575 0.011 0.35303 0.0333 0.4041 0.2282 1587 31.0127 1811 1521

20%100x

Scatter 0.1005 0.003 0.2023 0.014 0.707 0.1412 1 0.4973 2203 57.26 2259 1784

Back Ground 0.1011 0.0025 0.2169 0.009 0.3478 0.04001 0.6606 0.1513 1605 24.81 1824 1556

Damping Ratio Rayleigh Composition Real Shear Modulus
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A quantitative analysis is presented in table 4.1. The damping ratio is steady throughout the 

reconstructions, with approximately 10% damping. The simulation used 5% damping for the 

background material, hence the increased damping is likely due to the inclusion of stiff 

scatterers.  

 

The Rayleigh composition shows approximately 150% increase for the softer scatterers (10x) in 

both the 10% and 20% scattering densities, and approximately 200% increase in both cases for 

the 100 times stiffer scatterers. This would suggest the Rayleigh composition is more sensitive 

to scattering stiffness than density and is directly affected by the presence of scatterers. This 

result is supported by the formulations in chapter 3 that showed mathematically RC is clearly 

defined on boundaries and ill-defined in homogenous regions 

 

The real shear modulus showed an 11-14 % increase in stiffness across the reconstructions, 

corresponding to findings by (Papazoglou et al, 2009 [27], Sinkus et al, 2007 [28], Muki et al, 

2003 [29]). That the presence of stiff scatterers can lead to stiffer behaviour within the 

medium.  

 

4.1.2 Lateral Half Scattering Reconstruction   
 

This simulation placed scatterers in the lateral half of the phantom such that the shear wave 

would travel through two parallel regions, one with and one without scatterers present. Figure 

4.17 shows the artificial MR image for the reconstruction. There are 8 coronal slices with the 

actuated boundary located at the top of the slice as displayed in the image. 

 

The first set of scattering conditions, are a scattering density of 10% with all scatterers 

approximately 10 times stiffer than the background. Figure 4.18 displays the damping ratio, 

which, similarly, is unaffected by the presence of scatterers, with low a damping ratio 

throughout the mesh. Figure 4.19 displays the Rayleigh composition which has a noticeable 

increase in the scattering region. Figure 4.20 displays the reconstructed real shear modulus 

which is mostly homogeneous with a slight increase in stiffness in the scattering region. 
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Figure 4.17: Artificial MRI image for reconstructed mesh 

 

 

 
Figure 4.18: Damping Ratio 10% scattering 10x stiffer 
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Figure 4.19: Rayleigh Composition 10% scattering 10x stiffer 

 

 
Figure 4.20: Real Shear Modulus 10% scattering 10x stiffer 

 

The next set of scattering conditions are a scattering density of 20% with all scatterers 

approximately 10 times stiffer than the background. Figure 4.21 displays the damping ratio, 

consistently unaffected by the presence of scatterers, with low damping throughout. Figure 

4.22 displays the Rayleigh composition which,  has slightly higher values in the region than the 

previous 10% condition. Figure 4.23 displays the reconstructed real shear modulus which has a 

slight increase in stiffness in the scattering region, which is also a numerically stiffer region then 

the previous simulation. 
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Figure 4.21: Damping Ratio 20% scattering 10x stiffer 

 
 

 
Figure 4.22: Rayleigh Composition 20% scattering 10x stiffer 
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Figure 4.23: Real Shear Modulus 20% scattering 10x stiffer 

 

The third set of scattering conditions is a scattering density of 10% with all scatterers 

approximately 100 times stiffer than the background. Figure 4.24 displays the damping ratio, 

which is displays a small increase in damping on the scattering side, with low damping 

throughout the mesh. Figure 4.25 displays the Rayleigh composition which shows an increase in 

the region compared to the softer scatterers presented previously, however it seems to be a 

smaller difference than the initial scattering mesh. Figure 4.26 displays the reconstructed real 

shear modulus which again tends towards a two tone mesh with the scattered region appearing 

much stiffer.  

 

 
Figure 4.24: Damping Ratio 10% scattering 100x stiffer 
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Figure 4.25: Rayleigh Composition 10% scattering 100x stiffer 

 

 
Figure 4.26: Real Shear Modulus 10% scattering 100x stiffer 

 

The final set of scattering conditions is a scattering density of 20% with all scatterers 

approximately 100 times stiffer than the background. Figure 4.27 displays the damping ratio, 

which displays a slight increase on the scattering side, with low damping throughout the mesh. 

Figure 4.28 displays the Rayleigh composition which shows a significant increase in the 

scattered region compared with any previous condition. Figure 4.29 displays the reconstructed 

real shear modulus which displays a similar two tone result with a noticeable increase to the 

previous condition.   
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Figure 4.27: Damping Ratio 20% scattering 100x stiffer 

 

 
Figure 4.28: Rayleigh Composition 20% scattering 100x stiffer 
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Figure 4.29: Real Shear Modulus 20% scattering 100x stiffer 

 
 

 
Table 4.2: Table of reconstruction results, for lateral half simulation 

 

A quantitative analysis for the second mesh conditions is presented in table 4.2. The damping 

ratio is more or less steady throughout the reconstructions, with approximately 20% damping. 

The two regions, scatters and no scatterers, have about a 3% difference in damping. The 

simulation used 5% damping for the background material, the increased damping is likely due 

to the inclusion of stiff scatterers, however the effects of scattering along the entire mesh 

seems to have increased the damping further.  

 

The Rayleigh composition shows approximately 175% increase for all four cases considered. 

This is an interesting result, indicating a consistent scattering effect along the shear wave. As 

opposed the previous mesh condition of only initially scattering the wave. The real shear 

modulus showed a 21-34 % increase in stiffness across the reconstructions, corresponding to 

mean stddev max min mean stddev max min mean stddev max min

10%10x

Scatter 0.1707 0.0101 0.299 0.055 0.3733 0.0348 0.476 0.3574 2417 33.336 2481 2027

Back Ground 0.1352 0.01121 0.268 0.042 0.2124 0.01915 0.3003 0.09389 2003 24.87 2111 1984

20%10x

Scatter 0.1818 0.002 0.2582 0.047 0.447 0.0478 0.624 0.383 2486 45.667 2715 2080

Back Ground 0.1574 0.0171 0.2642 0.053 0.2517 0.02212 0.4457 0.3614 2037 31.049 2134 2013

10%100x

Scatter 0.2215 0.1022 0.3463 0.1009 0.5347 0.06065 0.666 0.5547 2754 51.017 2984 2111

Back Ground 0.1974 0.0109 0.2726 0.0601 0.3445 0.10422 0.5317 0.2751 2130 39.994 2273 2041

20%100x

Scatter 0.2138 0.1147 0.402 0.1897 0.5861 0.1793 0.726 0.4199 3040 63.9 3495 2528

Back Ground 0.1896 0.0202 0.2805 0.0877 0.3316 0.0616 0.4391 0.1948 2257 37.18 2403 2087

Damping Ratio Rayleigh Composition Real Shear Modulus
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work done by (Papazoglou et al, 2009 [27], Sinkus et al, 2007 [28], Muki et al, 2003 [29]). That 

the presence of stiff scatterers can lead to stiffer behaviour within the medium. This seems to 

indicate that scatterers present along the shear wave have a larger effect than a region of 

scatterers which the wave passes through. This would imply that regions with high inertial 

damping may cause a significant loss in energy within the shear wave. 

 

4.2 Dispersion 
 

Frequency dispersion in geophysics can be approximated to a ratio of the elastic moduli, 

defined under different attenuations (Adelinet et al, 2010 [30], Zimmerman et al, 1986 [32]). 

Eq. 4.1 shows this ratio, where M is either the bulk or shear modulus. 

 

            
   

       
   

   
    

[Eq. 4.1] 
 

In the case of equant pores, where the cavities are of a uniform shape, such as spherical or 

whole elements as in our scattering mesh, then the low frequency saturated modulus is 

approximately equal to the high frequency unsaturated modulus. Note a non equant pore 

condition, such as cracking, is the propagation of a low volume pore which is highly directional 

and uniquely shaped. This is an unlikely condition in soft tissue.  

 

Eq. 4.2 is the ratio between the background material and the effective bulk moduli, where    is 

the background modulus,    
    is the effective modulus. The pore porosity is defined by   , and 

   is the poisons ratio. 

 

  

   
        

       

        
 

  

    
  

[Eq. 4.2] 
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Eq. 4.3 defines    which describes the coupling between matrix compliance, fluid 

compressibility and equant pore geometry, where    is the background material’s Young’s 

modulus and    is the pore bulk modulus. (Shaffiro et al, 1996 [31],)  

 

   
   

       
 
 

  
 

 

  
  

[Eq. 4.3] 
 

Figure 4.30 displays the frequency dispersion relationships with a varying    the pore modulus 

(blue shear and red bulk), with a fixed number of pores, and with a fixed bulk modulus while 

the number of pores vary (blue soft and red hard pores). These trends show that small 

variations in the bulk modulus have a much larger effect than small variations in pore 

saturation.   

 

The scattering result indicated the same trends in both cases considered. The impact of 

increased shear modulus was clearly more significant than the increased scattering density. 

While mechanical characteristics of tissue such as viscoelasticity are most likely to influence 

tissue deformation it seems apparent that mechanical property distributions representative of 

cellular structure in fluid-saturated tissue are likely to augment the deformation behaviour.  

 

Studies into the attenuation behaviour of poro-elastic materials, (Perriñez et al, 2009 [35] & 

2010 [36]) found a high sensitivity with respect to material properties such as bulk modulus as 

opposed to pore size or frequency. This would appear to correlate with the dispersion and 

scattering formulations, indicating observed elastic behavior is more representative of material 

property distribution than material structure. This is a promising result as biological structures 

are unique to every case, or patient, where as a material property distribution is more 

adaptable and hence a more valuable metric.  
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Figure 4.30: Elastic Dispersion Trends, % dispersion vs. delta modulus and delta pores respectively 

 

The simulations suggest that dense cellular structure, as found with pathology in soft tissue, 

would cause both scattering of the shear wave and frequency dispersion, due to the complex 

interlaced structure and the variant material properties. It may be possible to incorporate for 

these influences in a diagnostic model as cancer is known to alter both the micro-structure and 

the fluid content or pressure.  
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Chapter 5 
 

Anisotropic Reconstruction 

 
Breast tissue, due to its natural development, has a complex orthotropic structure. An imaging 

algorithm which utilises an anisotropic reconstruction may more accurately describe the 

material condition of the tissue. However, an anisotropic reconstruction is very computationally 

intensive, this is further exaggerated in MR Elastography which is has a data rich environment 

from the high resolution measurement system. In spite of these obstacles, a reconstruction 

algorithm with an orthotropic material condition could potentially be instrumental in the 

development of a diagnostic tool (Sinkus et al, 2005 [34]). This chapter will discuss the methods 

implemented to make orthotropic reconstructions more feasible. 

 

5.1 Anisotropic Materials 

 

Although elastography imaging techniques have been introduced as powerful medical imaging 

modalities, most approaches consider isotropic material properties (Zhu et al, 2003, [161], 

Khang et al, 2003 [162] and Liu et al, 20030 [163]). There is little quantitative information 

available in the MRE literature regarding the behavior of orthotropic materials and most 

anisotropic MRE reconstructions are in 2-D (Cox et al, 1997 [164]). To study a more realistic 

behavior of tissue and cancerous tumors it is necessary to develop a 3-D model with actual 

geometry which includes sufficient details about orthotropic elasticity parameters. This chapter 

introduces the existing formulations for anisotropic and orthotropic material models. In solid 

mechanics, there are some conditions related to equations of equilibrium which must be 

satisfied to solve a problem. These conditions are strain-displacement relations and material 

constitutive laws. The first condition does not require the material property parameters while 

the second one, which relates the stress to strain components at any point in the solid, is a 

function of elasticity modulus.  
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Since the behavior of the real material is complex and difficult to comprehend, it is necessary to 

make assumptions and perform simplifications to make a mathematical model of the material’s 

behavior by applying suitable theories and adequate experimental tests. This mathematical 

model can calculate a particular property to express the material behavior in a certain condition 

(Weaver et al, 2002 [167] and Barber et al, 1992 [168]). 

 

In the most generalized anisotropic model, material symmetry does not exist and mechanical 

properties are different in all directions (Francois et al, 1998  [169] and Ting et al, 1996 [170]). 

In the condition that there are different degrees of material symmetries, the material can be 

categorized as, for example, orthotropic or isotropic and so on. In this chapter, certain elastic 

models based on the existence of elastic symmetry axes are considered. In these axes, known 

as elastic principal axes, the constitutive relations remain invariant.  

 

Anisotropy means the mechanical property of a material is directionally dependent. This can be 

expressed as a difference in a physical or mechanical property such as elasticity modulus, 

density, etc. In the chemical aspect, anisotropy is defined as phenomena of chemical bond 

strengths which are directionally dependent (Lekhnitskii et al, 1981 [171]). Elastic properties 

will be anisotropic when deformation depends on the direction of a particular stress 

(Ambartsumyan et al, 1991 [172]). Many biological materials, such as tissue, are anisotropic 

materials that display directionally variations in material properties. Inhomogeneous material 

property distributions can also be a pathological sign, as in the case of breast carcinomas. The 

discussion on tissue structures provides many micro-scale examples of mechanical behavior 

(Fung, 1993 [165] and Sinkus et al, 2000 [166]). 

 

To study anisotropy it is essential to know the constitutive equation that describes the elastic 

behavior of the material and also determines the elasticity tensor,       and its components. In 

the linear elasticity, the relationship between current stress and current strain remains linear. 

The constitutive equation which is the generalized form of Hooke's law can be written as:  

  

             

[Eq. 5.1] 
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where     and     are second order stress and strain tensors respectively, and       is the fourth 

order elasticity or stiffness tensor. The symmetric stress and strain tensors can be written as 

six-dimensional vectors in an ortho-normal coordinate system (Eq. 5.2). The anisotropic form of 

Hooke's law in matrix expression is shown in (Eq. 5.3). 

 

    

 
 
 

 
 
   
   
   
   
   
    

 
 

 
 

  

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

       

 
 
 

 
 

   
   
   
    
    
     

 
 

 
 

 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

 

[Eq. 5.2] 
 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

 

 
 
 
 
 
 
   
   
   
   
   
   

   
   
   
   
   
   

   
   
   
   
   
   

   
   
   
   
   
   

   
   
   
   
   
   

   
   
   
   
   
    

 
 
 
 
 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

 

[Eq. 5.3] 
 

A material has symmetry if its elastic properties are the same in certain directions. If symmetry 

exists in all directions, the material is called isotropic otherwise, it is anisotropic. In general, 

      contains 81 constants, but since both stress and strain tensors are symmetrical ( 

                    ), and with the assumption that there exists a strain energy function   

given by: 

 

  
 

 
            

[Eq. 5.4] 
 

where,  
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[Eq. 5.5] 
 

It is seen that the stiffness tensor must be symmetrical so that             because of the 

arbitrary order of differentiation             . As a result, the number of elastic constants can 

be reduced to 21 coefficients (Lai et al, [173] and Haupt et al, 2002 [174]).  

 

According to (Love, 1944 [175]) and (Chen et al, 1982 [176]), the equations that govern 

engineering problems are related to the stored energy in a solid. Therefore, the energy 

developed by the external work is stored in an elastic solid and may be developed as potential 

elastic energy that is known as strain energy.  

 

During this process the body is deformed, but may recover its original shape and size. An 

interesting point is that the presence of certain types of symmetry in an elastic body, simplify 

the constitutive relations. These simplifications are represented in different ways, for example 

those applied by Love, where the strain energy function remains unchangeable by all 

symmetrical coordinate system substitutions (Desai et al, 1984 [177]). 

 

5.2 A Direct Analytical Formulation 

 

The conjugate gradient method (CG) is a commonly used method for computational problems. 

As a gradient descent method, CG performs an optimization or reconstruction of a parameter θ 

based on the minimization of an error function F. 

 

     
 

       

[Eq. 5.6] 
 

The residual, as required in the CG method, is the derivative of Eq. 5.6 with respect to θ and 

given as follows 
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[Eq. 5.7] 
 

Where the Jacobian (    
  

  
 ) is either obtained by a finite deference expression or a direct 

analytical approach.  A finite difference expression, while accurate, will require the algorithm to 

calculate a complete forward solve for each individual iteration. Conversely a direct analytical 

approach could approximate the Jacobian matrix after a single forward solve. Given the high 

computational cost, a direct approach would be optimal.  

 

A direct analytical solution requires a defined material model for incompressible orthotropic 

elastic property distribution. The stress (  ), strain (  ) and compliance (Sij) tensors are defined 

as follows, 

 

                          
 

                          
 

    

 
 
 
 
 
 
            
            
             
        
        
         

 
 
 
 
 

 

 [Eq. 5.8] 
 

The compliance matrix is symmetrical, therefore                                   . The 

constitutive elastic relationship can be written in the following form, 

  

         

[Eq. 5.9] 
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With these basic relationships defined, a set of constitutive equations for an incompressible 

orthotropic solid can be derived. Eq. 5.10 and Eq. 5.11 where obtained by following the 

methods presented in (Taylor et al, 1968 [33]).  

 

      
                i,j,k = 1,2,...,6 

[Eq. 5.10] 
 

                 
                  

        i,j,k = 1,2,...,6 

[Eq. 5.11] 
 

β is the auxiliary matrix, B is the modified compliance matrix and F is the dilation coefficient 

vector. H represents the pressure term for the system. F, β and B are presented in Eq. 5.12, Eq. 

5.13 and Eq. 5.14 respectively, 

                  
[Eq. 5.12] 

 

  

 
 
 
 
 
 
 
 
 
 
             

   
     

  
             

   
    

  
             

   
   

        
        
         

 
 
 
 
 
 
 
 
 

 

[Eq. 5.13] 
  

   

 
 
 
 
 
 
 
 
 
     

             
   

         

       
             

   
      

          
             

   
   

      
      
       

 
 
 
 
 
 
 
 
 

 

[Eq. 5.14] 
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With the expanded terms above, the constitutive equations (Eq. 5.10 and Eq. 5.11) may be 

simplified through substitution and tensor multiplication. The resulting form for these 

equations is presented below. (Eq. 5.11 is presented in Appendix D) 

 

    
         

             
   

              

             
  

 
             

             
   

          

             
  

 

                 
             

   
      

             
  

 
  
   

 
  
   

 
  
   

  

[Eq. 5.15] 
 

Eq. 5.16 is a vector of the weighting functions, which, if multiplied to our stress vector (σ in Eq. 

5.15), determines the distributed stress vector (K) for the system, shown in Eq. 5.17. 

 

    
 

  
           

 

  
           

 

  
           

 

  
          

 
 

  
           

 

  
           

 

  
           

 

  
          

 
 

  
            

[Eq. 5.16] 
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[Eq. 5.17] 
 

The elastic strains, ε, can be expanded into the divergence of the displacements shown in Eq. 

5.18. 

   
 

  
         

   
 

  
         

   
 

  
         

    
 

  
         

 

  
         

    
 

  
         

 

  
         

    
 

  
         

 

  
         

[Eq. 5.18] 
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With the newly derived constitutive equations, and the weighted stress formulation, and by 

substituting the strain formulation, it is possible to build a stiffness matrix for the forward 

problem.  This stiffness matrix, A, is shown in Appendix D. 

 

In order to build the Jacobian matrix directly, it is necessary to determine the derivative terms 

for the stiffness matrix with respect to the compliance terms analytically. The 16 non-zero 

derivate terms have been expanded in Appendix D. 

 

With the above equations it is possible to program a solver to calculate the necessary matrix 

terms directly (Taylor et al, 1968 [33]), implementing only two forward solutions with a CG 

approach, as opposed to a finite difference approach which requires a forward solution for 

every parameter reconstructed. 

 

5.3 Programming the Analytical Approach 
 

The orthotropic reconstruction algorithm employs a weighted residual FEM formulation. 

Algorithm 5.1 presents the pseudo-code of the FEM orthotropic adjoint gradient formulation. It 

an overview of the looping structured employed to build the FE matrix-vector system of 

equations. A sample of the FORTRAN code is presented in Appendix E. 

 

Algorithm 5.1 
 
 % Loop over all the elements 
 

do el = 1, # elms  (element looping) 
 

- Build Gauss integration values 
o Weights 
o Co-ordinate transforms 

- Build material properties at each GP 
- Build Compliance Matrix at each GP = Sg 
- Calculate Compliance derivatives dSg/dθ  
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% Loop over every node in each element 
 
do ii = 1,NPE   (interpolating functions) 
do jj = 1,NPE   (weighting functions) 
do kk = 1,NPE  (Basis functions for material properties) 

 
  Assemble A matrix terms (Eq. 5.15) 

    
   With Add = < Φi Φi >, Apd = < Φi Ψi >, App = < Ψi Ψi >  
   and ut =  Σ uiΦi and Pt = Σ PiΨi 

 
   % Loop over all the Gauss integration points 
 
   do = ig = 1,NGP (Gauss point looping) 
   do = jg = 1,NGP 
   do = kg = 1,NGP 
    

 Calculate the stiffness matrix derivatives dA/dSg 
(Eq. 5.16 through Eq. 5.31) 

 
 Calculate the Jacobian matrix  

 dA/dθ = dA/dSg * dSg/dθ 
 

 Calculate the volume integral terms 
< > = Σ |J|wgf(g) 

 
   end kg 
   end jg 
   end ig   (end of GP looping) 
 

- Build RHS terms 
 
  End kk 

end jj 
end ii   (end of nodal looping 

end elm   (end of element loop) 
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Anisotropic MRE reconstructions are not only computationally intensive, with the finite 

difference algorithm requiring hundreds of hours to converge, they also require complex 

actuation methods in order to generate shear wave displacements in three unique directions. 

As a result a sample test mesh was used to conduct simulation to compare the adjoint residual 

code, described above, to the original finite difference code.  

 

The test mesh created was a simple square 125 (5x5x5) elements in volume. Twenty seven 

node hexahedral elements were used, which is standard for the MRE reconstructions, the 

entire mesh had 1331 nodes. The simulation study compared performance in solving the 

forward problem only, as this is the where either method is relevant in the reconstruction 

process. Figure 5.1 displays the resulting residual magnitude for each method. The first plot is 

the real part and the second is the imaginary part. The finite difference result, plotted in red, 

was multiplied by “- 1” for a better visual comparison. As the figure displays the adjoint method 

and the finite difference had almost identical results confirming at least the accuracy of the 

adjoint formulation. 

 
Figure 5.1: Finite Difference and Adjoint Residual comparison 
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The simulations that were conducted ran for 30 global iterations, utilising 32 processors on the 

HPC (see appendix). Each global iteration consisted of between 12 and 15 zone iterations, with 

an average subzone size of 300 nodes ranging from 214 to 391.  

 

 
Table 5.1: Table of simulation run times in hours 

 

Table 5.1 compares the runtimes of each algorithm. The adjoint method performed optimally 

with approximately 30% faster reconstruction times. Due to the small mesh size it is likely that 

the direct adjoint calculation will save even more time for larger more complex meshes. Ideally 

this will make anisotropic MRE reconstructions more feasible, leading to more accurate 

physiological reconstructions, which could potentially improve cancer detection and diagnosis. 

 

5.4 Orthotropic Incompressible Phantoms 

 

To evaluate a realistic orthotropic incompressible model, two biological phantoms were 

reconstructed. Constructing a phantom that mimics an orthotropic material can be very 

challenging, as there is little quantitative information available in MRE experiments regarding 

orthotropic phantom fabrication. This thesis is based on the orthotropic incompressible 

phantom image reconstruction, to describe the orthotropic behaviour. Several orthotropic 

image reconstructions where carried out to map orthotropic elasticity properties in 3D using a 

few MRI datasets which are presented in this chapter.  

 

Recently, ex vivo phantom elastography such as muscle phantoms, have been developed for 

non-invasively measuring the stiffness of biological tissues (Flewellen, 2008 [179]). As real 

cancerous tissue is not always available for MRE testing, a series of muscle phantoms, that 

could mimic the tissue and tumours with orthotropic properties, was used.  

 

sub zone 0.73589 0.50579

global 9.56667 6.57531

Finite Difference Adjoint Residual
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Due to the structural properties and myofibril protein orientations within the muscle, this 

material can be a good example of orthotropic incompressible behaviour. As muscle is known 

to be highly orthotropic (Blemker et al, 2005 [180]), to develop clinically realistic orthotropic 

phantoms, bovine muscle was chosen and tested. Two different kinds of phantoms were 

designed, and then tested with using a pneumatic actuator.  

 

The phantom was scanned in three dimensions by rotating the phantom box     in 3-D. To 

obtain enough motion data from an orthotropic material, multiple measurements in 3-D are 

required. The phantom was scanned in three stages with one specific excitation frequency of 

100 Hz. In each stage, this load condition was assigned to the side of the phantom box which 

was coupled to the pneumatic actuator in the excitation direction (Z). 

 

 

Figure 5.2: Phantom Orientation for excitation  

 

Figure 5.2 depicts three stages of the boundary conditions applied to the muscle gelatine 

phantom. The figure illustrates that only one specific frequency of 100Hz was assigned to the 

phantom in 3D while the phantom is being excited in the Z direction. The phantom has been 

flipped      in each 3 stages. 
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Physical material properties of the tissue (i.e. the stiffness) can be changed by applying heat. 

This method was applied to create an inclusion inside a muscle phantom to simulate an 

orthotropic tumour within the tissue. Following this approach, several methods were 

developed to create an inclusion within the muscle phantom using either heating or chemical 

processes. These techniques took advantage of a laser system to produce heat in a small area 

inside the muscle phantom or using a chemical material such as formalin to change the elastic 

property of the tissue. 

 

Multi-mode fibre was inserted into the bovine tissue as multi-mode fibre has a large light 

carrying core and as a result a large area can be heated by the laser (Fig. 5.13). The laser 

transmission along the fibre was then carried out for twenty minutes to heat an area within the 

muscle phantom and create a stiff inclusion (Fig. 5.11). 

 

 

Figure 5.3: Multi-mode fibre undergoing laser heating  
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Figure 5.4: Dissection of bovine phantom to inspect inclusion  

 

Figure 5.3 depicts multi-mode fibre with 1 mm diameter located inside the muscle phantom for 

twenty minutes in order to heat and create an inclusion using the laser transmission. Figure 5.4 

shows a view of the bovine muscle phantom which has been cut to observe the heated area. 

The circled spot exhibits the material property changing within the tissue. The changed colour 

area represents the generated inclusion of about 20 mm diameter.  

 

As the previous phantom was cut for the observation, another muscle phantom was fabricated 

in the same manner using the multi-mode fibre for the MRI scan. A coordinate system was 

defined for the phantom using three fiducial markers (MR-SPOTS, Beekley Corporation, USA) as 

shown in Figure 5.5. 

 

Figure 5.5: Co-ordinate tabs fixed to new bovine phantom 
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The performance of the final muscle phantom which was used for the MRI scan. A coordinate 

system was defined for the phantom using three fiducial markers as shown in this picture. The 

muscle phantom was scanned with an excitation frequency of 100 Hz in three directions by 

rotating the phantom to measure sufficient MRI motion data. Boundary conditions applied to 

the muscle phantom show that only one face of the phantom which is located on the contact 

plate is restricted and the phantom is free on the remaining five sides. 

 

Figures 5.6 to 5.8 display the three directional reconstructions for the heat modified bovine 

phantom. The ortho-code recon managed to converge on a solution and the resulting 

calculation clearly depicts the presence of a stiff inclusion in the phantom. 

 

Figure 5.6: Shear Modulus reconstruction - X  
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Figure 5.7: Shear Modulus reconstruction - Y 

 

 

 

Figure 5.8: Shear Modulus reconstruction - Z 

 



87 
 

Fixation is a chemical procedure used to stabilize a tissue from degeneration. This method is 

widely used in histology, pathology etc. to terminate biochemical functions in tissue. The 

fixation process increases the mechanical stiffness and the stability of the tissue. Soft tissue can 

be preserved by different chemical agents known as fixatives such as acetone and formalin 

(formaldehyde) (Ryter, 1988 [181] and Friedrich et al, 2000 [182]).  

 

In this case, formalin was used to create a stiff inclusion inside a muscle phantom. 2ml of 

formalin (A18-4, Fisher Scientific, Inc, USA) was injected inside the muscle phantom with a small 

syringe. From a central point of penetration, several injections were made at different angles to 

spread the formalin evenly throughout the phantom. This technique of injection was carried 

out to fabricate a three dimensional inclusion with sufficient thickness within the phantom.  

 

After the formalin injection, the muscle phantom was cut for observation (Fig. 5.10). The colour 

conversion of the injected area can be interpreted to mean that material properties of this 

region have changed and a stiffer inclusion created.  

 

 

Figure 5.9: Syringe injecting Formalin into phantom  
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Figure 5.10: Dissected phantom to inspect chemical transformation  

 

A pneumatic actuation system was used for exciting the phantom in the X direction with a 

frequency of 100 Hz. The free standing muscle phantom was scanned with a specific excitation 

frequency of 100 Hz in three dimensions by rotating the phantom in 3-D in three phases to 

collect sufficient motion data from this orthotropic phantom similar to the previous MRI data 

collection.  

 

Boundary conditions applied to the muscle phantom allowed that only one face of the phantom 

which is located on the membrane of the pneumatic actuator is constrained. As a result, the 

phantom was free to move on its other five sides. 

 

Figures 5.11 to 5.13 display the three directional reconstructions for chemically modified 

bovine phantom. The ortho-code recon managed to converge on a solution and the resulting 

calculation clearly depicts the presence of a stiff inclusion in the phantom. 

 

Comparing the timing and performance of an direct analytical model to the finite difference 

algorithm was not possible, as the FD code was unable to converge on any solution, inversions 

where too computationally intensive. A several week reconstruction managed only a few initial 

iterations.  
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Figure 5.11: Shear Modulus reconstruction - X  

 

 

Figure 5.12: Shear Modulus reconstruction - Y 
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Figure 5.13: Shear Modulus reconstruction - Z  
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Chapter 6 
 

Conclusions 

 

Rayleigh Damped MRE reconstructions performed well. In comparison to conventional 

Viscoelastic reconstructions, Rayleigh damping could also identify stiff inclusions, through 

reconstructing the shear modulus and damping ratio. The Rayleigh composition added another 

parameter to characterize the material behaviour and hence added another degree of accuracy 

for identifying the inclusions. The Rayleigh Damped reconstructions showed promising results 

in simulations, gelatine phantoms, tofu (poro elastic) phantoms and in vivo reconstructions. 

Appropriate use of Total Variation improved the quality of the Rayleigh composition, which 

helped ascribe a degree of viscoelastic damping behaviour to specific regions of interest. Given 

the contrast observed in Rayleigh composition between healthy and cancerous regions, it’s 

possible that the Rayleigh compositions will help to accurately identify and diagnose malignant 

tumours. A broader clinical trial is required, however the potential for Rayleigh damped 

reconstructions to form part of an MRE diagnostic tool, is evident. 

 

Simulations to identify possible scattering effects within soft tissue revealed interesting 

attenuation behaviour. Scatterers present within a region of a mesh resulted in very minimal 

change in the damping response, a slight increase in stiffness, but noticeably a much higher 

change in viscoelastic behaviour, seen in the Rayleigh composition. Considering a model for 

frequency dispersion in breast tissue further supported the initial scattering results. Elastic 

dispersion relationships suggest a greater sensitivity from material property distributions, and a 

lower sensitivity from pore or scatterer density. This would was clearly visible in the simulation 

results where changes in shear modulus had a greater effect than varying the scatterer density. 

This has also been observed in poro elastic reconstructions where small variations in saturation, 

and hence bulk modulus, had significant effects on the reconstructed images. A better 

understanding of attenuation behaviour in specific tissue structures or regions could well 

contribute to a diagnostic model, especially as breast cancer significantly alter the tissue 

material properties. 
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A direct analytical formulation of the adjoint residual, vastly improved the reconstruction time 

for the orthotropic reconstruction algorithm. An average of 30% faster subzone and global 

iteration times, while maintaining an accurate residual. This reduction in run time would most 

likely increase further in more complex reconstructions with larger meshes, as the adjoint 

calculation only requires two complete forward solutions. With code run time reduced it may 

be viable to implement orthotropic material models, in inverse reconstructions improving their 

accuracy. A study with orthotropic phantoms and patient data would define the quality of an 

orthotropic reconstruction and its possible application to a diagnostic model. 

 

The Rayleigh composition offers a new parameter to characterize regions within the breast, 

while the scattering and dispersion concepts identify specific attenuation behaviour in complex 

natural structures. The orthotropic algorithm, which may now be a viable reconstruction 

option, allows for a more accurate material model description. A clinical patient trial, where all 

three these results could be further analysed would most likely be very beneficial to future 

development.   
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Appendices 

 

A. Incompressible Elasticity Theory 

 

The equations relating axial stress and strain for a compressible, linear elastic, isotropic 

material in three dimensions can be written as 

 

 

 [Eq. A.1] 

 

where σx, σy and σz  are the stresses in each of the coordinate directions, εx, εy  and εz are the 

corresponding strains, E is the elastic modulus and ν is the Poisson’s ratio. Rearranging Eq. A.1 

to give stresses in terms of strains gives 
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[Eq. A.2] 

 

with Lame’s first parameter given by λ = νE(1+ν)(1−2ν), and Lame’s second parameter, 

commonly known as the shear modulus, given by µ = E2(1+ν). The definition of shear modulus 

gives the shear stresses, τij  as 

 

 

 [Eq. A.3] 

 

where γij are the corresponding shear strains. The volumetric strain, e, of an elastic solid is 

given by: 

 

 

[Eq. A.4] 

 

where ΔV is the change in total volume, V for a given strain state. The definitions of axial 

strains, εx = ∂u/∂x, εy = ∂u/∂y and εz = ∂u/∂z, mean the volumetric strain is also the divergence 

of the vector displacement field u, where e = ∇ · u.  As ν  →  0.5,  Eq. A.1 and Eq. A.4 show that 

e  →  0,  therefore the material becomes incompressible.   

Examining Eq. A.2, it is seen that the stresses are singular in this case, because as λ tends 

towards infinity, ν tends towards 0.5. To deal with this singularity, the overall stress is broken 

down into two components, the dilatational stress, and the deviatoric stresses, so that 
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[Eq. A.5] 

 

where the dilatational stress is given by 

 

 

[Eq. A.6] 

 

And where the bulk modulus, K is given by  

 

 

[Eq. A.7] 

 

The dilatational stress is often given as a scalar pressure,  

 

 

[Eq. A.8] 

 

The deviatoric stresses are leftover once dilatational effects have been accounted for, so are 

given by 
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[Eq. A.9] 

 

and 

 

 

[Eq. A.10] 

 

This implies 

 

 

[Eq. A.11] 

 

The deviatoric stresses can be shown to produce no net volume change by considering the 

deviatoric strains, 
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[Eq. A.12] 

 

The volumetric strain produced by the deviatoric stresses is given by 

 

 

[Eq. A.13] 

 

The deviatoric stresses are therefore the components of the overall axial stress that produce 

changes in shape without any changes in volume. Using Eq. A.2, Eq. A.7 and Eq. A.9, the 

deviatoric stresses can be expressed as 

 

 

[Eq. A.14] 

 

An incompressible material will have zero volumetric strain, e, therefore the deviatoric stresses 

in this case are given by 

 

[Eq. A.15] 
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The isotropic stress tensor, for an incompressible material is therefore given by 

 

 

[Eq. A.16] 

 

where Eq. A.6, Eq. A.8 and Eq. A.15 give the axial stresses as 

 

 

[Eq. A.17] 

 

Eq. A.3 relating shear stresses and strains remains unchanged. Equilibrium conditions for the 

material occur when the internal stresses equal the sum of the inertial and external forces, 

 

 

[Eq. A.18] 

 

where ρ is the density of the material and f represents the external forces. This divergence 

operation can be expanded in x, y, z coordinates as 
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[Eq. A.19] 

 

where 

 

 

[Eq. A.20] 

 

and i^, j^ and k^ are unit vectors in the x, y and z directions respectively. The definitions of axial 

and shear strains are given by  

 

 

 [Eq. A.21a] 
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[Eq. A.21b] 

 

where u, v and w are the displacements in the x, y and z coordinate directions respectively. 

Combine Eq. A.17, Eq. A.3, Eq. A.19 and Eq.A.20 and Eq.A.21 gives 

 

 

[Eq. A.22] 

 

This can be written in the form of a partial differential equation (PDE) as,  

 

[Eq. A.23] 

 

These equations, together with the continuity equation 
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[Eq. A.24] 

 

describe  the  behavior  of  a  material  with  a  Poisson’s  ratio  of  0.499999  and  higher. 

Standard compressible elasticity equations become highly sensitive for Poisson’s ratio’s of 

above about 0.495. Eq. A.24 means that the term ∇·u in Eq. A.23 → zero as K → infinity. This 

term is left in the PDE to ensure the boundary integrals in the finite element weak form 

represent elastic stresses. 

 

B. Finite Element Formulation 

 

This section details the methods used to transform the incompressible elasticity equations into 

a finite element (FE) form. Figure B.1 shows the 27 node hexahedral elements used in the FE 

formulation, with the local (ξ, η, ζ) coordinate system.    

 

Figure B.1: 27 node Hexahedral element with node numbering scheme and local (ξ, η, ζ) coordinate system 
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Tri-quadratic displacement and tri-linear pressure support are used, as elements with 

displacement support one order above that of pressure give good convergence behavior for 

incompressible materials. The node numbering scheme is shown in the figure, and given by the 

nodal coordinates:  

 

 

[Eq. B.1] 

 

Quadratic elements perform well for geometries with curved boundaries and displacement 

patterns, and hexahedral elements were chosen as the regular pattern of nodes is compatible 

with the voxel-based MRI motion data.  Support of a function, g(ξ, η, ζ) on a set of basis 

functions is defined as 

 

 

[Eq. B.2] 
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where gi  is the function value at the N  nodes of the element, and φi  are the basis functions, 

given by 

 

 

[Eq. B.3] 

 

where i = 0, 1, 2, and 

 

[Eq. B.4] 

 

Each basis function, φi, has a value of 1 at node i, and zero at all other nodes. They are 

constructed so that for any point    within the element, 
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 [Eq. B.5] 

 

the x, y and z coordinates, as well as the u, v and w displacements are supported on these basis 

functions, so this type of element is known as “Isoparametric”, because both the displacements 

and coordinates are described by the same parametric variation. This ensures the element 

possesses rigid body modes, e.g. the element can displace as a whole with no internal stresses 

generated.  If φ = [φ1 φ2 . . . φ27], the displacements, u, v, w, and coordinates, x, y, z, are given 

by 

 

 

[Eq. B.6a] 

 

 

[Eq. B.6b] 

 

where Ui, Vi and Wi are vectors containing the appropriate nodal displacement at all 27 nodes, 

and similarly Xi, Yi, and Zi contain the appropriate nodal coordinates. The tri-linear pressure 

function, P (x, y, z) is supported over the element by a constant P, ∂P/∂x, ∂P/∂y and ∂P/∂z. This 

basis function is denoted by ψ, so that the pressure distribution is given by 
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[Eq. B.7] 

 

where pi is a vector which contains the constant pressure and its derivatives for a given 

element, and the basis functions ψi  are given by 

 

 

[Eq. B.8] 

 

An arbitrarily shaped element in the (x, y, z) coordinate system is mapped onto the reference 

element shown in Fig. B.1 ((ξ, η, ζ) coordinate system) by the transformation  

 

[Eq. B.9] 

 

where x represents a coordinate in the x, y, z coordinate system, ξ represents a coordinate in 

the ξ, η, ζ coordinate system, and Fe  is given by  

 

 

[Eq. B.10] 
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The derivatives of the basis functions between the two coordinate systems are related by 

 

 

[Eq. B.11] 

 

Using Eq. B.6b, the coordinate Jacobian, Jc, can be calculated by 

 

 

[Eq. B.12] 

 

C. Regularization Techniques 

 

The error function, Φ, places no restrictions on the material property values or their 

distribution.  This means any distribution which decreases Φ will be acceptable as a solution, 

whether or not it is physically realistic. Some a-priori information about the true material 

property solution can be deduced by considering the structure of human tissue. Techniques 

which involve modifying Φ in an attempt to make the reconstruction algorithm prefer solutions 

which fit this a-priori information are known as regularization techniques. Three regularization 

methods are included in the reconstruction code, Tikhonov, Total variation minimization and 

spatial filtering. To increase the flexibility of the inversion algorithm, the relative level of each 

type of regularization is allowed to vary linearly as the iterations progress.  
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Tikhonov Regularization 

 

A rough estimate for the material property values is provided as an initial guess to the material 

property distribution. Tikhonov regularization is a method of ensuring the material property 

solution does not vary wildly from this initial guess.  The function for Φ is modified to Φtk, 

 

 

[Eq. C.1] 

 

where θ is the current material property estimate, θ0  is the initial material property guess, and 

αtk is the weighting applied to Tikhonov regularization. This Regularization technique effectively 

penalizes solutions according to how far they deviate from the initial guess, therefore will 

preferentially select solutions which are closer to the initial guess. A modification to this 

method is where θ0 is set to the previous material property estimate at each iteration, limiting 

the change in material properties for each iteration, but not the total deviation from the initial 

guess. 

Total variation minimization 

 

Human tissue contains areas of particular tissue types, with each area having approximately 

constant material properties.  Total variation minimization (TV) provides a means to 

preferentially select material property distributions which consist of discrete regions of constant 

material properties over distributions with a greater degree of spatial variation. The function for 

Φ is modified to Φtv, 
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[Eq. C.2] 

 

where ∇θ is the spatial variation of the material property, θ, and αtv  is the weighting applied to 

TV. The integral means that the level of total variation is the area under the √∇θH∇θ curve. The 

addition of total variation minimization will preferentially select material property distributions 

consisting of discrete regions of constant material properties over distributions with higher 

levels of spatial variation which will hopefully lead to cleaner, more physiologically correct 

image.    

 

Spatial Filtering 

 

Spatial filtering is a smoothing technique, based on the idea that there should not be large 

variations in material properties in regions of a particular tissue type. It does have the effect 

losing some of the definition of boundaries between tissue types, so is often used with a low 

weighting at later iterations. The technique involves simply replacing each material property 

value with a weighted average of the material property value and that of its closest neighbours, 

so that the spatially filtered value for a material is 

 

 

[Eq. C.2] 

 

where wsf  is a weighting applied to spatial filtering, lt refers to the nodes in the vicinity of node 

k, and Ncon  is the number of these nodes. 
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D. Adjoint Residual Terms 

 

                 
                  

        i,j,k = 1,2,...,6 

[Eq. 5.11] 
 
Equation 5.11 with the expanded constitutive terms, 

 

0 = 
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The Orthotropic Adjoint Stiffness matrix A = 
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In order to build the Jacobian matrix directly, it is necessary to determine the derivative terms 

for the stiffness matrix with respect to the compliance terms analytically. The 16 non-zero 

derivate terms have been expanded below, 
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E. FORTRAN Code Sample for Adjoint Residual 

 

 

!ortho! 

!ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooo 

!ortho!  

!ortho!  subroutine 

orthoadjointgrad(adjntmesh,truedisp,adjntdisp,adjntmtrl,orthograd) 

!ortho!   

!ortho!  use reporterror 

!ortho!  use optimizationparams  

!ortho!  use hex27!, only 

!ortho!  use gaussnewton 

!ortho!  use FEmatrix 

!ortho!  use FEmesh 

!ortho!  use FEmaterial 

!ortho!  use FEsolution 

!ortho!  use FEproblem 

!ortho!   

!ortho!  implicit none 

!ortho!   

!ortho!  logical 

dSind(6,6,9),dAddind(9,6,6),dApdind(3,6,6),dAppind(6,6) 

!ortho!   

!ortho!  integer 

el,i,j,ii,jj,kk,ll,iii,jjj,kkk,lll,jjp,iip,mtrnod,iinod,jjnod 

!ortho!  integer 

ig,jg,kg,iia,iib,iic,jja,jjb,jjc,iix,iiy,iiz,jjx,jjy,jjz 

!ortho!  integer np,adjntind 

!ortho!   

!ortho!  real*8 xi(numgp),eta(numgp),zeta(numgp),w(numgp) 

!ortho!  real*8 

phi(numgp,numgp,numgp,nodperelm),dphi(numgp,numgp,numgp,3,nodperelm) 

!ortho!  real*8 psi(numgp,numgp,numgp,pressperpoint) 

!ortho!  real*8 

xyz(nodperelm,3),gaussg(numgp,numgp,numgp),diffphi(3,nodperelm),jacobd

et 
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!ortho!  real*8 

dpx(numgp,numgp,numgp,nodperelm),dpy(numgp,numgp,numgp,nodperelm),dpz(

numgp,numgp,numgp,nodperelm) 

!ortho!  real*8 

dpxiig,dpxjjg,dpyiig,dpyjjg,dpziig,dpzjjg,Piig,Pjjg,Pkkg,wdetjg 

!ortho!   

!ortho!  real*8 omsqr,realscalar,imagscalar,dAdrho,symfac 

!ortho!   

!ortho!  complex*16 dAppg(pressperpoint,pressperpoint,9,nodperelm) 

!ortho!  complex*16 

dAddg(9,9,nodperelm),dApdg(pressperpoint,3,9,nodperelm) 

!ortho!  complex*16 dAdd(9,6,6),dApd(3,6,6),dApp(6,6) 

!ortho!   

!ortho!  complex*16 longmod(3),shearmod(3),poissratio(6),density 

!ortho!  complex*16 

Sg(numgp,numgp,numgp,6,6),rhog(numgp,numgp,numgp) 

!ortho!  complex*16 

S11,S22,S33,S44,S55,S66,S12,S13,S21,S23,S31,S32,SB 

!ortho!  complex*16 

dS(numgp,numgp,numgp,6,6,9,nodperelm),dSg(6,6,9,nodperelm) 

!ortho!   

!ortho!  type(mesh), intent(in) :: adjntmesh 

!ortho!  type(material), intent(in) :: adjntmtrl 

!ortho!  type(displacement), intent(in) :: truedisp,adjntdisp 

!ortho!  type(mtrlgrad), intent(inout) :: orthograd 

!ortho!    

!ortho!  if(.not.adjntmesh%initialized) print *,'!!! ERROR: 

Assembling Orthotropic Adjoint from Uninialized Mesh' 

!ortho!  if(.not.adjntmtrl%initialized) print *,'!!! ERROR: 

Assembling Orthotropic Adjoint from Uninialized Material' 

!ortho!  if(.not.adjntdisp%initialized) print *,'!!! ERROR: 

Assembling Orthotropic Adjoint from Uninialized Displacement' 

!ortho!        

!ortho!  call gaussinit(xi,eta,zeta,w)  

!ortho!  call localelement(phi,dphi,psi,xi,eta,zeta) 

!ortho!  call orthoderivindex(dSind,dAddind,dApdind,dAppind)  

!ortho!        

!ortho!  omsqr=frqncy*frqncy 

!ortho!   

!ortho!   ! Begin Element Loop! 

!ortho!   ! ==================!  

!ortho!     do 100 el = 1,adjntmesh%ne 

!ortho!   

!ortho!     np=3*adjntmesh%nn+pressperpoint*(el-1) 

!ortho!   

!ortho!  Sg(:,:,:,:,:)=dcmplx(0.d0,0.d0) 

!ortho!  dS(:,:,:,:,:,:,:)=dcmplx(0.d0,0.d0) 

!ortho!   

!ortho!     do ii = 1,adjntmesh%npe 

!ortho!       xyz(ii,1) = adjntmesh%node(adjntmesh%in(el,ii))%x 

!ortho!       xyz(ii,2) = adjntmesh%node(adjntmesh%in(el,ii))%y 

!ortho!       xyz(ii,3) = adjntmesh%node(adjntmesh%in(el,ii))%z 
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!ortho!     enddo  

!ortho!  

!ortho!  ! Perform coordinate transformation (dphi/deta->dphi/dx) 

for the element: 

!ortho!    do ii = 1,adjntmesh%ngp ! Loop! for xi_i          

!ortho!         do jj = 1,adjntmesh%ngp ! Loop! for eta_i 

!ortho!           do kk = 1,adjntmesh%ngp  ! Loop! for zeta_i 

!ortho!              

!ortho!             do i = 1,3 

!ortho!               do j = 1,adjntmesh%npe 

!ortho!                 diffphi(i,j) = dphi(ii,jj,kk,i,j) 

!ortho!               enddo 

!ortho!             enddo 

!ortho!     

!ortho!             call transcoord(jacobdet,diffphi,xyz) 

!ortho!  

!ortho!             gaussg(ii,jj,kk) = jacobdet*w(ii)*w(jj)*w(kk)  

!ortho!      

!ortho!             do i = 1,adjntmesh%npe 

!ortho!               dpx(ii,jj,kk,i) = diffphi(1,i) 

!ortho!               dpy(ii,jj,kk,i) = diffphi(2,i) 

!ortho!               dpz(ii,jj,kk,i) = diffphi(3,i) 

!ortho!                

!ortho!               !property values 

!ortho!               mtrnod=adjntmesh%in(el,i) 

!ortho!       

!ortho!      !longitudinal moduli (E1, E2, and E3): 

!ortho!               realscalar=adjntmtrl%prop(1)%scalar(1) 

!ortho!               imagscalar=adjntmtrl%prop(1)%scalar(2) 

!ortho!               do j=1,adjntmtrl%prop(1)%nvpp 

!ortho!      

longmod(j)=dcmplx(realscalar*dble(adjntmtrl%prop(1)%value(mtrnod,j)),i

magscalar*dimag(adjntmtrl%prop(1)%value(mtrnod,j))) 

!ortho!      enddo 

!ortho!        

!ortho!      !shear moduli (mu12, mu23, and mu31): 

!ortho!               realscalar=adjntmtrl%prop(2)%scalar(1) 

!ortho!               imagscalar=adjntmtrl%prop(2)%scalar(2) 

!ortho!               do j=1,adjntmtrl%prop(2)%nvpp 

!ortho!      

shearmod(j)=dcmplx(realscalar*dble(adjntmtrl%prop(2)%value(mtrnod,j)),

imagscalar*dimag(adjntmtrl%prop(2)%value(mtrnod,j))) 

!ortho!      enddo 

!ortho!  

!ortho!      !Poisson ratios (v12, v23, and v31): 

!ortho!               realscalar=adjntmtrl%prop(3)%scalar(1) 

!ortho!               imagscalar=adjntmtrl%prop(3)%scalar(2) 

!ortho!               do j=1,adjntmtrl%prop(3)%nvpp 

!ortho!      

poissratio(j)=dcmplx(realscalar*dble(adjntmtrl%prop(3)%value(mtrnod,j)

),imagscalar*dimag(adjntmtrl%prop(3)%value(mtrnod,j))) 

!ortho!      enddo 
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!ortho!       

!ortho!      !Poisson ratios (v21, v32, and v13): 

!ortho!      

poissratio(4)=(longmod(2)/longmod(1))*poissratio(1) !v21 

!ortho!      

poissratio(5)=(longmod(3)/longmod(2))*poissratio(2) !v32 

!ortho!      

poissratio(6)=(longmod(1)/longmod(3))*poissratio(3) !v13 

!ortho!  

!ortho!      !Compliance Matrix 

!ortho!      Sg(ii,jj,kk,1,1)=Sg(ii,jj,kk,1,1) + 

phi(ii,jj,kk,i)*(1.d0/longmod(1)) 

!ortho!      Sg(ii,jj,kk,2,2)=Sg(ii,jj,kk,2,2) + 

phi(ii,jj,kk,i)*(1.d0/longmod(2)) 

!ortho!      Sg(ii,jj,kk,3,3)=Sg(ii,jj,kk,3,3) + 

phi(ii,jj,kk,i)*(1.d0/longmod(3)) 

!ortho!      Sg(ii,jj,kk,4,4)=Sg(ii,jj,kk,4,4) + 

phi(ii,jj,kk,i)*(1.d0/shearmod(1)) 

!ortho!      Sg(ii,jj,kk,5,5)=Sg(ii,jj,kk,5,5) + 

phi(ii,jj,kk,i)*(1.d0/shearmod(2)) 

!ortho!      Sg(ii,jj,kk,6,6)=Sg(ii,jj,kk,6,6) + 

phi(ii,jj,kk,i)*(1.d0/shearmod(3)) 

!ortho!      Sg(ii,jj,kk,1,2)=Sg(ii,jj,kk,1,2) - 

phi(ii,jj,kk,i)*(poissratio(4)/longmod(2)) 

!ortho!      Sg(ii,jj,kk,2,3)=Sg(ii,jj,kk,2,3) - 

phi(ii,jj,kk,i)*(poissratio(5)/longmod(3)) 

!ortho!      Sg(ii,jj,kk,3,1)=Sg(ii,jj,kk,3,1) - 

phi(ii,jj,kk,i)*(poissratio(6)/longmod(1)) 

!ortho!       

!ortho!      !Compliance Matrix Derivatives 

!ortho!      call 

orthocompliancederivs(dS(ii,jj,kk,:,:,:,i),phi(ii,jj,kk,i),longmod,she

armod,poissratio) 

!ortho!             enddo 

!ortho!                     

!ortho!           enddo 

!ortho!         enddo 

!ortho!       enddo           

!ortho!  

!ortho!    !oooooooooooooooooooooooooooooooooooooooooooooooooooooooo           

!ortho!       !o Nodal Looping Begins                               

ooo 

!ortho!    !oooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

!ortho!     

!ortho!    do 200 ii=1,adjntmesh%npe !Interpolaton Fucntion loop 

!ortho!   iinod=adjntmesh%in(el,ii) 

!ortho!   iia=3*ii-2 

!ortho!   iib=3*ii-1 

!ortho!   iic=3*ii 

!ortho!   iix=3*adjntmesh%in(el,ii)-2 

!ortho!   iiy=3*adjntmesh%in(el,ii)-1 

!ortho!   iiz=3*adjntmesh%in(el,ii) 
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!ortho!    

!ortho!   do 300 jj=ii,adjntmesh%npe !Weighting Function loop ! 

only build top half of symm matrix 

!ortho!     jjnod=adjntmesh%in(el,jj) 

!ortho!     jja=3*jj-2 

!ortho!     jjb=3*jj-1 

!ortho!     jjc=3*jj 

!ortho!     jjx=3*adjntmesh%in(el,jj)-2 

!ortho!     jjy=3*adjntmesh%in(el,jj)-1 

!ortho!     jjz=3*adjntmesh%in(el,jj) 

!ortho!      

!ortho!     do 400 kk=1,adjntmesh%npe 

!ortho!       mtrnod=adjntmesh%in(el,kk) 

!ortho!     

!ortho!    dAddg(:,:,:)=dcmplx(0.d0,0.d0) 

!ortho!    dApdg(:,:,:,:)=dcmplx(0.d0,0.d0) 

!ortho!    dAppg(:,:,:,:)=dcmplx(0.d0,0.d0) 

!ortho!       dAdrho=0.d0 

!ortho!         

!ortho!      !oooooooooooooooooooooooooooooooooooooooooooooooo 

!ortho!    !o Gauss Point Looping Begins                 ooo 

!ortho!    !oooooooooooooooooooooooooooooooooooooooooooooooo 

!ortho!   

!ortho!    do 500 ig = 1,adjntmesh%ngp  ! loop for xi_i 

!ortho!         do 500 jg = 1,adjntmesh%ngp  ! loop for eta_i 

!ortho!         do 500 kg = 1,adjntmesh%ngp  ! loop for zeta_i 

!ortho!      dpxiig=dpx(ig,jg,kg,ii) 

!ortho!      dpxjjg=dpx(ig,jg,kg,jj) 

!ortho!      dpyiig=dpy(ig,jg,kg,ii) 

!ortho!      dpyjjg=dpy(ig,jg,kg,jj) 

!ortho!      dpziig=dpz(ig,jg,kg,ii) 

!ortho!      dpzjjg=dpz(ig,jg,kg,jj) 

!ortho!      Piig=phi(ig,jg,kg,ii) 

!ortho!      Pjjg=phi(ig,jg,kg,jj) 

!ortho!      Pkkg=phi(ig,jg,kg,kk) 

!ortho!      wdetjg=gaussg(ig,jg,kg) 

!ortho!       

!ortho!      S11=Sg(ig,jg,kg,1,1) 

!ortho!      S22=Sg(ig,jg,kg,2,2) 

!ortho!      S33=Sg(ig,jg,kg,3,3) 

!ortho!      S44=Sg(ig,jg,kg,4,4) 

!ortho!      S55=Sg(ig,jg,kg,5,5) 

!ortho!      S66=Sg(ig,jg,kg,6,6) 

!ortho!      S12=Sg(ig,jg,kg,1,2) 

!ortho!      S23=Sg(ig,jg,kg,2,3) 

!ortho!      S31=Sg(ig,jg,kg,3,1) 

!ortho!       

!ortho!      dSg(:,:,:,:)=dS(ig,jg,kg,:,:,:,:) 

!ortho!       

!ortho!      !Enforce symmetry of compliance matrix 

!ortho!      S21=S12 

!ortho!      S32=S23 
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!ortho!      S13=S31 

!ortho!       

!ortho!      call 

orthostiffconstderivs(dAdd,dApd,dApp,S11,S22,S33,S44,S55,S66,S12,S13,S

21,S23,S31,S32,dpxiig,dpxjjg,dpyiig,dpyjjg,dpziig,dpzjjg) 

!ortho!    

!ortho!      !Do required summations/integrations (STIFFNESS 

MATRIX TERMS) 

!ortho!       

!ortho!      do iii=1,adjntmtrl%prop(1)%nvpp !longitudinal 

modulus terms (E1, E2, and E3): 

!ortho!      if(cmplxparamind(1,iii)) then 

!ortho!     

!ortho!      do jjj=1,3 

!ortho!      do kkk=jjj,3 !S(1-3,1-3) terms 

!ortho!      if(dSind(jjj,kkk,iii)) then 

!ortho!      if(kkk.eq.jjj) then 

!ortho!      symfac=1.d0 

!ortho!      else 

!ortho!      symfac=2.d0 

!ortho!      endif 

!ortho!  

!ortho!      if(dAddind(1,jjj,kkk)) dAddg(1,iii,kk) = 

dAddg(1,iii,kk) + symfac*dSg(jjj,kkk,iii,kk)*dAdd(1,jjj,kkk)*wdetjg ! 

A(mx,nx): Eq. in x, Terms in u       

!ortho!      if(dAddind(4,jjj,kkk)) dAddg(4,iii,kk) = 

dAddg(4,iii,kk) + symfac*dSg(jjj,kkk,iii,kk)*dAdd(4,jjj,kkk)*wdetjg ! 

A(mx,ny): Eq. in x, Terms in v 

!ortho!      if(dAddind(7,jjj,kkk)) dAddg(7,iii,kk) = 

dAddg(7,iii,kk) + symfac*dSg(jjj,kkk,iii,kk)*dAdd(7,jjj,kkk)*wdetjg ! 

A(mx,nz): Eq. in x, Terms in w       

!ortho!       

!ortho!      if(dAddind(2,jjj,kkk)) dAddg(2,iii,kk) = 

dAddg(2,iii,kk) + symfac*dSg(jjj,kkk,iii,kk)*dAdd(2,jjj,kkk)*wdetjg ! 

A(my,nx): Eq. in y, Terms in u       

!ortho!      if(dAddind(5,jjj,kkk)) dAddg(5,iii,kk) = 

dAddg(5,iii,kk) + symfac*dSg(jjj,kkk,iii,kk)*dAdd(5,jjj,kkk)*wdetjg ! 

A(my,ny): Eq. in y, Terms in v       

!ortho!      if(dAddind(8,jjj,kkk)) dAddg(8,iii,kk) = 

dAddg(8,iii,kk) + symfac*dSg(jjj,kkk,iii,kk)*dAdd(8,jjj,kkk)*wdetjg ! 

A(my,nz): Eq. in y, Terms in w     

!ortho!     

!ortho!      if(dAddind(3,jjj,kkk)) dAddg(3,iii,kk) = 

dAddg(3,iii,kk) + symfac*dSg(jjj,kkk,iii,kk)*dAdd(3,jjj,kkk)*wdetjg ! 

A(mz,nx): Eq. in z, Terms in u       

!ortho!      if(dAddind(6,jjj,kkk)) dAddg(6,iii,kk) = 

dAddg(6,iii,kk) + symfac*dSg(jjj,kkk,iii,kk)*dAdd(6,jjj,kkk)*wdetjg ! 

A(mz,ny): Eq. in z, Terms in v       

!ortho!      if(dAddind(9,jjj,kkk)) dAddg(9,iii,kk) = 

dAddg(9,iii,kk) + symfac*dSg(jjj,kkk,iii,kk)*dAdd(9,jjj,kkk)*wdetjg ! 

A(mz,nz): Eq. in z, Terms in w       

!ortho!                          
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!ortho!      ! Pressure terms 

!ortho!      if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!       do iip=1,pressperpoint 

!ortho!        if(dApdind(1,jjj,kkk)) 

dApdg(iip,1,iii,kk)=dApdg(iip,1,iii,kk)-

psi(ig,jg,kg,iip)*symfac*dSg(jjj,kkk,iii,kk)*dApd(1,jjj,kkk)*wdetjg ! 

A(mx,np): Eq. in x, Pressure Terms 

!ortho!        if(dApdind(2,jjj,kkk)) 

dApdg(iip,2,iii,kk)=dApdg(iip,2,iii,kk)-

psi(ig,jg,kg,iip)*symfac*dSg(jjj,kkk,iii,kk)*dApd(2,jjj,kkk)*wdetjg ! 

A(my,np): Eq. in y, Pressure Terms 

!ortho!        if(dApdind(3,jjj,kkk)) 

dApdg(iip,3,iii,kk)=dApdg(iip,3,iii,kk)-

psi(ig,jg,kg,iip)*symfac*dSg(jjj,kkk,iii,kk)*dApd(3,jjj,kkk)*wdetjg ! 

A(mz,np): Eq. in z, Pressure Terms 

!ortho!       enddo           

!ortho!      endif 

!ortho!       

!ortho!      if 

((ii.eq.adjntmesh%npe).and.(jj.eq.adjntmesh%npe)) then !fill in 

pressure/pressure terms (bottom corner of matrix) 

!ortho!       do iip=1,pressperpoint      

!ortho!        do jjp=iip,pressperpoint 

!ortho!      if(dAppind(jjj,kkk)) 

dAppg(iip,jjp,iii,kk)=dAppg(iip,jjp,iii,kk)+psi(ig,jg,kg,iip)*psi(ig,j

g,kg,jjp)*symfac*dSg(jjj,kkk,iii,kk)*dApp(jjj,kkk)*wdetjg 

!ortho!        enddo 

!ortho!       enddo     

!ortho!      endif 

!ortho!       

!ortho!      endif !end dSind condition 

!ortho!      enddo !end kkk loop 

!ortho!       

!ortho!      lll=jjj+3 !S(4,4),S(5,5) & S(6,6) terms 

!ortho!      if(dSind(lll,lll,iii)) then 

!ortho!       

!ortho!      if(dAddind(1,lll,lll)) dAddg(1,iii,kk) = 

dAddg(1,iii,kk) + dSg(lll,lll,iii,kk)*dAdd(1,lll,lll)*wdetjg ! 

A(mx,nx): Eq. in x, Terms in u       

!ortho!      if(dAddind(4,lll,lll)) dAddg(4,iii,kk) = 

dAddg(4,iii,kk) + dSg(lll,lll,iii,kk)*dAdd(4,lll,lll)*wdetjg ! 

A(mx,ny): Eq. in x, Terms in v 

!ortho!      if(dAddind(7,lll,lll)) dAddg(7,iii,kk) = 

dAddg(7,iii,kk) + dSg(lll,lll,iii,kk)*dAdd(7,lll,lll)*wdetjg ! 

A(mx,nz): Eq. in x, Terms in w       

!ortho!       

!ortho!      if(dAddind(2,lll,lll)) dAddg(2,iii,kk) = 

dAddg(2,iii,kk) + dSg(lll,lll,iii,kk)*dAdd(2,lll,lll)*wdetjg ! 

A(my,nx): Eq. in y, Terms in u       
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!ortho!      if(dAddind(5,lll,lll)) dAddg(5,iii,kk) = 

dAddg(5,iii,kk) + dSg(lll,lll,iii,kk)*dAdd(5,lll,lll)*wdetjg ! 

A(my,ny): Eq. in y, Terms in v       

!ortho!      if(dAddind(8,lll,lll)) dAddg(8,iii,kk) = 

dAddg(8,iii,kk) + dSg(lll,lll,iii,kk)*dAdd(8,lll,lll)*wdetjg ! 

A(my,nz): Eq. in y, Terms in w     

!ortho!     

!ortho!      if(dAddind(3,lll,lll)) dAddg(3,iii,kk) = 

dAddg(3,iii,kk) + dSg(lll,lll,iii,kk)*dAdd(3,lll,lll)*wdetjg ! 

A(mz,nx): Eq. in z, Terms in u       

!ortho!      if(dAddind(6,lll,lll)) dAddg(6,iii,kk) = 

dAddg(6,iii,kk) + dSg(lll,lll,iii,kk)*dAdd(6,lll,lll)*wdetjg ! 

A(mz,ny): Eq. in z, Terms in v       

!ortho!      if(dAddind(9,lll,lll)) dAddg(9,iii,kk) = 

dAddg(9,iii,kk) + dSg(lll,lll,iii,kk)*dAdd(9,lll,lll)*wdetjg ! 

A(mz,nz): Eq. in z, Terms in w       

!ortho!                          

!ortho!      ! Pressure terms 

!ortho!      if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!       do iip=1,pressperpoint 

!ortho!        if(dApdind(1,lll,lll)) 

dApdg(iip,1,iii,kk)=dApdg(iip,1,iii,kk)-

psi(ig,jg,kg,iip)*dSg(lll,lll,iii,kk)*dApd(1,lll,lll)*wdetjg ! 

A(mx,np): Eq. in x, Pressure Terms 

!ortho!        if(dApdind(2,lll,lll)) 

dApdg(iip,2,iii,kk)=dApdg(iip,2,iii,kk)-

psi(ig,jg,kg,iip)*dSg(lll,lll,iii,kk)*dApd(2,lll,lll)*wdetjg ! 

A(my,np): Eq. in y, Pressure Terms 

!ortho!        if(dApdind(3,lll,lll)) 

dApdg(iip,3,iii,kk)=dApdg(iip,3,iii,kk)-

psi(ig,jg,kg,iip)*dSg(lll,lll,iii,kk)*dApd(3,lll,lll)*wdetjg ! 

A(mz,np): Eq. in z, Pressure Terms 

!ortho!       enddo           

!ortho!      endif 

!ortho!       

!ortho!      if 

((ii.eq.adjntmesh%npe).and.(jj.eq.adjntmesh%npe)) then !fill in 

pressure/pressure terms (bottom corner of matrix) 

!ortho!       do iip=1,pressperpoint      

!ortho!        do jjp=iip,pressperpoint 

!ortho!      if(dAppind(lll,lll)) 

dAppg(iip,jjp,iii,kk)=dAppg(iip,jjp,iii,kk)+psi(ig,jg,kg,iip)*psi(ig,j

g,kg,jjp)*dSg(lll,lll,iii,kk)*dApp(lll,lll)*wdetjg 

!ortho!        enddo 

!ortho!       enddo     

!ortho!      endif 

!ortho!       

!ortho!      endif !end dSind(lll,lll,iii) condition 

!ortho!      enddo !end jjj loop 

!ortho!      endif 

!ortho!      enddo !end iii loop 
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!ortho!  

!ortho!      do iii=1,adjntmtrl%prop(2)%nvpp !shear modulus 

terms (mu12, mu23, and mu31): 

!ortho!      if(cmplxparamind(2,iii)) then 

!ortho!     

!ortho!      do jjj=1,3 

!ortho!      do kkk=jjj,3 !S(1-3,1-3) terms 

!ortho!      if(dSind(jjj,kkk,iii+3)) then 

!ortho!      if(kkk.eq.jjj) then 

!ortho!      symfac=1.d0 

!ortho!      else 

!ortho!      symfac=2.d0 

!ortho!      endif 

!ortho!  

!ortho!      if(dAddind(1,jjj,kkk)) dAddg(1,iii+3,kk) = 

dAddg(1,iii+3,kk) + 

symfac*dSg(jjj,kkk,iii+3,kk)*dAdd(1,jjj,kkk)*wdetjg ! A(mx,nx): Eq. in 

x, Terms in u       

!ortho!      if(dAddind(4,jjj,kkk)) dAddg(4,iii+3,kk) = 

dAddg(4,iii+3,kk) + 

symfac*dSg(jjj,kkk,iii+3,kk)*dAdd(4,jjj,kkk)*wdetjg ! A(mx,ny): Eq. in 

x, Terms in v 

!ortho!      if(dAddind(7,jjj,kkk)) dAddg(7,iii+3,kk) = 

dAddg(7,iii+3,kk) + 

symfac*dSg(jjj,kkk,iii+3,kk)*dAdd(7,jjj,kkk)*wdetjg ! A(mx,nz): Eq. in 

x, Terms in w       

!ortho!       

!ortho!      if(dAddind(2,jjj,kkk)) dAddg(2,iii+3,kk) = 

dAddg(2,iii+3,kk) + 

symfac*dSg(jjj,kkk,iii+3,kk)*dAdd(2,jjj,kkk)*wdetjg ! A(my,nx): Eq. in 

y, Terms in u       

!ortho!      if(dAddind(5,jjj,kkk)) dAddg(5,iii+3,kk) = 

dAddg(5,iii+3,kk) + 

symfac*dSg(jjj,kkk,iii+3,kk)*dAdd(5,jjj,kkk)*wdetjg ! A(my,ny): Eq. in 

y, Terms in v       

!ortho!      if(dAddind(8,jjj,kkk)) dAddg(8,iii+3,kk) = 

dAddg(8,iii+3,kk) + 

symfac*dSg(jjj,kkk,iii+3,kk)*dAdd(8,jjj,kkk)*wdetjg ! A(my,nz): Eq. in 

y, Terms in w     

!ortho!     

!ortho!      if(dAddind(3,jjj,kkk)) dAddg(3,iii+3,kk) = 

dAddg(3,iii+3,kk) + 

symfac*dSg(jjj,kkk,iii+3,kk)*dAdd(3,jjj,kkk)*wdetjg ! A(mz,nx): Eq. in 

z, Terms in u       

!ortho!      if(dAddind(6,jjj,kkk)) dAddg(6,iii+3,kk) = 

dAddg(6,iii+3,kk) + 

symfac*dSg(jjj,kkk,iii+3,kk)*dAdd(6,jjj,kkk)*wdetjg ! A(mz,ny): Eq. in 

z, Terms in v       

!ortho!      if(dAddind(9,jjj,kkk)) dAddg(9,iii+3,kk) = 

dAddg(9,iii+3,kk) + 

symfac*dSg(jjj,kkk,iii+3,kk)*dAdd(9,jjj,kkk)*wdetjg ! A(mz,nz): Eq. in 

z, Terms in w       
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!ortho!                          

!ortho!      ! Pressure terms 

!ortho!      if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!       do iip=1,pressperpoint 

!ortho!        if(dApdind(1,jjj,kkk)) 

dApdg(iip,1,iii+3,kk)=dApdg(iip,1,iii+3,kk)-

psi(ig,jg,kg,iip)*symfac*dSg(jjj,kkk,iii+3,kk)*dApd(1,jjj,kkk)*wdetjg 

! A(mx,np): Eq. in x, Pressure Terms 

!ortho!        if(dApdind(2,jjj,kkk)) 

dApdg(iip,2,iii+3,kk)=dApdg(iip,2,iii+3,kk)-

psi(ig,jg,kg,iip)*symfac*dSg(jjj,kkk,iii+3,kk)*dApd(2,jjj,kkk)*wdetjg 

! A(my,np): Eq. in y, Pressure Terms 

!ortho!        if(dApdind(3,jjj,kkk)) 

dApdg(iip,3,iii+3,kk)=dApdg(iip,3,iii+3,kk)-

psi(ig,jg,kg,iip)*symfac*dSg(jjj,kkk,iii+3,kk)*dApd(3,jjj,kkk)*wdetjg 

! A(mz,np): Eq. in z, Pressure Terms 

!ortho!       enddo           

!ortho!      endif 

!ortho!       

!ortho!      if 

((ii.eq.adjntmesh%npe).and.(jj.eq.adjntmesh%npe)) then !fill in 

pressure/pressure terms (bottom corner of matrix) 

!ortho!       do iip=1,pressperpoint      

!ortho!        do jjp=iip,pressperpoint 

!ortho!      if(dAppind(jjj,kkk)) 

dAppg(iip,jjp,iii+3,kk)=dAppg(iip,jjp,iii+3,kk)+psi(ig,jg,kg,iip)*psi(

ig,jg,kg,jjp)*symfac*dSg(jjj,kkk,iii+3,kk)*dApp(jjj,kkk)*wdetjg 

!ortho!        enddo 

!ortho!       enddo     

!ortho!      endif 

!ortho!       

!ortho!      endif !end dSind condition 

!ortho!      enddo !end kkk loop 

!ortho!       

!ortho!      lll=jjj+3 !S(4,4),S(5,5) & S(6,6) terms 

!ortho!      if(dSind(lll,lll,iii+3)) then 

!ortho!       

!ortho!      if(dAddind(1,lll,lll)) dAddg(1,iii+3,kk) = 

dAddg(1,iii+3,kk) + dSg(lll,lll,iii+3,kk)*dAdd(1,lll,lll)*wdetjg ! 

A(mx,nx): Eq. in x, Terms in u       

!ortho!      if(dAddind(4,lll,lll)) dAddg(4,iii+3,kk) = 

dAddg(4,iii+3,kk) + dSg(lll,lll,iii+3,kk)*dAdd(4,lll,lll)*wdetjg ! 

A(mx,ny): Eq. in x, Terms in v 

!ortho!      if(dAddind(7,lll,lll)) dAddg(7,iii+3,kk) = 

dAddg(7,iii+3,kk) + dSg(lll,lll,iii+3,kk)*dAdd(7,lll,lll)*wdetjg ! 

A(mx,nz): Eq. in x, Terms in w       

!ortho!       

!ortho!      if(dAddind(2,lll,lll)) dAddg(2,iii+3,kk) = 

dAddg(2,iii+3,kk) + dSg(lll,lll,iii+3,kk)*dAdd(2,lll,lll)*wdetjg ! 

A(my,nx): Eq. in y, Terms in u       
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!ortho!      if(dAddind(5,lll,lll)) dAddg(5,iii+3,kk) = 

dAddg(5,iii+3,kk) + dSg(lll,lll,iii+3,kk)*dAdd(5,lll,lll)*wdetjg ! 

A(my,ny): Eq. in y, Terms in v       

!ortho!      if(dAddind(8,lll,lll)) dAddg(8,iii+3,kk) = 

dAddg(8,iii+3,kk) + dSg(lll,lll,iii+3,kk)*dAdd(8,lll,lll)*wdetjg ! 

A(my,nz): Eq. in y, Terms in w     

!ortho!     

!ortho!      if(dAddind(3,lll,lll)) dAddg(3,iii+3,kk) = 

dAddg(3,iii+3,kk) + dSg(lll,lll,iii+3,kk)*dAdd(3,lll,lll)*wdetjg ! 

A(mz,nx): Eq. in z, Terms in u       

!ortho!      if(dAddind(6,lll,lll)) dAddg(6,iii+3,kk) = 

dAddg(6,iii+3,kk) + dSg(lll,lll,iii+3,kk)*dAdd(6,lll,lll)*wdetjg ! 

A(mz,ny): Eq. in z, Terms in v       

!ortho!      if(dAddind(9,lll,lll)) dAddg(9,iii+3,kk) = 

dAddg(9,iii+3,kk) + dSg(lll,lll,iii+3,kk)*dAdd(9,lll,lll)*wdetjg ! 

A(mz,nz): Eq. in z, Terms in w       

!ortho!                          

!ortho!      ! Pressure terms 

!ortho!      if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!       do iip=1,pressperpoint 

!ortho!        if(dApdind(1,lll,lll)) 

dApdg(iip,1,iii+3,kk)=dApdg(iip,1,iii+3,kk)-

psi(ig,jg,kg,iip)*dSg(lll,lll,iii+3,kk)*dApd(1,lll,lll)*wdetjg ! 

A(mx,np): Eq. in x, Pressure Terms 

!ortho!        if(dApdind(2,lll,lll)) 

dApdg(iip,2,iii+3,kk)=dApdg(iip,2,iii+3,kk)-

psi(ig,jg,kg,iip)*dSg(lll,lll,iii+3,kk)*dApd(2,lll,lll)*wdetjg ! 

A(my,np): Eq. in y, Pressure Terms 

!ortho!        if(dApdind(3,lll,lll)) 

dApdg(iip,3,iii+3,kk)=dApdg(iip,3,iii+3,kk)-

psi(ig,jg,kg,iip)*dSg(lll,lll,iii+3,kk)*dApd(3,lll,lll)*wdetjg ! 

A(mz,np): Eq. in z, Pressure Terms 

!ortho!       enddo           

!ortho!      endif 

!ortho!       

!ortho!      if 

((ii.eq.adjntmesh%npe).and.(jj.eq.adjntmesh%npe)) then !fill in 

pressure/pressure terms (bottom corner of matrix) 

!ortho!       do iip=1,pressperpoint      

!ortho!        do jjp=iip,pressperpoint 

!ortho!      if(dAppind(lll,lll)) 

dAppg(iip,jjp,iii+3,kk)=dAppg(iip,jjp,iii+3,kk)+psi(ig,jg,kg,iip)*psi(

ig,jg,kg,jjp)*dSg(lll,lll,iii+3,kk)*dApp(lll,lll)*wdetjg 

!ortho!        enddo 

!ortho!       enddo     

!ortho!      endif 

!ortho!       

!ortho!      endif !end dSind(lll,lll,iii+3) condition 

!ortho!      enddo !end jjj loop 

!ortho!      endif 

!ortho!      enddo !end iii loop 
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!ortho!  

!ortho!      do iii=1,adjntmtrl%prop(3)%nvpp !Poisson's 

ratio terms (v12, v23, and v31): 

!ortho!      if(cmplxparamind(3,iii)) then 

!ortho!     

!ortho!      do jjj=1,3 

!ortho!      do kkk=jjj,3 !S(1-3,1-3) terms 

!ortho!      if(dSind(jjj,kkk,iii+6)) then 

!ortho!      if(kkk.eq.jjj) then 

!ortho!      symfac=1.d0 

!ortho!      else 

!ortho!      symfac=2.d0 

!ortho!      endif 

!ortho!  

!ortho!      if(dAddind(1,jjj,kkk)) dAddg(1,iii+6,kk) = 

dAddg(1,iii+6,kk) + 

symfac*dSg(jjj,kkk,iii+6,kk)*dAdd(1,jjj,kkk)*wdetjg ! A(mx,nx): Eq. in 

x, Terms in u       

!ortho!      if(dAddind(4,jjj,kkk)) dAddg(4,iii+6,kk) = 

dAddg(4,iii+6,kk) + 

symfac*dSg(jjj,kkk,iii+6,kk)*dAdd(4,jjj,kkk)*wdetjg ! A(mx,ny): Eq. in 

x, Terms in v 

!ortho!      if(dAddind(7,jjj,kkk)) dAddg(7,iii+6,kk) = 

dAddg(7,iii+6,kk) + 

symfac*dSg(jjj,kkk,iii+6,kk)*dAdd(7,jjj,kkk)*wdetjg ! A(mx,nz): Eq. in 

x, Terms in w       

!ortho!       

!ortho!      if(dAddind(2,jjj,kkk)) dAddg(2,iii+6,kk) = 

dAddg(2,iii+6,kk) + 

symfac*dSg(jjj,kkk,iii+6,kk)*dAdd(2,jjj,kkk)*wdetjg ! A(my,nx): Eq. in 

y, Terms in u       

!ortho!      if(dAddind(5,jjj,kkk)) dAddg(5,iii+6,kk) = 

dAddg(5,iii+6,kk) + 

symfac*dSg(jjj,kkk,iii+6,kk)*dAdd(5,jjj,kkk)*wdetjg ! A(my,ny): Eq. in 

y, Terms in v       

!ortho!      if(dAddind(8,jjj,kkk)) dAddg(8,iii+6,kk) = 

dAddg(8,iii+6,kk) + 

symfac*dSg(jjj,kkk,iii+6,kk)*dAdd(8,jjj,kkk)*wdetjg ! A(my,nz): Eq. in 

y, Terms in w     

!ortho!     

!ortho!      if(dAddind(3,jjj,kkk)) dAddg(3,iii+6,kk) = 

dAddg(3,iii+6,kk) + 

symfac*dSg(jjj,kkk,iii+6,kk)*dAdd(3,jjj,kkk)*wdetjg ! A(mz,nx): Eq. in 

z, Terms in u       

!ortho!      if(dAddind(6,jjj,kkk)) dAddg(6,iii+6,kk) = 

dAddg(6,iii+6,kk) + 

symfac*dSg(jjj,kkk,iii+6,kk)*dAdd(6,jjj,kkk)*wdetjg ! A(mz,ny): Eq. in 

z, Terms in v       

!ortho!      if(dAddind(9,jjj,kkk)) dAddg(9,iii+6,kk) = 

dAddg(9,iii+6,kk) + 

symfac*dSg(jjj,kkk,iii+6,kk)*dAdd(9,jjj,kkk)*wdetjg ! A(mz,nz): Eq. in 

z, Terms in w       
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!ortho!                          

!ortho!      ! Pressure terms 

!ortho!      if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!       do iip=1,pressperpoint 

!ortho!        if(dApdind(1,jjj,kkk)) 

dApdg(iip,1,iii+6,kk)=dApdg(iip,1,iii+6,kk)-

psi(ig,jg,kg,iip)*symfac*dSg(jjj,kkk,iii+6,kk)*dApd(1,jjj,kkk)*wdetjg 

! A(mx,np): Eq. in x, Pressure Terms 

!ortho!        if(dApdind(2,jjj,kkk)) 

dApdg(iip,2,iii+6,kk)=dApdg(iip,2,iii+6,kk)-

psi(ig,jg,kg,iip)*symfac*dSg(jjj,kkk,iii+6,kk)*dApd(2,jjj,kkk)*wdetjg 

! A(my,np): Eq. in y, Pressure Terms 

!ortho!        if(dApdind(3,jjj,kkk)) 

dApdg(iip,3,iii+6,kk)=dApdg(iip,3,iii+6,kk)-

psi(ig,jg,kg,iip)*symfac*dSg(jjj,kkk,iii+6,kk)*dApd(3,jjj,kkk)*wdetjg 

! A(mz,np): Eq. in z, Pressure Terms 

!ortho!       enddo           

!ortho!      endif 

!ortho!       

!ortho!      if 

((ii.eq.adjntmesh%npe).and.(jj.eq.adjntmesh%npe)) then !fill in 

pressure/pressure terms (bottom corner of matrix) 

!ortho!       do iip=1,pressperpoint      

!ortho!        do jjp=iip,pressperpoint 

!ortho!      if(dAppind(jjj,kkk)) 

dAppg(iip,jjp,iii+6,kk)=dAppg(iip,jjp,iii+6,kk)+psi(ig,jg,kg,iip)*psi(

ig,jg,kg,jjp)*symfac*dSg(jjj,kkk,iii+6,kk)*dApp(jjj,kkk)*wdetjg 

!ortho!        enddo 

!ortho!       enddo     

!ortho!      endif 

!ortho!       

!ortho!      endif !end dSind condition 

!ortho!      enddo !end kkk loop 

!ortho!       

!ortho!      lll=jjj+3 !S(4,4),S(5,5) & S(6,6) terms 

!ortho!      if(dSind(lll,lll,iii+6)) then 

!ortho!       

!ortho!      if(dAddind(1,lll,lll)) dAddg(1,iii+6,kk) = 

dAddg(1,iii+6,kk) + dSg(lll,lll,iii+6,kk)*dAdd(1,lll,lll)*wdetjg ! 

A(mx,nx): Eq. in x, Terms in u       

!ortho!      if(dAddind(4,lll,lll)) dAddg(4,iii+6,kk) = 

dAddg(4,iii+6,kk) + dSg(lll,lll,iii+6,kk)*dAdd(4,lll,lll)*wdetjg ! 

A(mx,ny): Eq. in x, Terms in v 

!ortho!      if(dAddind(7,lll,lll)) dAddg(7,iii+6,kk) = 

dAddg(7,iii+6,kk) + dSg(lll,lll,iii+6,kk)*dAdd(7,lll,lll)*wdetjg ! 

A(mx,nz): Eq. in x, Terms in w       

!ortho!       

!ortho!      if(dAddind(2,lll,lll)) dAddg(2,iii+6,kk) = 

dAddg(2,iii+6,kk) + dSg(lll,lll,iii+6,kk)*dAdd(2,lll,lll)*wdetjg ! 

A(my,nx): Eq. in y, Terms in u       
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!ortho!      if(dAddind(5,lll,lll)) dAddg(5,iii+6,kk) = 

dAddg(5,iii+6,kk) + dSg(lll,lll,iii+6,kk)*dAdd(5,lll,lll)*wdetjg ! 

A(my,ny): Eq. in y, Terms in v       

!ortho!      if(dAddind(8,lll,lll)) dAddg(8,iii+6,kk) = 

dAddg(8,iii+6,kk) + dSg(lll,lll,iii+6,kk)*dAdd(8,lll,lll)*wdetjg ! 

A(my,nz): Eq. in y, Terms in w     

!ortho!     

!ortho!      if(dAddind(3,lll,lll)) dAddg(3,iii+6,kk) = 

dAddg(3,iii+6,kk) + dSg(lll,lll,iii+6,kk)*dAdd(3,lll,lll)*wdetjg ! 

A(mz,nx): Eq. in z, Terms in u       

!ortho!      if(dAddind(6,lll,lll)) dAddg(6,iii+6,kk) = 

dAddg(6,iii+6,kk) + dSg(lll,lll,iii+6,kk)*dAdd(6,lll,lll)*wdetjg ! 

A(mz,ny): Eq. in z, Terms in v       

!ortho!      if(dAddind(9,lll,lll)) dAddg(9,iii+6,kk) = 

dAddg(9,iii+6,kk) + dSg(lll,lll,iii+6,kk)*dAdd(9,lll,lll)*wdetjg ! 

A(mz,nz): Eq. in z, Terms in w       

!ortho!                          

!ortho!      ! Pressure terms 

!ortho!      if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!       do iip=1,pressperpoint 

!ortho!        if(dApdind(1,lll,lll)) 

dApdg(iip,1,iii+6,kk)=dApdg(iip,1,iii+6,kk)-

psi(ig,jg,kg,iip)*dSg(lll,lll,iii+6,kk)*dApd(1,lll,lll)*wdetjg ! 

A(mx,np): Eq. in x, Pressure Terms 

!ortho!        if(dApdind(2,lll,lll)) 

dApdg(iip,2,iii+6,kk)=dApdg(iip,2,iii+6,kk)-

psi(ig,jg,kg,iip)*dSg(lll,lll,iii+6,kk)*dApd(2,lll,lll)*wdetjg ! 

A(my,np): Eq. in y, Pressure Terms 

!ortho!        if(dApdind(3,lll,lll)) 

dApdg(iip,3,iii+6,kk)=dApdg(iip,3,iii+6,kk)-

psi(ig,jg,kg,iip)*dSg(lll,lll,iii+6,kk)*dApd(3,lll,lll)*wdetjg ! 

A(mz,np): Eq. in z, Pressure Terms 

!ortho!       enddo           

!ortho!      endif 

!ortho!       

!ortho!      if 

((ii.eq.adjntmesh%npe).and.(jj.eq.adjntmesh%npe)) then !fill in 

pressure/pressure terms (bottom corner of matrix) 

!ortho!       do iip=1,pressperpoint      

!ortho!        do jjp=iip,pressperpoint 

!ortho!      if(dAppind(lll,lll)) 

dAppg(iip,jjp,iii+6,kk)=dAppg(iip,jjp,iii+6,kk)+psi(ig,jg,kg,iip)*psi(

ig,jg,kg,jjp)*dSg(lll,lll,iii+6,kk)*dApp(lll,lll)*wdetjg 

!ortho!        enddo 

!ortho!       enddo     

!ortho!      endif 

!ortho!       

!ortho!      endif !end dSind(lll,lll,iii+6) condition 

!ortho!      enddo !end jjj loop 

!ortho!      endif 

!ortho!      enddo !end iii loop 
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!ortho!  

!ortho!      ! Density terms  (MASS MATRIX TERMS) 

!ortho!      dAdrho = dAdrho - omsqr*Piig*Pjjg*wdetjg*Pkkg

 !same derivative term for all directions 

!ortho!         

!ortho! 500   continue 

!ortho!  

!ortho!      !oooooooooooooooooooooooooooooooooooooooooooooooo 

!ortho!    !o Gauss Point Looping Ends                 ooo 

!ortho!    !oooooooooooooooooooooooooooooooooooooooooooooooo 

!ortho!  

!ortho!          !Insert dA*sol into jacrhs 

!ortho!     

!ortho!    do ll=1,truedisp%numdispsets  !loop over all 

displacement data 

!ortho!     

!ortho!    !longitudinal modulus terms (E1, E2, and E3): 

!ortho!    do iii=1,adjntmtrl%prop(1)%nvpp 

!ortho!    if(cmplxparamind(1,iii)) then 

!ortho!   

 adjntind=orthograd%cmplxprop2param(1,iii)+(mtrnod-1) 

!ortho!        

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(1,iii,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(4,iii,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%v) 

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(7,iii,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%w) 

!ortho!     

!ortho!             orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(2,iii,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(5,iii,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(8,iii,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%w) 

!ortho!              

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(3,iii,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(6,iii,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(9,iii,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%w) 

!ortho!  
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!ortho!    if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!     do iip=1,pressperpoint 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(iip,1,iii,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%press(el,ll)%v

alue(iip) ! A(mx,np): Eq. in x, Pressure Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(iip,2,iii,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%press(el,ll)%v

alue(iip) ! A(my,np): Eq. in y, Pressure Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(iip,3,iii,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%press(el,ll)%v

alue(iip) ! A(mz,np): Eq. in z, Pressure Terms 

!ortho!     enddo           

!ortho!    endif 

!ortho!  

!ortho!    if(ii.ne.jj) then !Add symmetic lower corner of 

dA*sol contribution !!! NOTE: Switched Order for Addressing dAsmodg!!! 

!ortho!             orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(1,iii,kk)*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(2,iii,kk)*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(3,iii,kk)*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%w) 

!ortho!              

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(4,iii,kk)*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(5,iii,kk)*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(6,iii,kk)*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%w) 

!ortho!              

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(7,iii,kk)*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(8,iii,kk)*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(9,iii,kk)*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%w) 

!ortho!  

!ortho!    if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 
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!ortho!     do jjp=1,pressperpoint 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(jjp,1,iii,kk)*adjntdisp%press(el,ll)%value(jjp)*truedisp%disp(ii

nod,ll)%u ! A(mp,nx): Pressure Eq. Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(jjp,2,iii,kk)*adjntdisp%press(el,ll)%value(jjp)*truedisp%disp(ii

nod,ll)%v ! A(mp,ny): Pressure Eq. Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(jjp,3,iii,kk)*adjntdisp%press(el,ll)%value(jjp)*truedisp%disp(ii

nod,ll)%w ! A(mp,nz): Pressure Eq. Terms 

!ortho!     enddo           

!ortho!    endif 

!ortho!  

!ortho!    endif 

!ortho!  

!ortho!    if 

((ii.eq.adjntmesh%npe).and.(jj.eq.adjntmesh%npe)) then !fill in 

pressure/pressure terms (both upper and lower corners) 

!ortho!    do iip=1,pressperpoint 

!ortho!     do jjp=1,pressperpoint 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dAppg(iip,jjp,iii,kk)*adjntdisp%press(el,ll)%value(iip)*truedisp%press

(el,ll)%value(jjp) 

!ortho!     enddo 

!ortho!    enddo     

!ortho!    endif 

!ortho!     

!ortho!    endif 

!ortho!    enddo 

!ortho!  

!ortho!    !shear modulus terms (mu12, mu23, and mu31): 

!ortho!    do iii=1,adjntmtrl%prop(2)%nvpp 

!ortho!    if(cmplxparamind(2,iii)) then 

!ortho!   

 adjntind=orthograd%cmplxprop2param(2,iii)+(mtrnod-1) 

!ortho!     

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(1,iii+3,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(4,iii+3,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%

v) 

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(7,iii+3,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%

w) 
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!ortho!     

!ortho!             orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(2,iii+3,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(5,iii+3,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(8,iii+3,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%

w) 

!ortho!              

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(3,iii+3,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(6,iii+3,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(9,iii+3,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%

w) 

!ortho!  

!ortho!    if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!     do iip=1,pressperpoint 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(iip,1,iii+3,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%press(el,ll)

%value(iip) ! A(mx,np): Eq. in x, Pressure Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(iip,2,iii+3,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%press(el,ll)

%value(iip) ! A(my,np): Eq. in y, Pressure Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(iip,3,iii+3,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%press(el,ll)

%value(iip) ! A(mz,np): Eq. in z, Pressure Terms 

!ortho!     enddo           

!ortho!    endif 

!ortho!  

!ortho!    if(ii.ne.jj) then !Add symmetic lower corner of 

dA*sol contribution !!! NOTE: Switched Order for Addressing dAsmodg!!! 

!ortho!             orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(1,iii+3,kk)*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%

u)  
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!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(2,iii+3,kk)*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(3,iii+3,kk)*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%

w) 

!ortho!              

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(4,iii+3,kk)*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(5,iii+3,kk)*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(6,iii+3,kk)*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%

w) 

!ortho!              

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(7,iii+3,kk)*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(8,iii+3,kk)*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(9,iii+3,kk)*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%

w) 

!ortho!  

!ortho!    if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!     do jjp=1,pressperpoint 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(jjp,1,iii+3,kk)*adjntdisp%press(el,ll)%value(jjp)*truedisp%disp(

iinod,ll)%u ! A(mp,nx): Pressure Eq. Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(jjp,2,iii+3,kk)*adjntdisp%press(el,ll)%value(jjp)*truedisp%disp(

iinod,ll)%v ! A(mp,ny): Pressure Eq. Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(jjp,3,iii+3,kk)*adjntdisp%press(el,ll)%value(jjp)*truedisp%disp(

iinod,ll)%w ! A(mp,nz): Pressure Eq. Terms 

!ortho!     enddo           

!ortho!    endif 
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!ortho!  

!ortho!    endif 

!ortho!  

!ortho!    if 

((ii.eq.adjntmesh%npe).and.(jj.eq.adjntmesh%npe)) then !fill in 

pressure/pressure terms (both upper and lower corners) 

!ortho!    do iip=1,pressperpoint 

!ortho!     do jjp=1,pressperpoint 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dAppg(iip,jjp,iii+3,kk)*adjntdisp%press(el,ll)%value(iip)*truedisp%pre

ss(el,ll)%value(jjp) 

!ortho!     enddo 

!ortho!    enddo     

!ortho!    endif 

!ortho!     

!ortho!    endif 

!ortho!    enddo 

!ortho!  

!ortho!    !Poisson's ratio terms (v12, v23, and v31): 

!ortho!    do iii=1,adjntmtrl%prop(3)%nvpp 

!ortho!    if(cmplxparamind(3,iii)) then 

!ortho!   

 adjntind=orthograd%cmplxprop2param(3,iii)+(mtrnod-1) 

!ortho!     

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(1,iii+6,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(4,iii+6,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%

v) 

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(7,iii+6,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%

w) 

!ortho!     

!ortho!             orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(2,iii+6,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(5,iii+6,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(8,iii+6,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%

w) 

!ortho!              
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!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(3,iii+6,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(6,iii+6,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(9,iii+6,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%

w) 

!ortho!  

!ortho!    if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!     do iip=1,pressperpoint 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(iip,1,iii+6,kk)*adjntdisp%disp(iinod,ll)%u*truedisp%press(el,ll)

%value(iip) ! A(mx,np): Eq. in x, Pressure Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(iip,2,iii+6,kk)*adjntdisp%disp(iinod,ll)%v*truedisp%press(el,ll)

%value(iip) ! A(my,np): Eq. in y, Pressure Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(iip,3,iii+6,kk)*adjntdisp%disp(iinod,ll)%w*truedisp%press(el,ll)

%value(iip) ! A(mz,np): Eq. in z, Pressure Terms 

!ortho!     enddo           

!ortho!    endif 

!ortho!  

!ortho!    if(ii.ne.jj) then !Add symmetic lower corner of 

dA*sol contribution !!! NOTE: Switched Order for Addressing dAsmodg!!! 

!ortho!             orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(1,iii+6,kk)*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(2,iii+6,kk)*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(3,iii+6,kk)*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%

w) 

!ortho!              

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(4,iii+6,kk)*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 
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(dAddg(5,iii+6,kk)*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(6,iii+6,kk)*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%

w) 

!ortho!              

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(7,iii+6,kk)*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%

u)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(8,iii+6,kk)*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%

v)  

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

(dAddg(9,iii+6,kk)*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%

w) 

!ortho!  

!ortho!    if ((jj.eq.adjntmesh%npe)) then !fill in 

pressure/disp terms (right side of matrix) 

!ortho!     do jjp=1,pressperpoint 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(jjp,1,iii+6,kk)*adjntdisp%press(el,ll)%value(jjp)*truedisp%disp(

iinod,ll)%u ! A(mp,nx): Pressure Eq. Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(jjp,2,iii+6,kk)*adjntdisp%press(el,ll)%value(jjp)*truedisp%disp(

iinod,ll)%v ! A(mp,ny): Pressure Eq. Terms 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dApdg(jjp,3,iii+6,kk)*adjntdisp%press(el,ll)%value(jjp)*truedisp%disp(

iinod,ll)%w ! A(mp,nz): Pressure Eq. Terms 

!ortho!     enddo           

!ortho!    endif 

!ortho!  

!ortho!    endif 

!ortho!  

!ortho!    if 

((ii.eq.adjntmesh%npe).and.(jj.eq.adjntmesh%npe)) then !fill in 

pressure/pressure terms (both upper and lower corners) 

!ortho!    do iip=1,pressperpoint 

!ortho!     do jjp=1,pressperpoint 

!ortho!      orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dAppg(iip,jjp,iii+6,kk)*adjntdisp%press(el,ll)%value(iip)*truedisp%pre

ss(el,ll)%value(jjp) 

!ortho!     enddo 

!ortho!    enddo     

!ortho!    endif 
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!ortho!     

!ortho!    endif 

!ortho!    enddo 

!ortho!   

!ortho!    !density terms 

!ortho!    if(cmplxparamind(4,1)) then 

!ortho!    adjntind=orthograd%cmplxprop2param(4,1)+(mtrnod-

1) 

!ortho!       

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dAdrho*adjntdisp%disp(iinod,ll)%u*truedisp%disp(jjnod,ll)%u 

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dAdrho*adjntdisp%disp(iinod,ll)%v*truedisp%disp(jjnod,ll)%v 

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dAdrho*adjntdisp%disp(iinod,ll)%w*truedisp%disp(jjnod,ll)%w   

!ortho!  

!ortho!    if(ii.ne.jj) then !Add symmetic lower corner of 

dA*sol contribution !!! NOTE: Switched Order for Addressing dAsmodg!!! 

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dAdrho*adjntdisp%disp(jjnod,ll)%u*truedisp%disp(iinod,ll)%u 

!ortho!       orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dAdrho*adjntdisp%disp(jjnod,ll)%v*truedisp%disp(iinod,ll)%v 

!ortho!    orthograd%cvalue(adjntind) = 

orthograd%cvalue(adjntind) - 

dAdrho*adjntdisp%disp(jjnod,ll)%w*truedisp%disp(iinod,ll)%w 

!ortho!    endif 

!ortho!    endif 

!ortho!     

!ortho!    enddo 

!ortho!                 

!ortho! 400    continue ! End of Material Property Loop! 

!ortho!         

!ortho! 300  continue ! End of weighting function loop 

!ortho!      

!ortho! 200   continue ! End of interpolating Function loop 

!ortho!      

!ortho! 100  continue !End of Element loop 

!ortho!  

!ortho!  if(verb) then 

!ortho!  print *,'!!! Adjoint Orthotropic Gradient Terms Calculated' 

!ortho!  do ii=1,adjntmtrl%numprop 

!ortho!  do jj=1,adjntmtrl%prop(ii)%nvpp 

!ortho!  do kk=1,5 

!ortho!  adjntind=orthograd%cmplxprop2param(ii,jj)+(kk-1) 

!ortho!  print *,'!!! FD Ortho Grad: <prop> <value> <point>: 

',ii,jj,kk,orthograd%cvalue(adjntind) 

!ortho!  enddo 
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!ortho!  enddo 

!ortho!  enddo 

!ortho!  endif 

!ortho!  

!ortho! 

!ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooo 

!ortho!      

!ortho!  end subroutine orthoadjointgrad 

!ortho!   

!ortho! 

!ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooo 

 

F. BlueFern pSeries Technical Overview 

 

The following bullet points highlight the University of Canterbury’s IBM eServer Cluster 1600 

High Performance Computing (HPC) cluster’s technical specifications: 

 

 The machine is comprised of 10 IBM System p5 p575 nodes 

 Each p5‐p575 node contains 8 dual‐core IBM POWER5+ CPUs running at 1.9 GHz 

 Each of the POWER5+ processor/memory modules contains a dual‐core processor chip 

with both cores active, eight memory DIMM slots and a 36 Megabyte Level 3 (L3) cache 

chip 

 The private 36 Megabyte L3 cache is located out of the path of main memory and 

operates at half the chip frequency 

 Sustained memory bandwidth is 105.5 Gigabytes/sec 

 Each processor chip contains shared 1.9 Megabytes Level 2 (L2) cache, a memory 

controller and L3 cache directory 

 Each processor is able to read from the L2 and L3 caches of the other chips but can only 

store to its own L2 andL3 caches 

 Node RAM is expandable to a maximum of 256 Gigabytes DDR2 memory per node 

 L2 and L3 cache is expandable to 300 Megabytes per node 

 9 of the p5‐p575 nodes have 32 Gigabytes of RAM 

 The BestGRID node has 64 Gigabytes of RAM 

 The eight p5‐575 nodes are partitioned into a number of Logical Partitions (LPARs) 

which take care of various functions including production computation, login, storage 

management and job scheduling etc. 



155 
 

 Various interconnect networks exist in the machine, connecting the nodes together, 

including Gigabit Ethernet and dual‐channel InfiniBand 

 Each LPAR is a logical Operating System Instance (OSI) and as such has its own network 

identity, allocated RAM, allocated hard‐drives and is in essence a “stand alone” shared 

memory parallel (SMP) computer 

 Some LPARs in the machine run AIX 5.3 OSIs and other run Suse Linux Enterprise Server 

9 (SLES9) OSIs. Hence the machine is a heterogeneous system 

 All cluster‐wide file‐systems utilize IBM’s high bandwidth parallel file‐system technology 

called GPFS and are hosted by DS4100 and DS4200 RAID 5 arrays 

 The machine uses IBM’s batch scheduling technology, called LoadLeveler, to keep the 

machine loaded with user‐jobs and give user’s a fair share of the machine 


