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Introduction

Magnetic Resonance Elastography (MRE) has demonstrated
its ability to quantify soft tissue elasticity deduced from
displacement measurements within the tissue obtained by
phase-contrast Magnetic Resonance Imaging (MRI) techniques
[1]. It is believed to have potential in the detection of wide
variety of pathologies, diseases and cancer formations,
especially tumors [2, 3].

Recently, Rayleigh, or proportional, damping (RD) moduli for
soft tissue attenuation has been introduced to the non-linear,
optimization based, subzone reconstruction method [4] to
provide a more accurate model for the elastic energy
attenuation occurring in the brain tissue under time-harmonic
actuation. This research continues interest in the development
of MRE methodologies for quantification of not only stiffness
estimates, but also damping properties of the in-vivo brain.

Background

Rayleigh Damping Elastography

Rayleigh damping, also referred to as proportional damping, is
a damping model that attributes attenuation to both elastic and
inertial forces. Typically, the equilibrium statement for a
damped elastic system is written as

Mii + Cii+ Ku = f (1)

for displacements u, given forcing f, and a discretized stiffness
matrix, K, mass matrix M, and damping matrix C. For a
Rayleigh damped system, the damping matrix is directly
proportional to the mass and stiffness matrices,

C =aM + K (@)

In time-harmonic steady state elastography, motion and
force can be written as u(x,t) = ue™" and f(z,t) = fe'?
thus giving:

(—w*M +iwC + K)i = f. (3)

where K and M are original undamped stiffness and mass
matrices, respectively. Considering that the terms (1 + iw()
and (1 —ia/w) carry the spatial information of Rayleigh
damping parameters, the Eq (4) can be simplified as following:

[—w21\/[’ 4+ K/] 0 — F (4)

where K”and M’ have the same form as the original stiffness
and mass matrices, K and M, except for the use of a complex
valued shear modulus, ¢ = pur +tur and density p = pr + 101
In this case, #r and PR represent the elastic shear modulus
and mass density originally present in the undamped system,
while the imaginary components can be written in terms of the
Rayleigh damping parameters from Eq. 2 as

PR = p, andp | = % pr = p, and iy = wP.
From the damped elastic system model, described in Eq.
4, the damping ratio, can be written as

gd:%(ﬂ—ﬂ). ©
MR PR

which gives the relative level of attenuation within the material.
For RD materials, an additional Rayleigh composition (RC)
measure can be defined as

RC=_—*tL (6)
21 REd
RC value can be associated with the percentage contribution
of viscoelastic effects to the overall damping profile of the
material and can be approached through proportional rate of
change of elastic vs. inertial forces argument.
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Alzhiemer's, hydrocephalus and cancer.
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