DISTILLATION COLUMN DYNAMICS AND CONTROL

A thesis presented for the degree of Doctor of Philosophy in Chemical Engineering
in the
University of Canterbury
Christchurch, New Zealand

by

GRANT WILSON

A pilot plant scale, atmospheric pressure, sieve plate distillation column was constructed and fully instrumented. Novel speed controllable pumps were used to control liquid flows. A microcomputer was constructed to provide local and hierarchical control of the column. The microcomputer included an operator console, a 16 channel data acquisition unic, a 4 channel control output unit, and a hardware arithmetic processor. A software development system was assembled by linking the microcomputer to a minicomputer. Software written for the development system included a cross-assembler, a transfer program, and a microcomputer control program.

A binary steady state distillation column model was developed, solved on a digital computer, and verified against experimental data using a binary mixture of methanol and water.

Two control schemes were investigated using only the microcomputer resources. A multi-loop system using digital PI controllers was found to give excellent control within the accuracy of the instrumentation.

An adaptive feedforward controller was proposed and verified using a steady state model, and experiments. The results were good, but because of the relatively simple dynamics of the experimental column, the feedforward controller was no better than the feedback controllers.

A microcomputer control system has been shown to be an effective replacement for conventional analog control on a distillation column. The computing power of the microcomputer has enabled a sophisticated control scheme to be implemented at low cost.

ACKNOWLEDGEMENTS

Many thanks to Dr...R.M. Allen for his help and advice during this work.

Thanks also to all the technicians of the Chemical Engineering Department for their efforts in constructing equipment.

This work was financed by a University Grants Committee grant (C76/25). Glassware was kindly donated by Ivon Watkins-Dow Ltd.

The author acknowledges financial support from a B.P. Postgraduate Scholarship, a University Grants Committee Postgraduate Scholarship, and a University of Canterbury Teaching Fellowship.

Thanks to Mrs. D.E. Ball for typing, and my parents for proofreading this thesis from my illegible writing.

Finally, to my parents, who provided endless support and help, my most grateful thanks.

AND CONTROL

CONTENTS

ABSTRACT

CHAPTERS

1. Introduction
2. Review
3. Distillation Column Hardware
4. Computer Systems
5. Microcomputer Software
6. Steady State Binary Distillation Column Model
7. Column Dynamics and Feedback Control
8. Feedforward Control
9. Conclusions

REFERENCES

APPENDICES

I Circuit Diagrams

II Column Calibrations

III PDP-11 Software

IV Microcomputer Software
V Cross-Assembler and Pre-Assembler
VI Steady state Binary Column Model Programs

VII Methanol/Water Properties
VIII Comparison of Experimental Data with the Steady State Model

CHAPTER ONE

INTRODUCTION

Distillation processes have been extensively studied because they occur frequently in the chemical processing industries, are large consumers of energy, and are often critical in determining product purities. The objectives of previous studies have been to improve the understanding of the dynamics of distillation columns, and consequently to improve performance by maximising production and minimising costs. This work represents a continuation of this theme with the use of new technology, and an alternative control system.

A range of approaches have been adopted in, the literature including complex computer simulations, simple black box models, and experimental tests using analog and digital hardware. Each approach may have its merits, but there is no single approach which can be applied to all distillation processes, in fact the control problems of a particular distillation column may be unique. The overriding philosophy behind all investigations of the performance of various control schemes will ultimately be profit - is the extra expense of a more complex control system justified?

The major problems of distillation control are:
(i) the interactions between control loops;
(ii) the non-linearities of the process;
(iii) the time variation of process parameters;
(iv) the slow dynamics of the process;
(v) the use of slow and inaccurate sensors and analysers;
(vi) the large load changes which may occur.

Solutions to these problems have been proposed and examined using feedback control, combined feedforward/feedback control, multivariable control, and optimal control strategies. In some cases, the techniques have been
successful, but in others the process non-linearities, and the measurement difficulties have led to poor control.

1.1
 OBJECTIVES

The objectives of this work were fourfold:
(i) to design and construct a pilot scale distillation scheme;
(ii) to instrument the column;
(iii) to construct a computer based control system;
(iv) to investigate computer control of the column.

The criteria for the column and instrumentation were:
(i) redesign and reconstruct a 225 mm diameter atmospheric pressure sieve tray column of conventional form using components from an existing column;
(ii) provide temperature sensors on all trays, level sensing in the reboiler and reflux accumulator, overall pressure drop sensing, and product composition analysers;
(iii) provide flow control systems on the distillate, reflux, bottoms and steam flows;
(iv) provide flexible operation of the column.

The choice of a digital control system was made from among the following:
(i) microprocessors acting as analog controller replacements: under minicomputer control;
(ii) a microcomputer/minicomputer system with substantial microcomputer independence;
(iii) a microcomputer standalone system with an operating system and peripherals;
(iv) a minicomputer system.

Significant technological developments in microprocessors, and their support hardware, coupled with a drop in price for semiconductor integrated
circuits prompted a shift in emphasis from using a minicomputer to a microcomputer. A minicomputer would have been under utilised on a single distillation column, but if used as the centre of a development system for a microcomputer, it could be released for other uses when not required. Option (ii) was therefore adopted, and a microcomputer system developed with interfaces to the process, the operator, and a nearby minicomputer. A development system was created in the minicomputer to enable rapid and easy programming of the microcomputer.

Several control strategies were investigated, and compared on the pilot scale column. These were based on
(i) feedback control;
(ii) feedforward/feedback control.

The feedforward controller was based on the shortcut column design method of Gilliland (1940). A steady state computer model was developed to predict the column performance, and to test the feedforward controller.

The overlying objective of this work was to create a system that approximated what might be found in the industrial world. In all instances, attempts were made to use the simplest solutions to all problems, provided that the results were satisfactory. This was particularly true in the design and tuning of the controllers used. The microcomputer software was designed to be compact yet flexible with respect to control configuration and to incorporation in a wider control scheme.

REVIEW

Process control has been extensively studied and the investigation of the behaviour and control of distillation columns has been no exception. Every conceivable control strategy has been applied to controlling simulated and experimental distillation columns, but production units have in general relied upon the less exotic control strategies such as feedforward/feedback control.

The introduction of minicomputers into process control produced a centralisation of control functions over the previously used distributed analog systems. The big failing of the minicomputer system was the need to provide analog backup in case of a computer failure (Bruce and Fanning (1964), Guisti et al (1962), Rosenbrock et al (1965)). The current trend is back to distributed control schemes with microcomputers providing dedicated control on one piece of plant and perhaps connecting with a hierachical control scheme (Tao et al (1977)). The major control equipment vendors are now marketing distributed control. systems, e.g. Honeywell TDC2000 system.

The rapid development of the microprocessor and its peripherals, coupled with a drop in the price of semiconductors has made sophisticated microcomputer-based control schemes possible. It is now feasible to provide intelligent control systems in places where a minicomputer could not be justified (Skrokov(1976)). These dedicated microcomputers can be further adapted to process control by providing special instruction sets (Cummings and Miller (1977)) and special programming languages (Gillespie (1977), Claggett (1977)).

The use of microprocessors can be extended into the instrumentation area. These devices can be used to operate instruments and to provide sophisticated signal conditioning (Garelick (1977)). An increase in the
use of discrete process analysers such as gas chromatographs and mass spectrometers can be expected as microcomputers are programmed to operate these instruments and interpret the results (Bailey (1978)).

Improvements are being made in sensing variables with solid state transducers. National Semiconductor's (1974) pressure and temperature sensing integrated circuits are good examples. The price and performance of these systems make it possible to build more sophisticated control systems at reasonable prices.

While the advances in control computers have been spectacular, the improvements in DDC algorithms have been much lower key. Various controller algorithms using different design criteria have been proposed (Mosler et al (1967), Kurz and Isermann (1977)), but the industry standard, the PID controller, has been shown to be the best general purpose controller (Bristol (1977), Unbehauen et al (1976)). The more complex algorithms can be beneficial on some processes where long lags and deadtimes exist, or where interactions occur. Multivariable techniques are best applied to systems where the process models are simple but accurate over the operating range, and can lead to conventional PID controllers (Shih (1970)).

Distillation Column Dynamics

Distillation column dynamics have been extensively investigated, and several excellent reviews of the literature have been made by Archer and Rothfus (1961), Williams (1963) and Rademaker et al (1975). A study of dynamics requires a study of the steady state problem in order that any simulation may have a valid starting point.

Several approaches have been used to solve for the steady state conditions in a distillation column. The methods of McCabe and Thiele (1925) and Sorel (Gilliland and Robinson (1950)) involved plate by plate calculations to find the number of trays required for given operating conditions. Attempts by Martin (1963), Singh (1966), Sarkarny et al (1970) and others to find analytical solutions have involved simplifying assumptions such as a linear vapour/liquid equilibrium relationship, and hence
have limited applicability. The shortcut methods of Brown et al (1939), Gilliland (1940), Mason (1959) and Erbar et al (1961) have merit in that they are invaluable for preliminary design work, but are inaccurate for more exacting requirements (Van Winkle and Todd (1971)). The problem of determining the column compositions and flows for a given geometry has been tackled by solving the simultaneous heat and mass balances which can be written around each stage (Amundson and Pontinen (1.958), Holland (1963), Wang and Henke (1966)). These methods involve an iterative solution for the flows and compositions, and can be applied to multicomponent and binary systems. Other factors such as the tray efficiency can also be included.

The determination of the dynamic response of a binary distillation column involves the solution of a set of ordinary differential equations (for a plate column). The majority of the literature on column dynamics deals with the assumptions inherent in deriving these equations and the method of solution. Early researchers used analog computers to solve the equations (Lamb et al (1961)), but more recent workers have used digital computers. Svrcek (1967) showed that the differential equations for a binary eight plate column could be solved in 5\% of realtime (assuming that the liquid flow dynamics were fast enough, so the liquid flow differential. equations could be replaced by steady state balances). A number of other methods of solution are summarised by Rademaker et al (1975). The consequences of the assumptions made in some of the models (e.g. negligible liquid and vapour holdup) can be serious in large columns where liquid holdups are significant. However, in smaller pilot scale columns, such effects can generally be ignored. Rademaker et al (1975) have summarised the more important experimental results. Most of the work on experimental columns, using step tests, shows good agreement between the suggested theory and the experimental measurements. The number of trays used in such columns is generally much less than in production columns, and hence the response will be different.

Simple transfer function models (lags and deadtime) have been used to describe column responses (Luyben and Gerster (1964), Jafri et al (1965), Wood and Berry (1973), Krishnamoorthy and Edgar (1977)). The fitted models were used to design controllers. Approximate models for large distillation columns have been suggested to avoid the need to solve large systems of differential equations. These models can be determined from steady state data using the concept of inventory time which can be defined as the ratio of the total change in storage for the whole column to the total change in flow out of the column (i.e. a pseudo first order time constant for the complete holdup of the whole column in terms of a single component). Improvements on the initial work of Moczek et al (1965) have been made by Wahl and Harriot (1970), and Weigand et al (1972); but the results have only been compared with simulations, and generally only apply to large columns with many trays.

Distillation Column Control

There is a vast quantity of material on distillation column control in the literature. Rademaker et al (1975) have summarised the major contributions in this field up to the late 1960's. Control schemes have generally been examined theoretically on experimental columns or practically on production columns and there is a large gap between these two groups. Experimental columns are, in general, pilot scale atmospheric pressure binary columns, and hence avoid a lot of the problems of large production columns, e.g. liquid flow lags, and the need for pressure controls. Much work needs to be done in bridging this gap and extending the scope of industrial control schemes using economic criteria to justify the changes.

The major practical contributions to distillation control have been summarised by Shinskey (1967) using single loop controllers with variations. These schemes include the direct and indirect material balances, pressure control loops, and feedforward schemes based on a constant product to feed ratio. Systems based on these approaches have been the basis of most
industrial distillation control.

Many researchers have looked at the application of multivariable techniques to distillation columns. An excellent review of this approach is given by Edgar and Schwanke (1977). Some of the simple multivariable techniques such as decoupling have been studied but generally only on experimental columns. The effect of decoupling single loop controllers operating on product compositions has been shown to produce improvements, but this is to be expected because of the lags and delays caused by the large liquid holdups in the reflux accumulator and reboiler, and the consequently slow responses of the composition loops. Indirect composition control by controlling internal tray liquid temperatures is superior even without decoupling because of the faster loop dynamics. Other schemes using optimal multivariable controllers require process models which are generally inaccurate because of linearisation, model order reduction, incomplete measurements, and changing operating conditions (Schwanke et al (1976)). The results of these inaccuracies are suboptimal and in some cases unstable control. Some work on the use of adaptive controllers (Sastry et al (1977)) has shown promising results for a single loop, but the overall performance is no better than can be achieved by feedforward/feedback techniques.

A gap between control theory and practice still exists in distillation control. Exotic control schemes have been proposed on the basis of small experimental columns and simulations without production scale testing. The introduction of sophisticated multivariable techniques into distillation control will continue to be hampered by poor models. The explosion in the field of microcomputers indicates that the commonly used feedforward/feedback schemes will be improved and implemented more widely now that expensive minicomputers are not required. The future appears to be in a dedicated control computer on each distillation column, with the possible connection to an overall plant control system.

CHAPTER .THREE DISTILLATION COLUMN HARDWARE

CONTENTS Page
3.1 Introduction 3.1
3.2 Reboiler and Condenser Modifications 3.2
3.3 Tray Design 3.3
3.4 Reflux Accumulator 3.5
3.5 Control Equipment 3.5
3.5.1 Liquid Flow Control 3.7
3.5.2 Variable Speed Motor 3.7
3.5.3 Positive Displacement Pump 3.8
3.5.4 Pump Installation 3.10
3.5.5 Steam Flow Control 3.12
3.6 Auxilaries 3.12
3.6.1 The Feed System 3.12
3.6.2 Product Coolers 3.15
3.7 Distillation Column Construction 3.15
3.8 Instrumentation 3.20
3.8.1 Temperature Measurement 3.20
3.8.2 Level Sensors 3.20
3.8.3 Pressure Sensor 3.22
3.8.4 Composition Sensor 3.24
3.9 Selection of a Binary System 3.27
3.10 Commissioning 3.29
3.10.1 Temperature Sensors 3.29
3.10.2 Pressure and Levels Sensors 3.30
3.10.3 Composition Sensor 3.30
3.10.4 Pumps and Rotameters 3.32
3.10.5 Steam Flow Loop 3.33
3.10.6 Column Holdups 3.33

CHAPTER THREE

DISTILLATION COLUMN HARDWARE

3.1 INTRODUCTION

A pilot plant scale, atmospheric pressure distillation column had been used in the Department of Chemical Engineering for teaching in undergraduate laboratories. For the reasons noted below, this column was unsatisfactory both in its performance and in its possible application to this project:
(1) reboiler capacity was excessive;
(2) condenser capacity was inadequate;
(3) reflux/distillate split was by a swinging bucket reflux divider giving pulsed flows;
poor tray efficiency ($<30 \%$ overall);
insufficient and ineffective control equipment;
no on-tray sampling and temperature measurement;
no composition measurement;
no centralised control station.

The column was completely dismantled and rebuilt using such parts of the original as were required. The reboiler capacity was reduced, and the condenser capacity increased. The trays were redesigned and rebuilt to allow feed/drawoff and temperature measurement. The reflux divider was replaced by a reflux accumulator. A control system was devised constructed and installed using speed controllable motors driving positive displacement vane pumps for liquid flows, and a flow control loop for the reboiler steam supply. The distillation column was instrumented with temperature, pressure, level and composition sensors, and interfaced to a microcomputer-based control system.

3.2 REBOILER AND CONDENSER MODIFICATIONS

The reboiler originally consisted of a shell and tube heat exchanger with ninety-six 19 mm OD type 316 stainless steel tubes 1220 mm long. The overall heat transfer coefficient was measured to be 1600 $W^{-2} \mathrm{~K}^{-1}$ based on the internal heat transfer area of $5.8 \mathrm{~m}^{2}$. Assuming saturated steam in the reboiler chest at 70 kPa , and water on the tube side at $100^{\circ} \mathrm{C}$, the maximum energy transfer rate was 140 kW . Calculation of the maximum likely column performance showed a reboiler capacity of 100 kW to be sufficient. Consequently, twenty-seven of the ninety-six tubes were blanked off using two stainless steel plates clamped across the tube bundle by tie rods through the now unused tubes. This reduced the internal heat transfer area to $4.2 \mathrm{~m}^{2}$ and gave an energy transfer rate of 100 kW based on the conditions given above. The reboiler was fitted with two safety valves. That on the process fluid side was set at 70 kPa , and piped outside building in a 50 mm diameter galvanised line. The safety valve on the steam jacket of the reboiler was set at 175 kPa . The condenser system on the original column comprised one QVF HEU9 and one QVF HEM9 glass heat exchanger with a total heat transfer area of $3 \mathrm{~m}^{2}$. This system was altered by replacing the HEM9 with two QVF HE9 glass heat exchangers giving a total heat transfer area of $7 \mathrm{~m}^{2}$. For a methanol/water mixture condensing at $70^{\circ} \mathrm{C}$, and using cooling water at $20^{\circ} \mathrm{C}$, the maximum rate of energy transfer based on the QVF heat transfer coefficient of $280 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ (QVF (1970)). was 98 kW . Each exchanger was fitted with a valve in its cooling water line to allow manipulation of the condenser capacity to suit the column operating requirements. The heat transfer equipment in summary was: (a) Reboiler - shell and tube heat exchanger

- 69 tubes 19 mm OD $\times 1220 \mathrm{~mm} 316$ S.S.
- all parts in contact with the process fluid are
- internal heat transfer area $4.2 \mathrm{~m}^{2}$
- overall heat transfer coefficient $1600 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$
(b) Condensers - QVF glass coil heat exchangers
- two HE9, one HEU9 units
- heat transfer area $7 \mathrm{~m}^{2}$
- overall heat transfer coefficient $280 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$.

3.3 TRAY DESIGN

The column trays were redesigned to improve the overall tray efficiency, and to provide sample/feed ports and temperature measurement. The sample/feed ports were located directly beneath the downcomers bringing liquid on to the tray, in a small chamber below the actual active tray. The chamber was opened to the tray by two 30 mm diameter and two 17 mm diameter holes. The liquid holdup in the chamber was measured to be $160 \mathrm{~cm}^{3}$. The temperature probes were screwed into the top ring of the tray section, and sealed with PTFE tape. The sensing heads were located as close as possible to the exit weir on the tray to give a close estimate of the temperature of the liquid leaving the tray. The trays were assembled between 225 mm diameter x .300 mm standard glass QVF sections giving a tray spacing of 390 mm .

The tray layout is shown in figure 3-1, and plate 3-1.
Summary of Tray Details:
(i) active area - $223 \times 3 \mathrm{~mm}$ D holes on 12 mm triangular spacing

- total active area $=1.6 \times 10^{-3} \mathrm{~m}^{2}$
(ii) free area -225 mm D
- area $=4.0 \times 10^{-2} \mathrm{~m}^{2}$
(iii) downcomers - two, 35 mm D
- area $=2.0 \times 10^{-3} \mathrm{~m}^{2}$
(iv) weirs - 19 mm high
- 122 mm apart centrally located.

FIGURE 3-1 SIEVE TRAY DETAILS

PLATE 3-1 SIEVE TRAY

The original column incorporated a swinging bucket reflux divider, which inevitably led to pulsed reflux flows, and in some situations to column trays running dry. To correct this situation and to bring the column in to line with standard industrial practice, a reflux accumulator was incorporated. The accumulator was constructed from a standard QVF glass section $600 \mathrm{~mm} \times 225 \mathrm{~mm}$ diameter with a type 316 stainless steel cap to seal the base of the accumulator, to support the accumulator and the condensers, and to provide the pipework connections for liquid flows and a temperature sensor. The accumulator provided a maximum liquid holdup of 25 litres.

Incorporated in the reflux drum was the atmospheric vent for the column to allow air to escape during startup, and to ensure that the column remained close to atmospheric pressure. The 50 mm diameter PVC vent line was piped outside the building for safety. The reflux accumulator and vent are shown in figure 3-2.

3.5 CONTROL EQUIPMENT

The previous column operated under the following controls:
(i) steam pressure control in the reboiler jacket;
(ii) reboiler level control by bottoms flow (pneumatic PI
controller and d/p cell);
(iii) reflux ratio control by a QVF swinging bucket.

These controls were all subject to a number of problems including a steam pressure setpoint very close to atmospheric pressure, airlocking in the bottoms flow loop and pulsed flow for the reflux divider. To overcome these problems, the original controls were replaced with individual controls on all liquid flows, and flow control on the reboiler steam supply.

FIGURE 3-2 REFLUX ACCUMULATOR

3.5.1 Liquid Flow Control

The standard practice for controlling liquid flow is to use a flow sensor, a controller and a valve in a feedback loop. For the column used in this project, the maximum flowrate of any liquid stream was estimated to be 4.5 lmin $^{-1}$. To get good turndown on the flow loops a flow sensor was required to handle the range $0.05-4.5 \mathrm{lmin}^{-1}$. Devices to achieve this accuracy are available but are very expensive, e.g. turbine meters. To have implemented three conventional flow control loops would have been expensive and beyond the project budget.

Speed controllable positive displacement pumps were considered as replacements for the conventional flow loops. The major problem was to find a controllable prime mover to drive the pumps. A positive displacement vane pump, driven by a variable speed motor was selected as suitable based on considerations of cost and ease of construction.

3.5.2 Variable Speed Motor

A survey of currently available equipment showed a lack of a suitable motor in the $200 \mathrm{~W}, 0.5 \mathrm{Nm}$ range. Small stepping motors of very limited torque are available, and larger induction motor controls are available, but in between there is a gap. The problem was solved by designing and constructing a stepping motor around a standard Bosch automotive alternator, driven by a variable frequency three phase inverter.

The alternator motor incorporated a number of novel features:
(i) An optically isolated DC signal provided control of the inverter frequency and hence motor speed. A 0-10V dc signal gave a speed range of $0-2000 \mathrm{rpm}$. The control voltage was conditioned by the input circuit to ensure that the rate of control voltage increase did not exceed $0.2 \mathrm{Vs}^{-1}$. If this rate was exceeded, the protection circuit would remove the control signal from the inverter, and then slowly ramp the inverter control up to the desired level. This action was necessary to ensure that the motor did not lose synchronisation due to a rapid change in inverter frequency.
(ii) Sequencing of the inverters was performed using CMOS digital logic.
(iii) A current limiting circuit was incorporated in each phase to prevent overloading of the drive transistors.
(iv) Field excitation of the alternator rotor was achieved using a 12 V dc supply feeding 2 A through the alternator slip rings.

A circuit diagram of the inverter appears in Appendix I.
The combination of the inverter and alternator produced a very useful motor with good low speed torque characteristics, as required by a variable speed positive displacement pump. The torque/speed and power/ speed characteristics are shown in figure 3-3.

The use of slip rings to supply the rotor excitation current provided an ignition source, and an explosion risk. This was eliminated by installing each motor in a vented case, continuously purged with air from a fan located outside the building. The continuous flow of fresh air prevented a buildup of explosive vapours within the motor case and helped in cooling the motor.

To ensure that these motor systems were intrinsically safe, an interlocking safety system was installed. A pressure switch in the air purging line ensured that the motors could not operate without the purging system. Further, for a period of 50 seconds after power on, the motors were disabled to ensure that the motor cases were fully purged before applying the excitation supply. Details of this interlocking system are shown in Appendix I.

3.5.3 Positive Displacement Pump

A suitable pump at a reasonable cost could not be found on the local market. A vane pump was designed, this being the simplest type of positive displacement pump to construct.

The pump was designed with a capacity of $4.5 \ell^{\mathrm{min}^{-1}}$ at 400 rpm to make best use of the low speed torque characteristics of the motor described in the previous section. It was initially constructed using a

FIGURE 3-3 ALTERNATOR-MOTOR
type 316 stainless steel body and rotor, with PTFE vanes and cams. Vane movement was by the action of the cams alone; no springs were used. Initial tests showed the pumps to be satisfactory in most circumstances but some problems did arise.

When operated at elevated temperatures $\left(100^{\circ} \mathrm{C}\right)$ the PTFE vanes and cams began to creep and expand causing increased frictional forces and eventually seizing. The solution was to provide larger clearances in the pump when assembling it at room temperature. This solved the seizing problem, but the elevated temperatures also accelerated the wearing of the vanes and the cams. The cams acted as bearings and wore rapidly due to some side loading of the shaft from the pumping action. These problems were overcome by fitting two ball races in a housing outside the pump body to absorb the side loading, and by fitting graphite vanes in place of PTFE.

This final design has proved satisfactory provided the pumps are properly set up for the conditions of operation, i.e.

- the bottoms pump was set up for liquids at $100^{\circ} \mathrm{C}$,
- the distillate and reflux pumps were set up for liquids at $20^{\circ} \mathrm{C}$.

The final design is shown in figure $3-4$. The pump was connected to the motor described by a flexible coupling. The completed unit is shown in plate 3-2.

3.5.4 Pump Installation

The three pumps (distillate, reflux, bottoms) were installed to operate under flooded suction and a positive pressure head. To achieve a positive head the product streams (distillate, bottoms) were raised above their respective inlet levels and discharged into a siphon breaker to flow under gravity back into the feed tank. The siphon breaker was constructed from a 2 m length of QVF 25 mm diameter glassware, vented outside the building. The vent ensured that under no conditions could

liquid siphon through the pumps. In addition an $18 x$ rotameter with a koranite float was installed in the delivery line of each pump for easy monitoring of liquid flow rates.

3.5.5 Steam Flow Control

Control of the steam to the reboiler was changed from a pressure to a flow loop so that the loop setpoint could be easily related to the actual steam flow. The layout of the loop is shown in figure 3-5. The orifice plate was non-standard in both its diameter (19 mm) and in the placement of the pressure tappings, 9 mm either side of the orifice plate, requiring calibration.

Equipment: Controller	Foxboro model 58P4-WV (P+I)
Control Valve	$12 \mathrm{~mm} D$ Saunders Valve
d / P Cell	Foxboro $0-625 \mathrm{~mm} \mathrm{W.G}$.
i/P Converter	Foxboro model $69 \mathrm{TA}-1$.

3.6 AUXILARIES

The distillation column was connected to the service lines in the Department of Chemical Engineering and supplied with dry saturated steam at 550 kPa , compressed air at 550 kPa , and cooling water at 400 kPa and $15-18^{\circ} \mathrm{C}$. Miscellaneous sections of the column are described in the following sections.

3.6.1 The Feed System

The distillation column feed system is shown in figure 3-6. A 270 litre feed tank was installed so that fluctuations in the feed composition caused by changes in the column holdup would be minimal (the average column holdup was 61 litresl. The feed was drawn from the feed tank, through a filter, the feed pump, a double pipe preheater and into the column through one of the tray feed ports as described in section 3.3. The fifth tray from the top of the column was used as the feed tray in

FIGURE 3-5 STEAM FLOW CONTROL SYSTEM

FIGURE 3-6 FEED SYSTEM
this work. Liquid from the siphon breaker for the product pumps was returned to the feed tank via a 25 mm diameter line. The tank was also fitted with a vent which was piped outside the building, and a liquid level indicator comprising a bubbler and utube manometer. Details of the feed system:

```
    Feed pump - Candy variable stroke piston pump
    - capacity 0-2 lmin
    - all 3l6 SS in contact with fluid
    Feed Tank - 270 litres
    - all 316 SS construction
```

 Feed Preheater - double pipe exchanger
 - heat transfer area \(=530 \mathrm{~cm}^{2}\) (internal)
 - control : manual adjustment of steam pressure in
 outer pipe
 - 316 SS in contact with working fluid.
 - tube dimensions: outer 44 mm ID \(\times 1280 \mathrm{~mm}\)
 inner 23 mm ID x 1280 mm
 Filter - contains 1 mm gauze to remove solid matter.

3.6.2 Product Coolers

The bottoms product was removed from the reboiler at its boiling point, and cooled before its return to the feed tank. The temperature of the distillate product was set by manipulating the condenser cooling water flows. Each stream was passed through a three stage countercurrent cooling system as shown in figure 3-7. The exchanger details are

- tube dimensions : outer 44 mm ID $\times 1280 \mathrm{~mm}$ inner 23 mm ID x 1280 mm
- heat transfer area $=530 \mathrm{~cm}^{2}$ per exchanger stage.

3.7 DISTILLATION COLUMN CONSTRUCTION

The previous sections in this chapter have outlined the component

ALL EXCHANGERS-DOUBLE PIPE $\left(0.05 \mathrm{~m}^{2}\right)$
FIGURE 3-7 PRODUCT COOLERS
parts of the distillation column. The column was mounted in a frame of 50 mm square box section steel and supported on steel plates bolted to the frame under the base of the column, the reboiler, and the reflux accumulator as shown in figure 3-8. Provision was made on these support plates for adjustment of the column attitude so that the column trays could be set horizontal. The column was only sitting in position, restrained from moving sideways by the $Q V F$ spring loaded fittings mounted on the QVF flanges to allow thermal expansion on the startup. The column was constructed with the condensers and the trays in separate vertical columns because of a lack of headroom. Differential thermal expansion, on startup, caused problems in joining the two sections; the tray section was calculated to expand 3 mm , while the condenser section expansion was negligible. A bellows was fitted to each section to absorb the stresses generated by the thermal expansion. The bellows were designed using the axial symmetric bending of an annular plate formulae given by Flügge (1962), and constructed from six type 316 stainless steel 22 gauge annuli sections alternately welded on the inner and outer edges. A stainless steel section was fabricated to connect the two column sections using the bellows and hydraulically tested to 100 kPa before installation. The completed bellows assembly in place can be seen in plate 3-3. A 60 mm thickness of polystyrene foam plastic was fitted to reduce heat losses through the bellows section. A deflection of 2.5 mm was measured in the tray section on startup, but was accommodated by the bellows.

The major column components were plumbed together using 12 mm diameter type 316.stainless steel tubing for the process fluid lines. All flanges in the process fluid lines were gasketed with rubber protected by PTFE sheaths. Figure 3-9 is a schematic of the column piping, and plates $3-4$ and $3-5$ show the completed column.

FIGURE 3-8 COLUMN ASSEMBLY

PLATE 3-2 CONTROL PUMPS

PLATE 3-3 BELLOWS SECTION

KEY

1. Columh trays with temperature sensors
2. condensers
3. reflux drum
4. atmospheric vent line
5. reflux drum level sensor
6. Distillate pump
7. reflux pump
8. distillate cooler
9. reboiler level sensor
10. refractometer solenoid valves
11. REFRACTOME TER
12. reboiler
13. preumatic g/p cell on orifice plate
14. preumatic pi controller
15. CURRENT/AIR CONVERTER
16. feed to tray 5
17. BOTTOMS PUMP
18. Borroms cooler
19. feed tank
20. feed tank vent
21. FEED PUMP
22. feed preheater

- interface to control microcomputer

CW - COOLING WATER
s - steam

FIGURE 3-9 COLUMN INSTRUMENTATION

PLATE 3-5A COLUMN-UPPER LEVEL

PLATE 3-5B COLUMN-LOWER LEVEL

3.8 INSTRUMENTATION

The distillation column was heavily instrumented to allow flexibility in configuring control strategies. All the instrumentation was constructed to meet an interface standard of 0-10V. In some cases this required the provision of signal conditioning circuits.

3.8.1 Temperature Measurement

Temperatures were sensed on all trays, in the reflux accumulator and in the feed line using National Semiconductor (1974) LX5700 integrated circuits. These devices have an output of $10 \mathrm{mV}{ }^{\circ} \mathrm{C}^{-1}$, and are quoted as having a repeatability of $\pm 0.2^{\circ} \mathrm{C}$ and a non-linearity of $1.8^{\circ} \mathrm{C}$. To conform to the 0-10V interface standard, the transducer output was shifted and scaled so that $0^{\circ} \mathrm{C}=0 \mathrm{~V}$ and $100^{\circ} \mathrm{C}=10 \mathrm{~V}$ with the circuit shown in Appendix I.

The integrated circuits were soldered to 316 SS probes as shown in figure 3-10 and plate 3-6, and were electrically insulated from the column tray by a polyethylene bush.

Each sensor was individually checked in a water bath, and found to exhibit a slightly different characteristic within the manufacturer's specifications. The calibrations showed that the linearity error could be reduced to a maximum of $0.7^{\circ} \mathrm{C}$ in the range $60-100^{\circ} \mathrm{C}$. Further accuracy could be obtained by using a calibration for each individual transducer. A typical time reponse of a probe to a step change in fluid temperature of $50^{\circ} \mathrm{C}$ is shown in figure 3-11. The transfer function can be approximated by

$$
G(s)=\frac{1}{\tau s+1} \text { where } \tau=2.6 s
$$

3.8.2 Level Sensors

National Semiconductor (1974) integrated circuit differential pressure sensors were selected to sense liquid levels. The devices used
f

ALL PARTS 316SS UNLESS SPECIFIED ALL DIMENSIONS mm

FIGURE3-10 TEMPERATURE PROBE

FIGURE 3-11 TEMPERATURE PROBE RESPONSE
were LXl60lDF sensors fitted with rubber socks filled with silicone oil to prevent contact between the sensing diaphragm and the process fluids. Further, to allow remote siting of the sensors away from the process, conventional pneumatic bubblers were used.

The outputs of the LXI601DF devices were scaled to the range 0-10V by the circuit shown in Appendix I. The response of the sensor was reported as $2.5-12.5 \mathrm{~V}$ for $\pm 35 \mathrm{kPa}$ by the manufacturer (National Semiconductor (1974)) with a repeatability of $\pm 2 \%$ of the span. The sensitivity of the sensor can be calculated as:

$$
\begin{aligned}
\pm 35 \mathrm{kPa} & = \pm 3.57 \mathrm{~mW} . \mathrm{G} \\
\pm 2 \% \text { of } \operatorname{span} & = \pm .02 \times 7.14 \mathrm{~mW} . \mathrm{G} . \\
& = \pm 0.14 \mathrm{~mW} . \mathrm{G}
\end{aligned}
$$

the temperature coefficient of the LXI601DF was negligible. However in practice, the LX1601DF was found to be more sensitive than the worst case figure of $\pm 0.14 \mathrm{~m}$ W.G. A short term resolution of $\pm 0.02 \mathrm{~m}$ W.G. was observed with a longer term dri玉t in the range $\pm 0.07 \mathrm{~m}$ W.G. occurring over a period of 8-10 hours. This long term drift could prove to be a problem in circumstances where tight level control is required.

The sensor on the reboiler level was operated in true differential form, while the reflux accumulator level sensor used atmospheric pressure as a reference. The level sensors arrangement is shown in figure 3-12.

3.8.3 Pressure Sensor

Overall column pressure drop was sensed from the upper pressure tapping point of the reboiler level sensing system to atmospheric pressure. A National Semiconđuctor differential pressure sensor, the LXl601DF, was used, and the same comments made for the level sensors apply. This sensor was used to detect malfunctions in the column operation such as loss of liquid on the trays, due to lack of reflux flow or excessive vapour rates, and flooding. The location of the pressure sensor is shown in figure 3-12.

FIGURE3-12LEVEL AND PRESSURE TAPPINGS

3.8.4 Composition Sensor

A Phillips OKOMETER R industrial in-line refractometer was
installed on the original column to monitor distillate product composition. The refractometer was modified and recommissioned to measure the composition of four methanol/water liquid streams.

The OKOMETER R was an in-line instrument and operated as follows: two parallel light beams of equal intensity were chopped with a rotating segmented plate and passed through the sampling cell and the reference cell respectively. A condenser lens focussed both beams on to a phototube; if the beams were of equal intensity there was no ac output from the phototube. If, however, there was some absorption in the sample cell, the intensity of the two beams was no longer equal and the resulting alternating current produced by the phototube was amplified and rectified to give a dc output signal. Within the sample cell, the light beam was bent so as to strike a sample liquid/glass prism interface at a constant angle. At the interface some of the light was reflected, and some was refracted into the sample liquid and absorbed. The change in light intensity of the beam leaving the cell was a measure of the amount of refracted light (and hence the refractive index of the sample liquid), and was measured by comparison with the light beam passing through the sample cell. The liquid sample stream passed through a heat exchanger which controlled the sample temperature. A thermostatically controlled water bath supplied the heat transfer medium to the heat exchanger. : The interior of the instrument containing the cells, optics and electronics was also maintained at a constant temperature by a temperature controller with a fan for air circulation. Further details of the OKOMETER R can be found in the Phillips instruction manual.

A number of modifications were made to the refractometer to match it to the requirements of the distillation column. A manifold of four solenoid valves was added to the refractometer sample input. The solenoids were selected by the states of two TTL logic signals through the interface
shown in Appendix I. The output of the refractometer amplifier ($0-200 \mu \mathrm{~A}$ d.c.) was scaled to $0-10 \mathrm{~V}$ d.c. by the amplifier shown in Appendix I . Additional filtering was introduced into this amplifier to reject low frequency noise in the refractometer output signal due to bubble formation in the liquid sample streams, and the optical chopper. The filter used was a first order lag with a corner frequency of approximately 0.15 Hz .

The optical system of the OKOMETER R was found to be unsatisfactory for the methanol/water system used in the distillation column. The reference cell contained a coloured filter (green) which absorbed too much of the light passing through the reference cell. In order to balance the cell, it was necessary to almost completely block off the sample cell with the zero diaphragm, and this in turn caused problems with poor focusing of the light beams on the phototube. Removing the filte: from the reference cell and placing a green perspex filter in both the sample and reference light beams allowed better focusing on the phototube and de-sensitised the zero diaphragm mechanism.

Temperature control of the sample stream was found to be very important as shown in Appendix II. The sample stream was cooled/heated in a heat exchanger comprising 1.7 m of 3 mm ID stainless steel tubing. The cooling/heating was controlled by water from a thermostatically controlled water bath pumped over the heat exchanger tubing. The water bath was controlled by an on/off solid state relay switched by a mercury/ glass thermometer. The sample temperature was measured by an LX5700 integrated circuit sensor mounted in the outlet line of the refractometer. This device used a signal conditioning circuit similar to that described in Appendix I.

The construction of the refractometer and its auxilaries is shown in figure 3-13, and the installation of the refractometer is shown in figure 3-9.

The response time of the modified refractometer was measured so

FIGURE3-13 ON-LINE REFRACTOMETER
that a sampling schedule could be formulated. A typical response of the refractometer to a channel change is shown in figure 3-14. Using the method of Sundaresan and Krishnaswamy (1978), a transfer function was fitted to this response:

$$
G(s)=\frac{K e^{-15.6 s}}{3.7 s+1} \quad \text { (in seconds) }
$$

The minimum time between channel changes was chosen to be 60 seconds to allow for the dynamics of the sampling system.

3.9 SELECTION OF A BINARY SYSTEM

A number of important factors were considered in selecting a binary system for the distillation column. Methanol and water were chosen on the basis of the following points:
(i) Safety - a low toxicity, low risk of explosion system was required because the column was located in a hazardous area, and because the column would be operated by undergraduate students in the future. Methanol/water while having some toxic effects is regarded as safe. A Pye gas detector was set to alarm when the concentration of methanol in the air reached 1.5% (25% of the lower explosive limit of methanol in air).
(ii) Properties - methanol/water mixtures do not exhibit constant relative volatility nor constant molal latent heat of vaporation and can be described as non-ideal. Methanol is completely miscible in water and does not form an azeotrope.
(iii) A number of other researchers have used methanol/water with similar columns, and by using the same binary system, some comparisons were possible between published results and experimental work. The separation of methanol from water is performed commercially by distillation to recover methanol.e.g. in the manufacture of formaldehyde.

Industrial grademethanol supplied by Imperial Chemical Industries (ICI) to the specifications given in Table 3-1 was used in the column.

FIGURE 3-14 REFRACTOMETER RESPONSE

SPECIFICATIONS OF METHANOL/WATER

Methanol:

```
    Appearance - clear, colourless, free from suspended matter and sediment.
    Purity - water < .05% wt
    - aldehydes and ketones <. .003% wt as acetone
    - alkalinity < .0005% wt as ammonia
    - acidity < .003% wt as acetic acid
    - sulphur < .0005% wt as sulphur
```

Water: Distilled in a Manesty still.

3.10 COMMISSIONING

Prior to assembly of the column components, all sections were thoroughly washed in a trichloroethylene bath, and scrubbed with boiling water to remove all traces of cutting oil and any remaining residues from the old column. Once assembled the column was twice filled with distilled water and operated at total reflux. During this operation the flanges and joints were checked and the operation of the bellows section described in section 3.7 was checked.

The column was then loaded with 87.5 litres of methanol (70 kg) and 40 litres of distilled water (40 kgl . Commissioning of the instruments and controls then commenced.
3.10.1 Temperature Sensors

Calibration of the sensors described in 3.8 .1 was carried out in a stirred water bath using mercury-in-glass reference thermometers. An ice bath was used to set the zero point of the scale. National Semiconductor (1974) specifications quoted the LX5700 device with a maximum of $1.2^{\circ} \mathrm{C}$ non-linearity, however the devices used in this work in general were better than $0.7^{\circ} \mathrm{C}$. The results from each probe were fitted with a
second order polynomial which gave a maximum discrepancy between the fitted line and the data points of $0.2^{\circ} \mathrm{C}$. This small deviation could be attributed to the errors involved measuring the true temperature during the calibration procedure and was within the manufacturer's repeatability specification. The calibration data, and the fitted quadratic correlations are given in Appendix II.

3.10.2 Pressure and Level Sensors

These devices were installed and operated as described in sections 3.8.2, 3.8.3. The desired operating levels were set up in the column and the level sensor readings were noted and used as setpoints in the level control loops. Calibration of the level sensors over a wide range was not necessary. A similar procedure was adopted to find the upper and lower limits on the overall column pressure drop to be placed in the alarm detecting software. The limits were chosen based on the overall column pressure drop existing when the column was operating at its desired state.

3.10.3 Composition Sensors

The OKOMETER in-line refractometer was installed and checked out according to section 3.8.4. This refractometer was calibrated against an Abbe refractometer (Carl Zeiss No. 202553) which had been checked with solutions of known concentration at several temperatures. These results are listed in Appendix II.

The operating temperature of the refractometer was chosen to be $25^{\circ} \mathrm{C}$ as a compromise between the heating/cooling capacity of the refractometer thermostat and the temperatures of the liquid sample streams (distillate $\simeq 20^{\circ} \mathrm{C}$, bottoms $\simeq 35^{\circ} \mathrm{C}$). At $25^{\circ} \mathrm{C}$, the thermostat maintained an approximate 50% on/off duty cycle.

Interactions between the zero and span adjustments on the OKOMETER refractometer necessitated the following calibration procedure. Two reference streams were connected to the refractometer reference channel, one reference being pure methanol and the other a mixture of approximately
. 40 mole fraction methanol of known composition and refractive index. Having selected the refractometer reference channel, the procedure was to switch between the two references; adjusting the zero point on pure methanol and the span on the mixture, until the voltage output settled at those levels determined from the calibration in Appendix II. This tedious procedure was necessary to ensure that the refractometer readings were correct. Reproducibility checks on the Okometer refractometer showed it to be capable of measuring the compositions of the column products within $\pm .004$ mole fraction. Its performance on measuring feed composition was much less satisfactory due to the very steep nature of the calibration: chart over the feed composition range. The error in the feed composition was estimated to be ± 0.020 mole fraction.

Close temperature control was found to be important as the refractive index is a strong function of temperature as shown in Appendix II. The Okometer thermostat was found to control within $\pm 0.2^{\circ} \mathrm{C}$, and using the refractive index data in Appendix II, this was predicted to cause a variation in the estimated composition of approximately ± 0.004 m.f. This error combined with the errors in the calibration chart formed the final estimate of $\pm 0.004 \mathrm{~m} . \mathrm{f}$. on the estimated composition for the ranges 0.0 to $0.20 \mathrm{~m} . \mathrm{f}$. and 0.80 to $1.00 \mathrm{~m} . \mathrm{f}$. The likely error on the feed composition estimate was found to be considerably higher of the order of $\pm 0.02 \mathrm{~m} . f .$, hence all . feed composition measurements were cross checked against density measurements with a density bottle, off-line.

Operation of the Okometer refractometer required careful attention to setting up and calibration. It was necessary to allow at least four hours for the air thermostat to bring the refractometer case and contents to its working temperature $\left(30^{\circ} \mathrm{C}\right)$ and about one hour for the water bath thermostat to reach its stable operating temperature $\left(25^{\circ} \mathrm{C}\right)$. The presence of the relatively cold sample cell in the heated refractometer caused condensation to form on the cell; a small amount of silica gel placed within the refractometer case removed this problem. Once set
up in accordance with the procedures outlined in this section, the refractometer could be relied on to give good estimates of tops and bottoms composition for periods of up to 12 hours. After this, checks against the standard solutions were required to prevent small drifts causing measurement errors.

3.10.4 Pumps and Rotameters

Some modifications were required before the variable speed pumps would work reliably. Once the individual pumps were correctly setup according to their conditions of operation, they behaved well. A small problem with the reflux pump was the gradual drift in flowrate with time for a constant rotational speed. This drift was small but continuous and was thought to be due to wear and movement in the vanes and cams system of the pump resulting in slippage. The head on the delivery side of the pump was increased by fitting a 200 mm length of 3 mm diameter stainless steel tube inside the discharge line. This flow restriction increased the back pressure on the pump; required a higher rotational speed for a given flowrate, and steadied the drift problem. The pump flowrate was also found to be suction head dependent due to some flow inadequacies in the pump design. Precise regulation in the level controllers held the suction pressures constant and minimised this problem. For the reflux pump, reliable constant flows could be maintained for periods up to four hours. The stability of the distillate and bottoms pumps was less critical as these were generally operating in the level control loops under feedback control.

The rotameters in the discharge lines of the three pumps were calibrated using water at $20^{\circ} \mathrm{C}$ because the calibration charts recommended by the manufacturer (Rotameter (1960)) were inaccurate due to inconsistencies in the shape and mass of the floats. Corrections for changes in liquid composition and temperature were estimated using the correlations given by the manufacturer (Rotameter (1960)). The calibrations and the corrections are given in Appendix II.

3.10.5 Steam Flow Loop

The steam flow loop was installed as described in section 3.5.5. The capacity tanks were fitted to the output lines of all the pneumatic devices to prevent the pumping action which effectively upset the control action and threatened to destroy the control valve. The tanks supplied sufficient capacity to damp out this action. The d/p cell was set up so its range matched the available steam flow range with the steam reducing'valve set at $275 \mathrm{kPa} . \quad$ The PI controller was tuned to give a reasonably fast response to setpoint changes while maintaining a steady flow without large valve movements for load changes. The best settings were found to be: proportional band $=150 \%$ reset time $\quad=11 \mathrm{~min}$.

The response time of the steam flow control loop was almost instantaneous ($\simeq 10 s$).

3.10 .6 Column Holdups

Holdups within the column were measured where possible and calculated otherwise. The reboiler holdup at normal operating conditions was found to be 40 litres. The maximum reflux accumulator holdup was found to be 25 litres but for most operating conditions, a level of 300 mm corresponding to a holdup of 12 litres was used. Tray holdups were calculated based on an average liquid depth on the tray equal to the height of the weirs, and a maximum backup of 100 mm in the downcomers. The results are summarised below in Table 3-2.

TABLE 3-2

COLUMN HOLDUPS

Measured Holdups	Reboiler	40 litres
	Reflux Accumulator	25 litres
Calculated Holdups	Tray	1.1 litres
	Feed Tank	270 litres

Total Column Holdup : 61 litres under normal operating conditions.

CHAPTER FOUR

COMPUTER SYSTEMS

4.1 Introduction 4.1
4.2 Analog Controllers 4.1
4.3 Microcomputer 4.2
4.4 Microcomputer/Process Interface 4.4
4.4.1 Data Acquisition System 4.6
4.4.2 Control Outputs 4.7
4.4.3 Timing 4.8
4.5 Microcomputer Development System 4.8
4.5.1 Development of System Hardware 4.8
4.5.2 Interface Software 4.11
4.5.3 Software Development 4.12
4.5.4 Software Debugging 4.13
4.6 Arithmetic Processing Unit 4.13
4.6.1 Interfacing the APU to the M6800 CPU 4.15
4.6.2 Operating the Am 95ll APU 4.15
4.6.3. Am 9511. APU Performance 4.19
4.6.4 Generating Threaded Code for the APU Interpreter 4.21
4.7 Nomenclature 4.22

CHAPTER FOUR

COMPUTER SYSTEMS

4.1 INTRODUCTION

The computer system developed for this work was designed to be as flexible as possible and to allow a number of different configurations. A microcomputer with peripherals and process interface was used as a software development system, and a control system. A PDP-11 minicomputer in the Department of Chemical Engineering was connected to the microcomputer to provide program development facilities for the microcomputer, mass storage, utility routines, and a hierachical control scheme. Simple analog proportional only controllers were constructed to provide limited control functions and hardware signal filtering. Software was written to allow the microcomputer to control its peripherals and the process instruments, and to allow the minicomputer to control the microcomputer. The computational capability of the microcomputer was extended by the addition of a hardware arithmetic unit. Programs were developed in the minicomputer and then downloaded to the microcomputer for debugging and implementation. A cross-assembler was written to produce code for the M6800 microprocessor. All software operating in the microcomputer was developed using this system.

4.2 ANALOG CONTROLLERS

Four analog proportional only controllers with adjustable setpoints, gains, filter constants and output biases were constructed. The controllers were used to maintain the material balances within the column, when operating without computer control. A circuit diagram of the controllers is shown in Appendix I.
outputs to prevent rapidly changing outputs causing the speed controlable pump motors to lose synchronisation. The other two controllers were set up with zero setpoint, unity gain and zero bias to serve as filters for the two liquid level signals in the reflux accumulator and the reboiler.

The filter built into each controller was a lag unit operating as a low pass filter. The first order lag unit was constructed after a circuit by Bristow (1972). A series of sinusoidal inputs to the filter established that the filter did approximate a first order lag. The filters on the liquid levels signals were adjusted to a time constant of 5.5 seconds, corresponding to a corner frequency of 0.03 Hz . This filtering proved very satisfactory in smoothing the noise in the liquid level signals caused by liquid agitation.

4.3 MICROCOMPUTER

The microcomputer was constructed around an American Microsystems Inc. EVK300 prototyping single board computer. This board used a Motorola M6800 8 bit microprocessor. The major features of the board are summarised in Table 4-1. The prototyping system memory was expanded by the addition of two 4 K byte read/write memory (RAM) boards, and two 4 K erasable programmable read-only memory (EPROM) boards (using M6834 EPROMS). This gave a total memory complement of lok bytes of EPROM and 9 K bytes of RAM.

Interfacing to the distillation column was organised through a data acquisition unit attached to the CPU via a PIA, and through four 8 bit digital-to-analog converters via two PIAs. The process interface hardware and software will be further discussed in the following sections.

TABLE 4-1

AMI EVK300 PROTOTYPING SINGLE BOARD COMPUTER

- M6800 CPU operating at 1 MHz
- 3 peripheral interface adapters (PIA), each with two 8 bit I/O ports and four control/handshaking lines
- 1 asynchronous communication interface adapter (ACIA) serial interface, RS232 and 20mA current loop, operating at $110-9600$ baud
- \quad lK read/write memory (RAM)
- 2 K read-only-memory (ROM) containing a small operating system (PROTO) and a collection of subroutines (RS^{3})
- 2 K erasable programmable read only memory (EPROM) organised as $4 \times \mathrm{M} 6834$ chips
- EPROM programmer (handling M6834 EPROMS)
- Fully buffered address, data and control busses to allow for system expansion
- An internal timer providing pulses at $100 \mu \mathrm{~s}$ and 1 ms intervals (used by the EPROM programmer)
- Three types of direct memory addressing (DMA) - halt processor, cycle steal, and multiplex mode.

The 20 mA current loop serial. port on the EVK300 board was used to control and communicate with the microcomputer. An interface from the PDP-11 minicomputer was connected to this port to allow communication between the two machines. Alternatively, a visual display unit (VDU) was attached to the port for direct interaction with the microcomputer.

Five output control lines from the three PIAs on the EVK300 board were connected via transistor drivers to front panel light emitting diodes (LED). These LEDs were used as indicators and for monitoring programs.

The computational capability of the microcomputer was extended by the addition of an American Micro Devices Am95ll arithmetic processing
unit as described in section 4.6.

The microcomputer was assembled in a 480 mm rack-mounting case with the printed circuit boards arranged horizontally. A backplane construction was used with the printed circuit boards mounted in sockets, wire wrapped together to form the backplane. This allowed maximum flexibility in adding to the system; the EVK300, RAM memory, EPROM memory and APU boards all had different pin connections.

The assembled microcomputer dissipated approximately 50 W into its case, and a cooling system was necessary. A 100 mm diameter fan was mounted in one side of the case and arranged to draw air through a cloth filter on the opposite side of the case, across the printed circuit boards. The integrated circuits (especially the RAM chips) operated at a reasonable temperature $\left(35^{\circ} \mathrm{C}\right)$.

Power for the microcomputer was supplied by a single power supply mounted externally to the case. The circuit diagram of the power supply is shown in Appendix. I. The 5V regulator had current limiting protection up to a maximum of $10 A$ and an overvoltage trip out. The regulator was based on a conventional series regulator design. The $\pm 12 \mathrm{~V}$ supplies were rated at 1.5 A maximum and also had current limiting protection. A -50 V supply was included for EPROM programming on the EVK300 board.

4.4 MICROCOMPUTER/PROCESS INTERFACE

The microcomputer interface to the distillation column and instruments was used to monitor process variables and set controls. All interfacing to the process was through Motorola M6820 parallel interface adapters (PIA). These devices provided two parallel 8 bit ports and 4 handshaking lines, and could be configured under software control. The following sections describe the hardware used in the microcomputer/ process interface and the connections and operation of that hardware. The interface structure is shown in figure 4-1.

FIGURE 4-1 MICROCOMPUTER/PROCESS INTERFACE

4.4.1 Data Acquisition System

A Burr Brown SDM853 data acquisition module (DAM) was used to monitor the process variables. This unit was a hybrid package containing a sixteen channel multiplexer with control logic, a scaling amplifier, a sample and hold unit, and a twelve bit analog-to-digital converter with control logic.

The DAM for this application was configured to operate in one of the four switch selectable modes described in Table 4-2 by the addition of some discrete logic to the basic module. A circuit diagram of the unit appears in Appendix I.

TABLE 4-2

DATA ACQUISITION SYSTEM

Modes of Operation:

(1) Computer Run - To sample all sixteen channels sequentially once, and stop.
(2) Computer Hold - To sample the current channel once and stop. (3) Manual Run - To advance to the next channel and sample it on depression of the push-to-convert button.
(4) Manual Hold - To sample the current channel on depression of the push-to-convert button.

Features:

- Input ranges $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-10 \mathrm{~V}, 0-5 \mathrm{~V}$
- Variable scan frequency from 0 to 10 kHz
- Sixteen single input channels
- Channel roll over: channel 0 follows channel 15
- LED front panel to display the twelve data bits (red), and four channel identification bits (green)
- SCAN and DATA READY TTL logic lines for handshaking operation with a computer.

For control by the microcomputer, the data acquisition system was connected as in figure 4-1. A low to high transition on the SCAN line initiated either a sixteen channel sweep or a single channel sample depending on the operating mode. When the digital-to-analog converter had completed the data conversion on a particular channel, a low to high transition occurred on the DATA READY line to signal the microcomputer to take the available data.

The timing logic of the unit allowed variable sweep rates for interfacing to microprocessors of various speeds. In this case, the M6800 microprocessor was not the limiting factor in the data acquisition process. For convenience, and to allow visual monitoring of performance, the sweep rate was set at 30 Hz giving one channel every 33.3 ms . This slow sweep rate also allowed the microcomputer to operate on the data between samples.

To conform to the interface standard of $0-10 \mathrm{~V}$ used for all the column instrumentation, the data acquisition system was operated on the $0-10 V$ range, in the COMPUTER RUN mode.

4.4.2 Control Outputs

Control outputs to the process were in two forms:
(1) Analog control signals ($0-10 \mathrm{~V}, 10-50 \mathrm{~mA}$) for controlling the speed controllable pumps and for the setpoint to the steam flow loop.
(2) Logic control signals (TTL) for controlling the selection of a sample stream to the on-line refractometer. The connections to the microcomputer are shown in figure 4-1.

The analog outputs were generated using Motorola MC3408 8 bit digital-to-analog converters. Each converter was connected to one 8 bit parallel port of a PIA. Some signal conditioning was necessary on the digital-to-analog converter outputs since these were current output devices. An operational amplifier was used to allow both scaling and offset adjustment on the converter output in the range $0-15 \mathrm{~V}$. In addition a voltage to current converter was also constructed to drive the current-
to-air converter in the steam flow loop and allowed remote control of the loop setpoint. A circuit diagram is shown in Appendix I.

The logic control for the refractometer sampling system used two of the output control lines available on a PIA. The solenoid controller described in section 3.8.4 performed a four from two decoding and activated the appropriate solenoid valve. The two control lines used for this purpose were also connected to front panel LED's 1 and 2 of the microcomputer, to provide a visual indication of the current sampling channel.

4.4.3 Timing

Software timers and timed interrupts were generated from a locally constructed 10^{-4} to $10^{5} \mathrm{~Hz}$ external clock and one PIA input line.

4.5 MICROCOMPUTER DEVELOPMENT SYSTEM

The PDP-ll minicomputer in the Department of Chemical Engineering was linked to the microcomputer through a serial interface to form a development system. A cross-assembler was written to produce code for the microcomputer using the minicomputer facilities. An interface program was written for the minicomputer to transfer data and code between the computers, and to control the microcomputer for debugging. The development system is shown schematically in figure 4-2.

4.5.1 Development System Hardware

The Department of Chemical Engineering maintained a PDP-1l minicomputer for use in real time process control work, undergraduate design and research work. The features of this machine are summarised in Table 4-3. The PDP-11 is housed in an airconditioned room approximately 150 m from the distillation column and the microcomputer.

FIGURE 4-2 DEVELOPMENT SYSTEM

MINICOMPUTER FEATURES

```
PDP 11/15 CPU
20K Core memory, 8K Semiconductor memory
RK05 disk storage 1.2 M words
KEll extended arithmetic element
Serial Printer (600 baud)
Teletype terminal (110 baud)
Console V.D.U. (2400 baud)
Paper Tape Reader (300 ch/s)
4 x DRIIC general purpose interfaces
        1 6 ~ b i t ~ w o r d ~ i n , ~ 1 6 ~ b i t ~ w o r d ~ o u t
        2 \text { control and 2 interrrupt lines}
KW1l-L line clock
Operating System: RT-ll VO3B
```

To make use of the available features of the minicomputer, a serial link to allow communication between the minicomputer and microcomputer was constructed. To simplify this link, and to allow the use of existing software in the microcomputer operating system, the serial I/O port of the microcomputer was used. This interface used a 20 mA current loop and was immune to electrical noise, important because of the considerable electromagnetic radiation in the vicinity of the cable which linked the microcomputer to the distant minicomputer.

A hardware interface was constructed using a universal asynchronous receiver/transmitter (UART) to link one of the minicomputer parallel interfaces (DRIIC) to the microcomputer serial port via a serial 20 mA current loop. A circuit diagram of the interface and a description of its operation is given in Appendix I.

The two output control lines on the DRllC interface were connected to the reset ($\overline{\mathrm{RESET}}$) and non-maskable interrupt ($\overline{\mathrm{NMI})}$ lines of the micro-
computer. Software control of these lines in the PDP-11 allowed the minicomputer to control the operation of the microcomputer.

4.5.2 Interface Software

To control the interface described in 4.5.1, a FORTRAN program, MGW, was written to make the PDP-11 appear to the microcomputer as a VDU. This allowed use of the software available in the microcomputer operating system PROTO. All data from the microcomputer was accepted under interrupt by the PDP-11 and directed to the console terminal. The PDP-1l console terminal operated at 2400 baud and this placed an upper limit on the speed of the inter-computer link.

Commands were accepted from the pDP-11 console and decoded; those for the microcomputer were passed down the serial link, and the others were actioned by MGW. The commands available were those listed in the PROTO manual. (AMI (1976)) and the following RE - to generate a $\overline{\operatorname{RESET}}$ command in the microcomputer NM - to generate a $\overline{N M I}$ interrupt in the microcomputer ST - to stop MGW, disable interrupts and clean up the system. The load command format remained the same as for PROTO, but the PDP-11 responded by asking for a code file name. On receipt of a valid file name, MGW checked that the file existed on the PDP-ll disk. If the file was found, MGW opened the file and then sent the original load command to the microcomputer, which in turn responded with a DCl character (\$11) to indicate 'ready to receive data'. MGW then read the file from disk, block by block, and sent the data to the microcomputer byte by byte down the link. When an end-of-file record was received by the microcomputer, it sent a DC3 character (\$13) to the PDP-11 to stop the data transfer. The format of the transmitted file followed the standard Motorola hex formatted record system (Motorola (1975)). The program MGW was written in RT-ll FORTRAN and used the Digital Equipment RT-11 System Subroutine Library. It was necessary to operate the serial link at a lower baud rate than the PDP-11 console, because
system overheads in interrupt processing sometimes caused characters to be lost. This was found to occur only in longer transmissions of more than one hundred bytes from the microcomputer to the PDP-ll. MGW was used to load programs into the microcomputer, start them executing and to monitor program performance by way of breakpoints (incorporated in PROTO) and by diagnostics written into the microcomputer program.

A listing of MGW can be found in Appendix III.

4.5.3 Software Development

To produce code for a microcomputer at the machine level is slow and tedious. The next step up from this level is to use an assembler, and results in a very large increase in the rate and ease of production of software. Ideally a further step up to a higher level language such as FORTRAN or PASCAL would produce even greater ease and speed of programing. A control system often requires to operate at the bit or byte level for peripheral interfacing and hence some assembler level routines are required. The original microcomputer configuration using only the EVK board was restricted in the available memory, and consequently the decision was made to program in assembly language. Cross-compilers for high level languages were not readily available in 1975, and hence there was no alternative to assembly language programming. With hindsight, it appears that a higher level language using assembler subroutines where necessary would have simplified the programming of the microcomputer.

A cross-assembler, XASMBL, was written in RT-ll FORTRAN to run on a PDP-11 and produce code for a M6800 microprocessor. XASMBL was written in modular form as a series of subroutines. The input file to the crossassembler was from the PDP-11 disk, and XASMBL produced two output files one a load file formatted to the Motorola hex tape format (Motorola (1975)), and the second a list file containing the addresses of the assembled instructions, the generated program code and errors as well as the instruction mneumonics, labels and comments of the source program. The instruction
manual for XASMBL is in Appendix V. The cross-assembler has been marketed as a commercial product, and has been used in industry, local government and research situations.

Source programs for input to XASMBL were written using the RT-11 system utility program EDIT. The power of this text editing program obviated the need for some of the more sophisticated assembler features such as local symbols, macros and relocatable code. The mass storage capability of the PDP-11 disk meant that source programs were always readily available for modification and patching, assembly by XASMBL and downloading into the microcomputer by MGW.

4.5.4 Software Debugging

The PDP-11 minicomputer was used to control the microcomputer during debugging. The microcomputer software was monitored using breakpoints and register snapshots; using the software interrupt (SWI) routines contained in the microcomputer operating system PROTO (AMI (1976)). These features allowed checking of program performance, display of memory contents, and restarting of the program. With the original source program stored on disk, it was a simple operation to make small or large changes to the program, then re-assemble and download the modified program for further testing. With the serial communication link operating at 2400 baud, 1 K bytes of memory could be transferred in 10.8 seconds.

The control software required.for this work was written in modular subroutines, with each subroutine being debugged and checked. The routines were then collected with a main program and tested together. The development up to this stage was carried out in RAM using the development system. After the software was fully checked and debugged, it was transferred into EPROM, and ready for use. The development system simplified these operations and reduced software development time.

4.6 ARITHMETIC PROCESSING UNIT

allow more sophisticated control routines to be implemented. These functions could be provided by software or by dedicated hardware processors. Software routines to perform the basic arithmetic operations in both fixed and floating point formats were available through users groups such as the Motorola Users Group. However, the more complex routines such as trigonometric functions, logarithms and exponentials were not readily obtainable.

The major disadvantages of using software routines were the speed restrictions and memory requirements. A typical 32 bit floating point package such as FPAL from Intel required approximately 2 K bytes of memory and executed at the following speeds:

Operation	Time/ \mathbf{H}
Addition	700
Subtraction	700
Multiplication	1500
Division	3600

The alternative to using software routines, was to use a microprogrammed hardware processor which is a dedicated microprocessor with a specialised instruction set. A number of such units were available to perform a number of operations, e.g. National MM57109 and the American Micro Devices Am9511. The latter unit was the fastest and most powerful eight bit based arithmetic processor available.

The microcomputer described in previous sections was expanded by the addition of an Am9511 arithmetic processing unit (A.P.U.). This device made available 16 bit integer, 32 bit integer, and 32 bit floating point arithmetic operations as well as 32 bit floating point trignometric and arithmetic functions such as cosine, inverse cosine, natural logarithms, exponentials and power raising. A printed circuit board was designed and built to interface an Am9511 APU to the M6800 microcomputer system. The board also had provision for a 2708 1Kx8 EPROM to be used as a store for a control program to operate the APU.

4.6.1 Interfacing the APU to the M6800 CPU

The Am9511 APU is designed to interface to the Intel 8080 family of microprocessors. A circuit was developed and a printed circuit board constructed to interface the APU to the Motorola M6800 family. A circuit diagram of the interface, and a description of its operation can be found in Appendix I.

4.6.2 Operating the Am9511 APU

The APU was essentially a stack oriented, reverse polish device. All data transfers to and from the chip took place over an 8 bit bidirectional data bus, but internally the device operated a sixteen byte stack organised either as 8 levels of 16 bits or 4 levels of 32 bits, depending on the type of data being used. Further information on the chip and its operation is available in the data sheet and algorithm sheet published by American Micro Devices (AMD (1978).).

To make best use of the stack of the APU and to simplify programming, an interpreter APUDRV was written to handle threaded code and to control the APU. This program resided in the 2708 EPROM on the APU board.

Threaded code is a string of commands and data stored in memory. The commands of APUDRV are listed in Table 4-4. Entry to the interpreter was achieved through a subroutine call JSR APUDRV. All bytes in memory from this location onwards were interpreted and actioned by APUDRV until a command byte UNTHRD was reached. At this point the threaded code was terminated and execution continued from the instruction following the UNTHRD command.

TABLE 4-4

APUDRV COMMANDS

(a) APU OPERATIONS

Arithmetic Operations

16 bit integer	SADD, SSUB, SMUL, SDIV, SMUU
32 bit integer	DADD, DSUB, DMUL, DDIV, DMUU
32 bit floating point	FADD, FSUB, FMUL, FDIV, PWR (= x^{Y})

Functions

32 bit floating point
SQRT

SIN COS TAN
ASIN ACOS ATAN

LOG LN EXP

Stack Operations	l6 bit integer	32 bit integer CHSD	32 bit floating point CHSF
Change sign	CHSS	CHS	XCHD

(b) APUDRV OPERATIONS

APU Stack I/O

Load immediate	IPSHS	IPSHD	IPSHF
Load from memory	PUSHS	PUSHD	PUSHF
Read from APU to memory	POPS	POPD	POPF
Conditional Branches			

BRA	BEQ	BLT	BLE	BCS
	BNE	BGE	BGT	BCC

Error Branches
BER - branch on any error

BEN - branch on negative argument
BEZ - branch on zero divisor

BEO - branch on overflow

BEU - branch on underflow

BEA - branch on argument too large

```
Miscellaneous
NOP - No operation (status word set)
UNTHRD - Indicates the end of threaded code
ENTER - Pushes bytes onto the APU stack from the
        microcomputer console
PRINT - Displays the contents of the APU stack and
    the address of the PRINT command on the
    microcomputer console
LOOP COUNT, START - Defines the end of a repeat loop
        beginning at location START. COUNT is the
        address of a downcounter which is decremented
        each time the loop is executed. When the
        downcounter reaches zero, the next command
        following LOOP is executed.
```

As well as the commands destined for the APU, the interpreter also responded to a number of other commands and special conditions. These actions included reading and writing to and from the APU, handing error conditions, and providing loop and branch operations. APUDRV contained error handling procedures; a general error handler was used to take all errors unless the user specified a different action by one of the branch-on-error commands. Part of the top 1 K of RAM was used to store pointers and data relating to error handlers as shown in Table 4-5.

TABLE 4-5

APU RAM REGISTERS

Memory Location	Use
\$FFE2, \$FFE3	Memory address at which last APU error
occurred.	
\$FFEE	APU status byte at the last APU error
\$FFFE9, \$FFEA	Pointer to the general error handler for APU
	detected errors
	Pointer to the next threaded code instruction
	to be executed.

The user would set up the address of the error handler in locations \$FFE7, \$FFE8 before entering the interpreter to ensure that error conditions were correctly handled. By examining locations \$FFE2, \$FFE3, \$FFE4 , the location of any APU error, and the type of error could be determined.

The I/O instructions came in.two forms. Immediate mode pushes onto the APU stack took the required data bytes directly from the threaded code immediately following the command byte. Direct mode pushes and pops shifted data to the APU from specified memory addresses, and from the APU to specified memory addresses.

Branches were possible within the threaced code and followed the same format as the M6800 branches except that they were absolute branches and could jump to any label, anywhere in memory within a threaded code section. The branches operated on the condition code bits in the APU status word which were set or cleared according to the value on top of the APU stack.

Two useful commands for program development were the ENTER and PRINT commands. The ENTER command accepted bytes from the microcomputer console and successively pushed these bytes on to the APU stack. PRINT caused a listing of all sixteen bytes of the APU stack on the microcomputer console; the memory address at which the PRINT command occurred was displayed on the console so that the output of more than one PRINT command could be resolved.

The loop command provided for repeated operation of a section of threaded code. Its position defined the end of the loop and its syntax is LOOP COUNT, START where COUNT is the address of an 8 bit downcounter which is decremented on each loop. When the downcounter reaches zero, the next command following LOOP is executed. START is the address of the first instruction of the loop.

Future additions planned for APUDRV include indexed pushes and pops allowing operation on arrays etc., I/O formating routines to convert
from standard ASCII formats to the internal binary forms, and the ability to call threaded code subroutines from within threaded code. These expansions are planned and will approximately fill the remaining space in the 1 K byte EPROM on the APU board.

4.6.3 Am9511 APU Performance

By using the interpreter APUDRV, certain overheads were incurred in operating the APU. The overheads are listed in Table 4-6.

TABLE 4-6

APUDRV OVERHEADS

Operation	Time overhead $/ \mu \mathrm{s}:$
Load 2 bytes into APU	270
Load 4 bytes into APU	360
Read 2 bytes from APU	230
Read 4 bytes from APU	360
APU command	90

Note that the overhead for an APU operation is in addition to the actual execution time for that particular operation.

Consider a worst case arithmetic operation using the APU where two floating point numbers were loaded into the APU, multiplied together, and the answer replaced in memory. The operation times are listed in Table 4-7.

TABLE 4-7

For this example, $1 / O$ occupied 86% of the total execution time for a 1 MHz CPU. This time could be reduced by using a faster CPU, e.g. a 2 MHz M6800, and marginally reduced by using a 4 MHz APU. Further time savings are possible by using in-line code instead of a threaded code interpreter. However, the use of in-line code would increase the code requirement 3 to 20 times, and lead to longer program development and debugging times. For distillation column control, the speed restrictions resulting from using threaded code were not critical.

As a comparison, a test program using the feedforward column controller described in Chapter eight was coded and executed in FORTRAN and BASIC on the PDP-1l minicomputer described in Table 4-3, and in assembler for execution by the APU. The relative times are given in Table 4-8.

TABLE 4-8 COMPARISON OF EXECUTION TIMES

Language	Machine	Time $/ \mathrm{m}$ S
FORTRAN	PDP-11	23
BASIC	PDP-11	65
ASSEMBLER	Am9511/M6800	41

A further comparison was made between the speed and memory requirements of the APU and software routines written for an 8 bit microcomputer. Because a floating point arithmetic package was not available for the M6800, an approximately equivalent package produced by Intel for the $8080 / 8085$ family of microprocessors was used in comparison with the APU. The Intel Floating Point Arithmetic Package (FPAL) quoted average times for the four basic arithmetic operations. These were compared with average times for the APU using in-line code and using threaded code with the interpreter APUDRV in Table 4-9.

From Table 4-9 the time advantages for using the APU are marginal when using threaded code for addition and subtraction, but significant for

TABLE 4-9

COMPARISON OF INTEL FPAL WITH • APU | (APU 2MHz) |
| :--- |
| $(\mathrm{CPU}$ |

Operation	Average Time/ $\mu \mathrm{S}$ FPAL	Average. Time/ $\mu \mathrm{S}$ APU Threaded Code	Average Time/ μ_{s} In-line Code
$+$	700	785	145
-	700	790	150
*	1500	759	120
1	-3600	-. 765	125

multiplication and division operations. It should also be noted that the APU times include the time to move the data bytes onto the APU stack and off again. If, in the course of a series operations, data can be held on the APU stack, then the execution time for the APU will be more favourable with respect to the floating point package.

The FPAL package for performing the basic arithmetic operations required 1900 bytes of memory plus 20 bytes of scratchpad memory for an accumulator. The APU unit on the other hand occupied only two bytes of the possible memory space, plus 1 K EPROM for the interpreter, APUDRV. To include all the functions available in the APU, it was estimated that 5 K bytes of memory would be required based on the routines available through the Intel Users Group.

In conclusion, the Am9511 was a very powerful device for extending the computational capability of an 8 bit microprocessor based system. The addition of an interpreter APUDRV to handle threaded code reduced the throughput capability of the APU as a trade off against programming ease. In this application the Am95ll was found to be extremely useful in extending the possible range of microcomputer control programs to feedforward and adaptive controller strategies.

4.6.4: Generating Threaded Code for the APU Interpreter

A pre-assembler, PREASS, was written to translate the APU mneumonics
into the equivalent opcode in a form acceptable to the cross-assembler. PREASS also expanded a set of macros to handle the additional operations described in section 4.6.2. A more detailed description of PREASS, and an example of its use can be found in Appendix V.

4.7 NOMENCLATURE

ACIA	-	asynchronous communications interface adapter
APU	-	arithmetic processing unit
CPU	-	central processing unit
DAM	-	data acquisition module
DMA	-	direct memory access
EPROM	-	erasable, programmable read-only memory
LED	-	light emitting diode
PIA	-	peripheral interface adapter
RAM	-	read/write memory
ROM	-	read only memory
TTL	-	transistor-transistor logic
VDU	-	visual display unit
\$	-	prefix indicates a hexadecimal number (base 16)

CHAPTER FIVE

MICROCOMPUTER SOFTWARE

CONTENTS

5.1 Introduction 5.1
5.2 OPSYS - A Micro Operating System 5.1
5.3 Data Base 5.4
5.4 Timing Functions and the Interrupt Routine 5.4
5.5 Operator Interface 5.6
5.6 Data Acquisition 5.8
5.7 Control Outputs 5.11
5.8 Refractometer Control 5.13
5.9 Single Loop Controliers 5.15
5.10 Alarm Checking 5.17
5.11. Main Program 5.20
5.12 CC68 Installation and Use 5.22
5.13 Cost Comparison of Microcomputer Control System with an Equivalent Analog System 5.24
5.14 Nomenclature 5.26

MICROCOMPUTER SOFTWARE

5.1 INTRODUCTION

The direction of this work changed during the period of the project due to major changes in technology, especially in the microprocessor field. The original design was for a mini-computer controlled distillation column; this led to a minicomputer/microcomputer configuration, and finally to a stand alone microcomputer system. The changing level of emphasis from the minicomputer to the microcomputer led to a change in direction for the software development. Initial plans were for the microcomputer to be no more than an intelligent peripheral controlled by the minicomputer, whereas in the final design the microcomputer became selfsufficient.

The first step was the replacement of the read-only memory (ROM) based operating system, PROTO, on the EVK300 board with a subset called OPSYS. This avoided some of the incompatability between PROTO and the microcomputer peripherals.

The second step was the creation of a suite of programs, cc68, for the microcomputer to operate the peripherals, and to provide individual loop controllers. These programs were written as subroutines with a main program to sequence them and a common database. An overall flow diagram of CC68 is given in figure 5-1. The individual routines of CC68 are discussed further in the following sections.

5.2 OPSYS - A MICRO OPERATING SYSTEM

PROTO, the ROM based operating system had a number of useful commands that allowed control of the microcomputer from power on (AMI (1976)). However, there were several disadvantages to using PROTO to control the microcomputer:

FIGURE 5-1 BASIC CONTROL PROGRAM
(i) On $\overline{\text { RESET }}$ or on a detected error, PROTO initialised two of the peripheral interface adapters (PIA) on the EVK300 for EPROM programming. This created problems for any peripheral that was using those PIAs.
(ii) PROTO started a program by pushing all the registers onto the stack (including the new starting address) and then executing a return-from-interrupt (RTI) instruction. (This sequence allowed PROTO to provide breakpoints). This method of starting proved unreliable and often a $\overline{\text { RESET }}$ was required.

OPSYS was written as a subset of and an adjunct to PROTO with the features summarised'in Table 5-1. Other differences between OPSYS and PROTO were
(i). On $\overline{\operatorname{RESET}}$, OPSYS configured the PIA's to suit the microcomputer peripherals.
(ii) OPSYS could be entered via an $\overline{N M I}$ interrupt without reinitialising the PIA's or altering any variables.
(iiil. OPSYS started a program by executing a JMP instruction.

TABLE 5-1 OPSYS FEATURES

C - to configure PIAs - PIA \#l, \#3 for output via D/A

- PIA \#2 for input from data acquisition module
$G<$ addr $>$ - to start execution at \langle addr $>$
J - to jump to PROTO entry point
L - to load. This command was as for PROTO but no parameters were accepted

Z - to zero all RAM locations from \$0 up.

OPSYS and PROTO both share the 512 bytes of RAM at the top of memory for data and stack space.

OPSYS was written in assembler using the cross assembler described in Chapter 4, burnt into a M6834 EPROM and installed on the EVK 300 board with a start address of $\$ E 600$ ($\$$ prefix indicates a hexadecimal number). The EVK 300 restart switch register was changed to route resets to OPSYS.

5.3 DATA BASE

The programming of the CC68 routines was arranged so that all program code resided in EPROM, and the data base resided in RAM. To make best use of the direct memory addressing mode of the $M 6800$ microprocessor (Motorola (1975)L the data base was organised to start at $\$ 0$ and extend up to \$lFF. All the data associated with the CC68 routines was located in the area $\$ 0$ to $\$ C 0$. Expansion of the data base was possible after the last entry. Those sections of the data base as necessary were included with the individual routines described below for assembly via XASMBL . A listing of the CC68 data base is given in Appendix IV.

5. 4 TIMING FUNCTIONS AND THE INTERRUPT ROUTINE

Timing registers were implemented using an $\overline{\text { IRQ }}$ interrupt routine driven by an external clock (section 4.4.3). The operator interface also operated under the same $\overline{\text { IRQ }}$ interrupt line, so the peripheral devices were polled to determine which required attention. This situation was further complicated by the fact that if an $\overline{N M I}$ interrupt occurred while an SWI interrupt was in progress, then neither the SWI or the $\overline{N M I}$ interrupt was executed but an $\overline{\operatorname{IRQ}}$ interrupt was taken instead (Motorola (1975)). This possibility was also polled. A flow chart of the IRQ interrupt routine, TIMER, is given in figure 5-2 and a listing of the routine is given in Appendix IV.

The timer registers were five single byte RAM locations, each of which was incremented by one on each interrupt of the external clock,

FIGURE 5-2 INTERRUPT HANDLER

The user program could clear or modify these registers in any way. Any $\overline{N M I}$ interrupts detected in this routine were passed to OPSYS. This allowed entry into the microcomputer operating system without going through the $\overline{\text { RESET }}$ procedure. The operator interface terminal (VDU) control was also performed in the $\overline{\mathrm{IRQ}}$ routine. This involved accepting characters from the terminal and echoing valid ones. A backslash (\$5C) was defined to be an escape character, and caused the current line of input to be rejected and a user prompt for a new line of input made. A carriage return ($\$ \mathrm{OD}$) completed the line of input and set a flag to indicate to the main program that there was a completed line of input available.

5.5 OPERATOR INTERFACE

The operator interface was a minimal set of commands for altering and displaying parts of the database. It consisted of two parts; the operator I/O which was under $\overline{\text { IRQ }}$ interrupt (see section 5.4) and the operational section which actioned the operator commands. On receiving a valid line of input, the main program of CC 68 branched to the routine USERC and decoded the input line. The available commands are listed in Table 5-2. The command consisted of a single alphabetic character (with or without modifiers) followed by a carriage return. The input line was compared with a table of available commands, and a branch taken to the appropriate routine. If the command was undefined, the routine returned to the main program. A listing of the routine USERC is given in Appendix IV.

TABLE •-2

OPERATOR COMMANDS

C - To print the controller parameters as
 < double byte > < double byte > < single byte >
 K_{1}
 K_{2}.
 PV Index

for each of the four controllers in order, one per line. After
the four controllers, a single byte was printed showing the current controller division factor. (See Section 5.9 for details).

D - To print out the data from the data acquisition system as two rows of eight double bytes, in sequence from channel 0 to 15 . Each double byte contained a four bit channel identifier and 12 bits of data, e.g.
$\$ A B 23 \Rightarrow$ Channel $10(\$ A)$ had a value of $2851(\$ B 23)$.
P - To print out four single bytes representing system parameters as follows:
byte $1=$ system status (see Section 5.11)
byte $2=$ data acquisition error flag ($0=$ no error)
byte 3 = current refractometer channel
byte $4=$ sampling time factor (see Section 5.11).
R - To print out the data collected from the online refractometer as four double bytes. The most recently acquired data had the upper nibble set to $\$ 8$. The refractometer channels were in the following sequence:
(1) distillate composition
(2) feed composition
(3) bottoms composition
(4) reference composition.

S - To print out the setpoints for the single loop controllers described in 5.9 as four double bytes in the sequence
(1) loop 1 (controls reflux flow)
(2) loop 2 (controls bottoms flow)
(3) loop 3 (controls distillate flow)
(4) loop 4 (controls steam flow).

V - To print out the current yal ve positions as four single bytes in the order
(1) reflux flow

```
bottoms flow
(3) distillate flow
(4) steam flow.
```

I < addr > , < byte $1>\{,\langle$ byte $2>\} \ldots$ to allow the entry of a sequence of bytes (byte 1 , byte 2 etc.) into memory starting at location < addr > .

O < addr > , < count > to output to the terminal < count > single bytes starting at location < addr > . The starting location was also listed as a double byte.

Note: (i) All I/O was done in hexadecimal base integers.
(ii) No conversions were performed - all data was displayed or entered in memory image form, i.e. data acquisition system data was in the form $0-\$ F F F(0-4095)$. (iii) Valve position \equiv pump control.

5.6 DATA ACQUISITION

Data was acquired from the process through the system described in 4.4.1 under the software control of a subroutine READAD. On entry to the routine, a timer register and a channel counter were cleared, and a pointer set up to the data base. The data acquisition system was then triggered by lowering, then raising the SCAN line. When data became available, the DATA READY line was raised high and this was shown in bit 7 of the PIA status register. READAD polled the status register, waiting for the DATA READY signal. When this occurred, READAD accepted the data from the two PIA input registers, and checked that the correct sequence channel had been received. If the channel was not the expected one, an error was logged and the routine continued; otherwise the data was stored as received in the data base. When sixteen channels had been received, the routine returned to the calling program.

If the timer register cleared on entry to the routine incremented before all sixteen channels had been read, READAD aborted with the error flag set to $\$ \mathrm{FF}$. (Note that the error flag otherwise contains the number of channel read errors.). The errors detected and flagged by READAD were actioned by another routine CHECK which implemented alarm checking.

A flow diagram of READAD is given in figure 5-3, and a listing of the routine is given in Appendix IV. Allocation of the 16 channels is shown in Table 5-3.

TABLE 5-3
DATA ACQUISITION CHANNEL ALLOCATION

Channel Number	Process Variable
0	reflux accumulator level
1	reboiler level
2	temperature tray I
3	" " 2
4	" " 3
5	" " 4
6	" " 5
7	" $\quad 6$
8	" 7
9	" " 8
10	* reflux accumulator
11	" feed
12	" ambient
13	column pressure drop
14	refractometer composition
15	refractometer temperature

5.7 CONTROL OUTPUTS

All analog outputs were voltages in the range $0-10 \mathrm{~V}$ from the digital - to analog converters described in section 4.4.2; the pump control signals were passed directly to the motor speed controllers, and the output to the steam flow control loop was converted to a current (10-50 mA). Interfacing to the digital-to-analog converters is straightforward; the desired output $(0-255)$ was loaded into the PIA output register, and within 250 ns the corresponding voltage appeared at the process control elements.

The speed controllable motors driving the control pumps can lose synchronisation and stop rotating if the control voltage changes at a rate greater than $0.2 \mathrm{Vs}^{-1}$; some hardware protection was included in the speed controllers to ensure that this condition was met. As additional protection, the control outputs were set by a slewing algorithm in the subroutine VALVES. (In this oontext valves are considered flow controllers and equivalent to pumps). This subroutine slewed each control output at rate selected under software control. The maximum rate of change was stored in memory as the largest possible change in the output byte permissible in a period of 125 ms . For an input of 0-10V corresponding to 255 discrete steps then $0.2 \mathrm{Vs}^{-1}$ corresponded to a maximum change of 5 steps per second or approximately 1 step per 125 ms . A flow diagram of VALVES appears in figure 5-4 and a listing of the subroutine in Appendix IV. Allocation of the control outputs is shown in Table 5-4.

CONTROL OUTPUT ALLOCATION

Channel Number	Connected to
0	reflux pump
1	bottoms pump
2	distil.late pump
3	steam flow loop

FIGURE 5-4 CONTROL OUTPUT PROGRAM

VALVES could also be used to slew the control outputs under manual control through the operating system, OPSYS. The new required outputs were set at the memory locations $\$ 3 \mathrm{C}$ to $\$ 3 \mathrm{~F}$, corresponding to loop 1 to loop 4, and the routine VALVES entered by the command G \$E561. The interrupt mask was used to detect whether the control program was running (mask off $=$ program running). This determined whether the routine returned to the calling program with an RTS instruction, or to OPSYS with a JMP (Under OPSYS, the interrupt mask is set).

5.8 REFRACTOMETER CONTROL

Control and scheduling of the OKOMETER online refractometer described in section 3.8 .4 was performed by the subroutine, REFCTL. Sequencing of the refractometer channels was implemented through a twelve byte ring buffer; each byte in the buffer contained a code as shown in Table 5-5. A pointer to the ring buffer was stored in the data base, and a timer register was used to ensure that the refractometer settling time met the requirements of the sampling system dynamics. The sampling time was software selectable and was normally set to give 60 s between channel changes. When a channel change was required the appropriate code byte from the ring buffer was decoded; and two output control lines of a PIA set by manipulating bits in the control and status register. When a particular channel was deemed to have settled for the selected time interval, the data for the refractometer was taken from the data acquisition system area in the data base, and the channel number stripped off and replaced. by a $\$ 8$ nibble. This indicated that this channel was the most recently sampled one. At the same time, the $\$ 8$ nibble appearing on the previous channel sampled was cleared to $\$ 0$. A flow diagram of REFCTL is shown in figure 5-5 and a listing of the subroutine appears in Appendix IV.

TABLE 5-5
REFRACTOMETER SAMPLING CODE
$\left.\begin{array}{cl}\text { Code Byte } & \text { Sampled stream } \\ 0 & \text { distillate } \\ 1 & \text { feed } \\ 2 & \text { bottoms } \\ 3 & \cdots\end{array}\right] \quad$ reference $\quad . \quad$.

5.9 SINGLE LOOP CONTROLLERS

Subroutine CONTRU provided four digital controllers, each controller associated with one control element as given in Table 5-4. The controllers were sampled data, incremental, proportional-integral types computed using 16 bit integer arithmetic. The arithmetic operations were originally performed using software because the arithmetic processing unit was not available.

The process variable for each controller was selectable by means of single byte offset pointer to the data base. This allowed any element of the data base in the first 256 bytes of memory to be used as the process variable for any of the four loops and added flexibility to the configuration of the control system. The process variables were not scaled, being integers in the range $0-4095$ as converted by the data acquisition system. The setpoints were selected and entered into the controllexs on the same basis (0-4095).

The control function was evaluated as follows:
$\Delta V=\left(K_{1} E_{1}+K_{2} E_{2}\right) / 2^{D I V N}$
$\Delta V=$ change in valve position for the current sample time
where $E_{1}=S P-P V_{1} \quad$ (presen't error)
$\mathrm{E}_{2}=\mathrm{SP}-\mathrm{PV}_{2}$ (past error)
$K_{1}, K_{2}=$ controller coefficients
DIVN $=$ controller division factor.

The use of valve position was taken to be equivalent to pump speed for the distillation column control scheme. : This controller could be related to the industry standard analog controller: for a PI velocity type controller (Smith (1972IL

$$
\begin{aligned}
\Delta \mathrm{V} & =\mathrm{K}_{\mathrm{C}}\left(\mathrm{E}_{1}-\mathrm{E}_{2}+\mathrm{T} \mathrm{E}_{1} / \mathrm{T}_{\mathrm{I}}\right) \\
& =\mathrm{K}_{\mathrm{C}} \mathrm{E}_{1}\left(1+\mathrm{T} / \mathrm{T}_{\mathrm{I}}\right)-\mathrm{K}_{\mathrm{C}} \mathrm{E}_{2} \\
\mathrm{~K}_{\mathrm{C}} & =\text { analog controller gain } \\
\text { where } \mathrm{T} & =\text { sampling interval } \\
\mathrm{T}_{\mathrm{I}} & =\text { analog controller integral time }
\end{aligned}
$$

Comparing these controllers:

$$
\begin{aligned}
\mathrm{K}_{1} & =\mathrm{K}_{\mathrm{C}}\left(1+\mathrm{T} / \mathrm{T}_{I}\right) \\
\mathrm{K}_{2} & =-\mathrm{K}_{\mathrm{C}}
\end{aligned}
$$

and hence the controller parameters for the CONTRL controllers could be related to the standard controller gain (K_{C}) and integral time (T_{I}). The inclusion of the division factor $2^{\text {DIVN }}$ allowed K_{1}, K_{2} values less than one to be specified, and still use integer based arithmetic. The division factor was the last operation performed to retain significance through the calculation of ΔV.

The new valve position (equivalent to pump speed) was calculated as follows:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{NEW}} & =\mathrm{V}_{\mathrm{OLD}}+\Delta \mathrm{V} \\
\mathrm{~V} & =\mathrm{V}_{\mathrm{NEW}} / 256+128 \\
\text { where } \mathrm{V}_{\mathrm{OLD}} & =\mathrm{V}_{\mathrm{NEW}} \text { from last calculated control action } \\
\mathrm{V} & =8 \text { bit byte output to } \mathrm{D} / \mathrm{A} \text { converter. }
\end{aligned}
$$

The division by 256 was necessary to map the calculated valve positions on to the available valve positions. This can be seen by considering the range of the calculated value of $V_{N E W}$ and the available range for the output byte V.

```
V NEW}=16 bit integer (range - 32768 to + 32767
V = 8 bit byte (range \simeq 0 - 255)
```

```
. .Scaling factor = 2* 32768/256
    = 256
```

The shifting of V by 128 was necessary because of the change from signed binary arithmetic in the controller calculations to the unsigned binary output byte. Dividing $V_{\text {NEW }}$ by 256 produced a valve position in the range - 128 to 127 and adding 128 corrected this to 0 to 255 which was the desired interval for the output devices.

The scaling and mapping of ranges in the controllers introduced another gain into the controllers as shown in figure 5-6. The input range is 0-4095 and this was mapped to the output range of 0-255 giving a controller scaling factor of $\frac{255}{4095}=0.0623$. The controller parameters were corrected for this factor. The division factor and the scaling factor mean that the controllers can use fractional gains and integral times. This led to the following method of controller setting; suppose the desired controller settings are

$$
\begin{aligned}
\mathrm{K}_{\mathrm{C}} & =3.0 \\
\mathrm{~T}_{\mathrm{I}} & =1 \mathrm{~min} \\
\mathrm{~T} & =0.1 \mathrm{~min}
\end{aligned}
$$

then using the relationships previously defined

$$
\begin{array}{ll}
\mathrm{K}_{1}=\frac{3(1+0.1 / 1)}{0.0623} & =52 \\
\mathrm{~K}_{2}=3 / .0623 & =-48
\end{array}
$$

These settings were computed using floating point arithmetic and then truncated to 16 bit signed integers.

A flow diagram of CONTRL is shown in figure 5-7 and a listing is given in Appendix IV.

5.10
 ALARM CHECKING

Subroutine CHECK performed alarm checking on the data acquisition system and on selected process variables. The former was checked using

FIGURE 5-6 SINGLE LOOP CONTROLLER

FIGURE 5-7 CONTROLLER PROGRAM
a flag for channel errors or hardware failure while the latter were compared against upper and lower limits set in the data base. On detecting any alarm condition, the terminal bell or buzzer was sounded, a message logged on the terminal as ? ALARM X ? (where $X=0,1,2,3$ indicated which alarm was activated), and the terminal bell sounded again. Any action required to correct a specific alarm condition was taken by the operator. Provision was made for the microcomputer to have control of the column power supply to the pumps and steam flow loop by way of the TrL logic signal in the safety interlock system shown in Appendix I. This line could be connected to a PIA control line to allow the microcomputer to shut down the distillation column in an emergency; but for this work, a manual switch was available to the operator to perform this function.

A flow diagram of CHECK showing the alarm codes is given in figure 5-8 and a listing of the subroutine is given in Appendix IV.

5.11 MAIN PROGRAM

The main program served to sequence the subroutines described in the previous sections together into an operational unit. This involved initialising peripheral devices, memory locations, enabling IRQ interrupts, and scheduling of the control routines. Sampling time was determined from one of the timer registers compared against an entry in the data base. While waiting for the correct time to implement control action, the program also checked whether an operator command was pending; if it was, this command was actioned. By interleaving the operator interface and the control system in this way, neither suffered significantly because of the other; operator requests in general were only run in the free time between control action. The variable SYSTAT was used to indicate which section of the control system was active at any time. This feature was included to allow program hangups to be traced quickly.

The description of the $C C 68$ suite of programs has been restricted to describing the stand alone mode of operation, i.e. the microcomputer plus terminal controlling the distillation column. Provision was made for expansion of the basic system described here by the addition of further routines and/or the addition of PDP-ll supervisory control. The main program executed a subroutine call to memory location $\$ 200$. For base level operation, this location contained a return instruction, RTS; for expansion either additional subroutines could be placed in memory starting at $\$ 200$, or this location could. contain a jump instruction to another subroutine.

A flow diagram of the main program is given in figure 5-9 and a listing appears in Appendix IV.

It should be noted that the CC68 system was written and developed before the arithmetic processing unit was available, and hence it could have been improved in terms of computational time and storage requirements. The operator interface was primitive and required a working knowledge of the system in order to use it correctly. With the expansion of the available EPROM memory from the original 2 K bytes on the EVK300 board to loK bytes total, it was possible to improve the operator interface. In fact if floating point arithmetic was to be used in the control scheme, it would have been essential to improve the interface and to adopt some standard for all variables such as 0-100\%. To write such an interface was beyond the aims of this work, but it should be done in the future, and would be a recommended step. Alternatively, if the microcomputer ran in conjunction with the PDP-ll minicomputer, the latter could be programmed to interface to the operator interface in the microcomputer and provide a more sophisticated system.

5.12 CC68 INSTALLATION AND USE

The program, CC68, was installed in three M6834, 512 byte erasable programmable read-only memory chips on the EVK300 board. The disposition

of the routines was as given in Table 5-6.

TABLE 5-6

MEMORY MAP OF CC68

Address Range \cdots Memory Type	Routines	
$\$ 0-\$ C O$	RAM	Data Base
$\$ E O 00-\$ E 1 F F$	EPROM	MAIN, TIMER, USERC
$\$ E 200-\$ E 3 F F$	EPROM	READAD, CHECK, REFCTL
$\$ E 400-\$ E 5 F F$	EPROM	CONTRL, MULTI6, VALVES
$\$ E 600-\$ E 7 F F$	EPROM	OPSYS

Operation of the system required
(i) on power on, to zero all memory locations;
(ii) to set up the data base parameters as required, e.g. controllers, setpoints, alarm limits, refractometer sequence, etc.
(iii) to start the system with G EOOO command.

Thereafter the data base could be accessed or manipulated using the commands available through the operator interface (section 5.5). This system was used during commissioning of the distillation column and for tests using single loop controllers to maintain column product specifications. The system logged up 350 hours of operation with no hardware or software faults.

5.13 COST COMPARISON OF MICROCOMPUTER CONTROL SYSTEM WITH AN EQUIVALENT ANALOG SYSTEM

The control system described in chapters four and five was costed against an equivalent system using conventional analog PID controllers. The same instrumentation and control elements were used in both analyses. All costs are in \$NZ (1979).
(i) Microcomputer System
(a) Software Costs - only the essential sections of the software

```
    described in this chapter were included (alarm checking,
                        refractometer control, and the mini operating system were
                ignored).
                Code \equiv593 lines of assembler.
                        Allowing 15 lines of debugged documented assembler code
                    per day (Schindler (1979)), and costing programmex time
                        at $96 per day, the estimated cost of the code was $3792.
                    (b) Hardware Costs - based on retail N.Z. prices including
        sales tax.
    EVK300 microcomputer (assembled and tested) $1400
    Terminal (VDU) $l700
    Data Acquisition System (installed) $1200
    D/A converter Outputs $200
                                    $4500
TOTAL COST = $8292
(a) Electronic PID controllers, 4 @ \$2000 \$8000
(b) Interfacing to instrument and control elements \(\$ 200\)
TOTAL COST \(=\$ 8200\)
```

(ii) Analog System

The analog system was found to be less than $\$ 100$ cheaper than the microcomputer based system. The latter was costed on a one off basis using retail component prices. If the development costs could be spread over several systems, and the hardware purchased in bulk direct from the manufacturer, the microcomputer system would undercut the analog system in price, e.g. on a run of 10 units using the same hardware prices the microcomputer system cost would drop to $\$ 4879$.

The microcomputer based control system has been shown to be cost comparable with a conventional analog control system. The advantages of the microcomputer system were its flexibility in allowing modification of
the control strategy, the addition of new features such as alarm checking, and the centralisation of control with an operator interface.

5.14 NOMENCLATURE

Hardware:	PIA - peripheral interface adapter
	RAM - read/write memory
ROM - read only memory	
Software: \quad PROTO - operating system on EVK 300 board	
	OPSYS - improved operating system
	CC68 - column control software including

(i) MAIN - main program
(ii) TIMER - timer registers, terminal I/O
(iii) USERC - operator interface
(iv) READAD - data acquisition
(v) CHECK - alarm checking
(vi) REFCTL - refractometer control
(vii) CONTRL - controller calculation
(viii) MULTI6 - signed 16 bit integer multiplication
(ix) VALVES - control output
\$ indicates a number to base 16.

CHAPTER SIX

STEADY STATE BINARY DISTILLATION COLUMN MODEL

CONTENTS

Page
6.1 Introduction 6.1
6.2 Model Development 6.2
6.3 Solution of the Distillation Column Model 6.6
6.3.1 Solving the Model 6.7
6.3.2 SSGW - A Steady State Binary Distillation Column Program 6.10
6.3.3 Binary System Data 6.11
6.4 Verification of the Steady State Model. 6.11
6.4.1 Sensitivity Analysis 6.13
6.4.2 Model Comparison with Experimental Results 6.16
6.5 Discussion 6.19
6.6 Conclusion 6.28
6.7 Nomenclature 6.28

CHAPTER SIX

STEADY STATE BINARY DISTILLATION COLUMN MODEL

6.1
 INTRODUCTION

Distillation columns have been modelled many times for many reasons. The modelling objectives have generally been in two categories:
(i) The design problem where the number of stages required and the column operating conditions are to be determined from specifications on the feed and product streams. A number of methods based on the analyses of McCabe and Thiele (1925), Sorel (Robinson and Gilliland (1950) and Lewis and Matheson (1932)), involving plate to plate calculations have been used. There have been several attempts to find analytical solutions to the design problem (Martin (1963), Singh (1966), Sarkarny et al (1970)), but these methods require a number of simplifying assumptions such as equimolal overflow. There have also been attempts to correlate plate requirements with other column parameters such as reflux ratio (Gilliland (1940), Mason (1959), Brown et al (1939), Erbar et al (1961)).
(ii) The rating problem where the column configuration is fixed along with the feed conditions and the control variables (reflux ratio, boilup rate). It is then required to compute the product flows and compositions. This problem has been approached by formulating the mass and energy balances around the column trays, and then solving the resulting simultaneous equations. Most of the work in this area has been directed toward multicomponent distillation problems, but the same approaches can be used for binary systems (Thiele and Geddes (1933), Amundson and Pontinen (1958), Holland (1963), Wang and Henke (1966)). The requirement of the steady state model for this work was the prediction of the column performance for a given set of operating conditions leading to the design and simulation of a feedforward control
system.

6.2 MODEL DEVELOPMENT

The approach chosen was that of Wang and Henke (1966) adapted to a binary system. The model was based on the distillation column described in Chapter three, and selected to cover all the possible operating conditions of that column. The general layout of the column is shown in figure 6-1. The model assumptions were:
(i) adiabatic operation (no heat losses);
(ii) total condenser producing subcooled reflux;
iii) thermosiphon reboiler (an equivalent tray);
(iv) liquid feed (at or below its bubble point);
(v) specified column variables

feed rate	F	feed temperature	T_{F}
feed composition	x_{F}	reflux temperature	T_{0}
reflux ratio	R	heat input (reboiler)	Q_{S}
number of stages	N	Murphree Vapour efficiency	$E_{m v}$

The mass balances for the lighter component over the individual trays of the column were written as follows:

Condenser -

$$
\begin{align*}
& V_{1} y_{1}=L_{0} x_{0}+D x_{0} \\
& y_{1}=y^{*}\left(x_{1}\right)=K_{1} x_{1} \\
& y^{*}(x)=\text { vapour/liquid equilibrium function } \\
& x_{0}=x_{D} \\
& \therefore \quad-\left(L_{0}+D\right) x_{0}+K_{1} V_{1} x_{1}=0 \tag{6.1}
\end{align*}
$$

for the rectifying section, tray n -

$$
\begin{align*}
& V_{n} Y_{n}+L_{n} x_{n}=L_{n-1} x_{n-1}+V_{n+1} Y_{n+1} \\
& y_{n}=K_{n} x_{n}, y_{n+1}=K_{n+1} x_{n+1} \\
& K_{i}=\text { equilibrium ratio } y^{*}\left(x_{i}\right) / x_{i} \\
& L_{n-1} x_{n-1}-\left(K_{n} v_{n}+L_{n}\right) x_{n}+K_{n+1} v_{n+1} x_{n+1}=0 \tag{6.2}
\end{align*}
$$

FIGURE 6-1 COLUMN MODEL VARIABLES
for the feed tray f -

$$
\begin{gather*}
V_{f} y_{f}+L_{f} x_{f}=L_{f-1} x_{f-1}+V_{f+1} y_{f+1}+F x_{F} \\
y_{f+1}=K_{f+1} x_{f+1}, y_{f}=K_{f} x_{f} \\
L_{f-1} x_{f-1}-\left(K_{f} V_{f}+L_{f}\right) x_{f}+K_{f+1} V_{f+1} x_{f+1}=-F x_{F} \tag{6.3}
\end{gather*}
$$

for the stopping section, tray m -

$$
\begin{gather*}
V_{m} y_{m}+L_{m} x_{m}=L_{m-1} x_{m-1}+V_{m+1} y_{m+1} \\
y_{m+1}=K_{m+1} x_{m+1}, \quad y_{m}=K_{m} x_{m} \\
L_{m-1} x_{m-1}-\left(K_{m} V_{m}+L_{m}\right) x_{m}+K_{m+1} V_{m+1} x_{m+1}=0 \tag{6.4}
\end{gather*}
$$

for the reboiler -

$$
\begin{align*}
& L_{N} x_{N}=V_{N+1} y_{N+1}+W x_{W} \\
& y_{n+1}=K_{N+1} x_{N+1}=K_{N+1} x_{W} \\
& L_{N} x_{N}-\left(\mathrm{K}_{\mathrm{N}+1} V_{N+1}+W\right) x_{W}=0 \tag{6.5}
\end{align*}
$$

These equations could be written in tridiagonal form

$$
\begin{equation*}
A x=b \tag{6.6}
\end{equation*}
$$

where
and $\quad A_{i}=L_{i-1}$

$$
\begin{array}{ll}
B_{i}=-\left(K_{i} V_{i}+L_{i}\right) & B_{l}=-\left(L_{0}+D\right) \\
C_{i}=K_{i+1} V_{i+1} & B_{N+1}=-\left(K_{N} V_{N}+W\right)
\end{array}
$$

$$
\begin{align*}
& x=\left[\begin{array}{l:l:l:l:l}
x_{0} x_{1} & x_{n} & x_{f} & x_{m} & x_{N+1}
\end{array}\right]^{T} \tag{6,8}\\
& b=\left[\begin{array}{lll:l:l}
0 & 0 & 0 & -F x_{F} & 0 \\
0
\end{array}\right] \tag{6.9}
\end{align*}
$$

Given all L, V, K, then equation (6.6) could be solved simultaneously for the liquid compositions x. However, the K values were functions of the liquid compositions, and consequently an iterative solution was required. Further, if the model was to remain sufficiently general, then the liquid and vapour flows had to be found by making energy balances around the stages as follows:

$$
\begin{align*}
& D h_{D}+W h_{W}+Q_{C}=F h_{F}+Q_{S} \tag{6.10}\\
& h_{i}=\text { liquid enthalpy of stream } i \\
& H_{i}=\text { vapour enthalpy of stream } i \\
& Q_{C}=\text { condenser heat load }
\end{align*}
$$

for the condenser -

$$
\begin{equation*}
Q_{C}=(R+1) D\left(H_{2}-h_{D}\right) \tag{6.11}
\end{equation*}
$$

from an overall mass balance

$$
\begin{equation*}
W=F-D \tag{6.12}
\end{equation*}
$$

and combining (6.10), (6.11), (6.12)

$$
\begin{equation*}
D=\frac{F\left(h_{F}-h_{W}\right)+Q_{S}}{h_{D}-h_{W}+(R+1)\left(H_{2}-h_{D}\right)} \tag{6.13}
\end{equation*}
$$

and

$$
\begin{align*}
L_{1} & =R D \tag{6.14}\\
V_{2} & =(R+1) D \tag{6.15}
\end{align*}
$$

for the rectifying section, tray n -

$$
\begin{align*}
& L_{n}=V_{n+1}-D \tag{6.16}\\
& L_{n} h_{n}+V_{n} H_{n}=V_{n+1} H_{n+1}+L_{n-1} h_{n-1} \tag{6.17}\\
& L_{n}=\frac{V_{n} H_{n}-D H_{n+1}-L_{n-1} h_{n-1}}{H_{n+1}-h_{n}} \tag{6.18}
\end{align*}
$$

for the feed plate f-

$$
\begin{align*}
& L_{f}=V_{f+1}+W \tag{6.19}\\
& L_{f-1} h_{f-1}+V_{f+1} H_{f+1}=L_{f} h_{f}+V_{f} H_{f}-F h_{F} \tag{6.20}\\
& L_{f}=\frac{V_{f} H_{f}-F h_{f}+W H_{f-1}-L_{f-1} h_{f-1}}{H_{f+1}-h_{f}} \tag{6.21}
\end{align*}
$$

for the stripping section, plate m -

$$
\begin{align*}
& L_{m}=V_{m+1}+W \tag{6.22}\\
& L_{m-1} h_{m-1}+V_{m+1} H_{m+1}=L_{m} h_{m}+V_{m} H_{m} \tag{6.23}\\
& L_{m}=\frac{V_{m} H_{m}+W H_{m+1}-L_{m-1} h_{m-1}}{H_{m+1}-h_{m}} \tag{6.24}
\end{align*}
$$

If the plate compositions were available, the equations given could be used to estimate the column flows. The procedure was to find the product flows, D and W, and then step down from the top of the column calculating pairs of liquid and vapour flows $-L_{i}$ and V_{i+1}. The model consisted of two sets of simultaneous equations - the compositions and the flows neither of which was explicit. The iterative solution technique used was as follows:
(i) to estimate all $\mathrm{x}, \mathrm{L}, \mathrm{V}$
(ii) to form the matrix equation (6.6)
(iii) to solve equation (6.6) for new compositions
(iv) to solve the energy balance equations for new L, V
(v) to repeat steps (iii) and (iv) until convergence occurred.

6.3 SOLUTION OF THE DISTILLATION COLUMN MODEL

The equations derived in section 6.2 were programmed along with physical property data for the binary system into a digital computer and solved. The program, SSGW, was written in FORTRAN to run on the PDP-ll minicomputer described in section 4.5.1. It was designed to operate interactively through the minicomputer console.

6.3.1 Solving the Model

The equations describing the model have been derived in section 6.2. The solution to the component mass balances (equation (6.6)) was obtained using the recursive Gaussian elimination method of Thomas (Carnahan et al (1969)). The liquid and vapour flowrates were solved sequentially down the column, using the method outlined in section 6.2 once the tray compositions had been determined. The procedure was repeated until some convergence criteria was met. A number of criteria were tested:

$$
\begin{align*}
& \text { ail }\left|x_{i}-x_{i-1}\right|<\text { limit } \tag{6.25}\\
& \text { all }\left|T_{i}-T_{i-1}\right|<\text { limit } \tag{6.26}\\
& \left.\frac{\sum_{j=0}^{n+1}\left(T_{i j}-T_{i-1 j}\right)^{2}}{(N+2)}{ }^{T} \frac{100}{2}+T_{W}\right) \tag{6.27}\\
& \text { where } i=\text { limit } \\
& \text { wheration number. }
\end{align*}
$$

The root mean square temperature difference, (6.27), was chosen, but the choice was an arbitrary one.

To start the iterative procedure, it was necessary to estimate initially the column flows and compositions. The compositions were estimated from a linear temperature profile within the column. The top, T_{D}, and bottom, T_{W}, temperatures were either estimated by the user or computed by the equations

$$
\begin{align*}
& T_{D}=T_{x=1}+0.05\left(T_{x=0}-T_{x=1}\right) \tag{6.28}\\
& T_{W}=T_{x=0}-0.05\left(T_{x=0}-T_{x=1}\right) \tag{6.29}
\end{align*}
$$

The individual tray temperatures were then estimated and the tray compositions determined from the temperature composition polynomial. This fifth order polynomial in composition was solved using a Wegstein root finding algorithm (Carnahan et al (1969)). The column flows were initially estimated by assuming equimolal overflow in the column.

The performance of each column tray had been assumed to be ideal
in the model derivation but in practice this assumption was not valid. Various reasons for varying plate efficiency with composition have been suggested including mass transfer resistance between the phases, plate hydrodynamics and physical properties such as the slope of the equilibrium curve. Mostafa (1979)' has proposed a model for tray behaviour to explain these phenomena. For this model, a Murphree vapour phase plate efficiency was used:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{MV}}=\frac{\mathrm{y}_{\text {out }}-y_{\text {in }}}{\mathrm{y}^{*}-y_{\text {in }}} \tag{6.30}
\end{equation*}
$$

$$
\begin{aligned}
Y_{\text {out }}= & \text { composition of vapour leaving the tray } \\
Y_{\text {in }}= & \text { composition of vapour entering the tray } \\
Y^{*}= & \text { composition of vapour in equilibrium with the liquid } \\
& \text { leaving the tray } \\
E_{M V}= & \text { Murphree vapour efficiency. }
\end{aligned}
$$

The Murphree vapour efficiency could be incorporated into the model by recursively computing the vapour compositions as:

$$
\begin{align*}
& y_{1}= x_{0} \\
& y_{i}= \frac{y_{i-1}-E_{M V} y^{*}\left(x_{i-1}\right)}{1-E_{M V}} \tag{6.31}\\
& \quad \text { for } i=2,3 \ldots N+1
\end{align*}
$$

as part of the iterative solution of the model. The reboiler may be considered as an ideal stage in (6.31).

However, this method produced instabilities in the calculational procedure especially during the initial stages. Equation (6.31) occasionally predicted vapour compositions greater than those possible (>1.0, < 0), and hence the program failed. To avoid this problem, the equilibrium data was modified in the manner normally used in the graphical McCabe-Thiele analysis, and a pseudo-equilibrium line produced. The modification of the equilibrium data required the use of straight operating lines (to have used curved operating lines would have greatly
increased the computational effort required in the program) and this implied constant molal overflow. This situation did not occur for the methanol/water system, but the deviations were not too large. The procedure adopted was to modify the equilibrium line using the following equations in each iteration:

$$
\begin{array}{ll}
L_{R}=\frac{\sum_{i=0}^{f-1} L_{i}}{f} & \text { average rectifying liquid flow } \\
V_{R}=\frac{\sum_{i=1}^{f} V_{i}}{f} & \text { average rectifying vapour flow } \\
L_{S}=\frac{\sum_{i=f}^{N-f+1} L_{i}}{N+1} \quad \text { average stripping liquid flow } \\
V_{S}=\frac{1=f+1}{N-f+1} \quad \text { average stripping vapour flow } \tag{6.35}
\end{array}
$$

then the operating lines became

$$
\begin{array}{ll}
\text { rectifying: } y_{i+1}=\frac{L_{R}}{V_{R}} x_{i}+\frac{D}{V_{R}} x_{D} \\
\text { stripping: } & y_{i+1}=\frac{L_{S}}{V_{S}} x_{i}-\frac{W}{V_{S}} x_{W} \tag{6.37}
\end{array}
$$

and the point of intersection was

$$
\begin{equation*}
x_{\text {intercept }}=\frac{\frac{D x_{D}}{V_{R}}+\frac{W x_{W}}{V_{S}}}{\frac{L_{S}}{V_{S}}-\frac{L_{R}}{V_{R}}} \tag{6.38}
\end{equation*}
$$

The equilibrium data was then modified according to the following equations:

$$
\begin{array}{r}
y^{\prime}=x+E_{M V}\left(y^{*}-x\right) \quad x \leq x_{W^{\prime}} x \geq x_{D} \\
Y^{\prime}=E_{M V}\left(y^{*}-\frac{L_{S}}{V_{S}} x+\frac{W}{V_{S}} x_{W}\right)+\frac{L_{S}}{V_{S}} x-\frac{W}{V_{S}} x_{W} \tag{6.40}\\
x_{W}<x \leq x_{\text {intercept }}
\end{array}
$$

$$
\begin{array}{r}
y^{\prime}=E_{M V}\left(Y^{*}-\frac{L_{R}}{V_{R}} x-\frac{D}{V_{R}} x_{D}\right)+\frac{L_{R}}{V_{R}} x+\frac{D}{V_{R}} x_{D} \\
x_{\text {intercept }}<x<x_{D} \tag{6.41}
\end{array}
$$

where $y^{*}=$ true equilibrium vapour composition
$y^{\prime}=$ pseudo equilibrium vapour composition for liquid of composition x .

The results of using this approach are discussed in section 6.4.2. A similar approach was used by Gerster et al (1962, 1964) and verified experimentally. It should be noted that this approach treats the reboiler as a non-ideal stage.

6.3.2 SSGW..- A Steady State Binary Distillation Column Program

 The equations presented in the previous sections were combined with suitable I/O routines. Interaction between the user and the program allowed alteration of any of the program variables in engineering units, e.g.```
flows in l/time
compositions in mole fractions
steam flow in kg/time
temperatures in *}\mp@subsup{}{}{\circ}\textrm{C
```

The user was able to enter or change program parameters, store parameters in disk files, recall parameters from disk files, control the output of the program, and initiate the solution of the column variables. The solution procedure used was
(i) to estimate compositions and flows in the column
(ii) to set up the tridiagonal matrix equation (6.6)
(iii) to solve the tridiagonal matrix equation
(iv) to recalculate the flows
(v) to check that minimum stages, and minimum reflux limitations were not exceeded
(vi) to recalculate the pseudo-equilibrium line based on the new compositions and flows
(vii). to test for convergence and if not achieved repeat steps
(ii) through (yii)
(viii) to compute heat loadings, external volumetric flows, end temperatures, internal reflux ratio
(ix) to list results.

A flow diagram of the program is shown in figure 6-2, and a listing is given in Appendix VI.

### 6.3.3 Binary System Data

In order to solve the model, it was necessary to express the physical and thermodynamic properties of the liquid and vapour streams in a form suitable for digital computer use. Data was required for:
(i) the vapour/liquid equilibrium relationship
(ii) the boiling point relationship
(iii) the liquid and vapour enthalpies
(iv) the liquid heat capacities
(v). the liquid densities
all as a function of composition. Polynomials were used to fit the data in all cases except the vapour/liquid equilibrium data for which a lookup table was used.: The system properties were handled by a separate program SYSHDL which created a disk file of the relevant parameters. SSGW then loaded this disk file when it was started.. A listing of SYSHDL is given in Appendix VI.

### 6.4 VERIFICATION OF THE STEADY STATE MODEL

The distillation column described in Chapter 3 was compared with the model presented. The property data required for the binary system methanol/water was correlated as follows:
(i) Vapour/liquid equilibrium data - a lookup table of 41 vapour equilibrium compositions for equally spaced liquid compositions in the range $0-1 \mathrm{~m} . \mathrm{f}$. was used; linear interpolation was used within the table.

(ii) Boiling point data - a fifth order polynomial was used to relate the liquid boiling point to the liquid composition.
(iii) Enthalpy data - fifth order polynomials were used to relate the liquid and vapour enthalpies to composition.
(iv) Heat capacity data - a mole fraction weighted average of the pure component heat capacities at the required temperature was used.
(v) Liquid density data - for saturated liquids, a linear relationship between density and composition was used; for subcooled liquids, a mole fraction weighted average of the pure component densities at the required temperature was used. The correlations used are listed in Appendix VII.

The computer model was used in comparison with experimental data. To account for measurement and process errors in the input model parameters, a sensitivity analysis was carried out.

### 6.4.1 Sensitivity Analysis

Calculation of the partial derivatives of the model equations for use in a sensitivity analysis produced very complex expressions. Instead, the computer model. was subjected to small perturbations about a single operating point, and the partial derivatives estimated from the steady state results. The operating point is given in Table 6-1; the values were typical experimental results from the column, and the uncertainty in each measurement is given.

| TABLE 6-1 - | OPERATING CONDITIONS FOR SENSITIVITY ANALYSIS |  |  |
| :--- | :---: | :---: | :---: |
| Variable | Value | Experimental Uncertainty | Units |
| Feed Rate | 1.75 | $\pm .005$ | lmin $^{-1}$ |
| Feed Composition | 0.460 | $\pm$ | .005 |
| Feed Temperature | 26.0 | $\pm .1$ | $\mathrm{~m}^{\circ} \mathrm{f}$. |
| Reflux Ratio | 0.73 | $\pm .0 .03$ | - |
| Reflux Temperature | 20.0 | $\pm 1$ | ${ }^{\circ} \mathrm{C}$ |
| Steam Flowrate | 1.03 | $\pm$ | $\mathrm{kg} \mathrm{min}^{-1}$ |
| Murphree Vapour |  |  |  |
| Efficiency | 0.80 | $\pm$ | .02 |

For a general sensitivity analysis (assuming random errors)

$$
\begin{gather*}
U=\text { function of }(X, Y, Z) \\
u^{2}=\left(\frac{\partial U}{\partial X}\right)^{2} x^{2}+\left(\frac{\partial U}{\partial Y}\right)^{2} y^{2}+\left(\frac{\partial U}{\partial Z}\right) z^{2} \tag{6.42}
\end{gather*}
$$

where $u, x, y, z$ are the absolute errors in $U, X, Y, Z$. The partial derivatives can be estimated by a central difference approximation
$\frac{\partial U}{\partial x} \simeq \frac{U X+\delta x-U X-\delta x}{2 \delta X}$
where $\delta X=$ the perturbation in $X$.
Each of the variables in Table 6-1 was individually perturbed by $\pm 5 \%$ from its steady state value. The partial derivatives were calculated using the above formula, and, assuming the principle of superposition, a determinate linear model was found. For random errors in the model inputs, equation (6.42) was used to produce a variance model. The linear model related the effects of small variations in the model input parameters to the major model outputs. The variance model related the likely error in the output parameters to the experimental measurement errors in the model input parameters. Both models are shown in figure 6-3. Substituting the measurement errors in Table 6-2 into the variance model produced confidence estimates for the product compositions and flows predicted from the computer model. These estimates are shown in Table 6-2.

## TABLE 6-2

## ERROR ESTIMATES ON SSGW PREDICTED VARIABLES

| Variable | Likely Absolute Error | Likely \% Error |
| :---: | :---: | :---: |
| $\mathrm{x}_{\mathrm{D}}$ | $\pm .009 \mathrm{~m} . \mathrm{f}$. | $\pm 1 \%$ |
| $\mathrm{x}_{\mathrm{W}}$ | $\pm .032 \mathrm{~m} . \mathrm{f}$. | $\pm 63 \%$ |
| D | $\pm .81 \mathrm{~mol} \mathrm{~min}^{-1}$ | $\pm 3 \%$ |
| W | $\pm 2.41 \mathrm{~mol} \mathrm{~min}^{-1}$ | $\pm 7 \%$ |
| $\mathrm{~L}_{0}$ | $\pm .89 \mathrm{~mol} \mathrm{~min}^{-1}$ | $\pm 4 \%$ |

## FIGURE 6-3

## SENSITIVITY MODELS FOR SSGW

(i) Linear Model

| $\left[\Delta x_{D}\right]$ |  | . 047 | . 106 | -. 001 | -. 0006 | . 270 | . 122 | $-.0417$ | $\left[\Delta F^{\prime}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta \mathrm{x}_{\mathrm{w}}$ |  | . 817 | . 376 | -. 065 | -. 010 | -. 270 | . 220 | -. 820 | $\Delta \mathrm{x}_{\mathrm{F}}{ }^{\prime}$ |
| $\Delta \mathrm{D}$ | $=$ | -1.020 | 4.60 | 2.21 | . 500 | . 200 | -12.6 | 32.2 | $\Delta T_{F}{ }^{\prime}$ |
| $\Delta W$ |  | 64.1 | $-28.1$ | -3.38 | -. 500 | -. 200 | 12.6 | -32.2 | $\Delta \mathrm{T}_{0}{ }^{\prime}$ |
| $\left[\begin{array}{ll}\Delta L \\ & \\ \end{array}\right.$ |  | $-.583$ | 3.22 | 1.56 | . 400 | . 200 | 13.7 | 23.5 | $\Delta \mathrm{E}_{\mathrm{MV}}{ }^{\prime}$ |
|  |  |  |  |  |  |  |  |  | $\Delta R^{\prime}$ |
|  |  |  | $=\frac{\Delta F}{F}$ |  |  |  |  |  | $\left[\Delta Q_{S}{ }^{\prime}\right]$ |

(ii) Variance Model

| $\left[\Delta x_{D}{ }^{2}\right]$ |  | -. 001 | . 053 | 1.6E-9 | 9.E-10 | . 114 | . 028 | . 002 | $\left[\Delta F^{2}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta x_{w}{ }^{2}$ |  | . 218 | . 668 | 6.3E-6 | $2.5 E-7$ | . 114 | . 091 | . 634 | $\Delta \mathrm{x}_{\mathrm{F}}{ }^{2}$ |
| $\Delta D^{2}$ | $=$ | . 340 | 100. | . 007 | 6. 3E-4 | . 063 | 300. | 976. | $\Delta T_{F}{ }^{2}$ |
| $\Delta w^{2}$ |  | 1338. | 3721. | . 017 | 6.3E-4 | . 063 | 294. | 976. | $\mathrm{DT}_{0}{ }^{2}$ |
| $\Delta L_{0}{ }^{2}$ |  | . 111 | 49. | . 004 | 4. OE-4 | . 063 | 350. | 520. | $\Delta \mathrm{E}_{\mathrm{MV}}{ }^{2}$ |
|  |  |  |  |  |  |  |  |  | $\Delta \mathrm{R}^{2}$ |
|  |  |  |  |  |  |  |  |  | $\left.\Delta Q_{S}^{2}\right]$ |

From this analysis, it can be seen that the bottom of the column is very sensitive to errors in specifying the model inputs. The factors contributing most to the uncertainty in the bottoms composition and flowrate were the feedrate and the steam rate; these variables were measured as carefully as possible to ensure that uncertainties did not swamp the results. The estimated errors in Table 6-2 were used in the verification of the actual column experiments against the model prediction.

### 6.4.2 Model Comparison with Experimental Results

A number of runs on the column were made under different operating conditions. Before the experimental results could be compared against the model predictions, it was necessary to estimate the heat losses from the column, and to determine a correlation for the Murphree vapour efficiency as a function of composition.

Surface temperature measurements were made on the outside of the column using a copper constantan thermocouple. Using estimated heat transfer coefficients for natural convection and estimated surface emissivities (Welty et al (1969)), the measured temperatures were used to estimate the heat losses from the reboiler and column trays:

Reboiler - area $=1.8 \mathrm{~m}^{2}, \varepsilon=0.35, \mathrm{~h} \simeq 4 \mathrm{~W}_{\mathrm{m}}^{-2} \mathrm{~K}^{-1}$
temperature difference $=95^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}$
$Q \simeq 930 \mathrm{~W}$
Trays - area $=3.0 \mathrm{~m}^{2}, \varepsilon=0.85, \mathrm{~h} \simeq 3 \mathrm{~W}_{\mathrm{m}}^{-2} \mathrm{~K}^{-1}$
temperature difference $=80^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}$
$Q \simeq 1700 W$

$$
Q_{\text {total }} \simeq 2630 \mathrm{~W}
$$

and using steam with a latent heat of vaporisation of 2250 kJ kg , the heat loss corresponds to $0.07 \mathrm{~kg} \mathrm{~min}{ }^{-1}$ of steam. Hence the measured steam flow was corrected by subtracting $0.07 \mathrm{~kg} \mathrm{~min}^{-1}$; this analysis assumed all the heat losses were lumped into the reboiler which was not
strictly true. An individual loss for each plate could have been incorporated in the energy balance equations. The heat loss represented a small fraction ( $\simeq 7 \%$ ) of the total energy input and this treatment of heat losses seemed reasonable.

The problem of deciding a priori on a Murphree vapour efficiency relationship with composition has been investigated by Hay and Johnson (1960) and Bakowski (1969) for methanol/water separations in sieve tray columns. Their results depended on the method of analysis used. Hay and Johnson (1960) investigated the mass transfer on a tray for varying liquid/vapour ratios, and measured Murphree vapour efficiencies as a function of composition. These values are at variance with those predicted by Bakowski (1969) because the latter assumed that the point and Murphree vapour efficiencies were equal. The results of these workers are compared in figure 6-4.

The method of Bakowski was used to predict the Murphree vapour phase efficiency since the method had been shown to reproduce experimental results, and could be used a priori requiring only the properties of the binary system and the tray geometry. There are more rigorous methods of determining Murphree vapour efficiencies based on individual mass transfer resistances (Treybal (1968)).

Bakowski's method is

$$
\begin{equation*}
\mathrm{E}_{\mathrm{MV}}=\frac{1}{1+\frac{3.7 \mathrm{KM}}{\mathrm{~h} \mathrm{\rho T}}} \tag{6.43}
\end{equation*}
$$

where
$K=y^{*} / X$, the vapour/liquid equilibrium ratio
$M=$ molecular weight
$\rho=$ liquid density $\left(\mathrm{kg} \ell^{-1}\right)$
$T=$ absolute temperature (K)
$h=$ active liquid depth on the tray $=$ weir height (cm)
$3.7=$ experimentally determined constant.

The Murphree vapour efficiency against composition curve for methanol/


FIGURE 6-4 TRAY EFFICIENCIES
water is shown in figure 6-4. The curve was fitted with a cubic polynomial for inclusion in the model.

$$
\begin{align*}
\mathrm{E}_{\mathrm{MV}}= & .614+.786 \mathrm{x}-1.03 \mathrm{x}^{2}+.436 \mathrm{x}^{3}  \tag{6.44}\\
& \text { for } \mathrm{h}=1.9 \mathrm{~cm} .
\end{align*}
$$

Using the data presented, a number of steady state experimental runs were compared against the model using Table 6-2 to account for differences between the two. The results are summarised in Appendix VIII. Nineteen of the twenty-two runs were found to agree within the likely errors. The parameters used for determining the model fit were
(i) distillate composition
(ii) bottoms composition
(iii) distillate flow
(iv) bottoms flow
(v) reflux flow.

The agreement between the model and the experimental data was good in all cases except three where the reflux ratio was greater than 2.2 times the minimum reflux ratio. In these circumstances, the model equation solution procedure became unstable and failed to converge.

### 6.5 DISCUSSION

Using experimental results, the model was examined to determine the significance of the assumptions made, and its applicability to a particular distillation column.
(i) The model used differed from other models proposed in the assumption of non-equimolal overflow. Table 6-3 shows the variation in the molal latent heat of vaporisation for the methanol/water system. The deviation from ideality is not large but it is significant. The data in Appendix VIII was analysed using an assumed average constant latent heat of vaporisation, and the results are shown in Table 6-4. Small changes in the column flows compound in their effect on the slope of the operating line (if the liquid flow increases, then the vapour flow must decrease).

## MOLAL LAATENT HEATS OF VAPORISATION FOR METHANOL/WATER

| Mole Fraction Methanol | $\Delta \mathrm{H}_{\mathrm{V}} / \mathrm{kJ} \mathrm{mol}^{-1}$ |
| :---: | :---: |
| 0.0 | 40.69 |
| 0.1 | 40.86 |
| 0.2 | 40.58 |
| 0.3 | 40.05 |
| 0.4 | 39.38 |
| 0.5 | 38.69 |
| 0.6 | 38.02 |
| 0.7 | 37.38 |
| 0.8 | 36.77 |
| 0.9 | 36.10 |
| 1.0 | 35.30 |

TABLE 6-4
EFFECT OF ASSUMING EQUIMOLAL OVERFLOW ON COLUMN FLOW RATES

| Flow Variable | Absolute Average \% Change <br> (over all runs) |
| :--- | :---: |
| Rectifying Liquid | 9.1 |
| Rectifying Vapour | 3.8 |
| Stripping Liquid | 4.0 |
| Stripping Vapour | $6.5 \cdots$ |

To demonstrate the effect of assuming equimolal overflow consider Run 21. The experimental measurements were used to estimate the column flows assuming equimolal overflow. The results are summarised in Table 6-5 and compared with the equivalent flows predicted by the model for the same conditions. The steam flow predicted from the equimolal overflow analysis was higher than the experimentally measured flow. This indicated that an equimolal overflow analysis for predicting the required steam flow
in a feedforward controller would be inadequate.

## TABLE : 6-5

COMPARISON OF EQUIMOLAL AND NON-EQUIMOLAL OVERFLOW ANALYSES (Run 21)

| Variable | Experimentally <br> Measured Flow |  |  | Equimolal Calculation |  |  | Model Predictions (Non-Equimolal) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | 31.2 |  | $\min ^{-1}$ | 31.2 |  | $\min ^{-1}$ | 31.0 | mol | $\min ^{-1}$ |
| W | 32.6 | " | " | 32.6 | " | " | 32.4 | " | 1 |
| $L_{\text {R }}$ | 21.2 | " | " | 24.0 | " | " | 22.9 | " | " |
| $\mathrm{V}_{\mathrm{R}}$ | 52.4 | " | " | 56.4 | " | " | 53.8 | " | " |
| $\mathrm{L}_{\mathrm{S}}$ | 89.4 | " | " | 95.8 | " | " | 89.4 | " | " |
| $\mathrm{V}_{\mathrm{S}}$ | 56.8 | " | " | 63.0 | " | " | 58.5 | " | " |
| $Q_{S}$ | 1.03 | kg | $\min ^{-1}$ | 1.21 | kg | $\mathrm{in}^{-1}$ | 1.03 | kg | $\mathrm{n}^{-1}$ |

(ii) Murphree Vapour Efficiency. The method of including a Murphree vapour efficiency into the model was not strictly correct in that it required the use of average flows through the column sections. This particular computational method was chosen for model stability. From the results generated for comparison with the experimental data, the Murphree vapour efficiencies were calculated according to equation (6.30) from the model predictions. The results from a number of runs are shown in figure 6-5 in comparison. with the Murphree vapour efficiency correlation used in the model. When the feed was not on the optimum tray as predicted by the McCabe-Thiele analysis the efficiency was found to vary from $50 \%$ to $90 \%$ (for liquid compositions 45 to 50 mol\%) compared with the expected value of $80 \%$. The overall effect on the model predictions was small since only one tray was affected, and if the reflux ratio tended toward the minimum reflux ratio there would be a small degree of separation on that tray.

The effect of assuming 100\% tray efficiency was investigated and typical results are shown in Table 6-6.


FIGURE 6-5 COMPARISON OF TRAY EFFICIENCIES

| RUN | VARIABLE ${ }^{+}$ | EXPERIMENTAL MEASUREMENTS | $\begin{array}{r} \text { MODEL } \\ \mathrm{E}_{\mathrm{MV}}=1 \end{array}$ | $\begin{aligned} & \text { ONS } \\ & \mathrm{E}_{\mathrm{MV}}^{*} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 14 | ${ }^{\text {d }}$ | 92.0 | 94.87 | 92.59 |
|  | ${ }_{\text {W }}$ | 2.5 | 1.71 | 3.92 |
|  | D | 31.7 | 31.04 | 31.02 |
|  | W | 31.5 | 32.81 | 32.83 |
|  | $\mathrm{L}_{0}$ | 28.8 | 28.24 | 28.23 |
| 18 | $\mathrm{x}_{\mathrm{D}}$ | 91.5 | 93.49 | 92.14 |
|  | ${ }_{\text {W }}$ | 15.0 | 15.76 | 16.68 |
|  | D | 24.4 | 25.04 | 25.00 |
|  | W | 39.3 | 39.32 | 39.35 |
|  | $L_{0}$ | 18.0 | 18.53 | 18.50 |
| 21 | ${ }^{\text {D }}$ | 91.5 | 93.58 | 91.75 |
|  | ${ }^{\text {W }}$ W | 5.0 | 4.39 | 6.18 |
|  | D | 31.2 | 30.97 | 30.95 |
|  | W | 32.6 | 32.36 | 32.38 |
|  | $L_{0}$ | 23.2 | 22.92 | 22.91 |
| ${ }^{+} x_{D}, x_{W} \text { are mol\%, } D, W, L_{0} \text { are mol } \min ^{-1}$ |  |  |  |  |
| ${ }^{*} \mathrm{E}_{\mathrm{MV}} \text { predicted using equation (6.44) }$ |  |  |  |  |

A comparison of the model predictions, using two different Murphree vapour efficiencies, with the experimental results showed discrepancies (Table 6-6), and highlighted the difficulty of specifying a priori the efficiencies. The method of Bakowski (1969) provided a first estimate of
the Murphree vapour efficiencies, but as shown by Hay and Johnson (1960), the tray geometry, compositions, and operating conditions could significantly affect the tray efficiency. It was not possible to estimate the tray efficiencies from experimental measurements because sampling ports for the vapour streams were not available, and temperature measurements were unreliable (it was difficult to measure the temperature corresponding to the liquid and vapour flows leaving the tray).

An alternative approach would be to incorporate the Murphree vapour efficiency into the model equations as shown by Sargent and Murtagh (1969). This approach would require modifications to the solution technique used on the model equations. The good agreement between the experimental data and the model predictions suggested that the benefits of this approach would be small, and that the effects of the other factors discussed in this section would be more significant.
(iii) Model Stability and Convergence. The model solution converged except when the reflux ratio/minimum reflux ratio was greater than 2.2 or the product compositions were outside the range $0-1$. In these cases, the solution oscillated between two states neither of which was the true solution. The experimental column was not generally operated under these conditions and consequently the convergence problem was ignored. The rate of convergence of the solution was asympototic and depended on the column operating conditions. The major factor was the location of the feed tray in the column. If the steady state composition on the feed tray, $\mathrm{x}_{\mathrm{f}}$, was. significantly different from the feed composition, $x_{F}$, then a large number of iterations were required. If $X_{F}<x_{f}$, convergence was slow (300 iterations), but if $X_{F}>X_{f}$, convergence was obtained in $30-50$ iterations (with the root mean square temperature convergence criteria $=0.001$ ). Execution time on the PDP-11 minicomputer described in section 4.5 was approximately 30 seconds for 100 iterations.
(iv) Sensitivity Analysis. The assumptions made in this analysis were
(a) that the model was linear for small perturbations;
(b) that the errors on the experimental values were random;
(c) that the partial derivatives could be approximated by a central difference. The form of the model equations made any other approach intractable. The errors in the process measurements are detailed in Table 6-7. The measurements were subject to both systematic and random errors; the former were minimised by careful calibration and technique, and were considered to be insignificant compared to the latter.

TABLE 6-7
MEASUREMENT ERRORS

| Variable | Method of Measurement | Likely Measurement Error |
| :---: | :---: | :---: |
| Feed Flow | Pump Calibration | $\pm .05 \mathrm{lmin}^{-1}$ |
| Feed Composition | Density Bottle | $\pm .005 \mathrm{m.f}$. |
| Feed Temperature | Integrated Circuit Sensor | $\pm 1^{\circ} \mathrm{C}$ |
| Reflux Temperature | Integrated Circuit Sensor | $\pm \quad 1{ }^{\circ} \mathrm{C}$ |
| Reflux Ratio | Flow Measurement | $\pm 0.03$ |
| Steam Flow | Bucket \& Stopwatch | $\pm .02 \mathrm{~kg} \mathrm{~min}^{-1}$ |
| Product Composition | Refractometer | $\pm .005 \mathrm{m.f}$. |
| Product Flows | Rotameter | $\pm .02 \mathrm{lmin}^{-1}$ |
| Reflux Flow | Rotameter | $\pm .02 \mathrm{lmin}^{-1}$ |

The models in figure 6.3 show some interesting features. The most noticeable was the effect of small errors in the input parameters on the bottoms product and flow predictions; the errors on these variables were about three times those on the corresponding distillate predictions. The shape of the vapour/liquid equilibrium curve explained this effect;
at low concentrations ( $x=0.05$, relative volatility, $\alpha=6.9$ ) the curve was very steep while at high concentrations it was shallow ( $x=.90, \alpha=2.5 L$. Small changes in the stripping line produced much larger changes in the tray compositions than did similar changes in the rectifying line. Consequently, there was a relatively large uncertainty in the prediction of the bottoms flow and composition from the computer model. In general the model predictions for bottoms composition were higher than those measured experimentally.
(v) Variation of Property Data. The system property data for methanol/water as given in Appendix VII was at variance with some of the data in the literature. In some areas, there was a lack of data.
(a). Density - the correlations used were checked against Gallant (1968). The two data sets as shown in Appendix VII showed reasonable agreement with a maximum deviation of $1.4 \%$ on the subcooled mixture and - 2.4\% on the saturated mixture.
(b) Enthalpy - the variation between the sources is shown in Appendix VII. The data quoted was at variance even for the pure component enthalpies. The chosen set had the best agreement with other measurements of the pure component enthalpies. The deviations between the two sets were $3.5 \%$ for the vapour enthalpy and $14 \%$ for the liquid enthalpy. In terms of the molal latent heat of vaporisation, the maximum deviation was $2 \%$.
(c) Heat capacity - there was a lack of heat capacity data for methanol/water mixtures close to the saturation temperature, hence a simple molal mixing law based on the pure component values was used. A comparison of the predicted and literature values is given in Appendix VII. A maximum deviation of $5 \%$ between the two sets was observed in the middle of the range. The effects of such inaccuracies in the heat capacities was calculated to produce errors in the internal reflux and feed tray liquid flows of approximately $0.5 \%$.
(d) Equilibrium data - as can be seen from the figure in

Appendix VII, there were a number of published sets of equilibrium data for methanol/water at atmospheric pressure. The works of Cornel and Montonna (1933), Hughes and Maloney (1952),...Doroshevsky and Polansky (1910), Uchida and Kato (1934) and Othmer and Benenati (1945) all agree, but were opposed by the results of Green and Vener (1955) and Bredig and Bayer (1927). Variations in experimental technique would appear to explain the differences of up to $2 \%$ between these two groups. The effect of other trace components (aldehydes, ketones, ammonia, acetic acid and sulphur compoundsl in the methanol feedstock used in this work would also alter the equilibrium characteristics. The choice of data then became arbitrary, and hence the data of Cornel and Montonna (1933) as quoted by Perry (1963) was used to be consistent with other published work (Svrcek (1967)).

There was a degree of uncertainty in the system property data as used in the computer model. The uncertainty was caused both by conflicting data in the literature and by the simplifications in the correlations used (simple mixing models).
(vi) Model Verification. The results in Appendix VIII showed good agreement between the experimental data and the model predictions in 19 out of 22 runs. The agreement on the distillate composition and flow was within the likely error of $\pm 1 \mathrm{~mol} \mathrm{\%}$. The bottom composition and flow were also in agreement within the likely error ( $\pm 3.2$ mol\%).

As a further check, the model was used on the experimental data of Svrcek (1967) and a comparison for two runs is given in Appendix VIII. The agreement was good in the light of an assumed Murphree vapour efficiency of 0.9 (calculated from Bakowski's (1969) correlation) and no estimate of error on the experimental data. Svrcek included heat losses in each tray of his model but SSGW assumed a lumped heat loss in the reboiler stage. This approach was acceptable in view of the agreement between the experimentally measured flows and compositions, and the predicted equivalents.
(vii) Heat Losses. The model heat balance equations could incorporate heat transfer on each stage if required, but for simplicity the heat losses were lumped into the reboiler stage. Experimental temperature measurements and heat transfer correlations (Section 6.4.2) predicted a total column heat loss equivalent to $0.07 \mathrm{~kg} \mathrm{~min}{ }^{-1}$ of steam (dry saturated at 212 kPa ). The experimental results of Svrcek (1967) for a column of almost identical dimensions showed a heat loss equivalent to $0.06 \mathrm{~kg} \mathrm{~min}{ }^{-1}$ of steam. This, and the agreement of the model and experimental data lent support to the approach of a single heat loss in the reboiler stage.

### 6.6 CONCLUSION

A steady state binary distillation column model was derived and programmed on a digital computer. The model was shown to agree with experimental data from a pilot plant scale distillation column and with published data (within experimental errors). The model showed that the assumptions of equimolal overflow and constant relative volatility were not valid for the methanol/water binary system. The prediction of tray efficiencies was shown to be important but difficult to achieve with simple correlations. The variance between the published property data for the methanol/water system contributed to discrepancies between the experimental data and the model predictions.

### 6.7 NOMENCLATURE

A - coefficient array, equation (6-6)
b - vector, equation (6-6)
B - coefficient array, equation (6-6)
C - coefficient array, equation (6-6)
$C_{p}$ - liquid heat capacity, $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
D - distillate flow, mol $\min ^{-1}$
$E_{M V}$ - Murphree vapour efficiency
F - feed rate, $\ell^{\min }{ }^{-1}$
h - liquid enthalpy (saturatedl, $\mathrm{kJ} \mathrm{mol}^{-1}$
H - vapour enthalpy (saturated), $\mathrm{kJ} \mathrm{mol}^{-1}$
K - equilibrium ratio, $\mathrm{y}^{*} / \mathrm{x}$
L - liquid flow; mol $\min ^{-1}$
M - molecular weight
N - nunber of column trays

Q - heat load, kW
$Q_{C}$ - condenser heat load, $k W$

R - reflux ratio
T - temperature, ${ }^{\circ} \mathrm{C}$
V - vapour flow, mol $\mathrm{min}^{-1}$
W - bottoms flow, mol min $^{-1}$
x - liquid composition, m.f.
y - vapour composition, m.f.
$y^{*}$ - equilibrium vapour composition, m.f.
$\alpha$ - relative volatility
$\rho \quad-$ Iiquid density, $\mathrm{kg} \ell^{-1}$

## Subscripts

| D | - distillate stream |
| :--- | :--- |
| f | - feed tray |
| F | - feed stream |
| N | - tray N |
| R | - rectifying section |
| S | - stripping section |
| W | - bottoms stream |
| O | - reflux accumulator |

CHAPTER SEVEN

COLUMN DYNAMICS AND FEEDBACK CONTROL

## CONTENTS

Page
7.1 Introduction ..... 7.1
7.2 Level Controllers ..... 7.3
7.2.1 Level Controller Design ..... 7.5
7.2.2 Implementation of. Level Controls ..... 7.9
7.3 Column Open Loop Responses ..... 7.9
7.3.1 Feed Upsets ..... 7.10
7.3.2 Control Variable Upsets ..... 7.21
7.3.3 Temperature Control Interactions ..... 7.29
7.3.4 Discussion ..... 7.30
7.4 Temperature Controllers ..... 7.31
7.4.1 Designing Sampled Data Digital Controllers ..... 7.31
7.4.2 Closed Loop Column Responses ..... 7.35
7.4.3 Discussion ..... 7.36
7.5 Conclusion ..... 7.45
7.6 Nomenclature ..... 7.46

## CHAPTER SEVEN

## COLUMN DYNAMICS AND FEEDBACK CONTROL

### 7.1 INTRODUCTION

Distillation columns have been investigated extensively both experimentally and in computer simulations. Rademaker et al (1975) has presented a comprehensive review of the literature on distillation column dynamics and control. A large proportion of the work has been on simulation studies without extension to experimental verification and control system implementation. Almost every distillation unit or system is unique in some way that precludes a generalised analysis, and each situation should be treated on its merits. The column used in this work was simplified by operation at constant pressure (atmospheric), and the use of a binary system (methanol/water).

Investigation of column dynamics can follow two different paths. A rigorous description for a plate distillation column using a series of ordinary differential equations (for mass and energy balances) can be solved for a variety of column upsets. Controllers can be introduced and their effectiveness evaluated. The alternate procedure is to make tests on the plant and to interpret the results in approximate models which may extrapolate less well than the rigorous model. Lamb et al (1961), Huckaba et al (1963, 1965), and Svrcek (1967), among others, have demonstrated the application and the verification of the rigorous approach; Jafri et al (1965), Marino et al (1968) and Wood and Berry (1973), among others, have fitted models to experimental data with some success. Attempts to predict simple models from steady state operating data have been made by Gilliland and Mohr (1962), Bhat and Williams (1969), Weigand et al (1972) and Buffham (1974). Their work has shown reasonable agreement with simulation models of large columns (more than 25 plates).

Process dynamics were required in this project to estimate the likely column response to upsets, to identify suitable controllers, and to estimate the controllex parameters required for best performance. Simple process models were fitted to experimental response data, and controllers designed and tuned using these models. The object was to produce the simplest control scheme that could provide acceptable controlled responses.

Model identification has been extensively investigated in the literature; Gustavsson (1975) has reviewed the application of identification techniques to general chemical and physical processes while Khrishnamoorthy and Edgar (1977) have summarised the identification of distillation column models. Simple models were fitted to experimental data using discrete models fitted in the $z$ domain in this project.

There are a number of reported methods of designing controllers based on z plane models (Kuo (1963), Tou (1969), Mosler et al (1967)). There are advantages when such design methods produce controllers which are discrete equivalents of the standard PID analog controller. In particular, the well recognised methods of tuning PID controllers can be used, and the intuitive feel for the effects of the proportional, integral and derivative modes can be utilised in fine tuning procedures either by the computer or by the operator.

There are four manipulated variables on an atmospheric pressure distillation column assuming constant pressure operation, and a fixed condenser load. The two control loops that maintain the overall column material balance by controlling the reflux accumulator and reboiler levels were considered as being lumped into the column dynamics. The control problem then was to maintain the product compositions using the two remaining control variables.

Temperature control on the top and bottom trays was adopted in prefexence to composition control on the products because of the long response time of the on-line refractometer analyser, and the lags caused
by the liquid holdups in the reflux accumulator and reboiler.
The dynamic behaviour of the distillation column described in the preceding chapters was investigated. Feedback controllers were designed and tuned to give best performance under a wide range of upsets using the microcomputer-based control system described in Chapter four.

### 7.2 LEVEL CONTROLLERS

The atmospheric pressure column had four control variables and four controlled variables, and hence 24 control combinations were possible. A number of these arrangements were obviously inferior and noting that the response of the bottom composition was much faster when controlled by manipulating the steam flow to the reboiler rather than bottom flow, then two possible control configurations remained (figure 7-1). The only real choice was the selection of the distillate composition control variable.

Shinskey (1967) has suggested that the material and heat balances should be separated (by controlling the distillate composition with the distillate flow in this case), but this is important only when the reflux stream is on flow control. For the column used in this project, the reflux ratio was generally close to 1.0 and the level controllers were reasonably tightly tuned (figure 7-3), hence the choice of distillate or reflux flow for distillate composition control was arbitrary.

Composition control is best achieved by maintaining the separation constant in the column (i.e. constant temperature profile), and it is necessary to ensure that temperature changes on the top tray are corrected as soon as possible. Therefore it is reasonable to control the top tray temperature by manipulating the reflux flow, i.e. figure 7-lb. This configuration was tried and worked well as will be shown in the following sections.


FIGURE 7-1 CONTROL CONFIGURATIONS

### 7.2.1 Level Controller Design

The reflux accumulator level and reboiler level systems were similar in that each attempted to control the level in a 225 mm diameter column section by a speed controllable pump. The following analysis then applies to both level controllexs. The block diagram for the level control system is shown in figure 7-2. Analysis of the block diagram for upset disturbances only gives (Smith (1972)):

$$
\begin{equation*}
C(z)=\frac{N G(z)}{1+D(z) H G(z) K_{p} K_{S}} \tag{7.1}
\end{equation*}
$$

or

$$
\begin{equation*}
D(z)=\frac{N G(z)-C(z)}{K_{p} K_{S} H G(z) C(z)} \tag{7.2}
\end{equation*}
$$

where

$$
\text { NG }(z)=\text { upset pulse transfer function }
$$

HG(z) = process pulse transfer function.

Design of a deadbeat type controller can be achieved by solving (7.2) for a specified $C(z)$ and given $N G(z)$. The tightest possible level control is that in which the level returns to the setpoint in two sampling intervals given a step upset $u$. For the system in figure 7-2 then

$$
\begin{align*}
& \mathrm{HG}(z)=\frac{\mathrm{KTz}^{-1}}{1-z^{-1}}  \tag{7.3}\\
& \mathrm{NG}(z)=\frac{\mathrm{KuTz}^{-1}}{1-z^{-1}}  \tag{7.4}\\
& \mathrm{C}(z)=\mathrm{KuTz}^{-1} \tag{7.5}
\end{align*}
$$

substituting into (7.2)

$$
\begin{equation*}
D(z)=\frac{2-z^{-1}}{K T K_{p} K_{s}\left(1-z^{-1}\right)} \tag{7.6}
\end{equation*}
$$

or in difference form

$$
\begin{equation*}
m_{n}-m_{n-1}=\frac{1}{K T K_{p} K_{S}}\left(2 e_{n}-e_{n-1}\right) \tag{7.7}
\end{equation*}
$$

Equation (7.7) is the velocity form of a discrete PI controller. How-


FIGURE 7-2 LEVEL CONTROL LOOP
ever, the control produced by the controller will be unrealisable because the controller requires control action greater than that possible. (The design method takes no account of limits on control action). e.g. for the distillation column reflux accumulator

$$
\begin{aligned}
& \mathrm{K}=\frac{1}{\text { cross sectional area }}=2.5 \times 10^{-3} \mathrm{~cm}^{-2} \\
& \mathrm{~K}_{\mathrm{S}}=-.0115 \mathrm{~V} \mathrm{~cm}^{-1} \text { sensor gain } \\
& \mathrm{K}_{\mathrm{p}}=200 \mathrm{~cm}^{3} \mathrm{~min}^{-1} \mathrm{~V}^{-1} \text { control pump gain } \\
& \mathrm{T}=0.167 \mathrm{~min}
\end{aligned}
$$

from equation (7.7)

$$
\Delta m_{n}=-2042 e_{n}+1041 e_{n-1}
$$

for a change in level of 1 cm

$$
\begin{aligned}
e_{n-1} & =0 \\
e_{n} & =1 \times k_{S} \\
& =-.0115 \mathrm{~V} \\
\therefore \Delta m_{n} & =23.5 \mathrm{~V}
\end{aligned}
$$

but the maximum pump control signal is lov.
There are three possible solutions to this situation:
(i) choose another response, $\mathrm{C}(\mathrm{z})$, which gives a controller with a realisable control action;
(ii) use the controller structure as calculated, but de-tune it (i.e. reduce the gain):
(iii) increase the sample time until the control action is within the desired limits. A sample time of approximately 4 minutes is required to give an initial change in controller output of $1 V$ for a step change in level of 1 cm .

The first case will produce a controller with more terms in it requiring more storage and more computation, while the third case underutilises the capacity of the control microcomputer and could suffer


FIGURE7-3 LEVEL RESPONSES
badly from upsets occurring in between the sampling intervals (if the sample period was 4 minutes). The second solution was chosen since it afforded the simplest controller. The level control loops were not critical to the overall column control, so the choice of controller was not critical.

### 7.2.2 Implementation of Level Controls

Two of the PI controllers described in section 5.9 were tuned to provide averaging level control in the distillation column. The controller equation used was

$$
\begin{equation*}
\Delta m_{n}=-392 e_{n}+368 e_{n-1} \tag{7.8}
\end{equation*}
$$

which is equivalent to a PI controller with

$$
\mathrm{K}_{\mathrm{C}}=-368 \mathrm{~V} / \mathrm{V}, \mathrm{~T}_{\mathrm{I}}=2.6 \mathrm{~min}, \mathrm{~T}=10 \mathrm{~seconds}
$$

The sampling interval was chosen as 10 seconds because the dominant process time constants were of the order of several minutes; hence the digital controller closely approximated a continuous analog PI controller in performance.

Figure 7-3 shows typical closed loop responses of the level controllers to a step increase in steam flow. The responses were essentially second order with oscillations damping out to within $\pm 5 \mathrm{~mm}$ of the setpoint within fifteen minutes. The dynamics of these level control loops were included in the overall column dynamics described in the following sections.

### 7.3 COLUMN OPEN LOOP RESPONSES

A number of model identification procedures are available in the literature for both on-line and off-line use (Gustavsson (1975)), Box and Jenkins (1970), Saridis (1974), Sundaresan and Krishnaswamy (1978)). The main considerations for an identification procedure are:
(i) the model structure
(ii) the input to excite the plant dynamics
(iv) the validity and usefulness of the model produced.

The simplest model which adequately describes the process for any particular application should be used. In this application, simple models were required to predict the column response, and for use in designing feedback controllers.

For the purposes of determining the column dynamics, an off-line least squares approach was used to fit determinate discrete models, in the $z$ domain, to step input responses. Such an approach was indicated because the column responses were essentially noise free, and in a digital control system, the inputs to the system would be discrete steps. The four response variables were the distillate and bottoms product compositions, and the top ( $T_{1}$ ) and bottom ( $T_{8}$ ) tray temperatures. Each of the temperature probes was located close to the exit weir on that tray, and was expected to indicate the temperature of the liquid leaving the tray (and hence imply the composition of the liquid leaving the tray). The tray temperatures $T_{1}$ and $T_{8}$ were used as the control variables in the two composition control loops. The composition control loops were much slower than the temperature control loops because of the online refractometer sampling rate and the reboiler and reflux accumulator holdups. The upsets to the column were the feed variables: flow, composition, temperature, and the temperature control variables: reflux flow and steam flow.

### 7.3.1 Feed Upsets

Step upsets of varying magnitude and direction were made to investigate the column dynamics. Feed flow changes were made by altering the stroke of the feed pump, feed composition changes by adding pure methanol or water to the feed tank as required, and feed temperature changes by altering the steam pressure in the feed preheater. The reflux and steam flow changes were made using the manual controls. During the tests the reflux flow and steam flow were on manual control while the
reflux accumulator level was controlled by the distillate flow, and the reboiler level by the bottoms flow. Figures 7-4 to 7-11 show typical column responses to step upsets, and the fitted models. The models fitted were discrete $z$ plane polynomials of the form

$$
\begin{equation*}
\frac{\text { output }(z)}{\text { input }(z)}=\frac{\left(a_{1} z^{-1}+a_{2} z^{-2}+\ldots+z^{-m}\right) z^{-N}}{\left(1+b_{1} z^{-1}+b_{2} z^{-2} \ldots+z^{-n}\right)} \tag{7.9}
\end{equation*}
$$

where $T=$ sample time (1 minute) $\mathrm{NT}=$ dead time (min).

The dead time was chosen as a multiple of the sampling time to simplify model fitting. The model parameters were established for various model orders using a search technique based on the Hooke and Jeeves optimisation algorithm (Dixon (1972)). The PDP-11 minicomputer described in Chapter Four was used for this work. The fitted models produced estimates of the process variables at 1 minute intervals, but some of these estimates have been left off the figures for clarity.

The model form was chosen to be the simplest which adequàtely described the process response especially over the initial part of the . response. All the responses to feed upsets were satisfactorily fitted with models of the form

$$
\begin{equation*}
\frac{y(z)}{x(z)}=\frac{K(1-b) z^{-1} \cdot z^{-N}}{1-b z^{-1}} \tag{7.10}
\end{equation*}
$$

which is the discrete form of the classical first order system with dead time $=N T$ and time constant $=-T / \ln b . \quad$ The fitted models are given in Tables 7-1, 7-2, 7-3.

There was very good agreement between the models identified for increases and decreases (of varying magnitude) in the feed variables. Significant differences might have been expected because of non-linearities in the column and changing flowrates causing changes in the liquid dynamics. The good agreement did show that a tuned controller should be equally effective in controlling upsets in either direction for any one of the feed variables.


FIGURE 7-4 OPEN LOOP RESPONSE


FIGURE 7-5 OPEN LOOP RESPONSE


FIGURE 7-6 OPEN LOOP RESPONSE


FIGURE 7-7 OPEN LOOP RESPONSE


FIGURE 7-8 OPEN LOOP RESPONSE


FIGURE7-9 OPEN LOOP RESPONSE

| RUN | UPSET | VARIABLE | FITTED DISCRETE TRANSFER FUNCTION $T=1 \mathrm{~min}$ |  | US <br> $/$ min |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R58 | FEED <br> RATE <br> INCREASE $\left(0.27 \mathrm{~kg} \mathrm{~min}^{-1}\right)$ | $\mathrm{X}_{\mathrm{D}}$ | $7.4\left(\frac{.120 z^{-3}}{1-.880 z^{-1}}\right)$ | $7.8 \quad 12.0$ |  |
|  |  | $\mathrm{T}_{1}$ | $-1.5\left(\frac{.231 z^{-11}}{1-.769 z^{-1}}\right)$ | 3.8 | 10.0 |
|  |  | ${ }^{\text {W }}$. | $54.4\left(\frac{.061 z^{-6}}{1-.939 z^{-1}}\right)$ | 15.9 | 5.0 |
|  |  | $\mathrm{T}_{8}$ | $-24.4\left(\frac{.088 z^{-1}}{1-.912 z^{-1}}\right)$ | 10.9 | 0.0 |
| R57 | FEED | ${ }_{\text {x }}$ | $7.2\left(\frac{.106 z^{-25}}{1-.894 z^{-1}}\right)$ | 8.9 | 24.0 |
|  | RATE <br> DECREASE $\left(0.10 \mathrm{~kg} \mathrm{~min}^{-1}\right)$ | $\mathrm{T}_{1}$ | $-1.6\left(\frac{.135 z^{-19}}{1-.865 z^{-1}}\right)$ | 6.9 | $18.0$ |
|  |  | $\mathrm{x}_{W}$ | $46.0\left(\frac{.057 z^{-6}}{1-.943 z^{-1}}\right)$ | 17.1 | 5.0 |
|  |  | $\mathrm{T}_{8}$ | $-28.0\left(\frac{.048 z^{-1}}{1-.952 z^{-1}}\right)$ | 20.3 | 0.0 |

TABLE 7-2
FEED COMPOSITION MODELS

| RUN | UPSET | VARIABLE | FITTED DISCRETE TRANSFER FUNCTION $T=1 \mathrm{Min}$ |  | US <br> $\theta / m i n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R59 | FEED <br> COMPOSITION <br> CHANGE $(+5 \mathrm{~mol} \%)$ | ${ }^{\text {D }}$ | $0.16\left(\frac{.992 z^{7}}{1-.808 z^{-1}}\right)$ | 4.7 | 6.0 |
|  |  | $\mathrm{T}_{1}$ | $-.024\left(\frac{.227 z^{-1}}{1-.773 z^{-1}}\right)$ | 3.9 | 0.0 |
|  |  | $\mathrm{x}_{\mathrm{W}}$ | $0.54\left(\frac{.107 z^{-7}}{1-.893 z^{-1}}\right)$ | 8.9 | 6.0 |
|  |  | $\mathrm{T}_{8}$ | $-.18\left(\frac{.211 z^{-1}}{1-.789 z^{-1}}\right)$ | 4.2 | 0.0 |
| R59A | FEED <br> COMPOSITION <br> CHANGE <br> (-4 mol\%) | ${ }^{\text {d }}$ | $0.15\left(\frac{.199 z^{-9}}{1-.801 z^{-1}}\right)$ | 4.5 | 8.0 |
|  |  | $\mathrm{T}_{1}$ | $-.025\left(\frac{.237 z^{-1}}{1-.763 z^{-1}}\right)$ | 3.7 | $0.0$ |
|  |  | ${ }_{\text {W }}$ | $0.50\left(\frac{.118 z^{-7}}{1-.882 z^{-1}}\right)$ | 8.0 | 6.0 |
|  |  | $\mathrm{T}_{8}$ | $-.21\left(\frac{.221 z^{-1}}{1-.779 z^{-1}}\right)$ | 4.0 | 0.0 |

All compositions in mol\%, all temperatures in ${ }^{\circ} \mathrm{C}$.

TABLE 7-3

| RUN | UPSET | VARIABLE | FITTED DISCRETE TRANSFER FUNCTION $T=1 \mathrm{~min}$ | $\begin{array}{\|c} \text { CONT } \\ \text { MOI } \\ \tau / \mathrm{min} \end{array}$ | US $\theta / \mathrm{min}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R60 | FEED <br> TEMPERATURE <br> INCREASE $\left(+45{ }^{\circ} \mathrm{C}\right)$ | ${ }^{\text {D }}$ | $-.10\left(\frac{.105 z^{-10}}{1-.895 z^{-1}}\right)$ | 9.0 | 9.0 |
|  |  | $\mathrm{T}_{1}$ | $0.033\left(\frac{.125 z^{-1}}{1-.875 z^{-1}}\right)$ | 7.5 | 0.0 |
|  |  | ${ }_{\text {W }}$ | $-.36\left(\frac{.060 z^{-1}}{1-.940 z^{-1}}\right)$ | 16.1 | 13.0 |
|  |  | $\mathrm{T}_{8}$ | $0.17\left(\frac{.041 z^{-2}}{1-.959 z^{-1}}\right)$ | 24.2 | 1.0 |
| R60A | FEED temperature DECREASE $\left(-45^{\circ} \mathrm{C}\right)$ | ${ }^{\text {d }}$ | $-.11\left(\frac{.099 z^{-1}}{1-.901 z^{-1}}\right)$ | 9.6 | 9.0 |
|  |  | $\mathrm{T}_{1}$ | $0.036\left(\frac{.118 z^{-1}}{1-.882 z^{-1}}\right)$ | 8.0 | 0.0 |
|  |  | ${ }_{\text {W }}$ | $-.33\left(\frac{.065 z^{-12}}{1-.935 z^{-1}}\right)$ | 15.0 | 11.0 |
|  |  | $\mathrm{T}_{8}$ | $0.16\left(\frac{.047 z^{-1}}{1-.953 z^{-1}}\right)$ | 20.8 | 0.0 |

All compositions in mol\%, all temperatures in ${ }^{\circ} \mathrm{C}$.

The column responses show some important points:
(i) The bottoms composition, and bottom tray temperature responses were significantly faster than the distillate composition and top tray temperature responses to feed disturbances. This was to be expected since the feed disturbances must, in general, travel down the column in the liquid stream and then up the column in the vapour stream. This effect indicated that the bottom temperature control loop would respond faster than the top temperature control loop to feed upsets.
(ii) The magnitudes of the bottoms composition and bottom tray temperature changes were greater than those of the distillate composition and top tray temperature for a given upset. This could be explained by the shape of the vapour/liquid equilibrium curve which was steep for low methanol concentrations and almost flat for high methanol compositions. Consequently a small change in the stripping operating line had a larger effect on the tray compositions than a corresponding change in the rectifying operating line.
(iii) The fit of the models was good for the initial part of the response which was the region in which a control system might be expected to operate. The latter parts of the response showed some higher order effects, and delayed dynamics (caused by interactions and reflections in the column) but the effects were not significant, e.g. the response of the bottoms variables in figures 7-4 and 7-6.

### 7.3.2 Control Variable Responses

The reflux flow ( $L_{R}$ ) and steam flow ( $Q_{S}$ ) were chosen as the control variables for the temperature control loops (see section 7.2). Step upsets in both directions were applied to these variables and the responses analysed. Typical results are shown in figures 7-10 to 7-13. The figures also show the fitted model responses (with some of the fitted model predictions left off for clarity). The models were fitted as described in section 7.3.1 and are listed in Tables 7-4 and 7-5.

The responses of the bottoms composition and bottom tray temperature to changes in steam flow were underdamped second order, and were fitted with second order models. However the initial response before the oscillations commenced can be reasonably approximated by a first order system and the two models are shown in Table 7-5. The responses show several important features.
(i) In most cases, there was no deadtime in the tray temperature responses to changes in reflux and steam flows. This indicated that the column should be relatively easy to control provided interaction was not great.
(ii) The response of distillate composition to changes in reflux and steam flows exhibited deadtime as might have been expected with the reflux accumulator in the loop.
(iii) The response of bottoms composition to changes in steam flow was fast considering the large holdup in the reboiler. This was due to the rapid change in vapour flow for a change in steam flow. Because the boiling point of the liquid in the reboiler was fixed by composition and pressure, any extra heat input was taken up by an instantaneous increase in the boilup rate. This was confirmed by the rapid change in the bottom tray temperature (time constant $<1$ minute).
(iv) The response of the top tray temperature and distillate composition to steam flow changes showed two dynamic effects, one fast and one slower (figures 7-12, 7-13). Initially the change in steam flow produced a rapid change in vapour flow, which in turn rapidly altered the separation in the column as shown by the temperature changes in figures 7-12 and 7-13. The reflux accumulator contributed a lag between vapour composition changes and the corresponding reflux composition changes, consequently there was a lag before the changing reflux composition entered the column and caused further changes to the column separation. The result of these two systems was a response with an initial overshoot of the final steady state for the distillate composition and top tray temperature.


FIGURE 7-100PEN LOOP RESPONSE


FIGURE 7-110PEN LOOP RESPONSE


FIGURE7-12 OPEN LOOP RESPONSE


FIGURE 7-13 OPEN LOOP RESPONSE

## REFLUX FLOW MODELS

| RUN |
| :---: | :---: | :---: | :---: | :---: |
| R35 |
| REFET |
| REFUX |
| FLOW |
| INCREASE |
| (+.13 kg min |

All compositions in mol\%, all temperatures in ${ }^{\circ} \mathrm{C}$

## TABLE 7-5

STEAM FLOW MODELS

| RUN | UPSET | VARIABLE | FITTED DISCRETE TRANSFER FUNCTION $T=1 \mathrm{~min}$ |  | JOUS <br> $\theta / \mathrm{min}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R48 | STEAM <br> FLOW <br> INCREASE $\left(+.10 \mathrm{~kg} \mathrm{~min}^{-1}\right)$ | ${ }^{\text {D }}$ | $-16.2\left(\frac{.373 z^{-5}}{1-.627 z^{-1}}\right)$ | 2.1 | 4.0 |
|  |  | $\mathrm{T}_{1}$ | $4.0\left(\frac{.990 z^{-2}}{1-.010 z^{-1}}\right)$ | 0.2 | 1.0 |
|  |  | ${ }_{W}$ | $-32.5\left(\frac{.094 z^{-5}}{1-.906 z^{-1}}\right)$ | 10.0 | 4.0 |
|  |  | $\mathrm{T}_{8}$ | $8.5\left(\frac{.377 z^{-1}-.269 z^{-2}}{1-.756 z^{-1}+.401 z^{-2}}\right)$ | - | 0.0 |
|  |  | $\mathrm{T}_{8}$ | $8.5\left(\frac{.614 z^{-1}}{1-.386 z^{-1}}\right)$ | 1.1 | 0.0 |
| R45 | STEAM <br> FLOW <br> DECREASE $\left(-.06 \mathrm{~kg} \mathrm{~min}^{-1}\right)$ | ${ }^{\text {d }}$ | $-16.1\left(\frac{.499 z^{-6}}{1-.501 z^{-1}}\right)$ | 1.5 | 5.0 |
|  |  | $\mathrm{T}_{1}$ | $3.8\left(\frac{.835 z^{-1}}{1-.165 z^{-1}}\right)$ | 0.6 | 0.0 |
|  |  | ${ }_{W}$ | $-31.8\left(\frac{.140 z^{-6}}{1-.860 z^{-1}}\right)$ | 6.6 | 5.0 |
|  |  | $\mathrm{T}_{8}$ | $12.5\left(\frac{1.145 z^{-1}-1.044 z^{-2}}{1-1.354 z^{-1}+.456 z^{-2}}\right)$ | - | 0.0 |
|  |  | $\mathrm{T}_{8}$ | $12.5\left(\frac{.991 z^{-2}}{1-.009 z^{-1}}\right)$ | 0.2 | 1.0 |

All compositions in mol\%, all temperatures in ${ }^{\circ} \mathrm{C}$

### 7.3.3 Temperature Control Interactions

The degree of interaction between the control loops in a distillation column can be estimated by the interaction measure (Bristol (1966), Shinskey (1967)) and the allocation of the control loops made so as to minimise the interaction. From the steady state gains of the transfer functions

$$
\begin{align*}
{\left[\begin{array}{c}
\mathrm{T}_{1} \\
\mathrm{~T}_{8}
\end{array}\right] } & =\left[\begin{array}{ll}
-4.0 & -3.8 \\
-9.3 & -12.5
\end{array}\right]\left[\begin{array}{l}
\mathrm{L}_{\mathrm{R}} \\
\mathrm{Q}_{\mathrm{S}}
\end{array}\right] \\
& =\mathrm{P}\left[\begin{array}{c}
\mathrm{L}_{\mathrm{R}} \\
Q_{\mathrm{S}}
\end{array}\right] \tag{7.11}
\end{align*}
$$

$\mathrm{P}=$ steady state process matrix
and the interaction measure is given by

$$
\begin{align*}
M_{i j} & =P_{i j}\left(P^{-1}\right)_{j i}  \tag{7.12}\\
M & =\left[\begin{array}{cc}
3.4 & -2.4 \\
-2.4 & 3.4
\end{array}\right] \tag{7.13}
\end{align*}
$$

From the interaction measure the following points can be made:
(i) The controller pairings should be $T_{1}$ controlled by $L_{R}$ $T_{8}$ controlled by $Q_{S}$ and that the opposite pairing will be unstable.
(ii) There will be significant interaction between the loops perhaps leading to instability.
(iii) The other control alternative using distillate and steam flow as the manipulated variables will give similar results to those above since the reflux ratio was close to one, and the reflux accumulator level control was tight.

However, the process matrices from other experimental runs produced the reverse controller pairings to those suggested above, and a very strong interaction between the two loops. The key to determining least interactive loops was the determinant of $P$. If the gains for the effects of the two inputs on any one output were close to being equal, i.e.

$$
P=\left(\begin{array}{ll}
a & b  \tag{7.14}\\
c & d
\end{array}\right)
$$

$\operatorname{det}(P)=a d-b c$
then any errors in measuring the gains $a, b, c, d$ could cause the determinant to change sign and consequently the interaction measure would predict the opposite controller pairings. In the case of the process matrix being singular, Bristol's method predicts very difficult control.

Some of the process matrices found experimentally in this work were found to be almost singular, and hence predicted difficult control and the reverse controller pairing to that suggested by equation (7.13) e.g.

$$
\left[\begin{array}{c}
\mathrm{T}_{1} \\
\mathrm{~T}_{8}
\end{array}\right]\left[\begin{array}{ll}
-3.6 & -4.0 \\
-8.2 & -8.5
\end{array}\right]\left[\begin{array}{c}
\mathrm{L}_{R} \\
Q_{\mathrm{S}}
\end{array}\right]
$$

gives

$$
M=\left[\begin{array}{rr}
-13.9 & 14.9 \\
14.9 & -13.9
\end{array}\right]
$$

The interaction measure takes no account of the process dynamics, and therefore cannot give a complete answer to the problem of configuring control loops. The controller pairings suggested by equation (7.13) were used because they were in agreement with the arguments presented in section 7.2 .

### 7.3.4 Discussion

Simple models consisting of first order plus deadtime models were
fitted in the $z$ plane to the column responses for all upsets except the bottoms composition and bottom tray temperature responses to steam flow upsets. The models provided reasonable agreement even though other dynamics were present in some of the responses. These models were of the form used by Jafri et al (1965) and Meyer et al $(1978,1979)$ on similar distillation columns. The transfer functions showed that the base of the column responded more quickly to upsets than did the top of the column. The transfer functions were used to investigate controller design for the temperature control loops.

### 7.4 TEMPERATURE CONTROLLERS

From the process dynamics identified by step testing, controller designs and tunings were investigated. The controllers considered were in the categories
(i) conventional analog controller replacements
(ii) specially designed sampled-data controllers.

Thexe are a number of methods of tuning controllers in the first category (Smith (1972)) and the resulting settings can be fine tuned. The sampled-data controller could be quickly and easily designed for a specific upset but lacked flexibility in being able to handle other upsets.

### 7.4.1 Designing Sampled Data Digital Controllers

The methods used in section 7.2.1 for the, level control system were applied to the temperature loops. The basic loop is shown in figure 7-14. The controller could be designed as a regulator to control the upsets, however, the problem was which upset to design for. The upsets all had different dynamics and required a different controller. The alternative was to consider the servo problem and design only for setpoint changes. Either type of controller (regulator or servo) was going to behave differently when subjected to the other


FIGURE 7-14 TEMPERATURE CONTROL LOOP
type of upset and the performance may not have been satisfactory. Two simple designs of the deadbeat type of controller were considered:
(i) Servo deadbeat controller.

For a unit step change in setpoint, the process was expected to reach the new setpoint in one sampling interval. The process was first order with time constant $\tau$ and a zero order hold was used. Hence (Smith 1972) :

$$
\begin{aligned}
R(z) & =\frac{1}{1-z^{-1}} \\
C(z) & =\frac{z^{-1}}{1-z^{-1}} \\
H G(z) & =\frac{K(1-b) z^{-1}}{1-b z^{-1}} \\
b & =e^{-T / \tau}
\end{aligned}
$$

and

$$
\begin{equation*}
D(z)=\frac{1-b z^{-1}}{K_{s} K_{p} K(1-b)\left(1-z^{-1}\right)} \tag{7.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta m_{n}=\frac{1}{K_{s} K_{p} K(1-b)}\left(e_{n}-b e_{\Omega-1}\right) \tag{7.16}
\end{equation*}
$$

which is the velocity type discrete equivalent of a PI controller.
(ii) Regulator deadbeat controller.

For a step upset, $u$, into $G_{1}(s)$, the process was required to return to the setpoint in two sampling intervals. The process was as for case (i). Hence

$$
\begin{align*}
& G_{1}(s)=\frac{K_{1}}{\tau_{1} S+1} \quad \text { the upset dynamics } \\
& N G(z)=\frac{K_{1} u(1-a) z^{-1}}{\left(1-z^{-1}\right)\left(1-a z^{-1}\right)} \quad a=e^{-T / \tau} 1 \\
& C(z)=K_{1} U(1-a) z^{-1} \\
& D(z)=\frac{1}{K_{p}^{K} K_{s}}\left[\frac{\left(1-b z^{-1}\right)\left(1+a-a z^{-1}\right)}{\left(1-z^{-1}\right)\left(1-a z^{-1}\right)}\right] \tag{7.17}
\end{align*}
$$

or

$$
\begin{equation*}
m_{n}=f\left(e_{n}, e_{n-1}, e_{n-2}, m_{n-1}, m_{n-2}\right) \tag{7.18}
\end{equation*}
$$

and the velocity type form of the controller is

$$
\begin{equation*}
\Delta m_{n}=f\left(e_{n}, e_{n-1}, e_{n-2}, e_{n-3}, m_{n-1}, m_{n-2}, m_{n-3}\right) \tag{7.19}
\end{equation*}
$$

There are obvious differences between the two controller designs (eqn. (7.16), (7.19)) but the performance of each would be similar. Shunta and Luyben (1972a, 1972b) investigated the application of similar controllers to a simulated process and concluded that the results were good for the disturbance for which they were designed but poor for other disturbances. In some cases the control was marginally better than conventional PI analog continuous control, but worse in others. They also designed a dual discrete controller which handled the load and setpoint upsets separately and which showed an improvement in control performance but was no better than conventional PI control. Setting up the dual controller was more difficult than a conventional controller, and required an accurate process model. Even incorporating decoupling into the dual controller showed only marginal improvement over conventional PI control. Hence the deadbeat type of controller was not considered in this project.

There are other problems associated with minimal deadbeat type controllers. Excessive control action can be demanded by the controller to provide the required response. This could be avoided by increasing the sample interval or incorporating constraints in another design procedure, e.g. the linear quadratic design procedures (Edgar et al (1973)). An alternate desired process response could be used to design another controller (Smith 1972), or additional poles and zeroes could be added to the controller to give the desired response. Both these methods require some experience on the part of the designer and could not be recommended as general practice.

Conclusion: While the synthesis of deadbeat type controllers is
straightforward, the controller will in practice cause problems because of (i) requiring excessive control action;
(ii) sensitivity to model parameter variations;
(iii) poor response to upsets other than that for which it was designed.

As expected, the discrete deadbeat controller for the servo problem proved to be a PI controller while the regulator problem produced a more complex controller. If the upset dynamics were similar to the plant dynamics $\left(G_{1}(s) \simeq G(s)\right.$ in figure $7-14$ ) then the regulator problem also reduced to a PI controller. On this basis, and considering that PI controllers were being used for the level controllers, discrete PI controllers were used on the temperature loops. The choice of one controller type also simplified progamming the microcomputer. As a first estimate the PI controllers were tuned using the tabulated values determined from the ITAE criterion (Smith (1972)). A deadtime equal to half the model sampling time was assumed in order to use this tuning method.

### 7.4.2 Closed Loop Column Responses

The recommended controller settings for the temperature control loops based on the ITAE criteria were:

$$
\begin{align*}
\mathrm{T}_{1} \text { loop } \quad \mathrm{K}_{\mathrm{C}} & =-107 \mathrm{~V} / \mathrm{V} \quad \mathrm{~T}_{\mathrm{I}}=1.6 \mathrm{~min} \quad \mathrm{~T}=10 \mathrm{~s} \\
\text { or } \Delta \mathrm{m}_{\mathrm{n}} & =-118.3 \mathrm{e}_{\mathrm{n}}+107 \mathrm{e}_{\mathrm{n}-1}  \tag{7.20}\\
\mathrm{~T}_{8} \text { loop } \quad \mathrm{K}_{\mathrm{C}} & =+5.0 \mathrm{~V} / \mathrm{V}, \mathrm{~T}_{\mathrm{I}}=0.8 \mathrm{~min} \quad \mathrm{~T}=10 \mathrm{~s} \\
\text { or } \Delta \mathrm{m}_{\mathrm{n}} & =+6 \mathrm{e}_{\mathrm{n}}-5 \mathrm{e}_{\mathrm{n}-1} \tag{7.21}
\end{align*}
$$

The predicted controller tunings were tested on the column under closed loop control for a variety of feed upsets. Using the controllers described in section 5.8. Interactions between the loops made re-tuning necessary. The following controllers were found to give best overall control for a variety of feed upsets and setpoint changes.

$$
\begin{align*}
& T_{1} \text { loop } \quad K_{C}=-2 V / V, T_{I}=0.3 \mathrm{~min} \\
& \Delta m_{n}=-3 e_{n}+2 e_{n-1}  \tag{7.22}\\
& T_{8} \text { loop } \quad K_{C}=+4 V / V, \quad T_{I}=0.8 \mathrm{~min} \\
& \Delta m_{n}=+5 e_{n}-4 e_{n-1} \tag{7.23}
\end{align*}
$$

For the $T_{1}$ loop, this represents a large reduction in gain, and an increase in integral action tending to a more loosely tuned loop. This change was made to slacken the control on the slower of the two loops and sacrifice some control performance for reduced interaction.

The results of these controllers to feed rate, feed composition and setpoint changes are shown in figures 7-15 to 7-18.

### 7.4.3 Discussion

The results in figures $7-15$ to $7-18$ show the responses of the column with temperature control on both ends of the column. The controllers used were the simplest possible - discrete PI eqivalents. The results therefore represented a basis for deciding whether significant improvement could be achieved by enhancing the control scheme, e.g. decoupling, feedforward control.

The precision of the measured deviations was limited by the performance of the temperature and composition sensors. These devices (see section 3.8 ) had a long term repeatability of $\pm 0.2^{\circ} \mathrm{C}$ and $\pm 0.4 \mathrm{~mol} \%$ respectively, hence the deviations measured were well within the long term repeatability limits. For the short time duration ( 30 minutes) required for the closed loop responses, the stability of all measuring instruments was assumed to be sufficient to produce the results shown. The choice of what constitutes good control in this situation is partly subjective. The commonly used criteria are minimum overshoot, settling time, rise time, decay ratio and the error integrals. The choice of one or more of these criteria depends on the type of response exhibited by the controlled loop (oscillatory or exponential) and by the requirements of the control loop (to minmise flow variations to other processing


## FEEDBACK CONTROLLERS

FIGURE 7-15 CLOSED LOOP RESPONSE


## FEEDBACK CONTROLLERS

FIGURE 7-16 CLOSED LOOP RESPONSE


## FEEDBACK CONTROLLERS

FIGURE 7-17 CLOSED LOOP RESPONSE


FEEDBACK CONTROLLERS
FIGURE7-18 CLOSED LOOP RESPONSE
equipment, or to minimise off specification products). There is a point beyond which it is unjustified to try and make improvements to the performance of a control system.

The results shown for the distillation column under multiloop feedback control produced a maximum product deviation of 0.4 mol for feed upsets and $0.7 \mathrm{~mol} \mathrm{\%}$ for setpoint changes. The product compositions were generally quick to respond but exhibited a long settling time. However for most of the settling time, the deviations were less than 0.2 mol\%. This performance was considered excellent when compared to the results obtained by Svrcek (1967), Meyer et al (1978, 1979), Wood and Berry (1973) and Jafri et al (1965) on similar distillation columns.

As predicted in section 7.3.3, there was interaction between the two control loops causing some oscillation and overshoot at the bottom of the column. The final controller settings used were a compromise to give good control for a variety of upsets. The detuning of the top tray temperature controller resulted in a slower distillate composition response with correspondingly less interaction between the two loops. This is one way of overcoming the interaction problem.

The initial controller tuning for the two loops relied on the arbitrary selection of a deadtime equal to half the sample time (l minute) for the fitted model. This deadtime along with the experimentally determined constant was used to set the controller parameters based on the ITAE method (Smith (1972)). The choice of deadtime was important, because as the ratio of deadtime to time constant tends to 0 , the controller gain tends to infinity and the integral time tends to 0 (infinite integral action). The initial choice of controller settings for the bottom tray temperature loop proved to be satisfactory, but those for top tray temperature loop were inadequate for the reasons previously mentioned.

The temperature controllers could be further fine tuned to respond
better to a specific upset, e.g. feed rate changes only. However, it was important that the control system be robust enough to handle all possible upsets, and the trade off for this generality was a poorer controlled response in some situations.

The choice of temperature control tray location can have significant effects on the closed loop performance. Ideally, the sensors should be located at either end of the column for a constant pressure binary system but consideration of the ratios $\Delta T_{1} / \Delta x_{D}$ and $\Delta T_{8} / \Delta x_{W}$ (the sensitivity of temperature changes with respect to composition changes) could require that the sensing trays be located further into the column. The dynamic effects of the location of the sensing trays has been studied by Shunta and Luyben (1971) and Wahl and Harriot (1970). For this distillation column operating around $X_{D}=90 \mathrm{~mol} \%, x_{W}=5 \mathrm{~mol} \%$

$$
\frac{\Delta \mathrm{T}_{1}}{\Delta \mathrm{x}_{\mathrm{D}}}=0.32 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{~mol}} \quad \frac{\Delta \mathrm{~T}_{8}}{\Delta \mathrm{x}_{\mathrm{W}}}=0.48 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{~mol} \%}
$$

and the resolution of the temperature sensors was sufficient so that the control loops could maintain the product compositions within acceptable limits. Further, if the sensing elements were moved away from the ends of the column, the relationship between the temperature measured and the product composition became complex, and offsets occurred. Consider using the top and bottom tray temperatures for composition control:
(i) $x_{D}$ control:
$T_{1}=$ temperature of liquid leaving tray 1
$=f\left(x_{1}\right)$
$x_{D}=y_{1}$ at steady state and hence
$T_{1}=f\left(x_{D}\right)$ where the function involves the temperature/ composition function, and the vapour/liquid equilibrium function only. If the efficiency of tray 1 is < 100\%, then tray efficiency can be a factor in the function.
(ii)
$X_{W}$ control:
Consider the reboiler as in figure 7-19

$$
\begin{aligned}
L_{8} x_{8} & =V_{9} y_{9}+W x_{W} \\
y_{9} & =K x_{W} \text { for } x_{W} \rightarrow 0 \\
x_{8} & =\left(\frac{v_{9} \cdot k+W}{L_{8}}\right) x_{W}
\end{aligned}
$$

and $\quad T_{8}=f\left(x_{8}\right)$ (the temperature/composition function)
$\therefore \quad x_{W}=f\left(L_{8}, V_{9}, W, K, T_{8}\right)$
Consequently, any flow changes in the column will alter the relationship between bottoms composition and bottom tray temperature.

For small upsets to the column ( $\pm 20 \%$ in feed rate, $\pm 10 \%$ in feed composition), the offsets due to the temperature/composition functions described above were negligible; for larger upsets, trimming of the temperature loop setpoints was required to maintain the required product compositions. This could have been provided by cascade feedback loops using low gain integrating controllers as in figure 7-20. For these reasons trays 1 and 8 were chosen as the sensor trays. The multi-loop control scheme could have been enhanced in several ways. The addition of derivative action to the controllers would have been the simplest improvement. There was however a significant amount of noise on the $T_{8}$ signal $\left( \pm 0.2^{\circ} \mathrm{C}\right)$ which would have caused problems with derivative action, and required the use of both hardware and software filters. The added complexity to the microcomputer software which used 16 bit integer arithmetic would not have produced significantly better control than that shown in figures 7-15 to 7-18.

A decoupler could have been used to separate the actions of the two controllers. Luyben (1970) showed the application of a simple decoupler on a binary distillation column produced improvements in the quality of control, but the improvements were not great, and the resulting transients were of the same nature and size as those obtained in


## FIGURE 7-19 REBOILER FLOWS



r - COMPOSITION SETPOINT<br>$r^{\prime}$ - TEMPERATURE SETPOINT<br>$x$ - PRODUCT COMPOSITION

## FIGURE 7-20 CASCADE COMPOSITION CONTROL LOOP

this work with purely feedback control. The implementation of a decoupler would have required the use of lead/lag units, and caused problems with insignificant precision of the 16 bit integer arithmetic used. The improvements to be gained from the use of a decoupler were too small to warrant its inclusion.

Sastry et al (1977) have investigated a self-tuning controller, and Meyer et al $(1978,1979)$ have investigated time delay compensation as improvements to conventional continuous PI control. In both cases, the product compositions were used as the control variables, and hence the PI controller performance was found to be inferior. Comparison of these results with those presented in this work show little or no improvement with the more sophisticated controllers.

### 7.5 CONCLUSION

The dynamics of a pilot scale atmospheric pressure binary distillation column have been investigated in both open loop and closed loop modes. The open loop responses have been approximated by simple discrete models (first or second order plus deadtime). Deadbeat discrete controllers based on the open loop models were investigated and found to be unsatisfactory, exhibiting poor control and requiring excessive control action. Discrete velocity-type PI controllers when correctly tuned produced acceptable product composition control when maintaining constant temperatures on the top and bottom trays in the column. The results obtained compared very favourably with other published work using more sophisticated controllers on similar columns (decoupling, sampled data, deadtime compensation). Interaction between the two temperature control loops was reduced by detuning the slower top tray temperature control loop.

The control achieved using simple digital controllers in a small microcomputer indicated that a dedicated distillation column controller could be produced at a competitive price compared with conventional analog
controllers (see section 5.13). This control system could also be integrated into a much larger control scheme using a hierachy of control computers.
7.6 NOMENCLATURE

| a | - | $e^{-T / \tau} 1$ |
| :--- | :--- | :--- |
| $b$ | - | $e^{-T / \tau}$ |


| $C$ | - | process variable |
| :--- | :--- | :--- |
| $C(z)$ | - | discrete process response |
| $D(z) \quad-\quad$ discrete controller |  |  |

e - continuous controller error $=r-c$
E(z) - exror in the discrete controller
HG(z) - process pulse transfer function

K - process gain
$\mathrm{K}_{1} \quad$ - upset gain
$\mathrm{K}_{\mathrm{C}} \quad-\quad$ continuous controller gain
$K_{p} \quad-\quad$ pump gain
$K_{S} \quad-\quad$ sensor gain
L - liquid flow, mol $\mathrm{min}^{-1}$
$L_{R} \quad-\quad$ reflux flow, $\ell \min ^{-1}$
m - pump speed ( $\equiv$ valve position)
M - interaction measure
$M(z) \quad$ - discrete controller output
$\mathrm{N} \quad$ - dead time in number of sample intervals
NG(z) - disturbance pulse transfer function
P - process matrix
PI - proportion plus integral
$Q_{S} \quad-\quad$ steam flow, $k g \min ^{-1}$
r - setpoint
s - Laplace domain operator
T - sampling interval

| $\mathrm{T}_{\mathrm{I}}$ | - | integral time |
| :---: | :---: | :---: |
| $\mathrm{T}_{1}, \mathrm{~T}_{8}$ | - | top and bottom tray temperature, ${ }^{\circ} \mathrm{C}$ |
| u | - | upset |
| V | - | $\text { vapour flow, mol } \min ^{-1}$ |
| x | - | liquid composition |
| ${ }^{\mathrm{x}}$ D . | - | distillate composition |
| $\mathrm{x}_{W}$ | - | bottoms composition |
| Y | - | vapour composition |
| $z$ | - | $z$ domain operator |
| $\theta$ | - | deadtime |
| $\tau$ | - | process time constant |
| ${ }^{\tau} 1$ | - | upset time constant |

CHAPTER EIGHT

## FEEDFORWARD CONTROL

## CONTENTS

Page
8.1 Introduction ..... 8.1
8.2 A Feedforward Controller ..... 8.2
8.2.1 Derivation of the Controller Equations ..... 8.2
8.2.2 Simulation of the Feedforward Controller ..... 8.3
8.3 An Adaptive Feedforward Controller ..... 8.4
8.3.1 The Adaption Routine ..... 8.4
8.3.2 Simulation of the Adaptive Controller ..... 8.7
8.3.3 A Modified Adaptive Feedforward Controller ..... 8.8
8.3.4 Simulation of Modified Controller ..... 8.11
8.3.5 Sensitivity Analysis ..... 8.13
8.4 Implementation of the Modified Adaptive Feedforward Controller ..... 8.14
8.4.1 The Feedforward Controller ..... 8.14
8.4.2 The Adapter ..... 8.17
8.4.3 Feedback Controllers ..... 8.18
8.4.4 Trimming Controllers ..... 8.19
8.4.5 Software ..... 8.19
8.4.6 Plant Tests ..... 8.20
8.5 Cost Comparison of the Microcomputer-based Feedforward Controller with an Equivalent Analog System ..... 8.28
8.6 Discussion ..... 8.29.
8.7 Conclusion ..... 8.33
8.8 Nomenclature ..... 8.34

## FEEDFORWARD CONTROL

### 8.1 INTRODUCTION

The major innovation in distillation column control has been the implementation of feedforward/feedback control systems. Precise control of distillation processes is difficult because
(i) distillation columns exhibit long time constants and deadtime;
(ii) interactions exist between control loops;
(iii) product composition analysers are generally not continuous;
(iv) column dynamics are a strong function of the operating conditions.

These problems can be overcome by the application of feedforward control using either analog elements or digital computers (MacMullen and Shinskey (1964), Lupfer and Johnson (1964), Luyben and Gerster (1964)).

The implementation of feedforward control requires the selection of a model which adequately describes the behaviour of the column over the full range of operating conditions and process disturbances. This model can be a rigorous one requiring a minicomputer to solve for the required control variables, or in the other extreme, it can be a black box model fitted by regression analysis. The latter approach generally has insufficient accuracy over the required operating range. In between these two extremes; come the shortcut procedures for producing first estimates of column conditions. The Fenske (1932) - Underwood (1946) Gilliland (1940) approach is the common shortcut design method. Shinskey (1967) has suggested an alternative feedforward model based on a constant distillate to feed ratio, and an adaption of the Fenske (1932) minimum stages equation. It is possible to provide model adaption for this approach as detailed by Duyfjes and Van Der Grinten (1973).

The column models described are steady state and to correct for the dynamics of the column it may be necessary to introduce dynamic compensation into the feedforward controller. It is difficult to determine the exact compensating dynamics required, especially for a non-linear process like a distillation column, but lead/lag units can be used to approximate the required compensator.

### 8.2 A FEEDFORWARD CONTROLLER

Previous work by Williamson (1977) and others has shown the Gilliland correlation to be useful as a feedforward model. This approach was investigated using the computer model SSGW and the pilot scale column.

### 8.2.1 Derivation of the Controller Equations

The Gilliland correlation was suggested as a means of relating the reflux ratio to the number of theoretical plates in terms of the minimum number of stages and the minimum reflux ratio . The McCabeThiele analysis (1925) can be used to predict the minimum reflux ratio ( $R_{m}$ ) and the Fenske (1932) equation to predict the minimum number of stages $\left(N_{m}\right)$. The equations are: Gilliland correlation

$$
\begin{equation*}
\exp \left(\frac{N_{m}}{N}\right)=a-b\left(\frac{R_{m}+1}{R+1}\right) \quad a, b \text { constants } \tag{8.1}
\end{equation*}
$$

McCabe Thiele analysis:

$$
\begin{equation*}
R_{m}=f\left(r_{D^{\prime}}, x_{F}, T_{F},\right. \text { vapour/liquid equilibrium) } \tag{8.2}
\end{equation*}
$$

Fenske equation:

$$
\begin{equation*}
N_{m}=\frac{\log \left(\frac{r_{D}\left(1-r_{W}\right)}{r_{W}\left(1-r_{D}\right)}\right)}{\log \alpha} \tag{8.3}
\end{equation*}
$$

$N_{m}$ includes the reboiler.
Equation (8.1) can be rewritten as

$$
\begin{equation*}
R=\frac{b\left(R_{m}+1\right)}{a-\exp \left(\frac{N_{m}}{N}\right)}-1 \tag{8.4}
\end{equation*}
$$

Given $N, r_{D}, r_{W}, X_{F} T_{F}$, a reflux ratio to produce the desired split can be predicted by equations (8.2), (8.3), (8.4). The other column control variables, $Q_{S}$ the steam flow, must be calculated from balances around the column. Assuming equimolal overflow, the following equations result:

$$
\begin{align*}
D & =\frac{F\left(x_{F}-r_{W}\right)}{\left(r_{D}-r_{W}\right)}  \tag{8.5}\\
W & =F-D  \tag{8.6}\\
R^{\prime} & =R\left(1+\frac{C_{P R}\left(T_{R S}-T_{R}\right)}{\Delta H_{V R}}\right)  \tag{8.7}\\
R^{\prime} & =\text { internal reflux ratio } \\
C_{P R} & =\text { average heat capacity of reflux } \\
T_{R S} & =\text { saturation temperature of reflux } \\
T_{R} & =\text { temperature of reflux } \\
\Delta H_{V R} & =\text { latent heat of vaporisation of reflux } \\
L_{R}^{\prime} & =R^{\prime} D  \tag{8.8}\\
L_{R}^{\prime} & =\text { internal reflux flow }
\end{align*}
$$

at the feed tray

$$
\begin{align*}
q & =\frac{H_{F}-h_{F}^{\prime}}{H_{F}-h_{F}}  \tag{8.9}\\
q & =\text { feed condition } \\
h_{F}^{\prime} & =\text { actual feed enthalpy } \\
L_{S} & =L_{R}^{\prime}+q F  \tag{8.10}\\
V_{S}^{\prime} & =L_{S}-W  \tag{8.11}\\
Q_{S} & =\frac{V \Delta H_{V W}}{\Delta H_{V s t e a m}}  \tag{8.12}\\
\Delta H_{V W} & =l a t e n t \text { heat of vaporisation of bottoms } \\
\Delta H_{V s t e a m ~} & =\text { latent heat of vaporisation of steam. }
\end{align*}
$$

### 8.2.2 Simulation of the Feedforward Controller

 The steady state column model, SSGW, was used to test the control-ler outlined above. Using experimental data from the pilot scale column, the parameters for the Gilliland correlation were determined. The results are shown in figure 8-1. To analyse the experimental data, $R_{m}$ was calculated from equation $8.2, N_{m}$ from equation 8.3 using $\alpha=$ 4.2 (the geometric average for methanol/water taken at $\mathrm{x}=0.05$, $\mathrm{x}=$ 0.90), and $N$ from a McCabe-Thiele analysis. The resulting correlation was

$$
\begin{equation*}
R=\frac{2.11\left(R_{m}+1\right)}{3.54-\exp \left(\frac{N_{m}}{N}\right)}-1 \tag{8.13}
\end{equation*}
$$

The coefficients were found by a least squares fit.
The controller described by equations 8.5 to 8.13 was used to predict the reflux ratio and the steam flow to achieve given product compositions for a given set of column operating conditions. These variables were entered into the steady state model, and the model product composition predictions compared with the desired compositions. Figure 8-2 shows some typical results.

The predictions from the steady state feedforward controller described were unacceptable showing large offsets in both product compositions of up to 7 mol\%. Figure 8 -l explained most of this offset; the Gilliland correlation did not represent the data'well, and the scatter of points contributed to the errors in the controller predictions. The other assumptions made in the feedforward model -
(i) constant relative volatility for finding $N_{m}$,
(ii) equimolal overflow for finding $Q_{s}$,
(iii) constant number of theoretical plates,
also contributed to the inaccuracy of the controller. To improve the controller performance over a range of operating conditions, an adaption routine was added.
8.3 AN ADAPTIVE FEEDFORWARD CONTROLLER

### 8.3.1 The Adaption Routine



FIGURE 8-1 EXPERIMENTAL GILLILAND PLOT


FIGURE8-2 FEEDFORWARD CONTROLLER RESPONSES

The adaption routine modified a parameter in the feedforward model whenever the column reached steady state and showed some offset from the desired setpoints. The parameter to be adapted could be chosen from the following:
(i) N the number of theoretical trays in the column;
(ii) $a, b, t h e ~ G i l l i l a n d$ correlation ceofficients;
(iii) $\alpha$, the relative volatility.

The first option was chosen because:
(i) the number of theoretical trays was a function of the column operating conditions and hence changed with load changes;
(ii) the adaption procedure was simple.

The number of theoretical trays was adopted by substituting $\mathrm{x}_{\mathrm{D}}$ for $r_{D}$ and $x_{W}$ for $r_{W}$ in the feedforward controller equations, and reorganising the Gilliland correlation as

$$
\begin{equation*}
N=N_{m} \prime\left[\ln \left(a-b\left(\frac{R_{m}+1}{R+1}\right)\right]\right. \tag{8.14}
\end{equation*}
$$

The adaption procedure could be used iteratively with the controller described previously until convergence on the desired product compositions was achieved. The value of $N$ obtained could be used for small load changes, until such time as the operating conditions changed sufficiently to produce off specification products, at which point the adaption procedure was repeated.

### 8.3.2 Simulation of the Adaptive Controller

The simulations performed on the feedforward controller were repeated with the adaptive controller. For three adaptions under constant operating conditions, the results were no better than those obtained without the adaption extension. The adaption procedure was stable and converged rapidly for all operating conditions. It was obvious that some of the assumptions involved in computing $R_{m}, N_{m}$ and $Q_{s}$ were invalid. To investigate, pseudo-methanol/water systems were used with the following characteristics.
(i) Ideal vapour/liquid equilibrium data $(\alpha=4.2)$.
(ii) $\quad \mathrm{N}_{\mathrm{m}}$ computed from the McCabe-Thiele plot.
(iii) Equimolal overflow $\left(\Delta \mathrm{H}_{\mathrm{V}}=40 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right)$.

Cases (i) and (ii) produced no improvement in the controller (with or without adaption), but case (iii) produced excellent results with a single adaption. Therefore it was concluded that the incorrect calculation of the boilup rate in the reboiler was causing the controller errors, and that the predictions based on equimolal overflow were inadequate for the methanol/water system. These conclusions are consistent with the results obtained in Chapter 6.

### 8.3.3 A Modified Adaptive Feedforward Controller

Computer simulations indicated that a more accurate method for estimating the required steam rate was necessary. It was also important that the method be quick and simple for inclusion into the microcomputer control system.

Consider the rectifying section of the column as shown in figure 8-3, and suppose the liquid stream loses. $i$ moles of the light component (1), and gains $j$ moles of the heavy component (2), then for the liquid stream

$$
\begin{equation*}
L_{R F}=L_{R}-i+j \tag{8.15}
\end{equation*}
$$

and for a heat balance (assuming adiabatic operation, and perfect solution behaviour)

$$
\begin{equation*}
i \Delta H_{V 1}=j \Delta H_{V 2} \tag{8.16}
\end{equation*}
$$

A component balance for the light fraction over the liquid stream gives

$$
L_{R}^{\prime} x_{D}=L_{R F} x_{R F}+i
$$

Solving (8.15), (8.16), (8.17) gives

$$
\begin{equation*}
L_{R F}=L_{R}^{\prime}\left(\frac{\beta-x_{D}}{\beta-x_{R F}}\right) \tag{8.18}
\end{equation*}
$$

where


FIGURE8-3 SIMPLE COLUMN MODEL

$$
\begin{equation*}
\beta=\frac{\Delta H_{V 2}}{\Delta H_{V 2}-\Delta H_{\mathrm{Vl}}} \tag{8.19}
\end{equation*}
$$

Now consider the stripping section where the liquid stream loses $k$ moles of the light component (1) and gains $m$ moles of the heavy component (2), then for the liquid stream

$$
\begin{equation*}
L_{S}=L_{S F}-k+m \tag{8.20}
\end{equation*}
$$

and for a heat balance (assuming adiabatic operation, and perfect solution behaviour)

$$
\begin{equation*}
\mathrm{k} \Delta \mathrm{H}_{\mathrm{V} 1}=\mathrm{m} \Delta \mathrm{H}_{\mathrm{V} 2} \tag{8.21}
\end{equation*}
$$

A component balance for the light fraction over the liquid stream gives:

$$
\begin{equation*}
L_{S} x_{S}=L_{S F} x_{S F}-k \tag{8.22}
\end{equation*}
$$

Solving (8.20), (8.21), (8.22) gives

$$
\begin{equation*}
L_{S}=L_{S F}\left(\frac{\beta-x_{S F}}{\beta-x_{S}}\right) \tag{8.23}
\end{equation*}
$$

and from equation (8.10)

$$
\begin{equation*}
L_{S F}=L_{R F}+q F \tag{8.24}
\end{equation*}
$$

If the average liquid composition on the feed tray is close to the feed composition, and the liquid composition change on the feed tray is small, then

$$
x_{S F} \simeq x_{R F} \simeq x_{F}
$$

and a modified procedure for determining the required boilup rate exists:
(i) $\quad L_{R}^{\prime}=L_{R}\left(1+\frac{C_{P R} \Delta T_{R}}{\Delta H_{V R}}\right)$
(ii) $\quad L_{R F}=L_{R},\left(\frac{\beta-r_{D}}{\beta-x_{F}}\right)$
(iii) $\quad L_{S F}=L_{R F}+q F$
(iv) $\quad L_{S}=L_{S F}\left(\frac{\beta-x_{F}}{\beta-x_{S}}\right)$
(v) $\quad V_{S}=L_{S}-W$

The only undefined variable is $x_{S}$, the composition of the liquid stream entering the reboiler. Consider the relationship of the latent heat of vaporisation to composition as given in Table 6-3 for the methanol/water system. For liquids below $0.20 \mathrm{~m} . f$. , the latent heat of vaporisation is approximately constant, and hence for trays operating below this composition, there will be equal transfer of both components, i.e. equimolal overflow. If the column is operated such that the liquid leaving the bottom tray is less than $0.2 \mathrm{~m} . \mathrm{f}^{\text {. methanol, then }} \mathrm{x}_{\mathrm{S}}$ in equation 8.3 can be approximated as 0.2. For the methanol/water system $\beta=7.55$, hence equation (8.23) becomes

$$
\begin{equation*}
L_{S}=\left(\frac{7.55-x_{\mathrm{F}}}{7.35}\right) \tag{8.25}
\end{equation*}
$$

### 8.3.4 Simulation of Modified Controller

The modified adaptive feedforward controller was tested using the steady state column model, SSGW, and the parameters in section 8.2.2. The number of theoretical trays was taken as 6.5 initially. The steady state results for the controller, and the controller with one adaption are shown in figure 8-4. Both sets of results showed improvement over the results of figure $8-2$, with the adaptive controller being better overall. The steady state offsets were less than 2 mol . for the modified controller, and less than 1 mol\% for the adaptive modified controller (with one adaption). Investigations were made of the effects of
(i) the choice of coefficients for the Gilliland correlation;
(ii) the use of constant relative volatility in the Fenske equation;
(iii) the use of the Underwood equation for calculating the minimum number of stages.

These factors were shown to have negligible (< 0.2 mol\%) effect

ALL STEADY STATE RESULTS FROM SSGW COMPUTER MODEL
-IDEAL RESPONSE -MODIFIED FF CONTROLLER *WITH 1 ADAPTION ALL COMPOSITIONS MOL\%


FIGURE8-4 MODIFIED FEEDFORWARD CONTROLLER RESPONSES
on the steady state controller performance. A poor choice of coefficients in the Gilliland correlation required more adaptions before the desired specification products were met, but convergence was always obtained.

### 8.3.5 Sensitivity Analysis

A series of small perturbations ( $\pm 5 \%$ ) in the input parameters to the controller and the adapter were made to investigate the sensitivity of both routines. The linear models obtained from these tests are shown in figure 8-5.

FIGURE 8-5

Feedforward Controller Sensitivity Analysis
$\left[\begin{array}{l}\Delta R^{\prime} \\ \Delta Q_{S}\end{array}\right]=\left[\begin{array}{llll}0 & -.492 & .016 & -.930 \\ .952 & .330 & -.040 & -.442\end{array}\right]\left[\begin{array}{c}\Delta F^{\prime} \\ \Delta x_{F}^{\prime} \\ \Delta T_{F^{\prime}}^{\prime} \\ \Delta N^{\prime}\end{array}\right]$

Controller Sensitivity Model

$$
\left[\begin{array}{lllll}
\Delta \mathrm{N}
\end{array}\right]=\left[\begin{array}{lllll}
0 & 3.46 & 0.120 & 36.7 & -1.35
\end{array}-5.6\right]\left[\begin{array}{c}
\Delta \mathrm{F}^{\prime} \\
\Delta x_{F}^{\prime} \\
\Delta T_{F}^{\prime} \\
\Delta x_{D}^{\prime \prime} \\
\Delta x_{W}^{\prime} \\
\Delta R^{\prime}
\end{array}\right]
$$

Adapter Sensitivity Model

All compositions in m.f.

All temperatures in ${ }^{\circ} \mathrm{C}$
All flows in $\ell \min ^{-1}$
$\Delta F^{\prime}=\frac{\Delta F^{\prime}}{F_{S S}} \quad(S S=$ steady state $)$ etc.

The controller was found to be most sensitive to $N$, the number of theoretical stages, and to a lesser degree to the feed rate and composition. The adapter was found to be most sensitive to the estimate of the reflux ratio, and to the liquid compositions ( $\mathrm{X}_{\mathrm{F}}, \mathrm{x}_{\mathrm{D}}$, $x_{W}$ ). These results show that errors in the feedforward controller (appearing as steady state offsets) will be likely in the practical application of the controller because of the difficulty of measuring flows and compositions accurately. The results of figure $8-4$ were obtained using six significant digits (in all parameters) in a digital simulation, but in practice such accuracy would not be achieved.

### 8.4 IMPLEMENTATION OF THE MODIFIED ADAPTIVE FEEDFORWARD CONTROLLER

The addition of the APU system to the microcomputer (Chapter Four) simplified the development of a more complex control system using the adaptive feedforward controller described in the previous sections. The simple control system of Chapter 7 was modified so that composition control was achieved as outlined in figure 8-6. Feedback controllers were incorporated to account for the steady state offsets that were expected from the feedforward controller. Dynamic elements were added to both the feedforward controller (compensation) and the feedback controllers (decoupling) to counteract the column dynamics. A pair of integral-only trimming controllers on the feedback loop setpoints were incorporated to make the small adjustments to the tray temperature setpoints as required by changing column operating conditions. Some simplifications were made in programming the feedforward controller and adapter to improve its execution time and storage requirements (e.g. the calculation of the minimum reflux ratio).

### 8.4.1 The Feedforward Controller

The relevant equations have been presented in previous sections. The minimum number of stages was determined from the Fenske equation


FIGURE 8-6 ADAPTIVE FEEDFORWARD/FEEDBACK CONTROL SYSTEM
(with $\alpha=4.2$ ) . The minimum reflux ratio was determined from a McCabeThiele diagram; at minimum reflux, a pinch point occurs at the intersection of the feed line and the operating line on the equilibrium line. By approximating the equilibrium line with a straight line over the feed composition range, the minimum reflux ratio can be determined analytically as follows:
feed line:

$$
\begin{equation*}
q=1+2 E-3\left(85-23 x_{F}-T_{F}\right) \tag{8.26}
\end{equation*}
$$

(maximum error of $8 \%$ in $q$ over the range

$$
\left..3 \leq \mathrm{x}_{\mathrm{F}} \leq .5,20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{F}} \leq 60^{\circ} \mathrm{C}\right)
$$

equilibrium line: $y^{*}=.566 x+.498$
(maximum error of $0.012 \mathrm{~m} . \mathrm{f}$. over the

$$
\text { range } 0.3 \leq x \leq 0.5)
$$

The intercept of the feed line and equilibrium line is at

$$
\begin{align*}
& x_{i}=\frac{\left(\frac{x_{F}}{q-1}+.498\right)}{\left(\frac{q}{q-1}-.566\right)}  \tag{8.28}\\
& y_{i}=.566 x+.498 \tag{8.29}
\end{align*}
$$

and

$$
\begin{equation*}
R_{m}=\frac{\left(x_{D}-y_{i}\right)}{\left(y_{i}-x_{i}\right)} \tag{8.30}
\end{equation*}
$$

The reflux ratio for a given separation can be found from equation (8.4), and the reflux and steam flows calculated according to sections 8.2.1 and 8.3.3. To convert the external reflux flow to the apparent internal reflux flow, the following relationship was used -

$$
\begin{align*}
\mathrm{L}_{\mathrm{R}}^{\prime}= & 1.11 \mathrm{~L}_{\mathrm{R}}  \tag{8.31}\\
& \text { (maximum error of } 0.2 \% \text { for } \\
& .8 \leq \mathrm{X}_{\mathrm{D}} \leq 1.0,20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{R}} \leq 30^{\circ} \mathrm{C} \text { ) }
\end{align*}
$$

For methanol/water mixtures of less than 0.2 m.f., the molal latent heat of vaporisation was assumed constant at $40.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Assuming the latent heat of vaporisation of the supplied steam to be $2250 \mathrm{~kJ} \mathrm{~kg}^{-1}$ then

$$
\begin{equation*}
Q_{S}=V_{S} * \frac{40.8}{.2250}=\frac{V_{S}}{.55} \quad \mathrm{~kg} \mathrm{~min}^{-1} \tag{8.32}
\end{equation*}
$$

A correction to steam flow for the estimated column surface losses was made by adding $0.07 \mathrm{~kg} \mathrm{~min}{ }^{-1}$ to $Q_{S}$. This correction is discussed in Chapter 6.

The steam and reflux flows were converted to integers in the range $0-255$ for output as single bytes to the $D / A$ converters in the control system. The functions used for the conversion were:

$$
\begin{align*}
\text { reflux density } & =.957-.170 \mathrm{x}_{\mathrm{D}} \mathrm{~kg} \ell^{-1}  \tag{8.33}\\
\text { reflux flow control byte } & =383 \mathrm{~L}_{\mathrm{V}}-214  \tag{8.34}\\
\mathrm{~L}_{\mathrm{V}} & =\text { reflux flow in } \mathrm{lmin}^{-1} \\
\text { steam flow control byte } & =202 Q_{\mathrm{S}}+136  \tag{8.35}\\
Q_{\mathrm{S}} & =\text { steam flow in } \mathrm{kg} \mathrm{~min}^{-1}
\end{align*}
$$

Dynamic compensation was added to the controller to compensate for the column dynamics. The dynamics were approximated by the discrete digital equivalent of a lead/lag unit.
as

$$
\begin{align*}
& \frac{\tau_{1} S+1}{\tau_{2} S+1} \\
& z_{n}=x_{n}+K_{1}\left(x_{n}-y_{n}\right)  \tag{8.36}\\
& y_{n+1}=y_{n}+K_{2}\left(x_{n}-y_{n}\right) \tag{8.37}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{x}=\text { input } \\
& \mathrm{y}=\text { intermediate value, lagging the input by } \tau_{2} \\
& \mathrm{z}=\text { output leading } \mathrm{y} \text { by } \tau_{1} \\
& \mathrm{~K}_{1}=\frac{\tau_{1}-\tau_{2}}{\tau_{2}}, K_{2}=\frac{T}{\tau_{2}}
\end{aligned}
$$

### 8.4.2 The Adapter

The same basic controller equations were used to adapt the feedforward controller with $x_{D}$ and $x_{W}$ replacing $r_{D}$ and $r_{W}$. The product compositions were determined from the refractometer data using
the correlations given in Appendix II. The decision to adapt the controller should be made when
(i) both product compositions have been steady for $T$ minutes
(ii) all inputs to the column have been steady for $T$ minutes
(iii) all column controls have been steady for $T$ minutes
where $T \simeq 10$ minutes.
To keep a log the the nine variables as listed above in the microsomputer would have required a large section of software and data storage, therefore adaption was actioned on an operator request. On setting a byte in the data base, the adaption routine adapted the controller on the next sample. This system removed the complicated logic of deciding when to adapt and prevented unnecessary adaptions.

### 8.4.3 Feedback Controllers

The P.I. controllers described in Chapter 5 were split into two sections. The level controllers continued to use the existing software, while the controllers to be coupled to the feedforward controller were reprogrammed using the APU system. The outputs of the feedback controllers were set to be in the range $\pm 127$ so that a trimming action could be applied in both directions to the feedforward controller output. A steady state decoupler was included of the form:

$$
\begin{align*}
\Delta \mathrm{v}_{\text {reflux }} & =\Delta \mathrm{v}_{\text {reflux }}+\mathrm{K}_{1} \Delta \mathrm{v}_{\text {steam }}  \tag{8.38}\\
\Delta \mathrm{V}_{\text {steam }} & =\Delta \mathrm{v}_{\text {steam }}+\mathrm{K}_{2} \Delta \mathrm{v}_{\text {reflux }} \tag{8.39}
\end{align*}
$$

where $\Delta v=$ change in control output.
From the open loop transfer functions fitted in Chapter 7, and the gains in the data acquisition system and control outputs, the following steady state model was calculated

$$
\begin{align*}
{\left[\begin{array}{c}
\Delta \mathrm{T}_{1}^{\prime} \\
\Delta \mathrm{T}_{8}^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
-.39 & .81 \\
-.88
\end{array}\right]\left[\begin{array}{c}
\Delta \mathrm{V}_{1} \\
\Delta \mathrm{~V}_{4}
\end{array}\right]  \tag{8.40}\\
& =P\left[\begin{array}{c}
\Delta \mathrm{V}_{1} \\
\Delta \mathrm{~V}_{4}
\end{array}\right]
\end{align*}
$$

$V=$ control output, $T^{\prime}=$ temperature data from A/D.
The steady state decoupler is the inverse of the process matrix $P$

$$
D=\left[\begin{array}{ll}
34.1 & -16.2  \tag{8.41}\\
17.6 & -7.8
\end{array}\right]
$$

### 8.4.4 Trimming Controllers

In evaluating the feedback control system of Chapter Seven, small offsets after load changes were observed due to the changing relationship between the temperatures on the control trays and the product compositions. Integral-only controllers; as in figure 8-6, were included in the control system to take out this offset by adjusting the temperature controller setpoints. The setpoint controllers were loosely tuned to respond to long term offsets and not to product composition transients.

The refractometer which provided the measure of the product compositions was slow and estimates of distillate and bottoms product composition were available at 3 minute intervals, and hence the trimming controller required a low integral time.

The controllers were computed as

$$
\begin{align*}
& \Delta \text { Setpoint }_{1}=-2\left(r_{D}-x_{D}\right)  \tag{8.42}\\
& \Delta \text { Setpoint }_{2}=+2\left(r_{W}-x_{W}\right)
\end{align*}
$$

which was equivalent to an integration rate of $.003^{\circ} \mathrm{C} \mathrm{min}^{-1}$ for the individual setpoints.

### 8.4.5 Software

The control scheme of figure $8-6$ was implemented in 3 subroutines:
(i) FFCTL - the feedforward controller, dynamic compensation and trimming controllers.
(ii) PIFB - the feedback controllers, decoupler and controller coupling.
(iii) ADAPT - the adapter.

The feedforward controller, the trimming controllers, and the adapter
were made software selectable so that each could be disabled by zeroing a byte in the data base. Similarly, the dynamic compensation and decoupler could be disabled by setting the appropriate coefficients to zero. When the feedforward controller was disabled, the reflux and steam flow controls were set at $50 \%$ of the maximum output, so that the feedback controllers could continue to operate the column. With the software structured in this manner, a variety of control strategies could be implemented. The main program of the existing software was altered to include the new subroutines. The PI controller subroutine was modified to handle the level controls only, and the subroutines for controlling data acquisition, alarm checking, refractometer control, and the control variable outputs were retained. Flow diagrams of the new routines, and the changes to the main program control sequence are shown in figures $8-7,8-8 . \quad$ The modified control program occupied 4 K bytes of EPROM and 1 K bytes of RAM.

### 8.4.6 Plant Tests

The feedforward control scheme was tested on the pilot plant distillation column using several configurations. The feedback controllers were tested alone, with and without decoupling. These controllers reproduced the results obtained in Chapter Seven with the integer-arithmetic-based controllers.

The addition of the steady state decoupler using the coefficients predicted in section 8.4.3 produced poor control. The process matrix $P$ in equation (8.41) was almost singular, and hence the decoupler coefficients were large. Any errors in determining the matrix $P$ would have had a significant effect on the decoupler performance. Re-tuning the decoupler coefficient showed little improvement. The control tray temperatures responded 10 to 20 times faster to steam flow changes than to reflux flow changes, consequently the bottom tray temperature loop responded quickly but was upset by the slower top tray temperature control loop via the decoupler. A dynamic decoupler (e.g. a lead/lag


FIGURE 8-7 FEEDFORWARD/FEEDBACK CONTROLLERS


## FIGURE 8-8 MAIN PROGRAM CONTROL SEQUENCE

unit) would have been a possible solution to this problem, but the control without a decoupler was satisfactory so the decoupler was disconnected.

The feedforward controller was tested alone, with adaption and with dynamic compensation. Without adaption (assuming $N=6.5$ from experimental measurements), large steady state offsets in the product compositions were observed (up to $5 \mathrm{~mol} \%$ ) for load and setpoint changes. The use of the adapter reduced the offset to less than $0.5 \mathrm{~mol} \%$ on both products. The results in figures $8-9$ to $8-12$ show typical responses for the feedforward controller alone. The tests were made by adapting the controller until the desired setpoints were met, and then introducing the upset. The results show some offsets in the bottoms composition which could be reduced by further adaption.

The performance of the feedforward controller was excellent for the distillate composition without any dynamic compensation. The compensator was tuned by the method of Shinskey (1967), but the results were no better than those shown with no compensation (and in some cases worse).

The feedforward/feedback combination was tested using the same feedback controller settings used in Chapter 7. The results were very similar to those produced using feedback only control.

The trimming controllers helped to reduce the offsets due to the changing relationships between the control tray temperatures and the product specifications. The integral times predicted in section 8.4.4 were found satisfactory for load changes, but for setpoint changes, the temperature setpoints were ramped too slowly towards the new values, and degraded the system performance. Under these conditions, it was better to switch off the feedback and trimming controllers for setpoint changes, and to re-engage them with an estimate of the new temperature setpoints as the column approached the new steady state.


FEEDFORWARD CONTROLLER
FIGURE8-9 CLOSED LOOP RESPONSE


## FEEDFORWARD CONTROLLER

FIGURE8-10 CLOSED LOOP RESPONSE


FEEDFORWARD CONTROLLER
FIGURE 8-11 CLOSED LOOP RESPONSE


## FEEDFORWARD CONTROLLER

FIGURE8-12 CLOSED LOOP RESPONSE

### 8.5 COST COMPARISON OF THE MICROCOMPUTER-BASED FEEDFORWARD CONTROLLER WITH AN EQUIVALENT ANALOG SYSTEM

Section 5.13 showed the microcomputer based control system to be approximately equal in cost to an equivalent analog system. Using the same assumptions and costs, the following additional costs for adding the feedforward controller were calculated in \$NZ (1979):
(i) Microcomputer System
(a) Software Costs - 580 lines of assembler code @ 15 lines/day, code $=38.7$ days Programmer @ $\$ 96 /$ day, cost $=\$ 3,715$
(b) Additional hardware - 8K Ram board $=$ \$625
(c) APU System - hardware $=\$ 350$

- labour $=\$ 1,500$
- software, 380 lines of assembler code $\$ 2,429$

Total $=\$ 4,279$

Total Cost $=\$ 8,619$
(ii) Hardware System

Using the analog circuit developed by Morrin (1975) as a feedforward controller based on the Gilliland correlation, the following hardware was required

6 multipliers @ \$600 $\$ 3,600$
11 summers @ $\$ 500$. $\$ 5,500$
(based on the ACTIONPAK range of analog modules)
$\$ 9,100$

This analog controller was a simplified version of the controller described in this chapter and did not include features such as the adapter, internal reflux correction, and the improved analysis for the steam flow prediction.

A comparison of the costs for the additional items required
to implement the feedforward controller showed that two systems were almost equal in cost. The analog version was a simplified controller and did not include the adapter; therefore it would not be expected to perform as well as the microcomputer system. The microcomputer system was costed on a one-off basis and included the development costs of the hardware arithmetic processing unit. The flexibility and power of the microcomputer based feedforward controller was superior to that of the analog based alternative.

### 8.6 DISCUSSION

In all cases, the performance of the control system of figure 8-6 was found to be marginally better than that of the feedback control system described in Chapter Seven. The comments of section 7.4.3 with respect to the accuracy of the instrumentation apply equally here - the small deviations of the column variables during transients were of the same magnitude as the accuracy of the sensors, and hence the performance of the control system was as good as could be obtained with the hardware available.

The response of the feedforward control system to each of the upsets was different because of the column dynamics, and consequently the best overall control policy will involve compromises. The controlled responses obtained were satisfactory for this particular column, but it would be hard to justify the time and expense to install the feedforward/ feedback system in place of the conventional feedback system.

The Gilliland correlation was shown to be a reasonable column model provided the adaption routine was included. In tests, the adapter changed the estimate of the number of theoretical stages, $N$, from the experimental average of 6.5 within the range 5.7 to 6.7 . The changes in $N$ were small, but the sensitivity analysis showed the parameter to be the most critical in the controller. The simulation results showed similar trends to the experimental measurements. The analysis showed
the usefulness of designing feedforward controllers around steady state models for distillation columns. This approach allowed the performance of the controller to be checked without requiring the solution of differential equations. The dynamic compensation for a feedforward controller is best implemented by simple blocks (e.g. a lead/lag) which can be tuned on-line to provide the best performance. Hence the benefits of dynamic simulations in this case were limited.

The dynamics of this particular column were such that dynamic compensation in the feedforward controller was not warranted. The responses obtained for feed rate upsets agreed with those predicted by Shinskey (1967) using the concepts of reflections within the column but the deviations during the transient response were small and acceptable. Experiments with various dynamic compensators, tuned as suggested by Shinskey (1967) produced no significant improvement in performance. The steady state decoupler proved to be a problem in that it caused instabilities in the feedback system with a loss of control. The results without decoupling were satisfactory and suggested that the implementation of a dynamic decoupler would produce no significant improvement to the overall system performance.

Several problems were experienced with the control system. With feedforward only control, the bottoms composition tended to drift due to fluctuations in the steam flow rate. It was shown in Chapter 7 that

$$
\Delta x_{W}(\text { mol } \%)=32.5 \Delta Q_{S}\left(\mathrm{~kg} \mathrm{~min}^{-1}\right)
$$

and hence a variation of $\pm 0.02 \mathrm{~kg} \mathrm{~min}{ }^{-1}$ in the steam flow rate could produce a variation of $\pm 0.65 \mathrm{~mol} \%$ in the bottoms composition. When feedback control was added to the steam flow control, the bottoms composition was maintained steady for periods of 4 to 6 hours.

Large steam flows caused high vapour velocities in the column, and broke the liquid seal on the rectifying section trays. Removing liquid from the top tray temperature sensor caused the temperature control loop to fail, and the column went out of control. This problem only arose
when too much integral action was used in the steam flow controller, or . when the feedback decouplers were used incorrectly.

The reflux pump was found to vary its delivery by approximately $.05 \mathrm{lmin}^{-1}$ for a constant rotational velocity over a period of four hours, and was easily adjusted by the feedback controller.

The controller software was primitive in its operator communication, but effective. All conversions to the arithmetic processing unit floating point format had to be performed by hand (e.g. changing 1.0 to $\$ 0180, \$ 0000)$. A more sophisticated operator interface would solve this problem. Alternately, if operated in a hierachical control scheme, the microcomputer could be operated via an interface in the supervisory computer.

The lack of suitable sensors for the feed flowrate and feed composition was a minor problem. These variables were measured and entered into the microcomputer data base by hand; in practice sensors on these variables would be used and interfaced to the data acquisition system.

The benefits that accrue from feedforward control are
(i) Large delays and lags can be handled without excessive deviations from the desired setpoints.
(ii) Corrective action can be taken when a load change occurs and not when the system responds.
(iii) Oscillatory responses can be avoided where disturbances occur at a frequency close to the natural frequency of the feedback loop.

When one or more of these factors occurs, feedforward control can improve system performance, but for this particular column, none of these factors was a problem. Harriot (1964) suggested that time constants greater than 1 hour make feedforward control attractive in distillation control. The scheme proposed here has been shown to work effectively, but to demonstrate its advantages over conventional feedback control, tests on a larger distillation column (with longer lags and delays) are required.

There are several other methods of design of feedforward control-
lers. The methods include the off-line approach (Burman and Maddox (1969), Distefano et al (1967)), the use of simple transfer functions (Wood and Pacey (1972)), the adaption and optimisation of a feedforward controller (Duyfjes and Van Der Grinten (1973)), and feed plate manipulation (Luyben (1968)). Luyben (1969) has also studied the extension of the feedforward controller to manipulating the setpoints of intermediate feedback. tray temperature controllers directly. A number of the reported evaluations of feedforward controllers are based on simulated dynamic computer models which in some cases are oversimplified. If simulations are to be useful, they must also simulate the problems of the real world, such as the lack of precision in composition analysers and temperature sensors, the limits on valves and valve velocities, otherwise the results become academic.

A similar comment can be applied to the power of the computer used to solve the control problem - typically minicomputers with 16 K or more of memory are used compared with the 5 K of memory in a microcomputer in this system. It is essential that any control scheme be evaluated realistically using an economic analysis. The relative ease with which the column described in this work can be controlled has made it very difficult to distinguish between the possible control system variations.

The analysis used for the evaluation of the column flows, especially the vapour flow in the reboiler, produced values closer to the true flows than did the equimolal overflow method. This analyșis could be applied to most binary systems where the latent heat of vaporisation was a linear function of composition (i.e. the binary system approached ideal solution behaviour). Methanol/water would be one of the worst binary systems (excluding effects such as azeotropes) for such a function due to the comparatively large heats of mixing (up to $1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ). The flow calculation method could also be incorporated into the shortcut column design procedure using the Gilliland correlation to give a good estimate of the
reboiler requirements.

### 8.7 CONCLUSION

The Gilliland correlation has been shown to be useful as the basis of a feedforward controller. The correlation was used both as a controller and an adapter to take account of changing operating conditions. Steady state simulations of the controller and its adapter showed that the assumption of equimolal overflow in computing the required boilup rate, given the other column variables, was invalid for the binary system methanol/water. A modification using a simple lumped parameter column model was proposed which successfully predicted the required reflux and steam flows for given product specifications in steady state simulations.

The adaptive feedforward controller was incorporated into the microcomputer control system with feedback control, and setpoint trimming controllers to match the feedback loop temperature setpoints to the desired product specifications. The scheme was successfully tested on the pilot plant scale column. Dynamic compensation for the feedforward controller, and decoupling of the feedback controller was found to be unnecessary for this particular column.

The performance of the complete feedforward/feedback control system was no better than that of a simple multiloop PI control system in terms of maximum overshoot and settling time. This could be explained by the reasonably fast dynamics of this column. on larger columns (with longer lags and delays) the feedforward/feedback system could be expected to perform better than the feedback only system.

The feedforward/feedback control scheme implemented in the microcomputer was costed and found to be comparable to a similar control scheme based on analog components; however, the microcomputer based system was superior in its flexibility, its ease of use, and its power (the adaption and trimming routines).
8.8 NOMENCLATURE

| $a, b$ | - | Gilliland correlation coefficients |
| :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{PR}}$ | - | reflux liquid heat capacity, kJ mol $\mathrm{K}^{-1}$ |
| D | - | distillate flow, mol $\mathrm{min}^{-1}$ |
| F | - | feed rate, mol min ${ }^{-1}$ |
| h | - | liquid enthalpy, $\mathrm{kJ} \mathrm{mol}^{-1}$ |
| H | - | vapour enthalpy, $\mathrm{kJ} \mathrm{mol}^{-1}$ |
| $L_{\text {R }}$ | - | external reflux flow, mol min $^{-1}$ |
| $L_{R}{ }^{\prime}$ | - | internal reflux flow, mol min ${ }^{-1}$ |
| $L_{\mathrm{RF}^{\prime}}$ |  | internal column flows, mol min ${ }^{-1}$ |
| N | - | number of ideal stages including the reboiler |
| $\mathrm{N}_{\mathrm{m}}$ | - | minimum number of stages including the reboiler |
| P | - | process matrix |
| q | - | feed condition |
| $Q_{S}$ | - | steam flow $\mathrm{kg} \mathrm{min}{ }^{-1}$ |
| $r$ | - | setpoint |
| R | - | external reflux ratio |
| $R^{\prime}$ | - | internal reflux ratio |
| $\mathrm{R}_{\mathrm{m}}$ | - | minimum reflux ratio |
| T | - | temperature, ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{RS}}$ | - | saturated reflux temperature ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{R}}$ | - | reflux temperature |
| V | - | control output |
| W | - | bottoms flow, mol min ${ }^{-1}$ |
| x | - | liquid composition |
| $\mathrm{x}_{\mathrm{S}}, \mathrm{x}_{\mathrm{RF}}, \mathrm{x}_{\mathrm{SF}}-$ internal column compositions |  |  |
| $\Delta H_{V}$ | - | latent heat of vaporisation |
| $\Delta H_{V R}$ | - | reflux latent heat of vaporisation |
| $\alpha$ | - | relative volatility |

## Subscripts

| D | - | distillate |
| :--- | :--- | :--- |
| F | - | feed |
| W | - | bottoms |

## CONCLUSIONS

(1) A 225 mm diameter atmospheric pressure, sieve tray distillation
 column included eight trays (with an overall efficiency of $72 \%$ ) and a thermosiphon reboiler. The condenser and reboiler capacities were 100 kW.
(2) A novel control system was developed for the column liquid flows. Variable speed motors and positive displacement vane pumps were designed and built to replace the conventional flow sensor, controller and control valve loop. Steam flow to the reboiler was controlled by a pneumatic loop with a remote setpoint.
(3) The column was fully instrumented using integrated circuit devices for sensing temperatures, levels and pressures. The accuracy of these devices was adequate, but better devices are available, e.g. thermistors. Composition sensing was performed using a multichannel on line refractometer.
(4) A microcomputer system was constructed using the Motorola M6800 family. An Am9511 arithmetic processing unit was added to improve its computational capacity. A link between the microcomputer and a.minicomputer was developed, and the latter progranmed as a development system (cross-assembler, download program, microcomputer supervisor). (5) A 16 channel data acquisition system (12 bits) and a 4 channel output system (8 bits) were developed and interfaced to the column and the microcomputer. The microcomputer was also used to control and monitor the on-line refractometer.
(6) A steady state binary column model was programmed on a digital computer and verified against experimental data. The common assumptions of equimolal overflow and constant relative voltatility were shown to be
invalid for the methanol/water binary system.
(7) Step tests on the column showed that most responses of the product compositions, and top and bottom tray temperatures could be represented by first order lags and deadtime. The temperature responses showed very little deadtime, and hence column control was predicted to be good with simple feedback control.
(8) Feedback control (using 16 bit integer arithmetic, digital, PI controllers) was shown to produce good control within the accuracy of the instrumentation. Interactions between the temperature control loops required controller re-tuning.
(9) An adaptive feedforward controller was designed and tested on the steady state computer model and on the experimental column. It performed well but required feedback trimming to remove small offsets ( $0.005 \mathrm{~m} . f$. ). The performance of the combined feedforward/feedback system was no better than that achieved by feedback control alone due to the simple column dynamics.
(10) A dedicated microcomputer control scheme was shown to be feasible for a distillation column, and no more expensive than the conventional analog controllers it replaced. Inclusion in an overall plant control scheme by networking computers would provide additional benefits of optimisation and overview.
(11) The fast dynamics of the experimental column made it possible only to verify control schemes. Quantitative comparison favoured the feedback alone system since that was the most cost effective alternative.

RECOMMENDATIONS FOR FURTHER WORK
(1) An operator interface is required if the column is to be operated
under microcomputer control alone (e.g. undergraduate laboratories). There is sufficient memory capacity in the microcomputer to include a sophisticated interface and simplify the column operation.
(2) Additional instrumentation.is required to sense the feed flow rate and composition. More sensitive sensors on temperature (e.g. thermistors) and composition (e.g. capacitance sensors) could be investigated to improve the quality of control by improved resolution in the process variables.
(3) Investigation of the relationship between the Murphree vapour efficiency and composition for this column would provide important data for the steady state model.
(4) Constraints could be included in the control scheme to preyent the problem of excessive vapour velocity in the column. Relationships to determine the column flows necessary for stable operation are required.
(5) The feedforward/feedback control scheme described could be applied to other binary systems and to packed columns using the number of transfer units instead of the number of ideal stages. 'Multicomponent systems could be handled using a pseudo-binary equivalent system and modifications to the minimum reflux and minimum stages equations. (6) Alternate control strategies could be applied including feed tray alteration and ratio control. Possible modifications to the feedback controllers include gain scheduling and self-tuning. (7) The column dynamics could be altered by increasing the liquid holdup on the trays and in the reflux accumulator and reboiler to provide a more difficult control problem. A greater liquid depth on the trays would allow higher vapour rates to be used in the column and would increase the column capacity.

AMERICAN MICRO DEVICES INC., The AM9511 Arithmetic Processing Unit. AM-PUBO 72, 1978.

AMERICAN MICROSYSTEMS INCORPORATED, Prototyping Board Manual, 1976. AMUNDSON, N.R., PONTINEN, A.J., MCD Calculations on a Large Digital Computer. I.E.C., $50(5), 1958, \mathrm{p} .731$.

ANSELL, L.S., SAMUELS, H., FRISHE, W.C., Enthalpy-Concentration Chart for Methanol-Water Solutions. Chem. Eng., April 1951, p.133.

ARCHER, D.H., ROTHFUS, R.R., Dynamics of Distillation Units and Other Mass Transfer Equipment. C.E.P. Symp. Series $57(36)$, 1961, p.2.

BAILEY, S.J., Energy, Ecology Crises Spur On-Line Analysis. Control Eng. 25(8), 1978, p. 27.

BAKOWSKI, S., Efficiency of Sieve Tray Columns. Brit. Chem. Eng. 14(7) 1969, p. 945.

BHAT, P.V., WILIIAMS, T.J., Approximate Mathematical Models of Distillation Operations and Their Relation to Overall Column Control Methods. I.Ch.E. Symp. Series 6(32), 1969, p. 22.

BOX, G.E.P., JENKINS, G.M., Time Series Analysis, Forecasting and Control. Holden Day, 1970.

BREDIG, G., BAYER, R., Z Physik Chem. $130(1), 1927$.
BRISTOL, E.H., Designing and Programming Control Algorithms for DDC Systems. Control Eng. 24(1), 1977, p. 24.

BRISTOL, E.H., On a New Measure of Interaction for Multivariable Process Control. I.E.E.E. Trans. Auto. Contr. AC-11(1), 1966, p.133.

BRISTOW, Q., OP Amps Multiply RC Time Constants, Electronics, April 24, 1972, p. 102.

BROWN, G.G., MARTIN, H.Z., An Empirical Relationship Between Reflux Ratio and the Number of Equilibrium Plates in Fractioning Columns. Trans. A.I.Ch.E. 35, 1939, P.679.

BRUCE, R.G., FANNING, R.J., How Direct Digital Control Works. Hydrocarbon Processing, Dec. 1964, p. 83.

BUFFHAM, B.A., On Inventory Times in Approximate Dynamic Distillation Modelling. A.I.Ch.E.J., $20(5), 1974$, p. 619.

BURMAN, L.K., MADDOX, R.N., Dynamic Control of Distillation Columns. I.E.C. Process Des. Dev. 8(4), 1969, p. 433.

CARNAHAN, B., LUTHER, H.A., WILKES, J.O., Applied Numerical Methods. John Wiley, 1969.

CLAGGETT, E.H., Interpreters vs Compilers for On-Line Microcomputers. Control Eng. 24(8), 1977, p. 24.

CORNEL, L.W., MONTONNA, R.E., Studies in Distillation PT II. I.E.C., 25(12)., 1933, p. 1331.

CUMMINGS, G.A., MILLER, G.S., Application of a Bipolar Microprocessor Chip Set to Control Systems. Proc. JACC, 1977, p. 40.

DIGITAL EQUIPMENT CORPORATION, Peripherals Handbook, 1973, p.4-165. DISTEFANO, G.P., MAY, F.P., HUCKABA, C.E., Transient Response and Feedforward Control of a Distillation Tower Subject to a Sequence of Upsets. A.I.Ch.E., 13(1), 1967, p. 125.

DIXON, L.C.W., Non-Linear Optimisation. English University Press, 1972. DOROSHEVSKY, A., POLANSKY, E., Z Physik Chem. 73, 1910, p. 192.

DUYFJES, G., VAN DER GRINTEN, P., Application of a Mathematical Model for the Control and Optimisation of a Distillation Plant. Automatica, 9, 1973, p. 537.

EDGAR, T.F., SCHWANKE, C.O., A Review of the Application of Modern Control Theory of Distillation Columns. Proc. JACC, 1977, p. 1370.

EDGAR, T.F., VERMEYCHUK, J.G., LAPIDUS, L., The Linear-Quadratic Control Problem: A Review of Theory and Practice. Chem. Eng. Comm. 1, 1973, p. 57.

ERBAR, J.H., MADDOX, R.N., Latest Score: Reflux vs Trays. Petr. Ref. 40(5), 1961, p. 183.

FENSKE, M.R., Fractionation of Straight Run Pennsylvania Gasoline, I.E.C., 24, 1932, p.482.

FLÜGGE, W., Handbook of Engineering Mechanics. McGraw-Hill, 1962. GALLANT, R.W., Physical Properties of Hydrocarbons. Gulf Publishing Co., 1968.

GARELICK, E.L., Characterising Signal Conditioners with Plug-In-Memory. Control Eng. $24(9)$, 1977, p. 62.

GERSTER, J.A., BABER, M.F., Experimental Transient Response of a Pilot Plant Distillation Column Pt. II. A.I.Ch.E.J., 8(3), 1962, p. 407.

GERSTER, J.A., LUYBEN, W.L., VERNEUIL, V.S., Experimental Transient Response of a Pilot Plant Distillation Column Pt. IV. A.I.Ch.E.J. 10(3), 1964, p. 357.

GILLESPIE, D.M., Hierachial Language for Process Control. Proc. JACC, 1977, p.113.

GILLILAND, E.R., Multicomponent Rectification - Estimation of the Number of Theoretical Plates as a Function of the Reflux Ratio. I.E.C., 32, 1940, p. 1220.

GILLILAND, E.R., MOHR, C.M., Transient Behaviour in Plate Tower Distillation of a Binary Mixture. C.E.P., 59(9), 1962, p.59.

GILLILAND, E.R., ROBINSON, C.S., Elements of Fractional Distillation. McGraw-Hill, 1950.

GREEN, S.J., VENER, R.E., Vapour-Liquid Equilibria of Formaldehyde-Methanol-Water. I.E.C., 47(1), 1955, p.103.

GUISTI, A.L., OTTO, R.E., WILLIAMS, T.J., Direct Digital Computer Control. Control Eng., Jun. 1962, p. 104.

GUSTAVSSON, I., Survey of Applications of Identification in Chemical and Physical Processes. Automatica, 11, 1975, p. 3.

HARRIOT, P., Process Control. McGraw-Hill, 1964.
HAY, J.M., JOHNSON, A.I., A.Study of Sieve Tray Efficiencies. A.I.Ch.E.J. $6(3), 1960, p .373$.

HOLLAND, C.D., Multicomponent Distillation. Prentice Hall, 1963.
HUCKABA, C.E. et al, Experimental Confirmation of a Predictive Model for Dynamic Distillation. C.E.P. Symp. Series 6l(5), 1965, p.126.

HUCKABA, C.E., MAY, F.P., FRANKE, F.R., Analysis of Transient Conditions in Continuous Distillation Operations. C.E.P. Symp. Series 59(46), 1963, p. 38.

HUGHES, H.E., MALONEY, J.O., The Application of Radioactive Tracers to Diffusional Operations. C.E.P. 48, 1952, p.192.

INTERNATIONAL CRITICAL TABLES, 5, 1928, p. 115.
JAFRI, M.N., GLINSKY, G.S., WOOD, R.K., The Transient Behaviour and Control Characteristics of a Continuous Binary Column. Trans. I.Ch.E., 43, 1965, PT56.

KHRISHNAMOORTHY, V., EDGAR, T.F., Identification and Estimation of Discrete Models for Distillation Columns. Proc. JACC, 1977, p. 857.

KUO, B.C., Analysis and Synthesis of Sampled Data Control Systems. Prentice-Hall, 1963.

KURZ, H., ISERMANN, R., Feedback Control Algorithms for Adaptive Control. Proc. JACC, 1977, p. 815.

LAMB, D.E., PIGFORD, R.I., RIPPEN, D.W.T., Dynamic Characterisation and Analog Simulation of Distillation Columns. C.E.P. Symp. Series 57(36), 1961, p.132.

LEWIS, W.K., MATHESON, G.L., Studies in Distillation. I.E.C., 24, 1932, p. 494.

LUPFER, D.E., JOHNSON, M.I., Automatic Control of Distillation Columns to Achieve Optimum Operation. ISA Trans. 3(2), 1964, p. 165.

LUYBEN, W.L., Feed Plate Manipulation in Distillation Feedforward Control. I.E.C. Fund. 7(3), 1968, p. 502.

LUYBEN, W.L., GERSTER, J.A., Feedforward Control of Distillation Columns. I.E.C. Process Des. Dev. 3(4), 1964, p. 374.

LUYBEN, W.L., Distillation Decoupling. A.I.Ch.E.J., 16(2), 1970, p. 198.
MACMULLEN, E.C., SHINSKEY, F.G., Feedforward Analog Control Computer Control of a Superfractionator. Control Eng. March 1964, p.69.

MARINO, P.A. et al, Sinusoidal and Pulse Response of a Plate Distillation Column by Reflux Upset. A.I.Ch.E.J., 14(6), 1968, p. 866.

MARTIN, J.J., Analytical Solution of Equilibrium Stage Operations. A.I.Ch.E.J., 9(5), 1963, p. 646.

MASON, W.A., Number of Trays vs Reflux Ratio. Petr. Ref. 38(5), 1959, p. 237.

MCCABE, W.L., THIELE, E.W., Graphical Design of Fractioning Columns. I.E.C., 17, 1925, p. 605.

MEYER, C., SEBORG, D.E., WOOD, R.K., An Experimental Application of Time Delay Compensation Techniques to Distillation Control. I.E.C. Process Des. Dev.; $17(1), 1978$, p. 62.

MEYER, C., WOOD, R.K., SEBORG, D.E., Experimental Evaluation of Analytical and Smith Predictors for Distillation Column Control. A.I.Ch.E.J. 25 (1), 1979, p. 24.

MIKHAIL, S.Z., KIMEL, W.R., Densities and Viscosities of Methanol-Water Mixtures. J. Chem. Eng. Data 6(4), 1961, p.533.

MOCZEK, J.S., OTTO, R.E., WILLIAMS, T.J., Approximate Models for the Dynamic Response of Large Distillation Columns. C.E.P. Symp. Series 61(55), 1965, p. 136.

MORRIN, P.C., Predictive Distillation Control Using an Analog Computer. B.E. Project Report, Univ. of Canterbury, 1975.

MOSLER, H.A., KOPPEL, L.B., COUGHANOWR, D.R., Process Control by Digital Compensation. A.I.Ch.E.J., 13(4), 1967, p.768.

MOSTAFA, H.A., Effect of Concentration on Distillation Plate Efficiency. Trans. I.Ch.E., 57(1), 1979, p. 55.

MOTOROLA, Microprocessor Application Manual, 1975.
NATIONAL Semiconductor Transducer Catalog and Handbook, 1974.
NATIONAL Semiconductor MOS/LSI Databook, 1977, p.6-2.

OTHMER, D.F., BENENATI, R.F., Composition of Vapours from Boiling Binary Solutions. I.E.C., 37, 1945, p. 299.

PERRY, J.H., Chemical Engineers Handbook. 4th Edition. McGraw-Hill, 1963.

PHILLIPS LTD., Okometer-R Industrial Refractometer Instruction Manual. PLEWES, A.C., JARDINE, D.A., BUTLER, R.M., The Integral Heats of Vaporisation of Alcohol-Water.Mixtures. Can. J. Tech. 32(4), 1954, p. 133.
Q.V.F. Process Plant and Piping Catalog, 1970.

RADEMAKER, O., RIJNSDORP, J.E., MAARLEVELD, A., Dynamics and Control of Continuous Distillation.Units. Elsevier Scientific, 1975.

ROSENBROCK, H.H. et al. Computers and Direct Digital Control. Control, March, 1965, p.125.

ROTAMETER MANUFACTURING CO. LTD., Calibration Charts for Metric Series Rotameters. 1960.

SARGENT, R.W.H., MURTAGH, B.A., The Design of Plate Distillation Columns for Multicomponent Mixtures. Trans. I.Ch.E., 47, 1969, T85. SARIDIS, G.N., Comparison of Six-On-Line Identification Methods. Automatica, 10, 1974, p. 69.

SARKARNY, G., ROZSA, P., TETTAMANTI, K., The Analytic Calculation of the Number of Theoretical Plates. Periodica Polytechnica, 1970, p. 321. SASTRY, V.A., SEBORG, D.E., WOOD, R.K., Self-Tuning Regulator Applied to a Binary Distillation Column. Automatica, 13, 1977, p.417. SCHINDLER, M., Focus on Software. Electronic Design, 6, 1979, p. 103. SCHWANKE, C.O., EDGAR, T.F., HOUGEN, J.O., Problems with Application of Multivariable Control Theory to Distillation Columns. 69th Annual A.I.Ch.E. Meeting, Chicago, 1976.

SHIH, Y., Integral Action in the Optimal Control of Linear Systems with Quadratic Performance Index. I.E.C. Fund. 9(1), 1970, p. 35. SHINSKEY, F.G., Process Control Systems. McGraw-Hill, 1967.

SHUNTA, J.P., LUYBEN, W.L., Dynamic Effects of Temperature Control Tray Location in Distillation Columns. A.I.Ch.E.J., 17(1), 1971, p.92.

SHUNTA, J.P., LUYBEN, W.L., Sampled Data Feedback Control of a Binary Distillation Column. Can. J.Ch.E., 50, 1972, p. 365.

SHUNTA, J.P., LUYBEN, W.L., Sampled Data Non-Interacting Control for Distillation Columns. Chem. Eng. Sci., 27, 1972, p.1325.

SINGH, R., Equilibrium Stages in Continuous Binary Distillation. Brit. Chem. Eng., $11(9), \mathrm{p} .1025,11(10), \mathrm{p} .1226,1966$.

SKROKOV, M.R., The Benefits of Microprocessor Control. Chem. Eng., Oct. 11, 1976, p. 133.

SMITH, C.L., Digital Computer Process Computer Control. Intext, 1972. SUNDARESAN, K.R., KRISHNASWAMY, P.R., Estimation of Time Delay, Time Constant Parameters in Time, Frequency, and Laplace Domains. Can. J.Ch.E., 56, 1978, p. 257.

SVRCEK, W.Y., Ph.D. Thesis, University of Alberta, Edmonton, 1967.
TAO, R.T., et al, Applications of Microprocessors in Control Problems. Proc. JACC, 1977, p. 8.

THIELE, E.W., GEDDES, R.L., Computation of Distillation Apparatus for Hydrocarbon Mixtures. I.E.C., 25, 1933, p. 289.

TOU, J.T., Digital and Sampled Data Control Schemes. McGraw-Hill, 1969. TREYBAL, R.E., Mass Transfer Operations. 2nd Edition, McGraw-Hill, 1968. UCHIDA, S., KATO, H., J. Chem. Ind., Japan, 37, 1934, p. 525. UNBEHAUEN, H., SCHMID, C.H.R., BOTTINGER, F., Comparison and Application of DDC Algorithms to a Heat Exchanger. Automatica, $12(5), 1976$, p. 393.

UNDERWOOD, A.J.V., Fractional Distillation of Multicomponent Mixtures: Calculation of Minimum Reflux Ratio. J. Inst. Petrol. 32, 1946, p. 614 .

VAN WINKLE, M., TODD, W.G.. Optimum Fractionation Design by Simple Graphical Methods. C.E. Sept. 20, 1971, p.136.

WAHL, E.F., HARRIOT, P., Understanding and Prediction of the Dynamic Behaviour of Distillation Columns. I.E.C. Process Des. Dev., $9(3), 1970, \mathrm{p} .396$.

WANG, J.C., HENKE, G.E., Tridiagonal Matrix for Distillation. Hydro. Proc., 45(8), 1966, p. 155.

WEIGAND, W.A. et al. Calculational Methods for the Response Time to Step Inputs for Approximate Models of Distillation Columns. A.I.Ch.E.J. 18, 1972, p.1243.

WELTY, J.R., WILSON. R.E., WICKS, C.E., Fundamentals of Momentum, Heat, and Mass Transfer. John Wiley, 1969.

WILLIAMS, T.J., The Status of Studies of the Dynamics of Mass Transfer Operations. C.E.P. Symp. Series 59(46), 1963, p.1.

WILLIAMSON, C.J.., Verification of a Distillation Control Model. B.E. Project Report, Univ. of Canterbury, 1977.

WOOD, R.K., BERRY, M.W.., Terminal Composition Control of a Binary Distillation Column. Chem. Eng. Sci. 28, 1973, p.1707.

WOOD, R.K., PACEY, W.C., Experimental Evaluation of Feedback, Feedforward and Combined Feedforward-Feedback Binary Distillation Column Control. Can. J.Ch.E., 50, 1972, p. 376.

## CIRCUIT DIAGRAMS

## LIST OF FIGURES

1. Am9511 Arithmetic Processing Unit Interface

1A. Am9511 Timing Diagram
2. Microcomputer Power Supply
3. Minicomputer/Microcomputer Interface
4. Data Acquisition System
5. Control Outputs
6. Analog Controller
7. Motor Speed Controller
8. Temperature Sensor
9. Differential Pressure Sensor
10. Refractometer Additions
11. Motor Interlock System

The Am9511 was designed to be compatible with the Intel 8080 family of microprocessors, and consequently, its timing signals were not consistent with the Motorola 6800 bus. A printed circuit board was developed to interface the Am9511 and a 1 K byte EPROM to the microcomputer (figure 1).

The biggest timing problem was the correct arrangement of the read and write signals. It was necessary for the read and write signals to be delayed after the APU chip was selected for a period of not less than 50 ns for the 2 MHz Am9511. This delay was achieved with RC networks on the Schmidt inputs of 74LS22l monostables. The other major timing requirement of the read/write controls was that they turn off at least 60 ns before the chip select line ( $\overline{c / s}$ ) was released. The 74 LS221 monostables were adjusted to ensure that this condition was met.

The microcomputer address bus was fully buffered and decoded. The desired memory addresses for the APU and EPROM were set by straps on the board:. The APU was arranged to occupy two adjacent memory locations, and each of its four functions was selected. by the $A O$ address line and the $R / W$ line as shown in Table I-1.

> TABLE I-1 APU ADDRESSING

| Function | AO | R/W |
| :--- | :---: | :---: |
| Data write to APU | 1 | 0 |
| Data read from APU | 1 | 1 |
| Command to APU | 0 | 0 |
| Read APU status | 0 | $\cdots \cdots$ |

The access time for a read on the APU stack was quoted as $2 \mu s$ which was too slow for an $M 6800$ operating at lMHz. Hence the microprocessor was delayed by holding its $\phi_{2}$ clock phase high until the data was available. A monostable triggered from the APU pause line
held the MEM RDY line on the CPU board low for approximately $4 \mu \mathrm{~s}$, sufficient time for data from the APU to become available to the microprocessor (see figure 1A).

The clock for the APU was a free running astable multivibrator driving a one shot monostable. The astable was adjusted to provide the required frequency, while the one shot was adjusted to give the correct duty cycle. This arrangement was easier to set up than the conventional circuit using two one shots triggering each other.

All input and output lines were fully buffered using standard three state buffers. The data bus buffers were gated on to the data bus when the chip was addressed so that the buffer appropriate to the pending data transfer direction was selected.

Power for the APU board was obtained from the microcomputer power supply shown in figure 2. The supply rails were decoupled on board with suitable capacitors.

A 2708 EPROM was added to the board to store a control program for the APU. The circuit diagram of the board appears in figure 1, and the timing diagram for APU reads and writes is given in figure 1A.


FIGURE 1 ARITHMETIC PROCESSOR BOARD


APU WRITE CYCLE

SCALE:3000ns

FIGURE 1A APU TIMING DIAGRAM


FIGURE2 MICROCOMPUTER POWER SUPPLY

A hardware interface was constructed using a UART to link a PDP-11 parallel interface (DRIl) to the EVK 300 board via a serial 20 mA current loop as shown in figure 3. The interface was constructed using the standard Digital Equipment serial peripheral format (D.E.C. (1973)). Details of the DRIl interface can be found in the PDP-1l Peripherals Handbook (D.E.C. (1973)I, and the UART details can be found in the National Semiconductor MOS/LSI Handbook (National Semiconductor (1977)).

For output from the PDP-11 to the microcomputer, data was strobed into the UART from the DRIl output register by the NEW DATA READY signal on the DRIl. The UART then commenced to serialise and send the byte. When the UART output buffer was empty, it raised a control line which in turn set REQB in the DRIl status register indicating 'output buffer empty' to the PDP-11. By enabling the REQB interrupt the UART could be interrupt driven by the PDP-11.

For input from the microcomputer to the PDP-11, the 'data received' line of the UART was connected to the REQA line of the DRIl, and both raised high on receipt of a data byte. When the user program read the data byte from the DRIl input register, the DR11 DATA TAKEN line was used to clear the UART for receipt of the next character. The three UART error lines ROR, $\operatorname{RFE}$ and RPE were connected to bits $13,14,15$ of the DRIl input register and were available to the users program. The receipt of characters could also operate under interrupt control. The two output control lines CSRO, CSRI on the DRIl interface were connected to the $\overline{\text { RESET }}$ and $\overline{N M I}$ lines of the microcomputer to give the minicomputer overall control of the microcomputer.



FIGURE 3 MINICOMPUTER-MICROCOMPUTER INTERFACE


FIGURE4 DATA ACQUISTION SYSTEM


FIGURE 5 CONTROL OUTPUT SYSTEM


FIGURE6 ANALOG CONTROLLER/FILTER


FIGURE 7 MOTOR SPEED CONTROLLER (THREE PHASE INVERTER)


FIGURE8 TEMPERATURE SENSORS


FIGURE 9 DIFFERENTIAL PRESSURE SENSORS


SOLENOID CONTROL


REFRACTOMETER AMPLFIER

## FIGURE 10 REFRACTOMETER ADDITIONS



FIGURE 11 INTERLOCK SYSTEM FOR MOTOR PROTECTION

## COLUMN CALIBRATIONS

II. 1 TEMPERATURE PROBE CALIBRATION

The temperature probes were individually calibrated in a water bath using standard mercury/glass thermometers. The results were correlated using a quadratic polynomial with a maximum deviation of $0.2^{\circ} \mathrm{C}$ between the correlation and the experimental values.

| LOCATION | $T=a+b V+c v^{2}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | a | b | c |
| Tray 1 | -. 01 | 10.48 | -. 0456 |
| 2 | -. 01 | 10.34 | -. 0313 |
| 3 | 0 | 10.21 | -. 0206 |
| 4 | 0 | 10.22 | -. 0212 |
| 5 | 0 | 10.31 | -. 0303 |
| 6 | 0 | 10.46 | -. 0460 |
| 7 | 0 | 10.29 | -. 0285 |
| 8 | 0 | 10.27 | -. 0253 |
| Reflux Drum | 0.01 | 10.05 | -. 0684 |
| Feed | 0.0 | 10.19 | -. 0170 |
| Refractometer 0.0 |  |  |  |
| Sample | 0.0 | 10.19 | -. 0170 |

II. 2 CALIBRATION OF ABBE REFRACTOMETER FOR METHANOL/WATER AT $25^{\circ} \mathrm{C}$ Mole Fraction Methanol:.... Refractive Index

| 0 | 1.3328 |
| :--- | :--- |
| .100 | 1.3368 |
| .200 | 1.3399 |
| .308 | 1.3413 |
| .401 | 1.3413 |
| .510 | 1.3401 |
| .585 | 1.3389 |
| .700 | 1.3367 |
| .800 |  |
| .874 | 1.3334 |
| .00 |  |

EFFECT OF TEMPERATURE ON REFRACTIVE INDEX OF METHANOL/WATER

## Refractive Index

| Mole Fraction Methanol | Refractive Index |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{T}=20^{\circ} \mathrm{C}$ | $\mathrm{T}=30^{\circ} \mathrm{C}$ | $\mathrm{T}=40^{\circ} \mathrm{C}$ |
| 0 | $1.3330^{\circ}$ | 1.3324 | 1.3311 |
| . 104. | 1.3371 | 1.3359 | 1.3342 |
| . 207 | 1.3411 | 1.3390 | 1.3363 |
| . 308 | 1.3427 | 1. 3400 | 1.3378 |
| . 404 | 1.3430 | 1.3401 | 1.3373 |
| . 516 | 1.3418 | 1.3390 | 1.3359 |
| . 622 | 1.3399 | 1.3372 | 1.3331 |
| . 709 | 1.3375 | 1.3357 | 1.3321 |
| . 803 | 1.3335 | 1.3323 | 1.3291 |
| . 937 | 1.3325 | 1.3294 | 1.3253 |
| 1.00 | 1.3300 | 1.3261 | 1.3322 |

Data measured using Abbé rectractometer
II. 3 OKOMETER REFRACTOMETER CALIBRATION (25*․ $)$

Refractometer Output/V

|  | 1.00 | 1.3270 | 1.00 |
| :---: | :---: | :---: | :---: |
|  | 1.51 | 1.3280 | . 965 |
|  | 1.55 | 1.3285 | . 950 |
|  | 1.68 | 1.3290 | . 940 |
|  | 1.73 | 1.3292 | . 930 |
|  | 1.86 | 1.3295 | . 920 |
| Distillate | 1.94 | 1.3298 | . 915 |
|  | 2.05 | 1.3300 | . 910 |
|  | 2.17 | 1.3302 | . 905 |
|  | 2.43 | 1.3309 | . 885 |
|  | 2.66 | 1.3311 | . 880 |
|  | 2.77 | 1.3312 | . 875 |
|  | 2.95 | 1.3320 | . 855 |
|  | 3.29 | 1.3324 | . 840 |
|  | 3.70 | 1.3327 | . 830 |
|  | 7.20 | 1.3387 | . 600 |
|  | 7.63 | 1.3397 | . 535 |
| Feed Range | 7.90 | 1.3405 | . 475 |
|  | 8.11 | 1.3413 | . 400 |
|  | 8.20 | 1.3414 | . 360 |

Bottoms
Range $\left\{\begin{array}{lll}5.06 & 1.3332 & .010 \\ 5.33 & 1.3340 & .020 \\ 5.56 & 1.3345 & .030 \\ 5.69 & 1.3348 & .040 \\ 6.02 & 1.3351 & .050 \\ 6.40 & 1.3360 & .075 \\ & 1.3362 & .080\end{array}\right.$

| 6.80 | 1.3369 | .100 |
| :--- | :--- | :--- |
| 7.09 | 1.3375 | .120 |
| 7.27 | 1.3380 | .135 |
| 7.50 | 1.3388 | .160 |
| 7.60 | 1.3392 | .175 |
| 7.80 | 1.3399 | .200 |

All measurements were made at $25^{\circ} \mathrm{C}$. The refractive indices were measured on an Abbé refractometer, and the liquid compositions determined from the calibration data in Table II-2.

The data for the ranges $0-0.2$, and $0.8-1.0 \mathrm{m.f}$. methanol were fitted with polynomials for ease of interpolation. The results were:

Range 0-0.2 m.f. methanol

$$
y=.344-.150 x+.0168 x^{2}
$$

Range 0.8 - 1.0 m.f. methanol

$$
Y=1.117-.124 x+1.300 \mathrm{E}-2 x^{2}
$$

where

$$
\begin{aligned}
& Y=\text { liquid mole fraction methanol } \\
& X=\text { refractometer output } / V
\end{aligned}
$$

The corresponding calibrations for use in the microcomputer where 0-10V corresponds to 0-4095 are:

$$
\begin{aligned}
& \text { Range } 0-0.2 \text { m.f. methanol - bottoms composition } \\
& x_{W}=.344-3.666 \mathrm{E}-4 * I+1.001 \mathrm{E}-7 * I^{2} \\
& \text { Range } 0.8-1.0 \mathrm{~m} . f . \text { methanol - distillate composition } \\
& x_{D}=1.117-3.030 \mathrm{E}-4 * I-7.725 \mathrm{E}-8 * I^{2} \\
& I=\text { refractometer data from data acquisition system. }
\end{aligned}
$$

## II. 4 ROTAMETER CALIBRATIONS

The rotameters in the bottoms, distillate and reflux lines were calibrated using water at $20^{\circ} \mathrm{C}$. The calibrations were not in agreement
with the correlations predicted by the manufacturer (Rotameter (1960)). A correction table was prepared to convert rotameter readings from water to methanol based on the manufacturers correlation. For intermediate compositions, linear interpolation based on the mixture mass fraction was used.

The experimental flow measurements were fitted with polynomials with a maximum deviation of $\pm .02 \mathrm{~kg} \mathrm{~min}{ }^{-1}$.
(i) Reflux Rotameter (Water @ $20^{\circ} \mathrm{C}$ )

| Scale Reading/cm | Flow/kg min |
| :---: | :---: |
| $3.0 \pm 0.1$ | $.60 \pm .02$ |
| 4.0 | $.71 \pm .02$ |
| 5.0 | $.81 \pm .02$ |
| 6.0 | $1.92 \pm .02 \pm .02$ |
| 7.0 | $1.14 \pm .02$ |
| 8.0 | $1.26 \pm .02$ |
| 9.0 | $1.37 \pm .03$ |
| 10.0 | $1.61 \pm .03$ |
| 12.0 | $2.12 \pm .03$ |
| 14.0 | $2.38 \pm .03$ |
| 16.0 | $2.66 \pm .03$ |
| 18.0 | $2.97 \pm .03$ |
| 20.0 |  |

$$
\text { Correlation: } \begin{aligned}
\mathrm{Flow} / \mathrm{kg} \mathrm{~min}^{-1} & =.0012 \mathrm{x}^{2}+.0927 \mathrm{x}+.315 \\
\mathrm{x} & =\text { rotameter reading } / \mathrm{cm}
\end{aligned}
$$

(ii) Distillate Rotameter (Water @ $20^{\circ} \mathrm{C}$ )

| Scale Reading/cm | Flow $/ \mathrm{kg} \mathrm{min}$ |
| :--- | ---: |
| $3.0 \pm 0.1$ | $.58 \pm .01$ |
| 4.0 | $.69 \pm .02$ |
| 5.0 | $.78 \pm .02$ |
| 6.0 | $.90 \pm .02$ |
| 7.0 | $.99 \pm .02$ |
| 8.0 | $1.11 \pm .02$ |
| 9.0 | $1.22 \pm .03$ |
| 10.0 | $1.35 \pm .03$ |
| 12.0 | $1.58 \pm .03$ |
| 14.0 | $1.84 \pm .03$ |
| 16.0 | $2.08 \pm .03$ |
| 18.0 | $2.35 \pm .03$ |
| 20.0 | $2.63 \pm .03$ |
| 22.0 | $2.85 \pm .03$ |

Correlation: Flow $/ \mathrm{kg} \min ^{-1}=.00089 x^{2}+.0992 x+.267$

$$
x=\text { rotameter reading } / \mathrm{cm}
$$

(iii) Bottoms Rotameter (Water @ $20^{\circ} \mathrm{C}$ )

| Scale Reading/cm | Flow $/ \mathrm{kg} \mathrm{min}^{-1}$ |
| :--- | ---: |
| $2.0 \pm 0.1$ | $.30 \pm .01$ |
| 3.2 | $.36 \pm .02$ |
| 4.0 | $.41 \pm .02$ |
| 5.0 | $.47 \pm .02$ |
| 6.0 | $.53 \pm .02$ |
| 7.0 | $.60 \pm .02$ |
| 8.0 | $.67 \pm .02$ |
| 9.0 | $.74 \pm .02$ |
| 10.0 | $.99 \pm .02$ |
| 12.0 | $1.18 \pm .03$ |
| 14.0 | $1.38 \pm .03$ |
| 16.0 | $1.60 \pm .03$ |
| 18.0 | $1.83 \pm .03$ |
| 20.0 | $2.08 \pm .03$ |

Correlation: Flow/kg $\min ^{-1}=.002 \mathrm{x}^{2}+.0041 \mathrm{x}+.211$ $x=$ rotameter reading/cm
(iv) Correction for Pure Methanol (@ $20^{\circ} \mathrm{C}$ ) on Distillate and Reflux Rotameters

| Scale Reading $/ \mathrm{cm}$ | .02 |
| :---: | :---: |
| 2.0 | .03 |
| 3.0 | .04 |
| 4.0 | .06 |
| 5.0 | .07 |
| 6.0 | .07 |
| 7.0 | .06 |
| 8.0 | .05 |
| 10.0 | .03 |
| 11.0 | .01 |

II. 5 PUMP CALIBRATIONS
(i) Feed Pump-Calibrated Using Water at $20^{\circ} \mathrm{C}$

| Stroke Setting | Flow $/ \mathrm{kg} \mathrm{min}$ |
| :--- | :---: |
| $2.0 \pm .01$ | $.28 \pm .05$ |
| 3.0 | .47 |
| 4.0 | .63 |
| 5.0 | .80 |
| 6.0 | .98 |
| 7.0 | 1.18 |
| 8.0 | 1.36 |
| 9.0 | 1.52 |
| 10.0 | 1.76 |
| 11.0 | 1.90 |

Corrections for mixtures of methanol and water were made using the ratio of the mixture density to the density of water at $20^{\circ} \mathrm{C}$, because the feed pump was a positive displacement piston pump.
(ii) Control Calibrations

Reflux Pump:

$$
\begin{aligned}
& \text { Microcomputer output byte }=383 \mathrm{~L}_{\mathrm{V}}-214 \\
& \qquad \begin{aligned}
&(0-255) \\
& \mathrm{L}_{\mathrm{V}}= \text { Reflux flow } / \ell \min ^{-1} \\
&\left(0.90 \mathrm{~m} . \mathrm{f} . \text { methanol, } 20^{\circ} \mathrm{C}\right)
\end{aligned}
\end{aligned}
$$

## Steam Flow:

$$
\begin{aligned}
& \text { Microcomputer output byte }=202 Q_{S}+136 \\
& \qquad(0-255) \\
& Q_{S}=\text { Steam flow } / \mathrm{kg} \mathrm{~min}^{-1}
\end{aligned}
$$

## PDP-11 SOFTWARE

The program MGW was used to interface the PDP-11 minicomputer to the microcomputer via the hardware interface described in Appendix I. The program was written in RT-11 FORTRAN using the System Subroutine Library and an assembler subroutine. A listing follows.

```
FORTRAN IV
```



```
0001
0002
0003
0004
0005
0006
0067
0008
0009
0010
0011
0012
 C
00.3
0014
0016
0.7
0018
0019
002!
0023
0024
0025
0227
0029
0030
V02.108 T 060N -7900833849

```

        ヶ MGW *
        **********
    A PROGRAM TO INTERFACE TO MG8DO
    VIA THE ORII/UART INTERFACE
GRANT WILSON
JULY }197
COMMON/DATA/ICHANL,ICHANZ,CBUF(70),NCHRS,FLAG,TFLAG
BYTE CBUF,TITLE(1C),CHAR,TFLAG
INTEGER OOLK(4),FLAG,IASR(3)
EXTERNAL INPUT

```

```

OATA LASR/"167760,3,01
CALL IPOKE("167760.3)
FLAG\&iO
TFLAGE.FALSE.
CALL DEVICE(IASR)
TYPE G999
FORMAT(/' PROGRAM RUNNINGE)
SET UP AND ENARLE INTERRUPT ROUTINE
IEINTSET("320,7,0,INPUTS
IF(I.NE.D) STOP INT SETUP ERR*
CALL IPOKE("16776日,"103)
WAIT HERE FOR COMMAND SYRING
READ(5,10Q) NCHRS,(CBUF(J),J\&\&,NCHRS)
FORMAT(Q,70AD)
CHECK FOR RESET,NMY AND STOP
IF(NCHRS.LT.E) GO TO 3
IF(CBUF(1).NE."K`,OR.CBUF(2),NE.'EP) GO TO 3 CALL MGBRST GO TO 2 IF(CBUF(1).EQ.'S'.AND,CBUF(2),EQ.'TP) GO TO 999 IF(CBUF(1).NE.ON`.OR.CBUF(C).NE.PMP) GO TO 4
CALL MGBNMI
go YO Z
CHECK STRING FOR "L" OR M.A
IF(CSUF(1).NE.0'6) GO TO 10
GET FILE NAME OF DISK FILE,AND LOOK IT UP
WRITE(7,200)
FORMAT(/" ENTER FILE NAME: DEVZRKO,EXTELDA ')
DO 5 K=4,9
TITLE(K)=1140
REAU(5,202)NT,(TITLE(J),Js4,3+NT)

```
0038 202
0039
0040
 c
0042
0043
0.45
0047
048
0049
0050
6051
0052
 20
 C
 C
0062 999
0063
0064
0065
```

```
```

FORTRANIV VOL.Im1 T D60N 07900:33849 PAGE DOL

```
```

FORTRANIV VOL.Im1 T D60N 07900:33849 PAGE DOL
CHECK FOR FILE TRANSFER COMPLETE,IF SO
CHECK FOR FILE TRANSFER COMPLETE,IF SO
THEN CGOSE THE FIGE.
THEN CGOSE THE FIGE.
IF(FLAG.EO.D) GO TO 2
IF(FLAG.EO.D) GO TO 2
IF(FLAG.EG.I.AND..NDT.TFLAG) GO TO 24
IF(FLAG.EG.I.AND..NDT.TFLAG) GO TO 24
CALL LOAD
CALL LOAD
FLAG=0
FLAG=0
CALL CLOSEC (ICHAN1)
CALL CLOSEC (ICHAN1)
CALL IFREEC(ICHANI)
CALL IFREEC(ICHANI)
GALLTO
GALLTO

```
FORMAT(Q.12A1)
```

FORMAT(Q.12A1)
CALL IRADSO(12,TITLE,OALK)
CALL IRADSO(12,TITLE,OALK)
IF(IFETCH(DBLK),NE:D) STOP PBAD FETCHP
IF(IFETCH(DBLK),NE:D) STOP PBAD FETCHP
*日 GET CHANNEL FOR OISK READ .
*日 GET CHANNEL FOR OISK READ .
ICHANI =IGETC(M)
ICHANI =IGETC(M)
IF(ICMANI,EQ.mi) STUP PNO CHANNELS AVAILABLE"
IF(ICMANI,EQ.mi) STUP PNO CHANNELS AVAILABLE"
IF(LOOKUP(ICHAN1,DBLK).LT.D) STOP PGAD LOOKUP'
IF(LOOKUP(ICHAN1,DBLK).LT.D) STOP PGAD LOOKUP'
FLAGE\&
FLAGE\&
C
10
CONTINUE
CONTINUE
CBUF(NCHRS+1)="15
CBUF(NCHRS+1)="15
DO 20 J=1,NCHRS+1
DO 20 J=1,NCHRS+1
CALL MGBHRT (CBUF(J),D)
CALL MGBHRT (CBUF(J),D)
CONTINUE
CONTINUE
DISABLE INTERRUPTS ON FINISH
DISABLE INTERRUPTS ON FINISH
CONTINUE
CONTINUE
CALL IPOKE(1967760,2)
CALL IPOKE(1967760,2)
STOP "PROGRAM TERMINATED"
STOP "PROGRAM TERMINATED"
END
END
C

```
```

FORTRAN IV
ODO!
C
C INTERRUPT ROUTINE TO READ A CHARACTER FROM MGOOD
C AND DISPLAY IT ON THE PDP=1\& CONSOLE.
COMMON/DATA/ICHANI,ICHANZ,CBUF(7D),NCHRS,FLAG,TFLAG
BYTE CBUF,CH,TFLAG
INTEGER FLAG
C
C
GET THE GHARACTER
0005
0000
C
C
DISPLAY ON THE CONSOLE
I=ITTOUR(CH)
IF(I,GF:(D) STOP RRING BUFFER FULG"
0007
0008
C
C
CHECK FOR FILE TRANSFER COMMANO BYTES (DC\&,DC3)
0010
0012
00.4
0015
VD2.101 T 060N - % 000833855
PAGE 00\&
C
0002
0003
00033
C
CHMIPEEK(11.67764)
CHaCH.AND."177
SUBROUTINE INPUT
IF(CH.EQ."21)TFLAGE.TRUE.
IF(CH,EQ."23)TFLAG=,FALSE.
RETURN
END
$C$
$C$
C

```
```

```
FORTRANIV VD2.1-1 T DGON -7900:33857 PAGE OO&
```

```
FORTRANIV VD2.1-1 T DGON -7900:33857 PAGE OO&
0001
0001
 C
 C
0002
0002
0003
0003
0004
0004
000.5
000.5
0006
0006
0007
0007
0000s
0000s
 C
 C
0010
0010
001:
001:
0013
0013
0014
0014
0015
0015
0017
0017
0018
0018
0019
0019
0020
0020
0021
0021
002己
```

002己

```
```

    SUEROUTINE LOAD
    ```
 SUEROUTINE LOAD
 ROUTINE TO READ OBJECY TAFE FROM
 ROUTINE TO READ OBJECY TAFE FROM
 DISK AND TRANSMIT TO MGBDO
 DISK AND TRANSMIT TO MGBDO
 COMION/DATA/ICHAN1,ICHAN2,CBUF(70),NCHRS,FLAG,TFLAG
 COMION/DATA/ICHAN1,ICHAN2,CBUF(70),NCHRS,FLAG,TFLAG
 BYTE CBUF,EUFF(512),CHAR,TFLAG
 BYTE CBUF,EUFF(512),CHAR,TFLAG
 INTEGER FLAG
 INTEGER FLAG
 IPTR:0
 IPTR:0
 READ A OLOCK
 READ A OLOCK
 CONTINUE
 CONTINUE
 ICODE=IREADW(256,BUFF,IFTR,ICHAN1)
 ICODE=IREADW(256,BUFF,IFTR,ICHAN1)
 IF(ICGDE.LT.&1) STOP PFILE REAO ERROR"
 IF(ICGDE.LT.&1) STOP PFILE REAO ERROR"
 WRITE OUT BLOCK TO M6800
 WRITE OUT BLOCK TO M6800
00 10 J=1,512
00 10 J=1,512
IF(nNOT.TFLAG) GO TO 20
IF(nNOT.TFLAG) GO TO 20
CALL MGBNRT (BUFF(J),D)
CALL MGBNRT (BUFF(J),D)
CONTINUE
CONTINUE
LAST BLOCK?
LAST BLOCK?
IF(ICODE,EO,=1) GO TO 20
IF(ICODE,EO,=1) GO TO 20
IPTRSIPYR*&
IPTRSIPYR*&
GO TO &
GO TO &
LAST BLOCK FINISHED
LAST BLOCK FINISHED
CONTINUE
CONTINUE
FbAG&2
FbAG&2
RETURN
RETURN
END
```

END

```

MICRO AND INYERFACE CONYROL
MACRO VO3.0286mNOV=79 0D868:49 PAGE \&

MICRO AND INTERFACE CONTROL

MACRO VD3.0286mNOV-79 00:08849 PAGE Im\&

\section*{APPENDIX IV}

\section*{MICROCOMPUTER SOFTWARE}
IV. 1 OPSYS

OPSYS is a skeletal operating system as described in Chapter 5.
A listing follows.

```

* MONITOR RAM
THIS DATA GASE FOLLOWS THE SAME
layOUT AS THE amI pROTO dATA bASF.
ORG SFF90
BASE EQU BOTTOM OF STACK
SUF RMB 72 LINE OF INPUY BUFFER
PROMAD EQU
OFFSET RMB
TADR EQU
ADR RM
ADDL RMB
ADOH RM
BUFPTR RME
RECTYP RMB
COUNT RMB \&
CKSM RME
SAVESP RMB
SAVEX RMB
ECHO RME
TCOUNT RMB S
* USER REG
CREG RMB \&
BREG FMB I
AREG RMB l
XREG RMB Z
MREG
* INTERRUPT VECTORS
USWI RMB 2 USER SWI VECTOR
ACIAI RMB 2 INDIRECT POINTER TO ACIA
IRQVEC RMB 2 IRG VECTOR
SWIVEC RMB S S SW VECTOR
NMIVEC RMB 2 NMI VECTOR

```
```

\#\#\#\#\#\#\#\#
ORG \$EGOD
RESET LOS *BOS
LDX \#NMI
STX NMIVEC
STX IROVEC
LUX \#SWI30
STX USWI
LOX \#SVIHAN
STX SWIVEC
LDX HACIAA
STX ACIAI
LOAA \#3
STAA ACIAS
LUAA \#I
STAA ACIAC
JSR CONFIG
JMP NMIE
ACIAA FOB ACIAC
*******れ*******
* MAIN Program *

```

```

* RESET ROUTINE
RESET
LOS \#BOS
3
CIAC
AC
由
* NMI ROUTINE
* 

NMI
PROVIDES GOAD,GO,CONFIGURE AND PROTO FUNCTIONS
INS
INS
INS
INS
INS
INS
INS
FCB
AD5 LOX
A10 SW
fcB inPuTA
CMPA W%134
BNE AlC
JSR CKLF
BKA NMXZ
A12
A15
*
NMIE
FC
CRLF
CR,bF
PROMPY
POPm11
INITIALISE POINTER
WAIY
FOR CHARACTER
\ ESCAPE (IE RUBOUT)
NO
CR,LF
GO AGAIN
STORE IT
INCREMENT POINTER
INPUT LINE TOO GONG ?
NO
YES, ERROR
IS IT <CR> %
YES DECODE

```

\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& S W I \\
& \text { FCB }
\end{aligned}
\] & PRINTA & WITH DCL (\$18) \\
\hline \multirow[t]{4}{*}{110} & SWI & & \\
\hline & FCB & INPUTA & WAIT FOR CHARAETEK \\
\hline & CMPA & * \({ }^{\text {P }}\) S & IS IT AN "S" \\
\hline & BNE & 120 & NO, GO AGAIN \\
\hline \multirow[t]{18}{*}{L20} & SWI & & YES \\
\hline & FCB & INPUTA & GET RECORU TYPE \\
\hline & CMPA & \(\%^{\text {P }}\) & IS IT A HEADERT \\
\hline & BEO & 10 & YES I IGMORE RECORD \\
\hline & STAA & RECTYP & save recokd type \\
\hline & CLR & CKSM & CLEAR CHECKSUM \\
\hline & JSR & NEXT2D & get byte count \\
\hline & DECA & & SUBTRACT THREE \\
\hline & DECA & & EYTES FDR AURESS \\
\hline & deca & & ANO CHECKSUM \\
\hline & STAA & COUNT & save eyte count \\
\hline & JSR & NEXT20 & GET MSB OF ADOR \\
\hline & STAA & TADR & STORE IT \\
\hline & JSR & NEXT20 & GET LSB OF AODR \\
\hline & STAA & TADR+1 & STORE IT \\
\hline & LOAA & RECTYP & GET RECCRD TYPE \\
\hline & CMPA & \({ }^{4} \mathrm{C} 1\) & IS ITA "1\%\% \\
\hline & BNE & 130 & NO , CHECK FOR Tg \\
\hline * & COMME & CE LOADIN & \\
\hline \multirow[t]{10}{*}{L40} & JSR & NEXTSO & READ 2 HEX OIGITS AND DECODE. \\
\hline & LDX & TADR & \\
\hline & STAA & \(0 \cdot x\) & PUT BYTE IN MEMORY \\
\hline & CMPA & \(0, x\) & CHECK BYTE OK \(\%\) \\
\hline & BNE & ERROR & ND, GO TO ERROR \\
\hline & INX & & INCR POINTER \\
\hline & STX & TADR & SAVE POINTER \\
\hline & DEC & count & DECR COUNT \\
\hline & BGT & L40 & -10, GO AGAIN \\
\hline & Bra & CHK & CHECK CHECKSUM \\
\hline \multirow[t]{2}{*}{L30} & CMPA & \({ }^{*}{ }^{*} 9\) & EQF RECORD \(\%\) \\
\hline & GNE & ERROR & NO , ERROR \\
\hline \multirow[t]{13}{*}{CHK} & LDAA PSHA & CKSM & FETCH CHECKSUM SAVE ON STACK \\
\hline & JSR & NEXTED & GET CHKSM FROM TAPE \\
\hline & PULB & & PULL CALC CHKSM INTO B \\
\hline & COM & & Q \({ }^{\text {P S COMPLEMENT }}\) B \\
\hline & cha & & COMPARE THO CHKSM S \\
\hline & BNE & ERROR & NOT a ERROR \\
\hline & LDAA & RECTYP & FETCH RECORD TYPE \\
\hline & CMPA & \# \({ }^{\text {¢ }} 9\) & IS IT "G" ? \\
\hline & BNE & 110 & NO , REAC NEXT RECORD \\
\hline & LDX & \#MEOF & SEND END TO POPFII \\
\hline & SWI & & \\
\hline & FCB & PMSG & WITH A DC3 (513) \\
\hline & JMP & NHIE & GD TO START \\
\hline \multirow[t]{4}{*}{ERROR} & ERROR & HANULING & \\
\hline & LDX & WMERR & TURN OFF PDPaII \\
\hline & SWI & & ANO SIGNAL ERROR \\
\hline & FCB & PMSG & UITH EEL (\$07) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & JMP & \multicolumn{3}{|c|}{GO TO START} \\
\hline \multicolumn{5}{|l|}{\[
\nexists
\]} \\
\hline \multicolumn{5}{|l|}{\(\cdots\)} \\
\hline \multirow[t]{18}{*}{NEXT2D} & 3WI & & & \\
\hline & FCB & INPUTA & GET IST CHARACTER & \\
\hline & TAB & & SHIFT IT TO 日 & \\
\hline & SWI & & & \\
\hline & FCB & INPUTA & get znd Chanacter & \\
\hline & PSHA & & & \\
\hline & PSHB & & PUSH BOTH ON STACK & \\
\hline & TSX & & S.P. TOX REG & \\
\hline & LDAB & *2 & MAX NO OF UIGITSaE & \\
\hline & SWI & & & \\
\hline & FCB & CONHB & CONVERT TO binary & \\
\hline & BCC & ERROR & GC ERFOR IF C CLEAR & \\
\hline & tEA & & SHAP LSE TO A & \\
\hline & ADDB & CKSM & ADO BYTE TO CHECKSUM & \\
\hline & STAB & ChSM & SAVE CHECKSUM & \\
\hline & INS & & CLEAN UP & \\
\hline & INS & & THE STACK & \\
\hline & RTS & & & \\
\hline \multicolumn{5}{|l|}{*} \\
\hline * & SUBROUT & INE CONFIG & & \\
\hline * & TO CONF & IGURE THE PIAS FO & R THE & \\
\hline * & COLUMN & CONTROL PERIPHER & ALS & \\
\hline \multicolumn{5}{|l|}{\(\cdots\)} \\
\hline \multirow[t]{4}{*}{CONFIG} & BSR & cs36 & SET C/S REGS TO \$36 & \\
\hline & CLRA & & SET ALL PERIPHELAL REGS & 100 \\
\hline & LDX & *V4 & & \\
\hline & LOAB & *6 & & \\
\hline \multirow[t]{8}{*}{COL} & STAA & \(0 \cdot x\) & - & \\
\hline & INX & & & \\
\hline & INX & & & \\
\hline & DECB & & & \\
\hline & BNE & \(\mathrm{CO2}\) & & \\
\hline & LOAA & \#\$30 & SELECT DCR FOR PIAS & \\
\hline & LUX & \#V4CsR & & \\
\hline & LUAE & W6 & & \\
\hline \multirow[t]{11}{*}{CO 3} & STAA & \(0, x\) & & \\
\hline & INX & & & \\
\hline & INX & & & \\
\hline & DECE & & & \\
\hline & ENE. & CO3 & & \\
\hline & CLRA & & SET PIA 2 FOR INPUT & \\
\hline & STAA & DMSE & & \\
\hline & STAA & DLSB & & \\
\hline & coma & & SET PIAS 1.3 AS OUTPUTS & \\
\hline & LOX & WV4 & & \\
\hline & LDAB & \# 4 & & \\
\hline \multirow[t]{5}{*}{co4} & STAA & \(0, x\) & & \\
\hline & INX & & & \\
\hline & INX & & & \\
\hline & DECB & & & \\
\hline & BNE & COA & & \\
\hline
\end{tabular}

IV. 2 CC68

CC68 is a suite of programs used to control the microcomputer peripherals, and to provide single loop controllers as described in Chapter 5. A listing follows.
```

* 

```

```

*     * UEFINITIONS AND DATA BASE FOR CCG8 *
* 
* 
* DEFINITIONS
* -m@memmammom
* 

D.A.M. PYA
DCSRI EQU SFBCG
DCSR2 EQU SFBCB
DMSB EUU SFBC8
OLSB EQU SFBCA

* D/A PIAS
V1 EQU SFBCG
VZ EQU SFBC
V3 EQU SFBC
V4
VECSR EQU VE+1
V3CSR EQU V3+1
VACSR EQU V4+l
* ACIA KEGISTERS
ACIAS EQU SFBCE
ACIAD EQU SFBCF
* RSRSR inolces
SUBXAB EQU SDB
F2HEX EGU SOF
PAHEX EOU \$10
PRINTA EQU S!1
PMSG EQU \$12
VALAN EGU \$13
INPUTA EQU \$14

CONHB EQU \$\$25
* INTERRUPT VECTORS
IRQVEC EQU SFFFS
*
* PROTO RAM OEFINITIONS
BUF EQU SFF9O LINE OF INPUT
ADR EQU SFFUA
BUFPTR EGU SFFEQ
IOFLAG EQU SFFEA
*
*
*
* data base
0-0-m=0.mem
SYSTAT
DAMERR FCB
RSTAT FCB D
TSAMPL
REFRAC RMB 8
SYSTEM STATUS
D.A.M. ERRORS
REFRACTOMETER STATUS
SAMPLE INTERVAL
D.A.M. DATA AKEA
qEFRAC DATA AREA
``` ```

| | SET UP PIAPS |
| :--- | :--- | :--- | :--- |
| CONFIG | |
| EQU | SETZB |
| ORG | SEODO |\quad ROUTINE IN OPSYS EPROM

MAINI JSR CONFIG
*

* restahti entry point
MAIN2 LDAA ES37 ENABLE INTS THRU PIA 3 CA\&
STAA VHCSR
LDAA \#\$3C
STAA DCSR2
loX \#REFRAC ClEAR REFKAC DATA AREA
CLR D,X CLEAR REF DATA AREA
INX \#REFRAC\&q
BNE MAS
LOX \#IM\& ClEAR TIMERS
MA2

MA4
*

```
INC SYSTAT SYSTEM STATUS TO 6
JSR SZOD
ALLOWS EXPANS:ON DF THE EASIC.
PROGRAM IN KAM EY DOWN LOADING FROM THE
PUP=11. A PROGRAM TO EXECUTE FROM \(\$ 200\).
THIS PROGRAM HUST LOOK LINE A SUBROUTINE
AND USE THE STANDARD DATA BASE.
CLR SYSTAT
    SYSTEM STAYUS BACK TO ©
BRA MAS

\begin{tabular}{|c|c|c|c|}
\hline ＊ & \multicolumn{3}{|l|}{} \\
\hline ＊ & ＊OPERA & TOR INTERFACE & ＊ \\
\hline ＊ & \multicolumn{3}{|l|}{} \\
\hline 宜 & & & \\
\hline \multicolumn{4}{|l|}{＊} \\
\hline \multirow[t]{3}{*}{USERC} & JSR & CRLF & \multirow[b]{2}{*}{DECUDE INPUT} \\
\hline & LDAA & BUF & \\
\hline & LDX & \＃CTAble & \\
\hline \multirow[t]{4}{*}{1020} & CMPA & \(0 . x\) & COMPARE COMM WITH TABLE \\
\hline & BNE & 1025 & NO \\
\hline & LOX & 1， x & YES－GET ROUTINE AODRE3S \\
\hline & JMP & \(0, x\) & GO THERE \\
\hline \multirow[t]{5}{*}{9025} & \multicolumn{3}{|l|}{INX} \\
\hline & \multicolumn{3}{|l|}{INX} \\
\hline & INX & & InCREMENT POINTER \\
\hline & CPX & \＃CENO & ENO OF TABLE \(?\) \\
\hline & BNE & 1020 & NO－CONTINUE \\
\hline ＊ & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{ERROR HANOLING}} \\
\hline ＊ & & & \\
\hline \multicolumn{4}{|l|}{＊} \\
\hline ERROR & EQU & ＊ & \\
\hline \multirow[t]{3}{*}{USEKP} & LDAA & \％\({ }^{\circ} 8\) & PROMPT USER \\
\hline & \multicolumn{3}{|l|}{SWI} \\
\hline & FCB & PRINTA & \\
\hline \multirow[t]{6}{*}{1030} & LOX & ＊BUF & \\
\hline & Sty & BUFPTR & SET UP POINTER \\
\hline & CLR & IUFLAG & \multirow[t]{2}{*}{\begin{tabular}{l}
clear flag \\
ENABLE INTS ON ACIA
\end{tabular}} \\
\hline & LDAA & \＃\＄81 & \\
\hline & STAA & ACIAS & \\
\hline & \multicolumn{3}{|l|}{RTS} \\
\hline \multicolumn{4}{|l|}{自} \\
\hline 由 & \multirow[t]{2}{*}{COMMAND} & TABLE & \\
\hline \multicolumn{3}{|l|}{\(\cdots\)} & \\
\hline \multirow[t]{18}{*}{ctable} & FCC & \({ }^{P} \mathrm{C}^{\text {P }}\) & \\
\hline & FOE & PCON & \\
\hline & FCC & \(0^{0}{ }^{\circ}\) & \\
\hline & FOB & PDAM & \\
\hline & FCC & －10 & \\
\hline & FDB & SETMEM & \\
\hline & FCC & －0＇ & \\
\hline & FOB & OUTMEM & \\
\hline & FCC & \({ }^{\text {P }}\) P \({ }^{\text {P }}\) & \\
\hline & Fib & PSYS & \\
\hline & FCC & \({ }^{6} \mathrm{R}^{\prime}\) & \\
\hline & FDB & PREF． & \\
\hline & FCC & \({ }^{\text {P }}\) ¢ \({ }^{\text {P }}\) & \\
\hline & FOB & PSET & \\
\hline & FCC & － \(\mathrm{V}^{\prime}\) & \\
\hline & FOB & PVAL & \\
\hline & FCB & 515 & \\
\hline & FDB & 1030 & \\
\hline CENO & EQU & ＊ & \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|}
\hline 由 & \multicolumn{3}{|l|}{} \\
\hline 由 & - ALARM & CHECKING ROUTINE & + \\
\hline * & \multicolumn{3}{|l|}{} \\
\hline \multirow[t]{5}{*}{CHECK} & & & \\
\hline & LDAA & DAMERR & D.A.M OK ? \\
\hline & BEQ & CHI & YES \\
\hline & LDAA & \(\#^{\circ} 0\) & ALARM NUMMEER \\
\hline & BSR & ERRL & \\
\hline * & CHECK & ON REFLUX ORUM & \\
\hline \multirow[t]{9}{*}{CHI} & LOAA & DAM & GET MSG \\
\hline & ANOA & \#\$0F & STRIP CH NO \\
\hline & LDAS & DAM + 1 & GET LSE \\
\hline & LOX & ROU & UPPER LIMET \\
\hline & BSR & CMP16 & COMPARE \\
\hline & BLS & CH2 & INSIDE \\
\hline & LUAA & \(\#^{+1}\) & ERROR 1 \\
\hline & BSR & ERRL & \\
\hline & 6RA & CH3 & \\
\hline \multirow[t]{5}{*}{CHE} & LDX & RDL & LOWER LIMIT \\
\hline & ESR & CMP16 & COMPARE \\
\hline & BCC & \(\mathrm{CH}_{3}\) & INSIDE \\
\hline & LDAA & \(\#^{\circ} 1\) & ERROR \& \\
\hline & BSR & ERRL & \\
\hline * & CHECK & On Regoiler level & \\
\hline \multirow[t]{9}{*}{CH3} & LOAA & DAM +2 & GET MSB \\
\hline & ANDA & \(\# S 0 F\) & STRIP CH NO \\
\hline & LDAB & DAM+3 & GET LS \({ }^{\text {S }}\) \\
\hline & LDX & RBU & UPPER LIMIT \\
\hline & BSR & CMP 26 & COMPARE \\
\hline & BLS & \(\mathrm{CH}_{4}\) & INSIDE \\
\hline & LDAA & \(\%^{+8}\) & ERRDR 2 \\
\hline & BSR & ERRL & \\
\hline & ERA & CH5 & \\
\hline \multirow[t]{5}{*}{CH4} & LUX & RBL & LOWER LIMIT \\
\hline & BSR & CMP16 & COMfate \\
\hline & BCC & CH5 & INSIOE \\
\hline & LUAA & \(*^{+9}\) ? & ERROR 2 \\
\hline & BSR & ERRL & \\
\hline * & CHECK & COLUMN PRESSUEE O & OROP \\
\hline \multirow[t]{9}{*}{CH 5} & LDAA & DAM+26 & GET MSB \\
\hline & ANDA & \#S \({ }^{\text {dF }}\) & STRIP CH NO \\
\hline & LUAB & OAM 27 & LSB \\
\hline & LDX & Pu & UPPER LIMIT \\
\hline & BSR & CMP16 & COMPARE \\
\hline & BLS & CH6 & INSIDE \\
\hline & LOAA & \({ }^{4} \mathrm{P} 3\) & EKROR 3 \\
\hline & BSR & ERRL & \\
\hline & BRA & CH 7 & \\
\hline \multirow[t]{5}{*}{CH6} & Lux & PL & LOWER LIMIT \\
\hline & BSR & CMP16 & COMPARE \\
\hline & QCC & \(\mathrm{CH}_{7}\) & INSIDE \\
\hline & LDAA & \({ }^{+9} 3\) & ERROR 3 \\
\hline & BSR & ERRL & \\
\hline CH 7 & RTS & & \\
\hline
\end{tabular}


```

* (%)
ALGORITHM IS
*
*
*
*

CONTRL
DV=(CRA* (SP-PVD)+C%B* (SP-PV1))/2**OIVN
VALVE=LASY VALVEकUV
VNEW=VALVE/E56+120 (8 BITS)
cro

LOX	\#C1A	INITL POINTER
CLR	CNO	INITL COUNTER
Stx	CPTR	SAVE POINTER
LDAA	$5 . X$	SHIFT CRPV TO C?PV产
LOAB	6.1	
STAA	7, X	
STAB	$8, \mathrm{X}$	
LDAA	$4, \mathrm{X}$	ADOK OF PV IN DAM ALOGK
LDX	\#DAM	GET PV ADUR (ADJUST IF NEC.)
ASLA		DOUBLE A
JSR	ADJX	ADJUST y POINTER
LOAB	1, X	GET PV FRUM DAM ELOCK
LOAA	$0, X$	
ANDA	\#Sof	CLEAR CH NO.
LOX	cptí	GET CONTROLLER POINTER
STAA	S. X	
StAB	6.1	Store at chpvo
LDX	*CLVL	GET SP ADOR
LOAA	CNO	
ASLA		DOUGLE OFFSET
JSR	ADSX	ADJUST X POINTER
LDAA	DPX	GE'P SP
LDAB	1. X	
L.OX	CPMA	GET CONTRULIER POINTER
SUBE	6, X	
SBCA	$5 . x$	SPopv
STAB	6, X	
SYAA	5, X	STORE IN CTPVG
NOW	CONTROL	UATIONS
LDX	$0 . X$	C.'A
STX	MULTI	
Lux	CPYR	
L.0X	$5, \mathrm{X}$	CPPV发
STX	MULTE	
JSR	MULT 16	MULTIPLY
LDX	PFOD +2	
STX	TEMP1	CZA*CRPVD
LDX	CPTR	
L.DX	2, ${ }^{\text {P }}$	C38
STX	MULT 1	
LOX	CPYR	

```




THIS ROUTINE MULTIPLIES TWO 16 日IT
2＇S COMPLEMENT NUMEERS USING BOOTH＇S ALGORITHM．
IY PRODUCES A 16 BIY RESULT WITH THE \(V\) GIY SET
IF OVERFLOW OCURRED．
THE MULTIPLIER E MULTI mMUTI，MULTI\＆\＆
THE MULTIPLICAND＝MULTE EMULTZ．MULTZ＋』
THE PROOUCT P PROD EPROD＋Z，PROD＋3
THE TEST dYTE FOR MULTI（LSB＝1）FF
THE MULTIPLICAND WILL BE UNCHANGEU，THE MULTIPLIER WILL BE DESTROYED．A 16 BIT RESULTT IN PROD\＄E，PROD＋ 3 RESULTS，BUT PROD，PROD＋1 NOW CONTAIN RUEBISH．
－
MULTIG LOX \＃5 CLEAR THE WORAING REGS．
LPI STAA PROU＝1，X
DEX
BNE LP\＆
LDX \＃16 INIT S SHIFT COUNTER TC 16．
LUAA MULTI +1
ANDA \＃
TAB \(\quad\) FF
EQRA FF
TSTO
BEQ ADD
LDAA PROD＋1
LOAE PROD
```

GET Y(LSBIT).
SAVE Y(LSBIT) IN B.
DOES Y(LSGIT)EY(LSBB⿴囗)?
YES: GO TO SHXFY ROUTINE.
NO: DOES Y(LSSIT) aDt
YES\& GO TU ADU ROUTINE.
NO: SUBTRACT MULTIPLICAND
PROUUCT WITM THE MSBYTES

```
\begin{tabular}{|c|c|c|c|}
\hline & SUBA & MULT \(2+1\) & LINED UP。 \\
\hline & SbCb & MULT 2 & \\
\hline & STAA & PROD＋1 & \\
\hline & STAD & PROD & \\
\hline & Bra & SHXFT & THEN GO TO SHIFT ROUTINE． \\
\hline ADD & lida & PROD中1 & ALD ThE MULTPLICAND TU THE \\
\hline & LDAB & PROD & PROUUCT WITH THE MSBYTES \\
\hline & ADDA & MULT \(2+4\) & LINED UP． \\
\hline & ADCE & MULT2 & \\
\hline & STAA & PROO＋1 & \\
\hline & StAG & PROD & \\
\hline SHIFT & CLR & FF & clear the test byte． \\
\hline & ROR & MULT & SHIFT THE MULTIPLIER RIGHT \\
\hline & KUR & MULT1＋1 & ONE EIT WITH THE LSEIY \\
\hline & ROL & FF & CNTO THE LSGIT OF FF． \\
\hline & ASR & PROD & SMIFT THE PKOUUCT RIGHT ONE \\
\hline & RUR & PROD＋1 & QIT，THE MSO REMAINING THE SAME． \\
\hline & ROR & PKOU 2 & \\
\hline & ROR & PROD＋3 & \\
\hline & DEX & & DECFEMENT THE SHIFT COUNT． \\
\hline & Bine & LP 2 & IF \(<\) O CONTINUE． \\
\hline & LDX & PROD & CHECK FOR OVERFLOW \\
\hline & LUAA & PROD & \\
\hline & BPL & POS & \\
\hline & CPX & W WFFFF & \\
\hline & 8NE & NEGOFL & \\
\hline & LDAA & PRDO巾 2 & \\
\hline & BMI & RETURN & \\
\hline NEGUFL & L．DX & ＊\(\$ 8000\) & \\
\hline & STX & PKOV 2 & \\
\hline & SEV & & \\
\hline & BRA & RETURN & \\
\hline POS & CPX & \＃So & \\
\hline & BNE & POSOFL & \\
\hline & LDAA & PROU 2 & \\
\hline & BPL & RETURN & \\
\hline POSOFL & LOX & ＊S7FFF & \\
\hline & STX & PROD＊2 & \\
\hline & SEV & & \\
\hline RETURN & RTS & & RETURN \\
\hline
\end{tabular}

```

* conTROL oUTPUT ROUTINE *

```

```

 INCORFORATING CONTINUOUS SLEWING
 NOTE: THE CUNTROLLERS MUST ENSURE THAT
 THE CONTROLLER DUTHUYS ARE IN THE
 RANGE 0.255(10).
 THE RDUTINE MAY bE CALLED AS S/R
 BY THE MAINLINE PROGRAM PKDVIDED THE
 IRO INTERRUPT MASK IS OFF: IF THE MASK IS
 ON THEN THE ROUTINE WILL EXIT BACK TO
 THE MONITUR: THIS ALLOWS THIS
 ROUYiNE TO bE CALLED viHILE THE MAXNLINE
 IS STALLED ANQ MICROOPDF UIALOG IS UNDERWAY.
 NOTE: THE ADDFESS OF NMIC IS $EG37
 EQU $5637
 VALVES LDX #V4 ENSURE YOLD=OUTPUT(CURRENT)
 LDAA 6.X
 STAA VOLDI
 LUAA 4,X
 STAA VOLDE
 LUAA 2.X
 STAA VOLDS
 LDAA DOX
 STAA VOLOL
 01
02
3
O
O5
0 6
0 7
CLRRB FVOLD
CLR SIGN
LDAA GPX
SUBA ODX
BEQ O7
BCC 03
NEGA
SIGN
INC SIGN
BLS 05
INCB
TST SIGN
BNE O4
ADDA B.X
BCC 06
LDAA \#SFF
CHECK FOR OVERFLOW
SET TO MAX
SUBTRACT MAX STEP
CHECK FOR NEG OVFLW
SET TO MIN
USE CALC STEP
SAVE NEW VOLD
INCKEMENT POINTER
LAST TIME AROUND

```

IV. 3 FEEDFORWARD EXTENSIONS TO CC68

The software described in the CC68 suite of routines was modified to implement the feedforward/feedback controller described in Chapter 8. This involved additions to the database, modification of the main program, and the addition of routines to implement the controller and adapter. A listing of these changes and additions follows.

```

 * FEEvFQRWARD contrgller data base
    ```

```

 STATUS FLAGS (DrOFF , <>DRON)
 ORG \$FO SO ADAPR STATUS ONEAOAPT
SESTAT FCB SO TRIMMING CONTKOLLER STATUS
FFSTAT FCB SO FEEDFORWARO CONTROLLER STATUS
*
*
ORG \$100

```

```

XF
TF
F
RM
FDB O,D
FOB
LM FOB ODO
LV FDE O,O
VM FDB O,O
QS FDB O,O
R FDB O,D
Y9 FDB O,D
DALR FDB O
DAQS FDB 0
PVNI FOB OOO
PVN4 FDB 0,0
*

* fF compensatur parameters
ZNA FD
YNPIA FDB \$0,5
ZNB FDB $Q,$O COMPENSATEO QS
YNPIB FDB SO,SG
KAI FDB \$D,SO
KAC FOB SO,SO
KBI FDB SO,SO
K\&2 FDB \$0,\$0
* FLOW CALIDRATIONS
LVM FDE - SO9BF,S8000 (300 (383.)
LVC FDB \$8943,58000
(-295.)
QSM FDB \$\&CA,\$0
OSC FDB \$8888,\$0

```
(383.)
(-295.)
(202.)
(-136.)


\begin{tabular}{lll} 
JSR & HNYFF & FEED FORWARD CONTKOLLER \\
JSR & PIFB & FEEOGACK CONTROLIER \\
JSR & ADAPY & FFADAPTION \\
INC & SYSTAY & SYSTEM STATUS TO 6 \\
JSR & SZQD & MISCELLANEA \\
INC & \(S Y S T A T ~\) & SYSTEMSTATUS TOT \\
JSR & YALVES & OUTPUT \\
CLR & SYSTAT & SYSTEM STATUS BACK TO O \\
BRA & MAS &
\end{tabular}
```

*
* ************************************自
*
* * FEEUFORWARO CONTROLLER PART I *

```

```

 OKG $2800
 LDAA FFSTAT FF ON T
 BNE HNI
 LDAA #S7F
 STAA DALR+&
 STAA DAQS+1
 RTS
 ENTER APU
 LDX #ERR
 STX ERRADR
 JSR APUDRV
 COMPUTE O
 IPSHF 85,
 IPSHF 23.
 PUSHF XF
 FNUL;FSUB
 Pustif TF
 FSUB
 IPSHF .DOZ
 FMUL
 IPSHF de
 FADD
 POPF Q
 COMPUTE RM
 FIRST FIND EQULIG LINE INTERCEPT (X)
 PUSHF XF
 PuSif
 IPSHF 1.
 FSUD:FDIV
 IPSHF.498
 FAOD
 PUSHF Q
 PTOF
 IPSHF 1.
 FsubifoIV
 IPSHF . 566
 FSUZiFDIV
 的
萨
SECONO , FIND Y. FOR X INTERCEPT
ptof
IPSHF .566
FMUL
IPSHF.498

```
```

FADO
THIRD FIND RM
POPF YP
PUSHF YG
XCHF;FSUB
PUSHF XD
Pushf Yg
FSUB;XCHF:FDIV
POPF. RM
cOMPUTE NM
PUSHF XO
PUSMF XB
FMUL;CHSF:PTOF
PUSHF. XD
FADU:XCHF
PUSHF XB
FADUPFDIVILOG
IPSHF 1.6
FMUL
POPF NM
COMPUTE R FROM GILIILAND CORREGATION
PUSHF RM
IPSHF 10
FADD
PUSHF HNYE
FMUL
PUSHF NM
PUSHF STAGES
FOIVIEXP
PUSHF HNYA
FSUG;FDIV
IPSHF \&
FSUB
POPF - R
COMPUTE F (GMOLE/MIN)
IPSHF 220.
PUSHF XF
FMUL
IPSHF 992.
XCHF;FSUB
IPSHF 14.
PUSHF XF
FinUL
IPSHF 18.
FADU;FDIV
PUSHF F
FMUL
POPF FM

```
```

由
*
PuShF XB
FSUG
PUSHF XD
PuSNF XB
FSUB;FDIV
PUSHF FM
FMUL
PUSHF R
FMUL
POPF LM
COMPUTE LR (L/MINJ
IPSHF 14.
PUSHF XD
FMUL
IPSHF 18.
FADD
PUSHF LM
FMUL
IPSHF 957.
IPSHF 170.
PUSHF XD
FmulifgSUBifoIV
POPF LV

* COMPUTE VM (GMOLE/MIN)
* USING THE NONmEQUIMOLAL
* UVERFLOW ANALYSIS
*
*

CAlCulate D
PUSHF XF
PUSHF XB
FSUB
PUSHF XD
PUSHF XB
FSUd;FOIV
PUSHF FM
FMUL
PYOF
POPF RM SAVE DISTILLATE FLOW IN RM

* calculate the internal reflux flow
PUSHF R
FMUL
IPSHF 1.11 (R(INT)=1.11R(EXTJ)
FMUL
calculate liguId flow above the feed plate
IPSHF 7.55
PUSHF XD
FSUB;FMUL
IPSHF 7.55

```
```

 PUSHF XF
 FSU甘&FDIV
 * cabculate biquid flow belom the feed tray
PUSHF FM
PUSHF a
FMUL;FADD
 * calculate inguid flow into reboiler
IPSHF 7.55
PUSiAF XF
FSUB;FMUL
IPSHF 7.35
FOIV
* compute vapour flow from reboiler
PUSHF FM
FSUB
PUSHF RM DISTILLAYE FLOW STOHED IN RM
FADU
POPF VM
COMPUTE QS (KG/MIN)
PUSHF VM
IPSHF 55.2
FDIV
PUPF QS
UNTHRD
\!
* jump to second part df ff controller
FFCOMP EQU S2ADD
JMP FFCOMP
*
* APU EKROR HANDLER
*

ERR UNTHRD
l
LDX \#ERRM
SWI
FCB \$12
RTS
ERROR MESSAGE
*
ERRM FCC /APU ERROR IN FF CONTRDLLER PT 1/
FCB $7.$D,\$A.\$4
ENO

```
```

* *********************由***************
* * FEEDFURNARO CONTROLLER PART II *

的
* FEEDFORWARO COMPENSATOR
ORG S2ADO
*

FFCOMP LDX *ERR
STX ERRADR
JSR APUDRV
l
*
*
FIRST LR LOOP
puSrif LV
PTOF
PUSHF YNPIA
FSUB
PuStif KA!
FMUlifado
POPF ZNA
PUSHF YNPIA
PTDF
PUSHF LV
FSusichSF
PUSHF KAZ
FMUL;FADO
POPF YNPIA.
NOW QS LOOP
PUSHF OS
IPSINF O.O7 (ADD .07 KG/MIN FOR LOSSES)
FADU;PTOF
POPF QS
PPOF
PUSHF YNP!B
FSUB
PUSHF KB\&
FMUL;FADD
POPF ZNB
PUSHF YNPIB
PTDF
PUSHF QS
FSUB;CHSF
PuSHF KBZ
FMULIFADDD
POPF YNPIB

```


```

 PUSHF KS8 GAIN
 FIAULIFIXS
 PUSHS SP4 ADD TO SP
 SADD
 POPS SP4
 UNTHRD
 l
*
*
l
ERR UNTHRO
l
LOX \#ERRM
SWI
FCB \$12
RTS
ERROR MESSAGE
ERRM FCC /APU ERRORIN FEED FDRWARD CALCULIATION/
FCB \$7,$0,$A,67,\$4
RTS
END

```
```

*

| **

* * FEEDBACK SECTION OF FEEUFORWARU CONTROLLER

ONGG \$2CDO
COMPUTE DV FOR LV LOOP
LDX
ASLA ADJX
LDAA D,X
ANDA WSOF REMOVE CHID
STAA TEHP!
LOAA 1,X
STAA TEMPI+g
LDAA SP1 GET SP
LOAB SPI+!
SuBG TEMP1+1
SECA TEMPI
STAA CIA+5 SAVE ERROR
STAD ClA+6
LDX \#ERRM
STX ERRADR
JSR APUDRV
FIRST LV bOOP (USE F.P. TO PREVENT OVERFLOW)
*

PUSHS CIA
FLTS
PUSHS C!A+5
FLYS;FMUL
PUSHS CIA42
FLTS
PUSHS CLA*7
FLTS;FMULIFADD
POPF MULT\& SAVE DV
UNTHRD
BRA CTL3
LDX \#S80
STX MULT\& SET DYED
LDX \#क人
STX MULTI*Z

```

```

 PUSHF VPN
 FADU
 PTOF
 POPF VPN&
 IPSMF 256.
 FDIVIFIXS
 POPS TEMP\
NOW QS LOOP
PUSHF MULT\&
PUSHF KQS
FMUL
PUSIIF PROD
FADD
PUSHF VPN4
FADO
pYOF
POPF VPN4
IPSHF 256.
FOIVIFIXS
POPS TEMPZ
UNTHRO
NOW COMEINE FF AND FB CONTROLLERS
LV LOOP FIRST
LOAA TEMP!
LUAB TEMPI*\&
ADDE OALR+\&
ADCA DALR
JSR OVERFL
TSTA CTLG
TSTA CTLG
BEQ CTLT
LDAB \#\$FF
BRA CTLT
CTL6
QS LOOP TEMPZ
LOAB TEMPZ+\&
ADDB OAQS+1
ADCA DADS
JSR OVEKFL
TSTA CTLB
TSTA CTLB
BEQ CTLG
BEQ CTL.G
BRA CTL.9
CTI.8
CTLg STAB VNENA
*
*
CLRB VNEWA
COMPLETE
RTS

```
```

* SUBROUTINE TO INCR X BY CONTENTS OF A (UNSIGNEDJ
*

ADJX TSTA
BEG AD2
AD1
AD2
*

- OVERFLOW SUEROUTINE
* DETECTS OVEKFLOWS ON 16 BIT INTEGER ARITHNETIC
*
*

OVERFL BVS OVZ OVEFLOW%
0vz
OV\&
CLRB
RTS
*

* ERROR HANDLER
*

ERRM UNTHRD
!
LDX \#ERRMS
SWI
FCB PMSG
RTS
*
*
*
ERRMS
ERROR MESSAGE
FCC /APU ERROR IN PIFS ROUTINE/
FCB S7,$0,$A,\$3
END

```
```

*

```

```

* ADAPYION ROUTINE FOR FEEDFORWARD CONTROLLER *

```

```

* MODIFIES STAGES USING THE GILLILANO CORRELATION
*
*

ADAPT TSTA SFD ADAPT %
BNE AD\& YES
RYS NO
CALCULATE CURRENT REFLUX FLOW
LDAA VNEWI
STAA REFLUX+1
CIRA
STAA REFLUX
INTO APU
LOX \#ERR
STX EMRADR
JSR APUDRV
COMPUTE REFLUX IN MOL/MIN
PUSHS REFLUX
FLTS
PUSHF LVG
FSUB
PUSHF LVM
FDIV
PUSHF RXD DENSITY
IPSHF =170.
FMUL
IPSHF 95%.
FADD;FMUL
PuSirF RXD M.WT.
IPSHF 14.
FHUL
PuSHF \&8.
FADUIFDIV
POFF REFLUX SAVE
COMPUTE RM
PUSHF XF
PUSifF 0
IPSHF \&.
FSUB;FOIV
IPSHF .498

```
```

FADO
PUSHF O
PTOF
IPSHF I.
FSUBPFDIV
IPSHF .566
FSUB;FDIV
PTOF
IPSNF .566
FMUL
IPSHFF.498
FADD
PTOF
POPF YGAD
XCHF;FSUB
PUSHF RXD
PUSHF YGAD
FSUB;XCHF;FOIV
POPF RMAD
COMPUTE NM
PUSHF RXD
PUSHF RXW
FMULICHSF;PTOF
PUSHF RXD
FAOU;XCHF
PUSHF RXW
FADD:FDIV81.OG
IPSHF \&.6
FMUL
POPF NMAD
COMPITE R
PUSHF REFLUX
PUSHF RXO
PUSHF RXW
FSUB\&FMUL
PUSHF FM
FDIV
PUSHF XF
PUSHF RXIN
FSUB;FDIV
POPF RAD
compute stages
PUSHF RMAD
IPSHF d.
FADD
PUSIF RAO
IPSHF \&O
FADU;FDIV
PUSHF HNYB

```


\section*{APPENDIX V}

\section*{CROSS-ASSEMBLER AND PRE-ASSEMBLER}

A cross-assembler, XASMBL, was written to produce executable code for the Motorola M6800 microprocessor. The documentation manual for this program is given at the end of this appendix. A pre-assembler, PREASS, was written to translate the mneumonics and macros associated with the Am95ll arithmetic processing unit (APU) described in Chapter 4, into standard assembly language form for XASMBL. The macros defined in PREASS were divided into three groups:
(i) Those involving APU commands (single byte);
(ii) those involving direct mode APU input/output (single byte command, two byte addressl;
(iii) those involving immediate mode APU input (single byte command, data bytes).

For case (i) the macro was replaced by an assembler form-constant-byte directive with the appropriate byte, e.g.

FMUL
was replaced by
FCB 18
for a floating point multiply operation. Several APU commands could be given on a single line using a semicolon dilimiter. In case (ii), the command was also replaced by a form-constant-byte directive, but was followed by a form-double-byte directive containing the address of the source bytes or destination bytes for the command, e.g.

PUSHF NUM
was replaced by
FCB 95
FDB \#NUM
for a floating point load into the APU where \#NUM is the address of
the variable NUM . The FDB directive was replaced by the actual address of NUM by XASMBL. In case (iii), the command was again replaced by a form-constant-byte directive, followed by either two or four bytes of data defined in one or two form-double-byte directives. The data for the immediate mode operations was placed within the threaded code. The only operations using immediate mode were the push on to the APU stack operations: IPSHS, IPSHD, IPSHF. PREASS allowed the data associated with immediate mode operations to be represented in any standard FORTRAN type form, and translated this form to the appropriate bytes for the APU, e.g.
\[
\text { IPSHF } 2.0
\]
was replaced by
FCB \(\quad 92\) (the command code)
FDB 640,0 (APU representation in floating
point of 2.0 )

In this example the floating point value 2.0 would be pushed on to the APU stack.

PREASS processed code between two delimiters which were chosen to be left square brackets [ (\$5B) . All other code outside the delimiters was left untouched. All translations of mneumonics, addresses, and constants were decimal based, and eventually converted to hexadecimal base by XASMBL. PREASS also supplied definitions of the starting address of APUDRV, the APU interpreter, and the error handler pointer address ERRADR as
\begin{tabular}{lll} 
APUDRV EQU & \(\$ 2000\) (The \(\$\) indicates a base 16 number) \\
ERRADR EQU &
\end{tabular}

These definitions were made at the beginning of the source program.
Operation of PREASS was straightforward; two files were used, one was named as the input file and contained the threaded code sections to be translated, the second was named as the output file containing the translated code. Any errors detected by PREASS were marked in the output
file as an assembler comment preceded by an asterisk. The total number of errors was displayed on the console to the user.

A sample program showing the format of the pre-assembler source code is shown in figure \(V-1\), along with the output file from PREASS showing the translated sections. Table V-1 is a summary of the available commands to APUDRV.

TABLE V-1
SUMMARY OF APUDRV COMMANDS

HEXADECIMAL CODE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 00 & 10 & 20 & 30 & 40 & 50 & 60 & 70 \\
\hline 0 & NOP & FADD & - & - & BEQ & UNTHRD & - & - \\
\hline 1 & SQRT & FSUB & - & - & BNE & LOOP & - & - \\
\hline 2 & SIN & FMUL & - & - & BLT & PRINT & - & - \\
\hline 3 & \(\cos\) & FDIV & - & - & BGE & ENTER & - & - \\
\hline 4 & TAN & - & - & CHSD & BLE & - & - & CHSS \\
\hline 5 & ASIN & CHSF & - & - & BGT & - & - & - \\
\hline 6 & ACOS & - & - & DMUU & BCS & - & - & SMUU \\
\hline 7 & Atan & PTOF & - & PTOD & BCC & POPS & - & PTOS \\
\hline 8 & LOG & RUPF & - & RUPD & BRA & POPD & - & RUPS \\
\hline 9 & LN & XCHF & - & XCHD & - & POPF & - & XCHS \\
\hline A & EXP & PUPI & - & - & BEN & IPSHS & - & - \\
\hline B & PWR & - & - & - & BEZ & IPSHD & - & - \\
\hline C & - & FLTD & DADD & - & BEA & IPSHF & SADD & - \\
\hline D & - & FLTS & DSUB & - & BEU & PUSHS & SSUB & - \\
\hline E & - & FIXD & DMUL & - & BEO & PUSHD & SMUL & - \\
\hline F & - & FIXS & DDIV & - & BER & PUSHF & SDIV & - \\
\hline
\end{tabular}


\section*{XASMEL}

A CROSSaASSEMSLER FOR THE MOTOROLA M68DO TO RUN ON A PDPII UNUER RT-II.

\section*{introouction}
```

-m-0-0-mom

```

XASMBL IS A CROSS■ASSEMBLER FOR THE M6BOD MICROPROCESSOR， WRITTEN IN FORTRAN FOR EXECUTION ON A PDPI！CUMPUTER UNDER THE RTEI\＆ OPEKATING SYSTEM．IT IS A SUBSET OF THE MOTUROLA ANU AMI ASSEMBLERS， THE MAIN UIFFERENCES BEING THAT MACROS，CONOITIUNAL ASSEMBLY AND RELOCATABLE CDOE ARE NOT SUPPURTED．THESE RESTRIETIONS ARE EASILY OVERCOME USING THE RIOIL UTILITIES AND EUITORO BUT ALLOW THIS CROSS ASSEMBLER TO RUN IN AS LITTLE AS LんK OF MEMORY．
```

PROGRAM CONSTRUCTIGN

```

OVEKLAID（FOR LZK SYSYEMS）
```

-R LINK

```
* XASMDL《XASI/F/CくCR\%
*XAS2/0:1/C
*XAS3/0:1/C
* XAS4/0:2
*
XASMELPSAV IS READY TO BE USED.
PROGRAM USE
WHEN XASMBL IS EXECUTED, IT ASKS FOR THE SOURCE, LOAD AND LIST FILE
NAMES IN TUKN, FOLLUWING THE KTEII SYSTEM CONVENTIONS, FOR EXAMPLEBO
- \(R\) XASMBL
6BOD MICROPHOCESSDR CROSS ASSEMDLER, VERSYON \& BA
SOURCE FILEX RK:CONTRL.MIC\&CRD
LOAD FILE' PP:SCRD
LIST FILET CONTRLOLST\&CR\&
ERRORS DETECTED 0
SAMPLE PROGRAM

THE LIST OUTPUT FROM XASMOL FOR THE SUPPLIEU SAMPLE PROGRAM FOLLOWS．THAS SAMPLE PROGRAM CAN UE USED TO CHEGK THE OPERATION OF THE ASSEMGLER PROGRAM．
```

| TEST FOR MUL 8 | | | XASMAL $\triangle 6800$ ASSEMBLER PAGE | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | NAM | TEST FOR | MULe | |
| | 0100 | ORG | \$100 | | |
| 0200 | 96 | LDAA | 510 | | |
| | 10 | | | | |
| 0102 | D6 | LDAB | \$20 | | |
| | 20 | | | | |
| 0104 | BD | JSR | MUL 8 | CALL MULTSPLY | Y S/R |
| | 01 | | | | |
| | DC | | | | |
| 0207 | $3 F$ | SWI | | . | |
| 0108 | 81 | FCB | 581 | | |
| 0109 | $7 E$ | JMP | 5FOEO | RETURN TO | PROTO |
| | Fo | | | | |
| | 00 | | | | |

 * MUL8 MULTIPLIES THE UNSIGNEO A&BIY INTEGERS
 * IN THE A ANO B REGISTEKSP T'O GIVE THE 16mBIT
 * RESULT IN A.B.
 *
 OIDC
210
0110 3
0112 4
0113 56
0114 24 M
0116 A
0118 4
0119 5
O11A 6
011C 26
O\$1E S! IN
011F 3I INS
0120 39 RTS
0121 08 EIGHT FCB B
ERRORS OETECTED Q

```
```

TEST FOR MUL\&

```
TEST FOR MUL&
MUL8 GIGC EIGH
MUL8 GIGC EIGH
SYM&OL TABLE
SYM&OL TABLE
012& MT 0114 MF 0128
```

012\& MT 0114 MF 0128

```

\section*{SOURCE PROGRAM FORMAT}

THE SOURGE PROGRAM MUST RESIDE ON A MASS BTORAGE DEVICE, AND CONSIST OF A SEQUENCE OF LINES IN THE FORI: \(:\)

《LABELP SOPERATORD ©OPERAND> SCOMMENT>
THE LABEL AND COMMENT FIELDS ARE OPTIONAL AND THE OPERAND FIELD IS INCLUUED AS REQUIRED. THE FIELDS ARE SEPAFATED OY ONE OR MOKE BLANKS OR TABS.

BLANK LINES ARE ILLEGAG (SEE THE ASSEMBLER DIRECTIVE SPC). COMMENT LINES CAN BE INDJCATEU GY AN ASTERISK (*) IN COLUMN ONE. THE LABEL FIELD, IF PRESENT, MUST START IN COLUAN DINE, AND THE FIRST DELIMm IYING BLANK IS NOT GPTIONAL. THE MAXIHUM LINE LENGTH IS 8D GHARACTERS.
```

OUTPUT FILE FORMAT

```
-momex-momex-monem

TWO FILES ARE CREATED BY XASMBL THE ASSEMBLED LOAD FILE IS FORE matted in records to the motorola and the ami hex tape format. it can be stured on a mass storage device fok sudseguent punching to paper tape OR PUNChED IMMEDIATELY, TO BE LOAUEU ZNTO THE MICROPRUCESSOR.

THE SECOND FLLE IS A LISTJNG IN THE FDRMAT OF THF FOGGOWING\&a
DOFF CE LADR LDX FSTRING COMMENT
D 1
QOFF IS THE ADDRESS OF THE ASSEMBLED INSTRUETION. CE (ANO GELUN) IS THE GENERATED FHOGRAMi COOE. LADR IS THE LABEL.
THE OPERAYION CODE MNEUMONIC IS LOX. TMIS POSITION MAY ALTERNATIVELY SHON AN ASSEMGLER DIKECTIVE.
STRING IS THE OPERAND.
ALL LISTED VALUES, OPEKATION CODES AND INSTRUCTIONS ARE
LISTED IN THE HEXADECIMAL NUMBER EASE.

SYMBOLS


XASMBL MAINTAINS A \(s\) INGLE SYMHOL TABLE COHTAINTNG THE PERMANENT AND USER UEFINED SYMBULS. PERMANENT SYMGOI.S ARE THE INSTRUCTION MNEUHIONICS ANO ASSEMBLEE DIRECTIVES, AND NEED NDT BE DEFINKO. USER SYMEDLS ARE THOSE USED AS GAEELS DR DEFINED BY THE EGU OLRECTIVE. THEY MUST GE CONSTRUCTEU AS FOLLONSAE
- THE FIRST GHARACTER MUST BE ALPHABETIC
- UP TU FIVE Al.PHANLMEKIC CHARACTERS MAY FOLLOW
- EACH SYMBOL MUST BE UNIGUE
- SPACES, TAGS AND OTHER SFECIAL CHARACTEPS ARE IGLEGAI. WITHIN THE SYMBOL.

LOCAL SYMEOLS ARE NOT SUPPORTEO.
```

ASSEMBLY LDCATION COUNPER

```


THE ASTERISK (*) REPRESENTS THE ASSEMBLY I DCATION COUNPER (IE THE ADDRESS OF THE CURRENT INSTRUCTION) WHEN USEO IN THE OPERAND FIELD. FOR EXAMPLE, THE STATEMENT

ORG * \(+\$ 100\)
INCREMENTS YHE ASSEHBLY LOCATION COUNTER BY 256, LEAVING AN UNCHANGEO 256 BYTE BLOCK.

NUMEERS
```

NUNGERS CAN BE REPRESENTED IN ANY UNE OF FOUR BASES BINARY, OCTAL, DECIMAL OR HEXADECDMAG: NUMEERS HAVE THE GENERAG FURM
<QUALIFIERPCNUMBERD
WHERE SQUALIFIER' CAN BE
\% FOK EINARY, FOR EXAMPLE, \% 10 (2 (BASE TEN)

- FOR OCTAL, FOR EXAMPLE, BIK E B(BASE TEN)
\& FOR HEXADECIMAL, FOR EXAIMPLE, EID IG(BASE TEN)

```
any numger without qualifier is assumed to be decimaba
ADDRESSING MOUES
(1) INHERENT AND ACCUMULATOR MODES

IN THESE MODES THE OPERAND IS IMPLIED BY THE OPERATION CODE. FOR EXAMPLE:

TSTA
INX
NOTE THAT FOR ALL OPERATION CODES INVOLVING AN ACGIJMULATOR, THERE MUST NOT BE A BLANK BETWEEN THE OPERATION CODE AND THE ACCUMULATOR INDICATOR, FOR EXAMPLE:
```

YSTA IS ILLEGAL
TSTA IS VALID

```
(2) IMMEDIATE MODE

FOR THIS MUOE, THE OPEKAND IS ASSEMBLEU AS PART OF THE INSTRUCTE ION ITSELF IN ONE OF THE FORMS:m
```

 #&VARIABLE%
 OR \#<NUNGER*
OR "<SINGLE CHARACTER>

```
FOR EXAMPLE\&
    LDAA GLOCN THE ADDRESS OF LOCN IS PUT INTO ACCUMULATOR A
    LOAA \(\$ \$ 16\) THE HEXADECIMAL NUMEER IG IS LOADED INTO A
    LDAB \({ }^{\circ} \mathrm{N}\) THE ASCII CODE FOR THE CHARACTEK \(N\) IS PUT INTO B
(3) INDEXED MODE
    IN THIS MOOE, THE EFFECTIVE OPFRAND ADURESS IS THE SUM OF AN
OFFSET PLUS THE CONTENTS OF THE INOEX REGISTER, FGR EXAMPLE:a
    LDAA 17.X
THE ACCUMULATOR WILL BE LOADED WITH THE DAYA AT THE AODRESS GdVEN BY
THE CONTENT OF THE \(X\) REGISTER PLUS 27.
(4) RELATIVE mODE
    FOR BRANCH INSTRUCYIONS, THE TARGET ADDRESS OF THE BRANCH
IS THE ADDRESS OF THE NEXT INSTRUCTION PLUS THE OPERAND, WHICH MUST
BE IN THE RANGE - 226 TO \(+127 . \quad\) FOR EXAMPLE\&m
    BGT ERROR IF THE CONDITION CODES ARE SET, EXECUTION
                                WIGL CONTINUE FROM THE LABEL ERROR.
(5) OIRECY ANU EXTENUED MODE
    THE FORM OF THESE THO MODES OF ADDRESSING IS THE SAME.
FOR EXAMPLE:
    LDAA STURE
    LDAB DATA
THE DIRECT MODE IS USED IF THE SYMBOL HAS BEEN DEFINED IN THE FIRST 256
WORDS OF CORE, AND USES ONL.Y TWO BYYES. OYHERNISE, EXYENDED ADORESSING
IS USED, REOUIRING THREE BYTES.
ASSEMBLER OIRECTIVES
ASGMBLER DIRECTVES
END e END OF SOURCE PROGRAM. END MUST bE PRESENT AS THE LAST LINE
    OF THE SOURCE PROGRAM.
EQU - EUUATE SYMBOL THIS OIRECTIVE ASSIGGS TO A SYMBOL A VALUE,
    WHICH MAY BE A NUMEER OR AN EXPRESSIDN IN TERMS
    OF PREVIOUSLY DEFINEO SYMBOLS, FOR EXAMPLEBE
DATA EUU \$FC DATA HILI bF USED AS having the value oa
ADOR EQU DATA=甘 ADOR WILL BE TAKEN AS ©IC
```

FCB : FORM CONSTANT GYTE, FCB MAY HAVE A NUMAER OF ARGUMENTS SEPARE
ATED BY COMMAS, WITH UNE BYTE BEING ALLOCATEO TO HOLD THE VALUE
OF EACH OPERANO. SUCCESSIVE COMMAS GENERATE ZERO GYTES.
FCB -L,Z THREE BYTES CONTAINING O,L,2 ARE FORMED
FCC F FORM CONSTANT CHARACTERS. THE FCC OLRECTIVE TRANSLATES CHARACTERS
INTO THEIR 7mBIT ASGII EQUIVALENTS ANO ALLOCATES STURAGE. TWO
FORMATS MAY BE USED:m
(1) <COUNT>, \&TEXT> WHERE <COUNT\ IS THE NUMBER OF CHARACTERS

```

```

 (2) SDELIMITER\STEXT><DELIMITER\ WHERE SDELIMIYERS MAY BE ANY
 NONmBLANK CHARACTER, NOT UCCURRING IN <TEXT>, EUT SERVING
 TO UEFINE ITS EXTENT. IF <DELIMITERD IS A NLMAER, THEN
 <TEXT> MUST NOT BEGIN WITH A NUMUER, FOR EXAMPLE:=
 MSSGE FCC II.INPUT ERROR
 MSSGE FLC IINPUTERROR! THESE TWO LINES ARE EQUIVALENT
 FOB = FORM UDUBLE BYTES. THIS OIRECTIVE IS SIHILAR TO THE FCB DIRECTO
IVE EXCEPT THAT EACH OPERANO IS ASSIGNED TWO BYTES, FUR EXAMPLE\&`
ADDRS FDB ,15.5EF,\$AFF
WILL GENERATE OO ODOD OF OD EF \&AFF.
NAM m NAME. THIS DIRECTIVE OUTPUTS A HEADER RECURD TO THE OBJECT
FILE AND HEADS EACH PAGE OF THE LISTING WITri THE TEXT WMICH IS THE
OPERAND. ONLY THE FIRST 30 CHARACTERS ARE SIGNIFICANT, FOR
EXAMPLE:=
NAM DEMONSTRATION PROGRAM
OPT = OPTION OEFINITION. THE ASSEMBLEK DUTPUY CAN BE CONTROLLED
WITH THE ARGUMENTS OF OFT. NO LABEL MAY BE USED, AND THE OPTIONS
ARE WRITTEN IN THE OPERANG FIELD SEPARATEO BY COMMASIE
LONG FORM SHORT FORM

```

```

 NOOTAP NOO SUPPRESS LOAD FILE
 NOLIST NOL SUPPRESS LISTING
 NOSYMB NOS SUPPRESS SYMPOL TABLE LISTING
 FOR EXAMPLE:-
 OPT NOO,NOLIST,NOS TO DUTPUT ERROR GOUNT ONLY
    ```
```

ORG DRIGIN DEFINIYION. THE PROGFAMMEP CAN DEFINE AND REDEFINE
ThE ABSOLUTE ADORESS WHERE THE NEXT AND FULLOWING ASSEMBLED
INSTRUCTIQNS ARE TO START. THE OPERAND MAY BE A NUMGER
OR AN EXPRESSION, FOR EXAMPLE:=
ORG \$100
ORG *+\$200
THE FIRST LINE SETS THE ASSEMBLY LOCATION COUNTER TO 256, WHILE
THE SECONO SETS IT 256 BYTES FURTHER ON:
Page - Page advanceg the listing is advanced yo the top of the next
PAGE, AND PRINTS THE HEADING SPECIFIED IN THE NAM DIRECTIVE.
THE PAGE DIRECTIVE ITSELF IS NOT LISTED.
RMB - RESERVE MEMORY BYTES. THIS DIFECTIVE RESERVES A BLDCK OF MEMORY,
WITH SIZE GIVEN BY THE UPERAND, FOR EXAMPLE
RMB 64
RESERVES 64 BYTES. THE ACTION OF THE DIRECTIVE IS MERELY TO
INCREASE THE LOCATION CUUNTER ANO THE CONTENTS OF THE MEMORY
BLOCK ARE NOT CHANGED.
SPC SPACE LINES: THIS DIRECTIVE PROVIDES THE NUMBER OF BLANK LINES
IN THE LISTING AS DEFINED BY THE OPERAND, THE SPC LINE IS NOT
LISTED.

```

\section*{APPENDIX VI}

STEADY STATE BINARY COLUMN MODEL PROGRAMS

\section*{VI. 1 SYSHDL}

SYSHDL was written to handle the system property data for the binary column model program SSGW. A listing of the program, and a sample output of the system data for methanol/water (using the data of Appendix VII) follows.
```

FORTRAN IV
C
C
C
C
C SYSYEM PROPERTY FILE HANDLER
C
C
C PURPOSE: TO INPUT SYSTEM PROPERTY DATA
C AND CREATE DISK FILE FOR DTHER FROGRAMS.
C
C
C GRANT WILSON
C APRIL 1976
C PART OF COLSYM PACKAGE
000:
0002
0003
C
0004
0005
0006
0007
0008
0010
0011
0012
0013
00.4
0.15
0.16
017
0018
0.19
0020
0021
002z
0023
0024
0025
00.6
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036

```

VOZ.1日1 \(T \quad 06=N \quad 79\) 00:42:20
************
- SYSHDL

SYSYEM PROPERTY FILE HANDLER AND CREATE DISK FILE FOR OTHER PROGRAMS,

GRANT WILSON
APRIL 1876
PART OF COLSYM PACKAGE
DIMENSION EQS(41)
DIMENSION LBL(25)
DXE0.025
C
WRITE(7.100)
SOD FORMATGO REQUESTING SYSTEM PROPERTIESP/P DO YUU HAVE A DISK FILE 1 AVAILABLE \({ }^{\circ}\) ) REAO (5,300) IGRE
300 FURMAT (AZ) IF (IQRE,NE, \({ }^{\circ} Y E^{\circ}\) ) GOTO 10 WFITE (7,105)
105 FORMATY/ INPUT FILE NAME THUS: AA:FILNAM.DAT /J
CALL ASSIGN(1G, \({ }^{\circ} A A B F I L N A M\).UAT \({ }^{\circ}=1,{ }^{\circ}\) KDO \({ }^{\circ}\) )
KEAU (10,330)LEL
READ (10,310)CP1, CP2,CP3,CP4

READ (10,310)EVE,EV1,EV2,EV3,EV4,EVS
READ (10.310)AMN1, AMW2
REAU (10,310)RH1,RH2,RH3,RH4,RH5,RHG
READ (16,310) TSO,TS1,TS2,TS3,TS4,TY5
READ (10,310) UHV
READ (10,350) (EGS(N), J=1.42)
310 FORMAT (6E12.5)
350 FORMAT (9F7.4)
GO TO 30
C
C COMMENCE DATA INPUT FKOM TERMINAL
c
10 CONTINUE WRITE (7,295)
295 FORMAT( \({ }^{\circ} \mathrm{E}\) INPUT TITLE LINE \(/ 1\) )
READ (5, 330)LBL
330 FURMAT (25AC)
WKITE(7, 210)
C
WRITE (7,110)
110 FORMAT (OINPUT COEFFICIENTS FOR HEATCP=CPI,CPZ,CP3,CP4*/J
READ(5,320)CP1,CP2,CP3,CP4
320 FORMAT (6F1!.0)
WKITE(7,d15)

```

FORTRAN IV VO2.1=1 T O60N =79 UQ:42:20 PAGE QDE

```

0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055 0056 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068

0069

0072
0073 0074 0075 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090

PAGE OOD
READ (5,320)ELG,EL\&FELZ,EL3,EL4,ELS WRITE 7,120 )
120 FORMAT \({ }^{\circ} D\) INPUT COEFFICIENTS FOR EVGEVO,EVI,EVR,EVZ,EVA,EVSO \(O\)
READ (5,320)EVD,EV\&,EYZ,EVZ,EV4,EVS WRITE(7,125)
125 FURMATCO INPUT COEFFICIENTS FOR MH®AMWD.AMWE*/J \(\operatorname{READ}(5,320) A M N 1, A M N 2\) WRITE (7.130)
130 FORMAT ( \({ }^{\circ}\) O INPUT COEFFICIENTS FOR DENSITIESORHIFRH6 \(/\) )
READ (5, 320)RHA,RH2, KH3,RH4,RH5,RHG WKITE(7.131)

READ (5,320) TSU,TS1,TS2,TS3,TS4,TSS WRITE(7,137)
137 FORMAI (/' INPUT HEAT GF VAPOURISATIUN FOR REBOILER STEAM \(/\) ) READ (5,320) OHV WRITE (7.134)
134 FORMAT(/PDO YOU HISH TO USE GST REL VOL (YES/NO): ') READ (5,300) IQRE IF (IQRE.NE. \({ }^{*} Y E^{P}\) ) GO TO 11 WRITE(7,136)
136 FORMAT (/' INPUT CST REL VOL \(/ / J\) READ (5,320) ALFA DO 12 JE 1, 48 \(X T=D X *(J \times 1)\) EQS (J) =ALFA*XT/(1』 \(\left.+\left(A L F A=\ell_{\theta}\right) \times X T\right)\)
12 CONTINUE
GO TO 20
11 CONTINUE WRITE (7,13?)
132 FORMAT \({ }^{\circ}\) OINPUT EQULIERIUM DATA TABLE" \(1^{\circ}(41 \text { Y VALUES FOR AN } X \text { SPACING OF } 0.825)^{\circ}\)
2* 10 POINTS TO A LINE IN IDF6.6:/J
READ (5,355) (EOS (J),JEd,41)
355 FORMAT (10F6.0)
C
C
\(C\)
\(C\)
\(C\)
C
20 CONTINUE
create disk fale?
WRITE (7,135)
135 FORMAT (/ SOO YOU WISH TO CREATE A OISK FILE FOR FUTURE USE? 'J READ (5,300) IURE IF (IURE.NE, PYEPS GO TO 30 WRITE (7.14D)
140 FORMAT(/ ENTER DISK FILE NAPYE THUS AA:FILNAM,DAT \%/)

WRITE (11,330)1.BL
WRITE (11,310) TP1, CP2,CP3,CP4
WRITE (11,310)ELGPEL1,ELZ,EL3,ELA,ELS WRITE (11,31D)EVO,EV1,EV2,EV3,EV4,EVS WRITE (11, 310)AMW1,AMW2
WRITE (11,31E)RHI, KH2, KH3, RHA, RH5, KH6
WRITE (11,316) TSQ,TS1,TS2,TS3,TS4,TS5
WRITE(11,310) OHV
WRITE (11,350) (EQS(J),JE1,41)
WRITE (7,145)



\section*{SYSTEM PROPERTIES}

METHANOL/WATER BINARY SYSTEM DATA HEATCP= (CPIT \(\phi C P 2) X+C P 3 T+C P 4 \quad K J / M O L K\)
\(E L \Xi((() E L S X+E L 4) X+E L 3) X+E L 2) X+E L 1) X+E L O K J, M O L E\) EVa( ( ( EVSY \(+E V 4 J Y+E V 3) Y+E V 2) Y\) YEVI) Y中EVO KJ/MOLE
MNaAMwi \(X \neq A M W\) ?
MOLECLLAR WEIGHT
RHO =RHI + RHET + (RH3 + RHAT) X
GM/CC(SUBCOOLED)
RHUERHS*RH6X
\(T=((\) ( \(T S 5 X+T S 4) X+T S 3) X+T S 2) X+T S 1) X+T S 000\)
UHVECONSTANT
CF1 O.67000E-07
C.PA \(\quad 0.74670 E=01\)

ELD \(\quad 0.75240 E+D 1\)
E63 - \(0.38970 E+02\)
EVロ \(0.48 i 10 E+02\)
EV3 \(\quad \triangle, \triangle O Q O E E+D O\)
AMWI \(\quad\) Q.14024E+02
RHI \(0.100650 E+01\)
RH4 \(\quad-0.60352 E=03\)
TSQ \(0.99936 E+02\)
CP?
\(\begin{array}{rr}E L 1 & -B .13636 E+D 2 \\ E L 4 & 0.26476 E+0 C\end{array}\)
EVI \(\quad 0.90840 E+01\)
E. WOUODE +00
E. \(18016 E+\) D2
\(-2.36162 E-03\) RHS \(\quad\) R. \(19574 E+00\)
\(0.97000 E+00\)
\(-0.16270 E+03\)
RH
TS2
\(=0.23230 E+02\)
\(0.50190 E+03\)
TS3 \(\quad 0.87420 E+03\)
\(0.73780 E \$ 03\)
VARIABLE
VALUE
\(0.13400 \mathrm{E}=04\)
\(0.33930 \mathrm{E}+02\)
O.ODODOE 0 O6
\(6.14900 E+01\)
\(0.02000 E+00\)
\(-10.24000 E+03\)
EQULIBRIUM Y VALUES FOP A SPACING OF Q.DOS IN X
0.0600
0.1550
0.5480
0.5790
0.3450
0.6660
0.4180
0.6270
0.4700
0.5170
0.6820
0.7648 0.7790
0.7790
0.7120
0.6470
0.6656
0.7500
\(0.8250 \quad 0.8310 \quad 0.8460\)
\(0.8930 \quad 0.9040 \quad 0.9150\)
0.858
\(0.8000 \quad 0.8130\)
0.92640 .9360
0.9580
\(0.9670 \quad 0.9790\)
0.9900 1. 0000
VI. 2 SSGW

The model equations described in Chapter 6 were programmed and solved in an interactive program SSGW. A listing of this program and a sample output from the program follows.

```

FORTRAN IV VO2.1m\& T DSNN -79 D2%0|829 PAGE BOI
OODI
C PURPOSE: TO INPUT SYSTEM PROPEKTY DATA FROM DISK FILE
C GRANT WILSON
C NOVEMBER }297
C
COMMON/EQDATA/EG(41),EQS(41),EMV(5),DX
COMMON/SYSPRR/CP1,CP2,CF3,CF4,ELD,ELI,EL2,EL3,EL4,EL5,
\& EVO,EV1,EVZ,EV3,EV4,EV5,AMW1,AMWZ,
2 RH1,RH2,RH3,RH4,RH5,RH6,DHV
COMMON/TCOEFF/TSO,TS1,TS2,TS3,TS4,TSS
C
TYPE 100
10G FORMAT(/72(%-0)/0 ENTER SYSTEM PROPERTIES OISK FILENAMEP/J
CALL ASSIGN(1O,'AASFILNAM.OAT', =1,'ROO')
REAO(20,310)
READ(10,310)CP1,CP2,CP3,CP4
READ(20,310)ELD,EL1,ELLZ,EL3,ELA,ELS
READ(10,310)EVE,EV1,EVZ,EV3,EV4,EVS
READ(10,310)AMW1, AMW2
READ(10,310)RH1,RH2,RH3,RH4,RH5,RHG
REAO(10,310)TSO,TS1,TS2,TS3,TS4,TS5
REAC(10,310)DHV
READ(10,350) (EGS(J),Na1,42)
CALL CLOSE(DO)
DX=0.025
310 FORNAT(6E12.5)
350 FORMAT(9F7.4)
C
C COMPLETED
C
390 FORMAT(/' SYSTEM DATA LOADED ()
RETURN
END

```
```

FORTRAN IV VG2.I=\ Y DG0N -79 02:03:32 PAGE DOI
000!
002
0003
0004
0005
0006
0007
0006
0009
010
001!
0012
0 0 1 3
0014
0015
0010
0017
0018
0020
0022
0024
0026
0028
0030
0032
0034
0036
0036
0040
0042
0044
0046
0048
0050
OUS3 37Q FORMATE/' OPTIONS ALLOWEO ARE:P'
| AL m ENTER ALL UATA PL ENTER PLATE DATA'/
2* TE ENTER COLUHIN TEMPS FL ENTER COLUMIN FLONS'/
3' XF ENTER FEED COMPOSITION RF REFLUX KATIU?/

```
```

FORTRAN IV
VG2.101 T 060N -9902:03832
4* CL = CONVERGENCE LIMIT RL \& REBOILER LOAD*/
5* VE - VAPDUR EFFICIENCY LI (LIST ON SCREEN"/
G% OF = ASSIGN OUTPUT FILE. EX E EXIT PROGRAMP/
7' LP m LIST ON OUTPUT FILE HL = THIS LISIINGP//
8' LOAD - LOAD DATA FROM DISKP/
9* SAVE SAVE DATA ON DISK'/
** RUN - RUN PROGRAM')
GO TO:10
C
0055
0056
0057
0058
0059
0 0 6 0
0061
0062
0063
0064
6065
0 0 6 6
0 0 6 7
0068
0 0 6 9
0%70
007!
0072
0073
0074
0075
0076
0 0 7 7
0078
0 0 7 9
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
002
0 0 9 4
0095
096
097
0098
0100
010

```

C
```

1 continue
TYPE 4.5
4\5 FORMAT(/' INPUT DISK FILE NAME*/J
CALL ASEIGN(1, PAA:FILNAM,EXT',=1, PRDOP)
READ(1,100) NP
REAO(1,100) NF
READ(1,120)TF,TR,TT,TB
READ(1,120)FV,OV,WV
REAU(1,120)XF
REAO(1,120)R,PSI
READ(1,120)RMSTL
FEAD(1,120)QV1,QV2
READ(1,120)(EMV (J),Jmd,5)
CALL CLOSE(1)
120 FORMAT(OEI3,6)
NP2=NP+2
NF2=NF+2
NPq=NP\&\&
NFP=NF+1
ICONOE.1
NEQNaNPE
TYPE 12Z
\22 FORMAT(" COLUMN DATA LOADED '%
GO TO 10
C
51 TYPE 300
300 FORMAT(/'SENTER NUMGER OF COLUMN PLATES m ')
READ(5,100) NP
100 FORMAT(215)
TYPE 302
302 FORMAT(/PGENTER FEED PLATE NUMBER - O
READ(5,1DD) NF
ICONOE?
NP2ENP+2
NP\&ENP+\&
NFPENFF\&
NF2=NF+Z
NEON:NP2
IF(IQR.NE, 'ALP) GO TO ID
C
52 TYPE 304
304 FORMAT(/O INPUT FEED,REFLUX,EST. TOPS,EST. BOTTOMS'/
L'\&TEMPERATURES IN OC - *g
REAO(5,11E) TF,TR,TT,YB
110 FORMAT(GF10.e)
IF(IQK.NE, "AL') GOTO 10
C
53 TYPE 306
306 FORMAT(/P INPUT FEED FATE,AND EST.DISTILLATE AND EOTTOMS'/

```
```

FORTRANIV VD2.d=1 T 660N m74 02803832 PAGE OOS
IPsRATES IN L/TIME ©J
READ(5,110) FV,DV,WV
IF(IGR.NE, 'AG') GOTO10
C
54 TYPE 3O%
3R7 FORMAT(/O\$INPUT FEED COMPOSITION,CONDIYION es)
READ(5,110) XF
IF(IOR.NE.'AL') GO TO 10
C
55 TYPE 308
308 FORMAT(/PSINPUT REFLUX RATIO:O
READ(5,11%) R,PSI
IF(IGR,NE. 'AL') GO TO 10
C
56 TYPE 3\2
312 FORMAT (/PSINPUT CONVERGENCE LIMIT RMSTL : ')
READ(5,1!0) RMSTL
IF(IQR.NE.*AL") GO TO IO
C
57 TYPE }31
314 FORMAT(/P INPUT REBOILEK COEFFICIENTS,QS\&QV\&\&QVE*Y'/
ODQS IN KJ/TIME = %
READ (5,110) GV1,QV2
IF(IQR,NE.'AL') GO TO IO
C
58 TYPE 318
318 FORMAT(/O INPUT COEFFICIENTS EMV(ID,IEI.5 FOR FOURTHP/
\& SORDER POLYNOMIAL IN EMV E 'J
REAO(5,11D) (EMV (J),NE,1,5)
IF(IQR,NE:AL') GO TO 10
GO TO 2B
C
61 TYPE 319
319 FORMAT(j' REASSIGN OUTPUT FILEO/J
REWIND }
CALL CLOSE(6)
CALLL ASSIGN(G,*AA:FILNAM.EXT/C*,M1, NNEWP)
IF(IQR.NE.*AL') GO TO ID
C
C OUTPUT ALGG DATA RECEIVED
20 CONTINUE
0!39 59 WRITE(7,200)
Q140 200 FORMAT('IINPUT OATA FOF COLUMN (CONDENSER TYPE ETUTAL)')
WRITE(7,210)NP,NF
0141
0142 210 FORMAT(// NUMBER OF PLATES %I3/' FEED PLATE NUMBER P,I3)
0143 WHITE(7,220)FV,XF,R,TF,TR
0144 220 FORMAT(/P STEADY STATE DATA:P/P FEEG RATE PF|1.5/
1/ FEEO COMP. ©,FII.5/
2" REFLUX RATIO P,Fi\&:5/P FEEO TEMPERATURE*,Fi\&.5/
3' REFLUX TENP P,F!1.5S
0145 WRITE(7,230)OV,WV,TY,TB
0146 230 FURMAT(/' STEADY STATE GUESSES:P/" DISTILLATE RATE 0,FID.5/
\&" EOTTOMS RATE ',F11.5/' TOP TEMPEKATURE ",FId.5/
2' BOT TEMPERATURE P,F11.5j
0147 WRITE(7.240)GV1,OVZ

```

```

0.149 WRITE(7,280) (EMV(J),JE1,5)

```
```

FORTRAN IV VO2.d=\& T OG-N -79 02:03:32 PAGE EO4
U50 280 FORMAT(/% MURPHREE TRAY EFFICIENCY COEFFICIENTS\&"/
11X,5Ed(0.3)
015\$
C
C
NEW INPUT FILE TO BE CREATED
60 TYPE 430
0.52
0153
0154
0.55
0.56
0257
0.58
0159
0160
0 1 6 1
0162
0 1 6 3
0164
0165
0166
0167
0 1 6 8
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0 1 7 9
0180
01B1
0182
01B3 WRITE(6,220)FV,XF,R,TF,TR
0184 WRITE(6,230)OV,HV,TT,TB
0185 WRITE(6,240)QV1,QV2
186
018
0.88
0.89
430 FORMAT(/P INPIST NEW FILE NAMEP/)
CALL ASSIGN(1, AA:FILNAM.EXY',=1, 'NEW')
WRITE(1,1DO) NP
WRITE(1,100) NF
WRITE(1,120)TF,TR,TT,TB
WRITE(1,120)FV,DV,WV
WRITE(1,120)XF
WRITE(1,120)R,PSI
WRITE(1,120)RMSTL
WRITE(1,120)OV1,QVE
WRITE(1,12U)(EMV (J),J=1,5)
CALL CLOSE(1)
TYPE 124
I24 FORMAT(* NEW FILE CREATEO')
ED TO 1E
C
RUN STEADY STATE SOLVER
CONVERT VOLUME,MASS FLOWS TO MOLAR FLOWS
70 RHO\&RHI+RH2*TF+(RH3+RH4*TF)* KFF
F=FV/(AMW\&*XF中AMWZ)*100U.D*FHO
RHO\&RM1+RH2*TR+(RH3+RH4*TR)*1。D
D=DV/(AMW1*1.0\&AMW2)*1000.O*RHO
RHOERH5*RH6*D.D
W=WV/(AMW\&*暗D+AMW2)*!बDD.D*RHO
QSIEGVI*DHY
OS2=gV2.0HV
00 72 jx\&,4s
72 EO(J)昭(J)
C
RETURN
LIST OUTPUT ON PRINTER
6 6 ~ C O N T I N U E ~
WRITE(6,200)
WRITE(6,210)NP,NF
QSED.D
WRITE(6,28D) (EMV (J),Jal,5)
REWIND 6
GO TO 10
END

```
```

FORTRAN IV
ODO!
C
C PURPOSE: TO PROVIDE LIQUID HEAT CAPACITY GIVEN COMP,T
GRANT WILSON
APRIL }197
HEAT CAFACITIES CALCULATED AS FOLLOWS:
HEATCP=MOLE FRACTION AVERAGE OF PURE
LIQUIO CPPS HHICH ANE LINEAR
FUNCTIONS OF TEMPERATURE. (KN/MOLE K)
COMMON/SYSPRP/CP1,CP2,CP3,CP4,ELD,EL1,EL2,EL3,ELA,EL55,
\&EVO,EV1,EVZ,EVZ,EV4,EV5,AMW\&,AMHZ,
2RH1,RH2,RH3,RHA,RHS,RHG,OHV
0003
0004
0005
V02.1-1 T 06-N 07% 02814835
PAGE
0002
C
HEATCPE(CP1*T*CP2)*COMP+CP 3*T+CP4
C
RETURN
END

```
```

FORTRAN IV VOZ.1=1 T 06FN m79 02:10837 PAGE DO:
0001
C
C PURPOSE: TU CALCUGATE LIOUID AND VAFOUR ENTHALPIES.
C
C
c
C
C
C
C
0002
0003
0004
0005
0006
0007
0088
0009
0010
0012
0012
0012
00%4
0015
0017
0018
0 0 1 9
0020
002d
0023
0024
0025
0026 END
SUBROUYINE NTHLPY
GRANT WILSON
APRIL }197
ENTHALPY\&FIFTH ORDER POLYNOMIAL IN COMPOSITION
C
C
C
\& CONTINUE
CHECK FDR SUBCODLING DN FEED AND REFLUX

```

```

 IF(TGR.LE.TR)GO YO 10
 EL($)=EL(d) -HEATCP(X(d),(TBR+TR)/Z.)*(TBR-TR)
 10 CONTINUE
    ```

```

 TBF=(((GTS5*XF+TS4)*XF+TS3)&XF+TS 2)*XF+TS1)*XF+TS@
 IF(TBF,LE,TF)GO TO 40
 ELF=ELF=HEATCP(XF,(TBF+TF)/Z.)*(TBF界TF)
 40 CONTINUE
 C
 RETURN
    ```
```

FORTRAN IV VOZ.1m1 T O6FN -79 02810:43 PAGE O01
DOO!
PURPOSE TO PROVIDE EQUILIBRIUM DATA FOR PROGRAM
USING LINEAR INTERPOLATION IN THE EQ TAHLE AND
INCORPONATING MURPHKEE STAGE EFFICIENCYS(VAPOURS
DXESPACING OF X VALUES CORRESPONDING TO EU TABLE
EQUILIBRIUM DATA ADJUSTED FGR NON-IDEAL STAGES BY
TRANSFORMING THE EQ TABLE THUS
YPEX+EMY (Y-X)
WHERE EMV IS A 4TH ORDER POLYNOMIAL IN X
IF IED RETURN Y/X GIVEN X
IF I=1 RETURN Y/X GIVEN Y
IF IEC RETURN X GIVEN Y
IF IE3 RETURN Y GIVEN X
GRANT WILSON
DECEMBER 1975
COMMON/EQDATA/EQ(41),EQS(41),EMV(5),DX
IF(I.EQ.1.OR.I.EQ.2) GO TO 999
C
C FIND POSITION IN THE EO TABLE
0005
0006
000
C
C USE LINEAR INTERPQLATION BETUEEN J AND JPI
C
0009
0010
0012
013
0014
015
0017
0018
0019
0020
022
0023
FUNCTION EQULIB(X,I)
C

```
        J=x/0X+1:
```

 J=x/0X+1:
 IF(J.GT.40) Ja40
 JPIEJ+1
 EQULIG=(X-DX*(J-1))*(EQ(JP1)=EQ(J))/OX&EQ(J)
 IF(I.EG.O) EQULIGEEGULIB/X
 RETURN
 C
 999 CONTINUE
 C
FIND THE X VALUE
DO 10 J=2,4d
IF(X.LT.EQ(J)) GO TO 16
10 CONTINUE
C
C VALUE LIES BETWEEN Jm\&,J
C IE DX(Jm2),DX(J-1)
C
USE LINEAR INTERPOLATION
16 X1=(J-2)*DX
EQULIU=(X-EQ(J-1)) \#OX/(EQ(J)-EQ(J-1)) +X!
IF(I.EQ:1) EQULIB=X/EQULIB
C
RETURN
END

```
```

FORTRAN IV VOZ.1-1 T OBON -79 DR:33:58 PAGE CO\&

```

```

0002
0003
0204
0 0 0 5
0086
0007
008
0009
0010
0011
0 0 1 2
0013
0 0 1 4
0015
0 0 1 6
0017
0018
C
C FAILURE IN "INITL" SUBROUTINE
0020
002!
0022
0023
0024
0025
0026
0027
0028
0029
0031
0032
0033
0034
0 0 3 5

```

```

FORTRAN IV GUBROZ.IEI TANE TVDRIV
TO CONTROL THE SOLUTION OF THE STEADY STATE COLUMNN.
GRANT WILSON
AUGUST \$975
SUBROUTINES REQUIRED: "FLOWS","TRID","THOMAS","RMST"
"INITL","EOULIB","HEATCP"
COMMON/DRMST/RMSTL,RMSTD
COMMON/ELVDRV/EL(20),EV(20),OLEOT(2B),DHDT(20),ELF,SUBCAL
COMMON/FLAG/RFLAG,IFLAG
COMMON/FLOCOM/L(2D),V(20),X(20),Y(20),F,D,W,XF
COMMON/IDATA/TT,TB,TF,TK,FV,OV,RV,WV,OVI,QVZ,PSI,R
COMMON/NDATA/NPZ,NP1,NFP,NF,NFZ,ICOND,NEGN
COMMON/HEBOIL/QSI,OSE
COMMON/SPRTN/TNSM\&RM
COMMON/SYSPRF/CP1,CP?,CP3,CP4,ELG,EL1,EL2,ELS,EL4,EL5,
1 EVO,EVL,EVZ,EV3,EV4,EVS,AMW1,AMWZ,
2 RH1,RHZ,RH3,RH4,RHS,RHG,DHY
COMMON/TCOEFF/TSO,TSI,TS2,TS3,TS4,TS5
COMMON/TRIDM/A(20),B(20),C(20),RHS(20)
REAL L
LOGICAL RFLAG,IFLAG
RFLAGE.FALSE.
IFLAGB.FALSE.
C
C SET UP INITIAL FLOWS ANL COMPOSITIONS THEN
CHECK FOR PROGRAM FAIbURE IN "INITL'
CALL INITL
IF(.NOT.IFLAG)GO TO \&
WRITE(6,100)

```

```

 WRITE (6,110)
 110 FORMAT(I: INITIAL CONDITIONS IVERE: TRAY COMPOSITION')
 WRITE(6,1,20)(J,X(J),JEd,NP2)
 12め FORMAT (26X,13,3X,F7.4)
 STDP '% FAILURE IN INITIAL **
 C
 C
 C
 C
 ITERATE ON THE STEADY STATE SOLUTION
 DO 2 Ka1,800
 IF(K/5|*50.EQ.K)CALL CHKSPR
 CALL TRID
 CALL THOMAS
 CALL RMST
 CALL FLOWS
 C SENSE SNITCH & LISTS CONVERGFNCE CRITERIA ON CONSOLE
 1 continue
 C SENSE SIITCH 1 LISTS CONVERGFINCE CRITERIA ON CONSOLE
IF(ISSUI (MM).LT.1) TYPE 230,K,RMSTN,RMSTL

```






```

```
    C SENSE SWITCH Z LISTS XU,XH,DOW ON CURRENT ITERATION
```

```
    C SENSE SWITCH Z LISTS XU,XH,DOW ON CURRENT ITERATION
0038 IF(ISSWE(MM).LT.1) TYPE 2322,K,X(1),X(NP2),V(1),L(NPZ)
0038 IF(ISSWE(MM).LT.1) TYPE 2322,K,X(1),X(NP2),V(1),L(NPZ)
QO40 232 FURMAT(PITERATIONEP,I3,PXO,XW,O,WEPP4G12.4)
QO40 232 FURMAT(PITERATIONEP,I3,PXO,XW,O,WEPP4G12.4)
    C CONSOLE INTERRUPT FOR PROGRAM ABORT ?
    C CONSOLE INTERRUPT FOR PROGRAM ABORT ?
0042
0042
    C
    C
    C IF RFLAG IS SET SOLUTION HAS CONVERGED.
    C IF RFLAG IS SET SOLUTION HAS CONVERGED.
0 0 4 4
0 0 4 4
0046
0046
0047
0047
0048
0048
0049
0049
0050
0050
0051
0051
0052
0052
0053
0053
0 0 5 4
0 0 5 4
0055
0055
056
056
0057
0057
0058
0058
0059
0059
0060
0060
0061
0061
0062
0062
0063
0063
0064
0064
0065
0065
0066
0066
067
067
0068
0068
0069
0069
0070
0070
0071
0071
0072
0072
0073
0073
0074
```

0074

```
```

0048

```
0048
0
0
    C
    C
    3 CONTINUE
    3 CONTINUE
        CALL RCTRLO
        CALL RCTRLO
    C
    C
    C
    C
    C
    C
    C
    C
    C
    C
    C
    C
        10 Y(J)=EGULIB(X(J),3)
        10 Y(J)=EGULIB(X(J),3)
        OCev(2)*(EV(2)=EL(1))
        OCev(2)*(EV(2)=EL(1))
        ZEX(NP2)
        ZEX(NP2)
        TC=((((TS5*Z+TS4)*Z+TS3)*Z2+TS2)*2+TS1)*2+TSO
        TC=((((TS5*Z+TS4)*Z+TS3)*Z2+TS2)*2+TS1)*2+TSO
        OSEQS1+QS2由TC
        OSEQS1+QS2由TC
        CALLE RMNM
        CALLE RMNM
    C
    C
    C CALCULATE VOLUME FLOWS
    C CALCULATE VOLUME FLOWS
    C
    C
        RHO=RHI*RHC\TR*(RH3*RH4*TR)* X(d)
        RHO=RHI*RHC\TR*(RH3*RH4*TR)* X(d)
        AMWBANW!*X(1) +AMW2
        AMWBANW!*X(1) +AMW2
        DV=O*AMH/1000.D/RHO
        DV=O*AMH/1000.D/RHO
        RVEL(d)*AMW/1000.0/NHO
        RVEL(d)*AMW/1000.0/NHO
        RHO&RH5*RH6*X(NP2)
        RHO&RH5*RH6*X(NP2)
        WV=W*(AMW!&X(NP2)+AMWZ)/1000,0/RH0
        WV=W*(AMW!&X(NP2)+AMWZ)/1000,0/RH0
        BALVEFVGDVWWV
        BALVEFVGDVWWV
        BAL=F=D=W
        BAL=F=D=W
    C CALCULATE END TEMPERATURES
    C CALCULATE END TEMPERATURES
    C
    C
        zax(1)
        zax(1)
        TTE((((TSS*Z*TS4)*Z+TS3)*Z*TS2)*Z*TSI)*Z*TSO
        TTE((((TSS*Z*TS4)*Z+TS3)*Z*TS2)*Z*TSI)*Z*TSO
        Z=x(NPa)
        Z=x(NPa)
        TBE((((TS5*2+TS4)*Z+TS 3)*Z+TS2)*Z+TSI)*Z+T3&
```

 TBE((((TS5*2+TS4)*Z+TS 3)*Z+TS2)*Z+TSI)*Z+T3&
    ```
```

FORTRANIV VO2.IGI F D60N -7902:33858 PAGE DOS

```


```

FORTRAN IV
0001
0002
0003
0004
0005
0006
007
0008
Dibg
0010
C
c
c
0.
0012
0013
0014
0015
0016
0018
0020
002?
0023
0024

```
c
\({ }^{C}\)
```

PURPOSE:TO INITIALISE CGMPOSITIONS AND FLOWS FOR
THE STEADY STATE SOLUTION
GRANT WILSON
AUGUST }197
COMMON/EQDATA/EQ(41),EGS(41),EMV(5),DX
COMMON/FLAG/RFLAG,IFLAG
COMMON/FLOCDM/L(26),V(20),X(20),Y(20),F,D,H,XF
COMMON/IDATA/TT,TB,TF,TR,FV,OV,FV,WIV,QV\$,GVZ,PSI,R
COMMON/NDATA/NPZ,NP1,NFP,NF,NFZ,MCOND,NEQN
COMMON/TCOEFF/ TSO,TSI,TSZ,TS3,TS4,TSS
RE゙AL L
REAL LRILS
LOGICAL RFLAG,IFLAG
CHECK INITIAL TEMP GUESSES WHERE VALID FOR TTPTG
TOPETS5+TS4+TS3中TS2+TSI+TS星
BOTETSO
OT=BOT=TOP
TOPETOP\&D.D5*DT
BOT\&BOT=0,05*DT
IF(YT.LT,TOP) TTaTOP
IF(TB.GT.BOT) TB\&\&OT
IF(TB.GT.IT) GO TO 10
TTETOP
TB4BOT
sa CONTINUE
SET UP LINEAR TEMPERATURE PROFIIGES
DO I Jod,NP?
TIaTT+(J\#d)*(TB=TT)/NP\&
C COMMENCE WEGSTEIN SEARCH FOR X(J),MAX OF 5O ITERATIONS
X0:da=1./NP1*(J-1)
XI=(TI=TSD=(((TS5*XD\&TS4)*X0+TS3)*X0\&TS2)*XD*XD)/TS!
Y0=X1
IJ80
30 CONTINUE

```

```

 DENOMEXI=XD+Y&=Y&
 IF(DENOM,EQ.Q.D) GO YO 2
 XZ=(XI*YD=XD*Y&)/DENOM
 IF(ABS (X2=X1).LT.D.0DO1) GOTO 20
 XVEX!
 Y0EY!
 X1:X2
 IJ=IJ+1
 IF(IJ.GT.50) GO TO 2
 GO TO 30
 20 CONTINUE
x(J) = X2

```
```

FORTRANIV VDE.10% T OG=N -7902:34:13 PAGE ODZ
0048
0049
C
0050
005%
C
0052
0 0 5 4
0056
057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0 0 6 7
0068
0699
0071
0073
0074
0075
0.76
0 0 7 7
0078
0079
0080
0081
0082
0083
C
0084 RETURN
0085 END

```
```

FORTRAN IV VO2.1=1 T G6=N 079 02:34:23 PAGE DOS
000!
C SUGROUTINE TO SET UP THE TRIDIAGONAL MATRIX FOR THE
steady state solutiun
GRANT WILSON
AUGUST 1975
COMMON/EQDATA/EQ(41),EQS(41),TMMV(5),DX
COMMON/FLOCOM/L(20),V(20),X(20),Y(2L),F,D,W,XF
COMMON/NDATA/NPZ,NP1,NFP,NF,NFZ,ICOND,NEQN
COMMON/TRIOM/A(20),D(20),C(20),RHS(20)
REAL L
C SET UP MATRIX
C CONDENSER
0007
0008
0009
0010
0011
0012
0013
0014
0015
C
C FEED PLATE
0016
0017
0018
0019
0020
002!
0022
0023
0024
0025
0026
0027
0028
0029
0030
C
0002
0003
0004
0005
0006
0008
C ENRICHING SECTION
C
DO 200 Jaz,NF
A(J)=L(J=1)
B(J) =m(v(J)*EQULI日(x(J),0)+L(J))
C(J) 日V(J+1)*EQULIB(X(J+2),0)
20日 RHS(J)=0.0
C
A(1) =0,0
B(1) = = (L (1) +D)
C(1)=v(2)*EQULIB(x(2),0)
RHS (1)=0.0
C ENRICHING SECTION
A(NFP)=L (NF)
B(NFP)=m(V(NFP)*EQULIB (X NFP), D) +L (NFP))
C(NFP)=V(NFP+1)*EQULIB(X(NFP+1), D)
RHS (NFP)B=FF的F
C RHS(NTP)=WF的
C STRIPPING SECTION
C DO 210 JaNF2,NP!
A(J)=L(J-1)
B(J)=m(V (J)\&EQULIE(X(J),0)\&L(J))
C(J)=V(J+1)*EQULIE (X(J+1),0)
210 RHS (J) = \&:0
C
c REBOILER
C
A(NP2) =L (NP\)
B(NPZ)=w(V(NP2)*EGULIu (X(NP?),0)中W)
C(NP2)=0.0
RHS (NP2)=0.0
C
RETURN
END

```
```

FORTRANIV VO2.108 T DÓN .79 D2834829 PAGE GO\&
0001
C
0002
0003
0004
0005
0006
0007
0008
C
0009
0010
0011
0012
C
0013 RHS(NP2)aA(NP.2)
0014 DO 2GE IJ』こ,NPE
0015 ImNP2+ImIN
0016
0017
0018
0018
C PURPOSE: TO SOLVE THE STEADY STATE MATRIX (TRIDIAGONAL)
GRANT WILSON
AUGUST }297
C
C
COMMON/NOATA/NPZ,NP1,NFP,NF,NF2,ICOND,NEQN
COMMON/TRIDM/A(20),B(20),C(20),RHS(20)
C
C(1)=C(1)/B(1)
00 200 IJE2,NPZ
B(IJ)=B(IJ)=A(IJ)*C(IJ=I)
C(IJ)\&C(IJ)/日(IJ)
200 CONTINUE
A(1)=RHS (1)/8(1)
DO 201 IJ\#2,NP2
A(IJ) =(RHS(IJ)~A(IJ)*A(IJनI))/B(IJ)
201 CONTINUE
OO 2GE IJs
RHS(I)=A(I)=C(I)*RHS (I中I)
202 CONTINUE
E
RETURN
END

```
```

```
```

FORTRAN IV VOZ.1m\& T 06mN -79 02834833 PAGE DO\&

```
```

```
FORTRAN IV VOZ.1m& T 06mN -79 02834833 PAGE DO&
```

```
```

FORTRAN IV VOZ.1m\& T 06mN -79 02834833 PAGE DO\&
0001
0001
0001
C PURPOSE:TO GHECK ON THE STEADY STATE SOLUTION CONVERGENCE
C PURPOSE:TO GHECK ON THE STEADY STATE SOLUTION CONVERGENCE
C PURPOSE:TO GHECK ON THE STEADY STATE SOLUTION CONVERGENCE
C
C
C
c GRANT WILSON
c GRANT WILSON
c GRANT WILSON
C AUGUSI` }197 C AUGUSI` }197
C AUGUSI` }197
0002
0002
0002
0003
0003
0003
OOO4
OOO4
OOO4
0005
0005
0005
0006
0006
0006
0007
0007
0007
0008
0008
0008
0009
0009
0009
0010
0010
0010
0011
0011
0011
0012
0012
0012
0013
0013
0013
0014
0014
0014
0.15
0.15
0.15
OD16
OD16
OD16
0017
0017
0017
00:6
00:6
00:6
0020
0020
0020
002
002
002
C
C
C
C TEST FOR CONVERGENCE
C TEST FOR CONVERGENCE
C TEST FOR CONVERGENCE
G
G
G
0023
0023
0023
0025
0025
0025
0026

```
0026
```

0026

```
```

 SUBROUTINE RMST
    ```
    SUBROUTINE RMST
```

 SUBROUTINE RMST
 C
 C
 C
 C
 C
 C
 C
 C
 C
 c
 c
 c
 C FIND BUEBLE POINTS ON PRESENT AND PAST ITERATIONS
 C FIND BUEBLE POINTS ON PRESENT AND PAST ITERATIONS
 C FIND BUEBLE POINTS ON PRESENT AND PAST ITERATIONS
 C SE=SQRT(SE)/NPZ/AV.TEMP:*1OD
 C SE=SQRT(SE)/NPZ/AV.TEMP:*1OD
 C SE=SQRT(SE)/NPZ/AV.TEMP:*1OD
 C
 C
 C
 001 J=1,NP2
 001 J=1,NP2
 001 J=1,NP2
 ZERHS(J)
    ```
```

 ZERHS(J)
    ```
```

 ZERHS(J)
    ```
```



```
```

 v=x(J)
    ```
```

 v=x(J)
    ```
```

 v=x(J)
 T2:((((TS5*U*TS4)*U中TS3)*U中TS2)*U+TS!)*U&TS0
 T2:((((TS5*U*TS4)*U中TS3)*U中TS2)*U+TS!)*U&TS0
 T2:((((TS5*U*TS4)*U中TS3)*U中TS2)*U+TS!)*U&TS0
 X(J)=fHS(J)
 X(J)=fHS(J)
 X(J)=fHS(J)
 SEmSE*(TI-T2)*(T&mTE)
 SEmSE*(TI-T2)*(T&mTE)
 SEmSE*(TI-T2)*(T&mTE)
 IF(J.EQ.1)TTIar!
 IF(J.EQ.1)TTIar!
 IF(J.EQ.1)TTIar!
 & IF(J.EU,NPZ)TTEQTI
 & IF(J.EU,NPZ)TTEQTI
 & IF(J.EU,NPZ)TTEQTI
 RMSTDESURT(SE)/NP2由20日, /(TT&+TT2)
 RMSTDESURT(SE)/NP2由20日, /(TT&+TT2)
 RMSTDESURT(SE)/NP2由20日, /(TT&+TT2)
 c
    ```
    c
```

 c
    ```
```

 COMHON/DRMST/RMSTL,RMSTD
    ```
        COMHON/DRMST/RMSTL,RMSTD
```

 COMHON/DRMST/RMSTL,RMSTD
 COMMON/FLIAG/RFLAG,IFLAG
 COMMON/FLIAG/RFLAG,IFLAG
 COMMON/FLIAG/RFLAG,IFLAG
 COMMON/FLOCOM/L(20),V(20),X(20),Y(20),F,D,W,XF
 COMMON/FLOCOM/L(20),V(20),X(20),Y(20),F,D,W,XF
 COMMON/FLOCOM/L(20),V(20),X(20),Y(20),F,D,W,XF
 COMMDN/NDATA/NPE,NP1,NFP,NF,NF2,ICOHO,NEQN
 COMMDN/NDATA/NPE,NP1,NFP,NF,NF2,ICOHO,NEQN
 COMMDN/NDATA/NPE,NP1,NFP,NF,NF2,ICOHO,NEQN
 COMMON/ICOEFF/ TSU,TSI,TSE,TS3,TS4,TSS
 COMMON/ICOEFF/ TSU,TSI,TSE,TS3,TS4,TSS
 COMMON/ICOEFF/ TSU,TSI,TSE,TS3,TS4,TSS
 COMMON/TRIDM/A(20), B(20),C(20),FHSS(C0)
 COMMON/TRIDM/A(20), B(20),C(20),FHSS(C0)
 COMMON/TRIDM/A(20), B(20),C(20),FHSS(C0)
 REAL L
 REAL L
 REAL L
 LOGICAL RFLAGPIFLAG
 LOGICAL RFLAGPIFLAG
 LOGICAL RFLAGPIFLAG
 SEED.0
 SEED.0
 SEED.0
 IF(RMSTO.GE,RMSTL)RFLAGI.TRUE.
 IF(RMSTO.GE,RMSTL)RFLAGI.TRUE.
 IF(RMSTO.GE,RMSTL)RFLAGI.TRUE.
 RETURN
 RETURN
 RETURN
 ENO
    ```
        ENO
```

 ENO
    ```
```

FORTRAN IV
OUQ1

```

```

0002
0003
0004
0005
0006
0007
0008
0009
0010
C
C
0011
0012
0013
0014
0015
C
C
C
0016
001%
0016
0019
0020
0021
0022
0023
0024
0025
0020
C
C
Di27
0128
0029
0030
C
C
0031
0032

```

0002
0003
0004
HOOS

0007
0008
0009
\(C\)
\(C\)
\(C\)
.
\(Y(2)=x(1)\)
\(0010 \mathrm{~J}=3, \mathrm{NP} 2\)
\(z=x(J)\)
Y(J) EEQULIB (2,3)
dO CONTINUE

CALCULATE NEW ENTHALPIES
CALL NTHLPY
CALCULATE QS,D,L (1),V(2),W
Z \(=x(N P 2)\)

DNUM=F* \((E L F=E L .(N P C))+W S\)

DadNuM/DDEN
L(1) \(\mathrm{BR} * \mathrm{D}\)
\(V(2)=(R+1) *\).
\(V(1)=0\)
\(W=F=D\)
L(NP2) \(=W\)
\(C\)
\(C\)
\(C\)
ENRICHING SECYION
DO 1 JaC,NF
\(L(J)=(V(J) * E V(J)-L(J-1) * E L(J-1)=0 * E V(J+1 J) /(E V(J+1)=E L(J))\)
\(V(J+1)\) 日U \(+L(J)\)
1 CONTINUE
C
C
0031
0032
COMMON/ELVORV/EL (20), EV(20), DLEUT (20), DHDT(20), ELF,SUBCAL
COMMON/EODATA/EQ(41), EGS(41), LMV(5), DX
COMMON/FLOCOM/L(20),V(20), X(20),Y(20),F,D,W,XF
CUMMON/IDATA/TT,TO,TF,TK,FV,DV,HV,HV, QVI,QVZ,PSI,R
COMMON/NDATA/IYPZ,NPI,NFP,NF,NFZ, ICOND,NEGN
CUMMON/KEBOIL/QSd,OS2
COMMON/TCOEFF/ TSO,TS1,TSZ,TS3,TS4,TSS
REAL \(L\)
LOGICAL SUBCAL
calculate new y vabues

FEEO PLATE
\(L(N F P)=(V(N F P) * E V(N F P)=L(N F) * E L(N F)+W\) * \(E V(N F E)=F * E L F) /\)
\(1 \quad(E V(N F 2)=E L(N F P))\)
\(V(N F 2)=L(N F P)=W\)
```

SUBROUTINE FLOWS
PURPOSE: TO RECALCULATE THE COLUMN FLOWS FOR THE STEADY SOLUTION。
GRANT WILSON
OCTOEER 1975

```
FORTRANIV VD2.1=1 T G60N m79 02:34:37 PAGE DOZ
    C STRIPPING SECTION
    C
0033 DO 2 JaNF2,NP&
0034
0 0 3 5
0 0 3 6
    C
    C
    E
    C
037
0038
0039
0040
0041
0042
0 0 4 3
0044
0 0 4 5
0046
0047
0046
0049
0050
4051
0052
0053
0054
0055
0056
4057
0059
0061
0063
0064
0 0 6 5
0066
0067 48 EQ(J)EEFi*(EQS(J)=ALR/AVR*Z-D/AVR*X(1))+ALR/AVF由Z+C/AVK*)(8)
0068
0 0 6 9
0070
0071
0072
        RETURN
L(J) ョ(V(J)*EV(J) =L(J-&)*EL(J-1) +W&EV(J+1))/(EV(J+1)=EL(J))
    V(J+1) =L (J) =W
    2 CONTINUE
    RECOMPUTE L/V EQUILIBRIA USING EMV CRITERIA
    FIRST FIND. AVERAGE FLOWS
    ALRED.
    AVRO日:O
    AL'S=0.0
    AVS=0.0
    00 20 jal,NF
    20 ALR=ALR+L(J)
    ALR=ALR/NF
    OO 22 Ja己,NF+1
    22 AVR=AVR+V(J)
    AVR\approxAVR/NF
    DO 24 JXNFP,NPI
    24 ALSEALS$L(J)
    ALS=ALS/(NPI=NFP*&)
    DU 26 JENF+2,NPE
    26 AVSaAVS+y(J)
    AVS=AVS/(NPI=NFP&1)
    NOW MODIFY EQUILIE DATA
    DO 30 J=1,41
    Z=(J-1)*0X
    EM=(((EMV (5)*7.&EMV (4))*Z & EMV (3))*Z中EMV (E))*Z&EMV (b)
    XINT=(U*X(1)/AVR=W*X(NPE)/AVS)/(ALS/AVS=ALR/AVR)
    IF(Z.EE&X(1)) GO T0 50
    IF(Z.GT.XINT) GO TO 48
    IF(Z.GT.X(NPZ)) GO T0 46
    X<E XD
    EQ(J) BZ +EM*(EGS(J)mZ)
    GO TO 30
    XW < X XINT
        46EG(J)EEM*(EQS(J)=ALS/AVS*Z+W/AVS*X(NP2))+ALS/AVS*Z-W/AVS*X(NPZ)
        GO TO 30
    C XINT < X < XD
        GO TO 30
        X>8 X0
        50 EQ(J)EEM&(EQS(J)-Z)+Z
    C
    C
    C COMPLETE
    END
```

```
FORTRAN IV VOP.&⿴! T DGmN =79 02:84848 PAGE DO&
0DO!
    C
    C PURPOSESTO CHECK THAT THE CONSTRAINTS OF
    C MINIMUM REFLUX AND MINIMUM NUMBER
    C
    C
    C
0002
0003
0004
0005
0006
    C
0007
0008
0010
0011
0012
0013
0015
0016
0017
.
    0
    C
0018 IF!RM.GE.R/d.02)WRITE(6,120)RM
OD20 IF(TNSM.GE.NPI)WIRITE(E,130)TNSM
0022
0023
0024
0025
```



```
    110 FORMAT (% D* ### ERRDR IN HMNM, PROGRAM KXLLEO R###*)
        12@ FORMAT (PG###; ftFLUX RATIO {OO CLUSE TO MINIMUM REFLUX RATIOC OI
        1,3,") (尔洼")
        d3^ FORMAT(`ロ#### TOD FE: STAGES IN CULUMN,MINIMUM NUMBER OF STAGES
            1 '0F6.3." #####')
    C
        RETURN
        END
```



```
FORTRAN IV VGE.1^0& T Q60N m79 O281485& PAGE DOE
0032
0033
0034
    C
0035
0 0 3 0
0 0 3 7
0 0 3 8
0039
004d
0043
0044
0045
0046
0047
0 0 4 8
    C
    C
    FAILEC TO CONVERGE
    WRITE(6,1,10)
    110 FURMAT('0 CONVERGENCE FAILURE IN RMNMPS
        TNSMED.D
        RM=0.0
        RETURN
    C
        8 CONTINUE
        YNCPTEEQULIE(XNCPT,3)
    C
    C
    SULUTION FOLNO, NOW CALCULATE RM
    RM`(X(1)-YNCPT)/(YNCPT-XNCPY)
    C
    C MINIMUM NUMEER OF STAGES
0057
0058
0059
0060
0068
0062
0063
0064
0 0 6 6
0067
0 0 6
007
007
0072
007
    BEGIN ROO? SEARCH
        1 CONTINUE
        DO 7 ITERE1,20
        XNCPTE(XL*FR=XR*FL)/(FR-FL)
        FNCPT=SL.OPE*XNCPY+ANCFT-EGULIB(XNCPT, 3)
        IF(ABS(FNCPY),LE.D.ED1)GO TO B
        IF(FNCPT*FL.LT.D.JGO TO 6
        XLEXNCPT
        FL EFNCPT
        GOTO 7
        6 XR=XNCPT
        FREFNCPT
        7 CONTINUE
0 0 4 9
0056
005!
0052
0053
B054
0055
0 0 5 6
    C
        Nag
        Y&=x(1)
        K1=Y&
        10 NaN+1
            x2=x1
            X1#EQULIB(Y&,2)
            Y!Ex\
            IF(X1.GE:X(NPZ))GO TO 10
            ONEO.0
            IF((X2=x1).EQ.0.0) GO TO 989
            ON=(X2mx(NP2))/(X2-X1)
            989 CONTINUE
            TNSM=ON$Nol
    C
    RETURN
    END
```

BREAKPOINT HANDLER

1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15	000000	005\％25
16		
17	000602	052737
		010100
		000044
18	000010	
19		
20	000012	042737
		010100
		000044
21	のロ0\％2の	103002
22.	000022	005000
23	000024	042700
		177600
24	000030	010035
25	000032	000207
26		000001

MACRO VO3．DCB6mNOVm79 UD：21：52 PAGE \＆

- TITLE BREAKPOINT HANDLER
THE SUBPROGRAM , WHENEVEF CALLED ,CHECKS FUR 1
CHARACTER AVAILABLE FROM THE CONSOLE AND
RETURNS EITMER THE CHARACTER OR IF NONE WAS
MAKE THE CHARACTEK AVAILABLE TO THE PFOGRAM.
the routine can be called as a
SUBROUTINE WITH A SINGLE ARGUMENT.
-GLOBL BRKPT
-MCALL .TTINR
GRKPT: TST (R5)中 PGUMP UP K5
P PUT TERMINAL IN SPECIAL MODE
BIS \#10100.0944
gread character

- RESET TERMINAL MODE
BCC CHAR SCHARACTER FOUND 8
8 NO
STTRIP UPPER EITS
IRETURN CHARACTER
PC
 - END

SENSESWITCH HANDLER

VI. 3 SSGW ADDITIONS

To test the modified feedforward controller and adapter
described in Chapter 8, an additional routine was included in SSGW, and a minor modification made to the main program. A listing of the modified main program and the additional routine follows.


```
FORTRAN IV
000&
    ッロロロロ
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0 0 1 6
0017
0018
0019
000
0022
0023
0024
0025
0026
0027
0029
0030
00312
0032
0033
0034
0036
0037
0.36
0039
0040
004!
0042
0 0 4 3
0 0 4 4
0045
0046
0048
0050
0051
0052
0053 24
C
    C
C
    1OD FORMAT(/OSENTER XD,XB SPECS ')
ACCEPT 11Q,A,B
110 FORMAT(5F10.0)
IF(A.EG.D) GOTO 20
HXDaA
HXB=8
    20 TYPE 120
    120 FGRMAT(/OSENTER EQN COEFFS A,B O
    ACCEPT 1\B,A,B
        IF(A,EQ.OS GO TO 2&
        HAEA
        HB=B
    21 TYPE 130
    130 FORMAT(/'SENTER NO. OF IDEAL STAGES ')
        ACCEPT 11&,A
        IF(A,EQ.D) GO TO 22
        HN=A
    2ट CALL ClOSE(8)
        TYPE 140
    140 FGRMAT(/PSENTER OUTPUT FILE FOR AUAPT DATA ')
        CALL ASSIGN(B, 'TT:/CP,*1)
        TYPE 160
    16O FORMAT(/P㓪EQUIMOLAL SYSTEN (YES/NO) % %)
        ACCEPT 162,I
    $02 FURMAT(AZ)
        IUEALFE.TRUE.
        IF(I.EG. NOP') IDEALF&,FALSE.
        IF(IDEALF) GO TO 24
        TYPE 164
    104 FORMAT(/PSENTER BETA,BREAKPOINT P)
        ACCEPT 110,GETA,BRK
    24 CONTINUE
        COMMON/ADAPY/HXD,HXE,HO,HW,HLR,HLS,HVR,HVS,HNM,HRM,HN,HA,HB
        COMMON/ORMST/RMSTL,RMSTD
        COMMON/ELVORV/EL(20),EV(2R),DLEDT(20),DHDT(20),ELF,SUBCAL
        COMMON/FLAG/RFLAG,IFLAG
        COMMON/FLOCOM/L(2V),V(20),X(20),Y(20),F,D,W,XF
        COMMON/IDATA/TY,TG,YF,TK,FV,DV,RV,WV,WVI,GVZ,PSL,R
        COMMON/NDATA/NPZ,INP1,NFP,NF,NFZ,ICOND,NEQN
        COMMON/HEEGIL/OS1,QS2
        COMMON/SPRTN/TNSM,RM
        COMMON/SYSPRP/CP1,CP2,CP3,CP4,ELD,EL1,ELE,EL3,EL4,EL5,
        1 EVO,EVI,EVR,EVZ,EV4,EVS,AMW1,AMWZ,
        C RH2,RHE, RH3,RH4, RHS,RHG,OHV
        COMMON/TCOEFF/TSO,TS1,TS2,TS3,TSA,TS5
        REAL L
        LUGICAL RFLAG,IFLAG,ICEALF,MCTF
        DATA MA,HB,HN,HXD,HXB/3.4,2,1,8,%.9.,65/
```


FORTRAN IV
010650
IF（．NOT．MCTF）GO TO 60
C USE MCCABE－THIELE TO FINO RM，NM
C SAVE X（d）P（NPZ）\＆USE RMNM TO FIND RN，NM $A=X(1)$
B＝X（NP2）
$X(1)=H \times D$
$X(N P 2)$ ） H XB
CALL KMNM
$X(1) \equiv A$
$x(N P 2)=B$
C COMPUTE R（EXT）
$H R=H E *(R M+1) /.(H A \in E X P(T N S M / H N))=1$ ．
GO 1062
C USE FENSKE，UNDERWOOD TO FIND RM，NM
$60 \quad A N M=A L O G(H X O *(1 .=H X B) / H X B /(1 . \cdots H X D)) / A L O G(A L F A)$ $Q=1 . \operatorname{PPSI}$
$A=Q *(A L F A=1)$

$C=-X F$
$X P=(-B+\operatorname{SQRT}(B * B=4 * A * C)) / 2, / A$
$Y P=A L F A * X F /(1 .+X P *(A L F A=1)$.
$A K M=(H X[-Y P) /(Y P=X P)$
$H R=H B *(A R M+1) /.(H A=E X P(A N M / H N))=1$ e
62 CONTINUE
C COMPUTE R（INT）
C CALCULATE INTERNAG REFLUX RATIO
C
Z＝HXD
128
0129
0130
0131
0132
0133
0.34

0135
0136
0137
0138
0140
0141
0142
0143
0145
0146
0147
0146
0149
0150
015
015
0153
0154
0155
TRSATU』((($(T S 5 * Z * T S 4) * Z+T S 3) * Z+T S Z) * Z+T S 1) * Z+T S 0$
CPEHERTLP(Z, (1R+TKSATU)/2.)

RINT:HR* (1. + CP* (TRSATD=TR)/(HVD-HLD))

C COMPUTE FLOWS
HD：F＊（XF－HXB）／（HXD－HXG）
$H W=F=H D$
HLRERINT＊HD
HVR＝HLR＋HD
IF（IDEALF）GO TO 70
C NON－EUUIMOLAL SYSTEM
HLRFaHLR＊（BETA＝HXD）／（BETA＝X（NFP））
HLSFEFLRF＊（1．$\sim P S I)$ 由F
Z＝ HX X
IF（HXB．LT．BRK）Z日BRK
$H L S=H L S F *(B E T A=X(N F P)) /(B E T A=Z)$
GO TO 7 C
c EQUIMOLAL SYSTEM
70 HLRFaHLR
HLSFaHLKF $+(1, m P S I) * F$
HLSEHLSF
72 HVSEHLS■HW
$Z=H \times B$

$H L O=((((E L 5 * Z+E L 4) * Z+E L 3) * Z+E G Z) * Z+E L 1) * Z+E L \square$
$H Q=H V S$（ $H V D=H$ LD）
HQSEHO／DHY

C OUTPUT CONTROLLER RESULTS

```
FORTRANIV VGZ.1=1 T D60N -79 03:33:45 PAGE DOA
0.56 WKITE(8,335)HR,RINT
```



```
0.58 WRITE (8,340)HL,HW,HLR,HVR,HVS,HIGOHGS
0.59 340 FORMAT(" COMPUTED FLOWS:"/
    1% DIST P,F7,3,% BOT P,F7.3.
    2'LR O,F7.3.0 VR O,F7.3/
    3'VS P,F7.3,'0 OFF7.1.
    4* QS P,F7.3)
    WRITE(3,345)HLRF,HLSF
    FORMAT(* (INTERMEDIATE FLOWS: {LRF,LSF\ ',F7.3.\X,F7.3.')*)
    IF(MCTF) WRITE (8,30E)
    IF(,NOT.MCTF) WKITE(8,304)
    IF(IDEALF) WRITE(8,306)
    306 FORMAT(P AND EQUIMOLAL OVERFLOW')
        IF(.NOT,IDEALF) WKITE(B,30B)BETA,BRK
        FURMAT(* AND NONDEGIIIMOLAL OVERFLOW %/
        2* (BETA a "F7.3," BREAKPOINT E ,F7.3," J'J
        REWIND 8
    C
    C APPLY CONTROLLER SEYTINGS TO THE COLUMN
    C AND COMPUTE THE PRODUCT COMPOSITIONS
    C AND FLOWS
0173
0174
0175
0176
0177
0178 END
```


APPENDIX VII

METHANOL-WATER PROPERTIES

(1) Vapour/Liquid Equilibrium (Perry (1963))

x	y	x	y	x	y
0	0.0	.350	.697	.700	.870
.025	.155	.375	.712	.725	.882
.050	.267	.400	.729	.750	.893
.075	.345	.425	.738	.775	.904
.100	.418	.450	.750	.800	.915
.125	.470	.475	.764	.825	.926
.150	.517	.500	.779	.850	.936
.175	.548	.525	.788	.875	.947
.200	.577	.550	.800	.900	.958
.225	.606	.575	.813	.925	.967
.250	.627	.600	.825	.950	.979
.275	.647	.625	.831	.975	.990
.300	.665	.650	.846	1.00	1.00

x, y are mole fractions.
(2) Boiling Points (Perry (1963))

$$
\begin{aligned}
& T=99.93-162.7 x+501.9 x^{2}-874.2 x^{3}+739.8 x^{4}-240.0 x^{5} . \\
& x \text { is mole fraction methanol } \\
& T \text { is }{ }^{\circ} \mathrm{C} \text { at } 1 \text { atmosphere. }
\end{aligned}
$$

(3) Enthalpy Data (Ansell et al (1951))

Saturated vapour:

$$
H_{V}=48.21-9.08 y+1.49 y^{2}
$$

y is mole fraction methanol
H_{V} is $\mathrm{kJ} \mathrm{mol}^{-1}$
Saturated liquid:
(4) Heat Capacity (International Critical Tables (1928))

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=(.0001 \mathrm{~T}+.00343) \mathrm{x}+.0000134 \mathrm{~T}+.07467 \\
& \mathrm{~T} \text { is }{ }^{\circ} \mathrm{C} \\
& \mathrm{x} \text { is mole fraction methanol } \\
& \mathrm{C}_{\mathrm{p}} \text { is } \mathrm{kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

(5) Liquid Density (Mikhail and Kimel (1961))

Saturated liquid: $\quad \rho=0.970-.222 x$
Subcooled liquid: $\quad \rho=1.00-.000361 T-(.1957+.000604 T) x$

> T is ${ }^{\circ} \mathrm{C}$ x is mole fraction methanol ρ is $\mathrm{kg} \ell^{-1}$

The correlations listed were used in the steady state computer model SSGW to predict system properties. The following figures show a comparison between the fitted correlations, and the published data in the literature. There was some variance between the various sources of data as can be seen from these graphs.

$\frac{\text { FIGURE VII-1 VAPOUR/LIQUID EQUILIBRIUM }}{\text { FOR METHANOL/WATER }}$

FIGURE VII-2 METHANOL/WATER ENTHALPIES

FIGURE VII-3 methanol/water heat capacities

FIGURE VII-4 METHANOL/WATER LIQUID DENSITIES

COMPARISON OF EXPERIMENTAL DATA WITH THE STEADY STATE MODEL

VIII. 1 COMPARISON OF STEADY STATE MODEL WITH EXPERIMENTAL MEASUREMENTS

The model SSGW was compared with 22 steady state experimental runs made on the column. The operating conditions for each run are given in Table VIII-1 and the comparison made in Table VIII-2. The following results were obtained from Table VIII-2:
agreement : 18 runs
1 variable disagreement : 1 run
> 1 variable disagreement : 3 runs
within the experimental errors given in the Table. The experimental errors were due to inaccuracies in the measurements and reflect both instrument error, where applicable, and process error. The likely error on the variables determined by the model program SSGW were computed using a sensitivity analysis as described in section 6.4.1. Table VIII-2 shows the comparison of the measured and predicted values of

The difference between the two values was calculated as
$\Delta x_{D}=\left(x_{D}\right)_{\text {experimental }}-\left(x_{D}\right)_{\text {model }}$
The results for these experiments are discussed in Chapter 6. Runs 9 and 10 failed to converge because the high reflux ratios (1.90, 2.54) caused instability in the iterative solution of the model equations, and produced distillate compositions in excess of 100 mol\%.

COLUMN OPERATING CONDITIONS FOR STEADY STATE RUNS

RUN	$\begin{gathered} \mathrm{F} / \operatorname{lmin}^{-1} \\ \pm .05 \end{gathered}$	$\mathrm{x}_{\mathrm{F}} / \mathrm{m.f}$. $\pm .005$	$\begin{aligned} & \mathrm{T}_{\mathrm{F}} /{ }^{\circ} \mathrm{C} \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{R}} /{ }^{\circ} \mathrm{C} \\ & \pm 1 \end{aligned}$	$\begin{gathered} R \\ \pm 0.03 \end{gathered}$	$\begin{gathered} \mathrm{Q}_{\mathrm{S}} / \mathrm{kg} \mathrm{~min}^{-1} \\ \pm .02 \end{gathered}$
1	1.75	. 515	26.0	19.0	0.73	0.98
2	"	. 480	"	19.0	0.76	0.82
3	"	. 500	"	20.0	1.15	1.17
4	"	. 540	"	19.0	0.57	1.11
5	"	. 440	"	18.0	0.83	1.15
6	"	. 460	"	19.0	1.13	1.13
7	"	. 450	"	19.0	1.14	1.16
8	"	. 450	"	19.0	1.41	1.16
9	"	. 425	"	19.0	1.90	1.16
10	"	. 400	"	19.0	2.54	1.16
11	"	. 500	"	18.0	0.67	1.13
12	"	. 490	"	18.0	0.62	1.12
13	"	. 490	"	18.0	0.59	1.11
14	"	. 470	"	18.0	0.91	1.20
15	"	. 480	"	19.0	0.97	1.19
16	"	. 470	"	19.0	0.80	1.09
17	"	. 460	"	19.0	0.74	0.78
18	"	. 460	"	19.0	0.74	0.84
19	"	. 460	"	19.0	0.75	0.97
20	"	. 460	"	20.0	0.73	1.03
21	"	. 480	"	20.0	0.74	1.10
22	"	. 485	"	20.0	0.78	1.20

Murphree Vapour Efficiency was given by

$$
\begin{array}{rlrl}
& \mathrm{E}_{\mathrm{MV}}=.436 \mathrm{x}^{3}-1.03 \mathrm{x}^{2}+.786 \mathrm{x}+.614 \\
\mathrm{~F} & =\text { feed rate } & \mathrm{T}_{\mathrm{R}}=\text { reflux temperature } \\
\mathrm{x}_{\mathrm{F}} & =\text { feed composition } & \mathrm{R}=\text { reflux ratio } \\
\mathrm{T}_{\mathrm{F}}= & \text { feed temperature } & Q_{\mathrm{S}}=\text { steam flow }
\end{array}
$$

8 trays used, feed on to fifth tray from the top.

VIII. 2 COMPARISON OF THE STEADY STATE MODEL WITH THE EXPERIMENTAL DATA OF SVRCEK

Svrcek (1967) used a similar column to separate a methanol/water mixture. There was no data on the bubble cap geometries used by Svrcek so a constant Murphree vapour efficiency of 90% was assumed (based on an estimated bubble cap slot 3.8 cm long and the correlation of Bakowski (1969)). In general, the experimental data of Svrcek and the predictions from the steady state model agreed within the tolerances described previously in this appendix. Two sample runs are listed below in Table VIII-3.

TABLE VIII-3

COMPARISON OF SSGW AND THE EXPERIMENTAL DATA OF SVRCEK (1967)
RUN S - 1

Feed Rate	$=1.12 \mathrm{fmin}^{-1}$	Number of Trays $=8$
Feed Comp.	$=0.366$	Feed Tray = 6*
Feed Temperature	$=75^{\circ} \mathrm{C}$	(*from the top of the column)
Reflux Temperature	$=65^{\circ} \mathrm{C}$	
Reflux Ratio	$=1.94$	
Steam Flow	$=0.81 \mathrm{~kg} \mathrm{~min}$.	

VARIABLE	SVRCEK	SSGW
X_{D} (m.f.)	. 925	. 938
X_{W} (m.f.)	. 005	. 002
D (mol min ${ }^{-1}$)	17.0	16.8
W ($\mathrm{mol} \mathrm{min}^{-1}$)	26.3	26.3
$L_{R}\left(\operatorname{mol} \min ^{-1}\right)$	33.0	32.5
x_{1} (m.f.)	. 840	. 854
x_{2} (m.f.)	. 735	. 726
x_{3} (m.f.)	. 576	. 551
x_{4} (m.f.)	. 383	. 336
x_{5} (m.f.)	. 216	. 180

```
\begin{tabular}{lll}
\(x_{6}\) (m.f.) & .148 & .119 \\
\(x_{7}\) (m.f.) & .051 & .032 \\
\(x_{8}\) (m.f.) & .016 & .008
\end{tabular}
    xi}= composition of the liquid leaving tray i
RUN
S -13
\begin{tabular}{|c|c|c|}
\hline Feed Rate & \[
=1.28{\ell \mathrm{~min}^{-1}}^{-1}
\] & Number of Trays \(=8\) \\
\hline Feed Composition & \(=.375\) & Feed Tray \(=6\) * \\
\hline Feed Temperature & \(=75^{\circ} \mathrm{C}\) & (* from the top of the column) \\
\hline Reflux Temperature & \(=65^{\circ} \mathrm{C}\) & \\
\hline Reflux Ratio & \(=1.31\) & \\
\hline Steam Flow & \(=0.72 \mathrm{~kg} \mathrm{~min}{ }^{-1}\) & \\
\hline
\end{tabular}
VARIABLE SVRCEK SSGW
\begin{tabular}{lll}
\(x_{D}\) (m.f.) & .948 & .951 \\
\(x_{W}\) (m.f.) & .010 & .011
\end{tabular}
D \(\left(\begin{array}{ll}\left(\operatorname{mol} \min ^{-1}\right) & 18.9 \\ 18.9\end{array}\right.\)
\(W\left(\operatorname{mol} \min ^{-1}\right) \quad 29.6 \quad 30.0\)
\(L_{R}\left(\operatorname{mol} \min ^{-1}\right) \quad 24.9 \quad 24.8\)
\(\mathrm{x}_{1}\) (m.f.) .882 . 886
\(\mathrm{x}_{2}\) (m.f.) .802 . 800
\(x_{3}\) (m.f.) . 706 . 693
\(\mathrm{x}_{4}\) (m.f.) . 569 . 565
\(\mathrm{x}_{5}\) (m.f.) . 439 . 426
\(\mathrm{x}_{6}\) (m.f.) . 311 . 300
\(\mathrm{x}_{7}\) (m.f.) . 178 . 147
\(\mathrm{x}_{8}\) (m.f.) . 090 . 046
\(\mathbf{x}_{\mathbf{i}}=\) composition of the liquid leaving tray \(\mathbf{i}\)
```

