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Abstract

This thesis aims to understand visual style in the context of computer sci-
ence, using traditionally intangible artistic properties to enhance existing
content manipulation algorithms and develop new content creation meth-
ods. The developed algorithms can be used to apply extracted properties
to other drawings automatically; transfer a selected style; categorise images
based upon perceived style; build 3D models using style features from con-
cept artwork; and other style-based actions that change our perception of
an object without changing our ability to recognise it. The research in this
thesis aims to provide the style manipulation abilities that are missing from

modern digital art creation pipelines.






Table of Contents

Abstract

Acknowledgments

Chapter 1: Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Introduction . . . . . . ...
Research Goals . . . . . . . .. ... ... ... ... .....
Contributions . . . . . . . ... ... L
Defining Style . . . . . . .. ..o
Vector Notation . . . . . . . . . ... ... ... ... ...,
Software Implementation . . . . . . .. .. ... ... ...
Rationale . . . . . . . . .. . ...
1.7.1 Consistency . . . . . . .. ..o
1.72 Concept Art . . . . . . ...
1.7.3 User Generated Content . . . ... .. ... .. ... ..

Chapter 2: Background Research

2.1
2.2
2.3
2.4
2.5

Introduction . . . . . . ...
Cognitive Approaches . . . . . . . . . . . . ... ... ... ..
Shape Abstraction . . . . . .. ... ... ... ... ...,
Statistical Classification . . . . . . .. ... ... ... ....

Animation Style . . . . . . ...

Chapter 3: Line Style Verification

3.1
3.2
3.3
3.4
3.5

Introduction . . . . . ...
Existing Studies . . . . . . . ... ...
Categorisation . . . . . . . . . .. ...
Transfer . . . . . . . . ...

Conclusion . . . . . . . .

iv

10
12
13



Chapter 4: Structural Vectorization 37

4.1 Introduction . . . . . . . ... ... 37
4.2 Existing Studies . . . . . . ... oo 38
4.2.1 Thick Line Vectorization . . . . . .. .. .. ... ... 43
4.2.2  Structural Vectorization . . . . . ... ... ... ... 48

4.3 Results. . . . . . . . o7
4.4 Form Preserving Scaling . . . . ... ... ... ... ... 58
Chapter 5: Characteristic Proportions 62
5.1 Introduction . . . . . . . ... ... ... 62
5.2 Existing Studies . . . . . . ... Lo 63
521 Geons . ... 64
5.2.2 Image Subdivision . . . . ... ... ... ... ... 67

5.3 Evaluating Geons . . . . . . .. ... L. 70
5.4 Algorithm Overview . . . . . . . ... .. .. ... .. .... 76
5.5 Prototype Subdivision . . .. ... .. ... ... L. 78
5.6 Image Extraction . . . . . . ... ... .. 0. 81
5.7 Database Analysis . . . .. ... ... ... ... 84
5.8 Proportion Transfer . . . . . . ... .. ... ... ... ..., 88
59 Results. . . . . . . . 91
5.10 Conclusion . . . . . . . . . . ... 96
Chapter 6: Model Reconstruction 98
6.1 Introduction . . . . . . . . ... ... 98
6.2 Previous Work . . . .. ... ... 100
6.2.1 Overview . . . . . . . .. . 100
6.2.2 Core Techniques . . . ... ... ... ... ... ... 102
6.2.3 Artist Assisted Systems . . . ... ... 104
6.2.4 CAD-based Systems . . . ... ... ... ... .... 110
6.2.5 Rescaled Base Meshes . . . . ... ... ... .. ... 112
6.2.6 Alternative Approaches . . . . . . . . ... ... ... 116

6.3 Mesh Rescaling . . . ... ... ... ... ... ... ... 118
6.3.1 Implementation . . . . . . .. .. ... ... ... ... 119

6.3.2 Rescaling Results . . . . ... ... .. ... .. .... 126

ii



6.3.3 Rescaling Discussion . . . . . ... ... ... ..... 129

6.4 Model Generation from Concept Artwork . . . . . . . ... .. 130
6.4.1 Algorithm Overview . . .. ... ... ... ...... 130

6.4.2 Concept Image Preparation . . . ... ... ... ... 132

6.4.3 Skeletonisation . . . ... ... ... ... ... ... 133

6.4.4 Mesh Construction . . . . .. ... ... ... ..... 141

6.4.5 Mesh Refinement . . . . .. ... ... ... ...... 151

6.5 Results. . . .. ... ... . 164
6.6 Evaluation . . . . .. .. ... ... 164
6.6.1 Method Comparison . . . .. ... ... ... ..... 167

6.6.2 BredthofInput . . ... ... ... ... ... ..... 168

6.6.3 Discussion . . . . . ... ... 170

6.7 Conclusion . . . . . . . . ... 171
Chapter T7: Conclusion 179
7.1 Limitations and Future Work . . . . .. ... ... ... ... 179
7.2 Conclusion . . . . . . . .. ... 182
7.3 Attribution . . ... ... 184
73.1 LineArt . . . . . ... 184

7.3.2 Concept Artwork . . . . . ... ... L. 184

733 3DModels. . ... ... ... 186
References 188

il



Acknowledgments

To Dr. R Mukundan for your support, your insights, and for having
the faith to let my research run off at all kinds of tangents. Thank you for
proof-reading countless documents and double-checking countless equations.
It was a pleasure to work with you.

Thank you to the Lund University Graphics Group for hosting me, I had
a wonderful time! Thanks especially to Mike Doggett for such strong support
during my stay, your experience and insight into the peer review process was
invaluable, and our discussions about my research always helped to keep
everything focused. This dissertation subsumes and extends the work that
appeared in our two coauthored papers.

To Stickmen Studios, Wil McLellan and Brooklyn Waters; Carly Wheeler
and the Foundation for Research, Science and Technology (now the Ministry
of Business, Innovation and Employment). Thank you for the funding. I ap-
preciate the leeway you gave me when I changed topics, the acceptance when
my reports went missing, and for understanding that research doesn’t always
go in a straight line. This research would never have happened without the
technology fellowship.

To Margaret and Malcolm, who have given me the most amazing support
throughout the whole project and are quite simply the world’s best parents.
Thank you.

Thank you to the faculty and staff from the Computer Science and Soft-
ware Engineering department at Canterbury University. To Richard Green,
Andy Cockburn and Tanja Mitrovic for accepting a somewhat unorthodox
and open ended research proposal; and to Gillian, Alex, Phil, Pete and Joff
for making the department such a wonderful place to work.

Finally, thanks to the many other people who have lent me their time,

their skills, their patience, and their artwork.

v



Chapter I

Introduction

1.1 Introduction

Content creation in modern entertainment is now one of the most time con-
suming components of a project. Extensive commercial toolsets allow artists
to streamline this process by assisting with sketching, painting, modelling
and animation. While these tools assist with the mechanical tasks of draw-
ing, the core of artistic creation — an image’s visual style — remains in the
realm of the artist. Style is what makes something appear cute, or creepy; it’s
what differentiates two artists who draw using the same media. More con-
cisely, style is a mechanism that changes our perception of an object without
changing our ability to recognise it. This thesis aims to understand visual
style in the context of a computational and algorithmic framework, using
these traditionally intangible artistic properties to enhance existing content
manipulation algorithms and develop new content creation methods. Suc-
cessful research in this area has the potential to facilitate and reduce the
workload of content creators.

Specifically, this thesis investigates the properties of visual style, devel-
oping metrics that allow stylistic classification, replication and generation
of graphics. It also investigates the indirect application of these metrics in
developing smarter algorithms. Overall this research was a success, produc-
ing viable results that would be applicable in a commercial setting. Two
self-contained and different approaches were developed, using artistic style
features in the context of digital manipulation. Several related research areas
also resulted in new algorithms and image processing techniques.

Direction manipulation of visual style is explored in Chapter 5. Char-

acteristic Proportions is a technique that can extract certain properties of



an individual artist’s style and apply those properties to other drawings. In
concert with existing line-style techniques, the algorithm can be used to en-
sure consistent artistic style across a project by automatically transferring a
selected style between hand drawn images. Characteristic proportions can
also be used to categorise drawings by different artists, and re-scale unknown
input images to match a target style.

Chapter 6 shows the strength of using visual style properties to enhance
existing techniques. Single-View Concept Modelling is the second advanced
technique developed as part of this research. It allows a single piece of
hand drawn 2D character concept artwork to be automatically analysed and
converted into a computer generated 3D model without the need for user
or artistic guidance. The constructed 3D model includes standard technical
properties such as UV texture coordinates and bone influence values that
mean this low-to-mid resolution 3D content is especially useful for rapid
prototyping or in applications such as mobile games.

The research in this thesis deals primarily with hand-drawn cartoon and
concept images. The outcomes provide style manipulation abilities that are
missing from modern digital art creation pipelines, and the potential appli-
cations reach beyond the scope of video games and electronic entertainment.
Understanding and manipulating visual style at the software level could lead
to automatic solutions or tools that address this issue, as well as faster and
more coherent integration of generic art assets or user generated content.
This thesis is an attempt to expand on the complicated and relatively unex-
plored area of visual style, and hopefully opens up further opportunities in

stylistic manipulation.

1.2 Research Goals

The initial aim of this research is to develop metrics that allow for quanti-
tative measurement of style. Such metrics are based upon measurable image
properties and should be representative of artistic style as opposed to image
content.

With industry funding and backing, this research is directed toward the

digital entertainment sector. After successfully developing or understanding



style metrics, the goal of this thesis is to use visual style properties to create
and enhance software for content creation.

Visual style properties could be used for direct style interaction, includ-
ing methods for the understanding, categorisation, and manipulation of vi-
sual style. Style properties could also be used indirectly to enhance existing
software or automate currently manual procedures in the content creation
pipeline. The goal of this research is to speed up the development of large
digital media projects by making content creation faster, easier, or by putting

it in the hands of users.

1.3 Contributions

This thesis makes a number of significant contributions in the areas of visual
style manipulation and 3D model generation. Traditionally intangible artistic
properties are measured and used throughout this thesis to enhance existing
content manipulation algorithms and develop new content creation methods.

Chapter 3 successfully reproduces existing research, and confirms that
line metrics can be representative of the artistic style and not only of the
content of an image. This research led directly to the development of a vec-
torization technique specifically for line based cartoon content. This was
published at IVCNZ in 2012:

BucHaNAN, P., DoGGETT, M., AND MUKUNDAN, R.
Structural vectorization of raster images. In Proceedings of
the 27th Conference on Image and Vision Computing New
Zealand (2012), ACM, pp. 319-324

A new method of image content analysis has been developed, also making
possible a number of new style manipulation methods. Characteristic Pro-
portions define the relationships within a set of similar shaped objects by the
same artist. Using a database system these can be compared and used to
distinguish artwork based upon the author, or transfer visual style between
two stylistically different images. This research was presented at Computer

Graphics International:



BucHaNAN, P., DocGETT, M., AND MUKUNDAN, R.
Transferring characteristic proportions to modify the artis-
tic style of cartoons. In Proceedings of the 30th Computer

Graphics International Conference (jun 2012)

Two automatic model creation methods are presented for use in rapid
prototyping and content generation pipelines. Using image metrics, a single
piece of 2D concept artwork is used to produce a fully textured and rigged
3D model without user intervention. This work advances the field of Sketch-

Based Interfaces and Modeling:

BucHANAN, P., MUKUNDAN, R., AND DOGGETT, M. Au-
tomatic single-view character model reconstruction. In Pro-
ceedings of the International Symposium on Sketch-Based In-
terfaces and Modeling (New York, NY, USA, 2013), SBIM
13, ACM, pp. 5-14

Overall, the research in this thesis provides a number of important con-

tributions to the field of visual style and automatic modelling.

1.4 Defining Style

Defining style is an implicitly difficult topic due to the amount of personal in-
terpretation involved. People from different cultural backgrounds understand
and classify image style in different ways, as do people from technical back-
grounds or fine art backgrounds. What we perceive as "style” is a function
of our hugely complex visual system, combined with lifelong environmental
experience. Section 2.2 touches upon the difficulty of understanding style in
a measurable context. However, to develop computer systems in this area
requires that we develop a concrete definition of style. Many different terms
are used to describe the appearance of an image. There is no single standard,
and previous literature in this area often uses terms interchangeably or in
different contexts. Common terms include Visual and Artistic Style, as well

as Image Dimensions, Features, Metrics, and Geons. This section attempts



to define the common terms used throughout this thesis.

The Oxford English Dictionary gives two definitions for style:

1. A way of painting, writing, composing, building, etc., characteristic of

a particular period, place, person, or movement.

2. A distinctive appearance, typically determined by the principles ac-

cording to which something is designed.

These both encompass a wide range of different ideas, and a more concise
definition of style is needed. In fact, we want to separate the different types
of style that we deal with in the thesis:

In this thesis Visual Style refers to the appearance of an object or drawing.
(Classified under the moniker of visual style are all components and visual
features of the image that do not directly contribute to the substance of
the image. More precisely, visual style indicates any and all properties of
the image that can be changed in a consistent manner without affecting a
viewer’s understanding of the image contents themselves. Examples are the
type of drawing media, the stroke properties, or the colour palette.

Artistic Style is a subset of visual style, and encompasses image features
that have been chosen specifically by and are unique to an artist or school
of art. While the appearance of individual features may be shared between
artists, the values of multiple features are often unique to an artist. As
opposed to emotional style, artistic style is viewer independent and therefore
a good candidate for algorithmic representation and manipulation. In the
context of this research we focus upon individual artists, because schools of
art for example, "modernism” - are often too broad of a category to classify
using statistical methods. It’s worth noting however that individual artists
can drift or change their style over time, and in these cases the style may
also become too broad to easily classify.

Emotional Style is also a subset of visual style, and while this thesis
rarely explores this area it is important to understand the distinction. Emo-
tional style encompasses image features that have either been chosen or have
occurred during image creation with the purpose of contributing to the emo-

tional response of a viewer toward the image. As opposed to artistic style,



these features are independent of the artist and often occur in groups. ” Cute”
or "creepy” would be examples classifying these emotional style groups, al-
though it is worth noting that emotional style classification is viewer depen-
dant.

To measure style, an underlying representation must be used. While
this is developed as a concept in Chapter 5, the following terms are used
throughout the thesis.

A Feature is a meaningful or semantic part of an image. There is no
set size, shape or classification, however a feature is always a subset of the
object or scene being portrayed. Features have two functions, the first being
its contribution to the object so as to increase detail and aid understanding,

and the second being the contribution to the visual style of the image.

A Metric is the appearance or measurement of a feature that can be
stored as a single, often scale-independent, value. Examples would be the
angle of line curve or the size ratio of a Geon. Specifically, the use of 'metric’
in this thesis refers to the common use in Computer Science, where it refers

to a measure of some property or specification.

Line Curve and line Camber are often used interchangeably in literature,
however in this thesis they are given distinct meanings. The line curve is
a first-order metric, that is to say the average angle of a line defined in
Equation 3.1; whilst the line camber is a second-order metric representing

the rate of change of the line curve over its length.

1.5 Vector Notation

Within the field of engineering and computer graphics, several different styles
of vector notation are commonly used. This thesis uses the following nota-

tions for calculations.



Single and double pipes are used to find length. This is the absolute value

of a scalar and the length of a vector respectively:

2| = 2

I3, =3 = 5

The norm of a vector, or vector normalization, is represented by a hat
and is performed as following:

. )
v = —_—
(Y

In cases where this notation would be ambiguous due to formatting, single

pipes around a vector term are used to denote the norm:

1.6 Software Implementation

A number of software components were developed for the thesis, ranging
from stand-alone programs to a full automatic modelling suite and toolset.
For the algorithms outlined in Chapters 3 to 5, individual programs were
developed using a common framework and file format. These programs were
written in C4++ and used a command line interface to interact with the
datafiles. A separate visualisation program was used to view the dataset and
record positional input if needed. This format meant that it was easy to
adapt and implement new features as standalone applications because they
did not interfere with already working components. The final list of compo-

nents is : Line Extraction, Line Modification, Geon Database Analysis, Geon



Substitution, Geon Extraction (Brute Force), Expansion & Smart Scaling,
Colour Analysis, Artist Classification.

For the 3D components in Chapter 6, a different approach was taken. A
single web interface was developed in Javascript and HTML5, using DAT.GUI
and WebGL. Because the majority of algorithms are not designed to be in-
teractive, the software has a broad array of initial setup and options, followed
by a series of steps that can be run automatically or manually to allow the
intermediate steps to be seen.

The use of javascript and run-time languages allowed faster and easier
implementation of designed methods, and real-time interaction could be used
to view changes and improve the methods. The Web interface is designed to

allow easy distributed use within a studio or commercial environment.

1.7 Rationale

The aim of this research is to allow classification and replication of style. This
has many applications, but due to its basis in an industry partnership through
the New Zealand Foundation for Research Science and Technology (now the
Ministry of Business, Innovation and Employment), this research focuses
primarily on the digital entertainment industry. The ability to manipulate
graphical content in new ways has the potential to save a large amount of
effort in many projects, as well as opening up new possibilities for content
presentation. Sections 1.7.1 to 1.7.3 show the motivation and need for this
type of research.

Chapter 2 outlines some of the research that has already been done in
this area, and what the authors of that research consider to be potential
research targets and ideas for future work. While these give a good idea of
knowledge lacking in the technical space, it is also important to ensure the
research is solving problems that actually exist in the artistic space. The
following section outlines some of the issues faced by content creators.

TV series and big budget video games typically have large art teams
and enormous amounts of content. Ensuring stylistic consistency is difficult,
and is something our algorithm aims to assist. In contrast, video games

for the social space - such as facebook and the iPhone - typically have fast



development cycles with small teams. Consistency within the team is rarely
an issue, however content is often sourced from external locations. Providing
tools to deal with artistic style will allow easier, faster and more coherent
integration of generic art assets or user generated content.

The research in this thesis focuses primarily on the visual style of char-
acters — including human forms, monsters, and anthropomorphic objects.
While most of the methods can also be applied to other inputs, this focus is
important for a number of reasons. Due to the lack of prior research, a con-
strained input type provides the best balance between complexity and scope.
A standard character is complex enough that the algorithms must be robust
and flexible, yet constrained enough that it does not have to deal with input
data with an unexpected or unknown context. Characters are usually at
the forefront of the user experience in both computer games and animated
movies, and provide a high impact for a small computational focus. The
ubiquity of characters in animated media also offers a large dataset to draw
from and analyse, in comparison to many other object classes. Finally, line
style experiments in Chapter 3 found that characters displayed more stylis-
tic variety and greater correspondence with unique artists than background
objects did.

It is also worth noting that visual style in real-time media can have a
significant impact on other areas of the production. In video games, art di-
rection can influence the form of the gameplay [124] [63] and vice versa [171].
In animated films the visual style can be a feature of the narrative, or just
as easily detract from it [73]. There has even been a case where the artist
wanted to change the emotional impact by changing the style of an image
while it was being viewed [154]. This introduces complexity to the problem
of analysing and understanding visual style, as there may not always be a
single technical or artistic reason underpinning it.

Modern video games aim for a greater empathy with the player. Several
recent titles have experimented with dynamically changing the graphical style
of the environment to reflect changes in the game or player state. In the case
of Spicy Horse Games’ Grimm [48], supporting this technology required every
environment asset in the game to be drawn in two different styles. Performing

this process automatically would have halved the production workload, as



well as allowing for more than two stylistic states.

Overall, the ability to categorise and replicate visual style is an invaluable

tool in a digital art creation pipeline.

1.7.1 Consistency

Project teams in the entertainment industry often reach into the hundreds of
personnel, so that retaining stylistic consistency across all assets is difficult.

Artists Hyung-Tae Kim and Saul Machese explain:

66 When we hire people, I try to recruit artists who naturally can
understand and draw the kind of image I need. [...] I've had everyone
practice drawing these characters and images in a certain style. [...]

It’s all basically an attempt to maintain a consistent style. yy

Hyung-Tae Kim - Lead Artist, Blade € Soul;
NCSoft; 29-05-2010 [153]

66 When you have a large group of artists working on a game it can

be difficult to achieve a consistent style. yy

Saul Marchese - Lead Environment Artist;

Climax Studios; 21-03-2007 [116]

Character art is not the only field where this is an issue. In the full inter-
view [116], Saul Machese talks about the issues surrounding quality control
and how translating level designers ideas to art can cause problems. During
production, Saul had to act as a final check to ensure consistency for every

element in the levels. Concept artist and comic author Jason Brukaker ran

10



into similar problems when outsourcing artwork to save himself time:

€ One time I actually hired some freelancers from India and Japan
to color a test page to see if they could match my style and save me
precious time. I gave them specific reference of how I wanted it to look
and even examples of the color pallet. I even gave them my homemade
texture files. When I got the pages back they looked ... well, lets
just say I deleted the files even after revisions so that I wouldnt be
influenced in any way by what I saw. Dont get me wrong, they did a

great job coloring the pages but it wasnt right for my project.

Jason Brubaker - Writer € Artist, re MIND;
23-11-2009 [32]

In the study ’'Visual-Style Variation as a Narrative Device in Animated
Productions’ [73] a number of modern animated films were analysed for stylis-
tic inconsistencies in their art content. Particularly, the study focused upon
productions that used different visual styles within a single frame. It at-
tempted to draw a link between theoretical cognitive frameworks in terms
of an emotive or narrative context and the use of multiple visual styles. A
number of features and shorts were analysed, and while in select cases stylis-
tic inconsistencies were present for a narrative or storytelling purpose, the
conclusion reached was that visual style variation in animated films is often
due to technical limitations.

This paper is important because it supports a need for the research out-
lined in this thesis. While style variation is desired in some contexts, Gupta
found several cases where a technical limitation was the cause of visual style
variation. If a technical solution existed to help develop style consistency,
several of these media would better have achieved their aims. Gupta also per-
forms a depth-first qualitative assessment, quoting several film directors and
artists who desire visual style consistency in their work. These people and
products would benefit from better style analysis and manipulation tools.

Using the proposed research, software could compare assets against a
standard, alerting the artist to problems, or automatically fixing any issues.
Additionally, such software used in a production pipeline could be used to

integrate existing assets into a new game, reducing the art workload.

11



1.7.2  Concept Art

Stylistic inconsistencies can also manifest themselves indirectly. A common
content creation pipeline for 3D media has several steps. Initial designs are
created by concept artists in 2D, and then passed on to a 3D artist who
creates the model. A texture artist paints the details onto the model and if
the model is animated, a rigger sets up the internal skeleton and controls for
the animator. All together half a dozen people may have influenced the style
of the final model, creating a problem where the final 3D artwork often isn’t
representative of the initial sketch.

In some cases, this is such a large problem that 3D is avoided altogether:

66 For example if you look at the Pokmon on the package you can
really see how cool it looks as a 2D illustration and in the games [...].
If we were able to take that style we have now and have it translate
into 3D with no problems; that is definitely something we would be

into.
)

Junichi Masuda - Producer, Pokmon Black
and White 2; 17-09-2012 [80]

In other cases, this extra workload means that turning 2d concept art
into 3d models takes significantly longer than drawing the 2d art in the first
place. When developing the Role Playing Game Torchlight, Jason Beck had

to balance unique content against a tight schedule:

€6 What’s the value in sacrificing our desires to do unique playable
character meshes worth the simpler, more schedule-friendly approach?
[...]| We began to contemplate ways we could create unique meshes for
our playable characters without a pipeline that would jeopardise our

timetable. yy

Jason Beck - Art Director, Runic Games; 03-
09-2009 [20]

Understanding style features in the concept art allows for easier devel-
opment of higher level systems that solve problems such as this, with the

problem of rapid model creation covered in Chapter 6.

12



1.7.3 User Generated Content

Rapid and automatic model creation processes are also important in the
context of user generated content for video games. To cope with the large
content workload and to accommodate user demands for more interaction,
user generated content is playing a more important role in modern games.
Current approaches to handling the wealth of new data involve numerous

trade-offs, and tend to take two main approaches that are outlined below.

1.7.3.1 Free Content Generation

With free content generation, users are given tools that allow them to create
whatever they want. Often external modelling packages can be used to export
data into the game. Two major problems commonly arise with this method.
If the player is not a technically trained game artist the resulting model is
often not suitable for use in a real-time game engine. Linden Labs’ Second
Life allows users to freely edit the world at any time, however this limits
the amount of graphical optimisation that can be performed and there are
many locations in the Second Life world where the game exhibits bad lag

and stuttering. Second Life content creator Penny Patton explains:

€6 Most of Second Life’s problems can be blamed entirely on this
disconnect between Linden Lab’s development teams and the realities
of how Second Life works. [...| Linden Lab bears the brunt of the
responsibility here. They do absolutely nothing to prevent people from

creating content this way. yy

Penny Patton - Second Life content creator;
28-02-2013 [146]

Additionally, allowing for free-form data creation creates opportunity for
inappropriate or game-breaking content. Sony Entertainment allows user
generated content for several online games through their Player Studio tool [1]

and solve this issue by screening all user generated content before it is inte-

13



grated into the game.

kc Through the use of standard third party art tools, [users] learn
how to develop, design and personalise items of their own. [... They]
submit it to SOE for review and possible inclusion in the SOE Market-
place. yy

Sony Online Entertainment; 2013 [1]

1.7.3.2 Restricted Content Generation

One solution to these issues is to allow user content creation within a preset
framework. Simple examples are changing the colour of the player’s clothing,
and complex examples extend all the way to EA Games’ Spore, where players
have complete control over creature and structure creation at an abstract
level but are limited at the technical level. This allows for a wide variety of

content within the given aesthetic:

€6 No matter how customised, the whole game has an inescapably
Sporish look to it - and its bulbous, cartoony lines won’t be to all tastes
- but that’s better than the hideous mishmash that would be born of
total aesthetic freedom.
Oli Welsh - Deputy Editor, EuroGamer Mag-
azine; 13-02-2008 [179]

This design restriction makes content creation easier for the players, but
often means that the tool design is difficult. In the case of Spore, a large
programming team was required to research new technologies to implement

the system.

€6 The editor was more of a design challenge - how do we make

something that is as powerful as Maya, but that the average Sims

player can use? yy

Will Wright - Spore Lead Designer; 03-08-
2006 [29]

14



Changing the visual style or allowing for different aesthetics within this
framework requires additional work that the player cannot influence. In the
case of Spore, EA Games released extra content packs such as the ’cute
and creepy pack’ [2] that were developed by in-house artists. This gives
the required level of control over the users interactions so that the produced

content remains consistent. This was a concern to Little Big Planet developer
Media Molecule:

b6 We wanted players to feel comfortable making constructions in the
game, without being put off by talk of level editors and poly-counts.
[... Tt was | also a stylistic decision - However, we didnt want these
avatars to exist as blank canvases; they still needed to live within the

same stylised world. yy

Rex Crowle - Art Designer, Media Molecule;
01-01-2010 [49]

Understanding visual style better could allow for more flexibility in de-
veloping options for user generated content. Limited input ability could
be expanded upon without reducing stylistic consistency, or stylistic under-
standing could be used to determine the important display features from an
object and therefore be of use in automatically optimising models for real-
time use. Overall, the ability to deal with visual style features could increase

the options for and viability of user generated content.
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Chapter II

Background Research

2.1 Introduction

This section covers research relevant to the problem of quantifying visual
style, covering visual perception and previous attempts at creating entire
systems. Existing studies that concern only parts of the subsystem or tech-

nical details are discussed in their respective chapters.

Traditionally, visual style research in computer science has fallen into two
categories. One common area of research is the recognition of brush strokes
and painting styles in traditional media, including methods to classify the
renaissance masters [151]. This research rarely transfers across to different
types of media. Another common research area is non-photo-realistic ren-
dering techniques for 3D models, such as cell shading or pencil hatching [53].
Other papers approach the topic from a psychological perspective, exploring
the cognitive processes our brains use in object and style recognition [141].
Little research appears to have been done regarding analysis of artistic style
in non-traditional media, nor in regards to an artist’s overall visual style. In
this section, the relationship between cognitive models and software systems
is explored with the aim of better understanding of the state of the art as
well as uncovering relevant and sound principles of cognitive perception upon

which to base the research in this thesis.

2.2 Cognitive Approaches

Central to visual style research are several papers outlining the core aspects

of visual cognition, line style, object component separation, and structural
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re-mapping.

Palmeri & Gauthier [141] performed an extensive literature review of vi-
sual object understanding, summarising and categorising 174 visual cognition
research papers. They found two dominant schools of thought when it comes
to designing a perception model: ‘Object Recognition’ and ‘Perceptual Cat-
egorisation’. Whilst this paper does not primarily deal with visual style,
performing any type of stylistic manipulation requires object recognition to
be preserved.

On the other end of the spectrum, psychologists have tried to model the
human understanding of art. Works in this area often focus on art as an
object of appreciation and the characteristics most prominent in increasing
its appeal. Several papers have performed empirical studies in this area, in-
cluding Hagtvedt et al. in ‘The Perception and Evaluation of Visual Art’ [74]
and the earlier ‘The Psychology of Art Appreciation’ by Funch [66]. These
studies found that in general, viewers had distinct scales of appreciation for
artistic merits and technical merits. This indicates that it should be possible
to change the technical content of a drawing without influencing the viewer’s
perception of the artistic components.

As outlined in 'Visual object understanding’ [141], Object Recognition
theory assumes that the brain resembles a large database of stored images,
from different angles and at different sizes. Recognition comes down to fast
visual recall and indexing. On the other hand, Perceptual Categorisation
asserts that recognition is achieved through calculation and associative de-
cisions, matching the view of an object in a probability space with all other
previously seen views of objects. The first stage of image translation and
understanding in computer science is fundamentally one of recognition, and
from a cognitive approach, one of perception.

The two perception models appear to align with the two fundamental
computer science techniques for style and animation translation. Object
Recognition is a form of re-mapping, whilst Perceptual Categorisation is a
form of re-generation. Recognition at a subordinate level is considered easier
than recognition at the entry or basic level (see pages 6 - 7). This aligns with
the computer science findings that context-free (subordinate level) style clas-

sification and remapping is easier than performing the same task contextually
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(entry level) [50]. Making this link allows us to better understand the ad-
vantages and disadvantages of each method by increasing the understanding
behind how they actually work.

Perceptual Categorisation is farther explored in ‘Multidimensional Mod-
els of Perception and Cognition’ [11] and attempts to produce digital models
of this system are often implemented using Geons, small primitives that,
combined with their spatial relationship, create a full image. This is a paral-
lel to the described context-free image recognition, combined with contextual
meta-data. Context free data can be transformed in subordinate style, but
context is required to transform basic level style.

The relationship between context-free data structures and the ability
to generate contextual information through programming was explored in
‘Structure vs. Style’ [76]. Often, context-free metrics cannot capture enough
information to be useful, while contextual metrics are almost unexplored
due to their overwhelming complexity. Jupp & Gero [94] attempt to tackle
this complexity by implementing a categorisation system based upon self-
organising maps (SOMs). The program operates at both the context-free
level, via extracted features, and the context level through the SOMs.

Deciding upon which properties of an image are style-based metrics and
which are related to the object contents is a difficult task. One approach
is to look at how properties are processed by the human perception system,
a research area covered by de Beeck et al. [52] who carried out empirical
research to confirm theoretical models defining the boundary between shape
dimensions. Category learning experiments showed that recognition of high-
level objects could be trained, while low-level metrics remained independent.
Similar results were found by Goldstone [70] who explored the development of
high-level models from low-level components. This lends weight to the argu-
ment that low-level metrics individually represent style, as changing these is
independant and does not adversely affect recognition of higher-level objects.

The paper ‘Visual Explanations’ [54] looks at the crossover between ab-
stract rendering techniques and formal cognitive representations, and is in
part a discussion about style reduction for better representation and in part
an attempt at defining computer science methods in terms of perceptual sci-

ence. The ideas in this paper aim to promote a higher level of understanding
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when developing technical methods in the area of style and perception. While
the contents seem too ill-defined to successfully draw parallels between the
fields, the importance of using research from the cognitive sciences to sup-
port technical developments is well communicated and has influenced the
approach taken for many of the techniques outlined in this thesis.

Like Visual Explanations, the paper ‘Perception and Artistic Style’ [145]
looks at the relationship between visual perception and traditional art. Parker
& Deregowski allege that the fundamental visual processes, such as those out-
lined by Ashby et al [11], contribute to and in some cases cause the major
stylistic features in works of art. While compelling arguments are made for
the strong link between technical perception and artistic style, the lack of
quantifiable data to support the link would make it difficult to develop a

software system based on these principles.

2.3 Shape Abstraction

These cognitive models are useful when considering papers such as ‘Abstrac-
tion of 2D Shapes in Terms of Parts’ [122]. This research describes shape
abstraction, "using a new synthesis of holistic features” which creates sim-
plified shapes that retain important features. The holistic features can be
explained by the cognitive models which show the importance of corner-
invariant detail scaling in relation to the perception of style. The ability of
their algorithm to perform context-sensitive part division is important when
considering the need for context when creating metrics for subordinate level
manipulation of style.

The paper ‘Separating Style and Content with Bilinear Models’ [165]
focuses on copying the function of perceptual systems in separating content
from style. Whilst this thesis deals primarily with artistic style, Tenenbaum
focuses on the general problem domain, giving several other examples such as
words spoken in an unfamiliar accent, identifying a font or handwriting style
across letters, or recognising a familiar face or object seen under unfamiliar
viewing conditions. The paper separates style manipulation functions into
three parts - classification, extrapolation, and translation - although it states

that the essential challenge in these tasks is the same. A bi-linear model is
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then used to order a large series of input into a modular form, such as a 2D or
3D table. Each dimension represents a property of style and by interpolating
or extrapolating on each continuum new style variants can be established.
Although limited in scope the results are important because they show that it
is possible to automatically separate style and substance with little overlap.
This can be improved upon and is an essential step toward achieving the goal

of stylistic manipulation.

Both Theobalt et al. [166] and Li et al. [107] present methods for decom-
position of complex shapes. Although both have different target applications
and apply primarily to 3D meshes, they each develop important structural

representations of context.

While much of the literature around object categorisation is based around
the idea of geons (defined features that have a spatial relationship to create
an object) there are few papers that explore exactly what these features need
to be. ‘The development of features in Object Concepts’ [148] looks at the
relative importance of each geon within an object. It forms the hypothesis
that different object categories have different orders of geon importance, and

that geons differ in importance and form between people.

Hummel & Stankiewicz [85] explore a structural description model, where
Geons within a shape are identified and stored in a relational pattern. This
is implemented in MetriCat, a program designed to model the brain’s object
classification approach. Whilst the program also models the debilitating
factors our brain introduces into classification, it still proves categorisation

via the use of shape abstraction is both possible and effective.

Ullman et al. [169] also look at Geons, finding that visual features of
intermediate complexity are of best use in image classification. A training set
of cars and faces was used to test an image recognition algorithm. Geons of
different sizes and complexity were used in the recognition process, which was
based upon standard recognition techniques. When looking at this research
in the context of visual style, keeping Geons at an intermediate complexity

should produce the highest quality remapping.
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2.4 Statistical Classification

A brief study by Wayner [176] attempts to classify visual style using two
descriptors; line length and line camber. It uses these descriptors to create
a histogram of an image’s line length, and then match this histogram with a
database of authors. It was found that using only a line length classification,
95% accuracy could be achieved in the categorisation of black and white

cartoon strips between 7 authors.

This research is important because it shows, definitively, that it is pos-
sible to mathematically classify and recognise artistic and visual style based
upon simple metrics. Interestingly, the introduction to the paper mentions
line camber and curve as classification descriptors. However, the algorithm
showcased does not take curve into account, and there is no reference to this
descriptor for the rest of the paper. Given a 95% accuracy rate with only one
descriptor, this could potentially be increased dramatically with the inclusion
of further descriptors.

There are also examples of research into style classification outside of
the typical computer graphics arena. Fischer et al. [60] outline a system
for classifying film genres based upon editing properties. Attributes such as
the length between cuts, the type of camera movement, and the audio can
be used to build templates that represent the editing style of each genre.
It is interesting and important to note that many of the same underlying
principles are used in regards to what makes a style metric and how the
classification is performed. This is reinforced by the success of Tenenbaum &
Freeman’s multi-use system [165] and suggests that the technical approach
to style recognition remains roughly the same irrespective of the style content
itself.

Zhang et al. [191] use shape metrics to extract ‘semantically meaningful
layers’ from animated cartoon videos. Despite the claim that each layer
represents a different motion style the result does not appear significantly
different to standard segmentation techniques. This shows the difficulty of
separating style from content, and highlights the necessity in both defining
these terms and evaluating results in terms of the initial aims.

Kalogerakis et al. [95] skip the classification step and use probabilistic
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models to directly generate new Geon configurations that statistically match
an existing dataset. The probability model uses relationships between prop-
erties of shape components, and assumes that these are related to or caused
by the underlying structure within the dataset. Variability within these prop-
erties allows generation of new models, and it is this type of database and

Geon approach that is taken in Chapter 5 to transform 2D images.

2.5 Animation Style

Chris Hecker [77] describes the procedural animation system used in the
computer game Spore. This paper explores an animation system where the
action is abstracted from the skeleton. It was found that categorising struc-
tural components allowed for much better generalisation of the animation,
something that standard animation re-mapping did not do well. Instead of
directly re-mapping style, the ability to decompose style into a descriptive
structure, and then re-generate the animation using the style descriptors
meant that the final result could create context-sensitive actions. This may
be necessary when performing style re-mapping, as illustrated with the issues
encountered by Freeman et al. [64].

Database-driven style remapping for animation sequences has been pro-
posed in papers such as ‘Style-Based Inverse Kinematics’ [72] and ‘Style Ma-
chines’ [30]. In both cases, a probability function derived from a large library
of Motion Capture data was used to find the appropriate body pose for the
specified end-points of the animation sections. Grockhow additionally used
inverse kinematics to allow for better re-targeting to the new poses. Earlier
research by Unuma et al. [170] also attached an additional emotion channel
that was tied to the style of each action, while Shapiro et al. [152] use In-
dependent Component Analysis with exemplars to extract style tracks from
animations. In all of these cases, it was possible to change the style of the

animation without affecting the understanding or actions of the animation.
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Chapter III

Line Style Verification

3.1 Introduction

Visual style analysis can happen at multiple levels. This thesis focuses pri-
marily on high level style features, such as Characteristic Proportions in
Chapter 5 and 3D shape in Chapter 6. However these high level features
rely on accurate knowledge of low level features such as line properties, and
knowledge of how these affect and interact with artistic style.

It is therefore important to explore and validate the results shown by some
of the core research in this area. Studies by researchers Freeman et al. [64]
and Hertzmann et al. [79] have outlined methods for style transformation
at the line level. More importantly, research such as that by Wayner [176]
shows that artist identification and categorisation can be performed reliably
using only basic line metrics.

Two major verification steps have been performed that validate the results
of these papers. This chapter explores stylistic categorisation based upon
the properties of lines within an image, which is referred to as the line style.
Section 5.9 confirms that stylistic categorisation can also be performed at a
higher level by using Geons. The Geon system does not modify properties
of the image relating to brush technique. Style perception by the viewer is
a complex subject but is based in part on the line style and therefore in
addition to Geon techniques, style translation needs to be performed at the
line level.

By validating previous research, and confirming that line style can be
cleanly manipulated, the requirement of also performing line style transla-
tion during high-level techniques is satisfied and can be integrated into the

characteristic proportion system to allow for a more complete style change.
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Likewise, with artistic recognition, it should be possible to augment the recog-
nition using line style metrics. To this end, a qualitative survey is performed
to evaluate line style transfer.

Knowledge of line style was also important when developing the line ex-
traction technique, Structural Vectorization, in Chapter 4. The line property
research in this chapter is also used in Section 4.4 as the basis of intelligent

line scaling.

3.2 Existing Studies

Two comprehensive papers describe techniques for the style translation of

lines within 2D drawings.

In 'Learning Style Translation for the Lines of a Drawing’, Freeman et
al. [64] outline two similar matching techniques used in transferring line style
between a training data-set and a basic line drawing. Line style in this paper
refers to the length, width, curvature and corner angles of vector line seg-
ments within an image. The authors explore two methods for line-matching
the original drawing with the style database. This is done by comparing
the drawn line with every line in the database using a custom matching algo-
rithm. They found that the nearest-neighbour match produced the best style
translation, but the image became distorted. A linear combination (using a
least-squares matching) produced the best image translation, but the style
does not transition well. Much of the paper is spent looking at these two
methods, and introducing a k-N mapping where the nearest neighbour (N)
algorithm is used first, and adjusted by the least-squares combination up to
(k) number of lines. This produces a translation algorithm that preserves
the image and the visual fidelity of the style.

One interesting style-interpolation technique that appears to have been
introduced first in this paper is the uneven point distribution for the style
descriptors. In previous papers, style descriptors have been features such
as end-points, corners, or junctions. In this paper, lines are represented by
series of points picked from along the line and encoded as [X, Y, thickness|

coordinates. They are picked in an uneven distribution depending upon the
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curve’s interest value, which is a combination of several line properties. More
points cluster around end-points, corners and junctions, but are not exclu-
sively restricted to these areas. This allows much better linear interpolation

between two lines of similar shape, preserving the interest points.

In contrast to a database system, Hertzmann et al. [79] explore the cre-
ation of ’curve analogies’. By using a texture-matching, scale and rotation
invariant transform, their algorithm can analyse a single line, stroke, or im-
age, and transfer the style properties from one drawing onto a second draw-
ing. A major advancement shown in this paper is the ability to perform this
transplant between two very different images.

While the paper talks about style in the context of visual style, this def-
inition extends only as far as the shape variations within a single curve.
It directly transplants the original image to the secondary image without
concern for the underlying structure. This reduces algorithmic complexity,
but means that extra drawing information is required for the original image.
Two images (the drawing, and the underlying curve structure) are required
instead of simply one. One issue not explored or explained in the paper is
the case where no corresponding mapping can be found (i.e., the curve for
one line cannot be found in the underlying structure of the other, and hence

no segment can be found to perform the transfer).

Both papers successfully use re-mapping techniques, with manually cre-
ated databases or input. The style mapping examples by Freeman et al. [64]
are of high quality and show that this technique works well. However, the
limitation of line style re-mapping shows in areas such as the human face
where modifications are stylistically consistent, but create unrealistic facial
features.

As mentioned in Chapter 2, a 1991 study by Wayner [176] used line length
and line camber to classify visual style. It uses these descriptors to create a
histogram of an image’s line lengths, and then matches this histogram with a
database of authors. It was found that using only a line length classification,
95% accuracy could be achieved in the categorisation of black and white

cartoon strips between 7 authors.
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This research is important because it shows that it is possible to math-
ematically classify and recognise artistic and visual style based upon simple

metrics.

3.3 Categorisation

The Structural Vectorization process outlined in Chapter 4 is used to extract
line information from source images. Basic line properties of width, length,
and taper are measured. Additionally, the first and second order line angle
properties (curve and camber, respectively) are recorded. Curve is measured
according to Equation 3.1 which finds the average angle between adjacent
points in a line segment. This equation depends on point density and can only
be used to compare lines with the same density measure. The vectorization
process used to generate the lines in this section produces results with the
same densities, and therefore lines can be safely compared between images
and artists. Camber represents the rate of change of the line curve over its
length. Figure 3.1 shows two input images representative of the two artists
analysed in this section. Ten images were analysed from each artist to give
around 2,000 line segments. 17 outliers were manually removed and the
resulting datapoints used produce the figures in this section.

The fairest method of comparison would be to use the same comic drawn
by multiple artists. In practice, this is difficult to obtain because you need
a large body of work. Therefore, the images in this section were selected
as best as possible to have comparible content. They were selected from
webcomics and cartoon strips with similar layouts. In addition, only object-
internal measurements are saved, so there is no relation or influence from
the background or surrounding objects. While this could potentially be an
issue when looking at the visual style of entire scenes, the advantage is that
it produces a fairer comparison between characters and objects within the

strips.

c—ﬁ?(vﬁm_l)«m—m—u (3.1)

where V is a set of 0..n vertices.
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Figure 3.1: The two source images used in this section. Girls With Slingshots
(a) is hand-drawn by Danielle Corsetto, while YodaBlog (b) is drawn digitally
by Thierry Vivien

The statistical analysis by Wayner [176] used only one metric — line
length — to classify images. This was successfully repeated with our source
images and metrics recorded through the vectorization. Figure 3.2 shows the
line lengths where the horizontal axis is the length as a proportion of the
image and the vertical axis is the frequency. The difference can be clearly
seen, with the lines used to draw YodaBlog consistently longer than those
used to draw Girls with Slingshots. Wayner used line length to successfully
classify images, and this would be possible in this case. However, there are
several other line metrics that produce clearer distinctions between artists.

Significant differences can be seen in the line width plotted in Figure 3.3.
YodaBlog is drawn digitally with a single line width, which can be clearly
seen in the single spike that occurs just under the 1-pixel width. The line is
not precisely 1 pixel wide due to antialiasing, measurement error, and cases
of overdraw where lines were corrected by the artist. Girls With Slingshots is
drawn by hand before being digitised, and the width of lines is significantly
more spread. Significant peaks can be seen in the width frequency, which

suggest a discrete number of line widths are used in the creation of the
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Figure 3.2: This graph shows the distribution of line lengths in YodaBlog
(orange) and Girls with Slingshots (blue). The horizontal axis is the length of
the curve relative to image size, where 1 is the length of the image diagonal.
The vertical axis shows the frequency of each length (at intervals measuring
2% of the image size).

artwork. This may be due to the artist using different pens or different
drawing styles for different elements of the image. Categorisation using this
metric is accurate in the case of these two cartoons because the line-width
metric has less overlap than line length.

Figure 3.4 shows the distribution and clear relationship between line
width and length. This can be analysed using a separability test, where the
distribution of points orthogonal to the principal component is measured.
For the combined dataset the principal axis is in the direction (200.3,1.174)
with an offset of (—132.8,0.901). Because each dataset has a different source
they also have unequal sizes and variances, and so Welch’s T-Test is used to
analyse the point distribution. This gives a T-Value of 2.07 and a two-tailed
P-Value of 0.0394. This is less than the threshold value p = 0.05, which con-
firms that the difference between the two artists is statistically significant.
However this is a relatively high P-Value compared to other artist metrics

such as the Geons outlined in Chapter 5. The concentration of points at low
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Figure 3.3: This graph shows the distribution of line width in YodaBlog
(orange) and Girls with Slingshots (blue). The horizontal axis is the width
of the curve in pixels and the vertical axis shows the frequency of each width
(grouped to 0.2 pixels). Input image size was normalised before analysis.

widths means that automatic separation for artist classification using this

metric would be difficult.

There are several distinguishing characteristics in this dataset worth not-
ing. Both sets of image have numerous short lines, which is to be expected
as these are fundamental in adding detail and form to any object. However,
these short lines differ in their distribution. Below a width of 0.5 pixels the
widths are stratified due to the vectorization algorithm and shows the need
for a better sub-pixel algorithm for low resolution images. An improved vec-
torization algorithm is outlined in Chapter 4. Above 0.5 pixels the line width
in YodaBlog is more evenly distributed compared to Girls with Slingshots.
This is likely to be a property of the visual style as explained for Figure 3.3.

At higher line lengths and widths there is an obvious stylistic choice
that separates the two artists. Because of this clear distinction, a grouping
algorithm such as k-means clustering can be used to categorise images by

artist based purely on these two metrics.
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Figure 3.4: This plot shows the width and length of individual line segments
from YodaBlog (orange) and Girls with Slingshots (blue). The horizontal
axis is the length of the curve in pixels and the vertical axis is the width
in the same units. Input image size was normalised before analysis. The
principal axis (best fit line) for each data source is shown in purple.

Figure 3.5 shows the line curvature, with the angle on the horizontal axis
and frequency of occurrence on the vertical. Girls with Slingshots is charac-
terised by sweeping curves, which can be seen in the high frequency of curves
across the entire range of angles. YodaBlog has in comparison straighter
lines with sharper corners, which is clearly reflected in the frequency spike
at high angles. As with the line width and length metrics, this provides an
opportunity for style recognition.

Data from the line taper showed no clear distinction between artists,

primarily because both sets of images have lines with consistent thickness.

3.4 Transfer

Line style difference between artists has shown to be statistically significant,
and categorisation based upon line style is possible. The final step in val-

idating these low-level style properties is to use the information to modify
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Figure 3.5: This graph shows the distribution of curvature in YodaBlog (or-
ange) and Girls with Slingshots (blue). The horizontal axis is the average
angle of curvature of each line segment in radians. The vertical axis shows
the frequency of each angle (grouped to the nearest 0.2 radians). The orange
line represents data from YodaBlog, whilst blue is Girls with Slingshots. The
sharpest curves in each dataset are 1.2 and 1.6 radians respectively.

the style of an existing image.

A manually-assisted approach is taken to perform line style transfer. An
approach is taken based in part upon the database system outlined by Free-
man, and the idea of replacing line properties in-place outlined by Hertz-
mann. The mechanics of the algorithm are simple. First a target dataset is
created from the property distribution histogram with the number of points
matching the number of line segments in the source image. The contents of
this dataset now contain a set of widths and curve angles that represent the
average target image. Lines in the source image are iteratively changed to
match the target dataset, starting with the values that have highest spread
as these are less likely to find exact matches. A visualisation of this process
is shown using a single metric (size) and simplified images in Figure 3.6.

Selecting the target values is one of the most important steps. For each

column in the histogram the target value is selected via Equation 3.2, which
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Figure 3.6: A simplified example showing style transfer with a single metric,
the size of the square. The source image (a) and a number of target images
represented by (b) are used to create frequency charts (¢) and (d) respectively.
Table (e) shows all size values for the input, and the corresponding target
metrics selected from (d). The result (f) retains the image layout but better
reflects the spread of sizes in the target style.

gives for example in Figure 3.6(d) 4 points at 0.1 and 2 points at 0.6. For
each datapoint the untransformed source metric closest to the target value
is selected and assigned the target datapoint. This works well because it
preserves relative changes. For example, a line that is more heavily curved
in relation to a second line will always remain more curved, even while the

global distribution of line curvature is changed.

value = ¢;— (3.2)
Cs

where f is the frequency, c¢; and ¢; are the number of measurements in the

source image and target datasets respectively.

The metrics used for transformation are different to those used for recog-
nition. Line segment length is not changed because this distorts the image so
significantly that it impacts upon recognition. Even line curvature changes

cause problems when they become too flat or too curved. This can be seen in
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the characters’ sweater in Figure 3.8(c) where the horizontal pattern is mis-
aligned. Small gaps and overlaps can also be seen around the forehead and
the arms. This is a common problem and is addressed in Chapter 4.4 with
the smart scale technique. This preserves detail ratios and line connections
while changing line curvature. Line width is easily changed and presents
fewer problems, while line camber is not adjusted in this trial.

Additionally in this trail the number of lines in the source image is reduced
to match the average in the target images. YodaBlog has significantly less
detail than Girls with Slingshots, and this is reflected in the transformed
image as the smaller and assumedly less important lines are removed from
the input. This works well in the case of the sweater, although causes issues
such as around the underarm where line segments are small yet important.
Note that this detail reduction would however be difficult to do in reverse if

transferring style from Girls with Slingshots to YodaBlog.

Just wondexing
where My favorite
Wedding cxusher

Figure 3.7: The input image (a) from Girls with Slingshots, and an an ex-
ample (b) from YodaBlog of the target style.

To complete the evaluation of this style transfer method, a trial was
carried out using two established artists. Figure 3.7 (a) shows a single image
from Girls with Slingshots that was not in the set used to create the line
style database in Section 3.3. Figure 3.7 (b) shows an image from YodaBlog
exemplifying the target style. Lines from the input image are extracted

using the same techinque as explained in Section 3.3, with additional manual
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intervention to fix small alignment issues and ensure line intersection points
are correctly labelled. Colours and shading are ignored, and caption text is
removed as vectorizing letters creates a style bias and font style translation
would require a different approach.

An important point to note is that this transfer is the best alternative
of two different approaches, and doesn’t always perform well. Changing line
curvature without changing the end points guarantees a correct topology but
can disrupt the structure. This was found to perform better than guaran-
teeing structure without topology because while each individual part may
overlap, the lines are still joined at corners and present a more cohesive

picture.

(b) ()

Figure 3.8: A vectorized version (a) of a character from Girls With Slingshots
is divided (b) into segments and has its line curvature changed (c¢) in an
attempt to match that of YodaBlog.

Figure 3.8 (a) shows the vectorized input image, with Figure 3.8 (b)
showing the adjusted points that denote line segments. Style translation is
performed by changing the distribution of line properties in the source image
to equal that of the target style. Because the source image is in a vector
format and lines can be represented as spline segments, both the curvature
and the width of lines in the image can be easily changed.

Overall the style change is significant. The image is clearly the same

content, yet lines are still slightly curved and reflect the messier nature of
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YodaBlog. The images in Girls With Slingshots have flowing curves, while
YodaBlog has sharper curves and this is most clearly illustrated in the head
where the character’s hairstyle now matches that of YodaBlog characters (the

hood and the yoda ears).

3.5 Conclusion

The evaluation performed in this section successfully supports the findings
of previous researchers. Line style differs between artists, and this property

can be both measured and adjusted.

The statistical analysis by Wayner [176] was successfully reproduced, with
the distribution of measured line length in a drawing proving to be different
between artists and a valid statistic to classify images. Further statistics
were evaluated and similar results found in line width as well as curvature.
A clear relationship was found between line width and length, with specific
characteristics distinguishing each artist. At higher line lengths and widths
there is also an obvious stylistic choice that separates artists. Because of
this clear distinction, a grouping algorithm such as k-means clustering can
be used to categorise images by artist based purely on these two metrics.

Moreover, these distributions are representative of the artistic style and
not of the content of the image. When multiple images from the same artist
were analysed, the histogram remained similar in each case. An unexpected
feature in the analysis was the ability to also make educated guesses about
an artist’s drawing media.

With the successful categorisation of artistic style based upon line metrics,
modification of line properties was attempted based on these statistics. The
qualitative survey performed showed a significant style change was possible.
The resulting image contains clearly the same content, yet the lines reflected
the nature of the target image.

Despite some positive results, there remain numerous problems and as-
sumptions with the techniques outlined in this section. The results are based
upon only two sets of data that were chosen due to content availability and

permission, and it’s possible that other combinations of artists would not
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work as well or at all. To perform a wider ranging survey would require
analysis of a high numbers of images and therefore the algorithm would have
to be made completely automatic, a research topic that lies outside the scope
of this thesis.

Additionally, metrics such as line length were highly dependant on the
vectorization algorithm, and a different choice of corner location would re-
sult in different results. The line style metrics do not take into account brush
properties such as those outlined by Hertzmann et al. or the situation depen-
dant differences that would be apparent using a lower level database system
as proposed by Freeman et al. Overall, however, the results in this section
are close enough to prior research results that line metrics can be considered
a valid and viable method to manipulate low level style. With both prior
approaches and the simple transfer outlined here, there exists a solid base

from which to approach the rest of this thesis.
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Chapter IV

Structural Vectorization

4.1 Introduction

Traditionally, image analysis is performed on raster images based upon global
or local features. However some types of algorithm such as the style and
stroke analysis outlined in Chapter 3 perform better or must be performed
on vector data. Vector data always contains a line topology made from line
position and connectivity data, and may also include width, colour, and
border properties. While modern tools allow rapid drawing directly into
vector formats, many artists and studios still use raster images for cartoon
work. Additionally, older artwork only exists in raster format, which must
be vectorized before it can be used. Storing image data in a vector format
has the added benefit that it is highly efficient in comparison to the source
image.

The fidelity of the extracted lines has a direct bearing on the quality of the
operations that can be performed using the vector data. When approaching
line style evaluation in Chapter 3 several existing vectorization approaches
were tried, however difficulties extracting the required data and accuracy
problems at low resolutions meant that none of these were ideal. Due to
this lack of existing solutions, this chapter deals with the improvement of
line-data extraction algorithms.

The method outlined differs significantly from prior work due to the for-
mat of the output data. Existing solutions usually aim for visual fidelity at
the cost of topological information. This information is important for the
metrics in Chapter 3, where the focus is to detect lines in a way that enables
easy segmentation and accurate measurements. Section 4.4 shows how this

information can be used to perform vector scaling in a way that standard
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Figure 4.1: Structural vectorization is performed on the original image (left),
with the result (right) showing the image represented as lines of varying
width. This structural representation trades loss of visual fidelity with ease
of processing due to the clearly defined structure. The loss of visual fidelity
is acceptable when performing operations that rely on topological or other
structural information.

vector data is unsuitable for.
The Structural Vectorization method outlined in Section 4.2.2 is compu-
tationally expensive, but extracts line centres even if the line has an irregular

profile or the image has unusual topology.

4.2 Existing Studies

Vectorization is a common analysis problem, and many solutions exist. Early
research focused primarily on CAD and technical drawings, while later vec-
torization techniques have been tailored to handwriting recognition, skele-
tonisation, and more recently digitisation of older artwork. Skeleton data
was seen as a better storage format than raster images as early as 1987 [115].

Two algorithms with similar results were proposed at around the same
time by Elliman [58] and Dori et al. [55]. While Elliman uses edges extracted
from a binary image to find the line direction and Dori et al. use linear
segments to approximate the underlying structure, both are suited to tech-
nical drawings with straight lines and were developed primarily for speed.
Both techniques have problems tracing irregular shapes. Research specific to
cartoon drawings has recently gained a higher profile, with Cheng [38] and
Zhang [192] releasing vectorization papers that deal with irregular shapes.

Cheng et al. [38] provide the better algorithm due to their accurate stroke
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segmentation and image complexity reduction. However, both papers require
even line widths and must be tuned for specific line profiles. Hand-drawn
cartoon input rarely has even line widths, and so any vectorization algorithm
must cope with width variation.

Research released by Huang et al. [84] presents a stroke extraction algo-
rithm that does not rely on even line widths. They provide a robust stroke
extraction algorithm but unfortunately stop short of vectorization. Our focus
upon cartoon imagery means that source imagery already has clearly defined
strokes, and unless the range of input images is extended, stroke extraction
is not needed. Recent advances by Noris et al. [133] also solve the width
variation problem by using gradient-based pixel clustering. As opposed to
Cheng and Zhang, the input must be a clean mid- to high-resolution line
image, as lower resolutions don’t provide adequate data. A maximum line
width is however established to ensure correct joint detection, and so this
method does not work for blocks of colour or uncharacteristically wide lines.
While the vectorization in this chapter is required to work on low-resolution
inputs, the junction-detection techniques in this paper could be incorporated
in the algorithm design to better cope with line splits and areas where the
lines are ill defined.

As opposed to Huang et al. the research by Houle et al. [82] uses an
adapted Freeman Chain to group sections into strokes after vectorization of
handwriting. The final strokes have no width data, however this is used as
an intermediate step and could potentially be extracted. Zhen et al. [193]
also tackle the problem of separating individual pen strokes. Their successful
results were enabled by limiting the problem domain to sketched tree and
flow diagrams. Given that Structural Vectorization is designed primarily
for stylistic manipulation of character artwork, it may be possible to use
properties unique to this problem domain to increase the accuracy of the
results.

Once an image has been reduced to black and white strokes, a common
vectorization method is the Potrace algorithm by Selinger [150]. This method
produces graphically accurate representations of an image by treating it as
a series of geometric shapes. This is useful for preserving fidelity, but makes

structural processing difficult due to the lack of line centre and width infor-
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(a) (b) ()

Figure 4.2: Morphological skletonization operators such as the medial axis
transform provide a geometric decomposition (b) of a shape that even when
thinned does not always represent the human recognised structure the pro-
posed algorithm extracts (c).

mation. These are the two of the most important properties an algorithm
requires when processing line style.

In addition to stoke extraction and recognition, many morphological and
topological skeletonisation algorithms exist that produce outputs ranging
from unconnected point clouds [56] to S-skeletons [15] that contain the topol-
ogy in a connected graph. An algorithm tailored to visual style features
should reach a compromise that allows for disconnected elements but strives
to join line vertices when possible.

Medial transforms are perhaps the most well established method for skele-
tonisation, having been proposed in 1967 [27] and tweaked in various different
ways up until the present [103] [126] to solve problems such as the influence
of surface noise on branching. Another method with the same result but
a different approach is joining the centres of bi-tangent circles or maximal
discs within a shape [10]. The medial transform produces geometric skele-
tons, however as can be seen in Figure 4.2 even simple shapes can produce a
skeleton that does not correspond logically to the underlying structure.

Modern techniques based on morphological skeletons often focus on im-
proving branch pruning to reduce extraneous limbs and reduce the effect of
noise on the results. Suh & Kim [158] use the results of a pixel thinning
algorithm directly, whilst Olsen & Samavati [135] followed this with a direc-
tional tracing algorithm to extract strokes. The strokes are then classified
according to their function. This type of extra classification, seen also in
content-based vectorization systems [75], could be used to determine what

type of information needed to be stored for each stroke. In addition, a range
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of thinning algorithms are explored by Lam et al. [104] and given that many
produce the same results this is a good source for locating simple and effec-
tive approaches to problems such as vector creation from centrepoints and
junction pruning.

This problem arises even when different approaches are taken [118], while
papers that retrieve a clean structural topology do so by limiting images to
a specific domain such as handwriting recognition [99]. In addition, Lam,
Lee & Suen found that most skeletonisation algorithms do not store width
or colour data [104].

High quality vectorization that aims to produce images identical to the
input. These often use colour fields or large number of vector patches. Bat-
tiato et al. [18] present a technique to convert raster images into a vector
format using Data Dependent Triangulation (DDT). DDT approximates lo-
cal pixel neighbourhoods by subdividing them into a grid represented by
relative triangulation. Xia et al. [185] also use triangulation but allow a
greater flexibility in patch size to represent underlying gradients. These high
quality methods focus primarily on photorealism, and while they produce
reasonable results for monochrome line drawings the data format is not easy
to parse for object and line understanding.

Orzan et al. [137] introduce image partitioning diffusion curves, a vector-
ization technique that stores different colours on both sides of the curve. In
the work, they also describe an algorithm for automatically extracting this
representation from a raster image. Much like the triangulation technique
described by Xia et al, this extraction technique relies on Canny edge detec-
tion and therefore does not work well at small scales and pixel-width lines.
Another argument against vision techniques can be inferred from the results
by Nguyen et al. [131] who test six popular robotics and vision algorithms for
line detection on real-world data. The data is low resolution and noisy, and
the results are significantly less accurate than other vectorization techniques
evaluated in this section while also lacking any underlying vector data. When
developing the vectorization technique outlined in this section, pixel-based
vision techniques were avoided and sub-pixel detection techniques explored
in greater depth.

One filter-based technique worth mentioning is the vectorization process

41



outlined by Williams & Green [181] due to the stroke-extraction algorithm,
which is based on a triangle-area heuristic. This is mathematically equivalent
to the distance-angle metric outlined in this chapter and while the thresholds
are calculated differently Williams’ comments in Section III C on improving
accuracy and limitations through tuning the Cost Functions were applicable
to this system.

One approach to low-resolution vectorization is to bypass the line extrac-
tion process and produce a cell-based vector image from the input. Numerous
systems have been implemented and improved over time, including Veroni-
based solutions and the pixel table look-up system hqdx [157]. A system
with high quality results was outlined in 'Depixelizing Pixel Art” by Kopf, J
and Lischinski, D [102] which modifys Veroni cells based upon a number of
heuristics. This type of post-processing makes a large difference in the final
result, and in the context of line-based extraction it is possible that existing
research could be improved solely through a post-processing step if viable
heuristics are found. A cell-based system however is infeasible for Struc-
tural Vectorization as it does not support the main aim of creating easily
understandable data.

Steger [156] outlines a subpixel line detection algorithm for use in aerial
photography annotation. The technique is primarily designed for identify-
ing borders between different coloured and textured segments, however the
subpixel techniques used could potentially be modified to find centrelines in
strokes, and outlined techniques such as subpixel stroke biasing could be ap-
plied to centreline realignment. Many of the subpixel issues identified in this
paper will need to be considered and addressed when designing any future
sub-pixel vectorization algorithm.

It is also worth looking at other models for edge extraction, such as Ac-
tive Contours which were introduced by Kass et al. [97] in 1988. Also called
Snakes, contours are fitted to object boundaries using a number of constraints
created from image contents. Recent advances have adapted and improved
the algorithm, including self initialisation and increased accuracy based on
image gradients [8]. While this method only creates a single outline, it guar-
antees a connected vector and works well on low resolution images and edges

with discontinuities caused by noise. Templated approaches that allow for

42



complex shapes can be found in Active Shape Models [45] [46] [25], and
the more advanced Active Appearance Models [44]. These are both based
on the principles of Active Contours, and require a manually defined vec-
tor template as well as a training step to initialize the template difference
tolerances. However, the idea of using morphological gradients to increase
accuracy was key to developing the gradient fields used in this chapter.

A more mathematical approach to the vectorization problem was taken by
Lin et al. [109] who outline a B-spline fitting algorithm that runs on extracted
point-cloud data. A series of rectangles are constructed subdividing the point
cloud, with each one containing a spline representing the centreline of the
underlying data. While the accuracy of this method is high it does not cope
well with line junctions, although the results can be improved by combining
line fitting with corner detection [100].

After vectorization, the data must be stored in a form that can be parsed
for image reconstruction, the accuracy of the reconstruction is a good in-
dicator of the quality of the vectorization. Mestetskii, L [121]. outlines a
mathematical representation of so-called ”fat curves” and a rendering tech-
nique for converting this to a raster display using a series of positioned discs.
Structural Vectorization contains similar data and these techniques were a
basis for the reconstruction techniques used in this chapter, substituting the
discs with linear cross-sections to be able to better represent sharp corners.

The method outlined in this chapter is computationally expensive, but
finds line centres accurately even if the line has an irregular profile and vary-
ing width. It is designed primarily for low to medium resolution images and
produces usable results for a wide range of input, from long and thin lines to

lines that have almost the same width and length.

4.2.1  Thick Line Vectorization

To enable the type of style manipulation performed in Chapter 3, cartoon
images in raster format must be analysed for line style data. One way to
do this is to vectorize the images and extract the properties. To this end an
existing vectorization algorithm is implemented and extended to accommo-

date the required line properties. The most effective algorithms for line style
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Figure 4.3: Finding a line centre for use in vectorization. Diagram (a) shows
how a vector (7) is drawn between each pixel and the closest line edge, after
which the intensity values along the vector (b) are used to find the line centre
to a sub-pixel accuracy.

research are those that can subdivide strokes. While most line extraction
methods use pixel filters and similar techniques, Huang et al. [84] use a type
of circular mask that collects clouds of line centrepoints that can be more
easily vectorized. This section is based on their approach.

The circular mask method uses a pixel search algorithm to find points that
lie in the middle of the lines. Each point has an associated direction, which
is used to recreate the strokes. Additional processing, such as projected rays
or angle comparisons, can be used to find sharp corners and junctions.

The method is based upon line cross sections. A vector representing the
line cross-section is shown in Figure 4.3(a) and is comprised of a point on
the image and a direction that is approximately orthogonal to the normal of
the image line. Image intensity values along the vector are used to find data
such as the line centre. There are numerous ways to find this cross-sectional
vector, for example the gradient bands used by Noris et al. [133] or the basic
area search outlined by Huang et al. Due to ease of implementation, the
basic search is used in this section and performed for each non-line pixel
in the image to find the closest pixel that lies on a line. Points within a
line are not used as two reference points are required to calculate the line

normal. The direction of the search vector is taken to be the line normal.
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Figure 4.4: Finding line connectivity information via centrepoint projection.
Internal line distances are measured outwards from the centrepoint (a) and
plotted by length and angle. The number of descrete maxima (b) show the
directions and number of connecting lines.

This normal does not always fall at right angles to the line tangent, which is
important later in the process because it results in point clusters with wide

angle spreads. This aids continuity when converting to splines.

Finding the centre of the line is possible by using the line normal. Fig-
ure 4.3(b) shows a graph of the image intensity along the length of the inter-
secting normal. An intensity threshold of 50% is chosen and the centrepoint
calculated to be the average of the crossing points. The high number of cre-
ated points functions as an antialiasing method because the centrepoints are
not aligned to the pixel grid. The width data can also be recorded at this
point, calculated as the distance between the crossing points. An additional
line property is also the ’definition’ or ’clarity’ of the line. If the line has
fuzzy edges and blends with the background, then the cross-section will be
round, whereas a well-defined black line on a white background will have an

almost square cross-section.

Running this centrepoint detection process across the image results in a
large number of clustered points that conform to the shape of the lines. To

finish the vectorization process, these must be joined together. Additional
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Figure 4.5: Tllustration of Equation 4.1 showing the smallest possible diver-
gent angle for two pixel-width lines. Each mark indicates one pixel.

data is required for this step, and Figure 4.4 shows raycasting within the
line to detect corners and joints. Starting at the centre point of the line,
2D rays are cast out from the point until they hit the edge of the line (a).
The lengths of these rays are then plotted against their angle (b) and the
local maxima used to find joint information. The maximum number of angle
samples needed to ensure full coverage of all possible branches in an image
can be calculated using Equation 4.1. If no « value is given by the user,
this calculated value is used by default. The ability to override « is given
because a high number of angles is computationally expensive and depending
on the complexity of the image a smaller number of angles can often be used

without sacrificing quality.

o = tan™! (é) — tan~! (l ; 2) (4.1)

where [ and s are the long and short dimensions of the image in pixels, shown

in Figure 4.5

If the centrepoint lies at the end of a line, then there will only be one
maxima on the plot. If it is in the middle of a line, then there will be two
maxima (one in each direction that the line extends). In the case of the
diagram, the core lies at an intersection, and there are three maxima. The
distribution of the maxima can also be used to find the type of intersection.

In this case, two maxima are evenly spaced apart by half of the width of the
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Figure 4.6: Example showing an image (a) and the associated pointcloud
after thinning and with highlighted connectivity information (b). Blue rep-
resents the end of a line segment, green is a sharp or distinct corner, and
orange is a multiply-connected joint. An unsmoothed vector representation
is shown in (c).

graph. This shows that they lie on a straight or gently curved line. The third
maxima therefore shows a single line that joins halfway along the straight or

gently curved segment.

Figure 4.6 shows this process in action. Nearest-neighbour thinning is
used to reduce display data and consolidate joint information. This is per-
formed by iteratively combining points that lie closer together than a given
threshold, resulting in a single point at the average location. The thresh-
old used was 1 pixel. The results show accurate line tracing and joint type
detection. Minor errors can be seen in Figure 4.6(b) where several line seg-
ments have unnecessary corners detected close to existing multiply-connected
joints. Overall, however, enough information exists to create a reliable and

accurate vector representation.

This vectorization method was used to obtain the results in Chapter 3,
unfortunately a number of problems became evident and are unable to be
solved without major changes to the algorithm. The method of projecting
radial distances from line centrepoints fails for lines with thin widths — es-

pecially those less than 2 pixels in diameter. It was found that a number of
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artists still work at very low resolutions, even when preparing their source
material and older artwork digitised at low resolutions commonly contains
lines of this width or thinner.

A second problem is pointcloud accuracy around areas that have closely
located convex corners. Because of the nearest-neighbour search used within
each circular mask, this type of line feature receives fewer points and can
result in small gaps in detected line segments. Huang et al. outlined sim-
ilar problems in their research, and so an improvement on this method is
introduced in the next section, Structural Vectorization.

Currently, lines are defined with a large number of points. An improve-
ment on this is to reduce these to control points for Bezier curves or Splines.
This makes it easier to modify line curvature and is important in techniques
such as the Smart Scaling outlined in Section 4.4. Using all datapoints to
draw the lines results in a vector that conforms accurately to the original
drawing, however it can be seen in Figure 4.6 that this is not necessarily the
best visual representation because the lines follow pixel borders too closely.
A tradeoff between visual and mathematical accuracy is explored alongside
improvements to the circular mask and additional line data representation

in the next section, Section 4.2.2.

4.2.2  Structural Vectorization

Improving the vectorization process while specifically allowing for line style
manipulation introduces a number of additional requirements. Current al-
gorithms that vectorize images while preserving visual quality often do so
at the cost of either stroke or topological information. This section outlines
an improved vectorization algorithm that extracts line data in a format that
allows for easy access and use in further analysis. Figures 4.7, 4.2 and 4.14
show the advantages over edge vectorization and morphological skeletoniza-
tion respectively.

This algorithm vectorizes an image using three main stages based on
those outlined in the previous section. A resolution independent gradient
map is generated for the image, containing vectors orthogonal to the lines

and replacing the function of circular masks; the line centres are found with

48



(e)

Figure 4.7: Comparison between Structural Vectorization and a polygon
based vectorization technique [150], both taken from the same source image
(a). Polygon based vectorization produces images with high visual fidelity
(¢), but results in complex topography (b). Structural vectorization extracts
dominant strokes (d), and line width information. While not as visually
accurate as polygon vectorization, strokes and widths are nevertheless able
to represent the source image (e), and are of more use in image processing
because they posses more cohesive information about topology and stroke
data.

subpixel accuracy by analysing cross sections aligned to the gradient field;
and the vectors are created using a weighted nearest-neighbour algorithm
to join the centres. Section 4.3 shows the output from this process and
compares it to existing methods. Figure 4.8 shows the stages in more detail.
Overall, the algorithm preserves structural information such as topology and
connectedness, and is able to process complex images such as the one shown
in Figure 4.7(a) where relevant lines may not be obvious.

The process begins by identifying line centres. The existing circular mask
method based on research by Huang et al. is computationally expensive. Sev-
eral recent researchers, such as Olsen et al. [135], propose a morphological
thinning step, which uses erosion as a core step to identify line centres. How-
ever if lines within the image have different widths, using an erosion step can
lead to distorted or entirely incorrect identification of line centres.

To avoid this issue, our improved algorithm finds midpoints by matching
points on the boundaries on opposite sides of a stroke using a method similar
to the gradient bands implemented by Noris et al. [133]. The gradient filter
applied in this section is however independent of image scale which enables

the system to cope with large variations in line width. For the purpose of this
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Figure 4.8: Raster images are vectorised to preserve structural information
about line centres and widths at the cost of visual fidelity. A vector field is
calculated for the source image and shown here in the Blue and Red colour
channels for X and Y respectively (a). This is used to slice along the shortest
path from each pixel to the nearest edge (b). When values are taken from
the greyscale image (c), these slices measure the value profile (d) and are
subsequently used to place control points at the local maxima (e) which
represents the line centre. Joining these with a nearest-neighbour algorithm
creates a structural representation of the image (f) that together with line
width information is enough to store a representation of the input image (g).

algorithm, line edges are considered to be sharp changes in intensity, and for a
line to be detected it must have two opposing edges. These opposing edges are

detected by measuring the intensity of the image along a line perpendicular
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to the line. To find the direction of this line, a distance map is calculated
for the image and the gradient — calculated using the difference of intensity
within a given radius — is used to find the direction to the nearest line. The

distance map is calculated using the following weighting kernel K:

1
K(x,y) = 4.2
S ey )
VE T
4

where o =

where ¢ is the spread of the weighting kernel and w & h are the image width
and height. A typical value for ¢ that produces good results was found to

be a quarter of the image diagonal.

This kernel is then convoluted with the image. During the convolution
pass a maximum operator is used to preserve sharp edges and ensure than
line values are not diluted:
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where [ is the original 2D image.
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Figure 4.9: A 2D representation of the kernel applied in Equation 4.3. The
black step functions represent greyscale lines, and the red line shows the result
of Equation 4.3. This function provides several advantages over both Gassian
kernels and a linear distance map becase it preserves the line intensity and
the nonlinear falloff means that lines of low intensity are not obscured.

This intensity map has a number of unique properties. Figure 4.9 shows a
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2D representation of the kernel being run on pixel data. This shows how the
function has a sharp falloff but preserves the values of the lines themselves.
When using linear falloff maps, greyscale lines that have values below the
falloff gradient are often obscured. Morphological distance maps avoid this
problem, but are often more computationally expensive to calculate. In ad-
dition, this function provides an advantage over a smoothing kernel because

it preserves the initial line intensity.

The gradient at a given point on the image is calculated by Equation 4.4.
G gives a 2D vector at (x,y) orthogonal to the closest line or edge structure

in the raster image:

. —
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where S is a standard 2D Gaussian kernel using A = 1, p1,,, = 0O and 0, , = 2.

This 2D gradient field provides more information than the computation-
ally faster single-convolution operators such as the Laplacian, Prewitt, Canny
and Sobel. The 2D gradient field is shown in Figure 4.8(a), with the x and
y components of the vector field represented by the red and blue channels
respectively. The resulting vector field makes it possible to determine the
direction to the closest edge from any pixel and the tangent and normal vec-
tors for a line before it is vectorized. This allows the centre of the line to be

found with sub-pixel accuracy.

The centre of the line in the raster image is found by searching each
pixel within the same colour block. The gradient map approximates the line
normal, and is used to place a cross-sectional cut, or slice, across the line, as
in Figures 4.8(c) and 4.10(a). This allows accurate measurement of the line

width and centre at that point, as shown with the line profile in Figure 4.8(d).

In cases where the image is antialiased and the profile does not change
sharply between black to white, the relative intensity values of the neigh-
bouring pixels are used to adjust the centrepoint. For each non-white pixel
at the edge of the line, the centrepoint is moved by % units along the

slice as shown in Figure 4.10(b).
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Figure 4.10: Subpixel accuracy can be obtained by taking advantage of cues
such as feathering. Image (a) shows centrepoint placement for a monochrome
image, while (b) shows this extended to antialiased pixels. Grey points rep-
resent pixel centres, with the white dots and square outlines indicating the
pixel being evaluated. The blue slice line has been placed based upon the
image gradient from Equation 4.4
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Figure 4.11: Structural Vectorization performed on a low-resolution complex
object (a). Significant lines are extracted from the image (b) along with
line width information. This combination allows easy processing for image
analysis or modification, while still retaining sufficient data (c) to represent
the original image.

A control point is then created at the centre of the line, and the process
repeated for the next pixel. Figure 4.8(e) shows the result after all pixels have

been processed, with green dots representing the control points. Important
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lines in an image tend to be isolated or wide and therefore receive the thickest
control point clusters, while noise, detail and insignificant lines receive few
points. These control points are joined using a best-influence algorithm that

attempts to match points along a curve as shown in Equation 4.5.

a = ln_ln—lo
b = v, —1,
al { v if (@-b>—-L) and (||b]| < L.5)

lm+1 = Z V2

0

(4.5)
0 otherwise

where [, are the vertices in a line segment with n vertices, and v, are a point-

cloud of size N.

This calculation is only performed on point clusters with more than 10
datapoints, as typically anything more sparse than this did not produce viable
results. In general, this algorithm finds the nearest neighbour to each point
in terms of line influence. This is a combination of distance, similar to a
typical greedy algorithm, and angle. The angular comparison term —\/ié is
balanced against the pixel distance of 1.5 to ensure lines do not contain acute

angles and do not skip over intermediate pixels.

Any points remaining after the lines have been created are considered
outliers and culled. Points lying within the same pixel are considered to be
duplicate vertices and are also removed. Figure 4.8(f) shows the result of
point joining and culling. Line widths at each vertex are calculated based
upon the previously measured line profile and stored per vertex. The distance
threshold value of 1.5 units was chosen because datapoints are spaced on
average 1 unit apart in the tangent direction. Small differences can be caused
due to antialiasing, but the total value of antialiased pixels will never exceed
1 and therefore the maximum distance a point can be dislodged is 0.5 units.
The angle threshold value is not as easy to calculate, and the best value
depends upon image complexity. 45° was found to work best across our
sample dataset, as higher values produce disconnects at intersections and

smaller values cause disconnects at corners. This value could be adjusted by
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the user if necessary.

Lines are smoothed and jitter removed by removing unnecessary control
points. Reducing the number of control points also simplifies the data for
processing after vectorization. This is performed on a point-by-point basis by
iteratively removing control points until the new segment no longer approx-
imates the correct shape sufficiently well. As in Section 4.2.1 pairs of points
with the shortest distance between them are removed first and replaced by a
single point at the average location. The error between the simplified line and
the original line is considered to be the total area between the two, measured

using Equation 4.6:

1
error = / (v(t) — s(t))dt (4.6)
0
where v(t) is a point on the original line and s(¢) on the simplified line.

The simplification process continues until the error rises over a user-
specified threshold, after which the end vertices are fixed and the process

run on the next segment of the line.

Figure 4.12: Centreline culling is typically needed for thick objects where
orthogonal sides generate two possible alternatives (a) for a centreline. After
ensuring both lines are viable candidates, the shorter line is discarded (b),
resulting in a single centreline.

In the case of thick lines or shapes, it is possible that two orthogonal cen-
trelines are found and an extra culling step must be performed. Figure 4.12
shows a typical situation where centreline culling is needed. All intersecting
lines are compared for overlap and culled according to the conditions in Equa-

tion 4.7, which checks that the lines are approximately straight, orthogonal,
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and centred.

cull vy if lc(vs) — c(v))| < t.
and  |e(vs) — vs(0)] - |vs(ng) — c(vs)| > 1 —tq
and  |e(v) — v (0)] - o (ng) — e(v)| > 1 —t,
and  |(vs(ng) — vs(0)) - (vi(ng) —v(m))| < ta (4.7)

where c(v) calculates the geometric centre of a line with n vertices; v;(0..n)
and v,(0..ns) are sets of vertices in the longer and shorter lines from an in-
tersecting pair; and t. and t, represent threshold values with default values

of 1 and 0.1 respectively.

Likewise, extremely short lines are culled to reduce noise. A user-defined
threshold is used, and can be adjusted based upon the image being vectorized.
The default value is defined to be the average line width in the image, and
lines with lengths falling under this threshold are often able to be removed

without impacting the overall results.

Figure 4.13: Disconnects can be caused in detected lines (b) by light pixel
values, noise, or patterns in the source bitmap (a). Short pieces of line with
co-linear ends are therefore joined so as to better represent the source image

().

The remaining lines follow the centre of the rasterised contours correctly,

with one vectorized line per contour. However in many cases, the lines are
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(a) (b) ()

Figure 4.14: The topology generated by the outlined structural vectorization
algorithm (b) differs from typical morphological algorithms that produce
geometric centers (c¢). Note how the side of the table is represented by fewer
lines in the structural model.

short and therefore not representative of the image structure. Figure 4.13(b)
shows an example of this. To provide more coherent data, lines are therefore
joined in the cases where multiple lines terminate within a given threshold
and the ends are co-linear. The effect of this can be seen in Figure 4.13(c).
While the result in Figure 4.8(g) is not a perfect reconstruction of the
image, vectorization is possible even for very thin lines and the underlying
line-based vector structure provides more accessible information than poly-

gon based deconstruction.

4.3 Results

Figure 4.11 shows the input and output stages of the Structural Vectorization
process performed on a complex object. The underlying structure of the
image is extracted without significant distortion or interference, and without
overlapping lines. Given the structure and the line widths, the original image
can be reconstructed without the need for polygon outline information.
Structural Vectorization provides a different set of information to other
common vectorization techniques. Figure 4.7 uses a typical cartoon image to
illustrate the trade-off between visual quality and the underlying data. Fig-
ure 4.15 shows the algorithms performance on an engineering drawing, where

the structure of the vector data is typically considered the most important
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aspect. Figure 4.14 shows how the generated structural topology differs from
morphological algorithms.

Complex images also provide vectorization challenges that would require
context awareness to solve. Specifically, the algorithm has difficulty distin-
guishing independent shapes that are obscured by objects of the same colour.
In Figure 4.11, this causes the middle section of the tail to become joined to
the shadow. Note that the tip of the tail is sufficiently unique to be extracted
as a separate stroke.

There is no single correct solution for the vectorization of strokes in a
cartoon image, and therefore this algorithm attempts to provide a general
solution that results in usable data across a range of input images. User
tunable parameters also provide additional control over results. Tuned cor-
rectly, the output line data is useful for a range of applications. Analysis of
line properties such as line length and camber can be used to identify and
classify the author of an image, and vector graphics using line centres pro-
vides better time-stability than polygons when working with animation. In
analysing hand drawn cartoon images, the topological line data produced by
the algorithm shows that line based structural vectorization does not need

to be limited to fixed-width strokes or technical drawings.

4.4 Form Preserving Scaling

Structural Vectorization results in vector data that contains line property
information in a format that is easy to process. This section shows a form
preserving scaling method that takes advantage of the available line data to
scale images such that their overall form remains as undistorted as possible.
When linearly scaling objects or images, features easily become distorted and
this has an impact on the visual style. For example, scaling a picture of a
car in one direction will distort the shape of the wheels so that they are no
longer circles. If the intent of the scaling is to make a shorter, longer, or
taller looking car then an ideal solution would keep the wheels circular while
scaling the body appropriately.

Looking at the important characteristics of visual style in regards to lines,

it can be inferred that the best way to preserve the appearance is to ensure
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Figure 4.15: Principally designed for organic and cartoon images, structural
vectorization can also be applied to architectural or engineering drawings (a).
Compared with a basic line-based vectorization method (b) [55], structural
vectorization produces comparable structural data (c), and performs better
on curved lines (d).

properties such as curve, camber, thickness and relative position remain the
same. It is not possible to keep all properties identical, but preserving the
correct properties can result in a better form than linear scaling. This section
outlines a simple form preserving scaling method that preserves curvature at
the cost of relative position, and does a better job at retaining the original
visual style.

The core of the algorithm is that images should be scaled only at places
with minimal image complexity. Areas with high complexity are left as close
to untransformed as possible to reduce distortion, while lines in the image
close to the point of scaling have their endpoints scaled but the curvature
modified so as to best preserve the form. This type of content-aware scaling
was first proposed by Kwatra et al. [174] in 2003, with their paper about
Graph Cuts. While numerous improvements and alternatives such as seam
carving [13] have been suggested by other researchers, these techniques are

primarily focused on photos and raster images and are not applicable to
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Figure 4.16: Standard horizontal stretching, with the source image (a) shown
at two (b) and three (c) times larger.

(a) (b) ()

Figure 4.17: An example of complexity adjusted scaling that preserves the
features from the original image (a) even when it is scaled horizontally (b &
¢). The scaling direction is shown by the red arrow, and the dotted red line
is the orthogonal bisection line.

vector graphics.

The place in the image with minimal complexity is defined to be the line
that bisects the image with the least number of crossings. This is multiplied
by the smallest distance from the image centre to the bisection line, so as to
reduce the bias toward the borders of the image. The bisection line is always
a line orthogonal to the scaling direction specified by the user. While a
raster-based transform approach using grids is shown in Chapter 5, a vector-
based solution provides better quality in applicable situations. Each line in
the image that crosses this bisection is scaled using Equation 4.9 so as to
preserve the curve while still keeping the endpoints connected.

Figure 4.16 shows a standard scaling applied to a character, while Fig-
ure 4.17 shows the results of curvature-preserving scaling using our algorithm.

The bisection line is shown in red.

60



’LUL

Juw]

d = a+s|(a—u) |

Vo= bts|(b—u)-

R = rotation[(b —a)t- (V- a’)}

[0 —d|
S = scale| —r
[nb—au
T = translate[(a/—i_b,)_(a—i_b)}
2
V(z) = o) -R-S-T (4.8)

r=0—n

where the bisection line is defined by point u and direction w, and the dis-
tance to scale is s. The set of points v(0..n) defines the line being scaled,
with endpoints a = v(0) and b = v(n). R,S, and T are 2D transformation

matrices.
This type of scaling is useful in the context of visual style because it

modifies the appearance of an object in an intuitive way without disrupting

the underlying form or distorting important details.
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Chapter V

Characteristic Proportions

5.1 Introduction

In this chapter, a new method is outlined for automatically extracting an in-
dividual artist’s style based upon the characteristic proportions of an image.
This can then be applied to other drawings. Unlike previous work which
typically transfers artistic elements such as line style, characteristics are cap-
tured and transferred with spatial context. When two different artists draw
stylised versions of the same object, the exaggerations and shapes within the
image are often significantly different. By measuring these properties across
a large body of the artists work, it is possible to discover which proportions

characterise the artist, and which are inherently part of the object.

Figure 5.1: Characters from the comic strip ‘Sandra and Woo’ have the artist
style from ‘Misery Loves Sherman’ transferred to them. Left and Middle:
Original characters. Measurements that are specific to an artists’ style are
automatically differentiated from measurements that belong to the object.
Right: Left characters using the Middle character’s style.

Characteristic proportions define the relationships within a set of similar

shaped objects by the same artist. Figure 5.1 shows how the style of an
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object can be changed by altering its characteristic proportions to match the
characteristic proportions of an image in the target style.

For example; a character with a large head and small body will have
different characteristics to a character with a large head and large body,
even if their overall height and width are the same. In this respect, objects
of the same type drawn by the same artist have very similar characteristic
proportions, whereas objects of the same type drawn by different artists often
have different characteristic proportions.

Hertzmann et al. [79] found a number of issues when transforming line
style, and in their words “limitations would be expected with any low-level
approach to style translation that treats a drawing as just a set of lines
with no additional structure”. Characteristic Proportions and a style trans-
formation approach using Geons is an attempt to provide this additional
higher-level structure that can be used to perform style translation without
changing image features past the point of recognition.

The algorithm outlined in this chapter automatically analyses the im-
ages, and creates a database with the characteristic proportions of a single
artist. Given an input image and the appropriate Geon subdivision, the algo-
rithm finds the most likely target proportions and automatically resizes the
source image to fit them. Using the complexity sensitive scaling algorithm
in Section 4.4 prevents character details from being distorted. The trans-
fer algorithm does not deal with additional properties, and so the results are
constrained to line drawn cartoon images to reduce the influence of rendering
technique in the portrayal of style, focusing upon the proportions alone.

The results show that analysis of object proportions can be used prac-
tically to ensure consistency for objects with the same Geon structure but

drawn by different artists.

5.2 Existing Studies

The idea that Characteristic Proportions can be used to characterise part of
the style of an object is based upon a number of well-supported theories in
cognitive psychology [11] [81], and has been implemented to some degree and

with varying degrees of success in several existing research papers. Various
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parameters used in the Geon system in this chapter were determined using
principles from the following research and from evaluating the outcomes of

previous attempts.

5.2.1 Geons

The word ‘Geon’ was first coined by Binford in 1971 [24] and was used
in the description of geometric ions, so-called generalised cones formed by
the volume swept out by a cross section moving along an axis. After oc-
casional usage, the term was popularised by Irving Beiderman in the pa-
per ‘Recognition-by-Components: A Theory of Human Image Understand-
ing’ [23], where ‘Geon’ was used to denote simple geometric primitives. In
most work, the word Geon is used to mean a feature extracted from a 2D
image, however a number of authors also use ‘Geon’ to refer to 3D features
extracted from a model.

Wu et al. [184] extract 3D Geons from noisy data by using parametric
models. A surface-error metric is used to measure the distance energy be-
tween a point cloud of rough data and parametric functions representing
seven of the most common modelling primitives. Because there is only a
limited number of ground shapes the result may not be an accurate match,
however the algorithm returns consistent results with very few failure cases.
This is ideal for systems such as the one outlined in this chapter that must
deal with a wide range of dissimilar input data, and so despite the inflexibility
a 2D parametric system is worth exploring in this context.

Similar systems are outlined by Osada et al. [138] and Funkhouser &
Kazhdan [67]. These use non-parametric distance metrics to match similar
3D shapes. These could be easily adapted to 2D, and if a database of Geon
shapes were used this type of distance matching could provide accurate ex-
traction for sets of shapes with varied internal data. A degree of flexibility
is implied by the distance metric, however the difficulty developing such a
system is defining the initial Geon shapes for large input range.

As outlined in Section 2.2, perceptual categorisation [11] [81] is one of the
dominant visual recognition theories and can be loosely summarised by the

idea that small primitives, combined with their spatial relationship, create
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a full image. Much as image properties such as line stroking and the colour
palette have a direct influence on the perceived style of an image, Perceptual
Categorisation suggests that the size and position of small primitives within
an image can also be considered as image properties, and therefore have a
direct influence over the visual style of the image.

When creating and using Geons as a style metric, the properties are split
into a number of categories. There are the direct metrics such as the size
and shape of a Geon, but also the indirect metrics as suggested by perceptual
categorisation which are the size, shape, rotation and position of the Geon in
relation to other parts of the image. This insight forms a fundamental part
of the Geon system outlined in this chapter.

‘The Development of Features in Object Concepts’ [148] looks at the
relative importance of each geon within an object. It forms the hypothesis
that different object categories have different orders of geon importance, and
that geons differ in importance and form between people.

This is taken one step further by Ullman et al. [169] who also look at
Geons in their paper “Visual features of intermediate complexity and their
use in classification”. They find that visual features of intermediate com-
plexity (IC) are of best use in image classification. A training set of cars and
faces was used to test an image recognition algorithm. Geons of different
sizes and complexity were used in the recognition process, which was based
upon standard recognition techniques. It was found that IC features were
optimal for the task. Ullman et al. continue on to state that the advan-
tage of IC features has a biological grounding and that they tend to emerge
naturally in this type of task.

Looking at this research in the context of visual style and specifically the
task of Geon representation, it suggests that keeping Geons at an interme-
diate complexity should produce the highest quality results in both analysis
and remapping. The exact definition of IC features is outlined in the paper
and can be used as a reference when creating these Geons.

Although not explicitly stated in the paper, Chris Hecker [77] imple-
mented a system using IC features in 3D as a method to retarget animations
to unknown and complex character morphologies. The paper found that

categorising structural components (‘hand’, ‘mouth’, etc) allowed for much
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better generalisation of the animation, something that standard animation
re-mapping did not do well. This provides evidence that IC features perform
better than low level features and suggests that there may be a way to use
structural components to develop a better generalisation of visual style.

In the context of this thesis, a Geon is defined to be a unit of inter-
mediate complexity within the image that is obvious to an observer. This is
represented mathematically by a single primitive that encompasses the Geon.
This is usually a rectangle in the form of an oriented bounding box.

The idea of image decomposition is not new, and similar types of multi-
component models are commonly used for object recognition and classifica-
tion. However no existing studies could be found using context-based decom-
position systems to perform visual style categorisation or transformation.
The closest systems implemented basic geon classification with the aim of
simulating or representing the cognitive model of how the human perception
system works. While the full field of cognitive psychology and recognition
models are outside the scope of this thesis, a literature review by Palmeri &
Gauthier [141] gives a good overview of the most widely recognised models.

These cognitive models are useful when considering papers such as ‘Ab-
straction of 2D Shapes in Terms of Parts’ [122]. This research describes
shape abstraction, “using a new synthesis of holistic features” which creates
simplified shapes that retain important features. The holistic features can
be explained by the cognitive models which show the importance of corner-
invariant detail scaling in relation to the perception of style. The ability of
their algorithm to perform context-sensitive part division is important when
considering the need for context when creating metrics for manipulation of
style.

Hummel & Stankiewicz implemented a program called Metricat [85] that
looked at Geons in 3D models, classifying them purely on their relative lo-
cations. This was enough to classify different objects, however because the
program was designed to model the brain’s object classification approach it
also modelled the debilitating factors the human brain introduces into clas-
sification. Implementing a similar system without the artificial drawbacks
would be more appropriate for visual style manipulation. Despite the limi-

tations, the results Metricat produces prove that categorisation via the use
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of shape abstraction is both possible and effective.

In their paper Shape Distributions, Osada et al. [138] implement a visual
search system for 3D models. While this deals only with classification of
objects, it works well and presents a number of interesting measurements and
metrics that could be taken from 3D models and potentially 3D line drawings.
In the context of style measurement, these could be very interesting bases for
metrics and descriptors that could be extracted from images and recorded
along with other Geon information such as position.

Bartlett Mel [120] implements an object recognition system and uses it to
explore the idea that feature-point matching algorithms closely represent the
neurobiological recognition process. The accuracy reflects similar algorithms,
however when evaluating degradation the system coped especially well with
piece-wise scrambled images, . One conclusion was that “object recognition
in shape space must in some cases permit an object whose global shape has
been grossly perturbed to be matched to itself, such as the various tangled
forms of a telephone cord [...]”. Later discussion of local and global feature
matching emphasises again that Geons, and specifically subdivision of an

object into Geons, is key to understanding an object at all feature levels.

5.2.2  Image Subdivision

A large amount of the research in this chapter relies on access to a database
of Geons extracted from images. Initial feasibility studies were done by hand,
however an automated system requires a method of subdividing characters
into Geons irrespective of pose, and identifying characters within images.
One system that comes very close to achieving the aim of extracting
Geons from characters is the research outlined in ‘Learning Primitive Shapes
in Cartoon Designs’ by Islam et al. [89]. Simple geometric shapes are used
to represent parts of cartoon images within a predefined layout (in their
results they use a humanoid shape). Principal Component Analysis is used
to identify similar geons in other occurrences of the same character, and
a Support Vector Machine classifier is used to find whole examples of the
character within a larger database. The classification success rate was 89%

and while Islam et al. struggled differentiating objects with similar styles,
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this is a positive when viewed in the context of the proposed system and
supports the idea that style classification can be performed using only basic
metrics. Unfortunately this research is of little use as an automated geon
extraction system as every image was required to be annotated by character
and concept artists before use.

Li, X. et al. [107] present a comprehensive method for decomposition of
complex shapes into Geons, thereby developing a structural representation
of the context. This is ideal for the proposed algorithm, and the method
performed well on 3D meshes. However the internal structure is built from
an analysis of the object surface, a feature that is exceptionally difficulty
to extract or even approximate from 2D images. A similar 3D extraction
system is used by Theobalt, C. et al. [166] for object replacement and space
filling. The difficulty of applying these methods to 2D images, combined with
the target focus upon a limited domain means that a specialised subdivision
algorithm is easier to implement and likely to function better in the 2D case.

One method for shape extraction would be to use a prototype Geon and
a recognition algorithm to find occurrences of this in other images. Most
widely used image recognition algorithms use a variation of SIFT [112] or
SURF [19] followed by a feature reduction and matching step often based on
RANSAC [61]. These algorithms find occurrences of a prototype image in a
larger target image, coping well with variances in shading, perspective and
scale. However, cartoon content often does not produce good feature points,
and data within the geons is not geometrically or linearly transformed. An
exception to this is research by Hu & Nagai [83] who adapt feature points for
text line data, however the template matching is designed for over-fit data
and works poorly finding matches in the sparse feature cloud often generated
by cartoon imagery.

Two solutions could potentially overcome this problem. A system based
on exemplar based recognition would be less susceptible to non-linear trans-
forms, and has been demonstrated to work on large datasets [65] and charac-
teristically similar datasets [92]. However, the heavy training requirement of
such a system defeats the purpose of implementing one in this context. Graph
matching [167] [51] also copes well with non-linear transforms, however of-

ten relies on SIFT-based methods for featurepoint extraction and therefore
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struggles with cartoon images. Even in the case of global features [183] graph
matching fails for cartoon images. It has however been used to some success
on a pixel-to-pixel basis [101].

One completely different approach is to use a vectorized version of the
outline with a neural net classifier. Xiong et al [186] found that this worked
better for shapes with outline noise, a key problem area for cartoon shape
recognition. However this type of result with a neural network was not easily
reproducible, and constant outline deviations were found to cause the recog-
nition rate to drop sharply. Alternatively, if a single point could be found with
certainty within each Geon, a distance-based region growing algorithm [113]
could be used to extract the shapes.

One of the best solutions for image matching line drawings is to use
a shape context descriptor [21]. This has high accuracy when matching
line drawings and monochrome images, however, requires that target images
have little background interference. The requirement is for a robust image
extraction algorithm that can find multiple different occurrences in complex
target images using only one source image. This is made easier because
the data is restricted to line drawn cartoons, and the approximate location
of subsequent occurrences is known due to the Geon structure. Because of
these very specific requirements, a custom search algorithm is implemented.

Another approach to Geon extraction could be found through shape
simplification. Mi, X et al. [122] propose a method for shape abstraction,
whereby a complex outline is simplified so as to preserve only the impor-
tant details. To do this they create perceptual parts organised by holistic
features based on the shape, features, boundaries and global organisation.
These heuristics could be used to rank or classify Geons within the proposed
system.

Overall, a number of researchers explore the idea of using Geons for image
understanding and recognition. The aim of this chapter is to apply this
understanding in the field of visual style, to recognise and modify images
based upon the artist. A number of technical challenges exist, in regards to
creating an object database and subdividing characters into geons. However
a large body of prior research exists and at least one of these techniques

should be adaptable with only minor modifications to this new application.
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5.3 Evaluating Geons

In Section 5.2 research papers were discussed that introduced the idea of
Geons, and used these in object recognition and other systems. However, it
appears that no existing research uses Geons in the context of visual style.
This chapter proposes that Geons can be used to identify, categorise, and
modify the visual style of an image. This can potentially be in concert with
existing research that identifies image properties such as line and colour.
Before developing an in-depth system based upon this premise, initial ex-
ploratory research must be carried out to assess the feasibily of using Geons

in this area.

To best evaluate the relationship between Geons and visual style, external
factors are reduced by constraining the input as much as possible. To this end
the input images are all simple greyscale line drawings that show full-body
characters from either the front or the side. This research focuses initially on
humanoid characters because they are common in drawn media, providing
a large body of comparable and easily subdividable objects to draw upon
for input images. Additionally, characters provide a reasonable number of
easily identifiable Geons that have a direct correspondence between images,
artists, and styles. The characters have similar technical characteristics - line
style, colour, overall size, and yet because they are drawn by different artists
they are perceptually distinct. These constraints reduce external factors that
could influence the measured correlation between Geons and style. Figure 5.2
shows examples of the characters used for input.

For the initial study, three datasets are chosen. While the intricacies
of visual style and the utility of Geons can be explored later, these simple
datasets allow basic tests to be carried out that will show whether Geons are a
viable method for measuring style. Because artists with distinct visual styles
are used, the categories ’artist’ and ’'visual style’ are used interchangeably
within this section.

Based on the research of Ullman et al. [169], a Geon is defined to be a unit
of intermediate complexity within the image that is obvious to an observer.
In the context of human characters, this corresponds roughly to the arms,

legs, body, and head. In the example images, the arms are often too small or
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Figure 5.2: Examples of the input characters. Row (a) shows characters from
Calvin and Hobbes by Bill Watterson, row (b) shows Peanuts by Charles
Schulz, and row (c) characters from PhD Comic by Jorge Cham.

poorly defined to be used as a Geon, and therefore characters are split into
the head, upper torso, and lower torso. The splits are performed at the neck

and waist.

Figure 5.3 shows an image being manually decomposed into Geons. Geons
are aligned with the perceived axis, and subdivided so that the centre of the
borders of adjacent oriented bounding boxes meet exactly at each split line.
At least 4 unique characters were used for each artist, with a minimum of
4 instances of each character to give 16 datapoints and 48 Geons per artist.
Metrics are associated with each Geon, and the differences and similarities are
explored to determine if it is statistically possible to determine a difference
between the three chosen artists. The metrics used in this section are height,

width, angle, and position. Figure 5.4

Figure 5.5 is a scatterplot that shows the size of head geons from charac-

ters by Jorge Cham and Charles Schulz. The datapoints form two distinct
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Figure 5.3: An input character (a) with perceived splits at the neck and
waistline (b) is decomposed manually into Geons (¢ & d).

? |

Figure 5.4: Examples of the instances of a single input character. This row
shows 6 instances of the character ’Sherman’; extracted from panels from the
comic strip Misery Lover Sherman by Chris Eliopoulos.

groups and shows that very simple Geon metrics can be used to identify
artists. Due to the different data sources the two groups have unequal sizes
and variances, and so Welch’s T-Test is used to analyse the point distribution
along the principal axis (0.89,—0.46), giving a T-Value of 9.66. Performing
a two-tailed test gives a P-Value of less than 0.00001, which confirms that
the difference between the two artists is statistically significant.

However, this clear division does not always occur. Plotting the size
of head geons between Charles Schulz and Bill Watterson gives seemingly
uncorrelated data, as can be seen in Figure 5.6. Performing the same T-
Test between the datasets gives p = 0.77, which shows the difference is not
statistically significant. From an intuitive point of view this makes sense,
because the two artists draw characters in a similar style and it can be seen
that the size of the characters and their subcomponents are similar. However,
humans can still perceive a clear difference in the two cartoons, and so with
the correct metrics it should be possible to find a distinction.

Height and width are first order metrics, along with rotation and position.
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Figure 5.5: Scatterplot showing the width and height of head Geons in images
drawn by Jorge Cham (pink) and Charles Schulz (blue). This simple metric
is enough to clearly distinguish the two artists.

Second order metrics can be plotted using the differences between the first
order metrics. The relative position between two neighbouring geons is a
second order metric, and is often more useful than the first order absolute
position. Figure 5.7 shows a complex pairing of metrics that were found
to easily differentiate the two artists. Each point on the plot represents a
second order metric, for example the relative sizes of the head and the body,
or the body and the feet. The horizontal axis shows the distance between
the neighbouring Geons, and the vertical axis shows the difference between
the diameters of the two Geons. Points closer to the left show Geons that are
similar in size to their neighbours, and points closer to the bottom show a
larger overlap or a stronger locational correlation between the Geons. Points
are linked to show Geons within the same object. Each character is therefore
represented by a line, connecting the head-body Geon with the body-feet

Geon.

The most obvious feature in this plot is the distinct grouping in the
Geon data from Bill Watterson. The two groups represent the two different

types of characters drawn by Watterson — adults and children. These have

73



60 +
=2 55 |
o]
e =
= .
= 50 R ¢ -
ED [ ] [ ] "
O
E ] : ]
45 | o= ] = ] ]
40

35 40 45 50 5 60 65 70
Width (pixels)

Figure 5.6: Scatterplot showing the width and height of Geons from images
drawn by Bill Watterson (orange) and Charles Schulz (blue).

distinctly different spacing between Geons, but as can be seen by the angles
of the connecting lines, the shape progression from head to feet is the same,
and with the exception of two outliers, it remains completely different from
Schulz.

Analysing a third order metric shows a clear distinction between the
two datasets. The slope of the connecting line between the matching Geon
pairs is measured and shown in Table 5.8. Welch’s T-test is again used to
compare the two distributions. The T-value is 6.27 with a P-Value less than
0.00001, indicating a significant result. This shows that there is a separation
between the two datasets and clearly demonstrates that it is possible to
identify differences between artists even in cases where the Geon metrics are
very similar.

This exploration shows that using Geon metrics to recognise style is a
viable approach. One of the biggest challenges in automating this system
is determining which metrics should be used for the classification, as there
are a large number of different combinations to select from and only a small
number of these show significant differences between artists and datasets.

The significant metrics change between artists, and it was found that higher
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Figure 5.7: Linked scatterplot showing second order metrics. Points represent
Geon pairs, with the horizontal axis showing the difference in diameter and
the vertical axis showing the distance between the Geons in the pair. Lines
connect Geon pairs within the same object. Orange shows Geons drawn from
images by Bill Watterson, and blue from Charles Schulz.

order metrics were important in cases where datasets were similar. This
finding helps to explain why previous work often had limited results, as
only one value was commonly used. For example, MetriCat looked only at
absolute Geon position, which suffices for object recognition, but doesn’t

vary as much due to artistic style as second order relative position does.

Equally important to finding distinctive metrics is knowing when met-
rics have little correlation to style. An example is the size of the legs or feet
Geon. Because the input characters were a mix of front and side orientations,
the Geon width could be based upon either the width or depth of the feet,
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Bill Watterson 1.17 0.55
Charles Schulz -0.08 0.45

Figure 5.8: Mean and standard deviation for the line slope in Figure 5.7.
Measurements are in radians. Welch’s T-Test for separability gives a signifi-
cant result of p < 0.00001.

and may vary between instances of the same character more than between
artists. A similar problem is differentiating between character-specific and
style-specific metrics. Using overall character proportions provides a clear
distinction between Charles Schulz and Jorge Cham because the artists draw
children and adults respectively. As can be seen in Figure 5.7, Bill Watterson
draws characters in both classes, and any attempt to use this metric will cor-
rectly classify by type but incorrectly classify by artist. Section 5.8 outlines
a method of determining whether metrics such as these should be discounted
from any categorization or style transformation being performed.

Overall, this section validates the idea that Geons are related to artistic
style. In Section 5.7, a software database system is outlined that allows
the creation of a metric probability mapping. This enables automatic style

recognition and modification based upon Characteristic Proportions.

5.4 Algorithm Overview

The core algorithm analyses a database of images and detects consistent
metrics across the dataset. It uses these consistent metrics to measure the
properties of an image and determine which properties are characteristic
to the artists style. This enables style-based operations such as classifying
images by artist, or changing the artistic style of an image. Manually building
this database and finding the characteristic properties takes a considerable
manual effort, and so much of the work in this chapter focuses upon building
a database from unknown source images and finding this data automatically.

From an initial image of a character or object, a structural description is

automatically created to outline the significant components. A combination
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Figure 5.9: The process of modifying an image using Characteristic Pro-
portions is fairly involved, but can be broken down into a number of main
areas. The initial image (a) is decomposed (b) into a structural description
(c). This is repeated for a number of images and characters by a single artist
to build up a description database (d). Images by different artists can then
be transformed (e) to better match the range of Characteristic Proportions
from the original artist.

of the bounding hull, image shape and complexity are used to subdivide
the object into the basic geometric units (Geons) that are used to measure
characteristic proportions. This initial 'prototype’ information is used to
extract similar objects from a large number of source images. After the
new objects are extracted and corresponding Geons fitted, the characteristic
proportions are entered into the database. Figure 5.9 shows a brief overview
of these steps.

These proportions are measured across a range of images from the same
artist, and the distribution of measurements is used for categorisation. Each
property is categorised depending upon whether it is part of the artists’ char-
acteristic style or unique to the specific input image and therefore irrelevant
when performing the style modification. The style modification itself takes
an image by the source artist and modifies the proportions to those charac-
teristic to the target artist. Attention is needed to ensure the image content
is preserved correctly when the properties are modified.

This process transforms an image into the same style as the target artist.
The full algorithm is described in the following sections, and the results

displayed in section 5.9.
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5.5 Prototype Subdivision

To extract the target proportions automatically from a large set of images,
a basic prototype is supplied to demonstrate the object. This prototype is
selected by the artist or user, and is simple an example of the character
without any background. This needs to be divided into unique shapes that
represent graphically significant components of the object. These are later
used to extract the object from the background in target images, and then

measure their rotation and scale.

The object prototype is important because it heavily influences the ex-
traction and measurement of source images that are used to compile the

artist database.

A naive algorithm has been developed to do the separation. It relies on
the exaggeration present in most cartoon images and the texture pattern if
the image is textured. If the image is not textured, then the internal lines
are used. Based on a sample of common images, an assumption is made
that large variations in width or internal complexity indicate the boundaries
between different parts of the object. A common case is a cartoon character,
where the ideal focus is upon the proportions of head, body and legs. These

form three geons of intermediate complexity.

First, a centreline is drawn through the longest axis of the image. If the
overall shape of the main character or object bends, the centreline is also bent
to account for these. If the object forks, then the most significant branch is
chosen based upon its width and length. The complexity of a raster image
at a point on the centreline is measured as the sum of the absolute value of
derivatives along an orthogonal cross-section, while the complexity of a vector
image is the number of line crossings along the cross-section. A bounding
hull is also drawn around the image, using a single step point contraction as
outlined in Section 6.4.3. The object outline is not guaranteed to be closed,
because it has been drawn by an artist and the style may rely on gaps or
spaces. To ensure the border contraction doesn’t encroach too far into the
object, a limit is imposed. This trades technical accuracy for a correct visual
border. Figure 5.10(a) shows how this bound is used to calculate the width in

respect to the centreline. Contraction is used in place of a convex bounding
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Figure 5.10: A cartoon character and object automatically subdivided into
appropriate Geons. The pink centreline and blue bounding hull line (a)
are used to find appropriate subdivisions (green) based on width. Note the
bounding hull is centered and therefore does not visually match the image
borders. The image complexity (b) is shown untransformed, and green lines
mark approximate locations of low complexity. The character geons (c) and
object geons (d) are created based on these subdivision lines.

hull because the convex sections of the outline are integral to the subdivision

process.

w4 et
o - e
split when f'(t) = 0 and f"(t)>0 (5.1)

where t is the distance along the centreline from 0 to 1, w(t) is the outline
width orthogonal to the centreline at a point, and ¢ is the image complexity

in the range [0..1].

After these measurements are established, an evenly weighted combina-
tion of smallest widths and lowest complexity are used to find potential seg-
mentations for the object, as per Equation 5.1. The final number of sections
is determined by the size of the image and the strength and placement of the
potential cuts. Geons are created aligned to the centreline, using the height
of the section and the maximum width of the section. Figure 5.10 shows the

result of this subdivision process.
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The width of the image is measured at the adjacent boundaries of each
Geon. The adjacent boundaries are considered to be those where the con-
nectivity graph crosses, where changing the scale of the Geons could cause
discontinuities in the image. These measurements are later used to ensure

correct scaling along the seams when modifying a target image.

In addition to boundaries, internal measurements are recorded using an
arbitrary size grid aligned to the Geon. It was found that a subdivision
of 6 gridlines produced the best visual results for the style transform. At
each intersection, the complexity of the image is recorded, and along each
gridline the endpoints are recorded where they cross the bounding hull. These

measurements are later used to influence the contents of a Geon when scaling.

This method works without intervention for a range of common and
simple cartoon objects, however does not correctly subdivide complex or
branching images. In this case the object can be subdivided and separate
prototypes generated from the pieces. This is considered a viable solution,
because complex objects are of limited use in this system. If the topology
is too complicated, it reduces the chance of finding a corresponding object
in the database of the other artist. If an object cannot be subdivided, then

geons can be placed manually as a last resort.

A more detailed body segment extraction method is proposed in Sec-
tion 6.4.3 and the results are often higher quality than those in this section.
However the methods are largely incompatible due to the way they are used.
Research in skeletonization for model reconstruction uses a single well-defined
image source that has been drawn intentionally by an artist to fit a specific
pose. Building a database for Geon representation requires a large number
of different images, and so they cannot by definition conform to a single
pose. Additionally, analysis using characteristic proportions is designed to
be run on existing datasets, and the artist cannot have been expected to draw
characters in a given way. Using prototype extraction trades accuracy for ro-
bustness while still providing acceptable data for Characteristic Proportion

research.
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Figure 5.11: Geon Extraction is performed using an algorithm designed for
this specific case. The derivatives of the source (not shown) and target
(a) images are combined with the flat colours (b), and vectors represent
the line directions (c). A loose correlation is performed (d) at every pixel,
where gradients and colours are matched within a radius. Correlation is
performed across a range of rotations and scales, and the lowest difference
(e) is considered to be a match. Subsequent Geons are matched within
smaller areas (f) determined by the prototype. The final output (g) contains
the size, rotation and position of each Geon in the target image.

(a)

5.6 Image Extraction

To build a database with a large number of entries, instances of the target
object or character need to be measured within a large input dataset. Occur-
rences of a character are often found in context, and so need to be extracted
from the background before they can be used. This is especially challenging,
because the character in the target image is usually in a different pose to
the character provided as a prototype. These differences in pose cannot be
ignored because they provide the data required to perform the style transfer.
Each Geon therefore needs to be extracted individually.

This extraction is performed using a brute-force algorithm that uses line
directions and cartoon fill to match two images at a point. Processing is
performed on most complex Geon first to reduce the number of false matches.
In the rare case where no matches are found, the process is repeated with a
less complex Geon. This metric is determined using the same algorithm as
outlined in Section 5.5.

Unlike photos, the images being matched have strong lines and large ar-
eas of flat colour. A special featuremap is generated for each image that

equally emphasises these features. First a signed vector field v(z,y) is gen-
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erated from the image intensity channel to allow easier access to the line
data, and then thresholded to remove insignificant slopes or noise. Specifi-
cally, data is removed in areas of low intensity change, specifically where the
length of the vector is below a given threshold. If ||v(x,y)| < 0.5, the signed
vector is replaced with the flat colour from the image. If the image instead
has a pattern or noise, this is removed by averaging the colour. Prototype
images may also specify transparent areas that will not be used during cor-
relation. This is important when matching a prototype image with a blank
background with a target image that has an illustrated background. Mak-
ing the prototype background transparent ensures it does not falsely reject

a correct foreground match because the backgrounds do not match.

The edge direction is found by taking the gradient of the derivative in
both the X and Y direction, and normalising the resulting vector. A naive
search is then performed by measuring the loose correlation of the source and
target for every pixel in the target image, with the source image rotated at

increments of 1° and scaled by 1 pixel up to a range of 10%.

The loose correlation performed is similar to standard image correlation,
except that overlapping pixels are also checked against nearby pixels to allow
for differences in the drawings. Equation 5.3 shows the correlation between
source and target for a single pixel. This loose correlation solves the situa-
tion where lines are mis-alinged by only a few pixels, yet do not match and
hence distort the correlation result. Bearing in mind the previously described
sensitivity threshold of |||v(x,y)||| < 0.5, Equation 5.2 shows how the contri-
bution of each pixel is based upon the vector direction if applicable, or based
upon the flat colour if there is no vector. The best radius for the sample
dataset was determined to be 2% of the image size, but this needed to be
increased for excessivly noisy or different images. The closeness of a match
at a specific transformation is taken to be the sum of all pixel correlations,

and the transformation with the lowest energy is the best match.
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where s is the source image and ¢ is the target image, with v and ¢ repre-
senting the derivative vector channel and pixel colour channel respectively.

r is the sampling radius.

After the transformation of the first Geon is found, subsequent correla-
tions do not need to be run across the entire image. The Geon structure in
the prototype is used to determine the search areas for subsequent Geons,

with the correlation being run in a radius of 2r around the location indicated.

This method worked sufficiently well for the sample dataset, requiring no
training and needing calibration only in outlying cases. In these cases, it
was sufficient for the user to manually indicate the aproximate area for each
of the geons. However, the naive search across all pixels in the image is an
O(n?) algorithm and optimisation of this algorithm is left for future work.
Additionally, this matching algorithm does not work on photographic images
or images with high texture content that is liable to be miscategorised as lines.

Given the specific nature of the dataset, these are acceptable tradeoffs.

This type of image matching would ideally be performed using vectorized
data such as that produced in Chapter 4. This format has lower noise and
better detail for low resolution images. However, a vector approach is not
feasible due to the lack of robust vector matching algorithms, and the re-
quirement for matching different poses. Overall, the delivered Geon data is
the primary focus and in this respect the exact extraction procedure is not
critical to the use of Characteristic Proportions in artistic style manipula-

tion.
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5.7 Database Analysis

This algorithm provides the data needed to perform a proportion transfer.
Within the database are a set of objects, with their subcomponents (Geons)
in different poses. Some Geon properties are important when representing
an artists’s style, while others are either irrelevant or apply only to a specific
drawing of an object. By analysing the database for consistent configurations
across the dataset, and discarding the properties that are drawing-specific,
the Characteristic Proportions for a specific artist can be measured.

Figure 5.12 shows a database of extracted Geons for a particular artist.
The Geon scale and position is measured relative to the prototype image,
removing the scale bias that would otherwise be caused by different sized
target images.

Further bias can be removed by running the analysis process on a variety
of objects of the same type, from the same artist. This works for simply
objects in a scene, however running the process on characters often results in
clear categorisations between different types of character within an artists’
portfolio. Groupings such as ‘Adult” and ‘Child’ or ‘Good’ and ‘Bad’ emerge.
The differences in these groupings are more pronounced than the differences
between artists. However the differences between, for example, the ‘Child’
groups from different artists is still significant enough to perform an effective
style transfer.

Several measurements are recorded for each Geon and compared to the
other Geons in the same class, in all other instances of the character. The
size, angle, and distance to adjacent Geon(s) are compared. In addition,
the differences in angle and size between adjacent Geons within a character
are measured. For each property, the database records the average (1), the
standard deviation (o), and the total range in each direction (r). Excep-
tional scenes in the source image, or errors in the Geon matching process can
adversely affect the range, so outliers are discarded for this property.

To successfully transfer the characteristics between datasets, it is neces-
sary to decide which properties are part of the characteristic style and which
are specific to an individual character or image. If a property has a small

variance and is similar across a wide range of images from the same artist,
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Figure 5.12: This is a visualisation of the database showing Geons from two
characters in ‘Misery Loves Sherman’. The rectangles show the size and
rotation for each Geon identified in the target images. Each colour denotes
a character, blue representing Sherman and magenta representing Fran; and
each row represents a specific class of Geon — the head, body, and legs
respectively. Three categories of Geon are clearly visible. The size of (a) is
unique to that Geon, and needs to be recognised as an outlier; The height of
the body Geons (b) is consistently different for each character, and so is not
a characteristic property for the artist; Lastly the ratio between the size of
the Geon classes marked by (c) is consistent across both characters, making
this ratio characteristic to that artist. All three types of Geon need to be
recognised and categorised during the analysis stage.

then it is likely to be part of their specific style. If a property has a large vari-
ance then it is probably dependent on the image or situation and therefore
not of use as a style metric. This is difficult to measure, because most prop-
erties have different scales and there is no easy method to determine what
a ‘normal’ variance is for each of them. Therefore, comparison is performed

on a property from each class of Geons.

The properties to be compared are outlined in Figure 5.13. It can be
seen that the rotation of the head Geon has a very wide range, as does
the width of the leg Geon. This is because the character was looking in
different directions in the source images, and because the legs were drawn

differently across a range of comics. The categorisation of these properties
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Figure 5.13: This figure shows the possible range of values for a single set
of character Geons. Twelve instances of the character Lex from ‘Not Just
Nicky” were analysed. The left column shows the sizes of the Geons. The
outer box shows the maximum size, and the inner box shows the minimum
size. The middle column shows the range of rotations, and the right column
shows the allowable range for each Geons position.

depends upon the target artist, but with a large range it is unlikely they
are characteristic properties. In contrast, the rotation of the legs and the
location of the body have very little deviation in their measurements and are
likely to be characteristic properties. The properties are compared between

artists to make that classification.

If a property shows a significant difference (1 > 0.5(0y + 02)) between two
artists, then the property with the low deviation is counted as part of the style
and the property with the high deviation is considered to be image specific. If
there is no significant difference between artists, then properties are compared
within a single artist. Each property is compared to the equivalent in the
other classes of Geon. For example, the property measuring rotation of the
head is compared to those measuring rotation of the body and the legs. The

same test and categorisation is applied.

If there is still no significant difference found, then one of two situations
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has occurred. Either neither artist has that specific type of property in their
characteristic style and the property is a byproduct of the shapes and situa-
tion within the images—this is common for rotation, where the orientation
of Geons depends upon what’s happening in the image. Or alternatively,
both artists have this property as a strong component of their style—this is
common for the ratio of sizes between adjoining Geons. There is no ideal
method for determining which of these options is correct, but the following

formula gives reasonable results.

20,, <rm, ,the property is characteristic
when{ PROPELLY (5.4)

> r, ,the property is image specific

where o, is the standard deviation for a given property, and r,, is the cor-

responding range.

Equation 5.4 relies upon the fact that the set of values is not an exact
standard distribution. By measuring the ratio of the standard deviation to
the range, it is possible to guess the type of distribution, and hence the type
of the property. If o is small compared to r, the distribution is likely to
be clustered around the mean with only a few outliers, and the property is
therefore likely to be part of the artists’ style. If o is large compared to r,
the distribution is likely to have a wide spread. This means the property is
unique to each image. The distribution scaling value 2 can be modified to
change the weighting of characteristic to image specific properties, however
this weighting is not critical because the hierarchy of transformations outlined
in Section 5.8 ensures that the most significant characteristic properties are
transformed first.

This categorisation method is also run on the weighted grid extracted dur-
ing the prototype stage (Figure 5.14). The length of each gridline is placed in
the database and categorised as an artist or image property. If neighbouring
gridlines are categorised differently, the transformation process can introduce
discontinuities. Therefore an additional step is performed where each line is
given an influence value (initialised to 0 and 1 for image and artist proper-
ties respectively) and then weighted exponentially across the Geon from the

border so that neighbours do not have large differences. When performing
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Figure 5.14: In addition to scaling Geons, their contents are influenced using
a weighted grid. The grid is extracted from the prototype image, including
weightings based on complexity (a). If an image is scaled using the artist-
significant gridlines, discontinuities are obvious (b). Weighting these values
across the Geon produces a better result (c).

the transfer, this prevents large discontinuities.
Once each metric has been categorised as an object-specific metric or an

artistic style-specific metric, the proportion transfer can be performed.

5.8 Proportion Transfer

The final stage to complete a style transfer using these Characteristic Pro-
portions is to apply the properties of the stylistic features from the source
image set to the corresponding features in the target image. Each geon in
the source image is transformed to fit the characteristic proportions of the
target style. Properties that measure the differences between geons depend
on the properties of the geons themselves, and hence it is possible to end up
in a situation where there are two possible alternatives to modify a property.
In this case, the alternatives may not be compatible and it may not be pos-
sible to transfer all properties correctly. Therefore, an order of precedence
is established whereby the metrics with the most impact will be processed
first. Four passes are run across the metrics, and properties within each pass

are solved beginning with the geon that has the lowest standard deviation.

1. In the first pass, properties that are marked as characteristic for both
the source image and the target image are processed first, and in order

starting from the property with the largest difference. This is given pri-
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ority because removing the influence of the original artist and replacing

it with the target artist creates the biggest impact.

2. Properties marked as characteristic for only the target image are pro-
cessed second. If possible, the characteristic will be modified to take on
the target image characteristics. However, this is only done if it does

not interfere with the transformations performed in the first pass.

3. A special case arises where properties are marked as characteristic only
for the source image. The style transfer is more effective if all original
characteristic properties are removed, however there is no target charac-
teristic value. Instead of completely transforming the geon, properties

are adjusted by a random amount in the direction of the target mean.

4. Remaining properties aren’t marked as characteristic for either artist,
and are likely to be important to the image itself. These are left un-
modified.

When transferring proportions, it is important to introduce a random
element to correctly reproduce the natural distribution of property values
that arises from hand-drawn images. Even if the same artist draws the same
image several times, the different versions will never be exactly identical.
Therefore if transformed images are used in several locations, or if several
different images are transformed, they should not have exactly the same
proportions. To better reproduce the target characteristics, random values
are generated for the target characteristic that fit with the measured average,
distribution, and range. By following the precedence rules outlined above,
it should be possible to ensure that the random element is only introduced
into characteristic properties. This is important, because image properties
(such as the direction a character is looking, or perhaps an outstretched hand
pointing at an object) are likely to be integral to the context and should not
be disrupted.

The result of introducing these random values and performing the trans-
formation is that discontinuities appear at the borders of neighbouring Geons.

Image (a) in Figure 5.15 demonstrates a case where Geons have been scaled
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Figure 5.15: When scaling, discontinuities are introduced at the borders of
neighbouring Geons. Scaling the contents based upon the ratio of the images
at the seam ensures a better fit. The contents are scaled based on their
complexity as shown in Figure 5.14.

disproportionately and the discontinuities are highly visible. Both the im-
age prototype and the image extraction steps record the actual width of
the image at the borders of Geons. The connectivity information from the
prototype generation is used to determine adjacent borders on neighbouring

Geons, which are scaled to preserve line continuity as shown in Figure 5.15
(b).

After applying border scaling, the contents of the Geon are also scaled so
as to preserve the image content while still allowing for Geon matching at

the seams. Figure 5.14 shows this process.

Another common transformation for geons is an unequal scaling of the
dimensions. This causes graphical artifacts because it modifies line curvature
and significant points such as eyes or hands become stretched unrealistically.
Stretching linearly often disrupts the perspective or distorts geometric ob-
jects. Note that this is not affected nor solved by the grid scaling, which
runs independently of the dimensions of the Geon. There are two common
problem cases that are both handled with the same algorithm. Row (a) in
Figure 5.16 shows the case where geons are reduced disproportionately in
one direction, resulting in flattened shapes. Row (b) shows the extension of
geons, often resulting in stretched shapes such as the flower on the chest and
the waist band.
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Figure 5.16: Scaling lines linearly produces suboptimal results. Row (a)
shows downscaling for a single geon and row (b) shows upscaling for a geon
in context. The original image is presented in column 1, and column 2 shows
a linear scaling. This produces artifacts such as flattening of the feet and a
rotation of the waistband. Column 3 shows the results of scaling when curves
are preserved and these artifacts no longer occur.

\

To solve this issue, images should be scaled only at places with minimal
texture or features. The complexity along the image is recalculated based
upon the scaled, border-aligned, content-shifted Geon, in the direction of
the unequal scaling. The sections of least complexity cannot be selected,
because these are at the edges of the Geon where the initial prototype split-
ting occurred, so instead a cross-section is selected as close to the middle
as possible. This is then stretched or removed entirely depending upon the
direction of scaling. Directly removing a section of the image introduces the
same discontinuity problem as with Geon borders, and so the same weighted

scaling is used to ensure continuity.

5.9 Results

This algorithm was designed to extract an individual artist’s style and apply
it to other drawings. The process focuses on the proportions of an image,
and in this respect it successfully transfers the characteristics from one artist
to another. The process is entirely automated, an outcome that is important

in contributing to the original goal of reducing artist workload. The effect of
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style translation using characteristic proportions can be seen clearly when the
modified characters are viewed in context. In Figure 5.1, characters are shown
from ’Sandra and Woo’ and ‘Misery Loves Sherman’, as originally drawn
by Puri Andini and Chris Eliopoulos respectively. Andini’s characters have
their characteristic properties modified to those of Eliopoulous’ characters,
and are then placed into a cartoon panel alongside the original. Due to the
proportion transfer, the characters do not appear out of place and the result
of style transfer allows Andini’s characters to appear correctly in the same

scene as Eliopoulos’ characters.

Figure 5.17: Source images used for the transfers in Figure 5.18. Images are
from ‘Misery Loves Sherman’ (a & b), ‘YodaBlog’ (c, e & f), ‘Sandra and
Woo’ (d), and ‘Not Just Nicky’ (g).

The process has been run on a number of line drawn datasets with success.
Three datasets are used in the associated figures, and where available, at least
ten instances of each object are used to build the database. Figure 5.17 shows
several different characters drawn by four different artists. A target style,
generated from one of the other artists, was applied to each character and the
results are shown in Figure 5.18. The introduction mentioned the difficulty
of ensuring stylistic consistency across a large range of work. Although this
algorithm would struggle to perceive the difference between two artists who
strove to draw in the same style, it produces usable results in most other
cases.

Due to the random influence in the proportion transfer, the results are

never identical when running the transfer algorithm multiple times. Fig-
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Figure 5.18: Several examples of
the style transfer method. The
left column is an example of the
target style and the other columns
have characters converted to that
style.
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ure 5.19 shows five different transformations using Sandra from 'Sandra and

Woo’ as the input image and "Misery Loves Sherman’ as the target style.

Figure 5.19: Introducing a random element to the transform correctly repro-
duces the scatter of values in the target style. The algorithm is run on one
source character five times to generate a range of results. It can be seen that
each generated character conforms to the target style, yet has its own unique
pose.

o

(a) (b) (c)

Figure 5.20: A character from "Yodablog’ is transferred to the style of ’Misery
Loves Sherman’. Transfer without a target database (a) produces acceptable
results. Without the source database (b), the angle of the head is incorrectly
transferred, resulting in stretching. Without any databse (c), the internal
gridlines are directly adjusted to aproximate the shape of sherman - giving
incorrect results.

The methods outlined in this chapter produce reasonable results for datasets
and images that fit the specific requirements outlined at each step. However
often data is not available that fits these requirements, and running the pro-
cess provides mixed results. One common scenario is a lack of source or target
material, forcing the process to be run with only one side (or neither side)

of the database populated. In the case where no database of source images
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exists, the single source image has all properties marked as artist-specific so
that only characteristic properties are replaced on the target image. Fig-
ure 5.20 shows images produced when one or both databases are lacking. In
the case where no database of target images exists, the process can be less ef-
fective but still produce usable results. Finally, running the style translation
process is possible with no databases at all, however the results can range

from passable to unusable.

Figure 5.21: An example of transferring a cartoon style to a photographic
image.

It is also possible to perform style translation on photos and images that
are not line-drawn, although some of the processing stages must be skipped
or performed manually. Figure 5.21 shows a situation where the results ap-
pear correct. In addition to modifying images, the geon database can be
used to identify the artist for existing images. By measuring how closely the
new figures conformed to the characteristic properties of both artists a con-
fidence value could be built and the character’s artist identified. Figure 5.22
shows how this geon recognition produces correct results even for very similar

datasets.

Characteristic properties can be used to classify unknown images by test-
ing against Geon databases from individual artists, and finding the artist
with the closest metrics. In Figure 5.22, three additional figures were chosen

from the existing artists and correctly recognised.
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Figure 5.22: Three previously unused figures were compared with the anal-
ysed characteristic properties for each artist. The confidence of each cate-
gorisation is shown below the figure. The characters in grey on either side
were used to build the database of geons against which the matching was
carried out.

5.10 Conclusion

The success of the algorithm outlined in this chapter is an encouraging step
into the field of artistic style. The proportion transfer runs without requiring

human judgement and produces acceptable results for a range of images.

Human perception has yet to be rivalled by computers, in large part
due to the difficulty of contextual analysis. By focusing on characteristic
proportions, this algorithm fills the gap between the functional context-free
style analysis of Hertzmann et al. [79], and the non-functioning attempts
at fully contextual systems. The spatially linked geons extracted from the
image gives enough information to avoid the distortion problems encountered
by Freeman et al. [64]. Measuring geons allows spatial context to be taken

into account without needing to classify the object itself.

While the results of style transfer using Characteristic Proportions seem
reasonable to an observer, a better indication would be to perform some type
of verification. Research such as the Structural Vectorization in Chapter 4
lends itself well to mathematical verification, however judging the correctness
of artistic style is difficult. A participant based study could be performed
where viewers categorise or rate sets of modified and unmodified images, or
attempt to identify computer generated objects from an original set. This
type of test could verify a style transfer, but still would not measure degrees

of success objectively. Because any objective classification of artistic style
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relies so heavily on perception and cognitive science, it would be a significant
project in itself. A more rigorous verification of this chapter is therefore left
to future researchers or other fields.

The algorithm produces reasonable and predictable results when using
line drawn cartoons. If both cartoons use similar types of line art, trans-
formed images match the style of the target image accurately. However, two
arbitrarily chosen artists are unlikely to have the same type of line art, and
may draw in colour. In these cases, further processing is needed to fully com-
plete the style transfer. Chapter 3 begins to address this issue and can be
used in conjunction with characteristic proportion transfer to provide better
overall style transfer. More advanced line style integration is however left to

future work.
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Chapter VI

Model Reconstruction

6.1 Introduction

The aim of this thesis is to reduce the workload of content creators by de-
veloping techniques based upon or enabled by visual style metrics. In this
chapter, the boundary between 2D and 3D work is explored, and methods
proposed to ease the artist’s burden when moving content between these
mediums. An automatic model creation method is outlined that allows easy
integration of concept and user generated artwork into a game. Specifically,
the research deals with low to mid resolution content that is useful for rapid
prototyping or applications such as mobile games.

In particular, the work in this section focuses on removing the need
for user guidance during 3D reconstruction and producing automatically a
production-ready model that includes required standard properties such as
UV texture coordinates and bone influence values. Texture coordinates are
an integral part of displaying the model in a way that accurately reflects
the original concept art, and the bone influence values allow animation of
generated models. The work in this section explores the use of automatic
generation for characters, including humans, robots, creatures, and other
animate entities. Characters such as these are central to the majority of
animated and interactive digital media, and provide a difficult and impor-
tant use case while at the same time limiting and focusing the scope of the
project within a manageable subset. By focusing on this character subset we
can also make a number of assumptions about the content, and produce a
higher quality output than a general solution can achieve.

The main contributions of this chapter are two conversion methods. One

is a rescale method that deforms an artist-defined base mesh to better reflect

98



(a)

Figure 6.1: Front (b) and side (c) views show the 3D mesh automatically
generated by our algorithm using a single piece of concept character art (a).

the target 2D concept artwork, and is appropriate for content retouching
and style consistency evaluation between 2D and 3D. The other method is a
shell-based meshing algorithm that converts 2D outlines to 3D meshes using
a heuristic that balances the skeletal relevancy of the mesh against reduced
visual artefacts. By extracting a skeleton structure, approximating the 3D
orientation and analysing line curvature properties, appropriate centrepoints
can be found around which to create cross-sectional slices and build the final
triangle mesh as seen in Figure 6.1. Additionally, this section outlines a low
complexity automatic skeletonisation algorithm for raster images, with an
optional user-controlled complexity parameter.

The work outlined in this section aims to cover a number of important
goals. The foremost is the use of single-view input; this is important because
it allows a much wider range of input based upon concept artwork. It means
that artists do not have to change their workflow, nor produce additional
work outlining alternate views, and helps in general to ensure the technique
remains widely applicable. The second major goal is to produce 3D models
entirely automatically. Removing complex intervention from the generation
process allows for faster prototyping, and content creators avoid learning
another specialist system. Removing the need for artistic guidance also allows

for easier integration of user generated content. Other goals are to ensure
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the generation process runs on a mid-level system in reasonable time, and
that the end result is a game-ready or render-ready model. Depending upon
the technique used a number of constraints are imposed on the input format
and content, these are outlined in Sections 6.3 and 6.4 respectively.

The following sections outline the existing research in this area, and intro-
duce two new approaches to model generation. An evaluation is performed,
comparing the two approaches and comparing automatic generation with
artist created models. The results show that a single 2D input image can be
used to generate a visually correct rigged 3D low-polygon model suitable for

use in realtime applications.

6.2 Previous Work

6.2.1 QOverview

Single-View Modeling has long been a difficult research problem and has
received a lot of attention. Three dimensional forms that appear obvious to
an experienced human observer are difficult to process without contextual
knowledge, and the breadth of existing research showcases many different
approaches to the problem of extracting an implied 3D structure.

Existing research can be organised into three clear groups, each with it’s
own approach to the problem.

The most common approach is the creation of a program, workbench, or
framework that allows for artist-assisted model creation from 2D sketches.
This can range from systems that interpret special types of input [7] and
modelling operations [189] to systems that act on the appearance of simple
lines as they are drawn [130]. These systems can use data from a single
dimension [111], but more commonly allow multiple dimensions to be used,
either from a single view [7] or from multiple views [161].

Another popular approach is the reconstruction of geometric shapes such
as those found in technical drawings. These are predominantly single-view so-
lutions that use inferred reference lines [59] or lines internal to the sketch [123]
to calculate the depth of the sketched lines. The method of surface genera-
tion differs significantly from the freeform systems mentioned in the previous

paragraph and this CAD-style approach often requires input shapes with
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clearly defined planes and edges.

The third approach to 3D mesh creation from 2D input is to rescale and
reshape a generic base mesh to reflect the input image. This can be done
using solid silhouettes [175] or sketched lines [187]. While rescaled mesh
results often reflect the input better than constructed results due to their
origin from a template, this advantage degrades quickly when the skeletal
topology of the source image and template mesh do not match.

Cook & Agah [43] carried out a survey of artist-assisted and sketch-based
3D modelling techniques, and categorised a wide range of papers based upon
approaches to the problem. Olsen et al. [136] also performed a comprehen-
sive survey of all significant sketch based modelling advances up until 2009.
They quantify Sketch Based Interfaces and Modelling (SBIM) as the field
of research focusing on interfaces that attempt to simplify or automate the
process of creating a 3D model from a 2D sketch. Both papers survey and
evaluate a number of artist-driven interfaces, CAD-based systems, and sev-
eral automatic methods. The common goal with these systems is to allow
freeform artist input and provide responsive 3D mesh generation based upon
the input.

An interesting overview is provided by the SBIM taxonomy on page 16
of Sketch Based Modeling : A Survey, where all of the methods evaluated
in the paper are listed and grouped according to their functionality and
their aims. Olsen et al. find many of the same categories that are outlined
in this section, including CAD-based systems (labelled ‘Engineering’) and
artist-driven systems (‘freeform’). They list a category called ‘Multi-view’,
however this is never expanded upon and the papers labelled as such do not
match with the definition used in this section. The taxonomy also shows
that the majority of papers surveyed allow for additional editing techniques
after, or during, the creation of the mesh. Many of the systems also support
advanced interfaces. Given the aim of our research is to create an entirely
automatic system, this suggests that the primary focus should be in replacing
those steps in existing systems that still require artistic input.

Our research stands apart from the majority of these techniques, due to
the use of a well defined input but a lack of time sequence data, multiple

views, and artist interaction. A select few papers attempt to create systems
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with similar goals or restrictions, and these core papers provide the best

groundwork for developing our algorithm.

6.2.2 Core Techniques

One paper that looks at mesh creation from a single view is ‘Image-assisted
modeling from sketches’ by Olsen & Samavati [134]. A user defined outline,
including annotations for holes and object features, is used together with
the discrete distance transform to create inflated 3D meshes. The planar
meshing method used to create the surface supports holes, and these are
used to good effect in the examples. However, the uniform distance transform
creates slightly flattened surfaces in the case of fully-expanded objects such
as spheres and cylinders. This problem was also discovered and addressed
by Nealen et al. in their paper FibreMesh [130].

The ability to define multiple shapes within the image is an important
contribution to the character of the final models. Depth-mirrored details
such as wheels, fins, legs and wings are all shown. ‘Image-assisted modeling’
shows a method that is close to the aims of our system, and while we aim
to remove user interaction entirely, the techniques shown in Image Assisted
Modeling show that it is possible to create high quality models from a single
view. Texture distortion on seams is something we can improve on.

Single-View Sketch Based Modeling [7] by Andre & Saito is a recent pa-
per that uses lofting to generate 3D meshes based upon outlines sketched
from a single viewport. Although targeted towards an artist-assisted sys-
tem, their algorithm uses only outlines without needing image content. The
outlines drawn in a special format by an artist who is acquainted with their
system. The outlines provide cross-sectional data for components within a
model, and are used to generate a curved centreline along which appropri-
ately sized slices are extruded. Andre & Saito aim for a single-view approach
where the user is not expected or required to use multiple views. Due to the
large influence of small amounts of noise in the sketched lines, the user must
sometimes supply additional reference lines to constrain the generated shape.
The overall method works on a variety of shapes, including but not limited

to characters; however the models are visibly low quality and inaccurate, due
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in large part to the sketch input.

The single-view input constraint makes this paper highly relevant to our
research. In addition, Andre & Saito use a method of lofted sections (also
seen in literature as ‘extruded sections’, ‘slices’, or ‘planes’) to construct their
meshes. A similar extrusion method is used in the paper ‘Reconstructing
Polyhedral Swept Volumes from a Single-View Sketch’ [159], however Andre
& Saito use multiple slices which allows for greater control over the contours
of the silhouette. This is important as it allows a better representation to
be created from the limited input data. The paper also tries to differentiate
between CAD style drawings with straight lines and freeform organic draw-
ing. A cubic corner extraction method is used to identify sharp corners, and
these are treated differently when creating the lofted sections.

Another recent paper uses a similar mesh generation method to the one
we propose. Prototype Modeling from Sketched Silhouettes based on Con-
volution Surfaces by Tai, Zhang & Fong [161] presents a two step method
for creating 3D models based on one or more sketched profiles. The sketched
profiles may be at different orientations, and for each profile the morpholog-
ical skeleton is extracted using constrained Delaunay triangulation. Medial
discs are generated for the skeleton, and used as the basis of a convolution
surface that is weighted and merged with the other profiles. Their enhanced
convolution model allows for custom cross-sections in the generated surface,
and an implicit isosurface is created to render the object. Additional sculpt-
ing tools are provided to for the artist to create extra details that were not
generated from the profiles. The system is primarily designed to work with
multiple profiles from multiple angles and even though each profile is gen-
erated from a single view, the algorithm as a whole cannot be classified as
strictly single-view.

Typical convolution surfaces often end up looking too smooth and don’t
represent hard edges or creases very well. Tai et al. avoid this problem by
providing boolean operations that modify the mesh after the implicit surface
is generated. This works acceptably for internal details but is difficult to use
to refine the main body. In addition, this type of surface generation does not
produce appropriate mesh topology for animation or texture mapping.

Despite these drawbacks with the surface generation, this mesh generation
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method uses only outlines as an input and yet manages to generate appro-
priate 3D models for a wide variety of inputs with minimal user intervention.
The skeleton filling method used in the paper allows for unconstrained input
types, something that our research also aims to achieve. One of the biggest
benefits of skeleton based generation is that it allows custom cross-sections
for the created surface, something that is not possible within the framework
used by Andre & Saito. This degree of control over the final model is espe-
cially important when seen in the context of our single input image goal, as
it allows us to make the most of limited input data.

These core papers provide a reasonable insight into the current state of
the art and a give a clear technical overview of the techniques upon which
our own research is based. The main direction of our research is to use a
skeleton based mesh generation with lofted segments. This avoids a number
of the significant down-sides that would arise if employing any of these core
methods to create game-ready models from single view inputs. Using lofted
sections allows us to generate a topology appropriate for realtime animation
and texturing, and generating sections based on an internal skeleton allows

for a wider range of topology and most importantly, custom cross-sections.

6.2.3 Artist Assisted Systems

In addition to the core techniques it is also worth looking at the methods
used across a wider field, as this can help highlight areas in the 3D creation
process that often cause issues, as well as algorithms that are commonly
used to solve technical problems. One of the biggest problems facing our
research is the use of hand-drawn user data, because lines may not align or
meet correctly and the image is often not drawn with correct perspective
distortion. This is often the case in artist-assisted systems, and almost all of
those surveyed solved the problem in different ways.

The interactive modelling system proposed by Lui & Huang [111] is one of
the few systems that accepts a generic single non-line based image for input.
The system mixes human interaction with automatic algorithms to convert
a single photograph into a 3D model for use in a virtual reality system.

The rationale behind requiring user input is to avoid the use of complex
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algorithms in computer vision and computational geometry.

Colour clustering is used to extract the initial outline shape from the
photo. A type of skeleton is extracted by constructing a minimum spanning
tree from feature points extracted using the KLT tracker. This produces a
type of topology that is neither a morphological nor topological skeleton, and
that segments the image in such a way that Delaunay triangulation can be
used to fill the areas between the spanning tree branches. These triangles
form a 2D mesh. Human interaction is required to turn the 2D mesh into
a 3D mesh. The user is provided with tools to lift the vertices away from
the centre plane. If vertices are moved so far as to create distorted triangles
a subdivision process is applied to constrain triangles to a given maximum
size. The 3D mesh is either mirrored on both sides or filled with a flat back-
face. The created meshes, whilst approximating the input image, have highly
distorted triangulation with obvious nexuses.

The use of photographic input means that the inital segmentation and
recognition stages are closer in scope to our concept artwork than the major-
ity of systems that use vector or line-based input. In addition, Liu & Huang
address the question of base model rescaling versus generation from scratch,
with their system avoiding the use of base models entirely. After evaluating
model-based methods in Section 6.6, this was the same conclusion we came
to and supports our use of generation over adaptation methods. However,
their use of a minimum spanning tree and KLT feature points seems an overly
complex approach to triangulation.

One of the stated goals of the paper is a focus on showcasing a complete
system using basic algorithms such as colour clustering, as opposed to re-
searching tangential areas such as complex image segmentation. Creating
simple modules like this makes the system both extendable and improvable
as new algorithms are developed. However the use of basic techniques intro-
duces downsides, such as a failure to deal with shapes containing holes, and
limited facilities for complex texture mapping.

Overall the system aims to achieve similar goals to the work in this section
of the thesis, but sits on the side of manual intervention as opposed to an
entirely automated system. If the missing steps are able to be automated,

the research by Lui & Huang could potentially provide a simple groundwork
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to start from.

A second example of photo-based input is also provided by J Ventura et
al. [173] in an artist-driven system for creating 3D pop-up photos. Their in-
terface lets artists steer the subdivision of an image into layers that represent
different depths. While the examples given are of single-view characters such
as a baby boy and an elephant, their aim is only to modify the camera ori-
entation within a given window. The extracted 3D information is too sparse
to allow a full 3D model to be built.

Chen et al. [37] also outline a similar system, where edge detection and
user guidance are combined to allow 3D primitives to be drawn over the top
of photographs. The photograph is then texture wrapped onto the model,
which can be edited in various ways by the artist.

‘Sketch-based subdivision models’, by Nasri & Karim [128] presents a
method for intuitively creating subdivision control cages and surfaces through
the use of a sketching interface. Using sketched lines for the mesh profile,
a low resolution reverse Catmull-Clark subdivision is used to create control
polygons for curve segments. The combined control polygon is simplified by
merging internal polygons and then extruded to create a 3D control mesh.
After the subdivision surface has been created, the system allows for artist
control over the shape handles for further modification of the model such as
the addition of sharp features.

Nasri & Karim claim that “the industry standard for the creation and an-
imation of 3D models for the last decade or so has been subdivision surfaces”.
While this is the case for production-quality rendering, in the context of video
games quad and triangle-based meshes still dominate due to the hardware
requirements for realtime rendering. In the examples, it can be clearly seen
that the subdivision models follow the same style - rounded edges with flat
front and back surfaces. While this works for the examples shown (a hand,
and a fan), it would produce strange looking characters in most instances.

Teddy is another fully developed sketch-based interface for 3D design,
developed by Igarashi, Matsuoka & Tanaka [87]. It is similar in some ways
to Single View Sketch Based Modeling [7], except that it allows drawing
from multiple view angles. The interface is designed explicitly for concept

3D model construction, and a range of typical geometry creation tools are
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provided, such as extrusion, clipping, and a body fill. The user draws freeform
strokes on the screen from any camera angle and the system constructs 3D
polygonal surfaces to match. The paper focuses primarily on the range of
input operations needed to support a basic sketch interface, and then briefly
touches upon the mesh construction algorithm.

The mesh is constructed in stages following each command from the user.
The typical ’fill’ command used to create geometry is performed by trian-
gulating the initial 2D polygon drawn by the user, and then extracting the
chordial axis. Triangles are reoriented so as to form fans at endpoints and
junctions, and the spine trimmed to remove all edge-touching branches. Ex-
trusion, clipping and wrapping are performed by constraining typical mesh
operations to the user’s input spines.

The mesh construction step recalculates the mesh topology in real-time
as the user creates and destroys parts of the model. Even with complex
operations this results in a well distributed topology with a minimal number
of small or unbalanced polygons, suitable for animation even though the
topology does not conform to standard ’good practice’. This can be seen in
LifeSketch [188], where the Teddy algorithm was successfully combined with
a skeletal animation system to create a platform for a user study.

The input to Teddy is in the form of point-defined spines from the user’s
gestures and 2D painted strokes. The system relies on this time and view-
annotated input data to perform the construction operations, and while
the isosurface generation is a more viable approach than convolution sur-
faces [161], the underlying model generation would be unlikely to work with
single view images, or with painted concepts. This time-sequence approach
to data construction is common in a number of other systems, such as
SKETCH [189], which focuses on input via gestural commands and builds
up scenes using collections of user-input primitives. Unfortunately no clear
examples of how well this works are provided, and the focus is primarily upon
the user input and not the mesh construction or display.

The paper 'Improved Skeleton Extraction and Surface Generation for
Sketch-based Modeling’ [105] presents research based on Teddy, performing
both skeleton extraction and surface lofting. In this paper, lofting is per-

formed edge-to-edge. This produces acceptable results, however does not
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allow for the generation of asymmetric features that a edge-to-centreline sys-
tem does.

FiberMesh [130] is another program and 3D modelling technique that
creates implicit surfaces from a collection of 3D curves. These 3D control
curves are user generated and can be created using two different methods.
Control curves can be created from scratch in the 2D plane and filled to
create a 3D model. Drawing upon the model will create a control curve
stuck to the surface, than can then be manipulated. Additional tools within
the FiberMesh framework give control over the curves with functions such as
smoothing, deformation, and erasing parts of the control line. Two types of
curve (open and closed) are available, and can be used to create creases in
the model.

One new technique proposed in this paper is the use of nonlinear function
optimisation to create properly rounded meshes. Previous work covering
similar systems typically used a least-squares solver that concentrated curved
surfaces near control lines and ended up with an uneven model. The non-
linear solution in the paper is significantly more complicated but produces
better results, meaning that this may be a better approach in our case with a
single input image, where it’s not possible to use data from additional views
to improve results.

The idea of using open and closed type curves is pervasive amongst control
curve modelling systems. What this paper does differently is allow for a
smooth transition between creases and soft curves that aren’t possible in
systems such as Andre & Saito’s Single View Modeling [7]. The issue of
surface corner transition is solved in 'ILoveSketch’ by Bae et al. [14], but
much like FiberMesh, this system is based primarily on user input and has
no facility for automatic creation. A similar system is also proposed by
Igarashi et al. [86] in the paper ’Smooth Meshes for Sketch-based Freeform
Modeling’. This is designed as an artist driven system using implicit surfaces.
There is no simple control over the cross-section, and it requires an artists
interaction to perform edge and joint operations.

In many ways FiberMesh is similar to Teddy and SKETCH. All three are
multi-view modelling programs, and in the case of FiberMesh a number of the

operations wouldn’t be possible in a single-view implementation. However,
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unlike both Teddy and SKETCH, FiberMesh is not time dependant and the
collection of control curves can be created and stored in any order with the
same 3D result.

The final artist-driven modelling system worth analysing is Just Drawlt:
a 3D sketching system, by Grimm & Joshi [71]. This is another multi-view
sketch system that lets users sketch curves in 3D based upon 2D user input
from a number of different directions. What differentiates Just Drawlt are
the protocols that Grimm & Joshi develop to process uncertain user input.
Uncertainty can be due to artists’ sketching styles and the difficulty of draw-
ing long lines accurately in one stroke. A system of ’overdraw’ allows for
gradual improvements to an underlying mesh, and user-selected tools allow
the artist to switch between two modes, an ’'improve’ mode and a ’create’
mode, each with different ways of interacting with the line-based surface
model. The 3D mesh is created by processing the sketched curves to create
patch-based implicit RBF Hermite surfaces. Implicit RBF Hermite surfaces
have been used in sketch-based construction previously [31] but their use
is complicated because of the need to generate implied properties such as
surface normals at the curves and snapped join points for curves that cross
near each other. In some cases, user guidance is required to generate these
correctly.

Although Just Drawlt is a multi-view system it shares the same target
goals as us to create a 3D mesh based on 2D sketches. Grimm & Joshi state at
the beginning of their paper that “[...] in practice, this is nearly impossible
because people do not create consistent drawings.”. Most other systems
ignore this issue or deal with the most obvious problems by smoothing the
input, however the detailed stroke uncertainty analysis outlined in the Just
Drawlt paper provides numerous useful techniques for correcting the worst
consistency problems. Section 4.1 in "Just Drawlt’ outlines a technique to
allow for stroke scratching within the framework of a single line, and section
4.2 addresses 3D joint merging from a single viewpoint.

Using these techniques would require our single-view concept art to be
vectorised and the depth estimated for various lines, and unfortunately even
then ‘Just Drawlt’ requires too much user intervention for the system to be

used entirely automatically.
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In general, artist-assisted systems tend to be multi-view and rely on an
artist performing set operations on the geometry or creating input data in
a specialised format. In general this type of approach is unfeasible for pre-
drawn single-view concept artwork, but a number of smaller algorithms out-
lined in these papers offer innovative approaches to solving problems of artist

consistency, surface generation, and automation.

6.2.4 CAD-based Systems

A number of papers approach the problem of model generation from an en-
tirely different direction. CAD-based systems attempt to create solid objects
from technical or architectural drawings, often by calculating depth as op-
posed to the common use of implied depth in artist-driven systems. The
most important aspect common to most CAD-based construction systems is
that little or no user interaction is required, and input imagery is often only
single-view.

One of the most successful attempts at closing the gap between 3D gener-
ation of solid and organic surfaces is ‘3D Sketch-Based Model Reconstruction
and Rendering’ by Mitani, J et al. [123]. Their paper proposes a system that
takes a user-drawn CAD-style image in 2D and attempts to find the best-
fit bounding boxes, including warping of the surface to better fit non-linear
shapes. While the results show impressive accuracy, this comes at the cost
of a limited input range. In section 4.1 they outline a number of constraints
that must be fulfilled for the system to work, including having mirror sym-
metry and specified planar faces. The edge graph used in the paper can be
easily extracted due to the sketch-based input method, whereby the image
construction is captured during the drawing phase on a graphics tablet.

The corner and edge detection allow a base 3d model to be created with
planar faces. Curve fitting and reconstruction is then used to compare the
drawn line between two corners with the reconstructed edge. The curved line
is projected into 3d space using the reconstructed bounds and the camera
properties, and is then used to modify the curvature of the faces it bounds.
This two-step process of rough cage creation followed by detail adjustments

results in models that appear correct at both macro and micro scale.
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Few other papers in this group attempt to model curved surfaces. Indeed,
the technique outlined in Reconstructing Polyhedral Swept Volumes from a
Single-View Sketch [159] requires the single-view input sketch to contain well-
defined corners. The input image is also assumed to contain one profile view,
and show the tail end of an extruded solid. Orthogonal and non-orthogonal
corners are recognised in the image, and used to find the plane of the profile
and the orthogonal direction of the extrusion. These can then be used to
create the 3D model. The system relies on the input image being a relatively
correct geometric sketch.

One of the primary constraints and advantages of our system is that
it uses a single input view. Suh [159] outlines a method of determining
orientation given only a single view, and while this only applies to CAD-
style mechanical objects, any input image with potential right-angled corners
could be analysed and use this method to determine the initial orientation.
Three-quarter views are common among concept artwork, and being able to
un-distort the initial image could result in higher quality models.

Another system that is similar in technique to those outlined above is
the Smart Sketch System for 3D Reconstruction Based Modeling by Naya
et al. [129]. The paper outlines a freehand CAD system that automatically
straightens freehand input lines and aligns them in viewspace with a prede-
fined projection. A second input step is then performed with the surfaces
being sketched on top of the reference lines. The program automatically fills
these in to create the model. Although the view angle is unconstrained, ex-
amples show that the system works from a single-view input sketch. This
two-step mesh generation algorithm appears to afford better control over how
the surface is created, as guidelines and the reference frame can be set up first
and then adjusted to fix alignment and perspective problems before any ge-
ometry is created. However, to implement this using concept art would also
require a 2-step input, perhaps in the form of a sketched wireframe followed
by the painted concept image.

The majority of 3D reconstruction techniques that fall within this cate-
gory have trouble reconciling the implied accuracy of technical drawings with
the low accuracy of hand-drawn sketches. Fen et al. [59] use vanishing points,

detected by tracing any straight lines in the image, to determine the focal
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length and perspective of a drawing. This is then used to identify corners and
estimate depth data to recover the 3D object. This worked well for accurate
drawings, however for inaccurate drawings such as sketches the algorithm
had greater trouble calculating the vanishing points and focal length.

In opposition to artist-assisted sketching interfaces, CAD-based genera-
tion systems rarely rely on time-series data, nor multi-view data input. Some
of these techniques could prove applicable when generating character mod-
els, such as in the case of robotic or highly stylised drawings. However this
situation is not as common as organic, arbitrary shaped characters and the
principles behind polygonal mesh synthesis from sketches is fundamentally
different from rounded mesh synthesis. In addition, the concept artwork used
as a template does not often have a rigid reference frame and may not be
strictly orthogonal, perspective, or isometric. CAD-based single view recon-

struction relies upon accurate adherence to this outside frame of reference.

6.2.5 Rescaled Base Meshes

A third approach to 3D mesh creation from 2D input is to rescale and reshape
a generic base mesh to reflect the input image. There are several advantages
to be gained by using this type of method, such as the ability to store one
set of artist-generated information that can be re-used by non-artists or even
automatically. Rescaled mesh results are often better quality than artist-
driven constructed results due to their origin from a template, however this
quality comes at the cost of flexibility with rescaling systems often having
much stricter input requirements than freeform design systems.

One in-depth and successful example of mesh rescaling is by Wang et
al. in their paper Virtual Human Modeling from Photographs for Garment
Industry [175]. Wang et al. focus on accurately matching a character mesh to
a supplied image for use in retail applications such as virtual clothes fitting.
With this target, the focus of the paper is upon creating a virtual model as
closely aligned to the input as possible, within the limited input framework
of adult human body types. The system uses two orthogonal photographs
of a person, and rescales an existing 3D mesh to reflect the dimensions and

shapes of the persons silhouette.
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The process has several steps and is conceptually straight-forward, al-
though Wang et al. favour complex algorithmic solutions that afford a slight
edge in quality over conventional approaches. The model creation process
begins by using the Chan-Vese algorithm to obtain the outline of the human
via active contour matching. This outline is subdivided into feature points,
demarcating body sections at individual points such as the neck, armpits
and hands. These feature points are matched between views, and then each
segment of the 3D model is morphed in the view plane to conform to the
outline.

The morphing step introduces several new ideas that increase the close-
ness of the match. In particular, global and local deformation metrics are
introduced, and used to stop overlapping parts being deformed incorrectly.
If two sections of the 3D model overlap in one of the orthographic views, the
existing overall (global) deformation of each section is used to decide which
of them the local deformation is most consistent with. This is an elegant way
to solve the single-view input overlap problem and appears to work in the
most frequent occurrences. While the mesh results are considerably better
quality due to their origin from a template mesh, this advantage degrades
quickly when the source character does not match the skeleton topology of
the template. In addition, different models are required to represent body
shapes that differ in ways not represented by the outline, for example the
difference between the male and female body type.

Although the techniques presented by Wang et al. [175] have a highly
constrained input range, a large number of the algorithms can be expanded
to deal with more complex and non-human characters. The detection of
feature points in the silhouette allows for accurate matching of a 3D mesh
to a 2D image, and additionally provides enough contextual information to
perform different operations on different parts of a model. This is equally
applicable to all types of single-view model generation methods, and turned
out to be one of the key steps in our research. Wang et al. find these feature
points based on predefined settings appropriate to adult human outlines,
however a more generic selection method could be used to allow for a wider
range of input shapes.

When viewing 3D models from any single direction, there will inevitably
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be overlapping and occluded sections that need to be differentiated. The idea
of using global and local deformation metrics to differentiate between layers
is a novel and potentially widely applicable idea. Wang et al. make good use
of a standard falloff term, based on the distance from the skin to the to bone,
to allow more intuitive manipulation of lines that occlude or intersect in the
view plane despite depth differences. While it may be difficult to implement
for autogenerated meshes, some type of template or database system could
potentially be used in these situations to identify overlapping edges.

A second paper that is similar in goal to Wang et al. but differs signifi-
cantly in technique is Sketching-out Virtual Humans, From 2D Storyboarding
to Immediate 3D Character Animation by Mao, Qin & Wright [114]. This
paper shows pose generation for pre-existing but unrigged skeletons based
upon sketched input. It also shows morphing of an existing body mesh to
fit a target profile sketch. Three individiual steps are used to perform the
morphing; first a rigid step transforms the proportions of whole body seg-
ments; then the mesh is scaled within each segment to match the outlines;
finally, a physical fat distribution step is performed to approximate real body
distribution.

The two areas of interest in the paper, mesh posing and shape modifica-
tion, are similar in scope to the aims of our research. However, the paper
lacks technical detail and the results are underwhelming. The pose step lacks
the ability to deal with detail such as feet and hands, and no intersection
testing is performed, allowing for self intersecting limbs. While the mesh
morphing does create models that approximate the input shape, fine details
are lost and numerous inconsistencies are visible. Furthermore, although the
characters have obviously different proportions that are related in some way
to the target shape, they all share the same style and in this respect would
fail to achieve our goal of replicating the underlying style in the 3D model.

Focusing more clearly on modifying the shape of every part of a model,
Sketch-based Modeling of Parameterized Objects by Yang et al. [187] matches
2D sketches with 2D template outlines and then uses deformation rules to
change the sizes of subcomponents. The matching process is based on curve
feature vectors, and accuracy was improved by using the location as a con-

textual indicator. The resulting 3D object is constructed from a base model
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using measurements extracted from the 2D sketch. The examples in the pa-
per are applied to cups, aeroplanes, and fish, and while the algorithm appears
to work well within the object classes it requires an intensive setup process
for each class. Given that our research is restricted to character models, a
template system such as this could be a viable option. The results by Yang
et al. show that their system works well even when objects vary greatly in

shape and size within each type class.

In a similar vein to Image-Assisted Modeling, Structured Annotations by
Gingold, Igarashi & Zorin shows a system for creating 3D models based upon
annotated 2D sketches. The major difference between these two papers is
that structured annotations uses 3D primitives, such as spheres and cylinders,
drawn directly onto a 2D image. by matching the silhouettes and centrelines,

the shapes can be used as constructive geometry to build complicated objects.

One of the advantages of this system is that the geometry depth can be
better calculated by looking at the intersections and placements of the prim-
itives in 2D. So long as the image is not orthographic, the view offset means
that placement of mirrored geometry or annotations can be analysed to find
the depth offset and the correct point at which to attach the primitives. The
largest issue is that final models still look like a collection of simple primitives
used with constructive solid geometry. The overall system is reminiscent of
the creature editor used in EA Games’ Spore [76], and the final models show

the same characteristics.

When dealing with single-view input there are limited datasets to perform
processing on. The silhouette of the input shape is one of the most easily
accessible and easily understandable datasets, and ideally suited to mesh
rescaling. Our approach builds upon this existing research by using the
silhouette as the primary input source, and a number of the ideas from Virtual
Human Modeling by Wang et al. proved useful in solving the major problems.
Although their implementation tended toward complex solutions for minor
problems, the underlying ideas and techniques often gave new ways of looking

at the issues.
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6.2.6 Alternative Approaches

In addition to the three standard approaches to mesh generation outlined
above, there are numerous papers that touch upon the problem of mesh
generation as a by-product to their goal, and papers that outline techniques
applicable to mesh creation that may provide alternative approaches to the

problem. The most relevant of these papers are outlined here.

Tsai & Lu [168] outline a technique for realtime mesh splicing to create
new characters in their paper ‘A Rapid Mesh Fusion Method to Create 3D
Virtual Characters in Games’. Given two or more different meshes, parts are
separated from each mesh, for example a head from a bird and a body from
a horse, and spliced together to create a new animal with the head of a bird
and the body of a horse. Because the parts are unlikely to initially match
perfectly at the join, the bulk of the paper is dedicated to creating a matching

seam using a form of local deformation and mesh section generation.

Although Tsai & Lu assert that their method creates new characters, the
mesh fusion requires both existing models and produces a limited result set
of derivative characters. Given a large enough database, the technique could
be used to effectively mix and match pieces to conform to a target model,
however the size of the required piece database precludes this from being a
viable option. Mesh morphing is however an important tool to make meshes
conform to outside specifications or different forms, and the technique used
in this paper is unique in that it’s driven by cross-sectional slices. This type
of cross-sectional slice is a key component of mesh lofting used by most of the
papers in Section 6.2.3. In addition, Section F (Meta-Opening Generation)
in their paper shows generation of a new mesh using implied data from the

cross-section and the target body piece.

An important paper from a technical standpoint is ‘SmoothSketch, 3D
Free-Form Shapes from Complex Sketches’ by Karpenko & Hughes [96].
Smoothsketch finds hidden edges for organic geometry and reconstructs the
mesh based upon an inflation algorithm that uses a combination of user set
parameters and the width of the drawn 2D shape. The hidden edges are
found by identifying T-joints in the line topology, and reconstructing the

hidden contour based on the curvature properties of the visible one.
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With only the outline for data, the best metric for finding depth is to use
the width of the object because this is often related to depth. The problem
with this is that the resulting model will always have a cylindrical cross
section, something clearly visible in the generated objects of Karpenko &
Hughes and not ideal for character modelling. However, the ability to find
hidden edges and understand line intersection structure would help our mesh
generation greatly. As in the case of Just Drawlt [71], the largest barrier to
using these methods is extracting the line data to process. This is difficult
to extract and in some cases nonexistent in our painted input images.

One technique we found to be directly applicable to our research was the
method of measuring and extending line curvature outlined in SmoothSketch.
This is used in our research as the metric for line curvature in both the
skeleton and generated meshes, and produced better results than any of the
other metrics trialled.

In their paper ’Automatic 2.5d cartoon modelling’ [4], An et al. re-
place 2D models with 3D substitutes. By implementing a Non-Photorealistic
Rendering (NPR) technique, they successfully addressed the developer’s con-
cerns about stylistic consistency while still allowing for a 3D content creation
pipeline [5]. This paper relies upon pre-existing 3D or video content and as
such a system such as the one outlined in this chapter would be invaluable
in further speeding up this process. At the other end of the spectrum, Van
et al. [172] look at creating game models by extracting data from multiple
views based upon user segmentation. This paper uses video input, but the
segmentation technique could be applicable to multiple-view sketched mod-
els.

When rescaling and adjusting 3D meshes, care must be taken to avoid
obvious artefacts and unrealistic distortions. In the paper ‘Building Efficient,
Accurate Character Skins from Examples’, Mohr & Gleicher [125] use a set
of examples to correct deformations in a model. A similar method could be
used to smooth or eliminate artefacts caused by inconsistent scaling, or by
re-positioning of the base model due to a difference in the input and model
poses. However, a more general exemplar system would be required because
in the case of character generation the possible mesh configurations aren’t

known in advance.
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When generating a character model based upon custom input, there are
two ways to deal with differing input poses. One is to ensure that the input
strictly adheres to a given pose, such as the default animation ‘T-pose’; while
the other is to allow custom poses and then provide a method which can
detect the pose and apply a reverse transformation to bring the character
back to the default. In their paper Three-dimensional Proxies for Hand-
drawn Characters [91] Jain et al. show a system that maps 3D proxies to
hand-drawn images and animations. This allows 2D animations to interact
with 3D effects in a scene, and vice versa. The system revolves around their
method of pose matching, where hand annotated stick figures provide the
driving data for setting a 3D model pose. A set of 3D datapoints from a
motion capture is used to generate the depth data. In addition, the original
drawing must be segmented by an artist so that the generated model has the
correct limb sizes and proportions.

In addition to providing an insight into pose manipulation, this research
provides a good example of an application that would benefit from our model
generation research. Our automatically generated mesh could be substituted
for the proxy and remove the need for user input when designating limb sizes,
thereby reducing the user input for the software by a third.

Overall, a large body of research exists in the area of automatic model and
sketch-based generation. This section collated and evaluated this research,
showing the strengths and weaknesses of different approaches and highlight-
ing the techniques that are best suited for additional automation. The rest
of this chapter focuses on two primary approaches to completely automatic
model generation. Section 6.3 shows a base model re-scaling system, while
Section 6.4 outlines a method for generating lofted sections based upon an

extracted skeleton.

6.3 DMesh Rescaling

Mesh rescaling is an approach to 3D mesh creation that uses the outline of
an input image to reshape a generic base mesh. In their research paper for
the clothing industry, Wang et al. [175] found that this produced meshes

that corresponded well with the input shape. However, existing methods
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often require multiple input images to function, and do not cope well with
complex body shapes. This section outlines a rescaling method that uses a
single input image and allows for custom base meshes so as to function on
more than just humanoid characters.

There are several advantages to be gained from using a rescaling method,
with the most important being the ability to store one set of artist-generated
information and re-use this during the creation process which can then be
run by non-artists, or even automatically. Information such as the depth
and cross-sectional data for humaniod shapes is difficult to generate au-
tomatically, and mesh topology is arguably the single most important as-
pect [3] [182] when creating meshes for animation. An artist-generated model
will have a much higher chance of deforming correctly, even after rescaling is
performed. In addition, multiple complexity levels can be predefined to suit

a realtime graphics engine and rescaled as a set.

6.3.1 Implementation

While the results shown by Wang et al. are high quality, the rescale method
is designed for realistic human proportions and unlikely to work across a
wide range of humanoid shapes. Therefore we take a multi-level rescaling
approach as mentioned by Mao et al. in Sketching-out Virtual Humans.

A pre-defined 3D model is subdivided into significant sections and used
as a base to perform rescaling operations on. A correspondence is created
between each segment of the model and an automatically extracted segment
of the 2D character image which was provided as input. A global rescaling
and repositioning step is performed to align the base model with the input
image and ensure the limbs have the correct proportions and the model fits
the overall form. The vertices within each individual section are then rescaled
independently of the other sections to ensure that the form of the segment
closely matches the target. This is the local rescale step.

Figure 6.2 shows the base model that is used throughout the rescaling.
The mesh is created by an artist and segments automatically created based
upon the underlying armature by assigning vertices a group based on the

highest bone weight. A complexity option is exposed to the user that re-
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(b)

Figure 6.2: A base model (a) is used to provide the starting topology when
rescaling. Sections corresponding approximately to limbs in the 2D image
are identified in the base model (b).

stricts groups to bones with a skeleton depth under a given threshold. If no
underlying bone structure is supplied with the base model, it is possible to
use a 3D skeletonisation algorithm to subdivide the mesh. Examples of this
are shown in papers by Pan et al. [142], Willcocks & Li [180], and Katz &
Tal [98].

6.3.1.1 Geon Extraction

To perform rescaling on the subdivided 3D model, it is also necessary to
subdivide the 2D image into matching sections. A definition of subobject
composition and scale was outlined in Chapter 5 in the form of Geons, and
these are used as the input to the rescaling algorithm. An alternative method
to subdivision is to use Voronoi subdivision [27]. This results in cleaner seg-
ments, but lacks the geometric information such as rotation and scale that
can be found using bone extension and Geons. Note that in this Chapter,
the input images used are typical of video game concept artwork. This spe-
cific style presents a single front or three-quarters view of a hand painted
character, usually in a T-pose or similar idle state.

Initial rescaling tests were performed manually, with the user subdividing
the 2D image into Geons. The basic Geon extraction algorithm outlined in
Section 5.6 was also trialed for a number of tests, and while this allowed for

an entirely automatic rescaling procedure the lack of Geon detail made it
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Figure 6.3: Soft skeleton joints can be used to reliably segment a 2D image
based upon the outline. Using the skeletonisation method in Section 6.4.3
the input image (a) is reduced to an outline (b) and the soft skeleton (c)
generated using encroachment techniques. Joints and line ends can be used
to identify interesting skeleton features (d).

ineffective for use in the rescaling procedure.

The skeletonisation algorithm outlined in Section 6.4.3 was developed
to enable model generation using lofted segments, but it can also be used
as a subdivision method for 2D images based upon the outline. This works
especially well because we are only dealing with character images constrained
to a neutral pose (either the T-pose or inverted-V pose, both of which are
standard poses for character model sheets within the visual effects industry.
The subdivision process is started by generating the soft skeleton and interest
points as shown in Figure 6.3.

After skeletonisation, the interest points are used to divide the body into
major sections according to a template. Simple extrapolations are used to
create and extract the Geons. The system uses a pre-programmed human
skeleton template to identify the function of each bone within the extracted
skeleton topology. The template is based on the assumed pose, where for ex-
ample the uppermost vertical bone represents the head, whilst the outermost
horizontal bones are the arms.

Figure 6.4 shows the main steps in the Geon extraction process. The
skeleton interest points shown in Figure 6.3 are used to construct the main
skeleton bones in two steps; all points are connected with all adjacent neigh-
bours; then all bones that do not fit the pre-programmed template are re-

moved. This results in Figure 6.4(a). The blue bones will be used to create
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rectangles than encompass the entire limb, and therefore need to extend the
entire length of each segment. All bone extremities are therefore extended
to meet the body outline.

Because the bones were extracted based in part upon line curvature, they
do not capture joint information for knees or elbows in the case where arms
and legs are fully extended. Because the required input is a T- or V-pose,
this problem is almost certain to occur. Rescaling the 3D model requires
knowledge of these joints, and so their position is estimated based on the pre-
programmed skeleton template. If bones identified as arms or legs are only
one segment long, or are multiply connected at one end (indicating a direct
joint to the backbone) then they are subdivided as shown in Figure 6.4(c).

The Geons are constructed using the line length and the average outline
width along the line, calculated using Equation 6.1. This produces the result
shown in Figure 6.4(e), where each section of the image is overlayed by a
rectangle representing the rotation, width and length. However, the major
bones may not be topologically connected due to the removal of bones that
did not fit the template, and therefore some areas are not covered by any
bone. Using a predefined order of importance (body — head — limbs),
Geons are scaled along their length until the associated bone tips touch
another geon or reach the outline of the character. The width is then re-
calculated. Figure 6.4(g) and (h) show how this final scaling step ensures

complete coverage of the character.

1 5
width = —/ o1 (£) — os(8)]] dlt (6.1)
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where s, and s, are the endpoints defining a skeleton bone and o;(t) and

09(t) are the outline curves on either side of the bone.

6.3.1.2 Global Rescale and Reposition

The global adjustment step tries to align the major parts of the body with the
given target image. The Geons, labelled according to the pre-defined tem-
plate, are linked with their corresponding segment in the 3D model. Equa-

tion 6.2 is then used to reposition and rescale the 3D segments so as to match
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Figure 6.4: The soft skeleton calculated in Figure 6.3 is divided into bones
(a) that are extended (b) and subdivided (c) so that a set of Geons (d) can
be easily created. Minor scale adjustments (e & f) result in a set of Geons
(g) that represet the sections of the input image (h).

the form of the corresponding 2D Geons.

Because the Geons are 2D, the depth must be inferred, and this is done
simply by linking the depth with the width, thereby ensuring that the cross-
section of each segment is scaled without distortion. The length is scaled

independently.

The transform matrix TG in Equation 6.2 is calculated by finding the
difference between the target properties and the base properties in geon co-
ordinates. This is used to transform the vertices in the base model to create
a new model where the relationship between the components better reflects
the source image. If the scaling between two adjacent sections is too severe
then visible discontinuities can appear and in some cases the scaled segments
can overlap. While this looks bad at the global stage, local rescaling fixes

the majority of these alignment issues.
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Figure 6.5: Example of global scaling on a character. Each section in the
base model (a) is individually stretched (b) so as to line up with the target

image. This ensures that the segments are in the correct place and are the
correct size for local scaling. The target image is shown in Figure 6.3(a).
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where v is a set of 3D vertices attached to bone matrix B and the corre-
sponding target geon GG and template geon 7. w and h represent the geon
width and height.

6.3.1.3 Local Rescaling

As seen in Figure 6.5, the global rescaling step performs the bulk of the
work, and the resulting model represents the general proportions of the input
image. However the model still does not reflect the input target image, in
part because the shape of each segment does not match the shape of the

outline. This is especially evident in the arms in Figure 6.5(b) which are still
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Figure 6.6: A contrived example of mass skew due to border vertex reposi-
tioning. Image (a) shows the model cross-section if the border vertices (red)
are moved or scaled without adjusting the other parts of the cross-section
(blue). Image (b) shows how correcting for skew can result in a more even
cross-section.

thin compared to the reference image.

A local rescaling step is therefore proposed to modify the internals of each
segment. This is similar to the process outlined by Wang et al. but modified
so as to use edgeloops and to run with only one reference image. In their
paper, Wang et al. adjust border vertices individually in a 2-Dimensional
plane so as to better fit the target outline. A problem occurs when the
outlines have a parallel offset from the outline, because one side of the model
will be pulled out and the other pushed in, but the section mass will remain
centred. Figure 6.6 shows how this results in a skewed cross section and
unrealistic weight distribution. In practice this occurs rarely when using real
humans as input and was not a problem for the examples given in Virtual
Human Modeling, however one of the aims of this chapter is to deal with more
distorted and exaggerated body types as input and therefore this problem

occurs more frequently.

Our method solves this issue by using edgeloops to scale in depth as well
as the 2D front plane, thereby adjusting the mass distribution along with the
edges. Border vertices are scaled such that the profile of the base model fits
the profile of the input image. Modifying a border vertex causes the asso-
ciated edge loop to be scaled according to Equation 6.3, which ensures that
the cross section is scaled equally. As with global scaling, this assumes that
the cross-section of the loop selected from the base mesh is not significantly
different in shape to the implied cross-section of the final model. This as-

sumption holds in the majority of cases, and the result is a model that more
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Figure 6.7: Edge loop extraction demonstrated on the right arm (a) of the
base model. The resulting edge loops (b) provide an easy method to modify
the local size without distorting the cross-section.

closely matches the shape of the input image.

E'(i) = E@) * (' —v) (6.3)

where ¢ = 0 — n, n is the number of vertices in the edgeloop F, and v is the

border vertex with new position v'.

Orthogonal edge loops are selected based upon a standard mesh loop
selection algorithm that recursively selects vertices in a given direction until
a loop is formed or the edge of the mesh is reached. The implementation used
in this section was developed by the Blender Foundation [26]. Whilst there
is a possibility for edge-loops to be user-defined and an override capability
is provided to allow for this, dynamically generating the rings allows for an
easier interface with a single artist-driven base mesh selection. In addition,
automatic edge loop extraction reduces human interaction and allows for a
more streamlined re-scaling process. Figure 6.7 shows the edge loop selection

process performed on a part of the 3D base mesh.

6.3.2 Rescaling Results

The results of local and global re-scaling are generally representative of the
original input image, and the algorithm works with a high success rate on
images that fit the criteria outlined in Section 6.3.1.1. After a once-off setup
of a base mesh and a 2D skeleton topology, the process is entirely automated.

This outcome is important in respect to the original goal of reducing creation
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Figure 6.8: Example of local scaling performed on an arm (a) by adjusting
the size of the edge loops (b).

.

(a) (b)

Figure 6.9: The three stages of mesh re-scaling, illustrating the base mesh
(a), global rescaling of the segments (b) and the local adjustment of vertices

(c).

time and artist workload.

Figure 6.9 shows how the two re-scaling steps each contribute a different
type of modification to the base mesh, and how the final model reflects the
input image. If UV co-ordinates are calculated using a front-projection, the
original input can be applied as texture to the rescaled model. Figure 6.10
shows an example of the best-case scenario where the 3D model is a fair

representation of the artists concept image.

Unfortunately, rescaling models has a number of limits that show even
when rescaling relatively simple target images. In Figure 6.11 the concept
image has sharp changes in width where the arms and legs turn into hands
and feet. Whilst the rescaling copes well with the image in general and the
resulting model represents the input image fairly, the sharp edges of the orig-
inal image are lost. This is due to the even distribution and small number of

edgeloops in the base model. Potential solutions to this include redistribut-
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Figure 6.10: The rescaled mesh (b) closely reflects the input image (a). A
front-projection can then be used to apply the original image as a texture

(c).

Figure 6.11: Issues arise when rescaling the base model to match sharp
changes of edge or details that require more than the number of vertices
available in the base mesh. Note the loss of sharp transitions between the
concept image (a) and the rescaled wireframe (b). This also causes texture
re-mapping issues with the final model (c).

ing the edgeloops along the bone to areas with sharp changes in width; or
inserting new edgeloops into the mesh using a subdivision method. In prac-
tice, however, these solutions were found not to work as well as expected due
to vertex overlap and the creation of cavities when closely-packed rings with

different orientations were scaled by the same amount.

In general, the results show that rescaling is a viable method for creating

3D models based upon a single pice of concept art.
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6.3.3 Rescaling Discussion

Despite some minor problems, the results outlined in Section 6.3.2 show that
rescaling produces 3D models that closely represent the 2D input. Every
technique has advantages and disadvantages, and in the case of single-view
model creation this rescaling method can be compared to the major alterna-

tive - mesh generation.

The major advantage of mesh rescaling over generation is the ability to
retain important internal details that can be difficult or impossible to infer
from a single image. These can include non-occluded body features such
as the nose, breasts, or equipment that does not impact the outline and
therefore requires extra processing to distinguish. Equally, occluded details
such as fingers in the side-view of a hand or front-view of toes in a foot can be
preserved and correctly represented in the created model by including them
in the base mesh. Mesh generation requires significantly more contextual
knowledge to be able to infer and generate this type of detail. Another
important advantage is the ability to provide artist-guided cross-sections,
which are important for musculature and body sections such as the head
which are not perfectly cylindrical. This type of irregular cross-section can
however also be inferred when generating meshes, based upon knowledge of

the underlying skeleton and the type of bodypart being generated.
The biggest limitation with this mesh rescaling method is the highly con-

strained input format. Whilst 2D character model-sheets are not uncommon,
character concepts for prototyping are typically less formal and often not in
a T-pose. A potential solution is to use the extracted skeleton to generate
a reverse pose transform and modify the image so as to be in the correct
pose. However the distortion is often too extreme for the segmentation step
to function. The input constraints also include the reliance upon a base
model. This means that only character limb configurations that have been
thought of and modelled can be used as input. There is currently also no
facility for automatically matching an input to a base model, and therefore
this introduces an extra manual step in the process. Other problems arise
from the topology imposed by the base model. It is possible that parts of

the model do not have enough edge loops to represent the mesh, and the
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resulting model lacks detail. On the other hand, if the model has too many
adjacent edgeloops then rescaling can cause cavities or mesh overlap.

Mesh rescaling is ideally suited for small tweaks and fixing inconsistencies
between concept artwork and 3D models, because in general the results are
accurate but the method is constrained to situations where the input data
falls within a very limited range. The mesh generation method outlined in
the following section copes with a wider range of input and as a practical
tool has proven to have a more streamlined workflow with a better practical

application.

6.4 Model Generation from Concept Artwork

A second common approach to sketch based modelling is constructing a mesh
from scratch based upon various 2-Dimensional cues. A system based upon
mesh generation has several advantages over model re-scaling, including en-
compassing a wider range of input topologies and allowing for greater flexi-
bility over the final shape of the mesh. The rest of this chapter focuses on
a novel shell-based meshing algorithm that allows for the ability to change
the cross-sectional profile of the model based upon the type of character and
even the type of limb in the model. The implementation also demonstrates
an end-to-end system with no user interaction, optimised to produce the
best results across a range of input. Optional user interaction can be used

to create more advanced effects/refinement for higher quality models.

6.4.1 Algorithm Overview

The core algorithm analyses a single piece of concept artwork and approxi-
mates a skeleton based on the outline. This is then used to construct a rigged
triangle mesh appropriate for use in realtime graphics applications. Manually
creating 3D models from 2D concept art often requires time and technical
skill, and much of the work in the following sections focuses upon automat-
ically performing the steps in this pipeline to allow faster prototyping and
better integration of user generated content.

To generate a 3D mesh the algorithm requires one input image with the

three assumptions that: the background is not heavily textured; the character
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Figure 6.12: Character outline generation using image palletisation and vec-
torization. The generated polygonal outline is shown in red.

is oriented in general toward the front; and there is minimal self-occlusion or
touching between the character’s limbs.

The process begins by extracting the concept image from any subtle back-
ground shading by reducing the colour palette the image and selecting the
largest connected area as the background. Everything else is considered to
be the character, and a polygonal outline is generated using the Potrace vec-
torization algorithm [150]. This outline can be seen in Figure 6.12 and is
used for both skeleton extraction and mesh creation.

A skeletonisation process based upon the work of Willcocks & Li [180]
is applied to the image, balancing two core iterative operators to extract a
skeleton with the appropriate complexity and positioning. The process is
modified by adding an extra term based upon the image content that aligns
the generated skeleton better with respect to the shapes inside the image.

The 3D mesh is created by generating arcs (also known as shells) from
the outline in toward the centre while the ends diverge in the depth plane.
The proposed method changes the cross-sectional profile based upon the
characteristics of the outline. The positioning and size of these shells is
critical to creating an appropriate mesh, and the cross-sectional shape that
is generated based on line curvature has a distinct influence on the feel of
the final mesh. Bone rigging and skinning for animation is performed on the
mesh, and the original concept image is modified and used as a texture.

This process creates a 3D triangle mesh representation of the original 2D
concept image. The full algorithm is described in the following 3 sections,

and the results are presented in section 6.5.
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(b) (c)

Figure 6.13: Figure showing the difference between region extraction in dif-
ferent colour spaces. The original image (a) is very difficult to segment due to
the graded background and the similar colours throughout the image. Using
a threshold to separate the background is impossible using RGB channels
as even the best case (b) barely matches the outline. Using the CIE LAB
colourspace (c) gives a clear distinction.

6.4.2 Concept Image Preparation

The first step when generating a model is to extract the character outline
and estimate the underlying skeleton. As outlined in Section 6.4, the input
for automatic model construction is assumed to be a piece of concept artwork
on a plain background. The character or object can be in unknown pose or
rotation within the constraints given in Section 6.4.1, although images with
large amounts of hidden or obscured detail will result in less accurate models.
Because the background is not heavily textured, a simple thresholding process
can be used to extract the character outline.

Because the input images are hand-drawn art and therefore interpretation
is based primarily on colour and intensity perception, using a perception
based colour space could produce subdivision results close to what an artist
would achieve. One option is proposed by Chong et al. [39], however in this
section all image processing is performed in the CIE LAB colourspace as it
is more commonly used and is available in most image processing libraries.
Using CIE LAB still gives better results over the same operations in RGB,
HSV or HSL. Figure 6.13 shows the difference between the best cases when
performing a thresholding operation in RGB and CIE colourspaces.

This simple approach works for backgrounds with solid colours, gradients
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and some shadows. It fails in cases with textured or complicated back-
grounds. This could potentially be supported by implementing a more ad-
vanced background extraction algorithm. This is outside the scope of this
research, but a comprehensive review of background segmentation techniques
is covered in Image Segmentation Evaluation [190] as well as the older A Re-
view on Image Segmentation Techniques [140].

Background thresholding extracts an accurate outline for the character,
however in a number of cases the character must also be segmented inter-
nally. A robust and simple approach is to use k-means clustering or the
medium cut (boxcut) algorithm. These identify trends in the point-cloud
data generated from the image colours. K-means clustering can be difficult
to initialise. While other clustering techniques have been adapted specifically
for colour-image quantization, such as the centre-cut algorithm [93], PCA,
Agglomerative Hierarchical Clustering and the density based DBSCAN [162],
many of these do not translate as well into CIE colour space. The initialisa-
tion issue was addressed in a paper adapting k-means clustering for colour
quantization [36], and this is the implementation used in this chapter.

The extraction threshold for the background colour is selected by quan-
tizing the image into two colours, and then selecting the colour with the least

amount of variation within the quantized x-means box.

6.4.3 Skeletonisation

Generating a 3D mesh from scratch relies on access to a skeleton that repre-
sents the underlying body structure as well as possible. Many skeletonisation
algorithms exist, and producing the best result for arbitrarily shaped char-
acter images requires selecting the best approach.

Medial transforms are perhaps the most well established method for 2D
skeletonisation, having been proposed in 1967 [27] and tweaked in various
different ways up until the present [16] [126] to solve problems such as the
influence of surface noise on branching. Pixel based methods are also com-
mon, with an overview being provided by Lam et al. [104]. Skeletons can
also be extracted by joining bi-tangent circles or maximal discs within a

shape [10], or through the use of Delaunay triangulation to create a chordial
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(a) (b)

Figure 6.14: Two sketched cross-sections of a leg or arm bone. A bone
placement in the geometric center (a) of a limb does not reflect reality. By
generating a skeleton that is offset according to muscle mass, a more realistic
placement (b) can be achieved.

axis [147]. It is also possible to perform single-step skeletonisation using a
vector outline. Mayya & Rajan [119] propose a technique called Voroni skele-
tons that extract a morphological skeleton using Voroni cells and a pruning
algorithm. A large number of vectorization algorithms are also outlined fur-
ther in Section 4.2.

The difference between the Skeletonisation outlined in this section and
the Structural Vectorization outlined in Chapter 4 is the type of content they
try to represent. Both algorithms attempt to represent the image data in a
format that is easy to parse, however Structural Vectorization extracts the
centreline from collections of strokes in low resolution images whereas the
Skeletonisation needed for this section runs using a single image outline and

does not produce a morphological topology.

This distinction is important, because a morphological topology always
gives a skeleton in the geometric centre of an outline. When using a skeleton
for bones or skin generation, this is unlikely to be representative. Instead,
the bones should be generated using outline and texture cues so as to best
estimate overlying muscles, clothes, or other features. Without context, only
a rough estimate can be achieved, but analysis using the methods outlined in
Section 6.6 show that this is still better than using a morphological skeleton.

Figure 6.14 shows a visualisation of the placement differences.

As well as 2D vectorization and skeletonisation methods, another class of
algorithms also exists. 3D curved skeletons can be created from 3D models,

often through a process of mesh contraction or decimation. The advantage
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of using a 3D skeleton created via a mesh contraction algorithm is that it
is easier to effectively reverse the process and create a model by building
outwards from the skeleton. Although the skeleton may not be centred as
in the case of traditional morphological skeletons, extra information can be
gained from the density of contracted points and the relative mis-alignment
of the skeleton within the mesh. Adapting a 3D contraction algorithm to run
on a 2D border retains many of these advantages.

The evaluation paper Curve-Skeleton Properties, Applications and Algo-
rithms [47] compares the results of basic implementations from each category
of skeletonisation algorithm. The evaluation properties include metrics such
as whether the skeleton is ‘centred’, ‘robust’ or ‘hierarchical’, and the paper
looks at how important each of these is in terms of algorithm design and how
often these are core ideals in existing papers. Four major classes of algorithm
are then chosen and implemented in their basic form. This allows the authors
to compare the results across a dataset and they attempt to determine the
algorithm class that produces the best results in all categories.

Cornea et al. form the conclusion that “From these results, it is clear that
the potential field method yields the cleanest and smoothest curve-skeleton
at the initial stage”. However when comparing the results from best-of-
class algorithms topological thinning appears to produce the most useable
skeleton. The authors allow for implementation error, stating “We cannot
claim that each of our implementations is fully representative for an entire
class of algorithms, as many improvements to the resulting curve-skeletons
can surely be made”. Whilst the best skeletonisation algorithm is arguable,
the research by Cornea et al. at least allows two major approaches to be
ruled out as viable options. As shown in their paper, both Distance Field
and Geometric methods produced lacklustre results across the entire range of
input models, with false branching, high complexity, and outright incorrect
skeleton placement.

Skeleton Extraction by Mesh Contraction [12] is an example of a recent
curve-skeleton extraction method, producing skeletons that would be ideal
for model generation. By iterating two steps in repetition the mesh is con-
tracted and connected until it forms a single line bent skeleton. The major

contribution of the paper appears to be adjustments to recentre the skeleton
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after the initial extraction.

The two contraction steps are a smoothing operation and a connection
algorithm. The smooth operation is performed by applying a Laplacian that
moves the points along their approximate normals. While there are minor
problems such as the skeleton’s susceptibility to mesh density, the major
issue is bone misalignment during contraction. Because the contraction step
distance is based upon mesh thickness at the vertex, it is possible that the
skeleton is offcentre, and may even be created outside of the mesh. An
embedding refinement step is therefore introduced that merges vertices in
the curved skeleton based upon their centeredness.

Feature-Varying Skeletonization [180] proposes a mesh skeletonisation al-
gorithm that runs automatically but allows the user a single complexity con-
trol that modifies the detail level of the skeleton. By alternating between two
refinement stages and modifying the weight of each, they successfully decom-
pose triangle meshes into logical skeletons. The mesh contraction method is
similar to that proposed by Au et al. [12] but due to the weighting of the
steps doesn’t need to do embedding refinement.

The two refinement algorithms are smoothing and merging. The smooth-
ing step contracts the bounding hull toward its spatial centre removing local
noise at the cost of increased density and reduced fidelity. The merging step
reduces this spatial density and consolidates important geometric features,
however is susceptible to local noise. By using the correct amount of each
operator in turn, a locally noisy surface topology can be contracted to its
visual centrelines and a node topology created.

By treating a silhouette as a linked mesh structure, a 3D curved skeleton
creation algorithm can be run in 2D and produces a topology structure ideal

for the generation of a 3D model.

6.4.3.1 Soft Skeleton

The first requirement of a character skeletonisation algorithm is that it pro-
duces a visually correct topology that imitates the structure implied by the
outline and not just the geometric centre. To achieve this we adapt the 3D

smoothing and merging steps from Willcocks & Li’s paper [180] to run on
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2D polygonal shapes, and then add a third term that allows image contents

to influence the skeleton generation.

The process starts by creating a polygonal bounding hull of points P =
{po.--pi---pn} based on the image silhouette. The smoothing step contracts
this bounding hull toward its spatial centre removing local noise at the cost
of increased density and reduced fidelity. It operates iteratively by placing a

point at the average of its untransformed neighbours:

;  Di—1 7+ Pit1
pi= g

where p is a set of consecutive points with n items and i is a value from 0 to n.

(6.4)

The increasing point density after a smoothing step causes convergence
issues, as the smoothing step is dependant on point density while the en-
croachment step is not. This causes the two operators to become unbalanced,
unless the density is conserved by introducing a simplification term into the

smoothing step:

p; — pi—l‘;pi-ﬂ if le;l _ pi+1H cw
. (6.5)
otherwise p;
where w is a threshold distance calculated as:
1 n
w=_- > P = Py moa w | (6.6)
=0

where p is a set of consecutive points containing n items.

While Willcocks & Li use an iterative merging operator, we perform a
single merge pass at the end to create a rigid skeleton. This is necessary
because our mesh creation process relies on extracting the two-sided curving
centreline data before merging but after the full contraction is complete. To
give the same effect, the iterative merge operator is replaced by an encroach

operator that moves all points 'inwards’ along their local normal:
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Figure 6.15: Without weighting (a), the extra width of the shoulder and
clothes causes discontinuities in the contracted polygon. Weighting the en-
croach step by the gradient of the low frequency component of the image (b)
causes the skeleton structure to be influenced not just by the outline but also
by the contents of the image (c). Image (b) shows AG, , encoded in the red
(vertical) and blue (horizontal) channels.

1
P =0+ (i~ b)) GO (6.7)
where p is a point in P, the outline polygon, and G is a frequency term

as explained below. If the p” lies outside of P, the result for that point is

discarded and the original position used.

This iterative encroach step reduces spatial density and consolidates im-
portant geometric features, however it is susceptible to local noise and as a
method of skeletonisation is not ideal because there is no influence from the
internal lines and information in the image. Therefore an additional term G
is calculated using Equation 6.8 and added to the encroach operator, using
local image complexity in addition to the image outline to create the skeleton
more correctly. Figure 6.15 shows the difference in skeleton placement when

local complexity is taken into consideration.
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(a)

Figure 6.16: Alternating between the smooth and encroach steps condenses
the outline (a) to a two-sided soft skeleton structure. Internal lines (b) show
the position of P halfway through the contraction process. The coloured
lines show the division of bone segments for surface curvature measurement
in Section 6.4.4.
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(6.8)

where [ is the image intensity and r is the radius of the Gaussian kernel k.

This is chosen to be 1/100th of the image diagonal.

6.4.3.2 Rigid Skeleton

The soft skeleton is used for mesh generation, however realtime animation
and character rigging requires the use of solid bones. These are created by
finding splits, merges, end points and inflection points in the soft skeleton
and connecting them according to the topology. The polygon formed by the
soft skeleton is traversed in order and the backing edges, created when p”
lies outside of P during the encroach phase, are removed to ensure a bone
is not created on each side of the two-sided soft skeleton. Figure 6.17 shows

the results of both skeletonisation stages.
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Figure 6.17: Examples of the finished skeletonisation process, showing data
derived from the red outline. The bent skeleton is drawn in green, while the
nodes are linked in blue

One of the largest underlying problems with this technique is that creating
an accurate skeleton from a single view requires contextual awareness or
image understanding based upon experience. This results in certain cases

that are unlikely to be processed properly by the algorithm.

Even when including adjustments based on image content, such as Equa-
tion 6.8, large breaks or features in the image content may not be reflected
correctly in the skeleton because the silhouette has the largest influence on
the final result. An example is an arm that sits flush with the side of a
body and is not represented by the outline, and therefore does not contract
in a way that would create the new branches required to represent the arm

correctly.

A similar issue arises when generating joints in the skeleton. Unbent
limbs in the source image make it difficult to identify joints such as knees or
elbows, and these sections are often recognised as only one bone. This can

be solved by looking at basic contextual information. Long, non-branching
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limbs near the edges of a skeleton are likely to represent arms or legs and are
split so as to contain a single middle joint. A second check can be performed
once animations are transferred to the object, where joints that do not bend
significantly across any of the animations can be considered spurious and
removed.

Images conforming to our initial requirements seldom contained these
problems and usually produced accurate skeleton data without any user in-
teraction. With this information extracted correctly, all of the required data

exists to generate the mesh.

6.4.3.8 Principal Axis

A number of operations that are used to find properties of the mesh require
a median or best-fit axis for the skeleton. This orients the character in space
and gives geometric meanings to metrics such as width or spread. Because
characters may be either vertical (for example with humanoids) or horizon-
tal (many four legged animals), an orientation independent technique such as
Principal Component Analysis (PCA) is required. The assumption is made
that the longest axis of the input character is the primary bone in the skele-
teon (i.e. ”the spine”). This assumption held true for all images within the
input dataset.

In this implementation, PCA is run on a larger dataset comprising all
the outline points after the final encroach step and after selective thinning
is performed. To improve the accuracy, all points that lie on an external
limb (classified as any limb where any endpoint has only one neighbour) are
removed from the dataset. The remaining data best represents the spine
of the character and means the best-fit axis is still correct even in cases
where the arms or legs are wider than the model is tall, or where external

appendages such as wings or antennae would otherwise influence the fit.

6.4.4 Mesh Construction

In this section a 3D synthesis algorithm is outlined based partially on swept
volumes (also known as swept hulls or swept shells) as outlined by several

papers in Section 6.2. Swept shells construction is performed by taking the
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Figure 6.18: Finding the principle axis. The skeleton (a) is stripped back to
the spine segments (b) and principal component analysis performed to find
the best fitting line (c).

surface when a cross-section is moved along a line in 3D space. For organic
mesh reconstruction, solutions using swept shells generally meet with success
despite being susceptible to noise and relying on the input having a clear pri-
mary axis. These issues are alleviated due to the skeletonisation algorithms’
smoothing step that reduces noise, and the primary axis that is pre-generated
in Section 6.4.3.3.

6.4.4.1 FEstablishing Orientation

Concept artwork is often drawn off-centred, such as in three-quarter view,
and therefore it is not possible to assume a front-facing orthographic view and
so the initial orientation needs to be established to correctly build the mesh.
Suh, Y outlines a method for determining initial orientation in his paper
Reconstructing Polyhedral Swept Volumes from a Single-View Sketch [159],
however the algorithm was designed for technical drawings and concept art-
work often does not have sufficient right-angled corners.

Instead the orientation is found using side-equality measures based upon
the centreline and the ratio of the extent of the armature. If the skele-
ton topology is found to be symmetrical using symmetry-axis decomposi-
tion [144], we make the assumption that the character it represents is also
symmetrical. This can be verified by comparing the ratio of extent of each

pair of matching limbs in relation to the character’s principal axis as gener-
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Figure 6.19: If a model topology is symmetrical along an axis, it may be
possible to find the orientation the image was drawn at. Image (a) shows the
skeleton layout with matching limbs, while image (b) shows how this ratio
is used to calculate the orientation of the character depicted in the input
image. Image (b) is a top down view where the green line represents the
model plane and the black line represents the screen.

ated in Section 6.4.3.3. If the character is posed, this ratio will be different
for each pair. If Equation 6.9 holds true for the skeleton, the average extents
are calculated using Equation 6.10 and re-orientation is performed. Due to
the hand-drawn nature of the input, variation between the limbs should be
expected and therefore the ratio of extents does not have to be perfectly
equal for re-orientation to occur. Figure 6.19 shows the layout of the implied

camera setup.
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where j is a set of joints in the skeleton, including end points, and i and '
represent a pair of topologically symmetrical points in regards to the centre-
line r, where r is calculated as the best-fit line for all 5. a and b are calculated

to be the average extents for each side of the skeleton.
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For a front-facing image the orientation can be estimated by projecting
the horizontal offsets back to an implied camera with respect to the centreline.
The distance to the camera is taken to be 70cm, which is the recommended
viewing distance from a monitor and a value assumed to influence the average
perspective for digitally drawn concept artwork [9]. The screen’s internal DPI
is used to convert the pixel based bone lengths into centimetres, which can

then be used to determine the orientation of the drawing using Equation 6.11.

/ b/
0, = tan' (= 0y = tan™" | =
1 an (70), 2 an (7())

B _1 sin(6y)sin(6, + 62)
p = tan (sin(ﬁg) — sin(0y)cos(6y + 92))

(6.11)

where a’ and b’ are the average skeleton extents generated using Equation 6.10
and converted to centimetres, and S is the calculated angle of the model

around the Y axis.

Determining the orientation with this method fails where a topologically
symmetrical character has artificially stunted limbs or if the artist did not
draw in perspective, however the failure case is a zero orientation (o =
0) and has no negative impact on the surface generation stage. Error is
also introduced by drawing and sketching inconsistencies, although averaging

results for all symmetrical node pairs reduces the impact of this.

6.4.4.2 Lofted Surface Generation

The mesh is generated based upon the silhouette of the figure and the pre-
viously generated soft skeleton. As mentioned in Section 6.3, mesh topology
plays an important role in defining the shapes of an object, and creating
believable deformations during animation. In sections without joints, lofted
segments create edgeloops based on quads in a similar way to an artist.
However in areas of detail the edgeloops often end up distorted.

The initial surface is created using a modified ’lathe’ procedure, where

limbs and body components are constructed by creating appropriately sized
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Figure 6.20: This diagram shows the best and worst case placing for the arc
endpoints k£ and ¢ given certain points p; o on the outline (red). p; shows a
good result for kq, whereas ¢; would create overlapping arcs perpendicular to
the outline normal. py creates the opposite result where cs is a useable local
centre but ks would create arcs that lay outside of the outline.

rings around the skeleton. To begin creating a mesh, arcs are created from
the boundary in to their local centre. Equation 6.12 defines two possible

local centres, each with different advantages.

¢; = get closest point on S to p;

k; = intersection of n; and S (6.12)

where S is the soft skeleton calculated in Section 6.4.3, n is a set of nomal

vectors calculated from the edges of the outline polygon p.

As can be seen in Figure 6.20, the difference between the arcs created by
these two methods can be quite significant. This figure shows a simulated
side view of a model, with the red line representing the outline, and the blue
line representing the skeleton. The 3D arcs are created by placing a 3D disc
at the centrepoint (k or ¢), with radius r equal to the length of the vector.
The disc is oriented so as to minimise the dot product between the disc
normal and the bone direction, while still ensuring that the circumference
passes through p.

k acts better as a local centre because it creates a more evenly distributed
mesh at corners and looks better visually. Due to the use of a projected
normal small variances in the outline polygon can cause large discontinuities

in k£ and introduce visual artifacts. The higher the noise, the less influence
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Figure 6.21: This diagram expands on the best and worse cases for centre-
point placement, showing a series of arcs for each of the different approaches
in Figure 6.20. Images (a) and (b) show the best and worst cases for the
shortest distance respectively. Notice the large gap in (b). Images (c) and
(d) show the best and wost cases for using the bone normal. Notice the
overlapping arcs in (d).

k should have over the final solution. In contrast, ¢ will always provide a
point that can be used but introduce banding artifacts by causing groups of
consecutive points to have the same local centre. Figure 6.21 shows how the
placement of

The accuracy of k also decreases with distance and in some edge cases the
normal can be almost parallel to the skeleton, creating intersection points
a considerable distance away from the original point. To offset this, an
additional term is created that has no influence on the balance of the terms
when the distances are similar, but favours ¢ exponentially when the distance

between k; and p; increases.

. i — pil|

= (6.13)
2|k — pill

Wq

where p; is the point on the outline.

A similar inaccuracy occurs in ¢ when it is offset from the outline polygon

normal and causes the created slices to be visually incorrect. Equation 6.14
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sets up a scaling term for this.

Wo = |6 — pi] - (6.14)

where p; is the point on the outline and the result w,, is clamped in the range
[0:1].

The final property that effects the choice of centrepoint is the noisiness of
the curve, which is calculated using Equation 6.15. The more noise there is

in the line, the less accurate properties based upon the line normal or tangent
will be.

1+10

> n

k=i—10

€ ="n; —

(6.15)

where n is a set of nomal vectors calculated from the edges of the outline

polygon.

Weighting our choices of centre position, the final slice centrepoint is

calculated using Equation 6.16.
P =ce(l — wy)wa + k(1 — e)wa(l — wy) (6.16)

6.4.4.3 Cross Section

After calculating the best centrepoint around which to construct the slices,
the mesh itself is created by extruding a cross-section along the skeleton.
Generating a realistic cross-section often requires information about the type
of object being created, and using a perfectly round, centred mesh is not al-
ways appropriate. The type of character and character material is often
implied by the properties of the silhouette. In ”Single-View Sketch Based
Modelling”, Andre & Saito differentiate between straight lines and freeform
rounded shapes. A cubic corner extraction method identifies sharp corners,
and these are treated differently when creating the lofted sections. The
method in this section aims for a similar differentiation between straight

and curved lines, however it modifies the shape of the slice as it is lofted and
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not across the entire section. This allows for sections that differ in depth and
shape over the length of the extrusion line. This is an important distinction
because it allows for smooth joins where multiple lofted sections meet and

where different sized sides join.

Shape discovery is performed on a local level by analysing the separated
line segments shown in Figures 6.16 and 6.17. One of the best profile indi-
cators is the line curvature and the number of sharp corners in subsegments
of the image. Equation 6.17 generates points that define the cross-sectional
profile to loft along the skeleton. The terms in the last line create a round
surface, which is blended with the square surface in the second line according

to the line sharpness:

o= |lp = pll

(T, 2) (amersm) = T <|_\/§COS(04)J, Lﬁszn(aﬂ) s (6.17)
+ r(cos(a), sz'n(a)> (1—3s)

where p and p’ are corresponding points on the centreline and outline re-
spectively, and s is a sharpness factor between 0 and 1, calculated in Equa-
tion 6.21.

The general approach is that sharp or rough lines indicate that the con-
cept art is non-biological or at least polygonal in nature and the generated
mesh should contain fewer round faces, whereas curved or smooth lines sug-
gest that the generated mesh should look more organic. Figure 6.23 shows

how this works in practice.
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Figure 6.22: This diagram shows the ¢, r and s values calculated in Equa-
tions 6.19 6.20 and 6.21 respectively. The blue line shows the calculation
for 7 and the dashed grey line a curve with c,—o—, = ¢,. A low s value is
taken to indicate soft or organic objects, while a high s value is likely to be
generated by mechanical objects with square edges. This is reflected in the
type of mesh cross-section used to create the model.
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where ¢, and ¢, are the total and average curve calculated using v, the set
of n vertices from line segment L. The roughness ¢, segment bend r and

sharpness s are all clamped in the range [0 : 1].

Equation 6.18 calculates the average bend of a line segment, which is used
by Equation 6.19 to calculate how smooth the line segment is by looking at
how far each subsegment differs from the average. A value of 0 indicates a
smooth line while 1 is line that does not conform to the average curvature.

Equation 6.20 approximates the angle that the line curves through, a value of
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Figure 6.23: Examples of mesh generation showing cross-sectional adjust-
ment based upon line curvature and with respect to sharp corners.

0 means the line does not change direction, while 1 indicates a right angle or
higher. These values are combined in Equation 6.21 which gives the overall
'sharpness’ of a line segment. A line segment that is rough, or straight
will generate higher values, while a smooth curve will result in lower values.
Figure 6.22 shows the sharpness value for a number of scenarios.

The mesh itself is created by generating points in the depth plane accord-
ing to Equation 6.17. The terms in the first line create a round surface, which
is blended with the square surface in the second line according to the line
sharpness calculated in Equation 6.21. These cross-sections are then offset
by the skeleton centrepoint p and joined in order along the skeleton to create
the final model.

Due to the centrepoint weighting applied in Equation 6.16, the mesh slices
are unlikely to join seamlessly across centrelines and one concave polygonal
hole will be present on each side. These are characterised by long thin seg-
ments and numerous branches, and can be filled using any of the standard
polygon fill methods such as monotone polygon decomposition [117] or Las
Vegas triangulation [41]. In our implementation Ear Clipping [57] is used,
and can be optimised significantly by removing the ear search stage. An
ear is considered to be a polygon with two sides lying along the edges of the
generated arcs, and the side spanning the gap between the generated meshes.
We don’t need to search for ears because after the mesh generation the arc
that projects farthest from each end points of the skeleton will always contain
at least one point from a polygonal ear. This can therefore be used to start

the clipping process.
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Figure 6.24: This image shows the generated arcs and shells for a basic
skeleton extracted from the image outline. The weighted centrepoint creates
segments that are not overlapping and merge correctly at corners and ends.

When compared to the worst case performance in Figure 6.20, shells
created with the weighted centrepoint appear more natural and are free of
artefacts. Figure 6.24 shows a typical wireframe generated from skeleton and
outline data.

Even with adjusted centrepoints and consideration to line curvature, there
remain situations where the mesh generation will be less than ideal. When a
mesh is generated near corners that have an acute angle caused by straight
or convex lines, the local midpoints may be distributed a long way apart.
This causes the polygonal fill to create a large flat ’ear’ [57] that will not
deform correctly with skeletal animation. A similar situation occurs at the
join between thin outlines and larger objects they are attached to, where
neighbouring arcs differ greatly in size. Both of these issues could be solved
by inserting extra arcs where needed. However placing these arcs is a non-

trivial task, and because visible artefacts are rare it is left unsolved.

6.4.5 Mesh Refinement

There are two further approaches used to refine the surface topology and
correct any inaccuracies in the depth that arise from lack of information in the
outline. Because the mesh is only generated using the outline, analysis of the
image internals can provide extra depth cues. These techniques only apply
to specific situations and struggle to produce consistently good results across

a wide range of images. With input limited to only a single view, further
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(c)

Figure 6.25: Contour extraction from the source image (a) using thresholding
(b) from Section 6.4.2 and vectorization techniques from Chapter 4. Lines
not aligned to the primary axis were discarded (c) and several intersections
manually aligned.

refinements will always have diminishing returns. However, in isolated cases

they can make a significant difference.

6.4.5.1 Depth cues from Contours

Refinement of mesh structures can be carried out through topological analy-
sis. By re-projecting significant contours within an image into camera space,
their depth can be found and compared with the generated 3D mesh. This
method was implemented, however not used in the final system because it was
too difficult to reliably extract the contours. While in some cases depth cues
from contours could be used to enhance the model, the evaluation methods

in Section 6.6 found that on average it made the model quality worse.

Figure 6.25 shows how thresholding is performed on the input image
before the lines are extracted. Contiguous contours are selected by discarding
lines where the angle does not match the image’s primary axis, according to
Equation 6.22. This means that all selected contours will have a total angle
of < 90°. The axis is found using the method in Section 6.4.3.3.
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significant if | (o1 —w0) - ¢| >w (6.22)

where v is the set of n vertices in a given contour, ¢ is the primary axis, and
w is a threshold value chosen to be 0.9 through evaluation of different options

in Section 6.6.

The most reliable results for depth extraction were achieved using a simple
algorithm. The average distance between contours is recorded and used to
find depth via a direct linear mapping. No allowance is made for camera
perspective correction or a correct cylindrical projection. The camera setup
uses the same assumptions as Section 6.4.4.1. Equation 6.23 shows how this

is calculated from the contour line data:

U = G Dm Y lealt) = cun(®)l]

w(u,t) = clu—os5/(t) = Crutos(t)

depth(u,t) = dwu——w(u,t) (6.23)

Wy,
where (u,t) are mesh co-ordinates from 0 to n and 0 to m respectively.
Cu=0—n(t = 0 — m) are n contour lines made up of m vertices each, and d is
the virtual camera distance. w, is the average width between contours, and

w(u,v) is the width between adjacent contours at a point.

In general the form is correct but has less resolution than the model cre-
ated using the outline. The local accuracy is better in cases where external
features that show up in the outline are irrelevant to the content. How-
ever, this is a very limited technique because connected contour line data
is essential. Most images don’t have appropriate contours, and while many
have distorted textures that produce high quality contours, the rate of ‘false’

contours from incorrectly textured or irrelevant patterns is quite high.
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(a) (b)

Figure 6.26: Front (a) and top (b) views showing a mesh generated with
depth information taken only from the contours.

6.4.5.2 Depth Compression for Cloth

While the proposed mesh generation methods create representative meshes
for solid objects, some unique image details such as large thin cloth areas
can cause issues with mesh generation. Details that are often incorrectly
represented by the model creation process include wings or feet with thin
membranes, cloth such as sails, or metal sheets. This is due to the lack
of contextual or material information that would be needed to identify these
areas, and therefore this type of object is incorrectly given depth when instead
it should remain flat. Figure 6.27 shows how deep cross-sections produce an

artificially inflated representation of a flat object.

Some types of cloth are still represented correctly, such as those that are
wrapped around other objects and therefore still have a 3D form. Although
no mesh data is generated for the underlying object the cloth still deforms
relatively intuitively during animation because the vertices are weighted and
linked to multiple bones. This deformation would also work in the case of

flat objects if the mesh was correctly generated.

To implement this, a depth scaling step is added to the mesh generation

process to override the default segment size for designated parts of an object.
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Figure 6.27: Textured and wireframe view showing a bat model created based
on a single image input. Without material or context cues, the meshing
algorithm has no way to know that the wings should be flat and therefore
creates round cross-sections.

Equation 6.24 shows this:

'U/Z'([If,y,Z) - (17171_3) V; (624)

where v;—g_,, is a set of all mesh vertices and s is the depth scaling term
between 0 and 1 where 0 leaves the model untouched and 1 generates a flat

plane.

The difficulty inherent in this problem is defining the scaling term s for
all sections of the model. Identifying parts of a model based on context
typically requires a large database [164] or alternatively a smaller training
dataset [68]. With only a single input image, image metrics provide the best
fallback and therefore the hue and texture are used to identify additional
material properties. Due to the wide range of input images accepted by the
system, no one metric was able to produce consistent results for automatic
detection, and therefore if this step is used as part of the refinement process
then a user selection parameter must be used. This parameter allows the
operator to select an optional hue and texture to be identified as cloth. The
automation of this step is left as future work.

Selecting the cloth areas based on texture falls within the domain of tex-
ture classification. One common method for texture classification is to use
wavelet transforms [108] [149] [106]. Liapis et al. use a database to match

against, and so this method is only effective for images containing prede-
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Figure 6.28: This image shows the standard mesh construction steps of taking
a concept image (a) and extracting the skeleton (b). User directed hue is
enough to segment the image and isolate the cloth (c¢). Whilst the mesh
generation (d) looks identical from the front, depth values are overridden
based on the cloth map to create flat wings.

fined textures. One way to avoid this limitation is to use an unconstrained
clustering algorithm, most commonly in concert with Gabor filters [90] [155].
Bhiwani et al. [22] compare the effectiveness of a number of different classifi-
cation methods when applied to texture features, finding that Canberra and

Bray Curtis distances produce the best results.

Even when using current texture classification methods the colour seg-
mentation still may not correctly align to picture. An example can be seen in
Figure 6.28(c) where areas of texture are not continuous and ill defined near
the edges. The image is however logically segmented, so to reduce the error
around the edges depth variation is performed on whole skeleton sections. A
section is considered to be cloth if more than half of the skeleton points are

within the cloth texture.

This occasionally introduces a disconnect problem where adjacent and
back-to-back skeleton segments (Section 6.4.3.1) have different depths, cre-
ating surface discontinuities. To solve this issue each set of paired skeleton
vertices are given the same depth value, taken to be the maximum depth of
the two. The cloth allocation and skeleton depth matching are performed
in Equation 6.25. The image I used in this operation is the untransformed

concept artwork.
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Figure 6.29: Textured and wireframe images showing a bat model created
using material cues. The wings have been tagged as cloth material, and
therefore are flattened into a defined plane to better represent the intent
of the input image. Notice the improvement in this image over the wings
created in Figure 6.27.

S(p),S'(p) = median 2MT(]9)
mazx (I) 05
s = max (S(p), 5 (p)) (6.25)

where p is a vertex on the bent skeleton segment S with matching side p/
on segment S” with n skeleton vertices. I}, is the image hue channel, and Cj,
is the cloth hue. T is a map corresponding to the cloth texture calculated

using wavelet transforms [108] where 0 is no match and 1 is a perfect match.

As can be seen in Figure 6.29, cloth-based flattening changes the character
and accuracy of the model significantly. There is a marked difference between
the inflated model in Figure 6.27 and this version. Because of segment-
based scaling and the percentage-based texture type detection, the cloth
demarcation for the original model does not need to be overly accurate.
A typical real-world example of this is the more complex goblin model in
Figure 6.30, where the light grey cloth is detected in the head of the staff.

While this simple method of cloth flattening works to a certain degree,
there are still a number of issues that can arise. In several cases, the bones
and structural components underlying the cloth are also flattened. Ideally

these would be separated and individual 3D meshes generated. The cloth
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Figure 6.30: In most situations the effect of forced depth compression for
materials is more subtle. Without refinement, the concept image (a) gives
depth to the cloth on the tip of the baton (b). When hue separation is used
to identify the cloth from the tip of the baton, the segment depth sharing
outlined in Equation 6.25 ensures the entire tip is correctly flattened (c).

could then be draped over or spread between the structural components. Im-
plementing this would increase the complexity of the algorithm significantly

for only minor gains.

The use of user specified input also breaks with the original aim of au-
tomatic model generation. Automatic cloth texture selection is a difficult
operation that relies on complex image understanding, and is outside the
scope of this section. Due to the need for manual intervention, this cloth
flattening method was therefore not used on the models when performing

evaluations or generating models in Sections 6.5 and 6.6.
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6.4.5.3 Rigging and Animation

In addition to mesh generation, practical use of a 3D model requires an
armature and texture coordinates. Numerous studies have focused upon
generating skeletons based upon existing meshes, and several of these meth-
ods [160] [143] [144] [180] extract structures similar to the curved 2D skeletons
from Section 6.4.3. Other automatic skeletonisation methods focus specif-
ically on animation [17] and deformation [110] [98] of the mesh, and even

include skeletonisation within the framework of sketch-based interfaces [28].

The paper A novel template-based automatic rigging algorithm for articulated-
character animation [144] classifies models based upon their skeletal topol-
ogy. This is done by extracting any 3D skeleton from the model “using a
suitable skeletonisation algorithm”, and then measuring additional topolog-
ical properties. This includes the symmetry axis, the number of significant
joint nodes, and the lengths of leaf chains attached to the central nodes.
The symmetry axis is found by analysing the topology and identifying nodes
that have equal leaf chains and segments with similar directions, and is used
in this section when attempting to re-map animation between non-matching
skeletons. The general classification approach of using skeleton junctions and
topology to classify animal type - such as fish, birds, and humans — is not
robust when considered in the framework of concept artwork. The skele-
ton topology produced in this chapter may be missing segments, or contain

additional segments representing weapons.

An example of a system that attempts to unify modelling and rigging is
RigMesh by Borosan et al. They maintain that the separation of modelling
and rigging is difficult for artists, and therefore create a system that rigs
models and stores their pose as they are created. A base skeleton is auto-
matically generated after each change in the mesh, using a modified version
of the Douglas-Peucker algorithm on the chordial axis. The modifications
take cylindrical diameter into account in addition to the standard salient
points. Mesh weighting to bones is performed locally using the pinocchio
algorithm [17]. A number of interesting techniques are used in this paper,
most notably the chordial axis algorithm for skeleton extraction. The chor-

dial axis is a medial skeleton extraction algorithm that can be run on vector
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outlines instead of raster images.

The system in this section makes a clear distinction between mesh gen-
eration and rigging, but hides this from the end user as a ‘black-box’ style
system. Because there is no ability for the artist to go back and edit the mesh
we do not have to regenerate the skeleton at any stage, instead the entire
system is presented as a single step where basic controls allow influence over
the entire process. This allows us to process the mesh in such a way as to

make skeleton construction easier.

Having generated the underlying mesh itself, a number of key proper-
ties can be accessed and used to augment existing algorithms. The soft 2D
skeleton is projected into 3D by aligning bone and orientations as closely as
possible to an existing animated skeleton, after which the mesh is attached

to the bone structure. Equation 6.26 shows this simple alignment step.

Tb = Tparentofb * A(b/)romtion * A(b/)scale (626)

where T} is a 3D transform matrix for the bone b in the skeleton, and A is

the target armature with corresponding bones b'.

pi = clamp(v L B;)

di = |lv—pill

a = |lv—pi-n
d;

S; = 3

influence; = s;q; (6.27)

where B;_|o. 3] is a list of the closest 4 bones to the mesh vertex v with normal
n. Bones are represented in point-vector form and a limit of four is used as

this is the maximum supported number in many 3D engines. p; is the vertex
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Figure 6.31: An attack animation is applied to a generated model of a mon-
ster. The original positions and rotations are correctly transferred and scaled
to the appropriate lengths of the generated armature. Vertex mapping en-
sures the mesh follows the bone structure, including axial rotations such as
the twist of the spine.

v projected onto B; and clamped between the two ends.

Unbent limbs in the source image make it difficult to identify joints such
as knees or elbows. This can be mitigated by looking at basic contextual in-
formation. The spine is found using Symmetry-Axis Decomposition outlined
by Pantuwong et al. [144]. Long, non-branching, mirrored limbs that are leaf
nodes to the spine are assumed to represent arms or legs and are split to
contain a middle joint. To allow for situations where this assumption does
not hold, a second check can be performed once animations are transferred
to the object. Joints that do not bend significantly across any of the anima-
tions can be considered spurious and removed. Section 6.1 shows a similar
operation performed in 2D.

The mesh is then attached to the bone structure. Two common attach-
ment methods are vertex groups [6] and bone envelopes [62]. While the
underlying structure uses vertex groups so as to be easily used in realtime
applications, these groups are essentially calculated using bone envelopes
based upon the generated armature. The influence of a bone over a vertex is
based on the distance to the bone and the surface normal at the vertex, and
is calculated in Equation 6.27.

Simple tests have shown that the projected 3D armature and the vertex
weighting generated by Equation 6.27 can be used in a range of motions
without significant artifacts. Motion retargeting [69] [77] can therefore be
used to map existing animations to the generated skeleton. Figure 6.31

shows an example of this.
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Figure 6.32: Texture interpolation and inaccuracies in model generation can
mean that textures do not fully cover the entire model surface and back-
ground colours (a) can be visible. Border seam expansion is used to reduce
these artefacts (b). A bright background colour was used for demonstration
purposes.

0.4.5.4 Texturing

Texturing a model with only one source image poses a number of problems,
many of which are beyond the scope of visual style research. Problems such
as texture seam artifacts are easy to solve, whilst others such as texture
estimation for occluded projection would require existing algorithms to be
adapted for this use. The common issue is one of texture synthesis, as the
model has been generated from a single view and texture information for
all occluded faces is missing. Existing texture synthesis research can be
leveraged to create the missing textures, and fortunately a wealth of texture
synthesis research exists.

Numerous papers deal with general pattern synthesis based upon small
sections of known texture [42] [78] [139] [177] [178] [132], or image background
synthesis for photo expansion or foreground removal [174]. There is however
little research into texture synthesis for occluded projection or character-
specific texturing. Pattern synthesis techniques are difficult to apply to model
textures because they require a prototype image or generation formula. Edge-
fill and replacement algorithms are also difficult to implement because they
are likely to copy unique details from the texture that would make the cloning
process obvious. Solving these issues is outside the scope of this thesis, and
a simple re-mapping approach is used as a viable tradeoff.

Projected texture mapping is used to apply the single front view to gen-
erated model vertices. This causes both sides of the model to have the same

texture which often results in obvious artefacts. Aside from this issue, the
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Figure 6.33: Border seam expansion is used to reduce artefacts when mapping
a texture (a) to the model. The red border indicates the area that is visible
on the model but due to antialiasing and the influence of the background is
the wrong colour. Expanding the border by 10 pixels (b) means that every
mapped pixel on the model is correct.

most common problem is texture seam tearing. Figure 6.32 shows how the
background colour can show through due to texture interpolation and inac-

curacies in the generated model.

) - { IT(p) = ow)l| <d 20(p) = T(p) (6.25)

>d T(p)

where T' is the texture, o is the closest point on the outline to p representing
a set of all pixels outside the outline. d is a predefined distance threshold set
to 8 pixels, which is the largest distance for texture interpolation on modern

graphics hardware.

Figure 6.33 shows how texture border expansion can be used to cover
these seams. Because the texture borders need only be expanded to cover
a small number of pixels, repeating or cloned image content is not an issue.
Panel (b) shows how the contents of the image are reflected about the outline
extracted in Section 6.4.2, providing texture continuity and ensuring texture

matching at seams.

While viewing the model from the back will still make the nature of
projected texturing obvious, the generated detail from border expansion gives

the model better quality when seen side-on.
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6.5 Results

The algorithm outlined in Sections 6.4 to 6.5 was designed to generate a
low-resolution application-ready 3D mesh from a single-view 2D concept art-
work. The processes focuses on front view character artwork and in this
respect it successfully generates useable 3D models that represent the un-
derlying artwork. The process is entirely automated, an outcome that is
important in contributing to the original goal of reducing creation time and
artist workload.

The processes has been run with success on a number of different datasets
from different artists. Figure 6.34 shows a typical piece of character concept
art and the resulting generated mesh. This is an example of the best-case
mesh generation, because the concept art fits all the required criteria and does
not contain any unusual shapes that could cause artefacts. Figure 6.37 shows
a difficult case where the input image contains two overlapping characters.
Although they are not segmented correctly, the 3D result is still a cohesive
and useable mesh.

If cloth is wrapped around other objects and still has form, the resulting
model is usually correct. Figure 6.36 shows some examples of this. Although
no mesh data is generated for the implied legs, the cloth still deforms intu-
itively during a walk cycle because the vertices are weighted and linked to
multiple leg bones.

Figure 6.35 shows how the slices used in mesh generation produce the
correct depth and form. Perspective views show how the shoulders and
chest bulge outwards, while the feet remain small and are correctly texture
mapped. The aim of mesh generation is to create a model as close to the
source image is possible, and given the minimal visible differences between
the concept art and the generated models, these results can be considered a

Success.

6.6 FEvaluation

Although the results in Section 6.5 appear correct at a glance, it is difficult

to evaluate whether the generated mesh is an accurate 3D representation of
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the 2D image. This is a traditionally subjective judgement and is difficult to
measure. However, in the case of computer game concept artwork it is often
possible to find matching 2D and 3D artwork, and these can be used as a
benchmark in an evaluation. Using the same 2D image as a source, a model
created by an artist can be compared to a generated model.

The evaluation outlined in this section uses a surface difference metric to
compare the generated results with a number of artist created 3D models. In
select cases where no original concept art was available, the input image was
generated from the artist-created model. A number of approaches have been
suggested for comparison of 3D models [40] [127] [163] and these share many
of the same ideas. The evaluation in this section uses two measurements; the
hausdorff distance, outlined in Interactive Hausdorff Distance Computation
for General Polygonal Models [163]; and the averaged surface error metric
outlined by Aspert, N et al. in Metro - Measuring Error on Simplified Sur-
faces [40]. A set of 15 concept artworks and associated models were used for
the surface difference comparisons.

In addition to evaluating the final model, this comparison was used during
development to refine the output. Developing an end-to-end system without
user interaction necessitates a number of tradeoffs, and the selection of so-
called ‘magic numbers’ (such as thresholds and bias) needs to be done so as
to produce the best results across a wide range of input. Changes to these
numbers, as well as changes to the algorithm itself can often be difficult to
evaluate. The average surface difference across the model set was a valuable
way to determine how changes to the generation effected changes in the out-
put. Parameters were iterated across a range and the results for 15 different
model sets compared to determine the value that produced the best result

across the largest number of test cases.

The Hausdorff distance computation requires that the two models are
aligned as well as possible in 3D space. Models created using reprojection
(i.e. models where the 2D image has been created by rendering the 3D
model) are aligned by default. However, models where the 2D image is a
piece of concept artwork require alignment. For the results in this section,

the models were manually rotated to use the same world co-ordinate system,
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then automatically scaled and translated so that their computed AABBs

were the same.

When calculating these surface metrics, the values are calculated from
vertices in both models to avoid biasing due to differences in mesh complexity.
Each distance is scaled by the sum of the adjacent triangles areas to avoid
bias from areas of high point density. The normalised hausdorff distance
is a value between 0.0 and 1.0, representing the average distance in world
space units between the surfaces of two models of unit size. 0.0 represents
a perfect correlation and is the case if the two models are identical. An
uniformly distributed random pointcloud would return a value of 0.5 and is
used as the benchmark for uncorrelated data. Numbers less than this can
be returned in cases where the surfaces are ordered in such a way that the
average distance between them is more than half of the unit length. For
similar models, the normalised hausdorff distance is typically between 0.0
and 0.1.

A number of interesting results arise, and these can be roughly categorised
based upon the surface metrics. Models with a low hausdorff distance and
low error show that the generated model matches closely the ‘ideal mesh’
represented by the artist’s model. Models with a high hausdorff distance and
a high surface error show a global offset or inconsistency. This is easier to fix
than local issues, and can in cases be as simple as rescaling or performing an
offset. Typical causes of this are skeleton alignment issues within the outline
and depth differences between the generated and target mesh, for example if

the target mesh is on a lean or generally offset along the z-axis.

The most interesting results to analyse are models that have a low haus-
dorff distance and a high error. This usually indicates local errors, and
although the results are less than ideal they showcase the parts of images
that aren’t generated correctly. Common examples of this include depth is-
sues where protruding feet and hands are not generated; 2D concept artwork
where the outline is not representative of depth; and the lack of generation

of hidden details, such as legs under dresses.
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Method 1 0 % 0%  min max
Rescaling 0.0115 0.0112 98.85 1.13 2.637 x 10~° 0.0868
Generation 0.0139 0.0135 98.61 1.36 0.089 x 1075 0.0726

Table 6.1: The model surface metrics. p is the normalised hausdorff distance,
while @ is the surface error metric. For ease of interpretation these are also
shown as a percentage according to the formula u% = 100(1 — p), where
100% represents a perfect match. The min and max columns shown the
minimum and maximum surface errors.

6.6.1 Method Comparison

Sections 6.3 and 6.4 outline two different methods for creating 3D models
from a single image. Whilst the benefits of each have been looked at quali-
tatively in Sections 6.3.2 and 6.5, a surface difference evaluation allows us to
quantitatively measure the difference between the two methods and compare
them to an artist-modelled benchmark. To accurately measure the difference
between generated models and the benchmark, a 2D initial image is gener-
ated by re-projecting the 3D model back into 2D. This ensures that the model
represents the ideal target mesh and can be used as a valid benchmark.

Figure 6.38 shows the reprojected ninja character in the correct T-pose
with the associated 3D models. This character is an ideal model for gener-
ation, with a known topology and a simple outline. The original model is
then compared with the generated models. The surface difference metrics
are shown in Table 6.1. Both generation methods produce good results, al-
though the rescaled mesh has a slightly better correlation and a moderately
better standard deviation. The difference in standard deviation is important
here, as it shows the rescaled mesh is more consistent and is likely to better
reflect the original model, whilst the slightly higher standard deviation of the
generated mesh indicates that there are likely to be certain features or parts
that are more incorrect.

A visualisation of the surface correlation is shown in Figure 6.39. This
highlights the differences between the two generation methods and provides
more context for the calculated metrics. The generated model has two areas

of significant divergence - around the neck and chest muscles, and at the feet.
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Method o 0 w% 0%  min max
Rescaling  0.0345 0.0324 96.54 3.24 2.787 x 10°°® 0.204
Generation 0.0202 0.0191 97.98 1.91 0.090 x 107 0.153

Table 6.2: The model surface metrics for the squid model in Figure 6.40.
These are labelled as per the outline in Table 6.1.

The difference in the feet is easy to understand, and can be seen clearly when
comparing the meshes in Figure 6.38. Because the feet are viewed from the
front and no additional data is used when generating the mesh, the resulting
mesh incorrectly reflects the depth of the feet and has only a cylinder in
their place. The surface error around the chest area is due to the depth in
the musculature in the original model that is not replicated in either the
generated model or the rescaled model.

To test the generation methods in a more extreme case, the squid-type
monster in Figure 6.40 is used. Whereas the ninja model in Figure 6.38
showed an ideal generation case, this model contains multiple appendages,
an irregular shaped body, and irregular surface data. Although the char-
acter is unconventional, it is not unreasonable to expect this type of input
when considering the target applications of video game prototyping and the
entertainment industry. Geons could not be calculated automatically for
this model, so the layout was specified manually before running the rescale
procedure.

Table 6.2 shows the surface correlation metrics, and Figure 6.41 shows
the distribution of depth differences across the model. While understanding
depth information for the body requires a better contextual understanding
of the creature, it could be possible to generate depth for the antanae and
tentacles using predictive organic modelling such as that proposed by Ijiri et

al. [88]. This, however, is left for future work.

6.6.2 Bredth of Input

Table 6.3 shows the generated evaluation data for 12 of the models. The
remaining 3 were used for rescaling and had significant artefacts when gen-

erating meshes. It is possible to gain a good insight as to how accurate the
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Model L 0 u% 0% min max

Oriental 0.0298 0.0283 97.01 2.84 2.149x10°° 0.132
Woman 0.0146 0.0142 98.54 1.42 12.89x107% 0.070
Gaston 0.0315 0.0299 96.84 2.99 0.787x107% 0.143
Hanks 0.0144 0.0140 98.55 1.41 0.035x107% 0.085
Humpty 0.0335 0.0317 96.65 3.17 5.460x10°% 0.167
Jabinello 0.0471 0.0431 95.29 4.31 2.200x107% 0.255

Lin 0.0221 0.0212 97.79 2.12 1.672x107% 0.116
Lin’s Mum 0.0370 0.0344 96.3 3.45 2.351x107¢ 0.160
Ninja 0.0139 0.0135 98.61 1.36 0.895x107°% 0.072
Slug 0.1407 0.1159 85.92 11.6 26.66x107% 0.322
Undead 0.0180 0.0175 98.19 1.75 1.068x107°% 0.087
Squid 0.0202 0.0191 97.98 1.91 0.901x10°% 0.153

Average 0.0352 0.0319 96.44 2.382 4.755x107°% 0.147

Table 6.3: The evaluation data for 12 models. Figure 6.42 shows two exam-
ples of the type of model used.

generated models are by comparing the measurements to the best-case and
worst-case scenarios. The best case is obviously a perfect match at 100%,
and in cases where the model is distinctly humanoid the generated model
approaches this level of accuracy. Examples of this are the Woman, Hanks,
Ninja and Undead models. On the opposite end of the scale, two random
point-clouds generate a correlation of 50% (each point is, on average, half
of the model size away from it’s matching pair). None of the models come
close to this and so the failure case demonstrated in Section 6.5 is used as a

benchmark for a badly generated model with © = 0.2 and 8 = 0.2.

The problems with some generated models are obvious, and indeed models
that score badly in the evaluation generally push the limits of what input
can be accepted, or outright break the initial requirements. However it can
be less obvious what issues arise with the average model.

Figure 6.42 shows the source and generated models for two low-poly game-
ready models typical of the characters in Table 6.3. The models, Lin and
Lin’s Mum scored (u = 0.022,0 = 0.021) and (u = 0.037,60 = 0.034) respec-
tively in the evaluation, making these both around average for the current

method. The heatmaps can be used to identify the characteristics of the
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model that were hardest for the generation algorithm to understand and
build a mesh around. In the case of Lin’s Mum the crossed hands stand out
in front of the body and are not generated. This is a very difficult case that
includes several occluding layers. The opposite issue occurs with the Lin
model where the long hair obscures the outline of the head and neck, causing

the algorithm to generate a larger mesh than required.

6.6.3 Discussion

This evaluation confirms that generated and rescaled models reflect the in-
put concept artwork, often with less than 5% surface difference from the
target image and in the best case within 1.5%. The evaluation also identi-
fies the biggest graphical issues and areas where the generation method fails

consistently.

As outlined in Section 4.3, there are still many problems to be solved
even with a limited input dataset. Models with few details and big shapes
often have a high conformance, while internal and complex details are not
generated. Rescaling can produce better results in these cases, but fails on
a wider range of input. Generated models work better across a wider range
of body shapes, but fail on occluded details. Additional processing steps
such as cloth flattening can be performed, but this requires artist or user

intervention.

The paper Interactive 3D Modeling Using Only One Image [111] also
looked at the differences between generation and rescaling. Although only
informal tests were carried out, Liu et al. came to similar conclusions about
the advantages and limitations of each system, concluding that generation

was the better method for unconstrained input.

The largest issue with both automatic generation and re-scaling is recog-
nising small details and details that are unrelated to the profile. Increasing
the accuracy of these details further is difficult, and greatly increases the

complexity of the generation algorithm for diminishing returns.
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6.7 Conclusion

This Chapter outlined two automatic model creation methods that create
production-ready models from single pieces of concept artwork. Section 6.3
proposed a re-scaling algorithm using a premade base mesh, while Sec-
tions 6.4 to 6.5 proposed a reconstruction algorithm that generates models
from an extracted skeleton. Both methods are suitable for use in rapid pro-
totyping and content generation pipelines with limited format input data.
Model generation runs without requiring human judgement and produces
acceptable results for a range of character types and shapes. With the gen-
eration of bone structure and vertex weighting data, models are appropriate
for use in low-resolution realtime applications such as video games.

This is a step forward in the area of automatic content generation, and has
the potential to save large amounts of time when prototyping and developing
low-poly products.

A mesh surface difference algorithm was implemented in Section 6.6 and
was used to evaluate the results of the algorithm against artist created con-
tent. Model generation using lofted segments showed good results across a
wide range of input, with a reasonable match against the artist generated
versions of each model.

As outlined in Section 6.5, there are still many problems to be solved
even with our limited input dataset. Creating a mesh from a single image
is a complex topic that relies in no small part upon human perception. The
addition of an extra dimension inherently requires the creation of extra data
with an eye to artistic style and character design. These algorithms fill
the gap between context-free general meshing algorithms and contextually
driven manual creation of character meshes by an artist. It is a small first
step into an area of research that has great potential benefit to the video

games industry.
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Figure 6.34: An example of mesh generation from a typical concept image.
The 2D concept (a) is separated from the background (b) and a bent skeleton
(¢) is generated and used to create polygonal shells (d). The profile view (e)
shows clearly how the shells create a 3D representation of the input image.
The final model (f - h) is mapped with textures based on the initial concept
artwork and contains bone and vertex weighting information appropriate for
animation. Details such as the hair and ears are correctly transformed into
3D, and mechanical objects such as the gun and knife have sharp edges. The
complexity of the model is determined by the number of sections generated
by the algorithm, and can in turn be used to generate different LOD (Level
of Detail) meshes for realtime applications (i - 1).
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(d) (e)

Figure 6.35: Several steps illustrating mesh generation from concept artwork.
The concept artwork (a) is analysed and a bent skeleton (b) used to produce
swept shells (¢) that form the final model. Perspective views from the top
(d) and bottom (e) show that the correct body shape is produced in 3D.
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(h) (i)

Figure 6.36: Mesh generation for fabric components produces acceptable
results (a, b & f) if the fabric is not a thin sheet and instead is given form
by the obscured (b & c¢) or implied (e) underlying objects. The top (g & 1)
and bottom (h) views show how the depth is preserved.

[
(e)

Figure 6.37: Comparing the front (d) and side (e) views of a model shows
how the original concept art (a) can be stripped of dark borders and used
to map the sides of the generated model. This figure also shows multiple
characters in the input image. While the resulting mesh (c) is still a good
3D representation, the lack of segmentation (b) means that animation and
repositioning is unlikely to work correctly.
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Figure 6.38: The reprojected source image (a) and three associated models
for evaluation. Image (b) shows the original 3D model whilst (c) is generated
from scratch using the method in Section 6.4.4 and (d) is rescaled from a
generic base mesh in Section 6.3.

(a) (b) (©) (@)

Figure 6.39: Evaluation of different generation techniques using a surface
error metric. Blue shows areas of high correlation, while red shows areas of
low correlation. Images (a) and (b) show the front and back respectively of
the original model compared to the generated model. Note especially the
large error around the feet and the neck muscles, both of which are difficult
to generate. In comparison, these parts have high correlation in the rescaled
model (c¢) and (d), however it can be seen in image (d) that the rescaled
hands have low correlation due to the incorrect depth scaling.

175



()

Figure 6.40: The reprojected source image (a) and three associated models
for evaluation. Image (b) shows the original 3D model whilst (c) is generated
from scratch using the method in Section 6.4.4 and (d) is rescaled from a
generic base mesh in Section 6.3. Image (e) shows the worst-case scenario,
which is the side view of the generated model. The extent of the missing
details can be seen in Figure 6.41.
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Figure 6.41: Evaluation of different generation techniques on the squid model.
Blue shows areas of high correlation, while red shows areas of low correlation.
Images (a), (b) and (c) show the front, side and back respectively of the
original model compared to the generated model. The distribution of error
is very similar to the rescaled model (d - f), although subtle differences can
be seen and in general the rescaled model has a lower correlation. This is
especially visible when comparing the two front views (a) and (d). Comparing
the back views (c¢) and (f) also shows the complete lack of a centre tentacle in
the rescaled model. The rescaled model appears to have a better correlation
with the head, and while it is difficult to compare the antennae the tips are
blue in the generated model and red in the rescaled model which indicates a
lack of correlation as they move away from the body.

177



(a) (b) (c)

Figure 6.42: Typical examples of the models and generated images used to
create the results in Table 6.3. The top row shows the model Lin, and the
bottom row Lin’s Mum. Column (a) is the re-projected source image, with
rows (b) and (¢) showing the surface difference metric projected into the
artist generated model and the automatically generated model respectively.
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Chapter VII

Conclusion

7.1 Limitations and Future Work

Style is difficult to quantify, and even within the limited scope of this thesis
numerous assumptions were made to keep algorithmic complexity down and
ensure viable results could be generated. Even so there are areas where
the algorithms fail, and the techniques outlined in each chapter rarely work
outside of the imposed constraints. This section outlines some of the largest
assumptions and limitations, and outlines areas where future work would
have the largest impact in improving the results.

The initial results show enough promise to open up the area of visual
style understanding to further research. Future work could encompass bet-
ter understanding of image contents and fix outlying cases in the existing
methods, or it could focus upon expanding the work in this thesis to cover

more properties, styles, and a wider range of input data.

When studying both Line Style and Characteristic Proportions, it was
assumed that the measured metrics encompassed the most significant con-
tribution to the overall visual style. While this is true for the datasets used,
there are examples of monochrome cartoon images where the artists’ style
is best described by other metrics, such as the type of shading used, the
position of the image within a page, or the contents of any associated text.

Additionally, greyscale and coloured images are likely to have significantly
more style related properties than the measured line and Geon information.
No metrics were used to differentiate types of line stroking or borders be-
tween different colours in images. Properties such as the colour palette, the

lighting setup or even the original medium are candidates for representing
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stylistic data. If these unmeasured properties hold more information than
the measured line and Geon properties, then the style identification and ma-
nipulation methods outlined in Chapters 3 and 5 will not produce meaningful
results.

To expand the style manipulation methods further and ensure they are
robust when dealing with a wider range of inputs, future work should concen-
trate on developing a wider range of more robust metrics, such as the colour,
shading, or lighting properties outlined above. Additionally, more accurate
transformation could potentially be developed using techniques that bet-
ter understand image content. Rescaling and reshaping lines often caused
overlaps or created gaps, and similar artifacts would occur with additional
metrics. Developing new methods that performed these transformations with
fewer artifacts would improve the style transformation.

Methods based around Characteristic Proportions only operate at a level
of intermediate complexity. This assumes that input images have a roughly
consistent complexity and that intermediate level details are the most signif-
icant when measuring style properties. Prior research supports the assump-
tion that IC-features offer the best image metrics, this does not exclude the
fact that other detail or complexity levels may offer additional important
details.

The existing database comparison methods could be extended to operate
at more detail levels. Ideally each Geon could contain a number of children
that are themselves IC-features in relationship to the parent. An example
where this is important are the facial features within the head Geon of a
character. The difficulty however lies in extracting and labelling the parts,
because within cartoon and hand-drawn imagery these vary significantly in
appearance. Future work expanding upon Characteristic Proportions would
need to develop faster and more robust sub-image extraction techniques.

One of the largest visual artifacts in both the generated and rescaled 3D
models is the lack of a back-facing or side-facing texture. The ability to
generate a model from only one image introduces the limitation that only
one texture is available for UV-mapping and therefore a significant amount
of occluded texture information is lacking. Minor problems around texture

seams are solved through texture expansion, however there still remain a

180



number of issues. The most obvious artifact is the repetition of faces or
uniquely identifying details on the back of a model. A smaller problem is
that encircling details such as belts or clothing seams often do not align
correctly where the texture wraps from the front to the back.

There is significant room for improvement through further research in
the field of texture synthesis. Using the Geon and complexity information
could provide contextual cues to identify details in the texture that should be
unique to the front face. Texture generation could replace these details for
the back faces, or a more complex type of UV-mapping could be developed
to replace the linear view projection currently used. Any improvement of
the occluded textures would make a large difference to the appearance of the
final model.

A second major limitation in the model generation process arises when
inferring depth only from the front view and without any context. This
results in areas including the feet and the face that are flattened and do not
have the 3D form that would be expected.

There are two approaches future research could take to address this is-
sue. A hybrid system could be developed using the best of rescaling and
generation. A 2D image could potentially be decomposed into Geons with
associated depth information extracted from a predefined database. At the
current Geon level this would cope with larger details such as feet, and further
detail could be implemented progressively at smaller levels.

A second approach would be implementing additional depth cues similar
to the contour extraction already in use. The single-view concept artwork
used in many of the examples had a shadow component that could give
additional details about the depth. Self-shadowing and ambient occlusion
cues could also be used in cases where the artwork is more realistic. There
appears to be little existing work in this area.

Overall there are a number of limitations with the content manipulation
and creation methods outlined in this thesis. It is anticipated that future
work could address these and improve the results without adding additional
user or input requirements. However, the difficulty of extracting informa-
tion from such constrained input means that diminishing returns are seen

for each new technique implemented. This thesis outlines algorithms that
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demonstrate a tradeoff between accuracy and complexity.

7.2 Conclusion

This thesis explores the areas of visual and artistic style in the context of
computer science, using these traditionally intangible artistic properties to
enhance existing content manipulation algorithms and develop new content
creation methods. Line style research showed that appearance differed be-
tween artists, and this property could be both measured and adjusted. The
proportions of image subsections and their relationships also differed between
artists, leading to an understanding of Characteristic Proportions that al-
lowed the isolation of artistically significant properties. This enabled a deeper
level of style transfer and categorisation.

A vectorization technique was developed specifically for line based car-
toon content, leading to a line scaling algorithm that preserves image form.
Chapter 6 then outlined two different approaches to 3D content creation
using 2D image properties. Both methods are suitable for use in rapid proto-
typing and content generation pipelines with limited format input data, and

are designed to run without requiring human judgement.

What we perceive as style is a hugely complex artifact of the human visual
system combined with lifelong environmental experience. While the results
in this paper begin to merge standard computer graphics methods with a
more implicit understanding of object appearance, this is only currently pos-
sible with a constrained input range and numerous underlying assumptions.
The results are a tradeoff between algorithmic complexity, breadth of input
options, and human oversight.

Chapter 3 explored the relationship between line properties and artists.
Prior research was successfully reproduced, and further statistics developed
and evaluated. Moreover, these distributions were found to be representative
of the artistic style and not of the content of the image, meaning that in-
dividual artists could be distinguished by the line properties alone. Testing
showed that the style of an image could be changed by modifying only the

line properties. Chapter 4 outlined a method to more easily extract the un-
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derlying structure of vectors within an image. While there is no single correct
solution for the vectorization of strokes in a cartoon image, this algorithm

provides data formatted expressly toward style based algorithms.

Chapter 5 takes the idea of style manipulation further by exploring the
Characteristic Proportions of images. A new method is outlined that au-
tomatically extracts an individual artist’s style, which can then be applied
to other drawings. The ability to classify properties as artist specific or im-
age specific allows for a much more accurate understanding of the image
style than was previously possible. A range of tests was carried out across a
large body of artwork, confirming that style translation and classification is

possible using these properties.

Line and content style properties are also carried into Chapter 6, where
single images of character concept artwork are used to automatically create
3D models. Two automatic model creation methods were explored for use
in rapid prototyping and content generation pipelines. Section 6.3 proposed
a re-scaling algorithm using a pre-made base mesh, while Sections 6.4 to 6.5
discussed a reconstruction algorithm that generates models from an extracted
skeleton. This type of model generation runs without requiring human judge-

ment and produced good results for a range of different characters.

A mesh surface difference algorithm was then used to evaluate the results
of the algorithms against artist created content. Both methods reflect the
input concept artwork with only a small difference between the target model
and the automatically generated results. The evaluation was also used to

identify problem areas and fine-tune parameters in the algorithm.

Overall, this research provides style manipulation abilities that are miss-
ing from modern digital art creation pipelines, with potential applications
reaching beyond the scope of video games and electronic entertainment. This
thesis expands on the complicated and relatively unexplored area of artistic
style, and hopefully opens up further opportunities in stylistic manipula-
tion. It is a small first step into an unexplored area of research with a great

potential benefit.

183



7.3 Attribution

This research would not have been possible without the support of the artists
who generously let me use their work and who provided high-resolution

sketches and source files. Thank you.

7.83.1 Line Art

7.3.1.1 With Permission:
JORGE CHAM . Piled Higher and Deeper. Figure 5.2.

www.phdcomics.com
Crow. Not Just Nicky. Figures 5.17, 5.18, 5.22. www.nickyitis.com

CHRrIS ErLioPOULOS. Misery Loves Sherman. Figures 4.1, 4.6, 4.7,
4.8, 4.13, 4.14, 5.1, 5.11, b5.14, 5.16, 5.17, 5.18, 5.22.

www.miserylovessherman.com

OLIVER KNORZER & POWREE. Sandra and Woo. Fig-
ures 4.11, 5.1, 5.10, 5.17, 5.18, 5.19. www.sandraandwoo.com

THIERRY VIVIEN. YodaBlog. Figures 3.1, 3.7, 4.10, 4.17,
5.17, 5.18, 5.20. www.yodablog.net,www.thierryvivien.com

7.3.1.2  Fair Use:
DANIELLE CORSETTO. Girls With Slingshots. Figures 3.1, 3.7, 3.8.

www.girlswithslingshots.com
CHARLES M ScHULZ. Peanuts. Figure 5.2.

BiLL. WATTERSON. Calvin and Hobbes. Figures 5.2, 5.3.

7.3.2  Concept Artwork

7.8.2.1 With Permission:

ASHLEIGH BARRETT. www.altaeyyr.deviantart.com Kaolin
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ANDREA BIANCO. www.portfolio.andreabianco.eu Consecrated,
Creature Concept 2, Creature Concept 5, Drone Class 1, Ghost, Mecha
Concept Sketch, Night Hiss, Pilot Suit, Starship Concept Sketch

MERLIN CHENG (NANYANG POLYTECHNIC). merlinkun@yahoo.com
Monster Concept Art (Figures 6.16, 6.17, 6.18)

NicHOLAS CLOISTER. www.rpgcreatures.com Jarrazen, Dungeon

Level 1 Creature, Neverenn, Agi Septhoran
LAURA DUGGAN. shamazindustries@hotmail.com Robot Concept Art

ALEXEY GRISHIN. www.sephiroth-art.deviantart.com Vam-
pire (Figure 0.138), Swamp Imp (Figure 06.530), Red DBat (Fig-
ures 6.27, 6.28, 6.29)

DAvID HAKOBIAN. dhconnect@yahoo.com Creature Designs

GARRET ARNEY-JOHNSON. www.garretaj.com Scrapper Mechanic,
Artillery, Ninja Bot, Rat Rod, SR81 Pilot, Tank Unit, The Empirors
War Throne

EVGENIY KHE. www.evgeniykhe.deviantart.com Heavy Robot, Very
Heavy Robot, Scetch, ‘3’

KONSTANTIN MAJSTRENKO. skate_boarding@mail.ru Sketch Cyborg
(Figure 6.1), Cute Girl (Figure 6.15), Solid Dog (Figure 6.34), Ann,
Concept 2, Concept 3, Cyber Bear, Cyber Soldier, Contest Metro,
Goblins Concept, ID, Orc 2, QWERTY, Robot 1, Speed 77

CHRISTOPHER ONCIU. www.cxartist.deviantart.com Monster Ma-
nia (Figures 6.24, 6.31, 6.32, 6.33), Blue Bagonfo, Creature Character
Design Sheet, Drake Monster, Earth Golem, Land Dragon, Rihorix

JIANRAN PAN. www.ichitakaseto.deviantart.com Walker Concept,
Alien Crawler Bot Concept

185



PrROG WANG. www.progv.deviantart.com 4 Feet Mech, Anti Infantry
Robot, Assault Mecha, Cute Face, Daily Mech Paintings, Daily Practice,
Dinosaur Mech, Enter the Mech, Hummer, Just a Mech, Main Battle
Robot, Sketchs, Sniper Type, Still a Mech, Tactical Guitar, Weapon
Design

TIEREIGHT. www.tiereight.deviantart.com Man Reference,
Guardian - 237, Monster Concepts Batch 4, Trojan Leader, UEC
President, UEC Admiral

ANDY / HALCYONBRUSH. Halo Cryptum Merse Creature

7.3.2.2 Licensed under Creative Commons:

BLENDER FOUNDATION. Sintel Production Files, CC-BY. Ishtarians
Other (Figures 6.12, 6.35, 6.36), Dragon Concept Art (Figure 6.37),
Full Sintel Concept, Sintel Style. www.sintel.org

7.3.2.3  Reproduced under Fair Use:

SANGJUN LEE. . Figure 6.25. http://www.sangjunart.com/

Luict LUCARELLI. Leo’s Forest. Figures 6.3, 6.4, 6.10.

7.8.8 3D Models

7.8.83.1 With Permission:

ANNIE MENESES & GAVIN MCDOWELL. www.royalsharkart.com Lin
the Squire (Figures 6.11, 6.42), Lin’s Mum (Figure 6.42)

Nick KUIJTEN. www.pyroxene.deviantart.com Mech Armor Suit,

Akemi Homura

7.3.3.2  Royalty Free:

TucHO FERNANDEZ CALO. Archer. . www.artbytucho.com
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DAVE GIBBONS. Slug. . www.theqiwiman.com
MicKAEL LEBIHAN. Gaston Lagaffe. .
TRUONG. Laevar. Figures 6.40, 6.41.

Cyborg Ninja. Figures 6.38, 6.39

Uncredited. Psycho-Lops, Racoon, Chinaman, Tsucora Quori, Demon,
Humpty, Amy, Boy, Old Man, Sephiroth, Squall, Jabbinello

7.3.3.8  Creative Commons:
CLINT BELLANGER. Human Base Model ByY-CC-SA. Fig-
ures 6.2, 6.5, 6.7, 6.8, 6.9. www.clintbellanger.net

GORD GOODWIN. Tom Hanks Model By-CC-SA. . WWW.
gord-goodwin.blogspot.com

T1zIANA LONI. Undead By-CC. . www.unbruco.it
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