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Summary This paper presents a simple analytical and numerical approach to reconstruct the bedrock in glacier flows from given free
surface data. The approach relies on the Shallow Ice Approximation in one space dimension to describe the glacier flow dynamics.
Remarkably, we show that this complex, non-linear partial differential equation can be integrated once to yield and explicit relationship
between the ice free surface elevation and the ice depth and therefore the bedrock. The applicability of the proposed approach is
broadened by proposing a transient numerical scheme capable of reconstructing the ice depth and underlying bedrock topography.

DESCRIPTION OF THE DIRECT PROBLEM
Because the ice-mass is such a good indicator of climatic changes, it has been under intense scrutiny in the recent past.
One of the major challenges glaciologists face when it comes to understanding ice flows is that while information at the
glacier surface is easily accessible, basal quantities are notoriously difficult to access and assess [1]. Current techniques
to indirectly infer the bedrock topography rely on airborne radar measurements, a difficult and costly operation. This
paper explores the possibility of inferring the bedrock topography from the knowledge of the free surface elevation.
Consider a one-dimensional glacier flow as illustrated in Figure 1. The y-axis is aligned with gravity, pointing upwards,
and the x-axis, perpendicular to it, points in the flow direction. The glacier free surface elevation is denoted by S(x,t),
the glacier thickness by H(xt), and the bedrock by Z(x). Clearly, these three quantities are related through S=Z+B.
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Figure 1: Problem description and notations Figure 2: Glacier evolution on a flat bed of different slope
The starting point of the analysis is the Shallow Ice Approximation (SIA) which is known to describe well the evolution
of shallow glaciers providing the ice may be assumed incompressible with a constant density, inertia may be neglected,
and the ratio of the characteristic length scale in the cross-flow direction to the one of the flow direction is small [1].
Under these conditions, the glacier depth satisfies the following non-linear partial differential equation (PDE)
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where D = H3 |a_z| (AH?) in the absence of basal sliding. In eq. (1), a(x,t) is the ablation/accumulation coefficient

on the surface of the glacier, p the density of the ice, g the acceleration of gravity, and A is Glen’s flow parameter,
considered constant here. This second order pde has been extensively studied in its direct form which consists in
inferring the glacier thickness for a given bedrock form and known accumulation/ablation coefficient, the traditional
forward problem. An illustrative solution of eq. (1) for a benchmark problem inspired from Le Meur et al [2] is shown in
Figure 2. Solutions are obtained using a centred Finite Difference spatial discretization with an explicit time integrator
subject to a zero ice thickness boundary condition at both ends of the computational domain. The positivity of the
solution is explicitly enforced throughout the solution procedure. For this benchmark test, the flat bedrock is described
by Z(x) = Zy — ax where @ is the bedrock slope, Zg is bedrock topographic elevation at x = 0 ,
a(x) = a,(0.01x — 2)if x=300 and a(x) = ay(1.158 — 5.263 X 107%x) if x=>300. Tests are carried
out for values of a ranging from 0.1 and 0.5 with interval of 0.1 and ay = 0.5. The resolution of the computational

mesh is Ax = 50m and At = 0.1 year . As shown in Figure 2, the glacier evolution increases with the bed slope
meaning that the steeper the slope the thinner the glacier as expected. These results are in a good agreement with the
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results published in [2].Thus the algorithm is capable of modelling glacier evolution from a known bedrock elevation
and given flow parameters in the case of constant slope bedrock topography.

INVERSE PROBLEM SOLUTION
The inverse problem consists in inferring the bedrock topographic elevation from the known glacier free surface
elevation and a known ablation accumulation distribution over the entire glacier. The classical approach for dealing with
such inverse problems relies on PDE constrained optimization whereby, an objective expressing the mismatch between
the computed free surface elevation and the actual one is first defined and the bedrock form is optimized in order to
minimize this objective function. The approach we propose here is a direct approach in the sense that it only requires the
solution of a PDE. Indeed, the SIA still holds and may be rewritten as
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where T = H*(AH?). The function M = a—i |a—i| is known for a given glacier surface S(x). For a glacier in a steady

state, eq. (2) is an ordinary differential equation which admits the following exact solution
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known at location xg. Thus, unlike most inverse problems, an analytical solution to the bedrock reconstruction problem
exists. This solution was tested for a benchmark problem where the bedrock has a bump and is described by
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ap = 5. The glacier free surface was first inferred by solving the direct problem until a steady state is reached and then
using the free surface elevation as an input to the inverse problem. The reconstruction results can be seen in Figure 3.

X
where Cy; = HgMg fﬂ ®adx is the constant of integration which requires H and its first derivative to be

). The ablation/accumulation coefficient is as given above with
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Figure 3: Actual and reconstructed glacier depth (steady analytical Figure 4: Actual and reconstructed bedrock (unsteady numerical
approach) approach)

Figure 3 clearly confirms the validity of this simple analytical approach since the naked eye cannot distinguish the actual
and reconstructed glacier depth and bedrock topography. This should, of course, come as no surprise since both the
forward and inverse problems fulfill the same differential equation but could provide an attractive alternative to the
currently used methods to reconstruct the bedrock in glacier flows. The proposed analytical approach suffers from
limitations: it is restricted to one-dimensional glacier flows; it requires the knowledge of an integration constant; it is
inherently restricted to steady situations. To circumvent these limitations, it is possible to solve eq. (2) directly using an
implicit time integrator since explicit ones are unstable for this case. The discrete form of eq. (2) is
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The resulting system of algebraic equations is solved exactly using Newton’s method which usually converges within 10
iterations. The convergence of the reconstructed ice depth towards the actual one can be seen in Figure 4. As time
increases, the reconstructed ice thickness slowly tends towards the actual one and ultimately both are undistinguishable.
Future work will investigate the sensitivity of the reconstruction algorithm to noisy input data and use actual glacier data
available in the literature.
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