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Abstract 

The outbreak of pandemic influenza and its ability to spread rapidly makes it a severe threat to 

public health. Antiviral drugs such as oseltamivir and zanamivir are neuraminidase (NA) 

inhibitors (NI), which bind more tightly to NA than its natural substrate, sialic acid. However, 

the virus can acquire resistance to antiviral drugs by developing single point mutations (such 

as H274Y) in the target protein. Thus in some cases the drugs may not be as effective as 

expected. The high level of inconsistency exhibited by fluorometric assays and the short half-

life of the chemiluminescent assay for monitoring drug resistance lead to the need for a simple, 

label-free, reliable assay. To address this problem, this work focused on three main objectives: 

1) to determine the binding affinities of two common anti-viral drugs (oseltamivir and 

zanamivir) against the influenza NA wild type and drug resistant mutants using bioinformatics 

software Schrodinger Suite™ 2010. 2) To develop a reliable label-free, real-time, surface 

plasmon resonance (SPR) assay to measure the binding affinity between influenza viral coat 

protein neuraminidase (wild type and mutant) and anti-viral drugs. 3) To develop an SPR 

inhibition assay to quantitatively compare the interactions of sialic acid, zanamivir and 

oseltamivir with the viral coat protein neuraminidase (wild type and mutant).  

The entire docking process was carried out using Schrödinger Suite™ 2010. The 2009 

pandemic H1N1 neuraminidase (PDB: 3NSS) was used throughout the docking studies as the 

wild type structure. Five mutants (H274Y, N294S, H274N, A346N and I222V) and three 

ligands (sialic acid, oseltamivir and zanamivir) were built using the maestro module. The grid-

based ligand docking with energetics (GLIDE) module and induced fit docking (IFD) module 

were used for docking studies. The binding affinities, Gibbs free energy change (∆G) and 

molecular mechanics-generalized born energy/ solvent accessible area (MM-GB/SA) values 

for wild-type NA interactions show that both the antiviral drugs studied interact strongly with 

the wild-type protein. The ∆G values for all antiviral interactions with mutant NA forms were 

reduced in magnitude, thereby indicating that they are less favourable than interactions with 

the wild-type protein. A similar trend was observed with MM-GB/SA results. Amongst all of 

the computed values, MM-GB/SA was the closest to the experimental data. In several cases, 

the interactions between the anti-viral drugs and NA mutants were markedly less favourable 

than those between sialic acid and the same mutants, indicating that these mutations could 

confer anti-viral resistance.  
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Influenza NA wild-type and H274Y mutant were expressed in baculovirus expression system 

(BVES) in insect cells. The expressed proteins were partially purified using the standard 

purification techniques of anion exchange and size exclusion chromatography (SEC). A 

fluorometric activity assay was performed on the recombinant proteins. Both the wild type and 

the mutant showed similar level of activities. In addition, the recombinant NAs were used in 

an inhibition assay. Oseltamivir was found to be sensitive to wild type protein (IC50 = 0.59 nM) 

and resistant to the H274Y mutant protein (IC50 = 349.43 nM). On the other hand, zanamivir 

was sensitive to both wild type (IC50 = 0.26 nM) and the H274Y mutant (IC50 = 0.44 nM). This 

indicated that zanamivir was a more potent inhibitor than oseltamivir. These findings were in 

good agreement with the literature.  

An SPR assay for accurate monitoring of influenza antiviral drug resistance was developed. A 

spacer molecule (1, 6- hexanediamine) was site-specifically tethered to the inert 7-hydroxyl 

group of zanamivir. The tethered zanamivir was immobilized onto an SPR GLC chip to obtain 

a final immobilization response of 431 response units (RU). The reference subtracted binding 

responses obtained for NA wild-type and H274Y mutant were analysed using the ProteOn 

Manager™ Software tools. The SPR curves were fitted to a simple Langmuir 1:1 model with 

drift to obtain association rate constant (ka) and dissociation rate constants (kd). The relative 

binding values obtained from literature and the current SPR assay (1.9 and 1.7 respectively) 

suggested that the current SPR assay yielded similar results to the existing labelled enzymatic 

assay. In addition, an SPR inhibition assay was developed. The calculated IC50-spr values were 

compared and it was observed that oseltamivir was sensitive to wild type protein (IC50-spr = 7.7 

nM) and resistant to the H274Y mutant protein (IC50-spr = 256 nM). On the other hand, 

zanamivir was sensitive to both wild type (IC50-spr = 2.16 nM) and the H274Y mutant (IC50-spr 

= 2.4 nM). Sialic acid was also found to be sensitive to both wild type (IC50-spr = 5.5 nM) and 

H274Y mutant (IC50-spr = 3.25 nM). In the cases studied, the viral proteins remained sensitive 

to sialic acid, consistent with retention of virulence of these mutant strains. It was concluded 

that zanamivir is a more potent inhibitor than oseltamivir for treating the H274Y mutant. 

Comparison of the SPR inhibition results with the docking results revealed a similar trend. The 

wild-type NA and H27Y mutant retained binding affinity for sialic acid and zanamivir. 

Oseltamivir showed a significant decrease in binding affinity for the H274Y mutant compared 

with the wild-type. This was because of the disruption of the salt bridge formation within NA 

that was vital for oseltamivir activity.  
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To my knowledge, this is the first SPR biosensor assay developed to monitor influenza antiviral 

drug resistance. There is a tremendous scope to extend this study to more mutants and new 

antiviral drugs. This could pave the way for a reliable SPR biosensor assay to replace low 

consistency labelled enzymatic assays.  
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L1) Ladder, L2) Sf9 cell pellet (control 72 h), L3)  Sf9 cell pellet (control 96 h), 
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gradient for 20 column volumes (CV). The flow through and elution fractions 

were collected tested for the presence of influenza NA.  
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Figure 4-19 SDS-PAGE analysis of anion exchange chomatography fractions. L1 & 11) 

ladder, L2) injected sample, L3) flow through, L4-10 & L12-15) elution fractions. 
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through and elution), detected with the monoclonal influenza A H1N1 (swine flu 

2009) NA / neuraminidase antibody. L1) ladder, L2) injected sample, L3) flow 

through, L4-8) fractions corresponding to fractions highlighted in Figure 4-19 
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Figure 4-21 Size exclusion chromatogram for superdex 200 gel filtration column. Proteins 

were separated based on their size. The fractions were collected tested for the 
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Figure 4-22 SDS-PAGE analysis of the SEC purified influenza NA under reducing conditions 

and commassie staining. L1) ladder, L2-7) fractions corresponding to peak 

indicated in the SEC chromatogram (Figure 4-20). L2 has a single band at 55 kDa 

corresponding to NA. This band is also present in L3-5 along with a 60 kDa 

contaminant. 
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H1N1 (swine flu 2009) NA / neuraminidase antibody (same fractions as L2-5 in 

Figure 4-21) for confirming the presence of NA. 
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NA H274Y  cell lysated, on 1mL Resource™ Q anion exchange column at pH 

6.0. Bound proteins were eluted using increasing salt concentration (step elution).  

The flow through and elution fractions were collected and analysed. 
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Figure 4-25 Dot blot analysis of anion exchange chomatography run on NA wild type (step 

elution). 1) injected sample, 2-6) fractions eluted at 25% buffer B, 7-12) fractions 

eluted at 60% buffer B and 13-18) fractions eluted at 100% buffer B. 
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NA wild type and NA H274Y mutant, detected with the monoclonal influenza A 

H1N1 (swine flu 2009) NA / neuraminidase antibody. L1) ladder, L2) NA H274Y 

and L3) NA wild type.  
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at Environmental Science & Research (ESR) at the National Centre for 

Biosecurity & Infectious Disease (NCBID).  
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Figure 4-28 Activity assay for cell culture supernatant. The assay was performed at 

Environmental Science & Research (ESR) at the National Centre for Biosecurity 

& Infectious Disease (NCBID).  The supernatant activity levels observed were not 

as high as seen for the cell pellets. This suggested that most of the proteins were 

cell associated while the remaining was secreted into the cell culture supernatant. 
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Figure 4-29 Determination of IC50 values for oseltamivir with recombinant NA wild type and 

H274Y.   The recombinant NA’s (wild type and H274Y) and the original viruses 

were incubated with increasing concentrations of oseltamivir.  Data presented are 

mean ± S.D. of duplicate measurements for recombinant NA. 
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H274Y.   The recombinant NA’s (wild type and H274Y) and the original viruses 

were incubated with increasing concentrations of zanamivir.  Data presented are 

mean ± S.D. of duplicate measurements for recombinant NA.   
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sample for the chromatography (NA wild type and H274Y cell lysates) and the 

fractions pooled after chromatography were tested for the activity. All Data 

presented are mean ± S.D. of duplicate measurements. 
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Figure 5-1 Synthetic chemistry step 1 - Synthesis of N-Boc-1,6-hexanediamine-zanamivir 

conjugate (Image drawn using Chemdraw Ultra 6.0). 
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Figure 5-2 Synthetic chemistry step 2 - Boc protection removal using trifluoroacetic acid 

(TFA) (Image drawn using Chemdraw Ultra 6.0). 

 

 

5-2 

Figure 5-3 Immobilization of zanamivir-spacer conjugate using strategy 1. The figure shows 

activation of the chip surface with a mixture of EDAC and NHS, followed by 

zanamivir-spacer conjugate and capping of un-reacted surface ester groups with 

ethanolamine-HCl. The final ligand immobilized level (ΔRU) was 190 RU. 
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Figure 5-4 Immobilization of zanamivir-spacer conjugate using strategy 2. The figure shows 

activation of the chip surface with a mixture of EDAC and NHS, followed by 

zanamivir-spacer conjugate and capping of un-reacted surface ester groups with 

ethanolamine-HCl. The final ligand immobilization level (ΔRU) was 431 RU. 
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Figure 5-5 Reference-subtracted SPR sensograms showing binding curves for various 

concentrations of NA wild-type protein (5.2 nM to 0.1625 nM) with zanamivir-

spacer conjugate immobilized on the chip surface. 
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Figure 5-6 Reference-subtracted SPR sensograms showing binding curves for various 

concentrations of NA H274Y protein (6.1 nM to 0.191 nM) with zanamivir-spacer 

conjugate immobilized on the chip surface. 
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Figure 5-7 Wild-type NA SPR binding curve fitting using Langmuir 1:1 model. A) The data 

presented here are of five independent experiments for six concentrations (5.2 nM, 
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2.6 nM, 1.3 nM, 0.65 nM, 0.325 nM and 0.1625 nM) yielding identical results. 

The fitted lines (solid lines) pass through the experimental curves. B) The 

residuals, showing the goodness of the fit with the original experimental data. 

 

 

Figure 5-8 H274Y NA SPR binding curve fitting using Langmuir 1:1 model. A) The data 

presented here are of five independent experiments for six concentrations (5.2 nM, 

2.6 nM, 1.3 nM, 0.65 nM, 0.325 nM and 0.1625 nM) yielding identical results. 

The fitted lines (solid lines) pass through the experimental curves. B) The 

residuals, showing the goodness of the fit with the original experimental data. 
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Figure 5-9 Wild-type NA SPR binding curve fitting using Langmuir 1:1 model with drift. A) 

The data presented here are of five independent experiments for six concentrations 

(5.2 nM, 2.6 nM, 1.3 nM, 0.65 nM, 0.325 nM and 0.1625 nM) yielding identical 

results. The fitted lines (solid lines) pass through the experimental curves. B) The 

residuals, showing the goodness of the fit with the original experimental data. 
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Figure 5-10 H274Y NA SPR binding curve fitting using Langmuir 1:1 model with drift. A) 

The data presented here are of five independent experiments for six concentrations 

(5.2 nM, 2.6 nM, 1.3 nM, 0.65 nM, 0.325 nM and 0.1625 nM) yielding identical 

results. The fitted lines (solid lines) pass through the experimental curves. B) The 

residuals, showing the goodness of the fit with the original experimental data. 
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Figure 5-11 Reference-subtracted SPR sensograms showing binding curves for 6 nM NA wild-

type protein incubated with various concentrations of sialic acid (0 nM to 1000 

nM).The data presented here correspond to three independent experiments. The 

samples were injected in a shuffled order. 
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Figure 5-12 Reference-subtracted SPR sensograms showing binding curves for 6 nM NA 

H274Y protein incubated with various concentrations of sialic acid (0 nM to 1000 

nM).The data presented here correspond to three independent experiments. The 

samples were injected in a shuffled order. 
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Figure 5-13 Reference-subtracted SPR sensograms showing binding curves for 6 nM NA wild-

type protein incubated with various concentrations of zanamivir (0 nM to 1000 

nM).The data presented here correspond to three independent experiments. The 

samples were injected in a shuffled order. The samples were also reshuffled in-

between experiments (see methods section). 
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Figure 5-14 Reference-subtracted SPR sensograms showing binding curves for 6 nM NA 

H274Y protein incubated with various concentrations of zanamivir (0 nM to 1000 

nM).The data presented here corresponds to three independent experiments. The 

samples were injected in a shuffled order. The samples were also reshuffled in-

between experiments (see methods section). 
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Figure 5-15 Reference-subtracted SPR sensograms showing binding curves for 6 nM NA wild-

type protein incubated with various concentrations of oseltamivir (0 nM to 1000 
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nM).The data presented here correspond to three independent experiments. The 

samples were injected in a shuffled order. 

 

 

Figure 5-16 Reference-subtracted SPR sensograms showing binding curves for 6 nM NA 

H274Y protein incubated with various concentrations of oseltamivir (0 nM to 

1000 nM).The data presented here correspond to three independent experiments. 

The samples were injected in a shuffled order. 
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Figure 5-17 Determination of IC50-SPR values for sialic acid, zanamivir and oseltamivir with 

recombinant NA wild type and H274Y. The recombinant NA’s (wild type and 

H274Y) were incubated with increasing concentrations of inhibitors. Respective 

IC50-SPR values are also presented in this graph. The data presented are mean ± S.D. 

of triplicate measurements for recombinant NA. 
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Figure 6-1 Structures of  sialic acid derivatives a) MUNANA substrate used in fluorescent 

assay  b) 1,2-dioxetane derivative of sialic acid used in chemiluminescent assay 

c) proposed structure for future SPR assay development. 
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1. Introduction 

 

1.1  Background 

The spread of influenza virus as a pandemic results in the deaths of millions of people 

annually (Yuen 2005 ; Maines et al. 2005). In the early 20th century new strains of the 

influenza virus emerged, killing up to ten million people.  In April 2009, a new flu 

strain called the swine flu emerged that combined genes from human, pig and bird flu. 

On June 11, 2009, the World Health Organisation declared the outbreak of swine flu to 

be a pandemic. This outbreak of pandemic influenza and its ability to spread rapidly 

made it a severe threat to public health (http://www.cdc.gov/H1N1flu/qa.htm , 30th 

October, 2010). The current antiviral drugs such as oseltamivir and zanamivir inhibit 

the viral coat protein neuraminidase (NA), and bind more tightly to NA than its natural 

substrate, sialic acid. However, the virus can acquire resistance to antiviral drugs by 

developing single point mutations (such as H274Y) in the target protein NA. The 

ability of the virus to develop resistance against antiviral drugs, specifically 

neuraminidase inhibitors (NIs) could vary with the type of mutation it can carry. Hence, 

there is a need to rapidly monitor the efficacy of these drugs with new mutant strains of 

the influenza virus, such as during the recent swine flu pandemic. This thesis work 

aimed to develop a reliable label-free, real-time, surface plasmon resonance (SPR) 

assay to measure the binding affinity between NA and anti-viral drugs. 

1.2  Influenza virus  

Influenza is an infectious disease caused by the influenza viruses that belong to the 

family orthomyxoviridae (Amano and Cheng 2005; Shtyrya et al. 2009). Influenza 

viruses are classified as influenza A, B and C (von Itzstein 2007; Wagner et al. 2002). 

Influenza A is the most commonly occurring of these and is further classified based on 

its surface glycoproteins hemagglutinin (HA) and NA e.g. H1N1, H5N1, which refers 

to viral strains that contain identical NA (N1) but a different HA (H1 and H5) on their 

surface (Oxford et al. 2002). There are 16 subtypes of HA and 9 subtypes of NA 

(Colman 2009; Liu et al. 1995; von Itzstein 2007). The severity of each strain of the 

virus depends on the type of HA and NA it carries (Fouchier et al. 2004). These 

subtypes are classified by their interaction with antibodies. All of the variants within a 

http://www.cdc.gov/H1N1flu/qa.htm
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given subtype will be neutralized by a similar set of antibodies (Boonsoongnern et al. 

2005). These surface glycoproteins are carbohydrate-recognizing proteins that are 

known in humans to recognize sialic acid (N-acetylneuraminic acid or NANA) (von 

Itzstein 2007). Both proteins play a significant role in viral infection.  

Influenza virus particles are usually approximately spherical and 80 to 120 nm in 

diameter. A lipid bi-layer encapsulates the viral RNA. The six segments of viral RNA 

code for eight different proteins (Skehel and Wiley 2000). Table 1-1 describes the 

function of eight virus-encoded proteins of influenza virus A. Continuous random 

mutation of the viral RNA results in a process known as antigenic drift. Antigenic drift 

occurs when a host is infected with two or more different strains of influenza and the 

genetic information of these strains is recombined to form a new strain (Figure 1-2). 

When a new strain is produced through antigenic drift, it is highly unlikely that the 

human immune system has already developed immunity to this new strain of the virus 

(Eckert and Kim 2001) and this is thought to result in pandemic strains. This makes the 

new strain a real concern for health authorities and hence requires continuous 

monitoring of circulation of new strains of influenza viruses (Carrat and Flahault 2007; 

McDonald et al. 2007). 

1.3  Influenza pandemic  

The first laboratory diagnosis of influenza was first performed in 1932, although 

influenza was first reported in the year 1173 (Smith 1995). An outbreak in 1580 

originated in Asia and started to spread to Africa, Europe and America. Hence, it was 

classified as a pandemic. An outbreak in the 17th century was considered an epidemic 

because the spread of the infection was confined to only America and Europe (Potter 

2001; Laver and Garman 2002). The 18th century saw two influenza pandemic 

outbreaks, in 1729 and 1781. There were two pandemics in the 19th century (1830, 

1898-1900) and four in the 20th century. The 1918 pandemic was the most severe attack 

and mortality increased steeply (Potter 2001). The infection could have started in 

America and then spread to Africa, India, China, New Zealand, the Philippines and the 

whole of Europe. It is estimated that up to 40% of the world's population were infected, 

and more than 50 million people died in the pandemic (Potter 2001).  
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Table 1-1: Influenza virus proteins and their functions 

S.no Protein Function Reference 

1 PA Viral RNA polymerase subunit A- plays important 

role in transcription and replication 

(Perez and Donis 

2001) 

2 PB 1 Viral RNA polymerase subunit  B1- plays an 

important role in transcription and replication 

3 PB 2 Viral RNA polymerase subunit B2- plays an 

important role in transcription and replication 

4 HA Hemagglutinin -Adheres the virus to the target host 

cell 

(von Itzstein 

2007) 

5 NA Neuraminidase -Release of virus from the host cell 

and the mobility of the virus through the upper 

respiratory tract. 

(Chong et al. 

1992) 

6 NP Nucleoprotein- Changes RNA synthesis to 

replication mode from transcription mode 

(Biswas et al. 

1998) 

7 M1 
Matrix protein - Form a coat inside the virus 

envelope and plays a crucial role in budding mature 

viruses. 

(Wakefield and 

Brownlee 1989) 

M2 Membrane protein -Transportation of protons into 

the virus 

(Schnell and 

Chou 2008) 

8 NS1 Nonstructural protein-1- Inhibits antiviral interferon 

production 

(Salahuddin and 

Khan 2010) 

NS2 Nonstructural protein-2- Transport of viral 

ribonucleoprotein from nucleus to the cytoplasm 
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Figure 1-1: Structure of influenza virus with surface glycoproteins hemagglutinin 

and neuraminidase. (http://reference.medscape.com/features/slideshow/h1n1-

influenza , 14th January, 2013) 

 

Figure 1-2: Antigenic drift occurring in a pig infected with different strains of 

influenza. This allows sharing of genetic information between the strain, leading to 

the development of an entirely new strain (http://www.bbc.co.uk/news/health-

12128090 , 14th January, 2013)  

The severity was at its peak in Spain, hence, this pandemic is also called the Spanish 

flu. In 1957, the H2N2 (combination of human and duck) virus spread throughout Asia, 

known as the Asian flu, killing at least two million people.The H3N2 virus outbreak in 

Hong Kong in the year 1968 killed up to one million people globally (Laver and 

http://reference.medscape.com/features/slideshow/h1n1-influenza
http://reference.medscape.com/features/slideshow/h1n1-influenza
http://www.bbc.co.uk/news/health-12128090
http://www.bbc.co.uk/news/health-12128090
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Garman 2002). In April 2009, there was an outbreak of H1N1 virus. This was a second 

H1N1 outbreak (the first outbreak being in 1918). This virus was characterized as a 

novel strain of H1N1 possessing genetic information of bird, swine and human flu 

viruses (Trifonov et al. 2009). The swine flu outbreak in the year 2009 affected 18% of 

the New Zealand population. 1122 people were hospitalized, among them 102 people 

carried severe infection and were treated in intensive care units (ICU). Up to 49 New 

Zealanders died in this pandemic (Wilson 2012). 

 In 1976 the outbreak of swine flu in New Jersey resulted in a mass influenza 

vaccination program. Low antibody titers and vaccine side-effects lead to a major 

failure of this program. This shifted the world’s attention to antiviral drugs against 

influenza, which are the first line of defence available to date (Laver and Garman 

2002). Based on the virus infection mechanism (described in detail in Chapter 2), 

influenza HA and NA became the most preferred antiviral drug targets. HA and NA 

interact with NANA present on the host cell surface. Several NANA analogues have 

been developed as antiviral drugs, namely NA inhibitors.  

Table 1-2:  Spread of influenza as a pandemic  

1.4  Objectives  

The major objective of this thesis was to develop an SPR assay to determine the 

binding affinities of two common anti-viral drugs (oseltamivir and zanamivir) against 

the influenza NA wild type and drug-resistant mutant H274Y. To achieve this, the 

following sub-objectives were addressed: 

Pandemic Year Number of 

deaths 

Virus  

sub type 

Reference 

Spanish flu 1918 20 to 100 million H1N1 (Laver and Garman 2002; 

Mills et al. 2004) 

Asian flu 1968 1 to 1.5 million H2N2 (Laver and Garman 2002) 

Hong Kong flu 1957 1 million H3N2 (Laver and Garman 2002) 

2009 swine flu 2009 18,000 H1N1 (Trifonov et al. 2009) 
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1.  Docking studies of influenza antiviral drugs against the influenza protein NA 

(wild type and mutant) were carried out using the bioinformatics software 

Schrodinger Suite™ 2010.  

2. Recombinant influenza NA (wild type and mutant) were expressed using 

baculovirus expression systems (BVES) in High-FiveTM  insect cells and 

purified using standard purification techniques such as anion exchange and size 

exclusion chromatography . 

3. A spacer molecule was tethered to the 7 hydroxyl group of zanamivir and this 

zanamivir spacer conjugate was immobilized on to an SPR GLC sensor chip.  

4. An SPR assay was developed to measure the kinetics of interactions between 

influenza NA and immobilized zanamivir.  

5. The immobilized zanamivir was treated as a bio-specific ligand to NA isoforms 

and an SPR inhibition assay was developed to quantitatively compare the 

interactions of sialic acid, zanamivir and oseltamivir.  

1.5  Thesis organization  

Chapter 2 comprises a review of the literature. The literature review is divided into four 

parts: a) Influenza virus and antiviral drugs, b) Molecular docking, c) BVES for 

recombinant protein production in insect cells and d) Application of SPR to virus 

detection.  In the first part of this chapter, a detailed description of influenza virus 

structure, mechanism of infection and assays used for measuring of antiviral drugs 

sensitivity are described. In the second part, a brief outline of molecular docking 

simulations are described. In the third part, an overview of replication and assembly 

and the development of baculovirus and different strategies used in BVES are 

described. The final part of this chapter describes the principles of SPR and its 

application in virus detection.  

In Chapter 3, the main focus is on calculating viral resistance using molecular docking 

simulations. Calculation of Gibbs free energy change (ΔG) and MM-GB/SA 

(mechanics-generalized born energy/solvent accessible area) values for the antiviral 

drugs and sialic acid interactions with wild type NA and different NA mutants (H274Y, 

N294S, H274N, I222V & A346N) are described in detail. The entire docking process 
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was carried out using Schrodinger Suite™ 2010. The grid-based ligand docking with 

energetics (GLIDE) module and induced fit docking (IFD) module in Schrödinger were 

used for docking studies. The optimized potentials for liquid simulation (OPLS) force 

field were used for all simulations. The docked results were analyzed using the GLIDE 

pose viewer module. The computed energy values were used to calculate binding 

affinities, which were compared with the binding affinities reported in the literature.   

Chapter 4 describes the use of flashBACTM BEVS technology for expression of NA. 

BEVS has been widely used for expressing foreign genes (Smith et al. 1983) in insect 

cells. Furthermore, growth and maintenance of two commonly used insect cell lines, 

Sf9 (Spodoptera frugiperda) and High-Five™ (Trichoplusia ni) are described in this 

chapter. In addition, cloning and site directed mutation, transfection technique and 

protein expression analysis used in this project are discussed in detail.  

Chapter 4 also describes the purification of NA using standard purification techniques, 

such as anion exchange and size exclusion chromatography. The recombinantly 

generated NAs were sent for external testing to the Institute of Environmental Science 

& Research (ESR) at the National Centre for Biosecurity & Infectious Disease 

(NCBID).  The samples  were  tested  for  NA  activity  using  a  fluorometric  assay  

that uses fluorogenic 2′-(4-methylumbelliferyl) -α-d-N-acetylneuraminic (MUNANA) 

as a substrate. The results of the assays, performed in the presence and in the absence of 

antiviral drugs, to measure the sensitivities of the drugs to different NA isoforms are 

discussed in detail in this chapter. The IC50 values were used to compare the 

sensitivities of the antivirals to a particular NA isoform. 

Chapter 5 describes the development of a simple, label-free, real-time surface plasmon 

resonance assay to measure the kinetics of zanamivir and NA (wild type and H274Y 

mutant) interactions. Synthesis of zanamivir-spacer conjugate, immobilization of the 

conjugate to the sensor chip and SPR interaction analysis are discussed in detail in this 

chapter. Moreover, this chapter describes the development of inhibition assays to 

monitor NIs drug resistance. The proposed SPR assay results were compared with 

results obtained from the fluorescent labelled NA activity assay (Chapter 4), molecular 

docking results (Chapter 3) and kinetics data reported in the literature.   

An overall set of conclusions and recommendations for further work are presented in 

Chapter 6. 
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2. Literature Review 

 

2.1   Introduction 

This chapter reviews the structure of influenza surface protein NA, effect of 

glycosylation on NA’s activity, recombinant NA expression and purification and the 

methods used for detecting NA’s activity. This is followed by an overview of 

baculovirus expression systems. Finally the principle and applications of SPR for virus 

detection are reviewed.  

2.2   Neuraminidase structure  

The influenza neuraminidase (NA) was first described as receptor-destroying enzyme 

(RDE) by George Hirst in 1941. Hirst mixed red blood cells with allantoic fluid 

infected with influenza virus at 0°C and observed that cells started to agglutinate. When 

these cells were heated to 37°C, the virus eluted from the cells and the already infected 

red blood cells were not able to re-agglutinate when mixed with fresh allantoic fluid, 

while the eluted virus could agglutinate fresh red blood cells. Hirst concluded that the 

virus possessed an enzyme which might have disrupted the receptors recognized by the 

virus when the mixture of red blood cells and virus were warmed to 37°C (Hirst 1941). 

It was later discovered that the RDE was disrupting sialic acid or N-acetyl neuraminic 

acid (NANA) from the cell surface. Because the enzyme cleaved sialic acid, it became 

known as sialidase (Gottschalk 1957). As it was discovered that NA interacted with 

NANA, until late 1940s it was believed that NA was responsible for red blood cell 

agglutination at lower temperatures and destroyed NANA at 37°C. In 1949 Stone, 

discovered that NA was not involved in agglutination and another enzyme responsible 

for agglutination was later identified as hemagglutinin (HA) (Stone 1949). The first 

electron microscope image of influenza virus showed spiked projections of HA and NA 

from the virus surface coating the virus particles. After this discovery, HA and NA 

were called viral coat proteins.   

The influenza NA is made up of 470 amino acid residues and consists of several 

domains such as the cytoplasmic, transmembrane, head, and stem domains. The stem 

connects the head to the transmembrane domain (Shtyrya 2009). Often NA’s structure 

is described as resembling the shape of a mushroom. NA is a homotetramer with four 
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identical subunits (Figure 2-1). Due to variable glycosylation the molecular mass of NA 

is considered to be approximately 240 kDa (each monomer is approximately 60 kDa) 

(Colman 1994; Colman and Ward 1985).  One viral particle may contain up to 50 

tetramers, that can form clusters on the viral surface (Harris et al. 2006). The enzyme’s 

head domain is formed by six identical antiparallel β-sheets that consists of the active 

site and calcium binding site. The β-sheets form of a propeller-like structure. Loops 

connecting these β-sheets in the head domain are of extreme importance for the enzyme 

because they are the most variable parts of the structure that correspond to a particular 

subtype of NA.  There are eight disulfide bonds in the NA structure that helps in the 

stability of the structure. The calcium binding site is known to stabilize the structure of 

the enzyme even at low pH (Takahashi et al. 2003). Amino acid residues that form the 

active site of the enzyme are constant for influenza A and also for influenza B NA 

(Shtyrya 2009).  

2.3  Effect of glycosylation on neuraminidase activity  

Glycosylation is critical for the enzyme’s activity and proper folding. Asparagine 

residues, which form the glycosylation sites are Asn83, Asn144, Asn146, Asn234 and 

Asn389. It has been shown that the deletion of the glycosylation site at Asn146 causes a 

20-fold decrease in activity, at Asn 144 leads to changes in substrate specificity, at Asn 

83 and Asn 398 causes incorrect protein folding (Li et al. 1993; Saito and Kawano 

1997).  

Wu et al. (2009) investigated the effect of glycosylation on the activity of the protein. 

As seen by Deroo et al. (1996), these researchers also found that the recombinant 

protein existed in monomeric, dimeric, and tetrameric forms, but only the tetrameric 

form of the protein exhibited activity. This suggests that there could be some unique 

properties associated with the tetrameric form that are absent in other inactive forms of 

NA. Their results demonstrate that proper glycosylation is absolutely necessary for the 

formation of correctly folded NA that can further form a highly active tetramer. N-

glycosylation on the tetramer could also contribute to the virulence of the virus. 

Influenza viruses use glycans to hide their peptide epitopes to resist the host immune 

system. The 1918 pandemic flu virus NA contained seven N-glycosylation sites, with 

five of them present in the stalk region. The presence of these glycosylation sites may 

have protected NA from host proteolytic attack (Deroo et al. 1996). Moreover, 1918 
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pandemic flu virus NA also lacked a tryptic site and had no structural difference when 

compared to the already known NA protein backbone, with the only difference being 

with its unique glycosylation sites. This also suggests that the N-glycosylation not only 

plays a vital role in activity of the protein but is also important for the virulence of the 

virus.  

 

Figure 2-1: Tetramer structure of influenza H1N9 (PDBid 3R8H) (Smith et al. 

2006), coloured by monomer. Protein chains are displayed in ribbon representation 

and carbohydrate atoms in ball representation. 

2.4  Influenza infection mechanism 

The presence of two proteins whose functions are exactly opposite to each other, 

namely: HA, which binds the receptor (glycoconjugates that display terminal α‑linked 

N‑acetylneuraminic acid); and NA, which cleaves the receptor is an interesting feature 

of the influenza virus (Shtyrya 2009). The influenza virus attaches itself to the host cell 

by using its surface glycoprotein HA. HA recognize the NANA present on the host cell 

surface. The virus then enters the host cell through a process called endocytosis (Suzuki 

et al. 2000; Nelson et al. 1993). Once the virus enters the host cell, it then takes control 

of the host cell protein expression machinery (Matrosovich and Klenk 2003). 

Subsequently, the host cell starts to synthesize viral proteins and viral particles. The 

virion progeny starts to develop when these critical viral components come together in 
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the host cell. The virus starts to prepare for the budding process, through which it exits 

the host cell (Sauter et al. 1992; Watowich et al. 1994). The enzyme NA cleaves the 

terminal NANA residues from virion progeny. The action of NA enables the virion 

progeny to detach itself from the infected cell and seek new host cells to spread the 

infection. The enzyme’s function in the infection process is termed as the “release 

mechanism” (von Itzstein 2007; Oakley et al. 2010; Palese et al. 1974; Liu et al. 1995).  

This process starts with the formation of a sialosyl cation intermediate that represents a 

half-chair conformation. The tyrosine residue in the binding pocket shares an electron 

pair with this intermediate and retains the intermediate trapped in NA’s binding pocket. 

This results in the formation of a negatively charged environment within the enzyme’s 

active site and stabilizes the active site (Lentz et al. 1987; Chong et al. 1992). A water 

molecule stereoselectively reacts with the sialosyl cation intermediate to release α‑

Neu5Ac as the first product, followed by the release of a thermodynamically more 

favourable β‑Neu5Ac (Figure 2-2) (Taylor and Vonitzstein 1994). The formation of 

intermediate is common for both influenza A and B viruses (von Itzstein 2007). After a 

clear understanding of the viral infection mechanism, scientists proposed both HA and 

NA as potential anti-influenza drug discovery targets (von Itzstein 2007; Colman 2009, 

2002). However, the concept of developing antivirals to inhibit the function of 

influenza NA was first proposed by Anderson et al. (1948). The two most commonly 

used antivirals, zanamivir and oseltamivir are neuraminidase inhibitors (NI) that block 

the action of NA and inhibit the release of the virus from the host cell (Kim et al. 1997).   

2.5  Antiviral drugs and drug resistance  

The M2 ion channel protein inhibitors (rimantidine and amantadine) were first antiviral 

drugs available to treat influenza (Douglas 1990; Pinto et al. 1992; Wintermeyer and 

Nahata 1995) . Among all influenza strains, the M2 ion channel proteins are present 

only in influenza A viruses. Hence, these drugs were successfully used to treat 

influenza A infection (Pinto et al. 1992; Wintermeyer and Nahata 1995). However, the 

drug usage had serious drawbacks, such as, central nervous system (CNS) side effects 

and rapid emergence of drug-resistant viral strains (Pinto et al. 1992; Wintermeyer and 

Nahata 1995). This led to the search for new antiviral drugs. Structural studies with 

NANA docked into NA crystals revealed  that the  negatively charged region of the 

neuraminidase active site aligned well with the C-4-position of NANA.  It was believed 
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that accommodating a positively charged group, in the C-4-position of NANA should 

enhance its binding to the active site (vonItzstein et al. 1996). After a few synthetic 

chemistry challenges, zanamivir was developed by replacing the C-4 hydroxyl group in 

NANA with a functional and positively charged guanidine group. This 4-guanidino- 

deoxy dehydro N-acetyl neuraminic acid analog of NANA was called zanamivir 

(Figure 2-3) (Vonitzstein et al. 1993). Zanamivir was found to be highly potent 

inhibitor of influenza A and B virus strains (Woods et al. 1993; Vonitzstein et al. 1993). 

However, the important drawback of this drug is that the presence of the guanidine 

group affects the oral bioavailablility of the drug and hence it is given as a powder 

which is puffed into the lungs (Colman et al. 1983; Colman 2009; von Itzstein 2007). A 

second generation zanamivir is being developed. This is a dimer in which two 

molecules of zanamivir are linked via their 7-hydroxyl groups by an appropriate spacer 

molecule. The reason for selecting the 7-hydroxyl group is because X-ray 

crystallography showed that 7-hydroxyl group had no interactions with any of the 

amino acids in the neuraminidase catalytic site. This dimer potentially has two 

advantages. The dimer could increase NA binding by 100-fold over zanamivir. 

Moreover, this could also increase the bioavailability of the drug, allowing the drug to 

be retained in the body for up to a week. Zanamivir is being administered as 2 

doses/day for a period of 5 days. This could be replaced by one dose of the dimer every 

5 days (Tucker et al. 2002).   

In order to produce an NI that is orally bioavailable for the patients, Kim et al. (1997) 

synthesized a carbocyclic compound. NA has a large hydrophobic pocket in the active 

site that interacts with the glycerol side chain of NANA. They replaced the glycerol 

side chains with more hydrophobic pentyl side chain. Since the C7 hydroxyl groups of 

the glycerol side chain had no interactions with any of the amino acids binding pocket, 

this group was replaced by an oxygen atom. They retained the carboxylate and 

acetamido groups of NANA on this carboxylic compound. Like zanamivir, this 

compound has a positively charged group at the C4 position. To overcome the 

disadvantage caused by the guanidine group in zanamivir, an amine group rather than a 

guanidine group was chosen in this case. However, initial trials with this compound 

failed to show an increase in bioavailability. The carboxylate group was converted to 

the ethyl ester. The ethyl ester derivative is the pro-drug (Figure 2-3), which is 
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hydrolyzed in the liver to release the active carboxylate form of the drug (von Itzstein 

2007; Babu et al. 2000).   

 

Figure 2-2 : The enzyme’s release mechanism (von Itzstein 2007) (Image redrawn 

using ChemDraw ultra-6). 
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Figure 2-3: The structure of NANA and current antiviral drugs oseltamivir and 

zanamivir. 

 

Extensive use of these antiviral drugs have led to the virus developing mutations to 

escape from NI (Russell et al. 2008). Influenza viruses resistant to the NI have been 

classified as HA mutants (mutants had amino acid sequence changes in the HA and 

none in the NA) and NA mutants (mutants that had changes in the NA but not in the 

HA) (Roberts 2001). The HA mutant virus was no longer dependent on NA to release 

the virus from the host cells, thereby enabling the virus to escape NI. However, animal 

model experiments suggested that the NA in these mutant strains were susceptible to NI 

and the NI successfully controlled the spread of infection. This indicated that NA does 

not only play a vital role in disrupting the receptor to release the virus, but also plays a 

crucial role in the mobility of the virus through the respiratory tract. Even though HA 

mutant strains could cleave the virus from the host cell, they were unable to spread the 

infection across the respiratory tract due to lack of support from NA which were 

inhibited by NI (Roberts 2001).   

Compared with the HA mutant strain, NA mutant strains have proved to be more 

dangerous. The NI could be rendered ineffective by a single point mutation in their 

target protein NA. The ability of the virus to cause drug resistance varies with the type 

of mutation it can carry in NA. For example: H274Y. The recent emergence of 

influenza A (H1N1) carrying a mutation H274Y in neuraminidase has resulted in 

antiviral drug resistance (Collins et al. 2009; Trifonov et al. 2009; Wilson 2012; 

Orozovic et al. 2011; Ives et al. 2002; Le et al. 2005). Oseltamivir has a large 
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hydrophobic side chain in place of the glycerol side chain of zanamivir and sialic acid. 

Zanamivir and sialic acid form h-bond with Glu276 through their glycerol groups. 

When oseltamivir binds, the larger hydrophobic group induces a conformational 

movement of Glu276 to accommodate the large ligand side chain and produces a 

binding pocket. This allows Glu276 to rotate and form a salt bridge with Arg224. The 

presence of His at 274 (found adjacent to Glu276 ) is very critical for Glu276 to rotate 

and form the new binding pocket (and form the salt bridge) during oseltamivir binding. 

However, when the His at 274 has been mutated to Tyr, the Tyr pushes Glu 276 further 

into the binding pocket, thereby disrupting this conformational change. This in-turn 

resulted in the failure of oseltamivir (Figure 2-4) (Ferraris and Lina 2008; Smith et al. 

2002; Collins et al. 2009). R292K or E119V  and R152K in influenza A NA and  

D198N in influenza B NA are other mutations that has been characterized to potentially 

decrease the sensitivity of oseltamivir binding (Orozovic et al. 2011; Herlocher et al. 

2004). 

Alternative drug against other essential influenza viral proteins, such as the RNA 

polymerase (Tsai et al. 2006), the haemagglutinin protein (De Clereq and Neyts 2007) 

or the M2 ion channel protein (Ilyushina et al. 2006), are currently under investigation. 

Investigations on combination therapy are also under progress. This therapy may not 

only provide new classes of anti-influenza drugs but also reduce the potential of 

resistance development (Ilyushina et al. 2006). There is also a significant progress in 

influenza vaccine development (Hasegawa et al. 2007; Carrat and Flahault 2007).  
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BEFORE MUTATION 

      

AFTER MUTATION  

    

Figure2-4: Influenza-A (H1N1) carrying a mutation H274Y in neuraminidase resulting in antiviral drug resistance. 

(http://www.youtube.com/watch?v=auEOKWJLSSA 14th January, 2013)

http://www.youtube.com/watch?v=auEOKWJLSSA
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2.6  Recombinant expression and purification of neuraminidase  

The impact of influenza pandemic has made it a high public health priority (Collins 

et al. 2008). The emergence of new antiviral resistant virus strains have resulted in 

researchers developing extensive interest in studying NA-drug interactions. For this 

purpose production of large amounts of highly purified tetrametric NA is required. 

Traditional methods of amplifying influenza virus in eggs and cell culture systems 

has been problematic because this technique depends on the viability of the virus. 

Drop in viability results in a significant drop in levels of purity and active NA being 

obtained (Schmidt et al. 2011). Hence, there is a need to develop an efficient 

method for recombinant expression and purification of NA (Collins et al. 2008; 

Dalakouras et al. 2006).  

It has also been noted that glycosylation is important for obtaining an active form of 

NA. For this reason a eukaryotic expression system is required for expressing active 

NA. Few research groups (Martinet et al. 1997; Yongkiettrakul et al. 2009) have 

used yeast expression system to express NA. Few other research groups have used 

insect cells for NA expression (Mather et al. 1992; Deroo et al. 1996; Oakley et al. 

2010; Dalakouras et al. 2006).  The vital point to note here is Deroo et al. (1996) 

have obtained soluble NA (secreted in to the cell culture media), while Dalakouras 

et al. (2006) have had to lyse the cells using detergent to obtain soluble NA, 

although they have used the same expression system. However, both groups 

managed to obtain the active form of NA. Deroo et al. (1996) have demonstrated its 

application as a potential vaccine in a mouse-model system. They have also 

managed to develop a purification technique to obtain biologically and 

immunologically active NA. The first step in NA purification was ammonium-

sulphate fractationation followed by ion exchange chromatography, size exclusion 

chromatography and finally affinity chromatography with N-(p-aminophenyl) 

oxamic acid-agarose. The purified NA existed as tetramers, dimers, and small 

amounts of monomers.  Among which only the tetramers were enzymatically 

active. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

analysis in the presence of β-mercaptoethanol resulted in a 55 kDa band. This could 

be due to complete denaturation of NA to a monomeric form. In the absence of a 

reducing agent NA migrated to 110 kDa band on SDS-PAGE. This indicated  that 

the protein is internally  linked  by disulfide  bridges that form dimer, which further  
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associates  by  non-covalent  interactions  to  form  a tetrameric  active form of the 

protein (Deroo et al. 1996). Similar SDS-PAGE results showing a molecular mass 

around 55 kDa under reducing conditions and masses around 110 kDa under non-

reducing conditions were reported by Wu et al. (2009), suggesting that the dimer 

contained two monomers linked by a disulphide bond, while the  tetramer was a 

dimer of dimer. 

Dalakouras et al. (2006) have expressed NA in expresSF+ insect cells using a 

baculovirus expression system. The expressed NA was found in the cell pellets in 

this case. The pellets were lysed to purify NA. They have developed a 'lock and 

key' (LAK) affinity resin which consists of phenylalanine and isoleucine bound to a 

trichlorotriazine ring for a single step affinity purification. The purity was reported 

to have increased by a factor of 343 with a recovery of 391% based on activity. 

NA has also been purified using affinity tags. It has been reported that that 

modifications of the NA stalk with tags could affect the activity of the enzyme 

(Yano et al. 2008). Researchers (Schmidt et al. 2011; Castrucci et al. 1992) have 

found a negative impact on the enzyme activity due to the stalk modification. 

Schmidt et al. (2011) have demonstrated that the presence of FLAG in close 

proximity to the NA head disturbs the assembly of functional tetramers. This could 

be due to the electrostatic repulsion caused be the accumulation of 20 (4 FLAG 

tags) negatively charged aspartic acids resulting in the formation of catalytically 

inactive monomeric and dimeric NA. Although affinity tags interfere with the 

tetramerization of the protein, placing the affinity tag at the N-terminus of the 

recombinant NA could avoid interference with the formation of functional 

tetrameric NA (Xu et al. 2008). 

Although both yeast and insect cell expression systems have been used to express 

active NA, yet the major drawback has been the low yield of active NA. However, 

insect cells have been used more often than yeast for expressing NA. Hence, insect 

cell expression system was used in this thesis. Moreover, usage of affinity tags does 

seem to have an effect on the activity of NA. Hence, affinity tags were not used in 

this thesis work.  
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2.7  Activity assay 

NI drugs have become an important approach in the fight against influenza, 

particularly during early-stage. Hence, it is important to monitor the sensitivity NIs 

to the currently circulating strains. For initial screening studies, plaque reduction 

assay (PRA) is performed to detect a broad range of resistant influenza phenotypes. 

However, PRA has not been used successfully to determine the sensitivity of NI. 

The NI prevents the release of virus from infected cells, this leads to the formation 

of smaller plaques in a PRA. This reduction in plaque size can be used to evaluate 

drug sensitivity. However, the main limitation of this assay is that many clinical 

isolates do not form plaques well. Hence, this assay was considered unreliable to 

determine whether the NIs are resistant or sensitive to a particular influenza strain 

(Tisdale 2000; Wetherall et al. 2003). This unreliability exhibited by the cell-based 

assays for susceptibility monitoring of viruses from clinical isolates led to the 

development of a biochemical inhibition assay (Gubareva et al. 2000; Gubareva et 

al. 1998). A biochemical assay performed in a 96-well microtiter plate has been used 

successfully to detect enzyme activity. This assay has also been extended to 

determine sensitivity of NI drugs. The most commonly used substrate for detecting 

enzyme activity and inhibition is the fluorogenic 2′-(4-methylumbelliferyl)-α-d-N-

acetylneuraminic acid known as MUNANA (Figure 2-5) (Wetherall et al. 2003). 

The use of this substrate was initially described by Potier et al. (1979). Cleavage of 

MUNANA by neuraminidase in the test sample releases a fluorescent substance 

called methylumbelliferone (Figure 2-6).  The amount of fluorescence detected is 

directly propotional to the amount of enzyme activity. Currently, there are several 

fluorometric enzyme assays used in practise that work by the same principle, with 

varying MUNANA concentration and assay buffers (Wetherall et al. 2003). In 

enzyme kinetics the two constants, Vm and Km, are important to understand enzyme 

activity and the effects of different types of enzyme inhibitors.The maximal velocity, 

or Vm, reflects how fast the enzyme can catalyze the reaction, while describes the 

substrate concentration at which half the enzyme's active sites are occupied by 

substrate. A high Km means a lot of substrate must be present to saturate the 

enzyme, meaning the enzyme has low affinity for the substrate. On the other hand, a 

low Km means only a small amount of substrate is needed to saturate the enzyme, 

indicating a high affinity for substrate. In most experiments, IC50 values of the NI 
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drugs are determined. This value corresponds to the concentration of the inhibitor 

required to inhibit 50% of the enzyme reaction. In general, the lower the IC50 value, 

the stronger is the inhibitory effect. Time dependant enzyme assays were also 

performed to determine the inhibition constant (ki). The ki, values were used to 

evaluate the effectiveness of the inhibitor. Similar to IC50 , the lower the magnitude 

of ki, the more effective is the inhibitor. Collins et al. (2008) have used the time 

dependent fluorometric enzyme assay for measuring the kinetics of NI drugs and NA 

interaction. Kinetic data obtained from fluorometric enzyme assay were used to 

determine which of the two commonly used NI drugs could serve as potential 

inhibitor to treat a particular mutant strain. Based on their kinetic data (Table 2-1) 

they have concluded that zanamivir is a more potent inhibitor than oseltamivir for 

the mutant stains they studied.  

 

Figure 2-5: Structures of commonly used substrates in NA activity assay and 

susceptibility monitoring a) MUNANA  b) 1,2-dioxetane derivative of sialic acid 

(Image redrawn using ChemDraw ultra-6. 
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Figure 2-6: Schematic diagram for MUNANA activity assay described by Potier et al. 

(1979). (Image redrawn using ChemDraw ultra-6). 
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Table 2-1: Kinetic parameters for N1 neuraminidase adapted from Collins et al. (2008) 

NA type Vm 

Relative to 

wild type 

Km 

(µM) 

Oseltamivir 

relative KI* 

Zanamivir 

relative KI + 

kon 

(µM-1 s-1 ) 

Oseltamivir 

koff 

( s-1 ) 

Oseltamivir 

(x 104 ) 

kon 

(µM-1 s-1 ) 

Zanamivir 

koff 

( s-1 ) 

Zanamivir 

(x 104 ) 

Wild-type 1.0 6.3 1.0 1.0 2.52 (0.21) 8.1 (1.2) 0.95 (0.08) 0.95 (0.13) 

His274Tyr 0.8 27.0 256 1.9 0.24(0.06) 180(30) 0.35(0.02) 0.67(0.08) 

Asn294Ser 1.15 53.0 81 7.2 1.1(0.18) 235(40) 0.52(0.04) 3.7(0.6) 

Tyr252His 0.94 7.5 0.1 1.2 3.9(0.15) 1.25(0.13) 1.38(0.15) 1.66(0.33) 

kon and koff are the association and dissociation rate constants, respectively.  

* Oseltamivir relative KI is KI (mutant)/ KI (wild type), where wild type = 0.32 nM. 

 +Zanamivir relative KI is KI (mutant)/ KI (wild-type), where wild type = 0.1 nM. 
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Gubareva et al. (2002) tested the performance of four commonly used modifications for 

the MUNANA assay, to investigate whether the inhibition assay sensitivity would 

change with the change of buffer system and concentration of MUNANA. Table 2-2 

describes the buffer systems and MUNANA concentrations of the four assay systems 

tested by Gubareva et al.  

 

Table 2-2: Modified NA inhibition assays tested by Gubareva et al. (2002) 

Assay Buffer system 

Ca2+ 

mM 

MUNANA 

substrate 

µM Reference 

I 

0.1 M sodium 

phosphate, pH 

5.9 6.8 1000 

(Gubareva et al. 1998; Gubareva et al. 

2000; Mitnaul et al. 1996; Goto et al. 

1997) 

II 

0.033 M MES, 

pH 6.5 4 100 

(Relenza TM : Laboratory manual, 

2000) 

III 

0.033 M MES, 

pH 6.5 4 75 (Bantia et al. 2000) 

IV 

0.1 M sodium 

acetate 10 100 

(Blick et al. 1995; McKimm-

Breschkin et al. 1998) 
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Table 2-3: Assessment of zanamivir susceptibility of influenza viruses adapted from Gubareva et al. (2002) 

Virus type 

and NA 

subtype Amino Acid 

AssayI Assay II Assay III Assay IV 

IC50 Fold IC50 Fold IC50 Fold IC50 Fold 

A/N2 

Glu 119 Arg 292 (wt) 3 1 2 1 2.5 1 3 1 

Gly 119 Arg 292 1000 333 400 200 100 40 210 70 

Ala 119 Arg 292 1250 417 200 100 50 20 150 50 

Asp 119 Arg 292 10,000 3333 700 350 150 60 350 117 

Glu 119 Lys 292 35 12 18 9 20 8 24 8 

A/N1 

His 274 (wt) 2 1 0.9 1 1.5 1 1.5 1 

Tyr 274 2.5 1.3 1 1.1 1.8 1.2 2 1.3 

B 

Arg 152 (wt) 3.2 1 3.2 1 3.3 1 3 1 

Lys 152 10,000 3125 220 69 100 30 100 33 
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Table 2-4: Assessment of oseltamivir susceptibility of influenza viruses adapted from Gubareva et al. (2002) 

 

 

 

Virus type and 

NA subtype Amino Acid 

Assay I Assay II Assay III Assay IV 

IC50 Fold IC50 Fold IC50 Fold IC50 Fold 

A/N2 

Glu 119 Arg 292 (wt) 0.9 1 0.2 1 0.4 1 0.3 1 

Gly 119 Arg 292 1 1.1 0.6 3 0.5 1.3 0.3 1 

Ala 119 Arg 292 24 27 3 15 1.1 2.8 1 3.3 

Asp 119 Arg 292 3 3.3 1.3 6.5 0.5 1.3 2.7 9 

Glu 119 Lys 292 >1000e >1000 3000 15,000 3750 9375 5000 16,666 

A/N1 

His 274 (wt) 2 1 0.9 1 2 1 0.9 1 

Tyr 274 >1000 >500 800 890 450 225 350 390 

B 

Arg 152 (wt) 40 1 28 1 4.3 1 8 1 

Lys 152 >1000 >25 1500 54 750 174 600 75 
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The results were analysed based on the IC50   values that were determined from the 

assays. It was interpreted that a mutant virus has developed resistance to a particular NI 

drug, if the IC50 is consistently higher than for the wild type virus. They have also 

compared the assays with a parameter called “fold”, which is the ration between the 

IC50 values of a mutant viruses to that of the corresponding wild type virus (mutant 

IC50 / wild type IC50) (Gubareva et al. 2002). The inhibition assay results are presented 

in Table 2-3 & Table 2-4.  For zanamivir inhibition, the results from all four assay 

systems showed no substantial difference in zanamivir sensitivity to the wild-type A 

(N1 and N2) and B viruses. This consistency was also observed in the oseltamivir-

resistant virus with an NA containing a His274Tyr mutation. However, with the 

zanamivir resistant viruses, the assay results were not so comparable. The results show 

that assay I was more sensitive, while assay III was the least sensitive among the four. 

The sensitivity of the assays II and IV for zanamivir resistant viruses were found to be 

in between the IC50 determined from assays I and III. For the oseltamivir inhibition 

assay, all four assays consistently demonstrated resistance to oseltamivir with the 

oseltamivir-resistant mutant (His274Tyr). However, significant differences in the IC50 

values were observed. These values varied from 350 nM to more than 1000 nM. Also in 

each assay, the wild-type virus (N1) was found to be sensitive to the drug (range, 0.9–2 

nM). In addition to this, the sensitivity of the wild-type B virus to oseltamivir was 

highly inconsistent. The IC50 values were much lower in assays III (4.3 nM) and IV (8.0 

nM) than assays I (40 nM) and II (28 nM). This also indicated that the sensitivity of 

antivirals varied, depending on assay conditions (Gubareva et al. 2002).  

Monitoring resistance relies mainly on the enzymatic assay. There is a high level of 

inconsistency exhibited by the MUNANA assays currently in practice. This lead to the 

development of a more sensitive chemiluminescent (1, 2-dioxetane derivative of sialic 

acid, NA-STAR) substrate (Figure 2-5). The chemiluminescence enzyme assay showed 

up to 67-fold higher sensitivity for NA detection than the fluorometric enzyme assays. 

However, the chemiluminescent substrate is a flash emitter with a half-life of 5 min and 

the signal intensity must therefore be measured immediately (Wetherall et al. 2003). 

This calls for a high level of technical competence to perform the assay, which 

otherwise might give false positive or false negative results. This limitation has been 

the major reason for not using this substrate to monitor drug resistance. Hence, the need 

for a simple and a reliable assay to monitor drug resistance has still not been satisfied. 
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The ultimate aim of this thesis is to develop a simple, label free, real time reliable 

surface plasmon resonance assay that could be used to monitor NI drug resistance.  

2.8  Molecular docking  

Molecular docking simulation is a useful theoretical tool for analyzing the binding of a 

ligand to a protein (Liu et al. 2010) and is mainly aimed at finding the lowest possible 

energy for the ligand-receptor complex (Sengupta et al. 2007; Chen and Shoichet 

2009). In molecular docking simulation, a coulombic van der Waals interaction-energy 

score is computed based on the charge-charge, charge-dipole and dipole-dipole 

interactions between the ligand and protein (Shukla et al. 1995; Gadakar et al. 2007; 

Zhong et al. 2009). This score is used in the comparison of the binding of different 

ligands with a given protein. However, in order to identify favourable interactions, the 

Gibbs free energy change (∆G) must be determined. ∆G can be determined by the 

following scheme (Equations 2-1 - 2- 4) (Sengupta et al. 2007; Chen and Shoichet 

2009; Kuhn and Kollman 2000). 

∆𝑮 =  ∆𝑯 −  𝑻∆𝑺           (2-1) 

 

The change in enthalpy (∆H) can be determined from the non-bonded and bonded 

interaction energy values (Equation 2-2). Here, Eele and Evdw are the coulomb and van 

der waals energies, respectively (Liu et al. 2010; Chong et al. 2009), which represent 

the non-bonded interaction energy values. The bonded interaction (hydrophobic 

interaction and hydrogen bonding) energies are represented by Ehydrophobic and Ehydrogen 

bond. The total ∆H is defined as 

∆𝑯 =  𝑬𝒆𝒍𝒆  + 𝑬𝒗𝒅𝒘 +  𝑬𝒉𝒚𝒅𝒓𝒐𝒑𝒉𝒐𝒃𝒊𝒄  + 𝑬𝒉𝒚𝒅𝒓𝒐𝒈𝒆𝒏 𝒃𝒐𝒏𝒅    (2-2) 

On binding, the system becomes more ordered because of reduced rotation, torsion, and 

side chain flexibility of the receptor (Shukla et al. 1995; Santos-Filho and Cherkasov 

2008), resulting in a change in the entropy of the system. This can be calculated from 

the rotational and torsional energy values (Equations 2-3 and 2-4).  

−𝑻∆𝑺 =  𝑬𝒓𝒐𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒍  + 𝑬𝒕𝒐𝒓𝒔𝒊𝒐𝒏       (2-3) 

 

𝑬𝒕𝒐𝒓𝒔𝒊𝒐𝒏 =  𝑬𝒃𝒐𝒏𝒅 𝒍𝒆𝒏𝒈𝒕𝒉 +  𝑬𝒃𝒐𝒏𝒅 𝒂𝒏𝒈𝒍𝒆      (2-4) 
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Among the several docking programs available for studying protein-ligand interactions, 

the most commonly used programs are AutoDock, Discovery Studio and Schrödinger. 

The docking programs follow the lock and key model for predicting the the best 

conformation a protein can take to accommodate a ligand. However, it is important to 

note that protein-ligand interactions cannot be completely described by a rigid lock and 

key model. The docking programs should have the ability to account for flexible side 

chain movements during protein-ligand interaction. The grid-based ligand docking with 

energetics (GLIDE) module and the induced fit docking (IFD) module of Schrodinger 

program allows the user to study rigid and flexible docking respectively. It is for this 

reason Schrodinger Suite™ 2010 docking program was used in this thesis. 

2.9  Overview of baculoviruses  

Baculoviruses are viruses known to infect the insect cells. These viruses posses double-

stranded, circular, supercoiled DNA molecules enclosed in a rod-shaped capsid. Among 

the  500 baculovirus that have been identified, autographa californica multiple nuclear 

polyhedrosis virus (AcMNPV) and bombyx mori (silkworm) nuclear polyhedrosis virus 

(BmNPV) are the most commonly used viruses for foreign gene expression (Hitchman 

et al. 2009; Smith et al. 1983; Volkman and Summers 1977; Volkman et al. 1976). The 

expression of foreign genes by infecting insect cells with the baculoviruses is popularly 

called as baculovirus expression vector system (BEVS). Currently BEVS are 

extensively used for expressing recombinant proteins (Smith et al. 1985; Pennock et al. 

1984). The BEVS is a eukaryotic expression system.  Hence, it possesses several 

advantages over the traditional bacterial expression systems, such as, the BEVS enables 

many protein processing and modification present in higher eukaryotic cells. Unlike the 

bacterial system, majority of proteins remains soluble in BEVS (Hitchman et al. 2009; 

Volkman and Summers 1977; Volkman et al. 1976).  

The virus enters the insect cells by a process called endocytosis. The virus sheds its 

genetic material in the host cell nucleus for replication and viral assembly. Two types 

of viral progeny are generated, namely, budded virus (BV) and occlusion- derived virus 

(ODV) (Figure 2-7).  The BVs have a rod shaped nucleocapsid [(35–40) x (200–400) 

mm in dimensions] surrounded by a lipid envelope. The 134 kb circular double 

stranded DNA is surrounded by the core protein p39 and major envelope protein gp64 

(Ayres et al. 1994). Both in-vivo and in-vitro, the BV is responsible for the spread of 



 

2-22 

 

infection through cell-to-cell transmission of the virus. The ODVs are produced in the 

later stages of the infection and are covered by polyhedral protein, which protects the 

virus particles from proteolytic inactivation (Miller et al. 1983; Rohrmann et al. 1982). 

Among the two commonly used viruses (AcMNPV and BmNPV), the AcMNPV 

baculovirus is extensively used for recombinant protein expression by infecting 

commercial insect cell lines.  

 

 

Figure 2-7: Types of virus progeny generated during virus replication and assembly 

in the host cell system (drawn by Dr D. Lynn, USDA, Agricultural Research Service, 

US). Reproduced from Wikipedia, The Free Encyclopedia, 14th May, 2011. 

2.10  Commercial insect cell lines for baculovirus expression 

systems  

Sf21 and Sf9 insect cells are commonly used cell lines for baculovirus expression 

systems. Sf21 cells were originally derived from the ovarian cells of the fall army worm 

(Spodoptera frugiperda), while Sf9 cells are a clonal isolate of Sf21 cells. The High-

fiveTM cell line is another predominantly used cell line derived from the ovarian cells of 

cabbage looper (Trichoplusia ni) (Hink 1970, 1973). Successful culture of insect cells 

requires a basic familiarity with insect cell morphology and general cell culture 

methods. Table 2-5 describes the cell morphology of three widely used cell lines.  
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Table 2-5:  Insect cell lines commonly used in BEVS applications. 

Insect 

Species 

Cell Line Cell morphology  

Spodoptera 

frugiperda 

Sf9 

 

Spherical with some granular appearance—regular in 

size. Firm attachment to surfaces 

Spodoptera 

frugiperda 

Sf-21 

 

Spherical with some granular appearance—different 

sizes. Firm attachment to surfaces 

Trichoplusia 

ni 

High-

Five™  

Spherical with some granular appearance—different 

sizes. Loose attachment to surfaces 

 

Insect cell lines are cultured either as suspension cultures in shake flasks, or monolayer 

cultures in T-flasks at 28°C. The present day commercially-available serum-free media 

(SFM), such as Sf-900 II SFM and Express-fiveTM SFM have few advantages over 

serum supplemented media. Unlike the serum-supplemented media which possess 

nutritional deficiencies, SFM contains amino acids, carbohydrates, vitamins and lipids 

required for cell growth. Continuous supply of essential nutrients results in faster cell 

doubling time and promotes high cell densities. This becomes a very crucial factor 

during recombinant protein production resulting in higher protein yields (Invitrogen 

Instruction manual ). 

2.11  Baculovirus expression system 

In nature the baculovirus expresses very high levels of polyhedron proteins. In the 

baculovirus expression system, recombinant baculoviruses are generated by replacing 

the polyhedrin gene with a foreign gene through homologous recombination. To 

produce a recombinant virus, firstly the gene of interest (GOI) is cloned into a transfer 

vector. Selecting a suitable transfer vector depends on the type of technology used for 

generating recombinant viruses.  

1. flashBAC: This technology was developed by Oxford Expression Technologies 

Ltd, Oxford, UK. The baculovirus transfer vectors in this case contain the 

polyhedrin promoter followed by restriction enzyme recognition sites for 

cloning the GOI. Once the GOI is cloned into the transfer vector, the gene is 

flanked by viral-specific sequences at 5 ′ and 3 ′ ends. The flashBACTM DNA 
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contains an AcMNPV genome that lacks an open reading frame (ORF) 1629 

and contains a bacterial artificial chromosome (BAC) replacing the polyhedrin 

gene.  The essential gene deletion prevents virus replication within insect cells. 

When the insect cells are co-infected with the a transfer vector containing the 

GOI and flashBACTM DNA, homologous recombination takes place. This 

restores the function of the essential gene which is necessary for viral DNA 

replication and simultaneously inserts the GOI under the control of the 

polyhedrin gene promoter, replacing the BAC sequence (Figure 2-8). In this 

case the survival of the non-recombinant virus is not possible. This reduces the 

time and effort required for screening recombinant viruses (Invitrogen 

Instruction manual). 

2. Bac-to-Bac: This method is based on site-specific transposition technology. 

The GOI is cloned into a donor plasmid (eg: pFastBacTM ) that possess a mini-

Tn7 gene. This recombinant plasmid is then transformed into DH10BacTM 

bacterial competent cells. The competent cells contain a baculovirus shuttle 

vector called the bacmid. The bacmid contains a kanamycin resistance gene, a 

lacZα gene and a short segment called the bacterial transposon Tn7 (mini-

attTn7) which helps in site-specific transposition. The bacteria also contain a 

helper plasmid that encodes for transposase (gene that supports the site-specific 

transposition). Successful transposition results in recombinant bacmids. 

Recombination results in the disruption of the lacZα gene. Recombinant 

colonies are identified by blue and white colony selection method. DNA from 

selected E. coli clones containing the recombinant bacmid are extracted and 

used to transfect insect cells (Figure 2-9) (Invitrogen Instruction manual ). 

3. BaculoDirect: In this method the GOI is cloned into an entry clone containing 

attL sites. The BaculoDirect™ Linear DNA (detination vector) contains attR 

sites. Recombination of an attL site in the entry clone with an attR site in the 

destination vector results in the formation of attB-containing expression clone 

(Figure 2-10). The LR Clonase™ II enzyme is used to catalyze this reaction. 

The resulting recombinant baculovirus can be used to infect insect cells for 

protein expression (Figure 2-10) (Invitrogen Instruction manual ).  
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Figure 2-8: Schematic showing various stages of protein expression using of flashBACTM system. A) Homologous recombination inside the 

insect cells resulting in the formation of recombinant virus. B) P1 stock containing recombinant baculovirus. C) P1 stock is then used to 

infect a larger volume of insect cells (50 mL) to produce P2 recombinant virus stock. This stock is then used for large scale protein 

expression. 
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Figure 2-9: Schematic representation of stages of protein expression using Bac-to-Bac system. A) The GOI is cloned into a donor plasmid 

containing a promoter and mini-Tn7 gene. B) The recombinant donor plasmid is transformed into DH10BacTM bacterial competent cells for 

the recombinant bacmid formation. C) The recombinant bacmid is extracted D) and used to transfect insect cells.  E) P1 virus stock is 

generated. F) Higher volume (2 to 10 mL) of insect cells is infected with P1 stock to generate P2 stock.  
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Figure 2-10: Schematic representation of stages of protein expression using BaculoDirect™ system. A) Recombinant baculovirus is 

generated using an LR reaction between the entry clones carrying the GOI and BaculoDirect™ Linear DNA. B) P1 virus stock is generated 

by transfecting the insect cells with the recombinant baculovirus and subsequent selection with ganciclovir. C) P1 stock is used to generate 

high.
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2.12  Surface plasmon resonance  

SPR is an optical biosensor technique. The initial practical work with SPR was started 

by Kretschmann back in 1971 (Liedberg et al. 1995). In 1983 Liedberg et al., for the 

very first time used the SPR as a biosensor (Liedberg et al. 1995). Today, SPR 

technology has grown tremendously and is being used for measuring various 

biomolecular interactions such as protein-protein, antigen-antibody and receptor-ligand 

interactions (Lee et al. 2008; Navratilova and Myszka 2006).  

2.13  SPR principle  

The surface of the SPR chip has a metal coating with either gold or silver. The binding 

events on a SPR chip are detected by angular modulation or wavelength modulation. In 

wavelength modulation, the photon of light incident on the metal surface comes in 

resonance with the wavelength of metal on the surface of the chip, when their 

wavelengths equal one another. Binding of macromolecules such as proteins or 

antibodies to the surface bound ligand, results in a change in resonance wavelength 

(Figure 2-11). This shift in the wavelength corresponds to the refractive index (RI) 

change, which is detected by the optical detection unit and quantified as SPR 

sensogram (Figure 2-12) (Mitchell 2010). In angular modulation, a monochromatic 

light strikes on the metal surface. At a specific angle a part of the light energy is 

converted to electron waves that travel along the chip surface. This travelling electron 

wave is called surface plasmon (Fee 2013). The specific angle at which this 

phenomenon occurs depends on the difference in RI between the glass and aqueous 

sides of the metal layer. Binding of macromolecules on the metal layer leads to change 

in refractive index. This in turn alters the angle of light energy associated with the 

surface plasmon wave. The optical detectors detect the angle of lowest reflected light 

intensity, which corresponds to the amount of macromolecule bound to the metal 

surface (Homola et al. 1999; Abdulhalim et al. 2008). The ProteOn XPR36 protein 

interaction system (Bio-Rad Laboratories, Hercules, CA, USA) used in this thesis 

works on the angular modulation.  

While studying the interaction between two biomolecules, the relative change in the 

mass of the biomolecules absorbed on the surface is measured from the beginning of 

the SPR experiment. The change in RI is proportional to the mass of the analyte 

interacting with the ligand (Homola et al. 1999; Mitchell 2010; Baac et al. 2006). In a 
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typical SPR sensogram the change in RI, refractive index units (RIU), is represented as 

resonance units (RU), where 1 RU = 1 x 10-6 RIU (Mitchell 2010). SPR has been 

widely used to determine the binding kinetics of biomolecular interactions. This allows 

us to gain more insights into the mechanism of interaction taking place in biomolecules. 

Considering a 1:1 stoichiometry, the response is proportional to concentration of 

complex formed on the surface of the chip (Štěpánek et al. 2006). In case where the 

analyte has occupied all the surface bound ligand, a maximum RU (Rmax) is reached. 

Once Rmax is achieved, further increase in the analyte concentration will not change the 

response.  

2.14  SPR biosensor experiment  

A typical SPR experiment has three major steps, 

A) Ligand immobilization 

Ligand molecules are immobilized to an SPR sensor chip surface using several 

techniques, such as covalent immobilization, affinity capture to a specific capturing 

molecule and adsorption of lipid bilayers. The commonly used covalent immobilization 

techniques are, amine coupling, thiol coupling, aldehyde coupling and biotin-

streptavidin coupling. Amine coupling is the most extensively used coupling technique 

(Homola et al. 1999; Mitchell 2010). The Bio-Rad Laboratories, Hercules, USA 

provides three amine coupling ProteOn™ sensor chips. These chips posses a modified 

(carboxylated) alginate layer coated on top of the gold surface of the sensor prism. 

When activated using N-hydroxysuccinimide (NHS) and N'-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC), this layer provides a net negative charge for ligand 

immobilization. It is absolutely critical measure the functional integrity of the 

immobilised ligand. This is can be tested by injecting an analyte that binds to 

immobilized ligand. The ability of the analyte to bind to its natural ligand is a useful 

evidence that the immobilised ligand is functionally active. A control surface is 

required to compensate the effect of non-specific binding of the analyte and 

background response. A control surface can be generated by immobilizing an inactive 

ligand (like BSA). If a control with inactive ligand is not available, a control surface 

can be generated by just activating and deactivating the surface. 
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B) Interaction analysis 

The interaction between the analyte and ligand involves three steps. Firstly, the 

association phase, starts when the analyte is injected. When the analyte is in correct 

orientation, the ligand recognizes the analyte and binding occurs. Binding of analyte to 

the ligand involves two stages. Firstly, the analyte is transferred to the chip surface 

from the solution phase, this is known as mass transfer. Finally, the analyte binds to the 

ligand. Therefore, calculated kinetic constants under this condition represents the mass 

transfer rate and not the true binding kinetics. The best way to minimize mass transfer 

is to immobilize less ligand. When the injection of analyte continues, the binding 

reaches equilibrium, where the rate of association equals the rate of dissociation. When 

the analyte injection stops, the buffer injections begin. This allows the analyte to 

dissociate from ligand (Oshannessy et al. 1993; Huang et al. 2006).   

C) Regeneration of the sensor surface 

A good regeneration technique is important for biosensor assay reproducibility.  

Repeated analysis on the same ligand bound surface allows the user to reduce the cost 

of the assay. This requires a method to remove the analyst bound to the immobilized 

ligand, without disrupting the activity of the ligand. The most commonly used 

regeneration buffers are 10-100 mM HCl or 10 mM Glycine-HCl pH 1.5-3.0. The 

ligand- analyte complex is subjected to the low pH buffer for a very short time (18 s). 

This is sufficient to partly unfold the analyte thereby making the binding site no longer 

available for the ligand to recognize (Štěpánek et al. 2006; Mitchell 2010).  

2.15  Application of surface plasmon resonance in virus detection  

The detection of large pathogens such as bacteria using SPR can create a difficult 

situation because the typical size of a bacterium is approximately 1–5 µm, while the 

penetration depth of the SPR field is only 100 nm. This places the majority of the cell 

outside the SPR field (Rich and Myszka 2008). This in turn reduces the capability of 

the SPR to immobilize the bacterium on the chip and follow the binding of antigens to 

the target bacterium (Rich and Myszka 2006; Abdulhalim, Zourob et al. 2008). 

However, immobilizing the antigen(s) on the SPR chip and binding the bacterium 

should result in large SPR signals. This technique has also been extended to virus 

detection.  
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Figure 2-11: A schematic of optical configuration of SPR biosensor. Binding of 

analyte to surface bound ligand, results in refractive index (RI) change, which is 

detected by the detection unit and quantified as SPR sensogram. 

In early 1997, a real-time molecular diagnosis of human immunodeficiency virus type I 

(HIV-I) was performed using SPR technology (Bianchi et al. 1997). A biotinylated 

HIV-1 oligonucleotide probe was immobilized on a sensor chip and a single stranded 

DNA obtained by asymmetric polymerase-chain reaction (PCR) was passed over the 

surface as the analyte and hybridization was detected by SPR, giving a simple, fast and 

reproducible diagnostic procedure for the detection of HIV-1 (Bianchi et al. 1997). 

SPR biosensor has been for medical diagnosis of human hepatitis B virus (hHBV) in 

serum samples (Chung et al. 2005). The hepatitis B surface antigen (HBSAg) was 

immobilized on the SPR chip using the standard amino coupling technique. Serum 

samples from patients containing hHBV antibodies were used as analytes. The 

detection limit of the SPR biosensor was found to be comparable to that of ELISA for 

the medical diagnosis of hHBV antibodies (Chung et al. 2005) 
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Figure 2-12: Sensogram plot of RU change with time: The figure shows when the 

injection of analyte begins, the ligand recognizes the analyte and binding occurs. 

This results in change in RU. Continuous injection of analyte leads to binding 

equilibrium, where the rate of binding equals the rate of release. When the analyte 

injection stops and buffer injections begins, analyte is relaeased from the ligand.This 

results in drop in RU.  

In 2004, SPR experiments were designed for rapid diagnosis of intact plant viruses, 

particularly, tobacco mosaic virus (TMV) (Boltovets et al. 2004). IgG was immobilized 

to the surface and Bracteacoccus minor cells infected with TMV was used as analyte. 

Signal levels registered from the mixture of virus and that from the sample without 

virus were compared (Boltovets et al. 2004). However, the authors failed to present 

sensograms which were obtained after subtracting the reference channel responses. 

Although they have used controls for their experiments, a reference subtracted 

sensograms is obsolutely critical in a SPR scientific paper.  

During the following year, a single-chain antibody (scFvCLcys) was engineered for 

cowpea virus detection. Three concentrations of virus and bovine serum albumin (BSA) 

(negative control) were injected as analytes (Torrance et al. 2006). The authors have 

presented the net result, after subtraction of BSA response. After subtracting the 
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reference, SPR sensogram shows negative response for BSA, which should have only 

been zero.   

Using an antibody based assay, SPR experiments were developed to directly detect an 

intact form of insect pathogens (the baculovirus, AcMNPV). A mouse IgG monoclonal 

antibody raised against a surface protein of the target viral pathogen was bound to the 

chip. The response to the AcMNPV was then compared with the response for TMV 

(control). The authors claim that successive experiments with both viruses confirmed a 

specific response to AcMNPV only (Baac et al. 2006). The authors have not presented 

convincing SPR sensogram data to support their detection protocol. They only report 

the averages and standard deviations of multiple measurements for each step of angle 

shift. A typical SPR sensogram result has not been reported here. This raises the 

question on the quality of the experiment and the quality of the data obtained.  

The binding properties of sialic acid-containing carbohydrates (Neu5Acα2-3nLc4Cer & 

Neu5Acα2-6nLc4Cer) that are recognized by human and/or avian influenza viruses 

were studied using an SPR (Hidari et al. 2007). From the kinetic analysis data it was 

reported that avian and human strains had different binding preferences to 

carbohydrates. An avian strain bound to Neu5Acα2-3nLc4Cer with a much slower 

dissociation rate than Neu5Acα2-6nLc4Cer. In contrast, a human strain bound equally 

to both carbohydrates (Hidari et al. 2007). There were few positives in terms of SPR 

data presentation in this paper. The authors here reported SPR sensograms. They have 

also managed to fit their data into simple 1:1 model. The authors have presented figures 

with data overlaid with the fit of the model. This assures that the SPR data are of good 

quality. However, there are two limitations in this experiment. Firstly, the virus 

contains HA and NA. If HA binds sialic acid, then NA would probably cleave the virus 

from sialic acid, that in turn would lead to loss in binding. But the data reported shows 

that the virus is interacting with the immobilized ligand. The authors have diluted the 

virus in running buffer supplemented with 2 μg/mL zanamivir. Zanamivir is an NI 

drug. Probably the use of the drug might have inhibited NA’s activity. Secondly, they 

did not perform any experiment or cite the literature to suggest that 2 μg/mL of 

zanamivir was sufficient to inhibit all the NA present on the virus surface. This aspect 

of the experiment was not discussed clearly by the authors. 
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Table 2-6: SPR assay for virus detection 

Virus                               Assay Instrument  Reference 

Epstein-Barr virus Direct immunoassay A custom-made 

wavelength division 

multiplexing 

(Vaisocherova et 

al. 2007) 

Avian leucosis 

virus (ALV) 

Direct immunoassay Wavelength 

modulated 

Waveguide SPR 

(Huang et al. 2006) 

Hepatitis B virus 

(hHBV) 

Direct immunoassay Spreeta (Texas 

Instruments) 

(Chung et al. 2005) 

Cowpea mosaic 

virus 

Direct immunoassay Biacore (Torrance et al. 

2006) 

Human 

immunodeficiency 

virus type 1 (HIV-

1) 

Using specific 

hybridization of 

immobilized 

biotinylated HIV-1 

oligonucleotide probe 

Biacore (Bianchi et al. 

1997) 
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Although researchers have been trying to expand the application of SPR for using the 

whole viral pathogen as an analyte (Table 2-6), there are no sufficient supporting data 

to proceed with whole virus as an analyte. For influenza viruses, the presence of HA 

and NA (proteins with exactly the opposite function) would make it more difficult to 

interpret the SPR binding response. Hence, the assay development in this project will 

be limited to influenza NA as the analyte rather than whole virus. 

 

2.16  Summary of literature review  

The spread of influenza virus as a pandemic result in the deaths of thousands of people 

annually. In the early 20th century, new strains of the influenza virus emerged, killing 

up to ten million people. The virus is classified based on its viral proteins, HA and NA 

e.g. H1N1, H5N1. The severity of each strain of influenza virus depends on the 

particular type of “HA” and “NA” present on the surface of the virus.  The appearance 

of new strains occurs when an existing flu virus spreads to humans from other animal 

species resulting in genetic reassortment. In 2009, a new flu strain called the “swine 

flu” emerged that combined genes from human, pig and bird flu. The World Health 

Organization declared the outbreak of swine flu to be a pandemic. Several analogues of 

NANA were developed as antiviral drugs. These drugs are NA inhibitors (NI). The two 

most extensively used antiviral drugs to treat influenza are oseltamivir and zanamivir. 

These antiviral drug could be rendered ineffective by changing a single amino acid in 

the target protein NA. The ability of the virus to cause drug resistance varies with the 

type of mutation it can carry. Hence, there is the need to continuously monitor the 

sensitivities of antiviral drugs to currently circulating influenza viral strains. 

Biochemical assays with labelled substrates are currently used for this purpose. 

However, these assays have serious limitations with respect to reliability and half life of 

labelled substrate. Hence there is a need for a more reliable, label free real time assay. 

The aim of this thesis was to develop an SPR assay to measure kinetics of NA-drug 

interactions. In addition, I also aimed to take the first step towards a label-free SPR 

assay for monitoring drug resistance, by developing an SPR inhibition assay.  

 

With the recent innovation and instrumentation there has been a tremendous increase in 

the use of SPR for medical diagnosis. Like any other technology, SPR also has certain 
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limitations. The penetration depth of SPR field is only 100 nm. Hence, it has been very 

difficult to expand this technology to detect whole virus, which is approximately 80 to 

120 nm in diameter. This will leave the majority of the analyte outside the SPR field, 

undetected.  For this reason we limit the scope of this research project to influenza viral 

proteins as analytes rather than whole virus. 

 

BEVS are widely used technique to express desired proteins in cultured insect cells 

using recombinant technology. With specialized media, transfection reagents, and 

vectors, the BEVS are advantageous, particularly for large-scale protein expression. 

The very important step in this process is the selection of BEVS. In this research 

project I have preferred to use the flashBACTM vector system over the other systems, 

because the flashBAC system is a direct and a faster method because it bypasses the 

selection process exhibited in other BEVS. The methods, results and the important 

findings of this thesis are presented in the subsequent chapters.  
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3. In-silico identification of potential antiviral drug-

resistant influenza neuraminidase mutations 

 

3.1 Introduction 

In this chapter, molecular docking studies carried out to analyse viral resistance are 

reported.  

Molecular docking studies were carried out to predict whether there were any significant 

differences in binding affinity, ∆G and MM-GB/SA value for wild-type and mutant NA 

species interacting with antiviral drugs and sialic acid.  

3.2 Selection of point mutations 

Site-directed mutation of the active site of influenza neuraminidase showed that out of 

fourteen mutant proteins examined experimentally, seven proteins completely lost their 

biological activity for the substrate, namely those carrying the mutations R152K, W178L, 

D198N, E277D and Y406F (Lentz et al. 1987). A R371K mutant had only 4% of the wild 

type activity, while I222V and A346N were fully active. Both mutations at residue 

H274Y and H274N retained about 75% of the wild-type activity. It is interesting to note 

that the recent emergence of influenza A (H1N1) carrying a mutation H274Y in 

neuraminidase has not only retained its biological activity,  but also resulted in antiviral 

drug resistance (Collins et al. 2009; Trifonov et al. 2009; Wilson 2012; Orozovic et al. 

2011; Ives et al. 2002; Le et al. 2005).The four mutants identified by Lentz et al. (1987) 

as mutants that retained significant biological activity (H274Y, H274N, I222V and 

A346N ) were used in the current investigation.  In addition, a naturally occurring and 

widely studied drug resistant mutant, N294S (von Itzstein 2007; Collins et al. 2008), was 

included in the docking studies. The N294S mutant used in the docking studies helped in 

comparing the results with the data reported in literature.  

3.3 Methods 

3.3.1 Protein and ligand preparation 

The entire docking process was carried out using Schrödinger Suite™ 2010. The 2009 
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pandemic H1N1 neuraminidase (PDB: 3NSS) was used throughout the docking studies 

as the wild type structure. The protein PDB has two identical subunits, each containing a 

functionally complete binding site. Thus, only one subunit (subunit A) was used for 

docking studies. The protein model was prepared using the Schrödinger protein 

preparation wizard following the supplier’s instructions. The five mutants, H274Y, 

N294S, H274N, A346N and I222V were built using the Maestro module. The impact 

minimization module of the software was used to minimize the wild type and mutant 

structures to energetically stable states. Sialic acid, oseltamivir and zanamivir molecules 

were built using the Maestro build module. Ligand energy minimization was then 

performed using the impact minimization module to bring the ligand structures to 

energetically stable structures. 

3.3.2 Docking 

The grid-based ligand docking with energetics (GLIDE) module in Schrödinger was used 

for docking studies. Docking was carried out in two steps. First, a receptor grid was 

generated. The grid represents the shape and properties of the active sites of NA wild 

type and mutants. This ensures that any possible binding of the ligand into the active site 

of the protein is not missed. The optimized potentials for liquid simulation (OPLS) force 

field were used for grid generation. Finally, the energetically minimized ligands were 

docked into the generated grid files. Standard precision (SP) docking with the OPLS 

force field was used throughout the docking studies. The docked results were analysed 

using the GLIDE pose viewer module.  

3.3.3 Induced fit docking 

The Induced Fit protocol (IFD) was carried out as per the supplier’s instructions.  The 

IFD protocol uses the Glide module with reduced Van der Waals radii and an increased 

Coulomb- Van der Waals cut-off to dock the active ligand. The Prime structure prediction 

module then tries to accommodate the ligand by reorienting nearby side chains. This 

accounts for receptor flexibility during docking. Finally, each ligand is re-docked into 

low energy protein structures resulting in protein-ligand complexes which are ranked 

according to Glide Score.  Prime MM-GB/SA is the ratio of molecular mechanics-

generalized Born energy (MM-GB) generated by Prime module to that of solvent 

accessible area (SA).  This energy value is used to estimate relative binding affinity for 

a list of ligands. 
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3.4 Results and discussion 

3.4.1 Docking of sialic acid and antivirals into the active site of NA and its 

mutants 

To study the molecular basis for interaction and the binding affinities of sialic acid and 

antiviral drugs with NA (wild type & mutants), each molecule was docked into the active 

site of NA. The docking results for these ligands are given in Table 3-1. The Glide score 

was generated as the output for a particular protein-ligand interaction. 

 

GScore = a * vdW + b * Coul + Lipo + HBond + Metal + BuryP + RotB + Site   
(3-1) 

 

where vdW is the van der Waal’s energy; Coul is the Coulomb energy; Lipo is the 

lipophilic contact term; HBond accounts for hydrogen-bonding; Metal is the metal-

binding term; BuryP represents the penalty for buried polar groups; RotB is the penalty 

for freezing rotatable bonds; Site represents polar interactions at the active site; and the 

coefficients of vdW and Coul where a = 0.065, b = 0.130 (Sengupta et al. 2007). 

3.4.2 The binding affinity 

The Glide energy (GE) is the combination of the coulombic and Van der Waal’s energies, 

which are long-range forces that attract a ligand to a particular protein. For spontaneous 

interaction, GE must be negative and the more negative the energy required for attracting 

a ligand to a protein, the more favoured the resulting interaction will be. In this thesis, 

the term binding affinity is used to refer to the attraction between a protein and ligand 

that leads to binding. From (Table 3-1), it can be seen that the GE values for sialic acid 

and oseltamivir interacting with the wild-type protein were negative (spontaneous) and 

very similar (-27.54 and -25.7 kcal/mol), whereas zanamivir appears to be a strong 

binder, with a more strongly negative energy (-38.65 kcal/mol). When comparing the GE 

for the two antiviral drugs interacting with the wild-type protein and the mutants (Figure 

3-1), it was observed that there was a decrease in the magnitude of the GE when the 

antiviral drugs interacted with the mutants. This meant the interaction of the antivirals 

with the mutants was less favourable than with the wild-type. On the contrary, sialic acid 

showed a greater negative GE for the mutants. This indicated that sialic acid interacted 
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more favourably with the mutants. The differences in GE were the most marked in the 

case of mutation H274Y. The GE magnitude for sialic acid increased from -27.54 to -

35.7 kcal/mol, while that for zanamivir decreased from -38.65 to -31.17 kcal/mol and 

that for oseltamivir decreased from -25.70 to -21.71 kcal/mol. The marked decreases in 

binding affinity for the anti-viral drugs, particularly compared with the increase in 

binding affinity for sialic acid were consistent with the observed drug resistance of 

mutant H274Y (Orozovic et al. 2011; McKimm-Breschkin 2000).  

3.4.3 Calculated Gibbs free energy of binding 

The ∆G value includes both enthalpic and entropic contributions. The enthalpy of the 

protein-ligand complex was determined from both bonded and non-bonded interactions 

between the protein and the ligand, while the entropic term was calculated from rotational 

and tortional energy, which correspond to the degree of order imposed by binding. The 

calculated enthalpy and entropy values are given in (Table 3-2). It was observed that the 

rotational energies were 0.77, 1.11 and 1.17 (kcal/mol) for oseltamivir, sialic acid and 

zanamivir, respectively. Because these energies were calculated independently for each 

ligand, and remained constant for all interactions involving that particular ligand. The 

calculated ∆G values are shown in Table 3-3 and Figure 3-3. The ∆G values increased in 

magnitude for the interactions of sialic acid with all mutants, compared with the wild-

type, indicated that sialic acid interactions with the mutants were more favourable. 

3.4.4 Wild type interactions 

The changes in free energy when oseltamivir and sialic acid interacted with the wild-type 

protein were very similar (-25.2 and -25.44 kcal/mol, respectively) but the change in free 

energy was significantly more negative for the interaction of zanamivir with the wild-

type protein (-33.74 kcal/mol). The same trend was observed when the binding affinities 

of the ligands with the wild-type protein (Figure 3-1& Figure 3-3) were compared. This 

showed that the antiviral drugs were well designed for binding with the wild-type NA 

protein. 
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Figure 3-1:  Comparison between the binding affinity (glide energy (GE)) values for 

interactions of sialic acid and antiviral drugs with NA (wild-type & mutants). There 

was a decrease in the magnitude of GE for the interactions of both antiviral drugs with 

the mutant proteins compared to wild-type NA.  
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Table 3-1: Docking results for sialic acid and antiviral drugs into NA (wild type & 

mutants) using GLIDE 

Interaction 
Glide score 

(kcal/mol) 

E model 

(kcal/mol) 

Glide energy 

(kcal/mol) 

Sialic acid-WT -5.2 -57.5 -27.5 

Sialic acid-H274Y -5.3 -58.9 -35.8 

Sialic acid -N294S -5.9 -58.4 -36.8 

Sialic acid -H274N -5.1 -58.6 -32.5 

Sialic acid -I222V -5.5 -58.5 -28.8 

Sialic acid -A346N -5.1 -58.6 -32.1 

Oseltamivir-WT -4.2 -52.4 -25.7 

Oseltamivir-H274Y -4.3 -49.1 -21.7 

Oseltamivir-N294S -4.1 -48.3 -22.5 

Oseltamivir-H274N -4.1 -52.6 -25.5 

Oseltamivir-I222V -5.4 -51.9 -27.4 

Oseltamivir-A346N -4.2 -52.8 -25.6 

Zanamivir-WT -5.8 -52.7 -38.7 

Zanamivir -H274Y -5.4 -59.1 -31.2 

Zanamivir -N294S -5.8 -64.7 -37.1 

Zanamivir -H274N -5.8 -49.6 -36.7 

Zanamivir -I222V -5.01 -48.1 -30.1 

Zanamivir -A346N -5.7 -52.1 -37.5 
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Table 3-2 : Calculated enthalpies and entropies for sialic acid and antiviral drugs interactions with NA (wild-type & mutants)   

Interaction 

Glide-

Lipophilic 

(kcal/mol) 

Glide-HBond 

(kcal/mol) 

Glide-Vdw 

(kcal/mol) 

Glide-Coul 

(kcal/mol) 

∆H 

(kcal/mol) 

Rotational 

energy 

(kcal/mol) 

Torisonal 

energy 

(kcal/mol) 

-T∆S 

(kcal/mol) 

Sialic acid-WT -0.83 -2.30 -23.38 -4.16 -30.68 1.11 4.38 5.48 

Sialic acid-H274Y -0.84 -1.44 -26.23 -9.56 -38.07 1.11 8.10 9.21 

Sialic acid -N294S -0.81 -2.07 -29.22 -7.56 -39.65 1.11 8.82 9.93 

Sialic acid -H274N -0.88 -1.53 -26.70 -5.35 -34.45 1.11 3.27 4.37 

Sialic acid -I222V -0.87 -2.04 -20.80 -7.97 -31.68 1.11 5.01 6.11 

Sialic acid -A346N -0.88 -1.53 -26.70 -5.35 -34.45 1.11 3.27 4.37 

Oseltamivir-WT -1.63 -0.40 -28.83 3.13 -27.73 0.77 1.51 2.29 

Oseltamivir-H274Y -1.44 -1.21 -20.25 -1.46 -24.36 0.77 3.11 3.88 

Oseltamivir-N294S -1.40 -1.03 -22.49 -0.04 -24.96 0.77 1.33 2.10 

Oseltamivir-H274N -1.52 -0.44 -27.93 2.44 -27.45 0.77 2.48 3.26 

Oseltamivir-I222V -1.08 -2.03 -21.85 -5.58 -30.52 0.77 2.76 3.53 

Oseltamivir-A346N -1.65 -0.40 -28.52 2.90 -27.68 0.77 1.49 2.27 

Zanamivir-WT -1.06 -1.36 -27.76 -10.88 -41.06 1.17 6.15 7.32 

Zanamivir -H274Y -0.86 -2.82 -23.16 -8.02 -34.85 1.17 9.39 10.56 

Zanamivir -N294S -0.85 -2.88 -24.36 -12.71 -40.80 1.17 8.80 9.97 

Zanamivir -H274N -0.99 -1.64 -22.31 -14.35 -39.29 1.17 13.66 14.83 

Zanamivir -I222V -0.93 -1.63 -18.73 -11.34 -32.63 1.17 6.26 7.43 

Zanamivir -A346N -1.10 -1.49 -27.57 -9.97 -40.13 1.17 7.73 8.90 



3-8 

 

3.4.5 H274Y interactions 

In the case of the H274Y mutation, the ∆G values changed markedly. There was a 

decrease in the magnitude of free energy change for both the antivirals, with that for 

zanamivir decreased from -33.74 to -24.29 kcal/mol and that for oseltamivir from -25.44 

to -20.48 kcal/mol. This, in turn, reduced the strength of their interactions. On the 

contrary, the free energy change from the interaction between sialic acid and the mutant 

protein was more favourable, changed from -25.20 to -28.86 kcal/mol, such that its 

interaction was equally favourable with zanamivir and both (zanamivir and sialic acid) 

were more favourable than oseltamivir. A similar trend was observed for the binding 

affinity, in agreement with the reduced efficacy of oseltamivir against the H274Ymutant 

strain.   

3.4.6 N294S interactions 

The free energy change for sialic acid interaction with the N294S mutant increased to -

29.72 kcal/mol. Although there was a decrease in the magnitude of the free energy change 

for both antivirals, the decreases were not as high as the values observed with the H274Y 

mutant. Zanamivir retained a slightly stronger ∆G value (-30.84 kcal/mol) than the sialic 

acid interaction with the mutant, hence the N294S mutant was not as problematic as 

H274Y. This observation was in good agreement with the inhibition kinetics results 

reported by Collins et al. (2008).  

3.4.7 H274N interactions  

While studying the interaction between sialic acid and the H274N mutant, it was 

observed that the ∆G value changed to -30.08 kcal/mol. Amongst the six sialic acid 

interactions studied, the interaction between sialic acid and H274N had the most highly 

negative ∆G value, making this interaction highly favoured when compared to the other 

proteins (the wild-type and the other four mutants). Moreover, the ∆G value for 

oseltamivir decreased to -24.19 kcal/mol, which is larger than the ∆G observed with 

H274Y. As previously reported (Collins et al. 2008), the binding of oseltamivir to wild-

type NA involved a conformational change in the side chain of Glu 276, leading to the 

formation of a salt bridge between Glu 276 and His 274. Because the His at 274 had been 

replaced by Tyr, the latter group pushed Glu 276 farther into the binding pocket, thereby 

disrupting the salt bridge formation (Figure 3-2). In contrast, for mutant H274N, where 
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His had been replaced by Ser, the latter group was not as bulky as Tyr so did not push 

Glu 276 as far away. Hence, oseltamivir had a stronger interaction with H274N than with 

H274Y. On the other hand, zanamivir, having a polar glycerol group, did not depend on 

the formation of a salt bridge between His 274 and Glu 276. Thus, the movement of Glu 

276 within the binding pocket did not affect the binding of zanamivir. This resulted in 

zanamivir possessing very similar ∆G values for mutations H274Y and H274N (-24.29 

and -24.46 kcal/mol, respectively).  

 

 

Figure 3-2: Docked images of NA (wild type and H274Y mutant) with oseltamivir. A) 

Binding of oseltamivir to wild-type NA involved the formation of a salt bridge between 

Glu 276 and His 274. B) The replacement of His at 274 by Tyr resulted in the disruption 

of the salt bridge. 

3.4.8 I222V interactions  

Oseltamivir had the greatest ∆G value, -26.99 kcal/mol, for interaction with the I222V 

mutant, thereby making this interaction more favourable than the others. The ∆G values 

for zanamivir and sialic acid interactions with I222V were very similar (-25.21 and -

25.57 kcal/mol, respectively). Because the antiviral drugs had either stronger or similar 

interactions with I222V compared with sialic acid, this mutation may not be expected to 

cause increased drug resistance. 

3.4.9 A346N interactions  

Here, zanamivir had a similar but slightly greater ∆G value (-31.23 kcal/mol) compared 

with the sialic acid interaction, while oseltamivir had a smaller ∆G value (-25.41 

kcal/mol), which was similar to its interaction with the wild-type protein. Thus, for 

mutant A346N, oseltamivir may be less effective binder than zanamivir. 
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Table 3-3 : Gibbs free energy change for sialic acid and antiviral drugs interaction with 

NA (wild type & mutants) 

 

 

 

 

Figure 3-3 : Comparison between the ∆G values for interactions of sialic acid and 

antiviral drugs with NA (wild-type & mutants). This graph indicated a decrease in the 

magnitude of ∆G for the interactions of both antiviral drugs with the mutant proteins 

compared to wild-type NA, similar to the GE values. 

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

Wild-Type H274Y N294S H274N I222V A346N

Sialic acid

Oseltamivir

Zanamivir

∆
G

 (
kc

al
/m

o
l)

Protein 

Sialic Acid Oseltamivir Zanamivir 

∆H 

(kcal/mol) 

-T∆S 

(kcal/mol) 

∆G 

(kcal/mol) 

∆H 

(kcal/mol) 

-T∆S 

(kcal/mol) 
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(kcal/mol) 

∆H 

(kcal/mol) 

-T∆S 

(kcal/mol) 

∆G 

(kcal/mol) 

Wild-

type -30.68 5.48 -25.20 -27.73 2.29 -25.44 -41.06 7.32 -33.74 

H274Y -38.07 9.21 -28.86 -24.36 3.88 -20.48 -34.85 10.56 -24.29 

N294S -39.65 9.93 -29.72 -24.96 2.10 -22.85 -40.80 9.97 -30.84 

H274N -34.45 4.37 -30.08 -27.45 3.26 -24.19 -39.29 14.83 -24.46 

I222V -31.68 6.11 -25.57 -30.52 3.53 -26.99 -32.63 7.43 -25.21 

A346N -34.45 4.37 -30.08 -27.68 2.27 -25.41 -40.13 8.90 -31.23 
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Table 3-4 : Comparison between experimental and predicted ∆G values 

 

 

 

3.4.10 Glide docking comparison with experimental data 

The docking results were compared with experimental data reported in the literature. 

Direct experimental comparisons are not currently available to my knowledge, so 

experimental ∆G values for interactions of oseltamivir and zanamivir with wild-type NA, 

N294S and H274Y were calculated from the inhibition kinetic data reported by Collins 

et al. (2008) (Table 3-4). Collins et al. (2008) reported that the experimental inhibition 

constant (Ki) in their work was the disassociation constant for the antiviral drugs. Hence, 

this value was used to calculate experimental ∆G. However, it should be noted that it is 

not possible to provide direct, quantitative comparisons with docking results because the 

experimental data were generated by competitive activity assays carried out in the 

presence of each inhibitor. In docking studies only one ligand was presented to the protein 

at a time and the interaction between each ligand and the proteins were studied, resulting 

in greater ∆G magnitudes. The ∆G values calculated from experimental results decreased 

in magnitude in all cases when going from wild-type to the mutant forms of NA, for 

zanamivir and oseltamivir, consistent with the predictions from the molecular docking 

studies. Furthermore, the experimental trends showed that zanamivir had more 

favourable ∆G values than oseltamivir in all cases, again as predicted. The prediction that 

the interaction between zanamivir and N294S should be more favourable than with 

H274Y was the only case not in agreement with the experimental data. The ∆∆G value 

in Table 3-4 was the change in ∆G between the wild type and the mutant protein 

interactions with the antiviral drugs and was, in all cases, positive. Therefore, an increase 

in the magnitude of ∆∆G indicated that interaction with the mutant protein was weakened 

Protein 
Oseltamivir Zanamivir 

∆G exp    
(kcal/mol) 

∆G pre 

(kcal/mol) 
∆∆G exp 

(kcal/mol) 
∆∆G  pre 

(kcal/mol) 
∆G exp 

(kcal/mol) 
∆G pre 

(kcal/mol) 
∆ ∆G exp 

(kcal/mol) 
∆ ∆G  pre 

(kcal/mol) 

Wildtype 

-13.12 -25.44 - - -13.82 -33.74 - - 

H274Y 

-9.77 -20.48 3.35 4.96 -13.43 -24.29 0.39 9.45 

N294S 

-11.87 -22.85 1.25 2.59 -12.63 -30.84 1.18 2.9 
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so the mutation had more potential to cause drug resistance.  The values in Table 3-4 

indicated that H274Y had greater potential to cause drug resistance than N294S, in good 

agreement with the ∆∆G value calculated from the experimental observations. The 

predicted ∆∆G values were very similar in magnitude to the experimental ∆∆G values, 

except for zanamivir-H274Y interaction. The experimental ∆∆G value for zanamivir-

H274Y interaction was 0.39 kcal/mol. This suggested that there was only a slight 

difference between zanamivir’s interaction with the wild type protein and the mutant 

protein. On the contrary, the predicted ∆∆G value for the same interaction was much 

larger, at 9.45 kcal/mol. This large predicted change was influenced mainly by a change 

in the enthalpic contribution to ∆G through reduced electrostatic interactions. Replacing 

His with Tyr at 274 has been suggested to push the Glu at 276 deep into the binding 

pocket (Collins et al. 2008), reducing the access of the hydroxyl groups in the glycerol 

side chain of zanamivir to the carboxylate oxygens of Glu276. Experimentally, this 

movement of Glu276 into the binding pocket may not have been as significant as that 

predicted, therefore having less effect than predicted on weakening the interaction 

between NA H274Y mutant and zanamivir. Moreover, the glide docking did not account 

for receptor flexibility. Hence, induced fit docking (IFD), also known as flexible docking 

was used for further analysis.  

3.4.11 Induced fit docking 

When using IFD, MM-GB/SA was used to estimate relative binding affinity for the  

ligands.  The absolute values calculated (Figure 3-4 and Table 3-5) may not be 

quantitatively in agreement with experimental binding affinities, however, the ranking of 

the ligands based on the calculated MM-GB/SA was reasonably in agreement with 

ranking based on experimental binding affinity. The IFD results were closer to the 

experimental values (Figure 3-5).  This could be because the IFD takes receptor 

flexibility into consideration, unlike GLIDE docking where the receptor binding pocket 

was converted to a mathematical grid. Based on this ranking it can be observed that  in 

H274Y  and  H274N  mutants,  the  interactions with the  anti-viral  drugs were less 

favourable  than  with  sialic  acid  and  the  same  mutants,  indicating  that  these  

mutations could confer anti-viral resistance. 
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Table 3-5: Calculated MM-GB/SA values for sialic acid and antiviral drugs 

interaction with NA (wild type & mutants)   

 

 

Interaction 
MM- GB 

(kcal/mol) 
Surface area 

(SA) 
MM-GB/SA 
(kcal/mol) 

Sialic acid-WT 

-926.87 35.25 -26.29 
Sialic acid-H274Y 

-934.76 37.91 -24.66 
Sialic acid -N294S 

-1004.03 38.96 -25.77 
Sialic acid -H274N 

-957.46 29.50 -32.46 
Sialic acid -I222V 

-927.98 39.91 -23.25 
Sialic acid -A346N 

-936.13 34.50 -27.13 
Oseltamivir-WT 

-858.62 37.28 -23.03 
Oseltamivir-H274Y 

-886.14 45.64 -19.41 
Oseltamivir-N294S 

-916.15 41.53 -22.06 
Oseltamivir-H274N 

-900.48 38.18 -23.58 
Oseltamivir-I222V 

-884.51 38.35 -23.07 
Oseltamivir-A346N 

-897.21 40.19 -22.33 
Zanamivir-WT 

-908.77 39.38 -23.07 
Zanamivir -H274Y 

-963.68 42.20 -22.84 
Zanamivir -N294S 

-1003.30 45.46 -22.07 
Zanamivir -H274N 

-953.61 40.37 -23.62 
Zanamivir -I222V 

-945.82 39.75 -23.80 
Zanamivir -A346N 

-957.46 35.10 -27.28 
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Figure 3-4: Comparison between the MM-GB/SA values for interactions of sialic acid 

and antiviral drugs with NA (wild-type & mutants).  

 

3.4.12 IFD comparison with experimental data 

The ∆∆G values for experimental results were calculated as described in 3.4.10. These 

values were compared with ΔMM- GB/SA, which was the difference in MM- GB/SA 

values computed for wild type and the mutant protein interactions with the antiviral 

drugs. The computed ΔMM- GB/SA values were very similar in magnitude to the 

experimental ∆∆G values and were, in all cases, positive. Therefore, an increase in the 

magnitude of ΔMM- GB/SA indicated that interaction with the mutant protein was 

weakened so the mutation had more potential to cause drug resistance.  The values in 

Table 3-6 indicated that ΔMM- GB/SA values were similar for N294S interaction with 

both antivirals, while H274Y had greater potential to develop oseltamivir resistance and 

remained sensitive to the zanamivir. This was in good agreement with the ∆∆G value 

calculated from the experimental observations. This suggested that zanamivir could be a 

more potent inhibitor than oseltamivir.  
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Figure 3-5:  Comparison between experimental ∆G and MM-GB/SA. The R2 

correlation coefficient between experimental ∆G and MM-GB/SA is 0.94. This 

indicated that the IFD method was comparable to the experimental data reported in 

the literature.  

 

Table 3-6: Comparison between experimental and MM-GB/SA values 
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(kcal/mol) 
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(kcal/mol) 
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-13.12 

 

 
-23.03 - - -13.82 
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Figure 3-6:  Comparison of docked poses for H274Y mutant with oseltamivir (B) and 

zanamivir (D) with respective PDB crystal structures 3CLO (A) and 3TI5 (C).  

Significant differences observed in the protein-ligand hydrogen bonding between the 

crystal structures and docked structures 

3.5 Comparison with crystal structure 

Molecular docking simulation is a useful tool for analysing the binding of a ligand to a 

protein (Liu et al. 2010) and is mainly aimed at finding the lowest possible energy for the 

ligand-receptor complex (Sengupta et al. 2007; Chen and Shoichet 2009). However, 

docking simulation is only a theoretical tool. Therefore, it requires validation with 

experimental data. The docking results were compared with experimental ∆G values in 

Sections 3.4.10 and 3.4.12 of this chapter. However, the most important step in any 
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docking study is to validate the docking program by comparing the binding mode of the 

docked structure with the known crystal structure. For this purpose the docked poses for 

H274Y mutant with oseltamivir and zanamivir were compared with PDB crystal 

structures 3CLO and 3TI5, respectively (Figure 3-6). The docked and crystal structures 

are usually superimposed to observe the subtle differences in interactions. However, in 

this case the interactions observed in the docked structures were significantly different 

from the crystal structures and a superimposed figure will not be useful to follow these 

differences in interactions. Therefore, the docked structures and the crystal structures are 

presented separately, in a best possible orientation that will be useful to compare the 

differences in interactions between the docked and crystal structures. For both 

oseltamivir and zanamivir the docked structures did not give the same binding mode as 

observed in the crystal structure. In the docked structure it can be observed that there are 

more hydrogen bonds within the protein binding site and not between the protein and the 

ligand. The reason for this could be that the docking program aims to find a stable 

conformation for the protein during ligand binding. Hydrogen bonding is a key parameter 

for computing ∆G values, glide energy and glide score. The significant differences 

observed in the protein-ligand hydrogen bonding (Appendix E) between the crystal 

structures and docked structures suggest that the comparisons made in Sections 3.4.10 

and 3.4.12 may just be coincidentally similar with the experimental data. Due to the 

differences observed in hydrogen bonding, the computed energy values cannot be used 

to confirm the efficacy of the anti-viral drugs to treat a particular mutant.  

3.6 Conclusions 

The binding affinities, ∆G and MM-GB/SA values for wild-type NA interactions showed 

that both the antiviral drugs studied interact strongly with the wild-type protein. The 

marked changes observed in predicted binding affinities, ∆G and MM-GB/SA values for 

the H274Y and N294S interactions may explain reduced antiviral efficacies. The ∆G 

values for all antiviral interactions with mutant NA forms reduced in magnitude. This 

indicated that they were less favourable than interactions with the wild-type protein. 

Similar trend was also observed with MM-GB/SA results. Moreover, replacing the His 

at 274 prevented the formation of a salt bridge with Glu 276, which appeared to be a 

conformational feature that was critical for oseltamivir interactions. Among all the 

computed values, MM-GB/SA was closer to the experimental data. In several cases, the 

interactions between the anti-viral drugs and NA mutants were markedly less favourable 
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than those between sialic acid and the same mutants, indicating that these mutations could 

confer anti-viral resistance. However, when the docked structures were compared with 

PDB crystal structures, it was observed that the modelling program did not produce 

docked structures similar to crystal structures. Hence, the computed ∆G values may just 

be coincidentally similar to the experimental ∆G values. It is a widely-accepted fact that 

docking programs describes the best conformation a protein can take to accommodate a 

ligand. However, they lack the ability to simulate the relevant macromolecular movement 

(such as protein side chain and backbone movement and key catalytic residue 

movements) that help the protein to maintain this confirmation for accommodating a 

ligand. This calls for a more reliable experimental validation. Hence, a SPR assay to 

measure the binding affinity between influenza viral coat protein NA (wild type and 

mutant) and anti-viral drugs was developed. The SPR measurements (Chapter 5) were 

used to compare the docking results reported in this chapter.  
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4. Cloning, expression and purification of influenza neuraminidase 

 

4. 1 Introduction 

Protein expression is a process that uses recombinant DNA technology to convert genetic 

information (DNA) into a functional protein. The commonly used expression systems are 

the bacterial, baculovirus, yeast and mammalian expression systems. Influenza NA has 

been successfully expressed using the baculovirus expression vector system (BEVS) 

(Dalakouras et al. 2006; Deroo et al. 1996). This chapter describes methods used to clone 

and express influenza NA in the BVES. Two insect cell lines (sf9 and High-Five) were 

tested for expression of NA. A time course expression analysis was also performed to 

optimize the expression of NA. Western blot was used to confirm the expression of NA 

in insect cells. The expressed NA was purified using standard purification techniques. 

 

Generally the first step in most of the bio separation processes is to lyse the cells to release 

the desired gene product.  The cell is usually lysed by physical methods (bead mill, 

sonication and freeze thaw cycling) or chemical methods (addition of detergents, 

enzymes and solvents). Using centrifugation, the soluble fractions can be separated from 

insoluble fractions of the cell lysate. Influenza NA was released from the insect cells 

using sonication technique (Dalakouras et al. 2006).  NA was solubilized by the addition 

of excess non-ionic detergent (triton-100) (Dalakouras et al. 2006). Ion exchange 

chromatography (IEX) and Size exclusion chromatography (SEC) were used to purify 

NA from the cell extract. Methods and results for the chromatography steps are discussed 

in detail in this chapter.  

 

Influenza NA activity was measured using fluorometric assay described by Potier et al. 

(1979).  The assay was performed in the presence and absence of NI drugs to determine 

the sensitivities of the inhibitors to the recombinant NA expressed in the lab. The activity 

assay results are also discussed in this chapter.  
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4. 2 Materials  

4.2. 1 Cell culture 

Cell lines (sf9 and High-Five) were gifted by the Protein Expression Facility (University 

of Queensland, Brisbane, Australia). Sf-900II serum free medium (SFM) (Gibco Cat 

number 10902) and 0.1% trypan blue (Gibco Cat number 15250-061) were purchased 

from Life Technologies Corporation (Carlsbad, California, USA). 

4.2. 2 Cloning and site directed mutagenesis (SDM) 

The construct (gene of interest {GOI} in pFastbac) was purchased from Epoch Life 

Science (Missouri City, Texas, USA). The pBac 1 vector (Novagene product number 

70003-3) was purchased from Merck KGaA (Germany). PureLink™ quick plasmid 

miniprep kit (Invitrogen cat number K2100-10) was purchased from Life Technologies 

Corporation. QuikChange® multi-site-directed mutagenesis kit (Cat number 200514) 

was purchased from Stratagene (San Diego, California, USA). 

The following primers were purchased from Gene Works (Australia):  

Forward primer (5’ AATAAAAAAACCTATAAATATAGGATCCATGAACCCG 

AACCAGAAA ATT 3’) 

Reverse primer (5’ AGTGGTGGTGGTGGTGGTGCTCGAGTTATTTATCAAT 

GGTAAACGGCAGTTCCG 3’)  

SDM primer (“5’-G AAC GCG CCG AAC AGC TAT TAT GAA GAA TGC AG-‘3”)  

4.2. 3 Transfection  

FlashBAC DNA (product code 100201) was purchased from Oxford Expression 

Technologies (Oxford, UK). Cellfectin reagent (Invitrogen Cat number 10362-010), 

Grace’s insect medium, unsupplemented (Gibco Cat number 11595), antibiotics and 

antimycotics, 100X (Gibco Cat number 15240-062) were purchased from Life 

Technologies Corporation.  

4.2. 4 P4 BV Timecourse expression analysis 

Influenza A H1N1 (Swine Flu 2009) NA / Neuraminidase Antibody (cat number 11058-

MM07), Mouse IgG secondary antibody HP conjugate (cat number 50323-RP02) were 

purchased from Sino Biological (Beijing, China). GE image-quant LAS 500 gel 

http://www.lifetechnologies.com/
http://en.wikipedia.org/wiki/Carlsbad,_California
http://en.wikipedia.org/wiki/Merck_KGaA
http://www.lifetechnologies.com/
http://www.lifetechnologies.com/
http://en.wikipedia.org/wiki/San_Diego
http://en.wikipedia.org/wiki/California
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documentation unit (GE, Healthcare Life Sciences) was used for blot detection.  

 

4.2. 5 Purification 

Resource TM Q GL prepacked ion exchange column (cat number 17-1177-01), Superdex 

200 10/300 GL prepacked gel filtration column (cat number 17-5175-01) were purchased 

from GE, Healthcare Life Sciences. All purification experiments were conducted using 

AKTA Explorer 10 chromatography system (GE, Healthcare Life Sciences).   

4. 3 Buffers and media  

A) Buffers  

Table 4-1: List of buffers used  

Buffer         Recipe  

PBS buffer         137 mM  NaCl, 2.7 mM  KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4 , pH 7.4 

PBST buffer        137 mM  NaCl, 2.7 mM  KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4 , 0.05% Tween 20, pH 7.4 

Transfer buffer 48 mM Tris, 39 mM glycine, (20% methanol)  

The buffer will range from pH 9.0 to 9.4, depending 

on the quality of the Tris, glycineand methanol.  

Blocking buffer 5% Skim milk powder in PBST  

Lysis Buffer 20mM  Sodium phosphate, 5.7% TritonX-100, pH 6.0 

Buffer A (Ion exchange 

binding buffer) 

20mM  Sodium phosphate, 0.1% TritonX-100, pH 6.0 

Buffer B (Ion exchange 

Elution  buffer) 

20mM  Sodium phosphate, 0.1% TritonX-100, 1M 

NaCl, pH 6.0 

Buffer C ( Size exclusion 

buffer) 

137 mM  NaCl, 2.7 mM  KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4 , 0.1% TritonX-100, pH 7.4 

All buffers were filtered using 0.22 µm Millipore filter before use. 
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B) Media  

 

i) Luria broth (LB) medium  

Bacto tryptone 10 g, bacto yeast 5 g and NaCl 10 g were dissolved in 950 mL deionized 

water. Volume was adjusted to 1000 mL with deionized water after the pH was set to 7.5 

with NaOH. The LB medium was autoclaved for 20 min at 121˚C and was stored at 4˚C 

until use.  

 

ii) LB agar plate  

Bacto tryptone 10 g, bacto yeast 5 g,  NaCl 10 g  and 15 g of agar were dissolved in 950 

mL deionized water. Volume was adjusted to 1000 mL with deionized water after the pH 

was set to 7.5 with NaOH. The medium was autoclaved for 20 min at 121˚C and cooled 

down to 50˚C. The appropriate antibiotics (ampicilin) were added and 25 mL were poured 

into each Petri-dish. The plates were allowed to solidify. Solid LB agar plates were 

wrapped with Parafilm and stored at 4˚C until use. 

iii) SOC media  

SOC media is similar to super optimal broth (SOB) media but the presence of glucose. 

Bacto tryptone 2 g, bacto yeast extract 0.5 g, 0.2 mL of 5 M NaCl, 0.25 mL of 1 M KCl, 

1 mL of 1 M MgCl2, 1 mL of 1 M MgSO4, 2 ml of 1 M glucose were dissolved in 90 mL 

deionized water. Volume was adjusted to 100 mL with deionized water. The medium was 

autoclaved for 20 min at 121˚C and cooled down to 50˚C.  

4. 4 Methods 

4.4.1 General DNA methods 

A) Transformation  

 

XL1-Blue competent cells (50 µL) were thawed and transferred into a pre-chilled 

transformation tube. 2 µL of DNA was added to the tube. The tube was placed on ice for 

30 min, followed by heating at 42˚C for 45 s and finally cooled on ice for 2 min. 950 µL 

of pre-warmed soc media (RT) was added and incubated at 37˚C, 200 rpm for 1 h. Agar 

plates with ampicilin was prepared (50 µL of ampicilin (100 mg/mL)). After 1 h 

incubation, 100 µL of the sample was plated on one LB agar plate. The remaining 900 

µL was spun down and 800 µL of the supernatant was discarded. The pellet was 

resuspended in 100 µL of supernatant, which was platted on to the second LB agar plate. 
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The plates were incubated at 37˚C overnight. The following day the plates were removed 

from the incubator and colonies were found. Three random colonies were picked up and 

an overnight culture was grown (5mL LB medium + 50 µL of ampicillin). The following 

day the three overnight cultures were minipreped (extraction and purification of 

transformed DNA). The concentration of the 3 samples was measured on a Nanodrop 

and the samples were sent for sequencing. A glycerol stock was made from the colonies 

with positive sequencing results and stored at -80˚C 

 

B) Glycerol stocks  

 

 An overnight culture (5 mL LB medium + 50 µL of ampicillin) was grown from a single 

colony. The following day 850 µL cell culture was mixed with 150 µL sterile glycerol in 

cryotubes. The samples were snap freezed with liquid nitrogen and stored at - 80˚C.   

 

C) Miniprep protocol 

 

The S.N.A.P. ™ MiniPrep Kit (Life Technologies Corporation cat no. K1900-01) was 

used for miniprepping (extracting and purifying DNA) transformed DNA. The overnight 

cultures were transferred to a 50mL falcon tube and centrifuged at 4000 rpm, 4˚C for 10 

min to pellet the cells. The supernatant was discarded and the pellets were resuspended 

in 150 µL of resuspension buffer (provided in kit) by gently pipetting up and down. The 

lysis buffer provided in kit (150 µL) was added and mixed gently by inverting the tube 6 

times. The tubes were incubated for 3 min at room temperature. 150 µL of ice-cold 

precipitation salt (provided in kit) was added and mixed well by inverting the tubes 8 

times. The tubes were centrifuged at 14,000 x g for 5min. A S.N.A.P. ™ MiniPrep column 

(A) was placed inside the 2 mL collection tube provided. 600 µL of binding buffer 

(provided in kit) was added to the supernatant and mixed by inverting 6 times. This 

mixture was transferred to the collection tube containing the column (A). The S.N.A.P. 

™ MiniPrep column/collection tube was centrifuged at room temperature at 3,000 x g 

for 30 s. The column flow through was discarded. The wash buffer provided in the kit 

(500 µL) was added and centrifuged at room temperature at 3,000 x g for 30 s. The 

column flow through was discarded. The 1X final wash buffer provided in the kit (900 

µL) was added and centrifuged at room temperature at 3,000 x g for 30 s. The column 

flow through was discarded. The collection tube was again centrifuged for 1min to dry 

the resin. 60 µL of sterile water was added to tubes and incubated for 3 min at room 

temperature. The column was centrifuged for 30 s at maximum speed and the column 
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was discarded. The flow through containing the DNA was collected.  

 

D) Gel purification of DNA 

The desired DNA band was cut from the agarose gel and placed inside a 1.5 mL 

Eppendorf tube (pre weighed). The weight of the cut band was determined and 

solublization buffer from the Quick Gel kit was added (volume of buffer added 3 times 

the weight of the gel). The tubes were incubated at 50˚C for 10 min. A quick gel extraction 

column was placed in the quick gel wash tube. The dissolved gel containing the desired 

DNA was placed in the centre of the column. The tube was centrifuged at 12,000 rpm for 

1 min and the flow through was discarded. 700 µL of wash buffer containing ethanol 

from the kit was added. The tube was centrifuged at 12,000 rpm for 1 min and the flow 

through was discarded. The tubes were again centrifuged at 12,000 rpm for 3 min to 

remove residual wash buffer. The column was placed in the quick gel recovery tube. The 

quick gel elution buffer (50 µL) was added and incubated at room temperature for 1 min. 

The recovery tube was centrifuged for 1 min at 12,000 rpm. The flow through collected 

in the recovery tube contained the desired DNA.  

 

E) Agarose-gel preparation   

 

Agarose-gel (1-2%) was prepared by dissolving 0.8 g to 1.6 g agarose was dissolved in 

80 mL 0.5x TBE buffer. The agar was dissolved by heating in a microwave. Agarose 

solution was cooled to about 50˚C. Five µL of SYBR® safe DNA gel stain and the 

solution was poured into a pouring electrophoresis chamber.  DNA samples were loaded 

on the gel (14 well set-up). The gel electrophoresis was run at 120V for 45 mins. The 

DNA fragments were visualized and documented using GE image-quant LAS 500 gel 

documentation unit 

4.4.2 Cloning of NA into pBac 1 vector  

Influenza NA (GOI) was obtained from a commercial source (Genescript) in pFastBac 

vector. The pFastBac was chosen for expressing the protein in Bac-to-Bac BEVS. Later 

it was decided that using FlashBac BEVS would be more advantageous than Bac-to-Bac 

method. Hence the GOI was cloned into pBac 1 vector through homologous cloning 

method. 
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Figure 4-1: Primer design for obtaining NA with homologous pBac 1 overhang. 

 

The construct obtained from the commercial source was in a filter paper. The DNA was 

cut out from the filter paper and transferred to a 1.5mL Eppendorf tube. 30 µL of TE 

buffer was added. The tubes were incubated at room temperature for 5mins and spun at 

maximum speed for 5mins, to obtain the construct. The construct was transformed to 

XL1-Blue competent cells and miniprepped to obtain the NA-pFastbac construct. In 

order to clone the NA into pBac 1 vector, NA with homologous regions corresponding to 

pBac 1 vector was obtained from PCRing the construct. The primers used were pBac1-

NAf (69ºC) and pBac1-NAr (66˚C). 
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Figure 4-2: Cloning of GOI into pBac 1 vector between BamH I and Xho I restriction 

site. A) pBac 1 vector map. B) pBac 1 cloning region (Novagene product sheet). 

 

A 

B 
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Table 4-2 : PCR reaction mix 

10 μL 10× KOD buffer 

66 μl double-distilled H20 to a final volume of 100 μL 

2 μL ds-DNA template  

3 μL each primer(0.3 µM) 

10 μL dNTP mix 

2 μL KOD enzyme  

4 µL MgSO4 

 

Table 4-3: PCR parameters 

Steps Temperature Time Cycle 

Initial denaturation  95˚C 2 min X 1 

Denaturation 94˚C 15 s  

X 30 Annealing 60˚C 30 s 

Extension 72˚C 30 s 

Final extension  72˚C 10 min X 1 

 

 

The PCR product was run on agarose gel. The band corresponding to the correct 

molecular size of 1.4 kb was cut and gel-purified. The concentration of the gel-purified 

DNA was 54 ng/µL. This DNA was then cloned into pBac 1 vector.  

 

Calculation for cloning:  

[(𝒏𝒈 𝒐𝒇 𝒗𝒆𝒄𝒕𝒐𝒓)𝑿 (𝒌𝒃 𝒐𝒇 𝒊𝒏𝒔𝒆𝒓𝒕)𝑿( 𝒓𝒂𝒕𝒊𝒐)]

(𝑲𝒃 𝒐𝒇 𝒗𝒆𝒄𝒕𝒐𝒓)
= 𝒏𝒈 𝒐𝒇 𝑫𝑵𝑨      4-1 

 

Using Equation (4-1) the amount of DNA required was calculated to be 21.63 ng. This 

corresponds to 2.5 µL of the gel purified DNA. 25 ng of the vector and 21.63 ng of the 

DNA were mixed. Seven µL of this mixture was then transformed into 50 µL of the XL1-

Blue cells. This was then plated on a LB agar plate with ampicillin. The following day 6 

random colonies were picked and was analysed using a colony PCR.  

4.4.3 Colony PCR 

Six random colonies were picked and resuspended in 30 µL of sterile water. 2 µL of this 
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mixture was used as the template for colony PCR.  

 

Table 4-4: Colony PCR reaction mix 

2 μL 10× buffer 

12.6 μL  double-distilled H20 to a final volume of 20 μL 

2 μL template (colony) 

1 μL each primer(0.3 µM)  

0.2 μL dNTP mix 

0.2 μL Taq enzyme  

1 µL MgSo4 

 

 

Table 4-5: Colony PCR parameters 

Steps Temperature Time Cycle 

Initial denaturation  95˚C 2 min X 1 

Denaturation 94˚C 30 s  

X 30 Annealing 55˚C 30 s 

Extension 72˚C 1.5 min 

Final extension  72˚C 10 min X 1 

 

The PCR products were analysed on agarose-gel electrophoresis. An overnight culture 

was grown from the positive colony. The culture was minipreped. The minipreped DNA 

was sent for sequencing.  

 

4.4.4 Restriction enzyme digestion  

BamH I and Xho I restriction endonucleases were used to double-digest the DNA at 37˚C 

for 3 h according to Table 4-6. The digested fragment were analyzed by agarose-gel 

electrophoresis.  
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Table 4-6: Composition of double digestions of the NA (wild type and H274Y) with 

BamH I and  EcoR I 

Reagents NA wild-type (µL) NA H274Y (µL) 

DNA  1 1 

BamH I 1 1 

Xho I 1 1 

10 X React ®  2 2 2 

10 X NEB ®  4 2 2 

Sterile H2O 13 13 

Total 20 20 

 

4.4.5 Site directed mutagenesis (SDM) 

The desired mutation of H274Y (Histidine 274 Tyrosine) was introduced by designing 

specific primers. To obtain the mutant clone, a single nucleotide had to be changed from 

C to T. Thus based on the following conditions, SDM primer was designed. 

 Primers should be between 25 and 45 bases in length, with a melting temperature 

(Tm) of ≥75˚C.  

 The following formula was used for estimating the Tm of primers: 

                                               Tm= 81.5 + 0.41(%GC) 675/N - % mismatch              4-2 

 

 N is the primer length in bases 

 values for %GC and % mismatch are whole numbers 

 

 The desired point mutation should be close to the middle of the primer with ~10–15 

bases of template-complementary sequence on both sides.  

 Optimum primers should have a minimum 40% GC content. 

 

The primer used for SDM is “5’-G AAC GCG CCG AAC AGC TAT TAT GAA GAA 

TGC AG-‘3” (The T will introduce the desired mutation), The GOI cloned into pBac1 

vector is the template used in this reaction. 
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Table 4-7: SDM experimental reaction mixture 

2.5 μL 10× QuikChange® Multi reaction buffer 

18.9  μL double-distilled H20 to a final volume of 25 μL 

0.6 μL ds-DNA template (100 ng) 

1 μL mutagenic primers (100 ng) 

1 μL dNTP mix 

1 μL QuikChange® Multi enzyme blend 

 

Table 4-8: SDM PCR Parameters 

Steps Temperature Time Cycle 

Initial denaturation  95˚C 1 min X 1 

Denaturation 95˚C 1 min  

X 30 Annealing 55˚C 1 min 

Extension 65˚C 14 min 

Final extension  65˚C 5 min  X 1 

Extension: 2 min/kb of plasmid length (2x7 kb=14 min) 

 

1 μL of Dpn I restriction enzyme (10 U/μL) was added directly to the PCR product. The 

reaction mixture was mixed gently and thoroughly by pipetting. The reaction mixture 

was spun down in microcentrifuge for 1 minute, then immediately incubated at 37˚C for 

1 h to digest the parental (non-mutated) ds-DNA. 50 µL of XL1-Blue competent cells 

were thawed and transferred into a pre-chilled transformation tube. 2 µL of Dpn I 

digested DNA was transformed into XL1-Blue competent cells. A glycerol stock was 

made for positive clones (identified using sequencing) and stored at -80˚C. 

4.4.6 Insect cell culture  

A) Insect cell recovery   

1 mL of liquid nitrogen stock of Sf9 cells and Highfive cells were gifted by the protein 

expression facility at the Australian institute for bioengineering and nanotechnology, 

University of Queensland. The cryovials were transferred to New Zealand on dry ice. 

The cells were inoculated immediately on arrival. 50 mL sf900II SFM was added into a 

sterile 250 mL cell culture flask. The cyroflex from cryovials were cut off and the cells 

were thawed carefully by hand, making sure that the lid of the cryovial was always intact 
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during the thawing process. The thawed cells were transferred (~1 mL) into the 50 mL 

SFM. The flasks were incubated at 28˚C, 120 rpm. The cells were monitor for recovery 

after 4 days. The cell density and viability was determined. The cells were passaged (sub- 

cultured) regularly.  

 

B) Subculture of cells 

The insect cells were sub-cultured in Sf900II SFM. The SFM was pre-warmed to room 

temperature. The cell density and viability of the existing cultures were determined. Sf9 

cells were seeded at, 1x106 cells/mL, while the High-Five cells were seeded at 2x105 

cells/mL. In both cases the culture volume was 50mL. The caps of the 250 mL flask were 

loosened (to facilitate oxygen) and incubated at 28˚C at 120 rpm. It is essential that the 

cells are in log phase at the time of infection. The cells used for the experiment should 

come from a culture in mid-exponential growth phase. Hence, the cells were sub-cultured 

twice every week (Monday & Friday). In order to understand the growth cycle of the 

insect cells, both the cell lines were inoculated into fresh media and were allowed to grow 

over a period of 7 days without sub-culturing. The cell densities and viability were 

monitored every 24 h and a growth curve was plotted.  

 

C) Freezing of cells 

The cryovials were labeled with freezing number, date, cell line and medium. The 

freezing medium (SFM+15% DMSO) was filter sterilized using  0.22 µm filter into 50 

mL falcon tube and stored at 4˚C. The cell density and viability of culture was 

determined. The cells were at exponential growth phase with 95% viability. The cells 

were spun down at low speed (1500 rpm for 5 min) and the supernatant was removed and 

filter sterilized through 0.22 µm filter into another sterile 50 mL falcon tube (conditioned 

media). The cell pellets were re-suspended in cold freezing medium. Equal volume of 

sterile conditioned medium was added to the concentrated cells.1mL of concentrated 

cells was transferred into labeled cryovials. The cryovials were stored at –80˚C. Liquid 

nitrogen storage is highly recommended for storing cell stocks.  

 

4.4.7 Transfection (FlashBAC BEVS) 

A) Seeding of cells  

Three wells were set up for infection in a six-well plate. One well was used as control, 
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second well was used for wild-type NA infection and the third well was used for H274Y 

NA infection. 6 x 105 Sf9 cells/mL was seeded in 2 mL of Sf900II medium per well in a 

six-well plate. The plate was gently moved side to side for even distribution and the plate 

was incubated at 28˚C for 1 h to allow cells to attach to the plate surface.  

  

B) Transfection mix preparation 

 

Mixture A:  

flashBAC DNA (100 ng)   5 µL 

Transfer vector DNA (500 ng)  5 µL 

   Grace’s medium    100 µL 

 

Mixture B:  

Cellfectin     6 µL 

 Grace’s medium    100 µL 

 

Then 105 µL of Mixture A was mixed with 106 µL of Mixture B. This is called the 

transfection mix. The transfection mix was incubated at room temperature for 30 min. 

800 µL Grace’s medium was added to the transfection mix. 1 mL of Grace’s medium was 

used as the transfection mix for the control well.  

 

C) Transfection 

The six well plate was removed from the incubator and the media was removed, quickly 

2mL of Grace’s medium was added (care was taken in not allowing the cells to dry out). 

The medium was removed and 1mL of transfection mix was added to the well in a 

dropwise manner. The cells were incubated at 28˚C for 5 h. After 5 h the transfection mix 

was removed and 2 mL of Sf900II medium supplemented with antibiotics and 

antimycotics (100X) was added. The plate was placed in plastic container with moist 

paper towels and incubated 28˚C for 7 days. The cells were monitored at 5 day post 

infection (dpi), increased cell diameter, increased size of cell nuclei, and detachment were 

observed. At 7 dpi, the cells were harvested. 2 mL medium from the 6-well plate was 

transferred to a sterile 10 mL tube. P1 budded virus (BV) was harvested by centrifugation 

at 1500 rpm for 5 min. The supernatant was transferred to a fresh 10 mL tube. The tube 

was labelled and stored at 4˚C. This was the P1 BV stock. 
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4.4.8 BV Amplification 

A) P2 BV Amplification 

800 µL of P1 BV cell culture supernatant was added to passage of cells to make a P2 BV 

culture. P2 BV was monitored 2 days after infection. The cells had 88% viability and 

hence it was left for another day. On the 3rd day the viability had decreased to 78% 

(<80%), thus the cells were ready for harvest. The cells were harvested by centrifuging 

the entire culture in a sterile 50 mL tube (1500 rpm, 5 min). The supernatant was 

transferred into a fresh sterile 50mL tube, labelled and stored at 4˚C immediately. This 

was the P2 BV stock. 

 

B) P3 BV Amplification 

10 µL of P2 BV cell culture supernatant was added to passage of cells to make a P3 BV 

culture. P3 BV was monitored 2 days after infection. The cells had 81% viability and 

hence it was left for another day. On the 3rd day the viability had decreased to 74% 

(<80%), thus the cells were ready for harvest. The cells were harvested by centrifuging 

the entire culture in a sterile 50 mL tube (1500 rpm, 5 min). The supernatant was 

transferred into a fresh sterile 50 mL tube, labelled and stored at 4˚C immediately. This 

was the P3 BV stock. 

 

C) Protein expression  

Sf9 and High-Five cells were seeded at 3 x 106 cells/mL and 1.5 x 106 cells/mL 

respectively. For a Sf9 culture 1.5 mL of P3 BV was added per 50 mL and for a High-

Five culture 0.75 mL P3 BV was added per 50 mL. The flasks were incubated at 28˚C, 

120 rpm. Cultures were sampled every 24 h for 4 days. The samples were spun down for 

5 min at maximum speed in a micro-centrifuge and the supernatant and cell pellet were 

stored separately in 4˚C.The samples were the used for SDS-PAGE and western blot 

assay. 

4.4.9 Western blotting  

A) Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Samples of each of the recombinant cell lysates were separated by sodium SDS-PAGE 

using an Invitrogen Novex mini cell. Samples were mixed with β-mercaptoethanol and 

SDS then heated and centrifuged at 11,000 rpm for 40 s before being loaded into the gel. 
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The electrophoresis was run at 200V for 45min. After electrophoresis, the gel was stained 

in staining solution (0.22% Coomassie Brilliant Blue R-250, 50% methanol, 10% glacial 

acetic acid) for 40 min with gentle agitation. The gel was detained in destaining solution 

(20% methanol, 10% glacial acetic acid) with gentle agitation. The gel image was 

documented using the GE image-quant LAS 500 gel documentation unit.  

 

B) Semi dry electrophoretic transfer 

For electroblotting the protein bands were separated using SDS-PAGE (staining and 

destaining not performed for electroblotting). Electroblotting was performed using 

Trans-Blot®SD semi-dry electrophoretic transfer cell. Twelve sheets of Whatman filter 

paper and 1 sheet of nitrocellulose membrane (pore size 0.2 m) were cut to the size of 

the PAGE gel and soaked in transfer buffer for 45 min. Six filter papers were placed onto 

the platinum anode. A test tube was rolled over the surface of the filter paper to remove 

all air bubbles. The pre-wetted nitrocellulose membrane was placed on top of the filter 

paper. Again a test tube was rolled over the surface to remove all air bubbles. The SDS-

PAGE was carefully placed on top of the transfer membrane. The gel was aligned to the 

centre of the membrane. A test tube was rolled over the surface to remove all air bubbles. 

The remaining six filter papers were placed on top of the gel. A test tube was rolled over 

the surface to remove all air bubbles. The cathode was placed onto the stack. The power 

supply was turned on and the gel was transferred to the membrane for 30 min at 25V.  

 

C) Antibody staining  

The membrane was blocked for 1 h at room temperature using blocking buffer. The 

membrane was incubated with Influenza A H1N1 (Swine Flu 2009) NA / neuraminidase 

antibody, overnight at 4˚C. The antibody was diluted in blocking buffer (1:1000). The 

membrane was washed thrice (15 min each wash) with PBST. The membrane was 

incubated with labelled secondary antibody (mouse IgG secondary antibody HP 

conjugate) for 1 h at room temperature. The antibody was diluted in blocking buffer 

(1:10,000). The membrane was washed thrice (15 min each wash) with PBST. The 

secondary antibody was allowed to develop a chemiluminescent signal with ECL western 

blotting detection agents. The signal was documented using GE image-quant LAS 500 

gel documentation unit.    
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4.4.10 Protein purification 

A) Cell Lysis  

Cell lysis was performed using the protocol described by (slightly modified) Dalakouras 

et al. (2006). Recombinant insect cells were harvested and suspended in 4 mL of lysis 

buffer. 400 µL of protease inhibitor cocktail was added, to the cell suspension, just before 

sonication. The cells were sonicated on ice to release proteins. The final cell lysate was 

centrifuged at 12,000 rpm for 15 min at 4˚C and to separate the soluble and insoluble 

fraction. The supernatant containing the soluble proteins were collected and used as a 

source of NA.  

 

B) Anion exchange chromatography  

Anion exchange chromatography was carried out on an AKTA Explorer 10 

chromatography system. A 1 mL Resource™ Q anion exchange column was equilibrated 

with Buffer A.  Sample was injected onto the column through an injection loop and 

washed through with buffer A for 5 column volumes (CV). Bound proteins were eluted 

with Buffer B (gradient elution for 20 CV). UV absorbance at 280 nm and 215 nm was 

measured using an AKTA UV-900 unit. The flow through and eluted fractions were 

collected using an AKTA Frac-900 unit. The fractions were subjected to western blot 

analysis to detect the presence of influenza NA. The fractions with positive western blot 

signal were combined for further analysis and purification.  

 

C) Size exclusion chromatography  

Size exclusion chromatography was carried out on an AKTA Explorer 10 

chromatography system. A 24  mL  Superdex  S200  10/300  GL  size  exclusion  column  

was  equilibrated Buffer C. The anion exchange combined fractions was injected onto 

the column through an injection loop and washed through with buffer C.  UV  absorbance  

at 280 nm  and  215 nm  was  measured  using  an  AKTA  UV-900  unit.  Fractions were 

collected using an AKTA UV-900 unit. The fractions were subjected to SDS-PAGE and 

dot blot analysis to detect the presence of influenza NA. 

4.4.11 Activity Assay 

Recombinant samples were sent away for external testing to Dr Richard Hall at 

Environmental Science & Research (ESR) at the National Centre for Biosecurity & 
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Infectious Disease (NCBID), Wallaceville, NZ.  The samples  were  tested  for  NA  

activity  using  a  fluorometric  assay  originally described by Potier et al. (1979).Virus 

samples from ESR were used as positive and negative control for the assay. The 

nomenclature of the control virus are described as type, location isolated, strain number, 

year of first isolation, subtype (for example : A/Fukui/45/2004 (H3N2)).  

4. 5 Results and discussion  

4.5.1 Cloning of NA into pBac 1 vector 

A) Cloning  

The NA wild-type gene (1466 bp) was amplified by PCR from pFastBac construct 

containing NA. The primers used for the PCR reaction had homologous regions 

corresponding to pBac vector. The PCR product was run on 0.8% agarose gel and a band 

of 1466 bp was obtained (Figure 4-3) and gel-purified. The concentration of the gel-

purified DNA was measured at 54 ng/µL. The PCR product was then cloned into pBac1 

vector using the in-vivo cloning method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2 Cloning 

 

L1 L2 

Figure 4-3: 0.8% Agarose gel (stained with SYBR safe) analysis of the PCR product (L2).The band 

corresponding to 1466 bp is the GOI (NA wild type). L1) 1 kb plus DNA ladder (Invitrogen). 

1650 bp 

L1 L2 

1000 bp 
1466 bp 
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B) Colony PCR 

Colony PCR of the clones C1-C6 was performed to verify the presence of the NA 

sequence with pBac-NAf and pBac-NAr primers and Taq DNA polymerase. The 

amplified fragment (1466 bp) was seen only in one clone (Figure 4-4). This indicated the 

presence of the NA in that particular clone (C2). The negative control for colony PCR 

was the plasmid pBac1 without the GOI.  

 

 

Figure 4-4: Colony PCR amplified fragments of NA on 1% agarose gel with pBac-NAf 

and pBac-NAr primers and  Taq  DNA polymerase. Lane: 1-6) C1-C6, 7) 1 kb plus 

DNA ladder (Invitrogen) and 8) negative control (plasmid pBac1). 

 

C) Restriction digestion 

Double digestions of pBac1-NA were performed with the restriction endonucleases 

BamH I and Xho I. Two fragments corresponding to pBac 1 vector (5292 bp) and NA 

(1466 bp) were obtained after digestion, as shown in Figure 4-5. This indicated the 

presence of the NA in colony 2.The undigested sample had only one fragment 

corresponding to pBac 1- NA (6725). 

 

D) DNA sequencing of the pBac-NA   

DNA sequencing of clone 2 was performed with the primer pBac1-NAf for plus strand 

1466 bp 1650 bp 

1000 bp 
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determination and the sequencing result was positive. The clone was again checked 

through DNA sequencing with the primer (1629 DWN primer) that recognized the 

sequence in the vector (Figure 4-2). Based on the positive sequencing results, clone 2 

was used for infecting the insect cells. Also, clone 2 was used for SDM to obtain the 

H274Y mutant.  

 

Figure 4-5: Double digestions of pBac-NA, (L1) undigested DNA containing a single 

band corresponding to pBac-NA (6725), (L2) double digested DNA containing two 

fragments corresponding to pBac 1 vector (5292 bp) and NA (1466 bp) and (L3) 1kB 

plus DNA ladder (Invitrogen) on 1% agarose gel.    

 

4.5.2 Site directed mutagenesis (SDM) 

A) Restriction digestion 

A double restriction digestion analysis was performed on clone 2 of pBac1-NA mutant 

with the restriction endonucleases BamH I and Xho I. Two fragments corresponding to 

pBac 1 vector (5292 bp) and NA mutant (1466 bp) were obtained after digestion, as 

shown in Figure 4 6. This indicated the presence of the NA. The undigested sample had 

only one fragment corresponding to pBac 1- NA mutant (6725 bp). 

 

B) DNA sequencing of pBac-NA mutant 

The overnight cultures grown from the three colonies that were transformed (into XL1-

Blue competent cells) after SDM were minipreped and were sent for sequencing. The 

sequencing analysis of the mutation at position 274, which was towards the end of the 

5292 bp 6725 bp 

1466 bp 
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protein sequence, was performed with the reverse primer alone. From the sequencing 

result it was confirmed that clone 2 was clean and carried the desired mutation. Hence, 

clone 2 was again sequenced with the forward primer. This confirmed that the colony 

was perfectly clean and carried only the desired mutation at position 274. 

 

Figure 4-6: Double digestions of pBac-NA H274Y, (L1) 1 kb plus DNA ladder 

(Invitrogen), (L2) undigested DNA containing a single band corresponding to pBac-

NA mutant (6725) and (L3) double digested DNA containing two fragments 

corresponding to pBac 1 vector (5292 bp) and NA mutant (1466 bp) on 1% agarose gel.    

4.5.3 Insect cell culture  

Sf9 cells and High-Five cells were cultured in sf900 II SFM for 168 h (7 days). One mL 

samples were collected every 24 h to determine the cell density and viability (Figure 4-7). 

For the sf9 cells it was observed that cell densities increased exponentially over the first 

four days. This indicated the growth phase of the cells. The cell density reached a 

maximum of 1.2 x 107 cells/mL. On days five and six the cell density reached a plateau 

(stationary phase). The sf9 cell viability remained above 96% until day five, after which 

a gradual decrease in cell viability was noticed. The viability dropped to 78% at the end 

of day seven. This indicated that the cells had reached their death phase. For the High-

Five cells, the exponential phase lasted for three days, with the cell density reaching a 

maximum of 5.4 x 106 cells/mL. The stationary phase was observed on day 4, after which 

the viability dropped significantly (88%) and the cells entered the death phase. The 

viability decreased to less than 70% on day seven. For subsequent sub-culturing of cells, 

5292 bp 6725 bp 

1466 bp 
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it was essential that the cells were in the exponential phase. From the cell growth curve 

analysis (Figure 4-7), it was determined that the optimum time for sub-culture for both 

the cell lines were between days three and four.  

 

 

 

Figure 4-7: Growth curve analysis for sf9 cells and High-Five cells. One mL sample 

was collected after every 24 h and cell density and viability was measured (triplicates). 

All data points shown in the graph are mean ± standard deviation (S.D.) of the 

triplicate measurements. 

4.5.4 Transfection of insect cells  

 

A) Isolation of P1 viral stock  

Transfection of Sf9 insect cells (6 x 105 cells/mL, viability > 97%) was performed in an 

un-supplemented Grace’s Medium in a 6-well tissue culture plate as described in section 

4.4.7. Six µL of Cellfectin® reagent was used for mediating the transfection. After 5 h of 

transfection, the cells were cultured in 2 mL Sf900II medium supplemented with 

antibiotics and antimycotics (100X) for 7 days at 28˚C. Infection was monitored after 5 

dpi. When compared to the non-transfected cells, the transfected cells showed increase 
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in cell diameter, cessation of cell growth and detachment from plate surface. These were 

signs of late and very late infection.  P1 viral stock was isolated and collected after 7 dpi.   

 

B) Preparation of P2 and P3 viral stocks    

The collected P1 viral stock was a low-titer stock and therefore, the stock was amplified 

to obtain high-titer P2 and P3 stocks. The stocks were amplified as described in section 

4.4.8. When compared to the non-transfected cells, the trasnfected cells decreased in cell 

viability. Once the viability decreased below 80%, (Figure 4-8) the P2 and P3 virus stocks 

were harvested.  

 

 

Figure 4-8: Monitoring cell viability for P2 and P3 viral stock. One mL sample was 

collected after every 24 h and cell viability was measured (triplicates). The viability 

data shown in the graph are mean ± S.D. of the triplicate measurements. 

 

4.5.5 Expression analysis 

A) Cell density and viability  

The expression condition of the recombinant influenza NA was optimized by using two 

different cell lines (sf9 and High-Five cells). Sf9 and High-Five cells were seeded at 3 x 

106 cells/mL and 1.5 x 106 cells/mL respectively for protein expression. The expression 

was set up by adding P3 viral stocks to the cells (as described in 4.4.8). Sf9 and High-
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Five cells with the same seeding density of 3 x 106 cells/mL and 1.5 x 106 cells/mL (no 

P3 stock added) were used as control. A time course expression analysis was performed 

for 24, 48, 72 and 96 h post-infection. One mL sample was collected every 24 h. The cell 

morphology, viability and cell density were monitored during the time course. From the 

bar graph (Figure 4-9 & Figure 4-10) it was observed that the cell viability of the infected 

cells were lower than the respective controls. However, once infected with P3 viral stock, 

the viability should drop to around 80% by 24 h. In this case the viability was still 90% 

for the infected cells. Moreover, from the growth curves (Figure 4-11 & Figure 4-12) it 

was observed that the cells were still growing up to 48 h post infection. This indicated 

that the not all cells were infected. The uninfected cells continued to grow, thereby not 

allowing the cell density and viability to drop as expected. This could have been because 

of poor quality of the recombinant baculocvirus (P3 BV) used for infection. 

 

 

 

Figure 4-9:  Time course analysis (cell viability) in High-Five cells. One mL samples 

were collected every 24 h. Cell viability was measured (triplicates). The viability data 

shown in the graph are mean ± S.D. of the triplicate measurements. 
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Figure 4-10: Time course analysis (cell viability) in sf9 cells. One mL samples were 

collected every 24 h. Cell viability was measured (triplicates). The viability data shown 

in the graph are mean ± S.D. of the triplicate measurements.  

 

 

Figure 4-11: Time course analysis (growth curve plot) in High-Five cells. One mL 

samples were collected every 24 h. Cell densities were measured (triplicates) a growth 

curve chart has been plotted. The cell denstiy data shown in the graph are mean ± S.D. 

of triplicate measurements.  
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Figure 4-12: Time course analysis (growth curve plot) in sf9 cells. One mL samples 

were collected every 24 h. Cell densities were measured (triplicates) a growth curve 

chart has been plotted. The cell denstiy data shown in the graph are mean ± S.D. of 

triplicate measurements.  

B) Cell morphology  

Change in cell morphology was an essential factor for monitoring insect cell infection. 

The infected cells gradually showed changes in cell morphology, such as, an increase in 

cell diameter, increase in cell nucleus and cessation of cell growth. When the cells were 

subjected to a trypan blue viability test, the viable cells remained colourless, while dead 

cells were blue. This is because the cell membranes of the viable cells remained intact 

and did not allow the trypan blue to enter the cells, whereas dead cells were stain because 

of damaged cell membranes. From the cell images (Figure 4-14 & Figure 4-13) it was 

observed that infection has started spreading gradually. Both the cell lines followed a 

similar trend. For the first 24 h, very few cells were infected, due to which the cell density 

and viability did not drop as expected (Figure 4-9 & Figure 4-10). After 72 h post 

infection most of the high five cells had been infected. This had resulted in more cell 

death which in turn had dropped the viability below 80%. The sf9 cells on the other hand 

showed a similar drop in viability only after 96 h post infection.  
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Figure 4-13: High-Five cells transfected with the recombinant baculovirus of 

influenza NA. Changes in cell morphology were observed every 24 h under a 

microscope at 40X magnification.  
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Figure 4-14: Sf9 cells transfected with the recombinant baculovirus of influenza NA. 

Changes in cell morphology were observed every 24 h under a microscope at 40X 

magnification. 
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C) Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Influenza NA forms a tetrameric structure, which is the only enzymatically active 

form of NA. The molecular weight of active (tetrameric) NA is approximately 240 

kDa. However, it has been reported that, SDS-PAGE analysis in the presence of β-

mercaptoethanol resulted only in a 55 kDa band (Wu et al. 2009; Deroo et al. 1996). 

This is because under reducing conditions the protein was denatured and di-sulphide 

bonds were disrupted. Hence, the tetrameric NA was converted to a monomeric form. 

Similar observations were made in this thesis work.  From the SDS-PAGE analysis 

(Figure 4-15) it was very difficult to see a prominent 55 kDa band. As only few insect 

cells were infected, when the cells were lysed for releasing the proteins, the majority 

of the proteins were host cell proteins with very minor anounts of NA. Hence, it was 

difficult to follow the protein on the SDS-PAGE. Therefore a western blot analysis 

was performed to confirm the presence of NA. 

 

 

Figure 4-15: SDS-PAGE analysis of the time course of expression of influenza NA in 

Sf9 and High-Five insect cells, under reducing condition and stained with coomassie 

blue. L1) Ladder, L2) Sf9 cell pellet (control 72 h), L3)  Sf9 cell pellet (control 96 h), 

L4) Sf9 cell pellet (NA-WT 72 h), L5) Sf9 cell pellet (NA-WT 96 h), L6) Sf9 cell pellet 

(NA-H274Y 72 h), L7) Sf9 cell pellet (NA-H274Y 96 h), L8) High-Five cell pellet 

(control 48 h), L9) High-Five cell pellet (control 72 h), L10) High-Five cell pellet (NA-

WT 48 h), L11) High-Five cell pellet (NA-WT 72 h), L12) High-Five cell pellet (NA-

H274Y 48 h), L13) High-Five cell pellet (NA-H274Y 72 h). 
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D) Western-blotting  

Western-blotting analyses was performed to confirm the presence of influenza NA in the 

High-Five and sf9 samples collected at different time intervals (24 h, 48 h and 72 h post 

infection for High-Five cells and 72 h and 96 h post infection for sf9 cells). The samples 

were blotted to the nitrocellulose membrane after separation by SDS-PAGE as described 

in 4.4.9. The western blot image (Figure 4-16) confirmed the presence of NA (both wild-

type and H274Y mutant) in all the samples. A predominant band was seen at 55 kDa for 

both the cell lines. The High-Five cells expressed NA from 24 h post infection. The 

expression was at its peak at 72 h post infection. This was in good agreement with the 

above discussed results. There was a significant drop in cell viability (Figure 4-9 & 

Figure 4-11) after 72 h post infection for High-Five cells. Moreover, the cell image 

(Figure 4-13) also confirmed that most of the cells were infected only after 72 h post 

infection. The level of expression in sf9 cells was relatively low. The expression reached 

a maximum only at 96 h post infection. This was also in good agreement with the above 

discussed results. As seen in the viability graph (Figure 4-10), the cell viability drops 

below 80% only after 96 h post infection for sf9 cells. Hence, the western blot band 

intensity was stronger after 96 h post infection. Western blotting has proved to be a useful 

tool for detecting the presence of NA in the cell culture samples. From this blot, it was 

concluded that High-Five cells expressed NA relatively more NA than sf9 cells. It was 

also concluded that 72 h post infection was the optimum time for harvesting the cells for 

further analysis.  

 

 

Figure 4-16: Western blotting analysis of the time course of expression of influenza 

NA in Sf9 and High-Five insect cells, detected with the monoclonal influenza A H1N1 

(swine flu 2009) NA / neuraminidase antibody.  
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4.5.6 Purification 

A) Cell Lysis 

Cells were lysed as described in 4.4.10.A. The soluble and insoluble fractions were 

analysed using western blot (Figure 4-17) to confirm the presence of NA. The majority 

of the protein was found in the soluble fractions. Although the insoluble fractions also 

contained NA, the amount was comparatively lesser than the amount found in the soluble 

fractions. The Soluble fractions were used as a source of NA.  

 

 

Figure 4-17: Western blotting analysis of soluble and insoluble cell lysate fractions 

detected with the monoclonal influenza A H1N1 (swine flu 2009) NA / neuraminidase 

antibody. L1) ladder, L2) total protein, L3) soluble fraction and L4) insoluble fraction.  

 

B) Anion exchange chromatography- gradient elution 

Anion exchange purification of influenza NA wild type expressed in High-Five insect 

cells was performed with a 1 mL Resource Q column as described in section 4.4.10. 

Figure 4-18 showed that majority of the contaminants (host cell proteins) did not bind to 

the column at pH 6.0, while the target protein NA bound to the column. The bound 

proteins were eluted with an increasing salt gradient (0% to 100% buffer B). Western blot 

results (Figure 4-20) confirmed that NA was not present in the flow through fractions. 

The fractions corresponding to the peak indicated in Figure 4-18, showed positive 

western blot band at 55 kDa. Anion exchange chromatography proved to be a very useful 

first step purification technique to remove major host cell proteins from the cell extract. 

The fractions with the positive western blot band were pooled and further purified using 

SEC. 
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Figure 4-18: Anion exchange chromatogram for NA wild type on 1 mL Resource™ Q 

anion exchange column at pH 6.0. Bound proteins were eluted using increasing salt 

gradient for 20 column volumes (CV). The flow through and elution fractions were 

collected tested for the presence of influenza NA.  

 

 

Figure 4-19: SDS-PAGE analysis of anion exchange chromatography fractions. L1 & 

11) ladder, L2) injected sample, L3) flow through, L4-10 & L12-15) elution fractions.  
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Figure 4-20: Western blotting analysis of anion exchange chromatography fractions 

(flow through and elution), detected with the monoclonal influenza A H1N1 (swine flu 

2009) NA / neuraminidase antibody. L1) ladder, L2) injected sample, L3) flow through, 

L4-8) fractions corresponding to fractions highlighted in Figure 4-19. 

 

C) Size exclusion chromatography  

Using a superdex 200 gel filtration column, the combined anion exchange fractions were 

purified based on their size. The active terameric NA has a molecular weight of 240 kDa, 

hence, it can be easily separated from smaller contaminants using SEC. Considering the 

huge size of NA, it was expected to elute in the early fractions. The fractions 

corresponding to the peak indicated in Figure 4-21, were analysed on SDS-PAGE (Figure 

4-22), it was observed that one fraction  showed a single band at 55 kDa (NA). Moreover, 

the other fractions had NA along with other contaminants. The single fraction containing 

NA was highly diluted and hence, the band on the SDS-PAGE was very faint. Fraction 

in L2 to L5 (Figure 4-22) were tested for the presence of NA using dot blot. The dot blot 

analysis was performed instead of western blot, because the SDS-PAGE bands were very 

faint. Moreover, dot blot analysis can be performed slight quicker that the western blot. 

The dot blot (Figure 4-23) showed positive signals for these fractions. Although SEC was 

successfully used to purify NA, the samples were not used for further analysis (activity 

assay and SPR). This was because the SEC fractions were very dilute. Hence, the anion 

exchange fractions were used for developing the SPR assay.  
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Figure 4-21: Size exclusion chromatogram for superdex 200 gel filtration column. 

Proteins were separated based on their size. The fractions were collected tested for the 

presence of influenza NA. 

 

Figure 4-22: SDS-PAGE analysis of the SEC purified influenza NA under reducing 

conditions and commassie staining. L1) ladder, L2-7) fractions corresponding to peak 

indicated in the SEC chromatogram (Figure 4-21). L2 has a single band at 55 kDa 

corresponding to NA. This band is also present in L3-5 along with a 60 kDa 

contaminant.  
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Figure 4-23: Dot blot analysis of SEC fractions, detected with the monoclonal 

influenza A H1N1 (swine flu 2009) NA / neuraminidase antibody (same fractions as 

L2-5 in Figure 4-22) for confirming the presence of NA.  

 

D) Anion exchange chromatography- step elution  

Based on the anion exchange elution profile (gradient elution), a step elution method was 

developed. In the gradient elution NA eluted at 23 mS/cm (conductivity). This 

corresponds to approximately 50% of buffer B concentration. The concentration of buffer 

B was increased stepwise.  The first step was 25% of buffer B, which removed some of 

the contaminants. The next step was 60% of buffer B. NA was expected to elute off under 

this concentration. The third step was 100% buffer B, which removed other proteins 

bound to the column. The step elution was faster to run, and the target protein eluted in 

a smaller overall volume than with gradient elution. Figure 4-24 shows two overlaid 

chromatogram of anion exchange chromatography on recombinant NA wild type and NA 

H274Y eluted with a increasing salt concentration (step elution). The sample was injected 

using a 2 mL sample injection loop, the injected samples were the respective cell lysates. 

Both cell lysates behaved similarly at pH 6.0. Flow through and elution samples were 

collected for each of the protein for analysis. A dot blot analysis was performed on NA 

wild type to determine the presence of NA in the fractions. The dot blot result (Figure 

4-25) showed positive signal for fractions eluted at 60% buffer B concentration. Later 

the fractions with positive signals for the wild type protein were pooled. For NA H274Y 

protein, exactly the same fractions were pooled, because both the chromatograms were 

identical. Both pooled fractions were then analysed on a western blot. Figure 4-26 

showed a 55 kDa band for the wild type and H274Y samples. The band for H274Y sample 

showed a stronger signal when compared to the band for the wild type protein. This 

indicated that the concentration of the mutant was higher in the lysate than the wild type 

protein. This was in good agreement with the chromatogram (Figure 4-24), where the 
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absorbance at 280 nm for the mutant protein was slightly higher than the wild type 

protein.  

 

 

 

Figure 4-24: Overlaid chromatogram of anion exchange chromatography, on NA wild 

type and NA H274Y  cell lysated, on 1mL Resource™ Q anion exchange column at pH 

6.0. Bound proteins were eluted using increasing salt concentration (step elution).  The 

flow through and elution fractions were collected and analysed. 

 

 

0

10

20

30

40

50

60

70

80

90

100

0

500

1000

1500

2000

0 5 10 15 20 25

2
8
0
 n

m
 a

b
so

rb
a
n

ce
  
(m

A
U

)

Elution Volume (mL)

280 nm
absorbance
NA wt

280 nm
absorbance
NA H274Y

Conductivity
(mS/cm)

Concentratio
n (%)

B
u

ffer B
 co

n
cen

tra
tio

n
 (%

)

Peaks

corresponding

to NA

25% 

60% 

100% 



4-37 

 

 
 

Figure 4-25: Dot blot analysis of anion exchange chromatography run on NA wild 

type (step elution). 1) injected sample, 2-6) fractions eluted at 25% buffer B, 7-12) 

fractions eluted at 60% buffer B and 13-18) fractions eluted at 100% buffer B. 

 
 

Figure 4-26: Western blotting analysis of  pooled anion exchange chromatography 

fractions for NA wild type and NA H274Y mutant, detected with the monoclonal 

influenza A H1N1 (swine flu 2009) NA / neuraminidase antibody. L1) ladder, L2) NA 

H274Y and L3) NA wild type.  

4.5.7 Activity assay 

Recombinant influenza NA (wild type and H274Y) was tested for activity using a 

fluorometric assay, described by Potier et al. (1979). The preliminary results are 

presented in Figure 4-27 & Figure 4-28 (cell pellets and cell culture supernatant 

respectively). Both the wild type and H274Y mutant showed high enzyme activity for 

cell pellets. The cell culture supernatant also showed activity. This indicated that a little 

amount of NA has been secreted into the cell culture supernatant. For the soluble cell 

sample, the activity assay looked saturated for the first three dilution factors and 

gradually decreased with the increase in dilution factor. The activity for the wild type and 



4-38 

 

H274Y mutant were very similar. This meant that the mutation had not affected the 

activity of the protein. The positive control used in this assay was influenza virus from 

environmental science & research (ESR), while two negative controls were used. ESR 

negative control was the assay buffer without the virus and the High-Five control was the 

cells which were not infected with recombinant baculovirus.  

 

4.5.4 Inhibition assay  

Sensitivity of influenza viruses to the antiviral drugs (oseltamivir and zanamivir) were 

determined by fluorometric neuraminidase-inhibition assay. The 50% inhibitory 

concentration (IC50) was determined using a log-dose–response curve-fit in GraphPad 

PRISM (v5.04) (Figure 4-29 & Figure 4-30). The IC50 value represents (Table 4-9 & 

Table 4-10) the concentration at which antiviral drugs inhibits neuraminidase activity by 

50%. 

 

 

 

Figure 4-27: Activity assay for recombinant High-Five cell pellets. The assay was 

performed at Environmental Science & Research (ESR) at the National Centre for 

Biosecurity & Infectious Disease (NCBID).   
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Figure 4-28: Activity assay for cell culture supernatant. The assay was performed at 

Environmental Science & Research (ESR) at the National Centre for Biosecurity & 

Infectious Disease (NCBID).  The supernatant activity levels observed were not as high 

as seen for the cell pellets. This suggested that most of the proteins were cell associated 

while the remaining was secreted into the cell culture supernatant. 

A) Oseltamivir 

A/Fukui/45/2004 (H3N2) (E119V) & A/Victoria/124/2005 (H1N1) (H274Y) were 

positive controls (the viruses that are resistant to oseltamivir) used in the activity assay. 

A/Fukui/20/2004 (H3N2) (wild type) was used as a negative control (the virus that is 

sensitive to oseltamivir) in the activity assay. The respective IC50 values are given in 

Table 4-9. Clearly the wild type (0.59 nM) was sensitive to oseltamivir, while the H274Y 

mutant (349.43 nM) was resistant to oseltamivir, even though both the proteins had 

similar activity. This result was consistent with the data reported by Collins et al. (2008), 

suggesting that the binding affinity of the H274Y mutant for oseltamivir had reduced 

significantly. The H274Y mutant disrupts the binding pocket of group 1 NA’s (N1, N4, 

N5 and N8) and not group 2 NA’s (N2, N3, N6, N7 and N9). The proper folding of the 

protein brings amino acid at 252 exactly below the amino acid at 274. Group 1 NA’s 

already possess a bulky tyrosine residue at 252. For these NA’s to further accommodate 

a tyrosine at 274 requires alterations in the binding pocket, which disrupts the salt bridge 

formation required for stabilizing oseltamivir binding. In contrast the group 2 NA’s have 

a smaller threonine residue at position 252, which allows the protein to accommodate 
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tyrosine at 274 without altering the binding of oseltamivir (Russell et al. 2006; Collins et 

al. 2009).  The NA present in the ESR positive control (H1N1) used in this inhibition 

falls under group 1 classification, hence the H274Y mutation has affected oseltamivir 

binding affinity. The NA present in Fukui resistant (H3N2) strain falls under group 2 and 

the E119V mutation has been reported to show resistance to the oseltamivir, although the 

mechanism by which the mutation confers resistance is still not clear (McKimm-

Breschkin 2000; Yen et al. 2005).  

 

B) Zanamivir 

A/Philippines/1279/2006 (H1N1) (Q136K) was the positive control (the virus that is 

resistant to zanamivir) used in the activity assay. A/Philippines/1279/2006 (H1N1) (wild 

type) was negative control (the virus that is sensitive to zanamivir) used in the activity 

assay. The respective IC50 values are given in Table 4-10. In this case, both the wild type 

(0.26 nM) and the H274Y mutant (0.44 nM) were sensitive to zanamivir. This result 

indicated that zanamivir was a more potent inhibitor than oseltamivir for H274Y mutant. 

This result was also consistent with the data reported by Collins et al. (2008). Zanamivir 

possess the same glycerol moiety at C6 as sialic acid. Hence, a mutation in the binding 

pocket is less likely to develop resistance to the drug without weakening its binding with 

sialic acid (Collins et al. 2009). This has allowed H274Y mutant to remain sensitive to 

zanamivir. The Q136K resistant control used in this assay is not involved with the binding 

pocket of the protein. Q136K mutation has been reported to show resistance to the 

zanamivir. The amino acid Q at 136 forms hydrogen bonds with R156 and D151, both of 

which interact with the guanidine group of zanamivir. Mutation Q136K, does not allow 

R156 and D151 to interact with zanamivir. This mutation is irrelevant for sialic acid 

binding because sialic acid does not possess a guanidine group (Hurt et al. 2009). Hence, 

zanamivir developed resistance to Q136K. 
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Figure 4-29: Determination of IC50 values for oseltamivir with recombinant NA wild 

type and H274Y.   The recombinant NA’s (wild type and H274Y) and the original 

viruses were incubated with increasing concentrations of oseltamivir.  Data presented 

are mean ± S.D. of duplicate measurements for recombinant NA. The assay was 

performed at Environmental Science & Research (ESR) at the National Centre for 

Biosecurity & Infectious Disease (NCBID).   

 

Table 4-9:  Determination of IC50 values for oseltamivir 

Sample 

Group 

Sample NA 

mutation 

IC50 value* Phenotype 

ESR control 

virus A/Victoria/124/2005 

(H1N1) 

274Y 560.20 Resistant 

A/Fukui/20/2004 (H3N2) 119E 0.32 Sensitive 

A/Fukui/45/2004 (H3N2) 119V 103.20 Resistant 

Recombinant 

samples 

generated in 

BIC 

laboratory, 

Christchurch 

Control High-Five cells 
- - No activity 

NA-Wildtype  274H 0.59 Sensitive 

NA-H274Y  274Y 

349.43 Resistant 

 

*50% Inhibitory concentration; n = 2 for recombinant NA generated in BIC laboratory, Christchurch. 
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Figure 4-30: Determination of IC50 values for zanamivir with recombinant NA wild 

type and H274Y.   The recombinant NA’s (wild type and H274Y) and the original 

viruses were incubated with increasing concentrations of zanamivir.  Data presented 

are mean ± S.D. of duplicate measurements for recombinant NA.  The assay was 

performed at Environmental Science & Research (ESR) at the National Centre for 

Biosecurity & Infectious Disease (NCBID).   

 

Table 4-10 Determination of IC50 values for zanamivir 

Sample 

Group 

Sample NA 

mutation 

IC50 

value* 

Phenotype 

ESR control 

virus 

A/Philippines/1279/2006 

(H1N1) 136K 178.36 Resistant 

A/Philippines/1279/2006 

(H1N1) 136Q 0.25 Sensitive 

Recombinant 

samples 

generated in 

BIC 

laboratory, 

Christchurch 

Control High-Five cells - - No activity 
NA-Wildtype  274H 0.26 Sensitive 

NA-H274Y  274Y 0.44 

Sensitive 

 

*50% Inhibitory concentration; n = 2 for recombinant NA generated in BIC laboratory, Christchurch. 
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4.5.5 Activity assay for ion exchange combined fractions 

The dot blot (Figure 4-25) and western blot (Figure 4-26) analyses for the pooled ion 

exchange fractions confirmed the presence of NA. As discussed above, NA must be in 

tetramer form to be active. Irrespective of the form NA took after purification, the protein 

would appear as a 55 kDa band on SDS-PAGE. Hence, an activity assay was required to 

confirm the presence of tetramer and test if the samples retained the activity after ion 

exchange purification.   

 

Figure 4-31: Activity assay for ion exchange pooled fractions. Serial dilutions of the 

load sample for the chromatography (NA wild type and H274Y cell lysates) and the 

fractions pooled after chromatography were tested for the activity. All Data presented 

are mean ± S.D. of duplicate measurements.  

 

Figure 4-31 showed that all four samples (chromatography load samples and pooled 

fractions) were active. The activity for H274Y mutant was relatively higher than the wild 

type. This could be because the concentration of the mutant in the sample was higher 

than the wild type. The difference in the activity for the wild type and mutant can be 

correlated with the overlaid chromatogram peaks (Figure 4-24), where the mutant had 
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higher 280 absorbance than the wild type. This also correlates well with the western blot 

result (Figure 4-26), where the mutant had a stronger intensity than the wild type. All 

three results (chromatogram, western blot and activity assay) suggested that the mutant 

concentration was higher in the lysate than that of the wild type. Ion exchange purified 

NA was used for SPR assay development. The SPR assay to measure the kinetics of 

zanamivir and NA (wild type and H274Y mutant) interactions are described in detail in 

chapter 5. The SPR assay results were compared with results obtained from NA activity 

assay reported in this chapter and molecular docking results reported in Chapter 3.  

 

4. 6 Conclusions 

In summary, this chapter describes the cloning, expression and purification of influenza 

neuraminidase wild type and H274Y mutant using baculovirus expression system. NA 

was expressed at very low levels in insect cells. This could be because of the poor quality 

of the baculovirus generated or low virus titre used for BV amplification. Since the 

expression level was very low, it was difficult to follow the protein on an SDS-PAGE. 

Hence, a western blot was required to confirm the expression of NA. Standard 

purification techniques such as anion exchange and size exclusion chromatography were 

used to purify the protein. Standard fluorometric activity assay was performed on the 

recombinant proteins. Both the wild type and the mutant showed similar level of activities 

(53,650 and 52,992 RFU respectively). In addition, the recombinant NA was used in an 

inhibition assay. The inhibition assays were compared based on the calculated IC50 

values. The wild type protein was found to be sensitive to oseltamivir (IC50 = 0.59 nM) 

and the H274Y mutant protein was resistant to oseltamivir (IC50 = 349.43 nM). In 

contrast, both wild type (IC50 = 0.26 nM) and H274Y mutant (IC50 = 0.44 nM) proteins 

were sensitive to zanamivir. This indicated that zanamivir was a more potent inhibitor 

than oseltamivir, for treating H274Y mutant. This is in good agreement with the 

literature. The recombinantly generated NA was used for SPR assay development. 

Chapter 5 describes the SPR assay in detail.  
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5. Surface plasmon resonance assay development  

 

5.1  Introduction  

The need for a simple and a reliable assay to monitor influenza anti-viral drug 

resistance has increased due to the high levels of inconsistency exhibited by the 

MUNANA assay and the short half-life of the sensitive chemiluminescent (1, 2-

dioxetane derivative of sialic acid, NA-STAR) assay (Wetherall et al. 2003). This 

chapter describes the development of a simple, label-free, real-time surface plasmon 

resonance assay to measure the kinetics of zanamivir and NA (wild type and H274Y 

mutant) interactions. Synthesis of zanamivir-spacer conjugate, immobilization of the 

conjugate to the sensor chip and SPR interaction analysis are discussed in detail in this 

chapter. The current enzymatic assays are performed at pH 6.0 and at 37°C. The SPR 

experiments were designed to be carried out at pH 6.0 and at 35°C (maximum 

temperature that can be achieved in SPR auto sampler). Moreover, this chapter also 

describes the development of inhibition assays to monitor NI drug resistance. The 

proposed SPR assay results were compared with results obtained from the fluorescently 

labelled NA activity assay (Chapter 4), molecular docking results (Chapter 3) and 

kinetics data reported in the literature.  

5.2  Materials and methods  

5.2.1 Instrumentation  

A ProteOn XPR36 protein interaction system (Bio-Rad Laboratories, Hercules, CA, 

USA) was used for the SPR assay development. Ideally, in a single experiment, the 

ProteOn XPR36 system has the ability to monitor 36 interactions simultaneously. 

Instrument Control and data analysis were carried out using the ProteOn Manager 

Software Version 3.0. 

5.2.2 Reagents 

Amine coupling reagents 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-HCl 

(EDAC, 0.4 M), sulfo-N-hydroxysuccinimide (NHS, 0.1 M), ethanolamine-HCl (1.0 M, 

pH 8.5) and GLC biosensor chips were purchased from Bio-Rad Laboratories. 



5-2 

 

Regeneration buffer (10 mM glycine-HCl, pH 3.0), immobilization buffer (20 mM 

sodium phosphate, pH 8.0) and running buffer (20 mM sodium phosphate, 300 mM 

sodium chloride, 0.1% triton-100, pH 6.0) were prepared in the laboratory using 

analytical grade chemicals purchased from Sigma Aldrich (St. Louis, MO, USA).  

5.2.3 Zanamivir-spacer conjugate synthesis 

Compound 1 (286 mg, 0.5 mmol) was dissolved in pyridine (1.5 mL) under nitrogen 

(N2). 4-dimethylaminopyridine (DMAP, 152 mg, 2.5 eq.) and 4-nitrophenyl 

chloroformate (121 mg, 1.2 eq.) were added before leaving to stir for 3 hours. After 3 

hours N-Boc-1,6-hexanediamine (0.13 mL, 1 eq.) was added before leaving the reaction 

to stir overnight. After 16 h the reaction was diluted with ethyl acetate (EtOAc, 20 mL) 

and extracted with HCl (2M, 40 mL). The aqueous phase was then extracted with 

EtOAc (2 x 20 mL) and the combined organic layers were dried by adding excess 

magnesium sulfate (MgSO4) and concentrated under vacuum. The structure of the 

product was confirmed by high resolution mass spectra (electrospray ionization/time-

of-flight) (HRMS ESI/TOF) [HRMS (ESI-TOF): calculated for C36H58N6O15H+: 

815.4033, measured: 815.4040 (MH+)]. 

 

Figure 5-1: Synthetic chemistry step 1 - Synthesis of N-Boc-1,6-hexanediamine-

zanamivir conjugate (Image drawn using Chemdraw Ultra 6.0). 

 

Figure 5-2: Synthetic chemistry step 2 - Boc protection removal using trifluoroacetic 

acid (TFA) (Image drawn using Chemdraw Ultra 6.0).  
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The residue from the previous reaction (Figure 5-1) was dissolved in trifluoroacetic 

acid (TFA, 5 mL) under N2 and was left to stir. After 1 h the reaction was concentrated 

under vacuum and redissolved in 50% methanol (40 mL). After the addition of 

triethylamine (10 mL) the reaction was left to stir for 6 hours. After 6 hours the reaction 

was concentrated under vacuum and freeze dried to return a yellow viscous gel like 

substance (Figure 5-2). The structure of the product (1,6-hexanediamine-zanamivir 

conjugate) was confirmed by mass spectrometry [HRMS (ESI-TOF): calculated for 

C19H34N6O8H
+: 475.2509, measured: 475.2511 (MH+)]. 

5.2.4 Ligand preparation 

The synthesized ligand mixture was highly viscous. Hence, two strategies were 

examined in preparing ligand mixture for immobilization (Table 5-1). 

Table 5-1: Ligand preparation strategies  

Strategy Preparation method 

Strategy 1 25 mg of ligand mixture was dissolved in 1 mL of immobilization 

buffer. The solution was spun down at 13000 rpm for 5 min at 4°C. 

300 µL of this sample was tested for immobilization. 

Strategy 2 50 mg of ligand mixture was dissolved in 1 mL of immobilization 

buffer. The solution was spun down at 13000 rpm for 20 min at 

25°C. 500 µL of this solution was mixed with 500 µL of 

immobilization buffer and spun down at 13000 rpm for 20 min at 

25°C. 300 µL of this sample was tested for immobilization. 

 

5.2.5 Biosensor surface preparation 

Immobilization was carried out at 35°C using a standard amine coupling technique 

following the manufacturer’s instructions. Channels 1 and 2 were activated 

simultaneously with a mixture of EDAC and NHS (1:1 v/v, 30 μL/min, 5 min) followed 

by ligand (running buffer and zanamivir reaction mixture in channel 1 and 2 

respectively) and, finally, unreacted surface ester groups were deactivated with 

ethanolamine-HCl (1M, pH 8.5, 30 μL/min, 5 min). Channel 1 was used as the 

reference channel.  
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5.2.6 Analyte sample preparation 

The final NA concentration was determined from quantitative densitometry analysis 

(Appendix C). Pure bovine serum albumin (BSA, monomer) was used as a standard for 

densitometry analysis. A series of NA sample diluted in SPR running buffer were used 

as analyte for SPR assay development. The starting enzyme concentrations used in the 

assay were 5.2 nM and 6.1 nM for the wild-type and H274Y mutant respectively.  

5.2.7 Surface plasmon resonance biosensor assay 

Six analyte samples were injected simultaneously for 300 s (25 μl/min) over the 

immobilized ligand channels at 35°C. The binding responses were acquired for 300 s 

association and 600 s dissociation. The sensor surface was regenerated between 

experiments by two quick injections of regeneration buffer (18 s, 100 µL/min) to 

remove NA bound to zanamivir. The reference subtracted SPR signal corresponds to 

the binding of the analyte to the immobilized ligand. The generated data points were 

analysed using the ProteOn Manager™ Software tools. The SPR curves were fitted to a 

simple Langmuir 1:1 model and a Langmuir 1:1 model with drift to obtain kinetic 

parameters. The goodness of the fit was determined from the residuals and χ² values 

(the average of the squared differences between the measured data point and the fit).  

5.2.8 Inhibition assay  

25 mM master stock of each neuraminidase inhibitor (NI) and sialic acid were 

prepared. 500 μL aliquots of 100 μM working stocks were prepared from the master 

stock. NI for SPR assays were prepared as described in Table 5-2. SPR inhibition 

experiments were performed at 35°C using the same running buffer as mentioned 

above. 150 µL of fixed concentration (6 nM) NA was mixed with 150 µL of increasing 

concentrations of 2X inhibitor (Table 5-2). The mixture was incubated for 30 min at 

35°C inside the SPR auto sampler chamber. The effect of inhibitor on SPR response 

was monitored using the same assay conditions as described above. For a clear robust 

analysis, the analytes were injected in a randomized order. In a few experiments, the 

analytes were also randomized in subsequent injections. For example, see Table 5-3. 

The processed SPR data was analysed to determine 50% inhibitory concentration (IC50-

spr) using a log-dose–response curve-fit in GraphPad PRISM (v5.04). The IC50-spr value 

represents the concentration at which inhibitor and sialic acid inhibits neuraminidase 

binding to the immobilized ligand by 50%. 
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Table 5-2 NI sample preparation for SPR inhibition assay  

 

Table 5-3: Zanamivir inhibition assay - shuffling and reshuffling order of analytes.  

Channel number 

Inhibitor 

concentration in 

injection 1 (nM) 

Inhibitor 

concentration in 

injection 2 (nM) 

Inhibitor 

concentration in 

injection 3 (nM) 

1 1 1 0 

2 0.1 0.1 0.1 

3 0 0 1 

4 10 10 10 

5 1000 1000 100 

6 100 100 1000 

 

Dilution Inhibitor mix Inhibitor 

concentration before 

assay (2X) (nM) 

Inhibitor 

concentration in 

assay (nM) 

1 20 μL working stock + 980 μL 

running buffer (RB) 

2,000  1,000  

2  100 μL dilution 1 + 900 μL RB 200  100  

3  100 μL dilution 2+ 900 μL RB 20   10  

4  100 μL dilution 3 + 900 μL RB 2 1  

5 100 μL dilution 4 + 900 μL RB 0.2  0.1  
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5.3  Results and discussion 

5.3.1 Ligand immobilization 

Coupling a ligand via primary amine groups to an activated SPR chip surface occurs 

spontaneously. This direct coupling method is easy to execute. However, the 

immobilized ligand could be tethered in random orientations. This has a significant 

effect on the analyte binding because the random orientation of the ligand could 

possibly limit the access to the ligand binding site and hence can lead to a complex 

kinetic behaviour (Fee 2013). Therefore, designing suitable immobilization chemistry 

was absolutely critical and challenging. To obtain a more uniform surface orientation of 

ligand, the ligand was initially tethered to a spacer molecule. The ligand-spacer 

conjugate was then immobilized to the SPR chip surface. However, altering the 

chemical structure of the ligand molecule for immobilization could significantly 

interfere with analyte binding. Among the various spacer molecules tested by 

McKimm-Breschkin et al. to immobilize zanamivir on a microsphere, 1, 6- 

hexanediamine was reported as an appropriate spacer molecule to tether zanamivir and 

not to lose its anti-viral activity (McKimm-Breschkin et al. 2003). Hence 1, 6- 

hexanediamine was tethered to the inhert 7-hydroxyl group of zanamivir and this 

conjugate was then immobilized on to the SPR sensor chip. This allowed a more 

uniform surface orientation of ligand by exposing the active part for the drug for 

analyte binding.  

The ligand prepared with both strategies described in Table 5-1 were tested 

independently on two different GLC sensor chips. The ligand was immobilized on 

channel 2 of the GLC sensor chip. Channel 1 was prepared as a reference channel. A 

typical immobilization procedure involved activation of the sensor surface, followed by 

ligand coupling and then deactivation of excess reactive surface groups. After the 

ligand coupling and deactivation steps, the final ligand immobilization responses 

(ΔRU) were determined. The ΔRU for strategy 2 was observed to be twice that of 

strategy 1. Since the ligand mixture was highly viscous, spinning at 25°C allowed 

proper solubilisation of the mixture. This in turn increased binding of the ligand on the 

sensor chip. 

The analyte detection depends on the amount of ligand immobilized on the sensor 

surface. From the preliminary experiments (data not shown), although both strategies 
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showed analyte binding, it was determined that the ligand prepared using strategy 2 was 

more stable and gave reproducible results. After initial investigations strategy 2 was 

concluded to be optimal and was used for subsequent immobilizations on GLC sensor 

chip surfaces. Chip surface channels were washed 3 times with regeneration buffer for 

18 s before injecting analytes. This practice enhanced assay reproducibility by 

removing any loosely bound ligand.  

 

 

 

Figure 5-3:  Immobilization of zanamivir-spacer conjugate using strategy 1. The 

figure shows activation of the chip surface with a mixture of EDAC and NHS, 

followed by zanamivir-spacer conjugate and capping of un-reacted surface ester 

groups with ethanolamine-HCl. The final ligand immobilized level (ΔRU) was 190 

RU.  
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Figure 5-4: Immobilization of zanamivir-spacer conjugate using strategy 2. The 

figure shows activation of the chip surface with a mixture of EDAC and NHS, 

followed by zanamivir-spacer conjugate and capping of un-reacted surface ester 

groups with ethanolamine-HCl. The final ligand immobilization level (ΔRU) was 431 

RU.  

Preliminary SPR experiments (Appendix D) were performed with NA cell culture 

supernatant as analyte that showed positive binding response. Moreover, the cell culture 

supernatant from High-Five control (cells which were not infected with recombinant 

baculovirus) did not show any signs of binding to the immobilized ligand. 

5.3.2 SPR interaction analysis  

As shown in Figure 5-5 and Figure 5-6, the immobilized ligand in channel 2 showed 

specific binding of influenza NA. The SPR signals were observed to decrease with a 

decrease in concentration of the analyte. Similar concentration-dependent signal 

decreases were observed with the H274Y mutant. With the start of the injection of 

analyte, gradual increase in SPR signal was observed in both cases. At the end of the 

injection very slow dissociation phase was observed and the analyte did not dissociate 

completely from the ligand. This indicated that the analyte had bound strongly to the 

immobilized ligand. Thus the sensor surface was regenerated twice with regeneration 
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buffer. A drop in pH was expected to change the conformation of bound NA, thereby 

releasing NA from the NA-zanamivir complex formed on the chip surface.  

 

Figure 5-5: Reference-subtracted SPR sensograms showing binding curves for 

various concentrations of NA wild-type protein (5.2 nM to 0.1625 nM) with 

zanamivir-spacer conjugate immobilized on the chip surface.  

 

Figure 5-6: Reference-subtracted SPR sensograms showing binding curves for 

various concentrations of NA H274Y protein (6.1 nM to 0.191 nM) with zanamivir-

spacer conjugate immobilized on the chip surface. 

To study the association (ka) and dissociation (kd) rate constants between wild-type and 

H274Y influenza NA, sensograms were obtained with different concentrations of the 

proteins. The analyte samples were injected in a shuffled order. The experiment was 
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repeated 5 times in each case. The binding curves were fitted to the 1:1 Langmuir 

binding model (Figure 5-7 and Figure 5-8) and 1:1 Langmuir binding model with drift 

(Figure 5-9 and Figure 5-10) using ProteOn Manager™ Software tools. Both the 

models assume that analyte and the ligand are homogenous and the binding events are 

independent. From the first visual inspection it was observed that for both models the 

lines of the resulting fit passed through the experimental data. However, when the 

results were analysed further with the residuals, the following observations were made. 

For the top two concentrations, the fitted line passed slightly below the experimental 

curves for the mutant, while they passed exactly through the middle of the experimental 

curves for the wild-type. The fitted line for the third concentration passed above the 

curves in the dissociation phase for both proteins. The three low concentrations fitted 

very well for both proteins. The goodness of the fit was then examined by χ² (Table 5-

4). For a good fit, χ² is expected to be less than 10% of Rmax. Global fitting of the data 

using the 1:1 model resulted in a good fit for the H274Y mutant yielding a χ² value of < 

10% of Rmax. However, this value was found to be slightly >10% for the wild type 

protein indicating that the fit was not as good as the mutant. This could be because of 

slight baseline drift observed in the dissociation phase. Unlike the 1:1 Langmuir 

binding model, 1:1 Langmuir binding model with drift takes the baseline drift into 

consideration. The 1:1 model with drift resulted in χ² values < 10% in both the cases. 

This suggested the 1:1 model with drift fitted the curves reasonably better than 1:1 

model without drift. Hence, the kinetic parameters obtained from 1:1 model with drift 

was used for method validation.   

The ka value for wild-type protein was observed to be twice that of H274Y, indicating 

that the wild-type protein had a slightly stronger affinity to the immobilized ligand than 

the mutant. However, there is not much difference in the kd  values for both proteins. 

This suggests that once the protein attached itself to the ligand both the proteins 

interacted in a similar manner. This also showed that the H274Y mutant that blocks 

movement of Glu276 on oseltamivir binding has no effect on zanamivir binding, 

because zanamivir does not induce the conformational change of Glu276. Hence the 

H274Y mutant did not have a major impact on zanamivir interaction. This was in good 

agreement with the results of Hurt et al. (2009). Table 5-4 summarizes the dissociation 

constant of both proteins. This result also suggested that the mutation has not had a 

significant impact on zanamivir binding.  
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Table 5-4: SPR kinetic parameters obtained using ProteOn Manager™ Software tools 

Curve 

fitting 

model 

Protein ka     

(1/Ms) 

 

ka    error 

(1/Ms) 

 

kd   

(1/s) 

 

kd  error 

(1/s) 

 

KD 

(nM) 

Rmax 

(RU) 

Rmax  error 

(RU) 

χ²  

(RU) 

Langmuir 

1:1 

Wild-type 1.05×106 4.86×103 2.15×10-4 3.56×10-6 0.205 

 

48.16 1.5×10-1 5.88 

H274Y 5.32×105 3.17×103 2.92×10-4 3.11×10-6 0.55 85.60 3.84×10-1 6.86 

Langmuir 

1:1 with drift 

Wild-type 8.01×105 5.63×103 4.13×10-4 4.58×10-6 0.516 56.28 3.28×10-1 5.01 

H274Y 4.36×105 3.91×103 3.87×10-4 3.91×10-6 0.88 98.62 6.78×10-1 6.50 

 

The kinetic parameters were determined from five independent measurements. ka and kd  are the association and dissociation rate constants, respectively. 

The goodness of the fit was then examined by χ² value (the average of the squared differences between the measured data point and the fit). 
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Figure 5-7: Wild-type NA SPR binding curve fitting using Langmuir 1:1 model. A) The data presented here are of five independent 

experiments for six concentrations (5.2 nM, 2.6 nM, 1.3 nM, 0.65 nM, 0.325 nM and 0.1625 nM) yielding identical results. The fitted lines 

(solid lines) pass through the experimental curves. B) The residuals, showing the goodness of the fit with the original experimental data.  

B 

A 
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Figure 5-8: H274Y NA SPR binding curve fitting using Langmuir 1:1 model. A) The data presented here are of five independent 

experiments for six concentrations (5.2 nM, 2.6 nM, 1.3 nM, 0.65 nM, 0.325 nM and 0.1625 nM) yielding identical results. The fitted lines 

(solid lines) pass through the experimental curves. B) The residuals, showing the goodness of the fit with the original experimental data. 

B 

A 
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Figure 5-9: Wild-type NA SPR binding curve fitting using Langmuir 1:1 model with drift. A) The data presented here are of five independent 

experiments for six concentrations (5.2 nM, 2.6 nM, 1.3 nM, 0.65 nM, 0.325 nM and 0.1625 nM) yielding identical results. The fitted lines 

(solid lines) pass through the experimental curves. B) The residuals, showing the goodness of the fit with the original experimental data. 

B 

A 
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Figure 5-10: H274Y NA SPR binding curve fitting using Langmuir 1:1 model with drift. A) The data presented here are of five independent 

experiments for six concentrations (5.2 nM, 2.6 nM, 1.3 nM, 0.65 nM, 0.325 nM and 0.1625 nM) yielding identical results. The fitted lines 

(solid lines) pass through the experimental curves. B) The residuals, showing the goodness of the fit with the original experimental data. 

 

A 

B 
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5.3.3 Inhibition assay 

Following the kinetics measurements, it was decided to investigate if this assay could 

be extended to an inhibition binding assay. The immobilized zanamivir-spacer 

conjugate was considered as a bio-specific ligand for the wild type and mutant proteins. 

The effects of three inhibitors (sialic acid, zanamivir, oseltamivir) on NA binding to the 

immobilized ligand were studied. Reference-subtracted SPR sensograms for various 

concentrations of inhibitors in the presence of a fixed concentration of NA wild type 

and mutant (6 nM) were monitored. Incubating NA with varying concentrations of 

inhibitor, lead to the formation of NA-inhibitor complex. Concentration of inhibitor and 

affinity between NA and inhibitor were the two important driving forces for an NA-

inhibitor complex formation. As more of this complex was formed, a decrease in the 

availability of free NA in the sample was expected. This in turn resulted in a drop in 

RU signal. Hence the effect of the inhibitor was determined from the drop in RU signal.  

 

 

Figure 5-11: Reference-subtracted SPR sensograms showing binding curves for 6 

nM NA wild-type protein incubated with various concentrations of sialic acid (0 nM 

to 1000 nM).The data presented here correspond to three independent experiments. 

The samples were injected in a shuffled order. 
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Figure 5-12: Reference-subtracted SPR sensograms showing binding curves for 6 

nM NA H274Y protein incubated with various concentrations of sialic acid (0 nM to 

1000 nM).The data presented here correspond to three independent experiments. The 

samples were injected in a shuffled order. 

For sialic acid inhibition assay, there was a significant drop in RU when the 

concentration of sialic acid was increased from 1 nM to 10 nM. With further increase in 

sialic acid concentration, a further drop in RU was expected. However, further increase 

of sialic acid to 100 nM and 1000 nM did not alter the binding response significantly 

(Figure 5-11 and Figure 5-12).   

For zanamivir inhibition assay, there was a drop of ~ 20 RU even for 0.1 nM. There 

was also a further decrease in RU when zanamivir concentration was increased from 1 

to 10 nM. Similar to sialic acid results, further increase of zanamivir to 100 nM and 

1000 nM did not affect the binding significantly (Figure 5-13 and Figure 5-14). This 

trend with sialic acid and zanamivir was observed for both NA isoforms. While 

monitoring oseltamivir inhibition assay a significant difference in trend between the 

wild-type and mutant protein were observed. In the wild-type protein, a gradual drop in 

RU was seen with the increase in oseltamivir concentration from 0 nM to 100 nM. A 

further increase from 100 nM to 1000 nM did not affect the binding response (Figure 

5-15). However for the mutant the binding response was not altered up to 100 nM of 

oseltamivir. A significant drop in RU was observed only when oseltamivir was 

increased from 100 nM to 1000 nM (Figure 5-16).  
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Figure 5-13: Reference-subtracted SPR sensograms showing binding curves for 6 

nM NA wild-type protein incubated with various concentrations of zanamivir (0 nM 

to 1000 nM).The data presented here correspond to three independent experiments. 

The samples were injected in a shuffled order. The samples were also reshuffled in-

between experiments (see methods section). 

 

Figure 5-14: Reference-subtracted SPR sensograms showing binding curves for 6 

nM NA H274Y protein incubated with various concentrations of zanamivir (0 nM to 

1000 nM).The data presented here corresponds to three independent experiments. 

The samples were injected in a shuffled order. The samples were also reshuffled in-

between experiments (see methods section). 
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Figure 5-15: Reference-subtracted SPR sensograms showing binding curves for 6 

nM NA wild-type protein incubated with various concentrations of oseltamivir (0 nM 

to 1000 nM).The data presented here correspond to three independent experiments. 

The samples were injected in a shuffled order.  

 

Figure 5-16: Reference-subtracted SPR sensograms showing binding curves for 6 

nM NA H274Y protein incubated with various concentrations of oseltamivir (0 nM to 

1000 nM).The data presented here correspond to three independent experiments. The 

samples were injected in a shuffled order.  
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IC50-spr values were determined to evaluate and quantitatively compare the inhibitory 

effect of each inhibitor on the binding interaction of NA isoforms with the bio specific 

ligand on the SPR chip. The reference subtracted RU values at the end of analyte 

injection were obtained from the SPR binding experiments. IC50-spr values were 

determined using a log-dose–response curve-fit in GraphPad PRISM (v5.04) (Figure 

5-17).  

 

Figure 5-17: Determination of IC50-SPR values for sialic acid, zanamivir and 

oseltamivir with recombinant NA wild type and H274Y. The recombinant NA’s (wild 

type and H274Y) were incubated with increasing concentrations of inhibitors. 

Respective IC50-SPR values are also presented in this graph. The data presented are 

mean ± S.D. of triplicate measurements for recombinant NA. 

The measured kinetic parameters suggested that the H274Y mutation had not affected 

the efficacy of zanamivir. This finding was consistent with the data reported by Collins 

et al. (2008) and IC50-spr values determined from the SPR inhibition assay. Zanamivir 

possess the same glycerol moiety at C6 as sialic acid. Hence, a mutation interfering 

with the glycerol side chain interaction is less likely to develop resistance to the drug 

without weakening its binding with sialic acid (Collins et al. 2009). This has allowed 

zanamivir to remain sensitive to the H274Y mutant. Any mutation that can affect the 

binding of the guanidine group in zanamivir is more likely to cause resistance to 
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zanamivir, as seen in Q136K (Hurt et al. 2009). 

 

While comparing IC50-spr  values obtained from oseltamivir inhibition assays, there was 

a significant difference between the wild type (7.7 nM) and H274Y mutant (256 nM), 

even though both the proteins had similar IC50-spr  values for sialic acid and zanamivir. 

This result was consistent with the data reported by Collins et al. (2008), suggesting 

that the binding affinity of the H274Y mutant for oseltamivir had reduced significantly. 

This was because, when oseltamivir binds to the wild-type protein, the Glu276 rotates 

and forms a salt bridge with Arg224. The presence of His at 274 (found adjacent to 

Glu276 ) is very critical for Glu276 to rotate and form the new binding pocket (and 

form the salt bridge) during oseltamivir binding. However, when the His at 274 has 

been mutated to Tyr, the Tyr pushes Glu 276 further into the binding pocket, thereby 

preventing this conformational change (Russell et al. 2006; Collins et al. 2009).   

5.3.4 Comparison with experimental data from the literature 

The kinetic parameters obtained for NA-zanamivir interaction from the SPR assay were 

compared with inhibition kinetic data reported by Collins et al. (2008). Collins et al. 

reported that the experimental inhibition constant (Ki) in their work was the 

dissociation constant for the antiviral drugs and it was therefore used to compare the 

dissociation constant obtained from SPR assay (Table 5-5). However, it should be 

noted that it is not possible to provide direct, quantitative comparisons between the two 

results because the experimental conditions and environment were different. Collins et 

al. used zanamivir in solution, while zanamivir was immobilized to a sensor chip in the 

SPR assay. Hence, a comparison was made between calculated relative Ki and KD 

values (H274Y/wild-type).  

Table 5-5: Comparison of kinetic parameters.  

Protein 

Literature  (Collins et al. 2009) 

Ki (nM) 

SPR assay 

KD (nM) 

Wild-type 
0.1 0.52 

H274Y 
0.19 0.89 

Relative binding(H274Y/ Wild-

type) 

1.9 1.7 
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Table 5-6: Zanamivir inhibition assay data comparison   

Protein 

(Mitnaul et al. 1996) 

(Relenza TM : 

Laboratory manual, 

2000) 

(Bantia et al. 

2000) 

(McKimm-

Breschkin et al. 

1998) 

Current SPR assay 

 

MUNANA enzyme 

assay 

(Chapter 4) 

IC50 

Relative  

IC50 IC50 

Relative  

IC50 IC50 

Relative  

IC50 IC50 

Relative  

IC50 IC50 

Relative  

IC50 IC50 

Relative  

IC50 

Wild-type 2 1 0.9 1 1.5 1 1.5 1 2.16 1 0.26 1 

H274Y 2.5 1.3 1 1.1 1.8 1.2 2 1.3 2.4 1.11 0.24 1.7 

 

Table 5-7: Oseltamivir inhibition assay data comparison   

Protein 

(Mitnaul et al. 1996) 

(Relenza TM : 

Laboratory manual, 

2000) (Bantia et al. 2000) 

(McKimm-

Breschkin et al. 

1998) 

Current SPR 

assay 

 

MUNANA enzyme 

assay 

(Chapter 4) 

IC50 

Relative  

IC50 IC50 

Relative  

IC50 IC50 

Relative  

IC50 IC50 

Relative  

IC50 IC50 

Relative  

IC50 IC50 

Relative  

IC50 

Wild-type 2 1 0.9 1 2 1 0.9 1 7.7 1 0.59 1 

H274Y >1000 >500 800 890 450 225 350 390 256 33.3 349.43 592.5 
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The relative binding values suggested that the current SPR assay yielded similar results 

to the existing labelled enzymatic assay. The SPR inhibition assays were also compared 

to inhibition assay data reported in the literature (Table 5-6 and Table 5-7) and the 

enzymatic assays performed with the recombinant NA samples used for SPR analysis. 

All comparisons were made between relative IC50 values obtained from respective 

assays. From Table 5-6 it was observed that zanamivir inhibition assay results were 

highly consistent across all assays. This was because the MUNANA activity assay has 

been highly consistent when a particular mutant was sensitive to the antiviral drug. 

However, the inconsistency in the assay had been observed only in drug resistant 

viruses (Table 5-7). The relative IC50 values for oseltamivir inhibition did not match as 

well as zanamivir inhibition data. However, all the assays suggest that there was a large 

difference in IC50 values between the wild-type NA and H274Y mutant NA, indicating 

that H274Y is resistant to oseltamivir.  

While comparing the SPR inhibition results with the docking results from chapter 3, a 

similar trend was observed. The computed MM-GB/SA values for sialic acid and 

zanamivir did not have a significant effect due to the H274Y mutation. This showed 

that wild-type NA and H27Y mutant had similar binding affinities for sialic acid and 

zanamivir. Oseltamivir showed a significant decrease in the binding affinity for H274Y 

mutant when compared with the wild-type. This was because of the prevention of the 

conformational associated with Glu276 that was vital for oseltamivir activity. This was 

consistent with the SPR inhibition assay results. However, as discussed in chapter 3, the 

modelling program did not produce docked structures similar to crystal structures. 

Hence, the computed energy values may just be coincidentally similar to the SPR 

experimental data.  

In this thesis, an SPR biosensor assay for reliable influenza antiviral drug resistance 

was developed. This assay can be further extended to study more NA mutations and 

new antiviral drugs. The SPR biosensor assay has the potential to replace low 

consistency labelled enzymatic assays.   

5.4  Conclusions 

In summary, this chapter describes the development of an SPR assay for accurate 

monitoring of influenza antiviral drug resistance. A spacer molecule (1, 6- 

hexanediamine) was site specifically tethered to the inert 7-hydroxyl group of 
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zanamivir. The tethered zanamivir was immobilized on to an SPR GLC chip to obtain 

431 final immobilized RU. Preliminary SPR experiments showed that immobilized 

zanamivir retained its anti-viral activity. The reference subtracted binding responses 

obtained for NA wild-type and H274Y mutant were analysed using the ProteOn 

Manager™ Software tools. The SPR curves were fitted to a simple Langmuir 1:1 model 

and a Langmuir 1:1 model with drift to obtain kinetic parameters. The goodness of the 

fit was determined from the residuals and χ² values. The kinetic parameters obtained for 

NA-zanamivir interaction from the SPR assay were compared to inhibition kinetic data 

reported in the literature. The relative binding values obtained from literature and 

current SPR assay (1.9 and 1.7 respectively) suggested that the current SPR assay 

yielded similar results to the existing labelled enzymatic assay. In addition, an SPR 

inhibition assay was also developed. The immobilized zanamivir was considered as a 

bio-specific ligand to NA isoforms. Three inhibitors (sialic acid, zanamivir and 

oseltamivir) were tested. The calculated IC50-spr values were compared and it was 

observed that wild type protein was sensitive (IC50 = 7.7 nM) and H274Y mutant 

protein (IC50 = 256 nM) was resistant to oseltamivir. On the other hand, both wild type 

(IC50 = 2.16 nM) and H274Y mutant (IC50 = 2.4 nM) proteins were sensitive to 

zanamivir. It was also found that both wild type (IC50 = 5.5 nM) and H274Y mutant 

(IC50 = 3.25 nM) proteins were sensitive to sialic acid.  The viral proteins remained 

sensitive to sialic acid because sialic acid is the natural receptor. Among the two 

antiviral drugs, it was observed that zanamivir is a more potent inhibitor than 

oseltamivir for treating the H274Y mutant. This statement is again in good agreement 

with the literature and the MUNANA activity assay reported in chapter 4 of this thesis 

(Collins et al. 2009). 

To my knowledge, this is the first SPR biosensor assay to monitor influenza antiviral 

drug resistance. There is a tremendous scope to extend this study to more mutants and 

new antiviral drugs. This could pave the way for a reliable SPR biosensor assay to 

replace low consistency labelled enzymatic assays.  
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6. Conclusions and recommendations for future work 

 

6.1  Introduction  

The outbreak of pandemic influenza and its ability to spread rapidly makes it a potential 

and severe threat to public health. The antiviral drugs such as oseltamivir and zanamivir 

are neuraminidase (NA) inhibitors (NI), which bind more tightly to NA than its natural 

substrate, sialic acid. However, the virus can acquire resistance to antiviral drugs by 

developing single point mutations (such as H274Y & N294S), thus in some cases the 

drugs may not be as effective as expected. The high level of inconsistency exhibited by 

MUNANA assays and the short half-life of the chemiluminescent (1,2-dioxetane 

derivative of sialic acid, NA-STAR) assay for monitoring drug resistance lead to the 

need for a simple, label-free, reliable assay. This study set out to develop a reliable 

label-free surface plasmon resonance assay to monitor NI drug resistance. The 

important findings of this thesis are chapter specific and are discussed below.  

6.2  Molecular docking  

The binding affinities, ∆G and MM-GB/SA values for wild-type NA interactions show 

that both the antiviral drugs studied interact strongly with the wild-type protein. The 

marked changes observed in predicted binding affinities, ∆G and MM-GB/SA values 

for the H274Y and N294S interactions may explain reduced antiviral efficacies. The 

∆G values for all antiviral interactions with mutant NA forms are reduced in 

magnitude, thereby indicating that they are less favourable than interactions with the 

wild-type protein. A similar trend was observed with MM-GB/SA results. Moreover, 

replacing the His at 274 prevented the formation of a salt bridge with Glu 276, which 

appears to be a conformational feature that is critical for oseltamivir interactions. 

Amongst all of the computed values, MM-GB/SA is the closest to the experimental 

data. In several cases, the interactions between the anti-viral drugs and NA mutants 

were markedly less favourable than those between sialic acid and the same mutants, 

indicating that these mutations could confer anti-viral resistance. However, when the 

docked structures were compared with PDB crystal structures, it was observed that the 
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modelling program did not produce docked structures similar to crystal structures. 

Hence the computed ∆G values may just be coincidentally similar with the 

experimental ∆G values. Docking programs widely used to study the best conformation 

a protein can take to accommodate a ligand. However, they lack the ability to simulate 

the relevant macromolecular movement (such as, protein side chain and backbone 

movement, key catalytic residue movements) that help the protein to maintain this 

confirmation for accommodating a ligand. This calls for a more reliable experimental 

validation. 

Recommendations for future work 

 It docking programs are widely used for predicting protein-ligand interactions. 

This is because a protein may take different confirmations because of point 

mutations. The protein structures used for docking may not necessarily match 

experimental structures. This is a significant limitation observed in docking 

programs. Alternatively, molecular dynamics (MD) simulations can be used to 

study the interactions of antiviral drugs to NA isoforms. MD simulations are 

more advantageous than simple docking studies. Docking studies describes the 

best conformation a protein can take to accommodate a ligand, while MD 

simulations have the ability to simulate the relevant macromolecular movement 

(such as, protein side chain and backbone movement, key catalytic residue 

movements) that help the protein to maintain this confirmation for 

accommodating a ligand. However, MD studies can also produce some extreme 

conformations that might not match with experimental structures. Hence it is 

important to validate the MD studies by comparing the binding mode of the MD 

structure with the known crystal structure.  

6.3  Expression and purification of influenza neuraminidase  

Influenza NA wild-type and H274Y mutant was expressed in BEVS in high-five insect 

cells. The expressed proteins were partially purified using standard purification 

techniques such as anion exchange and size exclusion chromatography. Because the 

quality of the baculovirus generated was poor or low virus titre used for BV 

amplification, NA was expressed at very low levels and it was difficult to detect the 

protein on SDS-PAGE gels. Hence, a western blot was required to confirm the 
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expression of NA. However, the level of expression was sufficient for SPR analysis. A 

standard fluorometric activity assay was performed on the recombinant proteins. Both 

the wild type and the mutant showed similar level of activities. In addition, the 

recombinant NA was used in an inhibition assay. The inhibition assays were compared 

based on the calculated IC50 values. The wild type protein was found to be sensitive to 

oseltamivir (IC50 = 0.59 nM) and the H274Y mutant protein was resistant to oseltamivir 

(IC50 = 349.43 nM). In contrast, both wild type (IC50 = 0.26 nM) and H274Y mutant 

(IC50 = 0.44 nM) proteins were sensitive to zanamivir. This indicated that zanamivir 

was a more potent inhibitor than oseltamivir, for treating H274Y mutant. This is in 

good agreement with the literature. 

Recommendations for future work 

 Attempts may be made to improve the quality of the baculovirus generated 

using sf9 cells. Sf9 cells are more robust and stable than high-five cells. Hence 

using sf9 cells for baculovirus amplification will yield a good quality 

recombinant baculovirus. The multiplicity of infection (MOI) can be varied to 

increase the quality of baculovirus. This baculovirus can then be used for 

protein expression in either high-five cells or sf9 cells.  

 Experts in baculovirus protein expression at the Protein Expression Facility at 

the University of Queensland have recently found indications that reducing 

the expression temperature to 21°C allows high level protein expression in 

insect cells (unpublished work). If these indications turn out to be confirmed, 

21°C expression temperature could be used for expressing NA. 

 There is scope for producing more mutants that are known to be resistant to 

antiviral drugs. Large scale protein expression and purification of these mutants 

can be attempted.  

6.4  Surface plasmon resonance assay development  

An SPR assay for accurate monitoring of influenza antiviral drug resistance has been 

developed. A spacer molecule (1, 6- hexanediamine) was site-specifically tethered to 

the inert 7-hydroxyl group of zanamivir. The tethered zanamivir was immobilized onto 

an SPR GLC chip to obtain a final immobilization response of 431 RU. Preliminary 

SPR experiments showed that immobilized zanamivir retained its antiviral activity. The 
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reference subtracted binding responses obtained for NA wild-type and H274Y mutant 

were analysed using the ProteOn Manager™ Software tools. The SPR curves were 

fitted to a simple Langmuir 1:1 model and a Langmuir 1:1 model with drift to obtain 

kinetic parameters. The goodness of the fit was determined from the residuals and χ² 

values. The kinetic parameters obtained for NA-zanamivir interaction from the SPR 

assay were compared to inhibition kinetic data reported in the literature. The relative 

binding values obtained from literature and the current SPR assay (1.9 and 1.7 

respectively) suggests that the current SPR assay yields similar results to the already 

existing labelled enzymatic assay. In addition, an SPR inhibition assay was developed. 

The immobilized zanamivir was considered as a bio-specific ligand to NA isoforms. 

Three inhibitors (sialic acid, zanamivir and oseltamivir) were tested. The calculated 

IC50-spr values were compared and it was observed that wild type protein was 

sensitive (IC50 = 7.7 nM) and H274Y mutant protein (IC50 = 256 nM) was resistant to 

oseltamivir. On the other hand, both wild type (IC50 = 2.16 nM) and H274Y mutant 

(IC50 = 2.4 nM) proteins were sensitive to zanamivir. It was also found that both wild 

type (IC50 = 5.5 nM) and H274Y mutant (IC50 = 3.25 nM) proteins were sensitive to 

sialic acid.  The viral proteins remained sensitive to sialic acid because sialic acid is the 

natural receptor. Among the two antiviral drugs, it was observed that zanamivir is a 

more potent inhibitor than oseltamivir for treating the H274Y mutant.  

To my knowledge, this is the first SPR biosensor assay to monitor influenza antiviral 

drug resistance. There is a tremendous scope to extend this study to more mutants and 

new antiviral drugs. This could pave the way for a reliable SPR biosensor assay to 

replace the current enzymatic assays.  

Recommendations for future work 

 Kinetic parameters for a zanamivir resistant mutant such as Q136K can be 

measured using the proposed SPR assay. A decrease in affinity is expected for 

this mutant. It will be interesting to see by how much the kinetic parameters 

change for this mutant and also to see if it is comparable with the literature.   

 Immobilizing sialic acid to the SPR chip surface can be attempted. The 

substrates for current enzymatic assays for monitoring drug resistance are either 

a chemiluminescent substrate (NA-STAR) or a fluorescent labelled substrate 

(MUNANA). Both substrates have the labelled material tethered to C-2-
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Spacer 

(a) 

(b) 

(c) 

hydroxyl group of sialic acid. Attaching a tether at this position has not affected 

the ability of sialic acid to bind NA. This group in sialic acid could be explored 

to tether the spacer molecule required for SPR immobilization (Figure 6-1). 

Once sialic acid is immobilized it can be used in the inhibition assay to 

quantitatively compare the inhibitory effects of antiviral drugs for a wide range 

on NA mutants.  

 

  

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

Figure 6-1: Structures of  sialic acid derivatives a) MUNANA substrate used in 

fluorescent assay  b) 1,2-dioxetane derivative of sialic acid used in chemiluminescent 

assay c) proposed structure for future SPR assay development.  

 A second generation zanamivir is being developed. This is a dimer in which two 

molecules of zanamivir are linked via their 7-hydroxyl groups by an appropriate 

spacer molecule. This dimer potentially has two advantages. The dimer could 

increase NA binding by 100-fold over zanamivir because the dimer-drug will 

bind to 2 adjacent neuraminidase active sites at the same time. Moreover, this 
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could also increase the bioavailability of the drug, allowing the drug to be 

retained in the body for up to a week. Zanamivir is being administered as two 

doses/day for a period of 5 days. This could be replaced by one dose of the 

dimer every 5 days. This next generation drug can be immobilized on to a SPR 

sensor chip and its efficiency can be very quickly tested against various 

isoforms of NA using the proposed SPR assay. 
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Appendix A: ExPASy - ProtParam data 

 

NA-DNA sequence: 

atgaacccgaaccagaaaattattaccattggcagcatttgcctggtggtgggcctgattagcctgattctgcagattggcaacattattagcatttggatta

gccatagcattcagaccggcagccagaaccataccggcatttgcaaccagaacattattacctataaaaacagcacctgggtgaaagataccaccagc

gtgattctgaccggcaacagcagcctgtgcccgattcgcggctgggcgatttatagcaaagataacagcattcgcattggcagcaaaggcgatgtgtttg

tgattcgcgaaccgtttattagctgcagccatctggaatgccgcaccttttttctgacccagggcgcgctgctgaacgatcgccatagcaacggcaccgt

gaaagatcgcagcccgtatcgcgcgctgatgagctgcccggtgggcgaagcgccgagcccgtataacagccgctttgaaagcgtggcgtggagcgc

gagcgcgtgccatgatggcatgggctggctgccattggcattagcggcccggataacggcgcggtggcggtgctgaaatataacggcattattaccga

aaccattaaaagctggcgcaaaaaaattctgcgcacccaggaaagcgaatgcgcgtgcgtgaacggcagctgctttaccattatgaccgatggcccga

gcgatggcctggcgagctataaaatttttaaaattgaaaaaggcaaagtgaccaaaagcattgaactgaacgcgccgaacagccattatgaagaatgca

gctgctatccggataccggcaaagtgatgtgcgtgtgccgcgataactggcatggcagcaaccgcccgtgggtgagctttgatcagaacctggattatc

agattggctatatttgcagcggcgtgtttggcgataacccgcgcccgaaagatggcaccggcagctgcggcccggtgtatgtggatggcgcgaacgg

cgtgaaaggctttagctatcgctatggcaacggcgtgtggattggccgcaccaaaagccatagcagccgccatggctttgaaatgatttgggatccgaa

cggctggaccgaaaccgatagcaaatttagcgtgcgccaggatgtggtggcgatgaccgattggagcggctatagcggcagctttgtgcagcatccg

gaactgaccggcctggattgcattcgcccgtgcttttgggtggaactgattcgcggccgcccgaaagaaaaaaccatttggaccagcgcgagcagcatt

agcttttgcggcgtgaacagcgataccgtggattggagctggccggatggcgcggaactgccgtttaccattgataaa 

NA- protein sequence 

        10         20         30         40         50         60  

MNPNQKIITI GSICLVVGLI SLILQIGNII SIWISHSIQT GSQNHTGICN QNIITYKNST  

 

        70         80         90        100        110        120  

WVKDTTSVIL TGNSSLCPIR GWAIYSKDNS IRIGSKGDVF VIREPFISCS HLECRTFFLT  

 

       130        140        150        160        170        180  

QGALLNDRHS NGTVKDRSPY RALMSCPVGE APSPYNSRFE SVAWSASACH DGMGWLTIGI  

 

       190        200        210        220        230        240  

SGPDNGAVAV LKYNGIITET IKSWRKKILR TQESECACVN GSCFTIMTDG PSDGLASYKI  

 

       250        260        270        280        290        300  

FKIEKGKVTK SIELNAPNSH YEECSCYPDT GKVMCVCRDN WHGSNRPWVS FDQNLDYQIG  

 

       310        320        330        340        350        360  

YICSGVFGDN PRPKDGTGSC GPVYVDGANG VKGFSYRYGN GVWIGRTKSH SSRHGFEMIW  

 

       370        380        390        400        410        420  

DPNGWTETDS KFSVRQDVVA MTDWSGYSGS FVQHPELTGL DCIRPCFWVE LIRGRPKEKT  

 

       430        440        450  

IWTSASSISF CGVNSDTVDW SWPDGAELPF TIDK  

 

 

http://web.expasy.org/protparam/protparam-doc.html
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ProtParam data for NA 

Number of amino acids: 454 

 

Molecular weight: 50143.7 

 

Theoretical pI: 7.45 

 

 

Amino acid composition:   

Ala (A)  16   3.5% 

Arg (R)  20   4.4% 

Asn (N)  25   5.5% 

Asp (D)  25   5.5% 

Cys (C)  19   4.2% 

Gln (Q)  11   2.4% 

Glu (E)  17   3.7% 

Gly (G)  44   9.7% 

His (H)  10   2.2% 

Ile (I)  41      9.0% 

Leu (L)  21   4.6% 

Lys (K)  23   5.1% 

Met (M)   7   1.5% 

Phe (F)  16   3.5% 

Pro (P)  21   4.6% 

Ser (S)  51  11.2% 

Thr (T)  29   6.4% 

Trp (W)  16   3.5% 

Tyr (Y)  14   3.1% 

Val (V)  28   6.2% 

Pyl (O)   0   0.0% 

 

Total number of negatively charged residues (Asp + Glu): 42 

Total number of positively charged residues (Arg + Lys): 43 

 

Atomic composition: 
 

Carbon      C       2218 

Hydrogen    H       3409 

Nitrogen    N        609 

Oxygen      O        669 

Sulfur      S         26 

 

Formula: C2218H3409N609O669S26 

Total number of atoms: 6931 

 

Extinction coefficients: 
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Extinction coefficients are in units of  M
-1

 cm
-1

, at 280 nm measured in water. 

 

Ext. coefficient   109985 

Abs 0.1% (=1 g/l)   2.193, assuming all pairs of Cys residues form cystines 

 

Ext. coefficient   108860 

Abs 0.1% (=1 g/l)   2.171, assuming all Cys residues are reduced 

 

Estimated half-life: 
The N-terminal of the sequence considered is M (Met). 

 

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 

                            >20 hours (yeast, in vivo). 

                            >10 hours (Escherichia coli, in vivo). 

Instability index: 
 

The instability index (II) is computed to be 29.54 

This classifies the protein as stable. 

 

 

 

Aliphatic index: 74.67 

 

Grand average of hydropathicity (GRAVY): -0.250 
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Appendix B: Induced fit docking results  

 

 

 

 

 

 

 

 

 

 

Figure B-1: Overlaid images of sialic acid, oseltamivir and zanamivir interaction with wild-type and H274Y mutant NA. The ligands are 

shown in green colour in wild-type interactions and are shown in yellow in H274Y mutant interactions. Oseltamivir deviates significantly in 

the H274Y interaction when compared to the wild-type interaction and thereby decreasing the drug’s binding affinity.  
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Figure B-2: Overlaid images of sialic acid, oseltamivir and zanamivir interaction with wild-type and N294S mutant NA. The ligands are 

shown in green colour in wild-type interactions and are shown in yellow in N294S mutant interactions. All three ligand’s interaction with the 

mutant is identical to the wild-type protein. 
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Figure B-3: Overlaid images of sialic acid, oseltamivir and zanamivir interaction with wild-type and H274N mutant NA. The ligands are 

shown in green colour in wild-type interactions and are shown in yellow in H274N mutant interactions. Oseltamivir deviates significantly in 

the H274N interaction when compared to the wild-type interaction and thereby decreasing the drug’s binding affinity.  
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Figure B-4: Overlaid images of sialic acid, oseltamivir and zanamivir interaction with wild-type and I222V mutant NA. The ligands are 

shown in green colour in wild-type interactions and are shown in yellow in I222V mutant interactions. Antiviral drugs, oseltamivir and 

zanamivir deviate significantly in the I222V interaction when compared to the wild-type interaction. However, this change in confirmation 

has increased binding affinity for the antiviral drugs (detailed discussion provided in Chapter 3). 
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Figure B-5: Overlaid images of sialic acid, oseltamivir and zanamivir interaction with wild-type and A346N mutant NA. The ligands are 

shown in green colour in wild-type interactions and are shown in yellow in A346N mutant interactions. Zanamivir deviates significantly in 

the A346N interaction when compared to the wild-type interaction. However, this change in confirmation has increased binding affinity for 

zanamivir (detailed discussion provided in Chapter 3). 
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Appendix C: Densitometry analysis  

 

 

Figure C-1: Size exclusion chomatogram of BSA using 24 mL superdex 200 gel 

filtration column. BSA monomers was used for densitometry analysis.  
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Figure C-2: SDS-page analysis of BSA monomer , IEX purified NA wild-type (neat 

and 2X diluted) IEX purified NA H274Y mutant (neat and 2X diluted, under 

reducing condition and stained with coomassie blue. 
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Figure C-1: BSA standard curve for correlation between band intesity and protein 

concentration. The intensity data shown in the graph are mean ± S.D. of duplicate 

measurements. The error bars are smaller than the symbol.  
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Appendix D: Preliminary SPR results  

 

 

 

 

 

 

 

 

 

 

 

Figure D-1: Reference-subtracted duplicate SPR sensograms showing binding curves 

for various concentrations of NA wild-type cell culture supernatant with zanamivir-

spacer conjugate immobilized on the chip surface. The control supernatant (control 

sup) is the supernatant obtained from cells that were not infected with recombinant 

baculovirus. 
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Figure D-2: Reference-subtracted duplicate SPR sensograms showing binding curves 

for various concentrations of NA H274Y mutant cell culture supernatant with 

zanamivir-spacer conjugate immobilized on the chip surface. The control 

supernatant (control sup) is the supernatant obtained from cells that were not 

infected with recombinant baculovirus. 
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Appendix E: Hydrogen bond interactions 

 

 

Table E-1: Hydrogen bond interactions observed in zanamivir-H274Y mutant 

docked structure 

Hydrogen bond interaction Bond length (Å) 

A:ARG118:HH11 - A:GLU119:OE1 
1.47 

A:GLU119:OE2 - A:ARG156:NH1 
2.73 

A:GLU119:OE2 - A:ARG156:NH2 
2.61 

A:ASP151:OD2 - A:ARG152:NH1 
2.56 

A:ASP151:OD2 - A:ARG152:NH2 
3.14 

A:ARG152:HH11 - A:ASP151:OD2 
1.56 

A:ARG156:HH11 - A:GLU119:OE2 
1.82 

A:ARG156:HH12 - A:ASP151:O 
1.77 

A:ARG156:HH21 - A:GLU119:OE2 
1.62 

A:GLU277:OE2 - A:ARG292:NH1 
3.07 

A:GLU277:OE2 - A:TYR406:OH 
2.55 

A:GLU277:OE2 - :UNK:O 
3.06 

A:ARG292:HH11 - A:TYR406:OH 
2.07 

A:ARG292:HH12 - A:GLU277:OE1 
1.53 

A:ARG292:HH21 - :UNK:O 
2.26 

A:ARG292:HH22 - A:ASN294:OD1 
1.69 

A:GLY348:H - A:ASN347:OD1 
2.24 

A:ARG371:HH21 - :UNK:O 
2.35 

A:ARG371:HH22 - A:GLY348:O 
1.64 
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A:TYR406:HH - A:GLU277:OE2 
1.59 

:UNK:O - A:GLU277:OE2 
3.06 

:UNK:O - :UNK:O 
2.65 

:UNK:N - :UNK:N 
2.34 

:UNK:N - A:ILE149:O 
3.21 

:UNK:N - :UNK:N 
2.34 

:UNK:H - :UNK:O 
1.95 

:UNK:H - A:GLU119:OE1 
1.81 

:UNK:H - A:ASN347:OD1 
1.98 

 

Table E-2: Hydrogen bond interactions observed in zanamivir-H274Y mutant 

crystal structure 

Hydrogen bond interaction Bond length (Å) 

B:TRP97:N - B:GLN395:OE1 
2.98 

B:ARG118:NH1 - B:ZMR1002:O1B 
2.76 

B:ARG118:NH1 - B:HOH73:O 
2.77 

B:ARG118:NH2 - B:GLU425:OE1 
3.07 

B:ARG152:NH1 - B:ZMR1002:O10 
2.94 

B:ARG152:NH1 - B:HOH681:O 
3.09 

B:ARG156:NH1 - B:ASP151:O 
2.83 

B:ARG156:NH1 - B:HOH40:O 
3.03 

B:ARG156:NH2 - B:GLU119:OE2 
3.07 

B:SER179:OG - B:GLU227:OE2 
2.61 

B:ARG224:NE - B:GLU276:OE2 
3.08 

B:ARG224:NH2 - B:GLU276:OE2 
2.74 
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B:ARG292:NE - B:ASN294:OD1 
3.00 

B:ARG292:NH1 - B:GLU277:OE1 
2.90 

B:ARG292:NH1 - B:TYR406:OH 
2.92 

B:ARG292:NH1 - B:ZMR1002:O1A 
3.17 

B:ARG292:NH2 - B:ASN294:OD1 
2.84 

B:ARG292:NH2 - B:GLY348:O 
3.09 

B:ARG292:NH2 - B:ZMR1002:O1A 
3.19 

B:ASN294:ND2 - B:SER246:O 
3.03 

B:ASN294:ND2 - B:HOH806:O 
2.92 

B:LYS366:NZ - B:ASP396:OD1 
2.74 

B:ARG371:NH1 - B:ZMR1002:O1B 
2.97 

B:ARG371:NH1 - B:HOH485:O 
2.97 

B:ARG371:NH2 - B:GLY348:O 
2.88 

B:ARG371:NH2 - B:ZMR1002:O1A 
2.75 

B:TYR406:OH - B:GLU277:OE1 
3.13 

B:TYR406:OH - B:GLU277:OE2 
2.49 

B:TYR406:OH - B:ZMR1002:O6 
3.04 

B:ZMR1002:O1B - B:HOH631:O 
3.18 

B:ZMR1002:N5 - B:ZMR1002:O10 
2.18 

B:ZMR1002:N5 - B:ZMR1002:NH1 
3.06 

B:ZMR1002:N5 - B:HOH500:O 
2.79 

B:ZMR1002:O7 - B:HOH597:O 
2.80 

B:ZMR1002:O7 - B:HOH772:O 
2.87 

B:ZMR1002:O9 - B:GLU276:OE2 
2.70 

B:ZMR1002:O9 - B:HOH567:O 
2.79 
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B:ZMR1002:NE - B:ASP151:OD1 
2.95 

B:ZMR1002:NE - B:ZMR1002:O10 
3.20 

B:ZMR1002:NH1 - B:TRP178:O 
3.09 

B:ZMR1002:NH1 - B:GLU227:OE2 
3.07 

B:ZMR1002:NH1 - B:HOH500:O 
3.17 

B:ZMR1002:NH2 - B:ASP151:O 
2.97 

B:ZMR1002:NH2 - B:TRP178:O 
2.75 

B:HOH40:O - B:GLU119:OE1 
2.68 

B:HOH40:O - B:ASP151:OD1 
2.77 

B:HOH40:O - B:HOH68:O 
2.86 

B:HOH485:O - B:HOH499:O 
2.86 

B:HOH485:O - B:HOH809:O 
2.84 

B:HOH500:O - B:GLU227:OE2 
2.74 

B:HOH500:O - B:GLU277:OE2 
2.69 

B:HOH500:O - B:ZMR1002:NH1 
3.17 

B:HOH500:O - B:HOH583:O 
2.91 

B:HOH546:O - B:ZMR1002:O1A 
3.00 

B:HOH546:O - B:HOH507:O 
3.02 

B:HOH546:O - B:HOH772:O 
2.73 

B:HOH546:O - B:HOH806:O 
2.65 

B:HOH567:O - B:ZMR1002:O9 
2.79 

B:HOH567:O - B:HOH557:O 
2.97 

B:HOH567:O - B:HOH597:O 
2.76 

B:HOH583:O - B:ZMR1002:O8 
3.08 

B:HOH583:O - B:HOH500:O 
2.91 
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B:HOH583:O - B:HOH605:O 
2.81 

B:HOH588:O - B:HOH631:O 
3.01 

B:HOH597:O - B:ZMR1002:O7 
2.80 

B:HOH597:O - B:HOH567:O 
2.76 

B:HOH597:O - B:HOH654:O 
2.82 

B:HOH631:O - B:ASP151:OD1 
2.69 

B:HOH631:O - B:ZMR1002:O1B 
3.18 

B:HOH631:O - B:HOH73:O 
2.75 

B:HOH631:O - B:HOH588:O 
3.01 

B:HOH772:O - B:ASP151:OD2 
3.21 

B:HOH772:O - B:ZMR1002:O6 
3.18 

B:HOH772:O - B:ZMR1002:O7 
2.87 

B:HOH772:O - B:HOH546:O 
2.73 

B:HOH809:O - B:HOH485:O 
2.84 

B:HOH809:O - B:HOH547:O 
2.70 

B:TRP97:N - B:GLN395:OE1 
2.98 

B:ARG118:NH1 - B:ZMR1002:O1B 
2.76 

B:ARG118:NH1 - B:HOH73:O 
2.77 

B:ARG118:NH2 - B:GLU425:OE1 
3.07 

B:ARG152:NH1 - B:ZMR1002:O10 
2.94 

B:ARG152:NH1 - B:HOH681:O 
3.09 

B:ARG156:NH1 - B:ASP151:O 
2.83 

B:ARG156:NH1 - B:HOH40:O 
3.03 

B:ARG156:NH2 - B:GLU119:OE2 
3.07 

B:SER179:OG - B:GLU227:OE2 
2.61 
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B:ARG224:NE - B:GLU276:OE2 
3.08 

B:ARG224:NH2 - B:GLU276:OE2 
2.74 

B:ARG292:NE - B:ASN294:OD1 
3.00 

B:ARG292:NH1 - B:GLU277:OE1 
2.90 

B:ARG292:NH1 - B:TYR406:OH 
2.92 

B:ARG292:NH1 - B:ZMR1002:O1A 
3.17 

B:ARG292:NH2 - B:ASN294:OD1 
2.84 

B:ARG292:NH2 - B:GLY348:O 
3.09 

B:ARG292:NH2 - B:ZMR1002:O1A 
3.19 

B:ASN294:ND2 - B:SER246:O 
3.03 

B:ASN294:ND2 - B:HOH806:O 
2.92 

B:LYS366:NZ - B:ASP396:OD1 
2.74 

B:ARG371:NH1 - B:ZMR1002:O1B 
2.97 

B:ARG371:NH1 - B:HOH485:O 
2.97 

B:ARG371:NH2 - B:GLY348:O 
2.88 

B:ARG371:NH2 - B:ZMR1002:O1A 
2.75 

B:TYR406:OH - B:GLU277:OE1 
3.13 

B:TYR406:OH - B:GLU277:OE2 
2.49 

B:TYR406:OH - B:ZMR1002:O6 
3.04 

B:ZMR1002:O1B - B:HOH631:O 
3.18 
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Table E-3: Hydrogen bond interactions observed in oseltamivir-H274Y mutant 

docked structure 

Hydrogen bond interaction Bond length (Å) 

A:ARG118:HH11 - A:GLU119:OE1 1.47 

A:ASP151:OD2 - A:ARG152:NH2 
3.14 

A:ARG152:HH22 - A:ASP198:OD2 
1.49 

A:ARG156:HH11 - A:GLU119:OE2 
1.82 

A:ARG156:HH12 - A:ASP151:O 
1.77 

A:SER179:HG - A:GLU227:OE2 
1.53 

A:ASP198:OD2 - A:ARG152:NH2 
2.54 

A:ARG224:HE - A:GLU276:OE2 
1.95 

A:ARG224:HH21 - A:TYR274:OH 
1.70 

A:ARG224:HH22 - A:GLU276:OE2 
1.50 

A:THR225:H - A:SER179:OG 
2.07 

A:GLU227:OE2 - A:SER179:OG 
2.51 

A:SER246:HG - :UNK:O 
2.10 

A:GLU277:OE2 - A:ARG292:NH1 
3.07 

A:GLU277:OE2 - A:TYR406:OH 
2.55 

A:GLU277:OE2 - :UNK:N 
2.71 

A:ARG292:HE - A:GLU276:OE1 
1.63 

A:ARG292:HH11 - A:TYR406:OH 
2.07 

A:ARG292:HH12 - A:GLU277:OE1 
1.53 

A:ARG292:HH22 - A:ASN294:OD1 
1.69 

A:TYR406:HH - A:GLU277:OE2 
1.59 

:UNK:H - A:GLU277:OE2 
1.70 
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Table E-4: Hydrogen bond interactions observed in oseltamivir-H274Y mutant 

crystal structure 

Hydrogen bond interaction Bond length (Å) 

A:ARG118:NH1 - A:GLU425:OE1 2.84 

A:ARG118:NH2 - A:G39800:O1B 
2.70 

A:ARG118:NH2 - A:HOH876:O 
3.02 

A:ARG152:NH2 - A:G39800:O10 
2.79 

A:ARG224:NE - A:GLU276:OE1 
2.69 

A:TYR274:OH - A:GLU276:OE1 
2.72 

A:ARG292:NE - A:ASN294:OD1 
2.94 

A:ARG292:NH1 - A:ASN294:OD1 
2.76 

A:ARG292:NH1 - A:GLY348:O 
3.16 

A:ARG292:NH2 - A:GLU277:OE1 
2.83 

A:ARG292:NH2 - A:TYR406:OH 
2.95 

A:ASN294:ND2 - A:SER246:O 
2.90 

A:TYR347:OH - A:G39800:O1A 
2.92 

A:TYR347:OH - A:HOH953:O 
2.66 

A:ARG371:NH1 - A:TYR347:OH 
2.99 

A:ARG371:NH1 - A:GLY348:O 
3.04 

A:ARG371:NH1 - A:G39800:O1A 
2.68 

A:ARG371:NH2 - A:G39800:O1B 
2.77 

A:ARG371:NH2 - A:HOH890:O 
2.87 

A:TYR406:OH - A:GLU277:OE1 
3.05 

A:TYR406:OH - A:GLU277:OE2 
2.55 

A:G39800:N5 - A:HOH861:O 
2.89 
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A:G39800:N4 - A:GLU119:OE2 
2.91 

A:G39800:N4 - A:HOH885:O 
2.63 

A:HOH861:O - A:GLU227:OE2 
2.70 

A:HOH861:O - A:GLU277:OE2 
2.66 

A:HOH885:O - A:TRP178:O 
2.64 

A:HOH885:O - A:GLU227:OE2 
3.11 

A:HOH885:O - A:G39800:N4 
2.63 

A:HOH907:O - A:GLU119:OE2 
2.87 

A:HOH907:O - A:ASP151:OD1 
2.91 

A:HOH907:O - A:HOH891:O 
2.63 

A:HOH949:O - A:SER246:OG 
2.66 

 


