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Abstract 13 

The seismic performance of ‘Added Stories Isolation’ (ASI) systems are investigated for 12-story moment re-14 

sisting frames. The newly added and isolated upper stories on the top of the existing structure are rolled to act as 15 

a large tuned mass damper (TMD) to overcome the limitation of the size of tuned mass, resulting to ‘12+2’ and 16 

‘12+4’ stories building configurations. The isolation layer, as a core design strategy, is optimally designed based 17 

on optimal TMD design principle, entailing the insertion of passive flexible laminated rubber bearings to segre-18 

gate two or four upper stories from a conventionally constructed lower superstructure system. Statistical perfor-19 

mance metrics are presented for 30 earthquake records from the 3 suites of the SAC project. Time history anal-20 

yses are used to compute various response performances and reduction factors across a wide range of seismic 21 

hazard intensities. Results show that ASI systems can effectively manage seismic response for multi-degree-of 22 

freedom (MDOF) systems across a broader range of ground motions without requiring burdensome extra mass. 23 

Specific results include the identification of differences in the number of added story by which the suggested 24 

isolation systems remove energy. 25 

 26 

Keywords: added stories, seismic isolation, tuned mass damper, parametric optimization, statistical method 27 
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1 Introduction 29 

Based upon new and emerging findings in the area of seismic effects on buildings, an increasing number of ex-30 

isting structures are facing the necessity of seismic retrofit. There is not yet a practical method for a large num-31 

ber of buildings to improve their performances in the case of an earthquake event. In addition, there is an in-32 

creasing desire to expand upwards due to lack of new land to develop. The tuned mass damper (TMD) system 33 

can be a great help for both cases because it does not require any major changes in existing buildings and, in 34 

some cases can be applied without significant interruption in their operation. TMDs of all possible types have 35 

the added advantage of being effective and feasible for taller structures where base isolation is not possible. 36 

However, the ultimate performance of the TMD system is limited mainly by the size of the additional mass, 37 

which is typically 0.25~1.0% of the building’s weight in the fundamental mode. 38 

In an attempt to overcome the limitation of TMD size and find the reliable use of large sized TMD, several stud-39 

ies have been performed by considering a certain part of the structure itself as a tuned mass [1-3]. These seismic 40 

isolation strategies using TMD design principle have been extended to convert a structural system, especially a 41 

high-rise structural system, into a modified TMD system. Other researchers, furthermore, suggested some modi-42 

fied structural configurations consisting of intentionally isolated structural components utilizing the proper in-43 

teraction between the segregated structural portions [4-7]. In their studies, they obtain a result that the seismic 44 

force to the structure may be reduced by concentrating seismic energy dissipation in the isolation interfaces. 45 

They also found that the response of the structure is affected by high frequency modes according to the vibration 46 

features between the segregated structural portions. 47 

In an ideal case for the retrofitting of existing structures, it is possible to apply this technique on top of the exist-48 

ing structure simply by adding a few stories as these stories become part of the structure control system, alleviat-49 

ing the necessity for additional mass that is redundant for the majority of the time. This approach is considered 50 

as a quite lucrative retrofit approach in places where land for new buildings is expensive. In this study, a com-51 

parison between a 12-story (original target structure) model, 14-story and 16-story (retrofitted structure) models 52 

including ‘Added Stories Isolation’ (ASI) system are performed. These retrofitted cases can be interpreted as 53 

adding two or four more stories on top of the existing 12-story structure, and it is intended to provide the back-54 

ground to bridge the gap between conventional structural design and the emerging field of structural control that 55 

actively manages structural response as it occurs. 56 

The objective of this study is to take the extended concept of TMD principle to the stage of feasible, practical 57 

implementation of ASI system to create large capacity energy management systems and its statistical response 58 
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verification for existing structures without requiring burdensome extra mass or large power sources. 59 

 60 

 61 

2 Prototype Structural Modeling 62 

A prototype 12-story reinforced concrete framed structure, which was designed originally by Jury [8], is intro-63 

duced to demonstrate the potential and beneficial effects of the ASI systems as shown in Fig. 1(left). More spe-64 

cifically, as a target structure, it was designed according to the New Zealand Loadings Code [9] based on the 65 

concept of capacity design. This structure was revised several times following the requests of the structural up-66 

grades and code revision [10-12]. This model is strong but close to the current practical design requirements. 67 

The building dimensions and member sizes adopted in this study are shown in Fig. 1 and Table 1. 68 

In dynamic analysis, it is important to set up a proper mathematical model that reduces the gap between the ana-69 

lytical results and the true behavior of structure during an earthquake. Thus, the detailed dynamic modal proper-70 

ties of the frame have been presented, along with the mathematical modeling and computational method (Table 71 

2). Overall, it is a realistic nonlinear structure that is broadly representative of tall framed structures internation-72 

ally. It was noted that under the considered structural properties and ground excitations, the displacement re-73 

sponse due to the first mode constitutes approximately 80% ~ 90% of the total displacement response. Thus, the 74 

first mode was selected for the design of the ASI systems considered. The modeling technique associated with 75 

this model has been developed by the inelastic time-history analysis program, RUAUMOKO [13]. 76 

For the suggested ASI systems, two stories and four stories are respectively added and isolated for the control of 77 

12-story models and these mean that 24% and 40% more masses are added to the 12-story structure creating 78 

‘12+2’ and ‘12+4’ story structures, respectively. These retrofitting cases are shown schematically in Fig. 1 (cen-79 

ter and right). 80 
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 81 

Fig. 1 12-story target model (left), 14-story and 16-story retrofitted models (center and right) 82 

 83 

Table 1  Member sizes of the framed structures (Target and retrofitted) 84 

Members Level Dimensions (mm) 

Beams 

1 – 6 900 × 400 

7 – 8 850 × 400 

9–16 800 × 400 

Exterior 

Columns 

1 – 6 775 × 500 

7 – 8 750 × 500 

9–16 650 × 500 

Interior 
Column 

1 – 6 800 × 800 

7 – 8 725 × 725 

9–16 675 × 675 

 85 

Table 2 Dynamic modal properties of the 12-story target structure 86 

(Total weight: 19,190kN; Damping ratio: 5%) 

Mode 
Mass 

(kN-s2/m) 

Frequency 

(rad/sec) 

Participation Factor 

Modal Mass 

1st 1,514 0.53 1.37 0.805 

2nd 252 1.52 -0.53 0.134 

3rd 74 2.73 -0.27 0.039 

 87 

 88 

In this study, the weights of the structure are converted to masses internally within the program RUAUMOKO.  89 

Generally, for building models, masses are typically lumped at the floor levels. These floor masses are then dis-90 
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tributed to the different load resisting frames on the basis of the frames tributary areas. The mass used in this 91 

study was a lumped mass matrix where contributions are made to the diagonal terms associated with the two 92 

translational degrees of freedom at each end of the member, with no mass contribution to the rotational degrees 93 

of freedom. 94 

For the modeling of damping, the ‘Rayleigh’ or ‘Proportional’ damping model and the initial stiffness matrix 95 

was used [13], and 5% critical damping was specified for the 1
st
 and 9

th
 modes of the 12 story framed structure. 96 

When the additional stories are placed on the structure, the first mode is affected by the response of the added 97 

stories. The previously determined 1
st
 and 9

th
 modal damping values for the structure without the added stories 98 

were used for the 2
nd
 and 10

th
 modes with the added stories. Thus, the modal characteristics of the structure 99 

without the added stories can be transferred to the structure with the added stories to create a more equal com-100 

parison. 101 

 102 

 103 

3 Optimal design of the isolation layer 104 

 105 

3.1 Isolation layer 106 

 107 

Fig. 2 shows the schematic description of the isolation layer including rubber bearings and viscous dampers, 108 

which are modeled as ‘spring member’ and ‘dashpot member’ respectively in the used program RUAUMOKO. 109 

The overall mechanism of suppressing structural vibration induced by an earthquake is to transfer the vibration 110 

energy of the structure to the isolated added stories. The transferred energy is dissipated at the isolation interface 111 

so that seismic force of the entire superstructure can be reduced. Thus, the overall effectiveness depends on the 112 

amount of energy transferred or the size of the isolated added stories, and the ability of the isolating elements 113 

(laminated rubber bearing and viscous damper) to dissipate that energy via the relative motions at the interface. 114 

 115 
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 116 

Fig. 2 Details of isolation layer and device members used 117 

 118 

 119 

3.2 Parametric optimization 120 

 121 

While, the basic principles of TMDs on reducing structural response have been well established, optimal TMD 122 

configurations are a quite a different problem. In the design of any control device for the suppression of undesir-123 

able vibrations, the aim would be to provide optimal damper parameters to maximize its effectiveness. The chief 124 

design response oriented parameters of the TMD are its tuning ratio (the ratio of the damper frequency to the 125 

natural frequency of the structure) and damping ratio. The other important design parameter is the mass ratio 126 

(the ratio of the damper mass to the mass of the structure). Considerable research has been devoted to the study 127 

of TMD performance, to enable proper selection of TMD parameters [14-23]. 128 

For the optimal TMD parameters, Sadek et al. [24] found that the tuning ratio for a multi-degree-of freedom 129 

(MDOF) system was found to be nearly equal to the tuning ratio for a two-degree-of freedom (2-DOF) system 130 

for a mass ratio of µΦ, where Φ is the amplitude of the first mode of vibration for a unit modal participation 131 

factor computed at the location of the TMD. The TMD damping ratio is also found to correspond approximately 132 

to the damping ratio computed for a 2-DOF TMD system multiplied by Φ. After suggesting of the parametric 133 

design approach to large size TMDs by Sadek et al., several related studies have supported the availability and 134 

effectiveness of the use of large TMDs [25-31]. In several studies, the issue of the over-large damping provided 135 

by this modified isolation system was addressed and some relative solutions have also been considered [24-27, 136 

31-33]. 137 
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For convenience, in this study, a flow diagram of optimal design of MDOF ASI system by numerical optimiza-138 

tion is used as shown in Fig. 3. For the large mass ratios utilizing in the concept presented, the equations from 139 

Sadek et al. [24] are adopted to find the optimal parameters of frequency tuning (f2opt) and damping (ξ2opt) ratios 140 

as shown in Eqs (1) and (2) in Fig. 3. Based on these optimal parameters of large TMD, the practical design pa-141 

rameters of k2opt (stiffness coefficient) along with c2opt (damping coefficient) are easily derived as shown in Eqs 142 

(3) and (4). From the diagram in Fig. 3, it can be seen that the design is initiated by the amount of added stories, 143 

followed by the stage of the parametric optimization for the isolation system suggested. Finally, as a decision 144 

making stage, a series of time history analyses using suites of ground motions supplies the individual perfor-145 

mance values for the final statistical performance assessment, since the use of a probabilistic format allows for a 146 

consideration of structural response over a range of seismic hazards. 147 

 148 
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 149 

Fig. 3 Design process of the ASI system suggested 150 

 151 

Fig. 4(a) shows the optimal tuning and damping ratios versus mass ratio values ranging from 0 to 1, with 5% of 152 

internal damping for ‘12+2’ and ‘12+4’ story models. The optimal values for the ‘12+2’ and ‘12+4’ models 153 

have been distinguished by blue and red lines at the mass ratios of 0.31 and 0.52 respectively. As the optimal 154 

turning frequency values, 0.684 and 0.568 were derived for the models of ‘12+2’ story and ‘12+4’ story, where-155 

as 0.716 and 0.842 damping ratios were used for the two models respectively, despite the potentially over-large 156 
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damping values provided by these optimal cases. Fig. 4(b) shows the optimal stiffness and damping coefficients 157 

for the models of ‘12+2’ (1,535 and 2,448) and ‘12+4’ (2,489 and 2,814) cases respectively. 158 

   159 

(a) Tuning and damping ratios                       (b) Stiffness and damping coefficients 160 
 161 

Fig. 4 Optimal parameters for the isolation system 162 

 163 

 164 

4 The earthquake records used and statistical methodology 165 

 166 

The use of suites of accurate seismic time histories is a key feature of this study, with little prior study focusing 167 

on the importance of examining a wide range of excitation characteristics. Statistical methods are used to evalu-168 

ate structural response over the suites, presenting results in a form suitable for performance-based design meth-169 

ods. As the characteristics of seismic excitation are entirely random and unlike other types of vibrational excita-170 

tion, the use of multiple time history records over a range of seismic levels is also essential for effective control-171 

ler evaluation, particularly where results from ASI system have been found to be sensitive to the ground motion 172 

used. 173 

Sommerville et al. [34] developed three suites of 20 earthquake acceleration records to represent the seismic 174 

hazard at the SAC Phase II Los Angeles site. The high, medium, and low suites are grouped according to a 175 

probability of exceedance of 2%, 10%, and 50% in 50 years, respectively. The earthquakes contained within the 176 

three suites (odd half) are shown in Table 3. It should be noted that although in some cases multiple pairs of 177 

earthquake pairs have the same name, these are in fact different time histories, from different recordings of the 178 

same earthquake. 179 
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Statistical assessment of structural response is an important step in performance-based seismic design. As the 180 

characteristics of seismic excitation are entirely random and vary significantly, unlike other types of vibrational 181 

excitation, the use of a number of multiple time history records over a range of seismic levels is essential for 182 

effective controller evaluation. This approach has been used extensively to develop design guidelines and com-183 

plete performance assessment of control. The performance measures of interest in this study are therefore evalu-184 

ated statistically from the individual structural responses from the seismic records within each earthquake suite. 185 

Therefore, the choice of statistical tools must ensure the simulation results are accurately represented. To com-186 

bine the response results across the earthquakes in a suite, log-normal statistics are used [35], since it is widely 187 

accepted that the statistical variation of many material properties and seismic response variables is well repre-188 

sented by this distribution provided one is not primarily concerned with the extreme tails of the distribution [36]. 189 

For the statistical assessments, the response measures are each defined with respect to a single seismic event.  190 

To combine these results across the earthquakes in a suite, the log-normal based statistical tools are employed. 191 

To combine the response values of a ground motion suite, a log-normal based median of the response quantities 192 

of a suite with n earthquakes is defined as in Eq. (5) in Fig. 3. To present a summary of the distribution change 193 

between the retrofitted (12+2 and 12+4) and 12-story target data sets, while providing accurate statistical 194 

measures that are not highly affected by changes in any single variable, the 50th percentile ( x̂ ) response results 195 

are presented. 196 

 197 

198 
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Table 3  Earthquakes scaled within suites (Low, medium and high) 199 

Probability of 

Exceedance (Suite) 
Record 

Earthquake 

Magnitude 

Distance 

(km) 

Scale 

Factor 

Duration 

(sec) 

PGA 

(cm/sec2) 

50% in 50 years 

(Low) 

Coyote Lake, 1979 5.7 8.8 2.28 26.86 578.34 

Imperial Valley, 1979 6.5 1.2 0.4 39.08 140.67 

Kern, 1952 7.7 107 2.92 78.60 141.49 

Landers, 1992 7.3 64 2.63 79.98 331.22 

Morgan Hill, 1984 6.2 15 2.35 59.98 312.41 

Parkfield, 1966, Cholame 5W 6.1 3.7 1.81 43.92 765.65 

Parkfield, 1966, Cholame 8W 6.1 8 2.92 26.14 680.01 

North Palm Springs, 1986 6 9.6 2.75 59.98 507.58 

San Fernando, 1971 6.5 1 1.3 79.46 248.14 

Whittier, 1987 6 17 3.62 39.98 753.70 

10% in 50 years 
(Medium) 

Imperial Valley, 1940, El Centro 6.9 10 2.01 39.38 452.03 

Imperial Valley, 1979, Array #05 6.5 4.1 1.01 39.38 386.04 

Imperial Valley, 1979, Array #06 6.5 1.2 0.84 39.08 295.69 

Landers, 1992, Barstow 7.3 36 3.2 79.98 412.98 

Landers, 1992, Yermo 7.3 25 2.17 79.98 509.70 

Loma Prieta, 1989, Gilroy 7 12 1.79 39.98 652.49 

Northridge, 1994, Newhall 6.7 6.7 1.03 59.98 664.93 

Northridge, 1994, Rinaldi RS 6.7 7.5 0.79 14.95 523.30 

Northridge, 1994, Sylmar 6.7 6.4 0.99 59.98 558.43 

North Palm Springs, 1986 6 6.7 2.97 59.98 999.43 

2% in 50 years 

(High) 

Kobe, 1995 6.9 3.4 1.15 59.98 1258.00 

Loma Prieta, 1989 7 3.5 0.82 24.99 409.95 

Northridge, 1994 6.7 7.5 1.29 14.95 851.62 

Northridge, 1994 6.7 6.4 1.61 59.98 908.70 

Tabas, 1974 7.4 1.2 1.08 49.98 793.45 

Elysian Park (simulated) 7.1 17.5 1.43 29.99 1271.20 

Elysian Park (simulated) 7.1 10.7 0.97 29.99 767.26 

Elysian Park (simulated) 7.1 11.2 1.1 29.99 973.16 

Palos Verdes (simulated) 7.1 1.5 0.9 59.98 697.84 

Palos Verdes (simulated) 7.1 1.5 0.88 59.98 490.58 

 200 

 201 

202 
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5 Performance Results 203 

 204 

The analytical results for the buildings described are obtained to check the performance of each structural con-205 

trol case. To investigate the efficiency of the applied control systems, the 50
th
 (median) percentile responses of 206 

the ‘12’ story, ‘12+2’ story, and ‘12+4’ story models under the suites (low, medium and high) are compared 207 

over all floors and the response envelopes are presented in Figs 5-8. The peak relative displacements, interstory 208 

drift ratios, story shear forces and total accelerations for all floors are calculated as control effectiveness indices. 209 

In addition, to compare the ASI systems developed, the summarized reduction factors to the uncontrolled target 210 

model over 1
st
 to 12

th
 floor have been depicted in Fig. 9. This is a possible summarizing approach, since the 211 

most of the response envelops are reasonably uniform or linear, and the distribution of the demands are fairly 212 

equivalent and the slight differences are apparent with uncontrolled cases developed. 213 

Overall, it is observed that the ASI control provides satisfactory reductions and that control performance is 214 

clearly dependent on the specific earthquakes and suites. In addition, the control effects of the ASI systems are 215 

not so influenced by the amount of added mass (12+2 vs. 12+4) and are relatively more pronounced under the 216 

low and high suites than medium suite. On average, the ‘12+2’ or ‘12+4’ story ASI system received considera-217 

bly more input energy than the original 12-story building. However, the share of structural components of the 218 

system from this energy remained small. Reductions in responses are fairly modest considering that the retrofit-219 

ted structures have fourteen and sixteen stories instead of the twelve of the original configuration. In addition, 220 

care must be taken not to assume that ASI strategies which reduce statistical values for the ground motion sets 221 

will reduce demands for all individual excitations. 222 

The maximum displacements of each level increase steadily over the height of the level under the all suites as 223 

shown in Fig. 5. Both ASI systems (12+2 and 12+4) produce very similar displacements under the medium suite 224 

(Fig. 5(b)). However, under the high suite, the ‘12+4’ ASI systems show relatively more reductions, and the 225 

different distribution of displacement demands over the levels is fairly apparent. Under the low suite, the ‘12+4’ 226 

ASI system demonstrates more reduced demands from 9th to 16th floors. The 50th percentile reduction factors of 227 

the maximum displacements by the ‘12+2’ ASI system are 0.669~0.811 under the suites, while 0.637~0.778 by 228 

the ‘12+4’ ASI system as shown in Fig. 9. 229 

The envelopes of the retrofitted interstory drifts are relatively uniform and the drifts are decreased over the 11
th
 230 

floor to the 16th floor, especially above the isolation layers. In particular, the drift envelops of both isolation sys-231 

tems (12+2 and 12+4) cross one another at the 11
th
, 6

th
 and 10

th
 floor under the low, medium and high suites 232 
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respectively. Overall, the ‘12+4’ ASI systems present more reliable and constant drift demands along the height 233 

of the original 12-story structures except for some upper floors under the medium suite. The 50
th
 percentile re-234 

duction factors of the interstory drifts are 0.723~0.825 by the ‘12+2’ ASI systems, while 0.702~0.827 by the 235 

‘12+4’ ASI systems under the suites. Again, the retrofitted ASI systems prove to be more effective under the 236 

low and high suites than the low suite. 237 

The story shear forces produced by the ASI systems also show good reductions based on the results from the 238 

maximum displacements. Under the all suites, the shear force demands are reduced and, these response reduc-239 

tions are increased for 12+4 cases and under the high suite. In spite of adding 24% mass (12+2) and 40% mass 240 

(12+4) to the buildings, the method of construction that uses added stories at the interface actually reduces the 241 

seismic demand in the stories under the all suites of the earthquake records considered. The ‘12+4’ ASI system 242 

under the medium suite results in greater shear force reduction factor of 0.676. 243 

As seen in Fig. 8, the acceleration distributions over the height are fairly similar and the ASI systems show very 244 

uniform demand profiles under the all suites. The added large-damped viscous dampers of the systems have the 245 

benefit of being capable of reducing the acceleration demands on the structures. In particular, the acceleration 246 

responses of the isolated stories have a significant reduction in all cases. The reason for these reductions is again 247 

that the added upper stories are isolated from the main structure, so base excitation is not directly transmitted to 248 

the separated upper stories of the structure. In another word, this reflects the effective interruption of energy 249 

flows between both upper and lower stories of the structures. The 50
th
 percentile reduction factors of accelera-250 

tions by the ‘12+2’ ASI systems are 0.684~0.760, while 0.638~0.730 by the ‘12+4’ ASI systems under the 251 

suites as shown in Fig. 9. 252 

 253 

 254 

Fig. 5. Displacement profiles of the target and retrofitted models (Low (a), medium (b) and high (c) suites) 255 
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 256 

Fig. 6. Interstory drift profiles of the target and retrofitted models (Low (a), medium (b) and high (c) suites) 257 

 258 

Fig. 7. Story shear force profiles of the target and retrofitted models (Low (a), medium (b) and high (c) suites) 259 

 260 

Fig. 8. Acceleration profiles of the target and retrofitted models (Low (a), medium (b) and high (c) suites) 261 
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 262 

Fig. 9. Summarized response reduction factors of the ASI systems (Low, medium and high suites) 263 

 264 

 265 

6 Conclusions 266 

This study explored the response characteristics for added stories isolation (ASI) systems when new stories are 267 

added as the tuned mass on existing structures. Overall, the results are quite promising and reliable. Intuitively, 268 

adding more stories to the existing building is primarily an attempt to control the fundamental mode of vibration 269 

of the original structure by a damping mechanism located on the top of the building. Therefore, from a structural 270 

point of view, the additional stories are solely meant to be a support for the reaction of the damping mechanism. 271 

In the new system, the mass of added stories contributes mostly to the fundamental mode of vibration, which is 272 

properly isolated by a long natural period. The second mode of the retrofitted structures, which has the mass of 273 

the original building, is now accompanied by a large damping ratio as was intended, by design thus describing 274 

how energy and force transmitted to the system are reduced. 275 

Overall, the details and results of a set of comparative studies were performed to assess the feasibility and effec-276 

tiveness of such isolation systems. The analysis has demonstrates the validity of realistic ASI systems for con-277 

sideration in future design and construction in an analytical setting. Furthermore, this new system has the mean-278 

ing of increase the impact of passive isolation methods by broadening their application domain to include tall 279 

structures for which base isolation methods have not heretofore been considered feasible, such as high-density 280 

residential apartment and commercial structures. These tall residential structures are becoming increasingly 281 
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common in large urban centers, and the need for ensuring structural integrity and performance in the face of 282 

large environmental loads are critical. The extension of passive base isolation applications to these structures 283 

will significantly advance the state of structural energy management and broaden its applicability by adding the 284 

adaptability of active or semi-active feedback control systems. This feature is significant as the primary draw-285 

back of passive, tuned systems is the loss of performance over the (long) lifecycle of the structure as its funda-286 

mental dynamic change over time. 287 

In view of these findings above, the proposed ASI system has the potential to become a practical and effective 288 

way to reduce earthquake damage. Thus, these systems merit further studies to examine their advantages and to 289 

further develop experimental validation and design solutions, leading eventually to practical initial designs. It 290 

can be concluded that the suggested ASI system is directly relevant to future structural design and construction 291 

in the area of structural energy management, given the level of seismic risk around many of our major cities in 292 

the world. 293 

 294 

295 
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