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ABSTRACT

Insects posses an incredible ability to navigate their environment at high speed, despite

having small brains and limited visual acuity . Through selective pressure they have

evolved computationally efficient means for simultaneously performing navigation tasks

and instantaneous control responses. The insect’s main source of information is visual,

and through a hierarchy of processes this information is used for perception; at the

lowest level are local neurons for detecting image motion and edges, at the higher level

are interneurons to spatially integrate the output of previous stages. These higher

level processes could be considered as models of the insect’s environment, reducing the

amount of information to only that which evolution has determined relevant. The scope

of this thesis is experimenting with biologically inspired visual control of flying robots

through information processing, models of the environment, and flight behaviour.

In order to test these ideas I developed a custom quadrotor robot and experimental

platform; the ‘wasp’ system. All algorithms ran on the robot, in real-time or better,

and hypotheses were always verified with flight experiments.

I developed a new optical flow algorithm that is computationally efficient, and able

to be applied in a regular pattern to the image. This technique is used later in my

work when considering patterns in the image motion field.

Using optical flow in the log-polar coordinate system I developed attitude esti-

mation and time-to-contact algorithms. I find that the log-polar domain is useful for

analysing global image motion; and in many ways equivalent to the retinotopic arrange-

ment of neurons in the optic lobe of insects, used for the same task.

I investigated the role of depth in insect flight using two experiments. In the first

experiment, to study how concurrent visual control processes might be combined, I

developed a control system using the combined output of two algorithms. The first

algorithm was a wide-field optical flow balance strategy and the second an obstacle

avoidance strategy which used inertial information to estimate the depth to objects in

the environment — objects whose depth was significantly different to their surround-

ings. In the second experiment I created an altitude control system which used a model

of the environment in the Hough space, and a biologically inspired sampling strategy,

to efficiently detect the ground. Both control systems were used to control the flight

of a quadrotor in an indoor environment.
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The methods that insects use to perceive edges and control their flight in response

had not been applied to artificial systems before. I developed a quadrotor control

system that used the distribution of edges in the environment to regulate the robot

height and avoid obstacles. I also developed a model that predicted the distribution of

edges in a static scene, and using this prediction was able to estimate the quadrotor

altitude.
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PREFACE

This work began on scholarship at the Geospatial Research Centre (GRC) in early 2008

under the supervision of Dr. Andrew Bainbridge-Smith (University of Canterbury) and

Dr. Steven Mills (GRC). The commercial goals of the project were the application of

fixed wing unmanned aerial vehicles (UAVs) to aerial survey and mapping. My initial

goal was the use of omnidirectional or wide-angle vision systems for visual control of

UAVs.

At the commencement of my work quadrotor helicopters were still very new, gen-

erally used only in research, and not commercially available for a price within my

budget. I also recalled a memorable lecture given during my undergraduate degree by

a visiting scientist Mandyam Srinivasan. Professor Srinivasan, whose research I would

go on to cite frequently, spoke on the topic of “Small minds, Smart brains: Honeybee

Vision, Navigation and Cognition”. The combination of these events were to shape my

interests and research over the coming years.

I spent 2008 building hardware and investigating the field of biologically inspired

visual control. I wanted to apply biologically plausible techniques to flying robots, and

in particular, not restrict myself to strategies which only considered balancing optical

flow (often called the optomotor equilibrium model, reviewed in Section 1.2.1). In the

first half of 2008 I designed and constructed the first tethered quadrotor with vision

capability at the University of Canterbury. Not long after, I realised this platform was

insufficient and began a second revision. Through the support of the GRC I spent 4

months at the end of 2008 on exchange at École Nationale de l’Aviation Civile (ENAC),

in Toulouse, France. ENAC maintains the ‘paparazzi’ project — at the time the most

capable and popular open-source fixed-wing UAV system. During my exchange at

ENAC I designed and developed, in conjunction with Antoine Drouin, the first open-

source quadrotor system, the ‘paparazzi booz quadrotor’. I returned from France with

a working quadrotor and autopilot system.

In 2009 I added computer vision capability to the vehicle, creating the open-source

‘Wasp’ system; explained in Appendix A, in Stowers et al. [2010b], and in Millane

et al. [2010]. Initial experiments investigated attitude control using optical flow and

were successful in publication [Stowers et al., 2009, 2010a]. Unfortunately, in 2009 the

GRC encountered financial difficulty stemming from the global financial crisis and a



xx LIST OF TABLES

decrease in research spending, eventually ceasing commercial operation in early 2010.

As a consequence, Dr. Michael Hayes became my co-supervisor as the GRC was no

longer able to employ Dr. Steven Mills.

Due to my open-source work at ENAC, I was invited to work at Eidgenössis-

che Technische Hochschule Zürich (ETH Zürich) on the development of their custom

quadrotor system: ‘Pixhawk’. I spent 9 months in Zürich and continued to work

on biologically inspired techniques, including; how insects perceive depth, depth from

optical flow, and how concurrent biological strategies can be mapped to an artificial

controller [Stowers et al., 2011d]. In early 2010 I returned to New Zealand and the

Electrical and Computer Engineering department at the University of Canterbury. I

continued work on the use of depth for flight control and the efficient detection of planes

in depth data [Stowers et al., 2011a,b]. I also began investigating the use of edges in

insect flight control.

The concluding stages of my PhD were simultaneously the most frustrating and

exciting phases of my life. Late 2010 and 2011 were marred by the damaging earth-

quakes that struck Christchurch. While other fared worse than myself, the damage

to my house, to my belongings and the inability to access my office and laboratory

at University for several months affected my research and momentum to a frustrat-

ing degree. Simultaneously my work on biologically inspired flight control using edges

was very fruitful and rewarding [Stowers et al., 2011c,e], ultimately leading to my cur-

rent employment in the field of experimental biology, studying the visual systems of

Drosophila at the Research Institute of Molecular Pathology (IMP).

I hope reading this thesis will enlighten you to the possibilities of biologically

inspired visual flight control, and demonstrate that while the optical flow based ap-

proaches of insects have proven merit, there is utility in considering other perceptions

of the world (such as edges) and through the sensible combination of simple insect

inspired responses.

Papers published in this thesis in order of presentation:

J. Stowers, A. Bainbridge-Smith, M. Hayes, and S. Mills. Optical flow for attitude

estimation of a quadrotor helicopter. In Proceedings of the European Micro Aerial

Vehicle Conference, Delft, the Netherlands, 2009

J. Stowers, A. Bainbridge-Smith, M. Hayes, and S. Mills. Optical flow for heading

estimation of a quadrotor helicopter. International Journal of Micro Air Vehicles, 1

(4):229, 2010a. doi: 10.1260/175682909790291474

J. Stowers, M. Hayes, and A. Bainbridge-Smith. Quadrotor helicopters for visual

flight control. In Proceedings of Electronics New Zealand Conference 2010, pages 21–26,

Hamilton, New Zealand, 2010b

J. Stowers, M. Hayes, and A. Bainbridge-Smith. Phase correlation using shear

average for image registration. In Proceedings of the 25th International Conference on



LIST OF TABLES xxi

Image and Vision Computing New Zealand, 2010c
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10.1109/ICMECH.2011.5971311
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2011b
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work of Chapter 7.
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xx, 1, 9, 14, 15, 18–24, 28, 31, 32, 36, 94, 142, 144, 146, 148, 149, 155, 156, 158

egomotion The 3D motion of a camera within an environment. More specifically, in
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fovea In human vision; Fovea centralis. The a small depression in the retina containing

only cones and where vision is most acute. 75, 77, 78, 157

gross Large; in the context of describing navigation or control, the gross behaviour is

that state which the system aims to achieve over the longest time. In biological

systems this is generally the search for food or a mate. 2–4, 92, 94, 96, 101, 103

haltere Small, knobbed, hind wing-like structures that function as gyroscopes in some

insects. 16, 20–22, 30, 40

interneuron A non-motor or non-sensor neuron whose axons connect to other neurons

within the same region of the brain or spinal cord. iii, 24, 25, 92

Lambertian A surface exhibits Lambertian reflectance if light falling on it is scat-

tered such that the apparent brightness of the surface to an observer is the same

regardless of the observer’s angle of view. 53

lamina A region of the optic lobes (along with the medulla, lobula, and lobula plate).

23–25

lateral Of, at, toward, or from the side or sides. 144

lobula A region of the optic lobes (along with the lamina, medulla, and lobula plate).

22–26, 29, 33, 36

lobula plate A region of the optic lobes (along with the lamina, lobula, and medulla).

22–26, 28, 116, 118

medulla A region of the optic lobes (along with the lamina, lobula, and lobula plate).

22–26, 28, 65

Musca domestica The common house-fly. 1, 14, 15, 19, 37

neuron A specialized cell for transmitting nerve impulses, a nerve cell. Multiple neu-

rons connect together to form a network. iii, 2, 13, 15, 22, 24–26, 28–30, 33, 34,

36, 49, 53, 90, 116, 157

ocellus Simple photoreceptors found on the head of some insects. 16, 18, 20, 144

ommatidium A single sensing unit of a compound eye. 17–19, 22, 25, 27, 28, 33, 53,

79

optomotor response A course stabilisation during free locomotion through an invol-

untary displacement from a straight course. The optomotor response is an innate

behaviour common to all insects. Sometimes called optomotor equilibrium. 26,

33



phylum A taxonomic rank, lying between Kingdom and Class, in the hierarchy of

biological classification. 14

project Terminate in, or connect to. A neuron projects from one region to another if

it communicates impulses between them.. 24, 25

resolution The smallest detectable change in the quantity being measured, not the

variation in general use; the number of pixels in an image. 19, 132

retinotopic The neighbourhood is respected, that is, neurons connected to neighbour-

ing ommatidia are next to each other. iii, 22, 25, 28, 36, 89

saccade A fast movement of an eye, head or other part of an animal’s body between

positions of rest. 10, 32, 161

subtend The angle formed by an object at a given external point. When used in

the context of vision, it is often used to describe the size and/or distance to

an object. For example, to an observer on earth, the sun subtends 0.52◦ at its

current distance and size. 42, 145

syndirectional In or towards the same directions. 26, 144

ventral Of, on, or relating to the underside of an animal or plant; abdominal. 34, 105,

144





LIST OF ABBREVIATIONS

2D two-dimensional.

3D three-dimensional.

BM block matching.

CDF cumulative distribution function.

COM centre of mass.

CPU central processing unit.

DOF degree of freedom.

EKF extended Kalman filter.

EMD elementary motion detection.

FFT fast Fourier transform.

FOE focus-of-expansion.

FOV field of view.

GPS global positioning system.

GRC Geospatial Research Centre.

HITL hardware in the loop.

IMU inertial measurement unit.

LIPO Lithium polymer.

OF optical flow.

PCB printed circuit board.

PDF probability distribution function.

PID proportional integral derivative.
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RHT randomized Hough transform.

RMS root mean square.

SAD sum of absolute differences.

SBC single board computer.

SHT standard Hough transform.

SITL software in the loop.

SLAM simultaneous localisation and mapping.

SNR signal to noise ratio.

SSD sum of squared differences.

TTC time-to-contact.

UAV unmanned aerial vehicle.

USB universal serial bus.

VPN visual projection neuron.
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CONVENTIONS

Co-ordinates

are expressed in brackets, (x, y, x). Co-ordinates in the world reference frame are

capitalised; (X,Y, Z).

Vectors

V, bold text with capital letters. Notable elements of vectors are indicated with

subscripts. For example, let V = [x, y, z]T be a vector of velocities in (x, y, z)

then Vx is the first element.

Matrices

M, discrete, element access is indicated with M[m,n]. By convention the letters

m,n refer to row and column indices of a matrix. Sizes are given in M ×N .

Number Spaces

are indicated in blackboard-bold type. E2, and E3 represent the two-dimensional

(2D) and three-dimensional (3D) Euclidian space. Rn represents a general real-

numbered space of n dimensions.

Images

I, are treated as discrete matrices, conventionally labelled with I. Co-ordinates

in the image plane are (u, v).

Computer vision geometry

conventions are explained in Section 2.2.

Aerodynamic geometry

conventions are explained in Appendix B. SI units are used for all quantities and

when unclear, are included after the introduction of a variable using them, e.g.,

ΩH [rad s−1].

Biological species names

use the two word Binomial nomenclature; the genus followed by the species. Both

words are italicised, the first word (the genus) is capitalised, e.g. Homo sapiens.

Definitions

are always italicised. A complete list of terms and their occurance is included in

the glossary.

Acronyms

are explained in the list of appreviations.





Chapter 1

INTRODUCTION

“ If you wish to make an apple pie from scratch, you must first

invent the universe.

Dr. Carl Sagan, Cosmos, 1980

Consider a honeybee, fly, or small insect in flight. Even in cluttered environments

and at full speed, the insect’s flight behaviour is impressive. The distance between

insect eyes is small and so they cannot rely on stereoscopic vision to assess the distances

to surrounding objects [Collett and Harkness, 1982]. Therefore, they have developed

specific visual processes to navigate their environment. These processes are responsible

for controlling orientation and movement and extracting information about the 3D

structure of the environment. These tasks all happen in real-time and exist in essentially

all diurnal organisms.

Now consider a similar task performed artificially; the task of controlling a flying

robot by visual means; computer vision. In order to do this one must know, just as

biological organisms, much about oneself and about the surrounding environment. One

begins with a flying robot and an attached camera (or cameras), but much work remains

to be done before a computer vision system for robot control can be implemented.

The phrase ‘biologically inspired’ can mean many things in the field of robotics,

including; mimicking the mechanical structure of biological organisms, copying their

patterns of movement or behaviour, restricting robots to use the same types of sensors

(including the same types of visual information), and recreation of their information

processing systems [Zanker and Zeil, 2000]. In the context of flying robotics, this as-

piration has had some success. For a broad review, Floreano et al. [2009] describe

a number of biomimetic controllers using visual information. Similar to the work of

Zufferey [2005], featured in the summaries cited above, this thesis explores the appli-

cation of biologically inspired visual control strategies to flying robots. The strategies

examined all have been observed or inferred from the behaviour by close study of living

organisms; typically small insects such as Drosophila melanogaster , Musca domestica,

and Apis mellifera. The goal of this thesis is to demonstrate that biologically inspired
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Figure 1.1: An example path of a fruit fly path towards its goal (gross flight behaviour).
At various times during the flight different control strategies may dominate. The selection
of control strategies is for illustrative purposes only.

responses and the architecture facilitating them have utility and through the sensi-

ble application and combination of such responses, a robust control system can be

developed.

As we move through our environment, the image of the world formed on our retina

changes. This gives an apparent motion to points in space, known as ‘image motion’

(or later, ‘optical flow’). Representing the movement of points between two images

using vectors yields Figure 1.2 and the distribution of these vectors can convey the

structure of the environment. For example, looking at Figure 1.2a and drawing from

our experiences of the world, one can imagine seeing such a pattern when taking off

in an aeroplane. Similarly, one might associate Figure 1.2b with driving through a

tunnel (the left wall of the tunnel being closer than the right). Through the use of

innate knowledge and our understanding of the world, humans can construct a model

sufficient for perception and action (in this example using only image motion vectors).

But perception can occur on other levels too. For example, humans have an impressive

ability to recognise complex attributes of the environment ranging from simple features

(‘corners’, ‘remarkable single points’) to complex objects (‘a chair, similar to one I own

but smaller’). Thus with our complex brain; perception and understanding occur on

multiple levels simultaneously drawing on many different types of visual information.

This happens to various degrees in insects too. Their perception has been shaped by

evolutionary forces; the limitations of their visual system and capability of their brain.

A fundamental and as yet unanswered question in insect flight is whether organisms

construct an internal model of their world, or instead there exists a direct coupling

between visual and motor neurons. The internal model hypothesis proposes that insects

create a neural representation of nearby objects. The latter, direct coupling scenario

proposes that steering results from neural activity without sophisticated use of stored
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(a) (b)

Figure 1.2: Examples of image motion observed when moving through ones environment.
From Werner and Chalupa [2004, ch. 84].

visual information from previous experience [Ofstad et al., 2011, Lalazar and Vaadia,

2008]. These hypotheses are not necessarily mutually exclusive; many neural responses

may be combined to give a repertoire of behaviours that allow insects to successfully

avoid dangerous situations, to find food, and ultimately to reproduce.

Figure 1.1 shows this scenario. It is unanswered whether the high-level gross flight

control of an organism (moving along the example flight path) is an emergent property

of multiple low-level control laws, whether top-down processes govern switching between

sub-behaviours, or whether the overall pattern of behaviour is better explained by a

continuously ongoing summation of low-level reflexes.

Figure 1.3: Research taxonomy of this thesis. Highlighted blocks indicate major research
topics; ‘direct coupling’ is Chapter 5, ‘depth perception’ is Chapter 6, ‘edge and line
detection’ is Chapter 7.

In this thesis I explore both the model and direct coupling hypothesis by develop-

ing and testing novel biologically inspired control techniques. A simple breakdown of

the research is indicated in Figure 1.3. I consider optical flow as an important mode of

visual information but do not restrict my research just to regulation of its magnitude

and direction like much of the existing literature (Section 1.2.1). I consider other in-

terpretations of optical flow such as depth-from-flow, and the interpretation of optical

flow using other models such as the log-polar domain. I consider techniques closer to
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the model hypothesis, those that require additional processing of the visual informa-

tion such as using novel visual features including edges and lines to control flight. I

investigate how concurrent combinations of these local strategies can yield gross flight

behaviour.

This subject matter spans multiple disciplines so considerable background material

is explained. The thesis proceeds as follows.

Chapter 2 explains key concepts in biology, motion vision, and computer vision in-

cluding the mechanisms which insects use to observe the world and the control systems

that these organisms have evolved utilising this visual information.

Chapter 3 describes optical flow and how to calculate it, while Section 3.3 intro-

duces an efficient frequency domain method I developed.

Chapter 4 introduces the quadrotor robot platforms I developed which were used for

experimental work (and whose implementation is further explained in Appendix A) and

describes the engineering and architecture required for visual flight control experiments.

Chapter 5 introduces biologically inspired flight control strategies inspired by the

direct coupling hypothesis. Section 5.3 describes an attitude estimation system that

uses optical flow in the log-polar domain to measure quadrotor heading and altitude.

Section 5.4 describes the time-to-contact algorithm and the well known expansion avoid-

ance response implemented in the log-polar domain.

Chapter 6 progresses beyond direct coupling techniques and looks at biomimetic

processes that model the environment using depth and not only image motion. Sec-

tion 6.1 describes an indoor obstacle avoidance system that uses depth-from-optical-

flow to navigate a cluttered corridor in real and simulated environments. Section 6.2

describes methods for estimating planes from depth data such as the ground plane and

walls, and uses those estimates to control the flight of a quadrotor helicopter. This

describes work undertaken using the Microsoft Kinect R© sensor.

Chapter 7 describes biologically inspired methods that control quadrotor altitude

and heading using edges and lines in the environment and not optical flow as conven-

tionally done. Section 7.2 introduces a statistical model describing the distribution of

edges in a scene.

Chapter 8 concludes with a summary of the applicability of these results and a

discussion of areas of biologically inspired control that need further study.
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1.1 MOTIVATION

“ It is certain that there may be extraordinary activity with an ex-

tremely small absolute mass of nervous matter; thus the wonderfully

diversified instincts, mental powers, and affections of ants are noto-

rious, yet their cerebral ganglia are not so large as the quarter of a

small pins head. Under this point of view, the brain of an ant is one

of the most marvellous atoms of matter in the world, perhaps more

so than the brain of man.

Charles Darwin, The Descent of Man, 1871

The operation of robots in urban and indoor unknown environments has shown the

necessity of robust systems to sense and navigate one’s environment. Many approaches

over multiple disciplines have been explored to solve this difficult problem [Siciliano

and Khatib, 2008, ch. 35–37]. Simultaneously, the conflicting desires of miniaturization

and increased performance have also pushed solutions to be more integrated.

Computer vision has often been applied as a solution to these problems. Computer

vision algorithms have improved over the decades and Moore’s law continues to hold.

This has allowed smaller and more powerful computers to run more capable algorithms

on smaller and smaller robots; and now even on flying robots (Figure 1.4). Due to

these trends I try to run all computation in real-time on the ‘wasp’ quadrotors.

Much of the robotics community is focused on solving the navigation problem using

simultaneous localisation and mapping (SLAM), where the control problem is often

recast as a navigation problem on a map built by computer vision techniques [Siciliano

and Khatib, 2008, ch. 37]. However, on the basis of the capability of biological control

systems, I believe that multiple, local concurrent control systems can provide a robust

basis for flying robotics. I hope to avoid a heavy dependence on a too-general purpose

SLAM system. I believe that if implemented efficiently, single purpose biologically

inspired controllers should augment SLAM systems, running in parallel and providing

important local information such as avoidance cues and navigation recommendations

for path planning.

On another note; biomimetic and biologically inspired artificial systems have fre-

quently had a synergistic relationship with the natural sciences; with advances in one

giving direction to research in the other [Koenderink and Doorn, 1987, Dahmen et al.,

2001, Krapp and Wicklein, 2008]. I hope that contributions I make here could also be

used to direct research in the natural sciences.
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(a)

(b)

(c)

Figure 1.4: Mobile flying robots with computer vision capability developed and used in
this thesis. (a) Asctec Pelican quadrotor with onboard processing. See Appendix A.4 for
hardware detail and Section 6.1 for experiments using this robot. (b) ‘Wasp’ quadrotor
with onboard and offboard processing. See Appendix A.4 for hardware detail and Sec-
tion 5.3 for experiments using this robot. (c) Improved ‘Wasp’ quadrotor with onboard
image processing. See Chapter 6 and Chapter 7 for experiments using this robot and
Appendix A.4 for hardware detail.
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1.2 EXISTING VISUAL CONTROL SYSTEMS

As mentioned, SLAM has emerged as the most popular architecture to solve the prob-

lem of autonomous avoidance and navigation in an unknown and unstructured envi-

ronment [Siciliano and Khatib, 2008, ch. 25,35]. While SLAM is not in-scope for this

thesis, this section includes a review of its basic concepts as it represents the state-of-the

art in the field for onboard UAV control.

The formulation of the autonomous avoidance and navigation problem SLAM at-

tempts to solve is;

Localization Given knowledge of the environment (a map), the robot needs to esti-

mate its location with respect to landmarks.

Mapping Given knowledge of its position, the robot needs to map the positions of

landmarks that it encounters in its environment.

SLAM The robot simultaneously maps landmarks it encounters and determines its

position (as well as the position of the landmarks) using noisy sensors.

robot

landmark

Figure 1.5: An introduction to the SLAM problem. The robot moves in its environment
while observations are made of the distance to landmarks. The true locations are never
known or measured directly. Estimates are shown in grey, the true location in white.
Adapted from Durrant-Whyte and Bailey [2006].

Figure 1.5 shows this formulation. A SLAM algorithm is said to operate on, and

maintain the state of; the robot pose and a representation or map of the environment

(feature landmark locations)1. Due to noise associated sensor data, this state will di-

verge from the true real-world state through the propagation of these inherent errors.

1 The term ‘feature’ refers to a specific detectable and distinguishable point in the environment.
The term ‘map’ refers to a vector of feature location estimates. A feature is a general term for a
detected landmark.
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Furthermore, if a robot uses an observation of an imprecisely known object to update

its position, the resulting vehicle estimate becomes correlated with the object location

estimate. Likewise, correlations are introduced if an observation taken from an impre-

cisely known position is used to update the location estimate of a geometric feature

in the map [Leonard and Durrant-Whyte, 1991]. Thus, a rigorous solution to SLAM

must explicitly represent all the correlations between the estimated vehicle and geo-

metric feature locations. This was successfully done by Smith et al. [1988] and Leonard

and Durrant-Whyte [1991] who used an extended Kalman filter (EKF) to provide an

optimal estimate of the robot feature positions in the presence of noise.

At a theoretical and conceptual level, SLAM can now be considered a solved prob-

lem [Durrant-Whyte and Bailey, 2006]. However, algorithmic challenges remain be-

cause a consistent full solution requires a joint state composed of the vehicle pose and

every object position. This state needs to be updated following each observation and

thus requires the estimator to employ a huge state vector (on the order of the number

of landmarks maintained in the map) and with computation scaling O(n2) with respect

to the number of objects on the map.

In the last decade computer vision research has produced improved SLAM formu-

lations and implementations that can be used in larger environments (larger maps) and

in real-time (for a review see Durrant-Whyte and Bailey [2006], Bailey and Durrant-

Whyte [2006]). This means that for the last few years, for small UAVs, monocular

(single camera) SLAM is the optimum choice for navigation when considering perfor-

mance, energy and weight constraints.

This work is exemplified recently by Weiss et al. [2011] and Tanaka et al. [2012],

both of whom developed such systems. The authors presented vision-based UAV con-

trollers using monocular SLAM technique (based on PTAM by Klein and Murray

[2007]) and fusion with inertial sensors to recover map scale. Weiss et al. devel-

oped a heuristic for keyframe (and thus local map) updating and IMU fusion. Both

Tanaka et al. and Weiss et al. choose optimal UAV controllers to ensure robust flight.

While both systems still suffer the problem common to all SLAM algorithms; the size

of the world is bounded by computational constraints via the expensive global bundle

adjustment step2, the size of the map they can work on in real-time is large enough to

be eminently useful.

1.2.1 Biologically Inspired Visual Flight Control

This is not the first work to consider the control systems of flying insects as inspiration

for many control strategies; for a 2005 review of the field consult Zufferey [2005], and

2 The last step of most 3D estimation algorithms; an optimization problem of the 3D structure and
camera parameters (pose, possibly distortion coefficients). Typically involves minimizing the repro-
jection error between the image locations of observed and predicted image points. Complexity of, in
general, O(N3) for N variables [Hartley and Zisserman, 2004].
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for a 2009 review of the field consult Floreano et al. [2009, ch. 11–21].

The level of research activity in this area is not surprising, because despite pos-

sessing relatively small brains and simple nervous systems, flying insects provide clear

demonstrations that living organisms can evolve surprisingly competent mechanisms

of guidance and navigation. Unlike creatures that walk, flying animals need to control

their their horizontal motion, altitude, and attitude.

Almost all the literature on biologically inspired control systems has concentrated

on the use of optical flow to control flight parameters [Ruffier and Franceschini, 2005].

This section presents an overview of the state of the art in this field, including repre-

sentative and important results. Additional reviews of existing work where relevant is

included at the beginning of each chapter introducing a new biomimetic strategy.

Srinivasan [2006] showed that honeybees negotiate narrow gaps by balancing the

speeds of the images in their two eyes. Honeybee flight speed and reaction to large

disturbances is regulated by holding constant the average image velocity, as seen by

the two eyes. Similarly, when insects are flying forward, the image of the ground sweeps

backward across their ventral view-field and forms an ‘optical flow’, which depends on

both the groundspeed, Vx, and the altitude, h (see Figure 7.17).

Vx

h

Figure 1.6: Definition of the existing variables controlled using ventral optical flow. h
is the height above ground. Vx is the velocity along the x-axis in the world coordinate
system. Adapted from Straw et al. [2010].

Srinivasan built several autopilot systems where the magnitude of optical flow con-

trolled the forward speed, Vx (Figure 1.6). This allowed smooth landings on horizontal

surfaces by holding optical flow constant as the surface is approached, ensuring that

the flight speed is close to zero at touchdown [Srinivasan et al., 1996, 2006].

Similarly, Ruffier and Franceschini [2005] and Franceschini et al. [2007] imple-

mented a helicopter autopilot whose visual control system adjusted the thrust to keep

the ventral optical flow at a constant value; achieving terrain following, take- off, and

landing. Unlike Srinivasan, the controller of Ruffier and Franceschini used optical flow

to regulate altitude, h, changing forward speed, Vx, in response. The authors suggested

that this model more closely matched the free-flight behaviour of honeybees, locusts,

dung beetles, and mosquitoes.

Tammero and Dickinson [2002a] studied the visual cues of Drosophila in discrim-
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inating obstacles in free flight. The authors found that image expansion is the signal

that triggers each saccade, causing the insect to turn away from regions of high optical

flow. The authors also found that the asymmetry responsible for instigating the saccade

only defines its direction and not its magnitude. However, while in saccade, other visual

responses including; the optomotor equilibrium response, and an immediate saccade in

the opposite direction, are attenuated.

Other examples of biomimetic optical flow based flight control include: the con-

trol of a UAV in canyon flight [Hrabar and Sukhatme, 2004, Hrabar et al., 2005] by

regulating optical flow on both sides of the aircraft; urban flight control and the avoid-

ance of skyscrapers using a proportional controller [Muratet et al., 2005]; centering

behaviour of wheeled robots using optical-flow [Serres et al., 2006] and an omnidirec-

tional camera [Argyros et al., 2004]; automatic take-off, landing [Green et al., 2003,

Ruffier and Franceschini, 2004], and obstacle avoidance by turning away from regions

of high flow [Green et al., 2004].

In summary, much existing research has focused on the interpretation of optical

flow at a primary level. Recent research has suggested that insects might have visual

processes which utilize more than just the magnitude and direction of optical flow. For

example; biological inspiration using the role of lines (and the planar ground surface)

has been used for monocular vision based UAV control. Celik et al. [2009a,b] present

a combined SLAM/ranging solution whereby the range and orientation of the craft is

recovered from the slopes of lines in the environment. Subsequent work from the same

authors [Yang et al., 2011] extended the idea of attitude determination via consideration

of ground based features, but this time used a more conventional feature correspondence

based technique, recovering the epipole and subsequently the UAV attitude.

1.3 CONTRIBUTION

This thesis has taken a bottom to top approach to biologically inspired control of flying

robots. Utilising the ‘wasp’ quadrotor system I developed [Stowers et al., 2010b], I have

contributed from the lowest levels of information processing to higher levels of naviga-

tion and control. At the lowest level I developed an efficient optical flow method [Stow-

ers et al., 2010c] inspired by insect physiology. Using only optical flow I demonstrated

it was possible to estimate the heading and altitude of a flying robot [Stowers et al.,

2010a] efficiently in the log-polar domain. Once again, using optical flow I developed

an obstacle avoidance strategy based on clustering similar flow vectors and introduc-

ing inertial information to measure distance to obstacles in the environment [Stowers

et al., 2011d]. Using depth information again, this time obtained from a depth camera,

I contributed a real-time control system for altitude control via ground plane detec-

tion [Stowers et al., 2011a,b]. Continuing in the theme of altitude control I developed

a novel biomimetic indoor flight strategy based on the detection of edges in one’s envi-
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ronment [Stowers et al., 2011c], and an accompanying statistical model which predicts

the distribution of edges and uses this to estimate altitude [Stowers et al., 2011e].

In general, my work uses low resolution visual information, real-time onboard com-

putation, and similar information processing techniques as those present in biological

organisms. In this way it is biomimetic; there is no learning or memory (no feature de-

tection nor correspondences undertaken), and no map building (local or global). This

work is most similar to the work of Ruffier and Franceschini [2005] and Franceschini

et al. [2007], both of which used optical flow and a local strategy to control UAV al-

titude and attitude, but otherwise left position and navigation to a separate control

architecture.





Chapter 2

VISION AND PRINCIPLES OF FLYING INSECTS

This chapter introduces background material to understand the research in this thesis.

This covers two major fields; insect biology, and computer vision. The chapter proceeds

as follows. Section 2.1 covers the biological principles of visual flight control, describing

the sense organs insects utilise and the common behaviours observed in their flight.

Section 2.2 introduces the fundamentals of computer vision including artificial images,

geometry and transformation, and the computer vision pipeline.

2.1 INSECT VISION AND FLIGHT CONTROL

The mastery of flight by small insects, the first animals to evolve flight [Dickinson et al.,

1999], is impressive given the limitations of their physiology. Their neural mechanisms

accomplish sophisticated behaviours despite lacking many of the sensory receptors we

Homo are accustomed to1. Even the insect visual system is highly constrained in

relation to our own, with limitations including:

Neural limitations Neurons possess comparatively small dynamic ranges for repre-

senting intensities and for representing temporal changes with only spike trains.

Furthermore, they can only approximate mathematical operations (such as ele-

mentary motion detection and optical flow in Section 2.1.3.2).

Ecological limitations Given that vision systems have evolved under selective pres-

sure in the specific visual habitats of their owners, it is common that their neu-

ronal processing strategies display characteristic adaptive properties and assump-

tions about their natural environment [Zanker and Zeil, 2000, ch. 0,6]. This

concept is explored further in Section 2.1.4.

Geometric limitations The visual system has to extract relevant information about

egomotion, about the 3D environment, and about moving objects in the scene

from complex 2D images. The data is highly ambiguous due to elementary prob-

lems such as the aperture problem (described further in Section 3.1).

1 For example, Homo possess a sophisticated vestibular system which allows us to sense rotational
movement and linear acceleration — the inner ear.
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The insect vision system is termed ‘motion based’ or a ‘motion-vision’ system. This

is because, strictly speaking, relative motion between the eyes and the surroundings is a

necessary prerequisite for any perception [Krapp and Wicklein, 2008]; as photoreceptors

stimulated at a constant light level adapt. Thus a perfectly stabilized image results in

the loss of visual perception. Despite this, motion is eminently useful and allows one

to make sense of the world in various ways. For example, relative motion allows one to

infer how far away objects are and breaks camouflage between motionless objects and

a stationary background. Analysis of image motion is also essential for the estimation

of self-motion, a critical element of flight control. For these reasons, vision is one

of the most thoroughly investigated fields in insect biology; the following subsections

introduce this in detail.

Section 2.1.1 describes the model organisms studied and whose behaviour I seek to

replicate. Section 2.1.2 presents the sensory receptors these organisms insects possess,

Section 2.1.3 shows how the information from these sensors is processed and interpreted

before being utilised to drive the flight behaviour seen in insects; examples and expla-

nations of which are included in Section 2.1.4. This tiered approach to information

processing is depicted in Figure 2.2.

2.1.1 Insect Model Organisms

Insects are members of the phylum Arthropoda and the class Insecta. They are de-

fined by the presence of an exoskeleton (external skeleton), a segmented body, and

jointed appendages. Their main source of visual information is through their use of

compound eyes. Insects are the most successful flying animals in Arthropoda and are

characterised by a three-part body (head, thorax, and abdomen), three pairs of jointed

legs, compound eyes, and two antennae.

Arthropods possesses a repertoire of behaviours mostly concerned with feeding,

mating, and stability reflexes. Although this may sound unchallenging, the motor tasks

involved are in some cases performed at a level of speed and perfection beyond that

of any vertebrate or man-made device. Furthermore, some insects solve categorization

and learning tasks complex enough to assume that these creatures possess cognitive

capabilities [Krapp and Wicklein, 2008]. The combination of these behaviours and rig-

orous input-output analysis have made insects popular model organisms for biologists.

Model organisms are species that are consensually agreed upon to be extensively

studied. The selection of model organisms is made in order to understand particular

biological phenomena, with the expectation that discoveries made in the organism

model will provide insight into the workings of other organisms [Fields and Johnston,

2005]. Insects selected as model organisms for further study, in particular for their

flight control behaviour, include the fruit fly (Drosophila), the honeybee (Apis), and

the housefly (Musca); these are shown in Figure 2.1.
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(a) (b) (c)

Figure 2.1: The model organisms frequently studied by biologists to understand their
visual flight behaviour. (a) Drosophila, (b) Apis, (c) Musca.

Because of their status as model organisms, the brain and visual system of Drosophila,

Apis, and Musca have been investigated extensively over many years through the use

of behavioural and electrophysical studies. The number of neurons in the brain varies

dramatically from species to species, for example Drosophila has approximately 1× 105

neurons, and we are still years away from understanding the insect’s brain and sensory

systems in detail2. Currently, our understanding ranges from the structure of their

brains and visual system, up to models of their information processing and high level

behaviours [Chapman, 1998, pt. v].

Anatomical Structure

Compound eyes

Information Processing

Behaviour

OcelliMechosensors
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m

p
le

x
it
y

Figure 2.2: The structure of perception; information processing, behaviour, and action
in the fly brain. Three levels of complexity (and hence abstraction) are identified and
recreated in this thesis.

Insects process visual information in a hierarchical manner, with perception and

action part of a single closed loop process rather than separate entities [Gibson, 1986,

ch. 4]. Conceptually however, separating this arrangement into three levels helps when

designing biomimetic implementations. Figure 2.2 shows the division of levels made in

this thesis; anatomical, information processing, and behavioural.

2 For comparison, the human brain has approximately 100× 109 neurons and conservatively
225× 1015 interactions between them [Herculano-Houzel, 2009]. In this instance we are decades, or
perhaps centuries away from an understanding compatible to that we have of insects. Furthermore, it
is an open question as to whether it is possible, or even desirable, to understand the human brain at
the same level of detail as the insect brain.
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At the first level, the anatomical description of flying insects is used by many when

designing biomimetic flight vehicles; such as flapping wing and ultra light configura-

tions [Floreano et al., 2009, ch. 11–21], or image sensors [Barrows and Miller, 2001,

Barrows et al., 2002]. In this thesis the first level (Section 2.1.2) is relevant to the

choice of biomimetic sensor modalities; vision and mechanosensors for the measure-

ment of rotations and linear accelerations. At the second level is biological information

processing (Section 2.1.3). The use of vision dominates here; several strong responses

have been observed to crafted stimuli in neurophysiological studies or tethered flight

conditions [Egelhaaf and Borst, 1993]. The third level (Section 2.1.4) has been studied

through free-flight behaviour, ethology . These experiments have shown how insects

navigate their complex environments and still manage to take full advantage of their

sensor capabilities.

The remainder of this chapter discusses these three levels, introducing the required

background for the artificial implementation of the behaviours discussed later. This

specifically includes attitude and altitude control, obstacle avoidance, and course control

behaviour and strategies (i.e., those useful for indoor flying robotics).

2.1.2 Sensory Receptors

Anatomical and neurophysiological study of insect model organisms has shown they

possess sensory receptors that allow them to see, smell, taste, hear, and touch their

environment [Klowden, 2007]. However, by a large magnitude insects rely on visual

information for flight control [Chapman, 1998, pt. V]. Insects use visual feedback to

perceive depth [Srinivasan et al., 1991, Tammero and Dickinson, 2002a], to control flight

speed [Srinivasan et al., 1996, Srinivasan and Zhang, 2000], to detect obstacles [Egelhaaf

and Borst, 1993, Tammero and Dickinson, 2002a, Maimon et al., 2008], to land [Srini-

vasan et al., 2000b, Borst and Bahde, 1988, Borst, 1990], to measure self-motion [Krapp

and Hengstenberg, 1996, Krapp, 2000], to estimate distance travelled [Srinivasan et al.,

2000a], and to regulate altitude [Straw et al., 2010]. The following subsections discuss

the sensory receptors responsible for these measurements. This includes; how visual

information is collected in the compound eye and in the ocelli (Section 2.1.2.1), the

halteres for measuring gyroscopic information (Section 2.1.2.2), and other propriocep-

tive receptors that sense air movement, act as strain gauges and possibly measure

acceleration (Section 2.1.2.3).

2.1.2.1 Eyes

Figure 2.3 shows the characteristic compound eyes of an insect. Compound eyes are

found on most diptera. The true biomimetic equivalent of the compound eye is a
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Figure 2.3: The compound eye of an insect. The eyes are composed of repeating facets,
each of which functions independently of the others. Each facet is composed of a lens
and one or many photoreceptors (called an ommatidium). Image adapted from http:

//lis.epfl.ch/curvace.

microlens3 array.

Compound eyes are located in pairs and on the head of the insect, each compound

eye is built from multiple facets called ommatidia, singular: ommatidium, arranged in

a repeating pattern. At the front of each facet is a lens which admits a small part of

the scene and behind lies one or more photoreceptors.

(a) (b) (c)

Figure 2.4: A comparison of different types of eyes. The optical centre of the eye is
marked with a black circle. Photoreceptors are marked in purple, lenses are marked in
grey. (a) A refractive cornea lens eye, the type usually found in vertebrates, including
humans. (b) An apposition compound eye, commonly found in diurnal insects. (c) A
refracting superposition eye, commonly found in nocturnal insects.

Compound eyes differ according to their structure and the way photoreceptors are

distributed between the ommatidia (shown in Figure 2.4). In the case of an apposition

eye, each ommatidium focuses only rays that are almost parallel to its long axis, so that

each forms an image of only a very small part of the visual field. The image of the whole

results from a combination of these partial images. In the case of a superposition eye,

3 For more information on current research undertaken, consult the CURVACE (http://www.
curvace.net/) project.

http://lis.epfl.ch/curvace
http://lis.epfl.ch/curvace
http://www.curvace.net/
http://www.curvace.net/
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the sensory cells of an ommatidium can pick up light from a large part of the visual field

so that the image received may overlap those received by as many as 30 neighbouring

ommatidia. The superposition image thus gains in brightness but loses in sharpness

compared with the apposition image [Land, 2005, Nilsson, 1989]. Diurnal insects have

apposition eyes, whereas nocturnal insects have superposition eyes4.

From an information processing perspective and for simplicity, I assume that each

ommatidium corresponds to a single pixel and all ommatidia together capture the

whole scene. The compound eye configuration allows a much wider field of view (FOV)

because of the adjacent and close arrangement of ommatidia at different orientation

instead of a single lens and a focal plane. Specifically, Drosophila can see in almost

any direction except for the blind spot caused by their body [Neumann, 2002], shown

in Figure 2.5.

(a) (b)

Figure 2.5: Images demonstrating the warping and field of view (FOV) of the insect
compound eye. (a) Original image environment cube-map. (b) Image after warping ac-
cording to compound eye model of Anax junius. The model specified 2562 ommatidia, an
interommatidial angle of 4.3◦, and a uniform facet spacing. Images from Neumann [2002].

Land [1997] presented a comprehensive comparison of the visual acuity of insects,

showing that even the most capable in class, the dragonfly Anax junius still had

10× fewer pixels than a modest webcam (VGA), and 104× fewer than the human

visual system (Table 2.1).

Although the ommatidia are arranged in a hexagonal array, it is useful to think of

the equivalent size in terms of the standard rectangular array shape of digital cameras.

For example, consider Drosophila— taking the square root of the number of ommatidia

(700) is roughly equivalent to a 26 × 26 pixel sensor. Even the lowest quality digital

camera (VGA, Table 2.1) has three orders of magnitude more photoreceptors than the

Drosophila eye.

4 This is a simplification. There are in fact many intermediate grades of compound eye found
in insects, many forms of simple (lens) eyes in vertebrates, and many other primitive eyes; pit eyes,
ocellus, etc. For a comprehensive review of the field, see Land and Nilsson [2002].
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Organism Number of pixels

Human retina (rods) 1.1× 108

Canon 5D camera 2.1× 107

Human retina (cones) 5.0× 106

VGA resolution 3.0× 105

Dragonfly Anax junius 2.9× 104

Housefly Musca domestica 3.0× 103

Fruit fly Drosophila melanogaster 7.0× 102

Table 2.1: The number of pixels (or pixel equivalents, ommatidium) in biological and
artificial vision sensors. Human vision data from Wandell [1995], insect vision data from
Land [1997].

The number of pixels in the two imaging systems is not the only, nor the fairest way

to compare the resolution5 of insect and artificial vision systems. A better comparison

of such systems considers the FOV, or more specifically the angular resolution. The

angular resolution in compound eyes is determined by the interommatidial angle — the

angle between adjacent ommatidia. The smaller the interommatidial angle the greater

the distance at which objects (prey, predators, or foliage) can be resolved. Table 2.2

shows a summary of this information.

Organism Interommatidal angle

Human retina 0.008◦

Blowfly Calliphora erythrocephala 1.1◦

Housefly Musca domestica 2.5◦

Fruit fly Drosophila melanogaster 5◦

Table 2.2: The interommatidal angle for various insects, compared with the angular
resolution of foveated vision in humans. Human vision data from Wandell [1995], insect
vision data from Land [1997].

It is remarkable that insects are capable of such impressive navigation when one

considers their low-resolution eyes. This limited spatial acuity is a consequence of the

compound eye. In order to increase spatial acuity , more ommatidia are required, how-

ever, the resolving capability of each ommatidium is limited by diffraction [Völkel et al.,

2003]. Consequently, each lens must also be made larger — for example a compound

eye with the acuity of the human fovea would have a radius of 11.7 m [Harrison, 2000].

Despite having poor spatial and angular resolution, insect vision far exceeds human

eyes in the temporal domain. Human vision is sensitive to temporal frequencies up to

50 Hz [Wandell, 1995], whereas ommatidium respond to temporal frequencies as high

5 Here I use the formal meaning of the word resolution; the smallest detectable change in the
quantity being measured, and not the variation in general use; the number of pixels in an image.
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as 200 Hz to 300 Hz [Dudley, 2000, p. 206]. This allows flying insects to detect rapid

changes in the visual field.

Stereopsis: Insect eyes also differ from vertebrate or human eyes in their static na-

ture. Insects have immobile eyes with fixed-focus optics. Therefore, they cannot infer

the distances to objects or surfaces, from the extent to which the directions of gaze must

converge to view the object, or by monitoring the refractive power that is required to

bring the image of the object into focus on the retina [Srinivasan, 2006]. Even though

insects do not possess the required neural apparatus for stereopsis (or triangulation)

[Srinivasan, 1993], the small baseline and low resolution would ensure the precision

with which insects could estimate range through binocular stereopsis would be much

poorer and restricted to relatively small distances.

Ocelli: The ocelli are simple photoreceptive organs commonly found on insects, posi-

tioned on the dorsal side of the head between the compound eyes. Each ocellus consists

of a single circular lens approximately 75 µm in diameter, with a visual field more than

40◦ in width which focuses light onto a low-resolution retina containing approximately

220 photoreceptors [Harrison, 2000]. The image produced on the ocellus retina is a

wide-angle, unfocused view of the surroundings above and lateral to the insect.

Behaviourally, Schuppe and Hengstenberg [1993] demonstrated that insects use

the ocelli to align their head with the centre of brightness. Dudley [2000, p. 212] and

Srinivasan and Zhang [2004] reviewed the use of the ocelli for horizon detection. The

two laterally directed ocelli stabilize roll by monitoring the position of the horizon

on either side. The medial ocellus stabilizes pitch by monitoring the elevation of the

horizon in the frontal field. The neural pathways mediating these reflexes remain to be

investigated [Stange, 1981].

2.1.2.2 Haltres

Diptera have evolved a unique specialisation for sensing angular velocity. The hind

wings of the species evolved from flight surfaces into tiny club shaped organs called

halteres, shown in Figure 2.6, that function as angular rate gyroscopes.

The halteres beat up and down anti-phase to the wings at the wing beat frequency6.

They move at nearly constant velocity during each upstroke and downstroke, covering

nearly 180◦ [Nalbach, 1993]. At the base of the halteres lie campaniform sensilla,

mechanoreceptors that measure strain. Specifically, they sense the periodic Coriolis7

forces that act upon the oscillating haltere when the fly rotates [Dickinson, 1999]. The

forces measured by the halteres are proportional to the angular velocity of the fly’s

6 150 Hz in Calliphora erythrocephala, over 200 Hz in Drosophila.
7 Coriolis effects are inertial forces acting on bodies moving in a non-inertial (rotating) reference

frame.
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Figure 2.6: Halteres, the club shaped appendage behind the wings of diptera used for
sensing angular velocity. Shown clearly visible on a crane fly.

body. By integrating Coriolis force information over the 180◦ sweep of the halteres,

and by combining signals from the two non-coplanar halteres, insects can measure

angular rotation about all three axes.

The role of the halteres in insect flight was studied by Dickinson [1999]. Dickinson

found that haltere feedback has two roles, primarily in gaze stabilization:

“ One important role of the haltere is to stabilize the position of the head during

flight by providing feedback to the neck motor system. [...]. Nalbach and Hengsten-

berg [1994] demonstrated that the blowfly, Calliphora erythrocephala, discriminates

among oscillations about the yaw, pitch and roll axes and uses this information

to make appropriate compensatory adjustments in head position ( [Nalbach, 1993,

Nalbach and Hengstenberg, 1994]). Such reflexes probably act to minimize retinal

slip during flight, thereby stabilising the image of the external world and increasing

the accuracy with which the visual system encodes motion.

The haltere were also found to take part in direct flight stabilization (again from

Dickinson [1999]):

“ Although the role of the haltere in stabilising gaze may be important, a more

essential and immediate role of the haltere is to provide rapid feedback to wing-

steering muscles to stabilize aerodynamic force moments.

Sherman and Dickinson [2004] studied Drosophila and found that sensory inputs

from halteres and the visual system are combined in a weighted sum, and that the

weighting structure places greater influence on feedback from the halteres than from

the visual system.

2.1.2.3 Other Receptors

Hengstenberg [1991] demonstrated that campaniform sensilla on the fly wing are able

to sense wing-loading. Dudley [2000, p. 213–215] also showed their presence on the

thorax, like antennae allowed them to perceive the changing speed and direction of
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flight. Harrison [2000, ch. 2.3.3] also speculated that because campaniform sensilla are

found on the legs and neck of the fly, the organisms can sense the inertia of their head

and limbs, and infer acceleration.

In addition to the campaniform sensilla at the base of the halteres, insects possess

other mechanoreceptors that contribute sensory information to the organism. Sherman

and Dickinson [2004] noted that posterior hairs on the neck of Drosophila could help

in optimising flight by providing information about air movements and changes in air

pressure.

2.1.3 Information Processing

The previous section identified three sensor modalities; vision, angular velocity, and

acceleration. This section focuses on the structure of the insect brain and the way

information from the sense organs is combined and interpreted before passing to the

motor centre; before finally being used to affect the flight of the organism.

After visual information is captured by the ommatidia it passes into the optic

lobe. Figure 2.7a shows a simplified horizontal schematic and Figure 2.7b shows a

fluorescent image of the Drosophila brain. The lobes on either side of the central area

are by volume, larger than the entire central brain, reflecting the importance of visual

information to the organism.

The laminar region of the optic lobe contains cells that exhibit transient responses

to step intensity changes [Weckstrom et al., 1992] but otherwise do not perform high

function behaviour. They maintain retinotopic organisation down to the next layer of

the optic lobe, the medulla, before passing through the lobula and lobula plate. The

function of these three parts of the optic lobe is discussed in Section 2.1.3.1.

The visual information passes from the optic lobe into the central brain, where

it is integrated with other sensory information, before passing to the motor centre.

Following this information flow is difficult, but by applying neuroanatomical and elec-

trophysiological techniques, it is sometimes possible to link a specific behaviour to single

neuron, or a chain of neuronal activity [Krapp, 2000, Krapp and Hengstenberg, 1996].

In contrast, the function of the central brain and its role in high level behaviour is less

understood [Frye and Dickinson, 2003]. Specifically, how non-visual sensor modalities

are integrated with visual information.

As mentioned in the introduction, there are two competing hypotheses describing

the structure of insect visual control systems; the internal model hypothesis and the

impulse-response hypothesis. A key prediction that distinguishes these possibilities is

that a reconstruction of the instantaneous visual stimuli just prior to any steering com-

mand is sufficient to predict responses of the direct coupling case but not of the internal

model hypothesis. In the extreme, particular sequences of behaviourally-generated vi-

sual stimulation predict turns in opposite directions for the two hypotheses [Straw et al.,



2.1 INSECT VISION AND FLIGHT CONTROL 23

Visual
input

Mechanosensory
inputs

Medial
protocerebelum

“Brain”

Motor centers

Lobula
plateLobula

Medulla

Lamina

Mushroom
body

Antenna

Retina

Cervical
connective

(a)

(b)

Figure 2.7: The Drosophila brain. (a) A simplified horizontal schematic. Sensory infor-
mation (in grey) cascades through a hierarchy of brain centres until it reaches the central
brain complex (in green). The optic lobes are shown in red. Adapted from Frye and
Dickinson [2003]. (b) A 3D volume rendering of an adult brain, horizontal view. The
optic lobes (medulla, lobula, and lobula plate) are the lobes on each side of the central
area. The lamina (and retina) are not visible, The mushroom bodies are highlighted
in the green overlay. Image adapted from http://www.olympusfluoview.com/gallery/

drosophilabrainlarge.html.

http://www.olympusfluoview.com/gallery/drosophilabrainlarge.html
http://www.olympusfluoview.com/gallery/drosophilabrainlarge.html


24 CHAPTER 2 VISION AND PRINCIPLES OF FLYING INSECTS

2010]. To discriminate between these hypotheses, biological researchers measure steer-

ing behaviour of freely flying insects in response to specially designed stimuli [Straw

et al., 2010, Maimon et al., 2008, Lehrer and Srinivasan, 1993, Srinivasan and Gregory,

1992].

The following subsections discusses the important regions of the insect brain, the

processing undertaken by each respective region, and what behaviours are understood

to emanate from them.

2.1.3.1 Optic Lobes

In insects, visual information is processed in the optic lobe before it is conveyed to the

central brain.

Retina

la. me. lo.

Central brain

VPNs

lop.

Figure 2.8: Examples of neurons in the optic lobe. Visual projection neurons (VPNs)
link the medulla (me), lobula (lo), and lobula plate (lop) with the central brain. Adapted
from Otsuna and Ito [2006].

Figure 2.8 shows a simplified schematic of the fly optic lobes8. Whereas a vertebrate

eye contains an intense neural network within its retina, insect photoreceptor cells

project directly to the primary visual centre of the brain, the optic lobe. The optic

lobe consists of three or four aggregates of neurons (also called ganglia or neuropils);

the lamina, medulla, and lobula, which are distinguishable in all the insect species. In

insects such as flies, butterflies, and moths, the lobula is further separated into two

neuropils, which are called the lobula and lobula plate [Otsuna and Ito, 2006].

Unlike interneurons, whose axons connect to other neurons in the same regions

of the brain, visual projection neurons (VPNs) project into different brain areas. In

the Drosophila visual system VPNs link the medulla, lobula, and lobula plate with

the central brain. Optic lobe interneurons are mostly second-, third-, and fourth-

order9 neurons while VPNs are mostly third-, fourth-, and fifth-order neurons. From

8For a comprehensive interactive schematic of the Drosophila brain, see the Flybrain project. This
includes the flybrain atlas (http://www.flybrain.org/) and the flybrain neuron database (http:
//flybrain-ndb.iam.u-tokyo.ac.jp/index.html)

9 The ‘order’ of a neuron refers to the number of connections it is away from the photoreceptors.

http://www.flybrain.org/
http://flybrain-ndb.iam.u-tokyo.ac.jp/index.html
http://flybrain-ndb.iam.u-tokyo.ac.jp/index.html
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an engineering perspective, an increasing ‘order’ represents a reduction in information

and an increase in abstraction of the organism’s environment. While neurons in the

optic lobe are reported to extract characteristic features from visual information, such

as brightness and motion, it is the VPNs which convey information to higher visual

centres in the central brain10 [Otsuna and Ito, 2006].

Retinotopic organisation is maintained through the two first neuropils down to

the third one, the lobula, where spatial integration occurs and information from very

different viewing directions are pooled together. The role of each neuropil is explained

in the following paragraphs.

• The lamina lies just under the receptor layer of the eye and receives direct input

from the photoreceptors. The neurons in this ganglion act as high-pass filters by

amplifying temporal changes. They also provide a gain control functionality that

ensures quick adaptation to varying background light. Axons from the lamina

invert the image from front to back while projecting to the medulla.

From an engineering perspective, the lamina provides image preprocessing func-

tions like temporal and spatial high-pass filtering and adaptation to background

light [Zufferey, 2005].

• Behavioural experiments suggest that cells in the medulla are responsible for local

motion detection [Douglass and Strausfeld, 1996] (see Section 2.1.3.2 for a further

discussion). The retinotopic organisation is still present in this second ganglion

and there are about 50 neurons per ommatidium. Following the medulla, visual

information passes into the lobula complex.

• The third optic ganglion, the lobula complex, is the locus of spatial convergence.

Information from several thousand photoreceptors, having been preprocessed by

the two previous ganglia, converge onto 60 cells in the lobula plate [Hausen and

Egelhaaf, 1989].

These cells, commonly known as lobular plate tangential cells (LPTCs), have

many dendrites that receive synaptic inputs from large spatial regions of the

medulla. This means they have large visual receptive fields (see Section 2.1.3.3).

The lobula complex projects to higher brain centres and to descending neurons

that carry information to motor centres in the thoracic ganglia.

Although VPNs have been described in various insect species, information about

the detailed 3D form and shape of the VPNs is scarce. Research is currently being

undertaken [Otsuna and Ito, 2006] to understand how visual information preprocessed

10 For an exhaustive discussion and summary of the structure of the VPNs and the behaviour
attributed to optic lobe interneurons by ‘order’, refer to Otsuna and Ito [2006].
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in the optic lobe is read by the neurons in the higher visual centres of the central brain,

and how information flows from the optic lobe to the central brain.

The following sections describe the topology of optic lobe (medulla,lobula, and

lobula plate) neuron connections. From the structure of these connections the organism

possesses specific characteristics; such as detection of self-motion (Section 2.1.3.2) or the

detection of patterns in image motion (Section 2.1.3.3). These characteristics provide

the basis for higher level flight control discussed and later recreated.

2.1.3.2 Motion Detection

Although the use of image motion by insects is widely recognised as the primary visual

cue [Borst et al., 2010] for in-flight navigation, an understanding of the neuronal mech-

anisms underlying local motion detection in the medulla is instructive when developing

control strategies that one claims to be biomimetic.

Motion detection in insects is explained clearest through an example of its domi-

nant form; the optomotor response. When a fly is tethered in the centre of a striped

drum (Figure 2.9a) and the drum is rotating clockwise, the insect tries to turn clock-

wise too. Similarly, when the drum is moving in the opposite direction, the insect turns

counter-clockwise (Figure 2.9b). This describes the optomotor response, consisting of

a syndirectional reaction to the motion of the surroundings that builds up slowly over

several seconds. This robust behaviour attempts to minimize retinal slip to help main-

tain stability in the face of external perturbations such as a gust of wind [Duistermars

et al., 2007].

(a) (b)

Figure 2.9: (a) A demonstration of the optomotor response using a fly secured inside a
rotating striped drum. (b) The compensatory torque generated by the fly when rotating
the drum in different directions. Figures adapted from Borst et al. [2010].

These and similar behavioural experiments, coupled with recordings from the tan-

gential cells in the lobula, led to the proposal of functional models describing neu-

rons and their connections required for local motion detection. The best-known is

the so-called correlation-type elementary motion detection (EMD) first proposed by
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Hassenstein and Reichardt [1956], in which intensity changes in neighbouring omma-

tidium are correlated [Reichardt and Wenking, 1969] to detect motion. This model

has been initially proposed to account for the experimentally observed optomotor re-

sponse in insects [Götz, 1975, Egelhaaf et al., 1989]. This behaviour tends to stabilise

the insect’s orientation with respect to the environment and is evoked by the apparent

movement of the visual environment.

correlation

subtraction

temporal
delay

photo-
receptor

Figure 2.10: A Reichardt-type EMD. Two neighbouring photoreceptors detect image
intensities I1 and I2 across a gradient b. Figure adapted from Neumann and Bülthoff
[2002].

An EMD of the correlation type performs a multiplication of input signals received

by two neighbouring photoreceptors as shown in Figure 2.10. Prior to entering the

multiplication unit, one of the signals is delayed (usually by a first order low-pass filter),

whereas the other remains unaltered. Due to these operations, the output of each

multiplication unit responds preferentially to visual stimuli moving in one direction.

By connecting two of them with opposite directional selectivity (with excitatory and

inhibitory elements connected to a common integrating output stage), one obtains a

bidirectional EMD.

It should be noted that the Reichardt detector responds maximally to a certain

number of spatial periods passing by a single photoreceptor, not to a certain image

speed [Srinivasan et al., 1996].

2.1.3.3 Motion Fields

When an insect moves through its environment, the patterns of motion on the retina

depend on the trajectory of the organism and on the 3D structure of the surroundings.

These patterns of motion contain information that tells the insect about its own motion

or the distances to potential obstacles. They also depend, in a characteristic way, on

the organisms’ visual system; such as the eyes’ field-of-view and orientation.



28 CHAPTER 2 VISION AND PRINCIPLES OF FLYING INSECTS

Koenderink and Doorn [1987] and later Dahmen et al. [2001] formalised this idea,

performing numerical studies on optical flow fields to develop ideas on how insect visual

systems could recover self-motion; the translation T, and rotation, R. The ‘KvD’

algorithm they developed to encapsulate the relationship between a optical flow field

of noisy parallax vectors pi (such as those seen in Figure 1.2);

pi =
∆di
∆t

= −(T− (T · di)di)/Di − (R× di). (2.1)

Equation (2.1) shows the flow vectors pi are given by the linear sum of translation and

rotation vectors, and the distance Di to objects at direction di. The authors presented

strategies for solving the set of flow vectors pi to recover an estimate of rotation R′

and direction of translation, T′11. While (2.1) theoretically only requires five flow

vectors to solve, the numerical study demonstrated that recovering self-motion is more

effective if more directions are considered (a wide-field of view). Therefore, insects such

as Drosophila (with 700 ommatidia and a wide field of view) are well equipped to solve

the task of self-motion estimation. When doing so however, they must combine optic

flow from different regions of the visual field in order to infer behaviourally significant

information [Nelson and Aloimonos, 1988, Zufferey, 2005]. An example of this is shown

in Figure 2.11; without a global interpretation, the highlighted local motion fields

are indistinguishable. Analysis of the global motion field (of at least several different

regions) is thus required.

Some form of spatial integration is known to happen after the medulla (where local

motion detection occurs retinotopically), mainly in the lobula plate where tangential

neurons receive inputs from large receptive fields [Hausen and Egelhaaf, 1989]. The

lobula plate thus represents a major centre of motion field analysis. Some of the 60

neurons of the lobula plate are known to be sensitive to coherent large-field motion (i.e.,

the VS, HS, and Hx-cells), whereas other neurons, the figure detection cells (FD-cells),

are sensitive to relative motion between small objects and background [Egelhaaf and

Borst, 1993, Krapp and Hengstenberg, 1996].

As an example of the usefulness of these neurons at the behavioural level, there

is good evidence that HS and VS-cells are part of the system that compensates for

unintended turns of the fly from its course [Krapp, 2000].

2.1.3.4 Detection of Self Motion

Figure 2.11 illustrates a limitation of local motion fields. The measured local downward

motion in the right lateral visual field (highlighted grey in the figure) can be generated

either by upward lift translation or by roll rotation to the left. Because of such ambigu-

ities, local motion signals cannot be used directly for motor control. These ambiguities

11 Details of the iterative [Koenderink and Doorn, 1987] and one-shot [Dahmen et al., 2001] solutions
to (2.1) are explained in the respective papers and in Krapp and Wicklein [2008].
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Lift translation Roll rotation

Figure 2.11: The structure of motion fields for an insect moving performing two move-
ments; lift translation and roll rotation (directions; f, frontal; v, ventral, d, dorsal). Differ-
ent motion components induce different optic flow over both eyes of the moving animal.
Note the highlighted (grey box) regions of the motion field, locally, the downward tuned
centre detector is excited equally in both scenarios. Yet globally the two motion fields can
easily be distinguished from one another. Adapted from Krapp and Wicklein [2008].

can be overcome by a selective wide-field integration of local motion signals [Krapp

et al., 1998].

Researchers found cells in the lobula that responded specifically to rotational optic

flow fields consistent with those induced by the fly during rotations around various hor-

izontal axes [Krapp et al., 1998]; and cells which responded to translational optic flow

field [Krapp and Hengstenberg, 1996]12. Figure 2.12 illustrates this result. The tan-

gential cells were acting as neuronal matched filters [Wehner, 1987] tuned to particular

types of global-field motion.

The first artificial implementation of this theory of visual matched filters was un-

dertaken by Franz and Krapp [2000], garnering some success at estimating self-motion

of a simulated agent. However, Krapp [2000] cautions about too simplistic interpreta-

tions of this biological model of spatial integration:

“ [Some] approaches take for granted that the results of the local motion esti-

mates are summed up in a linear fashion at an integrating processing stage. For

insect visual systems, however, it was found that local motion analysis is achieved

by elementary motion detectors whose output is not simply proportional to veloc-

ity [...] but also depends on pattern properties like spatial wavelength and contrast

[...]. Hence, it remains unclear how biological sensory systems cope with highly

12 The research found VS neurons are arranged retinotopically, not uniformly, resembling rotational
optic flow fields that would be induced by rotations. Hx cells show the global structure of a translational
flow field, however, the response fields of HS cells are more difficult to interpret since they probably do
not discriminate between rotational and translational components [Krapp, 2000].
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Directions of optic flow
vectors during roll

Preferred directions
of local input elements

Tangential cell VS6

Figure 2.12: A LPTC cell (VS6) for sensing a particular pattern of self-motion. Local
patterns of optic flow activate locally motion detectors with appropriate preferred direc-
tions. A wide-field neuron spatially integrates the signals of these motion detectors. Hence
it would be most sensitive to that particular pattern of optic flow and consequently to the
self-motion that caused the flow. Adapted from Krapp and Wicklein [2008].

dynamic stimuli as encountered, for instance, by the fly during free flight. It is by

no means easy to predict the signals of the tangential neurons under such natural

conditions.

Or put simply, while the concept of large-scale spatial integration is clearly used

in insects, when designing a biomimetic strategy, be careful to not just sum the output

of image motion detectors (in biology; EMDs) whose output is only proportional to

velocity.

Krapp [2000] also remarked that tangential neurons (like VS, HS, etc) cells cannot

be insensitive to optic flow components induced by movements that are not their own

preferred self-motion. The output of those neurons needs to be corrected for apparent

rotations, which may be due to translational self motions and to rotations around axes

other than the preferred axis13. One way to correct such errors is to use gyroscopic

information, such as that from the haltres (Section 2.1.2.2). Krapp [2000] says again:

“ Correction signals encoding fast self-rotations may also be supplied by the

haltere system [Nalbach and Hengstenberg, 1994]. Because the dynamic range

of the haltere system is shifted toward higher angular velocities, it is thought to

complement the visual self-motion estimation [Hengstenberg, 1991].

13 This is the biological equivalent of the fundamental loss of information in computer vision, occur-
ring when projecting a 3D scene onto a 2D plane (the sensing device, or retina). This is explained in
the computer vision context in Section 2.2.1.
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2.1.3.5 Edge Detection

Reichardt and Wenking [1969], in their original EMD work, showed that Drosophila

fixate on long vertical edges in their environment. However, unlike optical flow, this

phenomenon and the role of edges in other behaviours has been less extensively ex-

plored.

Lehrer et al. [1990] revealed that when landing, Apis pay special attention to

edges which provide contrast to green-sensitive receptors. The authors demonstrated

that edge-detection pays an important part in selecting the landing spot. The au-

thors propose that edges provide cues which play an important role in guiding landing

manoeuvres towards objects of interest, such as flowers.

Maimon et al. [2008] investigated the role of vertical edges on Drosophila turning.

The authors found that while the organism was attracted to long vertical edges, it was

repulsed by shorter yet similar visual stimuli. The organism could distinguish between

long and short vertical edges; possessing a rudimentary object classification system.

The authors proposed that attraction to longer edges would lead to feeding sites, while

repulsion of short edges would help them avoid predators or other insects; the motion

of Drosophila depended on the balance of these conflicting responses.

(a) (b)

Figure 2.13: A Drosophila subject in free-flight experiments by Straw et al. [2010]. The
authors studied the altitude response of Drosophila (circled) to visual stimulus projected
on the walls and floor of the arena. (a) Drosophila adjust their altitude in response to the
changing vertical optical flow. (b) Most interestingly, the authors showed that Drosophila
regulates its altitude also in response to the light/dark edge surrounding it (shown on the
sides of the enclosure) and not by regulating the magnitude of ventral optical flow (pattern
on the floor of the arena). Images courtesy Andrew Straw (unpublished).

Straw et al. [2010] investigated the conventional understanding of altitude control
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and found that Drosophila utilize three reflexes to control altitude: wide-field stabiliza-

tion (Section 2.1.4.2), expansion avoidance (Section 2.1.4.5), and edge tracking. The

first two responses utilize optical flow in the conventional manner (explained in their

respective flight behaviour section), but the third response utilized edges in a previously

unseen way.

Straw et al. showed that Drosophila establish an altitude set point on the basis of

nearby horizontal edges and tend to fly at the same height as such features. This is

shown in Figure 2.13 — once a light/dark edge is introduced, the Drosophila control

their altitude based on the position of the edge. The authors noted that this reflex is

invariant to contrast sign; a light-to-dark edge is roughly as attractive as a dark-to-light

edge. Straw et al. also suggest that in the natural environment it is likely that the

edge response is used to approach and fly level with nearby visible objects, such as the

tops of vegetation or geological features.

The result of Straw et al. was the first experimental evidence that freely flying

insects adjust their altitude to the height of nearby visual features; in this case, edges.

2.1.3.6 Distance or Depth Estimation

Two visual mechanisms potentially allow for distance or depth estimation: stereo vision

and motion parallax. Stereopsis will not be covered here as it has not been observed

in the model organisms I consider.

Exploiting motion parallax to estimate distance is quite common [Srinivasan, 1993,

Srinivasan and Zhang, 2000]. From (2.1) it is clear that the magnitude of the local vec-

tors is inversely proportional to the distance — but only for translational movements.

Subsequently this property is exploited by a number of insects [Collett and Harkness,

1982, Krapp, 2000] which perform ‘peering movements’ to induce translation and allow

them to estimate depth.

Similarly, experiments on Drosophila also suggest that translational optical flow

is used to estimate the distance to the walls in a textured flight arena [Tammero and

Dickinson, 2002b]; they perform a saccade away from the arena wall based on the

pattern of expansion.

2.1.4 Flight Behaviour

In the previous section I explained how insects process their limited sensory information

into quantities like motion and depth and to gain information on the 3D structure of

their environment. This section describes selected characteristic flight behaviours in

insects and their use, how they were discovered, and how they are constructed from

the low level responses previously outlined14.

14 For a comprehensive review of this field, consult Srinivasan and Zhang [2004].
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This restricted selection of behaviours is not a complete sample of the biological

literature. The behaviours were chosen because they have clear utility to my goal;

allowing an autonomous robot to fly in indoor environments.

(a)

Vw

(b)

(c) (d)

Figure 2.14: Experimental apparatus used by Srinivasan et al. to investigate a number
of flight behaviours — by analysing the (in)sensitivity to spatial period of the Apis visual
system. (a) Flight through a narrowing tunnel, insect velocity reduces with tunnel width.
(b) Flight experiment investigating centering behaviour. Apis adjusted their horizontal
position in the tunnel in response to motion of the tunnel walls, Vw, and not due to changes
in the spatial frequency of the images on them. (c,d) Experiment investigating how Apis
estimate distance flown to their food source. They do so by integrating over time, the
image velocity experienced during the flight (c). However, when the tunnel image-motion
cues are marked axially (d) Apis lose this ability. Adapted from Srinivasan et al. [2004].

2.1.4.1 Wide Field Flight Stabilization

In Section 2.1.3.2 the optomotor response was introduced. Through studies of the

optomotor response, it was discovered that flies sense the direction of image movement

by correlating the intensity variations registered by neighbouring ommatidia in the

compound eye [Reichardt, 1969]. Thus, the first step of the flight stabilization pathway

consist of an array of EMDs in the lobula that perform these correlations. Furthermore,

different sets of EMDs are used to detect motion in various directions by correlating

signals from ommatidia that are appropriately positioned relative to each other.

EMDs are connected together through motion sensitive neurons. Over the last

30 years, researchers have discovered multiple such neurons with large visual fields15,

for example, such neurons were found to respond preferentially to motion in a specific

direction [Hausen and Egelhaaf, 1989, Hausen, 1993], or to the fly’s rotation around

a specific axis [Krapp, 2000, Krapp and Hengstenberg, 1996]. It was found that these

neurons derive their sensitivity and selectivity by pooling signals from EMDs that have

the appropriate directional selectivity in different regions of the compound eye.

15 ‘Large visual fields’ is synonymous with the neuron being connected to many EMDs which are
in-turn connected to ommatidia covering a wide field of view.
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While, it is generally supposed [Srinivasan and Zhang, 2004] that motion-sensitive

neurons play an important role in the insect’s high level autopilot/navigation mecha-

nism by detecting deviations from intended course and generating appropriate turning

commands, the precise means by which this occurs in the brain remains elusive. Srini-

vasan and Zhang [2004] recognise the need for these intermediate layers to have a

mediating role and put it thus;

“ Motion-sensitive neurons possess large visual fields, each typically covering

most of one eye. Therefore, steering a straight course can only be achieved by

balancing the responses of two neurons, each sensitive to front-to-back motion in

one eye. Such a scheme works well only when the insect is flying in a symmetrically

structured environment. It does not work when the insect flies along a cliff, for

example, because the eye that faces the cliff experiences substantially greater image

motion than does the contralateral eye. The only way to steer a straight course

in an asymmetrical world (which is more often the rule than the exception) is to

sense and compensate for image motion in only a small patch of the visual field

that faces the direction along which the insect wishes to fly — the frontal visual

field, for example, if the objective is to fly straight ahead.

2.1.4.2 Altitude Control

Srinivasan investigated [Srinivasan et al., 2000b, Srinivasan, 2006, Barron and Srini-

vasan, 2006] Apis altitude regulation extensively; in the context of terrain following

and for landing (Section 2.1.4.6). Both strategies are based on the measurement and

regulation of the angular velocity of the ventral optical flow field. For example, when

insects are flying forward, the image of the ground sweeps backward across their ventral

field of view, the magnitude of this image motion depends on both the forward speed,

Vx, and the altitude, h.

However, in Apis16 the precise relationship between altitude regulation and speed

regulation is still contested [Portelli et al., 2010]. That is, do the organisms operate

in a ‘altitude control’ or a ‘speed control’ flight mode. In the former the organism

changes altitude to keep optical flow constant; thus changing flight speed. In the

latter, Apis adjusts altitude to maintain the magnitude of optical flow; resulting in

a change in altitude. Apis have also been shown to regulate altitude in response to

headwinds [Riley and Osborne, 2001, Barron and Srinivasan, 2006] — although again

there is some debate as to whether the parameter controlled is altitude or flight speed.

2.1.4.3 Centring Response

Using a novel experimental apparatus; a tunnel where each surface had a black-and-

white grating pattern and could be moved independently (Figure 2.14) Kirchner and

16 Apis are the most studied insect with respect to altitude control, other insect model organisms
are less well understood
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Srinivasan [1989] studied the mechanisms that insects use to balance the contralateral

image motion.

A lower image speed on one eye caused the bee to move closer to the wall seen by

that eye. A higher image speed had the opposite effect. Unlike the optomotor response,

the authors showed the centring response is a more complex behaviour, demonstrating

the visual system of Apis is capable of measuring the image velocities in the two eyes

robustly and independently of spatial frequency and contrast [Srinivasan et al., 1991].

Srinivasan et al. [1991] found that when both gratings (wall) were stationary, Apis

tended to fly along the midline of the tunnel, i.e., equidistant from the two walls

(Figure 2.14c). But when one of the gratings was moved at a constant speed in the

direction of the insect’s flight — thereby reducing the speed of retinal image motion

on one eye relative to the other — the insect’s trajectories shifted toward the side of

the moving grating (Figure 2.14b).

Experiments in which the contrast and the period of the gratings on the two sides

were varied revealed that this centring response is robust to variations in these param-

eters: Apis continued to fly through the middle of the tunnel even when the contrast of

the gratings on the two sides were substantially different or when their periods varied

by a factor of as much as four [Srinivasan et al., 1991].

When one of the gratings was in motion (Figure 2.14b), the insects shifted towards

or away from the moving grating (as described above) according to whether the grating

moved with or against the direction of the insect’s flight. These results indicate that

the bees were indeed balancing the speeds of the retinal images on the two eyes and

not the contrast frequencies.

2.1.4.4 Controlling Flight Speed

Using a similar experimental apparatus, Srinivasan et al. [1996] forced bees to fly

through a tapered tunnel with a constant pattern on the walls (Figure 2.14a). The

authors found that the insect decreased its flight speed as the tunnel narrowed. The

insects did so to keep the angular velocity of the image of the walls, as seen by the

eye, constant [Srinivasan et al., 1996]. Experiments also showed that when the tunnel

width was doubled, the bee flew twice as fast. In the case of a uniform width tunnel,

bees did not change their flight speed, even when the spatial period of the stripes lining

the walls was abruptly changed [Srinivasan et al., 1996] (Figure 2.14b).

This indicates that flight speed is regulated by a visual motion-detecting mechanism

that measures the angular velocity of the image independently of its spatial structure.

In this respect, the speed-regulating system is similar to the system that mediates the

centring response described above. Controlling flight speed by regulating image speed

allows the insect to automatically slow down to a safer speed when negotiating a narrow

passage or a cluttered environment.



36 CHAPTER 2 VISION AND PRINCIPLES OF FLYING INSECTS

2.1.4.5 Collision Avoidance

Figure 2.15 shows the case of an insect approaching an obstacle and the ‘expansion’

pattern seen by the organism. Tammero and Dickinson [2002a,b] showed that collision

avoidance manoeuvres in Drosophila could be explained by the perception of image

expansion as detected by an array of local motion detectors.

Figure 2.15: When approaching an obstacle or a surface perpendicularly, the image
expands in the eye of the observer; eventually eliciting a collision avoidance response. The
filled circle represents the focus-of-expansion.

Section 2.1.3.3 introduced the tangential cells in the lobula plate, their resemblance

to matched filters, and their use for wide-field integration. However, neurons extracting

image expansion from a retinotopic array of local motion detectors have not been found

at the level of the lobula complex [Egelhaaf and Borst, 1993]. Additionally, in the

cervical connective (shown in Figure 2.7a), cells are known to be sensitive to retinal

image expansion. These neurons, which respond strongest when the insect approaches

an obstacle or a potential landing site, have been proposed to be part of the neuronal

circuit initiating the landing response [Borst, 1990] (for more information on the landing

strategy of insects see Section 2.1.4.6).

Structurally this means that certain neural mechanisms in the Drosophila visual

pathway are tuned to detect local image expansion, a result consistent with the detec-

tion of such neurons in flies [Borst, 1991].

2.1.4.6 Orchestrating Smooth Landings

The ability for insects to coordinate delicate landing responses on challenging terrain

is fascinating, because for it to work well, necessitates that it conflicts with many other

flight behaviours such as collision avoidance.

There are two phases of the landing process; the decision of when to initiate landing

(the landing response) and the approach path to the surface (i.e., how rapidly should

the insect decelerate).
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Studies by Borst and Bahde [1988] and supported by Tammero and Dickinson

[2002b] suggested that the initiation of the landing response depends on the spatial-

frequency content and the contrast of the pattern, as well as the speed and duration of

the pattern’s expansion. Borst and Bahde [1988] proposed a model where the response

is triggered when the time-accumulated output of an expansion-detection system, based

on the correlation model [Reichardt, 1969], exceeds a preset threshold. Alternatively,

Wagner [1982] proposed that Musca domestica may determine when to initiate a land-

ing by calculating the time required to contact the object or surface on which they are

about to land (also called time-to-contact, explained in section Section 5.4).

Srinivasan et al. [2000b] found that Apis tailor their landing depending on the

type of surface. For example, on horizontal surfaces, bees usually perform ‘grazing

landings’17. Unlike when approaching a perpendicular surface, image expansion is

weak in this scenario because the image motion is dominated by a strong front-to-back

component.

Experimental analysis of landing trajectories by Srinivasan et al. [2000b] showed

that the speed of flight is approximately proportional to the height above the surface.

This indicates that the insect holds the angular velocity of the surface’s image approx-

imately constant as it is approached. This strategy is a simple way of decreasing the

flight speed automatically and progressively, ensuring that its value is close to zero at

touchdown. The strategy is plausible and advantageous; control is achieved by a simple

process and without explicit knowledge of flight speed or distance from the surface.

2.1.4.7 Estimating Distance Flown

Apis mellifera have a remarkable ability to travel repeatedly between their hive and

sources of food. Many people are aware of the ‘waggle dance’, the performance that

returning honeybees put on to convey the location of food to their peers. It was origi-

nally suspected that the unit of measure encoded in the ‘waggle dance’, that conveyed

the distance to the food source, was the total energy expended during flight18.

This theory persisted for decades. Esch and Burns [1995, 1996], Srinivasan et al.

[2000a, 1996, 1997] proposed and tested a new hypothesis; that the insects instead use

visual cues to measure distance. Results showed instead that bees estimate distance

flown using visual odometry; by integrating over time the image motion of the walls

as registered by their eyes while they flew through the tunnel [Srinivasan et al., 1996,

1997]. For example, in one experiment the bees were unable to measure distance to food

when the tunnel was marked axially (shown in Figure 2.14d). A subsequent study by

Si et al. [2003] also found that the motion detecting foundation that underlies distance

17 A grazing landing is one whereby the approach trajectory is considerably smaller than 45◦.
18 For a comprehensive review of the ‘waggle dance’ see Frisch [1967].
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estimation seems to be robust to variations in the spatial texture and contrast of the

environment.

It is not clear whether bees use optic flow information from the ventral [Esch

and Burns, 1995] as well as the lateral fields of view for odometry [Si et al., 2003,

Srinivasan et al., 1997]. If ventral flow is important then bees need to fly at a consistent

height, or to account for the height of flight in the computation, to estimate distances

reproducibly19.

2.1.4.8 Combining Multiple Behaviours

In the insect brain, several motion-sensitive pathways exist, each with a distinct set

of properties and geared to a specific visual function (such as those explained in the

preceding subsections). It seems unlikely that all these systems, and other as yet

undiscovered ones, operate continuously and are combined in a static manner. For

example, the optomotor system has to be switched off, or its corrective commands

ignored, when the insect makes a voluntary turn [Heisenberg and Wolf, 1993, Kirschfeld,

1997, Srinivasan and Bernard, 1977]. Similarly, it is also impossible to land on a surface

without first disabling the collision avoidance system.

How these multiple behaviours are combined is not known, and this area remains

an important and active focus of research.

2.2 COMPUTER VISION

Computer vision is a branch of computer science whose goal is to model the real world

or to recognise objects from digital images. It is seeing with understanding. When we

‘see’, our eyes capture the image, then pass the information to the brain. The brain

interprets the image and gives us the meaning of what we see.

In a computer vision system, a computer receives an image which is really just a

grid of numbers from a camera or from disk. For the most part, there is no built-in

pattern recognition, no automatic control of focus and aperture, and no associations

with years of experience. Compared to the human vision system and despite decades

of research, vision systems are still fairly näıve, depending largely on the sophistication

of the computer and algorithms to make meaning of the image the camera captures.

Computer vision is also used as a tool in many other fields of research including

engineering, biology, and psychology for example. Subsequently ‘computer vision’ has

come to be known by, or associated with, a number of different terms which are worth

clarifying here:

19 The exact distance is not important, as long as two bees generate the same result.
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Machine vision is a somewhat outdated term which tends to refer to industrial vi-

sion applications where (usually) a single camera is used to solve a structured

inspection task.

Pattern recognition refers to the recognition of structures in 2D images (usually

without reference to any underlying 3D information).

Photogrammetry is the science of measurement though non-contact sensing, e.g.,

terrain maps from satellite images. Usually more focused on accuracy than in-

terpretation.

Image Processing is the study of the properties of operators that produce images

from other images, image filtering and related operators from image processing

can be considered pre-processing steps undertaken before the more difficult task

of computer vision and understanding.

Figure 2.16 shows that while humans perceive an environment or scene, what the

computer ‘sees’ is not this information rich.
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But the computer sees this;

What we see;

Figure 2.16: A comparison of perception; what humans see versus what the computer
sees.

There are two types of images used in this thesis:

intensity images are images encoding light intensities; recognisable as the familiar

photographs we are used to looking at. Both colour and greyscale photographs

are types of intensity images. Colour images are often created by the combination

of several individual intensity images of individual colours, commonly the three

primary additive colours; red, green, and blue. Greyscale images are usually

created by measuring the intensity of light at each pixel in a single band of the

electromagnetic spectrum.

range images encode distance as intensity values and are usually captured using spe-

cial optical systems, or sometimes non-visual sensors like sonar.
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Any digital image, irrespective of its type, is a 2D array (matrix) of numbers as

shown in Figure 2.16. This fact has two consequences [Trucco and Verri, 1998, ch. 2]:

• the exact relationship of the digital image to the physical world is determined by

the acquisition process and the sensor used,

• any information contained in the images must ultimately be extracted from the

2D numerical array in which it is encoded.

This array of numbers has a large noise component and so by itself gives little

information, but this matrix is all the computer ‘sees’. The challenge is to turn this

noisy information into perception.
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Figure 2.17: The geometry of image formation. A point P moves in 3D space and leaves
a track p in the 2D image plane.

Figure 2.17 demonstrates this problem as posed thus far. Given a 2D view (image)

of a 3D world, there is no unique way to reconstruct the 3D signal. Formally, such

an ill-posed problem has no unique or definitive solution. The same 2D image could

represent any of an infinite combination of 3D scenes, even if the data were perfect.

In the design of a practical system, additional knowledge can be used to work

around the limitations imposed by visual sensors. The addition of such information,

including combining inertial measurements or imposing assumptions about the world

is explored in Chapter 6. For example, the former approach is also found in insects

through their use of halteres (explained in Section 2.1.3).

This section introduces the principles of computer vision. This includes the details

of intensity and depth images used in this thesis. I also describe the geometry of image

formation including the geometric transformations necessary to interpret a 2D view of

a 3D world.
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2.2.1 Image Formation and Imaging

Any imaging system has three basic components. The process of image formation

begins with rays of light from the environment entering the camera through an aperture

(in the human case, pupil). The rays may be focused by an optical system such as one

or more lenses. Finally, the rays strike the photosensitive device or image plane (retina)

which registers light intensity.

Optical System

In order to obtain sharp images, all rays coming from a single point in the scene, P ,

must converge onto a single point on the image plane, p, known as ‘the image of P ’. If

this happens, then P is ‘in focus’. Focussing the image can be achieved two ways:

1. Reducing the camera’s aperture down to a single point — a pinhole. This ensures

that only one ray from any point in the scene can enter the camera. This creates

a one-to-one correspondence between visible points and image points. The disad-

vantage of pinhole type imaging systems is that as the amount of light entering

the system is reduced (here down to a single ray) so the time take to register

enough light for a legible image increases. This long exposure time is generally

impractical.

2. Introducing an optical system composed of lenses and apertures designed to make

all rays coming from the same point in the scene converge onto the same image

point.

In summary; Trucco and Verri [1998, p. 19] propose the goal of an optical system

as:

“ An optical system can be regarded as a device that aims to produce the same

image obtained by a pinhole aperture, but by means of a much larger aperture and

a shorter exposure time. Moreover, an optical system enhances the light gathering

power.

Thin Lenses

The principal difference between a computer vision system and a biological vision sys-

tem is the lens and its effect on image formation20 [Völkel et al., 2003]. The lens of the

human eye (illustrated in Figure 2.4a) is flexible for focusing, while the lenses of the

computer vision systems used in this thesis are fixed.

20 The human eye also differs from artificial imaging systems in resolution and range. It has higher
resolution; ≈ 500 Megapixels. It also has a non-uniform distribution of sensing elements (and hence
resolution), higher concentrations of photoreceptor are located at the fovea. The human eye has a large
dynamic range; functioning between bright sunlight and faint starlight (a range of 107 : 1) through an
adjustable aperture. The receptors alone have a contrast sensitivity of 104 : 1 [Blackwell, 1946].
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Object Image

f f

O

Figure 2.18: The geometry of image formation by a thin lens. Rays of light from an
object pass through the lens and are focused to create an image. Figure adapted from
wikia21.

The thin lens is a simple approximation to standard optical systems22. Figure 2.18

shows a thin lens. The optical axis (dotted) passes through the lens centre O. In this

arrangement a thin lens has two properties. A ray of light travelling parallel to the

lens axis will be focused to a spot (known as the focal point) at a distance f from the

lens23. Conversely, a point source of light placed at the focal point will be converted

into a parallel beam by the lens. f is known as the focal length of the lens. From these

two properties, the fundamental equation of thin lenses is:

1

S1
+

1

S2
=

1

f
. (2.2)

The field of view is another optical parameter that is frequently needed when

comparing the properties of natural and artificial imaging systems. For a thin lens; let

d be the effective diameter of the lens24. The field of view, w, is an angular measure of

the portion of 3D space seen by the camera. It is defined as half the angle subtended

by the lens diameter as seen from the focus point [Trucco and Verri, 1998, ch. 2.2],

tanw =
d

2f
. (2.3)

Figure 2.18 shows a simple 2D case of an object on the optical axis of the camera.

Figure 2.17 showed a more correct, yet still contrived example; the loss of information

as a point in the environment moves in 3D and we capture only its 2D projection

onto the image plane (a loss of uniqueness). The problem is harder still. If perception

21http://psychology.wikia.com/wiki/Lens_(optics)
22 More correctly, a thin lens is a lens with a thickness that is negligible compared to the focal length

of the lens.
23 This implies that different scene points will be in focus at different distances from the lens and

hence at different points in the image plane. The optical lens systems of real cameras are designed so
that scene points at a range of distances are imaged on or close to the image plane and therefore in
focus. This range is called the ‘depth of field’ of the camera [Trucco and Verri, 1998, p. 21].

24 d is called the ‘effective’ diameter and not the ‘physical’ diameter of the lens element because the
aperture, placed between the scene and the lens, may prevent some rays from reaching the outside
bounds of the lens.

http://psychology.wikia.com/wiki/Lens_(optics)
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and understanding of ones environment is the goal, then one must know where in

3D space the 2D image points lie. This requires knowledge of where one is looking

(the camera orientation), the properties of the camera optics, and often simplified

assumptions about the world. The following section introduces the equations linking

the coordinates of points in 3D space with the coordinates of their corresponding image

points.

Image Formation

Figure 2.17 shows the geometry of image formation. The aim is to link the position

of points in the scene to corresponding image points. To do this one must model the

geometric projection performed by the camera [Trucco and Verri, 1998, ch. 2.2]. A

camera model transforms a 3D scene point P = [X,Y, Z]T into an image image point25

p = [x, y]T.

The most common model of a camera used for capturing intensity images is the

‘perspective’ or ‘pinhole’ model. From Figure 2.17; O is the ‘optic centre’ or ‘focus of

projection’, the line through O and perpendicular to the image plane is the ‘optical

axis’, the intersection of which, o, is called the ‘principal point’ or ‘optical centre’. The

Z-axis and the optical-axis are co-linear. Using the earlier definitions of P , p, and the

basic equations of perspective projection26 in the camera frame,

x = f
X

Z

y = f
Y

Z
. (2.4)

This is commonly called the ‘perspective camera’. Each point is scaled by its

individual depth, and all projection rays converge to the optical centre. Note that

(2.4) is non-linear because of the 1/f factor, thus it does not preserve distances between

points nor angles between lines.

An affine transform is a transformation which preserves straight lines and ratios of

distances. A classical approximation that turns (2.4) into linear equations is the ‘affine

projection weak perspective’, or commonly called the ‘weak perspective camera’. This

model requires that the relative distance along the optical axis, δZ, between any two

scene points (i.e., the scene depth) is much smaller than the average distance Z̄ of the

25 In the camera frame the third component of p is always equal to the focal length f , so one can
write p = [x, y]T instead of p = [x, y, f ]T.

26 Pinhole cameras can be modelled using two main types of projections: perspective projection, and
affine projection.
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points from the viewing camera27. In this case (2.4) becomes

x = f
X

Z
≈ f

Z̄
X

y = f
Y

Z
≈ f

Z̄
Y. (2.5)

The pinhole camera model and the perspective and weak-perspective projections

introduced so far are useful in practice. However, these need to be defined in an appro-

priate manner to allow computation using basic linear algebra operations, otherwise

these would require non-linear computations. The following subsection (Section 2.2.2)

describes the computations. In addition, through a more rigorous application of geom-

etry one can map scene points to image points through an arbitrary transformation;

thus the Z-axis and optical-axis need no longer be co-linear as assumed in Section 2.2.1.

2.2.2 Geometric Camera Parameters

The computer vision pipeline relates an object in space (Figure 2.17) to the image data

received (Figure 2.16) through a sequence of linear algebra operations. In general, the

world and pixel coordinate systems are related by a set of physical parameters such as:

• the focal length of the lens,

• the size of the pixels of the image sensor,

• the position of the principal point,

• the position and orientation of the camera.

These parameters may be classified into two categories:

Extrinsic parameters are the parameters that define the location and orientation of

the camera reference frame with respect to another known world reference frame.

Intrinsic parameters are the parameters necessary to link the pixel coordinates of

an image point with the corresponding coordinates in the camera reference frame.

Roughly, the flow of transforming object coordinates into pixel coordinates pro-

ceeds as shown in Figure 2.19 [Trucco and Verri, 1998, sec. 2.2–2.4].

The following subsections explain the steps in the computer vision pipeline.

Extrinsic Parameters

Extrinsic camera parameters identify the transformation between the known world

reference frame (Xw, Yw, Zw) and the unknown camera frame (Xc, Yc, Zc). It is common

to split this transformation into two steps, a translation T and a rotation R.

27 The ‘weak perspective’ approximation becomes viable for δZ < Z̄/20 [Trucco and Verri, 1998,
p. 27].
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3D Object Coordinates

3D World Coordinates - Xw,Yw

3D Camera Coordinates - Xc,Yc

2D Image Plane Coordinates - x,y

2D Pixel Coordinates - xim,yim
(integer u,v)

}
}

Extrinsic Parameters

Intrinsic Parameters

Figure 2.19: The computer vision pipeline, the standard steps for transforming the
coordinates of an object in the environment into the pixel coordinates on the sensor which
it is registered.

By geometric principles, determining these parameters means:

1. finding the 3D translation vector T between the relative positions of the origins

of the two reference frames,

2. finding the 3× 3 rotation matrix R that brings the corresponding axes of the two

frames into alignment.

Using the extrinsic camera parameters, one can find the relation between the co-

ordinates of a point in the world, Pw, and the coordinates in the camera, Pc;

Pc = R(Pw −T), (2.6)

where the rotation matrix is composed of

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (2.7)

Intrinsic Parameters

Intrinsic parameters characterize the optical, geometric, and digital characteristics of

the camera. They extend the thin lens approximation of Section 2.2.1 and describe:

1. the perspective projection, which like the thin lens simplification, only requires

the focal length f ,

2. the transformation between image plane coordinates and pixel coordinates,

3. the geometric distortion introduced by the optics.
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To find the transformation between image plane coordinates (x, y) and pixel coor-

dinates (xim, yim) — sometimes called the ‘image reference frame’, consider Figure 2.17,

x = −(xim − ox)sx

y = −(yim − oy)sy, (2.8)

where (ox, oy) are the coordinates of the principal point, o, in pixels; ox = N/2, oy =

M/2 is the principal point at the centre of the image. Also, sx, sy correspond to the

effective size of the pixels in the horizontal and vertical directions (in millimetres).

Therefore, f, ox, oy, sx, sy encapsulate the intrinsic parameters.

In some cases the optics introduce image distortions, often evident at the periph-

ery of the image. Correcting for these distortions in order to recover the true values of

(xim, yim) requires the estimation of additional coefficients; the radial distortion coef-

ficients k1, k2, k3, and the tangential distortion coefficients p1, p2. Correcting for these

distortions is explained in Appendix D.2.

Camera Models Revisited

One can now link the pixel coordinates of image point with the world coordinates of

the corresponding 3D point without explicit reference to the camera reference frame

needed by (2.4). Substituting (2.6) and (2.8) into (2.4) yields

−(xim − ox)sx = f
RT

1 (Pw −T)

RT
3 (Pw −T)

−(yim − oy)sy = f
RT

2 (Pw −T)

RT
3 (Pw −T)

, (2.9)

or

xim = fsx
RT

1 (Pw −T)

RT
3 (Pw −T)

+ ox

yim = fsy
RT

2 (Pw −T)

RT
3 (Pw −T)

+ oy, (2.10)

where RT
i , i = 1, 2, 3 is a 3D vector formed by the i-th row of the rotation matrix R.

Rewriting (2.9) as a matrix product and defining two Mim and Mex, as

Mim =


−f/sx 0 ox

0 −f/sy oy

0 0 1

 , (2.11)
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and

Mex =


r11 r12 r13 −RT

1 T

r21 r22 r23 −RT
2 T

r31 r32 r33 −RT
3 T

 , (2.12)

means the 3 × 3 matrix Mim contains only the intrinsic camera parameters and the

3 × 4 matrix Mex contains only the extrinsic camera parameters. Expressing Pw in

homogeneous coordinates (xh, yh, w)T one obtains a linear matrix expression describing

the perspective projection,


xh

yh

w

 = MimMex


Xw

Yw

Zw

1

 . (2.13)

or M = MimMex, where M is called the projection matrix

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 . (2.14)

The components of the vector (xh, yh, w)T can be expressed as ratios of image

coordinates

xim =
xh
w

yim =
yh
w
. (2.15)

Substituting (2.15) and (2.14) into (2.13) and expressed to give the pixel coordi-

nates directly,

xim =
xh
w

=
m11Xw +m12Yw +m13Zw +m14

m31Xw +m32Yw +m33Zw +m34

yim =
yh
w

=
m21Xw +m22Yw +m23Zw +m24

m31Xw +m32Yw +m33Zw +m34
(2.16)

The relation of 3D points and their 2D projections can be seen as a linear transfor-

mation from the projective space (Xw, Yw, Zw, 1)T to the projective plane (xh, yh, w)T

and ultimately to pixel coordinates (up to an arbitrary scale factor).

The projection matrix M is constructed according to the camera model chosen.

The selection of the camera models of Section 2.2.1 and their respective projection

matrices is described in Appendix D.1.1.
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Note, for the rest of this thesis, because I deal primarily with image plane coordi-

nates, I use (u, v) instead of (xim, yim) for clarity.

2.2.3 Depth Images

A single intensity image does not provide the distance to, nor the shape of obstacles

directly, yet if one wishes to avoid obstacles, the distance to these obstacles is important.

Pixel values are related to depth only indirectly; through illumination of the scene and

the optical and geometric properties of the imaging system previously discussed. While

Chapter 6 uses the computation and use of depth from optical flow, depth can also be

measured directly if using the correct sensors; for example range sensors as used in

Section 6.2. This section introduces range sensors and their properties.

Several types of sensors can produce range images:

structured light sensors illuminate the scene with a specially designed structured

light pattern and then capture an intensity image of the scene using a conventional

camera. The structured light can be in the form of horizontal and vertical lines,

points, or geometric patterns. Depth is then determined from a single image

of the reflected light by searching for the projected pattern and considering the

geometric constraint between the projector and the image sensor. The Microsoft

Kinect sensor used in Chapter 6 uses structured light; a projected infrared dot

pattern.

time-of-flight sensors measure distance using the time-of-flight technique (similar to

radar/sonar). They use a pulse of light and a custom image sensor equipped to

measure with precise accuracy, the arrival time and/or phase of the reflected light

pulse.

moire interferometry range sensors project light from two gratings featuring regular

linear patterns onto the scene. They measure relative distance using the phase

difference from the interference pattern visible in the captured image.

stereo triangulation range sensors use two or more calibrated image sensors, po-

sitioned relative to one-another at known geometry. By finding corresponding

features in each sensor’s image they estimate distances to these features using

triangulation.

This was only a selection of range sensors, all image based and producing a 2D

matrix of depth estimates. Because the sensors are image based, many of the same

geometric properties described in the preceding section still apply (extrinsic parameters

obviously, but some intrinsic ones too; principle point, lens distortion, etc).

The use of range information obtained from a Microsoft Kinect camera is discussed

in Chapter 6. The calibration of the camera and its geometric properties are included

in Appendix A.3.2.
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2.3 SUMMARY

This chapter introduced a number of concepts, in particular those relating to the insect

visual and mechanosensory system.

The remainder of this thesis concerns the application of biologically inspired visual

principles to the control of flying robots. One should read the thesis with the following

concepts in mind:

• High level behaviours are usually the amalgamation of low level information pro-

cessing, sometimes combining image motion with other sensory inputs.

• High level behaviours typically integrate information covering a wide spatial

range.

• Low level processes often sample the world in efficient and evolutionarily special-

ized ways via the connection patterns of neurons in the brain.

• Some dynamic combination or mediation of high level behaviours occurs in insects,

yet the mechanism is not completely known. This is an active topic of biological

research.

• There is great commonality between the different yet well studied insect model

organisms; both at the behavioural level, and when comparing the physical struc-

ture of their brains.





Chapter 3

OPTICAL FLOW

Section 2.1 introduced many ways that insects use image motion to control their flight

and navigate their environment. This chapter explains the mathematical foundations

for calculating optical flow (Section 3.1) and the relevant techniques for doing so used in

this thesis (Section 3.2). This chapter also describes a phase-correlation based optical

flow technique I developed (Section 3.3).

Figure 2.17 shows the scenario. Each point moves along a three-dimensional (3D)

path in space. When projected onto the image plane each point now produces a two-

dimensional (2D) path. The instantaneous rate-of-change of the position of the point

along this path is its velocity [Fleet and Weiss, 2005]. The 2D velocities for all visible

points is often referred to as the; 2D motion field, image velocity, or image motion

— the specific meaning of these terms is discussed in Section 3.1. The goal of optical

flow estimation is to compute an approximation to the motion field from a sequence of

intensity images.

Provided that optical flow is a reliable approximation to 2D image motion, it can

then be used to recover the 3D motion of the visual sensor (to within a scale factor) and

the 3D surface structure (shape or relative depth) of the environment. To do so requires

assumptions concerning the structure of the optical flow, the 3D environment, and the

motion of the sensor. Optical flow may also be used to perform motion detection, ob-

ject segmentation, time-to-contact and focus-of-expansion (FOE) calculations, motion

compensated encoding, and stereo disparity measurement [Beauchemin and Barron,

1995, Aires et al., 2008].

3.1 FORMULATION

The initial hypothesis in measuring image motion is that the intensity structures of

local time-varying image regions are approximately constant under motion for at least

a short duration [Horn and Schunck, 1981]. Formally, if I(x, y, t) is the image intensity
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function, with x and y spatial dimensions and t, time, then

I(x, y, t) ≈ I(x+ δx, y + δy, t+ δt), (3.1)

where δx, δy is the displacement of the local image region after time δt (Figure 3.1).

v

u

v

Image 1 Image 2 

Image Velocity

(t+  ±t)(t=0)

y

x

Figure 3.1: The geometry of the image intensity and image velocity vector.

Expanding the right hand side of this equation in a Taylor series yields

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+O2 (3.2)

where O2 represents the second and higher order terms which are assumed negligible.

Subtracting I(x, y, t) on both sides, ignoring O2 and dividing by δt yields

Ixu+ Iyv + It = 0, (3.3)

where v = (vu, vv) is the image velocity and ∇I = (Ix, Iy) is the spatio-temporal, or

partial derivatives of I(x, y, t). Equation (3.3) is the ‘optical flow constraint equation’;

it is one linear equation in two unknowns v = (vu, vv).

v

u

Constraint line

Normal flow

Figure 3.2: The optical flow constraint equation. At a single image pixel we get Ixu +
Iyv = −It, yielding the constraint line Ixu + Iyv + It = 0. With one point we can only
detect movement perpendicular to the brightness gradient; the normal flow v⊥. Figures
adapted from Beauchemin and Barron [1995].
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Figure 3.2 shows the formulation; the optical flow constraint equation is ill-posed.

For one pixel, both components of v cannot be computed, only the normal velocity in

the direction of the spatial gradient, v⊥. From (3.3) one can write,

v⊥ =
−It∇I
‖ ∇I ‖2

. (3.4)

This is known as the ‘aperture problem’. In other words, a variety of contours

of different orientations moving at different speeds can cause identical responses (i.e.,

optical flow does not represent the motion field). A real-world example of this is the

‘barber-pole illusion’; it appears as though the stripes on a diagonally striped pole are

moving in the direction of its vertical axis instead of around it.

The solution is to impose other constraints; such as to assume flow is consistent

locally and consider the surrounding pixels. The manner in which this is done distin-

guishes different optical flow implementations, not surprisingly, this is similar to nature.

Ommatidia respond to motion that occurs locally within their visual field, but because

each local motion-detecting neuron suffers from the aperture problem, the estimates

from many neurons need to be integrated into a global motion estimate.

Subsequently it becomes clear that for optical flow to be exactly equal to image

motion a number of conditions have to be satisfied:

1. uniform illumination,

2. Lambertian surface reflectance,

3. pure translation parallel to the image plane,

4. sufficient intensity structure1.

In practice these conditions are never entirely satisfied in scenery. Instead it is

assumed that these conditions hold locally in the scene and therefore, locally on the

image plane.

3.2 OPTICAL FLOW TECHNIQUES

There are a number of algorithms for calculating optical flow, separated into classes by

similarity. In the following sections I shall summarise the classes of optical flow tech-

niques. The boundaries between each class of methods are not always clear, however,

the basic classes [Beauchemin and Barron, 1995, Barron et al., 1994] are:

1. intensity-based differential methods,

2. multi-constraint methods,

3. frequency-based methods,

1 Imagine negotiating a world where everything is uniformly white; there would be no brightness
gradient (nor any differential information) to detect.
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4. correlation based methods,

5. multiple motion methods,

6. temporal refinement methods.

3.2.1 Differential Methods

Differential methods compute image velocity from spatiotemporal derivatives of image

intensities, solving (3.3). Because (3.3) is ill-posed, an exact solution is not possible,

so differential methods can be further split into global or local forms based on the

concessions they make in order to compute optical flow.

Global methods apply additional constraint to (3.3), usually a smoothness regular-

ization term, to compute dense optical flows over large image regions. Combined, they

form a function which is minimized over the image domain. Notably popular global

methods include Horn and Schunck .

Local methods use normal velocity information in local neighbourhoods to perform

a least squares minimization to find the best fit for v. Notably popular methods include;

Lucas and Kanade and Simoncelli.

Horn and Schunck

The most well known global method was first introduced by Horn and Schunck [1981].

One advantage of the Horn-Schunck algorithm is that it yields a high density of flow

vectors; when flow information missing in inner parts of homogeneous objects, it is

filled in from the motion boundaries. On the negative side, it is more sensitive to noise

than local methods.

The Horn-Schunck algorithm assumes smoothness in the flow over the whole image.

Thus, it tries to minimize distortions in flow and prefers solutions which show more

smoothness. The flow is formulated as a global energy functional which is then sought

to be minimized.

These constraints were used to define an error function∫
D

(
(∇I · v + It)

2 + λ2 tr((∇v)T(∇v))
)

dx, (3.5)

over a domain of interest D, where v = (vu, vv). The solution for v is given as a

set of Gauss-Seidel equations which are solved iteratively2. Uniform illumination over

D, orthographic projection, and pure translational motion parallel to the scene are all

conditions that must be met for the brightness consistency assumption to be satisfied.

These extensive conditions reduce the set of admissible visual events considerably

and have driven research into constraints generating more applicable equations.

2 The Gauss-Seidel method is an iterative method used to solve a linear system of equations. It is
similar to the more common Jacobi method.
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Lucas and Kanade

Local models of velocity assuming single motion patterns are also common. For ex-

ample, the well known Lucas and Kanade [Lucas and Kanade, 1981, Lucas, 1984]

algorithm uses a local constant model for v. This is then solved as a weighted least

squares solution to (3.3). Image velocity estimates are computed by minimizing∑
x∈R

W 2(x)(∇I(x, t) · v + It(x, t))
2, (3.6)

where W (x) denotes a window function and R is a spatial neighbourhood. This

weighted least-squares approach makes the algorithm comparatively robust in the pres-

ence of noise.

The Lucas and Kanade algorithm, like all local optical flow algorithms, does not

yield a high density of flow vectors. The flow information fades out quickly across

motion boundaries and the inner parts of large homogeneous areas show little or no

motion [Lucas and Kanade, 1981].

The most popular variation on the Lucas and Kanade algorithm, and the one I use

frequently in this thesis, is the pyramidal Lukas-Kanade implementation. This utilizes

two related extensions to Lucas and Kanade;

1. Consider the assumption of small motion and the higher order terms of Figure 3.2.

This is a polynomial root finding problem of which the plain Lucas and Kanade

does one iteration of the Newton-Raphson method. To get better results in prac-

tice it is necessary to iterate multiple times on this scheme [Lucas and Kanade,

1981].

2. Consider the role of R. A small window over which to solve yields a dense flow

field and does not ‘smooth out’ subtle differences in the motion field. However,

this small window makes the algorithm prone to errors due to changes in lighting.

Furthermore, in order to handle large motions, is is preferable to pick a large

integration window. To solve this trade-off a multi-resolution approach is taken.

The Lucas and Kanade algorithm is run against the target at different resolutions

(‘levels of a pyramid’) and the intermediate results are propagated to the next

level [Lucas and Kanade, 1981].

In practice window sizes of 3 – 7 pixels and 2 – 4 pyramidal levels (for a moderate

resolution image) yield acceptably dense and accurate flow vectors for experimentation.

Another popular improvement to Lucas and Kanade is the feature based extension

by Tomasi and Kanade [1991]. In this version a feature detection algorithm (such as

Harris corners) is first run on the image. Subsequently, Lucas and Kanade is only run

on patches surrounding these features — where by definition a detectable local gradient

is present. I do not use this variation as it yields an unequal spatial distribution of
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optical flow which I believe is not consistent with the regular arrangement of motion

detection in insect’s compound eyes.

3.2.2 Correlation-Based Methods

Numerical differentiation is sometimes impractical because of a small number of frames

or poor signal to noise ratio [Barron et al., 1994]. In these situations differential or

frequency approaches may not be suitable and it is wise to consider correlation based

methods.

Typically, features suitable for matching such as corner points are sparse, while

poor, easily matched features such as edges are dense. Even when reasonably unique

features are available, establishing the correct correspondences can be problematic. In

fact, a large part of the computer vision field is tasked with this problem of feature

description and correspondence.

Correlation based matching approaches are less sensitive to these problems. They

do not rely on the presence of significant image features and variable correlation window

sizes can be used. These approaches define displacement (which is an approximation

to velocity) as a shift that yields the best fit between contiguous time varying image

regions.

Matching image regions often amounts to maximising a similarity measure. In

particular, a correlation coefficient between two functions f and g is defined as the

integral of their product ∫
D
f(x+ δx)g(x)dx. (3.7)

Finding δx amounts to finding the shift between f and g if f(x+ δx) = g(x).

The most naive correlation-based approach is the block matching (BM) method.

In BM, a region of the current frame is placed and moved around in the previous

frame using a specific search strategy. Criterion such as sum of squared differences

(SSD) or sum of absolute differences (SAD) may be used as the correlation measure for

determining if the region under analysis matches a corresponding region in the previous

frame.

3.3 PHASE-CORRELATION FOR OPTICAL FLOW

Whereas the block matching (BM) method compares blocks by luminance matches,

phase-correlation methods measure the relative shift between two images directly from

their phases; typically by means of a normalised cross-correlation function computed

in the 2D spatial Fourier domain [Pla and Bober, 1997]. In general where luminance

based methods are susceptible to global changes in illumination; Fourier transform

based implementations are not [Kuglin and Hines, 1975, Pla and Bober, 1997].
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However, typical phase-correlation techniques are still computationally expensive;

especially for large images as they require two 2D Fourier transforms, an inverse 2D

Fourier transform, a search for the correlation peak, and a sub-pixel interpolation

step [Pla and Bober, 1997].

In this section I present a new phase-correlation based technique for calculating

optical flow; the shear-average phase-gradient correlation. Compared to existing meth-

ods the proposed shear-average technique removes the need for the inverse 2D Fourier

transform, interpolation, and search steps.

This section proceeds as follows. Section 3.3.1 explains the principle of frequency

domain image correlation. Section 3.3.1.1 introduces existing phase-correlation tech-

niques. Section 3.3.2 explains the new shear-average algorithm for efficient optical flow

estimation. Section 3.3.3 demonstrates the performance of the new approach compared

with existing techniques.

3.3.1 Frequency Domain Image Correlation

The goal of image correlation is, given two images, find the displacement that maximises

their similarity.

Let F1[u, v] be the 2D spectrum of a 2D image f1[x, y]. By convention and for the

remainder of this section, (u, v) denote the spatial frequencies of Fk(·) (and not pixel

coordinates as in the rest of this thesis).

Let’s denote the image f1 as a windowed version of a larger image f ,

f1[x, y] = f(x− x1, y − y1)a(x− x1, y − y1), (3.8)

where a is the aperture function centred on (x1, y1). Similarly, the second image f2 can

be represented as

f2[x, y] = f(x− x2, y − y2)a(x− x2, y − y2). (3.9)

Here square brackets denote the property that f [x + mNx, y + nNy] = f [x, y] for

arbitrary integers m and n. The second image can be denoted in terms of the first

image as

f2[x, y] = f1[x−∆x, y −∆y]w(x, y|∆x,∆y)

+c(x, y|∆x,∆y), (3.10)

where c(x, y|∆x,∆y) denotes the contamination due to the non-overlapping region and

w(x, y|∆x,∆y) denotes the common region viewed by the two images. In the Fourier
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domain (3.10) transforms to

F2[u, v] = F1[u, v] exp

(
−j2π

(
u∆x

Nx
+
v∆y

Ny

))
�W [u, v|∆x,∆y] + C[u, v|∆x,∆y], (3.11)

where � denotes circular convolution. If the shifts are small so that the overlap is large,

this can be approximated by

F2[u, v] ≈ F1[u, v] exp

(
−j2π

(
u∆x

Nx
+
v∆y

Ny

))
. (3.12)

Forming the Hermitian product of the spectra yields

H[u, v] = F2[u, v]F∗1 [u, v], (3.13)

≈ |F1[u, v]|2 exp

(
−j2π

(
u∆x

Nx
+
v∆y

Ny

))
.

Taking the inverse Fourier transform of H[u, v] one gets the cross correlation of the

two images (from the Fourier correlation theorem);

h[x, y] ≈ ff1[x−∆x, y −∆y], (3.14)

where ff1[x, y] is the autocorrelation of f1[x, y] — given by the inverse Fourier transform

of |F1[u, v]|2. Since an autocorrelation function is always maximum at zero lag, the

position of the peak in h[x, y] gives the image shift ∆x, demonstrated in Figure 3.3(b).

A correlation coefficient gives an indication of the reliability of the result. This is

found by normalising the correlation by the square root of the product of the image

energies,

ρ[x, y] =
h[x, y]√

ff1[0, 0]ff2[0, 0]
. (3.15)

3.3.1.1 Phase-Correlation

Kuglin and Hines [1975] introduced the concept of phase-correlation. This uses only

the Fourier domain phase information to estimate the shift between images. When

applied globally, phase-correlation is a useful technique for image registration as the

method is less sensitive to scale and rotation [Kuglin and Hines, 1975]. When applied

locally, phase-correlation can also be used for optical flow estimation [Fleet and Jepson,

1993, Pla and Bober, 1997] and in template matching operations [Zhang et al., 2009].

Phase-correlation normalises the Hermitian product of the image spectra H by its
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Figure 3.3: (a) An image (left) and its shifted counterpart with noise. (b) The normalised
cross-correlation of the two images. (c) The phase-correlation of the same two images.
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magnitude |H|,

G[u, v] =
H[u, v]

|H[u, v]|
= exp (jΨ[u, v]) . (3.16)

Here Ψ = argH is the phase of H. The image displacement is then estimated from the

shift of the peak in the inverse Fourier transform of G, demonstrated in Figure 3.3(c).

The normalising step is equivalent to an inverse filter and thus enhances the bandwidth

of H but requires images with a high signal to noise ratio.

Foroosh et al. [2002] extended the phase-correlation concept to subpixel accuracy

and achieved improved results with a similar computational cost. They noticed that

the signal power in the phase-correlation is not concentrated in a single peak but rather

in several coherent peaks mostly adjacent to each other. From this they developed an

analytic expression for the sub-pixel estimation of the correlation peak.

3.3.2 Shear-Average (Phase-Gradient Correlation)

The shear-average3 algorithm [Fienup, 1989, 2001] was developed for use in synthetic

aperture radar for phase error detection and has been applied in the synthetic aperture

sonar field [Callow et al., 2001, Johnson et al., 1995]. The algorithm relies on the

shared information in two consecutive pings4 and works by exploiting the redundant

information present.

It uses the observation that an impulse, shifted from the origin has a phase gra-

dient in the Fourier domain proportional to the shift (shown in Figure 3.4). Thus by

estimating the phase gradient directly, no inverse fast Fourier transform (FFT) and

peak search is required. I propose applying the shear-average technique to estimate

image shifts and optical flow.

The average phase gradient can be estimated by averaging the sheared Hermi-

tian product of H [Fienup, 2001, 1989]. The average phase gradient in the u spatial

frequency direction is

∆θu = arg


Ny−1∑
v=0

Nx−2∑
u=0

H[u+ 1, v]H∗[u, v]

 . (3.17)

The average phase gradient gives the estimated shift in the x direction,

∆x = −Nx∆θu
2π

. (3.18)

3 As named in accordance with the mathematical transform, shear.
4 Or in computer vision; images.
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Figure 3.4: A demonstration of the phase wraps and the phase gradient principle. (a)
The source and shifted (by (8, 4) pixels) images. (b) The phase, Ψ, of the Hermitian
product, H, of image spectra along the u-axis. Notice how the 8 phase wraps (around ±π)
correspond to the original image having a shift of ∆x = 8 pixels.

Similarly, the average phase gradient in the v spatial frequency direction is

∆θv = arg


Ny−2∑
v=0

Nx−1∑
u=0

H[u, v + 1]H∗[u, v]

 . (3.19)

From this the estimated shift in the y direction is

∆y = −Ny∆θv
2π

. (3.20)

The problem with this approach is that when the shift becomes large the phase is

contaminated by the dissimilar parts of the images.
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3.3.3 Performance

The shear-average was compared with other frequency domain correlation based al-

gorithms; basic correlation (3.14) with and without sub-pixel interpolation, the orig-

inal phase-correlation implementation of Kuglin and Hines [1975], and the improved

subpixel based implementation of Foroosh et al. [2002]. The test images shown in

Figure 3.5a were used in the comparison. The ranges of image shifts and rotations

tested were selected based on the conventions of the computer vision field5, however,

with larger ranges because of the lower framerate and rapid dynamics of the ‘wasp’

quadrotor.

(a)

(b) (c)

Figure 3.5: The test procedure for evaluating the shear-average algorithm. (a) The set
of images used for all experiments. (b) Image showing a shift of 15 pixels in x with a 5◦

rotation applied. (c) Image showing a shift of 15 pixels in x with noise added.

In the first test, the image was shifted by 2,5,10, and 15 pixels and white Gaus-

5 Most optical flow review papers use the Middlebury [Baker et al., 2007] sequences (Appendix C)
which have translational motion < 4 pixels per frame [Barron et al., 1994, Sec. 3]. Normal ranges
of rotations were less clear. Roth and Black [2007] implemented an optical flow technique with good
rotation invariance and evaluated many common algorithms against rotations < ±1.5◦.
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sian noise (0-mean) with increasing variance was added. The range of variance gave

shifted noisy images with signal to noise ratios (SNRs) of 15 dB to 50 dB. The test was

repeated 100 times at each noise variance and the results are shown in Figure 3.6.
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Figure 3.6: Error in estimated image shift for increasing additive noise (average of 100
runs), for shifts of 2,5,10, and 15 pixels.

In the second test, the image was once again shifted by 2,5,10, and 15 pixels,

however, this time an additional rotation was applied. The rotation step also involves

an interpolation, so this represents a more challenging situation for the algorithm, as

the interpolation may introduce information in the transformed image that was not in

the original, indistinguishable from noise. Results are shown in Figure 3.7.

Figure 3.6 demonstrates that the shear-average algorithm is able to estimate, to a

subpixel accuracy, the translation of the images, just slightly worse than the Foroosh

et al. [2002] implementation. The näıve phase-correlation implementation is unable to

estimate translation at better than a pixel accuracy for the translations tested.
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Figure 3.7: Error in estimated image shift for increasing amounts of rotation, for shifts
of 2,5,10, and 15 pixels (average of the 6 images shown in Figure 3.5a). The characteristic
shape of the offset error for small rotations, irrespective of the translation, was also present
when the algorithm was run against other image sets.
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Figure 3.7 demonstrates the shear-average algorithm is able to estimate the transla-

tion of the images better than the alternatives tested in the presence of small rotations

(2–5 pixels).

Evaluating the runtime performance of the shear-average technique against others

is not straightforward. The algorithm was faster than Horn and Schunck , and Lucas

and Kanade for similar data, although those two algorithms are not considered state

of the art anymore6. Furthermore, comparison of the exact numbers of arithmetic

or floating point operations is almost impossible here, especially because almost all

computation time in the shear-average is consumed by the FFT implementation, which

is provided by the fftw3 library. This library has a myriad of automatic enhancements

chosen at runtime, which provide excellent performance [Frigo and Johnson, 2005], but

make it difficult to micro-benchmark.

In conclusion, the shear-average algorithm has been compared against two other

phase-correlation based implementations for image registration. In these tests, it was

found that the algorithm performed with similar accuracy for image translation in the

presence of noise and rotation, while having good runtime characteristics.

3.4 SUMMARY

The term optical flow comes from the optical flow constraint equation, which places a

local constraint on image motion. Image velocities are the partial derivatives of image

motion. The degree to which the constraint equation is satisfied and the approxima-

tions above are correct determine the degree to which optical flow approximates image

motion. This thesis uses, in part, optical flow for the control of flying robots. The

term optical flow will be used almost exclusively, in essence I assume that it approxi-

mates image motion to a sufficient accuracy to make control systems using optical flow

possible.

Many insect behavioural strategies use image motion, but when testing biologi-

cally inspired analogues, it is important to consider the characteristics of the optical

flow algorithm chosen. For example, relating to the local local motion detection oc-

curring in the medulla, phase-correlation is an appropriate choice for implementing

biomimetic strategies because it can be applied computationally efficiently in local

patches. Furthermore, the regular (rectangular, gridded) nature of the result obtained

from pyramidal Lucas and Kanade) also makes it suitable for implementing biomimetic

strategies which operate on the premise of wide-field spatial integration of local image

motion.

6 The computer vision field has been focused on improving the accuracy of optical flow techniques,
to a large degree driven by the scoreboard on the Middlebury website, which places a high importance
on accuracy, but does not record runtime quantitatively (they are reported, but not controlled in any
way).
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Furthermore, I developed a novel frequency domain optical flow algorithm; the

shear-average (phase-gradient correlation) technique which is more computationally

efficient and similarly performing to existing methods. This technique will be used to

estimate optical flow in other control systems presented in the forthcoming chapters.



Chapter 4

CONTROL OF FLYING ROBOTS

According to flying principle and propulsion mode, one can classify aircraft into the

categories shown in Figure 4.1. This classification is important, as different flight ve-

hicles pose different challenges for visual control, just as evolutionary pressures shaped

the development of insect flight and behaviours [Dudley, 2000, ch. 6–7]. For example,

Bachrach et al. [2010] implemented exploratory navigation and mapping that was only

possible on a hovering platform with freedom to move in all directions.

Figure 4.1: Aircraft classification by propulsion and flying principle. Quadrotor heli-
copters are 4-rotor rotorcraft.

Visual flight control test vehicles were historically expensive and complex platforms,

often requiring large open spaces to operate. Fixed-wing aircraft also have constraints

on manoeuvrability, whereas conventional helicopters are dynamically and structurally

complex, expensive, and hard to control. In order to circumvent these issues I chose

quadrotor helicopters to be used as the test vehicle and developed the ‘wasp’ system;

a suite of software, hardware, and infrastructure for visual flight control research.

Figure 4.2 shows the ‘wasp’ system in use on a hovering quadrotor helicopter. In

this scenario, the ‘wasp’ software autopilot provides the high-speed real-time attitude

stabilisation of the craft, time correlated synchronised camera images, and inertial

measurement unit (IMU) readings to an onboard single board computer (SBC). The

SBC then executes the visual control algorithms, taking into consideration the vehicle

state computed using the IMU, before sending control commands to the autopilot at
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(a) (b)

Figure 4.2: (a) Quadrotor hardware and camera for onboard vision processing. (b)
Groundstation software for monitoring real time controller performance.

a much slower rate. The decoupling of the two systems, both for reliability and for

developmental efficiency, is facilitated by the ‘wasp’ system.

This chapter introduces the processes for experimenting using quadrotors. Sec-

tion 4.1 describes the main idea of quadrotor dynamics, their flight properties (how

they move and what movements are possible), the capabilities which make them ap-

propriate for biomimetic visual flight control, and the considerations necessary for

designing a robust system for research. Section 4.2 describes the attitude controller

used to hover the craft and how higher level visual control systems were constructed

which utilised it.

Appendix A includes a more detailed description of the quadrotor hardware. Ap-

pendix B describes quadrotor equations of motion, the simulation model and identifi-

cation of parameters, and the control system implementation.

4.1 QUADROTOR HELICOPTERS

The first quadrotors for UAV research were developed by Pounds et al. [2002] and

Bouabdallah et al. [2004a]. Today, quadrotor helicopters are a popular configuration

for UAV research. The aircraft consist of four rotors in total; two pairs of counter-

rotating, fixed-pitch blades located at the four corners of the vehicle and shown in

Figure 4.2a.

Due to their specific capabilities, quadrotors provide a good basis for visual flight

control research; research into the use of computer vision techniques for the control

of the robotic system. First, quadrotors do not require complex mechanical control

linkages for rotor actuation, relying instead on fixed pitch rotors and using variation

in motor speed for vehicle control. This simplifies both the design and maintenance of

the vehicle. Second, the use of four rotors ensures that individual rotors are smaller in

diameter than the equivalent main rotor on a helicopter, relative to the airframe size.
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The individual rotors therefore, store less kinetic energy during flight, mitigating the

risk posed by the rotors should they collide with people or objects. Furthermore, by

enclosing the rotors within a frame, the rotors can be protected from breaking during

collisions; permitting flights indoors and in obstacle-dense environments with low risk

of damaging the vehicle, its operators, or its surroundings.

These capabilities greatly accelerate the design and test flight process by allowing

testing to take place indoors, by inexperienced pilots, with a short turnaround time for

recovery from incidents. Finally, the improvement of Lithium-polymer battery technol-

ogy has enabled longer flight times with heavier payloads, increasing the computational

power that can be carried onboard, thus increasing the complexity of visual algorithms

that can be experimented in realtime. Therefore, quadrotor helicopters fill an impor-

tant role in the research arena, possessing the capability to lift large payloads while also

having reduced kinetic energy, making them suitable for rapid indoor flight testing.

4.1.1 Computational Processing Considerations

Historically visual flight control of quadrotors has been performed off-board. As com-

puting power increases and improved visual techniques are discovered, it is becoming

more possible to move this computing onto the flying robot. Bachrach et al. [2010]

represent the state of the art for offboard visual processing; the quadrotor is able to

autonomously explore its environment, while mapping and searching along the way.

The Pixhawk1 project represents state of the art for onboard visual processing; it is

able to autonomously hover and navigate a predefined map or an unknown environ-

ment.

While both onboard and offboard approaches seem distinct, they both share similar

considerations:

Position control updates There is a lower bound on the acceptable rate of position

control2 if one wants to achieve stable hovering. In the author’s experience3, any

vision based position controller should, assuming a reasonable degree of accuracy,

provide attitude commands at ≥ 10 Hz.

State estimation A combined (visual and inertial) state estimator requires synchro-

nised IMU and camera images for best performance.

Insensitivity to computation time The difference in computation times between

simple visual processes (such as obstacle avoidance) and complex ones (such as

SLAM on a large map) can differ by a factor of 10× or more. For this reason, it

is often a practical necessity to run these processes only as needed. Furthermore,

1 See the project website, https://pixhawk.ethz.ch, for more information.
2 Assuming that the position controller is implemented atop a PID attitude controller, as described

in Section 4.1, low wind, and near hover conditions.
3 Gathered while working on the Pixhawk project early January 2010, through his own experiments

(unpublished) and through discussions with other researchers at micro air vehicle conferences.

https://pixhawk.ethz.ch
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Figure 4.3: The coordinate system and free body diagram of a quadrotor helicopter.

a complex robotic system often has additional overhead in the form of processes

for debugging, visualisation, and testing.

The ‘wasp’ system was designed to make these three considerations easy to implement.

4.1.2 Basic Concepts

Quadrotor helicopters can be well modelled [Bresciani, 2008, Bouabdallah et al., 2004a]

as a structure with four rotors mounted in a cross configuration. The propellers are

fixed and mounted in the same plane. The only thing that can vary is the propeller

speed.

Consider the free body diagram of Figure 4.3 and let the quadrotor be at hover.

All propellers rotate at the same speed, Ωi [rad s−1], to counter the force of gravity,

mg.

The model has 6 degrees of freedom (DOF), but because it has only four actuators,

the vehicle is still an under-actuated and dynamically unstable system [Bouabdallah

et al., 2004a]. Due to the symmetric structure of the vehicle one can choose four optimal

decoupled control variables as described below. These four control variables, Ui, are

adjusted by the control system to allow the quadrotor to reach the desired attitude and

altitude.

Assume the vehicle is level and at hover, with fixed propeller speed ΩH . A positive

change is represented by ∆A, while a negative change is represented by ∆B. The four

variables are shown in Figure 4.4 and described below;

Throttle (U1 [N])

Increasing (or decreasing) all propeller speeds by the same amount leads to a

vertical force and acceleration, z̈, in the body frame — changing the vehicle

altitude.

Roll (U2 [N m])

Increasing (or decreasing) the left propeller speed and decreasing (or increasing)
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Yaw left

Increase altitude Roll right

Pitch forward

Figure 4.4: A description of quadrotor motion observed in response to different combi-
nations of rotor speed at hover ΩH . Arrow width is proportional to speed. Adapted from
Bouabdallah et al. [2004a]

the right one leads to a torque with respect to the x-axis, causing the quadrotor

to turn. If ∆A ≈ ∆B then the total vertical thrust is the same as when hovering;

hence (to a first approximation) leading only to an acceleration in roll angle, φ̈.

Pitch (U3 [N m])

Similar to the roll command but applies a torque with respect to the y-axis. This

leads to an acceleration in pitch angle, θ̈.

Yaw (U4 [N m])

Increasing (or decreasing) the front-rear propellers’ speed and simultaneously

decreasing (or increasing) the left-right pair. This leads to a torque with respect

to the z-axis which makes the quadrotor turn. The yaw movement is generated

because one opposing pair rotates clockwise and the other pair rotates counter-

clockwise; hence the total torque is unbalanced. The total thrust is the same as

hovering so the command leads to only an acceleration in yaw angle, ψ̈.

The dynamics of a generic 6 degree of freedom (DOF) rigid-body under external

forces applied to the centre of mass and expressed in the body fixed frame are [Etkin
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and Reid, 1995], mI 0

0 I

V̇

ω̇

+

ω ×mV

ω × Iω

 =

F

τ

 , (4.1)

where I ∈ R3×3 the inertia matrix, V is the body linear speed vector and ω the body

angular speed. The craft has mass m and is actuated by forces, F, and torques, τ . For

details of how V and ω are generated from U1 see Appendix B. For details of how I

and other model constants were estimated empirically see Appendix B.1).

4.2 ATTITUDE CONTROL

When considering attitude control of quadrotors secondary aerodynamic effects such as

blade flapping4, thrust dependence on free stream velocity, and interference caused by

the vehicle body in the slip-stream of the rotor can be disregarded for hover and slow

translational flight [Pounds et al., 2006, Hoffmann et al., 2004, 2007]. Pounds et al.

[2010] found that the regulation performance of simple PID control schemes was within

±2◦ of level tracking, furthermore, that PID control offered an advantage over model

based controllers due to the scheme’s simplicity and potential robustness to parame-

ter variation [Bouabdallah et al., 2004b]. Such parameter variation occurs frequently

in this thesis; such as when changing the craft weight, the centre of mass, or when

experimenting with different vision and computer configurations (such as described in

Appendix A.4).

Navigation or obstacle avoidance can be considered a position control or velocity

control problem. In the positional flight control case, Hoffmann et al. [2007] showed

positional control implemented using a PID controller with the vehicle’s pitch and roll

as control inputs. Tilting the vehicle in any direction causes a component of the thrust

vector to point in that direction, so commanding pitch and roll is directly analogous

to commanding accelerations in the x-y plane. However, a key weakness of this and

similar position controllers was the assumption that the velocity of the free stream and

attitude control are decoupled. This is only true for small velocities.

Insofar as this concerns the visual flight control strategies implemented in this

thesis; I conclude that positional control and navigation can be implemented on top of,

at minimum, a PID attitude controller. By commanding the attitude controller with

pitch and roll deviations from hover, I regulate position with good accuracy; providing

the flight dynamics are slow (close to hover) and wind velocity is low (such as in indoor

flight).

The details of the PID attitude controller are explained in Appendix B.4.

4 The flexion of rotor blades due to difference in relative air velocity in translational flight.
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4.3 SUMMARY

Quadrotor helicopters are a hovering aircraft controlled by symmetrically positioned

counter-rotating rotors. The aircraft moves by adjusting the velocity of these rotors,

which induces a change in attitude of the craft and subsequently a change in position.

I created the ‘wasp’ quadrotor system for visual flight control research. It was one

of the first of its kind and allows real-time visual flight control research on a flying robot.

For this thesis I used the ‘wasp’ system to test biomimetic flight control strategies5.

When testing these strategies I consider the UAV at hover, thus I implemented a

position controller without consideration of the detailed control system dynamics of the

attitude controller. The PID controller was insensitive to the plant variations commonly

encountered in my research; the significant changes in payload and configuration shown

in Appendix A.4.

5 With the exception of using the Pixhawk system for some experiments in Section 6.1





Chapter 5

DIRECT CONTROL

Sections 2.1.3 and 2.1.4 showed that one of the strongest visual responses in insects is

the optomotor response and in conjunction, the wide-field optical flow balance strategy.

Compared with wheeled robotics, one of the difficult challenges of flight control is

the need to control the vehicle attitude. This is especially true in quadrotor helicopters,

because only through changing attitude can one change position.

I propose the log-polar domain as a suitable way to decouple the translational and

rotational flow fields; to facilitate extraction of robot attitude and altitude.

The log-polar transform has two salient properties (explained in the forthcoming

sections) which make it suitable for visual flight control [Tistarelli and Sandini, 1993,

Manzotti et al., 2001, Traver and Bernardino, 2010];

An elegant trade-off between the mutually opposed criteria of wide field-of-view,

high resolution, and minimizing the amount of data to process. Specifically, log-

polar sampling reduces the size of computation up to 30 times while retaining a

higher resolution in the foveal region.

Invariance to rotation and scaling when done so about the optical centre. In this

scenario, patterns in the log-polar image undergo translation, preserving their

shape. This is particularly for scale and rotation-invariant image alignment,

pattern recognition and optical-flow.

These properties are well suited to image processing when moving in a complex

environment. In this situation the optical flow fields will contain rotational and trans-

lational components that, without additional information or assumptions, are difficult

to separate. The biological equivalent of this is the estimation of self motion in insects.

Insects decouple the mixed rotational and translational components of image motion

through wide-field integration of the output of directionally sensitive EMDs (see Sec-

tion 2.1.3.3).

This chapter describes three strategies I developed for attitude estimation and

control of the ‘wasp’ quadrotor. All strategies use optical flow and spatial integration

of optical flow vectors in the log-polar domain.



76 CHAPTER 5 DIRECT CONTROL

This chapter proceeds as follows. Section 5.1 introduces the log-polar transform

and explains why it is well suited for flight control. Section 5.3 describes a method using

integration of optical flow vectors in the log-polar domain to estimate robot attitude

and altitude. Section 5.4 introduces an artificial implementation of the expansion avoid-

ance strategy — called time-to-contact (TTC), again utilising the log-polar domain.

This expansion avoidance strategy is further tested in the behavioural experiments in

Chapters 6 and 7.

5.1 THE LOG-POLAR TRANSFORM

The log-polar mapping is a geometrical transformation which attempts to emulate the

topological reorganization of visual information from the retina to the visual cortex of

primates [Tistarelli and Sandini, 1993, Traver and Bernardino, 2010].

The log-polar operation transforms an image, I[u, v], indexed in the Cartesian

coordinate system (u, v), onto a cylinder I∗[ρ, ϕ], indexed in the polar coordinate system

(ρ, ϕ). Here r denotes radial distance from optical centre (ox, oy), and ϕ denotes angle.

Any (u, v) point can be presented in these polar coordinates;

u = r cosϕ,

v = r sinϕ,

ρ = ln r, (5.1)

where ln = loge. Rearranging (5.1) gives the transform;

ϕ = arctan
v

u
,

ρ = ln
√
u2 + v2. (5.2)

v

u

½

'

Figure 5.1: A schematic of the log-polar mapping demonstrating that the transform is
multi-resolution (see grey area). Regions of different area are mapped into a uniform grid
in the cylindrical image.
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Consider the grey highlighted region in Figure 5.1. The area of the regions in

(u, v) increase with the distance from the origin — in I, when far from the origin, the

mapping of pixels from I to I∗ is many-to-one. Therefore, I∗ is multi-resolution; its

resolution decreases with the axial distance ρ [Wolberg and Zokai, 2000, Peters II et al.,

1996].

Typically, due to this multi-resolution property, a small window that surrounds

the transform origin in I is encoded at full resolution in I∗. The region is known as the

fovea, analogous to the human retina. In the periphery (the pixels not in the fovea) I

is increasingly down-sampled since many pixels in I now map to a single pixel in I∗.

This data reduction can be significant and can speed image processing [Peters II,

2000] (a variation of this concept is used in Section 6.1). Figure 5.2 shows exagger-

ated examples of the log-polar transform multi-resolution and invariance properties.

However, the primary use of the log-polar transform in this thesis is not for its data

reduction property, but for its invariance to scale and rotation; linear scaling and ro-

tations along (x, y) are transformed into linear shifts along (ρ, ϕ) [Wolberg and Zokai,

2000, Peters II et al., 1996, Peters II, 2000].

The magnitude of data-reduction is controlled by the position and size of the fovea.

Therefore, (5.2) is usually [Peters II et al., 1996] expressed as

ρ = M log (r + κ) (5.3)

r =
√

(u− ox)2 + (v − oy)2 (5.4)

ϕ = atan2

(
v − oy
u− ox

)
, (5.5)

where (u, v) are the image plane coordinates, (ox, oy) is the principal point (the notation

of Section 2.2.2), M and κ are real positive parameters that code the foveal region of

I. For specific details on choosing and calculating M and κ see Appendix D.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Images demonstrating the rotation-invariance and multi-resolution properties
of the log-polar transform. As in Figure 5.1, the log-polar images (c),(d), and (e) vertical
axis is ϕ and horizontal axis is ρ. (a) The original image. (b) The image rotated by 73◦.
(c) The original image in the log-polar domain, using a fovea such that spatial extrema
in I map to radial extrema in I∗ (see Appendix D.3). (d) The rotated image in the log-
polar domain; the rotation has become a vertical translation in the ϕ axis. The fovea
was set as in (c). (e) The log-polar transform of (a) using a smaller resolution in the
log-polar domain of 80 × 160 pixels. (f) The inverse log-polar transformation of (e). Due
to the multi-resolution property of the transform, only the area around the fovea has been
recovered with high fidelity.
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5.2 VARIANCE OF IMAGE REGIONS

To mimic the local receptive fields of the ommatidia, for most experiments, I compute

optical flow over small image regions. In this case, it is more likely an image patch

may have insufficient intensity structure (Section 3.1). This would yield an inaccu-

rate optical flow estimate for the region and potentially an incorrect control outcome.

Variance is one of the measures of a distribution, describing how far numbers lie from

18.72 332.01 137.36 2518.53

2290.15 3737.92 4189.23 6331.13

4430.00 4168.17 3018.83 3866.18

2079.82 2928.29 3048.98 2503.59

2585.36 597.24 297.85 140.62

Figure 5.3: Examples of images and their variance (printed above each respectively).
The first row of images are randomly generated. The last 9 images are extracted from a
flight and time-to-collision experiments explained in later sections.

their mean. When applied to an image, it coarsely indicates how much structure is

present. To reduce such inaccurate optical flow estimates from such regions, I do not

compute optical flow if the variance in that region is too low.

I arrived at this heuristic by considering representative images from different datasets

and the environments where I performed experiment, shown in Figure 5.3.

In general this value was 200 for uint8 grey images, which I used exclusively.
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5.3 ATTITUDE ESTIMATION AND CONTROL USING

OPTICAL FLOW

In this section I present a biologically inspired computer vision technique to estimate

the attitude of the ‘wasp’ quadrotor.

Images captured from the onboard camera record image motion due to rotation

about the optical axis and translation in the direction of the optical axis. For a down-

ward facing camera, this corresponds to estimating the heading and altitude compo-

nents of the quadrotor. This is also equivalent to measuring lateral translation and

pitch in an insect1.

UAVs are usually controlled using an attitude estimate obtained from an IMU

consisting of gyroscopes, magnetometers, accelerometers, and a barometer. However,

IMUs are not without problems such as accumulating drift. There are also limitations

of the global positioning system (GPS) network including potential loss of signal for

prolonged periods of time. If it can be shown that vision systems are capable of similar

performance then integrating them into the flight control system seems sensible.

In order to compare with inertial sensors, I measure the yaw rate (change in head-

ing), r, in the aircraft body-frame.

5.3.1 Optical Flow and Phase-Correlation in the Log-Polar Domain

The use of phase-correlation and cross-correlation for registering image shift was in-

troduced in Section 3.3 and the log-polar transform was introduced in the previous

section.

(a) (b)

Figure 5.4: Downward facing images captured while the quadrotor was in hover, showing
the effect of log-polar transformation. (a) Original image. (b) After log-polar transforma-
tion.

1 Geometrically speaking, as the hemispherical compound eyes of the organism point to the side, a
change in pitch induces a rotational flow field, whereas lateral translation produces an expansionary
flow field.
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Application of the cross-correlation function to the log-polar images I∗k and I∗k+1

yields a peak in the response. For rotation only, the peak lies at an offset in the ϕ-axis

of the cross-correlation space. Similarly a constant image scaling will yield an impulse

function offset in the ρ-axis. In the case of a downward-facing camera mounted on the

‘wasp’ quadrotor, constant image scaling (Figure 5.4) is due to motion in the optical

axis, such as that due to a change in altitude. Image rotation corresponds to a change

in heading2 of the quadrotor.

The scaling is inversely proportional to Z2 and consequently the dynamic range

over which this motion can be effectively measured can be small. Taking logarithms

can improve this situation,

log ∆ρ ∝ log ∆Z − 2 logZ. (5.6)

Hence the cross-correlation of the log-polar image space, I∗, is used in practice to

determine a change in altitude (log ∆ρ) and heading (∆α). Here, for a down-facing

camera, α and Z are the heading and altitude in the aerodynamic body-axis described

in Section 4.1.

Using this result, the following section describes a novel altitude estimation and

control system I developed.

5.3.2 Implementation

The quadrotor system used in these tests was the ‘wasp’ quadrotor with Gumstix

single board computer, described in Appendix A and Appendix A.3.3. To the single

board computer I attached the Firefly MV image sensor and ‘fisheye lens’, described

in Appendix A.3.1.

Images are captured at 640 × 480 pixels, at 15 times per second. Each image is

taken with a 15 ms shutter time. The camera is fitted to look directly at the ground.

Captured images from the camera are passed into OpenCV using the libdc1394

library. The image is transformed into log-polar coordinate space, a Gaussian blur is

applied, and the image is broken into several regions. The phase correlation in each

region is computed via the result of a discrete Fourier transform. The discrete Fourier

transform is again performed using the open source fftw3 library.

Simultaneously, the inertial estimate is received over universal serial bus (USB)

from the flight control system. Both the inertial and computed visual yaw results are

recorded on a non-volatile SD card.

2 The terms yaw and heading are often used interchangeably. Yaw is a rotation about an object’s
z-axis and will be used when describing the output of a specific sensor. Heading refers to the direction
the aircraft is facing or tracking. Yaw and heading are coincidental and aligned, subject to calibration,
in this aircraft.
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Figure 5.5: Log-polar image with regions of calculation for phase correlation. The vertical
lines, enclosed in boxes indicating the calculated region, represent the magnitude vector
of the image motion from the previous frame over that region. The vectors shown in this
image have been scaled for readability.

5.3.3 Computation of Heading and Altitude

The log-polar images are processed on a small number of sub-images or regions for

computational efficiency reasons. The image region locations shown in Figure 5.5 were

selected based on the likelihood of significant change of the image data in order for the

phase-correlation to work effectively. The omnidirectional lens magnified rotational

change sufficiently to make this happen.

The total heading and altitude estimate is obtained by averaging the result — the

impulse location, from each regions’ estimate.

All experiments were performed with the ‘wasp’ quadrotor placed in attitude con-

trol mode. The craft is commanded through deviations from zero attitude. This means

the craft is stable in hover without pilot input. For more information on the ‘wasp’

control system, see Appendix B.4.

5.3.4 Test Results

To calibrate the system the quadrotor was first mounted on a mechanical platform,

whose rotational velocity was known and constant, shown in Figure 5.6a. The optical

flow estimate was calculated realtime by the SBC at 10 Hz, limited by the computational

power of the OMAP3503 processor. The inertial estimate was calculated at 100 Hz

by the central processing unit (CPU) and sent to the SBC, where it was recorded for

comparison with the optical estimate. Comparison of the two techniques was performed

offline.
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Figure 5.6: The estimation of quadrotor yaw rate from inertial measurement unit and
image processing pipeline. (a) Quadrotor mounted on rotating platform. (b) Quadrotor
flown in stable flight. (c) Quadrotor flown in aggressive flight in a busy environment
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Figure 5.6 shows the estimated yaw rate of the quadrotor over the flight. The

inertial estimate is measured using the rotational velocity obtained from the yaw-axis

gyroscope. The visual estimate is obtained from the total ϕ-displacement of phase-

correlated samples in the log-polar image domain.

The visual estimate is related to the inertial baseline through a constant, whose

value was determined by fitting the visual estimate to the inertial measurements taken

when the quadrotor was mounted on the rotating platform, Figure 5.6a. This constant

relates the perceived change in image brightness through eqs. (5.5) and (5.6) yielding

the yaw rate egomotion of the quadrotor.

Following the initial calibration, the quadrotor was then flown manually in a stable

hover. Changes in altitude and translation were kept at a minimum while yawing the

quadrotor fore and back, Figure 5.6b and Figure 5.6c.

Results obtained in real time, using phase-correlation on log-polar transformed

images can provide yaw rate estimates for a quadrotor helicopter. These real-time

estimates could be fed back to the quadrotor control system as an aid, or possibly a

replacement, for measurements traditionally obtained from an inertial measurement

unit. The same scaling constant was applied to all results and shows that the visual

estimate of the yaw rate correlates with the actual yaw rate as reported by the inertial

measurement system. It is plausible that an evolved neurological relationship could

embody this correlation; giving the possibility that organisms could use wide-field

integration of optical in the manner demonstrated here.

5.4 TIME-TO-CONTACT EXPANSION AVOIDANCE

Time-to-contact (TTC) is a technique for estimating the time when collision with a

visible object will occur using only visual information. It is used in robotic vision

and visual control because knowledge of the robot velocity or its initial distance from

the object is not required. Based on the equations for the expansion of the optical

flow field it is possible to calculate the number of frames (not time per se) remaining

before contact with an object [Lee, 1976] and [Trucco and Verri, 1998, sec. 8.1]. Time-

to-contact is a formalisation of the expansion/collision avoidance reflex (or the visual

portion only, not the reflex) found in insects and explained in Section 2.1.4.5. It is an

efficient response for the organisms as it does not require solving the general case of

egomotion in order to exhibit useful behaviour [Camus, 1995].

This section describes the related concepts of time-to-contact and focus of expan-

sion as they used frequently through the rest of my work.

Figure 5.7 describes the optical geometry. Let the camera face the same direction

as the direction of motion. As it moves it does so towards an imaginary point known

as the focus-of-expansion (FOE), since this is the point from which the optical flow
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Q

Figure 5.7: The optical geometry of focus-of-expansion (FOE) and time-to-contact
(TTC). The camera (with focal length f) at origin, O, moves along a straight path to
O′ at t′.

diverges.

One can calculate the time-to-contact by tracking a point in the image frame

between frames. A point of interest P at location (x, y, z) is projected through the

focus of projection, p̂ centred at the origin of the coordinate system (0, 0, 0). P is fixed

in space and does not move. The camera mounted on the robot moves forward with

a velocity dx
dt . Point P corresponds to p = [u, v, f ]T, a point on the image plane with

(u, v) pixel coordinates and f the focal length of the lens. As the robot and hence the

camera origin move closer to P, the position of p in the image plane changes.

The TTC can be determined by considering the equilateral triangles;

v

f
=
y

z
, (5.7)

with f a constant value, differentiating with respect to time

v̇ =
ẏ

z
− y

(
ż

z2

)
. (5.8)

Since P is fixed and static in the environment, set ẏ = 0. Substitute y = vz;

v̇ = −v
(
ż

z

)
, (5.9)

and divide by v before taking the reciprocal

v

v̇
= −z

ż
= τ. (5.10)

The unit-less quantity τ is known as time-to-contact.
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FOE

Figure 5.8: A schematic of the principles of focus-of-expansion and time-to-contact.
When making a direct approach to a flat surface, all optical flow vectors emanate from a
single point; the focus-of expansion.

5.4.1 Computing the Focus of Expansion

The FOE is demonstrated in Figure 5.8. It is the point in an image from which all

optical flow vectors appear to diverge [Trucco and Verri, 1998, ch. 8]. The FOE is

a quantity which is used throughout this thesis; in this section I explain how it is

computed from measurements of optical flow [Guissin and Ullman, 1991].

Ideally, one could simply take the intersection of any two optical flow vectors,

but due to measurement errors this would be inaccurate [Camus, 1995], so a large

number of flow vectors are considered. This takes advantage of the (x, y) component

representation of the optical flow vectors. In the case of forward translational motion

and a single object filling the field of view, the FOE may be calculated by averaging

the x and y components of all the optical flow vectors, with each component being

assigned a unit pixel value regardless of its actual magnitude, and treating the average

as an offset from the line of sight, which is assumed to be straight-forward.

Calculate the magnitude, M of the optical flow V in each (x, y) direction

Mu = V2
u

Mv = V2
v. (5.11)

The index of the minimum sum is the point from which image motion appears to
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diverge. This is calculated for each direction,

FOEu = arg min
i

N∑
i=0

Mu

FOEv = arg min
i

N∑
i=0

Mv. (5.12)

Here, FOE = [FOEu,FOEv]
T, a vector specifying the focus-of-expansion (FOE) in

the image (u, v) dimensions.

5.4.2 Efficient Calculation of Time-to-Contact

Figure 5.7 and (5.10) show that the expected divergence of any point along a circle of

a given radius should be equal; e.g., given the assumption of a flat surface and a direct

approach the divergence of any point q should be equal to that of point p.

From this observation, Camus [1995] suggested averaging the optical flow measure-

ments along the circumference of any circle of a given radius, centred at the FOE, to

get a single real-valued measurement for v̇ of (5.10).

The quantity v in (5.10) is then simply the radius of that particular circle. Finally,

a single measurement of TTC is calculated as τ = v/v̇. The number of independent

TTC measurements available is only limited by the image size and the position of the

FOE.

Tistarelli and Sandini [1993] had a similar observation; the time-to-contact of a

point on the retinal plane only affects the radial component of the optical flow. From

this it is sufficient instead of summing around the radius of a particular circle, to sum

values along the ϕ axis in the log-polar transformed image (see Figure 5.1).

5.4.3 Integration and Flight Test Results

To validate the time-to-contact algorithm, I performed several experiments with the

‘wasp’ quadrotor approaching a corridor wall, and computed the time-to-contact from

these real image sequences.

Figure 5.9 shows the performance of the algorithm. The different trials have been

shifted so impact corresponded to frame zero. The log-polar based algorithm correctly

recovered an estimate for time-to-contact, τ , that corresponded to the true frame num-

ber at which impact occurred.

Given an efficient method to calculate time-to-contact values, one must transform

these into a behavioural command to be executed by the control system. In ‘wasp’,

this command was an ‘avoid’ signal, which set the forward velocity of the craft to zero.
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Figure 5.9: The performance of the time-to-contact algorithm in a number of flights.
Each curve represents an individual trial where the ‘wasp’ quadrotor was flown towards
the wall. (a,b) Two subsequent images of the wall towards which the quadrotor was flown.
(c) The predicted time-to-contact value (τ).

This process is demonstrated graphically in Figure 5.10, and comprises the follow-

ing steps;

1. for each new frame calculate the time-to-contact, τ

2. maintain a running history of 5 previous frame numbers, n, and time-to-contact

estimates, τ

3. using these 5 pairs of values, perform a linear regression to calculate the slope,

m, intercept, b, and p-value

4. using the slope of the line, calculate the x-intercept relative to the current frame

number

5. if the x-intercept is < Fmax frames in the future and the line estimate is robust

(p < 0.05), generate an ‘avoid’ command.
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Figure 5.10: An example of the on-line process for evaluating time-to-contact estimates
in order to generate an ‘avoid’ command. The red-lines indicate a running (history of
last 5 frames) linear regression and associated p-values. If p < 0.05 and the calculated
x-intercept is imminent then an ‘avoid’ command is generated.

The value Fmax was tuned iteratively, based on the UAV weight, motor power, and

frame-rate, to be Fmax = 30.

The motivation for reducing the quantitative time-to-contact estimate down to

a qualitative binary command (‘avoid’ or ‘not avoid’) was two-fold. Firstly, to be

consistent with nature, where the avoidance response is thought to be winner-take-

all in insects. Secondly, to reduce false positive ‘avoid’ commands due to incorrect

time-to-contact estimates.

Like the optical flow algorithms on which it was built, experiments showed the

time-to-contact implementation was susceptible to noise, of which a large part was due

to poor SNR in the input image. To mitigate the effects of this, I do not estimate TTC

if the image has insufficient variance, as described in Section 5.2.

The robustness of FOE calculations can be improved by assigning vector compo-

nents values for robustness, i.e., vectors close to the FOE are not penalized because

their actual magnitudes are small.

5.5 SUMMARY

Direct control; or generally, the use of optical flow without the use of a model to capture

important points of the environment is the traditional example of biologically inspired

visual control.

In this chapter I used the log-polar representation of image motion to estimate

quadrotor attitude and to build a time-to-contact system. Just as a retinotopic ar-
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rangement of neurons in the optical lobe (Section 2.1.3.3) is used for wide-field inter-

pretation of image motion I find the log-polar representation efficient for interpreting

motion fields. I construct an obstacle avoidance strategy based on detecting objects

whose relative distance is different to that which surrounds them.

I presented an implementation of the time-to-contact algorithm; in the conventional

Cartesian coordinate system, and in the log-polar coordinate system. The time-to-

contact algorithm is the artificial equivalent to the insect collision/expansion avoidance

response and I use it as a building block in creating the other control systems explained

in the forthcoming chapters.



Chapter 6

CONTROL USING DEPTH

The previous chapter presented the use of optical flow for attitude estimation, altitude

estimation, and flight control. This chapter extends that work to consider other in-

terpretations of the optical flow field. These include; using inertial information to aid

estimating depth from optical flow, and utilizing the depth reading from a Microsoft

Kinect sensor. Both estimates are used to control quadrotor flight.

Consider the optical flow measured as a UAV flies through the world (Figure 6.1).

The optical flow field can be interpreted as the egomotion of the observer, or in terms

of the 3D environment. An expanding flow field with the focus of expansion in the front

can signify an impending collision [Srinivasan, 2006, Barrows et al., 2002]. Similarly,

a high velocity patch embedded in a low velocity surrounding may indicate a nearby

object in front of a more distant background. In a static environment, knowing the

motion of the observer, one can relate optical flow to depth allowing further interpre-

tation. For example, large regions of similar optical flow (and depth) may describe

geometric structures such as planes (like the ground plane).

Focus of Expansion

UAV

Obstacle

Obstacle

Ground Plane

Figure 6.1: A schematic demonstrating patterns of optical flow observed as an observer
moves through the environment. The structure and interpretation of these patterns is used
to direct specific control strategies.
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This chapter presents two different control strategies for the ‘wasp’ quadrotor that,

through the imposition of constraints or the addition of more sensor data, allow greater

meaning to be assembled from image data.

This chapter proceeds as follows. Section 6.1 presents a control strategy that uses

two different interpretations of optical flow; the relative depth to obstacles, and the

detection of regions of depth different to their surroundings. The combination of these

processes are combined in a manner similar to the concurrent biological responses de-

scribed in Chapter 1, to command the ‘wasp’ quadrotor. Section 6.2 utilises a Microsoft

Kinect depth-camera (Section 2.2.3) to estimate the ground plane in the quadrotor’s

environment, and uses this estimate to control the robot altitude. The biological ra-

tionale for each control strategy is presented in the relevant section in turn.

6.1 DEPTH AND OPTICAL FLOW BALANCE STRATEGY

This section describes a biologically inspired obstacle avoidance and navigation strategy

(that I call ‘depth and optical flow balance strategy’) for flying robots that uses two

concurrent control processes whose sum determine quadrotor flight. The goal of this

work was to demonstrate the application of concurrent biologically inspired processes in

real-time, on the robot was not only possible, but the combination of the two processes

led to improved behaviour over individual processes used alone.

The implementation was tested against open-loop datasets and real indoor flight.

In both situations it was able to control the craft heading and pitch during flight,

avoiding both corridor walls and oncoming obstacles.

6.1.1 Biological Basis

As described in Section 1.2.1, experiments have shown that insect exploratory or goal

orientated gross flight behaviour is interspersed with instantaneous control responses

such as object avoidance. Furthermore, considering interneurons outside of the visual

system, Frye and Dickinson [2004] showed that motor output reflects the linear super-

position of visual and olfactory inputs in Drosophila. I propose linearly superposing

an obstacle avoidance and a navigation controller.

Specifically relevant in this section is the work of Tammero and Dickinson and

Srinivasan et al.. Tammero and Dickinson [2002a] demonstrated that fruit flies avoid

obstacles by turning away from regions with high levels of optical flow (OF). Srinivasan

et al. [1996] showed that honeybees balanced the level of lateral OF in order to stay

equidistant from the flanking walls.

Figure 6.2 shows a possible version of this scenario. A vertical-edge attraction

strategy draws the insect towards a fence pale, however, as the fence fills more of the
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Figure 6.2: A schematic demonstrating plausible concurrent control strategies in insects;
mediation of vertical-edge attraction and the optical flow balance strategy.

insect’s vision, the optical flow balancing strategy dominates to keep the insect from

collision.

In an obstacle avoidance context, the important measurement is depth to the ob-

jects one wishes to avoid. Optical flow as a proxy for measuring depth in ones environ-

ment was shown in the biological context in Section 2.1.3.6.

To recover a more accurate depth estimate I augment visual with inertial informa-

tion. This too is biologically plausible [Sherman and Dickinson, 2004]; as discussed in

Section 2.1.2.2.

6.1.2 Previous Work

For ground based vechicles, Coombs et al. [1998] and Camus et al. [1996] introduced the

idea of navigation based on flow field divergence for wheeled robots. Here, the control

responses were generated by balancing optical flow vectors according to a supplied

template.

Hrabar et al. [2005] implemented a combined navigation and obstacle avoidance

system. The authors used lateral cameras and optical flow regulation for navigation,

stereo cameras and triangulation was implemented to compute distances towards de-

tected objects. These two strategies had high computational complexity and required

a powerful and heavy onboard computer.

Lateral obstacle avoidance controllers for a hovercraft using two one-dimensional

lateral optical flow sensors have been developed in by several researchers [Srinivasan

et al., 1996, Serres et al., 2008].
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Figure 6.3: The control system architecture of the ‘depth and optical flow balance strat-
egy’.

Zufferey et al. [2007] implemented a single-camera frontal collision-avoidance strat-

egy computing by the divergence of OF. OF has also been used for altitude control by

several [Ruffier and Franceschini, 2008, Green et al., 2003] authors.

Neumann et al. [1997] trained a neural network to navigate a virtual corridor in

3D by learning the motion of the observer, sufficient to build a background model of

the scene.

6.1.3 Implementation

I begin by estimating the distance to obstacles in the environment; constructing a

depth map. This depth map is generated by measurement of optical flow in a uniform

grid across the image. Grid regions are each analysed singularly, each one’s depth is

estimated by comparing their observed motion with the motion of the craft as measured

by the inertial measurement unit.

Two control processes run simultaneously on the robot, a gross strategy uses diver-

gence of optical flow vectors about the FOE, balancing these according to a predefined

divergence template. A fine strategy looks for outliers from the estimated depth map.

The sum of these processes generates a control impulse to steer a quadrotor helicopter

away from obstacles.

The divergence template (gross strategy) was informed by Camus et al. [1996] and

Coombs et al. [1998]. The fine strategy was informed most closely by Hrabar et al.

[2005, Fig. 4]. However, instead of using stereo vision to compute frontal regions, I use

independent estimates of depth from the horizontal and vertical components (u, v) of

optical flow measurements1. The implementation of these two processes is explained

in the forthcoming sections.

Figure 6.3 shows the system architecture. Experiments were undertaken using the

ETH quadrotor system (Appendix A.4). 640×480 pixel images are captured from a for-

ward facing Firefly MV camera (Appendix A.3.1), mated with a wide angle 180◦ fisheye

lens. Onboard processing was performed using the Kontron SBC (Appendix A.3.4).

1 inspired by the separable nature of the Drosophila horizontal and vertical pathways.
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6.1.3.1 Computing Optical Flow

The Pyramidal Lucas and Kanade (Section 3.2.1) algorithm computes the optical flow

across multiple regions of the image of equal size and spacing, called Nplk. This was a

uniform grid of 12 columns and 9 rows. Considering the image was 640× 480 this gave

a region of interest per optical flow computation node of 53× 53 pixels. The variance

(Section 5.2) for each region is calculated and low values (regions with insufficient

texture) are excluded from subsequent processing.

The Lucas and Kanade algorithm was chosen (Section 3.2.1), and the open source

implementation from OpenCV, cvCalcOpticalFlowPyrLK, was used. The algorithm was

performed over the N rectangular regions with a window size of 10× 10.

6.1.4 Gross Optical Flow Process

(a)

Y+

Y-

X+ X-

(b)

Figure 6.4: A schematic of the divergence template for indoor flight. (a) Indoor image.
(b) Divergence template for wall, ceiling, and floor avoidance to control altitude Z, and
lateral position Y .

I begin by extending the template approach suggested by Camus et al. [1996],

Coombs et al. [1998] to two dimensions; to control both heading and altitude. The

design of the divergence template shown in Figure 6.4 means that large motion on one

side of the image (such as that observed when approaching a planar surface like a wall

or ceiling from an oblique angle) should generate an opposing force. The shape of the

motion template is chosen to constrain the forces. Rotation about the roll-axis creates

flow vectors that are oriented tangentially, rather than radially, which effectively cancel

out [Coombs et al., 1998]. Unlike Coombs et al., I use the motion template to implement

a ground and ceiling avoidance response in parallel with the horizontal aspect.
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The gross force vector is determined using;
Fgx =

∑
x,y∈X−∪X+

vn(x, y)

Fgy =
∑

x,y∈Y−∪Y+

vn(x, y)
, (6.1)

where vn(x, y) is the image velocity, i.e., optical flow, computed over the grid region

whose centre lies at x, y.

The total gross force Fg is computed as the sum of flow vectors in the sub-regions

X− and X+ defined by the divergence template shown in Figure 6.4. A similar com-

putation occurs for the sub-regions Y− and Y+.

6.1.5 Fine Optical Flow Process

Baraldi et al. [1989] showed that in the case of a translating camera and a static

environment, a relative depth map of the scene can be generated from the known

camera velocity using (6.2),

Z = V
D

I
, (6.2)

where V is the velocity of the moving camera, D is the distance of the point (x, y) on

the image plane from the FOE, I is the amplitude of the flow in (x, y), and Z is the

depth of the point in the scene projected in (x, y).

Markel et al. [2002], Lopez et al. [2003] showed that by using an IMU a depth map

can be estimated in the presence of more complex camera motion, such as pitching and

yawing of the craft. I use the implementation derived by Markel et al. to estimate this

depth map before performing a clustering step to identify obstacles to avoid.

6.1.5.1 Computation of Depth from Optical Flow

Figure 6.5 describes the geometry of the system. A model relating the optical flow

components and the known object location in the image plane to the translational and

rotational motion of the vehicle can be constructed [Markel et al., 2002]. The Markel

et al. model describes a single object, however, I apply the concept to each of the N

regions over which optical flow is calculated. As previously stated, the environment is

assumed stationary.

The translational velocity Vt and angular rates ω of the camera in the camera

frame of reference are taken from the IMU and given by the column vectors;
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Figure 6.5: Geometry description showing the reference frames of the camera and control
system.

Vt = [U, V,W ]T

ω = [ωx, ωy, ωz]
T. (6.3)

For a stationary object, the total velocity due to camera translation and rotation in

the camera frame of reference is given by

Vp = Vt − ω ×Rp, (6.4)

where

Rp = [X,Y, Z]T (6.5)

is the relative position of the object p with respect to the camera range-to-target, with

the X axis along the optical axis, and

Vp = [Ẋ, Ẏ , Ż]T, (6.6)

is the total velocity in the camera frame of reference. In component form the total

velocity is given by 
Ẋ

Ẏ

Ż

 = −


U

V

W

−

Zωy − Y ωz
Xωz − Zωx
Y ωx −Xωy

 . (6.7)

The location of the object in the image (pixel location) is given by the angles εy
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and εz, as a function of range components

Y

X
= tan(εy) ≈ εy

Z

X
= tan(εz) ≈ εz, (6.8)

where ≈ represents the standard ‘small angle’ approximate equality. Because obstacles

to avoid lie in the centre of the frame as approached, the small angle approximation

employed here is reasonable.

Using the definition of the optical flow velocity components from (3.3) — (vu, vv),

at the angular pixel location (εy, εz), taking the derivatives of (6.8) yields

(u, v) , (ε̇y, ε̇z)

= (
Ẏ

X
− Y Ẋ

X2
,
Ż

X
− ZẊ

X2
). (6.9)

Substituting (6.7) and (6.8) into the optical flow components given by (6.9), then

separating the translation and rotational components yields the desired relationship

between the optical flow velocities and the motion parameters for the case of stationary

environment;

vu =
1

X
(−V + Uεy) + ωxεz + ωyεyεz − ωz(1 + ε2y)

vv =
1

X
(−W + Uεz) + ωxεy + ωzεyεz + ωy(1 + ε2z). (6.10)

Again, in (6.10) all parameters are assumed known except the down range compo-

nent, X, and the optical flow components vu and vv for each pixel. From the Lucas and

Kanade calculations, the optical flow components vu and vv are available, thus giving

two estimates of range for each region in the image. Re-arrangement gives;

Xu =
−V + Uεy

vu − ωxεz − ωyεyεz + ωz(1 + ε2y)

Xv =
−W + Uεz

vv + ωxεy + ωzεyεz − ωy(1 + ε2z)
. (6.11)

These calculations are repeated for each region in the image yielding a relative

depth map for the environment.
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6.1.5.2 Clustering of Computed Depth Map

Once the depth map is computed, the estimated depth is grouped into clusters using

the k-means clustering algorithm. K-means clustering is a method of cluster analysis

which aims to partition n observations into k clusters in which each observation belongs

to the cluster with the nearest mean.

Each observation is x = [Xu, Xv]
T, calculated in (6.11). The set of observations

(x1, x2, . . . , xn) contains the depth estimates for all grid regions in the image. Clustering

aims to partition the observations into k sets, where (k < n) and S = S1, S2, . . . , Sk so

as to minimize the within-cluster sum of squares.

arg min
S

k∑
i=1

∑
xj∈Si

‖xj − µi‖
2 . (6.12)

The most common algorithm uses an iterative refinement technique. Given an

initial set of k means (m
(1)
1 , . . . ,m

(1)
k ), which may be specified randomly or by some

heuristic, the algorithm proceeds by alternating between an assignment step and an

update step.

Assignment Step

Assign each observation to the cluster with the closest mean (i.e., partition the

observations according to the Voronoi diagram generated by the means).

S
(t)
i =

{
xj :

∥∥xj −m
(t)
i

∥∥ ≤ ∥∥xj −m
(t)
i∗

∥∥ for all i∗ = 1, . . . , k
}
.

Update Step

Calculate the new means to be the centroid of the observations in the cluster.

m
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

The algorithm is deemed to have converged when the assignments no longer change.

However, because k-means is a heuristic algorithm, there is no guarantee that it will

converge to the global optimum; the result depends on the initial clusters. Because

the algorithm is usually fast, I run it several (n = 3) times with different starting

conditions. This is demonstrated visually using Figure 6.6.

Because k-means is a general clustering technique, its application depends on the

set of observations (x1, x2, . . . , xn). I am interested in differentiating objects based on

their depth, thus each observation is x = [Xu, Xv]
T; the depth estimated from the

optical flow velocity components calculated in (6.11). µi is the mean of points in the

Sth
i cluster.
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(a) k initial ‘means’ (in this case
k = 3) are randomly selected from
the data set (shown in color).

(b) k clusters are created by asso-
ciating every observation with the
nearest mean. The partitions here
represent the Voronoi diagram gen-
erated by the means.

(c) The centroid of each of the k
clusters becomes the new means.

(d) Steps (a) and (b) are repeated
until convergence has been reached

Figure 6.6: A demonstration of the standard k-means algorithm.

6.1.5.3 Responding to Clusters

Equation (6.13) is applied to calculate the total fine force Ff from k detected obsta-

cles (clusters, S1 . . . Sk). Unlike Hrabar et al. [2005], whose system responded to any

obstacle detected, I introduce additional weighting terms to respond more strongly to

large and nearby obstacles located around the focus-of-expansion (FOE), as it is these

that pose the most immediate risk of collision if one is translating forward.

Ff =
k∑
i=1

kl
Si − FOE

× size(Si)× ks × ((Dmax − depth(Si))× kd) , (6.13)

Here × indicates this is a vector operation performed on both (x, y) elements of the

clusters. Si is the centre of the cluster, size(Si) is the size (number of grid regions) of

the cluster, and depth(Si) is the average depth to the ith cluster respectively. Dmax is

the maximum distance to consider obstacles (so nearby obstacles are penalised more).
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FOE is the focus-of-expansion (for details of how this is calculated see Section 5.4.1).

The scaling factors kl, ks, kd, and Dmax were experimentally derived and relate

to the number of grid regions being analysed in the preceding step and the motion

properties of the craft. For example, the large positive values of ks and kl were chosen

to give the quadrotor a sufficiently large turn command that it avoided obstacles in

front when flying forward at its’ normal indoor velocity. The first gating term, ks = 0,

was chosen to minimise the effects of noise due to the incorrect assignment of small

clusters from low optical flow magnitude grid regions. The second gating term, kl = 0

was chosen to prevent large clusters at the edge of the image, such as the corridor walls,

being counted twice — once in the gross process and again detected as obstacles here.

kl =

0 if Si > 300 pixels from FOE

1 otherwise

ks =

0 if size(Si) ≤ 3 grid regions

5 otherwise

kd = 10. (6.14)

In principle this control law is susceptible colliding with objects located at the

FOE, where (6.13) generates zero corrective force (due to the contribution of kl
Si−FOE).

However, in practice this was not encountered in testing due to the inherent noise in the

system; this is an unstable point and therefore, any deviation of the object’s position

away from the FOE results in a corrective force driving it further away.

6.1.6 Computation of Net Control Impulse

The total output force, Ft, from the divergence template (gross process), Fc, and the

clustered depth map (fine process), Ff , are then weighted to form the net control

impulse,

Ft = kcFc + kfFf . (6.15)

The x component of the total force, Ftx is used to control the craft heading, while

the y component, Fty is used to control pitch. The weighting factors kc and kf were

determined experimentally.

Additionally, a 10-element (n = 10), moving average filter is applied to the gross

control impulse, Fc

Fc = Fc−1 −
Fc−n
n

+
Fc

n
. (6.16)
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6.1.7 Test Results

Data from the Rawseeds Bicocca 2009-02-26a dataset [Bonarini et al., 2006, Ceriani

et al., 2009] were used to perform open-loop experiments; tuning the contributions (kc

and kf of (6.15)) of the concurrent control processes to the final output.

Figure 6.7: An overview of the Rawseeds Bicocca 2009-02-26a dataset. The dataset
begins at the red circle and progresses clockwise through the indoor environment. Data
from the corridor (small circle in the centre) was used in Figure 6.8. Data from the large
open space (large circle in grey on the right of the figure) was used in Figure 6.9.

Figure 6.8 shows the contribution of each control process for a corridor section

in the Rawseeds data (small circle, Figure 6.7). Note the two approaching obstacles

(people) in the frame causes impulses in opposite directions. Initially the rightmost

obstacle causes a large response by the coarse process due to its’ size and proximity

to the wall, while the second smaller obstacle is clustered and identified by the fine

process.

Figure 6.9 shows another open-loop experiment from the same dataset; however this

time it uses data from an open section of the Rawseeds data (large circle, Figure 6.7).

Figure 6.9a indicates the robot’s path as it moves through this section. Figure 6.9b

shows the output of the control system as it traverses the path, based on calculating

the optical flow shown in Figure 6.9c. Consider the images taken at t = 18 s and

t = 24 s and the generated control impulse; at t = 18 s the system generates a moderate

strength corrective impulse towards the corridor entry, and once traversing the corridor

the impulse is mostly neutral, keeping the robot in the centre of the corridor.

Several closed-loop experiments were also performed. These were undertaken at

ETH in the corridor environment shown in Figure 6.4 and used the ETH quadrotor

system described in Appendix A.4. The control system was given authority over head-

ing and limited authority over pitch. Unlike the Rawseeds data analysis test, the real
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Figure 6.8: Evaluating the contribution of the gross and fine optical flow processes on
Rawseeds data. (a) Observed image flow at t = 99 s. (b) Contribution to total control
impulse of heading, Ftx, by gross and fine processes from t = 99 s to t = 105 s. Negative
values represent a turn to the left, positive values represent a turn to the right.

flight performance was disappointing. The gross process was able to navigate the corri-

dor and avoid the walls, but oscillated in a stable limit-cycle manner between opposite

sides of the corridor. Unfortunately, the large magnitude of motion from the limit

cycling exceeded the signal from small obstacles, so they were not detected reliably

while oscillating2. However, if the quadrotor was in a stable hover, small obstacles

were detected.

Considerable time was spent tuning kc and kf during these experiments; which

in my experience, relate to the dynamics of the craft and to the structure of the

environment. For example, the onboard PID heading controller3 of the ETH quadrotor

was highly damped, so the magnitude of turn command required was large, however,

this induced limit-cycle oscillations as previously noted. kf was related to the number

of obstacles in the environment and the speed at which they approached. For example,

one common feature of indoor flight was that people often approached the craft, which

required quicker turning responses than if the obstacles were stationary. If the testing

was being undertaken at night, with fewer obstacles, a lower value of kf could be used.

6.1.8 Conclusions and Future Work

The combination of simulation and real flight testing showed this biologically inspired

approach has merit. The current implementation is able to generate correct control

impulses to steer the quadrotor around large obstacles, such as corridor walls and also

avoid smaller obstacles as they are approached.

Real flight testing showed it necessary to dampen rapid control responses using

a moving-average filter, (6.16), often in response to noisy image data. This was due

2 In this regard, testing in a narrow corridor was a challenging flight environment.
3 At that time the autopilot was provided by Asctec and not able to be customized.
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Figure 6.9: Evaluating the performance of the obstacle avoidance and navigation control
system on Rawseeds data for the period t = 0 . . . 25 s. (a) Robot position detail. (b) Gen-
erated control force Ft(x). (c) Optical flow at (left to right, top to bottom) 8,11,14,16,18
and 24 seconds.
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to rapid craft movement causing blurred images, eventually leading to failure of the

control system. This damping reduced the utility of the control system however. Such

damping is not without biological precedent however, as described in Section 2.1.4.8,

insects must frequently inhibit conflicting behavioural responses.

Due to the dependence of kc and kf on the scene in which the quadrotor was

flying, in a real biological system or in an extension of this work, their value should be

adjusted at runtime to suit the broad nature of the environment (how many obstacles

are expected, how nearby are walls).

One of the attractive features of a system of this architecture was the highly struc-

tured input to the control system. A regular grid of optical flow regions, Figure 6.9c,

is well suited to experimenting with other control architectures.

6.2 GROUND AND PLANE DETECTION

To navigate their environment; flying animals need to control their altitude as well as

their horizontal motion. The absolute altitude (above sea level) matters little; it is the

height above ground, h, that is important. Previous authors have used ventral optical

flow to estimate altitude [Neumann and Bülthoff, 2002, Webb, 2007] and for terrain

following [Ruffier and Franceschini, 2004, Srinivasan et al., 2006]. I propose that a

model based approach utilising knowledge that the ground is locally flat can be used

to efficiently estimate altitude.

This chapter introduces a method for finding the ground plane in range data. In

these experiments I use the Microsoft Kinect sensor, which uses a structured light

method to measure depth directly.

I present a sampling strategy and algorithm for finding the dominant plane below

the observer (presumed to be the ground plane) and use the resulting information

to control the quadrotor altitude. Aspects of the sampling strategy are biologically

inspired by the wide-field integration patterns of LPTC cells (Section 2.1.3.4).

6.2.1 Previous Work

The application of plane detection in robotics is not very common - the preference

given to more general mapping schemes such as SLAM. However, for humanoid robots

detection of the inclination of the ground plane is necessary for robust locomotion.

Okada et al. [2001], Lim et al. [2008] apply iterative Randomized Hough transform on

depth data (sonar) for this task with some success.

Most Hough transform applications have been in the field of photogrammetry, aerial

surveying, medicine, and geography. Bi et al. [2009] is the application of the Hough

transform for the detection of planes in helical single slice CT (computed tomography)

scans.
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Sarti and Tubaro [2002] is a thorough introduction in the use of the 3D Hough

transform for the detection of 3D planes in binary data; in this case volumetric density

data obtained from X-ray tomography of bedrock.

Belmans et al. [2009] and Deklerck et al. [2010] utilise the Hough transform in

order to detect orthogonal planes in range data. Given three orthogonal planes it is

shown that it is possible to calibrate the camera’s extrinsic parameters.

There are many works discussing the different variations on the Hough transform

in an algorithmic context. Kälviäinen et al. [1995], Belmans et al. [2009] both include

discussions of extensions to the Hough transform including; the probabilistic Hough

transform, the progressive probabilistic Hough transform, and the inverse progressive

probabilistic Hough transform.

The most similar work is that of Borrmann et al. [2011], who discuss several Hough

transform techniques for plane detection in point clouds. They introduce a new ac-

cumulator design with better cache coherency and access attributes that speeds up

computation when the number of points is very high.

A review of different Hough transform techniques is provided in Section 6.2.3.

6.2.2 Plane Geometry

µ

½

x y

O

z

Á

(x0,y0,z0)

n̂

Figure 6.10: The representation of a plane and its normal, n̂, in 3D space. x0 =
(x0, y0, z0) is a point on the plane.

Consider Figure 6.10. A plane can be represented [Vince, 2004, sec. 1.15] by the

signed distance ρ to the origin of the coordinate system and the slopes mx and my in

the direction of the x-axis and y-axis, respectively:

z = mxx+myy + ρ. (6.17)

However, this representation is prone to numerical issues. To avoid problems with
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infinite slopes when trying to represent vertical planes (a common problem) the normal

form of the plane is preferred. The equation of the plane is then given by

ρ = p · n, (6.18)

ρ = pxnx + pyny + pznz, (6.19)

where p = (px, py, pz) is a point on the plane and n = (nx, ny, nz), a normal vector

perpendicular to the plane. The distance to the origin is ρ.

It is convenient to specify planes in Hessian normal form. If |n| = 1 and ρ ≥ 0, the

unit normal vector n̂ = (nx, ny, nz) is

n̂ =
n

‖ n ‖
, (6.20)

and its components

nx =
a√

a2 + b2 + c2
(6.21)

ny =
b√

a2 + b2 + c2
(6.22)

nz =
c√

a2 + b2 + c2
, (6.23)

giving the constant

ρ =
d√

a2 + b2 + c2
, (6.24)

and thus the Hessian normal form of the plane is

ρ = n̂ · x. (6.25)

Consider the angles between the normal vector, n, and the coordinate system of

Figure 6.10. In spherical polar form, angles θ and φ, (6.25) can be written as

ρ = px cos θ sinφ+ py sin θ sinφ+ pz cosφ, (6.26)

with the components of n̂ = (nx, ny, nz),

nx = cos θ sinφ

ny = sin θ sinφ

nz = cosφ. (6.27)

Hence, θ, φ, ρ define the plane.
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6.2.2.1 Finding the Equation of a Plane from 3 Points

Given a list of points P in 3D, one can find the equation of the plane spanning any 3

non-colinear points [Vince, 2004, sec. 1.15]. Let p1 = (x1, y1, z1), p2 = (x2, y2, z2), and

p3 = (x3, y3, z3) (Figure 6.11).

p1

p2

p3

p3-p2

p1-p2
P

Figure 6.11: Constructing a plane from three points.

The normal to the plane spanned by these points is calculated with the cross

product

n = (p3 − p2)× (p1 − p2). (6.28)

The unit vector to the plane is thus

n̂ =
n

‖n‖
, (6.29)

where n̂ = (nx, ny, nz) and using (6.19), ρ is computed as

ρ = n̂ · p1. (6.30)

Rearranging (6.27) I compute the remaining plane parameters

φ = cos−1 nz (6.31)

θ = sin−1
ny

sinφ
. (6.32)

6.2.3 The Hough Transform

The Hough transform [Hough, 1962] is a method for detecting parametrised objects in

data; such as lines or ellipses in the 2D case and planes in the 3D case. The principle of

this technique is the mapping of a set of points initially defined in Euclidean space into

another parameter space; often called the Hough space. In doing so, certain geometric

primitives can be detected with improved computational efficiently. In practice, the

Hough transform converts a complex pattern detection problem in the image space into

a more manageable peak detection problem in the parameter space [Sarti and Tubaro,

2002].
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For example, consider the normal form of a line;

ρ = x cos θ + y sin θ, (6.33)

where θ and ρ are the parameters of the normal passing through the origin (Figure 6.12).
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Figure 6.12: A comparison of a line in Cartesian space and Hough space (a,b). A
demonstration of how each point on the same line causes an intersection in parameter
space (c,d). (a) The line P and its normal in 2D space. (b) A point on the same line in the
parameter space, represented using the normal form. (c) A line and several points along
that line in 2D space. (d) The same points now parameter space; note the intersections of
the curves, for each x, y there exist two possible solutions, forward and back of ρ = 0.

The parameter space in this case is θ, ρ ∈ R2 and one point p1 = (x1, y1) in 2D

space represents a sinusoid in parameter space (Figure 6.12). Detection of multiple

sinusoid curves passing through the same point in parameter space allows one to detect

straight lines in 2D space.

The same concept can be applied in the 3D case to detect planes in range data [Overby

et al., 2004, Vosselman et al., 2001]. Consider the plane in (6.26) whose parameter

space is (θ, φ, ρ). One plane in 3D space represents a sinusoidal surface in the parame-

ter space (Figure 6.13). Detection of multiple similar sinusoidal surfaces allows one to

detect planes in 3D space.

For detection the parameter space is discretized into Nθ, Nφ, Nρ values for θ′, φ′,

ρ′. A datastructure called an accumulator (A) stores a score for each of these cells.
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In the standard Hough transform (SHT) each point votes for all sets of parameters

(θ′, φ′, ρ′) on which it may lie. After all points have been processed, the cells with the

highest values represent the most prominent planes; those that cover the most points

of the cloud.

The SHT has many limitations for real-time use. It has high computational com-

plexity; for an M×N image it is of the order O(MNNθNφNρ) [Xu and Oja, 1993]. The

determination of peaks in the accumulator is difficult; discretisation means planes may

occupy many adjacent cells, so a sliding window type search must be used to find the

most prominent regions. It also has high memory requirements since a 3D accumulator

has Nθ ×Nφ ×Nρ cells for storage.

6.2.3.1 The Hough Transform for 2D and 3D

Consider a 2D Hough transform; for example a line is represented in E2 space as

y = a · x+ b, (6.34)

where (a, b) are the parameters of the line. The line can be represented by a point with

coordinates (a, b) in the parameter space R2; a, b ∈ R2. Similarly, a point (xi, yi) in E2

is represented by a line in a, b ∈ R2 as

b = −xi · a+ yi. (6.35)

However, if the line has the form x = constant then it cannot be present in param-

eter space a, b ∈ R2, because the y-axis coefficient is zero. For this reason the normal

form of the line is used;

ρ = x cos θ + y sin θ, (6.36)

where θ and ρ are the parameters of the normal passing through the origin, and are

constant for one line. Hence the parameter space in this case is θ, ρ ∈ R2 and one

point p1 = (x1, y1) in 2D space represents a sinusoid in parameter space — shown in

Figure 6.12. During analysis, detection of multiple sinusoid curves passing through the

same point in parameter space allows one to detect straight lines in 2D space.

The same concept can be applied in 3D space [Overby et al., 2004, Vosselman et al.,

2001] to detect planes in range data. Consider one plane belonging to 3D space E3 can

be represented by a point (a, b, c) in parameter space a, b, c ∈ R3,

z = a · x+ b · y + c. (6.37)

Analagous to the reasons explained in the 2D case above (instead the z-axis coefficient

is equal to zero) and further justified in Overby et al. [2004], the normal form of the
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plane is preferred

0 = a · x+ b · y + c

ρ = x cos θ cosφ+ y sin θ cosφ+ z sinφ, (6.38)

where θ,φ and ρ are the parameters of the plane normal passing through the origin

(Figure 6.10) and are constant for one plane.

Hence the parameter space in this case is θ, φ, ρ ∈ R3, and one plane P in 3D

space represents a sinusoidal surface in the parameter space. Detection of the peaks

of the sinusoidal surfaces thus allows detection and yields the parameters of planes in

3D space. Figure 6.13 demonstrates the representation of a plane and its value in the

Hough accumulator.
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Figure 6.13: A comparison of a plane in Cartesian space and as represented in the Hough
accumulator array. (a) Presentation of plane P . (b) Hough accumulator array of plane P .

6.2.3.2 The Randomized Hough Transform

The randomized Hough transform (RHT) [Xu et al., 1990] based plane detection begins

with the premise that a single plane can be determined uniquely with three points

from the range data. These three points in 3D space are mapped into one point in the

parameter space corresponding to the plane spanned by the three points.

Algorithm 1 explains the implementation. The parameter space θ, φ, ρ ∈ R3 is

discretized into Nθ, Nφ, Nρ values. In each iteration, three points p1, p2, and p3 are

randomly selected from P. Using the technique described in Section 6.2.2.1; eqs. (6.28),

(6.30) and (6.32), the parameters, (θ, φ, ρ), of the plane corresponding to these three

points is calculated.

The corresponding cell in the accumulator A(θ, φ, ρ) is incremented. If a threshold

TA is exceeded by the score in the cell then a plane is detected. Otherwise, the algorithm

continues until all the points have been processed or a maximum number of iterations

TI is reached.
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Algorithm 1 Randomized Hough Transform
repeat

choose a point, p1, from the input list at random.
repeat

choose a point, p2, in a neighbourhood around p1
choose a point, p3, in a neighbourhood around p1

until points p1,p2,p3 satisfy the distance constraint
calculate the plane, P , spanned by these points
increment accumulator recording the parameters of P
if accumulator value for P is > TA then

mark P as detected
end if
mark points points p1,p2,p3 as tested

until sufficient planes detected

The computational complexity of finding the biggest plane with area m is approxi-

mately O(min(m3TA, TI)), which is independent of the size of image and quantification

steps [Xu and Oja, 1993, Ding et al., 2005]. Compared to the SHT, the RHT can detect

planes more efficiently.

6.2.4 Implementation

The algorithm was verified initially on synthetic data (images and depth generated via

ray-tracing, Appendix C.3) and subsequently on real-collected datasets of the flight

test environment (Figure 6.14a).

Closed-loop experiments were undertaken using the ‘wasp’ quadrotor configured

with the SBC as described in Appendix A.4. To capture depth images a Microsoft

Kinect sensor (Appendix A.3.2) was used. The sensor was mounted below, and looking

at an oblique angle towards the front, as shown in Figure 6.14. A calibration (Ap-

pendix A.3.2.1) and median filter (Appendix A.3.2.2) was applied to the depth images

before computing the Hough transform.

Given a calibrated Kinect depth camera (Appendix A.3.2.1) the locations of a 3D

point p = [x, y, z] ∈ E3 can be recovered. From the pixel coordinates (u, v), and using

(2.8), the elements of p are;

x = (u− cx)
depth(u, v)

fx

y = (v − cy)
depth(u, v)

fy

z = depth(u, v), (6.39)

where depth is (A.5) and the lens parameters cx, cy, fx, fy are described in Table A.3.

Figure 6.15 shows values of (x, y, z) for a calibrated Kinect image. With three such
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(a) (b)

Figure 6.14: (a) The modified Kinect mounted on the ‘wasp’ quadrotor helicopter. (b)
The false color depth image measured.

calibrated points obtained in this way, I calculate a candidate plane that spans them

using eqs. (6.30) and (6.32) as described in Section 6.2.2.1, before using the RHT to

find the true planes in the depth data.

(a) (b)

Figure 6.15: A Kinect image and the corresponding calibrated points in 3D space. (a)
An image taken of a workshop scene, using the Kinect. A large flat plane is placed in
front of the camera at a distance of 1 m. (b) Pixels in the depth image calibrated and
projected into 3D (grey and red circles). The RHT has successfully detected the plane at
1 m (brightly coloured).

The biggest plane has the largest probability of being detected and because of the

orientation of the Kinect camera (looking predominately at the ground), the biggest

plane should be the ground plane.

Figure 6.16 shows the algorithm applied to a single image from a sequence captured

during flight. Visible in Figure 6.16b, the RHT has reconstructed the ground plane

from the point cloud, Figure 6.16a.

Suppose 1
mth of the points in P lie on the biggest planar surface. The probability

of the three randomly selected points simultaneously belonging to the biggest plane is

thus 1
m3 .

I first implemented the RHT using MATLAB, as described in Section 6.2.3.2, but
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(a) (b)

Figure 6.16: Processing stages in detecting the ground plane. (a) Range data point cloud
in the camera frame. (b) Point cloud transformed into world coordinate frame with the
detected ground plane overlaid.

with several notable differences. Unlike the canonical implementation of Xu et al.

[1990], my implementation does not back-calculate and remove from P all points that

correspond to A(θ, φ, ρ) once TA is reached. I only want to detect the largest plane

(the ground plane) and therefore, the algorithm terminates once TA is met.

From Section 6.2.3.2, algorithm 1, and in particular when detecting only the dom-

inant (ground) plane, the important variables which control the behaviour of the algo-

rithm are; the number of buckets (discretized intoNθ, Nφ, Nρ values), and the threshold,

TA, at which a plane is considered detected. Figure 6.17 demonstrates this. The accu-

mulator threshold and the number of buckets both affect the runtime linearly; this is

intuitive, the more planes need to be tested, the longer the algorithm takes. All four

variables affect the accuracy of the result. TA determines the robustness of the result,

not necessarily the absolute accuracy; a low value means incorrect planes, possibly due

to noise, may be detected in the data, a high value requires more agreement in the

dataset. The number of buckets has a direct relationship on the absolute accuracy

of detection; this is as expected as the number of buckets determines the resolution

(because of quantization) of the result. From these experiments I found the values of

TA = 10, I = J = K = 200 to be acceptable.

The MATLAB RHT prototype was reimplemented using C++. From the recom-

mendations of Borrmann et al. [2011] and based on the low number of planes tested

when detecting the ground plane (Figure 6.17), I implemented a custom accumulator.

Unlike the author’s work (an improved mapping to an in-memory array to preserve

resolution) I chose a sparse tree structure; the first two layers storing θ and φ and the

leaves of the tree storing accumulator values per ρ. This structure is very efficient for

the use-case of detecting the dominant (ground) plane.

Once I have an accurate estimate of the plane parameters (θ, φ, ρ) from the RHT

I calculate the altitude, h, above the ground. More correctly, if the Kinect is located
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Figure 6.17: The effect of the critical parameter on the RHT; the accumulator threshold,
TA (a,b), the number of buckets, Nθ, Nφ, Nρ (c,d). SAD is a measure of accuracy; the
sum of absolute differences in the plane parameters, θ, φ, ρ, relative to the parameters of
the true plane. The number of planes tested is synonymous with the algorithm runtime as
it is the trigonometry calculations which take the majority of the time. The dataset was
gathered in my office, an image and detection of the ground plane can be seen in Figure 6.14
and Figure 6.16 respectively. Each test was performed 50 times (n = 50), these results
show the mean and standard deviation. (a) The effect of TA versus the accuracy of plane
detection. (b) The effect of TA versus the number of candidate planes. (c) The effect of
the number of buckets, Nθ, Nφ, Nρ, versus plane detection accuracy. (s) The effect of the
number of buckets, Nθ, Nφ, Nρ, versus the number of candidate planes.
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at the origin O in Figure 6.10 then

h = ρ/nz. (6.40)

Appendix B.4.1.3 explains the ‘wasp’ quadrotor altitude controller which uses the

barometer and sonar (if attached). In this experiment it was replaced by another

PID controller (Appendix B.4.1, (B.16)) running on the SBC. From (B.16); the PID

output controls the thrust, u(t) = U1, the estimated altitude is that calculated from the

parameters of the ground plane, Ẑ = h, and Kp = 5 and KI = 1 are the proportional

and integral control gains determined experimentally. The SBC executed the control

system at 1
20Hz = 50 ms.

6.2.4.1 Biologically Inspired Non-Random Hough Transforms

The ‘random’ choice of 3 candidate points also has an affect on the runtime of the

algorithm. A ‘naive’ strategy of choosing 3 points independently located anywhere in

the image is not optimal. This result is intuitive; 3 points which are randomly chosen

yet lie very close together in space will be more susceptible to noise (both random and

due to quantization). At the other extreme, points randomly chosen that lie far apart

may not be co-planar4 due to the structure of the environment — if one wishes to detect

only the dominant plane, this situation should be minimised as this represents a wrong

result. Therefore, it follows that the method of sampling points from which to compute

their plane is important to the absolute accuracy and runtime of the algorithm.

Sections 2.1.3.3 and 2.1.3.4 explained how insects use non-random and non-uniform

sampling; encoded via the connection patterns of neurons in the LPTC cells to distin-

guish translational and rotational components of the optical flow field. Similarly, this

section presents strategies for improving the efficiency of ground plane detection by

selecting points for the Hough transformation in a non-random manner. The following

describe the non-random sampling strategies employed and the results of each.

Limited Local Sampling: Borrmann et al. [2010] introduced the idea of a ‘distance

criterion’; the basis of which is that points closer together are more likely to belong

to the same plane than those more distant. On the other hand, points which are too

closely located negatively affect the accuracy of the result. The authors offered this

only as a general principle, not specifying the implementation. One can think of two

domains in which to enforce this criterion; in Cartesian 3D world coordinates and in

2D image plane coordinates.

4 I mean co-planar in the environment; because strictly speaking, the 3 points chosen randomly by
the RHT algorithm are of course assumed to be co-planar when a candidate plane is fit to them.
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Cartesian coordinates: Once the location of points in (X,Y, Z) has been recovered

using the calibrated Kinect, depth points which lie far away in 3D space are

ignored. Formally, only points where dist(p1,p2,p3) ≤ distmax, where dist is the

Euclidian point-to-point-to-point distance of all three points and distmax = 4 m

are considered as candidate planes for the RHT. The value of 4 m was chosen

empirically as the maximum flying height in the test environment and as less

than the maximum sensor range of the Kinect. Enforcing the distance criterion

in this domain has a non-negligible runtime cost; in evaluating (6.39) one must

compute the camera transformation and particularly, the calibration/scaling of

the Kinect depth measurement, (A.5).

A better approach would be to apply a comparable and useful ‘distance criterion’

test in the image coordinate system.

Image coordinates: Given that I need to only detect the dominant (ground) plane

and that it should consistently fill a large proportion of the image, I pre-compute

many 3-tuples of image coordinates and from this pool I select tuples until the TA

is reached and a plane is detected. By ensuring the 3-tuples are co-located closely

in the image plane I reciprocate the intent of the ‘distance criterion’ suggested

above.
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Figure 6.18: A comparison of local sampling strategies for plane detection. 100 3-tuple
(p1,p2,p3) are shown as circles. Solid points (centre-right) indicate a single tuple. (a)
The ‘local (image)’ sampling strategy. (b) The ‘orthogonal’ sampling strategy..

I compared two strategies for pre-selecting these 3-tuples in the image plane with

the conventional ‘naive’ approach. Examples of these strategies are shown in Fig-

ure 6.18.

The first strategy, ‘local (image)’, uses 3 points; the first chosen from a uniform

distribution over the entire image, the second two points are chosen from Gaussian

distributions centred about the first. This is essentially the distance criterion pre-

emptively applied in the image domain at the sampling stage (when one assumes the

dominant plane constitutes most of the image).
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The second strategy, ‘orthogonal’, uses 3-tuples of points chosen to be predomi-

nately orthogonal and near to each other, distributed uniformly over the image. This

is reminiscent of the sampling patterns in the lobula plate; I designed this arrangement

to maximise accuracy of dominant plane detection while minimising runtime. After

choosing the first point randomly (uniform distribution), the second point is placed

at a randomly chosen (uniform distribution) angle from the first, at a distance chosen

from a gamma distribution. This distribution is non-symmetric and peaks a positive

distance from the first point. This ensures the second point is located reasonably close

to, but not too near the first point. The third point is orthogonal to the first two at

the same random distance.

Figure 6.19 demonstrates that the ‘orthogonal’ sampling strategy performs just as

well as the distance criterion suggested by Borrmann et al. [2011], while performing

less computation.

6.2.5 Altitude Control Results

The C++ RHT was run on the ‘wasp’ Kontron SBC to control the altitude in real

time. The implementation was as previously described, using the orthogonal sampling

strategy.

Figure 6.20 shows the performance of the control system. The quadrotor was

commanded to hover at fixed altitudes above the laboratory floor. The oscillation in

altitude shows that while the PID controller is not optimal for this task, it allowed

the quadrotor to regulate attitude (at different setpoints) for the duration of the tests

(40 s).

The execution time and the memory usage are important considerations when using

the algorithm in a real-time system. Because of the random nature of the sampling the

runtime and memory usage can vary between iterations.

Figure 6.21 shows the execution time to find the ground plane in a sequence of test

images, repeated 20 times per image. This demonstrates that the execution time of

the RHT algorithm is 0.5 ms. Figure 6.21c shows the execution time when the ground

is shown in a diminishing proportion of the image. While a slight trend is present,

the dominant property is that only a marginally longer runtime occurs despite the

ground only being visible in a small proportion of the image. This constant runtime

demonstrates the effect of the importance sampling approach taken in selecting points

to consider.

6.3 SUMMARY

This chapter described two visual approaches for controlling flight. Section 6.1 pre-

sented a strategy whereby the output of two concurrent visual control processes was
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Figure 6.19: The accuracy and runtime of different sampling strategies for plane detec-
tion. ‘Naive’ is sampling from the whole image, ‘local (cartesian)’ is the application of the
distance criteria in 3D space. ‘local (image)’ is the distance criteria in the image domain,
and ‘orthogonal’ is the biologically inspired strategy. The test image was that shown in
Figure 6.14b. (a) The number of planes tested before detection (the runtime). (b) The
accuracy of the plane detected, SAD as per Figure 6.17 .
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Figure 6.20: Hovering performance for autonomous flights at h = 0.5 m and h = 1.0 m.
Values plotted are the estimated altitude from the RHT. The stepped appearance of the
plot is due to the quantization of the RHT.

combined to control the heading of a quadrotor helicopter. One process balanced the

optical flow from a forward facing camera about the FOE using a general divergence

template. The second estimates depth to obstacles in the environment and searches for

irregular regions of depth. The way in which the processes are combined is reminiscent

of the concurrent visual processes in operation in insects. The control system is able

to successfully navigate an indoor corridor in simulated and real data.

Section 6.2 presented a computationally efficient and real-time implementation of

plane detection. This utilised the representation of, and the search for, planes in the

Hough space. A biologically inspired sampling strategy was shown to improve the

performance of the algorithm and reduce computation time. The altitude controller

constructed from these principles was able to control quadrotor altitude by detecting

the ground plan in images obtained from a Microsoft Kinect in real-time.
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Figure 6.21: Execution times for finding the ground plane in depth images. (a) Mean
and standard deviation to find ground plane in test sequence of images. (b) Histogram of
the same result. (c) The range of execution time for detecting the ground in the presence
of increasing numbers of invalid image points.





Chapter 7

CONTROL USING EDGES AND LINES

This chapter describes a biologically inspired control and avoidance strategy which

analyses horizontal edges in an image and is able to successfully control the flight of a

quadrotor helicopter in simulated and real environments.

I explained in Section 1.2.1 that conventional biologically inspired UAV flight con-

trol uses regulation of optical flow fields. Such designs were motivated by research

undertaken on insects that showed they too predominately use optical flow to control

their flight (Section 2.1.4). However, recent research [Straw et al., 2010, Maimon et al.,

2008] has refined the hypothesis that other visual features are also considered for flight

control. More specifically, edges and lines in the visual field have been shown to assist

in controlling flight behaviour; both altitude and heading.

This chapter proceeds as follows. Section 7.1 describes image processing techniques

for detecting edges in images. Section 7.2 develops a statistical model that describes

the distribution of edges in a planar scene, as might be seen by an insect at hover.

Section 7.3 describes the biological basis for the altitude control strategy in greater

detail. Section 7.4 introduces a number of altitude control strategies based on the

distribution of edges and explains how they were developed through simulated flight

experiments. The chapter concludes with Section 7.5, the results of flight control

experiments and a discussion of how to apply edge based altitude controllers in future.

7.1 EDGE DETECTION

Edges are often associated with the boundaries of objects in a scene. In an image, an

edge is a curve that follows a path of rapid change in image intensity (brightness) and

it can be shown [Barrow and Tenenbaum, 1981] that under general assumptions about

image formation, discontinuities in image brightness are likely to correspond to:

• discontinuities in depth,

• discontinuities in surface orientation,

• changes in material properties,

• variations in scene illumination.
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Figure 7.1: The intensity profile of an example edge. The bottom section is the input
image, the top shows the image intensity for each pixel.

Consider image intensity about an edge (Figure 7.1). The intensity value ranges

from low (black) to high (white). The intensity changes rapidly toward the middle

of the figure, shown by a vertical intensity gradient. Now consider the derivatives of

image intensity shown in Figure 7.2,

(a) (b)

Figure 7.2: Image intensity derivatives of Figure 7.1. (a) The first derivative of image
intensity. (b) The second derivative of image intensity.

It is easier to detect an edge (an abrupt change in intensity) by analysing the in-

tensity derivatives [Trucco and Verri, 1998, sec. 4.2]. Those that use the first derivative

(Figure 7.2a) are called gradient based edge detectors, those that use second derivative

(Figure 7.2b) are called Laplacian based edge detectors.

Gradient based edge detectors look for places where the first derivative of the

intensity has a larger magnitude than some threshold. Laplacian based techniques do

not require an explicit threshold; by using the second derivative they can detect edges

as the zero crossing represents a change in slope of the first derivative. However, due

to the additional derivative step required by Laplacian based detectors, they are more

susceptible to noise.
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7.1.1 Image Convolution and Gradient Detection

The common step in both gradient and Laplacian based edge finding techniques is the

calculation of image (brightness) derivatives using differential1 operators. Previously I

assumed the images were continuous, however, this is not the case as digital images are

sampled and discrete. Subsequently I approximate differentiation through first order

differences. This can be achieved using a convolution filter.

Applying the convolution operation to an image results in a modified version of

the input. The parameter that controls this operation is called the convolution ker-

nel. Through the design of an appropriate kernel specific regions of an image can be

amplified or attenuated. For example, the simple kernel

L =


1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

 , (7.1)

has an averaging effect, giving the image a slight blur, as show in Figure 7.3. Notice

how the sum of the 9-element kernel is 1.0 — when designing a convolution kernel the

sum of the elements of L should be 1.0. If the kernel sum is not 1.0, the resulting image

will be brighter or darker [Trucco and Verri, 1998, p. 56].

(a) (b)

Figure 7.3: Demonstrating the effect of convolving an image with a blurring kernel. (a)
The original image. (b) The modified image.

There are many popular kernels used for edge detection [Ziou and Tabbone, 1998];

gradient based convolution kernels include the Sobel and Prewitt operators, and Lapla-

cian based operators use kernels, known as Laplacian kernels, of various sizes.

The Sobel edge detector calculates the first derivatives of image intensity separately

1 The terms ‘gradient operator’ and ‘differential operator’ are often used interchangeably with the
former specifically in reference to the vector calculus field, Gradient, of the same name.
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for the X and Y axes, using the following two kernels,

Lx =


−1 0 −1

−2 0 −2

−1 0 −1

 , (7.2)

Ly =


−1 −2 −1

0 0 0

−1 −2 −1

 . (7.3)

The gradient, G, in each direction is calculated using

Gx = Lx � I (7.4)

Gy = Ly � I, (7.5)

where I is the input image and � denotes convolution. The gradient magnitude M is

thus

M =
√

G2
x + G2

y, (7.6)

and the direction of the gradient at each point is

φG = tan−1
Gy

Gx
. (7.7)

The Sobel kernels have a smoothing effect, so they are less sensitive to noise than

some techniques and avoid needing to introduce an additional Gaussian blurring step.

Unlike the Sobel edge detector, the Laplacian edge detector uses only one kernel2.

It calculates second order derivatives in a single pass,

M =


0 −1 0

−1 4 −1

0 −1 0

� I. (7.8)

Figure 7.4 shows the magnitude of the detected edges, M, given when convolving a

sample image (Figure 7.4a) with Sobel and Laplacian operators. One can now take the

M image highlighting edges and apply a threshold, ks, to reduce it to a binary image,

B,

B =

1 if M[m,n] ≥ ks
0 otherwise

. (7.9)

2 While the kernel used here is designed to detect horizontal and vertical lines only, there are other
Laplacian kernels that also detect diagonal lines. Some of these can be seen in Table 7.1.
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(a) (b)

Figure 7.4: Demonstrating the effect of the Sobel and Laplacian kernels for detecting
horizontal and vertical edges. (a) The result of the Sobel operator. (b) The result of the
Laplacian operator.

There are several recommended approaches to choosing an appropriate threshold,

ks, depending on the kernel used. For example, the recommended approach for thresh-

olding a Sobel-generated gradient image is to set ks to the root mean square (RMS)

value of the gradient image [Pratt, 2007, ch. 15].

The most popular and widespread edge-detection technique is the Canny method.

The Canny method differs in that it uses two different thresholds (to detect strong

and weak edges), including the weak edges in the output only if they are connected to

strong edges. Therefore, this method is less likely than the others to be fooled by noise

and more likely to detect true weak edges, albeit at the cost of higher computational

complexity [Canny, 1986].

Other kernels to detect lines at different orientations are possible and are shown in

Table 7.1.

7.2 A STATISTICAL MODEL OF IMAGE EDGES

In this section, a statistical model in the edges in an image detected by a camera looking

across a planar scene is developed.

The model was inspired by my observations from images captured onboard the

‘wasp’ quadrotor. That configuration is represented by the geometry visible in Fig-

ure 7.5. The observations were as follows;

1. Because of limited resolution on the camera, edges close together will not be

distinguished.

2. Edges are failed to be detected independently of other edges; they are missed

because they are in close proximity.

These points are synonymous with the important properties of Poisson processes

(Section 7.2.1 explains this in more detail). Using this insight, a model for estimating
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L =

−1 −1 −1

2 2 2

−1 −1 −1



L =

−1 2 −1

−1 2 −1

−1 2 −1



L =

−1 −1 2

−1 2 −1

2 −1 −1



L =

 2 −1 −1

−1 2 −1

−1 −1 2



Table 7.1: Example convolution kernels and the resulting image. The kernels were se-
lected to detect lines at different orientations; horizontal, vertical, 45◦, and 135◦ respec-
tively.
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altitude using edges detected in an image of the scene was created. The model imposes

the following formal assumptions;

1. Edges are assumed to be distributed along the plane as a Poisson process with

intensity λ (this is the mean number of edges per metre).

2. The scene is planar or at least has small height variations compared to the camera

height, h, above the scene.

uf
vC

Image plane

Camera centre

(plane of edges)x
y z

h

"

Figure 7.5: The geometry of the problem. A camera, C, looks out over a plane containing
many edges, ε. The camera has a focal length, f , and is at an altitude, h, above the plane.
The camera image plane coordinates are measured in pixels, (u, v).

7.2.1 Poisson Processes

The Poisson distribution [Ross, 1983] and the underlying Poisson process was discovered

by Siméon-Denis Poisson in 1837. The author’s original work described the properties

of random variables counting number of discrete occurrences of an event, k, over a

discrete time interval. Applications of the Poisson distribution include modelling: birth

defects and genetic mutations; car accidents, traffic flow and gap distance; reliability

engineering, machine and component failures; photons arriving at a telescope; and the

nuclear decay of atoms.

Consider the last example as illustrative, although by definition the others obey

the same underlying process; once a particle decays, it does not decay again.

More rigorously, the basic-form Poisson process is a continuous-time counting pro-

cess, N(t), t ≥ 0, with the following properties:

1. The number of successes in two disjoint time intervals is independent.

2. The probability of a success during a small interval is proportional to the entire

length of the interval.
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Compare these properties with the detection of edges in an image of a planar scene,

explained in the previous section. The consequence of these properties yield:

1. The probability distribution of the number of events in an interval is a Poisson

distribution.

2. The probability distribution of the waiting time until the next occurrence is an

exponential distribution.

3. The occurrences are distributed uniformly on any interval.

The Poisson probability distribution function is defined as

P (k) =
λke−λ

k!
, (7.10)

where k ∈ 0, 1, 2, 3, ... and represents the number of occurrences of an event (known

as the ‘rate parameter’). λ is a positive real number equal to the expected number of

occurrences during the given interval.

The two most common variations of Poisson processes are the homogeneous and

non-homogeneous forms. Both relate to different properties of λ. A homogeneous

Poisson process N(t), yields a Poisson distribution P (k) with associated parameter λτ

such that the number of events in the interval (t, t+ τ ] follows

P [(N(t+ τ)−N(t)) = k] =
e−λτ (λτ)k

k!
, (7.11)

where N(t + τ) −N(t) = k is the number of events in time interval (t, t + τ ]. A non-

homogeneous Poisson process accounts for the rate parameter changing. In this case

the rate parameter is replaced with a generalized rate function, λ(t). The expected

number of events is given by

λa,b =

∫ b

a
λ(t) dt. (7.12)

Thus the number of events in the interval (a, b] follows a Poisson distribution with

associated parameter λa,b

P [(N(b)−N(a)) = k] =
e−λa,b(λa,b)

k

k!
, (7.13)

where N(b)−N(a) is the interval b− a. The probability distribution function (PDF)

and cumulative distribution function (CDF) of a Poisson process is shown in Figure 7.6

for different values of λ.
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(a)

(b)

Figure 7.6: The characteristics of a Poisson process. (a) The probability distribution
function (PDF). The horizontal axis is k, the number of occurrences of an event. The
function is only defined at integer values of k. (b) The cumulative distribution function
(CDF). The horizontal axis is k, the number of occurrences of an event. The CDF is
discontinuous at the integers of k and flat everywhere else (a variable that is Poisson
distributed only takes on integer values).
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7.2.2 System Model

Using a pin-hole camera model [Hartley and Zisserman, 2004], a scene coordinate (x, y)

is mapped to image coordinates (u, v) using

u =
fy

x
, (7.14)

v =
fh

x
=
k

x
, (7.15)

where f is the focal length of the camera and h is the height of the camera above the

scene. These parameters can be combined into a single scale factor, k. If the maximum

image vertical coordinate is vmax, the closest visible scene position is

xmin =
k

vmax
. (7.16)

If the camera has a vertical resolution3 δ, then multiple edges in the region xmin ≤ x <
x1 are not resolvable, where

x1 =
k

vmax − δ

=
k

k
xmin
− δ

. (7.17)

I assume that the first such edge, the edge closest to xmin, will be detected but subse-

quent edges in the region xmin ≤ x < x1 are not detected.

A simple non-homogeneous Poisson process is used to model the detected edges

where the intensity λ(x) varies spatially. The probability of detecting an edge, ε, in

the region (x, x + ∆x), where xmin ≤ x < x1, is the probability that there is an edge

inside (x, x + ∆x) and no other detected edge in the preceding resolution interval.

Mathematically, this can be expressed as

P (εD ∈ (x, x+ ∆x))

= P (ε ∈ (x, x+ ∆x))× P (ε /∈ (xmin, x))

≈ (λ∆x)× P (ε /∈ (xmin, x))

≈ λ∆x exp (−λ(x− xmin)) . (7.18)

Here, ε denotes an actual edge and εD denotes a detected edge. Hence, by definition,

the intensity of the non-homogeneous Poisson process at x is

λ(x) = λ exp (−λ(x− xmin)) . (7.19)

3 Here I use the formal meaning of the word resolution; the smallest detectable change in the
quantity being measured, not the variation in general use; the number of pixels in an image.
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Now consider a more distant edge at x > x1. The probability of detecting this

edge in the image is

P (εD ∈ (x, x+ ∆x))

= P (ε ∈ (x, x+ ∆x))× P (ε /∈ (x2, x))

= λ∆x exp (−λ(x− x2)) , (7.20)

where

x2 =
k

v + δ

=
k

k
x + δ

. (7.21)

So, the equivalent intensity for the non-homogeneous Poisson process is

λ(x) = λ exp

(
−λ

(
x− k

k
x + δ

))
. (7.22)

Let the random variable, X, denote the position of a detected edge in a scene, then

the empirical CDF of the edge position is given by

FX(x) = P (X ≤ x) (7.23)

= lim
N→∞

{ ∑N
i=1Ci(x)∑N
i=1Ci(∞)

}
(7.24)

=
E {Ci(x)}
E {Ci(∞)}

, (7.25)

where Ci(x) denotes the cumulative number of detected edges for the ith scene. Hence,

the CDF can be expressed as [Ross, 1983]

FX(x) =
m(x)

m(∞)
, (7.26)

where

m(x) =

x∫
xmin

λ(u) du, (7.27)

represents the mean number of detected edges in the region xmin ≤ x. Finally, differ-
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entiating the CDF yields the PDF as

fX(x) =
m′(x)

m(∞)
=

λ(x)

m(∞)

=


λ

m(∞) exp (−λ(x− xmin)) xmin ≤ x ≤ k
k

xmin
−δ

λ
m(∞) exp

(
−λ(x− k

k
x
+δ

)

)
x > k

k
xmin

−δ

. (7.28)

From (7.15), the random scene variable, X, maps to the random image variable V

using

V =
k

X
. (7.29)

Hence, the probability distribution function for an image edge, fV (v), is related to the

probability distribution function for a scene edge, fX(x), by

fV (v) = fX

(
k

v

) ∣∣∣∣−kv2
∣∣∣∣ , (7.30)

and thus,

fV (v)

=


λk

m(∞)v2
exp

(
−λ
(
k
v − xmin

))
xmin ≤ k

v ≤
k

k
xmin

−δ

λk
m(∞)v2

exp
(
−λ
(
k
v −

k
v+δ

))
k
v >

k
k

xmin
−δ

=


λk

m(∞)v2
exp

(
−λk

(
1
v −

1
vmax

))
vmax − δ ≤ v ≤ vmax

λk
m(∞)v2

exp
(
−λk

(
1
v −

1
v+δ

))
v < vmax − δ

. (7.31)

7.2.3 Validating the Model

The model was verified in a virtual environment (Figure 7.7a), created using the VRML

modelling language (Appendix C.2). The experiments involved moving the virtual

camera (configured with a known focal length f) in the vertical axis and recording the

image, I, at each instant.

To test the model prediction I use the cumulative sum of image edges. I first

calculate the vertical image gradient by convolving the image with the Sobel kernel,

Gv = I�


−1 −2 −1

0 0 0

+1 +2 +1

 . (7.32)

Here, I = I[m,n] is the input image, Gv = Gv[m,n] is the vertical gradient image (in

the v-axis), and � denotes convolution.
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(b)

Figure 7.7: The virtual simulation environment used for validation of the probabilistic
model of edges. (a) An image from the virtual scene (note, this has be recoloured, replacing
the black background with white for readability). (b) The result of the edge detection
algorithm (left), Bv, and the row-wise (v) sum of edges (right), Ev.
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Figure 7.8: A comparison of estimated camera height versus actual camera height as a
function of λ with a camera field of view 60◦.

I extract a binary image from the gradient image by thresholding,

Bv[m,n] =

1 if Gv[m,n] ≥ ks
0 otherwise

. (7.33)

Here ks is the RMS value of the gradient image, the recommended approach as de-

scribed in Section 7.1. This results in an image with only horizontal images remaining

(Figure 7.7b).

The quantized gradient is then summed in the horizontal direction,

Ev[m] =
N∑
n=1

Bv[m,n]. (7.34)

This represents the number of horizontal edges in the image (Figure 7.7b). Finally, a

running sum of Ev is performed to estimate the empirical cumulative distribution of

horizontal edges,

Cv[n] =

∑m
j=1 Ev[j]∑M
j=1 Ev[j]

. (7.35)

Equation (7.31) showed that the height estimate depends on two model parameters,

λ, describing the number of edges in the environment, and k, which includes the camera

focal length, f . The following experiments explore the accuracy of the model as those

values change4.

4 More precisely, I change the virtual camera FOV in the VRML using (C.1) and as explained in
(2.3), FOV is very closely related to focal length.
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Figure 7.9: A comparison of estimated cumulative probability distribution with the model
(dashed) as a function of height h for λ = 0.35: (a) camera field of view 120◦, (b) camera
field of view 90◦, (c) camera field of view 60◦. The performance of the model improves
when using a camera with a larger field of view.

Figure 7.8 shows the effect of the parameter λ on the height estimate when matching

the empirical data to the statistical model. In this experiment, images from the virtual

world were collected using a camera field of view of 60◦. In this configuration, λ = 0.35

was found to best estimate the height in the simulated environment.

Using this value, further simulations were performed using virtual cameras with

different fields of view, 60◦, 90◦, 120◦. Figure 7.9 shows the model-predicted CDF, from

(7.31), plotted against the real cumulative sum of edges in the image, from (7.35). The

model fits reasonably well with a larger field of view but gets poorer with a decreasing

field of view.

Figure 7.10 extends this work, estimating height by fitting the model CDF to the

empirical CDF. Notice that while the larger field of view plots under-estimate height,
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Figure 7.10: A comparison of estimated camera height versus actual camera height with
λ = 0.35. (a) camera field of view 120◦, (b) camera field of view 90◦, (c) camera field of
view 60◦. The variance of the height estimate decreases when using a camera with a larger
field of view.

the variance of their estimate is lower.

An interesting observation made during simulation is that the peak of the empirical

histogram (for example seen on the right hand panel of Figure 7.13a) appears to be a

linear function of camera height. Figure 7.11 tests this idea, showing that altitude can

be estimated by by detecting this peak alone. There is a small bias that needs to be

subtracted. It is expected that the proportionality factor is a function of λ; this is yet

to be confirmed.

Differentiating the modelled probability distribution function against the image

coordinate v predicts a square-root dependence of the position of the mode versus
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Figure 7.11: A comparison of the image row with the most edges versus the camera
height with λ = 0.35. (a) camera field of view 120 degrees, (b) camera field of view 90
degrees, (c) camera field of view 60 degrees.

camera height, (visible in Figure 7.12),

vmode ≈
√
kλδ. (7.36)

Thus in summary, while the statistical model is a only a simple continuous first

approximation, it manages to capture the behaviour of the system under certain con-

ditions. The model also features a biologically promising characteristic — increasing

the field of view of the camera improves the accuracy and decreases the variance of the

model estimate and as described in Section 2.1.2.1, insects have large FOV eyes.

The following sections apply the model to real data.
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Figure 7.12: The modelled probability distribution functions as a function of camera
height h for λ = 0.35: (a) camera field of view 120◦, (b) camera field of view 90◦, (c)
camera field of view 60◦.

7.2.4 Altitude Estimation in Real Scenes

To validate the model of the previous section, a number of flight experiments were

undertaken; trials 1 and 2 were undertaken in an indoor environment (Figure 7.13a),

and trials 3 and 4 were performed outside (Figure 7.13b).

In all trials, the ‘wasp’ quadrotor was flown at a range of different altitudes and

images were captured. The system was setup in the “Wasp’ Kontron Kinect’ config-

uration of Appendix A.4. Equation (7.15) requires the Kinect visible camera to be

calibrated as described in Table A.3, with f = 525 px.

Figure 7.13 shows representative images from two test flights. Because the model

describes an infinite plane extending out to the horizon, I assume the horizon is in the

centre of the image and disregard information below that point (visible in Figure 7.13a).
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Figure 7.13: Images from flight testing the edge statistics altitude model. (a) An indoor
scene. On the left is the captured image, in the middle is the edges detected using the
Sobel algorithm, and on the right is the sum of edges along the u-axis. Only the bottom
half of the image (below the ‘horizon’) is considered; see text for explanation. (b) An
outdoor scene.

Using (7.31), the altitude is solved numerically5 by fitting the CDF to the cumu-

lative sum. Solutions for many values of λ were calculated.

Figure 7.14 and Figure 7.15 show the results of experiments in two distinct real

environments. In the first environment λ = 3.1 was found to best describe the data

over multiple trials. Similarly in the second experiment, λ = 1.5 was found to be best.

In both experiments the value of λ derived from the first trial in the environment,

could be used to predict the altitude of the quadrotor in subsequent trials in the same

environment. This demonstrates that it is an innate property of the environment and

even if estimating its value from a single image is a nebulous task, once obtained by

any means it can be used to predict altitude.

5 Implementation in python-numpy and python-scipy using sp.optimize.fminbound.
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Figure 7.14: Altitude estimation using edge statistics of a real indoor scene; In both
trials λ = 3.1. (a) Trial 1 estimated versus actual altitude. (b) Trial 2 estimated versus
actual altitude. (c) A comparison of the estimated and actual altitude.

7.2.5 Conclusion

The results show that the derived model captures many features of the real detection

process; in Figure 7.9 the model is able to approximate the distribution of edge infor-

mation in a simulated planar scene, and in Figure 7.10 the model is able to estimate

the height given a distribution of edges.

These two results demonstrate that it is possible to extract sufficient information

from edges in an image in order to estimate the camera height.

In the biological context from which this work was inspired, it is interesting to

consider what accuracy the algorithm requires in order to be of utility to an organism.

An analogous situation is the avoidance response in Drosophila (Section 2.1.4.5), despite
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Figure 7.15: Altitude estimation using edge statistics of a real outdoor scene; In both
trials λ = 1.5. (a) Trial 3 estimated versus actual altitude. (b) Trial 4 estimated versus
actual altitude. (c) A comparison of the estimated and actual altitude.

the insect continually measuring image motion, the avoidance response seems to be

active only when optical flow exceeds a predetermined threshold. Comparatively, the

model-predicted height looks suitable for such decisions.

1. Qualitatively Figure 7.9 shows the model can distinguish large from small heights.

2. Quantitatively, Figure 7.10 shows the model can provide a reasonable height

estimate at low altitudes.

Additionally, given it plausible that an organism could evolve an estimate for λ

for environments relevant to its’ survival, it could subsequently use this value and the

model outlined, to estimate its altitude. Furthermore, the performance of the model

improves when using a wider field of view camera, compatible with insects with wide

field of view eyes.
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Further work is required to improve the model to predict the observed linear height

dependence of the empirical histogram mode. Additional work remains to assess the

model performance when the scene is non-planar, in non-ideal lighting conditions, or

when λ is unknown. Even in these scenarios, the results of Figure 7.10 are encouraging.

If λ can be assumed constant (such as over a small number of frames) the agreement

between the model-predicted and actual height at low values is again reminiscent of

time-to-contact approaches [Horn et al., 2007] which emulate the biological expansion

avoidance response.

7.3 BIOLOGICAL BASIS

Section 2.1.4.2 described the conventional understanding of altitude control; that most

insect flight behaviours are in response to changes in image motion, in particular,

ventral optical flow (Figure 1.6). Neurologically, interpretation of structure from image

motion is undertaken by the optic lobe, and the central brain (Section 2.1.3.1). Even

given the decoupling self from scene motion, there is still a question of how an altitude

control signal is generated.

While investigating altitude control of Drosophila, Straw et al. [2010] found an

additional mode of visual information processing used to control altitude. The authors

confirmed that Drosophila respond to wide-field motion with syndirectional velocity

changes such that vertical, forward, and lateral visual motions elicit movement in

the same direction (i.e., the optomotor response). The authors also confirmed that

Drosophila also avoid strong ventral expansion (i.e., the collision avoidance reflex).

Most novel however, the authors also found that Drosophila adjust their altitude on

the basis of nearby visual features — controlling their altitude based on the visual

location of the dominant horizontal edge in the image.

For more discussion of the role of edges in visual flight control, see Section 2.1.3.5.

One parallel to this work could be biologically inspired UAV attitude control sys-

tems which use horizon detection [Ettinger et al., 2002, Thurrowgood et al., 2009,

de Croon et al., 2011]; however, biologically speaking, these replicate the ocelli and are

neither line nor edge detection schemes.

To my knowledge this is the first system that utilises edge and line information as

the primary and only means of visual control.

7.3.1 Mapping Edges to a Real Controller

The Straw et al. [2010] result was novel but raises interesting challenges as it does

not address practical issues necessary for a biomimetic implementation. This section

discusses those issues and presents rationale for the simulation and implementation

decisions explained in the forthcoming sections.
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Straw et al. [2010] did not investigate the role of depth and whether it affected

which edges the flies responded to, nor did they find how the edge based altitude

controller is mediated with other control systems. In flight, multiple horizontal edges

of various sizes and distance will be visible and the experiments offered no insight into

how flies choose among them. The authors did note “close parallels between the reflexes

used to control altitude and those used to control horizontal course” and so I might

reasonably consider results studying horizontal course for inspiration.

Maimon et al. [2008] looked at horizontal course control and found that flies used

edges to classify objects into long and short classes6, and the attraction or repulsion

of these objects was related to their size in the visual field of the insect (the angle the

object subtends). Conventionally we call an arrangement of edges a line and we may

categorize objects into classes using the line length on its border. However, there is no

strict need nor biological basis to calculate line geometry; biological studies have only

addressed the responses to objects irrespective of their length7. This is fortunate; I

prefer control systems that could feasibly be represented in the brains of insects and

the detection of lines from edges is computationally expensive8.

From these two results and a desire to create a computationally efficient controller,

I approximate horizontal or vertical lines as the sum of edges along the respective image

axis — the row with the largest sum of edge pixels is likely to contain the longest line

along this axis. This approximation is more correct the larger or closer the object is,

as then lines on it will subtend more of our visual field. I validate this approximation

against the Straw et al. [2010] result in Section 7.4.1.

Consider the images in Figure 7.16. In a real environment I observed that we

see a characteristic distribution of horizontal edge information. The most relevant

information (from the perspective of objects we may wish to avoid) is closer to us and

at a similar altitude to our eyes. This is shown on the right of the figure by the total

sum of all edges along the vertical axis.

Looking directly ahead, if we wanted to avoid all obstacles in our path, one strategy

may be to try to place all the visual information below us (consider how featureless the

sky is). If we wanted to fly at an altitude that is likely to contain interesting objects,

we should instead keep those horizontal regions of the image at or near some fixed

position, such as the horizon or the centre of the frame. In a static environment, with

the distribution of edges unchanging, by keeping the longest line (or largest sum in the

v-axis) at a constant angle from the centre of the frame we can control our altitude. In

6 Edges describe only a local feature, defined in image processing terms as a discontinuity in bright-
ness. Lines in this context describe a global feature; the arrangement of edges in a formal pattern.

7 Maimon et al. [2008] do offer a comparison to a similar result found in houseflies where feature
detecting cells respond to vertical contours which might be described as vertical lines.

8 The Hough transform method for detecting lines is O(N2) for N edge points and can have large
memory requirements if searching for lines with a wide range of orientations [Shapiro and Stockman,
2001].
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Figure 7.16: Images demonstrating edge information and detection. On the left is the
original image, I, in the centre is the binary image showing horizontal edges, Bv. To the
right is the sum of horizontal edges in the v-axis, Ev. (a) A real image captured from
the quadrotor helicopter while flying in a laboratory. (b) An artificial image from our
simulated virtual world.

addition, the ability to hold lines at fixed angles from the centre of the field of view is

reminiscent of similar capabilities Drosophila used when approaching or avoiding lines

of varying length, described in Maimon et al. [2008].

From these insights and the biological literature, I hypothesize that a control system

using only a measure of horizontal edges may be useful as an altitude control strategy

and simultaneously as a means for choosing an optimal height to fly when exploring a

new environment.

7.4 EDGE BASED ALTITUDE CONTROL SYSTEMS

In this section I develop an altitude control strategy for the ‘wasp’ quadrotor which

uses only horizontal edges detected in an image of its environment (Figure 7.17).

Initial experimentation was undertaken in MATLAB using the custom VRML vi-

sual simulation environment (Appendix C.2) and quadrotor model (Appendix B.1).

This simulation was chosen to provide the necessary visual fidelity and the correct

simulation of camera motion during manoeuvring.
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Figure 7.17: A description of the geometry of the image and control system. f is the
focal length of the lens, h is the altitude. mp represents the row, v, in the image, I (image
plane, u, v), containing the most horizontal information. H represents the horizon. The
quadrotor position in the world is measured in x, y, z.

Real flight testing used the ‘wasp’ quadrotor, configured with the Kontron SBC

and Microsoft Kinect sensor. Flight testing took place inside the cluttered workshop

shown in Figure 7.18.

Figure 7.18: An image showing the quadrotor in flight during an altitude control exper-
iment.
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7.4.1 Edge Detection

In the absence of neurophysical evidence9 on how Drosophila or other insects detect

edges I stick to the conventional computer vision techniques for detecting edges ex-

plained in Section 7.1.1. Specifically, by calculating the image gradient in the vertical,

v, direction using convolution with the Sobel kernel of (7.2). From eqs. (7.4) and (7.9)

I calculate the binary image Bv = Bv[m,n] in the v-axis.

The binary image is then summed in the horizontal direction,

Ev[m] =
N−1∑
n=0

Bv[m,n]. (7.37)

This is a measure of horizontal information content in the image (Figure 7.16, right).

The row, mp, is that with the largest sum of horizontal information and our approxi-

mation to the row containing the longest line. It is calculated using

mp = arg max
m

Ev[m]. (7.38)

I recreated the Straw et al. [2010] result to test these two hypothesis;

• that the largest sum of edges is a reasonable approximation of the longest line in

an image (while avoiding more computationally expensive line / contour fitting

techniques such as the Hough transform)

• that such a sum is reasonably static relative to the craft’s altitude and thus

suitable for an altitude control system.

Using VRML, I constructed a virtual model of the Straw et al. [2010] experiment

(Figure 2.13b); a long rectangular arena with textured walls and floor. The quadrotor

was flown into this virtual environment and at t = 2 the position of the horizontal edge

was changed. Figure 7.19 shows the resulting quadrotor altitude as the control system

adjusted the height to keep mp in the middle of the image.

7.4.2 Evaluating Altitude Control Systems

Similar to how Dittmar et al. [2010] demonstrated insects can place objects relative to

a detected horizon, I attempted to control altitude by keeping the image row with the

largest sum, mp, at a constant location in the image. I call this the ‘maximum peak

avoidance strategy’.

I make two simplifications; I assume that the insect is level. I also use a sliding-

window filtered version of Ev to reduce noise. I subsequently construct a controller to

9 Analogous to how early research showed that EMDs were the means by which insects sense image
motion.
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Figure 7.19: A recreation of the Straw et al. result to test the control system and to
validate the detection of long horizontal edges. (a) Drosophila (light traces, one per trial)
adjust their altitude in response to the changing position of a horizontal edge (dark trace).
An image from this experiment can be seen in Figure 2.13b. Data courtesy Andrew Straw.
(b) Results from an artificial recreation of the same scenario. The quadrotor (light traces,
Monte Carlo simulation of different starting altitudes) adjusts its altitude in response to
the changing position of a horizontal edge (dark trace).

minimise the error signal

∆ = ms −mp, (7.39)

where ms is the row where the longest horizontal line is expected. The ms parameter

effectively determines the craft’s target altitude and the trajectory taken over obstacles.

∆ is used as the process variable for a proportional-integral (PI) altitude controller

h = kp ×∆ + ki

∫
∆ dt, (7.40)

where h is the altitude sent to the autopilot, and ki and kp are experimentally deter-

mined control gains based on the dynamics of the craft.

To validate this controller I used my simulated VRML virtual environment of

Appendix C.2. The simulation environment was designed to contain multiple obstacles

at varying heights, laid out in such a way that the controller would need to ensure

the craft flew above them during approach and descended once the obstacles were

cleared. I chose boxes for the obstacles and distributed them semi-randomly10 in the

environment. A sample image from the virtual environment is shown in Figure 7.16b.

For testing, the UAV autopilot maintained a constant heading and forward speed

from the starting point until the end of the simulation. Simulation occurred at 25 Hz, an

image was captured, the ‘maximum peak avoidance strategy’ was run and the quadrotor

model was iterated with new h.

Figure 7.20 shows the result of the experiment. A 100 run Monte Carlo simulation

10 The distribution of heights is a sinusoidally modulated exponential, mirrored in the x-axis and
can be seen in Figure 7.20.
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(a)

(b)

Figure 7.20: Simulated results for the ‘maximum peak avoidance strategy’. (a) A single
trial (n = 35) representing the normal behaviour of the control system — all obstacles are
avoided. The plot shows the recorded altitude of the quadrotor model and the autopilot
setpoint, h. Obstacles not on the path of the quadrotor are rendered semi-transparent in
this figure for clarity. Only a small number of the total obstacles are rendered (also for
clarity) — in the simulation the virtual camera perceives many more buildings as shown
in Figure 7.16b (b) Complete results of a 100 trial Monte Carlo simulation.
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was chosen with each trial beginning from a randomly chosen x, constant y location.

The performance of this control system was consistent; all runs avoided the buildings,

the controller ensured a path well clear of the obstacles. The strategy descended once

clear of the obstacles. However, as shown in Figure 7.20, by giving equal weighting

to distant edges as to near edges, the ‘maximum peak avoidance strategy’ caused the

simulated quadrotor to fly unnecessarily high. This behaviour was unwanted and also

inconsistent with the limitations of insect visual systems [Zanker and Zeil, 2000] which

cannot resolve such features at large distances [Maimon et al., 2008].

To test if imposing these limitations on my controller would improve the perfor-

mance, I removed the ability for the system to resolve edges at large distances by using

the depth estimate from the Kinect sensor. This should ensure that the craft does

not fly unnecessarily high and should be more consistent with the limited resolution

of insect vision systems. I call this new algorithm the ‘maximum near-peak avoidance

strategy’.

The ‘maximum near-peak avoidance strategy’ is constructed as follows. Let D be

a depth image with each pixel containing the distance between the craft and objects in

the environment. I modify the binary edge image Bv according to;

Bv[m,n] =

0 if D[m,n] ≥ Dmax

Bv[m,n] otherwise
, (7.41)

where Dmax = 3 m, a number chosen experimentally, far enough from the craft that it

gives a reasonable time to climb over obstacles but not so far that it caused unnecessarily

high flight.

Figure 7.21 shows the result of the ‘maximum near-peak avoidance strategy’. In

this instance the craft was able to avoid obstacles but not fly unnecessarily high above

them. When descending towards objects (seen in the right of Figure 7.21a), sometimes

a strong response and overshoot is observed. This is in part due to the simplistic

PI controller (some overshoot is always expected) and also due to the edge detection

algorithm not detecting edges until they were close to the camera which elicited a very

strong proportional response.

These successful simulations demonstrated the controller has merit. The following

section applies the controller to real data.

7.5 ALTITUDE CONTROL RESULTS

To recreate the ‘maximum near-peak avoidance strategy’ I needed a way to eliminate

distant edges. There are numerous techniques for obtaining depth from a sequence of

images, for initial flight testing, I extended our previous work and used the Microsoft

Kinect [Stowers et al., 2011b] sensor which provided measurements of distance to ob-
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(a)

(b)

Figure 7.21: Simulated results for the ‘maximum near-peak avoidance strategy’. (a)
A single trial (n = 35) representing the normal behaviour of the control system — all
obstacles are avoided. (b) Complete results of a 100 trial Monte Carlo simulation.
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Figure 7.22: A sample frame from a flight experiment. From left to right; the image, I,
the depth map from the Kinect, D, the binary images showing horizontal edges within 3 m
of the quadrotor, Bv, and the sum of those edges in the Ev.
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jects, D, directly. Using D as outlined in (7.41), I removed distant edges. The effect

of this on Bv is apparent in Figure 7.22.

The quadrotor was placed in an ‘attitude hold’ autopilot mode. The altitude, h,

was provided using the ‘maximum near-peak avoidance strategy’. Position in x, y was

controlled by the UAV autopilot. The experimental environment was a cluttered work-

shop containing three benches (visible in Figure 7.16a). The UAV was commanded to

maintain a slight forward attitude such that it would approach the benches (obstacles).

The autopilot held approximately constant heading and forward speed.
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Figure 7.23: Two flight test results from the ‘wasp’ quadrotor. Each test begins with the
helicopter in flight, the control system was enabled at t = 0 s and proceeds until t = 45 s.
Both plots show the current altitude and the altitude setpoint given by the ‘maximum
near-peak avoidance strategy’.

Figure 7.23 shows the result of this experiment. As the UAV moved toward the

object and it became visible (or more correctly, its edges became visible) the ‘maximum

near-peak avoidance strategy’ requested a change in altitude to steer the craft over the

benches without collision.

Requiring the cumbersome Microsoft Kinect for depth measurements is not the

only way to ignore distant objects. By exploiting the depth-of-field property of optical

lenses and selecting an appropriate threshold for edge detection, it is possible to remove

them from Bv.

Figure 7.24 shows flight tests using this approach. Using a Firefly MV imaging

sensor and attaching a variable focus lens (focal length ≈ 1.1 mm) I was able to adjust

the focus point to be ≈ 1 m to 2 m in front of the UAV. This was sufficient to prevent

distant edges from detection; thus approximating the effect of Dmax in the previous

section.
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Figure 7.24: Flight tests showing the performance of ‘maximum near-peak avoidance
strategy’ on images which have reduced depth-of-field. (a) An image showing the effect
of focusing the lens closer to the UAV, thus reducing the depth-of-field; the edges closer
to the camera dominate Ev. (b) The result of two flight trials. In the first trial the UAV
successfully climbs over the benches. In the second trial, the UAV climbs over the first
bench but overshoots the setpoint and flies too high (I limit the maximum commanded
altitude) so I end the test after t = 23 s.

Figure 7.24 confirmed that the obstacle avoidance and altitude control behaviour

first demonstrated in simulated experiments, and later by using the Kinect depth map,

can be recreated using a lens with a short depth-of-field. The results also showed

(in particular Figure 7.24(b)), that the choice of Dmax is important, and a value of

≥ 1 m to 2 m should be selected. Such a range was found to provide a control signal

strong enough to avoid obstacles at this distance, without excessive overshooting.

7.5.1 Tuning the Controller

The tuning parameters of the control strategy; Dmax (the distance threshold) and ms

(the relative altitude setpoint in the image) are both experimentally derived. In my
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experience these are a function of the UAV dynamics and not the scene geometry;

the rate at which it can climb, and the rate it moves towards obstacles. A heavier or

faster moving UAV should define a larger Dmax (and perhaps control gain) so it has

time to see and climb over obstacles as it approaches them. Similarly, ms relates the

geometry of the image sensor to the scene. For an image plane perpendicular to the

ground (i.e., a camera that looks forward) ms should be located below the midline of

the camera’s field of view. However, if the image sensor is mounted looking slightly

toward the ground then ms could be increased toward the horizon (for example). In

the experiments shown, ms = 150 px, or half below the midline. This corresponds to

≈ 10◦ on the Kinect (48◦) total FOV, and ≈ 15◦ on the Firefly MV (≈ 60◦ FOV).

I believe the intrinsic relationship between the UAV dynamics and these tuning

parameters is consistent with an evolutionary view of how similar behaviour constants

should be related to the animal in which they evolved. That is; such parameters should

be useful in more than one environment, but specifically tuned to the organism.

7.6 CONCLUSION AND FUTURE WORK

Both simulated and real flight test results have demonstrated that simple computer

vision techniques can reliably detect edges in the environment. Furthermore, by un-

derstanding properties of the distribution of these edges, an efficient altitude control

system can be developed.

I began by recreating the Straw et al. [2010] result, demonstrating that the largest

row-wise sum of edges is a reasonable approximation of the longest line in an image and

that this feature is sufficiently stable to control the altitude of a quadrotor. Motivated

by this result, I investigated whether other properties of the row-wise sum of edges could

be used to build efficient controllers. Rather than representing the longest line per se, I

demonstrated that this maximum row-wise sum also represents obstacles that a flying

robot should avoid (‘maximum peak avoidance strategy’). Extending on this result I

showed that by applying biological constraints (the limited visual acuity of insects), and

intentionally defocusing the lens, a more effective control strategy can be implemented.

From these experiments I conclude that ‘maximum near-peak avoidance strategy’ is

an effective biomimetic strategy for avoiding obstacles and controlling altitude in an

unknown environment.

Straw et al. suggested that the evolutionary justification for Drosophila tracking

horizontal edges may be to provide landing spots or areas that may contain food.

Similarly, I suggest that ‘maximum near-peak avoidance strategy’ provides a reasonable

choice of altitude for exploration in an unknown environment, one that contains high

information content if the primary UAV task is searching and one that takes the craft

above obstacles and avoids collision.
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The algorithm is computationally efficient; the input image is low resolution, the

edge-detection convolution kernel is small (and readily parallelizable [Khalid et al.,

2011]), and the line detection is a sum and an arg max operation.

Like real biological systems this strategy should operate in conjunction with other

concurrent control processes. For example, it could run at faster-than-realtime; provid-

ing an altitude reference or obstacle avoidance cue while an onboard SLAM algorithm

is performing its expensive bundle adjustment step.

There is scope for improvement in the system I have implemented. Like Tanaka

et al. [2012], I should consider a more robust (or perhaps a lead compensated) attitude

and altitude controller to prevent overshoot. Optical tuning should be undertaken using

a variable-focus, variable-aperture, variable-zoom lens to better constrain the depth of

field. Given depth information, one could investigate weighting the contribution to ∆

((7.39), (7.40)) by the distance of the edge from the horizon (or other setpoint) in a

non-linear fashion. This could give a smoother response as approaching an obstacle.

Similarly, one could also weight edges in the centre of the field-of-view higher than

those at the edge of the image. In some environments, such as negotiating a clear path

between obstacles on either side, this would give a better response by not increasing

altitude unnecessarily.

7.7 SUMMARY

This chapter demonstrated new ways that edge information in images of an organisms

environment can be used to implement a biologically inspired control system. Sec-

tion 7.2 presented a statistical model which demonstrated it is possible — by analysing

the distribution of edges in a scene — to extract absolute altitude if one has some

biologically plausible assumptions about the scene structure.

Section 7.4 showed a biomimetic altitude control and avoidance strategy that used

the distribution of horizontal edges in an image to navigate an indoor environment. Ac-

counting for depth-of-field, this distribution is sufficiently static to provide a convenient

local set point for altitude in a way similar to Drosophila [Straw et al., 2010].



Chapter 8

CONCLUSIONS

This thesis has presented a number of biologically inspired visual control systems for fly-

ing robots. To test each idea I simulated, constructed, and implemented each strategy

on a quadrotor system which I developed. Some hypotheses have been more successful

than others; the edge-based altitude controller of Section 7.4 was sufficiently robust to

control quadrotor altitude and to avoid obstacles. Other work, such as the time-to-

contact log-polar implementation formed just a small part of a larger system. Principles

such as; considering new ways to sample data efficiently, and the use of different do-

mains to amplify or attenuate certain properties of image, occurred in several forms in

different implementations.

This chapter reviews the contributions of this thesis and describes areas of future

work to be undertaken.

Chapters 1 and 2 presented the capabilities of biological and existing computer

vision systems, and how the economy and efficiency of the insect visual system can

provide useful inspiration for designing artificial control algorithms. Chapter 3 intro-

duced image motion and its estimation using optical flow. This included a discussion

of existing and common optical flow algorithms and presented the novel technique I

developed; the shear-average (phase-gradient correlation) technique. Chapter 4 intro-

duced quadrotor helicopters and the ‘wasp’ system I designed. The ‘wasp’ system and

quadrotors are further explained in Appendices A and B.

Chapter 5 describes attitude control systems using optical flow. I find that image

processing in the log-polar domain is computationally efficient and allows extraction of

translational and rotational components of image motion. The log-polar domain and

images represented in it, share many attributes of foveated imaging systems and the

connection patterns (defining the receptive field) of neurons in insect visual systems.

The multi-resolution property of the transform reduces the amount of data to process.

By concentrating the high resolution parts around the focus of expansion it is easy to

implement an efficient collision avoidance time-to-contact (TTC) system.

Chapter 6 investigates the role of depth in flight control. Section 6.1 describes

a control system combining two local strategies; a divergence template for navigation
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using wide-field optical flow balancing, and an obstacle avoidance strategy using depth.

This system was able to navigate a simulated world, but its performance was not suffi-

cient for stable operation in real flight testing. Section 6.2 presented a real time altitude

control system based on detecting the ground plane in depth measurements. A biolog-

ically inspired sampling strategy promoted efficient selection of possible ground-borne

points and reduced computation time. I was the first one to demonstrate quadro-

tor control using a Kinect (only 2 weeks after release), and the implementation and

application of the randomized Hough transform (RHT) in this way was a novel first.

Chapter 7 describes work using the detection and distribution of edges (and lines)

in images to control quadrotor flight. Section 7.2 introduces a statistical model based

on the sampling properties of image sensors and the geometric properties of many nat-

ural scenes which can estimate altitude. The implementation was robust, performing

well for multiple flights in several environments. The model is computationally effi-

cient, biologically plausible, and hints at a possible way that real organisms could use

information in this way to estimate altitude. The model was simulated and tested on

real flights with real data successfully. Section 7.4 is another altitude controller from

a similar idea; that the distribution of edges in the environment is locally static and

reasonably predictably distributed. By detecting the structure of the distribution of

these edges a robot can maintain altitude and avoid oncoming obstacles. Unlike strate-

gies based on image motion the implementation does not require self motion. It is also

biologically plausible; computationally efficient and non iterative. To the best of my

knowledge, the ‘maximum near-peak avoidance strategy’ was the first edge-based bio-

logically inspired UAV control system. It was able to successfully replicate the altitude

control behaviour [Straw et al., 2010] of Drosophila and control a quadrotor helicopter.

I also understand the treatment of edges in an image as a Poission process, and the

application of this to estimate real world state, is a novel first.

The complete ‘wasp’ quadrotor, flying as discussed in (Chapter 7), did so with

software and multiple biologically inspired control algorithms running. The TTC col-

lision avoidance strategy was ever-present, ready to prevent further forward motion

if collision was imminent. While I also retained a manual override, the final imple-

mentation regularly demonstrated to me that biological controllers have merit, if only

they could be combined in an efficient, quantitative and principled way. The following

section describes the future work and research on biologically inspired control I believe

necessary.

8.1 FUTURE WORK

When implemented, each idea showed limitations and areas for improvement. While

some of those limitations were presented in the relevant chapters, they are expanded

on here. In addition I also include recommendations for hardware changes necessary
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to test future hypotheses.

8.1.1 Hardware

In the years since starting this thesis a number of commercial and open-source quadro-

tor systems have become available. Given sufficient financial support I would switch to

one of the Asctec branded research quadrotors, likely the ‘pelican’ (see Appendix A.5).

After personally flying many commercial quadrotors I believe the Asctec attitude con-

troller to be very stable (and with a well specified navigation command interface) and

would continue to do research based on this. The ‘pelican’ includes sufficient payload

capability to carry additional cameras and processing power for a complete panoramic

field-of-view.

Often I was hindered by the lack of an external system to provide true measure-

ments of the quadrotor state1. This made quantitative comparison and tuning of control

loops in a thorough manner difficult.

At times I was limited by the performance of the ‘wasp’ attitude controller and

would consider the presence of a more robust attitude controller on a commercial

quadrotor quite an attractive reason to move away from my custom system. While

PID based systems like mine are robust to changes in the model parameters they do

not make aggressive autonomous flight easy; tending to err on the side of over-damping

and incurring slow dynamics. Because biological responses like obstacle avoidance are

quite strong (dominating other concurrent strategies) and I was unable to test such

responses on the ‘wasp’ system due to this over-damping (and also actuator saturation

from carrying excessive weight).

Since mid 2010 the Robot Operating System (ROS)2 project has improved greatly

and become the de facto standard for robot middleware. While I have several reser-

vations about their architecture, the ROS project contains implementations of almost

everything one would need to perform quadrotor research. I would suggest rebasing

what ‘wasp’ software is still useful (the GUI and vision code) on top of the ROS mid-

dleware and continuing research using that.

8.1.2 Direct Control

I was not entirely satisfied with the performance of the TTC system. It was overly

susceptible to noise; thus to make it reliable I had to reduce its integration in the

whole ‘wasp’ system down to a single binary state of ‘avoid’ or ‘not avoid’. This work

should be re-applied using the approaches outlined in Tistarelli and Sandini [1993]. In

that work the authors take a more rigorous approach to the log-polar transformation

1A motion capture system, such as those made by http://www.vicon.com/ are commonly used by
other Universities

2http://www.ros.org/wiki/

http://www.ros.org/wiki/
http://www.vicon.com/
http://www.ros.org/wiki/
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and formulation of TTC; computing it in addition to a relative distance measurement

(I will come back to this point shortly). The complete formulation only involves image-

derived parameters; like velocity and its derivative, and no motion parameters. The

optical flow does not have to be differentiated to recover the translational flow nor

does the FOE position have to be computed. These are very important features of a

TTC algorithm because, as I found, the rotational velocity and the FOE are computed

indirectly from the optical flow and are therefore, both subject to errors. To the former

point, the formulation of an estimate of relative depth in the Cartesian coordinate

system ( Section 6.1.5.1, (6.11)) can also be accomplished in the log-polar domain

using the approach of Tistarelli and Sandini.

In addition, the formulation of relative (and absolute given inertial information)

distance in the log-polar domain would be helpful to estimate altitude in a more thor-

ough manner. This would be appropriate to extend the work discussed in Section 5.3

which otherwise only considered heading (and this disregarded one of the axes in the

log-polar domain).

If using a frequency domain optical flow computation technique (such as Sec-

tion 3.3) it would also be wise to investigate the work of Srinivasan [2000], a FFT

based method for extracting the FOE. Staying in the frequency domain and consider-

ing the biological implications, I suggest a study of Kern et al. [2005] with respect to

its applications on artificial systems be completed. In that work the authors suggest

that image motion, specifically retinal image flow evoked by translation (as observed by

lateral facing eyes) of the blowfly contains information about not only yaw, but about

nearness of obstacles in the environment. Kern et al. suggests that by combining op-

posing facing HSE cells (cameras in this case) the translational optic flow components

can be enhanced. In particular; the summation of the responses almost exclusively

signifies forward velocity, while differences between the responses almost exclusively

signifies the sideward and yaw velocities. The signals can be separated by low-pass and

band-pass filtering, respectively. Perhaps yaw, forward, and sideward velocity can be

extracted efficiently by considering it in the frequency domain and using these simple

operations.

8.1.3 Edge Based Controllers

The edge based biologically inspired control strategy was an exciting discovery and

presents many opportunities for future work. I shall separate this work into two classes;

improvements to the statistical model of edge distribution and the use thereof, and

further development of the ‘maximum near-peak avoidance strategy’.

One important limitation of the Poission edge model (Section 7.2) is the necessity

of assuming the parameters of the distribution, or as the affect the image; the number of

horizontal lines in the environment. In Section 7.6 I suggest that given a low resolution
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visual system that cannot see great distances, the local structure of the environment,

and the evolution of an insect to inhabit it, it may be realistic that the organism has

evolved suitable values for such parameters. I also propose another means to extract

a useful and quantitative altitude estimate. Section 7.2.4 showed that the Poission

parameters are constant per scene, I suggest that a saccadic flight strategy may allow

extraction of these unknown parameters. Furthermore, due to their constant nature;

the model could be used to extract a time-to-contact (TTC) like quantity by considering

the change in altitude estimate as the quadrotor moves up or down.

I noted in Section 7.6 the improvement on performance that (predictably) only con-

sidering nearby edges had. Two other strategies should be investigated to achieve this.

A variable-focus, variable-aperture, variable-zoom lens should be used for experiments

to understand the relation between depth-of-focus and the control parameters Dmax

and ms (see Section 7.5.1. Relative distance estimation could also be used to constrain

the depth-of-focus. This relative depth estimate could be obtained by considering in-

ertial data and optical flow in an approach similar to Section 6.1, or a comparable

formulation in the log-polar domain [Tistarelli and Sandini, 1993]. Weighting edges in

the centre of the field-of-view, or closer to the insect, could give a smoother altitude

response.

Recently a new generation of micro optical sensors has been produced by Dr.

Geoffrey Barrows (of Barrows and Miller [2001], Barrows et al. [2002]). Using these

sensors3 I believe that a real-time wide field of view edge-based altitude controller could

be implemented on a very small flight platform and microcontroller using the principles

I outlined. This would be a novel first.

Regarding the biological plausibility of this mode of control; Gerke et al. [2011] re-

cently demonstrated an exciting helicopter controller which detects edges from an array

of EMDs. The Borst laboratory also continues to investigate EMDs and their applica-

bility to UAV control [Plett et al., 2012]. I suggest applying the edge based controller

using an array of EMDs to further the argument that it is biologically plausible.

8.2 FINAL REMARKS AND THE APPLICABILITY OF

BIOLOGICALLY INSPIRED CONTROL

The goal of implementing control systems with the robustness and flexibility of those

found in nature still remains. In this work I have investigated and created new ways of

analysing visual information to create quadrotor controllers. The inspiration for these

control systems has always come from the field of biology, from behavioural experiments

that shed light on the structure of insect visual control systems. I have strived not just

to replicate the work of others, which primarily used image motion / optical flow, but

3http://centeye.com/

http://centeye.com/
http://centeye.com/
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to extend it. The highlight of this work was a biologically inspired system which used

edges in the environment to control a quadrotor helicopter.

Fundamentally I remain uncertain of the utility of biomimietic control systems

when used in conjunction with traditional visual control architectures. If one has

already implemented large parts of a SLAM pipeline I believe they should embrace that

architecture and do as much navigation and control in the recovered world coordinate

frame. While the limitations of large maps with respect to SLAM remain, present-day

algorithms are more than sufficient for local control.

However, if one wishes to take a biologically inspired view, there are well tested

algorithms that can be combined with traditional approaches. Terrain following using

ventral optical flow has been well examined by many authors and the prevalence of

a ventral facing camera on mapping and surveying UAVs makes the system readily

implementable. Time-to-contact approaches have also been well tested and continue to

be use on real robot systems. More complex combinations of biologically inspired con-

trollers remain problematic. Early work in this area by Poggio and Reichardt [1976],

Poggio et al. [1991] finds two concurrent controllers (one related to velocity and one re-

lated to position), when linearly combined, explain certain aspects of insect flight. The

problem however, is that there must be many more controllers cooperating in parallel

on a real insect, and understanding their interaction so artificial systems might repli-

cate it remains an unknown and active field of study. Passivity based approaches have

been suggested as one way to compose control laws in a way that provably maintains

certain properties with a certain definition of stability being one of them.

In addition to biologically inspired control systems, I have often made use of bio-

logically inspired sampling strategies and alternative coordinate systems in which one

can represent the environment (log-polar, Hough space, etc). I encourage others to

consider such approaches when performing visual control as they present techniques

for reducing the computational cost of many algorithms.

Regardless of the immediate utility of biologically inspired controllers, the research

into their structure and function still has value. In addition to providing inspiration for

engineering, I believe the mimicry of biological systems can be seen as an experimental

tool to support other fields of research like biology and behavioural neuroscience; both

to validate findings and to propose new hypotheses.



Appendix A

EQUIPMENT

All experimental work was undertaken using a collection of custom hardware and soft-

ware I developed at the University of Canterbury, and in conjunction with two other

institutions; L’Ecole Nationale de l’Aviation Civile (ENAC)1 and ETH Zürich 2. The

system, henceforth referred to collectively as ‘wasp’, was constructed for flight experi-

ments necessary for this thesis.

In the last few years, a number of commercial and research oriented quadrotor and

visual flight control platforms have become available for purchase. With hindsight,

I may have chosen to use one of these systems instead of electing to build my own,

however, due to the time and budget constraints at the time, this was not an option.

Nevertheless, comparisons with other quadrotor systems will be made at the appro-

priate places within this chapter and a review of popular alternatives is included in

Appendix A.5.

This chapter will begin by introducing the structure of the ‘wasp’ system (Ap-

pendix A.1), its architecture (Appendix A.1.1), and focusing on the aspects of the

‘wasp’ software that are most useful for visual flight control research (Appendix A.1.2).

Appendix A.2 and Appendix A.3 describe the quadrotor hardware (the frame, elec-

tronics, controller, etc), and the vision hardware (cameras, lenses, etc). Appendix A.4

describes the different quadrotor configurations — the combinations of different hard-

ware used for the flight experiments. The chapter concludes with a comparison between

the ‘wasp’ system and other flight control experimental platforms (Appendix A.5).

A.1 THE WASP SYSTEM

‘Wasp’ is a collection of software and hardware (collectively referred to as the ‘wasp’

system), available under an open source, free software license, that facilitates rapid

implementation of control systems for robotics research. ‘Wasp’ has been successfully

1http://www.enac.fr/
2http://www.ethz.ch/

http://www.enac.fr/
http://www.ethz.ch/
http://www.enac.fr/
http://www.ethz.ch/
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Figure A.1: The ‘wasp’ system and its application to a quadrotor helicopter.

used to control quadrotor helicopters, fixed wing aircraft and rockets. The system

includes a number of components:

• quadrotor autopilot featuring attitude, hover and altitude hold modes,

• fixed-wing autopilot with GPS position control capability,

• groundstation software for visualisation, command and control of UAV flights,

• software in the loop simulation for fixed wing and quadrotor flight vehicles,

• calibration software for IMU and magnetometer,

• hardware designs for quadrotor autopilot, IMU, GPS, and Gumstix based single

board computer,

• utility libraries of software for visual flight control,

I derived ‘wasp’ from the Paparazzi3 (via ENAC) project in 2008. The two projects

have subsequently diverged in capability, design and focus, although code still flows

between both projects occasionally. The Pixhawk4 system at ETH shares code from

both ‘wasp’ and Paparazzi.

A.1.1 Architecture

Figure A.1 shows the key elements of the ‘wasp’ system. The method of bridging all the

elements together is through the communications infrastructure; a standardised mes-

sage description language. The language makes it easy to add new messages containing

information one might want to send between robots, from robots to the groundstation,

and between the vision system and the real time attitude controller. C-code for pars-

ing, sending and receiving these messages is generated programmatically. In dynamic

languages, it is easy to parse this message description directly (such as is done in the

Python groundstation).

3http://paparazzi.enac.fr/
4http://pixhawk.ethz.ch/

http://paparazzi.enac.fr/
http://pixhawk.ethz.ch/
http://paparazzi.enac.fr/
http://pixhawk.ethz.ch/
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Figure A.2: The ‘wasp’ onboard software architecture. Each block has defined interfaces
for code re-use on other aircraft, and other hardware.

The transport of these messages is sufficiently abstracted, and their content opaque,

that they are utilised to allow visual control code to run either on a desktop PC or

a single board computer on the quadrotor. More specifically and for example, ‘wasp’

defines a command messages instructing the autopilot which attitude it should hold; as

explained earlier, this is a sufficient platform upon which to implement visual control

algorithms.

A.1.2 Software

The ‘wasp’ software is a mixture of C/C++ and Python code and includes the attitude

controller that runs on the quadrotor hardware, and computer vision software to run

on the SBC.

The attitude controller includes an extended Kalman filter and a complementary

filter state estimator. Onboard code is abstracted in terms of common elements of

robotic control, Figure A.2, making re-use on different aircraft relatively easy. For

example, in collaboration with colleagues, I developed hardware implementations for

ARM7 (section Appendix A.2.2), Gumstix (via a user-space Linux application), and

control systems for fixed-wing airplanes and rockets.

Additionally, ‘wasp’ also includes utilities for use on Linux. These include libraries

for preparing synchronized IMU measurements and images acquired from various cam-

eras. This allows fluid mixing of visual control code, it can either run on the same SBC

as the attitude controller, or separately.

A computer vision system must not only be capable of providing useful information,

but able to provide these in a timely manner to have effective control. Because I aspired

to execute computer vision code onboard this imposed another constraint; hardware

small and light enough to be mounted on the vehicle.

To achieve these conflicting requirements software was typically developed in the

following manner;
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1. A prototype was created on the host computer using Python or MATLAB. Simu-

lations were performed using the tool appropriate for the chosen language and

development environment (Appendix C).

2. A beta version was implemented in C/C++ and software-in-the-loop simulations

were undertaken to check performance and consistency with the prototype.

3. An initial hardware-in-the-loop test was performed. On some occasions the code

was tested on the SBC using the actual imaging hardware. On other occasions

the code was tested on a more powerful computer using images captured using

the SBC and transmitted to the host computer over wireless or USB.

4. The C/C++ version was tested on the quadrotor using a hardware-in-the-loop

approach. Depending on the experiment this meant giving limited authority to

the controller while under the supervision of a manual pilot, running the system

while tethered to the ground.

5. The finished software was deployed onto the SBC for flight testing.

The flexibility and decoupling of function (computer vision processing, real-time

control) from computer node was an important feature of development, and one that

many other robotic developers realised. The following section compares prominent

robot development systems from other laboratories.

A.2 QUADROTOR HARDWARE

A custom quadrotor was constructed in association with ENAC for experiments neces-

sary to this thesis. Figure A.1 shows that the quadrotor features two major electronic

subsystems, the hard real-time flight control system, and the soft real-time vision pro-

cessing system.

This section describes the construction of the ‘wasp’ quadrotor hardware and elec-

tronics. For more detail see Drouin and Warmers [2008], which describes the similar

Paparazzi system. For schematics see the ‘wasp’ website5.

A.2.1 Processing Electronics

The flight control system is based around a 32bit LPC2148 ARM7 micro-controller

running at 60 MHz. This processor runs the computationally intensive control and state

estimation algorithms. The quadrotor is flown by radio control in stability augmented

mode, or autonomously commanded using a remote ground-station.

The ARM7 micro-controller and related hardware are physically arranged in a

stacked manner. As can be seen in Figure A.3, the top PCB contains the GPS receiver

5http://www.waspuav.org/

http://www.waspuav.org/
http://www.waspuav.org/
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Figure A.3: The ‘Wasp’ flight control electronics, featuring global positioning system
(GPS) receiver (top printed circuit board (PCB)), inertial measurement unit (IMU) (centre
PCB, partially obscured), and central processing unit (CPU) (bottom PCB). To the left
of the stack is the XBee wireless radio.

and antennae, the middle board contains the inertial measurement uni, and the bottom

PCB contains the CPU, power supply, barometer and connectors.

Two forms of communication with the quadrotor are present. An XBee 2.4 GHz

modem is used for transmission of flight telemetry and commands to the ground-station.

A model aircraft radio receiver is used for commanding stability augmented flight using

a traditional model aircraft radio transmitter. The receiver signal is analysed directly

by the CPU before generating the necessary control signals for the motor controllers -

all fight, even manual, is fly-by-wire.

A.2.2 Quadrotor Chassis and Construction

The quadrotor hardware consists of a cross-frame made of square aluminum tubes

joined by GFC plates in the center. This design has proved to be robust, usually

only requiring a propeller replacement after a crash. On this frame are mounted four

brushless motor / propeller combinations, four brushless motor controller, the avionics

and the battery. Two opposed mounted propellers with a distance of 0.37 m are counter-

clockwise rotating and the other ones are clockwise rotating.

All control is obtained by manipulating the speed of these propellers. Two opposing

pairs of propellers rotate in opposite directions. There are no other mechanical parts

to control the flight direction and the speed of the quadrotor.
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A.2.3 Quadrotor Drive Section

Pounds et al. [2010] showed actuator performance is a critical element in attitude

controller performance. Based on these recommendations I chose Roxxy2824-34 motors

with the characteristics listed in Table A.1.

Speed 1000 rpm/V

Power (max) 90 W

Thrust (max) 580 g

Weight 48 g

Dimensions 28.8 × 26 mm

Table A.1: Characteristics of the Roxxy2824-34 motor.

These motors are driven by brushless controllers from Mikrokopter6 and Speedy-

BL7. These controllers were selected after experimenataion [Drouin and Warmers, 2008]

and based on the findings of Pounds et al. [2010], Hoffmann et al. [2007].

The authors showed that the performance of the motor controllers greatly affects

the performance of the rotor system, in both efficiency and dynamics. The performance

of the propulsion system is also affected by the refresh rate and synchronous/asyn-

chronous nature of the commands sent to the controller. Commercial hobby brushless

controllers typically use a servo PPM signal with a refresh rate of 40 Hz, introducing a

25 ms pure delay. The chosen controllers use digital communications for a refresh rate

up to 1 kHz, reducing the delay to 1 ms. Simulation by Hoffmann et al. [2007] and my

own experimental experience agree that this parameter plays a significant role in the

performance of the craft.

The brushless controllers are connected via I2C. The I2C interface has a data rate

of 400 kHz and control loop refresh rate of 200 Hz. The motor and controller generate,

in combination with EPP1045 10× 4.5 propellers, a maximum thrust of 5.6 N for each

motor. All electronics are powered by 3-cell Lithium polymer (LIPO) batteries (11.4 V,

2100 mA h, 180 g).

A.2.4 Inertial Measurement Unit

A second PCB holds the inertial measurement unit. The IMU contains 3 single-axis

gyroscopes (ADXR300), 2 dual-axis accelerometers (ADXL320), a 3-axis magnetometer

(PNI MS2100) and a barometer (MPX6115). All are sampled at 200 Hz. The barometer

is is used in conjunction with the accelerometer and GPS to provide an altitude estimate

through a Kalman estimator (see Appendix B.4.2).

6http://www.mikrokopter.de/ucwiki/en/BrushlessCtrl
7http://www.speedy-bl.com/speedybl-e.htm

http://www.mikrokopter.de/ucwiki/en/BrushlessCtrl
http://www.speedy-bl.com/speedybl-e.htm
http://www.speedy-bl.com/speedybl-e.htm
http://www.mikrokopter.de/ucwiki/en/BrushlessCtrl
http://www.speedy-bl.com/speedybl-e.htm
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‘Wasp’ uses North East Down (NED) frame, that is positive x is pointing to the

front, positive y to the right and positive z down.

A.2.4.1 Inertial Calibration

Inertial calibration is important for AHRS performance. For the magnetometer, it is

also important that the calibration be performed in the fully assembled vehicle, with all

systems powered. This is the so-called ‘hard-iron’ calibration and allows compensating

any constant parasitic magnetic field generated by the vehicle.

The calibration process was developed at, and in conjunction with, ENAC. It

consists of finding a set of neutrals; ẍ0, ÿ0, z̈0, and scale factors, kx, ky, kz for each

sensor. This is formulated as,
ẍ

ÿ

z̈

 =


kx 0 0

0 ky 0

0 0 kz

 ∗


ẍm
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 , (A.1)

where ẍ, ÿ, z̈, are the true acceleration readings in x, y, z and ẍm, ÿm, z̈m are those

measured by the sensors.

The principle of the calibration is as follows. An accelerometer, on a vehicle at rest

measures a constant vector (the opposite of gravity) in the earth frame, expressed in

the vehicle frame.
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
 , (A.2)

where DCM is a rotation matrix that converts between earth frame and body frame.

It will change when we change the orientation of the vehicle. Nevertheless, a rotation

conserves the norm of a vector. We can thus obtain the following scalar equation that

doesn’t depend on the vehicle orientation

9.81 = (kx(ẍm − ẍ0))2 + (ky(ÿm − ÿ0))2 + (kz(z̈m − z̈0))2. (A.3)

By recording multiple measurements in different orientations one can solve for the

set of scale factor and neutral giving the norm closest to 9.81.

To calibrate gyroscopes a record player turntable (or some other method for rotat-

ing an object at a known speed) is needed. By placing the IMU at opposing orientations

such that it rotates in opposite directions about the same axis, 2 points can be collected.

A 3-point linear fit (including the resting, zero) point can be made.
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The scale factor for the barometer is calculated using a simple linear fit to a number

of measurements recorded at known altitudes.

A.3 VISION HARDWARE

Two types of vision hardware were used for experiments, the Firefly MV machine vision

camera hosting a number of lenses, and the Microsoft Kinect.

Specific research undertaken on the Kinect included additional calibration and

analysis, so that hardware is presented in more detail in Appendix A.3.2. The firefly

MV sensor and lens configurations are included in Appendix A.3.1.

A.3.1 Firefly MV Sensor

Figure A.4: The Firefly MV machine vision camera.

The Firefly MV8 USB machine vision camera (Figure A.4) is produced by Point

Grey research. The camera features a 1/3"Micron image sensor with 752× 480 pixels

and a global shutter, essential for sharp images in high dynamic environments. This

camera was chosen due to the availability of high quality Linux drivers that allow

efficient image transfer over USB with little CPU usage; on both ARM and x86 Linux

platforms. The Firefly MV can be see mounted on the quadrotor in Figure A.9.

The Firefly MV accepts C-mount lenses. Two lenses were used with the Firefly MV

and the determination each lens’ intrinsic properties was made using the conventional

‘checkerboard’ method [Hartley and Zisserman, 2004, ch. 7]. The parameters of each

lens used are listed in Table A.2.

The ‘fisheye lens’ was a Sunex DSL219A miniature fisheye (wide angle) model.

This lens has an effective focal length of 1.8 mm. When mated with the 1/3" image

sensor it delivers a 160◦ horizontal field of view.

The ‘normal lens’ was of unspecified origin.

8http://www.ptgrey.com/products/fireflymv/fireflymv_usb_firewire_cmos_camera.asp

http://www.ptgrey.com/products/fireflymv/fireflymv_usb_firewire_cmos_camera.asp
http://www.ptgrey.com/products/fireflymv/fireflymv_usb_firewire_cmos_camera.asp
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Fisheye Lens Normal Lens

cx 3.234× 102 3.195× 102

cy 2.752× 102 2.554× 102

fx 4.448× 102 2.738× 103

fy 4.796× 102 2.779× 103

k1 −3.271× 10−1 2.190× 10−1

k2 1.129× 10−1 −1.599× 101

p1 −1.945× 10−3 −1.239× 10−2

p2 −1.196× 10−3 −2.643× 10−3

k3 N/E N/E

Table A.2: Intrinsic calibration values for lens used with the Firefly MV machine vision
camera. N/E means the parameter was not estimated.

A.3.2 Kinect Image Sensor

The Microsoft Kinect (Figure A.5a) is a low cost computer vision peripheral, released

November 2010, for use with the Xbox 360 game system as a game controller. The

device can be modified to obtain, simultaneously at 30 Hz, a 640×480 pixel monochrome

intensity coded depth map and a 640× 480 RGB video stream.

(a) (b)

Figure A.5: (a) An unmodified Kinect. From left to right the sensors are; the IR
projector, RGB camera, and monochrome (depth) camera. (b) The Light CodingTMIR
pattern projected onto the environment.

The Kinect sensor connects to the PC/XBOX using a modified USB cable.9. How-

ever, the USB interface remains unchanged, and subsequent to the Kinect release, the

protocol10 was decoded and software to access the Kinect was created.

The Kinect features two cameras, a Micron MT9M112 640×480 pixel RGB camera

and a 1.3 Megapixel monochrome Micron MT9M001 camera fitted with an IR pass filter.

Accompanying the monochrome IR camera is a laser diode for illuminating the scene.

The depth map has 11-bit resolution and the video hardware 8-bit resolution. Both

9required to provide additional current
10gratefully started by the OpenKinect project; https://github.com/OpenKinect

https://github.com/OpenKinect
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cameras deliver 640 × 480 pixel images at 30 Hz and have an angular field of view of

58◦ horizontally, 45◦ vertically and 70◦ diagonally. The spatial, (x, y), resolution (at

2 m from the sensor) is 3 mm while the depth, z, resolution at the same distance is

10 mm.11

A.3.2.1 Calibration of the Kinect Sensors

Depth Camera Calibration: The depth camera returns an 11–bit number (raw

values in the range 0 . . . 2047) which needs further processing in order to extract the

true depth from the sensor. A calibration procedure was performed whereby a number

of reference images were captured at known distances (Figure A.6).

(a) (b)

Figure A.6: The calibration environment for testing. The board in the centre of the
frame is placed 650 cm from the image plane. (a) Image captured from RGB camera. (b)
False coloured depth map from depth camera.

This process was repeated multiple times over varied ambient light conditions in

order to check the insensitivity of the depth measurement to environmental conditions.

The results of this calibration procedure is shown in Figure A.7.

A second order Gaussian model was found to be an appropriate fit (r2 = 0.9989)

for the data over the calibrated range. Let depth(x) be the true depth from the image

sensor, and x the raw range value, then

depth(x) = a1 ∗ exp(−((x− b1)/c1)2) (A.4)

+ a2 ∗ exp(−((x− b2)/c2)2), (A.5)

11provided by the PrimeSense reference design for the PS1080 chipset used in the Kinect. http:

//www.primesense.com/?p=514

http://www.primesense.com/?p=514
http://www.primesense.com/?p=514
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Figure A.7: Kinect depth camera calibration results and line of best fit.

gives the true where

a1 = 3.169× 104

b1 = 1338.0

c1 = 140.4

a2 = 6.334× 1018

b2 = 2.035× 104

c2 = 3154.0.

It can be seen from the calibration results (Figure A.7) that the depth map is

accurate and repeatable over the 0.4 . . . 7.0 m range. Additionally, if the Kinect is

unable to estimate the depth to certain regions in the image, those pixels are filled

with the value 2047, making it easy to ignore these pixels from further image analysis.

Camera Calibration and Alignment: The intrinsic and extrinsic parameters of

both cameras must be known so their images may be represented in a single co-ordinate

system. Standard stereo computer vision techniques illustrated in Figure A.8 were used

to perform this calibration [Hartley and Zisserman, 2004].

The RGB camera intrinsic parameters was calculated using the chessboard ap-

proach and the implementation from OpenCV (cvFindChessboardCorners was used).

Calibration of the intrinsic parameters for the depth camera was performed by manu-

ally picking out the chessboard corners from the depth image. The calibration results

for the two cameras are shown in Table A.3.
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(a) (b)

Figure A.8: The chessboard approach for calculating the camera intrinsic parameters for
both two cameras. (a) and (b) Manual matching of 4 points in both images (the corner of
the chessboard) in order to calculate R and T matrices.

RGB Camera Depth Camera

cx 2.62× 102 3.51× 102

cy 3.29× 102 3.02× 102

fx 5.22× 102 5.80× 102

fy 5.25× 102 5.38× 102

k1 2.45× 10−1 −2.01× 10−1

k2 −8.39× 10−1 9.82× 10−1

p1 −2.05× 10−3 −7.72× 10−4

p2 1.49× 10−3 4.89× 10−3

k3 8.99× 10−1 −1.38

Table A.3: Intrinsic calibration values for the Kinect RGB and depth cameras.

The extrinsic parameters, the physical relationship between the cameras, was com-

puted by manually matching the outline of the chessboard between the frames. The

rotation (R) and translation (T ) matrices were thus computed to be;

R =


9.99× 10−1 1.39× 10−3 −1.83× 10−2

−1.88× 10−3 9.99× 10−1 −1.32× 10−2

1.74× 10−2 1.20× 10−2 9.99× 10−1



T =


2.09× 10−2

−7.12× 10−4

−1.34× 10−2

 .
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A.3.2.2 Median Filtering

The Kinect sensor depth measurements are sometimes corrupted by isolated noise,

particularly noise cause from reflection of the structured light projection. Fortunately

this noise is markedly different from the near uniform plane typically surrounding it,

so a median filter can be used to suppress its influence on the depth map.

The median filter is an effective method that can suppress isolated noise without

blurring sharp edges. Specifically, the median filter replaces a point by the median of

all points in the surrounding neighbourhood:

y[m,n] = median {x[i, j], (i, j) ∈ w} , (A.6)

where w represents a neighbourhood around a location (m,n) in the data. When using

the Kinect I apply a 5 pixel window 2D median filter over all depth measurements to

minimise the influence of erroneous readings.

Computation of the median result can be expensive for large windows and images.

The constant time median filter [Perreault and Hebert, 2007]12 was used throughout.

A.3.3 ARM9 Embedded Computer

(a) (b)

Figure A.9: The Gumstix single board computer and Firefly MV camera mounted under
the ‘wasp’ quadrotor. The camera is mounted pointing towards the ground and is shown
with two different lenses attached. (a) The ‘normal’ lens. (b) The ‘fisheye’ lens.

Considerable flight testing and experiments were undertaken using the popular

Gumstix single board computer. The ‘Overo Earth’ model chosen includes a TI

OMAP3503 processor, clocked at 600 MHz and also includes 256 MB of flash and RAM.

12 Source code available online; http://nomis80.org/ctmf.html.

http://nomis80.org/ctmf.html
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Flight code was compiled using the OpenEmbedded toolchain and copied to a

microSD card, from which the Gumstix then booted.

The Gumstix features two USB ports; one was used to communicate with the

‘wasp’ attitude controller via a common usb-serial adapter, and the other (USB host

port) was used to power and access the Firefly MV camera.

Experimentation revealed a number of shortcomings with this approach and ulti-

mately the Gumstix was replaced with a more powerful SBC. The principle limitations

were;

Insufficient processing power was a problem for some algorithms. While it was

possible to compute optical flow using pyramidial Lukas-Kanade on a 320× 240

pixel image in real time, this consumed approximately 50% of the CPU leaving

little resources for concurrently running other visual processes.

Inefficient USB transfer was a consistent problem using the Firefly MV cameras.

Simply capturing video from the cameras consumed considerable CPU power.

Slow disk I/O was a limitation when collecting date for later processing. The peak

write speed onto the microSD card was 3 MB/s and occasionally writing became

completely stalled while the kernel flushed the write buffers.

A.3.4 Intel x86 Single Board Computer

The second single-board computer used was the a custom designed module featuring

a Kontron13 microETXexpress-PC single board computer (SBC). The SBC included

an Intel Core2 Duo 1.86 GHz, 2 GB DDR3 1066 MHz RAM and an Intel GS45 chipset

with Intel GMA X4500 GPU (Figure A.10).

Figure A.10: The Kontron single board computer mounted on the ‘wasp’ quadrotor.

13http://de.kontron.com

http://de.kontron.com
http://de.kontron.com
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The development of this module was undertaken by Christian Dobler and super-

vised by Lorenz Meir and myself at ETH Zürich.

The SBC communicates with the ‘wasp’ attitude controller via a USB-serial bus,

built onto the custom module. All other interfacing is via the 8 USB ports present on

the module. The SBC filesystem is stored on a solid-state-disk.

Performance Comparison and Benchmarking

After 18 months development using the Gumstix, the move to an x86 SBC was primarily

to overcome the performance shortcomings of the previous platform; slow disk write

performance made writing (or reading) images to disk impossible14, and insufficient

processing power limited framerates and image resolution.

Figure A.11 shows the disk and computational performance of the Gumstix, SBC

and my desktop computer15. Disk benchmarks were performed using bonnie++16 and

CPU benchmarks were performed using nbench17.

The results show the Kontron SBC performance was a marked improvement on

the Gumstix, especially when combined with an SSD.

A.4 QUADROTOR CONFIGURATIONS

Due to the number of vision and processing payloads developed and the way the ca-

pabilities of the ‘wasp’ system evolved throughout this thesis, there were a handful of

commonly used quadrotor configurations used experimentally. This section provides a

brief summary (Table A.4) and description of those configurations.

Wasp Gumstix Wasp Kontron Wasp Kontron Kinect

SBC Gumstix Kontron Kontron

Camera Point Gray Point Gray Kinect

Weight 700 g 1230 g 1925 g

Flight Time 15 min 10 min 6 min

Onboard Processing 7 X X

Camera Orientation down forward forward

Table A.4: A summary of the ‘wasp’ quadrotor configurations used for visual flight control
experiments.

14 such as for forensics, post-experiment re-analysis, and hardware-in-the-loop testing using stored
data.

15 with an Intel 2 Duo CPU (E6850, 3 GHz and 7200 rpm SATA2 hard disk.
16http://www.coker.com.au/bonnie++/
17http://www.tux.org/~mayer/linux/bmark.html

http://www.coker.com.au/bonnie++/
http://www.tux.org/~mayer/linux/bmark.html
http://www.coker.com.au/bonnie++/
http://www.tux.org/~mayer/linux/bmark.html
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Figure A.11: A performance comparison of onboard and offboard computer systems.
(a) Computational performance; memory bandwidth, integer and floating point numerical
operations. The Index is relative to the ‘reference’ nbench system. (b) Disk performance
for sequential reads and writes. Sequential block operations were chosen as this workload
resembles reading and writing many medium sized images to disk. The SBC was tested
against two storage types; a USB ‘memory stick’ and a solid-state-disk. The Gumstix disk
was a standard SD card.
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Wasp Gumstix

Figure A.12: Wasp Gumstix quadrotor configuration. The airframe has a total flying
weight of 700 g and typical flight time of 15 minutes.

Figure A.12 shows the Wasp Gumstix configuration. The flight control system the

ARM7 microprocessor based system described in Appendix A.2.1). A separate vision

processing system, including camera and lens, is implemented on a Gumstix Overo

SBC. The vision system communicates to the flight control via a USB interface.

Wasp Kontron

Figure A.10 shows the ‘wasp’ Kontron configuration. The flight control system is the

ARM7 construction of Appendix A.2.1. The altitude estimator has been aided with a

SONAR based rangefinder.

The notable features of this configuration is that it features the custom designed

SBC module featuring a Kontron18 microETXexpress-PC. This SBC is described in

Appendix A.3.4 and had sufficient power for realtime computer vision based flight.

This configuration was utilised extensively in the final year of this research.

The ‘wasp’ Kontron Kinect configuration was similar, only replacing the Point

Gray camera for a Microsoft Kinect, as visible in Figure A.13.

ETH Quadrotor System

While at ETH Zürich, before the Pixhawk quadrotor was completed, I used the Pel-

ican quadrotor from Ascending technologies for experimental work. The Pelican is a

research focused design with a protected internal cage for mounting electronics, and

capability to lift 500 g payload. As ordered, the Pelican features an Intel Atom sin-

gle board computer, however, this was replaced with the more powerful Kontron SBC

(Appendix A.3.4).

18http://de.kontron.com

http://de.kontron.com
http://de.kontron.com
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(a) (b)

Figure A.13: The ‘wasp’ Kontron quadrotor configurations. (a) With a forward facing
Microsoft Kinect. (b) With a forward facing firefly MV.

Figure A.14: The ETH quadrotor with Kontron SBC (top).

A single, forward facing, Point Grey Firefly MV USB camera is fitted with a wide

angle, 180◦ lens. This captures 640 × 480 pixel images at 30 Hz from the quadrotor

helicopter.

A.5 THIRD PARTY QUADROTOR PLATFORMS

Multiple universities and commercial companies are currently researching visual flight

control, often using quadrotor helicopters as part of that research. The following list

includes notable contributors to this field. It is instructive to consider each groups

technical solutions to visual flight control challenges. Technical terms not explained

below (and where appropriate), similarities and differences with the ‘wasp’ system, will

be further expanded in a comparison (section A.5.1).

Pixhawk The Pixhawk19 cheetah quadrotor is a custom quadrotor platform, featuring

19http://pixhawk.ethz.ch/micro_air_vehicle/quadrotor/cheetah

http://pixhawk.ethz.ch/micro_air_vehicle/quadrotor/cheetah
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a bare-metal attitude controller and IMU, Core2Duo single board computer, and

supporting software. Visual flight control algorithms run onboard.

CityFlyer The CityFlyer20 project uses the Asctec pelican quadrotor for real time

attitude control, and custom higher level control processes integrate with the

system using the ROS framework.

GRASP The GRASP21 at University of Pennsylvania uses the Asctec hummingbird

quadrotor frame and a custom controller for attitude stabilization. Visual control

is performed off-board, indirectly through the use of a Vicon22 system.

Universitat Tubingen The Universitat Tubingen23 autonomous flying robots research

project uses the Asctec hummingbird quadrotor, and visual control is performed

onboard using a microcontroller and low resolution infrared tracking via a Nin-

tendo wii camera.

sFly The sFly24 project at ETH Zürich focusses on visual flight control and co-

ordination of multiple robots. The quadrotor platform is provided by Asctec.

Visual flight control occurs onboard using the same SBC as described in Pix-

hawk.

Ascending Technologies (Asctec) Asctec25 is a commercial company providing a

number of large quadrotors for the research arena. The pelican and hummingbird

models are frequently seen in literature as the Asctec provided attitude controller

is robust and the real time telemetry available is well suited to integration with

visual flight control systems, for either onboard or offboard processing.

MIT The robust robotics group26 at MIT uses an Asctec pelican quadrotor and a

distributed off-board vision systemBachrach et al. [2010].

Draganflyer One of the oldest commercially available quadrotor companies, Dragan-

flyer27 no longer offers research focused platforms and as such is not seen in

research much anymore.

Microdrones Microdrones28 also offer a number of commercial quadrotor systems,

but do not offer a current open source API, nor a research focused model.

20http://robotics.ccny.cuny.edu/blog/node/20
21http://www.grasp.upenn.edu/
22 Vicon is a motion capture system that is capable of providing real time localisation in 6DOF of

multiple bodies at 200 Hz
23http://www.ra.cs.uni-tuebingen.de/forschung/flyingRobots/welcome_e.html
24http://projects.asl.ethz.ch/sfly/doku.php
25http://www.asctec.de/
26http://groups.csail.mit.edu/rrg/research.html
27http://www.draganfly.com/
28http://www.microdrones.com/

http://robotics.ccny.cuny.edu/blog/node/20
http://www.grasp.upenn.edu/
http://www.ra.cs.uni-tuebingen.de/forschung/flyingRobots/welcome_e.html
http://projects.asl.ethz.ch/sfly/doku.php
http://www.asctec.de/
http://groups.csail.mit.edu/rrg/research.html
http://www.draganfly.com/
http://www.microdrones.com/
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Microcopter MikroKopter29 is the largest open-source quadrotor system and provides

another excellent basis for research. The typical suite of Mikrokopter software

includes an autopilot with attitude and GPS position modes, and groundstation

software.

Paparazzi The paparazzi project is an established system hardware and software, fea-

turing autopilot implementations and groundstation software for fixed wing, and

more recently through the ‘booz’ project, quadrotor helicopters too. It does not

offer visual flight control facilities. ‘Wasp’ was originally derived from paparazzi

code in 2008. The current paparazzi project quadrotor is the ‘Lisa’, which is

based on the improved STM32 microcontroller. A commercial version of the

‘Lisa’ system is available as the qudshow30.

Other Open Source Projects There are many other open-source quadrotors, often

based on arduino (Atmel ATMEGA series microcontroller). Systems such as the

‘ardupilot’, while cheap, in my experience do not have robust attitude control

systems.

A.5.1 Comparison With Other Systems

The Pixhawk and MIT quadrotor systems also utilise an intermediate message de-

scription language, but extend the concept further by defaulting to peer-to-peer or

broadcast-subscription transport models. This is more able to facilitate distributed

computation on multiple nodes (such as different computers running different vision

algorithms), but it is debatable whether mandating such a transport makes things

simpler in the case of a single onboard computer.

The GRASP and CityFlyer projects utilise ROS31. ROS provides numerous build-

ing blocks implemented atop of a standardised message description and transport layer.

This allows the use of tested highly functional blocks such as SLAM, laser scanners,

groundstation software, and much more. ROS is a robust and healthy open source

project, but is of an order of magnitude more complex32 and capable than the ‘wasp’

system.

29http://www.mikrokopter.de/
30http://thequadshot.com/
31http://www.ros.org/wiki/
32 In terms of lines of code, levels of abstraction and time to learn

http://thequadshot.com/
http://www.ros.org/wiki/
http://www.mikrokopter.de/
http://thequadshot.com/
http://www.ros.org/wiki/
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QUADROTOR MODELLING AND CONTROL

In order to perform simulated flight experiments I implemented the quadrotor model

described by Bouabdallah et al. [2004a], Bresciani [2008]. This chapter describes the

implementation, and methods for determining the necessary coefficients for simulation.

I use the standard aerodynamic notation [Etkin and Reid, 1995] which defines the

symbols of Table B.1.

Symbol Description Unit

x, y, z position, axis (body frame) m

ẋ, ẏ, ż velocity in body frame m s−1

ẍ, ÿ, z̈ acceleration in body frame m s−2

θ, φ, ψ rotation; pitch, roll, yaw rad

θ̇, φ̇, ψ̇ rotational velocity rad s−1

θ̈, φ̈, ψ̈ rotation acceleration rad s−2

Ω propeller speed rad s−1

Ix, Iy, Iz body inertia N m s2

J motor and propeller inertia N m s2

τ torque on airframe body N m

b thrust factor N s2

d drag factor N m s2

l lever arm m

Ke motor back EMF constant V s rad−1

Km motor torque constant N m A−1

R motor internal resistance Ω

τd motor load N m

v motor input voltage V

Table B.1: Aerodynamic symbols.
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B.1 QUADROTOR MODEL

Recall from Section 4.1.2 that the dynamics of a generic 6 DOF rigid-body can be

specified as mI 0

0 I

V̇

ω̇

+

ω ×mV

ω × Iω

 =

F

τ

 . (B.1)

The quadrotor accelerates1 according to the following sequence of equations,

Ẍ = (sinψ sinφ+ cosψ sin θ cosφ)
U1

m

Ÿ = (− cosψ sinφ+ sinψ sin θ cosφ)
U1

m

Z̈ = −g + (cos θ cosφ)
U1

m

φ̈ = θ̇ψ̇
Iy − Iz
Ix

− Jr
Ix
θ̇Ω +

l

Ix
U2

θ̈ = φ̇ψ̇
Iz − Ix
Iy

− Jr
Iy
φ̇Ω +

l

Iy
U3

ψ̈ = φ̇θ̇
Ix − Iy
Iz

+
U4

Iz

. (B.2)

The system inputs are related to the propeller speeds,

U1 = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

U2 = b(−Ω2
2 + Ω2

4)

U3 = b(−Ω2
1 + Ω2

3)

U4 = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

Ω = −Ω1 + Ω2 − Ω3 + Ω4

, (B.3)

driven by DC motors (subscript m) whose dynamics may be approximated by

J
dωm
dt

= −KeKm

R
ωm − τd +

Km

R
v. (B.4)

Introducing a propeller model (subscript p), and combining Ke and Km (they have

the same value, albeit different units due to their physical coupling and the electrical

and mechanical power balance) (B.4) becomes

Jω̇p = −K
2
m

R
ωp − dω2

p +
Km

R
v. (B.5)

Since this equation is non-linear, for solving (control) one should linearise about a fixed

1for a detailed treatment see Castillo et al. [2005, ch. 3] and Bouabdallah et al. [2004a])
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point (e.g., hover), ωH . Linearising and collecting constants yields

ω̇P = APωP +BP v + CP , (B.6)

where AP [rad s−1] is the linearised propeller speed coefficient, BP [rad2 s−2 V−1] is

the linearised input voltage coefficient, and CP [rad2 s−2] is the linearised constant

coefficient. Their values are defined as

AP = −K
2
m

JR
− 2d

J
ωH (B.7)

BP =
Km

JR
(B.8)

CP =
d

J
ω2
H . (B.9)

These three parameters define the dynamics of the motor system. In vector form

Ω̇ = APΩ +BPv + Cp. (B.10)

Given this model and the values of the unknown coefficients b, d, J and I, one can

build a control system and simulator for a quadrotor helicopter.

B.2 COEFFICIENTS DETERMINATION

First principle numerical calculations were used to estimate the rotational and body

moments of inertia; J , and I. I separated the quadrotor into several basic elements and

calculated their values accordingly.

• The cross-frame structure was modelled as two thin rectangular parallelepipeds

(Figure B.1a).

• The electronics and batteries were modelled as a single rectangular parallelepiped.

• The four motors were modeled as solid cylinders (Figure B.1b)

B.2.1 Rotational Moment of Inertia

The rotational moment of inertia of the motor and propeller assembly is

J = Jp + Jm, (B.11)

where Jp is the propeller and Jm is the motor. From Bresciani [2008], the propeller

can be modelled as a flat plate,

Jb =
1

12
MB(W 2

B + L2
B), (B.12)
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(a) (b)

Figure B.1: Simple geometrical models for calculating moments of inertia. The centre
of mass (COM) is at the centre of the marked coordinate system. (a) A cylinder, used to
represent the motors. (b) A box, used to represent the electronics and battery. Figures
adapted from Bresciani [2008].

and the motor as a solid cylinder,

Jm =
1

2
MmR

2
m. (B.13)

B.2.2 Body Moment of Inertia

Because the quadrotor shows a high degree of symmetry the 3 × 3 I matrix can be

simplified to its diagonal elements; IXX, IY Y , IZZ – the moment of inertia of an

object about an axis, when rotated about that axis. From Bresciani [2008], the modelled

elements of the quadrotor can be represented as simple geometries (Figure B.1).

The electronics and batteries are represented by a box with mass M at a distance

D from the COM. The moments of inertia of such an arrangement is

Ix = M

(
W 2

12
+
H2

12
+D2

)
,

Iy = M

(
L2

12
+
H2

12
+D2

)
,

Iz = M

(
L2

12
+
W 2

12

)
.

The cross frame has been modeled as square tubing (H = W ). The moments of
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inertia of this arrangement is

Ix = M

(
W 2

6
+D2

)
,

Iy = M

(
L2

12
+
H2

12
+D2

)
,

Iz = M

(
L2

12
+
W 2

12

)
.

The four motors are modeled as solid cylinders. Calculation was performed for one

motor (M1) and transposed to the others due to the symmetrical nature of the vehicle.

The motor moments of inertia are defined as

IM1x = M

(
R2

4
+
H2

12
+D2

)
,

IM1y = M

(
R2

4
+
H2

12
+ L2 +D2

)
,

IM1z = M

(
R2

2
+ L2

)
.

The body moments of inertia for one motor can be applied to the others

IM1x = IM2y = IM3x = IM4y,

IM1y = IM2x = IM3y = IM4x,

IM1z = IM2z = IM3z = IM4z.

B.2.3 Aerodynamic Coefficients

To determine the value of the thrust factor b, I collected measurements of the motor

voltage and current, and propeller thrust and speed while fixed to a load cell. For

the Roxxy motor and EPP1045 propeller described in Appendix A.2.3 the results are

shown in Figure B.2.

The thrust factor is determined by the slope of this curve,

d =
dT

dω2
. (B.14)

Because the drag factor is a function of speed and the quadrotor is driven by an

input voltage, it should be noted that this function is also linear.

The drag factor, d was extracted from the UIUC Propeller Database2.

2http://www.ae.illinois.edu/m-selig/props/propDB.html

http://www.ae.illinois.edu/m-selig/props/propDB.html
http://www.ae.illinois.edu/m-selig/props/propDB.html
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Figure B.2: Propeller and motor test; thrust at different speeds.

B.2.4 Summary of Model Coefficients

For the quadrotor configurations described in Appendix A.4 I calculated the values of

Table B.2.

B.3 QUADROTOR SIMULATOR

I wrote a quadrotor simulator3 based on qrsim4. The simulator is implemented in

MATLAB and C.

The simulator is a direct-kinematics/direct-dynamics type. When configured with

the quadrotor model coefficients5 as calculated in the previous section, the quadrotor

state is calculated by double-integrating the accelerations generated from propeller

rotation, and adding these to the previous state; (B.2),(B.3),(B.4). For details of the

Newton-Euler equations describing this integration refer to Etkin and Reid [1995].

Primarily the C version of the quadrotor simulator is used for hardware in the loop

(HITL) and software in the loop (SITL) simulation of the quadrotor attitude controller.

The MATLAB version was used for simulation of visual control strategies (such as

Chapter 7). Figure B.4 shows an example trajectory from the simulator demonstrating

quadrotor speed control.

3https://github.com/nzjrs/simple-quadrotor-simulator
4http://www.st.ewi.tudelft.nl/~gemund/Courses/In4073/Resources/
5for the assembled configuration (Appendix A.4)

https://github.com/nzjrs/simple-quadrotor-simulator
http://www.st.ewi.tudelft.nl/~gemund/Courses/In4073/Resources/
https://github.com/nzjrs/simple-quadrotor-simulator
http://www.st.ewi.tudelft.nl/~gemund/Courses/In4073/Resources/
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Figure B.3: Propeller and motor test; speed at different voltages.

B.4 AUTOPILOT CONTROL SYSTEM

The goal of the autopilot control system is to calculate the motor voltages, (B.3), which

act to maintain the quadrotor attitude and altitude. The process of solving (B.2),(B.3),

and (B.4) is also known as inverse-kinematics and inverse-dynamics. However, solu-

tions to the kinematic equations are not always possible nor unique, so a number of

assumptions are made [Bresciani, 2008];

1. secondary angular terms (gyroscopic effects and Coriolis forces) are assumed to

be negligible due to the craft being at or near hover.

2. the angular accelerations are measured in the body fixed frame and are not nec-

essarily equal to the Euler angle accelerations which determine the attitude in

the world frame. At hover however, the transfer matrix between the two frames

is near-identity; so I assume the accelerations measured can be directly related to

the Euler angle accelerations. That is, I assume the gyroscopes measure θ̂ ≈ q,

φ̂ ≈ p, and ψ̂ ≈ r directly.

3. I implement only attitude and altitude control; so equations describing X and Y

position are not considered.
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Ix Iy Iz

onboard electronics 2.93× 10−4 2.93× 10−4 6.00× 10−5

SBC 4.36× 10−3 4.36× 10−3 6.67× 10−4

battery 7.93× 10−5 5.07× 10−4 5.15× 10−4

cross-frame part 1 7.92× 10−6 2.61× 10−4 2.53× 10−4

cross-frame part 2 2.61× 10−4 7.92× 10−6 2.53× 10−4

motor 1 2.76× 10−5 1.95× 10−3 1.93× 10−3

motor 2 1.95× 10−3 2.76× 10−5 1.93× 10−3

motor 3 2.76× 10−5 1.95× 10−3 1.93× 10−3

motor 4 1.95× 10−3 2.76× 10−5 1.93× 10−3

total 3.95× 10−3 3.95× 10−3 7.72× 10−3

(a)

Ix Iy Iz

onboard electronics 2.93× 10−4 2.93× 10−4 6.00× 10−5

SBC 1.01× 10−3 1.05× 10−3 6.67× 10−4

battery 7.93× 10−5 5.07× 10−4 5.15× 10−4

cross-frame part 1 7.92× 10−6 2.61× 10−4 2.53× 10−4

cross-frame part 2 2.61× 10−4 7.92× 10−6 2.53× 10−4

motor 1 2.76× 10−5 1.95× 10−3 1.93× 10−3

motor 2 1.95× 10−3 2.76× 10−5 1.93× 10−3

motor 3 2.76× 10−5 1.95× 10−3 1.93× 10−3

motor 4 1.95× 10−3 2.76× 10−5 1.93× 10−3

total 1.66× 10−3 2.12× 10−3 1.15× 10−3

(b)

Table B.2: Model coefficients per quadrotor configuration. (a) The ‘wasp’ Kontron
configuration (Appendix A.4) (b) The ‘wasp’ Gumstix configuration (Appendix A.4)

Subsequently, (B.2) is reduced to [Bouabdallah et al., 2004b],

Z̈ = −g + (cos θ cosφ)
U1

m

φ̈ =
U2

Ix

θ̈ =
U3

Iy

ψ̈ =
U4

Iz

. (B.15)

Solving (B.15) can be depicted as four components, Figure B.5.

Table B.3 defines the symbols used in the following sections.
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Figure B.4: Example output from quadrotor simulator.
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Figure B.5: Example quadrotor control system functional diagram.

B.4.1 PID Control

Bouabdallah et al. [2004b] showed the four cases of (B.15) can each be regulated by

proportional integral derivative (PID) controllers when the quadrotor is near hover

conditions. Figure B.6 shows the structure of a PID controller.

The PID controller is described by

u(t) = Kpe(t) +Ki

∫ t

0
e(τ) dτ +Kd

d

dt
e(t), (B.16)

where u is a generic control variable, e is the instantaneous error between the task

setpoint r and the plant output y. e(τ) is the accumulated instantaneous error over

time τ . Kp is the proportional coefficient, Ki is the integral coefficient and Kd is the

derivative coefficient.

B.4.1.1 Yaw Control

There are two implementations for yaw, ψ, control on ‘wasp’; one for manual flight,

and the other for autonomous flight with heading commands provided by a higher level

controller. The manual flight mode is designed to be similar in feel to control of a
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Symbol Description Unit

X,Y, Z position (earth frame) m

p, q, r angular velocity about x, y, z (body axis) rad s−1

u, v, w velocity in x, y, z (body axis) m s−1

u̇, v̇, ẇ acceleration in x, y, z (body axis) m s−2

Table B.3: Aerodynamic symbols of measured quantities.

Plant

Figure B.6: The structure of PID control.

traditional RC helicopter. This is implemented as a proportional-only PID controller

U4 = Kpy(uẏ − r), (B.17)

where uẏ is the yaw-rate setpoint and r is the measured yaw-rate from the yaw-axis

gyroscope. Recall that in the near-hover assumption (item 2, Appendix B.4) I assume

the inertial sensors measure in the body frame and ψ̇ ≈ r.

In the autonomous flight case, yaw control is implemented using a proportional-

integral PID controller

ey = uy − ψ̂

U4 = Kpyey +Kiy

∫ t

0
e(τ) dτ, (B.18)

where ey is the yaw-error and ψ̂ is the estimated yaw (see Appendix B.4.2).

B.4.1.2 Pitch and Roll Control

Pitch, up, and roll, ur, control are implemented using two nested proportional-only PID

controllers [Ghadiok et al., 2011]; an attitude controller that maps the angle setpoint,

up,r, to a rate setpoint, uṗ,ṙ for the rate controller that in turn calculates U3,2 to control
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the propeller speed. For the pitch case (roll is identical, substitute appropriately),

uṗ = Kṗ(up − θ̂) (B.19)

U3 = Kp(uṗ − θ̇), (B.20)

where up is the pitch angle setpoint, θ̂ is the estimated pitch angle, and θ̂ is the measured

pitch-rate from the gyroscopes. This can be combined into one equation

U3 = Kp

(
Kṗ(up − θ̂)− θ̇

)
= Kp1(up − θ̂)−Kp2θ̇, (B.21)

where Kp1 and Kp2 are positive control parameters. Functionally this form resembles

a proportional-derivitive controller (and feedback stability is the same) but is slightly

easier to tune6. Proportional-derivitive control has been shown as suited for attitude

control of quadrotors before [Hoffmann et al., 2007].

B.4.1.3 Altitude Control

Altitude control is implemented using a proportional-integral controller PID controller

eZ = uZ − Ẑ

U1 = KpZeZ +KiZ

∫ t

0
e(τ) dτ, (B.22)

where eZ is the altitude-error in the world frame, and Ẑ is the estimated altitude using

the barometer and sonar.

B.4.2 Kalman Filtering Attitude Data

The Kalman filter is a recursive and optimal estimator of the state of a system from

indirect, inaccurate and uncertain observations. To estimate state, only the state from

the previous time step and the current measurement are needed (i.e., recursive). Pro-

viding the measurement noise is Gaussian the Kalman filter minimises the mean square

error of the estimated parameters [Kalman, 1960] (i.e., optimal).

For the general case, and theoretical background on the filter see Welch and Bishop

[2006]. This section provides the formulation of the Kalman filter as used in ‘wasp’. I

utilise the three two-dimensional Kalman filters; two for estimating attitude from gyro-

scopes and accelerometers, one for estimating heading from a gyroscope and compass,

and one for filtering altitude data.

6 both in my experience and on advice from http://www.st.ewi.tudelft.nl/~gemund/Courses/

In4073/Resources/.

http://www.st.ewi.tudelft.nl/~gemund/Courses/In4073/Resources/
http://www.st.ewi.tudelft.nl/~gemund/Courses/In4073/Resources/
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Let x be the state vector and z the measurement vector for a process; then

xk+1 = Axk +Buk

zk = Hxk

is the noise free state space representation. A is the state transition matrix, B is the

control matrix for an input uk, and H is the output matrix. The Kalman filter is a

two-process; a time update step to project the next state

x̂−k = Ax̂k−1 +Buk−1

P−k = APk−1A
T +Q,

and a measurement update step to update the estimate with new information

Kk = P−k H
T(HP−k H

T +R)−1

x̂k = x̂−k +Kk(zk −Hx̂−k )

Pk = (I −KkH)P−k .

P is the error covariance, Q is the process noise covariance, R is the measurement error

covariance, and K is the Kalman gain.

An optimal estimate of attitude (when in near-hover conditions) can be obtained

by combining measurements from the onboard accelerometers (via the gravity vector,

incorrect if in an accelerating reference frame) and axis-appropriate gyroscope. Inertial

sensors however, particularly gyroscopes, are prone to drift and thus this drift should

be corrected [Hoffmann et al., 2007]. On each of the pitch and roll axes I use a Kalman

filter to correct for this drift and calculate an estimate of attitude. The following is an

explanation for the pitch estimator, the roll estimator is identical except for substituting

for the axis-appropriate accelerometers and gyroscope.

A pitch attitude estimator with state vector x = [θ, qbias]
T has measurement vector

u = [q], state transition matrix

A =

1 −dt

0 1

 , (B.23)

and measurement process

zk =
[
1 0

]
xk + noise (B.24)

That is, I can measure the angle using the gravity vector

zk = atan2(u̇, ẇ). (B.25)



B.4 AUTOPILOT CONTROL SYSTEM 195

The Kalman predict step for this system is then

xk+1 =

1 −dt

0 1

xk +

dt

0

 q + noise (B.26)

P−k = APk−1A
T +Q

=

1 −dt

0 1

P11 P12

P21 P22

 1 0

−dt 1

+

Qa 0

0 Qg

 (B.27)

=

P11 − (P12 + P21 − P22dt) +Qa P12 − P22dt

P21 − P22dt P22 +Qg

 =

Pe11 Pe12

Pe21 Pe22

 . (B.28)

P is the error covariance matrix, Q is the noise covariance matrix and the entries of Pe

have been added for notational convenience. The Kalman update step with Kalman

gains Kk = [K11,K22]
T is thus

Kk = P−k H
T(HP−k H

T +R)−1

=

P11 P12

P21 P22

1

0

[1 0
]Pe11 Pe12

Pe21 Pe22

1

0

+R

−1

=
1

P11 +R

Pe11
Pe21

 (B.29)

x̂k = x̂−k +Kk(zk −Hx̂−k )

= X̂−k +Kk(atan2(u̇, ẇ)− θ−) (B.30)

Pk =

 Pe11(1−K1) Pe12(1−K1)

Pe21 −K2Pe11 Pe22 −K2Pe12

 . (B.31)

The critical filter parameters, Qa and Qg are tuned emperically.





Appendix C

VISUAL SIMULATION

In order to quantitatively evaluate visual algorithm performance, some method should

be available to allow repeated execution of the same control system in different con-

ditions. There are two common solutions to this problem; the use of static datasets

captured in the real world, and the use of a simulated virtual reality environment. In

this thesis I have used both approaches.

The simulated approach involves two components; simulation of the virtual envi-

ronment in which the quadrotor flies, and simulation of the dynamical model of the

quadrotor vehicle. Three simulators were developed; programatically generated VRML

via MATLAB, a MATLAB ray-tracer, and a modified version of the FlightGear1 flight

simulator. The static datasets are commonly used by computer vision researchers. In

this section I explain in greater detail all the visual simulation tools used.

C.1 STATIC DATASETS

The computer vision community has provided a number of datasets in the last decade.

Typical datasets consist of, at minimum, a sequence of images and additional sensor

readings. They may be real or synthetic, while the additional sensor readings might

include groundtruth data from and inertial measurement unit (IMU) or an external

positioning system such as differential GPS (DGPS).

In the fields of visual control and in particular optical flow, the following datasets

are in widespread use (Figure C.1);

Rawseeds

The Rawseeds [Bonarini et al., 2006, Ceriani et al., 2009] dataset describes the im-

ages and associated groundtruth for a wheeled mobile robot moving along both

indoor and outdoor paths. The ground truth position information is includes

the trajectory of the robot during the session, the executive drawings describ-

1http://www.flightgear.org

http://www.flightgear.org
http://www.flightgear.org
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(a) (b)

(c) (d)

(e) (f)

Figure C.1: Sample images (a),(c), and image capture environment (b),(d) for the
Rawseeds and sFly datasets respectively. Sample images from the middlebury dataset,
yosemite and urban sequences, (e), (f), respectively.
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ing the environments explored by the robot2. In addition, each dataset includes

a list of positions of suitable features extracted from the executive drawings.

The groundtruth data was collected by means that are separate from the sen-

sors mounted aboard the robot, in order to be completely independent from the

dataset.

sFly MAV

The sFly [Lee et al., 2010] dataset includes images and associated groundtruth

position and orientation information for a flying MAV robot. Unlike the wheeled

robot datasets, sFly uses a flying MAV which give image sequences with much

greater degree of movement between frames.

Radish

The Radish3 dataset is another image sequence of a wheeled robot with accom-

panying groundtruth data for position and heading.

Middlebury optical flow

The Middlebury [Baker et al., 2007] dataset features groundtruth optical flow

measurements for a wide variety of natural and synthetic scenes. This is the

eminent dataset for evaluating optical flow algorithms, but sees little use outside

of this area. The length of each scene is typically short (¡ 20 frames).

The main limitation of the aforementioned datasets is that they are static, they can

only be used to test control systems in a limited fashion; by proceeding in time as the

dataset was captured. In effect this only allows one to evaluate the visual algorithms

and not the control system as a whole. In order to obtain a full system simulation one

must simulate the dynamic model of the UAV and the environment in which is flies.

C.2 VRML USING MATLAB

For 3D modelling, multiple representation formats are available, including; virtual re-

ality modelling language (VRML), X3D, and O3D. The former two are open-standards

managed by the Web3D consortium4 and are well specified with a diverse set prod-

ucts implementing them. The primary reason for choosing VRML was because it was

supported in MATLAB and by a number of open-source editing and viewing software

packages.

2While most datasets are described as providing the position of the robot, what is actually useful is
the position of the image sensor. Fortunately Rawseeds and other datasets (unless specified otherwise),
include the necessary transformation to compute the image sensor motion from the robot motion

3http://radish.sourceforge.net/
4 X3D is the successor to VRML.

http://radish.sourceforge.net/
http://radish.sourceforge.net/
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C.2.1 The VRML Language

VRML is a text based for three-dimentional scenes. It allows the specification of poly-

gon vertices and edges, along with the application of surface color, UV mapped textures,

shininess, and transparency over those polygons. It also allows inclusion of animation,

interactivity, and programmable behaviour in the virtual environment. There are two

versions of VRML, VRML97 (also known as VRML2.0) replaced VRML1.0. I exclu-

sively use the VRML97 dialect.

VRML uses a scene-graph structure. The scene is represented as a tree. The leaves

of the tree hold nodes such as;

• geometry nodes,

• cluster nodes to organise other nodes into groups,

• geometric transformations to groups of nodes (scale, rotate, translate),

• appearance and material nodes for changing how the encapsulating node is dis-

played.

A ’hello world’ sample of VRML is included in listing C.1.

#VRML V2.0 u t f 8

NavigationInfo {
head l i gh t TRUE
type ”EXAMINE”

}

Shape {
geometry Box{}
appearance Appearance {

mate r i a l Material {
d i f f u s e C o l o r 0 .5255 0 .7216 0 .0431

}
}

}

Listing C.1: A sample VRML world

Geometry nodes include simple geometric primitives such as Box {}, Sphere {},
Cone {}, Cylinder {}, and more complex objects like IndexedFaceSet {}, and

IndexedLineSet {}.



C.2 VRML USING MATLAB 201

Material notes One can style nodes using; reflection from a coloured matt surface

(diffuseColor), reflection from a coloured reflective surface (specularColor,shininess),

luminous objects (emissiveColor), and reflection of ambient light (ambientIntensity).

Lighting nodes

DirectionalLight Located infinitely far away. Illuminates with parallel light rays.

Only affects objects below it in the scene graph.

PointLight Located at a point in space. Illuminates everything within a maximum

range and which is below it in the scene graph.

Spotlight Like a PointLight, but the light is confined to a specified cone.

Viewpoint nodes Specify the position and orientation of the camera. Multiple

viewpoints are allowed in the scene, and the position and orientation of the View-

point5(camera) can be moved according to any of the transform nodes. By adjusting

the properties of the viewpoint node one can approximate a real camera. The following

nodes can be applied to a Viewpoint node:

fieldOfView specifies an angle in radians. Beginning with a 45◦ field of view by

default, means the camera can see about 1/8 th of the full 360◦ panorama6. For

example, a very zoomed-in field-of-view is about 30◦, most cheap c-mount camera

lenses are 45–60◦, wide angle lenses are 90◦ and above. By convention, fish-eye

or panoramic lenses are 160–180◦. The widest possible field-of-view is 180◦.

position specifies the user position in the coordinate system which the Viewpoint is

defined.

orientation determines the direction at which the user is looking, it specifies a rotation

relative to the default orientation which points along the z-axis in the negative

direction.

The fieldOfView node, in combination with the size of captured image, can be

used to match a VRML virtual camera with a physical camera’s focal length, f .

displaywidth

displayheight
=

tan(FOVhorizontal/2)

tan(FOVvertical/2)
(C.1)

where the smaller of display width or display height determines which angle equals the

fieldOfView (the larger angle is computed using the relationship described above).

The larger angle shall not exceed π and may force the smaller angle to be less than

fieldOfView in order to sustain the aspect ratio.

5In VRML 1.0, you have PerspectiveCamera and OrthogonalCamera nodes. In VRML 2.0 this was
replaced by the viewpoint node and the viewpoint is always perspective.

6 VRML expresses the fieldOfView parameter in radians.
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C.2.2 Generating VRML For Simulation

A number of ‘base’ virtual environments were created authored using White Dune7.

These contained details of the world units and scale, the sky and ground, the lighting,

the definition of the virtual camera and parameters, and the inclusion of surface texture

images. For Monte-Carlo simulations, such as those using in Chapter 7 the ‘base’

environment was amended to include additional randomly generated content. The

standard MATLAB virtual reality toolbox was used to render the generated VRML

and to move the virtual-camera through the environment. Sample images from these

pseudo-random scenes are shown in Figure C.2.

(a) (b)

Figure C.2: Sample images from the randomly generated VRML for testing control
strategies. (a) An outdoor city environment. (b) An indoor office environment.

C.3 RAY-TRACED DEPTH IMAGES USING MATLAB

For visual control experiments it was useful to have not just a visual representation

of the scene, but true measurements of depth from the image plane to objects in that

scene. Ray-tracing is a method for generating images through tracing the path of light

through pixels in the image plane and simulating the effects of the beams encounters

with virtual objects in that scene. As a feature of this technique, one obtains both true

depth, and realistic images of the scene. Unfortunately ray-tracing is computationally

expensive, so it is not suitable for rendering scenes in real-time, however, for simulation

operation at slower than real-time is not a concern.

Figure C.3 shows an urban scene generated using the raytracer. The raytracer was

extended and modified from the myRaytracer8 code. It supports the following features;

• support for arbitrary geometric primitives, anything that can be expressed as

x, y, z = f(t).

7http://vrml.cip.ica.uni-stuttgart.de/dune/
8https://sites.google.com/site/chumerin/projects/myraytracer

http://vrml.cip.ica.uni-stuttgart.de/dune/
https://sites.google.com/site/chumerin/projects/myraytracer
http://vrml.cip.ica.uni-stuttgart.de/dune/
https://sites.google.com/site/chumerin/projects/myraytracer
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Figure C.3: Sample images from the ray-traced virtual city.

• support for arbitrary number of pinhole cameras in the environment

• support for generation of disparity maps between arbitrary camera pairs

• support for recording hit-points

• rendering speed; 45 s per frame at 300× 300 px resolution with 2× anti-aliasing,

single camera, 3 minute per frame at 500× 500 px resolution.

• cameras, light sources and objects can all be expressed as a function of time so

arbitrary paths can be animated in the scene.

• expressed in the standard aerodynamic co-ordinate frame, all distances expressed

in meters and angles in radians.





Appendix D

CONCEPTS IN COMPUTER VISION

This chapter includes the linear algebra formulations for the scalar camera projec-

tion equations introduced in Section 2.2. When implementing any computer vision

algorithm the linear algebra formulations are always preferred owing to the greater

computation efficiency with which they can be implemented.

D.1 GEOMETRIC CAMERA PARAMETERS

Using matrix notation we rearrange (2.8),

xim = − x

sx
+ ox

yim = − y

sy
+ oy (D.1)

to 
xim

yim

1

 =


−1/sx 0 ox

0 −1/sy oy

0 0 1



x

y

1

 . (D.2)

Expressing (2.6) in matrix form. If Pc = [Xc, Yc, Zc]
T and Pw = [Xw, Yw, Zw]T,

then 
Xc

Yc

Zc

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33



Xw − Tx
Yw − Ty
Zw − Tz

 , (D.3)

or

Xc = RT
1 (Pw −T)

Yc = RT
2 (Pw −T)

Zc = RT
3 (Pw −T), (D.4)
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D.1.1 Camera Model Projection Matrices

D.1.1.1 The Perspective Camera Model

Assuming ox = oy = 0 and sx = sy = 1

Mp =


−fr11 −fr12 −fr13 fRT

1 T

−fr21 −fr22 −fr23 fRT
2 T

r31 r32 r33 −RT
3 T

 . (D.5)

which can be verified

P = MpPw

=


−fRT

1 fRT
1 T

−fRT
2 fRT

2 T

RT
3 −RT

3 T


 Pw

1



=


−fRT

1 (Pw −T)

−fRT
2 (Pw −T)

RT
3 (Pw −T)

 , (D.6)

after homogenisation yields

x = −fRT
1 (Pw −T)

RT
3 (Pw −T)

y = −fRT
2 (Pw −T)

RT
3 (Pw −T)

. (D.7)

which is identical to (2.10).

D.1.1.2 The Weak Perspective Camera Model

P̄ is the centroid of the object (the average distance from the camera).

Mwp =


−fr11 −fr12 −fr13 fRT

1 T

−fr21 −fr22 −fr23 fRT
2 T

0 0 0 RT
3 (P̄ −T)

 . (D.8)



D.2 IMAGE DISTORTION DUE TO OPTICS 207

which can be verified

P = MwpPw

=


−fRT

1 fRT
1 T

−fRT
2 fRT

2 T

0 RT
3 (P̄ −T)


 Pw

1



=


−fRT

1 (Pw −T)

−fRT
2 (Pw −T)

RT
3 (P̄ −T)

 , (D.9)

after homogenisation yields

x = −fRT
1 (Pw −T)

RT
3 (P̄ −T)

y = −fRT
2 (Pw −T)

RT
3 (P̄ −T)

. (D.10)

The Affine Camera Model The affine camera model has a number of properties

different to other representations;

• the entries of the projection matrix are completely unconstrained

• the affine model does not appear to correspond to any physical camera

• leads to simple equations and appealing geometric properties

• does not preserve angles but does preserve parallelism

This yields the projection matrix

Ma =


a11 a12 a13 a14

a21 a22 a23 a24

0 0 0 a34

 . (D.11)

While not used here, affine projections are numerically simpler and used in some

structure from motion algorithms.

D.2 IMAGE DISTORTION DUE TO OPTICS

Radial distortions are a result of the lens shape, whereas tangential distortions are the

result of the alignment of optical elements and the assembly of the camera as a whole.

Radial distortion is 0 at the optical center and increases toward the periphary.

This distortion can be characterised by the first few terms of a Taylor series expansion
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around r = 0 [Hartley and Zisserman, 2004, ch. 7]. The location of a distorted point

(xd, yd) will be rescaled by;

xim = xd(1 + k1r
2 + k2r

4 + k3r
6)

yim = yd(1 + k1r
2 + k2r

4 + k3r
6), (D.12)

where (xd, yd) are the coordinates of the distorted points (r2 = x2d + y2d). k1, k2 and k3

are intrinsic parameters. too but will not be considered here.

Tangential distortion is characterized by an additional two parameters, p1 and p2;

xim = xd +
(
2p1yd + p2(r

2 + 2x2d)
)

yim = yd +
(
p1(r

2 + 2y2d) + 2p2xd)
)
. (D.13)

D.3 CUSTOMIZING THE LOG-POLAR TRANSFORM

If one is not interested in the data-reduction properties of the log-polar transform; in-

stead requiring only the rotation and scale invariance, the recommended approach [Pe-

ters II et al., 1996] is to compute M so that spatial extrema in I map to radial extrema

in I∗. This is done as follows. Begin by writing r from (5.5) as a function of ρ;

r = ekρ − 1, (D.14)

where

k =
log rmax + 1

ρmax
. (D.15)

Then, the parameter M = 1/k and

ρ =
1

k
log (r + 1) . (D.16)

For a detailed treatment of the log-polar transform see Peters II et al. [1996],

Peters II [2000].



BIBLIOGRAPHY

K. R. T. Aires, A. M. Santana, and A. A. D. Medeiros. Optical flow using color infor-

mation: preliminary results. In SAC ’08: Proceedings of the 2008 ACM symposium

on Applied computing, pages 1607–1611, New York, NY, USA, 2008. ACM. ISBN

978-1-59593-753-7. doi: 10.1145/1363686.1364064.

A. A. Argyros, D. P. Tsakiris, and C. Groyer. Biomimetic centering behavior [mobile

robots with panoramic sensors]. Robotics Automation Magazine, IEEE, 11(4):21–30,

dec. 2004. ISSN 1070-9932. doi: 10.1109/MRA.2004.1371612.

A. Bachrach, R. He, and N. Roy. Autonomous flight in unknown indoor envi-

ronments. International Journal of Micro Air Vehicles, 1(4):217, 2010. doi:

10.1260/175682909790291492.

T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam): Part

ii. Robotics & Automation Magazine, IEEE, 13(3):108–117, 2006.

S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database

and evaluation methodology for optical flow. In Computer Vision, 2007. ICCV 2007.

IEEE 11th International Conference on, pages 1–8, 14-21 2007. doi: 10.1109/ICCV.

2007.4408903.

P. Baraldi, E. De Micheli, and S. Uras. Motion and depth from optical flow. In

Proceedings of the 5th Alvey Vision Conference, pages 205–208, Reading, UK, 1989.

A. Barron and M. V. Srinivasan. Visual regulation of ground speed and headwind

compensation in freely flying honey bees (apis mellifera l.). Journal of Experimental

Biology, 209(5):978–984, 2006. doi: 10.1242/jeb.02085.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow techniques.

International Journal of Computer Vision, 12(1):43, 1994. doi: 10.1007/BF01420984.

H. G. Barrow and J. M. Tenenbaum. Interpreting line drawings as three-dimensional

surfaces. AI, 17(1-3):75–116, August 1981.

C. Barrows, G. Neely and K. Miller. Optic flow sensors for mav navigation. Fixed and

Flapping Wing Aerodynamics for Micro Air Vehicle Applications, 195:557–574, 2001.



210 BIBLIOGRAPHY

G. L. Barrows, J. S. Chahl, and M. V. Srinivasan. Biomimetic visual sensing and

flight control. In Proceeding of the Bristol UAV Conf, pages 159–168, 2002. doi:

10.1.1.125.9786.

S. S. Beauchemin and J. L. Barron. The computation of optical flow. ACM Comput.

Surv., 27(3):433–466, 1995. ISSN 0360-0300. doi: 10.1145/212094.212141.

W. Belmans, T. Schaeps, and B. Jansen. Pseudo automatic camera extrinsic estimation

using 3d hough transform. In R. Magjarevic, J. Sloten, P. Verdonck, M. Nyssen,

and J. Haueisen, editors, 4th European Conference of the International Federation

for Medical and Biological Engineering, pages 567–570. Springer Berlin Heidelberg,

2009. doi: 10.1007/978-3-540-89208-3 135.

W. Bi, Z. Chen, L. Zhang, and Y. Xing. Fast detection of 3d planes by a single slice

detector helical ct. In Nuclear Science Symposium Conference Record (NSS/MIC),

2009 IEEE, pages 954–955, 242009-nov.1 2009. doi: 10.1109/NSSMIC.2009.5402465.

H. R. Blackwell. Contrast thresholds of the human eye. J. Opt. Soc. Am., 36(11):

624–632, Nov 1946. doi: 10.1364/JOSA.36.000624.

A. Bonarini, W. Burgard, G. Fontana, M. Matteucci, D. G. Sorrenti, and J. D. Tardos.

Rawseeds: Robotics advancement through web-publishing of sensorial and elaborated

extensive data sets. In In proceedings of IROS’06 Workshop on Benchmarks in

Robotics Research, 2006.

D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter. A data structure for the
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