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Abstract. A new method, AMORE – based on a genetic algorithm optimizer, is presented for the automated study of colour-
magnitude diagrams. The method combines several stellar population synthesis tools developed in the last decade by or in
collaboration with the Padova group. Our method is able to recover, within the uncertainties, the parameters – distance, extinc-
tion, age, metallicity, index of a power-law initial mass function and the index of an exponential star formation rate – from a
reference synthetic stellar population. No a priori information is inserted to recover the parameters, which is done simultane-
ously and not one at a time. Examples are given to demonstrate and to better understand biases in the results, if one of the input
parameters is deliberately set fixed to a non-optimum value.
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1. Introduction

The present data flow of many ongoing surveys – such
as 2MASS (Beichman et al. 1998; Skrutskie 1999), DeNIS
(Epchtein et al. 1997, 1999), EIS (Renzini & da Costa 1997;
da Costa 1997; da Costa et al. 1998), OGLE-II (Udalski et al.
1997; Paczyński et al. 1999), SDSS (Fan 1999 and refer-
ences cited therein), and even upcoming surveys as GAIA
(Gilmore et al. 1998; Perryman et al. 2001) – is so large that
one requires either a semi-automated or a fully automated
method to analyse the colour-magnitude diagrams (CMDs) in
the resulting databases. In this paper we discuss the develop-
ment and the tests of an automated analysis method, which
fully employs the colour and magnitude information available
about the stars populating the CMD. Our method is based
on an implementation of the CMD diagnostics suggested by
Ng (1998). The method uses, in contrast to other techniques
(see Bertelli et al. 1992; Gallart et al. 1996 & 1999; Geha
et al. 1998 Harris & Zaritsky 2001; Hernandez et al. 1999;
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Holtzman et al. 1997 & 1999) the full, unbinned distribution
of magnitudes and colours of the stars populating the CMD.

The purpose of this paper is to verify that astrophysical
parameters for a synthetic single stellar population can be
reliably retrieved with the so-called “AutoMatic Observation
REnderer” AMORE. In Sect. 2 an outline of AMORE is given
together with its individual building blocks. In Sect. 3 we out-
line the method we use and in Sect. 4 we describe the tests
performed with synthetic stellar populations. The results are
given in Sect. 5 and we discuss in Sect. 6 the practical limits on
the convergence, which is imposed by some degeneracy of the
parameter space. We end with prospects on forthcoming tests,
recommendations for improvements, and an outlook on future
developments.

2. AMORE

2.1. Project outline

AMORE tries to find the best matching synthetic CMD to an
observed CMD. Such a synthetic CMD contains for stellar ag-
gregates the contribution of one or more stellar populations at
the same distance. In the case of a CMD along a particular line
of sight in our Galaxy the synthetic CMD can moreover contain
the contribution of various populations with stars distributed at
different distances.
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In this paper we focus on the implementation and the perfor-
mance of AMORE for the fitting of CMDs. For sake of argu-
ment only one, single stellar population has been considered.
The implementation of automatic fitting CMDs with multiple
stellar populations with stars at the same or different distances
will be subject of forthcoming papers.

2.2. Building blocks

AMORE, see Fig. 1 and Sect. 3.1 for details, combines various
analysis tools developed and improved at Padova during the
last decade. Conceptually, it is made up out of the following
building blocks:

– a synthetic Hertzsprung-Russell Diagram generator (here-
after referred to as HRD-ZVAR see Sect. 2.3),

– a mockup version of the HRD Galactic Software Telescope
(HRD-GST, see Sect. 2.4),

– a statistical diagnostic tool to compare the observed and
synthetic CMDs with each other (Ng 1998), and

– the PIKAIA (extended version) and POWELL optimizers (see
respectively Sects. 2.6 and 2.8), which search for the best
fit between an observed and a synthetic CMD in a multi-
parameter space.

In the following subsections a description is given of the vari-
ous building blocks.

2.3. HRD-ZVAR

In the late-eighties Bertelli developed a code to generate
synthetic Hertzsprung-Russell diagrams (HRDs) from the
isochrones computed by the Padova group (cf. Chiosi et al.
1989). Initially the synthetic colour-magnitude diagram (CMD)
technique was applied mainly in the studies of LMC open clus-
ters1 (see for example Bertelli et al. 1985, 1990 or Chiosi et al.
1989), through which the amount of convective overshoot was
calibrated for the computation of a new generation of stellar
evolutionary tracks. Successive improvements were gradually
applied when new sets of evolutionary tracks (see Bertelli et al.
1994 for details) were computed with improved radiative opac-
ities (Iglesias et al. 1992).

The backbone of HRD-ZVAR, the extended version of the
HRD generator, is formed by the evolutionary tracks computed
by Bertelli et al. (1990; Z = 0.001), Bressan et al. (1993;
Z = 0.020), and Fagotto et al. (1994a,b,c; Z = 0.0004, 0.004,
0.008, 0.050, 0.10). The metallicities of the tracks follow the
enrichment law ∆Y/∆Z = 2.5 (see references cited in Chiosi
1996 and Pagel & Portinari 1998).
HRD-ZVAR indicates that the metallicity Z is not limited

to the fixed values for which the evolutionary tracks have
been computed, but is variable through interpolation between

1 The analysis technique with stellar ratios was employed. The rea-
son for this is that ratios are less sensitive to uncertainties in certain
regions in the CMD, which might not be reproduced properly due to
various reasons such as the input physics used for the calculations of
the stellar evolutionary tracks or the transformations from the theoret-
ical to the observational plane.

the metal-poorest and metal-richest tracks available inside the
database of evolutionary tracks. In this way one is able to gener-
ate synthetic stellar populations with a smooth metallicity cov-
erage. A prerequisite however is to use a complete and homo-
geneous library of evolutionary tracks and some improvements
are expected if one adopts a grid of tracks with a smoother
metallicity coverage.
HRD-ZVAR has been distributed (privately) to various re-

search groups and is also referred to as ZVAR2. The version dis-
tributed, modified, and used by for example Aparicio (1999),
Gallart (1998), and Ng et al. (1996, 1997) is from now on re-
ferred to as V1.0. Version V1.6 is used for the simulations and
results presented in this paper. This version contains a number
of modifications and improvements which speeds up the code
and fixes some (rarely encountered) bugs which interfered with
the automatic minimization process. Although various analy-
sis methods are available, we limit ourselves here to the de-
scription of the parameters related to the HRD-ZVAR as adopted
for AMORE.

After selection of a set of tracks with fixed metallicity and
the choice of the parameters ηRGB and ηAGB, (the mass loss
along the Red Giant Branch (RGB) and the Thermally Pulsing
Asymptotic Giant Branch (TP-AGB) phases respectively), the
major input to be specified for HRD-ZVAR are:

– the metallicity range, Z ranges from Zmin to Zmax;
– the age range, the age ranges from tmin to tmax;
– the slope α for the power-law IMF (Initial Mass Function);

and
– the index β for the exponential3 SFR (Star Formation Rate).

The luminosity and effective temperature for each synthetic star
of arbitrary metallicity is transformed to an absolute magni-
tude in a photometric passband with the method outlined by
Bertelli et al. (1994) and Bressan et al. (1994). Default setup
for HRD-ZVAR is the UBVRI JHKLMN4 broadband photomet-
ric system. The setup can be altered to mimic any system, given
the description of the spectral response of the filter and the de-
tector of the photometric system.

2.4. HRD-GST

HRD-ZVAR was integrated in a galactic model by Ng (1994,
1997ab). The HRD-GST (Galactic Software Telescope) has been
applied in the studies of the galactic structure towards the
Galactic Centre (Ng et al. 1995, 1996 and Bertelli et al. 1995,
1996) and other regions in our Galaxy (Ng et al. 1997). In this
paper we do not require the full complexity of the structural

2 Note that an older and modified version of HRD-ZVAR is actu-
ally the program used to generate the Bertelli et al. (1994) isochrones.
HRD-ZVAR is free of the interpolation difficulties as reported by Olsen
(1999).

3 The SFR is only fixed for the time being to the adopted exponen-
tial shape.

4 Note that the IR photometric system is based on an “average” pho-
tometric system as described by Bessell & Brett (1988). Proper trans-
formations ought to be applied to the actual photometric system prior
to any astrophysical interpretation of the results.
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Fig. 1. AMORE flowchart: schematic diagram of the individual build-
ing blocks. PIKAIA outlines the direction of the evolution paths
to be investigated. Input for the stellar population synthesis engine
HRD-ZVAR is the Padova library of evolutionary tracks. The luminosity
and effective temperature for each synthetic star of arbitrary metallic-
ity is then transformed to an absolute magnitude in a photometric pass-
band with the method outlined by Bertelli et al. (1994) and Bressan
et al. (1994). The synthetic HRD is then “observed” and “detected”
through a Monte Carlo “observing run” with the HRD-GST. Note that
an alternative route is possible with single stellar populations (SSPs).
The synthetic CMD is compared with the observed diagram and a fit-
ness parameter is subsequently communicated to PIKAIA, which sug-
gests a new set of parameters for each trial. The iteration lasts for a
user defined, fixed number of trials. POWELL’s method of minimization
is subsequently applied to get closer to the local or global minimum.
After computation of the uncertainties for each parameter the evolu-
tionary run is either aborted or a new PIKAIA cycle is started after
shrinking the limits of the parameter space (see Sect. 2.9).

properties from the GST model. We only use a limited num-
ber of options to “observe” a synthetic HRD at the suggested
distance and to simulate the photometric errors, extinction and
crowding.

A table of the photometric errors, covering a specific mag-
nitude interval per passband, is used and the program inter-
polates linearly to obtain the intermediate values. We assume
for the simulation that the photometric errors are Gaussian dis-
tributed. A different description of the photometric errors will
be used when published artificial star tests (Stetson & Harris
1988; Gallart et al. 1999) on an observational data set are in-
dicative for a significant deviation from a Gaussian behaviour.
The visual extinction is simulated with the average value pro-
vided and appropriately scaled to a value in different pass-
bands. In the UBVRI passbands we adopted the scaling accord-
ing to van de Hulst (1949; curve No. 15) and for the JHKLMN
passbands we follow the scaling laws provided by Rieke &
Lebofsky (1985). We do allow for some random scatter around
the average extinction. However, we do not consider (yet) the
effects due to patchiness of the extinction along the line of

sight. Ng & Bertelli (1996) demonstrated that this is in first ap-
proximation, visually almost indistinguishable from a random
scatter around an average extinction.

In many studies the observations are crowding limited, due
to the increasing number of stars towards fainter magnitudes.
Crowding gives rise to star blends which affects the magnitude
and the colour of the stars. The group of stars will be detected
as a single star with a magnitude equal to the sum of the stellar
flux of the stars involved in the stellar blend. The remaining
stars are “hidden” from detection.

The blends are well described as unresolved, apparent bina-
ries. The simulation of apparent binaries is made with an iter-
atively improved blending probability, which is defined as the
probability that a star within a given ensemble of stars might
blend with another star from the same population. Each syn-
thetic star within a stellar population is tested against the blend-
ing probability.

The percentage of artificial binaries is with this scheme
about twice the blending factor. The blending factor in differ-
ent passbands is not necessarily the same and the occurrence
of star blends is furthermore not necessarily correlated, due to
possible differences in the exposure time or seeing conditions.

The fainter companion stars of artificial binaries will give
rise to incompleteness of the synthetic stellar sample. This al-
lows us to map the synthetic stellar completeness function,
which can be compared directly with the completeness func-
tion obtained from artificial star tests from the observed stellar
sample.

In the CMD to be analysed we assume implicitly that, be-
tween the observed and synthetic photometric system, the un-
certainty in the magnitude zeropoint is smaller than the uncer-
tainty in the zeropoint of the colour, see Carraro et al. (1999),
and references cited therein. We allow for this reason the possi-
bility that a small zeropoint shift might be present between the
colours of these systems.

2.5. SSPs

Although straightforward, the generation of a large number of
synthetic HRDs with each their own specific age-metallicity
range, star formation history and initial mass function can be
a time consuming task, because of the repetition of many cal-
culations to generate one diagram. Figure 1 indicates that an
alternative route with single stellar populations (SSPs) is avail-
able for the automated analysis. However, this method requires
the computation of a large, regular grid of SSPs for different
age-metallicity ranges and IMFs. The star formation history
and age-metallicity range are the result of the linear combi-
nation of the SSPs. The time spent on computations of new
CMDs thus can be greatly reduced through the use of prob-
ability density diagrams. However, this is not our prime ob-
jective. Our present goal is to develop an automated fitting
method, which compares on a star by star basis, and to demon-
strate its potential. Optimization for speed is not yet our pri-
mary concern. Moreover, the generation of one synthetic CMD
with 5000 stars takes about 0.75 s on a PC equipped with a
200 MHz Pentium processor. This is a good indication that
our present version of the software tool is performing at an
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Fig. 2. Schematic view of the main genetic operators acting on two sets of parameter strings in order to procreate two new sets (one chromosome
set for each individual) of test strings: natural selection of two individuals G and g for the breeding of offspring, modification of the genetic
content by means of a homologous crossover – at gene Gi/gi, and finally the mutation of gene g2 to ∗g2. Each gene on a chromosome represent
a parameter to be optimized. The schematics for a 2-point crossover scheme are shown for comparison

Table 1. PIKAIA control parameters. These parameters were kept fixed at the values listed throughout the evolutionary runs.

initial PIKAIA parameter comment
value default identifier

100 100 np the number of individuals per population
20 500 ngen number of generations
2 5 nd number of digits encoding accuracy
2 2 imut mutation mode, imut= 2 then pmut= [pmutmn,pmutmx]
0.005 0.005 pmut initial mutation rate
0.005 0.005 pmutmn minimum mutation rate
0.35 0.25 pmutmx maximum mutation rate
0.95 1.0 fdif fitness differential
3 1 irep reproduction plan
0 1 ielite elitism
0 0 ivrb verbose mode

acceptable speed. We refer to Dolphin (1997, 2001, 2002) and
Olsen (1999) for a description of a method using SSPs.

2.6. PIKAIA

The PIKAIA optimization package (V1.0; public domain) was
developed by Charbonneau (1995) and a full description of this
package is given by Charbonneau & Knapp (1996). PIKAIA
has been used successfully in a wide range of astrophysical
applications (e.g. Bobinger 2000; Charbonneau et al. 1998;

Gibson & Charbonneau 1998; Kaastra et al. 1996; Kennelly
et al. 1996; Lamontagne et al. 1996; McIntosh et al. 1998;
Metcalfe 1999; Mewe et al. 1996; Noyes et al. 1997; Saha
1998; Wahde 1998).

PIKAIA is based on a genetic algorithm (Holland 1975;
Goldberg 1989; Davis 1991; De Jong 1993), and is in princi-
ple not a function optimizer, but it does this extremely well. It
searches for, locks on to, and pins down an optimal solution in
a way, which is conceptually comparable to biological evolu-
tion through natural selection. Genetic algorithms are capable
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to explore and find in a robust way an optimum, but not nec-
essarily the best, setting for a particular problem. In our case
this comes down to minimizing the difference between a syn-
thetic and an observed CMD by evolving the astrophysical pa-
rameters that define the shape of the CMD (see Table 2 and
Sects. 2.10 and 3). We follow the generally accepted biological
terminology for the description of a genetic algorithm.

A genetic algorithm makes use of a reduced version of the
evolutionary process. The gene pool, i.e. the set of parame-
ters to be optimized, and its associated phenotypic population
evolves in response to

– the reproductive success of the population, following its re-
production plan;

– genetic recombination (crossover, see Fig. 2) at breeding;
– random mutations (see Fig. 2) during breeding, which af-

fect a subset of the events.

2.6.1. Flow control

PIKAIA has 12 flow control parameters which are discussed by
Charbonneau (1995) to whom we refer for a detailed descrip-
tion. We limit ourselves to a short summary and the purposes
of these control parameters: np defines the number of individ-
uals in a population; ngen specifies the number of generations
that the population is evolving; nd is number of digits encod-
ing accuracy5 used for the parameters; pcross is the proba-
bility that a crossover occurs between the chromosomes of the
parents; imut, pmut, pmutmn, and pmutmx specify the muta-
tion mode, the mutation rate (the initial mutation rate if the rate
spans the range from pmutmn to pmutmx for imut=2), and the
minimum and maximum mutation rate; fdif the fitness dif-
ferential controls the selection of the individuals for breeding
through their fitness; irep defines the reproduction plan to be
followed; ielite defines if the fittest individual can or cannot
be selected for replacement; and ivrb specifies verbose mode
for extra on screen information during the evolutionary run.

Table 1 holds a list of the PIKAIA flow parameters which
were kept constant during all the simulations described in this
paper. In the following subsections we describe the extensions
added to the 12 flow parameters of PIKAIA.

2.6.2. Crossover

The crossover operator is very effective in a global exploration
of the full parameter space and is in a way comparable to a
variational calculus method. A one-point crossover scheme, see
Fig. 2, is sometimes inadequate to combine and pass on certain
features encoded on the chromosomes (Michalewicz 1996) to
its offspring. In some cases only a correlated modification of a
number of genes, say 2, will result in a fitter offspring. This can,
for example, be mimicked through the application of a two- or
multi-point crossover scheme. PIKAIA has been extended with
the control parameter rcross to handle a multi-point crossover

5 The 1 or 2 number of digits encoding accuracy maps the parame-
ter via an integer value, either 0–9 or 0–99, to a range of floating point
values by a controlling “normalization” function, see Charbonneau
(1995) for additional details.

operation. For example: rcross=1 represents the default one-
point crossover, while rcross=2.3 represents a “2.3-point”
crossover: i.e. a two-point and three-point crossover for respec-
tively 70% and 30% of the cases (2.3 = 0.7 × 2 + 0.3 × 3).

2.6.3. Brood recombination

An important drawback of genetic algorithms is that the
crossover operator is for about 75% of the time lethal to its off-
spring, i.e. it produces children which are not as fit as their par-
ents (Banzhaf et al. 1998). To avoid missing, potentially, fitter
offspring and to reduce the destructive effect of the crossover
operator we have incorporated brood recombination in PIKAIA
through a new control parameter rbrood. The default PIKAIA
reproduction scheme is obtained with rbrood=1, i.e. two
parents breed once and produce two new individuals. With
rbrood = 3.5 the parents are allowed to breed on average
3.5 times to produce a larger offspring (in this case 7 on av-
erage). For rbrood>1 one ends up with more than two off-
spring. PIKAIA on the other hand expects from each pair of
parents only two children. This constraint was obeyed in or-
der not to significantly alter the global behaviour of PIKAIA.
Therefore, in order to avoid an exponential growth of the pop-
ulation for rbrood,1, only the fittest two individuals of the
local offspring survive6 and enter the global population for a
fitness evaluation from which a selection is made for further
breeding.

The extra breeding increases the computational effort con-
siderably, due to a larger number of function evaluations. The
advantage is a more rapid increase of fitter individuals through
the selection of effective crossovers from good recombinations.
On the other hand, a rapid increase of fitter individuals might
lead to a premature convergence to a local minimum, due to a
smaller variance in the genetic pool.

2.6.4. Creep mutations

We further introduced the “creep” mutation (Charbonneau &
Knapp 1996) in order to overcome the so-called “Hamming
Wall” problem, i.e. the inability to cross in a decimal encoding
scheme certain boundaries with a one-point mutation operator.
The creep parameter pcreep defines the probability that a gene
in the pool undergoes a “standard” mutation (change digit ran-
domly in the range 0–9) or the “creep” mutation (add or sub-
tract one from the current value of the digit). We adopted as
default equal weight for the occurrence of a “creep” or “stan-
dard” mutation.

2.6.5. Correlated mutations

In general mutations occur in the optimization process to avoid
premature convergence. A low mutation rate is sufficient for
this purpose. However, a high mutation rate can be used as

6 This is irrespective if the local, fittest individuals are weaker than
the weakest individual in the global population or if the locally re-
maining offspring are fitter than the fittest individual in the global
population.
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an additional way to explore the parameter space like a virus.
Although one would prefer to use a (multi-point) crossover op-
erator, we do allow that mutations can be used instead, simply
because the two operators also co-exist in nature.

We modified PIKAIA’s uniform mutation mode. In the ma-
jority of the cases we require a (anti-)correlated change be-
tween two or more parameters (see Sect. 6.2). In a standard mu-
tation scheme convergence might be slow if one has to wait for
the simultaneous occurrence of a favourable (anti-)correlated
mutation of two specific parameters in order to improve the fit-
ness. We introduced an extra parameter pcorr which defines
the probability that a correlated mutation occurs. If this is not
the case the standard mutation scheme is chosen. Otherwise
we allowed that in 50% of the cases the mutations of two
genes (igen1 and igen2 are extra input parameters added
to the modified version of PIKAIA) are more relevant than
the mutations occurring in other parameters. For the remain-
ing 50% of the cases the two genes are determined stochasti-
cally. Additional details about the adopted values of the control
parameters are given in Sect. 2.10 and Table A.1.

2.7. Fitness

PIKAIA searches for the optimum solution by maximizing the
fitness function f . The fittest solution has a fitness f =1, while
the worst has f = 0. We use the Ng (1998) fitness function, a
combination of a chi-squared and Poisson like functions. These
functions minimize the differences between observed and syn-
thetic diagrams via a star-by-star matching7 scheme.
The Ng fitness function is defined as:

f =
1

1 + F
, (1)

where F is

F = F2
χ + F2

P . (2)

Fχ is the chi-squared function of the best fitted points within a
3–5σ error ellipse and FP is the Poisson function of the resid-
ual points outside this ellipse. Both Fχ and FP are dimension-
less, but they hold information about the average uncertainty in
units ofσ, say σχ andσP. For example: the average uncertainty
per point for a fit with Fχ is Fχ × σχ.

Fχ and FP are respectively defined as:

Fχ =
√
χ2 =

√
χ2(O, S)/Nmatch , (3)

and

FP =
NO,not + NS ,not√

NO +
√

NS
· (4)

The intuitive motive behind this is to make a division between
the synthetic points matching the observed CMD for which the
errors are expected to be normally distributed and the points
which do not match and are allegedly assigned to the Poisson
merit function. The method actually uses Fχ as a loosely fixed

7 This option is feasible due to the increment of the present day
computational speed.

“anchor”, puts the outlier points in FP and then reduces the
number of unmatched points by minimizing FP. We refer to
Ng (1998) for additional details and a discussion of these func-
tions. Suffice to say that for an acceptable solution both Fχ
and FP are about 1 or smaller8 which on its turn can be relaxed
to the condition F<∼2 9 and thus yields 1

3
<∼ f <1.

The formal 1σk uncertainty of each parameter k, see
Table 4, is obtained through variation of this parameter and
by minimizing the function | √Fk − √Fmin − 1|. Conceptually,
this is similar to moving the merit function in the FP, Fχ – plane
away from its optimum setting, to the nearest position on a con-
tour +1σk higher. The associated fitness function fσ,k10 is:

fσ,k =
1

1 +
∣∣∣√Fk − √Fmin − 1

∣∣∣ , (5)

where k is the particular parameter for which the uncertainty is
estimated and Fmin is the global value obtained for the fittest
population.

2.8. POWELL

We implemented a hybrid optimizer in which we use PIKAIA to
explore the parameter space and then use POWELL’s minimiza-
tion algorithm (Powell 1964; Press et al. 1986) to pin down the
nearest local or global minimum through a direction set method
which produces N mutually conjugate (non-interfering) direc-
tions. For details and an excellent description of this algorithm
we refer to Press et al. and references cited therein.

A hybrid minimization strategy is used, because PIKAIA is
by definition not a function optimizer, but it tends to get close
near a (local) optimum. POWELL is used to get even closer to
the (local) optimum. If we had landed in a local optimum then
we needed PIKAIA to jump out of it. The origin of our need
for a hybrid search strategy is comparable to the minimization
problems encountered by Harris & Zaritsky (2001).

2.9. Contracting parameter space

A full exploration of parameter space at one digit accuracy
would take considerable time (in the order of weeks), even
though certain forbidden combinations of parameters can be
excluded à priori. A full exploration at two or more digits ac-
curacy is nearly impossible due to present day computational
limits.

We implemented a dynamic, scalable parameter range in
our search for an optimum set of parameters. The parameter

8 For our testcase, as described in Sect. 4, Fχ ranges from 0.7–1.0
for all observed data points with a matching synthetic point within a
3σ uncertainty ellipse. This corresponds to a goodness of fit parameter
ranging from 0.49–1.0. It further indicates that it is justified to assume
that the measurement errors are normally distributed.

9 This condition is comparable but not equivalent to the results ob-
tained by Gallart et al. (1999). They demonstrated from a comparison
with colour-magnitude bins that a good agreement between the input
and recovered SFR(t) required a reduced chi-squared of χ2

ν '2.0.
10 For both age and metallicity ranges the associated uncertainties

denote for the lower and upper values the −1σ and +1σ boundary.
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Table 2. AMORE control parameters, used as the “educated guess” for the astrophysical parameters in the first PIKAIA cycle. These values
result in a fitness f = 0.004. The value for the parameters are constrained between the lower and upper limit.

# parameter value lower limit upper limit description

1 log d 3.7 3.6 4.0 log of distance
2 AV 0.30 – 0.001 0.5 extinction
3 log tlow 9.5 9.0 10.3 log lower age limit
4 [Z]low – 0.90 – 1.69897 0.69897 log lower metallicity limit
5 α 1.35 1.001 3.5 IMF slope
6 log thigh 9.6 9.0 10.3 log upper age limit
7 [Z]high 0.30 – 1.69897 0.69897 log upper metallicity limit
8 β 1.0 – 2.00 5.00 SFR slope

range shrinks after each optimization cycle with POWELL. This
leads to an improved accuracy in the results with a fixed num-
ber of digits encoding accuracy.

The automated re-scaling of the parameter range improves
the resolution of the exploration of the search grid. In addition,
due to the re-scaling one may circumvent partial degeneracy of
the parameters.

The global function F(Fχ, FP) gives the global distance to
the minimum in terms of σ2(σχ, σP). If we have n parameters
then each parameter k is in a simple approach on average about√

F/nσk away from its optimum value, because we assume that

F =
n∑

k=1

(
yk,sim − yk,true

σk

)2

, (6)

where yk,sim is the simulated value of parameter k and yk,true

is the true value of parameter k. The average offset per pa-
rameter k is therefore

√
F/n. The new limits can then be set

to ±√F/nσk. To balance the cancellation of errors, due to
a negative correlation between some parameters, we adopt a
rather conservative approach by constraining the limits of each
parameter k to ±3 × 1.3

√
F/nσk. In addition we add the con-

dition that 3 × 1.3
√

F/n>0.005.

2.10. Adjustable parameters: Free and fixed

AMORE uses in essence two different sets of parameters as
input. One set contains program flow control parameters and
information about the observational data to be simulated: the
photometric errors and crowding factors per passband, a shift
of the zeropoint of the colours due to a difference between
the observed and synthetic photometric system, and the spread
around the average extinction value to account partly for the
differential reddening in a field.

The other set of input parameters is used by PIKAIA and
can be divided into two parts (see Tables 1 and 2). One part
contains the PIKAIA control parameters. The other part con-
tains the lower and upper limits of the astrophysical parame-
ters to be optimized as well as an initial guess for the value
of those parameters (first column of Table 2, resulting HRD in
Fig. 6b). These parameters are a combination of the synthetic
population’s intrinsic properties, i.e. age, metallicity, slope of
the power-law IMF and the index of the exponential SFR.

Fig. 3. Evolutionary status for all the trial models (filled dots; see
Table A.1 for details) for each population after 400 generations, see
also Fig. 4. The filled starF points to the location obtained with the
original parameter settings as given in Table 4. Acceptable solutions
are found in the region for which both Fχ and FP are less than 1,
see Sect. 2.7. The condition has been relaxed to F < 2 (solid white
line). The asterisk indicates the position obtained for a different re-
alisation of the test population by changing the random seed. The
shaded regions indicate solutions for which the difference between
the CMDs from the “observed” and synthetic population is on average
less than respectively 3σ,

√
3σ, and 1σ. Note that rounding errors, see

Sects. 5.1.1 and 6.3, give rise to a degeneration of the parameter space
around f > 0.25 (i.e. F < 3).

In our case we allow for age and metallicity not to be restricted
to one fixed value, but to cover a specific range (see Table 2).

In addition, there are two parameters which mimic the syn-
thetic population’s behaviour as placed in a mockup version of
our Galaxy. These parameters are the distance from the Sun
and the average extinction.

In total we thus have 8 free parameters which AMORE has
to optimize simultaneously.
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3. Method

3.1. Genetic evolution

In terms of genetic programming the objective of AMORE is to
determine the genome (i.e. the set of astrophysical parameters
described in Sect. 2.10, see also Table 2) of a specified indi-
vidual (i.e. the observed stellar population). Note that it is not
possible to directly observe the genome. The genome is deter-
mined from the phenotype of each individual (i.e. the synthetic
CMDs, see for example Fig. 6). The genetic information is lo-
cated in the genes of one chromosome11.

A guess of the genotype of the observed CMD is obtained
through comparison with a synthetic CMD, which is gener-
ated via supervised evolution and breeding (PIKAIA together
with POWELL). The stars in the synthetic CMD population with
a particular genotype are raised to maturity (HRD-ZVAR and
HRD-GST). A group of individuals12 is allowed to procreate
(the chance of an individual procreating depends on its fit-
ness and the selection pressure, see Charbonneau 1995 and
Charbonneau & Knapp 1996) and the genetic information of
the parents is passed on to their offspring (see Fig. 2).

A fitness evaluation (a comparison between the observed
and synthetic CMD) provides a ranking of the resulting group
of individuals. If the individual has “good genes” it survives,
remains in the group and gets a chance of procreation.

The evolutionary process of breeding and fitness evaluation
is repeated for a fixed number of generations. The gene pool of
the resulting best individual at the end of the evolutionary run
with AMORE hopefully represents a near-optimum represen-
tation of the unknown genome.

3.2. Running AMORE

Initially PIKAIA is in control (see Fig. 1) of the evolution
for a fixed number of generations. Afterwards POWELL tries
to improve the genome of the fittest individual communicated
through PIKAIA. We then determine the uncertainty for each
gene on the chromosome. Subsequently, we tighten the limits
on the range of variation allowed for each gene and re-scale the
parameters on the genetic print of the fittest individual accord-
ingly. During the shrinkage of the parameter range we do not
re-scale the genetic information of the remaining individuals,
but preserve their former values as semi-random input for the
continued optimization process. The latter addition to the hy-
brid scheme is most likely a significant driver in speeding up
the search for a fitter individual.

After each optimization with POWELL a new cycle with
PIKAIA is started with the current best parameter set as “ed-
ucated next guess” for AMORE’s progressive evolution. The
total number of PIKAIA cycles is user defined.

11 The genetic information is currently located on one chromosome.
Individuals with two chromosomes might be considered as a future
extension. A two-chromosome approach has the advantage that certain
genetic information can remain present in a recessive form.

12 To avoid confusion the term group is used instead of the biological
term population, because each individual in the group is actually a
synthetic stellar population.

In Sect. 2.9 we argued that the parameters are on average
about

√
F/nσk away from its optimum value. The convergence

however is not governed by the average “distance” that each
parameters is away from its optimum setting. It is mainly de-
termined from the ability to tune the parameter which has the
largest offset from its optimum value.

In the AMORE training sessions it was noted that with
F '3.0 about three of the eight parameters are about 1σk

(' √F/3σk) away from their optimum value. AMORE has a
built-in option to do a random variation from 0–3 σk of two
parameters (randomly selected) from the running best solution
when the fitness is less than 0.30. Above this threshold we
choose a new value for two parameters according ±√

F/ρσk,
where ρ can be any number between 1.0 and 4.0.

4. Tests

4.1. Test objectives

We performed several tests on AMORE in order to

– verify and validate AMORE’s performance in retrieving the
astrophysical parameters of a synthetic single stellar popu-
lation;

– determine adequate values for the parameters pcross,
rcross, rbrood, pcreep, and pcorr in the extended
version of PIKAIA;

– study the effects of rounding and degeneracy;
– study the effects of fixing parameters on the convergence.

4.2. Setup

The hybrid interaction between PIKAIA and POWELL, combined
with a progressive shrinking/re-scaling of the parameter space,
requires that a trade-off has to be made in the choice of the size
of the population and the number of generations we allow this
population to evolve in order to obtain results in a reasonable
amount of CPU processing time.

We explored several different settings for the PIKAIA con-
trol parameters, because the tuning of those parameters is very
problem dependent (Charbonneau & Knapp 1996). The val-
ues we decided to use are listed in Table 1. Four notes can be
made here.

Firstly the steady-state-delete-worst reproduction plan
(irep=3) we adopted, in which we replace the least-fit indi-
vidual from the population when the fitness of the new indi-
vidual is superior to that of the least-fit population member.
Choosing this reproduction plan implies that the elitism con-
trol parameter (ielite) is non-operative, because elitism is
active by default. We evaluated two other reproduction plans
(Charbonneau & Knapp 1996); full generational replacement
and steady-state-delete-random. The steady-state-delete-worst
reproduction plan produced on average the best results.

Secondly the mutation rate of 0.35 corresponds, in case
of a default 2 digit accuracy, with the on average occurrence
of 2.8 mutations per astrophysical parameter.

Thirdly, the fitness differential parameter fdif, a mea-
sure for the selection pressure, would normally be chosen as
high as possible (fdif=1 in this case). However, it may pos-
sible to circumvent local minima by lowering that value a bit
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Fig. 4. The filled circles in panels a)–f) display the values obtained for the parameters using the models in Table A.1. The solid line refers to
the value set for the original population.

(Charbonneau & Knapp 1996). Setting fdif=0.95 turned out
to be a good trade-off choice.

Fourthly, we want to explore as large a fraction of the pa-
rameter space as possible at the first entry in AMORE. This is
done by using only an one digit accuracy (nd=1). Due to the
active re-scaling of the parameter space boundaries we do not
require a very high precision in our exploration. A one percent
accuracy (nd=2) of the parameter space is sufficient in the sub-
sequent PIKAIA cycles.

In biological terms, the PIKAIA control parameters define
the ecosystem in which our population evolves.

All computations presented in this paper were performed
with an executable generated with the g77 compiler. This
executable was then installed on various PCs running Red
Hat Linux13 6.X and 7.X. The PCs were equipped with Intel
Pentium III or Athlon processors with clock speeds ranging
from 600 – 1200 MHz.

All tests, unless stated otherwise, use the synthetic popula-
tion as described by Ng (1998):

− a metallicity range, spanning Z = 0.005–0.030;
− an age range from 8–9 Gyr;
− an initial mass function with a Salpeter slope;
− an exponential decreasing star formation rate with a char-

acteristic time scale of 1 Gyr.

13 Red Hat©R is a registered trademark of Red Hat Software, Inc. and
Linux©R is a registered trademark of Linus Torvalds.

Table 3. Average fitness ( fA) for different values of the parameters
as obtained from Table A.1. The first column displays the parame-
ter name which is varied, the parameter value is given in the second
column, the third & fourth column show respectively fA, uncorrected
for pcorr = 0.0, together with its standard deviation, and the fifth and
sixth column display the averaged values after removal of the results
of the models with pcorr = 0.0. See Sect. 5.1.2 for additional details.

parameter value fA σn−1 fA σn−1

pcross 0.50 0.276 0.070 0.287 0.066
0.85 0.299 0.063 0.297 0.056

rcross 1.00 0.293 0.065 0.290 0.063
2.00 0.285 0.068 0.297 0.065
3.00 0.285 0.070 0.290 0.057

rbrood 1.00 0.286 0.077 0.230 0.059
2.00 0.292 0.058 0.301 0.055
4.00 0.285 0.066 0.276 0.067

pcreep 0.0 0.287 0.071 0.292 0.068
0.3 0.290 0.065 0.297 0.058
0.7 0.285 0.066 0.288 0.060

pcorr 0.0 0.278 0.077 NA NA
0.3 0.285 0.065 NA NA
0.7 0.300 0.057 NA NA

The test population contains N = 5000 stars and is placed at
8 kpc distance. The “observational” limits are set to Vlim = 22m

and Ilim = 21m.
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4.3. Description of the tests

4.3.1. Test 1: Determining values for pcross,
rcross, rbrood, pcreep, and pcorr

In the first test, we evaluate the 162 models listed in Table A.1
in order to study the effect of the PIKAIA parameters pcross,
rcross, rbrood, pcreep, and pcorr on the convergence
and computational effort. The test has as a secondary objective
to provide an understanding of the degeneracy of the parameter
space.

All astrophysical parameters to be retrieved are set free,
floating between reasonable minimum and maximum val-
ues (see Table 2 for details). AMORE runs for 20 iterations
of 20 generations (ngen=20) to recover the a priori known pa-
rameters of the synthetic population. The number of iterations
and generations determine the total length of an evolutionary
run: 20 × 20 = 400 generations. Note that the range of each
parameter is set within reasonable limits and not taken exces-
sively large, because it might lead to the case that no acceptable
parameter setting is found with the standard iteration loop.

4.3.2. Test 2: Rounding

The second test deals with the effects of rounding. We vary the
number of significant digits in the input parameters to reveal
AMORE’s sensitivity to rounding. In this case we do not make
an evolutionary run, because the trial set of parameters (the ed-
ucated guess at the start-up of a PIKAIA cycle) is the correct
one. For clarity we label the fitness in this test by ftrial instead
of fA, the fitness after a complete evolutionary run.

4.3.3. Test 3: Fixing parameters at the correct value

In the third test we take six models in which one of the pa-
rameters is set fixed at its correct value in order to study the
effects on the convergence. The models chosen were two of
high, two of intermediate and two of low fitness as determined
from the first test. The convergence in this test basically can
go two ways: either the convergence is faster, because less pa-
rameters have to be optimized. Or, due to the fact that AMORE
has less maneuverability in this situation, the convergence is
slower. We adjusted the limits for age and metallicity as given
in Table 2 such that AMORE would not try to find solutions
in forbidden regions of parameter space which might severely
slow down convergence due to constant rejection by AMORE
of the chosen parameter values.

For example, fixing the [Z]low parameter at its correct value
of – 0.60206 means that we have to adjust the lower limit
for [Z]high to – 0.60206 as well.

In the case of fixing the log tlow parameter this also im-
plies that the initial guess has to be adjusted. We set this initial
guess to 10.1.

4.3.4. Test 4: Fixing parameters at the wrong value

In the fourth test we take six models in which one of the
parameters is set fixed at 1σ offset (determined from the

first test) from its original value, in order to study its effect
on the “second best” setting of the remaining parameters.
Normally one would expect a fitness f > 1

3 . In this case,
however, F < F2

P + F2
χ = 12 + (1 + 1)2 = 5 and the as-

sociated fitness constraint drops to f > 1
6 . However, this

assessment ignores the fact that, when a parameter is offset
from its optimum value, the number of matched points will
decrease and FP increases. Using Eq. (6) one has for a good
fit F = 2. On average the offset per parameter k from the

optimum value is
√

1
4 σk =

1
2 σk, at best the offset is 0σk,

and in the worst case this is
√

2σk. So with one parameter
k put at 1σk offset we distinguish the three possibilities

1 at best F= (1 + 2) = 3 → f = 1
4

2 on average F= (1 + 1
2 )2 + 7

4 = 4 → f = 1
5

3 at worst F= (1 +
√

2)2 = 5.8 → f = 1
6.8 ·

Note that the worst case limit is in agreement with the results
presented in Table A.3.

The effect of the 1σ offset of one of the parameters will
partly be canceled by forcing other parameters away from the
optimum value. For example, the effect of an increased extinc-
tion can be masked partially by generating a bluer stellar pop-
ulation with a lower metallicity and a younger age. The effect
will be such that the fitness will not be around f ' 1

6.8 , but some-
where in the range 1

6.8 < f < 1
3 ·

We fixed the parameters both at one sigma above and one
sigma below the original value, because the evolutionary ef-
fects do not have to be symmetric. The only exception is the
extinction, which we only fix at one sigma above the original
value of AV = 0.0.

Again we adjusted the limits for the upper and lower limit
for age and metallicity.

5. Results

AMORE has been tested for a wide range of setups. The results
in Table A.1 indicate that AMORE give both acceptable and
less acceptable solutions. They are displayed in Figs. 3 and 4.

To better understand what goes on during the genetic evo-
lution we display the results from model A.1-40. Figure 5 dis-
plays an example of the evolution of the merit function F for
a number of generations. It shows how the initially dispersed
individuals gradually find their way, start to cluster together
around generation 10, and penetrate the region with acceptable
solutions after about 50 generations. After 100 generations the
improvements become marginal for this model.

Figure 6 displays for the same model A.1-40 the phenotypi-
cal changes of the CMD for several fitnesses during the genetic
evolution. The various panels show that the synthetic CMD re-
sembles better and better the “observed” CMD when the fitness
improves. Note that at fitness f =0.05 one already gets for the
eye appealing solutions.

Figure 7 shows the improvements of the astrophysical pa-
rameters as a function of increasing fitness for the models
A.1-40 and A.1-51. The panels for distance and extinction
show that the distance is systematically underestimated, while
the extinction is overestimated. But in general one notices that
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Table 4. The effect of rounding in the parameters on the fitness evaluation; ftrial is the fitness obtained with AMORE for the given values of the
parameters. The average value and σ are based on the 162 models in Table A.1. The σ is obtained from an unweighted average for the fitness
of the models involved. The σ̂ is the error as estimated by Ng 1998.

parameter log d(pc) AV log tlow log thigh [Z]low [Z]high α β ftrial

original 3.906335 0.m00 9.90309 9.95424 – 0.60206 0.17609 2.35 1.0 0.44597

round-v1 3.906 0.m00 9.903 9.954 – 0.60 0.18 2.35 1.0 0.28595

round-v2 3.906 0.m00 9.903 9.954 – 0.602 0.176 2.35 1.0 0.30812

round-v3 3.9063 0.m00 9.9031 9.9542 – 0.602 0.176 2.35 1.0 0.42439

average value 3.8958 0.m027 9.866 9.984 – 0.554 0.244 2.358 1.574

σ 0.0033 0.m014 0.049 0.047 0.050 0.13 0.034 1.40

σ̂ 0.012 0.m06 0.043 0.023 0.18 0.08 0.03 1.4

Fig. 5. Conception diagram of the evolution of the genetic population of model A.1-40 during the optimization process displayed in Fig. 7.
Frame a) shows the initial population and the frames b)–l) show the population after several generations up to generation= 400. The outer
shaded region indicates solutions for which the difference between the CMDs from the “observed” and synthetic population is on average
between 1–3σ. The inner shaded regions marks the region with solutions for which the difference between the “observed” and synthetic CMDs
are less than 1σ. Such solutions are close to perfect matches between the “observed” and synthetic data and are considered to belong to a group
of solutions for which one may say “too good to be true”. The solid lines indicate the 10σ, 20σ, 30σ and 40σ contours.
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the astrophysical parameters obtained from model A.1-40 get
quite close to the parameters of the CMD to be matched.

5.1. Test 1: Parameter values and degeneracy

5.1.1. Degeneracy of the parameter space

Table A.1 is displayed in Fig. 3. The clustering in the figure
provides an indication that a degeneracy of the parameter space
is present near f >0.25 (i.e. F <3, see Eq. (1)). Without a ma-
jor computational effort it will be difficult to obtain a significant
improvement of the parameters once f > 0.25. However, F < 3
indicates a region in the (Fχ, FP)-plane for which the system-
atic offset of the individual parameters from its true value are
on average less than

√
F/nσk=0.6σk, see Sect. 2.9 for details.

In practice it turns out that a strong correlation between three
of the eight parameters has the culprit; at least two of them
have to change simultaneously in the proper direction in order
to improve the fitness (see also Sect. 6.3). They have an average
offset of ∼ √F/3σk=1σk, while for the remaining parameters
this is�1σk.

In addition, Fig. 4 displays the retrieved parameters for all
models as a function of fitness. Note, that AMORE systemat-
ically underestimates the distance of the test population. On
the other hand, the effect of this underestimation is in its turn
partially canceled by overestimating the extinction, the upper
age limit and the slope of the power-law IMF slightly (see also
Fig. 7). Another clue we get from Fig. 4 is that the slope of the
SFR β is very poorly constrained.

5.1.2. Determining values for pcross, rcross,
rbrood, pcreep, and pcorr

Looking at Table A.1, a result that is immediately obvious is
that pcorr = 0.0 has a strong stabilizing effect on the simula-
tion. Its effects overwhelm the effects of the pcreep parameter
and lock fA at a certain value, which may be quite good (e.g.
models 10, 11 and 12) or quite poor (e.g. models 28, 29 and 30).
Setting pcorr > 0 is thus preferred to avoid getting locked in
a low value for fA.

In order to compensate for this strong stabilizing effect, we
also evaluate in Table 3 the average fitness of the models when
we exclude all models which have pcorr = 0.0.

As expected, the rbrood parameter has a strong influence
on the amount of computational time needed. Although the
models with high values of rbrood are somewhat better
than models with low values, this effect is only marginal.
Considering that a high value of rbrood lessens the genetic
variation in the gene pool while increasing the computational
time needed for a run with several factors, it is desirable to
have a low value of rbrood.

The different parameters are not independent, as can be
seen from Table A.1 and Table 3. Simply taking the best
options in Table 3 yields model 134 for the case in which
pcorr = 0.0 has not been corrected for, a reasonable, but not
an exceptionally good model.

Table 5. Fitness statistics when fixing one parameter at its correct
value. Averaged fitness values fA and their associated standard de-
viation σn−1 are obtained from simulations with the setup parameters
from models 9, 14, 22, 34, 40 and 52. See Table A.2 for additional
details.

parameter fA σn−1

log d 0.299 0.081

AV 0.274 0.081

log tlow 0.332 0.021

log thigh 0.304 0.056

[Z]low 0.269 0.036

[Z]high 0.361 0.036

α 0.305 0.066

β 0.312 0.076

5.2. Test 2: Rounding

Table 4 shows the effect of the accuracy of the retrieved val-
ues of the parameters on the evaluation of the fitness. If one
applies a rounding to one or two significant digits it is not pos-
sible to reproduce the expected fitness, i.e. the expected fitness
drops from ftrial = 0.44 to ftrial = 0.28. A better agreement can
be obtained by reporting the values of the parameters with the
addition of one or more (apparently insignificant) digit(s). A
renewed search (Table 4; round-v3) circumvents the local op-
timum at ftrial = 0.28 and results in a near global fitness of
ftrial = 0.42, which is close enough to the value expected.

The true σ line in the table shows that both the [Z]high and
the β parameter are the weak links in the overall parameter es-
timation (see also Fig 4).

5.3. Test 3: Fixing parameters at the correct value

The results of fixing parameters at the correct value are listed in
Table A.2 and an example of the diagnostics is listed in Table 6.
Details of the individual setups for these tests are given below.
In general, the results of the tests for which one of the param-
eters was set to the correct value were slightly better than the
results for the models for which all parameters are set free, see
Tables 4 and 5 for additional details. This behaviour is due to
the fact that by forcing one parameter to a fixed value the evo-
lutionary path changes. The models were selected from the re-
sults with low and intermediate fitness given in Table A.1.

5.3.1. Fixed distance and extinction

Distance and extinction are negatively correlated. When both
parameters are set free, a certain degree of degeneracy is to
be expected. Fixing one of the parameters at its correct value
can break this degeneracy. The result depends strongly on the
evolutionary path of the other parameters.

The lower value for the average fitness fA = 0.299 ± 0.081,
when fixing the distance at the correct value, is caused by the
presence of one outlier (see Table A.2), which is caused by the



Y. K. Ng et al.: Automatic observation rendering (AMORE). I. 1141

Fig. 6. Genetic evolution of the colour-magnitude diagram (CMD) from the first test population. Panel a) displays the original population to
be matched. The physical parameters for this population are described Table 2 and Sect. 4.2. The CMD of the initial trial population is shown
in panel b). Panels c)–e) display the resulting CMDs obtained with setup A.1-40 for different fitnesses (see Sect 2.7). The fitnesses f = 0.05,
f = 0.19 and f = 0.27 are respectively reached after 20, 60 and 80 generations. The dots in the panels b)–e) are used for each matching point,
while the red open starsF in panels c)–j) are the points in the simulation which have no counterpart in the original CMD. Panel f) displays the
fitness f = 0.41 as obtained after 341 generations. Note that the CMDs of panels a) and f) as well as c)–e) are visually almost indistinguishable.
Panels g)–j) displays the residuals between the simulated and the original CMD (a; green solid squares �) are those points in the original which
have no counterpart in the simulation.

age-metallicity degeneracy. Excluding this value results in an
average fitness of fA = 0.328± 0.039. In general: the extinction
can be reliably retrieved when fixing the distance.

When considering a fixed extinction, the results show a
strong variation in both age and metallicity. It should also be
noted that the average 10 log (distance (pc)) retrieved is only
3.8953±0.0066. This is more than one sigma away from the
optimum value for the distance (see Table 4). This is an in-
dication that retrieval of the distance by fixing the extinction
is hampered by the age-metallicity degeneracy. Therefore, the
distance cannot be reliably retrieved when fixing the extinction
to its correct value.

5.3.2. Fixed age and metallicity

Fixing one of the age limits results in values for both the age
and metallicity which are close to the input values. This is due

to the (partial) breaking of the age-metallicity degeneracy. The
distance-extinction degeneracy remains. The results also sug-
gest that the age-metallicity degeneracy has a stronger impact
on the fitness than the distance-extinction degeneracy.

Fixing the upper metallicity limit to its correct value
shows that the values for age and metallicity come closer
to their original, input values. This is quite in contrast
with the results obtained from fixing the lower metallic-
ity to its correct value. Table A.2 shows that both the
high metallicity limit and the slope of the exponential
SFR are not well constrained. This behaviour can be ac-
counted to the implicit shape of the linear age-metallicity
relation adopted in the HRD-GST. The number of high
metallicity stars is smaller than the number of low metallic-
ity stars due to the adopted, exponentially decreasing (β = 1),
star formation rate. The consequence is that the high metallicity
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Fig. 7. Panels a)–h) display the convergence curves for the parameters of models A.1-40 (dotted line; fitness f = 0.41) and A.1-51 (long dashed
line; fitness f = 0.25). The solid line in the frames a)–f) refers to the value adopted for the original population. The long, dot dashed line in
frames i) and j) shows the threshold values to be crossed for acceptable solutions, i.e. F < 2 and 1

3 < f < 1. The short dashed area in frame j)
marks the region where degeneracy of the parameter space becomes noticeable (see Sects. 6.3 for details).

limit can be better determined when both the low and high lim-
its are determined in union.

5.3.3. Fixed slope for the power-law IMF

Fixing the slope α of the power-law IMF to its correct value
ensures stability in the magnitude direction of the CMD. This
implies that the degeneracy in the colour dependent parame-
ters, like age, metallicity, and partly the star formation rate, be-
comes more apparent. Although the overall results are quite
good, only model A.2-14 is significantly affected by this de-
generacy. If we leave out model A.2-14 from the statistics the
average fitness becomes fA = 0.331 ± 0.020.

5.3.4. Fixed slope for the exponential SFR
The exponential star formation rate parameter β is tied to the
age and metallicity range, see also Sect. 5.3.2. Fixing the pa-
rameter β better constrains in particular the upper metallicity
limit. However, it does not avoid that the genetic evolution en-
ters into a local age-metallicity gap, see Table A.2. Excluding
model A.2-34 improves the average fitness in Table 5 to
fA = 0.342 ± 0.029.

5.4. Test 4: Fixing parameters at the wrong value
The results of fixing the parameters at a ±1σ offset from its
original value are listed in Table A.3. An example of the diag-
nostics of these tests are given in Table 8. Details of individual
setups are given below.
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Table 6. Description of the diagnostic statistics for model A.1-40 when fixing one parameter at its correct value, see Sects. 5.3, 2.7 and 6.2.1
for additional details.

model NO,not NS,not Nmatch Fχ FP F fA

ideal 0 0 5000 0.000 0.000 0.000 1.000
free 60 60 4940 0.847 0.849 1.438 0.410

fixed: log d (pc) 155 155 4845 0.903 2.192 5.621 0.151
fixed: AV 103 103 4897 0.840 1.457 2.827 0.261
fixed: log tlow (yr) 76 76 4924 0.817 1.075 1.823 0.354
fixed: log thigh (yr) 104 104 4896 0.902 1.471 2.978 0.251
fixed: [Z]low 94 94 4906 0.836 1.329 2.466 0.289
fixed: [Z]high 76 76 4924 0.815 1.075 1.820 0.355
fixed: α 74 74 4926 0.834 1.047 1.799 0.357
fixed: β 80 80 4920 0.727 1.131 1.808 0.356

Table 7. Fitness statistics when fixing one parameter ± 1σ from its
original value. Averaged fitness values fA and their associated stan-
dard deviation σn−1 are obtained from simulations with the setup pa-
rameters from models 9, 14, 22, 34, 40 and 52. See Table A.2 for
additional details.

parameter offset fA σn−1

log d −1σ 0.291 0.048
+1σ 0.280 0.066

AV +1σ 0.284 0.020
log tlow −1σ 0.258 0.044

+1σ 0.279 0.012
log thigh −1σ 0.229 0.022

+1σ 0.207 0.014
[Z]low −1σ 0.254 0.066

+1σ 0.315 0.027
[Z]high −1σ 0.270 0.054

+1σ 0.283 0.018
α −1σ 0.266 0.025

+1σ 0.273 0.027
β −1σ 0.232 0.071

+1σ 0.276 0.011

5.4.1. Erroneous distance

A wrong assumption about the distance gives in a vertical shift
in the CMD (all other parameters give a diagonal shift) and
cannot be masked out through a correlated change of any of
the other parameters. This results in quite a wide range in the
values of the other parameters, except the value of α. The un-
expected result is that irrespective if the distance is too short or
too far: the power-law IMF slope flattens!

If the distance is overestimated there are more synthetic
stars present at fainter magnitudes. To get relatively more syn-
thetic stars at brighter magnitudes one needs to flatten the
power-law IMF slope.

If the distance is underestimated then more synthetic stars
are present at brighter magnitudes. One expects that a steeper
power-law IMF slope is required as compensation. This is not
always true, see Table A.3. Stars pop up at the lower end of the
main sequence. They are taken away from the stars located at

brighter and brighter magnitudes. One therefore requires also
in this case a flatter IMF slope.

A flatter slope of the power-law IMF can be a hint that the
distance of the stellar aggregate is wrong. Or it might be a hint
that the zero point of the adopted synthetic photometric system
is different from the actual photometric system used.

Recognizing that the slope is indeed flatter than the ma-
jority of the other cases outlined in Table 4 one may start to
explore the assumption that the distance is wrong: release the
constraint during the next exploration.

The sensitivity to the distance implies that AMORE can be
used to determine the distance to a stellar aggregate quite reli-
ably. A bonus is that due to an initially wrongly assumed dis-
tance the extinction is in most cases better constrained.

5.4.2. Erroneous extinction, age and metallicity

In (V , V−I) CMDs a strong correlation between extinction,
age and metallicity exists (see also Ng & Bertelli 1996 and
references cited therein). A higher value of the extinction can
be compensated by a younger age and/or a lower metallicity.
Indeed, the results in Table A.3 show that this actually oc-
curs for the lower age and metallicity limit. The upper age and
metallicity limit, however, drifts away in the opposite direc-
tion to compensate for “erroneous corrections” applied by other
parameters.

A higher value of the star formation index results in a lower
number of stars at the upper age metallicity limit. To get a suf-
ficient number of high metallicity stars one has to stretch the
upper metallicity limit to a slightly higher value.

We further notice that a wrong value for the age and met-
allicity does not affect the extinction significantly. Our find-
ings indirectly supports the method to determine high resolu-
tion (4′ × 4′) extinction maps towards the Galactic bulge by
Schultheis et al. (1999) with the data obtained for the DeNIS
project (Epchtein et al. 1997).

5.4.3. Erroneous slope for power-law IMF

The slope of the power-law IMF is very strongly constrained
(Ng 1998) for the test population. As a consequence the
changes in the values of the remaining parameters are not
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extremely large. The slightly larger value of the slope α pushes
slightly more synthetic stars to fainter magnitudes, introduc-
ing a relative deficiency of stars at brighter magnitudes. This
is compensated through a younger age, a decrease of the lower
metallicity limit and an increase of the upper metallicity limit.
The higher value for the upper age and metallicity limit com-
pensates in its turn for the overestimation of the exponential
star formation index.

A lower value of α is partly compensated for by lowering
the upper age limit, lowering the lower metallicity limit and
overestimating the upper metallicity limit.

5.4.4. Erroneous index for exponential SFR

A larger index for an exponentially decreasing SFR pushes
more stars of the population to the blue edge of the CMD, re-
sulting in a slightly bluer stellar population. AMORE compen-
sates this by mainly increasing the upper metallicity limit, i.e.
reddening the synthetic stellar population.

A lower value for the SFR index has the opposite effect.
AMORE compensates for the now slightly redder population
by lowering the upper metallicity limit, making the population
bluer.

6. Discussion

6.1. Relative contribution of the parameters
to the fitness

Figure 4 and the Tables 4, 5, 7, A.2 and A.3 provide the hint that
not all parameters have an equal contribution to the fitness. It
appears that the β and [Z]high parameter can vary considerably
and still yield a decent fitness. Moreover, Tables A.2 and 5 indi-
cate that knowledge of the value of the [Z]high parameter results
in acceptable values for the other parameters.

The origin of this behaviour lies in the implicit definition of
the exponential star formation rate (for β=1 one has a decreas-
ing star formation towards a younger age) attached to a linear
age-metallicity relation. The latter relation will give less metal-
richer stars. The small number of stars with higher metallicity
induces a larger variation of the [Z]high parameter without af-
fecting significantly the overall fitness.

6.2. Convergence

The fine-tuning of the genetic algorithm is a tedious task.
It is not straightforward to find the optimum setting for the
problem to be solved. One has to balance the exploring qual-
ity through crossovers against the variation of the parameters
through (creep) mutations.

We did not want to deal with a mutation dominated search,
because it tends to move farther away from an optimum pa-
rameter setting in the majority of the cases. We used therefore
a relatively high crossover probability (pcross) and we set the
mutations at a fixed rate, such that on average only 2.8 muta-
tions occur in the gene pool of each individual.

At a certain stage however one requires the variation of
other correlated parameters to obtain an improvement. This

becomes particularly necessary when approaching the opti-
mum setting of the parameters. A favourable crossover and mu-
tation might do the trick, but it might take a while before this
occurs. We introduced in Sect. 2.6.5 the possibility that two
parameters might be more sensitive to mutations than others.
This approach gave better results for the majority of the trial
cases (see Table 3), but it failed to obtain improvements when
changes of one parameter were neutralized through the vari-
ation of one or more parameters. The distance-extinction and
the age-metallicity degeneracies slow down the convergence
of AMORE for f > 0.3, see Fig. 4.

One of the modifications to consider for future implemen-
tation is a two-chromosome approach. In that case acceptable
values for the parameters do not shift out of the population if
the overall fitness is less, but still reside in the gene pool as
a recessive quality. This however, will require a major exten-
sion to PIKAIA and a significant amount of genetic research to
be done about dominant and recessive qualities in the AMORE
gene pool.
Another modification to consider in order to improve the ac-
curacy and to speed up convergence, is to replace the finite
resolution of the digital encoding scheme with a genetic cod-
ing based on floating point, i.e. each gene on the chromo-
some is represented by one floating point number. According
to Michalewicz (1996) a real encoding scheme can be superior
and improve convergence. Such an encoding scheme is indeed
to be included in the next release of PIKAIA 2.0 (Charbonneau;
in preparation).

6.2.1. Unstable solutions

In one test (fixing AV at one sigma above the original value
for model 9) no convergence was achieved and the run was
aborted. Because AMORE is quite sensitive to rounding these
effects can be circumvented by slightly altering the input pa-
rameters. We decided in this case against such an action, be-
cause that would make the sample inhomogeneous.

6.3. Degeneracy

Isochrones for a particular age and metallicity can be mim-
icked with another set of isochrones of different age and metal-
licity (Worthey 1994; Charlot et al. 1996, and references cited
therein). This degeneracy of the parameter space increases if
one considers the distance and the extinction towards a stel-
lar aggregate. There is no straight forward method to circum-
vent partial degeneracy of the parameters to be explored. One
might consider to apply AMORE for the analysis of colour-
colour diagrams in order to rule out the distance, to determine
the extinction and a number of other parameters, and finally
to determine the distance to the stellar population from one
of the CMDs. The combined analysis of colour-magnitude and
colour-colour diagrams is expected to improve the results ob-
tained by AMORE so far. However, this requires that at least
one additional colour should be available for each star con-
sidered above a certain detection and completeness threshold.
Moreover, as was mentioned in Sect. 5.3.1, knowledge of the
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Table 8. Description of the diagnostic statistics for simulations with setup parameters from model A.1-40. One of the parameters is forced to a
value ± 1σ from its original value. See Sects. 5.4 and 2.7 for additional details.

model offset NO,not NS,not Nmatch Fχ FP F fA

ideal 0 0 5000 0.000 0.000 0.000 1.000
free 60 60 4940 0.847 0.849 1.438 0.410

fixed: log d (pc) −1σ 91 91 4909 0.788 1.287 2.278 0.305
+1σ 85 85 4915 0.722 1.202 1.967 0.337

fixed: AV +1σ 98 98 4902 0.932 1.386 3.790 0.264
fixed: log tlow (yr) −1σ 91 91 4901 0.897 1.287 2.460 0.289

+1σ 94 94 4906 0.905 1.329 2.587 0.278
fixed: log thigh (yr) −1σ 106 106 4894 0.977 1.499 3.202 0.238

+1σ 126 126 4874 1.017 1.782 4.211 0.192
fixed: [Z]low −1σ 78 78 4922 0.907 1.103 2.043 0.329

+1σ 80 80 4920 0.835 1.131 1.977 0.336
fixed: [Z]high −1σ 148 148 4852 0.896 2.094 5.188 0.162

+1σ 94 94 4906 0.867 1.329 2.519 0.284
fixed: α −1σ 95 95 4905 0.886 1.344 2.590 0.279

+1σ 103 103 4897 0.894 1.457 2.921 0.255
fixed: β −1σ 145 145 4855 0.930 2.051 5.071 0.165

+1σ 103 103 4897 0.834 1.457 2.818 0.262

extinction does not automatically imply that the distance can
be retrieved accurately.

As demonstrated in Sect. 5.1.1 the degeneracy among pa-
rameters becomes noticeable for f > 0.25 or F < 3. This cor-
responds to systematic offset for each parameter of on aver-
age ∼0.6σk and at maximum ∼1σk. The Poisson uncertainty of
the original population results in a fitness of f =0.43 (F'1.33).
However, solutions with a comparable fitness do exist due to
the degeneracy of the parameter space. A direct consequence
is that there is an intrinsic offset present among the parame-
ters amounting to on average ∼0.4σk and at maximum ∼0.7σk.
This intrinsic offset is present in the solutions obtained with
AMORE and actually is responsible for slowing down the con-
vergence in the fitness range 0.30 < f < 0.43. It will therefore
be nearly impossible to recover in one pass the original input
values. However, some improvements might be obtained by av-
eraging the parameter values obtained from AMORE runs with
different initial conditions.

7. Conclusions

We demonstrate that an automatic search can be made for
the astrophysical parameters of a synthetic stellar population
from the analysis of colour-magnitude diagrams with an opti-
mizer, based on a genetic algorithm. However, AMORE tends
to slightly underestimate the distance. It subsequently attempts
to compensate this with an higher extinction, a higher upper age
and a slightly steeper slope for the power-law IMF. At f > 0.3
the combined effect of the age-metallicity and the distance-
extinction degeneracy slows down the convergence. The data
suggests that AMORE has more problems dealing with the age-
metallicity than with the distance-extinction degeneracy. For
general purpose, however, the retrieved values are sufficiently
accurate.

8. Future work

The good results obtained so far for a single synthetic stellar
population is an indication about AMORE’s potential for the
detailed analysis of CMDs. The next step is to improve one
step at a time various aspects of AMORE before it can be used
as an interpretative tool for large photometric surveys.

Despite limitations in the input physics of the underlying
stellar evolutionary tracks and by the transformation from the
theoretical to the observational plane, the results with real data
from Gallart et al. (1999), who uses the same set of evolu-
tionary tracks, are encouraging. It will therefore be important
to verify first with, for example, well studied open clusters
(see Carraro et al. 1998, 1999 and references cited therein) for
which age and metallicity range we may apply AMORE safely.
Extinction is also of some concern, because a high extinction
may result in the MS turnoff point to fall below the detection
limit. This would deprive AMORE of a clear reference point.

Another case of interest is of course the question how
many different stellar populations can be distinguished with
AMORE. Separating multiple, mixed populations from each
other through the automated and the objective analysis of
colour-magnitude diagrams could be a valuable tool for the
analysis of galaxy formation and evolution.

This requires a rigorous follow up study on the separation
of multiple (synthetic) populations. One further ought to verify
if the automated analysis of colour-colour diagram can reduce
the effects of error cancellation between distance and extinc-
tion.

Finally, after a succesful implementation, testing and val-
idation phase, we plan to combine AMORE with the Padova
spectrophotometric code (see Bressan et al. 1994, 1996;
Tantalo et al. 1996, 1998a,b). A synthetic population has to
be generated, containing sub-populations with different ages
and metallicities. Then a synthetic spectrum must be gener-
ated for the mixed population and subsequently used as input
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for a synthetic, spectral fitting program to determine the un-
derlying stellar populations. In this way one can establish the
calibration of the spectrophotometric tool in a self-consistent
way. Furthermore, an implicit verification can be made that the
populations are consistent with those obtained from a CMD
analysis with AMORE.
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Appendix A: AMORE test results, the data

The appendix contains the data of the simulations as discussed
in Sect. 4. The first test, in which we explored different values
for the PIKAIA control parameters, is described in Sect. 4.3.1
and the data are given in Table A.1.

The data of the third test, in which one of the astrophys-
ical parameters was fixed at its correct value as discussed in
Sect. 4.3.3, are given in Table A.2. The data on the fourth test,
in which one parameter was fixed one sigma from its correct
value as discussed in Sect. 4.3.4, are given in Table A.3.

The tables in the Appendix are available in elec-
tronic form at http://www.edpsciences.org and at
the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via http://cdsweb.u-strasbg.fr/
cgi-bin/qcat?J/A+A/392/1129.
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