STUDIES OF THE COORDINATION BEHAVIOUR OF SUBSTITUTED NITROGEN DONOR LIGANDS
 A thests presented for the degree of Doctor of Philosophy in Chemistry at the university of Cantexbury Christchureh. New Zealana

by

Frank O. March

1969
Will ane

ACKNONLEDGEMENTS

I am grateful to Dr J. E. Fergusson for his advice and encouragement throughout this work, to Dr H.K.J. Powell for his assistance during Dr Pergusson's absence and to Dr W.T. Robinson for his advice during the course of the work described in Chapter 3. I would Inke to acknowledge the helpful discusstions I have had with members of the Chemistry Department of the University of Canterbury, in particular the members of the crystallography group. I am graterul to the University Grants Committee for the award of a Postgraduate Scholarship.

ABSTRAOT

This work is concemed with metal-complexes of extensively conjugated heterocyalic nitrogen donor ligands.

Part I

Four-coordinate complexes of zinc(IT), cadmium(II), mercury (II) and palladium(II) of general formula ML 2 have been prepared with the 1 igands $4,4^{\prime}$-dicerboxyethyl- $3,3^{\prime \prime}, 5,5^{\circ}=$ tetramethyldipyrumethene and 3.4^{4}-dicarboxyethyl-5-chloro$3^{\circ} \cdot 4.5^{\circ}$-trimethyldipyrromethene. The complexes Involve bidentate coordination of the dipyrromethene 11gands. Those of the Group ITb metals ave near regulax tetrahedral while the palladiun complex is shown in this work to be square planar. Complexes of palladium(II) of general formulae $\mathrm{Pd}_{2} \mathrm{Cl}_{2} \mathrm{I}_{2}$ and $\operatorname{PdX}(\mathrm{L})(\mathrm{LH})$, where $X \mathrm{Ls} \mathrm{CI}$ and $\mathrm{Br}^{-{ }^{-}}$. and L is either of the dipyrromethenes have also been prepared. Both types are square planar four-coordinate complexes, the first being chloro-bridged with two bidentate dipyrromethene 11gands, and the second having one monodentate and one bidentate dipyrromethene $11 g a n d$.

The electronic absomption spectra of all the complexes have been measured and some of the observed bands have been assigned to intrallgand $\pi \rightarrow \pi^{*}$ transitions and to metal \rightarrow ligand charge transfer transitions. The proton magnetic
resonance spectra of the complexes have been recorded and resonance peaks have been assigned to protons of particular groups substituted on the dipyrromethene 1igands. The results of both these spectral studtes are discussed with reference to the stereochemistry about the metal ion and the influence of ligand aubstituents on the metal-1igand bonding.

The arystal and molecular structure of bism $(4,4 \%-$ dicarboxyethyl- $3,3^{\prime}-5,5^{\prime}$-tetramethyldipyrromethensto)palladium(II) has been detemnined from a single crystal $X-T a y$ difrraction study. The compound sa "gtepped" square planar and the dipyrromethene IIgands axe found to deviate considerably from planarity. The structure of this compound is companed vith those of similax compounds which have been studied previously. The influences on stereochomistry of the metal ion (copper(II), nickel(II) and palladum(II)) and of bulky 11 gand suostituents are discussed.

Part II

A. number of $9-$ phenanthroline complexes of 1 ron(II) and ruthenium(II) have been prepared. These are all sixcoordinate and have general formulae $M(\text { phen })^{2+}$ and M (phen) ${ }_{2} \mathrm{X}_{2}$ where X is $\mathrm{Cl}^{* *}, \mathrm{Br}^{-\infty}, \mathrm{I}^{-\infty}, \mathrm{SCN}^{-1}$ and CN^{-}, and phen is o-phenanthroline, 5-methyl-o-phenanthroline, 5-chloro-o-phenanthroline or 5-nitro-0-phenanthroline.

The electronic spectra of these complexes have been investigated in solution or in the solld state. Bands have been aceigned to metal \rightarrow 11gand charge vengrer transitions and intraligand $\pi \rightarrow \pi$ transidions Erom comparisons mth the results of earier atwaies. Tnergies of the electronic transtitions ape discussed with reserence to both the 1 mivence of the 11 gands and of the substituents on the phenanthreIine Itgand on the metal-11gana $\pi-$ interactions.

Page
PART I THE COORDINATION GHEMISTRY OF DIPYRROMETHENES
OHAPTER 1 INTRODUCTION TO PART I 1
Section
1.1 Review of the Coordination Chemistry of Dipyrromethenes 1
Introduetion 1
Dipyxromethenes as Ligands 2
(1) Neutral bis-(dipyrromethene) complexes with divalent metals 3
(2) Conplexes of dupyrromethenes containing other ligands 8
Summery of the Coordination Chemistryy of Dhpyrromethenes and the Types of Complexes Eoxmed. 9
1.2 Scope of the Present Wowk in Part I 11
CHAPTER 2 BIS- (DIPYRROMETHENATO) METAL (II) COMPLEXES 14
Section
2.1 Introduction 14
2.2 Preparations 15
Discussion 15
Experimental 18
(a) Preparation of the IIgands 18
(b) Preparation of the GroupIIb metal complexes 23
(c) Preparation of the palladium complexes 26
(d) Attempted preparations of complexes of other transition metals 28
2.3 Ultraviolet-Visible Spectra 34
Introduction 34
Discussion 37
(1) The low energy $\pi \rightarrow \pi$ * band 37
(2) The charge transfer band 42
(3) The high energy $r \rightarrow m$ transitions 43
(4) Ligand field bends 43
2.4 Nuclear Magnetic Resonance Spectra 45
Introduction 45
Description of Spectra 46
(1) Ligands
(11) The complexes and protonated ligands 47
Discuscion 48
(1) Assignment of methyl group resonances 48
(ii) Ring current effects 50
(1ii) Comparison of the spectra of the two ligands 51
(iv) The effect of protonation of the IIgands 52
(v) The effect of metal ion coordination and relation to strueture 53
CHAPTER 3 THE GRYSTAL AND MOLEOULAR STRUGTURE OF BIS - (DIPYRROMBTHENATO) PATLADIUM (II) 59
Section
3.1 Introduction 59
3.2 Structure Determination 61
Experimental 61
Structure solution and rerinement 64
3.3 Description and Discussion of the Structure 69
3.4 Suxvey of the Stereochemistry of Some Crowded Chelate Complexes and their Relation to Bis- (dipyrcome thenato) palladium(II) 73
(1) Tetrahedral distortion 73
(1i) "gtepped" square planar distortion 74
Relationship Between Tetrahedral and "Stepped" Square Planar Distortions 76
Ligand Distortion of bis(dipyrrome thenato) palladum(II) and Related Compounds 77
CHAPTER 4 MTXED LTGAND COMPLEXES OF PALLADIOM 80
Section
4.1 Preparations and Reactions of the Complexes 80
Introduction
Reaction of Dipyramethenes with Tetrahalom palladite(II) Anions 83
The $\operatorname{PdX}(L)(\mathrm{LH})$ Complexes 84
The bridged complexes 86
The Lonic complexes 87
Experimental 88
4.2 Ultraviolet-Visible Spectra 94
Introduction 94
The Bridged Complex 95
The PdX(L) (LH) Complexes 96
4.3 Nuclear Magnetic Resonance Spectroscopy 98
Introduction 98
The Bridged Complexes 98
Mixed lonodentate and Bidentate Dipyrromethene Complexes 102
PART II A STUDY OF ASPGCTS OF THE CHEMTSTRY OFO-PHENANTHROLTNE COMPLEXES
CLAPTER 5 PREPARATION OP SOME SUBSTITUTED O-PHENAN THROLTNE COMPLEXES OF IRON(II) AND RUTHENTUM (II) 110
Section
5.1 A Review of selected Aspects of the Ohemistry of Bis- and Tris- (o-phenanthroline) Complexes of $\operatorname{Iron}(I I)$ and Ruthenium(II) 110
Introduction 110
Stability and Bonding in the Iron(II) Complexes 111
The Bis- (o-phenanthroline) iron(II) Complexes 112
(1) High spin complexes 113
(2) Lom spin complexes 114
(3) The bismthiocyanatom and bisoseleno cyanato complexes 114
(4) Stereochemistry 115
Ruthenium(II) Complexes 116
5.2 Scope or the Present Work in Part II 118
5.3 Experimental 120
Iron(II) Complexes 121
Ruthenium(II) Complexes 126
CHAPTER 6 DLTRAVIOLET-VISIBLE SPEGTRA 133
Section
6.1 General Introduction 133
Intrallgand $r \rightarrow \pi^{*}$ Transitions 134
The low energy intraligand transition 135
The high energy intrailgand transition 135
Charge Transfer Transitions 135
(1) Tigand \rightarrow metal charge transfer 136
(2) Metal \rightarrow Ifeand oharge transfex 136
Ligand Field Transitions 137
Iron complexes 138
Ruthenium complexes 138
Befect of Ligand Substinuents 139
6.2 Diseussion of the Electronic Spectra of some o-phenenthioline Complexes of Ruthenium(II) 141
Introduction 141
Discusaion 142
Charge transfer teangition 142
Intraligand $r \rightarrow n^{\text {m }}$ transitions 145
6.3 Discussion of the Gleetronta Spectra of Sone o-phenanthroline Complexes of Iron(II) 148
Introduetion 148
Meacurement of Solid gtate Spectra 149
(1) Diffuse reflectance spectra 149
(2) Potassium bromide disc absorption spectia 150
(3) Nujol mull absorption spectra 151
Low Spin Complexes 151
Low energy charge transfer transition 151
High energy charge transfer transition 152
Low energy intraligand transition 152
High spin Complexes 153
Suxmary 154
Page
OHAPRER 7 LIGAND SUBSTITUENTG AND THETR VALUE TH THE STUDY OR THE CHEMISTRY OF GOMPLEXES 155
Proton lagnetic Rescnance Spectroscopy 156
Electronic Spectra 156
X-ray gingle Cryatal Analysis 157
Conelucton 158
APPENDIX A EXPERTMENTAL MEPHODS 1.
Ultraviolet-Viatble Speatra 1
Infra-red. Spectra 1
Nuclear Magnetie Resonance Spectra 11
Conductivities 11
Magnetic Susceptibilities 111
Analyses 14
Holecular meights iv
purification of Solvents iv
APEENDIX B THA UNTVBRSTYY OR CANREBBURY COMPUTING BYETEM FOR STRUCTURE ANALYSIS vi
APPENDTX 0 BTRUCTURE FACTOR ETSTTNG FOR PA(MNPM) 2 vili

List of Tables

Table		
1.11	Hetal Ions Reported to Fown Dipyrromethene Complexes	- 10
2.31	Ultraviolet-Visible Spectra of the Bism (dipyrromethensto) Complexes	37
2.32	Low Rnergy $\pi \rightarrow \pi^{\text {W }}$ Transition	37
2.33	Predicted Intensities for the Low Snergy $n \rightarrow \pi^{2}$ Band	941
2.34	Charge Tranetex Transtion	42
2.41	Summery of Mur Date	48
2.42	Relative Onemical Shifts	48
2.43	Relative Changes th Chemfoal Shift of Groups Substituted on Ligands Resulting from Ohanges in Coordination or substitubion	3010n 54
2.44	Avereged Non-Bonding Contacts Between the Methyl (A) Carbon Atom and the Adjacent Pymole Ring	58
3.21	Machine Settings for the Supper Diffracto meter	62a
3.22	Final Atom Structural Parameters	67
3.34	Bond Distances and Angles	69
3.32	Selected Intramolecular and Intermolecular Non-Bonding Contaets	las 69
3.33	Average of Chemically Equivalent Bond Lengths	69
3.34	Best Least-Squares Planes	70
3.35	Dihedral Angles	70
3.41	Stepping Found for Some Oxygen and Nitrogen Donor Ohelate Complexes	$\text { ogen } 75$
4.11	Mixed Ligand Palladum Complexes Prepared in this Work.	d 82

$4 \cdot 21$	Ultraviolet-Visdible Spectra of the Wixed Ligand Palladium Complexes	95
4.31	Summary of Hur Data	98
4.32	```Predioted and Observed Chemicel Snitte for the PdX(L)(LI) Comolexes```	106
5.21	Complexes Propexed in the Present Vork in part II	119
6.11	Absorption Maxima of the Low Energy $\mathrm{t}_{2} \rightarrow \pi^{*}(1)$ Bend	140
6.21	Ultraviolet-viaible Spectra of the o-phenanthroline Ligands	141
6.22	Ultraviolet-Visible Spectra of the Ruthenium(II) Complexes	141
6.31	ULtraviolet-7isible spectra of the Low Spin Iron(II) Complexes	151
6.32	ULtraviolet-Visible Spectra of the High Spin $\operatorname{Tron}(\mathrm{T})$ Complexes	153
B1	University of Canterbury Crystallography Group Program Configuration	vi
B2	Programs Used in the 3 tructure Detemanation in Chonter 3.	vii

List of Plguxes

Elgure		$\frac{\text { Pactng }}{\text { Page }}$
$1.1 a$	Dipyrpome thene Skeleton and Fumbering System	1
1.10	Porphyrin Nucleus	1
1.12	Dipyrromethene Resonance Forms	3
1.13	steric Crowding in Square Planar bism (dipyrxomethenato) Complexes	3
2.31	U traviolet-Visible spectra of the M(MCIPM) ${ }_{2}$ Complexes	26
2.32	Schematic Representation of Molecular Orbitals ox Tetrahedral and Square planax Dipyreone thene Completes	18
2.41	IMR Spectra of the Neutral Ligands	46
2.42	Summary of MmR Chemtent Shist Data	49
2.43	Ring Current Rings for the Dipyrromethene System	50
2.44	Relationnhip Between Methyl Grovp (A) and the Shlelding Cone of an Adjacent Pyrrole Ring	57
3.21	Procescling of Rav Data	63
3.31	Vlew of Pd(MPY $)_{2}$ Progected onto the PaN_{4} plane	69
3.32	Vlew of Pd(MMPM) : PdN Plane Rotated 46° about the $N(1)-\frac{1}{1}(11)$ Vector	69
$3 \cdot 33$	View of Pd(MmpH), showing the "gtepping of the Ohelate Rings	69
3.41	Fifect of stereochemistry on the metal dw Orbital Configuretion	74
3.42	Compounds Analogous to PA (MPM) 2	78
$4 \cdot 21$	Ultraviolet-Visible Spectra of the Mixed Ligend Complexes of Palledium	94

4.31	Summary of the Chemical Shift Data for the Palladium Complexes	98
4.32	Cis and Trans Isomers of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ (MCIPM) $_{2}$	101
4.33	NMR Evidence for Gis-Trang Isomers	101
4.34	Possible Five-Coordinate Formulations for the PdX(I) (LH) Complexes	103
$4 \cdot 35$	Molecular Models for the Pdol(L) (LH) Complexes	104
$5.11 a$	o-phenanthroline Skeleton and Numbering System	110
5.11 b	2,2 -bipyriayl	110
6.11	Molecular Orbital Diagram for an Octahedral Complex Containing - Bonding Ligands	133
6.12	Symmetry of the Bis- and Tris- o-phenanthroline Complexes	134
6.21	Ultraviolet-Visible Spectra of the o-phenanthroline Ligands	142
6.22	01 traviolet-Visible Spectra of Some Ruthenium(IT) Complexes	143
6.23	Energy of the $t_{2} \rightarrow \pi^{*}(1)$ Transition for the Ru(phen) ${ }_{2}{ }^{X_{2}}{ }^{2}$ Complexes	144
6.31	Potass ium Bromide Dise Absorption Spectra	150
6.32	Nujol Mull Absorption Spectrea	151
6.33	Ultravioletmasible Spectra of Two Low Ggin Iron(TI) Gomplexes	152

PART I

THR OOORDINATION OHETISTRY OE DTPYRROMETHENES

DIPYRROMETMENE SKELETUN AND NUBBRRTNG SYORCM

PIGURE 1.1 b
POPHYRTN BKELETON

OMAPTLER 1

TMTRODUCTION TO PART I

SECTION 1.1

Review of the Coordination Chemlatry of Dipyrrome thenes

INTRODUOTION:
 The dipyrronethene (PMH) skeleton and numbering

 system is shown in Figure 1.1a. It is closely related to the porphymin nucleus (Figure 1.1 b) which can be regarded as two dipyromethene molecules linked at the 5 and 5^{\prime} positions by methine bridges. The dipyrromethene system is highly conjugated and congequently the two pyrrole rings are equivalent. The two maln resonance forms are shown In Figure 1.12. In each resonance form the hydrogen atom can be regarded as being bonded to the nitrogen atom of one pyrrole ring, and hydrogen bondea to that of the other ring. It has been estimated that, for the porphyrin system, proton exchange between rings occurs within 5×10^{-3} seconds ${ }^{1 a}$.The dipyrromethene skeleton can be protonated readily giving the cation $\mathrm{PMH}_{2}{ }^{+}$where P 即 represents the neutral molecule. Dipyrromethenes are very weak acids and the conjugate base PM has not been observed directly, although the equivalent porphyrin dienion p^{2-} is known ${ }^{2}$.

Interest in dipyrromethenes as ligands arises from three main factors.
(a) The dipyrromethene akeleton can be made with a wide variety of different substituents at various positions on the pyrrole rings and therefore is suitrble for studies of the effects of substituents on coordination behaviour.
(b) molecular overcrowding occurs in some metal complexes if bulky groups awe substituted in the 5 and $5^{\prime \prime}$ positions of the 11gand.
(c) The similarity of the dipyrromethone skeleton to that of porphyrins leads to the possibility of comparison wth biological systems.

Hetal complexes of dpyrromethenes heve a long history but in comparison with other conjugated heterocyelic nitrogen Ligands such as pyridine, $2,2^{4}$-bipyridy and 1,10 phenanthroline their study has been largely neglected.

DIPYRROMETHENES AS LIGANDS:

Two main types of complexes of dipyrromethenes have been reported.
(1) Neutrel bis-dipyrromethene complexes with divalent metals
(2) Complexes of dipyrromethenes containing other 11 gands.

FIGURE 1.12
DIPYRROMETHENE RESONANGE FORMS

FTGURE 1.13
STERTO CRONDTNG IN SQUART PLANAR bIG-DTPYRROMETHENATO COMPLEXES
(Mellor and Lockwood ${ }^{8}$)

\equiv Area of overlap of α-methyl groups
Illl\| Area of overlap of α-protons

(1) Neutral bis-dipyreonethene Complexes with Divalent Metals

The complexes of general formula $M\left(P H_{2}\right.$, with the conjugate base (PH^{-}) of the Ilgand acting as a bidentate Ilgand, are found for a wide range of metels. They are the most extenaively investigated clans of aipymomethene complexes. Fischer et al $(1924,1926)^{3,4}$ reported the proparation of $4,4^{\prime}-d i c a r b o x y e t h y 1-3,3^{\prime \prime}, 5,5^{\prime}$-tetramethylalpyrromethene (MMPIF) and $3,3^{\prime}, 5,5^{\prime}$-tetramethyldipyrrom methene, and the bis-omplexes of these ligands whth the dyalent metal lons copper, nickel. cobalt, ainc and iron. Shace then the properstion of complexes of these, and of other dipyrronethene 71 gands, have been reported tor other divalent metals incluaing cadmivin, mercury, and palladium ${ }^{5}$, and calclun and manganese ${ }^{6}$.

Constderable stabilisation is qchieved for these compounds by bldentate coordination of the ligand, forming a six membered cholate plag. Since the T-system of the 1Igand contains $4 n+2=10$ electrons, and is olosed by coordination to a metal, the coordinated Ilgend may be regarded. as a non-benzenold aromatic aystem ${ }^{7}$.

In 1938 porter ${ }^{5}$ calculated that complexes of this type with ligands contalning methyl substituents at the 5 and 5° posttions could not be planar (Figure 1.13), and proposed that such complexes would have tetrahedral stereochemistry.

He found that while the complexes of the first row transition metals could be deoomposed in SNHOI, Pd(MMPM) ${ }_{2}$ could not be decomposed without breaking down the ligand. He postulated that this mjght be due to a difference in the metal-11gand bonding, or to a difference in stereochemistry around the metal ion. Mellor and Lockwood $(1940)^{8}$ measured the magetic moments of the nickel(II) and palladun(II) complexes of mifl. The fomer was found to be paramagnetic ($\mu=3.2 B M$) while the latter was diamagnetic. They postulated that the nickel complex was tetrahedral, while the galladum complex might have a stereachemistry interm mediate between the terahedral and aquase planar configurations.

Ontll the relatively pecent development of sufficiently sophisticated physicat methods of investigation, further serious stereochemical studies of these cormiexes were not possible. However the recent application of difterent methods of investigation to the problem has lead to conclioting results.

In 1952 West ${ }^{9}$ studied the mates of exchange of radioactive cobalt with 0 (mmpi $)_{2}$ in solution and concluded that the molecule was distorted square planow. Rley and Splvey (1962) ${ }^{10}$ studied the semiconductor properties of geveral complexes in the solid state and concluded that while some (e.g. those of zine(II)) appeared to be tetrahedral,
$\mathrm{Co}(\mathrm{MMPM})_{2}$ was square planar.
Eaton and La Lancette (1964) ${ }^{11}$ have analysed the NMR contact shifts of protons on dipyrpomethene ILgands in nickel (II) and cobalt(II) complexes in terms of unpaired electrons being in the t_{2} orbitals of the metal lon. Their results therefore indicate a tetrahedral stereochemistry for these compleses.

More recently, Fergusson and Ramsay (1965) ${ }^{12}$ carried out an investigation of the nickel(IT), cobalt(II), copper(II) and zinc(II) complexes of 4, 4 - - 4 tacboxyethyl3, 3, 5, 5'-tetramethyldipyromethene (MPlut) and 3,4'-dicarboxyethyl-5-bromo-
 Mellor and Lockood's value for the magnetic moment of $N\left(\mathrm{MHPM}_{2}\right)^{8}$ and found that those of $\mathrm{Na}(\mathrm{MBrPR})_{2}$ and of the cobalt complexes, togethen with the ligand field spectra of these complexes, indicated regulbr tetrahedral stereochemistries. These complezes were found to be isomorphous with the zine complexes ryom x -way powder photographs. The 11gand field spectre of the copper complexes, on the other hand, were found to be simalar to that of the oube ${ }_{4}^{20}$ ion, which is known to be a tetragonally distorted tetrahedron ${ }^{13}$. Couch (1965) ${ }^{14}$ aurried out similar studies on complexes of $3.4^{\prime \prime}$-dicarboxyethyl-5-ch1oro-3.4", 5'-trimethyıdipyreomethene (MCIPMH) bideh were in agreement with those of Fergusson and Rameay. The erystal and rolecular structure
of $\mathrm{Cu}(\mathrm{MPPM})_{2}$ has since been determined ${ }^{15}$, confirming the structure to be as predicted, whth an angle of 68° between the mean planes of the ligands.

Ferguson and West ${ }^{16}$ studied the nickel(IT) complexes of five dipyrromethenes, of which three had methyl substituents in both the 5 and 5^{\prime} positions (type 1), one had one free 5 position (type 2) and one had both 5 and 5^{\prime} positions unsubstituted (type 3). The complexes of type 1 ligands had ligand field spectre which were typical of tetrahedral oomplexes in the solid state and in solutions with aifferent solvents. The complex with the 11 gand of tyoe 2 gave a slightiy different $11 g a n d$ ield spectrum in the solid state Erom that in benzene solution. The latter spectrum indicated approximately regula tetrahedral stereochemistry, while the solid state spectrum, because of a shift to higher energy of one of the bands compared. With the spectrum in benzene solution. was thought to indlcate some tetragonal distortion. The complex of the ligand of type 3 showed similar effects on comparison of its solid state and solution spectre. Both the complexes of Ilgends of types 2 and 3 gave apectra in pyridne solutions which incicated some solvent coordination. This efrect was more pronounced with the complex of the type 3 1igand. The authors inferred that as the number of substituents in the 5 and 5° positions in the 11gand varied from 2 to 0 the reduction in stexic hindrance permitted an inereased amount of tetragonal
distortion of the tetrahedral complexes.
Murakan and Gakata ${ }^{17}$ carried out a similar study to that of Ferguson and West with complexes of ligands of types 1 and 2 with cobalt(II), nickel(II) and copper(II). It was found that the Ilgand aleld bands of the nickel and copper complexes with type 2 11gands were at shorter wavelengths than those of tyoe 1 Ilgands. They concluded that the cobalt complexes were tetrahedral, but that the stereochemstry of the nickel and copper complexes depended on the number of 5-substituents on the 11gands.

Motekaitis ${ }^{6}$ bas stuaied complexes of $5,5^{\circ}$-dicarboxy-
 lons of enlctum, manganese, nickel, copper and zinc in an attempt to find a sultable metal ton template for the symthesis of new porphyrins. He has reported the proton NWR, ultraviolet-visible and ineramed spectra of these complexes and has attempted to corcelate the extent of tetragonal dietortion of the tetrahedral complexes with vasiations of the intenstity of bands in the visible spectrum. He eoncluded that the calcium, x ine and mongenese complexes were essentlaliy tetrahedral, but that those of the nickel and copper lons were tetragonally distorted to a considerable degree. In view of the findings of other workers, who heve studied the complexes of ligends with conslderably smaller groups in the 5 and 5° positions ${ }^{16,17}$, his
conclusions with respect to the nickel complex are in doubt. (2) Complexes of Dipyrromethenes Containing other Ligands

A number of complexes have been reported in which halogen and other ligands are coordinated to a metal ion, along with dipyrromethene ligands. These an involve both monodentate and bidentate coordination of the dipyrromethenes. A tin complex SnCl_{4} (PMH) has been reported in which the neutral dipyrromethene is said to coordinate as a bidentate ${ }^{18}$. porter ${ }^{5}$ reported the preparation of mercury(II) complexes, $\mathrm{Hg}(\mathrm{MPPI}) \mathrm{X}, \mathrm{X}=\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$and CL .

Porter also reported the preparation of the palladium(Ir) complexes $\mathrm{Pa}_{2} \mathrm{Cl}_{2}$ (MMPM) $_{2}$ and PdCl(MMPM) (MMPMH). The first of these was postulated to be a sour-coordinate bridged spectes

The second was thought to contain one bidentate and one monodentate dipyrromethene 1igand. Porter proposed two possible struetures:

and

of these the four-coordinate formulation would appear to be the most likely. Both palladium complexes could be decomposed to give the neutral bis-complex $\operatorname{Pd}(\text { MMPM })_{2}$.

Ferguson and west ${ }^{19}$ have reported the preparation of a series of monodentate complexes of dipyrromethenes of general formula MX $X_{2}(\mathrm{PMH})_{2}$,
where $M=C u(I I), C o(I I), N I(I I), Z n(I I)$ and $O d(I I)$ and $\mathrm{X}=01^{-}, \mathrm{Br}^{-\infty}, \mathrm{I}^{-}, \mathrm{ONS}^{-}$and $\mathrm{NO}_{3}{ }^{-}$. Magnetic and ultravioletvisible spectral results indicated that the cobalt complexes were tetrshedral. The nickel complexes had magnetic moments typlcal of tetrahedral complexes, but their ligand fleld spectra indicated that some degree of octahedral coordination might occur in solution. The stereochemistry of the copper complexes could not be ascligned. A medium Intenstty band at $3220-3320 \mathrm{~cm}^{-1}$ in the intrared spectra of the complexes indicated that the $N=H$ proton was present in the complexes, however changes in the position and intensity of the band on coordination indicated that the proton was involved in less hydrogen bonding in the complexes than in the free ligand.

SUMMARY OR THE COORDINATION CHEMTSTRY OF DTPYRROMETHENES

AND THE TYPES OR COMPLEXES FORMED
Table 1.11 lists the metal tons which have been found to form complexes with dipyrromethenes. Monodentate and bidentate coordination of the ligands are both possible, and

Metal Ion	Type of Complex
$\mathrm{Ca}(\mathrm{II})$	$\mathrm{Ca}(\mathrm{PM})_{2}$
$\mathrm{Sn}(\mathrm{IV})$	$\mathrm{SnC1}_{4}$ (PMH) (*)
Mn(II)	$\mathrm{Mn}(\mathrm{PM})_{2}$
Fe(II)	$\mathrm{Fe}(\mathrm{PM})_{2}$ (*)
Ni (II)	$\mathrm{NL}^{(P M)} 2^{\text {, } \mathrm{NiX}_{2}(\mathrm{PMH}}{ }_{2}$
Co(II)	$\mathrm{Co}(\mathrm{PM})_{2} \mathrm{COX}_{2}(\mathrm{PMH})_{2}$
$\mathrm{Cu}(\mathrm{II})$	$\mathrm{Cu}(\mathrm{PM})_{2}{ }^{\mathrm{CuX}_{2}(\mathrm{PMH}}{ }_{2}$
Zn (II)	$\mathrm{Zn}(\mathrm{PM})_{2} \mathrm{ZnX}_{2}(\mathrm{PMH}) 2$
$\mathrm{Cd}(\mathrm{II})$	$\mathrm{Od}(\mathrm{PM})_{2}$
$\mathrm{Hg}(\mathrm{II})$	$\mathrm{Hg}(\mathrm{PM})_{2} \mathrm{Hg}(\mathrm{HM}) \mathrm{X}^{(*)}$
Pd (II)	$\mathrm{Pd}(\mathrm{PM})_{2}{ }^{\mathrm{PdCl}} 2^{(P M)} 2^{\text {, } \mathrm{PdX}(\mathrm{PM})(\mathrm{PMH}) .}$

* The formulation of these complexes in uncertain.

In the case of some metal lons both types of coordination have been sound.

Bidentate coordination of the IIgands frequently involves problems of intramolecular overcrowding so that metal ions are sometimes forced to adopt stereochemistries other than those which would otherwise be preferred. For complexes of all the fisst row transition metal ions except copper(II), ligand field spectra and magnetic data indicate clearly that the sterechemistry of these complexes is basically tetrahedral, although in the ease of the nickel(IT) complexes tetregonal distortion of the tetrahedral envisonment appears to occur if the overcrowding is lessened. This is also found to oceur in the copper(IT) complexes. Prevtous workers have not been able to assign a defintte stereochemistry to the $\mathrm{Pd}(\mathrm{PM})_{2}$ complexes, but have shown that they differ considerably in their magnetic properties, and perhaps in their bonding, from those of the nickel(II) and other first row transition metal ions. In View of the rather lerge number of complexes and afferent types of dipyrromethenes available it is rather surprising that few comparative ultraviolet-visible spectral studies have been made and saterpreted in terms of the bonding between the metal and 1igand. Until the present work only one X-ray crystallographic structure determination had been carried out.

SECTION 1.2

Scone of the Presont work in Part I

Chapters 2 to 4 in Part I of this thesis describe Worl carried out by the author on a number of dipyrromethene complezes.

In Chapter 2 the preparation and chamaterisation of a number of neutral bidentate complexes of general formula $\left.\mathrm{ml}^{(P M}\right)_{2}$, are aeseribed where wepresents the divalent ions of zinc, cadnium. mercury and pelladium and PM is either 44^{4}-dicarboxyethyl-3, 3* $5,5^{\circ}$-tetramethylaipyrrome thene (MMPM) or $3,4^{4}$-dicarboxyethyl-5-chloro-3* 4.5°-trimethyldipyrromethene (MCIPM). Of these the zinc. cadmum and palladum complexes of Miplit have been reported previousiy by Porter ${ }^{5}$, and Mellor and Lockwood ${ }^{8}$. The ulteavioletvisible spectra of all these complexes axe reported and compared with those of other complexes reported previously by Fergusson and Ramsey ${ }^{12}$, and by Couch ${ }^{14}$. A metal oxidation charge trensfer band in the near ultraviolet region of the spectrum has been assigned for the MMPMH and Molpmi complexes of cobalt, nickel, copper, zinc, palladum, and cedmiun and for the MOLPME complex of mercury. The proton NMR spectra of the diamagnetic complexes of these ligands have been measured and are reported for the first time. Changes in the chemical shift of groups substituted
onto the dipyrromethene skeleton are analysed and discussed in terms of changes in groups substituted in the ligands, coordination to a metal ion, and differences in the stereochemistry of the complexes.

In Chapter 3 the arystal and molecular structure determination of $\mathrm{Pa}\left(\mathrm{MMPM}_{2}\right.$ is described and diseussed. The structure has been found to be "stepped" square planar with the palladium atom residing on a crystallographic centre of symmetry. The bonding at the nitrogen atoms of the ligand has been found to be distorted so that the chelate rings are not coplanar with the crystallographically required square plane of the nitrogen atoms about the metal ion. In addition the planarity of the ligands is destroyed. The determined structure is compared with other structures of closely related complexes, in particular those of $\mathrm{Cu}(\text { MMPM })_{2}^{15}$ and ble-(dipyr 1dyliminato) palladium(II) ${ }^{20}$. The preparation and characterisation of the complexes $\left.\mathrm{Pd}_{2} \mathrm{OI}_{2}{ }^{(P M}\right)_{2}$ and PdX(PM)(PMH) is deseribed in Chapter 4, where PMH is either MOIPMH or MMPMH, and X is elther $\mathrm{Cl}^{-\quad}$ or Br .
of these the chloro-complexes of MMPMH have been previously prepared by Porter ${ }^{5}$. Porter's structure assignment has been confirmed for the bridged $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(P M)_{2}$ complexes, and a strueture has been assigned for the mixed monodentate and bidentate complexes PdX(PM) (PME) from consideration of the proton Nif spectra of these complexes. The ultraviolet-
visible spectra have been measured for these complexes and the positions of the bands and theix assignments are considered in comparison with those of the $\quad(\mathrm{PH})_{2}$ complexes described in Chapter 2.

CHAPGER 2

Bis-(ndoyerometheneto) (etal(IT) Compleved

SEOTLON 2.1

Introduction

Complexes of 44^{2}-dicarboxyethyl-3. 3n 5.5^{4}-tetwamethyl

 Lons of sino, cadmum and paliadura have been propared and fully chrectersed. Dfpyromethene complaxes of palladum (II). which also have coordinated havgen Ilgande ase dscuseed in Chapter 4. The molma comper on mereury (xI) hes also been prepared and fully characterised. Attenpted preparatione of adpywomethone complezea of ruthendum, Fhodtum, ixtatum and platinun were wnsuceesstul, and the
 could not be condimed. A oliven(i) complex has been prepared but not tully charectenised.

The proparathons and attenpted preparations of these amplexes ame dsoussed in Section 2. 2. ULtravioletmisible apectra of the charactenthed complexes are reportod and atacused in Seation 2.3. The spectra are compered wh those reported for complexes of theee ligands with other metal ions. The proton NuR spectra of the fully charseterseed complextes of zine esamim, mercury and pallsdium are reported and discuseed in Section 2.4 .

SEOITON 2.2

Prenarationa

DLSOUSSION:

The method of preparation for the complexes $M L_{2}$, ($M=2 n, \mathrm{Cd}_{9} \mathrm{Hg}, \mathrm{Pd}$) where simple salts of the divalent ions were avallable was to react on aqueous or ethanolic solution of the divalent metal halide, acetate or ntrate salt with a sodium acetate bufered solution of the ligand in ethanol. The use of the buffer assisted in the removal of the acidic proton of the neutrel ligand berore, or during coordination according to the reaction:

$$
2 \mathrm{AcO}^{-}+2 \mathrm{LH}+\mathrm{M}^{2+} \longrightarrow 2 \mathrm{AcOH}+\mathrm{ML}_{2}
$$

The presence of godim acetate was not required for the coordination of MCIPNH but on the other hand coordinam tion of Mmph was greatly assisted by the presence of the buffer. This dieference in behaviour suggests that the chlorine substituent in MOLPMF assists the formation of the L anion because of its electron withdrewing capactty. This corresponds to a reduction in the σ donox capacity of the nitrogen atoms for this 1 igend in comparison with those of MMPH. These complexes have been formulated as nonomeric Mis_{2} complexes by elemental analyais, molecular weight determinations and NHR spectroscopy.

In the preparation of the silver(I) complex silver
aftrate was used as a starbing material. Trivalent chlorides were used in the attempted preparations of the rhodiun and ruthenium complexes, and a tetravalent iridium salt $\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{TrOl}_{6}\right)$ was used in the attempt to obtain a complex with this metal. Attermes wece also made to redvce the reaction mixtures of the rhodium, ruthenium and iridium salts with a varlety or suitable reduging agents. One of the products obtatned from some of the attempted prenarations was identifiod only as "decomposed ligana". This was also obtained from a few of the preparations of the 11gands, which for one reason or another atd not give the required product. Whe product of ligand decomposttion was a deep purple colours and wen wery soluble in chloroform. The proton NMP spectra of the "decomposition product" of both ligends showed two resonance peaks at 1.25 pmm and 0.90 ppm , Both resonances were broad and featureless. The lignnds decomposed extremely readily in reaction mixtures conteining rothenium and rhodum salts.

The intrared spectra and proton Mor spectra of all reaction products were measured routinely. Infrared spectra proved rether unelpful in characterisation of the complexes. The apectre of the ligands showed diferent intensities and positions for some bands from those obtained for the complexes. The spectra of the zinc, cadmium and
mercury complexes with the same ligands were identical, While those of the palladium complexes differea in the intensities and positions of certain bands compared with the spectra of the other complexes. However, the infrared spectra of reaction products, which other me thods of investigation such as olemental analyis and MMR showed to be largely mixtures of unidentifiable compounds, were often identical to those of the pupe complexes. This indscated that the infraxed spectra of these compounds were on little use for thetr characterisation. However the absence on absomptions above $3000 \mathrm{ma}^{-1}$ indteated that the compounds were anhydrons.
proton NMR spectra, on the other hand, were round to be very satistagtory for use in ohamberising complexes. The spectra resuly bhomed it the compazea were free of organic impurities, partheulamy those due to Itgend decomposition.

The molecular weathes of sone of the complexes were measured by osmonetry and with the exception of $\mathrm{Pd}(\mathrm{MCIPM})_{2}$ were found to be nomal for mononexie compleas. In retrospect the apparently very high experimental molecular weight in solution for $\mathrm{Pa}(\text { Molph })_{2}$ can be explained in texms of sone degree of associtation between molecules. This is possible because of the difacrence in stereochemistry between the palladian complexes and those of the other divalent
metal ions. The nolecular welght of $\mathrm{Pd}(\mathrm{MmPM})_{2}$ in the solld state was obtained crystallographically.

With the exception of the silver(I) complex, all the compounds were extremely soluble in chloroform and were soluble to some extent in all common organic solvents but were insoluble in water.

EXPERTMENTAL

(a) Preparation of the Ligands

The preparations of the 11 gands have been reported elsewhere 8,21 , however they ace included here in full because come alterations have been made to the preparative methods. 2.4-dimethyl-3-carboxyethylpyrrole ${ }^{8}$

Acetoacetic ester (234 ml) and glacial acetic acia (514ms) were placed in a 3 1itre, 3 necked Ilask with a stirrer, dropping funnel and a thermometer dipping in the 1iquid. A solution of 64 gms of sodium nitrite in minimum water was added slowly while the temperature was kept below $0^{\circ} \mathrm{C}$ with a freezing mixture. The solution was kept at this temperature while stirring for 1 hour after all the sodium nitrite solution had been added. Zinc dust (120 gm) was then added at a rate sufficient to maintain continuous boiling, after which the mixture was heated for a further hour, and then poured into 6iltres of water. The diester, 2.4-dimethyl-3,5-dicaxboxyethylpyrrole, was filtered off.

The diester (100 gm) and potassium hydroxide (180gm) were dissolved in 1 litre of ethancl. The solution was heated under reflux for $1 \frac{1}{2}$ hours and poured Into 10 litres of water. It was filtered to xemove any unchanged diester (about $10-20 \mathrm{gms}$). Acetic acid was added to neutrallse the solution and the mixture was left overmight. The monoester-carboxylic acid, 2,4-dimethyl-3-carboxyethyl-pyrrole-5-carboxylic acid was filtered and dried thoroughly under vacuum. (Yield approximately 80 gm).

The acid-ester was heated in a claisen flask (100 ml flask for 100 gms of actd-ester until most of the carbon dioxtde had been removed. It was then distilled under reduced pressure under a slom stream of dry nitrogen. The yleld of α-free pyrrole, 2.4-dimethyl-3-carboxyethylpyrrole, was about 50 gm .
$4,4^{\prime}$-dicarboxyethyl-3,3',5,5'-tetrame thyldipyryomethene ${ }^{8}$ Finely divided 2,4-dimethyl-3-carboxyethylpyriole was discolved in minimum concentrated hydrochloric acid on a bolling water bath. A few drops of rormaldehyde were added and heating was continued for about 10 minutes until a floculant yellow precipitate formed. The solution was cooled in an foe bath and filtered. The hydrochloride salt was mashed and dried under vacum.

The dry solid was finely ground in a mortar and pestle
with a little concentrated ammonia before filtering, washing with water, and drying under vacuum. The neutral 11gand was carefully recrystallised several times from chloroform/petroleum ether before final recryetallisation from acetone. The compound was obtained as bright red needle crystals.

Analysis: Calculated for $\mathrm{O}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ O. $66.3: \mathrm{H}, 7.0$: N. 8.1% Found: $0,66.4:$ H, $7.0 ; N_{i} 7.8 \%$.
 The α-free pyrrole (2,4-aimethyl-3-carboxyethylpyrrole) (24 gm) was dissolved in 400 mls of dry ether and cooled to 0°. Sulphurylchloride (24mis) vas added dropwise with stircing. When neany all of the sulphuryl chloride had been added an intenge red precipitete geparated out. After standing for a short time this precipitate was filtered and washed with ether. It was recrystallised several times from chloroform/petroleum ether before final recrystalisation from acetone. The compound was obtained as brown-red. microcrystals.

Analyais: Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}: \quad \mathrm{C}, 59.3 ; \mathrm{H} .5 .2:$ N, 7.7%. Found: C, $59.3 ; \mathrm{H}, 5.7 ; \mathrm{N}, 7.3 \%$.

Equations:

(1) Preparation of 2,4-aimethyl-3-carboryethylpyrrole:

$\mathrm{Zn} / \mathrm{ACOH}$

$\left(=\mathrm{R} \cdot \mathrm{CO}_{2} \mathrm{Bt}\right)$
(2) Decarboxylation

$$
\begin{array}{lll}
\mathrm{R}_{2} \mathrm{CO}_{2} \mathrm{Et} & \xrightarrow{\mathrm{KOH} / \mathrm{BtOH}} & \mathrm{R} . \mathrm{CO}_{2} \mathrm{H} \\
\mathrm{R} .0 \mathrm{O}_{2} \mathrm{H} & \xrightarrow{\triangle} & \mathrm{R}-\mathrm{H}+\mathrm{CO}_{2}
\end{array}
$$

(3) Preparation of MMPMH ${ }_{2}$ Cl (fornylation and condensation)

(4) Preperation of Moyplif

+ R. OL

(b) peparations of the Groun ty Hetal Cormletes

Several of these nomplexes have been prepared
previonaly by portex and eaclles workers. The following abbreviations of the systematie name have been used for the 11 gands to avold tedsous repetitiont

MC1P解: 5-chnoro-5'-methyldapyromethene.

A solution of A. h. zine acetate amyduate (0.2 gm)
In the mindmum mount of wher ves added to a cold solution of the hignan (0.5 mm) and an exeese soalum acetate in mintmun ethenot. The complez immediately precipttated as minely aivided ongnge solid, which mas elitered and

 3n(Mc7m) E°

The complex ves pecpared in a aimilaw wey to that
 was not immedlately precipltated. A deep sed solution of the complex was obtained which was evaporated to dxynese on water bath. The residue wes recrystallised from ethenol and deied in vacuo.

Analysis: Calculated for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{OL}_{2} \mathrm{H}_{4} \mathrm{O}_{8} \mathrm{Zn}: 0,54.5: \mathrm{H}, 4.8$;和, 7.1\%. Founa: $0,54.2 ; \mathrm{H}, 5.0 ; \mathrm{N}, 6.7 \%$.

Molecular Welght: (Bee footnote). Oalculated: 794.4, Tound: 814 ± 20.
(111) bis-(5.5-aimethyldipyrcomethenato) cadmium(II), $\mathrm{Ca}(\text { MapM })_{2}{ }^{5}$

The complex was prepared as outlined for $z_{n}(M \operatorname{MPM})_{2}$
in (i) above using cadmium nitrate as a source of cadmium ions. The complex was obtalned as a yellom-orange finely divided preoipitate, which was recrystallised frome thenol in the colds and dried in vacuo.

Analysis: Calculated for $\mathrm{O}_{38} \mathrm{H}_{4} 6^{\mathrm{CaN}_{4} \mathrm{O}_{8}:}$ O, 57.2; H, 5.8: N. 7.0\%. Tound: C. $54.6: \mathrm{H}, 5.7 \% \mathrm{~N}, 6.7 \%$.
(1v) bis-(5-chloro-5 -methyldipyxromethenato) cadmium(II). $\mathrm{Ca}(\mathrm{MCIPR})_{2}:$

Cadmium nitrate was used as a source of cadmium ions and the method of preparation and recrystallisation was as outlined for $\mathrm{Zn}_{\mathrm{m}}(\mathrm{MClpm})_{2}$ in (ij) above.

Footnote: Unless othemise stated molecular welghts were determined in chlorotorm solutions by osmometry. The experimental procedure followed is outlined in Appendix A. Range estimates are derived from estimated errors in the experimental procedure.

Analysis: Calculated for $\mathrm{O}_{36} \mathrm{H}_{40} \mathrm{CdCl}_{2} \mathrm{~N}_{4} \mathrm{O}_{8}$: \quad C. 51.3 :
H. $4.5 ; \mathrm{N}, 6.7 \%$ Found $0,51.5 ; \mathrm{H}, 4.7$ N, 6.7\%.

Molecular Weight: Caleulated: 841.4 Found: 833 ± 40.
(v) Attempted preparation of bis-(5.5 - -dimethyldipyrromethenato) mercury (II), Hg (MMPM) ${ }_{2}^{5}$

The preparation of this complex was attempted using mercuric nitrate as a source of mercuric lons, as outined for $\mathrm{Zn}(M M P M)_{2}$ in (1) above. Examination of the NMR spectre of those products of the reaction which were soluble in chloroform indicated that the ligand had decomposed. No evidence for the formation of $\mathrm{Hg}_{\mathrm{g}}(\mathrm{MNPM})_{2}$ as reported by Porter ${ }^{5}$ was found. Producte insoluble in chloroform appeared to be mainly unchanged merouric nitrate.
(vi) bis-(5-chloro-5-methylaipyrromethenato) mercury (II), $\mathrm{Hg}(\text { MCIP保 })_{2}$

Mercuric nitrate was used as a source of mercuric lons, and the complex was prepared as outlined for $\mathrm{Zn}(M C 1 P M), 2$ in (1i) above. A red powdery precipitate formed which was filtered and reerystanised from ethanol. The finely divided erystalline solid was dried in vacuo. Analysis: Calculated for $\mathrm{O}_{36} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{HgN}_{4} \mathrm{O}_{8}$: $\mathrm{C}, 46.6$ \% $\mathrm{H}, 4.3$; N, 6.0%. Found: C. $45.9 ; \mathrm{H}, 4.2 ; \mathrm{N}, 5.9 \%$.
(c) Preparetton of the Palladium Complexes
(1) Palladium nitrate

Approximately 1 gm of bulk palladium metal was alssolved in 30 ml of concentrated nitric acid to which 1 drop of concentrated hydrochloric acid had been added. The presence of a small amount of chloride ion catalysed the solution process, which was assisted by heating the mixture on a water bath for several hours. The dark-brown solution was evaporeted to dryness and the residue was dissolved in 20 mls of concentrated nitric acid, which was almo evaporated to dryness. The resulting cxumbly brown compound was tested for chloride impurities by addition of a little silver nitrate solution to a solution of a mall quantity of the palladium nitrate in water. If necessary the fuming process was repeated. The hygroscoplo compound obtained was stored in the dark in a wellsealed container. It was used as a source of palladium(II) fons without further investigation.
(1i) bis-(5.5-dimethyldipyrromethenato) palladiun(II). $\mathrm{Pd}(\mathrm{MPPM})_{2}{ }^{5}$.

A solution of palladium nitrate (0.17 gm) in minimum ethanol was added to an ethanolic solution of the ligand (0.5 gm) and exeess sodium acetate. A red solution was obtained which was evoporated to a small volume under a
etreem of compressed aix. The complex was obtained as a finely divided orangemed solid which was reerystallised from ethanol and chlopoform, and dried in vacuo. Orystals of a size suitable for single crystal $\mathrm{X}-\mathrm{ray}$ diffraction studies could also be obtained, as outlined in Chapter 3. Analysis: Calculated for $\mathrm{O}_{36} \mathrm{H}_{4} 6^{\mathrm{N}_{4}} \mathrm{O}_{8} \mathrm{Pd}$. $\mathrm{C}, 57.6$; $\mathrm{H}, 5.8 \%$. Found: \quad, 57.5 ; H, 6.2\%.

Molecular Weight: Found (Crystallographic Method) 792 这 1 Calculated. 792.4.
(1ii) bis-(5-chloro-5'methyldipyrromethencto) palladium(II), $\left.\mathrm{Pa}_{\mathrm{MO}}^{(\mathrm{MAR}}\right)_{2}$

The complex was obtained as a microenystalline purple solld as outlined for $\mathrm{Pa}(\mathrm{mpm})_{2}$ in (11) above. Analysis: Calculabed for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}^{\mathrm{Pd}}$: $0.51 .7 \%$ H, 4.8; N, 6.7\%. Found: $0,51.7 ; \mathrm{H}_{\mathrm{H}} \mathrm{H} 4.9 ; \mathrm{N}, 6.7 \%$ Molecular Welght: Found: 1017 ± 30, Calculated: 835.4.

Thin layer chromatography was used to try to aeparate out the cis and trans isomers of this compound. A partial separation was achieved, however attempts at using the process preparatively were unsuccessful. The NMR spectrum of the complex also indicated the presence of two isomers (see Figure 4.32, and discussion on page 100).
(d) Attempted Preparations of Complexes of other Trans $1 t 10 n$

Metals

UnLess stated othexwise the metal oompounds used as starting materiala are those available commercially. only MoLphil was used in these preparations since previous experience had shown this ligand coordinated more readily than MMPMH.

Ruthenium

(i) potassium pentachloroaquoruthenate(III), $\mathrm{K}_{2} \mathrm{RuCl}_{5} \mathrm{H}_{2} \mathrm{O}^{22}$ This complex was used as one of the starting materials in the attempted preparation of a ruthenium(II) complex. It was also used in the prepacation of a series of o-phenanthrollne complexes (Chapter 5).

Potascium hydroxide pellets (6 gm) were fused to a quiescent melt in a platinum crucible. Potassium chlorate (1.5 gm) was finely ground and intingtely mixed with ruthenium sponge (1gm). This mixture was added evenly in small portions over $\frac{1}{2}$ hour to the fused potassium hydroxide while it was maintained at a sufficiently high temperature for scintillations to occur on the addition. The arucible was heated for a further $\frac{1}{2}$ hour with occassional stirning With a silver wire. The cooled melt was removed by scraping and any remainder was removed by swirling 30 mls of water quickly around the crucible. These washings and the bulk of the melt were made up to 60 mls with sufficient hydrochloric acid solution to give a final acid concentration
of about 2.5M. The acid solution was ifltered and concentrated to about half the original volume. The product was filtered, and washed with a ilttle cold dilute hydrochloric acid, followed by 80% aqueous ethanol with a few drops of dilute hydrochionic acid, and finally with ethanol followed by acetone. The vield of K_{2} PuCI $\mathrm{F}_{5} \mathrm{OH}$ was approximately 1.5 gms.

Tho brown-black solld was dissolved in 30 mis of 1 N hydrochloric actd and 2 mle of 36% fomaldehyde solution was added. The maxture was allowed to stand on a hot water bath ($60^{\circ} 0$) for approximately 8 hours and was then evaporated to near dryness. Acetone mas added and the
 $\mathrm{K}_{2} \mathrm{RuOl}_{5} \mathrm{H}_{2} \mathrm{O}$ was about 1.3 gm . This material was used as a source of ruthenim(ITI) whout further investigetion. (11) Attempted complex formation

The following reagents were used as starting materials: $\mathrm{RuOL}_{3} \cdot \mathrm{HH}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{RuCl}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{Ru}\left(\mathrm{MH}_{3}\right)_{6} \mathrm{Cl}_{3}$. of these onyy $\mathrm{K}_{2} \mathrm{RuCl}_{5} \mathrm{H}_{2} 0$ reacted.

Several attempts were made to prepare a ruthentum(II) complex. Mole ration of $1: 2$ and $1: 3$ of puthentum(IIX) to MODPMH and excess sodium acetate in ethanol solution were used, and a number of reducing agents, including sodium dithionite, soolum thlosulphate, hydrazine hydrate,
hypophosphorous acid, and gaseous sulphur dioxide were added to reaction mixtures. On heating a dackening was observed which suggested complex formation. The dackening occurred whether or not a reducing agent wes present. When solutions were evaporated to dryness on waterbath, a red powdery solid was obtained, which was dissolved in low boiling petroleum ether.

Chromatographic separation of reaction products was attempted using a colum of 10% deactivated alumina. The red colouration in the petroleum ether was deposited on the alumina. Successive elutions were made with $5 \%, 10 \%$, 20% and 50% mixtures of benzene in petroleum ether. The colum was flnally stripped, exeept for a dark brown residue at the head of the columa, by elution with pure benzene. The remaining deposit was thought to be mainly metal residues. The following fractions mere obtained:
(1) Unchanged ligand
(2) Ligand decomposition products.

In one preparation only (in which no reducing agents were used) about 10 mgs of a red product were obtained which may heve been a ruthentum-dipyrxomethene complex. Analysis: Calculated for $\mathrm{O}_{36} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Ru}$, (Ru(MClPM) $)_{2}$), C. 52.1; H, 4.8\%. Found: $0,54.6 ; \mathrm{H}, 5.4 \%$

As the complex could not be fomed reproduelbly, and owing to the small quantity of the compound obtained, it was not investigated further.

Rhodium

1 mole of rhodium(III) trichloridetrihydrate in ethanol was added to 2 moles of MolpuH with excess sodium acetate in ethanol. As for the reaction with ruthenium(III) a number of reducing agents were used for diferent preparetions. Whether reduoing agente were present or not a colour change fron onangemed to a deep purple colour was observed after few minutes in the cold. The solution was evaporeted to dryness and the dark purple restaue was recrystallised from ethanol and ohlorofom, and dried in vacuo.

Analysis: Caloulated for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Rh},\left(\mathrm{Rn}(\mathrm{MClPM})_{2}\right)$ O. 52.0: H. 4.8. N, 6.7\%. Found: 0. $51.7 \% \mathrm{H}, 4.9$; N. 6.5\%

Magnethe Measurements: The complew was diamagnetic both In the solla state; $10^{6} \chi^{\prime} g\left(20^{\circ} \mathrm{C}\right)=-0.13 \mathrm{cgs}$ unsts (Gouy method), and in solution (NMR).

Although the complex was extremely soluble in chloroform, the NMR spectrum gave only a few very weak resonanee peaks. The highest peaks were those of ligand decomposition products.

Thin layer chromatography on olilea gel gave a continuous band covering two thirds of the plate suggesting a mixture of compounds.

It must be concluded that the analysis obtained is
entirely fortustous and that the "complex" is in fact a mixture of a number of compounds which may contain some complexed ligand. Beoause of the results obtained with NHR spectroscopy and with TLC experiments the product of the reaction was not further investigatea.

Platinum, Iridum and Gold

Complex formation was attempted with potassium terram chloroplatinite(II), $\mathrm{K}_{2} \mathrm{PtCl}_{4}$; anmonium hexachloroiridate(IV), $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{TrCl}_{6}$; and sodium tetrachloroaurate(III), NaAuCl ${ }_{4}$, With MOIPMH under similar condstions to those described previously for other metals, In each case the ligand was always obtained unchanged from the reaction matures. There was no evidence of ligand decomposition in these cases.

s11ver

Sllver nitrate (0.05 gm) in aqueous solution was added alowly to an ethanolic solution of MC1PMH (0.2 gm) and excess sodium acetate. A deep red floculant precipitate immediately formed, which was filtered and dried in vacuo. The complex was insolubles or nearly insoluble in all common solvents including water, methanol, ethanol, n-butanol, chloroform, benzene, carbon tetrachloride, dimethylfomamide and dimethylsulphoxide.

Analysis: Found: $0,32.6 ; \mathrm{H}, 3.3 ; \mathrm{N}, 3.7 \%$. Atomic ratios: $\mathrm{O}_{36}: \mathrm{H}_{44}: \mathrm{N}_{3.5}$. Required for: $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{AgCl}_{2} \mathrm{~N}_{4} \mathrm{NaO}_{8}$,
($\left.\mathrm{NaAg}(\mathrm{MClPM})_{2}\right), \mathrm{O}, 50.4 ; \mathrm{H}, 4.7 ; \mathrm{N}, 6.5 \%$. Required fox: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{AgClN}_{2} \mathrm{O}_{4}$, ($\left.\mathrm{Ag}(\mathrm{MCLPM})\right), \mathrm{C}, 45.8 ; \mathrm{H}, 4.2 ; \mathrm{N}, 5.9 \%$.
 C, 36.7 H, 3.51; N, 4.3\%.

Magnetic measurements: The solld was dianagnetic, $10^{6} \chi_{g}\left(20^{\circ} \mathrm{c}\right)=-0.10$ egs units (Gouy method).

The atomfo ratios CiH:N found by elemental analysis indleate that the ligand may be largely unchanged in the complex. On the assumption that the compound was a salt attempts weve made to prepare salts with tetramethylamine and tetra-n-propylamine cetions in the hope of productug a more soluble compound, without success. The infrared spectrum of the complex was similar to those obtalned for the other metal complexes. No evidence was found for the preaence of coordinated acetate. Because of the insolubility of the complex measurement of its conductivity and NMR gpectrum was not possible.

SEGTION 2.3

U1traviolet-Visible Snectra

INTRODUCTION

The main features of the ultravioletwisible spectra of dipyrromethenes are well known $6,12,14,17$. Ligand field speotra have been used extensively, with reasonable suecess, in attempting to determine the stereochemistry of the ML_{2} complexes of the transition metals $12,14,16,17$. An attempt has been made to use the extinction coerifaients of one of the bands of the non-1igand field speotra of some complexes to extract information about theix stereochemistry ${ }^{6}$.

The spectra of the MMPMH and MOIPMH complexes of zinc(II), cadmium(II), mercury(II) and palladium(II) in chloroform solution are reported here, and are compared with spectra of complexes of these ligands, and those of $3,4^{4}$-dicerboxyethyl-5-bromo-3? ,4,5-trime thyldipyrromethene (MBrPMH) with the metal lons cobalt(II), nickel(II) and copper(II). Which have been reported prewiously 12,14. An attempt is made to explain the origin of some bands in the non-ligand field spectra of these complexes.

The non-ligand iteld apectra are similar for all of the complexes studied so far whose spectra have been reported, and can be divided into three main regions. (1) $22,000-18,000 \mathrm{~cm}^{-1}$: A band is found in this region, often with one or more shoulders. The extinction coeficient

Is of the order of 10^{5}. This band is also found in the spectra of the neutral and protonated liganda. It is therefore considered to be aue to a low energy intraligand $\pi \rightarrow \pi$ transition and has been described by Fergusson and Ramsay ${ }^{12}$ as being similar to the soret band of porphyrins since it is of about the same intensity, and behaves in a similar manner on coordination of the ligand. The band Is generally found to intensify and to move to lower energy when the Iigand coordinates to a metal ion.
(2) $30,000-25,000 \mathrm{~cm}^{-1}$. In this region a bend is aften found with an extuction coestictent of between 10^{3} and 10^{4}. for metal complexes, but is not found in the spectra of the free Iigand. This band is tentatively assigned to a metal $\rightarrow \pi{ }^{*}$ charge transter transttion. It does not seem probable that it is a Ilgand \rightarrow metal charge transfer since it is observed for both transtition metal complexes, and for zinc(II), cadmium(II) and mercury(IT) complexes. (3) Above $30.000 \mathrm{~cm}^{-1}$: A number of bands are iound in this region. The spectra very from complex to complex. but bands observed are probable due to high energy intraligand $\pi \rightarrow \pi^{*}$ transitions.
(4) Below $18,000 \mathrm{~cm}^{-1}$: Ligand field bands are observed for transition metal complexes outside the region dominated by the low energy $\pi \rightarrow \pi^{*}$ band. However these are not

FIGURE 2.31

found for complexes of the d^{10} metals and will not be discussed in detail.

The spectral data obtained for the complexes of zinc, cadmium, mercury and palledium are 1isted in Table 2.31. Table 2.32 lists the wave numbers and extinction coefficien ts of the low energy $n \rightarrow \pi^{*}$ fransition as measuped for a number of complexes and reported by several authors. Table 2. 34 11sts the wave numbers and extinction coefficients of the charge transfer bands of a number of MCIPMH and MFPMF complexes. Figure 2.31 1llustrates the ultravioletvisible spectra of MOLPMH, MCIPMH $\left.A_{2} C 1, Z n(M C I P M)\right)_{2}$ and $\mathrm{Pd}(\mathrm{MOLPM})_{2}$ as typical examples of the spectra obtalned.

It has been round that the solution speotra of the ILgands are strongly dependent on the nature of the solvent ${ }^{14}$, although those of the complexes are only slightly affected by solvent changes ${ }^{12}$. All the spectra reported and compared here have been measured in chlorororm. Hence solvent efrects may be considered as constant throughout the series.

Figure 2.32 illustrates a moleculaz orbital bonding scheme for the regular tetranedral complexes and the square planar palledium complexes. This alsgram is greatly simplified, but illustrates the electronic tronsitions observed for these complexes.

FIGURE 2.32

SCHEMATIC REPRESENTATION OF MOLECULAR ORBITALS OF TETRAHEDRAL AND SQUARE PLANAR DTPYRROMETHENE COMPLEXES

Pa(MGIPM)	0	$12.300 ;(13,600)$	19,300,	25,300
	ε	60	9.5×10^{4}	11.0×10^{3}

a Shoulders in parentheses. b Wave number (ν) in cm ${ }^{-1}$. c. Solid state reflectance spectrum.

TABLS 2.31
ULTRAVIOLET - VISIBLE SPECTRA OF THE ML 2 COMPLEXES ${ }^{2}$.

Compound	b	$\begin{aligned} & \text { Ligand } \\ & \text { Field Bands (?) } \end{aligned}$	$\begin{aligned} & \text { Low Energy } \\ & \pi \rightarrow \pi^{*} \text { Band } \end{aligned}$	Charge Transfer Band	High Energy $\pi \rightarrow \pi^{*}$ Bands
MMPME	है		$\begin{aligned} & 20,400,5 \\ & 8.7 \times 10^{4} \end{aligned}(21,300)$	-	$\begin{aligned} & 38,600 ; \\ & 7.0 \times 103 \end{aligned}(30,000 ; 36,500)$
MCIPME	$\stackrel{\rightharpoonup}{\varepsilon}$		$\begin{aligned} & 20,300=(21,000) \\ & 4,2 \times 10^{4} \end{aligned}$	-	$\begin{aligned} & 37,300 ; \\ & 7.8 \times 10^{3} \end{aligned}(36,400)$
$\mathrm{MMPMH}_{2}{ }^{+}$	$\stackrel{\rightharpoonup}{\varepsilon}$		$\begin{aligned} & 21.100 \\ & 12.3 \times 10^{4} \end{aligned}$	-	$\begin{aligned} & 29,000 ;(35,300 ; 38,500) \\ & 3.57 \times 10^{3} \end{aligned}$
$\mathrm{MCIPMH}_{2}{ }^{+}$	ν 8		$\begin{aligned} & 20,080 \pi_{4}(20,800) \\ & 4,15 \times 10^{4} \end{aligned}$	-	$\begin{aligned} & 28,900 ;(36,500) \\ & 2.3 \times 103 \end{aligned}$
Zn (MMPM) 2	$\stackrel{\nu}{\varepsilon}$		$\begin{aligned} & 20,400 ;(22,400) \\ & 21.5 \times 10^{4} \end{aligned}$	$\begin{aligned} & 28,300 \\ & 4.86 \times 10^{3} \end{aligned}$	$\begin{aligned} & 37.700 \\ & 16.0 \times 10^{3} \end{aligned}$
$\left.\mathrm{Zn}^{(M C I P M}\right)_{2}$	$\begin{aligned} & \partial \\ & \varepsilon \end{aligned}$		$\begin{aligned} & 19,200 ; 5^{4}(20,000) \\ & 13.6 \times 10^{4} \end{aligned}$	$\begin{gathered} 2.82 \\ 6.55 \times 10^{3} \end{gathered}$	(32,300; 33,300; 35,700; 37,000
$\left.\mathrm{Cd}^{(M M P M}\right)_{2}$	2 ε		$\begin{aligned} & 20,400 ;(22,400) \\ & 24.0 \times 10^{4} \end{aligned}$	$\begin{aligned} & 28,650 \\ & 5.1 \times 10^{3} \end{aligned}$	$\begin{aligned} & 37.800 \\ & 15.5 \times 10^{3} \end{aligned}$
$\mathrm{Cd}\left(\mathrm{MCIPM}_{2}\right.$	$\stackrel{\rightharpoonup}{\varepsilon}$		$\begin{aligned} & 19,300 ;(20,000) \\ & 19,3 \times 10^{4} \end{aligned}$	$\begin{aligned} & 28,400 \\ & 6.27 \times 10^{3} \end{aligned}$	$\begin{aligned} & 37,000 ;(32,200 ; 36,100) \\ & 33.6 \times 10^{3} \end{aligned}$
$\left.\mathrm{Hg}^{(M C I P M}\right)_{2}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\varepsilon} \end{aligned}$		$\begin{aligned} & 19,1003_{4}(20,000) \\ & 17.0 \times 10^{4} \end{aligned}$	$\begin{aligned} & 28,100 \\ & 7.24 \times 10^{3} \end{aligned}$	$\begin{aligned} & 32,000 ; 37,200 ;(36,300 ; 37,900 \\ & 5 \times 10^{3} ; 10,4 \times 10^{3} \end{aligned}$
$\mathrm{Pd}_{(M M P M)}^{2}$	$\stackrel{\rightharpoonup}{\varepsilon}$		$\begin{aligned} & 20,500 \\ & 16.4 \times 10^{4} \end{aligned}$	$\begin{aligned} & 25,700 \\ & 11.7 \times 10^{3} \end{aligned}$	$(37,900)$

TABLE 2.32-TME LON EMRRGY $\pi \rightarrow \pi^{*}$ BAWD

Metal	Ligand	Reference	$O\left(\mathrm{~cm}^{-1}\right)$	ε
\cdots	MAPTH MCIEM MBrPMH	a a 12	20,400 20,300 20,200	$\begin{aligned} & 8.7 \times 10^{4} \\ & 4.2 \times 10_{4}^{4} \\ & 4.4 \times 10^{4} \end{aligned}$
$2 n$	MuPM MC1PH MBren	a a 12	20,400 19,200 19,300	$\begin{aligned} & 21.5 \times 10^{4} \\ & 13.6 \times 10^{4} \\ & 17.0 \times 10^{4} \end{aligned}$
Cd	$\begin{aligned} & \text { MMPI } \\ & \text { MO1PM } \end{aligned}$	a	20,400 19,300	$\begin{aligned} & 24.0 \times 10_{4}^{4} \\ & 19.5 \times 10^{4} \end{aligned}$
$\mathrm{He}^{\text {e }}$	MClom	a	19.100	17.0×10^{4}
Co	MPM MClPM MBrem	$\begin{aligned} & 12 \\ & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 20,400 \\ & 19,200 \\ & 19,200 \end{aligned}$	$\begin{array}{r} 22.9 \times 10_{4}^{4} \\ 9.0 \times 10_{4}^{4} \\ 15.0 \times 10^{4} \end{array}$
N1	$\begin{aligned} & \text { MAPR } \\ & \text { MC1MP } \\ & \text { MBrPM } \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 20,200 \\ & 18,900 \\ & 19,100 \end{aligned}$	$\begin{aligned} & 9.7 \times 10_{4}^{4} \\ & 5.9 \times 10_{4}^{4} \\ & 6.8 \times 10^{4} \end{aligned}$
Cu	MMPA MOLEM MBrPM	$\begin{aligned} & 12 \\ & 14 \\ & 12 \end{aligned}$	$\begin{gathered} 20,200: 22,200 \\ 18,700: 20,600 \\ 15,600: 18,700 ; \\ 20,200 \end{gathered}$	$\begin{array}{r} 11.2 \times 10_{4}^{4}: 8.7 \times 10^{4} \\ 12.7 \times 10_{4}^{4}: 8.6 \times 10_{4}^{4} \\ 2.3 \times 10^{2}: 9.4 \times 10_{4} \\ 6.9 \times 10^{4} \end{array}$
Pa	$\begin{aligned} & \text { MMPM } \\ & \text { MCIPM } \end{aligned}$	a	$\begin{aligned} & 20,500 \\ & 19,300 \end{aligned}$	$\begin{array}{r} 16.4 \times 10_{4}^{4} \\ 9.5 \times 10^{4} \end{array}$

a. This work.

EISCUSSION

(1) The Low Energy $\pi \rightarrow \pi$: band:

Table 2.32 lists a number of complexes of different dipyrromethene 11 ganas whoce spectra have been measured In the present work, and by others ${ }^{12,14}$. The band arises from the first allowed transition between a π-bonding orbital of the IIgend and a $\pi^{\text {t. antibonding orbital. It }}$ appears to have two components since a shoulder is observed on the high energy side of the main band for the ligands, and for most of the complexes. The gomposite nature of the band makes comparisons of the dieferences in position and intensity of the band from one complex to another difficult. since small diferences in the relative intensities of the two eomponents can have a considerable influence on the position of the dominant band. The spectre of the copper(II) complexes of MMPMH: MCIPMH and MBrpMH reported by Fergusson and Ramsay ${ }^{12}$, and by Couch ${ }^{14}$, have multiple bands in this region. With the exception of the palladium complexes, whose spectra have a single band in this region, the speetra of the remaining complexes have one dominant band with a prominent shoulder.

For the free ligands there Is Iittle difference in the position of the band whether substituents in the 5-position are methyl, chloride or bromide. The aubstitution of a halogen for a methyl group would be expected to lower the energy of a $\pi \rightarrow \pi *$ transition in a conjugated system ${ }^{23}$.

An increase in intensity might also be expected ${ }^{23}$. How. ever these exfects are not observed to any great extent for these compounds, and in fact the extinction coerfletents of the bands for hClPMH and MBrPMH are approximately half that for MMPMH. The spectra of the protonated ligands are similar to those of the neutral species. In the case of $\mathrm{MMPMH}_{2}{ }^{+}$the band is at a slightly higher energy than for the neutral ligand, while the band Is at a lower energy than for the neubrel lagend in the case of MCMPMH ${ }_{2}{ }^{+}$.

When the Ifgand coordinates to a metal in an increase in the intensity of the band ocemes. Genewally this increase in intensity is greater then would be expected on the basis of 2 moles of 11 gan per 1 mole or complex. indlating that there may be an intewotion between the conjugetion systems of the two Ijgands through the metal Lon ${ }^{24 a}$. For the HGIPHH and HDrPlut complexes the band moves to lower energy by about $1000 \mathrm{~cm}^{-1}$ on aoordination, but this is not fown tor the comploxes of MMPMI where the energy of the band for Pd(MMPM) 2 in in fact gilghtiy higher than tor thet of the fres ligand.

The energy of the band is found to vary as follows;

(111) $\mathrm{Pa}\left(\right.$ MMPM $_{2}>$ MMPM $=\mathrm{Zn}(\text { MMPM })_{2}=\operatorname{Od}(\text { MMPM })_{2}=$ Co (MMPM $\left._{2}>\mathrm{ML}^{(\text {MMPM }}\right)_{2}$

Differences in energy between the bands for different complexes is not great, and as has been pointed out previously, the presence of two components in the band envelope makes comparisons unreliable.

The decrease in energy for the transition noted for two of the three ligands on coordination has alao been found for other systems involving halogen substituted dipyrxomethene $11 \mathrm{gan}{ }^{6}{ }^{6}$. The reason this shitt is not observed for MMPMH complexes is not readily apparent, since in all other respects the MMPMH complexes are similar to those of the other 21gands. It has been pointed out (page 15) that MMPMH may be a better odonor ligand than MCIPMF. However, because of the inductive effect of halogen substituents, ligands such as MCIPM and MBrphe should be bettex $\pi-$
 trensition oceurs at about $20,000 \mathrm{~cm}^{-1}$ for the dipyrromethene ligends, the highest π-bonding molecular orbital and the lowest π^{*}-antibonding molecular orbital of the ligands are very close together (Figure 2.32). Under these circumstances it is very difficult to predict what effect bonding will have on the relative posttions of the π and $\pi *$ orbitals with respect to each other. It may be that metal - Iigand tobonding decreases the difference in energy of these orbitals for the two halogen substituted ligends. However the very mall differences in energy of the bands
between complexes of different metals do not justify an extension of this argument to the relative ability of the metale to participate in π-bonding. In the case of camplexes of phenanthroline and bipyridyl the lowest $\pi \rightarrow \pi$ transition generally deareases in energy on coordintion to a metal lon. This offect is considered to be due to the influence of the charge of the metal $10 n$, rather than any π-bonding between the metal and the ligand. (Chapter 6). This does not seem to hold for Mmphus since the protonated spectes, Hillify $_{2}{ }^{+}$, and the palladium complex. Pd(Mmpr) 2^{\prime} both show an Lnorease in the energy of the band compared with the Iree IIgand.

The postition of the band, besides beting rather insensitive to changes in the coordinated metal ion, and to ligand substituents, does not appear to be influenced greatly by the stereochemistry about the metal lon. There can be littie doubt that the zine, cadmiun, mercury, cobalt and nickel complexes are regular or near regular totrahedral. The copper complexes have been established as heving tetragonally distorted tetrehedral stereochemistry. The palladum complexes have square planar conflgurations, while the planarity of the ligand is destroyed by a "butterfly" folding of the ligand at two polnts on the akeleton (Chapter 3).

The copper complexes show differences in their speotra

TABLE 2.33. PREDICTED INTEMGITIES FOR THE LOW ENERGY

$$
\pi \rightarrow \pi \cdot \text { BAND }^{6}
$$

Complex	$\theta_{4}=$ angle between 21gands in complex	Predicted intens 1ty $\frac{\varepsilon_{i}}{\varepsilon_{00}}=\sin ^{2} \theta$	Intensity observed
$\mathrm{Zn}\left(\begin{array}{l}\text { MMPM }\end{array}\right)_{2}$	90°	\pm	21.5×10^{4}
$\left.\mathrm{Cu}^{(\text {MMPM }}\right)_{2}$	68°	18.5×10^{4}	$8.7 \times 10^{4}, 11.2 \times 10^{4}$
$\mathrm{Pa}(\mathrm{MMPM})_{2}$	0°	0	16.2×10^{4}

from those of the other complexes which seem to be too great to be explained in terms of stereochemical effects, since the deviation from tetrahedral stereochemistry in these cases is relatively small. On the other hand, the palladium complexes, which not only have square planar configurations, but also have the ligand planarity disturbed, have spectra very similar to those of the tetrahedral complexes. The decrease in π-delocallsation in the IIgand expected because of the distortion found would be expected to decrease the $\pi \rightarrow \pi$ trensition energy $24 b$ but, in fact, the energy of the band in found to be higher for the palladiun complexes than for the others.

An attempt has been made by motekaitis ${ }^{6}$ to correlate the intensity of the low energy $\pi r \rightarrow \pi^{*}$ transition with stereochemstry. He has based his argument on the work by Braude and Sondheimer on substituted benzene systems ${ }^{25}$. He has proposed that for the regular tetrahedral complexes this band will be fully allowed, but that the intensity of the band will fall off as the complexes tend towards a square planar stereochemistry. It is difficult to see any theoretical justrication for his proposele or how it is releted to the work of Braude and Sondhelmer. The two complexes whose configurations have been determined as being non-regular tetrahedral by single crystal $X-r a y$ studies $\left(C u(M M P M)_{2}\right.$ and $\left.P d(M M P M)_{2}\right)$ do not show the decrease

Ligand	betal	$\begin{gathered} \text { Wererenoe } \\ \text { Maber } \end{gathered}$	$\begin{gathered} \text { (cm me mbex } \\ \left(\mathrm{c}^{-1}\right) \end{gathered}$	ε
TH1青	Cd	a	28.650	5100
	Zn	3	28,300	48600
	Co	26	27.800	~ 5000
	12	26	27.500	~ 5600
	Cu	26	26,800	b
	Pd	2	25.700	11.700
telat	Cd	4	28,400	6270
	2 n	2	28,200	6930
	Hg	a	23.100	9840
	Co	74	27.000	94na
	18	$1 / 4$	26.300	12.200
	Cu	14	26.300	9000
	Pa	a	25.300	19.000

a. Thit moxk.
b. Bhoulder.
or intensity that his theony would preduct (Tamle 2.33)

(2) The Charge Transere Band:

A well rosolved band has been observed in the region between $28,000 \rightarrow 25,000 \mathrm{an}^{-1}$ in the apectan of the Memph and MCIPMH complexes studied by the author and those reported by Perguson and comonkers 12.14. A broad uncesolved shoulder is apparent in the spectra reported by motelaitis in this region ${ }^{6}$. Data are not available in this region from the spectra reported by rergusson and west ${ }^{16 \text {. An uncesolved }}$ shoulder is found in this region for complexes of MBrphin ${ }^{26}$. Since thas bond is not observed in spectra of the free ligands it may be postuilated that it is due to a charge transere between the metal and the 1igand. Table 2.34 . 14 sts the wave numbers and extinction coetelcients of this band for the MMPMH and MCIPMI complexes of cobalt, nickel, copper, sinc, cadmitm, mereury and palladium. The order of motal ions with respect to the energy of the band is the same for each 11gand:

$$
\mathrm{Oa}>\mathrm{Zn}>\mathrm{Hg}>\mathrm{Co}>\mathrm{W} \sum \geq \mathrm{Ou}>\mathrm{Pa} .
$$

The band is assigned as boing due to metal \longrightarrow 1igand charge transtex since it is in much the same pocition for the complexes of all the metal lons. The reverse oharge transfer is unlikely as the metal ions would require suitable available acceptor orbitals, which is probably not the case for metal Lons with the d^{10} contiguration. The decrease in energy for
the band in going from cadmium. yinc and meroury in the right of the above sequence, to the transition metale on the lert, is that expected on the basis of ease of oxidation of the metal tons.

(3) The High Energy $\pi \rightarrow 0$ 宣 Txancitions

All the complexes show band with an extinction coeflicient of about 10^{4} at roughly $38,000 \mathrm{~cm}^{-1}$. However this band is often not resolved. In adition a number of poorly resolved bands of lesser intensity are also found for many of the complexen in this regton of the spectrum. These bands are all probably due to transtions between the π-bonding orbitals and $\pi \operatorname{man}^{\text {matibonding orbitals of }}$ the liganas. Because it is not possible to give more meaningtul ascignments to these bands at this stage, they will not be discussed further.

(4) Ligand rield Bands

A band is observed at about $13,000 \mathrm{~cm}^{-1}$ fow $\mathrm{Pa}(\mathrm{MCLPM})_{2}$ which would appear on the basis of its extinction coefticient to be a ligand field band. The lowest energy transition expected for square planar palladum(II) is of the order of $20,000 \mathrm{om}^{-1} 27$, and would be masked by the intense $\pi \rightarrow$ π trensition in this region. In adaltion, the band is not observed for Pd(MPN) 2^{*}. At this stage the band appears to be anomalous. There is no reason to guppose that it is due to impurities since other physical
measurements, including NMR spectroscopy, which is extremely sensitive to small quantities of organic containing impurities, indicate that the compound is pure.

SEGTION 2.4

Nualear Magnetic Resonance Spectra

INTRODUCTION

The ligands which have been studied are particulazly suitable for examination by the technique of proton NMR spectroscopy. Their spectra are comparatively simple since, apart from the ethyl ester side chains, there is no observable coupling between groups of protons, and virtually no overlap of resonances ocours.

The diamagnetic complexes of zinc, cadmium, mercury and palladium with MPMH and MCIPMH, as well as the Iigands themselves, and their protonated species (LH_{2}^{+}) have been studied by this method. The spectra of the bis-complexes ($\left(\mathrm{HL}_{2}\right)$ will be discussed here, and those of the other palladium complexes will be discussed separately in Chapter 4.

As a result of the work presented here it has been possible to assign resonances to the different types or methyl groups substituted in the 11gands (Figure 2.41), and to study theix chemical shifts for the series of complexes.

All spectra were run in deuterochlorofom at a probe temperature of $35^{\circ} \mathrm{C}$. In each ease a concentration of approximately 50 mg in 0.25 mls of solvent was used. Small shifts were noted in the position of resonance peaks with different concentrations, however it is considered that

FIGURE 2.41
NMR SPECTRA OF THE NEUTRAL LIGANDS
I MMPMH II MCIPMH

these ean be neglected since the relative positions of the resonances renained the same. Chemical shifts unless othervise atated are given in pates per milion (ppm) down field from T.M.S.

DESCRTPTION OF SPECTRA

(i) Ligands

The spectra of the neutral ligands are shown in Figure 2.41. They can be divided into four sections with integral ratios of $1: 4: 12: 6$ and $1: 4: 9: 6$ for MMPMH and MCIPMH respectively. These correspond to the methine proton (1), the methylene group of the ethyl slde chain (4). the ring substituted methyl groups (12 and 9) and the teminal methyl groups of the ethyl side chains (6) respectrvely. The resonance of the hydrogen bonded to the aitrogen atom has not been observed.

The Methine Proton: This gives rise to a resonance at 7.00 ppm ©or MMPMH and 7.88 ppm for MCIPRH. Its Integral is assigned a value of 1 in order to calculate the integral ratios of the resonances due to the other protons. The Methyl Group Protons: The protons of the methyl group substituted on the pyrrole rings give rise to a set of resonances between 2.0 ppm and 3.0 ppm. The integral ratio of the methyl groups is $6: 6$ for Mmph and $3: 3: 3$ for MCIPMH. The assignments of these resonances are shown in

Figures 2.41 and 2.42. The reasons for the assignments are discussed below.

The Fthyl Side Chain Protons: The quartet centered at about 4.25 pm and the triplet centered at about 1.32 ppm are assigned to the ethyl side chains on the basis of spiltting patterns and integral ratios. The chemical shifts observed for the methyl and methylene protons ave normal for ethyl esters. In the case of the spectrum of MOlpht the two ethyl groupe are not equivalent and two overlapping patterns are observed.
(11) The Complexes and the Protonated Ligands

The Methine proton: This is deshielded considerebly on protonation or coordination of the ligand, its resonance beling shifted well down fleld.

The Methyl protons: These are not as greatly affected by protonation or coordination of the ligand as is the methine proton. However their chemical shifts with respect to each other vary from one complex to another. In the case of $\mathrm{Zn}(\mathrm{MGIPM})_{2}$ two of the three methyl group resonances exactiy overiap giving an integral ratio of $3: 6$ for the two peaks.

The Ethyl Ester Side Chains: The coupling constant between the mothylene and methyl protons of the athyl group is $0.13 \pm 0.02 \mathrm{ppm}$ for both 11 gands , and for the range of complexes studied. Over the range of complexes a small

TABLE 2.41

SUMMARY OF NMR DATA.

Compound	Chemical Shift downfield from T.M.S. (PPM).			
	Methine	Me (A)	Me (B)	Me (c)
MMPM	7.00	2.45	2.58	
MMPMH_{2}^{+}	7.63	2.98	2.73	
$\mathrm{Zn}(\mathrm{MMPM})_{2}$	7.43	2.22	2.62	
$\mathrm{Cd}(\mathrm{MPM})_{2}$	7.38	2.35	2.62	
$\mathrm{Pd}(\mathrm{MMPM})_{2}$	7.38	1.93	2.57	
MCIPM	7.88	2.46	2.62	2.33
$\mathrm{MCIPMH}_{2}{ }^{+}$	8.54	2.90	2.65	2.32
$\mathrm{Zn}(\mathrm{MCIPM})_{2}$	8.41	2.27	2.62	2.27
Od (MCIPM) 2	8.41	2.38	2.62	2.28
Hg(MCIPM) 2	8.38	2.48	2.63	2.27
$\mathrm{Pd}(\mathrm{MOLPM})_{2}$	8.28	1.98	2.57	2.20

TABLE 2.42

RELATIVE OHEMTCAL SHIFMS

Conpound	Methine (wor.t. Iree ligand)	$\begin{aligned} & M \in(A) \\ & \left(W \cdot x \cdot t_{0}\right. \\ & M e(B)) \end{aligned}$	$\begin{aligned} & \text { Me (B) } \\ & \text { (w.r.t. Iree } \\ & \text { ligand) } \end{aligned}$	$\begin{aligned} & M e(C) \\ & (w o r \circ t . \\ & M e(B)) \end{aligned}$
ммРм	-	-0.13	-	
$\text { MMPM }_{2}{ }^{+}$	0.63	0.25	0.16	
$\mathrm{Zn}(\mathrm{MMPM})_{2}$	0.43	-0.40	0.04	
$\mathrm{Cd}(\mathrm{MMPM})_{2}$	0.38	-0.27	0.04	
$\mathrm{Pd}(\mathrm{MMPM})_{2}$	0.38	-0.63	-0.09	
MCIPMR	-	-0.16	-	-0.29
$\operatorname{MOIPMR}_{2}^{+}$	0.66	0.25	0.03	-0.33
$\mathrm{Zn}(\mathrm{MCIPM})_{2}$	0.53	-0.35	0.00	-0.35
$\mathrm{Cd}(\mathrm{MCIPM})_{2}$	0.53	-0.23	0.00	-0.33
$\left.\mathrm{Hg}^{(M C I P M}\right)_{2}$	0.49	-0.15	0.02	-0.37
$P d(M C I P M)_{2}$	0.38	-0.58	-0.05	-0.37

difference in relative chemical shift was observed between the two non-equivalent ester groups of MClPMH. In the case of the zinc complex this difference was found to be equal to the coupling constant (0.12 ppm) giving rise to a pseudo quintet and quaxtet. Generally this set of resonances was found to vary little from one compound to another and is of little further interest.

DISCUSSION

The chemical shift data obtained for these compounds are summarised in Tables 2.41 and 2.42, and in Figure 2.42. Table 2.42 lists the chemscal shifts observed for the complexes with respect to the neutral ligand, and of some of the methyl groups with respeot to each other.

In the course of this discussion comparisons are made between the closely related acetylacetone, porphyrin and dipyrromethene systems. The effects of metal coordination, protonation and ligand substituents on the chemical shifts of different groups of protons are summertsed in Table 2.43.
(i) Assignment of the Methyl Group Resonances

The methyl resonances have been assigned to groups (A) and (B) for MMPMif and to groups (A), (B) and (C) for MCIPMH, as shown in Figure 2.41, by comparison of the relative shifts of each group from one compound to another on the basis of the rollowing trends.
(1) The spectra of complexes of MCIPMH show two resonances

SUMMARY OF NMR CHEMICAL SHIFT DATA

which are observed to remain virtually constant in absolute chemical shift at about 2.6 ppm and 2.3 ppm respectively for the whole series (Table 2.41). The relative chemical shift of one with respect to the other remains nearly constant for the series at 0.35 ± 0.02 ppm (Table 2.42). These resonances are assigned to methyl groups (B) and (C) on this basis alone since, of the three methyl groups, these should be the least influenced by the species coordinated to the nitrogen atoms.
(2) By comparison of the spectra of complexes of MMPMH and MOIPMH one resonance at about 2.6 ppri is observed to be in much the same position for both 1 igands, and for the complexes of both ligands. The xesonance is assigned to group (B) since this is present in both 1igands. The other resonance noted under (1) above is now assigned to group (c) for MCIPME.
(3) The remaining resonance is asslgned to methyl group (A). As this group is closest to the nitrogen atom of the pyrrole ring it would be expected to be very much more sensitive to changing the species attached to the nitrogen atoms than the other methyl groups. In addition a comparison of the chemical shlft of (A) with respect to that of (B) for both aeries in Table 2.42 Indeates a close similacity between complexes of the same metal ion. This is to be expected assuming the stereochemistries of the

FIGURE 2.43

RING CURRENT RTNGS FOR THE DTPYRRONETHENE SYSTEM (after Abraham ${ }^{30}$)

complexes/each ligand to be the same for a particular metal.

(ii) Ring Curgent Effects

While some work has been carried out on the NMR spectra of diamagnetio dipyrromethene complexes ${ }^{6}$, very ilttle Interpretation of spectra has been attempted. However, a conslderable amount of woxk has been earried out on the very similar porphyrin aystom $16,28,29,30$. Abraham (1961) ${ }^{30}$ has calculated the efrect of ring curpents in the porphyrin nucleus on chemical ahifts of protons and methyl groups substituted at rarious posttions on the skeletom. Attempta have been made to apply his calculations to other porphyin systems with varying degrees or success 28,29 . However ring eurrents are a usetul means of explaining observed NMR chemical shifts in a systemotic manner.

It has been observed that a deorease in ring current occurs if an electron witharawing group is substituted on to the porphyrin system ${ }^{29}$, or if a metal 1 on such as palladium(II), nickel(II) or aine (II) is coondinated ${ }^{28.29 .}$ This is reflected in a shlelding of groupe substituted on the porphyrin nucleus. The degree of shiclding for chelate complexes of porphyrins has been found to increase in order of decreasing π-bonding tendency of the coordinating metal ion ${ }^{29}$.

It would seem that provided decount is teven of the Inkely efrects of a matler degree of π-delocalisation due
to a less extensive conjugated system, a similar approach in terms of ring curnent effects should be userul in constderation of the atpyrromethene compounds. The dipyrrome thene systen can be divided into three separate ming systems as outlined by Abraham ${ }^{30}$, as shown in Flgure 2.43. Eiving two itve membered pyrrole rings and one "gix membered ring which, in the case of the metal chelates, will be the chelate rings An increase in ring current in the chelate ring will posult in deahielding of the methine proton. The chemical shitt of the methine proton therefore should give a sensitive indication of any change In conjugation of the dipyryomethene Iigand on coordination.

(1ii) Comparison of Spectra of the Two Ligands MCIPMH and

 MMPMH:In the porphycin gystem substitution of electron withdrawing groups results in shielding of all methine protons and ring substituted methyl groups ${ }^{29}$. This is attributed to a decrease in wing ourrent ${ }^{29,30}$.

In the dipyrromethene system the methine proton of MCIPMH is, in fact, deshielded by 0.38 ppm with respect to that of MMPNH, which cannot be explained in terms of ring current changes. The large shict may be attributable to an intramolecular dipole interaction between the methine proton and the 3 -carboxyethyl-group. This could occur
if eree rotation of the ester group was hindered by overlap with the dipyrrone thene π-ombstal system so that it mas positioned as ghow in figure 2.lit. The degree of deshielding found in this case is similer to that observed in other systems under simitar oiroumstonces ${ }^{31}$.

For the ring subetituted methyl groups, the effect of the 5-enloro- substituent in the dipyrcomethene Molphif is only strictly comparable with the compound:

Howeyer it is not unreasonable to essume that the L-methyl group (1.e. group (0)) in the above compound would have aimilar chemion shtet to group (B) in Molpmid. Therefore, in HCIPMH grow (c) is probebly shiclded by about 0.25 ppm on the substitution of a halogen at the 5 position. Methyl groups on the other ring are less apected, both being olightly deshielded. It is doubtful If these smaller efrects mean vexy much.

(iv) Ihe frfect of Protonation of the Liggand:

With the exception of the deghielding of methyl group (A) the effect of forming the cation $\mathrm{LH}_{2}{ }^{+}$is similar to that of coordination of the ligand to a metal Ion. For both

Iigands the methine proton is deshielded by move than 0.6 ppa. Methyl groups (B) and (c) remain virtually unchanged, the (B) group of MMPMH2 being deshielded by 0.17 ppm with respect to that of MMPMH, while the (B) and (c) groups of MCIPMH ${ }_{2}^{+}$are rather less affected. These observations can be interpreted in terms of increased ring currents and are similar to those observed for protonation of coproporphyrin (I) where formation of the dication $\left(\mathrm{PH}_{4}{ }^{2+}\right.$) leads to shifts roughly twice those observed for the protonsted dipyrromethenes ${ }^{30}$.

The effect of protonation on the (A) methyl group is rather larger (deshielded by 0.53 ppm and 0.44 ppm for MMPMH $_{2}{ }^{+}$and MolpmH2 ${ }^{+}$respectively) and may indicate a build up of positive charge on the α-carbon atom, rather than reflect changes in ring eurrents. The smaller effect observed for the chioromsubstituted ligand is consitent with this interpretation, since the presence of a chlorine may be expected to assist the dispersal of the positive charge over the whole molecule.
(v) The Effect of Metal Ion Coordination and Relation to Structure

For the dipyrromethene complexes the deshielding of the methine proton on coordination of the ligand to a metal ion is not as great as for protonation and decreases in the order $\mathrm{Zn}>\mathrm{Cd}>\mathrm{Hg}>\mathrm{Pd}$. This effect is, however, the

TABCE 2.43 - RELATTVE CHAHGES IN OHPMTCAL SRTET OF GROUPS SUBETTTURED OR LIGANDS RESULTIMG FROM CHADGES IM COORDINATION OR SUBSTTTUTTON.

Substituent or Group Coordinated	Group Affected	Porphyein	acetylacetone	dipyrro- methene
electron withdrawing	methine	sbielded	-	deshielded
group (e.g. Cl)				
on skeleton	methy 1	shielded	-	shielded
proton at hetero/atom	methine	deshielded	\cdots	deshiolded
	methyl	deshielded	-	deshielded
metal ion coordinated	methine	shielded	shielded	deshielded
(comples formation)	methyl	shielded	deshielded	$\begin{gathered} \text { no change } \\ \text { ox } \\ \text { shielded } \end{gathered}$

opposite to that found for porphyrin complexes of palladium (II), nickel(II) and zine(II) ${ }^{29}$, where the methine protons are found to be shielded. The methine protons are also found to generally be shielded or unaffected when acetyl.acetone and pelated IIgands coordinate to matal ions ${ }^{32,33}$ (Table 2.43).

This lack of deshielding has been used as evidence for a lack of aromatictuy in the chelate ring for the acetylacetone complexes ${ }^{34}$. In the few eases where the proton is found to be deshielded, the effect has been attributed to moleculax dipole expects ${ }^{33}$ pather than ring current changes in the chelate ring.

The dipyrronethene ligands studied in this work, and by Motekaitis ${ }^{6}$, all have the methine proton deshlelded by about 0.5 ppm on coordination to a metal ion irrespective of the stereochemistry of the complex. The effect cannot be explained by molecular dipoles in these cases, and the best explanation appears to be that the chelate ring, in the case of dipyrromethenes, has congiderable aromatic character. The reason this does not apply to acetyl-
acetonates or to porphyrins is not readily apparent at this stage.

In principle the degree of deshielding found for the methine proton in the dipypromethene gystem should be dependent on the extent to which the metal can influence the π delocalisation of the 11 gand , and as a result, on the degree of metal \longrightarrow Iigand π bonding in the complex. However the range of metal ions whose complexes can be studied by the WhR technique is severely Iimited by the requirement that the complexes be diamagnetic. Oonsequently attempts at correlating the shift of the methine proton with the extent of Isgend field stabilisation and bonding are not likely to be vexy meaningful at this atage.

Changes in the positions of the methyl groups on coordination are found to be somewhat different to those observed for the acebylacetone and porphyrin systems also. However these differences can be explained in terms of the increase in ring current already noted for the dipyrromethene system on coordination, or in terms of the stereochemstry of the metal ion.

Except in the case of the palladium complex the (B) methyl protons are deshielded slightly, or not changed, while the (c) methyl protons are shlelded in all the MOLPMH complexes by $0.04-0.13$ ppm. The (A) methyl protons are shlelded in the order $\mathrm{Pd}>\mathrm{Zn}>\mathrm{Cd}>\mathrm{Hg}$.

The zinc, cadmium and meroury complexes can be regarded as approximately regular tetrahedra. The shifts observed for these complexes for the (c) methyl protons are similar to those found for the porphymin and acetylacetone systems with methyl group substituents. The (B) methyl protons are not shielded on coordination, however changes in the position of the (B) methyl resonance are small and probably unimportant. The reason for the change in position of the (A) methyl protons may be explained by Interaction of these groups with the shielding cones of the pyraole rings (see below).

The large upfield shift of the (A) methyl resonance in the case of palladium complexes can be readily explained in terms of the structures of these compounds. The molecular structure of $\mathrm{Pd}(\mathrm{MMPM})_{2}$ has been determined to be "stepped" square planar (Chapter 3). Because of the similarity of its chemical behaviour $\mathrm{Pd}(\mathrm{MCIPM})_{2}$ undoubtably has much the same conflguration. In these complexes the chelate ring is severely distorted from planarity with the palladium atom lying about 1 A from the mean plate formed by the other atoms of the ring. This must result in reduced overlap between the nitrogen donor atoms and the metal orbitals. This probably explains the smaller deshielding of the methine proton, and the small shielding observed for the (B) and (C) methyl groups, with respect

FIGURE 2.44

RELATIONSHTP BETWEEN METHYL GROUP (A) AND THE SHIELDING CONE OF AN ADJACENT PYRROLE RING

Approximate mean position of the methyl protons is shown.

to what is observed for the other complexes studied.
The anomalously large shift of the (A) methyl protons for the palladium complexes is unlikely to be due to interaction between the (A) methyl groups of the two 14gand in the complex, since these are found to be $3.65 \AA$ apart in the case of $\mathrm{Pa}\left(\mathrm{MmP} \mathrm{B}^{\circ}\right)_{2}$. Nor can this effect be ascribed to the distortion of the methyl group away from the plane of the pyrrole ring, which results from intramolecular contacte since this is compaxatively mall (0.2 月) . The best explanation appears to be that the groups axe overlapping with the shtelding cone of the pyrrole rings of the other ligand. Figure 2.44 Lllustrates the relationship between the pyrrole ring, and its ghielding oones, and the (A) methyl group in the determined structure. Table 2.42 Itsts the averaged distances between the atoms of the ring and the carbon of the methyl group. The shielaing observed in the complex, with respect to the free Iigand, is 0.48 ppm which is about one third of the value calculated for protons mbout the same distance from a benzene ring ${ }^{10}$.

Table $2.44 b$ lists the averaged non-bonding contacts less than 4.0% between the (A) methyl groups and the pyrrcle rings for the distorted tetrahedral complex ou(MMPM) 35. It can be seen that in this case the methyl protons also enter the shielding cone of the pyrrole ring, but not to the same extent as for the "stepped" square

TABLB 2.44

AVERAGED MON BONDING CONQACTS BETVEBN TME METRYL (A) CARBON ATOM AND THE ADJACENT PYBROLE RTNG (Combined vanoer Waste Radi 3.7A)
(a) $\operatorname{Pd}(M M P M)_{2}$ (this work)

Atomas
$M \in(A)-C(5)$
$-0(4)$
3.58
$-0(3)$ 3.93
$-G(2)$ 3.73
$-N(1)$ 3.22
(b)

OU (MMDM) ${ }_{2} 35$

Atoms

Me (A) - C(5)
$-0(4)$
$-C(3)$

- C(2)
- N(1)

Distance (A) Ring 1 Ring 2
4. 3.6
*

3.7
3.6
3.4
3.4
planar or distorted tetrahedral complexes.
The shielding of this methyl group would seem to be potentially a sensitive indication of the extent of tetragonal distortion of tetrshedral complexes. However, as has already been pointed out, only diamagnetic complexes can be compared by NMR methode.

CHAPTER 3

The oryetal and Molecular structure of bis-(4.4"-dicarboxy ethy1-3. $3^{*} 5.5^{\circ}$-tetramethylalpyrromethene to) nelladiun(y)

SECTION 3.1

Introduction

Porter ${ }^{5}$ pointed out that, because of steric requirements, bis- complexes of $5,5^{\circ}$-substituted apyrromethenes could not be square planar, with the chelate rings conlanar with the plane of the metal-11gand bonds (Seetion if. Figune 1.13). He proposed that the structure of Pd(MMPl) 2 was tetrahedray, or aistorted totrahedral. gimilar conclusions, also fustified in terns of molecular over. crowding, were reachea by Mellor and Lockood ${ }^{8}$.

Freeman and snov ${ }^{20}$ have determtned the stmucture of bisw(bipye ldylimino) pailadium(II) and found that a square planar confornation is retained with the ligand distorted from planarity. They pointed out that this type of distortion wac also poseible for the dipzpromethene complex, and that it need not necessarily be tetrehedrally distorted.

Chemical evidence is little help in deciding the metal etereochemistry. Ligand field spectre are dificult to observe because of the intense transition in the visible region. The ultraviolet-visible spectra generally reveal
that little, if any, delocalisation energy is lost when the ligand coordinates to divalent palladium compared with other divalent metal ions such as copper, nickel. cobalt, zinc, cadmum and mercury (Section 2.2). Differencen were apparent in the proton NMR spectra of the palladiun complexes of MMPM and MCIPM compared with those of the other diamagnetic complexes studied (Section 2.3). Because of the non specific nature of the available chemical data a exystal structure determination seemed desirable.

Throughout this chapter it will be convenient to distinguish betweer chemically equivalent, but crystaliographically non-equivalent atoms. The numbering scheme which achieves this is illustrated in pigure 3.31.

SECTION 3.2

Structure Determination

EXPERIMENTAL

Single erystals of Pd(MNPM) 2 , suitable for $X-2, y$ diferaction, were difeicult to obtain. Two Porms were found.

Form 1: orange needlemshaped crystals were obtained by slow coollng of an ethanolic solution of the complex. Weissenberg photographs indicated possible tetragonal symmetry with approximate cell dimensions $a=14.0 .0=$ 29.1 A. The photographs indicated that there might be considerable disorder within the orystalline lattice. for this reason tt was decided not to use this cxystal form for further study.

Form 2: Orange plate-Iike crystals were obtained by slow cooling of a solution of the complex in a 50% mixture of ethanol and chloroform. Preliminary precesion and Weissenberg photographs indicated monoclinic symmetry. The systematic absences oko for k odd and hol for 1 odd uniquely indtcated space group $\mathrm{P} 2, / \mathrm{c}$. Aceurate cell dimensions determined are $a=10.94(1), b=22.49(2)$, $c=8.00(1) \AA ; \beta=(67.42 \pm 0.08)$ at $20^{\circ} \mathrm{C}$ (room temperature), using cuk α - -radiation $(\lambda=1.5418 \AA$) (see footnote).

Footnote. Throughout this chepter figures quoted in parentheses are estimated standard deviations (esd's) in the

These values were obtained by least-squares refinements of the setting angles of 31 reflections accurately aligned using a pinhole collimating system on a Supper equincilnation diffractometer. Elghteen 20 values were measured on the hko layer and the remaining 13 values were obtained from the hikh lager ofe a crystal mounted about the $[101]$ diagonal. Beta was measured as the difference between spindie angle settinge for accurately aligned hko and okl layers on a Supper preaession camera.

The formula welght, calculated for $\mathrm{C}_{38} \mathrm{HH}_{4} 6^{\mathrm{N}} \mathrm{N}_{4} \mathrm{O}$ Pd is 792.4, giving a calculated density of $1.45 \mathrm{~g} / \mathrm{cm}^{3}$ for two molecules to the unit cell. This agrees perfectly with the measured value of $(1.45 \pm 0.01) \mathrm{g} / \mathrm{cm}^{3}$ obtained by flostation in aqueous AgNO_{3} solutions. The densities of these solutions were measured by weighing a known volune of the solutions at $20^{\circ} \pm 2^{\circ} \mathrm{C}$.

Since the general multiplicity of space group p_{2} / f is 4 the palladium atom must lie on a arystallographic center of symmetry. This deduction is confirmed by the observed systematle weakness of the $k+1$ odd reflections to which the pa atom does not contribute.

Two crystals were used for the deta collection.
least significent digits derived from the inverse matrix in non-Inear least-squares refinement procedures.

Range estimates due to exrors in experimental procedures are indicated by the symbol \pm before the estimated range.

Crystal I was an approximate rectangular prism with dimensions $(0.1 \times 0.1 \times 0.05) \mathrm{mm}^{3}$, and a volume of 5.4×10^{-4} mm^{3}. Crystal II had an approximately hexagonal cross section with a volume of $4.8 \times 10^{-4} \mathrm{~mm}^{3}$. For absorption correction purposes the crystals were derined by 6 and 8 intersecting planes respectively. Grystal dimensions were measured to an accuracy of $\pm 0.01 \mathrm{~mm}$ using a callbrated graticule in a binocular microscope. The linear absorption coerficient for the CuK α radiation used is $47.5 \mathrm{~cm}^{-1}$. Transmission coefficients ranged from 0.79 to 0.65 for crystal I and from 0.79 to 0.69 for erystal II.

Intensity data were colleoted in a Buerger single crystal diffractometer manufactured by the Charles Supper Company. Data collection procedures for this diferactometer have been outlined ${ }^{36}$.

Machine settings are given in Table 3.21.

TABLE 3.21
scan rate
Receiving aperture (RA) radius RA distance from crystal Take-off angle
1.66.. deg $/ \mathrm{min}$
2.1 mm

64 mm
4.5 deg (This is the angle the counter arm makes with the direction of the X-ray beam).

Increments of azimuthal angle (γ) 3 deg
Maximum value of $\gamma \quad 146 \mathrm{deg}$

The pulse height analyser was set to pass 85% of the Ouk $_{\alpha}$ radiation at the given take-off angle. Each intensity (I) was corrected for background using the formula:

$$
I=C T-0.5\left(B_{1}+B_{2}\right)
$$

The estimated standard deviation $(\sigma(I))$ was given by

$$
\sigma(\mathrm{I})=\left[\left(\mathrm{OI}+0.5\left(\mathrm{~B}_{1}+\mathrm{B}_{2}\right)+(\mathrm{OI})^{2}\right]^{\frac{1}{2}}\right.
$$

Where: OT is the total integrated count
B_{1} and B_{2} are two integrated background counts on either side of the peak.
p is a factor introduced to avold overwighting the intense reflections.

Beveral values were assigned to pat various stages of the refinement. A value of 0.06 was found to give the most congtant value or $\sum w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$ for all ranges of intensity during the final stages of the refinement. A total of 31 reflections, well separated in reciprocal space, were monitored as standards every day during the data

collection. A gradual fall-off in these standards was noticed over the whole time of the data collection for each of the crystals used, however variation within each layer was never greater than 5-10\% and no corrections were applied.

Crystal I was used to collect the layers hkl, $0 \leqslant 1 \leqslant 2$. For the gero layer two of the four equivalent forms were collected and averaged, but only one form was collected for each of the other two layers. In all 1232 independant refleotions were measured, of which 252 had intensities less than theif estimated standard deviations.

Crystal II was inadvertently mounted about the $[101]$ diagonal which is of similar length to the a axis. The layers ($h+n$) kh, $0 \leqslant n \leqslant 3$, were measured. Two form data were collected for all layers giving a total of 1334 independent reflections of which 359 had intensities less than their esd's.

The data sets from the two crystals were combined and each of the seven layers were put into a common scale using the linear least squares method of Rae ${ }^{59}$ to calculate the scale factors for each layer. The weighted mean for each of the common reflections was calculated and used subsequently. The processing of the raw data is outlined in Figure 3.21. A total of 2190 independent reflections were obtalned, of which 1533 were greater than their esd's. only those
reflections greater than one esd were used in the solution and refinement of the structure.

STRUCTURE SOLUTION AND REFTNEMEMT

The palladium atom is unfquely placed on a center of symmetry, since there are two molecules to the unit cell. and contributes to the $k+1$ even reslections only. It was initially placed at the cell origin but onoe the structure had been solved mas moved to the center of the undt cell ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$) for conventence. Two eycles of full-matrix least-squares rerinement on $F\left(w i t h \sigma(F)=0.5 \sigma\left(F^{2}\right) / E\right)$ for the $1+1$ even data only gave an unwelghted residual $\mathrm{R}_{1}=\sum\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{e}} \| / \sum \mathrm{F}_{\mathrm{o}}\right|$ and a weighted residual $\mathrm{R}_{2}=$ $\left(\sum \omega\left(F_{0}-F_{o}\right)^{2} / \sum \omega F_{o}^{2}\right)^{\frac{1}{2}}$ of 34.7% and 37.3% respectively。 In all calculations of ${ }_{\mathrm{c}}^{\mathrm{c}}$ the atomic scattering factors tabulated by Ibers 37 were used tor carbong nitrogen and oxygen. The scattering factors, and effects of anomolous dispersion given by the values of f^{\prime} and $f^{\prime \prime}$, for $\operatorname{Pd}(0)$ were those given by Cromer, Larsen and Waber ${ }^{38}$.

A difference pourier was computed using only the $\mathrm{k}+1$ even data. The resulting map had a psuedominror plane across the y axis. Light atoms were placed on peaks in chemioally sensible positions. After a number of cycles of refinement, interspersed with difference fourier symtheses, all non-hydrogen atoms were loeated, giving a value fox R_{1} of 17.7% which fell to 16.3% when the Pd atom
was allowed to vibrate anisotropically. At this stage a number of defects were apparent in the model. Light atom temperature factors ranged from 0.8 to 6.7 , and a number of bond lengths and angles did not appear to be chemically reasonable. In addition the kl odd data, by itselr, gave a value for R_{1} of 42.8%, compared with 10.9% for the $k+1$ even data set.

It was decided to attempt to remove the $P d$ contributions from the $k+1$ even intensities, and then to apply direct methods to the whole data set. with the Pd atom assigned an antificially low isotropic temperature factor of 0.3 , and its calculated intencity contribution subtracted from the data, $43 \mathrm{k}+1$ odd rerlections appeared amongst the highest 150 nomalised structure factors (E^{\prime} s).

Three reflections were desigated as origin defining vectore with signs of +1 . Symbols A, B, C, and D were assigned to 4 further reflections. Or these, indications were overwhelmingly in favour of A, B, and C having values of +1 , but no siga could be assigned to D. D was arbitarily given a value of -1 . In all 173 reflections With $\mathrm{E}^{\prime} \mathrm{s}$ greater than 1.5 were given tentative signs in this way. The resulting \mathbb{E} map revealed peaks on which 20 out of 25 non-hydrogen atoms could be placed in chemically sensible positions. After two eycles of least-squares refinement a diference Fourler was plotted, which revealed the remalning 5 non-hydrogen atoms amongst the top 7 peaks.

The two highest peaks on the map were within 0.68 of the $P d$ atom and were indicative of conslderable anisotropic vibration.

The new isotropic model was rectned to give values of R_{1} and R_{2} of 13.1% and 19.2% respectively. Corrections to the dota set necessitated by punching errors, together with an improvement in the welghting scheme achieved by altering p to its final value of 0.06 (page $62 b$) gave R_{4} and R_{2} velues of 12.7% and 13.7% respectively. At this stage it was felt that allowing the Pd atom to vibrate anisotropically was justixied on the grounds that the highest peaks on the last diference Fourier (both 6.4 electrons $/ A^{3}$) were within 0.68 of the Pd atom. In addition the predicted weighted R-factor obtained from the averaging of equivalent forms was less than that obtained from the isotropic refinement.

Refinement of the model with the Pd atom anisotrople pesulted in convergence with values of R_{1} and R_{2} of 10.6% and 11.3% respectively. In the final refinement cyole shifts in all parameters were never greater than 90% of their esd's. The estimated error in an observation of untt welght is 1.34 . A structure factor calculation for the reflections previously rejected as being less than their esd's revealed 7 reflections whose $F_{c}{ }^{\prime}$ s exceeded $3 O^{\prime \prime}\left(F_{0}\right)$. In each case, on checking against film intensities, the difrectometer derived values for these

FINAL ATOM STRUUCTURAL PARAMETERS

A tom	x	y	2	$B\left(\stackrel{0}{A}^{3}\right) a$
Pd	$0.5000(00)$	0.5000(00)	0.5000(00)	b
$N(1)$	$0.4885(13)$	$0.5885(05)$	$0.5408(19)$	$2.4(2)$
M(11)	$0.3046(11)$	$0.5003(07)$	$0.4543(17)$	$2.2(2)$
c(2)	0.5843 (16)	$0.6257(06)$	$0.6462(25)$	$2.0(3)$
c(3)	$0.5492(16)$	$0.6858(06)$	$0.5694(23)$	1.7(3)
c(4)	$0.4262(20)$	$0.6805(08)$	$0.4234(28)$	3.2(4)
c(5)	$0.3914(17)$	$0.6218(07)$	$0.4105(24)$	2.3 (3)
c(6)	$0.2683(16)$	0.5982(07)	$0.3091(25)$	2.4 (3)
c(7)	$0.2207(14)$	$0.5422(06)$	$0.3324(21)$	1.5(2)
c(8)	$0.0875(16)$	$0.5225(06)$	$0.2756(23)$	1.9 (3)
c(9)	$0.0939(17)$	$0.4700(07)$	$0.3712(26)$	2.7 (3)
C(10)	$0.2310(17)$	$0.4585(07)$	$0.4843(26)$	$2.9(3)$
c(21)	$0.6965(19)$	$0.6043(08)$	0.8229(28)	$3.5(4)$
c(11)	$0.2860(17)$	$0.4107(07)$	$0.6233(25)$	$3.0(3)$
c(41)	$0.3517(16)$	$0.7320(07)$	$0.3097(26)$	$2.8(3)$
c(81)	-0.0268(16)	0.5568(06)	$0.1421(24)$	$2.5(3)$
$0(31)$	$0.6295(19)$	$0.7380(08)$	$0.6295(29)$	$3.6(4)$
O(32)	$0.6016(14)$	$0.7887(06)$	0.6040(19)	$4.8(3)$
0 (33)	$0.7610(13)$	$0.7223(05)$	$0.7379(18)$	$3.9(3)$
c (34)	$0.8573(22)$	0.7713(09)	$0.8019(32)$	5.0 (5)
C(35)	$0.9978(22)$	$0.7391(10)$	$0.8831(32)$	5.3 (5)
C(91)	-0.0160(17)	$0.4297(07)$	$0.3580(26)$	2.7 (3)
-(92)	$-0.0014(14)$	0.3843(05)	$0.4452(19)$	$4.0(3)$
0(93)	$-0.1343(12)$	$0.4461(05)$	$0.2330(18)$	3.2(2)
C(94)	-0.2412(20)	$0.4053(08)$	$0.2112(29)$	$3.9(4)$
c(95)	-0.3700(22)	0.4349 (10)	$0.0803(33)$	5.1 (5)

a. The B values are the parameters in the isotropic temperature factor expression $\exp \left(\operatorname{Bi}(\sin \theta)^{2} / \lambda^{2}\right)$
b The anisotropic temperature factor coerifioients (β) for Id in the expression $\exp \left(-\left(\beta_{11} h^{2}+\beta_{22} x^{2}+\beta_{33} 1^{2}+2 \beta_{12} h k+\right.\right.$ $\left.2 \beta_{13}^{h 1}+2 \beta_{23} \mathrm{kI}\right)$) are as follows

β_{11}	β_{22}	β_{33}	β_{12}	β_{13}
$0.00312(12)$	$0.00079(02)$	$0.01176(51)$	$0.0069(08)$	$0.00127(24)$

data were found to be in error. A sinal difference fourier, besed on the 1533 "obscrved" reflections, showed no density greater than 0.82 electrons/ \AA^{3}, roughty 30% of the height of a carbon atom in the structure.

Correction of the intensities for absorption effects did not produce any significant changes in atomic positional or temperature parameters, and did not improve the agreement factore. This is not surprising in view of the amall range of transmission coefficients found for each of the two crystals used in the data collection.

The value of R_{1} for the $k+1$ odd intensities is 7.5% compared with 26.0% for that of the $k+1$ even intensities. However values found within each of 10 ranges of intensity for each set of data were found to be in close agreement. This apparent difference in the overall value is explained by the larger number of small intensities in the $k+1$ odd data set. Values of $\left(\sum \omega\left(\left|F_{0}\right|-\mid F_{c}\right)^{2} /(\text { NO }-N V)\right)^{1 / 2}$ for 10 ranges of intensity over the whole data set ranged from 1.1 to 1.7 indicating that the relative weighting scheme was reasonable.

Table 3.22 presents the inal atomic positional and therral parameters together with their esd'g. The orlentation of the vibrational ellipsoid of the Pd atom is reasonable, being directed at approximately 60° to the plane of coordination of the Ilgands and between the bulky methyl groups $C(11)$ and $C(21)$. (F1gure 3.33). In

Appendix 0 the final values of F_{o} and F_{c} (in electrons) are listed for all reflections included in the least squares refinements. Cases where $\left|F_{0}\right|-\left|F_{0}\right|$ exceed $3 \sigma\left(F_{0}\right)$ are marked with an asterisk. There are 15 such reflections.

Oomputer programs used for all calculations in this structure determination are listed in Appendix B.

Atone	Dratance(9)	Combined van der Mals rabic 40 (9)
c(2v)-pa	3.54	4.2
$\mathrm{c}(11) \mathrm{Pd}$	3.50	4.2
c(21) -cc(11)	3.66	4.0
(direrent ligands)		

4.2
4.2
4.0
(diperent ligands)

Atons	Mistance(${ }^{\text {a }}$)	Combinet van dax Gale radit $40(9)$
c(94)	3.69	3.7
(91)	3.48	3.6
(81)	3.62	3.7
(91)	3.46	3.6
(21)	3.30	4.0
c(81)	3.62	4.0

TABLE 3.33

AVERAGE OF CHEMLCALLX EQUIVALENI

BOND LBMGTHS

Bond Type	Number	Average	Wxpected ${ }^{51}$	$\begin{aligned} & \text { Found for } \\ & \text { Cu(MMPM) } \end{aligned}$
$\mathrm{Pd}=\mathrm{N}$	2	2.028(03)	2.00	-
$\mathrm{C}-\mathrm{CH}_{3}$	4	1.52(2)	1.52	1.53 (3)
$\frac{N-\infty}{(\operatorname{typ}-1)}$	2	1.34(2)	1.35	1.41(2)
$\frac{\mathrm{N}-\mathrm{C}}{(\mathrm{typ} \mathrm{C}}$	2	1.40(2)		
$\frac{C-\mathrm{C}}{(\overline{\operatorname{typ} \theta} 1)}$	6	1.39(2)	1.40	1.41(2)
$\frac{0}{(\text { type } 2)}$	2	1.46(2)		
$\mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}$	2	1.46(3)	1.47	b
$c=0$	2	1.20(2)	1.23	$1.20(3)$
C- OEt	2	1.38(3)	1.36	1.36(3)
0- Et	2	1.46(2)	1.43	1.48(4)
$\mathrm{CH}_{2}-\mathrm{OH}_{3}$	2	1.57(3)	1.54	1.40 (5)

a. Averages were oaloulated from the expression $d_{a v}=\sum_{i} d i / M$ and the esd's by the expression

$$
\sigma_{a v}=\left(\sum_{i}\left(d_{i}-d_{a v}\right)^{2} /(M-1)\right)^{\frac{1}{2}}
$$

where M is the number of bonds being averaged.
b. This figure is not available.
sectron 3.3

Description and Discussion of the Structure

The structure consists of well separated monomertc Pd (MMPM) $)_{2}$ units with a Pd-Pd distance of $11.94 \AA$. Glosest intermoleoular interactions are listed in Table 3.32. Some of these axe within the combined van der Wals radis of the groups concerned, and may gite rise to intermolecular Interactions. A sumnery of bond distances and angles is Ifsted in Table 3.31 . Figure 3.31 shows the molecule viewed normal to the PdN_{4} plane. Figure 3.32 shows the molecule rotated 46° about the $N(1)-N(11)$ vector from the position in Figure 3.31.

Because the palladun atom is on a center of symmetry, the coordination of the 4 nitrogen atoms is necessarily square planar. Impossibly short intramolecular contacts between methyl groups $C(11)$ and $C(21)$ of opposite ligands do not ocour because the chelate ring is not coplanar with the PdN4 plane, giving the complex a "stepped" configuration. In addition the ligand is not planar. The nature of the deviation of the chelate fing from planarity with the PdN_{4} plane is best seen in Pigure 3.33. Each ligand is rolded 44° out of this plane about the $N(1)-N(11)$ vector. The deviation of the ligand from planaxity is also seen in Figure 3.32. Folding of the two 5 membered pyrrole rings away from the plane of the chelate ring occurs along the

Plane 3

W(1) 0.016(15)	1.0	C(21)	-0.224(21)	10.5	N(11)	$0.017(14)$	1.3	C(21)	$-1.972(20)$	99.0
$c(2)=0.023(19)$	1.2	C(11)	$-1.690(19)$	87.6	c(7)	$-0.017(15)$	1.1	c(11)	-0.162(18)	9.0
c(3) 0.013(18)	0.7	c(41)	-0.017(19)	0.9	c(8)	$0.011(17)$	0.6	c(41)	-1.509(18)	82.1
c(4) 0.000(23)	0.0	C(81)	$-1.495(19)$	79.8	c(9)	$0.004(18)$	0.2	c(81)	$0.008(17)$	0.4
$C(5)=0.016(19)$	0.8	c(31)	$0.107(22)$	4.9	$c(10)$	-0.022(19)	1.2	c(31)	-2.522(21)	122.4
		O(32)	-0.120(15)	7.8				0(32)	$-3.067(14)$	213.9
		$0(33)$	$0.525(15)$	36.3				0 (33)	$-2.490(13)$	186.5
Pd 0.686(00)	-	c (34)	$0.738(25)$	29.3	Pa	$0.576(00)$	-	c(34)	$-3.076(23)$	133.1
M(11)-0.658(13)	51.7	c(35)	$1.474(25)$	58.7	N(1)	-0.791(14)	57.6	c(35)	$-2.627(24)$	111.2
C(6) $-0.282(19)$	14.9	C(91)	$2.479(20)$	127.0	C(2)	$-1.518(17)$	87.9	c(91)	$0.080(18)$	4.4
$c(7)-0.662(16)$	41.4	0(92)	$2.809(15)$	184.1	c(3)	-1.857(17)	110.7	0(92)	$0.085(19)$	6.2
$c(8)-1.335(18)$	74.5	(93)	$2.671(14)$	194.1	c(4)	$-1.346(20)$	66.1	0(93)	$0.214(13)$	16.8
$c(9)=1.770(20)$	88.8	c(94)	-3.294(23)	146.2	c(5)	-0.726(18)	41.6	c(94)	$0.366(21)$	17.4
$c(10)-1.352(20)$	67.8	c(95)	-3.578(25)	142.3	c(6)	-0.305(18)	17.4	C(95)	$0.339(24)$	14.2

* Probability (P) that X^{2} exceeds a if atoms are ploner

$$
\begin{array}{ccc}
(2 \text { degrees of freedom) } 39 & a & P \\
& 5.99 & 0.05 \\
& 9.21 & 0.01
\end{array}
$$

TABLT 3.34 continued

Atom	$\begin{gathered} \text { Distance }(P) \\ (A) \end{gathered}$	p (P)	Atom	Distance(P) (A)		(P)	Aton	Distance(P) (\hat{A})			Atom	$\begin{gathered} \text { Distance }(P) \\ (A) \end{gathered}$	\mathcal{P}
		Plane 1							Plene	e 2			
Pd	$0.000(00)$	-	$c(21)$	-1.735(20)	84.8		M(1)	$-0.003(15)$	0.2		c(21)	-0.679(21)	32.7
N(1)	$0.000(14)$	-	c(11)	-1.670(18)	90.7		N(11)) $0.013(13)$	1.0		c(11)	-0.620(19)	33.0
N(11)	$0.000(12)$	-	C(41)	$2.072(19)$	108.3		c(5)	-0.011(18)	0.6		c(41)	-0.422(19)	22.2
			c(81)	$2.017(18)$	111.9		c (6)	$0.035(18)$	1.9		$c(81)$	-0.511(18)	28.1
			c(31)	$0.137(21)$	6.5		6(7)	-0.028(16)	1.8		C(31)	$-0.805(21)$	37.7
C(2)	-0.498(18)	27.4	O(32)	$0.473(14)$	33.0						0(32)	-1.209(15)	81.1
c(3)	$0.255(17)$	15.0	O(33)	-0.519(14)	38.6						0 (33)	-0.539(14)	38.5
c(4)	$1.138(21)$	55.0	c(34)	-0.653(23)	28.0		Pd	1.047(00)	-		c(34)	-0.702(24)	29.2
c(5)	$0.953(18)$	53.0	c(35)	$-1.146(24)$	47.8		c(2)	-0.371(18)	20.4		0 (35)	-0.055(25)	2.2
c(6)	1.421(18)	78.3	c(91)	$-0.103(19)$	5.5		C(3)	-0.534(18)	30.2		C(91)	- $0.983(19)$	51.8
c(7)	$0.945(15)$	62.0	0(92)	$-0.919(14)$	67.0		C(4)	$=0.311(22)$	14.4		0(92)	$-1.149(15)$	78.9
c(8)	$1.067(17)$	62.0	$0(93)$	$0.707(13)$	53.4		c(8)	-0.397(17)	22.9		0(93)	$-1.045(13)$	78.3
c(9)	$0.145(19)$	7.7	c(94)	$0.527(21)$	24.7		c(9)	-0.626(19)	32.4		C(94)	-1.319(22)	60.2
$0(10)$	-0.521(19)	27.4	c(95)	$1.413(24)$	58.7		$C(10)$)-0.387(19)	10.0		C(95)	$-1.513(25)$	61.6

```
                    TABLE 3.34
BEST WETGHTED LEAST-SQUARES PLANES
Equations of planes of the form
\(A x+B y+C z-D=0 \quad\) (Monoclinic coordinates)
```

Plame No. Atoms	A	B	C	D	$X^{2 *}$	
1	$P(, N(1), N(11)$	0.1647	0.1678	-0.9720	-1.056	0.01
2	$N(1), N(11), C(5), C(6), C(7)$	0.6336	-0.3424	-0.6938	-4.969	8.26
3	$N(1), C(2), C(3), C(4), C(5)$	0.7757	-0.1459	-0.6139	-1.545	3.77
4	$N 911), C(7), C(8), C(9), C(10)$	0.4048	-0.5214	-0.7512	-7.623	4.73

TABLE 3.35

DIHEDRAL ANGLES. (${ }^{\circ}$)

Plane 1-Plane 2	43.9
Plane 1- Plane 3	45.6
Plane 1 - Plane 4	44.8
Plane 2 - Plane 3	14.7
Plane 2 - Plane 4	17.0
Plane 3- Plane 4	31.7

$M(1)-C(5)$ and $N(11)-C(7)$ bonds.
Best least-aquares planes have been computed as Pollowe:
plane 2. $N(1), \quad \sigma(5), \quad \sigma(6), \quad O(7), \quad N(11)$
plane 3. $\quad N(1), \quad O(2), \quad O(3), \quad O(4), \quad O(5)$
plane 4. $\quad O(7), \quad O(8), \quad O(9), \quad O(10), N(11)$
The resulte are tabulated in Table 3.34. Daviations from planarlty for each of these groups of atoms are statistically algnificant but no atom is more than 2.0 times Its esd from a mean plane. It is doubteul if these deviations axe significant chemically.

Dihedral angles between these planes, and the PdN ${ }_{4}$ plane (deetgnated plane 1) are ILstod in Table 3.35. Planes 3 and 4 (the pyrole ringe) are inclined to each other at 31.7° and to the chelate ring (plane 2) at angles of 14.7° and 17.0° xespectuvely.

Each half of the ligand is chemicalisy but not crystallographically equivalent. Apert from the side chains $0(31)-C(35)$ and $c(91)-O(95)$ there 18 an approximate mirror plane through $O(6)$ and Pd nomal to the PdN 4 plane. Nost bond distances and angles across this pseudo mirror plane are statistically equivalent ${ }^{39}$. Those which vary by more than 2 esdis are marked with an astexisk in Table 3.31 which groups "equivalent" bonde and angles. All chemically equivalent bond lengths have been averaged and are sumarised in Table 3.33 where they are compared with those expected ${ }^{51}$
and those obtained by Gider ${ }^{15}$ ar ou(mmpm $)_{2}$. It should be noted that the esd's obtafned from Rlder's aetermination are rather higher than those found for this structure due to difflculttes in obtaining an accurate data set. Any large deviations can be explatned on this basis.

It appears that not all the bonds an the pyrrole rings are equivalent. Both $\mathrm{O}-\mathrm{C}$ bonds and $\mathrm{O}-\mathrm{N}$ bonds appeaz to fall into two distinct categories (tyoes 1 and 2 in Table 3.33). This duference may reflect a decrease in bond order for bonds of type 2 compared with those of type 1. It is possible that deviations from planarity at atoms $o(2), o(5), o(7)$ and $O(9)$ result in a change from sp ${ }^{2}$ type of hybridisation towards sp^{3} hybridisation on these atoms. The methyl groups $G(11)$ and $0(21) 1100.16 \AA$ and $0.22 \AA$ away from the mean planes of the pyrrole rings. The distance between the adjacent groups on opposite ligands is $3.66 \AA$ compared with their combined van der Waals radil of $4.0 \AA$. This is very similar to that observed for the psuedo-tetrahedral Cu (شMPM) ${ }_{2}$ complex. It is of interest to note that some of the intramolecular strain, which is relleved by deviations fron planarity in the molecule, is undoubtedly due to contact between the palladium atom and the $C(11)$ and $C(21)$ methyl groups. The combined van der Waals radil of $P a$ and mebhyl groups is $4.2 \AA^{40}$. In the structure the $\mathrm{Pd}-\mathrm{O}$ (21) and $\mathrm{Pd}-\mathrm{O}(11)$ distances are $3.50(2) \AA$ and $3.54(2) \AA$ respectively. The other methyl
groups $O(81)$ and $O(41)$ lie within $0.02 A^{\circ}$ of the mean planes. There is no significant diference in the averaged bond lengths between two types of methyl groups and the pyrrole rings (Types A and B, Onapter 2, Section 2.4).

For maximux T-delocalisation between carboxyl side chain groups and the pyrrole rings it would be expected that these groups would be coplanar with their respective pyrrole rings. From Table 3.3416 can be seen that the groups are not coplanar sinee the oxygen atoms lie as much as 0.5 from the mean planes. This deviation was also observed by alder and is probably due to intermolecular contacts between adjacent side chains.

The structure obtained for $\operatorname{Pd}\left(\begin{array}{ll}\text { (MPM }\end{array}\right)_{2}$ is very similar In many respects to that of bis-(bipyridyliminato) palladium(II) obtained by Freeman and Snow ${ }^{20}$. The two structures will be compared in detail in Section 3.4 however it should be noted here that the Pd-N distances obtained for the two atructuree are very stmilar (2.024 \& and 2.028 \& respeotively).

SEOTION 3.4

Suxvey of the Stereoohemistries of Some Crowded Chelate Complexes and their Relation to bis(dipyrromethenato)Palladium(II)

Recently a number of crystal structures have been determined of transition metal complexes of planar bidentate ligands: in which intramolecular overcrowding occurs in the region of the metal ion. The complexes considered in this section are those in which the molecular orbital theory and ligand field theory would predict square planar bonding sbout the metal ion. When overcrowding oceurs the complex. molecules have been found to deviate from molecular planarity so as to minimize intramolecular interactions. Two types of deviation from molecular planarity have been observed. These are (1) tetrahedral distortion of the coordination plane about the metal, and (2) bending of the bonding at the donor atoms of the Iigand so that the plane of the chelate ring is at an angle to that of the square plane about the metal ion.

(1) Tetrahedral distortion:

This is a distortion of the square plane about the metal atom towards a tetrahedral environment as an extreme limit. Such a distortion will alter the splitting pattern of the d-orbitals of the central metal ion and should be readily observable in terms of spectral changes. (Figure 3.41).

FIGURE 3.41

EFFEGT OF STEREOCHEMISTRY ON METAL D-ORBITAL CONFIGURATION (not to scale)

For instance in the case of the OuBr_{4}^{2-} ion the IIgand feld spectrum has been interpreted successinuly in terms of a distorted tetrehedral stereochemistry ${ }^{13}$. Complexes of this nature can be regarded as belag etther basically tetrahedral molecules which have undergone tetragonal distortion in order to resolve the degeneracy of the t_{2} orbitals (Figure 3.41), such as CuBr_{4}^{2-}, on as being sorced eway from a bastcally square planar configuration by intramolecular interaction between substituents on the ligand.

(2) "Stepped" Square Planar Distortion:

Distortion of this nature occurg not at the metal Lon, but at the donor atom of the 1igand. This type of distortion should result in a decrease in the ligand field resulthg from reduced overlap of the donor atom orbitals with those of the metal lon.

Many complexes have now been found where this type of distortion occurs. Such distortion usually allows the chelate rings of opposite ligands to remain parallel, but not coplanax.

Frequently with this type of complex the metal atom resides on a crystallographic center of symmetry. The

TABLE 3.41
DEVIATIONS OF GENPRAL METAL IONS FROM PLANARITY WITH THE CHELATE RIMGS OE SOME NITROGEN AND OXIGEN DONOR COMPLEXES.

Compound	Reference	Coordination number	Stereo- Chemistry	Deviation \qquad (A)
bis-(N-methylsalicylaldiminato) copper(II)	52	4	S.P.	0
bis-(salicylaldoximato) copper(II)	53	6	$t-0 \mathrm{~h}$	0.07
bism(salicylaldiminato)nickel(II)	54	4	S.P.	0
bis-(salicylaldiminato) copper(II)	55	4	S.P.	0.15
bis-(salicylaldehydato)copper(II)	42.56	4	S.P.	0.19
M, N^{1}-ethylenebis-(acetylacetoneiminato)copper (II)	41	4	S.P.	$0.30,0.06$
bis-(dipyrromethenato) copper(II)	15	4	Td	$0.31,0.11$
bis-(N-t-butylsalicylaldininato) copper(II)	46	4	Td	0.63, 0.03
bis-(5-chlorosalicylaldoximato) copper(II)	57	6	t -Oh	0.38
bis-(N-phenylsalicylaldiminato) copper(II)	45	4	S.P.	0.45
bis-(M-methylsalicylaldiminato) copper(II)	58	5	Py	0.47-0.55
bis-(3-methyl-1-phenyl-5-p-tolylformazyl)nickel(IT)	48	4	S.P.	0.83
bise(dipyridyliminato)pailadiun(II)	20	4	SoP。	0.89
biso(dipyrromethenato) palladiun(II)	This work	4	S.P。	1.05
* Abbreviations Used: S.P. square planar; Td distorted tetrahedral t-oh tetragonally distorted octahedral; Py square pyramidal				

dihedral angle between the chelate ring and the sguare plane about the metal ion can be as great as 44°. Table 3.41 1ists some complexes where this type of distortion occure, and the perpendicular distance of the metal ion from the mean planes of the chelate rings is listed for each complex.

It should be noted that this type of deviation is also found with other stereochemistries (including tetrahedrally aistorted complexes), and is not restricted to 4 coordinate complexes. Some of these complexes are also 11sted in Table 3.41.

The "stepped" distortion can occur very readlly, as is illustrated by the wide range of compounds for which it has been observed. It is normally attributed to intramolecular non-bonding interactions, but cases have been found where it may result from intermolecular forces. Hall and Waters 41.42 have proposed that a polarisation bond between the copper ion and the conjugated systems of adjacent molecules may account for stepping in the case of N, N^{\prime}-ethylene bis-(acetylacetoneiminato) copper(II) and bis-(salicylaldehydato) copper(II). In the case of the latter complex the isomorphous nickel(II) compound is planar.

In the tetrahedrally distorted bis(dipyrromethenato)copper(II) complex ${ }^{15}$ the copper ion is found to lie as much as 0.2 A from the mean planes of the ligands. It has been
postulated that this devistion can be attributed to interaction between the mothyl groups adjacent to the metal and the metal ion i tselt.

RELATIONSHIP BETYIEEN TETRAFIEDRAL AND "STEPPED" SQUARE

PLANAR DISTORTIONS

Where some form of distortion from molecular planarity is necessary because of steric factors the actual form of the distortion will depend on whether or not the lose in ligand field stabilisation due to the reduced efficieney of overlap between the donor atom and the metal ion bonding orbitals for the "atepped" distortion is greater than the loss in going from a square planar configuration to a distorted tetrahedral one.

The series of complexes formed with various substituted salicylaldimines and related ligands with nickel(IX) copper(II) and palladium(II) provides an extremely good example of how these factors interact. A large number of orystal structure determinations have now been made on complexes of this type. The type of distortion which will oceur depends on the nature of the metal ion and on the buik of the substituents on the ligend. The stereochemical bohaviour of nickel(II) is stmilar to that of copper(II) although xegular tetrahedral coordination is known for ntekel, but not for copper. A regular tetrahedral configuration has been established Por $^{\mathrm{N} 1 \mathrm{Cl}_{4}{ }^{2-4} 4}$ and there
is good evidence on the basis of ligand field spectra, infrared speotra, and magnetic susceptibility measurements that the dipyrromethene complexes of nickel(II) are regular tetrahedral ${ }^{12,14}$. A stepped square planar conflgurstion is found for bis-(N-phenylsalicylalaimeno)copper(II) ${ }^{45}$ which is isomorphous with the nickel complex. On the other hand the lsomorphous complexes of N-t-butylsalicylaldimine 46 and of N-isopropylsalieylaldimine 47 with copper and nickel both have distorted tetrahedral stereochemstry.

Tn the aase of palladium(II) tetrahedral complexes have not bean isolated, although the preparation in solution of a paramagnetic palledium complex. which mey have tetram hedral stereochemistry, has recentiy been reported 47 . The stability of the square planar configuration for palladium(TI) complexen is laxge because of the readiness of the d^{8} conflguration to adopt a low spl conformation. Because of this regular oetahedral coordination is mare for palladum(IT).

ITGAND DTSTORYION OF BIS-(DIPYRROMETHBNATO) PALLADIUM(II)

AND RELATED COMPOUNDS

It was long thought that some type of distorted tetrahedral configuration would be the most likely stereochemistry for $\mathrm{Pa}(\mathrm{MMPM})_{2} 5,8$. The aromnticity of the ligands, which would be expected to result from bidentate

FIGURE 3.42

A. bis-(3-ine thyl-1-phenyl-5-ptolylfomazyl) nickel(II) 48

C. 9, 9°-bixanthenyzene 49

B. bis- $\left(2,2^{\prime}-\mathrm{dipyridyliminato}\right)$ palladium(II) 20

D. dianthronylidene 50

E. $9.9^{- \text {-bifluorenylidene }}{ }^{50 a}$
coordination to a metal, seemed to reguire a rigidly planar ligand conformation for maximum stabilisation from π-delocalisation.

Simple molecular framework models indicate that in order to accomodate two ligands in a square planar configuration, with the Iigand rigidiy planar, the central metal would need to be at least 1.5 A from the plane of the chelate ring. No structures have been detemined where a alstortion of this magnitude has been observed.

A number of examples are now known where compounas involving extensive T-delocalisation are distorted away arom planarity by folding in order to reduce the amonat of out of plane bonding at the donor atom. Flgure $3.42111 u s t r a t e s$ five compounds which distort in a closely analogous fashion to that observed for $\operatorname{Pa}\left(\right.$ (MPM) 2^{*}

The atructure of $\mathrm{Pa}(\mathrm{MMPM})_{2}$ is very similan to those of A, B, C, D and E, in that the molecule folds at several positions, rather than at one point only. Usually thie folding oceurs at the atom bridging the two halves of the moleoule resulting in a boat shaped "chelate" ring. The effect is to move the brideing atom out of the plene of the ring by up to 0.2 A. The structure of D has not been determined with sufficient accuracy to provide mambiguous evidence as to whether this ocours in this case as well. Folding does not oceur at the methine bridge in the
case of Pa(mMPM) ${ }_{2}$ where, as in the case of E , all the distortion is accounted for at the ring carbon atons (in Figure 3.31 these atons are $C(5)$ and $c(7)$). Where bending has been established at the bridging group, the "chelate" ring contains heteroatoms which, being more electronegative than carbon, are able to localise electron pairs more readily than the methine group in the case of $\mathrm{Pa}^{(\mathrm{MMPM})} 2^{\circ}$

The effect of the distribution of distortion away from planarity over the whole molecule, in all of these struetupes, is to divide the π-delocalisation into several regions which will overlap with each other to some degree. In this way loss on π-delocelisetion energy at any one point on the molecale will be minimised.

It has been shown that the palladium structure determined here is not mique and it is meadily comparable to a number of similar structures. It would seem that aromatiotity is not a good criterion for assuming that a molecule will not be readily distorted from planaxity since some bending of the molecule, provided it is spread over a number of atoms, seems quite possible without much loss on delocalisaton energy. It is difficult to envisage a sttuation where palladium is likely to be forced to adopt a tetrahedral type of configuration, rather than impose a distortion on the coordinating Ilgand.

CHAPMER 4

15xed Ligend Complexes of Pelladium

SECTION 4.1
Prenarations and Reactions of the Complexes

INTRODUCTION

The preparation of the neutral bis-amplexes of palladiun(II) with $4,4^{\prime}-\mathrm{dicarboxyethyl-3,3}, 5,,5^{\prime}$-tetremethyldipyrrome thene (aMPMH) and 3.4'-dicarboxyethyl-5-chloro- $3^{\circ} .4,5^{\circ}$-trimethylaipyrromethene (MCIPMH), 1.e. $\mathrm{Pd}^{(M M P M)}{ }_{2}$ and $\mathrm{Pa}\left(\mathrm{MCIPM}_{2}\right.$, has been aiscussed in Chapter 2. In these preparations palladium nitrate was used as a starting material in order to avold the possibility of the formation of complexes involving strongly coordinating ligands, such as the halogens.

Complexes containing coordinated dipyryomethenes and chloride ions were reported by Porter ${ }^{5}$, who used potassium tetrachloropalladite(II) as a source of palladum ions for his preparations. He obtained two complexes of MMPMH in which chloride lons appeared to be acting as ligands. He characterised the compounds by elemental analysis. One of these was postulated as a chlorombidged complex $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ (MMPM) ${ }_{2}$, and the other was thought to be a complex involving the dipyrromethene coordinated as both a mono-
dentate, and a bidentate 11 gand.
On the basis or Forter's analytical data alone, the second complex could be formulated in number of different ways. . Two of these have been discussed in Chapter 1 (page 8), where th was pointed out that of these two Cormulations the 4 -coordinate square planar stereochemistry seemed the most likely:

Rowever, the comples could also be formatated as a S-coordinate comolex with two bidentate dspyrromethene 11ganas, such as the one shown below.

In this work an attempt has been made to repeat the preparations of the complexen reported by Portex, and to charactexise then more fully using nodern physical methods.

Surpritaingly it has not been posctble to obtain analytically pure samplen of the complexes xeported by Porter however evidence trom Man spectra augesta that the compounds have been made, and that any mpurtities are

TABLE 4.11 MIXED LSCAND COMPLEXES OR PALLADIUM(II) PREPARED IN THIS WORK

$$
\mathrm{Pd}_{2} \mathrm{Cl}_{2}(M M P M)_{2}
$$

*

$\mathrm{Pa}_{2} \mathrm{Cl}_{2}$ (MOLPM) $_{2}$
PACI (MMPM) (MMPMH)

- $\operatorname{PaBr}($ MLPM $)$ (MMPMH)
- PdCI (MCJPM) (MCZPMF)
* PABr (MCIPM) (MOLPMH)
${ }^{*}\left[\mathrm{MMPMH}^{+}, \mathrm{K}^{+}\right]\left[\mathrm{PaBr}_{4}^{2-}\right]$

黄 Preparation reported Por the Elvet time
not organic in nature. The analogous complexec with MCIPMH have been prepared analytically pure and have been fully characterised. In adition the bronine analoguee of the second type of complex reported by porter heve neen prepared and characterised with both dipyrronethene 11 sames. On the basis of the work presented here it is shown that Porter's formulation of the second type of eomplet as a 4-coordinate species is comect, and thet his complex is In eact PdCl(MMPM)(MRPMH). In addtion to the complexect outlined above a complex salt has been prepared, in which a dipyrronethene molecule appears to be acting as a ction. Table 4.11 lists the complexes that have been weepared in this work.

As outlined in Chapter 2, proton $M M R$ spectra were routinely obtained for all products of reaction mixtures and proved extremely useful for the characterisation of all the complexes formed. The Mir spectra are described and discussed in Section 4.3. Ultraviolet-visible spectre were also obtained for all complexes and the recults are discussed in Section 4.2 .

Infrared spectra were obtained routinely for all preparations of the complexes but as for the neutral bisdipyrromethene complexes (Chapter 2), the spectra were generally of little use for characterisation of the complexes.

However the absence or absorptions characteristlo of water indicated that the complexes were anhydrous. Attempts were made to obtain low requency infered spectra ($500 \mathrm{~cm}^{-1}-40 \mathrm{~cm}^{-1}$) in order to observe the metrl-1igand stretching frequencies. It was tound that bands in thts reglon were very weak and because of this mere often not reproducible. For this reason 14 was decided not to continue the investigation.

REACTIONS OF DIPYRROMETHENES WITH TEPRAHALOPALTADTEE (II) ANIONS

A serles of complexes $\mathrm{K}_{2} \mathrm{PdX}_{4}$ where $\mathrm{X}=\mathrm{CL}^{-"} \mathrm{EX}^{-\mathrm{m}}$, I^{m}, SCN^{-}and ON^{-}, in aqueous solution were mxed with othonolic solutions of MMPMH and MCLPMH. Reaction occurced with the tetrachlorom and tetrabronopalladite lons only. Reaction of potassium tetrachloropalladte(II) $\mathrm{K}_{2} \mathrm{PaOL}_{4}$, with MMPMH and MCIPMH gave three products of general formulee $\mathrm{PaL}_{2}, \mathrm{Pd}_{2} \mathrm{Cl}_{2} \mathrm{~L}_{2}$ and $\mathrm{PdCl}(\mathrm{L})(\mathrm{LH})$. All three products could be identified in admixture by their proton NMR spectra (Section 4.3).

Reactions of the ligands with potassium tetrabromopalladite(II), $\mathrm{K}_{2} \mathrm{PdBr}_{4}$, gave only two identifiable products PaL_{2} and $\operatorname{PdBr}(\mathrm{L})(\mathrm{LH})$. No evidence was found for the formation of a bromombiaged complex.

Refinment of the preparative methods enabled each of
the products to be isolated independently. The presence of other compounds in admixture, or organio impuritles could be readily detected rrom the mill spectra of the reaction products.

The $\operatorname{PaX}(\mathrm{I})$ (LH) Complexes, $X=\mathrm{CI}, \mathrm{Br}, \mathrm{L}=$ Mipl, MOIPI
The complex of MMPhil reported by Porter 5 as having one monodentate, and one bidentate dipyrromethene has been shown to be PdCl(MNPM) ((MIPNH), manly on the basts of comparisons of the NMR spectra of the four complaxes 1 th MMPHEL and MOLPHF as ligands. (Bection 4.3). The altamam tive, 5 -coordinate, Pormulation $\pi_{3} 0^{+}$Pdol(4Not) $)_{2}$ - which would have two budentate dipyrxomethene 1igands is ellminated on the basis of the following considerations:
(1) Infrared spectra of these complexes show a band at $3200 \mathrm{~cm}^{-1}$. Ferguson and West ${ }^{19}$ reported the presence of a band in this regton for the complexes $M_{2}(L H)_{2}$ (page 9) and assigned it to the N - 1 stretching mode. Although the agreement with the observations of Ferguson end West is good, the possibility of this band being due to the $\mathrm{H}_{3} \mathrm{O}^{+}$ cation cannot be lgnored.
(2) The conductivities of these complexes in nftromethane are low, indioating that they are non-electrolytes. (3) The complex noture of the MMR spectra for these complexes, in contrast to the very simple spectra found for the neutral bis-dipyromethene complexes, and for the
bridged complexes indicates that there are four pyrrole rings present in diferent chemical environments (Section 4.3. page 103). This would not be the case if the complex was 5-coordinate containing both dipyrromethenes acting as bidentates.
(4) The ultraviolet-vistble spectra are in agreement with the presence of two dipyrromethenes coordinated in different ways for these complexes (Section 4.2).

The complexes were readily obtained on the addition of an ethanolic solution of dipyrromethene ligand to a large excess of $\mathrm{K}_{2} \mathrm{PaOI}_{4}$ or $\mathrm{K}_{2} \mathrm{PdBr}_{4}$ in aqueous solution. The brome complexes could also be readily prepaxed from their chloro- analogues if the latter were dissolved in chlorotorm and shaken with a concentrated aqueous solution of potassium bromide for several hours

$$
\operatorname{PdCl}(\mathrm{L})(\mathrm{LH})+\mathrm{Br}^{-} \rightarrow \operatorname{PdBr}(\mathrm{L})(\mathrm{LH})+\mathrm{Cl}^{-} .
$$

The reverse reaction did not occur.
When the chloro or bromom complexes were shaken with aqueous solutions of hydrobromic or hydrochloric acid respectively, complex salts were obtained. These are thought to be of the type $\left[\mathrm{LH}_{2}^{+}\right]_{2}\left[\mathrm{PaX}_{4}\right]$ where $\mathrm{X}=\mathrm{Cl}^{-}$, $\mathrm{Br}{ }^{-}$. The compounds PdL_{2} and decomposition products of the Iigands Were also obtained. Hence it was not possible to prepare pure samples of the salts by this method. The complex salts and their properties are more fully described on page 88.

Attempts were made, unaucessfully, to replece the chloride and bronide ligands by lodide, thiocyanate and oyanide by shaying chloroform solutions of the chloromand bromo- complexes with concentrated aqueous golutions of the potassium salts of these anions. The products Included unohanged etarting materials, free dipyrromethene ligand, decomposition products of the ligands and (presumbly) salts of $\mathrm{PaX}_{4}{ }^{2-}$ anions.

The stabilistes of the complexes mith respeet to reaction with potassium salts of halogen and halogen-like anions varied according to the order

$$
\mathrm{Cl}<\mathrm{Br}<\left(\mathrm{I}, \mathrm{SON}_{2}, \mathrm{OH}\right)
$$

which is the order expected rom studies of the trans effect ${ }^{60}$. It was found that the miphe complexes were more liable to decompose in solution than the MClpMH complexes.

The Bridged Complexes. $\mathrm{Pa}_{2} \mathrm{OL}_{2} \mathrm{~L}_{2} 2 \quad L=$ MMPM \quad MOLPM

Porter ${ }^{5}$ reported the complex $\mathrm{Pa}_{2} \mathrm{Cl}_{2}$ (HINPM) $_{2}$, which he postulated contained bridging chloride groups

In this work the complex $\mathrm{Pa}_{2} \mathrm{Cl}_{2}\left(\mathrm{MClP} \mathrm{Mi}_{2}\right.$ has been prepared and fully characterised. The MMP符 complex
reported by Porter has been prepared and characterised by NMR, however elemental analyses are in poor agreement wh the calculated values. No evidence has been obtalned for the fomation of a dimeric bromine-bridged complex. Evidence obtained trom NMR spectra of the MOLPM complex suggests that ols- trans isomertsation occurs in this complex (See Figure 4.32). The evidence is descrioed in detail in Section 4. 3.

Porter 5 observed that the complex PdCl ${ }_{2}$ (MMPM) 2 reacted with excess 1 igand in hot ethanol to give Pd(MMPM) 2^{n} In view of the ready convergion of PdCI (L) (LH) to PdLs In hot ethanol (page 9) the following reaction sequence seems reasonable.

$$
\mathrm{Pa}_{2} \mathrm{CL}_{2} \mathrm{I}_{2} \longrightarrow \mathrm{LH} \quad 2 \mathrm{PdCLL}_{\mathrm{HH}} \longrightarrow 2 \mathrm{PdL}_{2}
$$

However the intermediate compound could not be isolated from this system.

Attermpts were made to prepare complexes of the type PdCl(L) (py) and PdCl(L) (py) 2 by heating pyridine solutions of $\mathrm{Pd}_{2} \mathrm{Cl}_{2} \mathrm{~L}_{2}$. Examination of solutions of residues from the reaction mixtures gave no evidence for the formation of a pyridine adduct. The chloroform soluble residues appeared to contain mainly ligand decomposition products.

The Ionic Complexes

A complex salt, thought to be $\left[\mathrm{MMPMH}_{2}{ }^{+}, \mathrm{K}^{+}\right]\left[\mathrm{PdBr}_{4}{ }^{2}=\right]$
has been prepared as described on page 93 . It has a conductivity in dimethylformamide corresponding to a 1:1 electrolyte, but is insoluble in chloroform. It is thought that the dipyraometheallium cation (MrmH ${ }_{2}{ }^{+}$) forms an lon pair with the $\mathrm{PaBr}_{4}{ }^{2-}$ ion and this may explain the low conductivity cound. The ultraviolet-visible spectrum of the sait in dimethylformamide is similar to that observed for $\mathrm{MHPH}_{2} \mathrm{Ol}$ in the same solvent.

Some peactions descrtbed for the $\mathrm{PdX}(\mathrm{L})$ (LH) complexes on page 85 gave chloroform soluble products which had similar NMR spectra to the protonated ligands. It is thought that these galts are very similar to the complex salt $\left[\right.$ MAPMA $\left._{2}{ }^{+} \mathrm{K}^{+}\right]\left[\mathrm{PaBr}_{4}{ }^{2-}\right]$, the difference in solubilities being due to the relative ability of the salts to associate in solution. Uneortunately the second type of complex salt, which is thought to be $\left[\mathrm{LH}_{2}^{+}\right]_{2}\left[\mathrm{PdX}_{4}^{2}\right]$ could not be prepaied chemically pure.

EXPERTMENTAL

As in Chapter 2 the following abbreviations are used for the dipyrromethene 21 gands in order to avold tedious repetition:

ММРМН 5.5°-dime thyldipyrrome thene MCIPMH 5-chloro-5'-methyldipyrrome thene
(1) Potassium palladite(II) Salts, $K_{2} \mathrm{PdX}_{4} ; \quad \mathrm{X}=0 \mathrm{I}^{-}, \mathrm{Br}^{-}$, $\mathrm{SCN}^{-}, \mathrm{CN}^{-}, \mathrm{I}^{-}$.

A small excess of the potassium salt (KX) in minimum water was added to a concentrated aqueous solubion of palladium nitrate (prepared as on page 26). The tetra-chloro- and tetrabromo palladites were obtained as erystalline solids, and were used in reactions without further investigation. The tetraiodom, tetrathiooyanatom and tetracyanopalladites were not isolated from solution. Any precipitate which pormed on the addition of the potassium salt (KX) was redissolved and the solutions of the $\mathrm{K}_{2} \mathrm{Pd} \mathrm{X}_{4}$ salts were mixed with ethanolle solutione of the ligands without further investigation.

A red microcrystalline solid thought, on the besis of its infrared spectrum, to be $\left[\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{X}^{+}\right]\left[\mathrm{PaBr}_{4}^{2-}\right]$ or $\left.\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] 2_{2} \mathrm{PdBr}_{4}^{2}\right]$ was precipitated erom an aqueous solution of palladium nitrate in the presence of hydrobromic acid when potassium bromide was added. On reaction with an ethanolic solution of the ligand this salt gave different products to those found with $\mathrm{K}_{2} \mathrm{PdBr}_{4}$ (see page 87).
(1i) Chloro-(5.5 - dimethyldipyrrome thenato)-(5.5 -dimethyldipyrromethene)palladium(II), PdCl (MMPM) (MMPMH) ${ }^{5}$.

The $11 \mathrm{gan}(0.2 \mathrm{gm})$ was dissolved in minimum ethanol with a little sodium acetate and was slowly added with stirring to a concentrated aqueous solution of potassium
tetrachloropalladite (0.5 gm) . After several hours a microcrystalline precipitate separated. The solution was f iltered and the residue was washed thoroughly with water, and dried in vacuo.

Attempts at recrystallisation from acetone and chloroform resulted in decomposition of the complex. Analysis: Calculated for $\mathrm{C}_{38} \mathrm{H}_{4} 7^{01 N_{4}} \mathrm{O}_{8} \mathrm{Pd} \quad \mathrm{O}, 55.0$; H, $5.6 ; \mathrm{N}, 6.8 \%$. Found: $\mathrm{C}, 36.4 ; \mathrm{H} .4 .0 ; \mathrm{N} .4 .4 \%$.
(111) Bromo-(5, 5-dimethyldipyromethenato) - (5.5 - dimethyldipyrrome thene) palladiun(II), PdBr(MMPM) (MMPMH).

The method of preparation was the same as outlined in (if) above, using potassium tetrabromopalladite as a starting material, except that the complex could be recrystallised successfully from chlorotorm and then acetone. Analysis: Calculated for $\mathrm{O}_{38} \mathrm{H}_{4} 7^{\mathrm{BrN}} \mathrm{H}_{8} \mathrm{O}_{8} \mathrm{Pd}$. 0.52 .2 : $\mathrm{H}, 5.3$: N, 6.4\%. Found: C, 51.7% H, $5.4:$ N, 6.3%. Conductivitye (nitromethane), $\Delta_{m}\left(20^{\circ} \mathrm{O}\right)=0.008$ ohms $^{-1}$ moles ${ }^{-1} \mathrm{~cm}^{2}$.
(iv) Onloro-(5-chloco-5 - methyldipyrromethenato)-(5-chloro$5^{\prime \prime}$-dipyrrome thene) palladium(II) , PdCI (MCIPM) (MCIPMH) . The ligand, MCIPMH, $(0.2 \mathrm{gm})$ was dissolved in minimum ethanol and was slowly added to a concentrated solution of potassium tetrachloropalladite (0.5 gm) in water with vigorous stixuing. As with the MMPM compound a precipitate slowly
formed over a period of several hours, which was illtered and dried in vacuo. The complex was recrystallised from chloroform and then acetone.

Analysis: Calculated for $\mathrm{O}_{36} \mathrm{H}_{4} \mathrm{Cl}_{3} \mathrm{H}_{4} \mathrm{O}_{8} \mathrm{Pd}: \quad \mathrm{C}, 49.7$:
H, 4.4: N, 6.4\% Found: C, $50.5 \% \mathrm{H}, 4.9 ; \mathrm{N}, 6.3 \%$. Conductivity: (nitromethane), $\Lambda_{m}\left(20^{\circ} \mathrm{C}\right)=0.1$ ohms $^{-1}$ moles ${ }^{-1} \mathrm{~cm}^{2}$.

Cryotallographic Preliminary study: The crystal symmetry is monoclinic with systematic absences hkl for $h+k=2 n$ and hol for $1=2 n$, indicating space group oc (non-centrosymmetric) or $02 / \mathrm{e}$ (centrosymmetric). The centrosymmetric space group would impose erystallographie mirror symmetry on the molecule. Approximate cell aonstants are $a=17.50$, $b=20.88, c=10.19 \%, \beta=95.62^{\circ}$ at $20^{\circ} \mathrm{C}$ (room temperature), giving a cell volume of $3751 \AA^{3}$. The caleulated dencity for four molecules to the unit cell 1s 1.54 $\mathrm{g} / \mathrm{cm}^{3}$. The experimental density (floatation in bromobenzene/carion tetrachloride solution) is $1.52 \mathrm{~g} / \mathrm{cm}^{3}$. Molecular Weight: Calculated, 870. Found (crystallographic method) 859 ± 10.
 5'methyldipyrromethene) palladium(IX), PaBr(MCIPM) (MCIPMEI)

The complex was prepared using potassium tetrebromo palladite as outlined in (iv) above.

Analysis: Calculated for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{BrOl}_{2} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Pd}: \quad \mathrm{C}, 47.2$; $\mathrm{H}, 4.2 ; \mathrm{N}, 6.1 \%$. Found: $\mathrm{C}, 47.3 \% \mathrm{H}, 4.6 ; \mathrm{N}, 6.3 \%$. Conductivity: (nitromethane), $\Delta_{m}\left(20^{\circ} \mathrm{C}\right)=0.008$ ohms $^{-1}$ moles ${ }^{-1} \mathrm{~cm}^{2}$.
(vi) Di- μ - chlorobis-(5, 5°-aimethyldipyrrome thenato)dipa11adium(II) $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ (MMPM) $2^{\text {. }}$
The piltrate from (11) above was evaporated under a stream of compressed alr until a marocrystalline precir:tate formed. The solution was filtered and the residue was thoroughly washed with water.

Recrystallisetion from chloroform or acetone decomposed the oonplex.
 5.3\%. Founa: $\mathrm{O}_{2} 40.1$ H. 4.5%.
(vi1) di- μ-chlorobis=(5-chloro-5-methylaipyrrome thenato) dipalladum (II) , $\mathrm{Pa}_{2} \mathrm{Ol}_{2}(\mathrm{MClPM})_{2}$ *
The filtrate obtained from (iv) above was evaporated under stream of compressed air until a microcrystalline precipitate formed. The solution was flltered, and the residue was dried in vacuo. It was recrystallised from chloroform and then acetone.

Analysis: Calculated for $0_{36} \mathrm{H}_{40} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Pd}_{2}: \quad 0,42.75$
H, 4.0; N. 5.5\%. Found: C. 44.7 H. $4.4 ;$ N. 5. 5%.
(viid) Potascium (5.5'aimethyldipyrromethenilium) tetrabromopalladite(II), $\left[\left(\right.\right.$ MMPMH $\left.\left._{2}^{+}\right), \mathrm{K}^{+}\right]\left[\mathrm{PaBr}_{4}^{2-}\right]$ The red salt prepared as outlined in (i) above was reacted with a solution of MMPMF in ethanol. A red. finely divided precipitate separated out of the solution. The product was filtered and dried in vacuo. Tt was insoluble in chloroform but alssolved readily in dimethylCormamide.

Analysis: Found: $0,31.6 ; \mathrm{H}, 4.5 ; \mathrm{N}, 4.1 \%$ Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{KN}_{2} \mathrm{O}_{4} \mathrm{Pd}_{3}\left(\mathrm{MMPMH}_{2}, \mathrm{KK}^{2} \mathrm{PaBr}_{4}\right), \mathrm{C}, 28.2 ; \mathrm{H}, 3.0$; $\mathrm{N}, 3.5 \%$. Calculated for $\mathrm{C}_{38} \mathrm{H}_{4} 8^{\mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Pd}_{8} \text { (}\left(\text { MMPMH }_{2}\right)_{2}, ~}$ PaBr_{4}) $0,41.3 ; \mathrm{H}, 4.5: N, 5.1 \%$. Conductivity (dimethylformamide): $\Delta_{m}\left(20^{\circ} \mathrm{c}\right)=61.7$ onms $^{-1} \operatorname{moles}^{-1} \mathrm{~cm}^{2}$.

SECTION 4.2

U1traviolet-Vistble Spectra

INTRODUOTI ON

The ultraviolet-visible spectra of the ligands, the protonated IIgands, and the neutral bis-complexen of the dipyrromethene $11 g a n d s$, have been reported and discussed in section 2.3. The spectre of the present complexes, as with those in Section 2.3 , can be divided Into three regions corresponding to: (1) a low energy introligand $\pi \rightarrow \pi$ transition, (2) a metal $\longrightarrow 12 \cos a$ charge transeer transition and (3) high energy intraligand $\pi \rightarrow T$ transitions. No ligand fleld bands have been observed in solution, or in the solld state, for these complexes. presumably because the least energetic ligand field band is masked by the low energy $\pi \rightarrow \rightarrow \pi$ transition.

The reasons for the asslgnments for the bands have been discussed in Section 2. 3. The spectra obtained for the palladium mixed ligand complexes are very similar in many respects to those of the ML_{2} complexes however interesting differences are found.

All spectra discussed here have been measured in chloroform solution and the anta for them are listed in Table 4.21. The spectra of $E d_{2} \mathrm{Cl}_{2}$ (HOLPM) 2 and PdC1(MCIPM)MCIPMH) are typlcal of those Pound and are shown in Figure 4.21.

FIGURE 4.21

The Bridged Complex. $\mathrm{Ed}_{2} \mathrm{Cl}_{2}$ (RCIPM) 2

(i) Low energy $\pi \rightarrow \pi$ intraligand transtition

As with most of the monomeric bis complexes (ML_{2}), the low energy $\pi \rightarrow \pi^{*}$ transition for the bridged complex has one dominant band with a shoulder to higher energy. The intensity of the main band is comparable with that of the neutral ligand, unlike the intensities found for the band for the ML_{2} complezes which are usually much greater (Table 2.3).

The band. is found at lower energy for the bridged complex than for Pa(MCIPM) ${ }_{2}$. This may reflect a grester degree or metal - ligand π bonding for the bridged complex. which is not subject to the same stertc strain as is the $\mathrm{Pd}(\mathrm{MCIEM})_{2}$ compound and is therefore expected. to be planar. (ef. Section 3.4).
(ii) Metal \rightarrow Ligand Charge Transfer Band

This is observed for the bridged complex in a similar position to that found for $\operatorname{Pd}(M C I P M)_{2}$ and is of approximately the same intensity. (iii) High energy $\Pi \rightarrow \pi$ Transitions

As with the ML_{2} complexes bands in the high energy region of the spectrum are poorly resolved and little useful information can be obtained from them.

The Pdx(L) (LH) Complexes:

(i) Low Lnergy $\pi \rightarrow \pi$ 皿 Trensitiong

The spectra of the complexes which have both monodentate and bldentate dipyrxomethene ligands show two bands in the region of the low energy $\pi \rightarrow \pi=0$ transition. The band at lowest energy is usually poorly resolved and is observed as a prominent shoulder on the side of the nain bund. The composte speetrum found is no doubt due to the presence of the two dipyrromethenes which have two different modes of coordingtion.

The band et higher energy may be due to the monom dentate 14gand, and that at lower energy to the bidentate Ilgand, since the relative positwons of the two bonds are similar to those of the protonated ligands and the bridged complexes respectively.

The intenstites of the bands are companable with the Intenstites of the bends sound for the free ligends, as would be expeeted.

(1i) Qharge Gxansfer Transitions

For each complex a band is observed at about 25,000 em^{-1} Which, by comparison with the spectra of the bridged complexes, and the PdL_{2} complexes, can be asslgned to metal \rightarrow ligand charge trantere Unfortunately the band is not always well resolved, and hence the comparative positions and intensities are not known. For this reason
little further information can be obtained.
(iii) High Gnorgy Intraliggnd $\pi \rightarrow \pi$ * Trangitions: As with the other complexes studied here, and in Section 2.3. Iittie useful infomation can be derived from the region of the spectrum above $30,000 \mathrm{~cm}^{-1}$, since the bands are poorly resolved.

SECTION 4.3

Nuclear Magnetic Resonance Spectroscopy

INTR ODUGTI ON

The proton M (MMPMH, the protonated ligands $\left(\mathrm{LH}_{2}{ }^{+}\right)$and the $b 1 \mathrm{~s}=$ complexes of zinc, cadmium, mercury and palladium $\left(\mathrm{ML}_{2}\right)$. have been discussed in Chapter 2. Resonances of the methyl groups labelled (A), (B) and (C) (Figure 2.41) have been assigned for all these compounds.

The spectra discussed in this section were recorded under similap conditions to those discussed in Section 2.4. i.e. at a concentration of approximately 50 mgs of complex in 0.25 mls of deutero chlororom and with a probe temperature of $35^{\circ} 0$.

The resonances of the dipyryomethene complexes of palladium containing halo-11gands are listed in Table 4.31, and their positions in relation to those of the ligands and the PdL_{2} complexes are shown in Figure 4.31. Table 4.32 11sts the different types of methyl groups found for the PdX(L) (LH) complexes together with their predicted and observed chemical shtets.

THE BRIDGED COMPLEXES: $\mathrm{Pd}_{2} \mathrm{OL}_{2} \mathrm{~L}_{2}$

The NMR spectra of these complexes are comparatively simple and resonance assignments can be readily made.

The spectra are similar to those obtained for the monomeric complexes (PdL_{2}). Since the spectra are uncomplicated, they indicate that the complezes are symmetric, with both pyrrole rings of the ligands equivalently coordinated to the metal ion.

In the spectrum of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ (MMPM) $_{2}$ the peaks were not as well resolved as for the other spectra discussed in this section. It is thought that this was due to the presence of impurities in the sample, and explains the poor agreement of the elemental analyses found for this complex compared with the calculated values. There en be no doubt however that the MRR spectral results are meaningrul, and that the compound was in fact prepared, if not purieled. The Ethyl Eeter Side Chains:

These groups give pise to two sets of xesonances with chemical shifte of approximately 1.3 ppm and 4.3 ppm . The resonances of these groups have been assigned as outlined In Section 2.4 , and are found to be similar in all respects to those of the ML_{2} series. For this reason they will not be discussed further.

2he Ring-substituted Methy1 Groups:

These are designated as methyl groups (A) and (B) for $\mathrm{Pd}_{2} \mathrm{OL}_{2}(\mathrm{MMPM})_{2}$ and (A), (B) and (C) for $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{MClPM}_{2}{ }^{\circ}\right.$ These labele are the same as those used in Section 2.4. The integral ratios of the resonances, with respect to
that of the methine proton which is taken as 1 (see below), are 6:6 for the MMPM complex and $3: 3: 3$ for the MCIPH ${ }^{-}$ complex.

Group A: The resonance due to this group is moved downfield on coordination to the $\mathrm{PaCl}_{2} \mathrm{~Pa}$ group, to about 2. 6 ppr . The deshielding is small and is to be expected in terms of a decrease in electron density in the region of the nitrogen atom on coordination. In aireet contrest the M_{2} complexes stucied in Section 2.4 generally show a considereble shielding of the (A) group on coordination. particularly in the case of PaL ${ }_{2}$. This effect has been accounted for in terms of interaction of the (A) methyl protons with the shielalng cone of an adjacent pyrrole ring (page 57). This interaction will not oceur in the ase of the bridged complexes.

The assignment of the resonance at about 2.6ppn to the (A) group is justified on the sollowing grounds:
(1) As outlined in Section 2.4 for the $M(M C 1 P M)_{2}$ complexes, the relative chemical shifts of groups (B) and (c) remain virtually constant irrespective of the coordinated metal ion. For this reason the resonances at 2.52 ppm and 2.22 ppm are assigned to these two groups respectively for $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\text { MCIPM })_{2}$, leaving the resonance at 2.63 ppm to be assigned to group (A).
(2) For both $\mathrm{Pd}\left(\mathrm{MCIPM}_{2}\right.$ and $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{MCIPM}_{2}\right.$ where the

CIS AND TRANS TSOMERS OF PAC1 ${ }_{2}$ (MCIPM) 2

 methenato)dipalladim(II).

II Scans-dichloro- $\mu-$ bis- (5-chloro- 5°-methyldipyrro methenato) dipalladium(IX).

FIGURE 4.33
NMR EVIDENCE FOR CIS \& TRANS ISOMERS (methyl(A) resonance shaded)

Iigend is unsymetrically substituted, two isomers are possible with the chlorine atoms of the 11gand cis-and trans- with respect to each other (Figure 4.32). Evidence for the existence of cis- and trans- isomers in admixture has been found from studies of the thin layer chromatography of the $\mathrm{Pd}(\mathrm{MOLPM})_{2}$ complex (page 27). For each of the two isomers I and II In Figure 4.32 the chemical shifts of (B) and (C) are identical, but that of (A) is slightig different for isomer(I) with respect to that or isomer (II). This difference is found to be very small (less then 0.005 pmm) and is only detected as a broadening of the resonance peak, with a consequent loss In helght reletive to the rescnance peaks of (B) and (C). (Bigure 4.33). This effect is also apparent in the spectrum of $\mathrm{Pa}(\mathrm{McIPM})_{2}$

Groups (B) and (C): Group (B) of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mathrm{MHPM})_{2}$ and groups (B) and (C) of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ (MO1PM) $_{2}$ are shielded on coordination. In terms of ring ourrent effects as discussed in Section 2.4, this may reflect a decrease in pyrrole ring current on coordination.

The Methine Proton

The methine proton of both ligands is deshielded considerably on coordination, although not to the same extent as for the corresponaing proton $1 n \mathrm{PdH}_{2}$ (Eigure
4.31). The smaller deshlelaing in the case of the $\mathrm{Pd}_{2} \mathrm{Cl}_{2} \mathrm{~L}_{2}$ complexes is surprising since in these cases the chelate ring should be planar. This mould be expected to result in larger ring current erfects than in the bent cholate ring of the PaL_{2} complexes.

MTXED MONODENTATE ARD BIDENTATS DLEYRROMETHENE COMPGHXES

$\operatorname{Pax}(\mathrm{L})(\mathrm{LH})$

The spectra of the mixed monodentate and bldentete dipyrromethene complexes are much more complleated than those discussed previously in this section, and in Section 2.4. The presence of two methine proton resonances, and the complexity of the resonances due to the ring gubstituted methyl groups conflrms that there are two chemically disting uishable dipyrromethene molecules in the complexes. A detalled study of the spectra indicates that one of the Ligands is coordinated as a monodentate.

The Ethyl Ester Slde Chains:

The resonances due to the methylene and methyl protons Corm complieated overlapping patterns indicating that at Ieast three, and possibly all four, of the side chains are in chemically different environments for complexes fo both MOLPMH and MMPM, Because these regions are extremely complicated no userul deta cen be extracted.

FIGURE 4.34

POESTBLE FTYE ω COORDINATE FORMULATIONS FOR THE PdX(L)(LH) COMPLEXES

4 equivalent pyreole rings

2 equivalent pyrrole rings

2 equivalent pyrrole rings

2×2 equivalent pyrole
rings

The Ring-substituted Methyl Groups

For PdCL(MMPM) (MMPMH) six resonance peaks axe observed between 3.6 ppm and $1,6 \mathrm{ppm}$ with integral ratios of $3: 3: 6: 643: 3$ Whth respect to eaoh of the methine resonanoe integrals taken as 1. These resonances correspond to eimht methyl groups, four from each ligand. with two of the groups having resonances which overlap with two others, giving fise to two "double" resonance peaks. For the analogous bromo- complex one of the "double" peaks is split, presumably because one of the methyl groups contributing to the resonance is more affected by the halo-1igand than the other. Seven resonances are theretore observed wth integral ratios of $3: 3: 6: 3: 3: 3: 3$. The PaX(MCIPM) (MOLPMH) complexes have five resonances, with integral ratios 3:3:6:3:3, and six resonances with integral retios $3: 3: 3: 3: 3: 3$, for the chlorom and bromom complexes respectively.

For the bromo- complexes of both dipyrromethene 11 gands the observed splitting pattern is only possible if there are four pyrrole rings in different chemical environments in each of the oomplexes. No 5-coordinate Cormulation will give more than three chemically distinguishable pyrrole rings (Figure 4.34) and hence the NMR data conelusively show that the four coordinate formatation is correct, in agreement with evidence from conductivity

FIGURE 4.35

(a) PdC1 (MMPM) (MMPMH)

(b) $\operatorname{PdCl}(\operatorname{mClpm})($ molphit $)$
measurenents and ultraviolet-viatble and infrared spectra.

It is possible to arrive at a reasonable assignment of the methyl pesonances for the complexes $\mathrm{PdX}(\mathrm{L})(\mathrm{LH})$ on the basis of the nolecular models shown in figure $4.35(\mathrm{a})$ and (b). Simple framework nolecular models (PrenticeHall, Inc.) Indicate that these confomations are the ones most likely to be round assuming square planer 4 coordination about the metal ion, with one of the dipymomethenes coordinated as a monodentate.

In the following discussion methyl groups will be rereregd to by the number assigned to each posttion on the skeleton as illustrated in figure 4.35 , (a) and (b), since the labels (A), (B) and (C) previously used do not adequately desaribe the differences between each methyl group. It shovid be noted, however, that in Plgure 4.35(a) mothyl groups of type (A) are found at positions 1.4 .5 and 8 and those of type (B) are tound at positions $2,3,6$ and 7 : while in Figure $4.35(\mathrm{~b})$, (A) type methyls are found at positions 4 and 5 , (B) type methyls at positions 3 and 6, and (c) type mothyls at positions $2^{\prime \prime}$ and 7^{\prime}.

Only one isomer is possible for the complexes of the symmetrically substituted MPPMH 1igand (Figure $4.35(a)$). However, four isomers are theoretically possible for the complexes of Molphil since this ligand is not symmetrically
substituted. The positions of the ligand chlorine atoms In Figure $4.35(\mathrm{~b})$ are besed on whet would be expected chempally if it is postulated thet only one of the four Isoners possible is in fact found. This restriction is neasonable since:
(1) The pyrole ring which is not coondinated to the motal for the monodentate ligand (ring I) is similar to the pyrrole rings of the protonated 1 igand ($\mathrm{LH}_{2}{ }^{\dagger}$) and will oaxy some posituve aharge. The presence of a ohlonine atom will assist in the dispersal of the chave.
(2) Framork models indicate that there will be considerable intergotion between a substituent at position 5 and ring II. Since ring II is coordinated to the metal ion it would be expected to cerry some positive cherge, although this will probobly be less than that carrued by ring I. If a chlorine atom is subctituted at position 8 there will be an attractive dipolemapole interaction between the chlonine atom and ring IT. For this reason the substituent at position 8 is more likely to be a chlorine atom than a methyl group.

Table 4.32 sumarises the direction of shirts of the resonances expected for the various methyl groups on the basis of the model proposed (Figure 4.35). The chemical shifts actually found for the PdCl(L) (LH) complexes are IIsted, along with the changes in chemical shift observed.

Table 4.32a		MMPM Complexes		Expected efrect of changing halogen ligand	Observed chemical shift (pom)		
$\begin{aligned} & \text { Position } \\ & 0 n \end{aligned}$		Ixpected shift in resonances shift with respect					
Skeleton	Type	igand	Re		$\begin{aligned} & W r t \\ & T M S \end{aligned}$	W20t MMPME	On subst
1	A	Strongly desinielded	partial + Te charge on ring I; proxint ty to Natom	negligible	3.55	1.10	0.00
2	B	Deshielded, but not to the same extent as 1	partial + We charge on ring I, distant rem N 5 atorn	negligible	2.88	0.30	0.00
3	B	Faimy suall, airection not predictabie	dipole intramolecular Interactions	staa 11	2.30	-0.28	-0.03
4	A	$\begin{aligned} & \text { Fairly small, probably } \\ & \text { shielded } \end{aligned}$	may be affected by shielaing cone of ring IV	small, in the same direction as 3 .	2.35	-0.10	-0.03
5	A	Should be deshielded, however environment is similar to that of 4	deshiciding predicted in conperison with bridged complezes	$\begin{aligned} & \text { comparatively } \\ & \text { large } \end{aligned}$	2.35	0.10	0.07
$6+7$	B	shielded slightly	should behave siatlemily to (B) groups of the bridsed complex	negligible	2.48	-0.10	0.00
8	A	Strong shielded	Interaction with shielding cone of ring II	neglagiole	1.67	-0.78	0.00

Table $4.32 b$ MClPM Conplezes

$\begin{gathered} \text { Position } \\ \text { on } \\ \text { sheleton } \end{gathered}$	Type	Expected mesonance shtft w.t.t the neutrel Iigend.	Reason	Expected efrect of changing the halogen 1 igand.	$\begin{aligned} & \text { wrt } \\ & \text { TMS } \end{aligned}$	Wrt MCIPMH	On subst. of Br for 01	$\begin{aligned} & \text { WI' } \\ & \text { MMPM } \\ & \text { CamIe } \end{aligned}$
2^{8}	0	Deshielded	+ We charge on ring I	negligible	2.92	0.59	0.00	-
3	B	as Pon MMPME Complexes		sme 11	2.27	-0.35	$0.00-0$	-0.03
4	A.	\%		smal2	2.38	-0.08	0.00	0.03
5	A	\%		comparatively lange	2.38	-0.08	0.07	0.03
6	B	\%		negligible	2.52	-0.10	$0.01+0$	+0.04
7	0	Shielded slightly similarly to 7 for MMPlit complexes		negligiole	2.08	-0.25	0.00	-

When the chloro- Itgand is replaced by a bromo- ligand.
A comparison of the spectra of the PaxL(LH) complexes In Pigure 4.31 reveals two resonences found for the MPHL complexes only, at 3.55 ppm and 1.67 ppm . These would be expected to be due to methyl groups which are substituted In positions occupled by chlorine atom subatituents in the MC1PM complexes, i.e. the methyl groups at positions 1 and 8 in Figure 4.35(a). The strongly deshielded group with a resonance at 3.55 pmn is likely to be methyl (1). since ring I is expected to carry a partial positive charge compared with ring IT of the same 11 gand, and with mings III and IV of the Gidentate ligand. This methyl group is also close to the nitrogen atom of ring I, which may result in further deshielding.

The strongly shielded group with a resonance at 1.67 ppm is likely to be methyl (8) alnce framowow modele indicate that the protons of this group will be epproximetely 2.5 - 3.0 A above the center of ring II and, an a result, will be well within the shlelding cone of thie ping. (cf. Figure 2.43). In view of this, the observed shielding of the group by about 1 ppon would appear to be quite reasonable by comparison with the chemagl shitis found for the (A) methyls of the PaL_{2} complexes (page 57).

The spectra of the NOLP保 complexes have one resonance at 2.08ppm which is not present in the spectra of the MMPMH
complexes. It is to be expected that this resonance would be due to a (c) methyl group since such a group would not be found for the MPMH complexes. The resonance at this position has been asstgned to methyl (7°).

The remainder of the resonance peaks are in very similar positions for all the complexes and must be assigned to methyl groups which should be found in the same, ox in very similar, chemical environments for complexes of both the dipyryomethene ligands. The resonance at about 2.9 pm is assigned to methyl (2) for the MhPMH complexes and to methyl (2°) for the MCIPMH complexes, since these groups are substituted on ring I which, as has already been pointed out, must carry some positive charge, and will consequently produce a shielding effect on the methyl groups substituted to it.

The "double resonance at 2.48ppm for the MAPHH complexes is assigned to methyls (6) and (7), and the resonance at 2.42 ppm is assigned to group (6) for the MCIPMH complexes since these groups are all (B) methyls and W111 be in virtually the same chemical environments. Furthermore, they should not be greatly affectedby changing the helo- 11gand. The "double" resonance found at 2.35 ppm for PdOL (MMPM) (MMPMH) and at 2.38 ppm for PdCl(MCIPM) (MOIPMH) Is assigned to groups (4) and (5), since these ace the groups likely to be those most affected by changing the halo-

11gand. In the bromom complexes these resonances are both split to give two "single" resonance peaks. The resonance moved furtherest from its position in the equivalent chloro complex is assigned to methyl (5) since this group is nearest to the halo- ligand. The position of the (5) methyl group pesonance seems anomalous since the (A) methyls of the bridged complexes, which are in very similar chemical environments, are deshielded with respect to the neutral ligand. Group (5), also on (A) type methyl group, is shielded by about 0.1 ppm in the PdCl(L) (LH) complexes compared with 1 ts position in the neutral 2 igande. The remaining resonance at about 2.3 ppm for both the MO1PMH and MMPMH complexes is assigned to mothyl group (3). The position of the resonance is not aftected by changing the halo- 11gand, as would be expected.

The Methine Protons

Two resonances, with equal integrale, which cen be attributed to the methine protons, are observed for these complexes. The two resonanoes correspond to the methine protons of each ligand, and occur because of the diferent modes of coordination of the two 11 gands in these complexes. In the LMPMH complexes both methine protons are shielded with respect to that of the neutral 11gand, and in the MCIPMH complexes one is shielded, and the other deshielded, with respect to the methine proton of the free ligand.

In wiew of the fact that methine protons axe strongly deshielded in all the other dipyrromethene complexes studied (pages 54 and 101) and in the protonated ILgands (page 52) assignment of the resonences to particular protons is not possible. Although the behaviour of the methine protons in these complexes is different from thet observed in other dipyrromethene complexes, they behave cimilarly to such protons in similar environments in acetylacetone and porphyrin complexes. (Table 2.44). It is not clear at this stage why the ring current argumente, found to be useful for expleining the changes in chemical shift of methine protons in other dipyrxomethene complexes, do not apply to the Pdx(L)(LH) complexes.

PART II

A STUDY OF ASPECTS OF THE OHEMTSTRY OF
O-PHENANTHROLINE COMPLEXES

(a) - -PHENANTHROLINE SKELETON AND NUMBERING SYSTEM

(b) BTPYRIDYL SKBLETON

CHAPTER 5

Preparations of Some Substituted o-phenenthroline
 Complexes of Iron(II) and Ruthentum(II)

SEOTION 5.1

A Review of Selected Aspects of the Chemistry
 of bis and iris-(o-phenanthroline) Complexes of Iron(II) and Ruthenium(II)

ITTTRODUCTION

The nitrogen heterocyclic compound 1,10 -phenanthroline, or o-phenanthroline (o-phen), Figure $5.11 a$, is one of a large number of conjugated nitrogen donor 11gends. Its coordination chemistry is closely related to that or 2.2^{2}-bipyridyl (bipy), Figure $5.11 b$, and is similar in many respects to that of pyridine ($p y$). It coordinates as a bidentate 11 gand to a wide range of metal lons often foxming stable complexes with the same metal in several oxidation states.

The existence of the trism (g - phenanthroline) iron(II) oation (ferroin) was first reported by Blau in 1898^{61}. Werner ${ }^{62}$ resolved the cation into its optical isomers showing that the complex had octahedral stereochemistry. In the past 40 years much of the extensive mesearch that has been carried out on complexes of o-phenanthroline and
bipyridyl. especially thoee of 1 ron(IT), has been as a result of their importance as analytical reagents, and as oxidation-reduction indicators. Extensive meviews have been published on the ooordination chemistry 63 , and the use of the tris- complexes of varlous substituted phenanthrolines as analytical reagents 64,65 .

The preparation of the trisi- (o-phenanthroline) ruthenium(II) cation and its resolution into opticel 4somers was reported by Dwyer et a1 66,67 in 1947 and 1949.

STAETLTTY AND BONDTNG TN THE IRON(IT) COMPLEXES

The solution chemistry of the o-phenanthroline-iron(TI) system 1s unusual in that the Irving Williams order of stabilities ${ }^{68}$ is not followed. The observed order. $K_{3}>K_{2}>K_{1}{ }^{69}$, is explained in terms of a change from a high spin deelectron configuration of the monow and biscompounds to a low spin conflguration on the formation of the tris spectes from the bis, with a consequent decrease in electronte repulsion energy.

Bonding between the phenanthroline ligand and the metal ion is usually described in terms of σ-donation of electrons from nonmbonding orbitals of the nitrogen atoms into the empty d-orbitals of the metal together with π-back donation of d-electrons of the metal into empty $\pi=o r b i t a l s$ of the 11 gand. Burstall and Nyholm ${ }^{70}$ and Sone ${ }^{71}$ (1952)
proposed that π-bonding in these complexes would involve delocalisation of π-electrons in the five membered chelate rings of the trism complexes.

It hes recently been suggested that π-bonding of this kind is important only for the spin-paired complexes with ${ }^{1} A_{1}$ ground state. This has been deduced from comperisons of the intrared spectra for highspin and Low spin complexes ${ }^{72}$.

THE biE-(o-PHMNANTHROLTMA)IRON(II) COMPLEXES

The chemtstry of the bis-(omphanthroline) iron(II) oomplexes has pecently been reviewed ${ }^{73}$. The preparation of the alx-coordinate high spin complex Fe(o-phen) $)_{2} \mathrm{Cl}_{2}$ was furst reported by Basolo and Dwyer (1954) 74 . A large number of complexes of general formula $\operatorname{Fe}(\underline{o}-\mathrm{phen})_{2} \mathrm{X}_{2}$ have now been prepared there the range of anionic ligands (X) is such as to include virtually the full range of the spectrochemtcal series ${ }^{73}$. The complexes may be divided Lnto three main types: (1) high spin complexes, (2) low spin complexes and (3) complexes whose magnetic susceptIblittes show anomalous temperature dependence. These will be discussed separately.

(1) High Spin Complexes

A series of six-coordinote psevio octahedral
 son and CN^{-}were prepared by Baker and Bobontch (1962. 1964) 75,76 , who measured their magnetic suscoptibitities, All these complexes, except the dicyano complex are paramgnetic with magnetic moments of approximately 5.2 B.M. at room temperature; indicating a high spin electrontc contiguration (${ }^{5} \mathrm{I}_{2}$ ground state).

The dicyanomeomplex has a magnetic moment or 0.7 B . 1 . at room temperature and the taism (o-phenanthroline) complex has a magnetio moment of about 1 Bu . Both of these ane considerea to be Jow spin with ${ }^{1} A_{1}$ ground stetes. The bisthlocyanato- and bleselenocyanato- complexes show anomalous temperature dependence of their magnetic moments which drop to approximately 1.7 B M. over a temperature mange of $3^{\circ} \mathrm{K}$ at approximately $170^{\circ} \mathrm{K}$. These two types of complex vill be discussed later.

High spin complexes are also formed with oyanatom (coordinated through the nitrogen) and aceto- 11gands. The oxalato- and malonato- complexes have magnetic monents of about $3.9 B$. . . and are considered to have $3_{\mathbb{R}_{q}}$ ground atates ${ }^{73}$ (intermediate between the high spin $5_{\mathrm{I}_{2}}$ and Low spin ${ }^{1} A_{1}$ ground states).

Generally the high spin complexes cannot be obtained
from aqueous solutions since they readily disproportionate in the presence of weter to give the tris-complex:

$$
3 \mathrm{Pe}(0-\text { phen })_{2} X_{2} \rightarrow 2 \operatorname{Pe}(0-\text { phen })_{3} X_{2}+\operatorname{TeX}_{2}(a q)
$$

(2) Low Spin Complexes

These complexes usually involve good π-acceptor ligands such as eyanide, nitrite and eyenate (coordinated through the oxygen atom). All the low spin complexes including the tris-(ophenanthroline) complex exhibit temperature independent paramagnetism 73 .

In general these complexes are more stable with respect to disproportionation than the high spin complexes. For Ingtance the atcyano complex can be prepared from aqueous solution 77.78 . However th has been found to disproportionate to give the tris- complex over a pextod of time ${ }^{79}$.

(3) The b1s-thiocyanato and bis-selenoevenato- Complexes

The unusual temperature dependence of the magnetic moments of these complexes was sirgt reported by Baker and Bobonich 75,76, who proposed that the complexes were bridged

In a series of papers, Konig and Wedeja, e.g. 79,80 have shown on the basis of infrared etudies that the anionie Ilgands coordinate through the nitrogen atoms and from studies of the cemperature dependent changes of Mossbaver: infrared and whraviolet-vistble spectra, thet the complexes are monomeric and have als configuration. They have proposed that the temperature dependence of the magnetic momente 18 pesult of a crossover between ${ }^{5} T_{2}$ and ${ }^{1} A_{1}$ grouna btates. The residual paramagnetism observed at low temperatwees is thought to be due to "the preaence of sone molecules in the ${ }^{5} \mathrm{~T}_{2}$ high spin state ${ }^{81}$. The obsewvation that aterenent preparations of the same complex (for both o-phenanthroline and 22^{4} bipyridyl complexes) give dieferent residual magnetic moments at Low temperatures is thought to be in accord with this hypothesis.

It has been reported that a erystallogxaphic phase change occurs at the same temperature as the observed change in magnetic moment ${ }^{82}$. Independent shales of the Hossbover spectra and MMR spectra of these complexes at diferent temperatures ${ }^{83}$ has given support to the theory that a reversible interchange oceurs between ground state terms.

1) Stereochemistry

A cls stereochemistry has been proposed for
$\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{2}(\mathrm{CN})_{2}$ because the $\mathrm{O}=\mathrm{N}$ stretching mode in the infrared spectrum of this compound is split 77 . The NMR spectrum in anhydrous hydrogen fluoride of the diprotonated complex $F e(0-p h e n)_{2}(\mathrm{ONH})_{2}{ }^{2+}$ has been analysed on the basis or a cis configuration ${ }^{84}$. Baker and Bobonich ${ }^{75}$ proposed that the complexes $\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{2} \mathrm{X}_{2}, \mathrm{X}=\mathrm{CI}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$and CN ${ }^{-}$, are all cis isomers because of the similarity of their X-ray powder patterns. Duncan and Mok ${ }^{85}$ reported that the Mössbauer spectra of several of the Fe(o-phen) ${ }_{2} X_{2}$ complexes indicated cls rather than trans stereochemistry. At different times preparations of trans isomers of $\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{2}$ (SON $_{2}{ }^{86}$, its bipywidyl analogue ${ }^{87}$, and $\mathrm{Fe}(\text { o-phen) })_{2}(\mathrm{CN})_{2} 88,89$ have been reported. However in each of these cases later evidence has suggested that the complexes axe cis rather than trans 90,91 .

RUTHENIUM (II) COMPLEXES

The preparation of the tris (o-phenanthroline) ruthenium (II) cation was reported by Dwyer et al (1947) ${ }^{66}$ who also measured the redox potentials of the $\operatorname{Ru}(0-\mathrm{phen}) 3^{2+} /$ Ru(omphen) 3^{3+} couple for a number of salts of the complex cation. The preparation of aseries of neutral bis-(o-phenanthroline) ruthenium(II) complexes Ru (o-phen) $2_{2} \mathrm{X}_{2}$. $X=C l{ }^{-}{ }^{\circ} \mathrm{Br}^{m}$ and I^{-}, was reported by Dwyer, Goodwin and Gyarfas (1963) ${ }^{92}$. Bosnick and Dwyer ${ }^{93}$ reported the preparation of the series of complex ions $\mathrm{Ru}(0-\mathrm{phen}) 2^{\mathrm{Xpy}}{ }^{\mathrm{n}+}$.
where, for $n=1, X=0 I^{-}, \mathrm{Br}^{-}, I^{-\prime \prime}, N_{3}, \mathrm{NCS}^{-}, \mathrm{NO}_{2}$ and CH^{-}, and $\operatorname{ton} \mathrm{n}=2, \mathrm{X}=\mathrm{NH}_{3}, \mathrm{OH}_{3} \mathrm{ON}$ and $p y$. The complex cation $\mathrm{Ru}(o-\mathrm{phen})_{2}(\mathrm{py})_{2}{ }^{2+}$ was resolved into its optical isomers, and it was tound that the mono-substitwed complexes prepared from the optically a ctive bis-pypidine complex were aleo optically active, indieating that all the complezes were cis isomers. The neutral complex $\mathrm{Ru}(\mathrm{omphen})_{2}(\mathrm{CN})_{2}$ has also been reported to have a cis configuration ${ }^{94}$. All the ruthenium complexes prepared so far are diamagnetio as expected.

SECTION 5.2

Scope of the Pregent Work in Part II

A number of iron(II) and ruthenium(IT) o-phenanthroline and substituted o-phenanthroline complexes pcepared in this work are 11sted in Table 5.21. Those prepared for the finst time in this mork are mated with an asterisk. The series of complexes ols-M(phen) ${ }_{2} X_{2}$ hat been prepared for $M=\mathrm{Pe}(I T), \mathrm{Ru}(\mathrm{II}) ; \mathrm{X}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{SCR}^{-\times}$and CN^{-}; and phen $=0-$ phenanthroline $(o-p h e n), 5-m e t h y l-0$-phenanthroline (5MePh) and 5-nitro-o-phenanthroline (5NO $\mathrm{O}_{2} \mathrm{Ph}$) por iron, and o-phenanthroisne, 5 methyl-o-phenenthroline and 5 -chloro-g-phenanthroline (5ClPh) for xuthenium.

Some of the complexes containing the substituted $0-p h e n a n t h r o l i n e s ~ h a v e ~ b e e n ~ p r e p a r e d ~ f o r ~ t h e ~ f i r s t ~ t i m e, ~$ al though the o-phenanthroline complexes of both 1 ron(II) and ruthenium(II) axe well known 73,92

A comparative study of the vitraviolet-visible apectra of these complexes has been attempted and is described in Chapter 6. It was necessary to measure the spectro of the iron complezes in the solid state (potassium bromide dises and nujolmulis). Diffeculty was experienced in trying to obtain good solid state spectra. The techniques used are described in gection 6.3. In general the spectra obtained are not of a sufficient quality for useful comparisons.

Table 5.21

Compound	Elemental Analysis								$\begin{aligned} & \text { Conductivity } \Delta_{\mathrm{m}}\left(200^{\circ}\right. \\ & \text { (ongs }^{-1} \text { moles } \\ & \mathrm{cm}^{2} \text {) nitrobenzene } \end{aligned}$
	Found (\%)				Qalculated (\%)				
	c	H	N	x	c	H	i	x	
$\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{3} \mathrm{OL}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	55.6	4.9	-	10.9	55.7	4.7	-	9.2	
$\mathrm{Fe}\left(\underline{\text { g-phen }}{ }_{3} \mathrm{Br}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$	53.8	4.0	-	19.0	53.4	3.7	-	19.7	
$\mathrm{Fe}\left(\underline{\text { ophen }} 3_{3} \mathrm{I}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$	47.5	3.3	-	28.0	46.9	3.5	-	27.6	
$\mathrm{Fe}(\mathrm{omphen})_{2} \mathrm{Cl}_{2}$	58.2	3.9	-	14.0	59.2	3.3	-	14.6	
$\mathrm{Fe}\left(\underline{\text { aphen }}\right.$) I_{2}	42.5	2.4	-	36.9	43.5	2.4	-	37.9	
$\mathrm{Fe}(\mathrm{omhen})_{2} \mathrm{Br}_{2}$	49.9	2.9	-	27.6	50.0	2.9	-	27.8	
$\mathrm{Fe}(\mathrm{s}-\mathrm{phen})_{2}(\mathrm{SON})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	56.2	3.3	15.2	-	56.7	3.3	15.3	-	
$\mathrm{Fe}(\mathrm{g}-\mathrm{phen})_{2}(\mathrm{oN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	64,0	4.0	16.8	-	64.2	3.7	17.3	-	
$\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right) 3^{\mathrm{CI}} 2^{4} 4 \mathrm{FH}_{2} \mathrm{O}$	49.1	4.0	-	8.2	49.4	3.3	\sim	3.1	
$\mathrm{Pe}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cl}_{2}$	50.1	2.7	14.6	-	49.9	2.4	14.6	-	
$\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)_{2} \mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	42.1	2.6	13.0	-	42.1	2.3	12.3	-	
$\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)_{2} \mathrm{I}_{2} \cdot 5 \mathrm{E}_{2} \mathrm{O}$	33.9	2.1	9.5	-	33.9	2.8	9.9	-	
$\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{PL}\right)(\mathrm{SOM})_{2}$	50.2	2.5	17.8	-	50.2	2.3	18.0	-	
$\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)(\mathrm{ON})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	50.3	3.2	18.8	-	50.9	3.3	18.3	-	
$\mathrm{Fe}(5 \mathrm{MePh}) 2_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	59.9	4.0	-	13.5	59.0	4.2	-	13.9	
$\mathrm{Be}(5 \mathrm{MePh})_{2}{ }^{3 x_{2}}$	51.3	3.5	-	26.5	51.7	3.3	-	26.5	
$\mathrm{Ee}(5 \mathrm{MePh}) \mathrm{I}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	38.0	3.6	-	-	40.5	2.7	-	-	
$\mathrm{Fe}(5 \mathrm{MePh})_{3} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	63.6	4.9	-	9.3	62.8	4.6	-	9.5	

* $\mathrm{Fe}(5 \mathrm{MePh})_{2}(\mathrm{SCN})_{2}$	59.7	3.8	15.0	-	60.0	3.6	15.0	-	
$\mathrm{Fe}(5 \mathrm{MePh})_{2}(\mathrm{CN})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	59.3	4.4	14.5	-	59.2	4.9	14.8	-	
$\mathrm{Ru}\left(\underline{\text { opheri) }} 3^{\mathrm{I}} \mathrm{I}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$	47.2	2.9	-	26.2	47.3	2.9	-	27.8	
$\mathrm{Ru}(\mathrm{o}-\mathrm{phen}){ }_{3} \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	55.2	3.9	-	9.2	55.0	4.1	-	9.1	
$\mathrm{Ru}\left(\underline{\text { ophen }}{ }_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$	52.3	3.2	-	12.8	52.4	3.3	-	12.9	0.3
$\mathrm{Ru}\left(\underline{\text { anhen }} 2^{\mathrm{Br}} \mathrm{c}^{-\mathrm{H}_{2} \mathrm{O}}\right.$	45.2	2.6	-	23.7	45.1	2.8	-	25.1	0.6
$\mathrm{Ru}\left(\underline{\rho}\right.$-phen) ${ }_{2} \mathrm{I}_{2}$	40.2	2.3	7.7	-	40.3	2.2	7.8	-	3.0
$\mathrm{Ru}(\mathrm{o}-\mathrm{phen})_{2}(\mathrm{ScNa})_{2}$	53.3	3.1	14.0	-	54.0	2.8	14.6	-	5.5
$\mathrm{Ru}(\mathrm{O}-\mathrm{phen})_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	56.4	3.5	45.3	-	56.8	3.6	15.3	-	2.1
* $\mathrm{Ru}(5 \mathrm{MePh})_{2} \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	49.9	4.1	8.9	11.4	49.4	4.4	8.9	11.2	
* $\mathrm{Ru}(5 \mathrm{MePh})_{2} \mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	46.7	3.8	7.9	22.9	46.8	3.3	8.4	24.0	
* Ru(5uerh $2_{2} \mathrm{I}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	39.4	3.0	6.9	-	39.2	3.3	7.0	-	
* $\mathrm{Ru}(5 \mathrm{MePh})_{2}(\mathrm{SON}) \mathrm{V}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	52.2	3.8	11.9	-	52.4	3.7	13.1	-	
* $\mathrm{Ru}(5 \mathrm{MePh})_{2}(\mathrm{CN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	55.8	4.5	12.7	-	56.5	4.4	14.1	-	
* $\mathrm{Ru}(501 \mathrm{Ph})_{2} \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	44.5	2.9	8.4	20.9	43.9	3.1	8.5	21.6	
* $\mathrm{Ru}(501 \mathrm{Ph})_{2} \mathrm{Br}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	38.6	2.5	7.5	-	38.7	2.7	7.5	-	
* $\mathrm{Ru}(5 \mathrm{ClPh})_{2} \mathrm{I}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	34.3	2.0	6.9	-	35.1	2.2	6.8	-	
* $\mathrm{Ru}(5 \mathrm{ClPh}) 2^{(\mathrm{SCR})} 2.4 \mathrm{H}_{2} \mathrm{O}$	43.3	2.3	12.8	-	43.5	3.1	11.7	-	
* $\mathrm{Ru}(5 \mathrm{ClPh})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	46.8	3.3	12.8	-	47.7	3.4	12.8	-	

[^0]The spectre of the ruthenium complexes have been measured in dichloromethene solutions (Section 6.2). The assignments of absorption bands are discussed and changes in these bands are compared with those obtalned arom a sertes of similar complezes of $2,2^{\prime}$-bipyriayl ${ }^{96}$. Changes in the positions of bands for the intraligand and charge transfer translitions of the rathenium complexes are discussed in detail and an attempt is made to correlate trends with the types of Ilgands coondinated to the metal ion.

Experimenta1

The ferrous complexes were prepared by the methods of Basolo and Dwyer ${ }^{74}$, Baker and Bobonsch 75,76 , Madeja and Konig ${ }^{79}$ and $\operatorname{shilt}{ }^{78}$. These methods have been reviewed. by Konlg ${ }^{73}$. The ruthenium complewes were prepared by the methods of Dwyer et 0166,92. Infrared spectra (4000$1400 \mathrm{~cm}^{-1}$) were recorded for all preparations and were useful for checking the purity of subsequent preparations of the same complex. Tho infrared spectra indioated the presence of water of crystallisation in many of the complexes, and confirmed the elemental analysis in this respect.

IRON(II) COMPLEXES

(i) bris- (o-phenanthroline) iron(II) dichloride hexahydrate $F e(\mathrm{p}-\mathrm{phen}){ }_{3} \mathrm{OL}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
Ferrous chlowide (1 millinole) was dissolved in the minimun mount of water or ethanol and added to a solution of o-phenanthroline hydrate ($\mathrm{o}-\mathrm{phen} \mathrm{H}_{2} \mathrm{O}$) ($3 \mathrm{mlllmoles)}$ in the minimum amount of ethanol. The resultant red coloured solution was evapoxated to small volume and left to arystallise. The product was reerystallised from ethenol and dried in vacuo.
(11) tris- (o-pheanthroline) iron(IT) dibromidetrinyarate, $\mathrm{Fe}(\mathrm{g} \text { - phen })_{3^{B r}}{ }^{-3 \mathrm{H}_{2} \mathrm{O}}$
The complex was prepared as for (1) above. Use of ferrous bromide required a caxbon dioxide atmosphere.
(111) tris-(o-phenanthroline) iron(II)di-iodide tetrahydrate, $\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{3} \mathrm{I}_{2} \mathrm{HH}_{2} \mathrm{O}$
The complex salt was prepared by preclpitation from a concentrated aqueous solution of $\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{3} \mathrm{Ol}_{2}$ by the addition of a large excess of potascium iodide. It was washed with a little cold water, wecrystallised from ethanol and deled in vacuo.
(iv) dichlorobis-(o-phenanthroline) iron(II), Fe(o-phen) $2_{2} \mathrm{Cl}_{2}$

Finely divided Fe (omphen) $3^{\mathrm{Cl}}{ }_{2} \cdot 6 \mathrm{H}_{2}$ was rerlured in benzene (10 hrs). The blue product was fllered, dried
and then heated to constant weight at $100^{\circ} \mathrm{C}$ in vacuo for several hours and was cooled in a desiccator.
(v) dibromobis-(0-phenanthroline) sron(II), $\mathrm{He}(0-\mathrm{phen}){ }_{2} \mathrm{Br}_{2}^{75}$

Finely divided $\mathrm{Fe}(\mathrm{m}-\mathrm{phen})_{3} \mathrm{Br}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was refluxed in methylcyclohexane for tour days. The purple compound obtained wes filtered and dried in vacuo.
(Ti) di-iodobis-(g-phenanthroline)ixon(IT), Fo(o-phen) $I_{2}{ }^{75}$
Enely divided Fe(omphen) $3^{T}{ }^{4} 4 \mathrm{H}_{2} \mathrm{O}$ wes heated in vacuo at $180^{\circ} \mathrm{O}$ until no further loss of o-phenanthroline was observed visually
(vit) bisthiocyanatobis-(g-phenanthroline) iron(Ix) monohydrate, $\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{2}(\mathrm{SON})_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{75}$
Ferrous chlomide hyarate (0.5 gm) and potassium thiom cyanate (35 gm) were dissolved in water (100mts) and pyriaine (1.5 ml) was added. A yellow precipitate of Fe(pyridine) ${ }_{4}(\mathrm{SCN})_{2}$ mmediately fomed. It wes filtered and dried in vacuo over calcium chloride.

The freshly prepared pyridine oomplex (1 gm) was dissolved in chloroform (about 20 mls) and g-phenanthroline hydrete (1gm) was edded. The purple product which cxystallised out was filtered and dried in vacuo.
(viil) dicyanobis-(o-phenanthroline) iron(II)monohydrate, $\mathrm{Fe}(\mathrm{g}-\mathrm{phen})_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{78}$

The 11 gand o-phenanthroline hydrate (1.5 gm) and
ferrous sulphate heptahydrate (0.7 gm) were dissolved in
water (100mls). The dark red solution was heated to Just below bolling and a freshly prepared solution of potassium cyanide (2.5 gm in 2.5 mls of water) was added with stirring to the hot solution, which was left to cool. A blue product separated after several hours which was filtered and dried in vacuo.
(ix) tris-(5-nitro-o-phenanthroline)iron(II) dichloride tetrahydrate, $\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{PH}\right)_{3} \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

This was prepared as described for $\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{3} \mathrm{Cl}_{2} 6 \mathrm{H}_{2} \mathrm{O}$
((1) above).
(x) dichlorobis-(5-nitro-o-phenanthroline) iron(II), $\mathrm{Fe}\left(\mathrm{SNO}_{2} \mathrm{ph}\right)_{2} \mathrm{OL}_{2}$

Pyridine was added to an ethanolic solution of ferpous chloride in the ratio of 4 moles of pyrtdine to 1 mole of Fe. The purple solution was evaporated to dryness to obtain $\mathrm{Fe}(\mathrm{py})_{4} \mathrm{OL}_{2}$.

A solution of $\mathrm{Fe}(\mathrm{py})_{4} \mathrm{OI}_{2}$ (1gm) in dry pyridane (10mls) was heated to bolling under a nitrogen atnosphere and filtered through a sintered glass disc into a hot solution of dry (resublimed) $5-n i t r o-0-p h e n a n t h r o l i n e ~(0.7 \mathrm{gm}$) in dry pyridine (2mi). Violet crystals of $\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{ph}\right)_{2} \mathrm{Cl}_{2}$ were obtained. These were illtered, washed with dry pyridine followed by ether and dried in vacuo.
(xi) dibromobis-(5-nitromomenanthroline) iron(II) hydrate, $\mathrm{He}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)_{2} \mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.
Ferrous bromide (1 milimole) and 5 -nitro-o-phenthroline (2 millimoles) were dissolved in ethanol. The red solution was evaporated to a small rolume. The purple product was riltered, gashed with water, and dried in vacuo.
(xii) di-iodobis-(5-nitro-o-phenanthroline)icon(II) pentahydrate, $\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)_{2} \mathrm{I}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)_{3} \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ prepared as in (ix) above, was dissolved in ethanol, and excese potassium iodide was added to the hot solution. The resulting precipitate wes filtered, washed with water and dried in vacuo.
(xiii) bis-thiocyanatebis-(5-nttro-g-phenanthroline)iron(II), $\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)_{2}(\mathrm{SCN})_{2}$
The complex was prepared as described for Fe(ophen) 2^{-} $(\mathrm{SCN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ((vLi) above).
(xiv) dicyanbis-(5-nitro-o-phenanthroline)iron(II)trihydrate, $\mathrm{Fe}\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)_{2}(\mathrm{CN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

The complex was prepared as described for $\mathrm{Fe}(\mathrm{g}-\mathrm{phen})_{2}{ }^{-}$ $\left.(\mathrm{CN})_{2} \cdot \mathrm{H}_{2}\right)$ ((vili) above).
(xv) tris-(5-methyl-o-phenanthroline) iron(II) dichloride dinydrate, $\mathrm{Fe}(5 \mathrm{MePh})_{3} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
The complex was prepared as described for $\mathrm{Fe}(\mathrm{o}-\mathrm{phen}) 3^{-}$ $\mathrm{CI}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ((1) above).

(xvi) dichlorobis-(5-methyl-o-phenanthroline)iron(II)

 hydrate, $\mathrm{Fe}(5 \mathrm{MePh})_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$Einely duided $\mathrm{Fe}(5 \mathrm{HePh}) \mathrm{Cl}_{2} \cdot 2 \mathrm{KH}_{2} \mathrm{O}$ was heated in vacuo at $180^{\circ} \mathrm{O}$ to constant weight (approx. 20hrs).
(xvii) dibromobis-(5-methyl-o-phenanthroline) iron(TT). $\mathrm{Fe}(5 \mathrm{MePh})_{2} \mathrm{Br}_{2}$
The complex $\operatorname{Fe}(5 \mathrm{MeFh}) 3^{\mathrm{Br}} 2^{2}$, prepared as described in (11) above for $\mathrm{Fe}(\mathrm{o}-\mathrm{phen}) 3^{\mathrm{Br}} \mathrm{e}^{\cdot} 3 \mathrm{H}_{2} \mathrm{O}$, wan finely divided and heated in vacuo at $180-190^{\circ} \mathrm{C}$ for about 100 hours until evolution of 5-methyl-o-phenanthroline ceased.
(xvili) di-iodo-bism (5-methyl-o-phenantheoline) iron(II) tetrahydrete, $\mathrm{Fe}(5 \mathrm{ERPh})_{2} \mathrm{I}_{2} .4 \mathrm{H}_{2} \mathrm{O}$
Finely divided Fe(5heph) 3^{2}, prepared an described for $\mathrm{Fe}(\mathrm{omphen})^{\mathrm{T}} 2^{4} 4 \mathrm{H}_{2} \mathrm{O}$ in (ini) above, was heated for several days at $150-180^{\circ} \mathrm{C}$ until evolution of 5 -methyl-o-phenanthrollne ceased.
(xix) bis -thioeyanatebise(5-methyl-g-phenanthroline) iron(II), $\mathrm{Fe}(5 \mathrm{MePh})_{2} \mathrm{SCN}_{2}$
The complex was prepared Erom $\mathrm{Fe}(\mathrm{py})_{4}$ (SON $_{2}$ gs described for $\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{2}(\mathrm{SON})_{2}(($ vil $)$ above).
($x x$) dicyanobis-(5methyl-omphenanthroline) iron(II) tetrehydrate, $\operatorname{Fe}(5 \mathrm{MePh})_{2}\left(\mathrm{CN}_{2} 4 \mathrm{H}_{2} \mathrm{O}\right.$
The complex was prepared as described for $\mathrm{Fe}(\mathrm{g}-\mathrm{phen})_{2}^{-}$ (ON) $2^{*} H_{2} \mathrm{O}$ ((vili) above).

RUTHENIUM(II) COMPLEXES

(1) o-phenanthrolinium tetrachloro-(o-phenanthroline)ruthenate(III) monohydrate, $\left[\mathrm{o}-\mathrm{phenH}^{+}\right]\left[\mathrm{RuCl}_{4}\right.$ ($\mathrm{o}-\mathrm{phen}$) $]-$. $\mathrm{H}_{2} \mathrm{O}^{66}$
Potassium pentachloroaquoruthenate ($\mathrm{K}_{2} \mathrm{RuCl}_{5} \mathrm{H}_{2} \mathrm{O}$) (1 millimole) (page 28) was dissolved in the minimum amount of 1 N HCI in a stoppered flask. The 11 gand o-phenanthroline hydrate (1 millimole) was aded to the solution at $30^{\circ} \mathrm{C}$ and the mixture was shaken vigorously to dissolve the base. It was left to stand overnight on a cooling waterbath. Light brown needles of the comples were collected, washed with cold water, and dried in vacuo. The complex was used for further preparations without further investigation.
tris- (o-phenanthroline) ruthenium(II) di-iodide monohydrate, $\mathrm{Ru}(\underline{g}-\mathrm{phen}) 3^{\mathrm{I}} 2^{\cdot \mathrm{H}_{2} \mathrm{O}}$
Potassium pentachlorohydroxyruthenate $\left(\mathrm{K}_{2} \mathrm{RuCl}_{5} \mathrm{OH}\right)$ (1 gm), (page 28) was dissolved in hot water (25ml) containing 1 drop of 5NHCl. The 1igand o-phen. $\mathrm{H}_{2} \mathrm{O}(\mathrm{O} .8 \mathrm{~g})$ was added with shaking, and after boiling for a few minutes a deep green-brown solution was obtained. Hypophosphorous acid $(30 \%, 1 \mathrm{ml})$, neutralised with a sew drops of 2 N sodium hydroxide was added to the solution and the mixture was refluxed for 10-15 minutes. The colour changed to a deep red. The solution was filtered and saturated aqueous
potassium lodide was added sloviy until crystallisation started. The mixture was shaken vigorously for several hours and the crystalline solld which separated was filtered, washed with a little cold wher, and dried in vacuo.
(1i1) tris-(o-phenanthroline)ruthentum(II) dichlortde tetrahydrate, $\mathrm{Ru}(\mathrm{g}-\text { phen })_{3} \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
Rutheniun trichloride hydrate ($\mathrm{RuCl}_{3} .3 \mathrm{H}_{2} \mathrm{O}$) (0.3 gm) and o-phenanthroline (1.0 gm) were realuxed in ethanol. (400 ml) for several hours until a green solution was obtained. Sodium dithionite (0.1 gm) was aded to the hot solution and gave a vigorous reaction. The solution changed colour to orangemed and was distilled down to a amall volume and finally evaporated to dryness on a water bath. The residue was redissolved in a small volume of water. The solution was filtered and a large excess of A. R. potassium chloride was added to precipitate the complex. The product was filtered, washed with a few drops of cold water, and dried in vacuo.
(iv) dichlorobis-(o-phenanthroline)ruthenium(II) monohydrate, $\mathrm{Ru}(\mathrm{o}-\mathrm{phen})_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{92}$
The oo mpound $\left[\mathrm{o}-\mathrm{phenH}^{+}\right]\left[\mathrm{RuCl}_{4}(\mathrm{o}-\mathrm{phen})\right] \quad(1 \mathrm{gm})$ wes suspended in redistilled dimethylformamide (20mi) and refluxed for 2 hours. The brown solution changed to a
deep purple colour. The solution was reduced in volume to 5 ml by distillation under reduced pressure over a period of an hour. The remalning solution was cooled and the complex was precipitated by the addition of acetone (20ml). The product was elltered and was suspended in a 50% ethanol/water mixture which was refluxed, filtered, and let on a water bath until the ethanol had evaporated. Freshly reorystallised lithium chloride (10 gm) was added and after 4 hours at room temperature the complex was filtered, washed with water, methanol, and finally acetone, before drying in vacuo.
(v) dibronobis-(o-phenanthroline)ruthenium(II) monohydrate,
$\mathrm{Ru}(\mathrm{q}-\mathrm{phen})_{2} \mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O} 92$
The compound $\mathrm{Ru}(\mathrm{o} \text { - phen })_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was suspended in a 50% ethanol/water mixture and the solution was refluxed until all the solld had dissolved. The violet solution was illtered and a large excess of A.R. potassium bromide was added. The solution was evaporated to a small volume on a waterbath and the complex was lett to crystallise. The product was filtered, washed with water and dried in vacuo.
(vi) di-iodobis-(o-phenanthroline) ruthenium(II), $\mathrm{Ru}(\mathrm{o}-\mathrm{phen})_{2}-$ $I_{2} 92$

The complex was prepared from $\mathrm{Ru}(\underline{o}-\mathrm{phen})_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as for (v) above using A.R. potassium lodide.
(vii) bisthioeyanatebis-(Q-phenanthroline)ruthenium(II) $\mathrm{Ru}(\mathrm{o}-\mathrm{phen})_{2}(\mathrm{sCN})_{2}{ }^{92}$

The complex was prepared from $\mathrm{Ru}(\mathrm{g}-\mathrm{phen})_{2} \mathrm{OH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as outlined in (v) above using AR potassium thiocyanate.
(vili) dieyanobis-(o-phenanthroline) ruthenium(IT) dhydrate, $\mathrm{Ru}(\mathrm{o}-\mathrm{phen})_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} 92$

The compleq was prepared as outlined in (v) above, using $A R$ potassium cyanide.
(bx) 5-methyl-q-phenanthrolinium tetrachloro-(5-methyl-gphenanthroline) ruthenate(III), $\left[5 \mathrm{HePhH}^{1}\right]\left[\mathrm{RuCl}_{4}(5 \mathrm{GePh})\right]$ The complex was prepared from potasstum pentachlorom aquoruthenate as outlined in (1) above using 5 -methyl-ophenanthroline. It was used for futher preparetions without further investigation.
(x) dichlorobis-(5-methyl-o-phenanthroline) ruthenium(IT)
tetrahydrate, $\mathrm{Ru}(5 \mathrm{MePh})_{2} \mathrm{CI}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
The compound $[5 \mathrm{MePhH}]\left[\mathrm{RuOL}_{4}(5 \mathrm{MePh})^{-}\right](1.0 \mathrm{gm})$ was suspended in ethanol (100 ml). Zinc powder (0.5 gm) and 5NHCL (10ml) were added and the mixture was refluxed untll the colour changed from brown to deep purple. The heating was continued until effervescence ceased. The solution was filtered and evaporated to dryness. The residue was extracted in a soxhlet using a 10% water/ethanol mixture. An excess of lithium chloride was added to the extract which was left to cool. The complex cxystallised slowly
and was filtered, washed with water and dried in vacuo. The following complexes (numbers (xi) to (xiv)) were prepared from $\mathrm{Ru}(5 \mathrm{MePh})_{2} \mathrm{Cl}_{4} \cdot 4_{2} \mathrm{O}$ by the methods outlined in (v), (vi), (vii) and (viii) above:
(xi) dibromobis-(5-methyl-o-phenanthroline) ruthenium(II) monohydrate, $\mathrm{Ru}(5 \mathrm{MePh})_{2} \mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
(xii) di-iodobis-(5-me thyl-o-phenanthroline)ruthenium(II) treshydrate, $\mathrm{Pu}(5 \mathrm{MePh})_{2} \mathrm{I}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
(xili) bisthiocyanatobis-(5-methyl-o-phenanthroline) rutheniun(II) dinydrete, $\mathrm{Ru}(5 \mathrm{MePh})_{2}(\mathrm{SCN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(xiv) dicyanobis-(5-methyl-o-phenanthroline)ruthenium(II) trihydrate, $\mathrm{Ru}(5 \mathrm{MePh})_{2} \mathrm{CNN}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
(xv) 5-chloro-o-phenanthroliniumtetrachloro-(5-chloro-Q-phenanthroline) ruthenate (III) , [501PhH $\left.{ }^{\dagger}\right]\left[\mathrm{Ru}(5 \mathrm{CIPh}) \mathrm{CI}_{4}^{-}\right]$
The compound was prepared by the method outlined for $5 \mathrm{MePhH} \mathrm{Ru}(5 \mathrm{RePh}) \mathrm{Ol}_{4}$ in (ix) above. It was used for Purther reactions without fux ther investigation.
(xvi) dichlorobis-(5-chloro-o-phenanthroline) ruthenium(II) trinydrate, $\mathrm{Ru}(5 \mathrm{ClPh})_{2} \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.
The complex wes prepared by zinc/hydrochloric acid reduction of $\left[501 \mathrm{PhH}^{7}\right]\left[\mathrm{Ru}(501 \mathrm{Ph}) \mathrm{CI}_{4}^{-}\right]$as outilned in (x) above.

The following complexes (numbers (xvil) to (xx)) were prepared from $\mathrm{Ru}(501 \mathrm{Ph})_{2} \mathrm{OL}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ as outlined in (v), (vi), (vii) and (viii) above.

reaction procuct in the region $2100-1950 \mathrm{~cm}^{-1}$. Zinc/ hydrochlorte acia reduethon gave mixtures of compounds which coun not be purdeied. These were suspected to contain 5-amino-o-phenanthroline since Nok stretching bends could be detected in the infrared spectra of the complexes.

Because of the difficulty experienced in purifying the compounds formed they vere not further investigated.

Molecular orbital diagram for an octahedral complex containing π ribonding ligands.
(Gray and Beach ${ }^{97}$)

CHAPTER 6

U1traviolet-Visible Spectra

SEOTION 6.1

General Introduction

Three main types of electronde transitions are expected for the bis- and trism o-phenonthroline complexes of ruthenium(II) and iron(II): (1) Iigand field transitions, (2) charge transfer transitions and (3) intraligand $\pi \rightarrow \pi^{*}$ transitions. The following discussion will be based on the molecular orbital scheme shown in Figure 6.11. This molecular orbital model was derived by Gray and Beach 97 for hexacyano- and hexacarbonyl- complexes. Use of this model for the o-phenanthroline complexes can only be qualitative because:
(1) the hexacyano and hexacarbonyl complexes have regulax octahedral symmetry whereas the tris- and bism octahedral complexes of $\mathrm{g}-\mathrm{phenanthrollne}$ have D_{3} and O_{2}. symmetry respectively (assuming the latter to have the ols contiguration), as in Figure 6.12.
(2) The role played by π-bonding in the o-phenenthroline complexes is not well known. It is usually considered to be an important feature of the bonding, howevex alrect evidence is lacking.
(3) The cyano and carbonyl ligands have only one set of

RIGURE 6.12

SYMMETVY OF THE Whem and trism (omphananthrtitw) oomplexes

$$
\operatorname{Tris} \quad\left(D_{3}\right)
$$

Bis $\quad\left(\mathrm{C}_{2}\right)$
non-degenerate π - orbitals, whereas o-phenanthroline has several.
(4) The presence of two different types of ligends in the complexes will complicate the relatively simple molecular orbital scheme derived using six identical ligands. The effect on the overall molecular orbital scheme cannot be readily predicted.

Metal orbitals will be grouped as t_{2} and e although these groups will be split by the low symmetry.

IMTRALIGAND $\pi \rightarrow \pi$ TRANSITIONS

Three Intraligand $\pi \rightarrow \pi^{*}$ transitions for o-phenanthrollne give absorbtion bands in the accessible region of the ultraviolet spectrum below $50,000 \mathrm{~cm}^{-1}$. These bands occur at $31,000 \mathrm{~cm}^{-1}(\varepsilon \sim 300), 38,000 \mathrm{~cm}^{-1}(\varepsilon \sim 30,000)$ and $43,500 \mathrm{~cm}^{-1}(\varepsilon \sim 38,000)$ and have recently been assigned (in terms of the four lowest excited singlet states of phenanthene: $\alpha, p, \beta, \beta^{\prime}$ to the α, β and β bands respectively, with the pand contained within the envelope of the β bend ${ }^{103}$. This disagrees with a previous assignment of the o-phenanthroline spectrum ${ }^{103 a}$. No $n \rightarrow T^{*}$ transitions are observed for 0 -phenanthroline ${ }^{98}$. The approach used in the present work is en empirical one and the spectra will be discussed in terms of a high energy $\pi \rightarrow \pi{ }^{*}$ (2) transition (the β band) and a Low energy $\pi \rightarrow \pi^{(4}(1)$ transition (p and $\beta^{\text {bands). The } \alpha}$ band is weak and is frequently not resolved in the spectra
of the complexes.

The Low Energy Intra 11 gand Transition ($\pi \rightarrow \pi(1)$)

The low energy $\pi \rightarrow \pi$ band has considerable structure both in the spectra of the free 1 igands (Figure 6.21) and in the complexes. This structure may be due to vibrational effects e.g. ${ }^{103}$, and is also due to the presence of two transitions within the band envelope (the pand β^{\prime} transitions). The band generally shifts to lower energy on coordination of the IIgand to a metal ion. This has been attributed to the influence of positive charge on the energy levels of the $11 \operatorname{gand}^{99,100,101 \text {. The efrect is }}$ observed for the protonated 1 ggands ${ }^{102,103}$ and is often found to be greater for complexes of trivalent metal ions than for those of divalent metals 96 .

HLgh Energy Intraligand Transition ($\pi \rightarrow \pi$ (2))

The high energy $\pi \rightarrow T$ twansition has not been observed
in most spectral studies of o-phenanthroline complexes. Consequently th hes not been discussed. In a study of the closely related bis- and tris- (2.2 -bipyridyl)iron(II) and ruthenium(II) complexes it was found that shiets in the position of the $\pi \rightarrow T(2)$ band were less regular than those of the low energy ($\pi \rightarrow \pi^{*}(1)$) band ${ }^{96}$.

CHARGE TRANSFER TRANSITIONS

Two types of charge transfer are possible for these complexes: (1) ligand \rightarrow metal charge transfer and (2) metal \rightarrow IIgand charge transfer. These will be discussed
separately.

(1) Isgand \rightarrow Hetal Oharge Trangfer

Ligand \rightarrow metal charge transter involves the protiotton of an electron from orbitals localised mainly on the ligands to orbitals loealised mainly on the metal ions. The acceptor orbitals of the metal will be the e (σ^{*}) orbitals in the case of the low pin compleres and may be either the t_{2} or e orbitals of the high spin complezes. No bends have been assigned to ligand \rightarrow metal transitions In the present work, nor have they been observed for the closely related blpyriay complexes ${ }^{96}$.
(2) Metal \rightarrow Ligana Charge Transfer

Metal $\rightarrow 11$ gand charge transter corresponds to the transfer of an electron from molecular orbitals localised mainly on the metal $\left(t_{2}\right)$ to oroitals localised mainly on the Ilgand (T^{*}) . Many $\alpha=$ dimimine complexes with iron group metals including those of o-phenanthroline and 2, 2^{\prime}-blpyxidyl ${ }^{104 a, b}$ have an intense band near $20,000 \mathrm{~cm}^{-1}$ $\left(\varepsilon \sim 10^{4}\right)$. Mhis band has been ascugned as a metal \rightarrow IIgand charge transfer band, both empiricaily e.g. 104,105, and on the basis of theoretical calculations e.g. 99,100 . The bend is obaerved to move to higher energy as the strength of the average 1 igand $1 \pm e l d$ about the metal ion Is increased $79,96,105$. This corresponds to an increasing stabilisation of the ${ }^{5}$-orbitals with respect to the

1igand $\pi^{\text {b }}$-antibonding orbitals (see page 143).
The band has considerable structure with one or moxe shoulders on the high energy side of the main band. This has been assigned to vibrational structure $100,103,105$. A recent theoretical study has shown that two overlapping charge transfer transitions occur within the band envelope ${ }^{117 \text {. For some complexes shoulders have also been }}$ observed on the low energy side of the band.

A second band at about $28,000 \mathrm{~cm}^{-1}$ has been observed for some complexes of $2,2^{\prime}$-blpyridyl. This band has been assigned to a high energy metal \rightarrow ligand charge transfer transition 96,106 . The energy of this band, Ilke the $\pi \rightarrow \pi$ (1) bend, increases as the average ligand iteld strength about the metal Ion increases. For the bipyriayl complexes the energy differcnce between the two Intraligand $\pi \rightarrow \pi^{\text {米 }}$ transitions is of the same order as that between the two charge transfer transitions (approximately $\left.7,000 \mathrm{~cm}^{-1}\right)^{96}$ sucgestang that the same two $\pi^{\text {m-acoeptor }}$ orbitals may be involved in each case.

LIGAND FTELD TRANSITIONS

Generally the ligand field bends are masked by the intense charge transfer band in the visible region. Attempts have been made to observe the ligend field spectra of the $\mathrm{Fe}(\mathrm{g}-\mathrm{phen}){ }_{2} \mathrm{X}_{2}$ complexes ${ }^{79}$, and of the tris-(ophenanthroline) ruthenium(II) cation ${ }^{95}$.

Inon Complexes

Rellectance spectra have been measured for the high spin compounds $\mathrm{Fe}(\mathrm{o}-\mathrm{phen})_{2} \mathrm{X}_{2}, \mathrm{X}=\mathrm{Cl}^{-}, \mathrm{Br}^{-2}, \mathrm{SON}^{-}, \mathrm{N}_{3}{ }^{-}$. $0 \mathrm{CN}, \mathrm{HCOO}^{-}$, and for the low spin compound $\mathrm{Ee}(\mathrm{g}-\mathrm{phen})_{2}(\mathrm{CN})_{2}{ }^{79}$ For the high spin complexes two bands were observed near $10,000 \mathrm{~cm}^{-1}$. The average energy of the two bands was observed to increase as the antonic Iigand was changed in the above order from chloride to formate. These bands were assigned to the ${ }^{5} \mathrm{II}_{2} \longrightarrow{ }^{5}$ E transition, the observed splitting being due to the low symmetry of the elscompounds. For the low spin complexes $F e(0-p h e n)_{2}(O N)_{2}$ $\mathrm{Fe}(\text { o-phen })_{3} \mathrm{OL}_{2}$ and $\mathrm{Fe}(\mathrm{blpy})_{3} \mathrm{CL}_{2}$ a Low intensity band has been observed at about $12,000 \mathrm{~cm}^{-1} 73.79$. For the dicyanom complex the band was ordginally aselgned to the $1_{A}{ }_{1} \longrightarrow 1_{I_{1}}$ trancition, however it has been recently sssigned to the spin forbidden $1_{A_{1}} \rightarrow 3_{\mathbb{N}_{1}}$ transition 73,106 .

Ruthentur Comolexes

All the ruthenium(II) complexes prepared so far are low spin with ${ }^{1} A_{i}$ ground states. An attempt has been made to determine the 1 Igand fleld bands of $R u(0-p h e n) 3^{2+}$ from the emission spectrum of the complex. A band observed at $17.700 \mathrm{~cm}^{-1}$ was initially ascigned to the $1_{T_{1}} \longrightarrow{ }^{1} A_{A}$ ligand field transition 95 , but has recentiy been assigned as a $7 \operatorname{man}_{2 \mathrm{~g}}$ oharge transfer omission band ${ }^{95 a}$.

Iigand field bands have not been observed in the present wort and will not be discussed further.

BFPEOT OF JIGAND SUBSTITUENTS

A number of studies have been made of the stability constants and reduction-oxidation potentials of the ferroin and serroin-ferrin systems involving substituted phenanthroline 11gands e.g. $107,108,109$. Similer studies have also been carried out on the ruthenium aystem ${ }^{110}$. The stability of the complexes to acid decomposition generally follows the order of pKa's of the substituted 21gands e.g. 5 MePh $>\mathrm{g}^{-\mathrm{phen}}>5 \mathrm{PhenylPh}>501 \mathrm{Ph}>5 \mathrm{NO}_{2} \mathrm{Ph}^{108}$.

The ligand field band energies of the blse (o-phenanthroline) copper(IT) complexes also follow this order ${ }^{111}$. The observed order may be attributed to substituent indscative effects on the σ system of the phenanthroline 11gands.

The positions of the $t_{2} \longrightarrow \pi$ and $\pi \rightarrow \pi{ }^{*}$ bands winl depend on the effect of the substituents on the π-system of the 11 gand . This will not necessarily be the same as the influerce of the substituents on the bonding syster. Day and Saunders 100 have Investigated the position of the $t_{2} \longrightarrow \pi(1)$ transition x or a number of methyl-substituted fexroin complexes. They found that when more than
 (Bolyont : vater)
(a) Tron(IT) Compheses 108

$\begin{aligned} & \mathrm{Pe}(5 \mathrm{HePh})^{2+}{ }^{2+} \\ & \text { He(0-phen) } 2+ \\ & \mathrm{Fe}(5 \mathrm{Fhenyl} \mathrm{Ph})_{3} \\ & \mathrm{Pe}(50 \mathrm{Ph})^{2+} 3^{2+} \\ & \mathrm{Fe}(5 \mathrm{NO}, \mathrm{Ph})_{3}^{2+} \end{aligned}$	

(b) Ruthemiun(II) Gomplexes 110
$\theta_{\text {max }}\left(\mathrm{cm}^{-1}\right)$
19,400
19,600
19,400
19.550

19,600

$\mathcal{J}_{\text {Bax }}\left(\mathrm{cm}^{-1}\right)$
22,400
22,300
22.250
one substituent was present the overall influence of the substituents was adattive.

Table 6.11(a) 11sts the energy in cm^{-1} for the $t_{2} \rightarrow \pi(1)$ transition of several ferroin complexes of $5-$ substituted o-phenanthrolines ${ }^{108}$ " Similar data is listod in Table 6.11 (b) for some tris-(5-substituted-0 phenanthrom line) cuthenium complexes ${ }^{110 \text {. The orcer of energies found }}$ 15:
$M\left(\right.$ (o-phen) $3^{2 t}=M\left(5 \mathrm{NO}_{2} \mathrm{Ph}\right)_{3}^{2+}>$
$M(5 M \mathrm{MPh}) 3^{2 t}>M(501 \mathrm{Ph}) 3^{2+}$
It an be seen that inductive substituents, both electron donating and electron withoraming, have a greater crect on the position of the band than does the mesomeric nitro-substituent. The position of the $\pi \rightarrow \pi(1)$ band for the 5-substituted-o-phenanthrolines used in the present work followa a similar order (Table G.21).

TABLE 6.21

ULTRA VIOLET - VISIBLE SPBCIRA OF THE O-PHENANTHROLINE LIGANDS a

Compound	Solventor Solid state Matrix	b	$\pi \rightarrow \pi *$ (1) Band	$\pi \rightarrow T *(2) B a n d$
o-phen		2	37,450; (29,400; $30,900: 32,300 ; 34,900 ; 36,900)$	$44.400 ;(43,500)$
	$\mathrm{H}_{2} \mathrm{O}$	ε	2.4×10^{4}	5.8×10^{4}
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2 ε	$\begin{aligned} & 37,750 ;(29,600 ; 30,300 ; 30,900 ; 32,300 ; 34,700,36,200) \\ & 2.6 \times 10^{4} \end{aligned}$	
	KBrdise	2	37,200: (33.900)	44.400
5McPh	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ν ε	$\begin{aligned} & 37,200 ;(29,800 ; 30,300 ; 33,200 ; 34,500) \\ & 3.0 \times 10^{4} \end{aligned}$	
	KBrdisc	\bigcirc	36,$700 ;(34,000)$	43.900
5c1ph	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & \partial \\ & \varepsilon \end{aligned}$	$\begin{aligned} & 36,100 ;(28,000 ; 29,500 ; 33,000 ; 37,000) \\ & 3,03 \times 10^{4} \end{aligned}$	
$5 \mathrm{NO}_{2} \mathrm{Ph}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ν ε	$\begin{aligned} & 36,430 ;(28,800 ; 30,300 ; 31,500) \\ & 2.25 \times 10^{4} \end{aligned}$	$(41,300)$

a Shoulders associated with the main band are in parentheses b wave number (D) in cm^{-1}.

SECTION 6.2
Discussion of the Electronic Spectra of some
o-phenanthroline Complexes of Ruthenium(II)

INTRRODUCTION

The ultraviolet-visible spectra of the complexes $\mathrm{Ru}\left(\right.$ phen ${ }_{2} \mathrm{X}_{2}$ have been measured where phen $=0-$ phenan throllne, 5-chloro-o-phenanthroline and 5-methyl-o phenanthroline, and $X=\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{SON}^{-\infty}$ and ON^{-}. only one tris complex, $\operatorname{Ru}(\underline{q}-\mathrm{phen}) 3^{\mathrm{Cl}} 2^{2}$, has been studied. Solvents used were nitrobenzene and dichloromethene rather than strongly coordinating solvents such as water and ethanol ${ }^{112}$. Some speetra were also measured in dimethyliormamide solutions. Numerical data for the free ligands whose complexes are studied in this section and in Section 6.3 are Ilsted in Table 6.21. Numerical data for all the ruthenium complexes are 1isted in Table 6.22, and the spectral curves for some of the o-phenanthroline complexes, which are typical of those obtained, are illustrated in Figure 6.22.

All the complexes gave spectra with a band near $20,000 \mathrm{~cm}^{-1}\left(\varepsilon \sim 10^{4}\right)$ with one or more shoulders to higher energy and, for some of the complexes, a shoulder to lower energy. The spectra of some complexes showed a band at
$\sim 28,000 \mathrm{~cm}^{-1}(\varepsilon \sim 500)$. These bands are both assigned.
graven 6.21

to metal \rightarrow Iigand charge transfer transitions.
All the compounds have a band at $\sim 38,000 \mathrm{~cm}^{-1}$ $\left(\varepsilon \sim 10^{5}\right)$ which is assigned to an intraligand transitiong This band has a large number of shoulders to lower energy which are attributable to vibretional structure and to the presence of two overlapping transitions within the band envelope (page 134).

DISCUSSION

Charge Transfer Transitions

(1) The Low Energy Oharge Transfer Band ($t_{2} \rightarrow \pi$ (1))

The band near $20,000 \mathrm{~cm}^{-1}$ has been aselgned by prevlous workers (page 136) to a metal \rightarrow I1gand charge transter transition $99,100,104,105$. For oipyridyl complexes the intensity of the band has been shown to increase as one, two and three bipyridyl ligands are coordinated to the metai ${ }^{96}$ indicating that the transition involves the bipyridyl ligand. This has also been generally observed in the present work for the bis- and trig-(o-phenanthroline) complexes.

The energy of the band varies greatly with increasing average ligand field strength about the metal ion as tollows:

$$
(0-\mathrm{phen})>\mathrm{CN}^{-}>\mathrm{SCN}^{-}>\mathrm{I}^{\infty} \sim \mathrm{Br}^{-}>\mathrm{Cl}^{-}
$$

The order is essentially the same for the complexes of

FIGURE 6.22

all the substituted phenanthroline 1igands (Higure 6.22) although the selative energy of the bands bor the at-lodom and abromom complezes alstar.

As the average Ilgand field strength ebout the metal Lon Is Increased the metal 2_{2}-orbitals wil be ineseasingly stabilised vith respect to the ligand te opbitals. This eftect is, as expected, more pronounced when good π acceptow Liganas such as thiocyanate, cyanide and o-jhenanthroline are coordingted to the metal ton (Figure 6.23). The energy of this band can be regatded as reclocting the mexenging importance of π-bondtng the the gestes.

$$
\mathrm{OL}^{-\infty} \sim \mathrm{Br}^{-\infty} \sim \mathrm{I}^{-\infty}<\operatorname{son}^{-}<\mathrm{OL}^{-}<\mathrm{g}^{-\infty h e n}
$$

The onder of band energiac for the dinferent phenamthroline 11gends 18
e-pher >5 5RePh $>$ 501Ph
whioh is sinilar to that found for the fetge complexes of $\operatorname{sron}(T I)^{100}$ and whthensun(TI) ${ }^{110}=$

For the complexes Ru(phen) $2_{2}{ }_{2}$ the energy of the band veries more then X changes than then the substitutent or the phenanthroline 11gand is changed (Eigure 6.23). Thererose any duferences in the metal-11gend bonding which result from the introcuction of cubstituents on to the phenanthroline skeleton do not seem to be reslected In the energy of the Low energy metal \rightarrow IIgand charge

PICURE 6.23

BNERTY OF TMA $t_{2} \rightarrow \pi^{*}(1)$ BAND GOR THE Ru(phen), x_{2} complexas (Solvents $\mathrm{CH}_{2} \mathrm{CL}_{2}$)

tronsfer band to any great extent.
The position of the band is markedly dependant on the solvent in which the spectra are measured. For $\mathrm{Ru}(\mathrm{g}-\mathrm{phen})_{2}(\mathrm{CN})_{2}$ the order of band energy for different solvents is

$$
\mathrm{EtOH}>\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{DMF}>\phi \mathrm{NO}_{2}
$$

For the complexes of the weak fleld ligands chloride and bromide the order is

$$
\mathrm{DMP}>\mathrm{OH}_{2} \mathrm{OL}_{2}>\phi \mathrm{NO}_{2}
$$

The solvent induced shifts in the band energy cannot be attributed to differences in the dielectric constants of the solvents which are in the following order 113.115 :
$\operatorname{DMF}(36.7)>\phi \mathrm{NO}_{2}(34.8)>\mathrm{EtOH}(24.3)>\mathrm{CH}_{2} \mathrm{Cl} 2(9.08)$

In this work comparisons of the positions of bands are made for spectra measured in the same solvent.
(2) The High Energy Charge Trensfer Transition ($t_{2} \rightarrow \pi$ (2)

An absorption band is observed for some of the complexes near $28,000 \mathrm{~cm}^{-1}$ with an extinction coefficient of \sim 500. The band is clearly resolved only for the o-phenanthroline complexes with weak fleld ligands. Sone of the complexes of the substituted phenanthrolines have bands near $28,000 \mathrm{~cm}^{-1}$, but usually an unresolved shoulder is observed.

The spectra of the bipyridyl complexes, $\mathrm{Ru}(\mathrm{bipy})_{2} \mathrm{X}_{2}$. where X is a weak tield ligand, have a band in this region with an intensity close to that of the low onergy charge transfer band ${ }^{96}$. For these complexes the band energy ohanges in a similar way to that of the low energy band as the average ligand fleld strength about the metal Ion ohanges. It is assigned to the $t_{2} \longrightarrow T^{(2)}$ transition 96.99. In the phenanthroline complexes the band shifts In a similar way only for the $\mathrm{Ru}(\mathrm{o}-\mathrm{phen})_{2} \mathrm{X}_{2}$ complexes. For the complexes of the substituted phenanthrollnes the shltts are less regular.

Resolution of the band is poor and changes in the positions of shoulders on the low energy side of the intense $\pi \rightarrow T$ band and on the high energy side of the Low energy charge transfer band will have a large effect on the position of the band. Because of this a definite assignment of the band position is not possible. The intensity of the band would seem to exclude aseignment to a ligand eleld transition.

On the basis of comparison with the spectra of the bipyridyl complexes ${ }^{96}$, the band is tentatively assigned to a high energy metal \rightarrow 1igand charge transfer transition.

Intraligand $\pi \rightarrow \pi^{\text {总 Transitions }}$

Only the band comresponding to the low energy $\pi \rightarrow$ πt^{*} transition ($\pi \rightarrow \pi^{*}(1)$) has been resolved for all
the complexes in the present study. The high energy band ($\pi \longrightarrow T(2)$) is sometimes observed as a shoulder but W111 not be discussed since its position is not known With sufficient accuracy for meaningful wends to emerge.

For $0-$ phenanthroline and 5-methyl-0-phenanthroline the band generally shifts to lower energy on coopdination. This shift has been attributed to the influence of charge on the ligand r-orbital system (page 135), but this cannot be the only important ractor.

In contrast a shift to higher energy is observed for 5-chloro-p-phenanthroline. Interaction between the t_{2} orbitals of the metel and the π-orbitals of the ligands will Increase the energy of the $\pi^{*}-0 r b i t a l s$ of the IIgand and decrease that of the t_{2}-orbitals. It might be concluded from the direction of the shift in energy of the $\Gamma \rightarrow \pi{ }^{*}$ band for the $5-c h l o r o-0-p h e n a n t h r o l i n e ~ c o m p l e x e s ~$ that a greater degree of π-interaction occurs for the complexes of this ligand than for those of the other phenanthrolines. The $t_{2} \rightarrow T(1)$ charge transter transition is observed at sllghtly lower energy for the 5-chloro-ophenanthroline complexes than for the other complexes (Figure 6.23). This may imply that the relative energies of the metal ion t_{2}-orbitals and the Pree IIgand $\pi *-$ orbitals are closer together than is the case for the other free phenanthroline ligands.

For all the complexes of all the phenanthroline ligands the $\pi \rightarrow \pi$ (1) band moves to highor energy in the order

$$
\mathrm{Cl}^{-} \sim \mathrm{Br}^{-\infty}<\mathrm{I}^{-} \sim \mathrm{SON}^{-}<\mathrm{CN}^{-}<\mathrm{o}-\mathrm{phen}
$$

Which is similar to the order observed for the energy of the $t_{2} \longrightarrow \pi *(1)$ transition, although the effect is less marked for the intraligand transition. The order found is consistent with the shifts that would be predicted in terms of increasting π-overlap of the metal $2^{-o r b i t a l s}$ with the π-orbitals of the phenenthroline LIgands.

For Ru(g-phen) $3^{\mathrm{Cl}_{2}}$, the only tris complex studied in this work, the band is found at higher energy than fox free o-phenanthroline, as tor the 5-chloro-p-phenonthroline complexes. In tems of the π-interaction interpretation used above this auggests a greater degree of metal-1igand π-interaction for the trigmomplexes than for any of the bismomplexes. This is in agreement with the observations of the relative energies of the $t_{2} \longrightarrow \pi^{(1)}(1)$ charge transtex band.

The cyano- and thiocyanato - ligands might be expected to give rise to cheir own $\pi \rightarrow T$ transition. In the ease of the dicyano complex the band would be expected at about $45,000 \mathrm{~cm}^{-1} 97$. The spectra for the complexes of these ligands show no additional shoulders which could be assigned to this transition.

SECLION 6.3

Discussion of the Rlectronic Spectra of some

bis- and tris- (o-phenanthroline) Complexes of Iron(II)

INTRODUGTI ON

The ultraviolet-visible spectra of a number of high spin and Low spin iron(II) phenanthroline complexes have been measured in solutions and in the solid state.

Numerical data Por spectra of the low spin complexes $\mathrm{Fe}(\mathrm{phen})^{2+}$ and $\mathrm{Fe}(\text { phen })_{2}(\mathrm{ON})_{2}$, where phen $=0$-phenanthroline, 5-methyl-o-phenanthroline and 5-nitro-o-phenanthroline, are Insted in Table 6.31.

Considerable experimental difitoulties were experienced in the measurement of the spectra of the high spin complexes $\mathrm{Fe}(\mathrm{phen})_{2} \mathrm{X}_{2}$ where "phen" is as above, and $\mathrm{X}=\mathrm{Cl}$. Br^{-}. I and SCN" The spectra of some of these complexes have been measured in dry dichloromethane, however many complexes were either insoluble in the solvent or immediately disproportionated in solution. Because of this measurement of the spectra was attempted in the solid state. Some of the dafficulties experienced in this work are described below. Numerical data obtained from the spectra If the high spin complexes are 11sted in Table 6.32.

The three basic types of spectral bands found for these complexes (both high spin and low spin) axe the same as those found for the low spin rathenium(II) omplexes, $\mathrm{t}_{\mathrm{e}} \mathrm{e}, \mathrm{t}_{2} \rightarrow m^{*}(1)$ and $t_{2} \longrightarrow \pi^{*}(2)$ chaxge transfer, and intraligand $\pi \rightarrow \pi(1)$ transitions.

MEASUREMENT OF SOLID STATE SPECTRA

The methods used were: (i) difruse reflectence, (2) potassium bromide dise absorption and (3) nujol mull absorption. These will be discussed separately. (1) Disfuse Reslectance Spectra

The method used was to powder the complex and to dilute it by intimately mixing the finely exound samole with magnestum oxide. The mixture was put into a holder and covered with a sillea glass window, or spread on a white silter paper.

Konig and Madeja have reported the realectance spectra of a number of bis-(0 -phemanthroline) Iron(II) complexes ${ }^{79}$. In the present work spectra of the standard reported by these workers could not be obtained. The charge transter and intrallgand toanstions generally gave broad featureless plateau regions extending on both sides of the axpected band positions. In addtion the positions of the bends could not be reproduced when the complexes were fupther diluted with magnesium oxide. This is probably due to

FIGURE 6.31

different components of the bands being accentuated at different dilutions ${ }^{116}$.
(2) Potassium Bromide Disc Absorption Spectra

Typical absorption curves obtained for some complexes In potassium bromide dises are shown in Figure 6.31, where a solution spectrum is also reproduoed for comparison.

The discs were prepared by intimately grinding 0.5 2.0 mg of the complex with about 150 mg of very dry potaseium bromide in a mortar and pestle, and finally in a ball mill. The finely powdered mixture was placed in a disc and subjected to a high pressure under vacuum for 5 minutes. The resulting discs were stored over calcium chloride and were handled with care in order to avold fogging the surfaces.

Resolution obtalned for the intense charge transfer and intraligand bands was often comparable with solution spectra, and reproducibility on dilution of the complex was good. However under the conditions used in making the dises there is the possibility of ligands such as chloride. iodide, thiocyanate and cyanide being replaced by bromide 1ons. It is difficult to ensure that guch replacement has not ocourred, and for this reason the spectra obtained must be regarded with caution.

An attempt was made to produce discs with potassium chloride and potassium iodide in order to remeasure the

FIGURE 6.32

spectra of $\mathrm{Fe}(\mathrm{q}-\mathrm{phen})_{2} \mathrm{Cl}_{2}$ and $\mathrm{Fe}(\underline{\mathrm{o}}-\mathrm{phen})_{2} \mathrm{I}_{2}$. The surfaces of the discs clouded very rapidiy even in a dry atmosphere. For this reason they were unsuitable for ultraviolet-visible work.

(3) Nujol Mull Absorption Spectra

Typical absorption curves obtained from nujol mulls of some complexes are shown in Figure 6.32. The method used was to grind the complexes with a little nujol between ground glass plates until a smooth mull was obtained. The mulls wexe then spread between optlcally flat sillea glass plates.

Resolution of the charge transfer band at $\sim 20,000 \mathrm{~cm}^{-1}$ was usually poor but better than that obtained from the reflectance spectra. Intraligand bands could not be resolved by this method. Reproducibility of the resolved bands on dilution was usually good.

LOM SPTN GOMPLEXES

The numerieal data for the spectra of the low spin complexes is IIsted in Table 6.31. The spectra curves for $\mathrm{Fe}(5 \mathrm{MePh})_{2}(\mathrm{CN})_{2}$ and $\mathrm{Fe}(5 \mathrm{MePh})_{3} \mathrm{Cl}_{2}$ in dichloromethane, which are typical of those obtained, are illustrated in Figure 6.33.

Low Enerey Charge Transter Transition ($t_{2} \longrightarrow \pi$ (1))
The changes in energy of the low energy charge transfer transition $\left(t_{2} \rightarrow \pi(1)\right.$) for different ligand substituents

FIGURE 6.33

have been discussed (page 139). As for the ruthenium complexes (Section 6.2) the band is at higher energy for the tris-complexes than for the bis-complexes. The band due to this transition is at lower energy for the iron(II) complexes than for the analogous ruthenium(II) complexes, indicating that the metal t_{2}-orbitals of ruthenium are at lower energy than those of iron. This has also been found for complexes of these metals with bipyridyl ${ }^{96}$ and has been attributed to a greater degree of metal - Iigand r bonding with ruthentum than with 1 ron 97 .

High Energy Charge Transfex Transtition $\left(t_{2} \longrightarrow \pi *(2)\right)$
A band is found near $28,000 \mathrm{~cm}^{-1}$ with an extinction coefticlent of about 500 for the dieyano-complexes of Q-phenanthroline and 5-methyl-g-phenanthroline. For the 5-nitromo-phenanthroline complex the bond is probably masked by the prominant shoulders on the low energy $\pi \rightarrow \pi T^{\omega}$ bands in this region (Figure 6.21). The band is not observed in the spectra of trisecomplexes. It appears to be similar to the band found in this region for some of the ruthenium complexes and is tentatively assigned as a metal \rightarrow Iigand charge transfer band.

Low Energy Intraligand Transition $(\pi \rightarrow \pi(1))$
The $T \rightarrow T^{*}(1)$ band is at higher energy for the iron tris-complexes than for the bis-complexes, as found for the ruthenium complexes. For some complexes the band is at
higher energy than for the free ligands. These changes in position are simllar to those observed for the ruthenium system and cen be explained in terms of the effect of metal-11gand π - interaction.

HIGH SPIN COMPLEXES

Discussion of the spectra of the high spin complexes is Iimited by the poor quality of the spectra. Differences in the positions of the bands from one complex to another are smaller than the differences found between spectra measured by different methods. However the following general observations can be made.
(1) Differences in the positions of the bands Erom one complex to another are smaller than those found for the low spin complexes.
(2) A band coryesponding to the high energy charge transfer band $\left(t_{2} \rightarrow r(2)\right.$) is not generally observed. This may be because of the poor quality of the spectra.
(3) Generally the following trend in energy is observed. for both the low energy charge transfer band $\left(t_{2} \rightarrow \pi *(1)\right)$ and the 10 energy intraligand band $(\pi \rightarrow \pi(1)):$

$$
\mathrm{SON}>\mathrm{I}>\mathrm{Br}>\mathrm{CI}
$$

This trend is not as merked as thet found for the low spin complexes.

The low energy charge transfer band has been assigned
to the $t_{2} \rightarrow \pi(1)$ transition as for the low spin complexes 73.79. On the basis of the effects of differences In the t_{2}-orbital stabilisation by $r-$ interaction the band would be expected at lower energy for the high apin complexes. In fact, for all the high spin complexes, the band is found between the band energies of the low spin bis- and tris- 0 -phenanthroline complexes. This observation cannot be explained in terms of our present knowledge, but suggests that it is not reesonable to compare high apin and low apin complexes.

GUMMARY

It is apparent that the energy of the t_{2} metal orbitals and hence their position relative to the π and $\pi \pi^{*}$ orbitals of the o-phenanthroline ligands is impoxtant in deciding trends in the electronic transitions for the o^{-} phenanthroline complexes of iron(II) and ruthentum(II). This applies particularly to the charge transfer bands of the low spin complexes and, to a lesser extent, to the high spin complexes. The low energy $\pi \rightarrow T^{*}(1)$ transition is also affected but to only a smal degree. The energy of the $\pi \rightarrow T{ }^{*}(1)$ band aen be interpreted in terms of $\pi-$ interaction between the metal and the ligand in these complexes. Changing the substituents on the q-phenanthroline Ilgand has a small effect on the energy of the $t_{2}-T(1)$ transition relative to the effect of changing the average 1lgand field strength about the metal ion.

CHAPTER 7

Ligand Substituents and their Value in the study of the Chemlatry of Complexes

Studies of the physico-chemical behaviour of a series of complexes which differ only in the nature of the ligand substituents are potentially a valuable method of obtaining information about metal-ligand bonding in such complexes. In each part of this work a comparison has been made of the Influence of diferent IIgand substituents on aspects of the chemstry or the complexes. It is clear that studies of the effects of ligand substituents on metal-11gand bonding and metal stereochemptry in complexes requice use of a wide range of techalques for worthmile results to be obtained. In part it a detailed study has been made while In Part II only the electronic spectra have been used as a probe into the complexes. The overall findings are briefly sumarised in this chaptex.

In the case of the four-coordinate dipyrromethene complexes discussed in Part I the metal lons are forced to adopt a tetrahedral or severely distorted square planar configuration in order to overcome intramolecular interactions between the ligands. Structural modification of the ligand occurs when the stereocheracal requirements of the metal dominate. One would expect that changes of
stereochemistry and Ilgand configuration would be easily observed by the usun phystoomehemical methods. Changes In bonding ame more subtle and are probably best investigeted by consideration on an axtensive series of related compounds with s ilght varietions within the gexies.

PROION MAGNEMTC RESONANOE SPECIROSCOPY

NLL spectroscopy 16 a veluable method of studying the environment of atome in a molecule and the stereochemistry of compounds. The method is also potentlally capable of giving ine omation on the nature of the metal-ligand bonalng in the complexes. The results in Part I indicete thet whereas the presenee of tiprerent substutuents $1 s$ valuable ron the aselganent of resonance peaks the ohanges in peak position are dificiout 60 intempret in terms of substituent effects on bonding However shifts resulting from a stereochenical change are atgniticant and oan be used to aseign structures. The elgnitleance of gertain ehifts in the PdL_{2} complexes was only apparent when the Xeray ergstal structure of Pa(MMPM) 2 was solved, but with This as background the interppetation of the MNR of the Pax (T) (LX) complexes ooula be used as method of structural investigation.

ELSCLRONTO SPECTRA

Eleatronic spectral studies have been made of the complexes in both parts of the present work. In these
complexes, and in particular the o-phenenthroline complexes, metal-Iigand orbital interactions will affect the relative energies of the metal t_{2} and ligand π and $m^{*}-\operatorname{corbitals}^{\text {a }}$ The relative energy of these orbitals is estimated from a study of the charge transfer spectra ($t_{2} \longrightarrow \pi *$ transitions) and of the intraligend apectra ($\pi \rightarrow \pi$ transitions).

It was found that substituents on the IIgands have little effect on the energy of the charge transfer trensitions, however considerable differences have been found th the way the intraligand $\pi \rightarrow \pi^{*}$ bands shiet on coordination, particulariy in the case of the dipyrromethene complexes.

On the other hand, other 11 gends ($0 . \mathrm{g}_{\mathrm{g}} \mathrm{X}$ in $\mathrm{m}(\mathrm{g}-\mathrm{phen})_{2} \mathrm{X}_{2}$) have a large influence on the energy of the metal t_{2} orbitals and hence on the position of the charge transfer bands. The observec trends en be correlated with metal-lisand r interactions.

X-RAY STMGLE CRYSTAL ANALYSIS

The X-ray single erystal stuay on $\mathrm{Pa}(\mathrm{MMPM})_{2}$ was of considerable importance in the study of the dipyrromethene complexes and, as indicated eaxlier, helped in the interm pretation of NHR spectra. Whereas this technique is very powerful, especially for stereochemical studies, it is quite possible thet the small differences observed in the electronte spectra of the complexes would not be preatoted from the

X-ray study of such a series of compounds.

CONOLUSTON

The present study has not rovecled any major aiferences in metal-Ilgend bonding which result from IIgand substituents alone. On the other hand factors such as the nature of the metal ion, the position of the ligand substituent relative to the the tal ion and neighbouring 1igands and the presence of other ligands in the complexes have led to signiticant changes in the electronic and molecular structure of the complexes.

APPRNDIX A

Experimental Methods

ULtraviolet-Visible Spectra

Ultraviolet-visible spectra were recorded over the range from $45,000 \mathrm{~cm}^{-1}$ to $7,000 \mathrm{~cm}^{-1}$ on a shimadzu Multipurpose Spectrophotometer or on a Beckman DK-2A Spectrophotometer. All solution spectra were recorded using sillea glass 1 cm cells. Solid state absorption spectra were recorded as described on pages 149 to 151. solld state reflectance spectra were recorded using either the Shimedru or Beckman realectance attachments.

Molar extinction cocfeicients (ε) were determined from the solution spectre sccording to the expression

$$
\varepsilon=D / C
$$

Where D is the optical density and
c is the concentration in moles/litre.
The solution spectra were reproducible to within $100 \mathrm{~cm}^{-1}$ for different runs with the same complex. The instruments were calibrated at 3-monthly intervals using a mereury lamp.

Intrared Spectra

Spectre in the region $4000 \mathrm{~cm}^{-1}-400 \mathrm{~cm}^{-1}$ were recorded for samples in nujol mulls or potassium bromide
alses using esther a minadza IR-270 spectrophotoneter or a Perkn-bluer 337 Epectrophotoneterg calibrated wth polystyrene.

Spectra 1 n the reglon $400 .-40 \mathrm{~cm}^{-1}$ were recorded for saxples in nujol mulla on polyethylene aises using

Muclear Macnetic Pesonsnce Spectra

MH spectra were recorded on a Vamian $A-60$ spectromater over the xange 16 ppm to -8 ppm with reapeet to TH. S. In deuterochlororoma solutlons. T. $\mathrm{H}_{\text {t. }}$ S. and onlorotox were used as internal standards. Reproducibility wes胃童hin $\pm 0.05 \mathrm{eps}(\sim 0.01$ ppon)

Gonduoty tries

Molar conavetritues mere measuxed at $20^{\circ} 0$ using a phitipg P. R. $9550 / 01$ conductunce batage and a cell with removabla platinum electrodes. The cell was callbrated with a standara potasstum chloride solution 118 . The molar conductivity $\left(\Lambda_{\mathrm{m}}\right)$ is given by the axpression

$$
\Delta_{m}=\operatorname{cel} 1 \text { constant } \times 10^{3} / \mathrm{eR}
$$

where 0 Is the concentration in moles/ittre (usuelly 10^{-3})
and R is the resistance of the solution in ohms.
Reprecentative values of $\Lambda_{m}\left(\right.$ onms $^{-1}$ moles $\left.{ }^{-1} \mathrm{~cm}\right)$ for the

solvents used in this work are:			
Ion type	nitrobenzene	nitromethane	dimethyl- formamide
$1: 1$	$20-30$	$70-90$	$60-80$
$1: 2$	$45-55$	$150-170$	$110-130$
$1: 3$	$70-80$	$230-250$	$160-180$

Mapnetic Suscentibilities

(1) Gouy Method: The compound tris-(ethylenediamine) nickel(II) thiosulphate ${ }^{119}$ was used as a cal tbront. Gran magnetic ausceptibllities $\left(X_{g}\right)$ wexe calculated from the formula

$$
10^{6} \chi_{g}=(\alpha \cdots \beta B) / 1
$$

Where W is the weight of the sample and α and β are tube constants. F is the difrerence in weight of the sample in the presence or absence of a magnetio fiela. (2) WMR Method ${ }^{120}$: This method mes used to determine whether some compounds were diomagnetic. Magnetic suscentibilities may be calculated psing the equation

$$
\chi_{g}=3 \Delta r / 2 \pi e_{m}+\chi_{0}+\chi_{0}\left(a_{0}-a_{n}\right) / r
$$

Where it the irequency separation between two peaks (c.p.G.). fit the frequency of proton resonances in cps $\left(60 \times 10^{6}\right)$, m is the mass of substance in 1 ml of solution, X_{0} is the mass susceptiblility of the solvent and d_{0} and d_{s} are the densities of the solvent and solution respectively.

Provided dilute solutions ($\sim 10^{-3} \mathrm{~m}$) are used and the compound molecular weight is about 1000,

$$
\chi_{0}=-\chi_{0}\left(d_{0}-d_{B}\right) / n
$$

If no peak separation could be achieved the sample was assumed to be diamagnetic.

Anelysos

Carbon, hydrogen and nitrogen analyses were determined at the licroanalytical Labonatory, University of Otago, Duncdin Halldes were detemined gravimetrioally as their elimer salts.

Molecular Welghts:
UnLess otherwise stated molecular walghts were determined by ocmonetry using a Hewlett-Packard 301 A Vapour Pressure Osmometer. Onloroform solutions of concentrations between 10^{-2} and 10^{-3} moles/litre were used, and the instrument was calibrated over this range of concentrations using chloroform solutions of azobenzene.

Purification of Solvents

Dichloromethane: The solvent was drled over magnesium sulphate for about 48 hours and then fractionally distilled (B.P $39-40^{\circ} \mathrm{C}$). It was stored over molecular sieves. Nitromethane and nutrobenzene: The solvents (A.R. grade) were stored over molecular sieves.

Dimethylformamide: The solvent was mixed with 10% by volume of benzene and the benzene-watev azeotrope was distilled gt $80^{\circ} \mathrm{O}$. The amethylomanide was fractionally distilled under redueed pressure, the first and lest 10% of the rractionated solvent being discarded. It was stored over molecular steves.

PROGRAM CONFIGURATIOX

PRELIMIIARY INVESTIGATIUNS GF CELL CONSTANTS

PMEPARATION OF MPUT-DATA YHETS,CARL :LANKS AND PAPER TAP

FILMGACTUR SGALING,LP AD PIIGAL ABSURPTIGA GURRECTIGS
 WIRECT NETHIUS FOR PHAS DETENMINATION GYMCCLI AODITIOMA

Founlek sumations INGLUDIN: Pattersons anc general plane

LERIVATIGX OF POSITIUNAL CGGOINATES OF ATOMS

GENGRAL FILE LIDTING ANL ANALYSIS OF WEIGHTLNG SCHEXES CRYSTAL AND MOLGGULGR GGONETRYINCLUEING TABLES OF finding a molecule from a general array of atoms

some necessary ils,ied dr atom parameter dats sets are indicated

APPENDIX B
 The University of Canterbury Computing System for X-ray Structure Analysis

The computer program configuration of the University of Canterbury Chemistry Department crystallography group as of November 1969 is shown in Table B1. Programs used in the structure determination in this work (Chapter 3) are IIsted in Table 82.

Calculations were carried out using an IBM $360 / 44$
computer with 32k words of core storage and twin 2315 disc storage drives. A comprehensive range of computer programs has been adapted to this hardware. Diagrams were produced using an TBM 1620 computer to drive a Calcomp incremental plotter.

The author wishes to acknowledge in particular the contributions of G.J. Gainsford and R.J. Dellaca in the adaptation and development of many of the programs used in the course of the structure determination. Due largely to their efforts the present system of programs is sufficiently sophisticated for use by a person with a comparatively limited experience of computing techniques.

TABLE B2

COMPUTER PROGRAMS USED IN THE COURSE OF THE WORK IN CHAPTER 3

Local Name	Derived From	Authors
CELGLS	ORGLS	W. R. Busing, K. D. Martin and H. A. Levy, adapted by $P_{0} R_{\text {e }}$ Ireland.
COREFE	ORIPEE-II	W. R. Busing, K. O. Martin, and H. A. Levy
CORLS	-	K. Emerson
CUCLS	NUGLS	R.J. Doedens and J.A. Ibers, adapted by ReJe Dellaca
DANTEP	ORTEP	O.K. Johnstone, adapted by R. J. Dellaca
FIDDLe	-	G.J. Gainstord
ETLIST	-	P. R. Ireland
FORDAP	FORDAP	A. Zaikin
MEANPL	NRC-22	M. E. Pippy and F R. Ahmed
RANGER	RANGER	P. W. R, Corfield
$\left.\begin{array}{l} \text { SAP } \\ \text { SHNORM } \end{array}\right\}$	NRC-4	S.R. Ha11 and F.R. Ahmed adapted by R.J. Dellaca
$\left.\begin{array}{l} \text { SUPIN } \\ \text { LISUP } \end{array}\right\}$	CUKR-2	W. M. Macintyre, M. Werkema, B.R. Penfold and F.W.B. Einstein.
supout	-	G.J. Gainstord
WABS	GNABS	G.W. Burnham and J.A. Ibers

APPBNDTX C

STRUORURE FAOTOR LISTTNG TOR Pd(NMPM)

 ,

 - (

REFERENOES

1. J.W. Emsley, J. Freeney and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy", Pergamon Press, 1965.

1(a) Volume 2, 793; 1(b) Volume 1, 149;
1(c) Volume 1, Appendix
2. J. F. Falk, "Porphywins and Metaloporphyrins", Elsevier Publishing Company, 1964. 26.
3. H. Fischer and M. Schubert, Chem. Ber. 1924, 57, 611.
4. H. Fischer and J. Klarer. Annalen. 1926. 448, 190.
5. O.R. Porter, J. Chem. Soc., 1938. 368
6. R.J. Motekaitis, Ph.D. Dissertation, Illinois Institute of Technology, University 1 期omilms, 67-12576. 1967.
7. D_{6} P. Cratg, "Non-benzenoid Aromatic Compounds, "Interscience Publishers Inc. 1959, Chapter I.
8. D.P. Mellor and W.H. Lockwood Proc. Roy. Soc. New South Wales, 1940, 74. 141.
9. B. West, J. Chem. Soc. 1952, 3115.
10. D.D. Tley and D.I. Spivey, Trans. Faraday. Soc. 1962, 58. 1405.
11. D.R. Baton and E.A. La Lancette. J. Chem. Phys. 1964, 41. 3534.
12. J.E. Fergusson and C.A. Ramsay, J. Chem. Soc., 1965. 5222.
 970.
14. D.A. Couch, B.Sc.(Hons) Report, Chemistry Department, University of Canterbury, 1965.
15. M. Elder and B.R. Penfold, J. Chem. Soc.(A), 1969. 2556.

15a. M. Elder, Ph.D. Thesis, University of Canterbury, 1967.
16. J. Fergus on and B.O. West, J. Chem. Soc. (A), 1966, 1565.
17. X. Murikami and K. Sakata, Inorg. Chim. Acta., 1968, 2, 273.
18. O. Schmitz-Dumont, Ohem. Ber. 1929, 66, 226.
19. J. Fergusen and B.O. West, J. Chem. $\operatorname{Soc}(A), 1966$, 1569.
20. H.C. Freeman and M.R. Snow. Acta. Cryst. 1965, 18, 843.
21. H. Fischer, W. Stum and H. Friedrich, Annalen, 1928, 461. 267.
22. D.A. Buckingham, private communication to J. E.Fergusson
23. J.N. Murrell, "The Theory of Electronic Spectra of Organic Molecules: ${ }^{\text {M }}$ Methuen and Co.Ltd., London: John wiley and Sons Ince. N. Y: 1963, 199.
24. H. H. Jaffe and M. Orchin. "Theory and Applications of Ultraviolet Spectroscopy", John Wiley and Sons Ince, N. Y London; 1964
24(a) pages $437-448 \quad 24(b)$ pages 448
25. E. Bronde and F. Sondheimer. J. Chem. Soc. 1955. 3754.
26. Re-examination by the Author of spectra previousiy recorded by C.A. Ramsay.
27. H.B. Gray and C.J. Ballhausen, J. Am. Chem. Soc. 1963. 85. 260.
28. D.A. Doughty and O.W. Dwiggins, J. Phys. Chem. 1968, 73. 423.
29. W.S. Gaughy, W.S. Koski, Biochem., 1962. 1. 923.
30. R.J. Abraham, Mo1. Phys. 1961, 4. 145.
31. K. Richards, University of Canterbury, personal commanication.
J.M. Coxon. M. P. Hartshorn and G.A. Lane, Tetrahedron, In Press.
32. P.J. McCarthy and A.E. Martell, Inorg. Chem. 6, 781.
33. J.A.S. Smith and E.J. Wilkins, J. Chem. Soc.(A), 1966,749.
34. R.H. Holm and P. A. Cotton. T. Am. Chem. Soc. 1958, 5658.
35. Calealations by the athor from atom coordinates reported by M. Elder and B.R. Penfold, reference No. 15.
36. G.J. Gainsiord, Ph.D. Thesis, University of Canterbury, 1969. Appendix
37. J.A. Ibers, "Intemational Tables for X-ray Orystallography" Vol III, The Kynock Press, Birmingham, Table 3.3.1A.
38. D.T. Cromer, A.C. Larsen and J.T. Waber, Acta. Cryst., 1964. 17. 1044.
39. Q.H. Stout and I.H. Jensen, "X-ray Strueture Determination" The Macmillan Company, N. Y., 1968.
40. L.C. Pauling, "The Nature of the Chemical Bond", 3rd Thitiong 1960, Cornell University Press, pages 256-264.
41. D. Hall, A.D. Gae and T.N. Waters, J. Chem. Soc. 1963, 5897.
42. D. Hell, A.J. Mckimon and T.N. Waters, J. Chem. Soc., 1965. 425.
43. O. Jain and E.C. Lingafelter, private communication to Authors of reference 42 above.
44. J.R. M11er, Advances in Inorganio Ohemistry and Radiochemistry, Vol 4. 1962, Academic Press Inc. NY, pg 152.
 Cryst. , 1964, 17. 1058.
46. T.P. Cheeseman, D. Hall and T.H. Vaters, J. Chem. Soc (A), 1966. 685.
47. M.R. Fox, H.O. Itngafelter, P.L. orioli and L. Sacconie, Nature. 1963, 27 1104.
48. D. Dale, J. Chem. Soc. (A), 1967, 278.
49. J. E. D. Mills and S.C. Nyberg. J. Onem. Soc. . 1963, 308.
50. E. Harnick and G. M.J. Schmidt, J. Chem. Boo. 1954, 3295.

50a. 3.C. Nyberg, Acta. Cryst., 1954, 7, 1255.
51. "Tables of Interatomic Distances and Configurationg in Molecules and Ions" The Chemistry Society, London, Special publieation $N 0.11,1958$; Supplement. Special Publication No.18, 1965, Edited by I. R. Sutton.
52. E.O. Lingatelter, G.L. Simmons, B. Morosin, O, Scheringer and C. Frelburg, Acta. Cryst., 1961. 14. 1222.
53. . A. Jarski and E.O. Lingafelter, Act. Cryst. 1964. 17. 1109.
54. J. H. Stewart and R.C. Lingarelter. Acta. Oryst. . 1959. 12. 842.
55. T.N. Baker. D. Hall and. N. Wateas, J. Chem. Soc(A), 1966. 680.
56. A.J. Mckinnon, T.N. Waters and D. Hall, J. Chem. Soc., 1964. 3290.
57. P.L. Orioli and E.C. Iingarelter, Acta. Cryst., 1964, 17. 1113.
58. D. Hall, S.M. Sheat, T. N. Waters, J. Chem. Soc. (A), 1968. 460.
59. A. D, Rae, Acta, Crysto, 1965, 19, 683
60. F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions" Second Edition, John Wiley and Sons Tne. N. Y. 1967, 355.
61. F. Blau, Monatshe Cheme 1898, 19 657.
62. A. Werner, Chem. Ber. 1912, $45,433$.
63. W. Brandt, T.P. Dwyer and E. Gyarfas, Chem. Rev. 1954, 54. 959.
64. H. Diehl and G.F. Smith, "The Iron Reagents", G.Frederick Smith Chemical Co. 1960.
65. A.A. Schilt, International Series of Monographs on Analytical Chemistry, Vol 32. 1969.
66. F.P. Dwyer, J.E. Humpoletz and R.S. Nyholm, J. Proc. Roy. Soc. N.S.W., 1947, 80, 212.
67. F. P. Dwyer, J. Proc. Roy. Soc. N.S.W., 1949, 83, 134.
68. H. Irving and R.J. Williams, J. Chem. Soc. 1953. 3192.
69. H. Irving and D.H. Mellor, J. Chem. Soc. 1962. 5222, 5237
70. F.H. Burstall and R.S. Nyholm, J. Chem. Soc. 1952, 3570.
71. K. Sone, Bull. Chem. Soc. Jap, 1952, 25, 1
72. E. Konig and K. Madeja, Spectrochim. Acta. 1967. 23A, 45.
73. E. Konig, Coord. Chem. Revs. 1968, 3, 471.
74. F. Basolo and F.P. Dryer, J. Am. Chem. Soc., 1954. 76. 1454.
75. W.A. Baker and H. M. Bobonich. Inorg. Chem. 1963. 2. 1071.
76. W.A. Baker and H. M. Bobonich. Inorg. Chem. 1964, 3. 1184.
77. A.A. Schilt, J. Am. Chem.Soc. 1957. 79. 5421.
78. A.A. Schilt, J.Am. Chem.Soe. 1960, 82, 3000
79. E. Konig and K. Hadeja, Inorg. Chem., 1967. 6. 48.
80. E. Konig and K, Made ja, Chem. Comm. 1966, 61.
81. A.T. Casey, Aust. J. Chem. 1969, 21, 2291.
82. A.T. Casey and F. Isaec, Aust. J. Chem., 1967, 20, 2765.
83. I. Dezi, B. Molnar and T. Tarnoezi and K. Tampa, J. Inorgo Nucl. Chem. 1967, 29. 2486.
84. M.F.A. Dore and J.G. Hallett, J. Chem. Soc. (A), 1969. 1204.
85. J.F. Duncan and K. F. Moky J.Ohem.Soc. (A), 1966, 1493.
86. F. Spacu, M. Tcodosecu and D. Clomartan, Rev. Roum. Chim., 1967. 12. 145.
87. K. Madeja, Chem. Zvesti, 1965. 19. 186.
88. W. K. Hamer and L.E. Orgel, Nature, 1961, 190. 439.
89. A. A. Schilt, Inorg. Chem. 1964, 5. 1323.
90. R. Driver and.W.R. Walker. Aust. T. Chem., 1967, 20, 1376.
91. R.R. Berrett and B.F. Fitzsimmons, T. Chem. Soc. (A), 1267. 526.
92. T.P. Dwyer, H.A. Goodwin and T.C. Gyarias, Aust. J. Chem. 1963. 16. 544.
93. B. Bosnick and F.P. Dwyer, Aust. J. Chem. 1966. 19. 2229.
94. J. W. Demas, T. F. Turner and G.A. Orosby, Inorg. Chem., 1969. 8. 674.
95. G.A. Crosby, W.S. Parkins and D. Whassen, J. Chem. Phys. 19. $43,1489$.
950. G.A. Groaby and D. We Klassen, J. Chem. Phys., 1968, 48, 1853.
96. Get. Bryant, PhoD. Thesis, Universt ty of Conteroury 1969.
97. H. B. Gray and W.A. Beach. J. Am. Chem. Soc. 1963. 85, 2922.
98. J.S. Brinen, D. D. Rosebrook and R.C. Hirt, J. Phys. Chem. 1963.67 .2651.
99. I. Hanazaki and S. Nagakura, Inorg. Chem. 1969, 8, 648.
100. P. Day and N. Saunders, J. Chem. Soc.(A). 1967. 1530.
101. L. Gill. E. Morega and S. Bunel, Mol. Phys., 1967. 12. 333.
102. R.H. Linne11 and H. Kaczanaraczk, J. Phys. Chem. 1961, 65. 1196.
103. R.G. Bray, J. Ferguson and C.J. Mavicing, to be published.

103a. S.F. Mason, Inorg. Chim. Acta. Rev., 1968. 2. 89.
104a. P. Krumholz, J. Am. Onem. Soc. 1953. 75. 2163.
104b. P. Krumholtz, Inorg. Chem. 1965: 4, 609, 612.
105. J.E. Fergusson and G.B. Harris, J. Chem. Soc.(A). 1966. 1293.
106. R.A. Palmor and T.S. Piper, Inorg. Chem. 1966, 5, 864.
107. B.R. James and R.J.P. W1111ams, J. Chem. Joc. 1961,
108. W.W. Brandt and D.K. Gullstrom, J. Ara. Chem. Soc. 1952, 74. 3532.
109. J. Burgess and R.H. Prince. J. Chem. Soc., 1965. 4697.
110. J. D. Hiller and R.F. Prince, J. Chem. Soc. (A), 1966, 1049.
111. B.R. James, M. Parpis and Retop. V1112ams, J.Chem.Soc. 1961, 4630.
112. R. Drago and K. F. Purcell "Non-aqueous Solvent Systems" Rdxted by Tic. Maddington Academic Press; London and $\mathrm{N}_{\mathrm{o}} \mathrm{Y}_{\mathrm{o}}, 211$.
113. U.S. National Bureau of Standards, Giroular 514. 1951.
114. V. Gutmann, Coord. Ohem. Revs., 1967. 239.
115. Landolt-Bornsteln, 6 Teil, Rlectrische Eigenschatter I, 1959. 654.
116. J.E. Ferguscon. Private comunication.
117. T. Tto, Ne Tanaka and I. Hanazaki, Bull. Chem. Soc. Japan, 1969, 42, 702.
118. R.A. Robinson and R.H. Stokes, "Rlectrolyte Solutions", Butterwor the London, 1955.
119. N.F. Curtis, J. Chem. Soc. 1961, 3447.
120. D.T. Evans, J. Ohem. Soc. 1959, 2003.

J. E. Fergusson, F. C. March, W. T. Robinson and K. Emerson
 Department of Chemistry, University of Canterbury, Christchurch, New Zealand.

Tetrahedral complexes of composition ML_{2} are readily obtained for $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$ with bidentate heterocyclic substituted dipyrromethene ligands MMPM, ${ }^{1-5}$ $\mathrm{MBrPM}{ }^{4}$ and MClPM .

The tetrahedral stereochemistry is confirmed by both magnetic and electronic spectral data, and isomorphism of the Co, Ni and Zn compounds is apparent from X -ray powder photographs.

25

Ligand	2	3	4	8	9	10
$M M P M$	CH_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	CH_{3}	CH_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	CH_{3}
$M B r P M$	CH_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	CH_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	CH_{3}	Br
MClPM	CH_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	CH_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	CH_{3}	Cl

The structure of the Cu complex $\mathrm{Cu}(\mathrm{MMPM})_{2}$ has been determined. ${ }^{6}$ The mean planes of the two ligands are at 66° to each other rather than 90° as for exact tetrahedral coordination. The reason for the tetrahedral shape is the steric interaction of the substituents on C_{2} and C_{10} between the two coordinated ligands.
It is more difficult to obtain complexes with the heavier metals. However, complexes have been obtained with MMPM for $\operatorname{Pd}(\mathrm{II})^{2.3}$ and $\mathrm{Cd},{ }^{2}$ and with MClPM for $\mathrm{Pd}(\mathrm{II}), \mathrm{Cd}, \mathrm{Hg}$, $\mathrm{Ag}(\mathrm{I})$ and possibly $\mathrm{Ru}(\mathrm{III})$ and $\mathrm{Rh}(\mathrm{III})$.
The diamagnetic $M L_{2}$ complexcs have been studicd by NMR and show interesting trends in the position of the methine proton resonance and the methyl proton resonances (Table 1). The changes in chemical shift from compound to compound correlate with the shift in the intense charge transfer band in the visible absorption spectra around $20,000 \mathrm{~cm}^{-1}$.
The reactions of $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}$ with MMPM and MCIPM in the presence of acetate give the monomeric neutral complexes $\mathrm{Pd}(\mathrm{MMPM})_{2}{ }^{3}$ and $\mathrm{Pd}(\mathrm{MClPM})_{2}$, respectively. These

TABLE 1.

Ligand	Metal	Mcthine proton (ppm)	Methyl protons (ppm)
MMPM	-	6.98(1)	2.47(6), 2.59(6)
	Zn	$7.38(1)$	$2.20(6), 2.60$ (6)
	Cd	7.38 (1)	$2.35(6), 2.61(6)$
	Pd	7.38(1)	1.95(6), 2.57(6)
MClPM	-	7.88(1)	2.33(3), 2.47(3), 2.62(3)
	Zn	8.42(1)	2.27(6), 2.63(3)
	Cd	8.43(1)	2.30(3), 2.40(3), 2.63 (3)
	Hg	8.41(1)	2.30(3), 2.52(3), 2.66(3)
	Pd	8.30(1)	2.22(3), 2.00(3), 2.58(3)
	!		
			26

do not appear any different from other ML_{2} complexes in their properties. When $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ is treated with MCIPM at least three products are obtained: $\operatorname{Pd}(M C I P M)_{2}$ in small amounts, $\mathrm{Pd}_{2}(\mathrm{MClPM})_{2} \mathrm{Cl}_{2}$ and a compiex involving neutral MClPM rather than the usual anionic form. The relative yield of each product is pH dependent but the dimeric compound is the major species.
As it is not expected that the stereochemistry of Pd in PdL_{2} would be tetrahedral, the complex $\operatorname{Pd}(\mathrm{MMPM})_{2}$ was investigated by X-ray diffraction in order to see how the metal copes with a planar ligand having both stringent steric requirements and considerable π-delocalization. At the present stage ($R=18.9 \%$) (i) the Pd stereochemistry is planar, (ii) the ligand is twisted about the methine carbon, (iii) the $\mathrm{NC}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{NPd}$ ring is not planar but bent giving a stepped arrangement of ligands around the metal. This suggests that the nitrogen atoms are more tetrahedral than trigonal planar.
(1) H. Fischer and M. Schubert, Ber., 57, 611 (1924).
(2) C. R. Porter, J. Chem. Soc., 368 (1938).
(3) D. P. Mellor and W. H. Lockwood, Proc. Roy. Soc. New' South Wales, 74, 141 (1940).
(4) J. E. Fergusson and C. A. Ramsay, J. Chem. Soc., 5222 (1965).
(5) J. Ferguson and B. O. West, J. Chem. Soc. (A), 1565 (1966).
(6) M. Elder and B. R. Penfold, in press.

[^0]: * Complexes reported for the first time

