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Abstract

The extra energy information provided by spectral x-ray imaging us-

ing novel photon counting x-ray detectors may allow for improved de-

composition of materials compared to conventional and dual-energy

imaging. The information content of spectral x-ray images, however,

depends on how the photons are grouped together. This thesis deals

with the theoretical aspect of optimising material discrimination in

spectral x-ray imaging. A novel theoretical model was developed to

map the confidence region of material thicknesses to determine the

uncertainties in thickness quantification. Given the thickness un-

certainties, photon counts per pixel can be optimised for material

quantification in the most dose efficient manner. Minimisation of the

uncertainties enables the optimisation of energy bins for material dis-

crimination.

Using Monte Carlo simulations based on the BEAMnrc package, ma-

terial decomposition of up to 3 materials was performed on projection

images, which led to the validation of the theoretical model. With

the inclusion of scattered radiation, the theoretical optima of bin bor-

der energies were accurate to within 2 keV. For the simulated photon

counts, excellent agreement was achieved between the theoretical and

the BEAMnrc models regarding the signal-to-noise ratio in a decom-

posed image, particularly for the decomposition of two materials.

Finally, this thesis examined the implementation of the Medipix detec-

tor. The equalisation of pixel sensitivity variations and the processing

of photon counting projection images were studied. Measurements us-

ing the Medipix detector demonstrated promising results in the charge

summing and the spectroscopic modes of acquisition, even though the



spectroscopic performance of the detector was relatively limited due

to electronic issues known to degrade the equalisation process.

To conclude, the theoretical model is sufficient in providing guidelines

for scanning parameters in spectral x-ray imaging and may be ap-

plied on spectral projection measurements using e.g. the redesigned

MedipixRX detector with improved spectroscopic performance, when

it becomes available.
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Chapter 1

Introduction

X-rays were discovered by Wilhelm Conrad Roentgen in 1895 and in one of his

experiments the very first x-ray image was produced. For over a century since,

x-rays have been an indispensable imaging tool in many applications, including

in security screening, in non-destructive testing and, in particularly, in med-

ical imaging in the form of radiography and computed tomography (CT). In

the United States, approximately 62 million CT scans were conducted in 2006

(Mettler et al. 2008, McCollough et al. 2009). The number of general radiography

procedures in the United States in 2006 was about 324 million, including 129 mil-

lion chest x-ray and 34 million mammography procedures (Mettler et al. 2008).

A national survey in New Zealand reported that 98300 CT scans (excluding ex-

tremity procedures) were performed in 2007 (Stirling & Cotterill 2009). From

2007 to 2012, New Zealand’s national breast screening programme conducted 1.3

million screening episodes (BreastScreen Aotearoa 2013). It was also estimated

that 2.2 million plain radiography procedures were performed in New Zealand in

2010 (Stirling 2013)1. In these conventional x-ray images, contrast between ma-

terials is determined by their effective x-ray absorption values. As such, certain

1 Scans performed using mobile theatre equipments are excluded in this figure.
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CHAPTER 1. INTRODUCTION

materials, such as iodine and calcium, may appear similar in conventional x-ray

images.

In his classical paper, Hounsfield (1973) hypothesised that two materials can

be identified in a set of dual-energy scans performed separately at two x-ray

tube voltages. Previous developments of CT imaging focused on increasing the

scanning speed and acquisition of more slices. It is not until recent decades that

dual-energy CT (DECT) has been employed in clinical settings (Kalender 2006).

The incident source spectra in DECT are produced by mounting two x-ray tubes

in the scanner, operating at different energies (Flohr et al. 2006). Alternatives to

this dual-source configuration will be discussed later. Although several clinical

applications have been pioneered, material analysis in dual-energy imaging is

somewhat limited since only two spectra are measured. Furthermore, information

is degraded in DECT due to the inherent overlap between the spectra of the high

and low energy scans (Johnson et al. 2010).

This thesis focuses on an emerging technique called spectral x-ray imaging.

Spectral imaging uses only a single x-ray source, while a photon counting de-

tector (PCD) measures the energy distribution of the x-ray spectrum to provide

energy-sensitive images. Prototype spectral CT scanners have been developed

for research purposes (Schlomka et al. 2008, Butler et al. 2008). The overall

benefits of spectral x-ray imaging include improved diagnosis, in addition to the

potential of reducing radiation dose. The advanced photon counting technology

can produce higher image quality in spectral CT compared to conventional CT

(Tapiovaara & Wagner 1985, Shikhaliev 2008b). Increased contrast agent reso-

lution (Shikhaliev & Fritz 2011) and improved discrimination between materials

can also be facilitated, as more data points are acquired compared to dual-energy

imaging (Frey et al. 2007, Niederlöhner et al. 2005).

2



1.1 Aim

1.1 Aim

The primary aim of this thesis was to study the feasibility of spectral x-ray

imaging and to develop theoretical guidelines for scanning parameters in spectral

x-ray imaging. By minimising the incident photon flux while maintaining suffi-

cient information richness in an x-ray measurement, materials within an imaging

object can be identified with the highest dose efficiency. In spectral x-ray imag-

ing, the amount of information regarding the object contained in a measurement

can be further affected by the arrangement of the energy subdivisions within a

PCD (Frey et al. 2007, Niederlöhner et al. 2005, Roessl & Proksa 2006). The

theoretical framework therefore aims to optimise the partitioning of transmitted

spectrum in a PCD and to estimate the optimal incident beam quantity, for the

most efficient material discrimination using spectral x-ray imaging. The next

aim was to validate the theoretical model by means of Monte Carlo simulations.

The final part of the thesis aimed to examine the practical limitations of a PCD,

called the Medipix detector (Ballabriga et al. 2011a). An overview of the thesis

is given in the next section.

1.2 Outline

In Chapter 2, the fundamental contrast mechanisms in x-ray images are reviewed.

An introduction to x-ray interactions with matter is presented and a discussion

of the principles of spectral imaging follows. In Chapter 3, a novel model to opti-

mise the collection of energy information for spectral imaging is presented. The

optimisation is based on a framework for material thickness estimation assuming

an ideal photon counting detector. Chapter 4 introduces a simulation model for

validation, based on the BEAMnrc code system. A thickness estimation method

is presented and applied to the simulated spectral images. Upon validating the

3



CHAPTER 1. INTRODUCTION

theoretical model, a comparison between spectral and dual-energy mammogra-

phy with respect to optimal dose is discussed. The focus is shifted in Chapter 5

to experimental work on actual photon counting measurements. The candidate’s

contribution to various technical aspects of an in-house developed spectral micro-

CT scanning system is discussed. Preliminary measurements using the advanced

features of the Medipix detector are presented. The work is then summarised

and future directions are discussed in Chapter 6. Finally, an additional project

relating to CT reconstruction with synthetically truncated projection data that

the candidate worked on is presented in Appendix B. This work was carried out

during an internship at the Nova Scotia Cancer Center in Halifax, Canada after

the temporary closure of the University of Canterbury due to the Canterbury

earthquakes in 2011.

1.3 Academic contributions

During the course of this thesis, the candidate has published one journal article

(Nik et al. 2011) and one conference paper (Doesburg et al. 2012). Two journal

articles are being prepared for submission (Nik et al. 2013, Walsh et al. 2013).

Work from this thesis has contributed to two other publications for which the can-

didate is a co-author (Ronaldson et al. 2011, Walsh et al. 2011a). The candidate

has presented his work at three international conferences and a local meeting,

as well as given invited talks on spectral imaging at two international research

institutions. Publications and presentations resulting from work in this thesis are

listed below in a chronological order, along with their respective descriptions.

4



1.3 Academic contributions

Publications

M F Walsh, A M T Opie, J P Ronaldson, R M N Doesburg, S J Nik, J L Mohr,
R Ballabriga, A P H Butler and P H Butler (2010). First CT using Medipix3
and the MARS-CT-3 spectral scanner. Journal of Instrumentation 6 C01095
(Conference Contribution - Full conference paper)
First CT images acquired using the in-house developed CT scanner, named the
Medipix All Resolution System (MARS), with a Medipix3 detector were reported.
An advanced feature of the Medipix3 detector, called charge summing mode (see sec-
tion 2.5.1), was demonstrated to be capable of spatially reconstructing alpha particles
of multiple incorrect counts into single valid occurrences. The candidate contributed
to the equalisation procedure of the detector and the processing of spectral projec-
tions. This paper was published in the proceedings of the 12th International Workshop
on Radiation Imaging Detectors (iWoRID).

J P Ronaldson, M Walsh, S J Nik, J Donaldson, R M N Doesburg, D van
Leeuwen, R Ballabriga, M N Clyne, A P H Butler and P H Butler (2010). Char-
acterization of Medipix3 with the MARS readout and software. Journal of In-
strumentation 6 C01056 (Conference Contribution - Full conference paper)
This paper evaluated the electronic stability, image quality and spectroscopic perfor-
mance of the Medipix3 detector. The conventional single pixel mode of operation
was shown to be acceptable for ongoing research. However, imaging performance in
the charge summing mode was expectedly limited, with temporal instabilities noted in
several detector parameters. The candidate contributed to the equalisation procedure
of the detector and the processing of spectral projections. This paper was published
in the proceedings of the 12th iWoRID.

S J Nik, J Meyer, R Watts (2011) Optimisation of material discrimination using
spectral x-ray imaging. Physics in Medicine and Biology 56 5969-5983. (Journal
Article)
A comprehensive description of the theoretical model, which the candidate has devel-
oped, was given in this paper. Novel results on the optimisation of energy parameters
for discriminating materials related to small animal and breast imaging were presented.
The candidate prepared this article.

R M N Doesburg, T. Koenig, S J Nik, S. T. Bell, J P Ronaldson, M F Walsh,
A P H Butler and P H Butler (2012). Spectrum measurement using Medipix3
in Charge Summing Mode. Journal of Instrumentation 7 C11004 (Conference
Contribution - Full conference paper)
This paper presented the measurements of a relatively intense americium gamma
source using the charge summing mode. Spectroscopic performance and limitations

5



CHAPTER 1. INTRODUCTION

of the detector were discussed. The candidate personally prepared the article for
publication as part of the proceedings for the 14th iWoRID.

M F Walsh, S J Nik, S Procz, M Pichotkac, R M N Doesburg, N De Ruiter, C
J Bateman, A I Chernoglazove, R K Panta, A P H Butler and P H Butler (2013)
Spectroscopic CT data acquisition with Medipix3.1 (Journal Article - Preprint)
The novel results of using another advanced feature of the Medipix3.1 detector, known
as the spectroscopic mode, to simultaneously obtain images at eight energy ranges
will be presented. Data acquisition of a customised phantom and a mouse was per-
formed in collaboration with local and overseas collaborators. The candidate was
responsible for enabling and testing the feature in the in-house developed detector
readout system, as well as contributed considerably towards preparing the article.
This paper has been accepted for publication in Journal of Instrumentation.

S J Nik, R S Thing, R Watts, T Dale, B Currie and J Meyer (2013) Optimal
material discrimination using spectral x-ray imaging: Monte Carlo validation and
application to mammography. (Journal Article - under preparation)
This paper will describe the simulation model presented in this thesis. Results on
the validation of the theoretical model and on the optimisation of dose with regard
to mammography will be presented. The candidate obtained all of the results and
has prepared this paper, which is planned to be submitted to IEEE Transactions on
Medical Imaging.

Presentations (*presenter)

S J Nik*, J Meyer, A P H Butler, P H Butler, R Watts (2010) Optimisation of
energy thresholds in spectral X-ray imaging for biological material discrimination.
Health Research Society of Canterbury (HRSC) Clinical Meeting, Chirstchurch,
New Zealand. In New Zealand Medical Journal, 123, 1324. (Oral)
This talk presented the initial developments of the theoretical model.

R S Thing, S J Nik, R Watts, T Dale, B Currie and J Meyer* (2010) Simulation
of energy selective x-ray images for material discrimination. New Zealand Physics
and Engineering in Medicine conference (NZPEM 2010), Dunedin, New Zealand.
(Oral)
This presentation introduced the development and validation of the Monte Carlo sim-
ulation model.

S J Nik*, J Meyer, R Watts (2010) Optimisation of material discrimination using

6
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spectral CT. Engineering and Physical Sciences in Medicine and the Australian
Biomedical Engineering Conference (EPSM ABEC 2010), Melbourne, Australia.
(Oral)
Preliminarily results of the theoretical model were presented in this talk.

R S Thing, S J Nik*, T Dale, B Currie, R Watts and J Meyer (2010) A virtual
spectral CT scanner. Engineering and Physical Sciences in Medicine and the
Australian Biomedical Engineering Conference (EPSM ABEC 2010), Melbourne,
Australia. (Oral)
This presentation introduced the development and validation of the simulation model.
The candidate presented the talk on behalf of R S Thing.

R Doesburg, T Koenig, S J Nik*, S Bell, J P Ronaldson, M Walsh, A P H
Butler, P H Butler, R Watts (2012) Spectrum measurement using Medipix3 in
Charge Summing Mode 14th iWoRID, Figueira da Foz, Portugal. (Oral)
Results of the charge summing mode measurements were presented and limitations
of the Medipix3 detector were discussed. This presentation corresponds to the publi-
cation Doesburg et al. (2012) in Journal of Instrumentation.

S J Nik*, R S Thing, R Watts, J Meyer (2012) Material quantification in spectral
x-ray imaging: optimization and validation. 54th Annual American Association
of Physicists in Medicine (AAPM) Meeting in Charlotte NC, USA. (Oral)
This talk summarised the simulation model and presented results on the validation of
the theoretical model using simulation.

S J Nik* An overview of the Medipix detector. Biomedical Imaging Division,
School of Biomedical Engineering & Sciences, Virginia Tech - Wake Forest Uni-
versity in Blacksburg, USA. (Oral)
This invited presentation at Virginia Tech explained the technical details and opera-
tions of the Medipix detector to a collaborator with a MARS-CT scanner.

S J Nik* Spectral x-ray CT using energy-resolving photon counting detector.
Environmental Science & Research in Christchurch, NZ. (Oral)
This invited talk introduced the operation of the MARS-CT scanner. A summary of
the applications of the imaging system was presented.
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Chapter 2

Background

The behaviour of x-rays after passing through matter is dependent on the attenu-

ation properties of its materials. Attenuation according to Bushberg et al. (2003)

is ‘the removal of photons from a beam of x- or gamma rays as it passes through

matter’. Materials with higher densities and higher atomic numbers attenuate

more. Just like when Roentgen imaged his wife’s hand, the bones of her hand

and her wedding ring cast a darker shadow on the photographic plate than the

penumbra of her soft tissue, resulting as white structure on the developed film.

Attenuation is also a function of the x-ray energy. X-rays of lower energy, or

soft x-rays, are more likely to be attenuated by matter. Harder x-rays are less

likely to be attenuated. The variable transparency of matter to x-ray forms the

fundamental contrast in x-ray imaging.

In this chapter, the basics of x-ray and CT imaging, the physics of x-ray

attenuation and some current imaging techniques are discussed. An emerging

x-ray detection modality called the photon counting detector and its potential

and prospective implementations will be introduced.
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CHAPTER 2. BACKGROUND

2.1 X-ray and CT imaging

A projection measurement is an image of x-ray transmission through an object,

as measured by an x-ray detector. Applications of x-ray projection imaging range

from the visualisation of bony structures such as in chest radiography, or in dental

radiography, to the visualisation of soft tissue in mammography. Unlike in an x-

ray radiograph, overlapping structures are not superimposed in CT images. An x-

ray CT scanner is designed to reconstruct the internal structure of an object, after

taking projection measurements from multiple directions. While this research

focuses on the fundamental physics of projection images, this is the basis for

CT imaging and thus, the ideas presented in this thesis are expandable to CT.

The image acquisition and reconstruction chain in x-ray CT imaging is therefore

briefly reviewed.

2.1.1 An overview of CT imaging

X-ray CT is generally thought to have been co-invented by Godfrey N Hounsfield

(Hounsfield 1973) and Allan M Cormack (Cormack 1963). Standard clinical CT

features an x-ray tube and a detector array rotating around the patient. The

x-ray beam is collimated to give a fan-beam, illuminating a thin cross-sectional

slice of the imaging object. For each slice, the attenuation value of an imaging

object is calculated at every two-dimensional position (x, y). For a ray that casts

through the object, the transmitted number of photons along the x-ray path r is

N = N0e
−

∫
µ(r)dr , (2.1)

where
∫

µ(r)dr defines the line integral of the attenuation along the ray measured

on a projection. This line integral sums up the attenuation distribution, µ(x, y),

of the overlapping structures along the ray path, r .
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2.2 X-ray contrast

The first and second generations of CT scanners required the translation of

a narrower x-ray beam and a detector, which has become obsolete. Rather,

in the long-lasting third generation geometry, the detector arc and the x-ray

source subtends an angle adequately covering the size of the patient (Bushberg

et al. 2003). The transient fourth generation uses a fan-beam, with the detectors

arranged in a fixed ring around the gantry. After a full rotation of the CT

gantry, the cross-sectional map of µ(x, y) can be reconstructed following a series

of corrections for the reduction of image artifacts. The most widely implemented

reconstruction algorithm is known as the filtered backprojection (FBP) (Slaney

& Kak 2001), while other analytical and iterative reconstruction methods remain

a highly active area of research.

2.2 X-ray contrast

In the diagnostic energy range of 10 keV to 150 keV, the possible types of pho-

ton interaction with matter are Rayleigh scattering, Compton scattering and the

photoelectric effect. During a photoelectric interaction, the incident photon dis-

appears (is absorbed) after transferring all its energy to an electron, causing it

to be ejected from the atom. In both Compton and Rayleigh scattering events,

the interacting photon changes direction of travel without being absorbed. In

Rayleigh scattering, the interaction occurs with the entire atom, as opposed to a

single electron in a Compton scattering event.

All these interactions result in the removal of the x-ray from its original path,

either by being scattered or by being absorbed and all interactions contribute to

the attenuation. The linear attenuation coefficient µ, describes the total atten-

uation of a material as a result of Rayleigh scattering, Compton scattering and

11
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the photoelectric effect, where at an energy E,

µ(E) = µR(E) + µC(E) + µP (E). (2.2)

Subscripts R, C and P denote Rayleigh, Compton and photoelectric components,

respectively. The contribution due to Rayleigh scattering can be as low as 5%

above 70 keV in soft tissue (Bushberg et al. 2003) and is often ignored. The µC

and µP components can be approximated by:

µC(E) = ρefKN(E)

µP (E) = ρeCP
Zm

En
.

(2.3)

Z is the atomic number of the element while ρe is the electron density of the

atom in electrons/cm3 (McCullough 1975). The exponents in the photoelectric

components has been determined experimentally to be m = 3.8 and n = 3.2

(Macovski 1983). The constants CP is 9.8 × 10−24 (McCullough 1975). The

Klein-Nishina formula (fKN(E)) describes the energy dependency of the Compton

scattering and can be written as (Macovski 1983)

fKN(E) =
1 + α

α

[2(1 + α)

(1 + 2α)
− 1

α
ln(1 + 2α)

]

+
1

2α
− 1 + 3α

1 + 2α

2

, (2.4)

with α = E/Ee. Here Ee ≈ 511 keV denotes the rest mass energy of an electron.

The photoelectric absorption effect may feature an abrupt discontinuity in the

attenuation, known as the absorption edge within or outside the diagnostic energy

range. For now, lets consider only the description of the photoelectric effect

with no absorption edges. The effect of absorption edges will be addressed in

section 2.4.

Briefly speaking, the total attenuation depends on the energy of the incoming
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photon (E), the atomic number (Z) and the electron density (ρe) of the absorbing

material. As described in (2.3), the Compton scattering and photoelectric ab-

sorption probabilities decrease with energy at different rates, which is depicted in

figure 2.1. The photoelectric absorption, which is more dominant at lower ener-

gies, falls off rapidly as E increases. Compton scattering decreases comparatively

slower and is the more dominant contribution to the total attenuation at higher

energies. For calcium, as an example, the crossover of these two attenuation com-

ponents occurs at approximately 85 keV (see figure 2.1). Additionally, µP has a

stronger dependency on the atomic number, while µC is directly proportional to

ρe.
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Figure 2.1: The contributions of the Rayleigh scattering, Compton scattering and
photoelectric absorption, together with the total linear attenuation, are plotted for
calcium to show the different falloff rates of the attenuation components.

Disregarding the effect of Rayleigh scattering, the linear attenuation µ of a

material in (2.2) can be described as a linear combination of the Compton and

the photoelectric basis functions. fKN(E) and 1/(E3.2) are the attenuation ba-

sis functions. Given two linearly independent acquisitions, the coefficients of

the basis functions can be estimated to reconstruct the attenuation basis images

(Alvarez & Macovski 1976). The Compton and the photoelectric basis images,
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respectively, represent the electron density and the atomic number, which are

useful depictions of an object’s constituents. Materials with lower atomic num-

ber mainly correspond to the Compton basis and the high-Z materials to the

photoelectric component. When the composite materials of a measured object

are discriminated in this manner, we say that they are decomposed. Material

decomposition, in the absence of K-edge (see section 2.4), can be regarded as

solving a system of two linear equations for two variables. In this context, the

two unknowns can be determined provided there are at least two spectrally dis-

tinct measurements. The specifics of decomposition techniques will be outlined

in section 2.6.

The effective Z is a measure of the average atomic number for a compound and

a mixture of materials. Bone, due to the presence of calcium (Z = 20), has a con-

siderably higher effective Z of about 13, compared to soft tissue, which is mostly

made up of lower Z materials such as hydrogen, carbon, nitrogen and oxygen.

Soft tissue has an effective atomic number of about 7.6 (Bushberg et al. 2003)

and is regarded to be similar to that of water. The decomposed photoelectric and

Compton basis images would thus reveal bone and soft tissue, respectively. More-

over, bone can be written as a mixture of 0.832 portion of lucite and 0.237 portion

of aluminium (Lehmann et al. 1981). In fact, any material can be rewritten as a

combination of two other materials, since the latter two materials are themselves

a linear combination of the two attenuation basis functions. The measurements

of bone and soft tissue in the above example can be decomposed equally well

into two material basis functions, rather than the Compton and the photoelectric

basis functions. If the attenuation spectra of calcium and water were chosen for

the decomposition, the locations of bone and soft tissue would appear on the

calcium and water basis images, respectively.

14
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2.3 Dual-energy x-ray and CT imaging

In dual-energy CT, the spectra required for the decomposition must be sufficiently

distinct for a useful material decomposition. A straightforward method is to

sequentially acquire images of two different incident energy spectra by means

of two separate rotations of the CT gantry. A second set of projections can be

captured upon switching the x-ray source voltage. The low and high energy scans

are unlikely to be perfectly registered due to e.g. patient and/or organ movements

during the delay between the two acquisitions. Another disadvantage is that the

time it takes may be suboptimal with respect to undesired distribution of contrast

agents (Johnson et al. 2010). An ideal setup, which is technically not yet feasible

is to simultaneously emit two monochromatic x-ray beams at optimally selected

energies.

Dual-source (Flohr et al. 2006, Johnson et al. 2007) or rapid voltage switch-

ing (Kalender et al. 1986, Grasruck et al. 2009) techniques can be regarded as

a surrogate, whereby two polychromatic beams are emitted. The 80 kVp and

140 kVp tube spectra, with average energies of 53 keV and 71 keV, respectively,

are considered sufficiently distinct in clinical practice (Johnson et al. 2010). In

a dual-source configuration, each of the two sources is coupled with a detector,

with the source-detector pairs sustain an offset of 90 degrees (figure 2.2) and a

complete dual-energy scan can be acquired with a single gantry rotation. Because

they are operated independently, the filtrations and currents of the x-ray tubes

can be individually optimised for increased beam separation. However, there can

be an increase in hardware complexity and in cost due to the additional source

and detector pair (Johnson et al. 2010), which also limits the size of the field-of-

view in the restricted space in a CT gantry.

The rapid voltage switching approach requires less hardware modifications,

by utilising only a single source with the ability to swiftly alternate between the
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Figure 2.2: The dual-source configuration. Two source and detector pairs ar-
ranged at 90 degrees simultaneously produce projections at two tube voltages as
the gantry rotates around the patient.

low and high tube voltages (figure 2.3). As the single source-detector pair rotates

around the patient, dual-energy projections are collected sequentially with min-

imal misregistrations. Compared to the dual-source DECT, the overall acquisi-

tion has to be slower to accommodate for the additional projection measurements.

The switching between kVps is also not instantaneous. The voltage does not fully

follow a pulsed curve, which reduces spectral separation (Johnson et al. 2010).

By placing a layered detector, two measurements can be acquired at low and

high energies with a single x-ray source. The first layer of the detector pref-

erentially absorbs low energy photons and exhibits weaker attenuations at the

higher energies (figure 2.4). A different scintillator with stronger sensitivity for

the higher energy range targets the remaining photons that penetrated the first

layer. This technique therefore allows for simultaneous, rather than sequential,

dual-energy acquisition and is ideal for e.g. cardiac imaging. The spectral differ-

ence obtainable using a layered detector, however, remains the lowest among the
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2.3 Dual-energy x-ray and CT imaging

Figure 2.3: The rapid voltage switching mode of DECT acquisition. The x-ray
tube is capable of switching for one tube voltage to another within a very short
time. The overlapping projections are measured separately by a single detector to
assemble a dual-energy dataset.

three DECT modes (Johnson et al. 2010).

Dual-energy x-ray imaging thrives on the energy dependency of the Compton

and photoelectric interaction mechanisms to provide a decomposition of materi-

als. Most of the clinical applications has been identified as the depiction of heavier

elements, particularly calcium and iodine (Z = 53). These heavier elements in-

crease the localised attenuation primarily because of their higher atomic numbers

Z. When used in projection imaging, the lower or the higher energy image can be

suitably weighted to remove (or subtract) the contrast from soft-tissue or bony

structure. In chest radiography, for example, dual-energy subtraction is applied

to emphasize the subtle pulmonary abnormalities on the water-weighted image,

while contrast from the ribs exists only in the bone-weighted image (Bushberg

et al. 2003). Similar subtraction of low and high energy scans is applied in CT

angiography (Johnson et al. 2010). Vasculature can be highlighted in an an-

giogram by removing the bony structure in order to examine vascular conditions

such as aortic aneurysm or pulmonary embolism. Previously impossible iodine
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Figure 2.4: The dual-layer detector configuration. The two detector materials
demonstrate different preferential absorbances. Lower and higher effective spectra
are captured respectively by the top and bottom layers, while the x-ray source is
operated at a kVp settings.

and calcium separation has therefore been pioneered in DECT, along with the

quantification of calcification, depictions of collagen and characterization of other

tissues (Flohr et al. 2006, Johnson et al. 2007, Graser et al. 2009).

2.3.1 Energy integrating detectors

The detectors employed in the current clinical CT and radiographic systems use

a scintillating material to convert x-ray photons into visible light. The light

photons are then converted into electric signal that are proportional to the x-

ray energies by a photodiode. These detectors are known as energy integrating

detectors because they measure the total amount of energy deposited during an

exposure. The distribution of photon energies and the number of events are not

recorded. Using the same notations as (2.1), the detected signal, ds, of an energy
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integrating detector can be formulated as

ds =

∫

EN0(E)e−
∫
µ(r)drdE. (2.5)

Due to the integration over the energy spectrum, only an average attenuation

of the imaging object can be measured. An energy integrating detector cannot

take advantage of the polyenergetic spectrum, which contains much information

about photon energies. The energy weighting in (2.5) further reduces informa-

tion contained in the measurements since attenuation contrast between different

materials is greater at higher energies than at lower energies. A means to recover

the energy information lost in the energy integrating detectors will be presented

in section 2.5.

2.4 K-edge imaging

Besides simply increasing the local attenuation, iodine features a sharp discon-

tinuity in its attenuation curve, caused by the binding energy of the innermost

(K) shell electrons. Only photons with energies higher than the binding energy

have the possibility to knock out the K-shell electrons. Accordingly, photons

with energies just above the K-shell binding energy of iodine are attenuated more

strongly than those just below. The sudden increase in the photoelectric absorp-

tion probability is manifested in the attenuation at the particular K-edge energy.

The mass attenuation coefficient, which is the ratio of linear attenuation to mass

density, is plotted to show the K-edges of several high-Z materials in figure 2.5.

The K-edge of iodine is located at 33.2 keV. This K-edge discontinuity is unique

for each element and cannot be modelled by the continuous Klein-Nishina and

1/(E3.2) curves. A new basis function representing the material with a K-edge

has to be introduced.
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In order to utilise the K-edge discontinuity in material decomposition, how-

ever, it is important that there are sufficient transmitted photons below the K-

edge energy level. Calcium, for instance, has a K-edge energy of 4 keV, which is

too low to be considered within the diagnostic energy. Likewise, photons with

energies below the K-edge of iodine do not penetrate greatly through an object

of interest in diagnostic imaging. As pointed out in section 2.3, the mean en-

ergy of an 80 kVp tube is 53 keV. The vast majority of the transmitted photons

have energies greater than the K-edge of iodine since their average energy is well

above 33 keV. Gadolinium (Z = 64), on the other hand, has a K-edge located at

50.2 keV. While iodine is omnipresent in conventional CT imaging, gadolinium

is therefore seen as a more promising candidate in the context of K-edge imaging

(Roessl & Proksa 2007). Gold has an atomic number of 79 (K-edge energy =

80.7 keV) and is emerging as another potential x-ray contrast agent.
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Figure 2.5: K-edges as a result of K-shell binding energies are prominent for iodine
(at 33.2 keV), gadolinium (50.2 keV) and gold (80.7 keV). K-edge energy increases
according to the atomic number. Calcium’s K-edge (4 keV) is considered too low
for diagnostic x-ray imaging. Mass attenuation value (µ/ρ) is obtained from Berger
et al. (2005) and is plotted in place of µ to neglect the factor of material density
(ρ).

With the existence of a K-edge, three basis functions representing the linear
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2.5 Spectral x-ray and CT imaging

attenuation curves of three materials (two without K-edge, one with K-edge) that

are not linearly dependent on each other can be formed. To be specific, iodine,

soft tissue and calcium can be represented by either the linear combination of

the Klein-Nishina and 1/(E3.2) (equation (2.3)) plus the attenuation of iodine

(the K-edge material), or equally well by the three individual material attenu-

ation functions. The objective of K-edge imaging can hereby be simplified as:

acquire three measurements in order to solve for three unknowns, namely the

amount of the three materials. The potential of this three-dimensional imag-

ing technique has been identified earlier by including an additional measurement

to the two provided by DECT. A straightforward approach is to apply a set of

three appropriately selected monoenergetic beams (Sukovle & Clinthorne 1999).

When three polychromatic x-ray spectra were used, Riederer & Mistretta (1977)

favoured strongly filtering two beams to have mean energies straddling the io-

dine’s K-edge, with the third beam at a higher energy.

2.5 Spectral x-ray and CT imaging

A different way of obtaining energy-sensitive x-ray images is by recording the

energy of the detected photons in addition to their spatial positions. CT systems

for the acquisition of energy resolved images, often referred to as ‘spectral CT’,

have been demonstrated to be feasible (Delpierre et al. 2002, Schlomka et al.

2008, Shikhaliev 2008b, Butler et al. 2008). Several families of PCDs with energy-

resolving capabilities, such as the Medipix (Llopart et al. 2002, Ballabriga et al.

2011a), Pilatus (Broennimann et al. 2006) and XPAD (Delpierre et al. 2002,

Pangaud et al. 2007) detectors have been built to achieve this. While spectral CT

may sometimes refer to the implementation of DECT as described in section 2.3

(e.g. in Heismann et al. (2012)), ‘spectral x-ray imaging’ and ‘spectral CT’ are
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used in this work strictly to refer to the acquisition with an energy-sensitive

PCD with a single x-ray source/voltage. Elsewhere, this imaging technique has

also been referred to as spectroscopic, multi-energy, colour, photon counting or

spectral CT.

Figure 2.6: Illustration of photon binning in a PCD. When detected, photons
within a particular energy range are grouped together. PCDs have the ability to
dissect the transmitted spectrum into multiple narrower ranges. Three energy bins
are shown for illustration purposes.

PCDs use a semiconductor sensor layer to directly convert x-ray photons into

an electrical signal. When the semiconductor material is ionised, an electron-hole

pair is generated and a pulse with an amplitude relative to the photon energy is

induced in that pixel. Conventional x-ray detectors measure the total deposited

energy of all detected photons. In a PCD, the pulse created by a photon detection

event is individually counted and analysed (see e.g. Llopart et al. (2002),Pangaud
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et al. (2007)). The energy-resolving capability of PCDs is achieved with pulse

height discriminators within the readout Application Specific Integrated Circuit

(ASIC). Each pixel in a PCD is connected to a tunable pulse height discriminator

to compare the charge created with preset levels and therefore can be considered

an individual spectrometer. If the preset threshold is exceeded, the associated

counter is incremented to record the number of photons with energies higher than

that level.

Photon counts associated with a higher energy level can be subtracted from

that of a lower energy to form data for an energy bin (figure 2.6). Additional dis-

criminators are provided in some detectors, e.g. the Medipix2 and the XPAD3C

detectors, as energy high threshold, such that a single energy bin can be formed

throughout acquisition (Llopart et al. 2002, Pangaud et al. 2007). Only photons

with energies within this window are counted. PCDs are in theory capable of

measuring over an arbitrary number of energy ranges, rather than the two spec-

tra measured in DECT. As many as 8 independent discriminators are provided

in the Medipix 3 detectors (Ballabriga et al. 2011a). The decomposition into

as many materials as the number of discriminators is theoretically feasible, pro-

vided that there are suitable contrast agents with K-edge energies sufficiently far

apart for effective K-edge imaging. Note that simultaneous detection of too many

contrast agents may be superfluous to clinical necessity.

One immediate advantage of imaging in multiple narrower energy ranges is the

reduction of beam hardening. When the softer x-rays are preferentially filtered,

a beam is said to be ‘hardened’. As energy integrating detectors intrinsically

apply much lighter weights on the low energy photons, a distortion of the trans-

mitted spectrum can be observed (Shikhaliev 2005). Beam hardening results in

an overestimation of the regional attenuation values. PCDs weight each photon

equally and thus reduce beam hardening distortions. Furthermore, Giersch et al.
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(2004) simulated photon counting and energy integrating images of soft tissues

to show that the former can provide a higher image signal-to-noise ratio (SNR)

when compared to the latter. The image quality can be further enhanced, by

virtue of weighting photons according to their energies, although at the expense

of increased beam hardening artefact (Shikhaliev 2005). Finally, by focusing on

the energies at which the materials differ at most in terms of x-ray attenuation,

energy-sensitive x-ray imaging can improve subtle tissue contrast, which may help

diagnoses of diseases such as breast cancer (Bones et al. 2010).

2.5.1 Medipix detectors

One example of the PCDs is the Medipix detector family. Designed and built by

an international collaboration based at the European Organization for Nuclear

Research (CERN) 1, the Medipix detector was initially developed for high energy

physics and has been proposed for use in medical imaging. The first version of

the Medipix detector, the Medipix1 consisted of 64× 64 pixels each of the size of

170× 170 µm2 and served as a proof of concept (Campbell et al. 1998). The spa-

tial resolution was improved to 55× 55 µm2 in the Medipix2 (Llopart et al. 2002).

In addition, the input polarity of the ASIC can be switched between positive and

negative in order to collect both electrons and holes (Pfeiffer 2004), which al-

lowed the use of alternative sensor layers. For example, cadmium-telluride has

a comparatively higher absorption coefficient but generates the opposite type of

charge carrier than silicon. The chip can also be connected on three of its sides,

allowing the assembly of larger detectors.

The current state of development is Medipix3. Compared to its predecessors,

one advantage of the Medipix3 is the capability to distinguish eight bins simulta-

neously, however, at cost of the spatial resolution. The conventional Single Pixel

1 http://medipix.web.cern.ch/MEDIPIX/
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Mode (SPM) operates with up to two energies per pixel at a pixel pitch of 55 µm

and is available in both Medipix2 and 3. Mapping four readout ASIC pixels to a

single semiconductor unit of 110 µm2 enables the ‘spectroscopic mode’ of photon

detection in Medipix3 (Ballabriga et al. 2011a).

Furthermore, the spectral distortion as a result of the charge sharing effect

can be mitigated using the Medipix3 detectors. Due to the spreading of a charge

cloud into adjacent pixels, the SPM often suffers from count-loss or multiple in-

valid counts of lower energies. As illustrated by the circles in figure 2.7a, some of

the 10 keV monoenergetic photons were registered as apparent photons of lower

energies. When operated in Charge Summing Mode (CSM), the Medipix3 has the

ability to communicate among 2×2 neighbouring pixels in order to reconstruct

the incoming charge pulses as they appear following a photon detection event.

The arbitration circuit then allocates the total charge that is higher then the pre-

set threshold to the pixel with the largest contribution (Ballabriga et al. 2011a),

based on the ‘winner takes all’ scheme in figure 2.7b. A Gaussian shaped 10 keV

monoenergetic (triangles in figure 2.7a) can be preserved in the CSM, thus im-

proving the energy resolution of the detector.

2.5.2 Other photon counting detectors

Numerous PCDs have been developed in parallel with the Medipix over the past

decade or so. Table 2.5.2 gives a brief overview of the available PCDs. A thorough

review is beyond the scope of this thesis but basic information and corresponding

references detailing the specific technicalities of each detector are provided.
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(a) (b)

Figure 2.7: (a) Charge sharing occurs in SPM when the induced charge is spread
unevenly among abutting pixels. Each pixel is mistakenly assigned with a signal
of a lower energy, causing the 10 keV monoenergetic spectrum to be distorted,
as indicated by the circles (Ballabriga 2009). (b) Given the distributed signal,
communication among the 2×2 neighbouring pixels in the CSM can reconstruct
the original amplitude of the photon energy. The ‘winner takes all’ scheme in the
Medipix3 then allocates the corresponding count to the member with the maximum
contribution (bottom right pixel in this illustration). The charge sharing tail thus
disappears (triangles) in the CSM 10 keV monoenergetic spectrum in (a).

2.6 Material decomposition

The Medipix detectors, as well as other PCDs, have been employed for the im-

plementation of K-edge imaging, in which the decomposition of materials has

been performed on the image or projection space (Giersch et al. 2005, Schlomka

et al. 2008, Firsching et al. 2009, Le & Molloi 2011). In image-based decomposi-

tion, phantoms containing known materials was first measured and reconstructed

at different energies. The CT numbers of the energy-sensitive images can be used

to calibrate pixel values to the known material constituent (see e.g. Le & Molloi

(2010) and Ronaldson et al. (2012)). The least squares method, for example,

then matched the spectral calibration against measured pixel value of the recon-

structed images. This image-based approach is thought to be computationally

less intensive but can be susceptible to the beam-hardening distortions in the
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2.6 Material decomposition

Table 2.1: Photon counting detectors with energy-resolving capabilities used in
x-ray imaging.

Detector Developer Pixels matrix Pixel size (µm2)
ChromAIX a Aeroflex 4× 16 300× 300

DIXIb Uni. Uppsala 31× 32 270× 270
Medipixc CERNd 256× 256 55× 55

MPECe (later CIXf) Uni. Bonn 32× 32 200× 200
Pilatusg PSIh 487× 195 172× 172
XPADi ESRFj 80× 120 130× 130

a Steadman et al. (2011)
b Edling et al. (2004)
c Pangaud et al. (2007)
d European Organization for Nuclear Research
e Lindner et al. (2001)
f Krüger et al. (2008)
g Bech et al. (2008)
h Paul Scherrer Institute
i Pangaud et al. (2007)
j European Synchrotron Radiation Facility

reconstructed pixel values (Frey et al. 2007).

Given the photon counts acquired by a PCD detector at multiple energies,

the least squares method can be applied in the projection-based decomposition to

estimate a sinogram of material composition that is most likely to have produced

the spectral projection measurements (Frey et al. 2007). Similarly, the decompo-

sition can be formed as an optimisation problem using the maximum likelihood

estimator (MLE) (Roessl & Proksa 2007), which has been experimentally im-

plemented by Schlomka et al. (2008). Another projection-based decomposition

method involves fitting a polynomial function to calibration data (Alvarez 2011).

Determining the fitting coefficients maps the spectral line integrals to material

thicknesses. Given the resultant sinograms, basis images can be reconstructed, al-

though a thorough knowledge of the detector-specific spectral response is required

in this projection-based approach (Firsching et al. 2009, Frey et al. 2007).

The objective of either projection or image based decomposition is to produce
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basis images with optimum SNR (Tapiovaara & Wagner 1985, Roessl & Proksa

2007). The SNR is a common measure of the image noise. It is intuitive that

noise in the measurement propagates through to the decomposition and we have

seen that the material attenuations are energy-dependent. For an ideal detector

and some monoenergetic beams, the decomposition accuracy is dependent on the

x-ray energies as well as the beam quantities. Higher photon counts leads to

higher SNR in the measurements. This results in improved decomposition and

thus lower basis image noise. While it is possible to ‘tweak’ a polychromatic x-ray

beam (e.g. using filtration), it is more convenient in a PCD to select the energy

level of the discriminator. Two key parameters therefore determine the detected

counts in a PCD: the incident photon flux rate and the discriminator level. The

energy bins must be carefully chosen to minimise the decomposition noise. The

radiation dose has to be As Low As Reasonably Achievable (Slovis 2003). A

previous work applied the statistical detection theory (Alvarez 2010), whereby

the detector performance for differentiating a feature from a background material

was examined. However, as Firsching et al. (2006) pointed out, determining

the effective values of attenuation functions across the spectrum (matrix M in

Alvarez’s (2010) paper) requires the input of material quantity.

The next chapter presents a novel theory for optimising noise in the material

basis images via the selection of binning energies. The amount of photons re-

quired to achieve a given imaging task is estimated. The proposed theory does

not assume the prior knowledge of material quantity and is based on a projec-

tion based decomposition method, which is achieved by minimising the z-score

between a measurement and an expected count.
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2.7 Concluding remarks

CT scanners are capable of taking multiple projections to reconstruct a thin cross-

section through the imaging object. Contrast in an x-ray image is provided by

the varying attenuations of materials. The main modes of photon interaction in

the diagnostic energy range are Compton scattering and the photoelectric effect.

They have contrasting dependency on photon energy and on material proper-

ties. Two attenuation basis functions have been identified as fitting functions to

the energy-dependent curves, allowing for decomposition of measurements into

two attenuation basis images. Low- and high-Z materials are often depicted in

separate images. Material attenuation spectra can be substituted for the Klein-

Nishina and the photoelectric basis functions. The resulting decomposed images

are consequently material-specific. The dual-energy spectra can be acquired by

means of installing two sources of low and high tube voltages, rapidly alternating

the kVp of an x-ray tube or employing a detector with layered scintillators of

varying absorbances.

Materials of interest to diagnostic imaging may or may not consist of a K-

shell photoelectric absorption edge within the energy range considered. K-edge

energy increases with atomic number and is thus distinct to each material. When

featured, K-edge imaging introduces a new dimension to material decomposition.

Decomposition of a material with K-edge from the two material/attenuation bases

requires an additional spectrum to be measured. Spectral x-ray using energy-

resolving PCDs can be thought of as an expansion of dual-energy x-ray imaging.

PCD has the advantage of increased signal-to-noise ratio, among others. More

excitingly, in K-edge imaging, spectral x-ray imaging has the ability of simulta-

neous identification of more materials. Each pixel in a PCD may operate with

at least two discriminators to determine if the photon energy exceeds the pre-

defined thresholds, and whether to allocate the count in the low or high energy
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bin. Some PCDs incorporate more than two discriminators per pixel to acquire

multi-energy images. CT values or pixelated line integrals measured by a PCD

can be decomposed into a linear combination of three basis functions, provided

a K-edge discontinuity is captured in one of the energy bins. Energy bins have

to be wisely arranged to minimise noise propagation from the measurements to

the decomposition. To achieve this, a method to optimise the binning strategy

by minimising the decomposition noise is presented in the next chapter.

30





Chapter 3

Optimisation of material

discrimination in spectral x-ray

imaging

Based upon Alvarez & Macovski’s (1976) technique of dual-energy imaging, the

advent of spectral x-ray imaging has enabled three-component decomposition.

Given the projection data, material decomposition can be realised by estimat-

ing the thicknesses of the materials prior to reconstruction. Higher numbers

of energy bins have been demonstrated to be beneficial in material quantifica-

tion (Frey et al. 2007). For a limited number of bins, the optimal arrangement

of energy windows that maximises the spectral information for material sepa-

ration remains unclear. Tapiovaara & Wagner (1985) provided an optimisation

based on the difference in transmittance between two objects. By formulating a

likelihood ratio of two hypotheses, Alvarez (2010) computed the optimal detec-

tor performance for recognizing the presence of a feature within a background

material. The suitability of energy thresholds for material decomposition has

been investigated by evaluating the Cramér-Rao lower bound (CRLB) (Roessl
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& Herrmann 2009, Wang & Pelc 2011). The CRLB is given by the inverse of

the Fisher information matrix and indicates the minimum attainable noise of an

estimator, e.g the maximum likelihood estimator.

This chapter proposes a different metric to compute energy bins with optimal

spectral information for material separation. Our approach maps the statistical

confidence region in the thickness space under the influence of Poisson counting

noise. Uncertainty of the thickness estimation is given by the quantitative bounds

of the confidence region. Minimizing the thickness uncertainties leads to the

optimisation of energy bins, without requiring the CRLB and the considerable

manipulation of the Fisher information matrix. As mentioned in section 2.6, the

determination of the effective attenuation basis functions can be avoided, too.

This leads us to a method to optimise energy bins and counts required per pixel

in spectral x-ray imaging. The framework is applied to discriminate materials of

interest to small animal and breast imaging.

Material of this chapter has been published in Physics in Medicine and Biology

(Nik et al. 2011).

3.1 Methods

Suppose an object along an x-ray path consists of m known materials. The

number of transmitted photons, N as governed by the Beer-Lambert equation is:

N(E, t) = N0(E)e−
∑

m

i=1
µi(E)ti , (3.1)

where N0 is the number of incident photons, E denotes energy and the vector t

represents the thicknesses of the m materials ti with i = 1, . . . , m. The linear

attenuation coefficients µi, again, describe the total attenuation of material i.

The advent of PCDs with energy-resolving capabilities allows N, the number of

33



CHAPTER 3. OPTIMISATION OF MATERIAL

DISCRIMINATION IN SPECTRAL X-RAY IMAGING

detected photons between energies El and Eh, to be registered, where

N(El, Eh, t) =

∫ Eh

El

N0(E)e−
∑

m

i=1
−µi(E)ti dE. (3.2)

Models for calculating incident photon fluence, N0(E), are well established (Tucker,

Barnes & Chakraborty 1991, Tucker, Barnes & Wu 1991). Given the number of

detected photons, there exists a t such that the equality in (3.2) is true. The

implementation of an iterative algorithm (Lagarias et al. 1998) to compute t will

be presented in section 4.1.3. At least as many bins, n, as materials, m, have to

be fitted (n ≥ m) for the discrimination of m materials. Henceforth, it is assumed

that photons are binned into a minimum of n = 2 energy bins, for the separation

of at least m = 2 materials. Photons with energies between and inclusive of E(l,k)

and E(h,k) are allocated into energy bin k for k = 1, . . . , n, where E(l,k) and E(h,k)

are the low and high limits for bin k, respectively. The photon count in bin k is

denoted Nk.

3.1.1 Optimisation metric

In photon counting statistics, Nk follows a Poisson distribution with a mean of λk;

the standard deviation is σk =
√
λk. For any set of thicknesses t, the mean vector,

λ = {λk} for the k = 1, . . . , n distributions can be computed using (3.2). Given

a measurement x = {xk}, k = 1, . . . , n, a null hypothesis H0 is established, such

that there is no difference between the measurement and the expected counts,

where

H0 : x = λ. (3.3)

As λk is sufficiently large in the regime of spectral imaging, Nk can be approx-

imated to a Gaussian distribution. For measurements consisting of n = 1 bin,

the null hypothesis can be tested using a two-tailed z-test with the test statistic
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given by

z =
x− λ

σ
=

x1 − λ1√
λ1

=
x− λ√

λ
. (3.4)

The standardised distance, expressed as the z-score in (3.4), provides a mea-

sure of the difference between two mean values in the number of standard devi-

ations (Rencher 1995). Measurements that are one Poisson standard deviation

(
√
λk) away from the mean would result in a value of z = 1 in the formulation and

an acceptance region of 68.3% (see e.g. James (2006)). A 15.8% rejection region

can thus be setup for each of the two tails of the distribution, corresponding to a

z-score of z = ±1. The null hypothesis can be accepted for an observed z-score

of |z| ≤ 1 and the thickness t of m = 1 material is considered consistent with the

measurement x = x for n = 1 energy bin. Similarly, a larger acceptance region

can be formed e.g. 95.4% with z = ±2.

For n > 1 energy bins, the Mahalanobis distance (MD), which is an equivalent

measure to (3.4) for higher dimensions (Rencher 1995), is calculated between x

and λ. Under the assumption that Nk is uncorrelated within an individual set of

t, the MD is

z =

{

n
∑

k=1

[

(xk − λk)

σk

]2

× 1

n

}
1

2

=

{[

n
∑

k=1

(

xk − λk(t)
)2

× 1

λk(t)

]

× 1

n

}
1

2

,

(3.5)

in which a factor of 1/n has been introduced for convenience to negate the depen-

dency of z on the number of energy bins. Mapping the z-score in the thickness

space therefore leads to an elliptical contour plot for m = 2 materials and n = 2

bins, indicating a multivariate normal distribution (Rencher 1995, James 2006).

A confidence region formed by a z-score of unity is shown as the black ellipse

in figure 3.1, which contains a probability content, β, of 63%. The β-value may

be interpreted as meaning that there is a 63% chance that given a measurement

35



CHAPTER 3. OPTIMISATION OF MATERIAL

DISCRIMINATION IN SPECTRAL X-RAY IMAGING

x, the actual thicknesses would lie within this particular region. Similarly, the

98% confidence region formed by a z-score of 2 is represented by the grey ellipse.

Located at the center of the two-dimensional ellipse is a z-score of zero, corre-

sponding to τ = {τi}, i = 1, . . . , m, where τ is the combination of thicknesses

that is most consistent with the measurement x. The confidence ellipse can be

expanded into any higher dimensions e.g. a volume for m = 3 materials.
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Figure 3.1: The black ellipse marks the 63% confidence region formed by a z-
score of unity. The colorbar indicates the value of the z-score. The outer ellipse
represents the confidence region for a z-score of 2 form = 2materials, encompassing
a probability content of 98%. Expanding this to m = 3 materials results in a
confidence volume.

3.1.2 Statistical verification

To statistically verify the metric, the measurement x is simulated using (3.2)

for a known set of materials and a incident given x-ray spectrum. A reference

set of thicknesses τ has to be defined a priori for this purpose. The probability

content, β, of any 2-dimensional isovalue contour (or volume for n = 3) can

then be determined by assuming a multivariate Gaussian distribution Np(x,Σx)

with p = n degrees of freedom, where x and Σx are the mean vector and the

covariance matrix of the distribution Np(x,Σx), respectively. Let θ = {θi}, i =
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1, . . . , m represent the thickness set that is most consistent with a particular

random member of this distribution and let Θ be a s × m matrix consisting of

s vectors of θ. Θ can be constructed by solving (3.2) for t for a given random

sample of size s from the distribution Np(x,Σx). Specifically, the confidence

region formed by all θ with

ζ ′ζ = (θ − τ )′(Σt)
−1(θ − τ ) ≤ χ2

p(α) (3.6)

contains β = (1−α) percentage of Θ, where ζ = (Σt
1/2)−1(θ−τ ) (Rencher 1995).

Σt represents the covariance matrix of all the thickness solutions and χ2
p(α) is

the upper (100 × α)th percentile of a chi-square distribution with p = n degrees

of freedom. With the uncorrelated Nk in the simulated distribution Np(x,Σx),

it follows from (3.5) and (3.6) that z2 = (ζ ′ζ)/n (Rencher 1995). A Poisson

counting noise of
√
λk would hence give rise to z = 1 in (3.5), which leads to e.g.

a χ2 value of 2 for p = n = 2 degrees of freedom.

The β values obtained were verified by means of a straightforward MC sim-

ulation, against chi-square statistics for probabilities ranging from 0.25 to 0.01

for p = n = 2 and p = n = 3 degrees of freedom. Setting a threshold of unity

for z, by virtue of the Poisson counting noise, introduced a β value of 63% for

p = n = 2. Likewise, a confidence volume of 61% can be obtained with z = 1 for

p = n = 3.

3.1.3 Thickness uncertainties

In Roessl & Herrmann (2009) and Wang & Pelc (2011), threshold performance

was maximised based on variance of a single material upon determining the CRLB

based on the Fisher information matrix. We propose a novel alternative that

does not require the iterative determination of the effective basis functions or
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the manipulation of the Fisher information, thereby simplifying the approach.

Qualitatively, the size of the confidence region gives an indication of the optimality

of the energy bins. However, quantitatively measuring the area (or volume) of

the elliptical region requires the covariance matrix of the thickness population.

The bounding box of the ellipsoidal confidence region, as depicted in figure 3.1,

enables the calculation of the standard deviations (σ) and correlation coefficient

(ρ) of the thicknesses for the formation of the covariance matrix of the thickness

population, V (James 2006):

V =











σ2
1 ρσ1σ2 ρσ1σ3

ρσ1σ2 σ2
2 ρσ2σ3

ρσ1σ3 ρσ2σ3 σ2
3











.

To optimise, we combine σi and τi of all materials of interest to formulate our

figure of merit (FOM) as

FOM =

(

m
∑

i=1

(σi/τi)
2

)− 1

2

. (3.7)

Given the number of energy bins n, the objective of the model is to locate E(l,k)

and E(h,k) for k = 1, . . . , n that give the smallest confidence region in the thick-

ness space to maximise the FOM. An exhaustive search through the space of all

possible combinations of energy bins E(l,k) and E(h,k) is feasible with low n, e.g.

n ≤ 3. Alternatively, an optimisation module such as the Simulated Annealing

algorithm (Kirkpatrick 1984) can be employed for higher values of n. It should

be noted that among n = 2, 5, 10 energy bins, n = 5 is claimed to provide an

optimal compromise between the image quality and the complexity of the PCD

electronics (Shikhaliev 2006). Increase in SNR was shown to be relatively minor

for the increase from n = 5 to n = 10.

38



3.1 Methods

3.1.4 Model testing

For the purpose of testing the characteristics of the above model, two simplified

hypothetical attenuation and an incident x-ray spectra were chosen (figure 3.2).

The attenuation profiles in figure 3.2a were flat except for a deliberate step in

one of the spectra to enable the prediction of results from specified test cases. A

E(l,1) of 10 keV was set to suppress the electronic noise floor of PCDs (Delpierre

et al. 2002, Butler et al. 2008, Bornefalk & Danielsson 2010), while a E(h,2) of

120 keV represents the common x-ray tube voltage of 120 kVp.

For the incident x-ray spectrum, a stepwise function was chosen to provide

an approximation of a realistic x-ray spectrum as shown in figure 3.2b. The step

at 41 keV in the attenuation spectrum for material T2 reflects the K-edge of a

material. The performance of the model was examined using two bins with 1 keV

bin width. Furthermore, two adjacent bins with wider bin widths were formed

by setting E(l,2) = E(h,1) + 1keV. This is equivalent to identifying E(h,1) with the

highest FOM as the optimal bin border position.
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Figure 3.2: (a) Simplified attenuation and (b) x-ray energy spectra used to test
the model. Deliberate steps were included in the spectra for predictions of results
in model verification.
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3.2 Model application

The attenuation spectra of iodine, water and calcium were employed to implement

the model on realistic cases. The attenuation values were provided by the XCOM

Photon Cross Sections Database (Berger et al. 2005). Energy was considered

discretely in steps of 1 keV. An incident x-ray spectrum from a tungsten/rhenium

anode with a tube voltage of 120 kVp and target angle of 8◦ shown in figure 3.3

was modelled, following a bench-marked model by Tucker, Barnes & Chakraborty

(1991). This was achieved using the established MC code system BEAMnrc

(Rogers et al. 1995). The internal tube filtration included 1.5mm of beryllium

and 2.7mm of aluminum, as specified by Roessl & Proksa (2007). The tube

current was set to be 0.15mA to enable the comparisons of results with those of

Wang & Pelc’s (2011).
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Figure 3.3: Incident x-ray spectrum employed in model application. This was
modelled for a 90/10 atomic percent tungsten/rhenium alloy target (Tucker, Barnes
& Chakraborty 1991) with a target angle of 8◦. The tube voltage was 120 kVp
with internal tube filtration of 1.5mm beryllium and 2.7mm aluminum (Roessl &
Proksa 2007).

3.2.1 Discriminating materials with K-edge

Iodine is widely used as a contrast agent in CT imaging, while water and cal-

cium serve as representations of soft tissue and bone, respectively. The differ-
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entiation of iodine from these materials has been demonstrated using DECT

(Flohr et al. 2006), as well as spectral CT for small animal imaging (Anderson

et al. 2010) and breast imaging (Shikhaliev 2008b). The bin border position

of two adjacent bins was optimised for the combinations of iodine/calcium and

iodine/water, in the same manner as for the artificial attenuation spectra in sec-

tion 3.1.4. The reference thicknesses for calcium, τCa, was chosen to be 0.22 cm

to approximately match the total transmittance of 0.01 cm of iodine over the en-

tire energy range considered. For demonstration purposes, we have chosen the

density to be 4.93 g cm−3 and 1.55 g cm−3 for iodine and calcium, respectively.

Another demanding challenge in medical imaging is the identification of thin

materials amongst other biological tissues. For this reason, a τH2O was defined to

be 1.5 cm for the discrimination of iodine and water. This, too, gives an overall

transmittance comparable to 0.01 cm of iodine. Furthermore, the two borders

(E(h,1) and E(h,2)) of three adjacent bins were optimised for iodine, calcium and

water for the foregoing reference thicknesses. The choice of iodine in this metric

is to demonstrate the effect of optimised energy thresholds on the discrimination

of materials with a K-edge discontinuity. However, it should be noted there is

nothing unique about iodine. Materials with K-edge energies suitably situated to

provide sufficient transmittance in all energy bins, such as barium and gadolinium

could act as a substitute to iodine in this model application.

3.2.2 Discriminating materials without K-edge

To serve as a comparison to the optimal bin positions for separating calcium

and water computed by Wang & Pelc (2011), the attenuation spectra of calcium

and water, as well as as a E(l,1) of 20 keV were used. Reference thicknesses of

0.5 cm for calcium and 20 cm for water were employed (Wang & Pelc 2011). In

addition to the optimal border of two abutted bins, the optimal values of E(h,1)
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and E(l,2) for two separated bins were verified against the previous study. For the

discrimination of two materials with similar attenuation coefficient, attenuation

spectra of water and fat were chosen to represent glandular tissue and adipose

tissue, respectively, in a human breast (Shikhaliev 2008b). An equal reference

thickness of 1 cm was defined for both fat and water and E(l,1) was set to be

10 keV for the same reason presented in section 3.1.4. The final application of

the model presented in this work was on the discrimination of 0.1 cm of calcium,

1 cm of water and 1 cm of fat, resembling microcalcification, glandular tissue and

adipose tissue, respectively.

3.2.3 Counts per pixel estimation

For a given incident x-ray spectrum, a pertinent problem is to determine the

minimum exposure to achieve an imaging task. The Rose’s criterion (Rose 1946)

of SNR≥ 5 is often used as a target for image quality (e.g. in Ducote et al. (2011)).

When decomposing a homogenous material i with thickness τi, the SNR within

the uniform region-of-interest (ROI) can be provided by the ratio of the reference

thickness to the standard deviation of thickness population, (τi/σi). Likewise, in

estimating the material quantity in a pixel, σi represents the uncertainty in the

estimation. An imaging task can be setup as achieving the τi/σi value of 5, in

the quantification of thickness τi, or in the homogenous ROI of the decomposed

image i. The minimum number of photons per unit area required in order to

accomplish the imaging task can be subsequently computed to fulfill the ALARA

principle (Slovis 2003).

To directly compare with the BEAMnrc MC simulation in chapter 4, however,

in this work, the image noise was estimated for the simulated detected counts.

The image noise is computed as variance (σ2
i ) as in Roessl et al. (2011) and Ducote

et al. (2011). It can be seen later that the simulated image noise is readily avail-
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able upon decomposing the simulated projection. In the optimisation metric, the

diagonal elements of the covariance matrix described in section 3.1.3 incorporates

σ2
i and can therefore be utilised for the prediction of image noise (or SNR). This

enables a direct comparison between the σ2
i values obtained from the metric and

the simulation. For the discrimination of iodine/water, σ2 was determined at an

interval of 1 keV for E(h,1) ranging from 20 keV to 100 keV, whereas E(h,1) was

fixed at 33 keV and σ2 was computed for E(h,2) between 36 keV to 100 keV for the

discrimination of iodine, calcium and water.

3.3 Results

3.3.1 Model testing

With the hypothetical spectra in figure 3.2a and using two 1 keV bins, the metric

produces the expected results. Given the same attenuation values, higher in-

cident photon counts provides a higher SNR and hence a better discrimination

of materials. This is illustrated in figure 3.4 where the FOM is optimal when

N0 in figure 3.2b is the highest with E(l,1) between 31 keV and 40 keV (E(h,1) =

E(l,1)+1keV) and E(l,2) between 41 keV and 50 keV (E(h,2) = E(l,2)+1keV). The

FOM increases according to a factor of
√
δN where δN is the factor of increment

in number of incident counts. For the given hypothetical x-ray spectrum, the

incident counts at e.g. E(l,1) = 35 keV and E(l,2) = 45 keV is higher by a factor

of 1.5 than those of E(l,1) = 25 keV and E(l,2) = 60 keV. A FOM of 36.2 for E(l,1)

= 35 keV and E(l,2) = 45 keV is correspondingly
√
1.5 times higher than 29.6 for

E(l,1) = 25 keV and E(l,2) = 60 keV. The materials are understandably indistin-

guishable for energy levels that exhibit the same attenuations, i.e. when E(l,1)

and E(l,2) are simultaneously located below 40 keV or above 41 keV. The optimal

border for two adjoined bins with E(l,1) and E(h,2) at 10 keV and 120 keV, respec-
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tively, agrees with the deliberate step in attenuation spectrum T2 in figure 3.2a,

i.e. optimal E(h,1) = 40 keV (E(l,2) = 41 keV).
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Figure 3.4: FOM for distinguishing hypothetical attenuation spectra T1 and T2
and x-ray spectrum presented in figure 3.2 using two 1 keV bins. Expectedly, the
FOM increases according to a factor of

√
δN , where δN is the factor of increment

in number of incident counts. See text for detailed FOM increment.

3.3.2 Discriminating materials with K-edge

For distinguishing 0.01 cm of iodine and 0.22 cm of calcium, the results show that

E(h,1) of 33 keV (E(l,2) = 34 keV) is determined to be the optimal bin border

position as shown in figure 3.5, which coincides with the K-edge discontinuity

in the iodine attenuation spectrum. This is consistent with previous work by

Roessl & Herrmann (2009), in which an energy threshold placed at the K-edge

of gadolinium is shown to provide the best SNR in the gadolinium basis image.

For the case of 0.01 cm of iodine and 1.5 cm of water, a FOM of 91.5 is obtained

for E(h,1) of 60 keV (E(l,2) = 61 keV). This offers a 33.8% improvement compared

to the FOM of 68.4 for E(h,1) located at the K-edge of iodine (33 keV). Figure 3.5b

shows the 63% confidence regions of the thickness estimates for E(h,1) = 60 keV

and E(h,1) = 33 keV, circumscribed by the same isoline of z = 1 defined in sec-

tion 3.1.1. The improved accuracy in estimating material thicknesses is apparent

with the smaller confidence region for E(h,1) = 60 keV shown in figure 3.5b.

44

3_optimization/figures/fig_FOMT1T2.eps
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For the case with three materials, E(h,1) of 33 keV and E(h,2) of 51 keV are

determined to be optimal with a FOM of 56.16 for the separation of 0.01 cm of

iodine, 0.22 cm of calcium and 1.5 cm of water using three abutted energy bins

(Figure 3.6a). The optimal confidence volume is displayed in figure 3.6b.
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Figure 3.5: (a) Normalised FOM for 0.01 cm of iodine/0.22 cm of calcium and
for 0.01 cm of iodine/1.5 cm of water. The highest FOM for iodine/calcium occurs
when the border of two adjacent bins is located at the K-edge of iodine (33 keV).
Two bins bordering at 60 keV provides the highest FOM in the iodine/water dis-
crimination. optimised bins are capable of providing 33.8% better discrimination
than two bins bordering at the iodine K-edge, seen as the smaller 63% confidence
region (thick line) in (b). The 63% confidence region for E(h,1) = 33 keV enclosed
by the same z = 1 contour line is plotted using thin line for comparison.

3.3.3 Discriminating materials without K-edge

A previous study shows that by having E(l,1) = 20 keV and E(h,2) = 120 keV,

the optimal bin border for two abutted bins for discriminating 0.5 cm of calcium

and 20 cm of water is located at 55 keV (Wang & Pelc 2011). In our metric,

E(h,1) of 55 keV (E(l,2) = 56 keV) or E(h,1) of 56 keV (E(l,2) = 57 keV) yields an

equal maximum of 24.3 in the FOM. A comparably good agreement (within ±
1 keV) is achieved for two disjoined bins with E(h,1) of 53 keV and E(l,2) = 74 keV

producing the highest FOM of 27.5 (9% improvement in FOM compared to the

two adjoined bins). We determined that optimal energy thresholds of E(h,1) of
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Figure 3.6: (a) FOM for discriminating 0.01 cm of iodine, 0.22 cm of calcium and
1.5 cm of water using three abutted energy bins. The K-edge of iodine (E(h,1) =
33 keV) and E(h,2) = 51 keV are optimal (marked by contour level 56). (b) Wire-
frame of the 61% confidence volume for the optimal bins. Note the small range on
the thickness axes.

53 keV and E(l,2) = 73 keV proposed by Wang & Pelc (2011) give an equivalently

high FOM after rounding up to 3 significant figures. A summary of comparisons

between the two methods is shown in table 3.1.

The results for 1 cm of fat and 1 cm of water are presented in figure 3.7a.

The optimal confidence region obtained with E(h,1) of 33 keV (E(l,2) = 34 keV) is

compared to that of iodine/calcium in figure 3.7b. The 63% confidence region for

water and fat shows uncertainties of greater than 10% for both materials; uncer-

tainties for iodine and calcium are about 1%. The FOM for the discrimination of

1 cm of fat, 1 cm of water and 0.1 cm of calcium using three abutted energy bins

ranges from 2.42 to 2.48, indicating that the optimisation of E(h,1) and E(h,2) does

not have a substantial effect on the FOM. When compared to figure 3.6b, the 61%

confidence region is clearly elongated on the axes of water and fat (figure 3.8).

3.3.4 Counts per pixel estimation

Image noise (σ2) was computed for the discrimination of two and three materials.

These are plotted at an interval of 1 keV in figure 3.9 and figure 3.10, respectively.
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Two abutted bins Two separated bins
Optimal border Optimal thresholds

Nik et al. E(h,1) = 55 keV E(h,1) = 53 keV
(Equivalently E(h,1) = 56 keV) E(l,2) =74 keV

Wang & Pelc (2011) E(h,1) around 55 keV E(h,1) = 53 keV
E(l,2) =73 keV

Table 3.1: Comparison of optimal energy thresholds for discriminating 0.5 cm
calcium and 20 cm water between the proposed metric and the method based on
the maximum likelihood estimator used by Wang & Pelc. Positions of energy
thresholds agree to within ± 1 keV. Two separated bins improve the FOM by 9%
compared to two abutted bins (see text for FOM values).

The lowest σ2 values can be found at the corresponding optimal E(h,1) and E(h,2)

values presented in section 3.3.2. The vertical axis was rescaled in the lower

panel of figure 3.9 to provide an enlarged view around the optimal σ2. A step-

wise function can be noted in figure 3.10, particularly in figure 3.10b, which was

due to a limit on the memory allocation imposed by Matlab (Mathworks Inc.).

For iodine and water, the optimal σ2 are 6.63×10−6 cm2 and 2.60×10−1 cm2,

respectively. In the discrimination of 3 materials, these are 6.11 × 10−6 cm2,

3.04× 10−3 cm2 and 2.67× 10−1 cm2, for iodine, calcium and water respectively.

It should be noted that the σ2 values were computed based on the photon flux

simulated in the BEAMnrc model, which will be presented in more details in

chapter 4. A table summarising the optimal σ2 values can hence be found in

table 4.1. This is to enable the comparisons with σ2 values obtained from the

simulation (see figure 4.8 and figure 4.9).

3.4 Discussion

Previous works studied the optimisation of energy windows for material sep-

aration by examining the SNR between the transmitted signal of two objects

(Tapiovaara & Wagner 1985), as well as by computing the CRLB of material
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Figure 3.7: (a) Normalised FOM plot for 1 cm of fat and 1 cm of water. The
highest FOM is found at E(h,1) of 33 keV (E(l,2) = 34 keV) with E(l,1) =10 keV and
E(h,2) = 120 keV. (b) The optimal confidence regions for water and fat (thin line)
are compared to that of iodine and calcium (thick line). The estimation of water
and fat thickness yielded uncertainties of greater than 10% at best, which is much
larger than the optimal uncertainties of iodine and calcium (about 1%).

estimates (Roessl & Herrmann 2009, Wang & Pelc 2011). Employing the sta-

tistical detection theory, Alvarez (2010) examined the detector performance for

differentiating a feature from a background material. While the goal of our model

is largely similar to the published methods, the Mahalanobis distance (z-score for

higher dimensions) allows for a measure of statistical consistency between the

thicknesses and a given measurement of photon counts without requiring the

Fisher information (CRLB) or the determination of the effective attenuation ba-

sis functions. Extensive sampling of the thickness space enables the map of the

correlated thickness estimates to be constructed. Circumscribing the quantitative

bound on the confidence region allows for the uncertainties of material thickness

estimation to be computed.

Material (or attenuation) basis images can be obtained upon decomposing

projection data using the maximum likelihood process (Roessl & Proksa 2007)

or the least squares theory (Le & Molloi 2010). The MD in (3.5) is equivalent

to the latter without requiring the determination of effective attenuation coeffi-
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Figure 3.8: The 61% confidence region for separating 1 cm of fat, 1 cm of water
and 0.1 cm of calcium using three equidistant bins. The similar attenuations of
water and fat extends the confidence region throughout the entire ranges of water
and fat thicknesses. FOM for all combinations of E(h,1) and E(h,2) lie between 2.4
and 2.5. The limited range of the FOM suggests that optimising E(h,1) and E(h,2)

between 20 keV and 110 keV has no noticeable effect on the discrimination of 1 cm
of fat, 1 cm of water and 0.1 cm of calcium using three abutted energy bins.

cient. Pixelated measurements can be compared to the expected counts for any

statistically significant differences, which will be presented in chapter 4. Further,

Wang & Pelc (2011) considered only the variance of one material in their penalty

factor, i.e. the variance for calcium. While the incorporation of all materials of

interest in the FOM is straightforward, the relatively small amount of calcium

becomes the driving component in our FOM. An agreement of optimal thresh-

olds is therefore achieved with Wang & Pelc’s (2011) numerical example of 0.5 cm

calcium and 20 cm of water.

For three materials without K-edge within the imaging energy spectrum, two

materials can be separated as any one of the materials is a linear combination

of the remaining pair. Utilising the mapping of thickness uncertainties, the con-

fidence region in figure 3.8 reveals a thin elongated volume, indicating only one

material (calcium), along with the sum of water and fat can be resolved. The

relative proportion of water and fat cannot be determined, which is expected

given the linear dependence of the three material attenuation profiles.

The linear attenuation ratio between iodine and calcium, plotted in figure 3.11,
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Figure 3.9: Image noise (σ2) as predicted by the covariance matrix for (a) iodine
and (b) water in the discrimination of iodine/water. Note that the σ2 values were
computed based on the photon flux simulated in the BEAMnrc model, which will
be presented in chapter 4. The vertical axis was rescaled in the lower panel plotted
to focus on the lowest σ2 values for (c) iodine and (d) water at the optimal E(h,1)

value.

describes the dissimilarity of the two materials at each energy. This is influenced

by the number of incident photons for maximum material discrimination. The

lowest and highest attenuation ratios of iodine and calcium are binned separately

when E(h,1) = 33 keV, which justifies the coincidence of optimal E(h,1) with the

K-edge of iodine. For the separation of iodine and water, however, there exists

another FOM peak at an energy different from the K-edge of iodine realising the

ideal combination of ratio balance and statistics in both windows for the given

incident spectrum. With two bins abutting at the iodine K-edge (33 keV), the

low ratios weighted by the low counts at the highest energies partially neutralise
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Figure 3.10: Image noise (σ2) as predicted by the covariance matrix for (a) iodine,
(b) calcium and (c) water for the discrimination of 3 materials. The step-wise
function in (b) was caused by a limit on the largest matrix size and the maximum
element in an array allowed in Matlab.

the maximum ratios immediately above the K-edge, causing the mean ratio in bin

k = 2 to be moderately high. The mean ratio in bin k = 1 remains low and this

leads to the local FOM peak at the K-edge of iodine as shown in figure 3.6a. The

dip in the FOM value indicates that both bins have similar weighted mean ratios

when E(h,1) ≈ 40 keV. Increasing E(h,1) above 40 keV contributes more high ratios

into bin k = 1 while lowering the mean in bin k = 2. An optimum is reached as

E(h,1) approaches 60 keV, which gives rise to the FOM peak in figure 3.6a.

To demonstrate that this result and its explanation are not unique to the

particular iodine and water thicknesses, the optimal bin border positions for two

additional iodine thicknesses, namely 0.005 cm and 0.02 cm, were computed with a

constant τH2O of 1.5 cm. The location of the highest FOM value changes according

to the iodine thickness. When compared to values presented in section 3.3.2,

optimal E(h,1) for discriminating iodine and water decreases 3 keV to 57 keV for

τI = 0.005 cm and increases to 64 keV for τI = 0.02 cm, with a FOM of 78.0

and 85.4 for the earlier and latter cases, respectively. For the same rationales

mentioned above, a local maximum exists for all three thicknesses of iodine when

E(h,1) = 33 keV, as illustrated in figure 3.12. The higher optimal E(h,1) energy
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Figure 3.11: Normalised linear attenuation ratio for iodine/water (solid line) and
iodine/calcium (dotted line). Relative means of attenuation ratios are indicated
with texts in the figure below the curves. When weighted by the incident spectrum,
an optimal difference in attenuation ratios between the two energy bins (leads to
optimal material contrast) can be produced by setting E(h,1) to be 60 keV for the
discrimination of iodine and water. Furthermore, the same is achieved for iodine
and calcium when E(h,1) = 33 keV, which justifies the position of the highest FOM
for the two materials in figure 3.6a.

is expected for thicker τI in order to compensate for the lower counts in bin

k = 1 due to the beam hardening effect by a greater thickness of iodine (Roessl &

Proksa 2006). E(h,1) of 60 keV for τI = 0.01 cm encompasses the characteristicKα1

and Kα2
x-ray lines of tungsten, located at 58.0 keV and 59.3 keV, respectively

(Deslattes et al. 2005). This counteracts the doubling of iodine thickness from

τI = 0.005 cm to 0.01 cm to provide ample counts in bin k = 1. An expected

increase of E(h,1) to 64 keV can be seen for τI = 0.02 cm.

Regarding figure 3.10b, the step-wise function is due to a limit in Matlab on

the largest possible matrix size and the maximum element in an array allowed.

This imposed a limit on the step size of the thickness range that could be sam-

pled to form our confidence region. This subsequently hinders the resolution on

the change of the size of the confidence region. For the decomposition of two

materials, the typical sample size is 300 - 400 in one dimension (with other arrays

formed). For the decomposition of three materials, the upper limit is 200 in one
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Figure 3.12: Normalised FOM for discriminating three thicknesses of iodine,
namely 0.005 cm, 0.01 cm and 0.02 cm from 1.5 cm of water. Results for τI =
0.01 cm and τH2O = 1.5 cm in figure 3.5a is repeated using the thin solid line. With
E(l,1) = 10 keV and E(h,2) =120 keV, local maxima occur at the K-edge of iodine
for all three thicknesses of iodine while the highest FOM value in each of the three
cases is found at 57 keV, 60 keV and 64 keV for τI = 0.005 cm, 0.01 cm and 0.02 cm,
respectively.

dimension before Matlab ran out of allocated memory. One potential solution is

to run the code on a different platform with the combination of a different version

of Matlab1.

3.5 Concluding remarks

A novel method to optimise energy windows for material discrimination in spec-

tral x-ray imaging with photon counting detectors was developed. The proposed

framework framework maps the z-scores in the thickness space for consistency

with the measured counts. Multivariate statistics enables the confidence region

of the thickness estimates to be constructed. Energy bins are optimised accord-

ing to the bounding box of the confidence region without requiring the Fisher

information (CRLB). The covariance matrix of the thickness population can be

formulated without the determination of the effective attenuation basis functions.

1 http://www.mathworks.com/support/solutions/en/data/1-IHYHFZ/index.html
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Employing adjacent energy bins with fixed ends, the bin border position is

optimised for different biological materials and radiological contrast agents sig-

nificant to small animal and breast imaging. In concurrence with a study on

the effectiveness of gadolinium quantification upon varying one threshold energy

(Roessl & Herrmann 2009), separation of iodine and calcium was found to be op-

timal with the two bins bordering at the K-edge of iodine. Furthermore, a specific

comparison with results published by Wang & Pelc (2011) shows agreement on

optimal positions of energy thresholds for discriminating 0.5 cm of calcium and

20 cm of water to within ± 1 keV.

Two bins abutting at an energy higher than the iodine K-edge are found to be

optimal for the discrimination of iodine and water. Given the incident spectrum,

this is to achieve a greater difference in the mean attenuation ratios and optimal

statistics in both windows. With 1.5 cm of water, the optimised position of bin

border varies from 57 keV for 0.005 cm of iodine to 64 keV for 0.02 cm of iodine.

The increasing position of optimal E(h,1) is to compensate for the reduced photon

counts in the lower energy bin due to the beam hardening by the thicker amount

of iodine.

The mapping of confidence regions suggest that water (glandular tissue) and

fat (adipose tissue) separation may still prove to be practically difficult even with

the advent of spectral x-ray imaging. For the discrimination of calcium, water

and fat, only the thickness of calcium can be resolved. The elongated confidence

region suggests that only the sum of water and fat can be resolved but not the

relative proportion of the two materials, as expected.

The covariance matrix incorporates the standard deviation, σ, and was used

to compute the prediction of image noise. In order to compare with the image

noise of the decomposed projection, variance of thickness estimation, σ2, was

determined based on the simulated counts in the BEAMnrc model. However,
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the optimisation framework can be utilised to optimise photon counts required

for achieving an imaging target, e.g. a SNR ≥ 5 based on the Rose’s criterion.

The simulation model, as well as the comparisons, will be presented in details in

chapter 4.
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Chapter 4

Monte Carlo simulation of

optimal material decomposition

Despite its promising potential, the performance of PCDs is at present limited due

to charge sharing (Ballabriga et al. 2011a), scattered radiation (Roessl et al. 2011),

finite energy resolution (Schlomka et al. 2008) and low read-out speed (Roessl

et al. 2010). To investigate the achievable potential of spectral x-ray imaging

in quantifying high atomic number materials, for example, Roessl et al. (2011)

resorted to the ideal environment of CT simulations to bypass the limitations.

Earlier, Roessl & Proksa (2007) simulated the feasibility of K-edge imaging us-

ing an energy-resolving photon counting detector. Likewise, Leng et al. (2011)

tested their image reconstruction algorithm modified to target noise reduction

on simmulated data, while Weigel et al. (2011) generated MC CT images for

x-ray tube voltages optimised for a breastlike phantom. The above examples are

simulations of x-ray imaging using commercial MC packages, whereas Giersch

et al. (2003) compiled an open source simulation tool called Roentgen Simula-

tion based on other established simulation libraries. Roentgen Simulation was

later used to study the implementation of a reconstruction technique for ma-
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terial quantification by Firsching et al. (2006). Using the MCNP open source

package (Brown 2003), Frey et al. (2007) simulated data for the comparisons of

DECT and spectral CT in material quantification upon applying their material

decomposition method.

Similarly, in this chapter, our approach to decompose spectral x-ray spectrum

into material basis images was evaluated using MC simulated data. We chose a

different MC simulation code system, known as BEAMnrc (Rogers et al. 1995),

because of its availability, ease of use as well as the group’s previous experience

with the system (Currie 2007, Thing et al. 2011). Noise of the decomposed images

was quantified and compared with the theoretical estimates. This leads to the

validation of the optimisation of energy bins, which allows the estimation of a

theoretical minimum dose achievable with a spectral x-ray detector for obtaining

a desired level of SNR in a decomposed image. A dose comparison against a

seminal paper on depiction of calcification in mammography can therefore be

achieved.

Material of this chapter were presented at the 54th Annual American Asso-

ciation of Physicists in Medicine (AAPM) meeting in Charlotte, NC, USA in

July 2012 (Nik et al. 2012) and a manuscript is in preparation for the IEEE

Transactions on Medical Imaging based on materials in this chapter.

4.1 Methods

The BEAMnrc system is based on the Electron Gamma Shower code system

EGSnrc and comes with extensive documentation (Rogers et al. 2004, Kawrakow

et al. 2011, Ma & Rogers 2009) plus interactive graphical interfaces (Treurniet

et al. 2009, Kawrakow et al. 2006). BEAMnrc has been widely used predomi-

nantly for MeV application for radiotheraphy. The implementation of BEAMnrc
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on the lower energy range of keV has been demonstrated for dose calculation in

CT (Bazalova & Verhaegen 2007), material segmentation using DECT (Bazalova

et al. 2008) as well as x-ray fluorescence CT (Bazalova et al. 2012). The recogni-

tion of the package through publication statistics and a review on the advantages

on BEAMnrc over other MC packages was provided by Rogers (2006).

4.1.1 BEAMnrc simulation

Simulations in this work were carried out on the BlueFernR© supercomputer at the

University of Canterbury, Christchurch, New Zealand1. The scanning geometry

was set up to correspond to the locally built Medipix All Resolution System

(MARS) micro-CT scanner (MARS Bioimaging Ltd, New Zealand) (Butler et al.

2008, Anderson et al. 2010). The 90/10 atomic percent tungsten/rhenium alloy

anode target was simulated with the XTUBE component module. CIRCAPP

was used to replicate the round exit window and SLABS to include the 1.5mm

beryllium and 2.5mm aluminum filtration (Roessl & Proksa 2007). The electron

beam impinging on the target was simulated as a 120 keV monoenergetic, parallel

rectangular source energy incident from the side to enable validations of optimal

energy bins with the previous work. More details about the MC model and

validation of it can be found in Thing (2010).

The simulation of the scanning system is split into two parts. First the tube

housing was simulated and a phase space (phsp) file scoring the energy, position,

direction and interaction history of each particle was recorded. The phsp file

immediately after the exit window of the x-ray tube (phsp1 in figure 4.1) was in

turn used as the input to the simulation of particle transport through the imaging

object. The source-to-object distance (SOD) was set to 7.5 cm. A second phsp

file (phsp2 in figure 4.1) was placed at the source to detector distance (SDD) of

1 http://www.bluefern.canterbury.ac.nz
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11.5 cm recoding particles reaching the detector plane. Our imaging object was

designed using the FLATFILT component module to be a uniform water cylinder

containing at least one cylindrical layer of contrast material (see figure 4.1) to

allow for decomposition of m ≥ 2 materials. The layer(s) of contrast material(s)

and the water cylinder had a radius of 0.3 cm and 0.6 cm around the beam axis,

respectively. Material thicknesses were defined in section 4.1.4 to be the same as

in section 3.2.1. Spaces at the back of the x-ray tube filtration and between the

imaging object and the detector plane consisted of air specified by the SLABS

component module.

Cross sections including Rayleigh scattering were generated with the PEGS4

code system for all the materials used in this work. The directional bremsstrahlung

splitting (DBS) and photon forcing were used in the x-ray production to improve

simulation efficiency. Examining the effects of simulation options, such as recy-

cling the incident phsp file (Rogers et al. 2004, Treurniet et al. 2009), is out of

the scope of this study. The DBS splitting field radius and the source-to-surface

distance of the splitting field used were 2.8 cm and 13.5 cm, respectively. National

Institute of Standards and Technology (NIST) bremsstrahlung cross-section data

was used (Rogers et al. 2004). All MC simulations were run with 3 × 108 pri-

mary histories, which is equivalent to 3 × 108 electrons emerging from the x-ray

cathode. The cut-off energy was 1 keV for both electrons and photons.

One of the main differences between the BEAMnrc simulation and the optimi-

sation algorithm described in chapter 3 is the inclusion of scattered radiation. In

BEAMnrc, the interaction of each particle with the imaging object was tracked

via the LATCH bit identification tag to create additional images/spectra with

only primary photons. Particle interactions with the air regions were ignored.

Information in the phsp files were decoded particle by particle using an in-house

developed MATLAB code. The data was organised in a stack of two-dimensional
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Figure 4.1: Simulation setup on the BEAMnrc system resembling the geome-
try of the in-house developed Medipix All Resolution System micro-CT scanner
(MARS Bioimaging Ltd, New Zealand) (Butler et al. 2008, Anderson et al. 2010).
The phantom was designed to simulate contrast layer(s) embedded within a water
cylinder for material decomposition of up to 3 materials.

matrices containing particles within 1 keV ranges to allow for retrospective for-

mation of energy-selective images (Thing 2010, Thing et al. 2011). The spatial

variation in the photon counts was corrected by using an open beam image of

1 keV to 120 keV prior to material decomposition.

4.1.2 BEAM Data Processor

The statistical weights scored on each pixel represents the localised probability of

photons being detected. The BEAMnrc package comes with a utility programme
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for analysing the phase space file generated in the simulation (Ma & Rogers

2009). Spectral distribution, given in photon fluence/keV/incident particles of the

simulated phase space file was derived using BEAM Data Processor (BEAMDP).

In our simulations, the number of incident particles is the number of primary

histories. The simulated photon counts per pixel can therefore be computed at

any given energy upon processing phsp2 using BEAMDP. Spectra obtained from

the phsp2 files were normalised against the fluence output from BEAMDP for

the conversion of statistical weights into photon fluence.

4.1.3 Thickness estimation

For the given SOD, SSD, object size and the number of primary history in fig-

ure 4.1, it was found that the detector pitch of 220 µm achieved an adequate

balance between simulated image resolution and spectral SNR for acceptable ac-

curacy in thickness estimation. The pixelated measurements were binned as input

to x in (3.5) for estimation of t. Material decomposition was performed pixel-by-

pixel using the spectrum scored on phsp2 in a 128 × 128 pixel detector grid. A

direct way to find the solution for (3.5) is by mapping a look-up table of counts

for an extensive sample of thicknesses. The solution can then be provided by

locating the thicknesses that are most consistent with the binned measurements:

t = arg min
t

{[

n
∑

k=1

(

xk − λk(t)
)2

× 1

λk(t)

]

× 1

n

}
1

2

. (4.1)

The accuracy of the solution given by the look-up table, however, is dependent

on the sample size (Alvarez 2011) and a huge set of data points may therefore be

required for sufficient accuracy. Alvarez (2011) formulated a maximum likelihood

approach by utilising a calibration phantom to approximate the effective atten-

uation, which is subjective to the selection of regional values and may require a
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further error correction computation. In this work, a more direct approach was re-

alised by applying an iterative search algorithm using the MATLAB fminsearch

function, which implements the Nelder-Mead algorithm (Lagarias et al. 1998).

This was carried out for both the simulated projection data with and without the

inclusion of scattered radiation in the BEAMnrc model. By using the look-up

table solution as our initial estimates, the MD in (3.5) was minimised without

requiring the likelihood function. Furthermore, the determination of the effective

attenuation over an energy range can be avoided.

In their decomposition, Firsching et al. (2006) employed the mass attenuation

coefficient (µi

ρ
) to reconstruct the areal density ai := ρi · ti of the materials.

Equivalently, µi in (3.2) can be substituted by µi

ρ
and ai (in place of ti) of the

materials can be determined when the mass attenuation coefficients are chosen as

the basis functions in the proposed method. Likewise, attenuation components

of the photoelectric and the Compton effect contributions together with a total

mass attenuation of a K-edge material can be incorporated for the determination

of basis-material densities along the x-ray path.

4.1.4 Validation of optimal material discrimination

For a constant x-ray tube voltage and current, the theoretical model in chapter 3

provided a solution of choosing energy bins for spectral imaging based on the

smallest confidence region under the influence of Poisson statistics. To reiterate,

a limitation of this model is that it does not take into account scattered radiation.

To achieve optimal spectrum weighted attenuation difference in discriminating

0.01 cm of iodine and 1.5 cm of water, figure 3.5 shows that the optimal bin border

(E(h,1)) is at 60 keV. When E(h,1) is fixed at the iodine K-edge of 33 keV, the

optimal higher bin border (E(h,2)) was found to be at 51 keV for the discrimination

of iodine, calcium and water.
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Using the BEAMnrc framework, projections for an object consisting of τI

= 0.01 cm of iodine between two 0.75 cm cylindrical layers of water background

(τH2O = 1.5 cm) were simulated. The discrimination of more materials using

the reconstructed image has been proposed via mass/volume conservation (Liu

et al. 2009, Ronaldson et al. 2012) or by segmenting pixels into classes of mate-

rials prior to the decomposition (Le & Molloi 2011, Alessio & MacDonald 2013).

While, in the projection space, the same may be achieved by assigning up to 4

dimensionality to the linear attenuation coefficients (Bornefalk 2012), we focus on

the decomposition of up to 3 materials. The projection data of τI = 0.01 cm and

τCa = 0.22 cm stacked between two 0.75 cm cylindrical layers of water background

was simulated. The density for iodine and calcium was defined to be the same

as in chapter 3, i.e. 4.93 g cm−3 and 1.55 g cm−3, respectively. The precision of

material decomposition on the BEAMnrc model was examined by determining

the image noise (variance = σ2), where σ is the standard deviation, given by

the averaged difference between the output and its mean value. Mean and vari-

ance of the central 690 pixels in the region with contrast material(s) were com-

puted. The simulated variance was computed for bin border energies ranging from

20 keV to 100 keV for the decomposition of two materials and 36 keV to 100 keV

for the decomposition of three materials. Bin border energies below 20 keV and

above 100 keV were considered suboptimal.

Another important measure for material quantification is the averaged dif-

ference between the output and the actual value of thicknesses, known as the

bias. The mean square error (MSE) incorporates both the bias and variance.

The following FOM was therefore formulated as a validation of optimal material

discrimination against the theoretical model:

FOM =

(

m
∑

i=1

MSEi/τ
2
i

)− 1

2

. (4.2)
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(4.2) was evaluated for bin border energies (E(h,1)) from 20 keV to 100 keV for

the decomposition of iodine and water. For the decomposition of 3 materials, the

lower bin border energy (E(h,1)) was held at the K-edge of iodine (33 keV), while

a FOM curve was plotted the upper bin border energies (E(h,2)) ranging from

36 keV to 100 keV for the higher energy bin.

4.2 Results

4.2.1 BEAMnrc simulations

The 120 keV monoenergetic electrons incident on the x-ray anode described in

section 4.1.1 produced approximately 1.20× 108 photons per exposure. The open

beam spectrum on the detector plane was used for the aforementioned normal-

isation of incident counts in the optimisation algorithm and the conversion of

statistical weights into photon fluence. Figure 4.2 demonstrated negligible differ-

ences against Tucker, Barnes & Chakraborty’s (1991) model generated by Spec-

gen (Glenn Stirling, National Radiation Laboratory, Christchurch, New Zealand).

The uncertainty of the simulation given by BEAMDP was plotted as error bars

on the spectrum. A comparison of Specgen with other packages such as xcomp5r

and TASMIP can be found in Meyer et al. (2004). A representative set of pro-

jection images in figure 4.3a shows two concentric circular regions. The darker

inner region (i) shows the pixels with higher attenuation due to the contrast ma-

terial(s) within the water cylinder and the outer mid-gray region (ii) represents

the water region without contrast material. While decomposition was performed

on the full-field projections, only the ROI with the overlapping contrast materials

(region i) was analysed.
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Figure 4.2: Comparison of the simulated incident energy spectrum with a ref-
erence spectrum from Specgen (Glenn Stirling, National Radiation Laboratory,
Christchurch, New Zealand) obtained using Tucker, Barnes & Chakraborty’s (1991)
model of W/Rh target shows negligible difference.

4.2.2 Validation of optimal material discrimination

The top row of figure 4.4 shows a representative set of the decomposed material

basis projection images, with their respective profiles through the middle hori-

zontal axis plotted in the bottom row of figure 4.4. Decomposition was carried

out using (4.1). The profiles were normalised with respect to τi, which produced

values around unity in the presence of materials, demonstrating the accuracy

of the decomposition. A more quantitative measurement of the decomposition’s

precision and accuracy is summarised in figure 4.5 and figure 4.6. The solid line

represents the mean thickness over the 690 pixels within region (ii) in figure 4.3a,

whereas the error bars show the standard deviation (σ) for the decomposition

using a particular bin border energy. The reference thicknesses (τi) was plotted

with dotted lines to provide an indication on the bias of the decomposition.

The variance (σ2) and the MSE are tabulated in table 4.1 to show the consis-

tency with the estimated image noise given by the theoretical algorithm described

in section 3.1.3. Specifically, the theoretical variance (varianceAi
), the simulated
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Figure 4.3: A representative (a) projection image and (b) the profiles upon cor-
rection using the open beam data. Colorbar in (a) indicates arbitrary unit upon
normalisation. The inner (region i) and outer (region ii) concentric circular regions
are the ROIs with and without contrast material(s) within the water cylinder, re-
spectively. Statistical analysis was performed on the pixels within the inner region.
The profile across the horizontal axis is relatively constant and is plotted in (b)
using a solid line as a reference for the corrected middle column profile (circles).

variance (varianceBi
) and the MSE were averaged over the 5 keV around the

theoretical optimal bin border energy, i.e. optimal E(h,1)±2 keV and optimal

E(h,2)±2 keV for the decomposition of two and three materials, respectively. The

minimal bias around the optimal bin border was reflected in the similar MSE

and variance values for the decomposition of two materials. Note that some bin

border energy, e.g. 28 keV for the decomposition of iodine/water in figure 4.5,

provided inaccurate material thicknesses.

For the case of three materials (figure 4.6), a higher MSE compared to the

variance, particularly for the calcium image, was obtained with the inclusion of

scattered radiation. This can be seen in the deviation of the solid line from τCa

(dotted line) in figure 4.6b. Figure 4.7b shows a considerable reduction in the

bias of thickness estimation for calcium upon rejection of scattered radiation.

VarianceBi
, MSE and bias for the decomposition of 3 materials prior to and upon

scatter rejection can also be found in table 4.1. Figure 4.8 and figure 4.9 show
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Figure 4.4: The decomposed material basis of (a) iodine, (b) calcium and (c) wa-
ter. The respective profiles (d - f) through the middle row of pixels were normalised
to τi to illustrate the accuracy of the estimations. A more quantitative analysis
of the accuracy as well as the precision can be found in figure 4.8, figure 4.9 and
table 4.1.

a comparison varianceBi
to varianceAi

for the decomposition of two and three

materials, respectively. The minimisation of the combined σ2 in the decompo-

sition leads to the optimisation of energy bins. The predicted image noise from

figure 3.9 and figure 3.10 were reproduced using dotted lines to compare with the

simulated variances (solid lines).

The FOM curves based on (4.2) obtained using the BEAMnrc model largely

agree with the ones obtained from the optimisation algorithm. Figure 4.10 shows

the highest FOM value given by the BEAMnrc model is 2 keV lower than the

theoretical optimum at 60 keV for the decomposition of 0.01 cm iodine and 1.5 cm

water. Similarly, the highest FOM value obtained for the the BEAMnrc models
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Figure 4.5: Mean and standard deviation obtained for the material basis images
for (a) iodine and (b) water, displayed at an interval of 2 keV. The calculation of
these error bars allows the quantification of image noise and comparison with the
theoretical prediction (figure 4.8), which leads to validation the optimisation of bin
border energy based on our FOM. Optimal bin border energies are indicated by
the smallest error bars. The average bias over 5 keV around the optimal bin border
is 1.24% for (a) and 6.06% for (b).

Table 4.1: A summary of mean square error (MSE), variance and bias obtained
using the theoretical (subscript A) and BEAMnrc (subscript B) models.

Materials
I (0.01 cm) H2O (1.5 cm) Ca (0.22 cm)

2 materials
varianceA(cm

2) 6.71× 10−6 2.62× 10−1 -

(2 bins)
varianceB(cm

2) 9.78× 10−6 4.25× 10−1 -
MSE (cm2) 9.78× 10−6 4.33× 10−1 -

3 materials

varianceA(cm
2) 6.11× 10−6 2.67× 10−1 3.04× 10−3

varianceB(cm
2) 4.82× 10−6 3.33× 10−1 2.02× 10−3

MSE (cm2) 4.95× 10−6 3.33× 10−1 2.61× 10−3

Bias (%) 3.88 0.91 11.14

3 materials
varianceB(cm

2) 5.25× 10−6 3.47× 10−1 2.31× 10−3

(Scatter rejected)
MSE (cm2) 5.27× 10−6 3.47× 10−1 2.31× 10−3

Bias (%) 1.67 1.22 0.21

was located at 49 keV compared to 51 keV for the theoretical optimum. The FOM

for ±2 keV around the theoretical optimum was observed to be >96% of the peak

value for the BEAMnrc model in both cases.
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Figure 4.6: Mean and standard deviation obtained for the material basis images
for (a) iodine (b) calcium and (c) water, displayed at an interval of 2 keVs. A
comparison with the image noise predicted by the theoretical model is shown in
figure 4.9. The average bias over 5 keV around the optimal bin border is 3.88%
for (a), 11.14% for (b) and 0.91% for (c). The improvement on the bias upon the
rejection of scattered radiation is shown in figure 4.7.
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Figure 4.7: Mean and standard deviation obtained for the material basis images
for (a) iodine (b) calcium and (c) water with only the primary photon included.
Rejection of scattered radiation improved the accuracy of material quantification,
particularly in (b) (c.f. figure 4.6b).

4.3 Discussion

BEAMnrc simulations allow for the optimisation of material discrimination to

be validated in an idealised environment. No imperfections other than the scat-

tered radiation have been taken into account in the simulations and an ideal

detection quantum efficiency of the detector was assumed. As shown, optimisa-

tion of energy bins can provide better confidence in material thickness estimation.

Some energy bins may even provide inaccurate material estimates (see figure 4.5).
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Figure 4.8: Image noise of the material basis images for (a) iodine and (b) water.
σ2 values from figure 3.9 were repeated using dotted lines to show the consistency
with the theoretical predictions. Similar to figure 3.9, the theoretical values were
allowed to extend beyond the vertical axis to focus on the lowest of σ2 values.
A minimisation of these values leads to the maximisation of FOM and thus the
optimisation of energy bins.

While it can be intuitive to place a energy threshold at the K-edge of imaging

material, there may be a more optimal energy as shown in figure 4.10a due to

better counting statistics. For non K-edge imaging, the optimisation is particu-

larly crucial to provide an optimal photon binning scheme. Furthermore, some

contrast agent with higher atomic number and higher K-edge energy and may

not be optimal for achieving a balance between contrast and counts. Given the

achievable energy resolutions of the current PCDs (Shikhaliev 2006, Ballabriga

et al. 2011a, Schlomka et al. 2008), we reason that the optimisation algorithm

provides a sufficient guideline for the location of energy bins when implemented

for material discrimination using spectral x-ray imaging.

Upon comparing with the simulated variance, the theoretical prediction of im-

age noise presented some limitations. The simulated σ2 incorporated both image

noise sources from the projection and the open beam image. The normalisation

of the spatial variation in photon counts in section 4.1.1, which was primarily due

to the heel effect, introduced a further photon counting noise inherent to the open
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Figure 4.9: Image noise of the material basis images for (a) iodine, (b) calcium
and (c) water. Discrepancy in (b) was due to the memory limit in Matlab, which
resulted in a step-wise function for the theoretical prediction of calcium image
noise.

beam image. The heel effect resulted in reduced x-ray intensity on the anode side

of the image, caused by the x-ray absorption by the anode target, and must be

normalised for accurate decomposition. Software limitation also prohibited more

accurate resemblance between predicted and simulated variances for the decom-

position of three materials, particularly for calcium (figure 4.9b), as discussed in

section 3.4. Regarding figure 4.8, the confidence region in the theoretical model

can expand infinitely when the statistics for a bin border energy is poor. The

predicted image noise (dashed curves) hence extended further than the axis, while

the simulated image noise has a finite range.

For the decomposition of two materials, the agreement between the predicted

and simulated σ2 values were achieved within the limit on the largest possible ma-

trix size in Matlab. The theoretical model was therefore applied to estimate the

photon counts required to confidently decompose a small amount of calcification

within breast tissue, which will be presented in section 4.3.1, in order to compare

with the optimisation of dual-energy mammography (Johns & Yaffe 1985).

With regard to the precision and accuracy of material decomposition, Alvarez

(2011) demonstrated that his proposed maximum likelihood estimator achieved

the CRLB. Our MSE is shown to be dominated by the variances, indicating
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Figure 4.10: Consistencies between the simulated and the theoretical optimal
bin border energies. (a) In particular, the highest FOM value obtained with the
BEAMnrc model differs by 2 keV from the theoretical optimum of 60 keV for the
decomposition of iodine and water. (b) Likewise, for the decomposition of three
materials, optimal E(h,2) was located at 51 keV and 49 keV for the theoretical and
the BEAMnrc simulation, respectively.

that our estimator is unbiased. It should be emphasised that, for computational

efficiency and hardware limitations, the simulations were performed below the

typical clinical settings of standard x-ray photon flux rates. Simulated detected

counts were less than 900 per pixels for all cases. The random nature of the simu-

lated detected spectrum when compared to the expected photon counts provided

by the theoretical model is depicted in figure 4.11.

Although the BEAMnrc was setup in this work to enable separate simulations

of the x-ray tube and transmission through the imaging object, the generation of

x-rays was largely inefficient, particularly for tube voltages comparatively lower

than 120 kVp. Only the tungsten spectrum of 120 kVp was simulated in this work,

as a result. Furthermore, the in-house Matlab code to translate phsp information

into projection image increase proportionally to the number of incident particles.

The pixel size on the detector plane (phsp2) was set to be four times that of

the Medipix detector (220 µm) to partially compensate for the limitations. It
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4.3 Discussion

is expected that increasing the number of detected counts can facilitate noise

reduction in the simulated spectrum (solid curve) in figure 4.11 and thereby

provide improved agreements between varianceAi
and varianceBi

in table 4.1. As

such, spectra of smaller pixel pitches can be simulated too.
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Figure 4.11: An example of the detected spectrum incident on a 220 µm pixel
generated using BEAMDP. Although it shows a similar trend as the expected spec-
trum given by the Beer-Lambert equation, the noisy spectrum for a particular pixel
within the overlapping region may also contribute to the discrepancy of variance
estimations between the BEAMnrc and the theoretical models.

The scatter contribution between 10 keV and 60 keV for the three material

decomposition was 25%, which contributed to the 11% bias in calcium thickness

estimation in table 4.1. The quantification and rejection of scattered radiation

was enabled by the ability for particle interaction tracking in the BEAMnrc sim-

ulation (Rogers et al. 2004). While the rejection of scattered radiation lowered

the bias in the decomposition, the reduction in simulated detected photon counts

resulted in a marginally higher image noise in the decomposition of three mate-

rials (see table 4.1). The 10% scattered radiation between 10 keV and 60 keV for

the decomposition of iodine and water does not result in a considerable bias in

thickness estimation (variance ≈ MSE) and was thus ignored. Note that practi-

cal implementation of scatter rejection, such as a multi-slit collimators have been
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implemented by other groups (Ding & Molloi 2012, Shikhaliev 2008a). Another

future applications is therefore scatter correction utilising the particle tracking

(LATCH) function in BEAMnrc for material decomposition, which may help

reducing the impact of scattered radiation in spectral x-ray imaging (Wiegert

et al. 2009).

4.3.1 Dose comparisons with dual-energy mammography

To relate image quality to patient dose in dual-energy mammography, a theory

was presented to determine the ideal monoenergetic exposures (Johns & Yaffe

1985). In their analysis, they aimed at achieving a SNR of 5 in the detection of

calcification with the removal of breast tissue contrast. As reported by Johns &

Yaffe (1985), a SNR of 5 can be obtained for the detection of 0.02 cm calcification

within a 4.2 cm breast with a dose of 4.2mGy. This was achieved using an ideal

pair of theoretical monoenergtic beams at 19 keV and 68 keV. By smoothing the

high energy image prior to the removal of breast tissue contrast, it was noted that

the dose can be reduced to 1.6mGy with SNR = 5. In a follow-up experiment

of dual-energy mammography (Johns et al. 1985), however, the optimal dose was

affected by the implementation of a polychromatic beam, as well as by the use of

a non-mammographic digital scanning system.

Given a tungsten spectrum of a Source-Ray (Source-Ray Inc, Ronkonkoma,

NY, USA) x-ray tube available at the University of Canterbury, a 0.02 cm calci-

fication was decomposed from within 4.2 cm of breast tissue using our method of

decomposition in chapter 4.1.3. The mean glandular dose (MGD) for achieving

a SNR ≥ 5 in the decomposed calcification image was estimated to be 1.67mGy

for the polychromatic spectrum. This can be achieved using a 50 kVp tube volt-

age, an ideal 1mm CdTe sensor layer and the recommended pixel size of 85 µm

(Bushberg et al. 2003). The optimal bin border energy was optimised using our
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theoretical model in chapter 3 to be 29 keV for this configuration.

Similarly, the optimal MGD was computed for the minimum operating voltage

of the tube at 35kVp to be 3.65mGy, with an optimal bin border energy of

26 keV. MGD was determined to be comparatively higher for the silicon sensor

layer commonly found in the Medipix detector (Llopart et al. 2002, Doesburg

et al. 2012), due to the lower absorption probability of the material (Aamir et al.

2011a). Details on the optimisations of spectral mammography can be found

in Appendix A. A means of converting photon counts to MGD is presented in

section A.1.

4.4 Concluding remarks

A model for simulating spectral x-ray projection was setup using the BEAMnrc

code system. The uniform object in the simulations was conveniently designed to

enable the calculation of image noise. The decomposition method provides negli-

gible bias in thickness estimation, which is demonstrated in the similar values for

MSE and variance for the decomposition of two materials. For the case of three

materials, the particle interaction tracking (LATCH) function in the BEAMnrc

framework was applied to investigate the effect of scattered radiation on mate-

rial thickness estimation. The bias in one particular material basis image was

increased considerably with the inclusion of scattered photons in the simulated

spectrum.

However, scattered radiation was shown to only minimally affect the optimal

bin borders and the optimisation of photon counts per pixel. A thorough analysis

on the simulated noise was performed and compared with the theoretical predic-

tion to provide a validation of the optimisation algorithm without the technical

complications of PCD. The theoretical prediction of optimal energy bin borders
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was accurate to within 2 keV for the decomposition of 0.01 cm of iodine within

1.5 cm of water when compared to the BEAMnrc model. The FOM for bin border

energies of ±2 keV around the theoretical peak were at least 96% of the optimum

FOM value. Similar results were obtained for the 3-material decomposition of

0.01 cm of iodine and 0.22 cm of calcium with 1.5 cm of water background.

The image noise prediction for the decomposition of three materials was im-

peded by the largest possible matrix size allowed in Matlab, as discussed in

section 3.4. However, the theoretical and simulated image noise demonstrated

excellent agreements for the decomposition of two materials. This leads us to

a prediction of mean glandular dose required to effectively quantify a calcified

feature within a breast. The dose required to achieve a SNR of ≥ 5 in the de-

composition of calcification using spectral imaging was estimated to be similar to

that of using two monoenergetic beams in dual-energy mammography.
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Chapter 5

Experimental and development

work on the MARS spectral CT

scanner

The initial aim of this chapter was to report on the experimental verification of

the work in the previous chapters. However, due to technical difficulties with the

imaging hardware, the focus was shifted to further develop the MARS imaging

system, as well as experimental measurements with the Medipix detector.

This chapter provides an overview of the MARS-CT scanner. The technical

details of the Medipix detectors will be introduced and the distinctions between

the Medipix2 and the Medipix3 ranges of detectors will be summarised. The

system development and the experimental work the candidate was involved in

will be presented. The initially proposed experiments for the verification of the

theoretical model will be discussed.

Due to unavoidable manufacturing variations, pixels across a Medipix detec-

tor respond unequally when exposed to a homogenous x-ray flux. The dispersion

(standard deviation) of the Gaussian response function for a Medipix2MXR de-
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tector may be as wide as 2.65 keV and can be optimised to be less than 1 keV

(Procz et al. 2009). To reduce the inhomogeneities in the Medipix2MXR, the

candidate was largely responsible for the implementation of a Matlab software

within the research group. Upon acquisition, normalisations using open beam

images and corrections of detector defects (e.g. unresponsive pixels) were re-

quired to reduce artefacts prior to image reconstruction. The image processing

method to which the candidate has contributed will be presented. Specifically,

the candidate improved the identification of malfunctioning pixels and sped up

the entire process considerably.

The Medipix3 features the CSM with inter-pixel communication logic to im-

prove spectroscopic performance (Ballabriga et al. 2011a). The spectrum of a

comparatively intense americium gamma source was measured in this work to

examine the CSM. While the data analysis was performed by another team

member, the candidate presented the results at the 14th International Work-

shop on Radiation Imaging Detectors (iWoRID 2012) and personally prepared

the corresponding article for publication in the conference proceedings (Doesburg

et al. 2012). Furthermore, the candidate has made a considerable contribution

towards enabling the spectroscopic mode of acquisition, as well as the prepara-

tion of another article on the topic (Walsh et al. 2013) for submission to the same

journal.

5.1 Medipix All Resolution System

The MARS project is a research team consists of more than 20 members based

at the University of Canterbury and the University of Otago in Christchurch,

New Zealand. The MARS research team is administered by a spin-off company1,

1 http://www.marsbioimaging.com
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to construct a spectral CT scanning system based on the Medipix detector (fig-

ure 5.1a). While the MARS group receives the detector from the Medipix consor-

tium1, local developments include the manufacturing of readout electronics, called

the MARS camera, and the CT gantry. A MARS camera consists of the Medipix

assembly and locally produced readout electronics, mounted within a fan-cooled

container. The components of a MARS camera are displayed in figure 5.1b. The

custom built libMars C library and Python interface offer communication with

the Medipix chip through a Gigabit Ethernet cable and allow for stand-alone

operation of the MARS camera.

The MARS-CT is comprised of the MARS camera and an x-ray tube, rotating

around a translatable specimen holder. The MARS-CT gantry features indepen-

dent translation of the camera and the x-ray tube for adjustable magnification.

A single Medipix detector has an imaging area of 14.02× 14.02mm2. Using a

multi-chip carrier, a MARS camera can be installed with up to 6 Medipix chips.

A maximum field of view (FOV) of 10 cm at each projection angle is enabled by

translating the camera, and subsequent tiling of the images in the image process-

ing software. CT images of human specimen and laboratory animals captured

using the MARS camera have been demonstrated in e.g. Walsh et al. (2011a)

and Ronaldson et al. (2011).

5.2 Technical details of the Medipix detectors

A complete Medipix detector consists of a semiconductor sensor layer and an

underlying ASIC, with the two layers connected by conducting bump-bonds (see

figure 5.2a). Silicon (Si), gallium-arsenide (GaAs) and cadmium-telluride (CdTe)

sensor layers are currently available for the Medipix detectors, while cadmium

1 http://medipix.web.cern.ch/MEDIPIX/
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(a) (b)

Figure 5.1: (a) The MARS-CT system is equipped with (b) the MARS camera
and an x-ray tube within a lead shielded container. (b) Components of a MARS
camera include a Medipix assembly and the readout electronics. MARS camera
allows for independent operation via the locally developed libMars C library and
Python interface.

zinc telluride (CdZnTe or CZT) is generally considered as another auspicious

candidate sensor layer material (Overdick et al. 2009, Bornefalk & Danielsson

2010). As mentioned in section 2.5, a photon detection event is converted into an

electronic pulse in the semiconductor sensor layer in a PCD and the pulse height is

dictated by the photon energy. In a Si sensor layer, a 36 keV photon, for example,

creates 10,000 electron-hole pairs, since 1 electron-hole pair is generated for every

3.6 eV of photon energy absorbed by the Si sensor. For a common Si Medipix

detector, a bias voltage of 100V is applied across the 300 µm of Si sensor layer by

a couple of conducting electrodes to create a depletion zone free of charge. Under

the influence of the electric field, the positively charged holes drift to the ASIC

end of the field and induce a pulse in the electrode, as illustrated in figure 5.2b.

The pulse contains energy information regarding the photon and is subsequently

processed by the ASIC. A higher bias voltage is commonly applied for thicker

materials and different semiconductors may require an opposite polarity. CdTe
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is more efficient in carrying electrons and an opposite bias to that for Si and

GaAs is applied. As an x-ray detection layer, CdTe and GaAs have comparably

higher absorption efficiencies for the detection of a broader x-ray spectrum (Aamir

et al. 2011a) and are therefore materials of interest for Medipix. However, the

Si sensor layer comes with several industrial advantages (Bornefalk & Danielsson

2010), including being relatively low-cost and easier to be manufactured. A study

by our group has shown prominent wrinkle patterns and inhomogeneous detector

regions in a CdTe sensor layer (Aamir et al. 2011a). The availability of GaAs

Medipix detectors is relatively sparse in the MARS group but a study using a

GaAs Medipix3 detector is underway during the write-up of the thesis.

(a) (b)

Figure 5.2: (a) A schematic of the Medipix detector (Pfeiffer 2004) and (b) the
side view of a pixel (Ballabriga 2009) showing the semiconductor sensor layer and
the ASIC. Different semiconductor materials can be bump-bonded to the electronic
chip to act as an x-ray detection layer. When a photon is detected, an electron
and hole pair is created, as shown in (b). The applied bias voltage drifts one of the
charge clouds to the ASIC end of the sensor layer. The polarity and the voltage
of the applied bias are dependent on the type and thickness of the semiconductor,
respectively. A silicon sensor layer is assumed in (b). Drawings are not to scale.

Since the second version of the Medipix design, the Medipix2, the ASIC has

been capable of handling negative and positive pulses induced by different semi-

82

5_measurements/figures/fig_medipix_schematic.eps
5_measurements/figures/fig_pixel_design.eps


5.2 Technical details of the Medipix detectors

conductor materials. The energy sensitivity of the Medipix detectors originates

from the discriminator placed before the counting circuitry. The “front-end cir-

cuitry” in the ASIC is responsible for transforming every incoming signal into

a smooth curve to be compatible with the discriminator. The discriminator

serves as a voltage comparator, which is triggered only when the pulse height

exceeds a tunable threshold. Finally, triggering the discriminator causes the digi-

tal counter to be incremented and the photon counting process is concluded. The

dynamic range in the Medipix detectors is defined by the counter size. In addition

to a larger dynamic range, the Medipix2MXR also includes an overflow control

(Tlustos et al. 2006). The MXR can record up to a maximum of 11,810 pulses

per pixel. The photon count saturates at this value with any further incoming

photons ignored (c.f. 8001 counts with Medipix2 without saturation control).

With the MARS camera, the counter size of the Medipix3 is programmed to be

4095 (12-bit counter).

The subsections below present some specific technicalities with regard to the

discriminators of the two Medipix detectors. However, the full operation of the

Medipix2MXR and the Medipix3 are controlled by 13 and 25 global Digital to

Analogue Converters (DACs), respectively. A comprehensive description of de-

tectors and the DACs can be found in the respective user manuals, as well as

in the theses of the corresponding developers, Llopart (2007) and Ballabriga

(2009). DAC values recommended by the developers were generally employed

in the MARS camera. A summary of the DAC functionalities and their nominal

values have been provided in the published theses within the MARS research

team (see e.g. Doesburg (2012) and Ronaldson (2012)).
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5.2.1 Medipix2

The dual discriminators in Medipix2MXR allow for energy windowing during

acquisition. The discriminator thresholds are controlled by two offset currents,

the THL and THH DACs, which in turns control the threshold voltages VthLow

and VthHigh in figure 5.3, respectively. Due to a manufacturing defect, imaging

performance degraded when the windowed mode was enabled. Experiments were

conducted with setting THH to its highest possible value to deactivate the energy

window mode (Aamir et al. 2011a, Aamir et al. 2011b). When measurements

of multiple thresholds were required, THL was varied with several values, as de-

scribed in Firsching et al. (2009) and Anderson et al. (2010). Calibration of DAC

values to photon energy in keV can be established and has been performed within

our group by means of measuring fluorescence peaks of metallic foils (Ronaldson

et al. 2011). Furthermore, fabrication variations in the electronics and the sensor

layer caused pixel-to-pixel inhomogeneities in the discriminator threshold. The

resulting offset is sufficiently large to, for examples, randomly vary the discrimina-

tor’s response to a homogeneous flux across the chip, and to reduce the accuracy

of the energy calibration of the threshold value. An algorithm to minimise the

dispersion in the THL sensitivity using the 3-bit adjustment DAC depicted in

figure 5.3 will be described in the next section.

5.2.2 Medipix3

The SPM of the Medipix3 features dual thresholds that differ from those in the

MXR. In the Medipix3, the two discriminators are associated with two counters,

providing two pulse height analysers per pixel. The discriminators are controlled

by the Threshold0 and Threshold1 DACs, which are represented by THA and

THB in figure 5.4, respectively. As introduced in section 2.5.1, bump-bonding

the Medipix3 at a 110 µm pixel pitch combines eight discriminators from four
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Figure 5.3: Block diagram of the Medipix2 pixel electronics (Pfeiffer 2004) to
show the low (VthLow) and high (VthHigh) threshold voltages, which are controlled
by the THL and THH DACs, respectively. The 3-bit adjustment DAC designed to
minimise the dispersion of the THL sensitivity (see section 5.3) is also represented.
The digital part of the circuitry is responsible of counting the individual induced
pulses.

adjacent ASIC pixels. Electronically, the spectroscopic mode is activated by

enabling the ColorMode bit in the operation mode register (OMR) of the Medipix3

(Ballabriga 2009). The Threshold0...7 DACs control the threshold value of the

eight discriminators. At the time of writing, devices bump-bonded specifically

for the spectroscopic mode are not yet available to the MARS group. However,

partial spectroscopic mode was still enabled using a MARS camera with pixels

bump-bonded at 55 µm pixel pitch, which will be presented in section 5.6.

The SPM often suffers from degraded spectroscopic performance, due to a

phenomenon known as the charge sharing effect. Electrons or holes generated in

the sensor layer are likely to be scattered as they travel towards the electrodes.

Pulses may be induced in more than one pixel as the initial charge cloud diffuses

into a broader area. The neighbouring pixels inadvertently detect independent
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apparent photons of lower energies. When prompted by the EnablePixelCom bit in

the OMR, the CSM of the Medipix3 has the ability to communicate among four

abutting pixels. Given the diffused signals, the summing nodes located at the

edge of the four pixels can reconstruct the initial pulse height. The arbitration

circuitry shown in figure 5.4 allocates the combined signal as a single photon

count to the pixel with the largest portion of the distributed charge, according

to the ‘winner takes all’ scheme in figure 2.7b. Section 5.5 examines the CSM

performance of a 1mm CdTe Medipix3 (Doesburg et al. 2012).

Figure 5.4: Block diagram of the Medipix3 pixel electronics (Ballabriga 2009) to
indicate the threshold levels THA and THB, which correspond to the Threshold0

and Threshold1 DACs, respectively. The ColorMode bit in the OMR triggers the
CSM of operation (see section 5.5), which requires the arbitration circuitry for
charge allocation, while the spectroscopic mode (see section 5.6) can be enabled by
the ColorMode bit.
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5.3 Implementation of pixel equalisation in Me-

dipix2

For an acceptable imaging quality, it is necessary to minimise the inconsistency

between pixels in the discriminator’s response to the same pulse height. A 3-

bit adjustment DAC is supplied in each pixel of the Medipix2MXR detector to

correct for the inter-pixel variation. The process of fine-tuning these adjustment

bits to produce an optimal uniformity of the thresholds is known as equalisation.

The equalisation process adopted for the work in this chapter was based on that

proposed by Tlustos et al. (2006). To create an equalisation mask, it is possible

to use an external monoenergtic gamma source and to adjust each pixel so that

the count rates at a given THL are approximately equal. However, the yields

of available radioactive isotopes or fluorescing metallic foils are too low for a

prompt equalisation. For simplicity, the Medipix2 equalisation method employed

at the University of Canterbury uses the noisefloor, without requiring any external

source. Comparisons between the two methods have been well studied, e.g. by

Procz et al. (2009).

While it is usually avoided during image acquisition, the electronic noise serves

as a definitive signal intrinsic to every pixel. A noisefloor dispersion curve is the

distribution of THL values at which the pixels encountered the intrinsic signal

and started to register apparent count. The goal of the equalisation process is

to obtain a matrix containing the fine-tuned adjustment value, between 0 and 7,

for all pixels. Upon loading the equalisation mask, every pixel across the chip

encounters the noisefloor at an approximately constant threshold level. Note that

the noisefloor level may differ from one chip to another.

Prior to equalisation, an additional matrix was used to switch off unresponsive

pixels suffering from imperfect production or bump-bonding. The corresponding
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pixels in the resultant projection image are rectified in the pre-processing chain,

which will be described in the next section. In the lowest adjustment settings

(adj. low = 0), a noisefloor dispersion curve was generated with the 3 adjustment

bits for every pixel set to off (000). At the other extremity (adj. high = 7), a

similar noisefloor distribution was measured by setting the adjustment bits to

111 for all pixels. In the MXR, the input current to the pixel equalisation DACs

is controlled by THS. With regard to equalisation process, THS determines the

overlap between the two dispersion curves. An ideal THS setting overlaps these

two distributions by one eighth of their widths. Given the optimal THS, the

equalised noisefloor distribution is expected to be centered around the mid-value

of the overlap region, with its width compressed to be one seventh of the distance

between the 000 and 111 distributions.

To determine the THS value with this optimal overlap, the distance between

the two dispersion curves was measured over the entire range of THS DAC values

(0 to 255). The distance closest to the optimal one-eighth overlap value provided

the optimum THS value, which was set to determine the adjustment bits for

each pixel. In addition to the low and high adjustment settings, the remaining

noisefloor distributions were computed for the intermediate adjustment values

(1-6). Of the eight possible settings, each pixel is assigned the adjustment bits

that locate its noisefloor at the threshold value closest to the centre of the overlap

region and an equalisation mask is constructed. A final noisefloor measurement

reveals the equalised noisefloor, as depicted in figure 5.5.

Similar equalisation procedures for THH have been reported by other groups

(Procz et al. 2009), while Llopart (2007) stated that the same adjustment mask

may be applied to THH. In the Medipix3, the global positive and negative currents

are determined by DAC pixel and ThresholdN, respectively. Generally speaking,

the DAC pixel and ThresholdN DACs combined to have a similar effect as the THS
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Figure 5.5: An example of threshold equalisation in Medipix2MXR compared
the equalised noisefloor dispersion (red) to the wider unadjusted distributions ob-
tained with the lowest (blue) and highest (green) adjustment bits of 000 and 111,
respectively.

in the MXR and the Medipix3’s equalisation mask can be provided by a 4-bit

adjustment DAC for each of the two discriminators. Walsh et al. (2011b), Ronald-

son (2012) and Doesburg (2012) detailed the equalisation process of Medipix3 for

the MARS camera.

5.4 Image pre-processing for the MARS-CT

Equalisation ensures the dispersion in pixel response is minimised for image acqui-

sition. However, imperfections remained in the current production of the Medipix

sensor and/or ASIC layer(s). Silicon sensor layers often demonstrate a compara-

tively higher quality, but defects are particularly obvious with the higher-Z sensor

layers such as GaAs and CdTe (Aamir et al. 2011a). Furthermore, malfunctioning

detector elements spotted during equalisation were typically inhibited. Bump-

bonding failures or radiation damage may result in a larger group of pixels being

disabled. An image pre-processing chain was required for the projection images
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to avoid artefacts (such as ring artefact) in the reconstructed images. Figure 5.6

shows an example of images obtained using a GaAs Medipix2MXR detector prior

to and after pre-processing. Damaged pixel clusters and a column of malfunction-

ing pixels in this particular detector are apparent in figure 5.6a. These detector

regions were necessarily avoided during image acquisition and were overlapped

using the remaining detector area in the pre-processing steps.

Pre-processing of MARS images was initially performed in Matlab. Improvi-

sation of the Matlab framework led to an in-house software (Tang et al. 2012).

As mentioned in section 5.1, the MARS-CT scanner allows for acquisition us-

ing several lengths of detectors to compensate for the relatively small size of the

Medipix. By translating the camera over several detector lengths, the entire imag-

ing object (e.g. a rat in figure 5.6) can be covered in the FOV. Image stitching

is thus the first process of pre-processing. When imaging across a larger FOV,

a correction using an open beam image of air is required to normalise the x-ray

intensity variation across the FOV. The subsequent step involves the interpola-

tion, or inpainting, of inhibited pixels. Every inhibited pixel acquired the average

value of its eight adjacent pixels. Unstable pixels that did not behave within the

allowed photon counting noise were also identified and corrected in this process.

As presented in Tang et al. (2012), the inpainting and stitching processes may

be omitted when the algebraic reconstruction technique is employed. However,

the traditional filtered back-projection reconstruction of MARS-CT images using

Octopus (Dierick et al. 2004) still requires the entire pre-processing procedure to

obtain a final projection image as shown in figure 5.6b.
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(a)

(b)

Figure 5.6: (a) Initial projection image showing several damaged pixel clusters
and a few malfunctioning columns. They repeated in the projection image (a) as
the camera was translated across seven detector lengths to encompass the entire
FOV. These faulty regions were overlapped with the remaining detector area upon
image stitching. The pre-processing chain continued with the normalisation using
an open beam (air) measurement and the interpolation of irresponsive or unstable
detector elements. The final result of a pre-preprocessed image is shown in (b).

5.5 Spectrummeasurement in Charge Summing

Mode

Using a 300µm Si Medipix3.0, CSM has been previously demonstrated by our

group to reduce the misallocation of multiple counts at lower energies (Ronaldson

et al. 2011). For a given pixel size, the effect of charge sharing is proportional

to the thickness of the sensor layer (Llopart 2007). The aim of this work was to

examine the performance of the 1mm CdTe Medipix3.0 in CSM.

5.5.1 Methods

A MARS camera was installed with 6 Medipix3.0 chips bump-bonded to a 1mm

thick CdTe sensor layer. The americium source had an approximated activity
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of 1.6GBq (initial activity was 1.7GBq in 1974) and was placed approximately

5mm in front of the MARS camera. Because of its small spot size, the americium

source was directed to the centre of only one of the CdTe Medipix chips. A bias

voltage of 400V was applied. Threshold0 was varied from 511 to 0 in steps

of 3. 40 exposures of 3 seconds were taken at each threshold step for increased

signal-to-noise ratio. It was reported that flaws in the arbitration circuitry design

preferentially allocate counts to the pixels with lower thresholds (Ballabriga et al.

2011b). The detector’s global pixel variation was therefore not equalised prior to

this measurement to avoid the reported behaviour.

To post-process the measurements, pixels with unexpected CSM behavior were

ignored. These include pixels which showed rapid changes within a small number

of steps and pixels that did not rise from or fall back to zero. The threshold counts

were differentiated to form a spectrum for each of the remaining (approximately

6000) pixels. The differentiated spectra were grouped (and averaged) according

to the total intensity and were aligned on the 59.5 keV peak. The full width at

half maximum of the 59.5 keV americium-241 peak was measured to provide an

estimate on the energy resolution of the unequalised chip.

5.5.2 Results

Figure 5.7a shows the integrated counts of the 40 frames summed over all thresh-

old steps. Different ranges of total intensity were grouped and plotted using

various colors. The top left corner of the image revealed a region of missing

bump bonds. The americium-241 characteristic peak at 59.5 keV is apparent in

figure 5.7b. The spectra were scaled to the spectrum for the pixels with the high-

est total counts (the red spectrum). In addition, cadmium and tellurium have

respective fluorescence energies at 23.2 keV and 27.5 keV. The corresponding es-

cape peaks as a result of the Am-241 gamma source of 59.5 keV were partially
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resolved, at 36.8 keV and 32.6 keV respectively, and are shown towards the left of

the 59.5 keV peak (solid arrow). The combined Cd and Te fluorescences can be

seen on the far left of the spectra (dashed arrow). The energy resolution of the

unequalised chip was estimated to be 7 keV.

5.6 Spectral CT data acquisition using Medip-

ix3.1

The equalisation and several DAC values of the first Medipix3 design (Medipix3.0)

was prone to destabilise over a relatively short period of time (Ronaldson

et al. 2011, Walsh et al. 2011b). Although the stability was not quantified, the

Medipix3.1 was observed to be a more stable chip. The equalisations were partic-

ularly stable over comparatively longer times of weeks rather than days. A MARS

camera with four Medipix3.1 detectors was therefore equalised and operated in

spectroscopic mode. Charges were collected and compared from a 55× 55 µm2

region with the charge to the other 3 pixels being discarded (Walsh et al. 2013),

since every pixel of the quad Si Medipix3.1 assembly used in this work was bump-

bonded at manufacture. Note that the actual spectroscopic mode requires only

one in every four ASIC pixel terminals to be connected to the semiconductor

sensor layer (Ballabriga et al. 2011a).

5.6.1 Methods

A spectral phantom was designed and created by the MARS group. It contained

two concentric rings of 7 evenly spaced capillaries each. The outer capillaries con-

tained calcium chloride, “iodixanol” iodine complex, “Dimeglumine Gadopente-

tate” gadolinium complex, a contrast agent containing gold nano-particles, canola
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Figure 5.7: (a) The integrated counts over the 40 frames versus pixel locations.
A detector defect due to bump-bonding failure is visible at the top left corner
of the image. (b) The differentiated spectra were color-coded to show a break
down according to total intensity, which is correlated with the pixel location in
(a). The americium characteristic peak of 59.5 keV is clearly depicted. The escape
peaks of cadmium and tellurium were partially resolved and visible towards the
left (solid arrow). The dashed arrow indicates the location of the combined Cd
and Te fluoresences. Based on the locations of the 59.5 keV, the escape and the
fluorescence peaks, the full width at half maximum of the americium-241 peak was
measured to be approximately 7 keV.

94

5_measurements/figures/fig_am241_intensity.eps
5_measurements/figures/fig_am241_spectra.eps


5.6 Spectral CT data acquisition using Medipix3.1

oil (to represent fat), water and air, respectively. The inner capillaries were not

filled in this experiment.

A MARS-CT scanner, comprised of a MARS camera with four Medipix3.1 de-

tectors and a micro-focus x-ray source (Source-Ray Inc, Ronkonkoma, NY, USA),

was employed in this work. The x-ray source had a tungsten anode and 1.8mm of

aluminium (equivalent) intrinsic filtration. The spectral phantom was measured

with the quad Si Medipix3.1 array, which was equalised using the standard MARS

equalisation procedure (Walsh et al. 2011b). A bias voltage of 100V was applied.

The Source-Ray tube was set to 50 kVp and 100 µA. 720 projections were taken

over 360 degrees to ensure sufficient data sampling. A study comparing image

noise using different projection angles can be found in Tang et al. (2012). The

MARS camera was operated in the spectroscopic mode, allowing for acquisition

with 8 discriminators and 8 counters. CSM was disabled during the measure-

ments. Due to the low absorption efficiencies of the silicon sensor layer, the 8

thresholds were spread evenly, at intervals of 2 keV, up to only 30 keV. 15 keV,

17 keV, 19 keV, 21 keV, 23 keV, 25 keV, 27 keV and 29 keV were measured in a

single acquisition as a proof-of-concept study for the spectroscopic mode. Images

were reconstructed using the commercial Octopus software (Dierick et al. 2004).

A simple signal-to-noise ratio assessment was performed for the spectroscopic

mode acquisition to evaluate the performance of the two individual Medipix3

counters.

5.6.2 Results

The eight images from the spectroscopic dataset are shown in figure 5.8. Starting

from top position going clockwise, the materials are a gadolinium complex, an

iodine complex, calcium chloride, canola oil, water, air and gold nano-particle

contrast agent. The projection images were captured in a single acquisition, since
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Threshold0 and Threshold1 of the four pixels alternate to form the eight threshold

energies. Images at the threshold energies of {15, 19, 23, 27}keV were acquired

by the four Threshold0’s counters (counters {0, 2, 4, 6}). Likewise, counters {1,
3, 5, 7} of Threshold1 provided images at the threshold energies of {17, 21, 25,
29}keV.

Figure 5.9 shows the measured signal to noise ratio (SNR) of the 7 capillaries

at 8 energies. SNRs for the low-Z (air, oil and water) and high-Z (calcium, iodine,

gadolinium and gold) materials in the spectral phantom are plotted in figure 5.9a

and figure 5.9b, respectively. SNRs for the counters associated with Threshold0

(bottom axis) are plotted with solid lines, whereas the dashed lines in figure 5.9

indicate the corresponding SNRs for the Threshold1’s counters (top axis). In

general, the Threshold0’s counters show comparatively lower SNR performance

than the Threshold1’s counters and for all materials, SNR for e.g. counter 1 at

17 keV (lowest energy of Threshold0) was lower than the SNR for counter 4 at

23 keV (third energy of Threshold1)

Figure 5.8: A montage of a spectroscopic mode acquisition using Medipix3.1.
The capillaries contain (from the top position and going clockwise) a gadolinium
complex, an iodine complex, calcium chloride, canola oil, water, air and a contrast
agent containing gold nano-particles, respectively. All 8 energies were acquired in
one exposure.
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Figure 5.9: SNR of the seven capillaries within the spectral phantom with rela-
tively (a) low-Z and (b) high-Z materials. The Threshold0’s counters (solid lines)
are numbered even (counters {0, 2, 4, 6}) and counters {1, 3, 5, 7}) are associated
with Threshold1. Threshold0’s and Threshold1’s counters are labelled on the bot-
tom and top horizontal axes, respectively. SNR for the image at 17 keV (lowest
energy of Threshold1) was shown be lower than SNR at e.g. at 23 keV (third en-
ergy of Threshold0) for all materials and in general, Threshold1 has comparatively
lower SNR performance, which shows a limitation in the Medipix3.1’s spectroscopic
mode.

5.7 Discussion

The CSM of Medipix3.0 was demonstrated to be relatively effective in allocat-

ing shared signal in a single pixel and to depict the characteristic peaks of an

americium-241 gamma source. Surprisingly high pixel variations were reported

for this version of Medipix3 (Ballabriga et al. 2011b). Given that the resultant

misallocation of photon counts has been previously observed (Gimenez et al. 2011)

and that the limitations with the CSM has been revealed in studies within the

MARS group (Doesburg 2012, Ronaldson 2012), the CSM measurement in this

work produced encouraging performance. In particular, the spectra obtained

with CSM at 55 µm pixel pitch resemble that of 110µm2 pixels in SPM (Koenig

et al. 2012). However, the energy resolution of the Medipix3.0 detector used for

the work in section 5.5 is approximately 2.5 times worse compared to the SPM
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spectrum using the 110 µm2 pixels in Koenig et al. (2012). The full width at half

maximum of the 59.5 keV peak in figure 5.7b was widened by the residual charge

sharing tail immediately to the left of the peak. An increase in pixel size can

directly reduce charge sharing, which may thereby enhance the energy resolution

of the detector, as shown in the work of Koenig et al.’s (2012). An improved

charge summing arbitration is also believed to be capable of further reducing the

charge sharing tail. A narrower full width at half maximum can be expected as

a result.

This preliminary spectral measurement using CSM has provided the opportu-

nity to explore the novel feature of pixel communication and charge summing in

Medipix3 with the MARS camera. In figure 5.7b, counts were still registered at

energies between the 59.5 keV Am-241 peak and the escape peaks of cadmium and

tellurium. This suboptimal outcome of the CSM may be attributed to the chip

not being equalised. The candidate attempted to acquire similar spectrum upon

equalising using the MARS Medipix3 equalisation procedure (Walsh et al. 2011b).

However, measurements using a MARS camera with a Si Medipix3 were unsuc-

cessful in providing similar analysis, which may be due to the low absorption

probability of the sensor layer at the characteristic Am-241 energy. Limitations

of the Medipix3.0 have been reportedly corrected with a redesigned charge sum-

ming arbitration architecture in the next version of the Medipix3 family, called

Medipix3RX (Ballabriga et al. 2012). The Am-241 spectrum measurement in sec-

tion 5.5 hence promises improved spectroscopic performance with the integration

of the Medipix3RX into the MARS camera.

Similarly, the compatibility of the MARS camera with the spectroscopic mode

was demonstrated using a Si Medipix3.1 detector. The candidate tested the im-

plementation of the feature in the MARS Python library with pilot studies before

images of a spectral phantom at 8 simultaneous energies were acquired (Walsh
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et al. 2013). Previous images of multiple energy ranges were acquired indepen-

dently at different threshold energies (e.g. in Ronaldson et al. (2012)). Sub-

tracting counts of one threshold from another include quantum noise from both

measurements. In addition to shortening the exposure time, forming energy bins

using acquisition in the spectroscopic mode does not introduce further photon

counting noise, since all counters share a single x-ray exposure. However, due to

its bump-bond configuration at manufacture, the Si Medipix3.1 detector used for

the work in section 5.6 only counted photons from a 55× 55 µm2 area, which is 4

times smaller than the 110× 110 µm2 area expected for the spectroscopic mode.

Even with the hardware limitation, this work demonstrates that the Medipix3.1

ASIC is capable of imaging in spectroscopic mode with 55 µm bump-bonding.

In the spectroscopic mode, the 2 counters of each pixel are multiplexed in

a 2×2 configuration to create the 8 counters. Consequently, the image quality

of the 8 counters is related to the performance of the individual counters in a

pixel. In our spectroscopic measurements, the 8 counters were specifically shown

separately as counters {0, 2, 4, 6} from Threshold0 in SPM and counters {1, 3,
5, 7} of Threshold1 in SPM. Threshold1 has poorer equalisation, which resulted

in the comparatively lower SNR in counters {1, 3, 5, 7} in spectroscopic mode

(figure 5.9). It is expected that the redesigned chip of the Medipix3RX will have

equalisation and imaging performance independent of the discriminator.

5.7.1 Proposed measurements to verify the theoretical m-

odel

In practice, a PCD such as the Medipix detector may fail to respond to each

photon if the detector’s count rate is slower than the incoming flux rate and

the detected spectrum will be distorted (Taguchi et al. 2010, Wang et al. 2011).

While the BEAMnrc model incorporates the consideration of scattered radia-
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tion, the effects of pulse pileup and finite energy resolution of a PCD on the

optimisation can be examined, provided that the Medipix PCD can perform ad-

equately in the charge summing and spectroscopic modes of operation. In order

to validate the theoretical and simulation models, it was initially intended in this

thesis to apply the decomposition method presented in section 4.1.3 to identify

e.g. the microcalcification regions within a Gammex 156 American College of

Radiology mammography accreditation phantom (Gammex Inc, Middleton, WI,

USA) available to the MARS team. The optimal energy bins for decomposing

calcifications from breast-like tissue (Gammex Inc. 1997) can be experimentally

validated upon measuring the Gammex 156 phantom using an exhaustive range

of bin border energies. Similarly, the SNR of the decomposition can be compared

to the theoretical predictions for the tube voltages of 35 kVp and 50 kVp (see

Appendix A) and the theoretical optimisation of count per pixel for achieving a

SNR of ≥ 5 can be verified for the Si or CdTe Medipix detectors.

5.8 Concluding remarks

The candidate’s contribution towards multiple aspects of the MARS-CT spectral

scanning system was presented in this chapter. The candidate implemented the

threshold equalisation for the Medipix2MXR detector in Matlab and contributed

to the improvement of a Matlab image pre-processing algorithm to correct for

faulty and unstable pixels. These two processes improved the quality of the

photon counting projection images prior to and after the acquisition, respectively.

Measurements using a Si Medipix3.0 detector with comparatively lower ab-

sorption at the Am-241 characteristic energy were unsuccessful in depicting the

spectroscopic features, the results were presented at the 14th International Work-

shop on Radiation Imaging Detectors. Also, the corresponding manuscript was
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prepared for publication in the conference proceedings by the candidate. To re-

alise the Medipix3’s potential of imaging with 8 simultaneous threshold energies,

the candidate implemented the spectroscopic mode in the MARS Python library

and tested the feature with pilot studies. A set of preliminary measurements to

examine the Medipix3.1 in the spectroscopic mode was acquire in collaboration

of other team members and overseas collaborators (see Walsh et al. (2013)).

As discussed in section 5.7, the performance of the available Medipix3 detec-

tors was limited due to the known issues with the detector’s electronics, which

prohibited an effective equalisation in the CSM in section 5.5 and the equali-

sation in the spectroscopic mode in section 5.6 was shown to be dependent on

the discriminator (Threshold0 or Threshold1 in SPM) used. A highly accurate

measurement of an x-ray spectrum in the CSM to decompose materials was not

possible at this time, as a result. While the measurements presented several

limitations (see figure 5.7b and figure 5.9), they demonstrated the integration of

the Medipix3 detectors in the MARS camera, particularly in the spectroscopic

and charge summing modes. Furthermore, the unwanted behaviour of charge

misallocation in the Medipix3.0’s CSM has been corrected in the Medipix3RX

(Ballabriga et al. 2012).

Together with the ongoing development of the equalisation routine, the avail-

ability of Medipix detectors bump-bonded specifically for the spectroscopic mode

can provide improved spectroscopic measurements. Once the limitations have

been overcome, the Medipix detector can be used to measure the Gammex 156

phantom with microcalcification regions, to verify the theoretical and simulation

models presented in chapter 3 and chapter 4, respectively. Specifically, the esti-

mation of pixel counts required and the optimal bin border energy provided by

the theoretical model can be applied on the measurements using e.g. the next

variant of Medipix3, Medipix3RX (Ballabriga et al. 2012).
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Chapter 6

General conclusions and

discussion

6.1 General conclusions

The work presented in this thesis investigated the optimisation of material dis-

crimination using spectral x-ray imaging. This has been achieved through the

development of a novel theoretical algorithm in Chapter 3 to optimise bin border

energies for maximum material discrimination. The proposed model does not

assume the knowledge of material quantity for the determination of the effective

attenuation basis functions. The matrix manipulation required to determine the

Fisher information matrix can be avoided, too. In concurrence with other meth-

ods, our model shows that the benefits of spectral imaging can be maximised

by the optimisation of energy bins to provide improved confidence in material

thickness estimation. It is also a strength of the theoretical model to be able

to estimate the pixellated dose (photon counts) required for achieving a desired

signal-to-noise ratio in a decomposed image.

The decomposition method in this thesis was derived from the optimisation
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model. Simulated spectra can be decomposed into two non-K-edge and a K-edge

materials, as expected. This has been demonstrated in Chapter 4 by decomposing

the simulated projection measurements into basis images of up to two contrast

agents (calcium and iodine) within a water cylinder. For the validation of the

theoretical model, scattered radiation was included in the simulated projections

and the theoretical predictions demonstrated excellent agreement with the MC

simulations on the estimation of image noise (figure 4.8 and figure 4.9), as well

as on the optimal bin border positions (figure 4.10).

Upon validation, the theoretical model was applied to optimise mean glandu-

lar dose required to effectively decompose calcification from within breast tissue

in order to compare the benefits of spectral imaging with dual-energy mammog-

raphy. It was estimated that spectral imaging is capable of achieving the same

image quality in the calcification image at a similar dose level as two optimised

monoenergetic beams (see section 4.3.1).

It was initially the aim of the this thesis to apply the theoretical optimal

parameters and the decomposition method on spectral measurements obtained

using the Medipix PCD. However, electronic issues had been known to exist with

the detector versions available for the work in this thesis. The focus was thus

shifted to contributions on the development of the MARS spectral scanning sys-

tem and experimental work on the Medipix detector. Preliminary measurements

using the charge summing and spectroscopic modes, presented in section 5.5 and

section 5.6, respectively, indicated that the integration of the Medipix detector

into the MARS camera is promising in providing spectral x-ray measurement of

up to 8 energies, with the expected limitations due to the known problems re-

lated to the equalisation process. It is expected that, when available, the revised

version of Medipix detector (Medipix3RX) can provide spectra with improved

spectroscopic accuracy. The optimsed scanning parameters can be applied on
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measurements of a mammography phantom using the Medipix3RX detector and

thereby provide verifications to the theoretical optimisations.

6.2 Discussion

The penultimate sections of the previous chapters provided discussions on the

respective topics. A more general discussion and the identified areas of future

research, based on the overall work presented in this thesis, are highlighted here.

6.2.1 Limitations of approach

The theoretical model does not account for the finite energy resolution of a PCD

and the pulse pileup effect. Both of the effects degrade the performance of ma-

terial decomposition and may affect the optimsation of material discrimination.

The decomposition method used in this work therefore requires an additional

detector response function. Suggestions on how to improve the theoretical model

by incorporating the respective effects of energy resolution and pulse pileup have

been identified as areas of further work.

The agreements between the theoretical and simulation models were generally

limited by computational and hardware efficiency. While the largest allowable

matrix size was imposed by Matlab on the theoretical model, the simulation

model is limited by the relative inefficiency of generating incident photons and

the computing time required to readout the phsp information.

The accuracy of the material decomposition method can be affected by scat-

tered radiation, which had to be taken in account using the particle interaction

tracking function in the BEAMnrc simulation. A similar approach of accounting

for scattered photons must be considered when decomposing a spectrum mea-

sured using the Medipix detector.

104



6.2 Discussion

Experimental work on the Medipix detector in this thesis was limited to

demonstrating its implementation in spectral imaging. Technical limitations with

the electronics of the Medipix3.0 and 3.1 detectors have adversely affected the

functionality of the charge summing mode, which was necessary for an accu-

rate measurement of an x-ray spectrum required for the projection-based de-

composition in this work. It was reported that the electronic issues has been ad-

dressed with the improved in chip design in the Medipix3RX detector (Ballabriga

et al. 2012). An important piece of future work is therefore to experimentally

verify the theoretical optimisations with the revised version of Medipix3.

6.2.2 Suggestions for future work

The proposed decomposition method has been applied on K-edge imaging to dis-

criminate up to three materials. Without the existence of a suitable K-edge within

the imaging energy range, only 2 non K-edge materials can be decomposed, as dic-

tated by the linear dependency of the Compton and photoelectric components of

x-ray attenuations. Decomposition of multiple (>2) non K-edge materials is only

feasible by incorporating additional steps in the decomposition technique or by

augmenting the existing system of equations with further information. Both tech-

niques have been demonstrated in the image-space decomposition. Segmentation

of the reconstructed pixels into classes of materials (Le & Molloi 2011, Alessio

& MacDonald 2013) or inclusion of a volume conservation constraint within a

pixel (Ronaldson et al. 2012) can be performed prior to the estimation of ma-

terial/attenuation concentrations using e.g. the least squares minimisation. An

interesting approach to decompose more than 2 attenuation components or mate-

rials in the projection space can be tested by the incorporation of up to 4 principal

attenuation components as observed by Bornefalk (2012).

The presented BEAMnrc projection framework can be extended to simulate a
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CT gantry rotation by duplicating a first generation CT geometry. A pencil x-ray

beam can be translated before being rotated over a full rotation as demonstrated

by Bazalova et al. (2012). A more straightforward CT simulation is deemed

feasible with an EGSnrc’s user code, called egs cbct, currently under development

(Thing 2013). Similarly, the theoretical algorithm can be applied to optimise

energy selection and to estimate count required for a cylindrical, symmetrical

imaging object, as demonstrated by Roessl et al. (2011).

It should be noted that the estimated MGD in section 4.3.1 and Appendix

A were based on a practical polychromatic source, for comparisons with the

optimisation of two monoenergtic beams by Johns & Yaffe (1985). As seen in the

subsequent experimental implementation of dual-energy mammography (Johns

et al. 1985), a polychromatic source exposes a higher patient dose compared to the

monoenergtic sources. This is, of course, coupled with the technical complexities

of their radiography system. For the given image quality, however, an even lower

MGD may be achieved in this work with an optimal kVp of the tungsten anode,

by using a different anode target and filtration (e.g. a molybdenum/rhodium

combination), or by means of image smoothing as in Johns & Yaffe (1985).

Acquisition with the advanced features of the Medipix detector in this work

encountered limitations related primarily to the equalisation process. While the

multi-energy acquisition of the Medipix3 has been realised, its performance hinges

on the equalisation of pixel sensitivity dispersion (see figure 5.9). Deterioration

in the equalisation mask over time can directly affect energy resolution and CT

number calibration. The improved equalisation process in the latest Medipix3RX

detector with new charge summing logic (Ballabriga et al. 2012) will lead to a

higher consistency in using the Medipix detectors.

Given the improved spectroscopic performance in the CSM, the theoretical

algorithm can be implemented to optimise projection measurement using the
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Medipix detector. A Gaussian resolution function and pulse-pileup models such

as Taguchi et al.’s (2010) or Wang et al.’s (2011) can be incorporated in (3.2),

as part of the forward projection process in the optimisation algorithm and the

decomposition method, to account for the detector’s finite energy resolution and

read-out speed, respectively. Finally, the theoretical model can also be applied

to, e.g. investigate the minimum contrast agent quantity required for a sufficient

image quality with and without the influence of technical complications of PCD.

6.2.3 Outlook

This thesis focused on spectral x-ray projection imaging. The clinical applica-

tions of photon counting technology has been demonstrated in mammography

(Fredenberg et al. 2010, Danielsson 2012) and there is a growing interest in ap-

plying PCDs to replace dual-energy CT as the next generation of energy-sensitive

clinical CT imaging. Several technical challenges, of course, must be addressed

before energy-resolving PCDs can be applied to clinical CT imaging. One pri-

mary limitation of the current PCD technology has been widely identified to be

the count rate capability (Taguchi et al. 2010, Roessl et al. 2010). In a clinical

x-ray examination, a patient may be exposed with 107 to 109 photons per mm2

per second, depending on the imaging task (Overdick et al. 2009). Count rate of

the detectors listed in table 2.5.2 ranges from 6 × 106 to 1.5 × 108 photons per

mm2 per second (Overdick et al. 2009, Roessl et al. 2010). A PCD may fail to

respond to each photon if the detector cannot maintain the clinical count rate,

or pulses may temporally pileup and the detected spectrum will be distorted.

The essential hardware improvements in spectral x-ray imaging therefore include

increasing the count rate capabilities of PCDs, in addition to the development of

sensor layers with suitable properties and sizes for clinical imaging.

Alternatively, pulse pileup models have been proposed as possible solutions to
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mitigate the effect (Taguchi et al. 2010, Wang et al. 2011). The development of

similar algorithms to account for e.g. scattered radiation with energy sensitivity is

critical and, as shown in this thesis, it is equally important to optimise the energy-

sensitive photon counting measurements for the maximum benefits of spectral

imaging. With the ongoing development in all aspects of spectral x-ray imaging,

as reflected by the active research in micro-CT imaging of small animal and

human specimen, including the MARS-CT scanner, it is believed that the photon

counting technology is promised a very bright future in clinical imaging.
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Appendix A

Mammography dose calculations

and optimisations

This appendix presents a method to calculate MGD, which enables the deter-

mination of dose required for decomposing calcification from breast tissue using

spectral x-ray imaging. Given a tungsten spectrum based on an x-ray tube avail-

able at the University of Canterbury, the MGD required for the SNR threshold

of 5 was estimated to evaluate the advantage of spectral x-ray imaging.

A.1 Mean glandular dose calculation

Using the theoretical model in chapter 3, the optimal photon counts for achieving

a given SNR in a material basis image can be calculated. The breast entrance

photon fluence for energy, Φ(E) in units of photons/mm2/keV, can be converted

into MGD (Boone 2002, Boone & Seibert 1997):

MGD =

∫ Eh

El

Φ(E) · χ
Φ
(E) ·DgN(E) dE. (A.1)
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A.2 Mean glandular dose optimisation

χ
Φ
(E) denotes the exposure per photons/mm2 in an energy interval (in units of

mR per photons/mm2) and has been derived by Johns & Cunningham (1983) to

be:
Φ

χ
(E) = 0.00873 ·

(

hυ(µab/ρ)air

)−1

J/kg/R, (A.2)

where hυ represents the energy of the photon. Substituting hυ with E, the energy

of the photon in keV, the number of photons/mm2 per roentgen (R) is

Φ

χ
(E) = 5.45× 108 ·

(

E(µab/ρ)air

)−1

keV/mm/R, (A.3)

after some unit conversions including 1 keV = 1.602× 10−16 J. Note that the

Système International (SI) unit of radiation exposure is coulomb per kg (C/kg),

whereby 1C/kg equals to approximately 3876R. Values for the mass energy ab-

sorption coefficient (µab/ρ)air) can be obtained from the NIST database (Hubbell

& Seltzer 1996). DgN(E) in (A.1) is the normalized glandular dose coefficient

(in units of mGy/R). The fit equations of the DgN(E) values for three glandu-

lar compositions (0%, 50% and 100%) were reported by Boone (2002) for breast

thicknesses between 2 cm and 10 cm. The equation for a 4 cm breast of 50%

glandularity was used in this work.

A.2 Mean glandular dose optimisation

Given the benchmark of 4.2mGy in Johns & Yaffe (1985), the Source-Ray SB-80-

1K x-ray tube (Source-Ray Inc, Ronkonkoma, NY, USA) utilised in previous spec-

tral CT experiments was modelled (Ronaldson et al. 2011, Walsh et al. 2011a).

The tube comprises a tungsten anode with an 1.8mm of aluminium (equivalent)

intrinsic filtration. Calculation was performed for a tube voltage of 35 kVp, which

is the minimum operating voltage of the tube (see tube’s operation manual), as
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well as for another tube voltage of 50 kVp previously used in studies by our group

(Ronaldson et al. 2011, Ronaldson et al. 2012). The bin border energy for two

abutted bins was optimised for both spectra. The detection quantum efficiency

(DQE) and the energy resolution of the PCD was assumed to be ideal. In addi-

tion, the optimal MGD was calculated for a PCD with a 300 µm silicon, which is

a common type of sensor layer for the Medipix detector (see e.g. Llopart et al.

(2002) and Doesburg et al. (2012)). The spectral response of the silicon detector

was incorporated into (3.2) while the 1mm CdTe sensor layer was demonstrated

to be ideal at below 50 keV (Aamir et al. 2011a). Two pixel sizes were em-

ployed: the 55 µm2 typically found in the Medipix and the 85 µm2 recommended

for mammography by Bushberg et al. (2003).

The attenuation coefficients of calcium carbonate (CaCO3) and the ICRU-44

breast tissue (ICRU 1989) were obtained from Berger et al. (2005). The density

of CaCO3 was defined to be 2.93 g/cm3 as in Lemacks et al. (2002) to mimic

the calcification. Given the above options of exposure configurations, the lowest

MGD was determined to be 1.67mGy with the 1mm CdTe sensor layer of 85 µm2

pixel size and the 50 kVp tube voltage, using a bin border energy of 29 keV. The

same detector yields the the minimum dose is 3.65mGy for the 35 kVp spectrum,

with a bin border energy of 26 keV.

The optimal dose to achieve a SNR of 5 in quantifying the calcified feature

was tabulated in table A.1 and table A.2 for the 35 kVp and 50 kVp spectra,

respectively. MGD was calculated using (A.3) whereas the skin exposure was

given by (A.1).
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A.2 Mean glandular dose optimisation

Detector
Skin exposure MGD Optimal bin border

(mR) (mGy) (keV)
DQE = 1

736 3.65 26
85 µm

300 µm Si
918 4.55 26

85 µm
DQE = 1

1756 8.70 26
55 µm

300 µm Si
2192 10.87 26

55 µm

Table A.1: MGD required for SNR ≥ 5 in the CaCO3 basis image estimated
using the theoretical model. The entrance skin exposure and optimised bin border
position are also tabulated. 85 µm is the recommended pixel size for mammography
in (Bushberg et al. 2003). 55 µm is the pixel size for the Medipix detector. The
minimum dose for the 35 kVp SourceRay spectrum was 3.65mGy using a 1mm
CdTe detector with 85 µm2 pixels.

Detector
Skin exposure MGD Optimal bin border

(mR) (mGy) (keV)
DQE = 1

285 1.67 29
85 µm

300 µm Si
1269 7.43 27

85 µm
DQE = 1

682 3.99 29
55 µm

300 µm Si
801 4.69 27

55 µm

Table A.2: The 50 kVp SourceRay spectrum was modelled and shown to be more
optimal compared to the 35 kVp spectrum. The lowest achievable dose for a SNR
≥ 5 is 1.67mGy.
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Appendix B

Implementation of

backprojection-filtration

reconstruction on synthetically

truncated data

In x-ray computed tomography imaging, the FOV of the imaging system can be

smaller than the imaging object. It is also not uncommon that only the volume-

of-interest (VOI) is irradiated for the reduction of radiation dose delivered to the

subject. Under these conditions, the conventional Feldkamp-Davis-Kress (FDK)

algorithm (Feldkamp et al. 1984) yields reconstructed images with artefacts when

the projection data are truncated (Ogawa et al. 1984, Yu et al. 2006, Cho et al.

2007, MacDonald 2010).

An algorithm known as the backprojection-filtration (BPF) algorithm has re-

cently been developed for exact image reconstruction from helical (Yu & Pan

2004) and circular (Yu et al. 2006, Cho et al. 2007) cone-beam CT data. The

BPF approach is based on the lines connecting any two points on the source
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trajectory specifically defined for helical cone-beam CT, known as the Pi-lines.

For circular cone-beam CT, actual Pi-lines exist only on the midplane, as illus-

trated in figure B.1. Virtual trajectory and virtual Pi-lines have been introduced

on the off-midplanes for the realisation of the approximated BPF algorithm (Yu

et al. 2006, Cho et al. 2007). In the BPF algorithm for both helical and circular

cone-beam CT, the one dimensional data filtration occurs in the image space,

following the backprojection of the cone-beam data derivatives onto the Pi-lines.

This reconstruction technique therefore requires only the projection data from

the VOI. The filtering process in the FDK algorithm, however, takes place in the

projection space, prior to the data rebinning. This leads to a larger data require-

ment compared to the BPF algorithm for artefact-free reconstructed images (Cho

et al. 2007).

Figure B.1: An illustration of actual and virtual Pi-lines in circular cone-beam
CT by Yu et al. (2006) and Cho et al. (2007). Actual Pi-lines exist only on the
midplane in circular cone-beam CT. The approximated BPF reconstruction can be
achieved by introducing virtual trajectory and virtual Pi-lines on the off-midplanes.

This appendix reports on a project that transpired from the temporary clo-

sure of the University of Canterbury due to the Canterbury earthquakes in 2011.
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APPENDIX B. IMPLEMENTATION OF

BACKPROJECTION-FILTRATION RECONSTRUCTION

As mentioned in section 1.2, the work in this appendix was carried out at the

Nova Scotia Cancer Center in Halifax, Canada. The goal of this project was

to implement the BPF reconstruction algorithm on synthetically truncated cir-

cular cone-beam CT data acquired on a megavoltage imaging system with low

atomic number external targets in the linear accelerator (Robar et al. 2009).

A Matlab code with a graphical user interface (GUI) was built to import Dig-

ital Imaging and Communications in Medicine (DICOM) projection data and

to reconstruct based on the BPF algorithm developed by Yu et al. (2006) and

Cho et al. (2007). Verification against a previously implemented FDK algorithm

(Robar et al. 2009) as well as the qualitative and quantitative comparisons with

the FDK reconstructed images were performed.

To ensure a sufficiently large field-of-view, the MARS CT scanner translates

the Medipix detector over several detector lengths. This approach, however,

lengthens the scanning time. The BPF reconstruction can be employed when the

projection images are truncated as a result of the small detector size and may

potentially be applied to small animal spectral CT imaging. Spectral CT may

therefore benefit from the BPF reconstruction, even though the algorithm does

not exploit the energy domain of spectral x-ray imaging.

B.1 Methods

B.1.1 BPF algorithm for circular cone-beam CT

The Pi-line based BPF reconstruction algorithm was first proposed by Yu &

Pan (2004) for applications on helical cone-beam CT data. Based on Yu &

Pan’s (2004) works, Yu et al. (2006) and Cho et al. (2007) demonstrated an

approximated BPF algorithm for reconstruction from computer simulated and

experimental circular cone-beam CT data. In their works, four Pi-line parameters
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(xπ, λ1, λ2 and z0) were introduced, with xπ being a point on a Pi-line connecting

two points, λ1 and λ2, on a circular plane at z = z0, as shown in figure B.2. The

source rotates on the z0 = 0 plane at a distance R (R = 100 cm in this work)

away from the rotational axis, with the source trajectory governed by

~rc(λ) = (Rcos(λ), Rsin(λ), 0), (B.1)

at an projection angle λ.

For a set of Pi-line coordinates (xπ, λ1, λ2 and z0), its location ~r relative to

the axis of rotation can be expressed as (Yu et al. 2006, Cho et al. 2007)

~r =
~rc(λ2) + ~rc(λ1)

2
+ z0êv + xπêπ, (B.2)

where the direction of a Pi-line segment, êπ, is given by

êπ =
rc(λ2) + rc(λ1)

|rc(λ2) + rc(λ1)|
. (B.3)

êv in (B.2) denotes the unit vector along the vertical detector axis (see figure B.2).

{êu, êv, êw} thus describes the unit vectors of the rotation coordinate system and

can be written as:

êu = (−sin(λ), cos(λ), 0)′

êv = (0, 0, 1)′

êw = (cos(λ), sin(λ), 0)′.

(B.4)

For the SDD (S in figure B.2) of 130 cm, the corresponding pixel coordinates

(ud, vd) on our detector panel can then be related via fundamental trigonometry

to be (Yu et al. 2006):

ud =
S~r · êu(λ)

R− ~r · êw(λ)
, vd =

S~r · êv(λ)
R− ~r · êw(λ)

, (B.5)
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BACKPROJECTION-FILTRATION RECONSTRUCTION

as depicted in figure B.2.

Figure B.2: Pi-line coordinates as defined by Cho et al. (2007). {êu, êv, êw} are
the respective unit vectors along the {u,v,w} directions, as shown on the left panel.
Given the SDD, S, and the source’s rotational radius, R, the detector element
(ud, vd) is related to a point on the Pi-line xπ located at ~r via (B.5), for the
midplane and off-midplanes (right panel).

Given the Pi-line (B.2) and the pixel (B.5) coordinates above, a backprojected

image, gπ, can be formed. A point xπ within the VOI can be reconstructed using

fπ(xπ, λ1, λ2, z0) =

[
∫ xπλ2

xπλ1

dx′
π

√

(xπλ2 − x′
π)(x

′
π − xπλ1)

xπ − x′
π

× gπ(x
′
π, λ1, λ2, z0) + 2πP0

]

× 1

2π2

1
√

(xπλ2 − xπ)(xπ − xπλ1)
,

(B.6)

where P0 represents the projection along the ray coinciding with the Pi-line seg-

ment. xπλ1 and xπλ2 denote the two ends of a Pi-line support segment (Cho

et al. 2007). An example of the support segment is demonstrated in figure B.3.

The reconstruction image is assumed to be empty beyond the support segments,

or mathematically, fπ(xπ, λ1, λ2, z0) = 0 for xπ /∈ [xπλ1, xπλ2]. Defining ample xπ

points and support segments allows for the entire VOI to be reconstructed (see

figure B.3b). In this work, the default reconstructed image dimension was de-

fined to be 796 × 796 pixels of size 0.3mm2 to enable direct comparisons with the

results from Robar et al.’s (2009) FDK algorithm. However, the GUI offers the

118

9_backmatter/figures/fig_piLineCoor.eps


B.1 Methods

specification of any desired image size and resolution, as well as several optional

parameters.

(a) (b)

Figure B.3: (a) A Pi-line support segment (straight solid line) defined by two end
points xπλ1 and xπλ2 is part of the Pi-line, indicated by the straight dotted line.
xπ1 and xπ2 mark the ends of the entire Pi-line. (b) A Pi-line support segment
is selected to be wider than the imaging object within the FOV cylinder, which
is determined by the beam angle. The reconstruction ROI on a z = z0 plane
can be defined to be, e.g. a rectangle with sufficient Pi-line support segments, as
represented by the bold solid lines in (b). From Cho et al. (2007).

In the BPF algorithm, the backprojected image (gπ) is composed of the cone-

beam CT projection data, P (ud, vd, λ), and its derivates (Yu et al. 2006):

gπ(x
′
π, λ1, λ2, z0) =

∫ λ2

λ1

dλ
S2

[R− ~r′ · êw(λ)]2

× δ

δu

[

R(P (ud, vd, λ)√
u2 + v2 + S2

]

+
P (ud, vd, λ)

~r′ − ~r(λ)

∣

∣

∣

∣

λ2

λ1

.

(B.7)

Our cone-beam CT data typically contain 180 projections at an increment of 2◦

covering the entire 360◦ but may not include view angles that correspond exactly

to λ1 and λ2. While an interpolation of the projection data is possible, our BPF

reconstruction was designed to regard the closest projection angles as λ1 and λ2
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BACKPROJECTION-FILTRATION RECONSTRUCTION

for all Pi-lines. Furthermore, the constant term (P0) in the integration over x′
π in

(B.6) cannot be obtained for planes z 6= 0 (Yu et al. 2006). For the reconstruction

on an off-midplane, P0 can be approximated by the mean of the central point from

projection λ1 and λ2, i.e.

P0 =
1

2
[P (ud, vd, λ1) + P (ud, vd, λ2)], (B.8)

where P (ud, vd, λ1) and P (ud, vd, λ2) are the projection of the central point ((xπ1+

xπ2)/2, λ1, λ2, z0) from λ1 and λ2, respectively. It should also be noted that our

reconstruction software treats the integral in the reconstruction algorithm as a

Cauchy Principal Value (Yu et al. 2006) by considering only the finite terms.

Although the weighted BPF algorithm may be useful in exploiting the redundant

data (Yu et al. 2006, Cho et al. 2007, Xia et al. 2010), the BPF reconstruction

weighs data from a full range of 2π equally in this work.

B.1.2 BPF reconstruction of synthetically truncated data

The reconstruction algorithms have been implemented on two datasets with con-

trast materials arranged within the same plane (see Robar et al. (2009)) and

stacked off-axis inside a cylindrical water container (see Berman (2010)). The

former and latter arrangements are visible in figure B.4a and figure B.4d, re-

spectively. The contrast objects include lung inhale (ρ = 0.195 g cm−3), water-

equivalent (ρ = 1.013 g cm−3), trabecular bone (ρ = 1.161 g cm−3) and dense bone

(ρ = 1.609 g cm−3) materials. Henceforth, the two arrangements will be referred

to as the Quasar1 phantom and the stacked phantom, respectively. Details on

the cone-beam CT imaging system has been previously presented in Robar et al.

(2009).

1 http://modusmed.com/multi-purpose-body-qa-phantom
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B.2 Results

The projection data has a dimension of 768 rows × 1024 columns. For data

truncation, 300 columns on each side of the projections has been manually deleted

to correspond to a FOV of 12.5 cm. With the source to detector distance of

130 cm, the projected FOV covered 425 pixels on the imaging panel. Truncated

projections for the Quasar and stacked phantoms are shown in figures B.4b and

B.4d, respectively. The left column of figure B.4 display the full-field projections.

The water container for the stacked phantom has an inner diameter of 21.5 cm

(Berman 2010), approximately 42% of which has been truncated. The diameter

of the Quasar phantom, however, is only 13 cm. The corresponding truncation is

therefore less than 5%.

The truncated projections were reconstruted using the conventional FDK with

a Hamming filter (Robar et al. 2009) and the BPF algorithms described in sec-

tion B.1.1 (Yu et al. 2006, Cho et al. 2007). A slice thickness of 0.3mm was used

for all reconstruction. Reconstructed images were calibrated to the the physical

density (ρ) in g cm−3 and were displayed to show the effects of data truncation on

both algorithms. For a more quantitative comparison, the line profiles along the

central row (y=0 cm) of slices containing contrast materials as well as uniform

slices with water were plotted. Mean profiles across 6 slices were computed for

less noisy plots.

B.2 Results

B.2.1 BPF reconstruction of synthetically truncated data

The reconstructed images for the Quasar phantom obtained using the two al-

gorithms from the truncated data are shown in figure B.5. The images were

calibrated to the known material densities presented in section B.1.2. It is ev-

ident that images obtained using the FDK technique suffer from more severe
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Figure B.4: Full-field (left) and truncated (right) projections of the Quasar and
the stacked phantoms. Both the full-filed and truncated projections of the Quasar
phantom have the same display window. The display window for the stacked
phantom is adjusted to show the entire water container in the full-field projection
and the three materials in the truncated projection. Note the faint trabecular bone
cylinder between the dense bone (bottom) and lung inhale (top) materials in (d).

truncated artefact when compared to the BPF algorithm. The dense bone cylin-

der at three o’clock and the lung inhale cylinder at six o’clock position are both

partially obscured by the dark boundary ring at the edge of the reconstructed

FOV as a result of data truncation. An increase in density value is also visible in

figure B.6b due to the dense bone contrast material along the profile. Although

the profiles agree with negligible differences, it can be seen from figure B.6 that

the pixel values by the use of FDK (dotted lines) started to decrease from an

earlier position on the x-axis, which corresponds to the wider boundary rings in
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B.3 Discussion

figure B.5b and figure B.5d.

The effect of the boundary ring artefact is more pronounced in the recon-

structed slices for the stacked phantom due to the more severe data truncation as

described in section B.1.2. In the FDK reconstructed slice, the dense bone object

is almost completely concealed by the boundary ring. Furthermore, when super-

imposed on the mean profiles for the uniform slices, an increase in the density

value can be clearly seen on the BPF reconstructed profile (circles in figure B.8b),

corresponding to the actual object width of 3 cm. Although the pixel values for

the FDK reconstructed profile started to increase at the same x -position of 1.2 cm,

the width of the dense bone material cannot be accurately identified. Further-

more, an intensity-drop artefact was observed in the reconstruction, as indicated

by the decrease in the density values (from negative to positive x positions),

especially in figure B.8.

B.3 Discussion

As explained in Cho et al. (2007), the calculation of filtering in the FDK and

the BPF algorithms occurs on the detector plane and the backprojected image,

respectively. To reconstruct the Pi-line support segment defined in figure B.3,

the FDK algorithm requires the FOV to fully encompass the object at any view

angles, in order to avoid truncation artefacts in the reconstructed images. In

contrast, the projection data is backprojected and subsequently filtered along the

PI-line support segments by the BPF reconstruction (see (B.6)). Data truncated

with respect to the entire object are therefore sufficient for an exact reconstruction

of ROI images using the BPF algorithm, provided the ROI is completely covered

by the Pi-line support segments, as illustrated in figure B.9. Only projection

of length LBPF is needed at the view angle for the exact reconstruction of the
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Figure B.5: Calibrated slice images of the Quasar phantom reconstructed using
BPF (left) and FDK (right) algorithms within the planes with (top) and without
(bottom) contrast materials. The display window is [0 g cm−3, 2 g cm−3].

Pi-line support segment, as a result. As such, the data requirement by the BPF

for exact image reconstruction of an ROI can be comparatively smaller than the

FDK algorithm. The longer detector length required by the FDK algorithm is

indicated by LFDK in figure B.9 to conceptually compare with the shorter LBPF .

Reconstructed images obtained using the FDK technique presented in section B.2

thus suffered from more severe truncated artefact when compared to the BPF

algorithm.

Artificially truncated both sides of the projection data in this work represented
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Figure B.6: Mean profiles along y=0 cm in figure B.5 for the slices (a) without
and (b) with the contrast materials. z = 4 cm to 5.8 cm in (a) and 1.6 cm to 3.1 cm
in (b). Dotted curve represent the results obtained from FDK algorithm and solid
curve from the BPF algorithm.

an interior problem, for which a mathematically exact reconstruction is impos-

sible (Zhang & Zeng 2007). Nonetheless, the reconstructed images presented in

section B.2 are sufficient to demonstrate the benefits of BPF reconstruction over

the FDK algorithm. Since the entire truncated projection data in figure B.4b and

figure B.4d was reconstructed, the reconstruction ROI for a given plane in this

work was as wide as the FOV. It is believed reconstructing an ROI sufficiently

encompassed by the FOV, as in figure B.3b, can eliminate the boundary ring arte-

facts. The interior problem can be avoided by e.g. placing the phantom off-axis

and modifying the FOV cylinder to irradiate only the VOI. Furthermore, Zou &

et al. (2005) illustrated the reconstruction for a cone-beam CT scan with a varying

beam angle, which can be applied on the VOI images obtained using truncated

beam modulated by the multi-leaf collimator (MacDonald 2010, Berman 2010).

While the truncation artefact can be improved by the use of the BPF algorithm,

the calibrated pixel values remain slightly inaccurate when the relative data trun-

cation is large. In figure B.8, the reconstructed densities for the stacked phantom

show larger deviations from the true density values for the uniform slice as well as
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Figure B.7: Calibrated slice images of the stacked phantom reconstructed using
BPF (left) and FDK (right) algorithms within the planes with (top) and without
(bottom) the dense bone material. The display window is [0 g cm−3, 2 g cm−3].

the dense bone VOI, due to the comparatively larger data truncation of 42% (c.f.

5% for the Quasar phantom), as mentioned in section B.1.2. The mean profiles

for the Quasar phantom in figure B.6 generally show more accurate reconstructed

density.

It can be also seen from (B.7) that the numerical calculation of the backpro-

jection process in the BPF algorithm contains a spatially varying weighting factor

(1/[~r′ − ~r(λ)]). The integral over x′
π in obtaining the image on a Pi-line leads to

brighter pixels on the upper section and conversely darker lower sections in Yu
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Figure B.8: (a) Mean profiles along y=0 cm in figure B.7 for the slices without
the dense bone object (z = −0.5 cm to 2.0 cm). Dotted curve represent the results
obtained from FDK algorithm and solid curve from the BPF algorithm. (b) A
bump is apparent in each of the mean profiles for the slices containing dense bone
(z = 0.7 cm to 2.2 cm). Profiles in (a) are superimposed in (b) for comparisons.
Crosses and circles represent results for FDK and BPF, respectively.

et al.’s (2006) BPF reconstructed images. The reconstructed images and profiles

for the stacked phantoms were moderately affected by the same transition, appar-

ent from positive to negative x -positions in figure B.7a and figure B.7c. The BPF

backprojection technique with a spatially constant weighting factor proposed by

Xia et al. (2010), may be applied to obtain images with less intensity-drop arte-

facts.

B.4 Concluding remarks

The BPF reconstruction algorithm has been implemented in Matlab based on the

work of Yu et al.’s (2006) and Cho et al.’s (2007). When compared to the con-

ventional FDK algorithm, the BPF reconstruction technique shows a reduction

of truncation artefacts. Specifically, the size of the boundary ring at the edge of

reconstructed FOV was reduced. The calibrated pixel values largely correspond

to the true physical densities of the contrast materials. For a more severe trunca-
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APPENDIX B. IMPLEMENTATION OF

BACKPROJECTION-FILTRATION RECONSTRUCTION

Figure B.9: A comparison of the data requirement for the BPF and the FDK
algorithms (Cho et al. 2007). To reconstruct the ROI defined in figure B.3, the
FDK algorithm requires the FOV to fully encompass the object and data of detector
length LFDK is needed at every view angle. In contrast, only data from a shorter
length of LBPF is required to cover the projection of the support segments needed
by the BPF algorithm. The FDK reconstruction thus suffered from more severe
truncated artefact when compared to the BPF algorithm, as presented by the
reconstructed images in section B.2.

tion in the projection domain (more than 40% of the data truncated), while the

mean profiles for both reconstruction algorithms show deviations from the actual

densities, the line profiles obtained from the BPF reconstruction reveals an accu-

rate width of the contrast object. The line profiles from the FDK reconstruction

started to increase at the same location but do not demonstrate the true width

of the contrast material due to the larger boundary ring.

This work was conducted as an additional project, which came about after the

temporary closure of the University of Canterbury as a result of the Canterbury

earthquakes. While it has not been implemented in spectral CT, it may be

potentially beneficial when the projections were truncated as a result of smaller
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B.4 Concluding remarks

detector sizes of the current PCD, e.g. the Medipix detector.

Synthetically truncating the FOV to be as wide as the reconstruction ROI in

this work introduced an interior reconstruction problem (Zhang & Zeng 2007).

Reconstructing a ROI entirely encompassed by the FOV cylinder but not within

the object using our BPF reconstruction (see figure B.3b) is expected to reduce

the boundary ring and to negate the interior problem. Furthermore, the im-

plemented reconstruction algorithm may be optimised by considering different

weighting schemes. In particular, the intensity-drop artefacts can be improved

upon realising a backprojection without a spatially varying weighting factor (Xia

et al. 2010). Data redundancy over a full scan can also be exploited using a

weighted BPF algorithm.
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Giersch J, Niederlöhner D & Anton G 2004 The influence of energy weighting on x-ray

imaging quality Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 531(1), 68–74.

134



REFERENCES

Giersch J, Weidemann A & Anton G 2003 Rosi–an object-oriented and parallel-

computing monte carlo simulation for x-ray imaging Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment 509(1-3), 151–156.

Gimenez E N, Ballabriga R, Campbell M, Horswell I, Llopart X, Marchal J, Sawhney

K J S, Tartoni N & Turecek D 2011 Characterization of Medipix3 with synchrotron

radiation IEEE Transactions on Nuclear Science 58(1), 323–332.

Graser A, Johnson T, Chandarana H & Macari M 2009 Dual energy CT: preliminary

observations and potential clinical applications in the abdomen European Radiol-

ogy 19(1), 13–23.

Grasruck M, Kappler S, Reinwand M & Stierstorfer K 2009 Dual energy with dual

source CT and kVp switching with single source CT: a comparison of dual energy

performance Proceedings of SPIE 7258(2), 72583R.

Heismann B, Schmidt B & Flohr T 2012 Spectral Computed Tomography SPIE Press

Book (Bellingham, WA, USA).

Hounsfield G 1973 Computerized transverse axial scanning (tomography): Part 1. de-

scription of system British Journal of Radiology 46(552), 1016–1022.

Hubbell J & Seltzer S 1996 ‘Tables of X-Ray Mass Attenuation Coefficients and Mass

Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92

and 48 Additional Substances of Dosimetric Interest’. Available online at

http://www.nist.gov/pml/data/xraycoef/index.cfm. Accessed: 2012-09-29.

ICRU 1989 Tissue Substitutes in Radiation Dosimetry and Measurement, Report 44

International Commission on Radiation Units and Measurements (Bethesda, MD,

USA).

James F 2006 Statistical methods in experimental physics World Scientific Publishing

(Singapore).

Johns H & Cunningham J 1983 The physics of radiology Charles C. Thomas (Spring-

field, IL, USA).

Johns P C, Drost D J, Yaffe M J & Fenster A 1985 Dual-energy mammography: Initial

experimental results Medical Physics 12, 297–284.

135

http://www.nist.gov/pml/data/xraycoef/index.cfm.


REFERENCES

Johns P C & Yaffe M J 1985 Theoretical optimization of dual-energy x-ray imaging

with application to mammography. Medical Physics 12(3), 289–296.

Johnson T, Fink C, Schönberg S & Reiser M 2010 Dual energy CT in clinical practice

Springer-Verlag (Berlin and Heidelberg, Germany).

Johnson T, Krauβ B, Sedlmair M, Grasruck M, Bruder H, Morhard D, Fink C, Weck-

bach S, Lenhard M, Schmidt B, Flohr T, Reiser M & Becker C 2007 Material dif-

ferentiation by dual energy CT: initial experience European Radiology 17(6), 1510–

1517.

Kalender W 2006 X-ray computed tomography Physics in Medicine and Biology

51(13), R29–R43.

Kalender W A, Perman W H, Vetter J R & Klotz E 1986 Evaluation of a prototype

dual-energy computed tomographic apparatus. I. Phantom studiesMedical Physics

13(3), 334–339.

Kawrakow I, Mainegra-Hing E, Rogers D, Tessier F & Walters B 2011 ‘The EGSnrc

code system: Monte Carlo simulation of electron and photon transport’. NRCC

Report PIRS-701, National Research Council of Canada.

Kawrakow I, Mainegra-Hing E & Rogers D W O 2006 ‘EGSnrcMP: the multi-platform

environment for EGSnrc’. NRCC Report PIRS-877, National Research Council of

Canada.

Kirkpatrick S 1984 Optimization by simulated annealing: quantitative studies Journal

of Statistical Physics 34(5), 975–986.

Koenig T, Schulze J, Zuber M, Rink K, Butzer J, Hamann E, Cecilia A, Zwerger A,

Fauler A, Fiederle M & Oelfke U 2012 Imaging properties of small-pixel spectro-

scopic x-ray detectors based on cadmium telluride sensors Physics in Medicine

and Biology 57(21), 6743–6759.

Krüger H, Fink J, Kraft E, Wermes N, Fischer P, Peric I, Herrmann C, Overdick
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