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Abstract 

This thesis explores the complex relationship between food protein structure and digestibility. 
Food proteins are important nutrients that play a central role in controlling the textural properties 
of many foods. Processing of food proteins may alter the protein aggregate structure and 
digestibility. The degree of protein aggregation during food processing depends on the denaturing 
conditions and the presence of other food components. Sugars and lipids may contribute to protein 
glycation and protein cross-linking via the Maillard reaction. Furthermore, amino acid residues of 
food proteins may be chemically modified during processing, thereby influencing both the 
structure and the nutritional value of proteins. 
 
An in vitro digestibility assay was used to investigate the relationship between protein aggregate 
structure and protein digestibility. Raw and boiled egg whites were exposed to a wide range of 
conditions: pH 2 - 12, in the presence and absence of 200 mM NaCl. It was found that pH and 
NaCl treatment prior to in vitro digestion resulted in significantly different protein ultrastructures, 
but did not markedly influence protein digestibility under the tested conditions. Raw egg white was 
less digestible than boiled egg white under all test conditions. The inclusion of Maillard reaction 
partners caused protein cross-linking concurrent with a decrease in digestibility. The digestibility 
decreased with the reactivity of the Maillard reaction partner and with increasing heating time. 
 
Proteomic analysis, using tandem mass spectrometry, of raw and heated egg white showed an 
increase in hydrothermally induced amino acid modifications. In the presence of glucose and 
methylglyoxal, a Maillard reaction specific increase in arginine modification to hydroimidazolone 
was observed with increasing heating times. The observed modifications are likely to contribute to 
a change in the nutritional quality of egg white. 
 
Aggregation kinetics of the major egg white protein, ovalbumin, were studied by dynamic light 
scattering, small angle X-ray scattering, and transmission electron microscopy. Shape 
determination was only possible for ordered aggregates, but not for disordered aggregates. Prior to 
heating, ovalbumin molecules in the presence of water and glucose repelled each other in 
concentrated solution. The presence of NaCl shielded electrostatic repulsion, leading to early onset 
dimerisation and disordered aggregation upon heating. Methylglyoxal treated ovalbumin formed 
more ordered aggregates. The scattering of these structures was able to be fitted to cylindrical 
shape models showing an increase of cylinder length with time while the cylinder diameter 
remained near constant over 24 hours of heating. 
 
In addition, food protein derived amyloid fibril aggregates were characterised. Amyloid fibrils are 
a common ordered protein fold that has been linked to neurodegenerative diseases. In the recent 
literature, amyloid fibrils have been proposed as new functional macromolecules in proteinaceous 
foods because of their desirable textural properties. Food fibrils formed from whey, egg white, soy 
bean and kidney bean protein were tested to establish whether they are protease resistant or display 
toxicity to human Caco-2 cells (a model intestinal cell line). The food fibrils were compared to 
insulin amyloid fibrils, a well characterised amyloid system. It was shown that the food fibrils 
displayed some resistance towards in vitro hydrolysis and were not found to be toxic.   
 
This work contributes to the understanding of food protein aggregation and digestibility under 
relevant conditions. It highlights the relationship of aggregate structure and digestibility and the 
particular role of the Maillard reaction. Moreover, evidence is provided that food protein derived 
amyloid fibrils may be safe ingredients in consumables. These findings may contribute to 
optimising industrial food processes and creating safe new food products. 
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Chapter One 

1 Introduction 

The aim of this thesis is to investigate the influence of processing on food proteins from a 

structural and nutritional view point. More often than not, food proteins are altered 

chemically and structurally during domestic or industrial processing. This has complex 

implications for the quality of proteins and for their usability in food stuffs.  

Structural changes of proteins may occur during denaturation processes. The 

conformational changes may in turn result in alteration of their textural and nutritional 

properties. However, an accurate prediction of a protein’s aggregation behaviour is 

difficult. An in depth knowledge of the molecular mechanisms that underlie the changes in 

structure is therefore desirable in order to get away from observational studies towards the 

development of models that accurately predict the impact of certain processes on protein 

structure and nutrition.   

Protein aggregates of specific interest in recent years include amyloid-like fibrils. 

Amyloid-like fibrils have been proposed as new food ingredients with desirable structural 

properties. However, the link to neurodegenerative diseases has afforded amyloid fibrils a 

bad reputation because of their potential cytotoxicity. This work investigates amyloid-like 

fibrillar aggregates formed from food proteins with regard to their resistance to 

physiologically relevant proteases in order to explore the relationship between aggregate 

structure and nutritional availability. Their impact on human cell culture in vitro is also 

examined to examine potential cytotoxic behaviour. 

This introductory chapter gives a brief overview of protein aggregation and the nutritional 

value of proteins to set a context for the thesis. Each chapter will contain a dedicated 

introduction describing the material discussed in the respective chapter. 
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1.1 Overview of Processing Implications for Food Proteins 

The native protein structure is frequently altered during food processing. Often, 

aggregation occurs during food processing and storage (Gerrard et al. 2012; Pearce et al. 

2007). Depending on the chosen conditions the pathway of aggregation and the final 

aggregate structure may vary (Lucey 2002; Foegeding et al. 2006). Different structures in 

turn may impact the functional properties of the resultant protein network. In addition to 

mere aggregation, proteins may be modified chemically during processing (e.g. oxidation) 

or as a result of reactions with other food ingredients (e.g. Maillard reaction) (Liu et al. 

2012). The combination of structural and chemical modifications may influence the 

nutritional value of the proteins (Wang & Ismail 2012). Figure 1.1 shows the intricate 

relationship between protein structure, chemical modifications, and nutritional value. 

 

Figure 1.1:  Example interaction map of native protein undergoing aggregation. Fields and 
arrows at the bottom suggest the changes of nutritional value of protein upon 
aggregation and chemical derivatisation. Diagram adapted from (Gerrard et 
al. 2012). 
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1.2 Protein Aggregation 

Protein folding and unfolding are thermodynamically driven processes. Therefore, 

aggregation depends on parameters that change the thermodynamics of a given system. 

These parameters include temperature, pressure, pH, salt concentration, protein 

concentration, etc., which are all known to influence protein stability. Proteins can assume 

a wide variety of conformations ranging from unfolded peptide chains to partially folded 

intermediates and completely folded native forms (Dobson 2001; Frauenfelder et al. 1991; 

Hartl & Hayer-Hartl 2009). Each conformation has an inherent Gibbs energy. Gibbs 

energy can be regarded as the thermodynamic potential analogous to the potential energy 

found in mechanics. Just as in all other closed systems, the state of lowest energy will be 

assumed by a given protein system over time. In the highly complex protein energy 

landscape, many conformations (including native, partially unfolded, and aggregated 

protein) have a low Gibbs energy (Hartl & Hayer-Hartl 2009). The low energy 

corresponds to highly stable conformations and can be thought of as a local minimum in 

the overall energy landscape. Therefore, specific conformations are stabilised in local 

minima “traps” (Figure 1.2).  

 

Figure 1.2 Energy funnel of protein folding. Amyloid fibrils reside in a low energy minimum. 
The purple area (intramolecular contacts) represents the energy landscape 
leading to natively folded protein. The pink area (intermolecular contacts) 
indicates the pathway that leads to aggregation and polymerisation. Diagram 
taken from (Hartl & Hayer-Hartl 2009). 
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There are numerous local minima in the energy landscape of proteins which can be 

populated. Under physiological conditions the native fold is favoured because it has a very 

low associated Gibbs energy and therefore resides in a deep minimum (Dobson 2001; 

Frauenfelder et al. 1991; Hartl & Hayer-Hartl 2009; Onuchic et al. 1997). If the delicate 

balance of the protein surroundings (buffer composition, protein concentration, pH, ionic 

concentration, temperature, pressure, etc.) is disturbed, the thermodynamic energy 

landscape is necessarily influenced. This enables proteins to transition to new minima and 

in many cases may lead to aggregation. Depending on the conditions, the aggregation 

process can result in random aggregates or in highly ordered structures such as the amyloid 

fibril (Dobson 2001). The highly ordered amyloid fibrils populate a low energy minimum 

and are therefore stable protein folds (Hartl & Hayer-Hartl 2009) as indicated in Figure 

1.2. The diagram in Figure 1.3 illustrates the many pathways of protein unfolding and 

aggregation of a protein. Interestingly, this scheme can be transposed onto a food protein 

aggregation system. Starting from the intact native state (N), the protein may unfold (U) 

into an intermediate state (I), from which it can aggregate. There may be more than one 

intermediate state for any given protein. 

 

Figure 1.3 Protein aggregation scheme from (Dobson 2003). 
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The wealth of protein folding and aggregation literature that considers molecular details 

generally relies on pure protein model systems (Whittingham et al. 2002; Hamada et al. 

2009; Arnaudov & de Vries 2005). However, in proteinaceous food systems (e.g. dairy 

products, baked goods, meats) it is rare to encounter highly purified protein systems. 

Instead, heterogeneous protein mixtures (often in combination with a non-protein 

component such as fats and sugars) are used which adds more complexity for deciphering 

underlying molecular mechanisms. Therefore food research is often limited to description 

of macroscopic and microscopic changes and prediction of structure is difficult (Ubbink 

2012).  

Enzymatic or pH hydrolysis during food processing can cause protein fragmentation. The 

peptide fragments have been linked to the formation of ordered amyloid-like structures. 

The described mechanism of food protein unfolding and aggregation compares very well 

with the protein aggregation diagram from Dobson et al., who analysed the manifold 

pathways involved in protein aggregation in vivo (Figure 1.3).  

It is noteworthy that proteins do not need to be completely unfolded in order to aggregate. 

Partially unfolded intermediates can induce aggregation (Dong et al. 1995; Khurana et al. 

2001). Depending on the degree of denaturation the intermediates may retain certain 

structural properties of the native fold. The degree of unfolding may then determine the 

final structure of the aggregate by promoting or inhibiting specific interactions between 

intermediates (Fink 1998; Roberts 2007; Weiss et al. 2007). Therefore, any given 

denaturation method may generate one or more predominant intermediate species based on 

the thermodynamics during the denaturation process. Aggregation can involve all 

molecular interactions including van der Waals, ionic, and covalent bonds. The proportion 

depends on the primary sequence of amino acids as well as on the denaturing conditions.  

 

1.2.1 Nucleation 

The initial step of aggregation is protein unfolding. Unfolding, however, is reversible and 

does not necessarily result in aggregation. The process from unfolding to aggregation 

requires that at least two proteins associate to form a stable initial aggregate. This initial 

aggregate is often described as a nucleation seed, implying that once a seed has been 
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formed, aggregation can progress rapidly. The formation of seeds may take a considerable 

amount of time in the absence of external factors. This is largely due to the unfolded 

protein being thermodynamically less favoured than the native protein. Therefore, a long 

initial lag phase without obvious aggregation precedes the aggregation of proteins in 

solution (Wang et al. 2010). However, if a stress factor changes the protein environment 

(e.g., through processing or storage conditions in food), the intermediates are formed more 

easily and aggregation seeds form rapidly. 

Support for the nucleation theory comes from in vitro analysis of protein solutions that 

were stored over time. If a pre-formed aggregates were added (as nucleation seeds) the 

aggregate formation occurred more rapidly in the protein solution compared to the control 

without the added aggregate (Hamada et al. 2009; Pedersen 2010; Krebs et al. 2000; Otzen 

et al. 2007). The nuclei thus reduce the time of the lag phase considerably, reducing 

incubation times, sometimes from days to hours. Nuclei formation may also be facilitated 

by interfaces such as air-liquid, solid-liquid, and liquid-liquid, as interfaces play a key role 

in protein stabilisation/destabilisation (Linse et al. 2007). 

 

1.2.2 Ordered and Disordered Aggregate Structure 

It is possible to choose the denaturation parameters and thereby control aggregate 

structure. However, random aggregation is often favoured whereas ordered aggregation 

requires careful tuning of the aggregation conditions. 

Disordered/ random/ amorphous aggregates are the predominant form of aggregate under 

most physiological conditions as well as during food processing. This is because, in 

general, the sum of prevalent forces will influence the native protein to take on a 

disordered rather than an ordered form. However, as assessed by infrared and circular 

dichroism studies, the random aggregates are not totally disordered but may still contain 

high levels of secondary structure (Fink 1998). Moreover, it appears that the β-sheet fold is 

favoured over the α-helix conformation. It was shown that β-sheet formation of previously 

unstructured protein domains is common (Fink 1998). The exposure of specific 

hydrophobic polypeptide regions leads to the formation of non-native dimers, trimers, etc. 

followed by a “random” assembly of many more proteins (Fink 1998).  
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Ordered aggregates include protein fibrils or amyloid fibrils. Amyloid fibrils form in a 

narrow window of specific denaturation parameters (Dobson 2001). As opposed to random 

aggregates, thermodynamics drive the proteins to align in an ordered network. It is 

hypothesised that the amyloid feature is a generic fold amongst proteins (Stefani & 

Dobson 2003). Typical characteristics of amyloid fibrils include a high degree of 

antiparallel beta sheets that run perpendicular to the fibril axis. Often, single strands of 

these fibrils will twist ropelike around other strands to form larger and stronger mature 

fibrils. For a detailed description of the amyloid fold refer to Section 5.1. 

  

1.3 Protein Aggregation in Food 

Proteins in food play an important role as nutrients and as structural elements. High protein 

diets have been described to have a more satiating effect compared to control meals of the 

same calorie content but a lower content of protein (Westerterp-Plantenga et al. 2012). 

Moreover, regular and sufficient protein consumption is important for normal growth, 

especially important for children, pregnant women, the elderly, but also for high intensity 

athletes.  

In addition to nutritional improvement of proteinaceous foods it may be desirable to 

improve structural features. For these two reasons, controlling protein aggregation of food 

grade proteins is of growing interest to the food industry (Purwanti et al. 2010).  

 

1.3.1 Protein Processing and Texture 

The process of aggregation is often a desired outcome of food manufacturing processes. 

However, protein aggregation can also be undesirable, for example in high protein foods 

where gelation may be unwanted (Purwanti et al. 2010). The concept of deliberately 

inducing and harnessing protein aggregation stands in stark contrast to the pharmaceutical 

industry, which aims to eliminate the aggregation of peptide and protein drugs (Wang et al. 

2010). Food proteins are used as foaming and thickening agents as well as emulsion 

stabilisers (Purwanti et al. 2010). Food aggregates include yoghurts and cheeses where 

acidification through bacterial fermentation and rennet application results in curdled 
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protein (Lucey 2002; Sodini et al. 2004). Additionally, egg white aggregation is desired in 

foams, baked goods, and desserts (Foegeding et al. 2006; Licciardello et al. 2012; Pernell 

et al. 2002; Yang et al. 2009). Soy protein derived tofu is a further example of a widely 

consumed and processed protein rich food where aggregation is desired (Renkema et al. 

2002).  

Traditionally, industrial and domestic food processes that influence protein aggregation 

include heating, pH modifications, salt concentration, and pressure treatments. Further 

industrial processes include spray drying (Kim et al. 2002; Nesterenko et al. 2013), 

extrusion for porous, low moisture products (Alonso et al. 1998; Gibbs et al. 1999; 

Matalanis et al. 2011), and spinning for fibril formation (Purwanti et al. 2010; Rampon et 

al. 1999). Substantial effort has been put into evaluating the impact of these parameters 

and processes on protein aggregation and gelation (Croguennec et al. 2002; Koike et al. 

1996; Needs et al. 2000; Nicolai et al. 2011).  

Despite this versatility in domestic and industrial processes, there is some need for 

innovative food processes that allow further fine tuning of protein matrices (Manski et al. 

2007). This is especially true as the demand of greater quality high protein products is 

increasing. New means of protein denaturation for food manufacturing purposes include 

shear flow, high intensity ultrasound (Arzeni et al. 2012; Ashokkumar et al. 2008), 

ultraviolet processing (Bhat & Karim 2009; Bintsis et al. 2000; Manzocco et al. 2012), and 

high pressure treatment (Galazka et al. 2000; Molina et al. 2001; Needs et al. 2000). The 

nature of most of these studies is empirical, providing only vague theoretical models of 

food networks (Ubbink 2012). This indicates that the underlying molecular mechanisms 

that govern protein aggregation are not fully understood. Moreover, there is a plethora of 

protein functionality that is yet to be harnessed by food manufacturers (Purwanti et al. 

2010).  

 

1.3.2 Protein Aggregation in New Foods 

From a structural perspective, there are two common goals of current food protein 

research. Firstly, to improve food texture and secondly, to develop new functional food 

systems including protein enriched foods, and delivery vehicles for pharmaceuticals and 

nutraceuticals (Aguilera 2005; Chen et al. 2006; Lesmes & McClements 2009; Livney 
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2010; Matalanis et al. 2011). There are numerous approaches to create new functional 

protein rich foods (Manski et al. 2007; Purwanti et al. 2010; van der Goot et al. 2008).  

Shear flow has been used to fine tune protein gelation and to create desirable anisotropic 

protein structures in protein rich gels (Manski et al. 2007). Proteins are bio-polymers and 

have been shown to react to shear flow in a manner reminiscent of artificial polymers. 

However, in contrast to synthetic polymers protein heating often induces irreversible 

aggregation (Manski et al. 2007).  

Intake of probiotic bacterial cultures such as Bifidobacterium bifidum has been shown to 

increase intestinal health. However, the shelf life for which probiotics remain alive and 

active is limited to a few days. Moreover, probiotic bacterial survival is challenged during 

passage of food through the stomach. Both issues may be circumvented by encapsulation 

of probiotics in a protein matrix (Nicolai et al. 2011). Furthermore, encapsulation of 

hydrophobic bioactives (such as antioxidants, vitamin D, retinol, and α-tocopherol) has 

been shown to protect the chemical compounds and to facilitate absorption of the active 

compound by the body (Livney 2010; Relkin & Shukat 2012). Proteins with the potential 

to be used as an encapsulation matrix for sensitive compounds include milk proteins such 

as the casein micelle and β-lactoglobulin (β-lg), vegetable proteins, and egg white proteins 

(Chen et al. 2006; Livney 2010; Nesterenko et al. 2013).  

It has been shown that the appearance of food affects the subjective taste perception and 

consumption behaviour markedly (Cassens et al. 1996; Spence et al. 2010). The opacity of 

protein solutions usually increases with protein aggregation and gel formation. However, 

to satisfy consumer perception, a transparent or clear protein matrix may be desirable to 

prevent discolouration of protein rich foods or to use in clear beverages (Livney 2010). 

Recent studies showed that food grade proteins, including whey protein isolate (WPI) and 

egg white powder are able to form transparent gels (Weijers et al. 2006). Other transparent 

egg white gels have been known for generations. Alkaline pickled century eggs are a 

delicacy in China (Eiser et al. 2009) that also form transparent gels. However, the 

adjustment and maintenance of pH 12.5, which is used during formation of century eggs, is 

not common in everyday food manufacturing. 

Another process that restructures typical food proteins involves partial hydrolysis of 

proteins (either enzymatically or chemically). The partial hydrolysis into peptides has an 

impact on the gelling properties of proteins (Ipsen et al. 2001). Under appropriate 
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conditions, the hydrolysis of proteins leads to a weakened gel structure compared to a non-

hydrolysed protein, thereby allowing more protein inclusion into a food system. This in 

turn would allow higher concentrations of hydrolysed protein to achieve a similar texture. 

The creation of protein rich foods with similar textural properties is therefore possible 

through partial hydrolysis. A more recent discovery was that food protein hydrolysates are 

able to form amyloid like fibrils, especially at acidic pH (Loveday et al. 2010; Tang et al. 

2010; Veerman et al. 2003b; Wang et al. 2011). Fibril forming food proteins include egg 

white, whey protein, soy protein, kidney bean protein, and hydrophobins.  These fibrils 

display a completely different structure and therefore textural properties compared to the 

native protein (Gosal et al. 2004; Loveday et al. 2009; Rao et al. 2012; Veerman et al. 

2003a). Due to the fibrillar morphology food derived amyloid-like fibrils have been 

proposed as stabilising agents and as a low calorie alternative to carbohydrate stabilisers. 

The inclusion of amyloid fibrils in food systems is covered in more detail in Section 5.1.3 

addressing the concern that food fibrils may be detrimental to human health (Section 

5.1.4). This is due to the bad reputation of amyloid fibrils as they are commonly associated 

with many neurodegenerative diseases (Stefani & Dobson 2003). 

In conclusion, structural studies on protein aggregation in food merits further investigation 

because it opens up a new field of opportunities for food engineering by the food industry. 

In order to harness the full range of possibilities in engineering new food products it is 

therefore necessary to understand the basic mechanisms that underlie structural changes 

during food processing.  

 

1.4 Nutritional Impact of Protein Processing 

Certain food processing methods may influence the nutritional value of protein. It is 

therefore necessary to evaluate the digestibility and bioavailability of proteinaceous foods. 

The term digestibility in this work is defined as the degree of hydrolysis, or how well a 

given protein can be hydrolysed by enzymatic action (Nielsen et al. 2001). Bioavailability 

on the other hand is a measure of protein absorption and utilisation in anabolism by the 

body (Rutherfurd & Moughan 2008; Levesque et al. 2010; Rutherfurd & Moughan 2012). 
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Proteins are usually made up of 20 different proteinogenic amino acids. Amino acids are 

classified as essential, conditionally essential, or non-essential (Table 1.1) (Fürst & Stehle 

2004; Friedman 1996). Essential amino acids have to be taken up by an organism through 

the diet, as pathways for synthesis of the respective amino acids are absent. Non-essential 

amino acids can be synthesised by the organism (Friedman 1996). 

Table 1.1:  List of essential and nonessential amino acids. The asterisk (*) indicates 
conditionally essential amino acids in infants or in recovery from injury. 

Essential  Non‐essential

Arginine*  Alanine 
Histidine*  Asparagine 
Isoleucine  Aspartate 
Leucine  Glutamate 
Lysine  Glutamine 

Methionine/ Cysteine  Glycine 
Phenylalanine/ Tyrosine Proline 

Threonine  Serine 
Tryptophan   

Valine   

 

Food proteins and the constituent amino acids can undergo several chemical modifications 

during food storage and processing. These modifications include oxidation, nitration, 

dehydration, carboxymethylation, and many more (Section 3.2). Some of these 

modifications have been linked to a lower bioavailability and even toxicity (Robbins et al. 

1980; Šebeková & Somoza 2007; Gross et al. 2011; Friedman 1999). The Maillard 

reaction between sugars or lipids and proteins is one of the most prominent and studied 

modifications.  

Nutritional value of food is determined by nutrient absorption and subsequent utilisation 

by the body (Friedman 1996). Therefore, it is arguably the most important quality of food. 

The nutritional value of protein is a combination of the amino acid composition of the 

protein source and the processing methods, including the interactions with other dietary 

compounds (Friedman 1996; Meade et al. 2005).  For high quality protein sources that are 

rich in essential amino acids, such as egg white, milk, meat, fish, legumes (e.g. soy), 

structural changes and chemical modifications during processing contribute most to 
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changes in the protein nutritional value. Experimental conditions often do not allow a clear 

cut distinction between entirely structural or chemical modifications because these two 

properties usually go hand in hand. However, there are some predominantly structural 

aspects when it comes to the nutritional value of a given protein. 

There are at least two structural features that directly affect the digestibility of food 

proteins. Firstly, the intrinsic structure of the protein may influence the nutritional value. 

The denaturation of some (but not all) native proteins, such as ovalbumin (OVA) and β-lg, 

increases the susceptibility to proteolysis during in vitro digestion (Barbé et al. 2013; 

Takagi et al. 2003; Yoshino et al. 2004). This suggests better enzyme accessibility to 

proteolytic sites in denatured protein (Takagi et al. 2003). Secondly, the macro structure of 

the food matrix itself, i.e., the type of gel formation and cross-linking of proteins, may 

change the rate of hydrolysis and of amino acid absorption. In vivo studies on minipigs 

showed that gelation of milk by rennet or heat caused a decrease of amino acid 

bioavailability compared to untreated milk samples (Barbé et al. 2013; Feunteun et al. 

2013).  

The denaturation method may also influence the degree by which the nutritional value of a 

protein is altered. For example, heating and pressure treatment of egg white (EW) both 

increase the protein digestibility (Hoppe et al. 2013; van der Plancken et al. 2004). 

Pressure treatment at 800 MPa at 9 °C increased the susceptibility of egg white protein to 

pepsin hydrolysis even further than a heat treatment at 95 °C. Structural differences 

between the two types of aggregates, mainly a higher degree of β-sheet formation in heat 

aggregated egg white, are likely to have caused differences in nutritional value of the two 

aggregates. However, the impact of structure on digestibility is not yet fully understood.  

 

1.5 Protein Digestion 

Protein digestion begins in the stomach where pepsin begins the enzymatic hydrolysis of 

proteins. The low pH of 1.5-2 of the stomach supports protein hydrolysis by denaturing the 

protein. Protein digestion continues in the small intestine where the pH is raised to about 

7.5-8. A pancreatic enzyme mixture of trypsin, chymotrypsin and carboxypeptidases 

hydrolyse proteins further into smaller peptides. In the small intestine single amino acids 
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as well as di- and tri-peptides are absorbed by enterocytes (Newey & Smyth 1960; Webb 

1990; Gilbert et al. 2008). The transport of single amino acids across the cell membrane 

occurs via active Na+ symporters. Di- and tri-peptides are transported via a proton peptide 

symporter, peptide transporter 1 (pepT1) (Craft et al. 1968; Steinhardt & Adibi 1986; 

Adibi & Morse 1971; Rubio-Aliaga & Daniel 2002; Daniel 2004; Webb et al. 1992). 

PepT1 is regulated by leptin, a naturally occurring protein hormone that regulates energy 

intake (Hindlet et al. 2009). An in vivo study on mice was conducted over 4 weeks in 

which mice were overfed. The study showed a relationship between energy intake and 

pepT1 activity. There was a 46 % decrease of dipeptide transport when mice were overfed 

(Hindlet et al. 2009). The transport of peptides via the pepT1 system is controlled at the 

transcriptional mRNA level, as found in studies of feeding and fasting chicken broilers 

(Gilbert et al. 2010). 

After peptide absorption into the cytosol of the enterocyte, cytoplasmic peptidases further 

hydrolyse the peptides into single amino acids. These amino acids are then excreted into 

the blood stream. Alternatively, peptides can be digested by the enterocyte brush border 

associated enzymes such as aminopeptidase-A, -N, -P, and -W, angiotensin-converting 

enzyme (ACE) 1 and 2, carboxypeptidase P, dipeptidyl peptidase IV, endopeptidase-2 and 

-24.11 (Kowalczuk et al. 2008).  From the blood stream the amino acids are delivered to 

tissues across the body.  

Many intact proteins (including ovalbumin) as well as protein aggregates (prions), have 

also been shown to cross the intestinal barrier (Cobb & Surewicz 2009; Gardner 1988). 

However, the degree of absorption and the mechanism of whole protein uptake are not 

fully understood. The uptake of prion protein for example has been suggested to occur via 

microfold cells (M cells) or via dentritic cells (Cobb & Surewicz 2009). Addtional studies 

found a ferritin-prion co-transport in Caco-2 cells in vitro (Mishra et al. 2004). 

 

1.6 In Vivo and In Vitro Digestion Models 

Although different ways to holistically monitor the loss of amino acids from food are well 

established (Deglaire et al. 2009; Elango et al. 2009), there is a need for replicable and fast 

methods to evaluate protein quality at the molecular level in a wide range of food materials 

after processing. Additionally, a greater understanding is required of how specific protein 
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modification profiles change through commercial and domestic processes. This in turn 

needs to be correlated to the subsequent effects on digestion (Meade et al. 2005). Herein 

we suggest a proteomic-based approach of coupling in vitro digestibility studies to detailed 

mass spectrometric analysis to achieve comprehensive amino acid damage profiling. There 

are several different approaches to in vitro digestion studies, some using a single enzyme, 

others employing enzyme combinations. The in vitro digestion setup is currently not 

standardised (Hur et al. 2011), and can range from the use of very sophisticated assay 

conditions to simple microtitre plate systems.  

 

1.7 Choice of Model System 

Egg white (EW) was chosen as a model system as it is often considered the gold standard 

of protein sources because of high levels of essential amino acids and a high digestibility 

value (Huopalahti et al. 2007). Egg white is readily available and widely used in food 

formulations. Moreover, large quantities of purified ovalbumin can be obtained fairly 

easily. There have been a multitude of both in vivo and in vitro assays that show consistent 

results when comparing raw vs. boiled egg white digestibility, enabling ready comparison 

to existing literature methods. In vivo studies in humans showed that 91% of boiled egg 

white was absorbed whereas only 51% of raw egg white was absorbed (Evenepoel et al. 

1998). Van der Plancken et al. (2003) found that heating egg white at 75 °C increased the 

in vitro digestibility 4.8 fold after 10 minutes of proteolysis compared to raw egg white 

(van der Plancken et al. 2003). 

 

1.8 Thesis Objectives 

There is a variety of underlying mechanisms that govern food protein aggregation and 

nutritional value which are not fully understood. This prompted a study to investigate the 

underlying mechanisms of both protein aggregation and nutritional value changes from a 

variety of angles. 

In the first instance this thesis therefore aims at screening the influence of salt, 

temperature, and Maillard reaction partners on ovalbumin aggregation structure and         
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in vitro digestibility. In addition to in vitro digestibility further insight into chemical 

changes during protein processing are of high importance. Therefore, a holistic amino acid 

modification profile of native versus heat denatured egg white, generated through mass 

spectrometric analysis, is discussed in detail.  

The physical aspect of protein aggregate formation is studied at a molecular level using 

dynamic light scattering (DLS), small angle X-ray scattering (SAXS), and electron 

microscopy (EM). SAXS is traditionally used for analysis of monodisperse systems. 

However, here SAXS is evaluated as a technique to assist the analysis of polydisperse, 

aggregating protein systems using egg white ovalbumin as a model protein. 

Finally, a newly proposed food ingredient, i.e. amyloid-like fibrils made from different 

food protein sources, is studied with regard to protease resistance and toxicity towards 

human cell lines in vitro. 
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Chapter Two 

2 Structure and Digestibility of Egg White 

Aggregates 

2.1 Introduction 

The structure-function relationship of protein in food has been studied extensively. The 

focus of these studies often lies on the formation and stability of protein gels because they 

are widely used in food formulations (Giosafatto et al. 2012; Loveday et al. 2009; Lucey 

2002; Nicolai et al. 2011; Renkema et al. 2002). In general, the gel structure can be 

controlled by controlling the molecular protein structure. This is usually achieved by 

protein denaturing methods (e.g., heat, pressure, ultrasound, etc.), additives (e.g., salt, 

carbohydrates, lipid), pH adjustment, and (non-) enzymatic protein hydrolysis and cross-

linking (Unterhaslberger et al. 2006). Depending on the chosen parameters, the resulting 

protein aggregates often differ markedly in their physicochemical properties and form 

different gel structures. The incentives for optimising the protein gel structure are diverse. 

They include improvement of texture as well as the controlling of flavour and nutrient 

release.  

The relationship between protein structure and protein digestibility is currently not 

completely understood. This chapter introduces the effects of some of the most commonly 

studied protein denaturing parameters on protein structure. This will be followed by an 

analysis of egg white (EW) protein to probe the relationship between structure and 

digestibility. Figure 1.1 shows the intricate relationship between the protein structure, the 

chemical modifications, and nutritional value. 
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2.1.1 Protein Structure – Salt 

Salt affects water structure and in turn affects solubilised protein in aqueous solutions. The 

water that interacts with proteins can be categorised into internal water, hydration shell, 

and bulk water (Russo 2008). The internal water is often a functional part of the protein. 

The hydration shell is a 2-3 water molecule thick water layer that is strongly associated 

with the protein due to electrostatic interactions. Bulk water is the water surrounding this 

hydration shell (Figure 2.1) (Russo 2008).  

 

Figure 2.1 The three layers of the water hydration shell around a protein. 1) solvation layer, 
2) transition layer, 3) bulk layer. Ions (kosmotrope = dark spheres and chaotrope 
= white spheres). Schematic taken from (Lo Nostro & Ninham 2012) 
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Salts may influence the structure and dynamics of the hydration shell and thereby 

influence protein stability and eventually the aggregation of proteins (Russo 2008). 

Kosmotropic (order making) salts have a stabilising effect on proteins whilst chaotropic 

(disorder making) salts may act to destabilise proteins in solution. Kosmotropes increase, 

and chaotropes decrease the viscosity of water compared to pure water (Lo Nostro & 

Ninham 2012). Kosmotropes build strong hydrogen bond networks and thus increase 

surface tension compared to pure water. The increased polarity of the water results in 

stronger hydrophobic interactions within proteins (Zhang & Cremer 2006). Protein 

stabilisation using kosmotropes such as sulfate (SO4
2-) and ammonium  (NH4

+) ions even 

persists at high kosmotrope concentrations (e.g., for salting out a protein). During salting 

out the proteins retain their native structure. Chaotropes on the other hand weaken the 

polarity of water and thus favour a more flexible protein due to a decreased hydrophobic 

effect. As a result, chaotropes tend to denature proteins (Zhang & Cremer 2006).  

The Hofmeister series (Figure 2.2) ranks common salts based on their ability to precipitate 

(salt out) proteins from solution whilst keeping them intact (i.e., non-denatured) (Curtis et 

al. 2002; Lo Nostro & Ninham 2012; Zhang & Cremer 2006). It is worth noting that for 

some proteins (e.g. lysozyme) the Hofmeister series is true above the isoelectric point 

(IEP) of a protein but follows the reverse order below the isoelectric point of a protein (Lo 

Nostro & Ninham 2012). 
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Figure 2.2 Hofmeister series of cations and anions with regard to up- or down regulation of 
surface tension, solubility of hydrocarbons, protein denaturation and protein 
stability. Diagram taken from (Zhang & Cremer 2006). 

When studying protein aggregation in the context of food systems, it is therefore important 

to be aware of possible salt effects. Slight disruption of finely balanced salt composition of 

biological systems, including proteins, may cause stress (Lo Nostro & Ninham 2012). 

Measuring the effect of salt on the aggregation of specific proteins is challenging. β-Lg is a 

well characterised food protein with an isoelectric point of 5.1 (Nicolai et al. 2011). At pH 

7 the addition of salt to native β-lg was reported to induce aggregation. CaCl2 was reported 

to have induced a much stronger protein aggregation compared to NaCl. This is in good 

agreement with the Hofmeister series as Ca2+ promotes protein denaturation more than Na+ 

(Figure 2.2). At a pH close to the IEP the addition of NaCl decreased β-lg aggregation. At 

pH 2 the addition of NaCl increased aggregation (Nicolai et al. 2011; Unterhaslberger et 

al. 2006).  

The inter-particle distance of ovalbumin has been reported to decrease due to addition of 

100 mM salt (Ianeselli et al. 2010; Sugiyama et al. 2001), thereby facilitating aggregation 

in the presence of salt. In the cited papers the electrostatic shielding of NaCl was deemed 

responsible for the decrease of inter-protein distances. Heat denatured ovalbumin has been 
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shown to increase in size at different rates depending on the type of anion present (Shirai 

et al. 1997). Interestingly, there was an observed Hofmeister relationship between 

aggregate size and the type of anion present, where sulfate ions strongly promoted 

aggregate size increase. This work includes 100 mM NaCl as a salt control. NaCl is widely 

used in food and a comparatively neutral salt (middle of the Hofmeister series). The 

concentration has previously been shown to decrease inter-protein distance by electrostatic 

shielding (Ianeselli et al. 2010; Sugiyama et al. 2001).  

 

2.1.2 Protein Structure – pH 

The pH of protein solutions is also important for protein stability. Changes in pH cause 

changes in the protein net charge. The net charge changes because the amino acids of the 

protein become protonated (below the IEP) or deprotonated (above the IEP), as shown in 

Figure 2.3.  

 

Figure 2.3 The theoretical isoelectric point of ovalbumin is 5.0 (real IEP is 4.7) at which the 
protein is uncharged. All theoretical values were determined based on pKa values 
of amino acid residues using the EMBOSS software suite (Rice et al. 2000). 

IEPT = 5.0
IEPR = 4.7
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The calculated theoretical IEP (IEP = 5.0) is slightly higher than the experimentally 

determined IEP of 4.7 (Grinberg et al. 1988). The discrepancy between theoretical and 

experimental IEP may be due to residue modifications, such as phosphorylation of serine 

residues. A higher degree of phosphorolyation results in the decrease of the IEP. Previous 

studies have reported three ovalbumin species with either two, one, or no phosphorylated 

serine residues (Kinoshita-Kikuta et al. 2012; Grinberg et al. 1988).  

The protein net-charge determines the resulting Coulomb repulsion of proteins in solution. 

At the isoelectric point the Coulomb repulsion between proteins is smallest. This can lead 

to aggregation of proteins. The required protein gelation concentration (cg) is often directly 

proportional to the net charge (i.e., the electrostatic repulsion) of the proteins in solution 

(Nicolai et al. 2011). At pH values far away from the IEP the net charge increases and 

results in protein-protein repulsion. It has been reported that ovalbumin at pH 2 and in the 

presence of K2SO4 retains native-like secondary elements whilst undergoing a 

conformational change of the tertiary structure as assessed by 8-anilinonaphthalene-1-

sulfonic acid (ANS) fluorescence (Naeem et al. 2010). In an early study on the viscoelastic 

properties of ovalbumin it was reported that gel elasticity was weak at pHs close to the IEP 

(4.7) and increased far away from this pH (pH 2.5 - 4 and pH 5.5 - 10) for gels formed at 

80 °C (Grinberg et al. 1988). For samples near the IEP the heating temperatures had to be 

increased to 105 °C in order to achieve similar gel elasticity. A similar effect of pH 

dependence on gelling was observed in a mixture of ovalbumin and ovotransferrin. The 

study showed that the formed gels were stable between pH 2.0 and 4.0 and pH 7.0 - 11.0 

(Hu et al. 2007). Since gels were stable at acidic and basic pH, the gels were proposed as 

drug delivery matrices with amphoteric character (Hu et al. 2007). It was observed in a 

study at low pH and low ionic strengths that transparent gels were formed after heating to 

80 °C at pH 2 - 3 and low ionic strength (0 mM - 15 mM), whereas turbid gels formed at 

high pH values. The authors proposed that the difference in transparency is caused by the 

underlying structural differences (Weijers et al. 2002). 
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2.1.3 Protein Structure – Temperature 

High average kinetic energies of molecules at elevated temperatures may cause protein 

unfolding. At high temperatures, increased molecular dynamics and a higher diffusion rate 

may contribute to unfolding and aggregation of proteins (Wang et al. 2010). There is 

usually one specific temperature at which a given protein is most stable in its native state 

(if ionic strength and pH are held constant). This temperature is sometimes referred to as 

the maximum unfolding temperature (T∆G=Max) based on the free energy change between 

native and unfolded state (Rees & Robertson 2001). At any other temperature, 

denaturation is more likely to occur. Denaturation is commonly associated with elevated 

temperatures which often entail irreversible protein denaturation followed by aggregation. 

Interestingly, temperatures below (T∆G=Max) may destabilise proteins too (Rees & 

Robertson 2001; Wang et al. 2010). 

 

Figure 2.4 Change of free energy required for unfolding of a protein (∆Gunf) plotted against 
temperature. Tm is the melting temperature of the protein. Diagram taken from 
(Wang et al. 2010). 

Temperature increase is probably the most common cause for protein aggregation. It is 

used ubiquitously during domestic and industrial food processing. Temperature and 

duration of heat application both influence gel formation and stability (Grinberg et al. 

1988).  
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2.1.4 Protein Structure – Maillard Reaction 

The Maillard reaction is the reaction between the aldehyde of a sugar or lipid 

predominantly with the ε-NH2 group of lysine residues and N-termini of proteins to form 

an imine bond (Figure 2.5). The formation of the imine bond is reversible. However, in an 

isomerisation reaction the more stable Amadori rearrangement takes place. Compared to 

lysine, histidine and arginine residues are weaker nucleophiles and therefore the glycation 

reaction is slower. 

 

Figure 2.5 Glycation reaction of the aldehyde group of glucose with the ε-amino group of 
lysine as an example for Maillard reaction. The mechanism for the studied 
reaction partners (glucose, fructose, lactose, methylglyoxal, and glutaraldehyde) 
follows this pattern. 

Following the Amadori rearrangement there are several chemical reactions that may lead 

to the formation of advanced glycation end products (AGEs) which are associated with 

food browning and aroma development (Fay & Brevard 2005). These reactions have been 

summarised in Hodge’s reaction scheme for the Maillard reaction (Hodge 1953) (Figure 

2.6).  
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Figure 2.6 Maillard reaction progression after Hodge. Diagram  from (Martins et al. 2000). 

In recent years it has been acknowledged that the Maillard reaction has the potential to be 

harnessed as a means to adjust and improve food protein structure  (Gerrard et al. 2002; 

Liu et al. 2012a; Oliver et al. 2006). Protein glycation has been reported to improve protein 

solubility, emulsifying, foaming, and textural properties (Liu et al. 2012a). The increase of 

protein solubility has been reported for insoluble fish and shellfish muscle proteins (Saeki 

& Inoue 1997). It has been suggested that steric bulk and the loss of filament formation 

ability may have been the cause of an increased solubility (Katayama et al. 2002). 

Glycated whey protein isolate (WPI) was also reported to have a higher solubility, even 

around the IEP, compared to non-glycated WPI (Wang & Ismail 2012). A higher degree of 

emulsifying activity (and increased solubility) can be obtained by glycating milk, egg 

white, or rice protein with glucose, lactose, maltodextrin, dextran, or pectin (Al-Hakkak & 

Al-Hakkak 2010; Al-Hakkak & Kavale 2002; Li et al. 2009; Li et al. 2013). Moreover, the 
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foaming properties can be improved by conjugating protein (egg white, milk, and peanut 

protein) with different saccharides (Corzo-Martínez et al. 2012a; Corzo-Martínez et al. 

2012b; Haar et al. 2011; Liu et al. 2012b).  

This work focused on a range of Maillard reaction partners and their effect on protein 

digestibility and structure. The Maillard reaction partners were glucose, fructose, lactose, 

methylglyoxal, and glutaraldehyde (Figure 2.7). All of these compounds have been shown 

to react with lysine residues in Maillard reactions (Yeboah et al. 1999; Meltretter et al. 

2007; Jumnongpon et al. 2012; Meade et al. 2003). Glucose, fructose, and lactose are 

widely used in food formulations.  

 

Figure 2.7 Chemical structure of studied Maillard reaction partners. 

Methylglyoxal and glutaraldehyde are two model Maillard reaction partners which have 

been reported previously to quickly react with protein and to contribute to protein cross-

linking via the Maillard reaction (Meade et al. 2003). Methylglyoxal (reaction mechanism 

shown in Figure 2.8)  is a degradation product of glucose and has also been reported to be 

present in honey (Mavric et al. 2008; Lima et al. 2009). Glutaraldehyde is not currently 

approved as a food ingredient (Augustin & Hemar 2009) but is commonly used as a model 

protein cross-linker (Payne 1973; Gerrard et al. 2003; Fadouloglou et al. 2008; Tong et al. 

2008; Jumnongpon et al. 2012).  
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Figure 2.8 Schematic of reaction mechanism of methylglyoxal with lysine and arginine 
residues that can lead to protein cross-linking. Diagram adapted from (Bechara 
et al. 2007; Lima et al. 2009). 
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2.2 Effect of Protein Structure on Protein Digestibility  

Protein aggregate structure may affect protein digestibility (Sections 1.5). Unravelling the 

relationship between aggregate structure and nutritional value is of interest because it may 

affect decisions about food preparation and food intake. This section investigates the 

relationship between protein structure and protein digestibly using an in vitro model. 

Because salt, pH, temperature, and the Maillard reaction all markedly impact on protein 

structure, these four factors were included when assessing the structure/digestibility 

relationship. Chicken egg white (EW) was used as a model system. The differently treated 

EW gels were then tested for resistance to degradation by pepsin and pancreatin in vitro.  

In a first step, fresh EW was adjusted to five different pH levels (2, 5, 7, 9, 12) in the 

presence and absence of 200 mM salt (10 samples total). The experimental conditions 

were chosen to represent a wide range of food products likely to be encountered in a 

regular diet. In general, natural and processed foods are acidic. Examples include fruit and 

vegetables (pH 3-5), but also yoghurt, milk, and butter (pH 3-6) (Gabriel 2008). Egg white 

is slightly alkaline (pH 8). Century eggs (pH 12), a traditional Chinese delicacy, are an 

example of a strong alkaline food (Eiser et al. 2009). The recommended daily salt intake 

for healthy adult humans is 1.5 g of sodium per day with an upper limit of 2.3 g of sodium 

per day (National Research Council 2005). This equates to about 125 mL to 200 mL of a 

200 mM NaCl solution. It has been reported that up to 77 % of salt intake derives from 

processed rather than from natural foods (Mattes & Donnelly 1991). 

Figure 2.9 shows the ten EW samples before and after heat treatment. The heated samples 

display a heterogeneous series with gels of varying consistency and colour indicating 

different underlying protein network structure.  
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Figure 2.9 A) raw EW; B) boiled EW. 1) pH 2; 2) pH 2, 200 mM NaCl; 3) pH 5; 4) pH 5, 200 
mM NaCl; 5) pH 7; 6) pH 7, 200 mM NaCl; 7) pH 9; 8) pH 9, 200 mM NaCl; 9) 
pH 12; 10) pH 12, 200 mM NaCl. 

The unheated samples were analysed by scanning electron microscopy (SEM) before 

digestion (Figure 2.10). The micrographs are the result of snap freezing liquid egg white 

samples and subsequent freeze drying. Due to possible freezing artefacts the shown 

structures may therefore not represent the exact in situ structure of the different egg white 

solutions. However, the distinct differences in the observed protein structure indicate that 

there is a pH and salt dependent structural effect. There are marked structural differences 

between samples. At low pH the EW protein structure is coarse with fine pores. The pore 

size changes with increasing pH to a smooth and wider pored structure. The inclusion of 

200 mM salt also promotes smoother structures.  
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Figure 2.10 SEM micrographs of egg white after freeze-drying. A) pH 2; B) pH 2, 200 mM 
NaCl; C) pH 5; D) pH 5, 200 mM NaCl; E) pH 7; F) pH 7, 200 mM NaCl; G) pH 
9; H) pH 9, 200 mM NaCl; I) pH 12; J) pH 12, 200 mM NaCl. Images are 
representative of 2-3 replications. The scale bar represents 25 μm and all 
micrographs are of the same scale. 
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The ten different EW samples were subjected to an in vitro digestibility assay in order to 

investigate the structure/digestibility relationship. The digestion assay (Section 7.7) was 

based on previous models developed by others (Fu et al. 2002; Kim et al. 2008; United 

States Pharmacopeia 2009) with slight modifications. In brief, a peptic digest at pH 1.5 

was followed by pH neutralisation and subsequent pancreatic digestion in vitro. In brief, a 

peptic digest at pH 1.5 was followed by pH neutralisation and subsequent pancreatic 

digestion in vitro. The substrate (protein) to enzyme ratio was 0.4 (w/w) for pepsin and 0.5 

(w/w) for pancreatin. The appropriate ratio of substrate to enzyme ratio for food hydrolysis 

experiment is currently not established (Moreno 2007; Wickham et al. 2009). As a result, 

enzyme to substrate ratios employed for in vitro digestion experiments vary by orders of 

magnitude. However, this variation is consistent with inter individual variation of digestive 

enzyme concentrations in gastric juice, which may differ by up to four orders of magnitude 

(Moreno 2007). Furthermore, enzyme activity between different commercially available 

products may vary which further complicates standardisation of the in vitro assay. In this 

chapter the enzyme concentration were adjusted to the concentrations recommended by the 

US Pharmacopeia. These concentrations are standard but higher than physiologically 

relevant (Moreno 2007; Wickham et al. 2009; Schnell & Herman 2009). The model was 

chosen because it allowed a rapid and reliable evaluation of protein digestion patterns via 

SDS PAGE.  

Sample aliquots were taken at various time points and analysed by SDS PAGE. Figure 

2.11 shows the SDS PAGE profile of the enzymes (pepsin and pancreatin) and of raw EW 

before and after in vitro digestion. The majority of the high molecular weight proteins 

were hydrolysed into smaller peptide fragments ranging from about 20 kDa to below 3.5 

kDa with the highest peptide density present between 15 kDa and 3.5 kDa. The primary 

sequence of ovalbumin was analysed for the presence of potential restriction sites for 

pepsin, trypsin, and chymotrypsin (using ExPASy PeptideCutter tool 

(http://web.expasy.org)) (Gasteiger et al. 2005). Selecting pepsin, trypsin, and 

chymotrypsin in the PeptideCutter tool yielded an average mass of 300 Da which 

corresponds to di- or tripeptide (if estimating the average amino acid mass in the protein to 

be 110 Da). The theoretical peptide size is therefore in good agreement with the observed 

peptide fragment size measured during the in vitro digestion assay of boiled egg white 

(Figure 2.12) which displayed a degree of hydrolysis (DH) corresponding to tripeptides 
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(DH = 34 %) after 3 hours and a DH of 44 % corresponding to a mixture of di- and 

tripeptides after 8 hours of incubation. A DH of 100 % corresponds to the complete 

hydrolysis of the protein into single amino acids (a DH of 50 % results in dipeptides).   

The visible protein bands in Figure 2.11, lane A shows the presence of pepsin (36 kDa). 

Lane B shows pancreatin which contains trypsin (23 kDa) and chymotrypsin (25 kDa), 

amongst other proteins such as amylase (55 kDa). Lane C shows raw undigested EW with 

distinct protein bands visible for lysozyme, ovalbumin, ovotransferrin, and ovomucin 

(molecular weight label on the right). Lane D shows raw EW after pancreatic digestion. It 

is evident that many pancreatic enzymes withstood the pancreatic digestion, while EW and 

pepsin were hydrolysed into small peptide fragments (fragment size is from below 3.5 kDa 

to 20 kDa).  

 

Figure 2.11 Denaturing and reducing SDS PAGE of EW before and after in vitro digestion. M) 
Marker; A) pepsin; B) pancreatin; C) raw EW before digestion; D) raw EW after 
pepsin and pancreatin digestion. 
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The degree of digestibility observed via SDS PAGE was further quantified by measuring 

the degree of hydrolysis (DH) between raw and boiled EW. In order to quantify the 

enzymatic breakdown of raw and boiled EW the o-phthalaldehyde (OPA) assay was used 

(Section 7.8). The spectrophotometric assay measures the amount of free reactive amino 

residues. The concentration of free amino groups in a sample can be determined using a 

serine standard curve (Section 7.8). Because increasing hydrolysis results in increasing 

amounts of free peptide N-termini this method can be used to assess the DH (Nielsen et al. 

2001). The results of the OPA assay for raw and boiled egg white were consistent with the 

initial SDS PAGE analysis. There was an observed 2 - 3 fold higher DH of boiled EW 

compared to raw EW as assessed by in vitro digestion (Figure 2.12). Peptic and pancreatic 

hydrolysis were both well defined and an increased DH of boiled egg white was visible for 

peptic as well as pancreatic hydrolysis, as indicated by the steepness of the slope of both 

curves  

 

Figure 2.12 DH of raw EW (black) and boiled EW (red). 0 - 2 hours pepsin digestion, 2 - 8 
hours pancreatin digestion. Error bars show one standard deviation of the 
mean from triplicate experiments. 

 

Pancreatin Addition
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Figure 2.13 shows the in vitro digestion pattern of ten raw EW samples (pHs 2, 5, 7, 9, and 

12; each pH in the presence and absence of 200 mM NaCl). It is evident that there is no 

marked difference in the digestion pattern in any of the ten EW samples. There is no 

indication that different protein structures (Figure 2.10) show a change in protein 

susceptibility to digestion in vitro. Furthermore, there is no visible change between treated 

(Figure 2.13, lanes 1-10) and completely untreated EW (Figure 2.13, lane D). 

 

Figure 2.13 Denaturing and reducing SDS PAGE of treated raw EW after in vitro digestion. 
M) Marker; D) raw EW after pepsin and pancreatin digestion; 1) EW pH 2; 2) EW 
pH 2, 200 mM NaCl; 3) EW pH 5; 4) EW pH 5, 200 mM NaCl; 5) EW pH 7; 6) 
EW pH 7, 200 mM NaCl; 7) EW pH 9; 8) EW pH 9, 200 mM NaCl; 9) EW pH 12; 
10) EW pH 12, 200 mM NaCl. 

 

Figure 2.14 shows the same experimental conditions as Figure 2.13 with the only 

difference being that the EW samples were boiled for 10 minutes after pH adjustment and 

salt addition. The direct comparison shows evidence that heat treatment is able to increase 

the in vitro digestibility of EW. Figure 2.14 shows that EW is digested nearly completely 

when boiled at all pHs and both salt concentrations as indicated by the disappearance of 
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the protein and peptide bands. Only the enzymes of the pancreatic mixture are present after 

digestion. Previous studies have reported this increase in digestibility of EW after heatin 

(Valle-Riestra & Barnes 1970; Hoppe et al. 2013; Yoshino et al. 2004). The slight 

differences of low molecular weight peptides observed for lanes 5-8 are an artefact of 

unequal loading of the gel. When replicate experiments were conducted (data not shown) 

these patterns were observed in different lanes. The most probable explanation is an 

unequal total protein concentration per lane. Loading inaccuracies may have arisen due to 

differences in EW aggregate homogenisation and homogenate pipetting for the in vitro 

digestion assays. A relatively high pipetting variability of differently sized homogenised 

particles necessarily would lead to a high variability of the generated peptides. To 

circumvent this problem for future experiments, it is advisable to freeze-dry and powderise 

the egg white aggregates in order to facilitate a more accurate weighing of sample. 

 

Figure 2.14 Denaturing and reducing SDS PAGE of treated boiled EW (10 minutes) after in 
vitro digestion. M) Marker; D) raw EW after pepsin and pancreatin digestion; 1) 
EW pH 2; 2) EW pH 2, 200 mM NaCl; 3) EW pH 5; 4) EW pH 5, 200 mM NaCl; 
5) EW pH 7; 6) EW pH 7, 200 mM NaCl; 7) EW pH 9; 8) EW pH 9, 200 mM 
NaCl; 9) EW pH 12; 10) EW pH 12, 200 mM NaCl. 
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2.3 Egg White Gel Structure in the Presence of Maillard 

Reaction Partners 

The gel structure of EW aggregates that formed in the presence of Maillard reaction 

partners was assessed by SEM. Already after 10 minutes of heating at 80 °C there are only 

subtle differences in the network structure of the EW gels Figure 2.15. Most of the treated 

EW has very homogenous pore size connecting strands of different diameter (Panels A - 

F). The most notable structural difference is seen for the glutaraldehyde treated EW 

sample (Panel G). The biggest difference is the lack of the open pore structure compared to 

the remaining six sample conditions. The effect of glutaraldehyde on gel structure of soy 

proteins has previously been described. Gel pore size and network structure depended on 

the glutaraldehyde concentration and time of addition (before or after heat denaturation) 

(Yasir et al. 2007). The reactivity of glutaraldehyde may cause protein cross-linking 

reactions via Schiff base (imine) formation with free amino groups. However, other 

mechanisms for protein cross-linking reaction with glutaraldehyde have been proposed, 

including Michael addition and pyridinium cross-links (Migneault et al. 2004; Gerrard et 

al. 2002).  
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Figure 2.15 SEM micrographs of EW after 10 minutes heating at 80 °C. The scale is the same 
for all images and the scale bar is 5 µm. The protein concentration was 80 mg/mL, 
the cosolute concentration was 100 mM. A) EW + water; B) EW + NaCl; C) EW + 
glucose D) EW + fructose; E) EW + lactose; F) EW + methylglyoxal; G) EW + 
glutaraldehyde. The images are representative of three replicate experiments. 

2.4 Ovalbumin Secondary Structure 

Circular dichroism (CD) measurements were carried out in order to determine if there is a 

relationship between the microscopic structure and the secondary protein structure. To 

obtain information about the ratio of secondary structural elements such as α-helices,       

β-strands, random coil, and loops it is necessary to work with purified proteins rather than 

with a protein mixture, such as EW. Therefore, ovalbumin, the major EW protein, was 

purified from EW and used for analysis of the secondary structure changes in the presence 
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and absence of Maillard reaction partners before and after heating for 10 minutes at 80 °C. 

The ratio of helix, strand, turn, and coil were estimated with the widely used CDNN 

software (http://gerald-boehm.de) (Böhm et al. 1992; Greenfield 2006). The results are 

listed in Table 2.1. It is evident that the observed CD spectra overlay very accurately 

indicating that the secondary structure of all unheated EW samples was identical. 

 

Figure 2.16 CD spectra of ovalbumin (0.1 mg/mL) before heating in the presence of water 
(dark blue) and cosolutes at 50 mM, NaCl (light blue) glucose (black), fructose 
(red), lactose (blue), glutaraldehyde (yellow), and methylglyoxal (green). Three 
replicates were measured and automatically averaged for each protein. 

Table 2.1  Estimation of secondary structure elements before heating, using CDNN 
software. In grey are the values derived from the PDB entry 1OVA (Stein et al. 
1991). 

  water  NaCl  Glucose Fructose Lactose Glutar‐ Methyl‐  PDB

aldehyde glyoxal  1OVA

Helix  34%  37%  38% 37% 35% 34% 36%  32%

Strand  33%  32%  31% 32% 33% 33% 32%  32%

Coil  33%  31%  31% 31% 32% 33% 32%  36%

Total  100%  100%  100% 100% 100% 100% 100%  100%
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The estimated ratios of secondary structure elements (Table 2.1) are in good agreement 

with the 3D structure of the PDB entry 1OVA (Stein et al. 1991). The structure shows 

approximately equal parts of helix, strand, and coil (Figure 2.17 monomeric 1OVA).  

     

Figure 2.17 Crystal structure of momomeric ovalbumin, PDB entry 1OVA (Stein et al. 
1991). Cartoon representation with helices in dark blue, strands in light blue, 
and coil in grey colour. 

After heating at 80 °C for 10 minutes the secondary structure was monitored again to 

observe conformational changes (Figure 2.18). It is evident that there is still a significant 

amount of intact secondary structure present in most samples. Compared to the spectra of 

non-heated ovalbumin solutions, there are marked changes in the CD spectra of heated 

protein sample. Most importantly there is a decrease of intensity at about 208 and 222 nm. 

The decrease of absorbance at 208 and 222 nm is commonly used to assess the decrease of 

α-helical secondary structure and the unfolding of the protein (Greenfield 2006; Hirst & 

Brooks 1994; Kelly et al. 2005). The CD spectrum of ovalbumin in the presence of 

glutaraldehyde differs strongly from the other samples. There is a significant loss of 

secondary structure (indicated by the low signal compared to the other samples). This big 

influence of glutaraldehyde is consistent with the major structural differences observed in 

the EW gel structure (Figure 2.15). The absorption spectrum in the presence of NaCl (light 

blue graph) also differs from the remaining samples at 208 nm indicative of remaining 
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helical structures. The secondary structure estimation by CDNN software is consistent 

with these observations ( 

Table 2.2). The relatively high concentrations of glutaraldehyde and methylglyoxal (50 

mM) compared to a low concentration of protein (0.1 mg/mL) caused a decrease of pH 

from pH 7 to pH 4. This pH change may have contributed to the drastic change of 

ovalbumin secondary structure in the presence of glutaraldehyde. The low pH of the 

glutaraldehyde and methylglyoxal solution is likely to be due to oxidation of the aldehyde 

groups to their corresponding carboxylic acid forms. However, this change was not 

observed in methylglyoxal treated ovalbumin.  

 

Figure 2.18 CD spectra of ovalbumin (0.1 mg/mL) after 10 minutes heating at 80 °C in the 
presence of water (dark blue) and cosolutes at 50 mM, NaCl (light blue) 
glucose (black), fructose (red), lactose (blue), glutaraldehyde (yellow), and 
methylglyoxal (green). Three replicates were measured and automatically 
averaged for each protein. Dashed line represents unheated ovalbumin in water 
before heating. 
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Table 2.2 Estimation of secondary structure elements after heating, using CDNN software. 
In grey are the values of PDB entry 1OVA (Stein et al. 1991). 

   water  NaCl  Glucose Fructose Lactose

Glutar‐ Methyl‐  PDB

aldehyde glyoxal  1OVA

Helix  29%  33%  26% 27% 31% 11% 29%  32%

Strand  37%  36%  38% 37% 35% 46% 36%  32%

Coil  35%  31%  36% 35% 34% 44% 35%  36%

Total  100%  100%  100% 100% 100% 100% 100%  100%

 

2.5 Egg White Denaturation Temperature 

Differential scanning fluorometry (DSF) (Section 7.10) was used in order to establish 

whether the Maillard reaction partners influence the heat stability of EW protein. 

Untreated native EW was mixed with Maillard reaction partners and subsequently heated 

at 1 °C/minute from 20 °C to 90 °C. Figure 2.19 shows that the melting temperature of egg 

white is approximately 66 °C in the absence of any Maillard reaction partner. Previous 

studies reported egg white protein melting temperature of 65 °C  (Perez & Pilosof 2004; 

Donovan et al. 1975) which was attributed to the denaturation of conalbumin. 

Ovotransferrin has a melting temperature (Tm) of 60 °C and ovalbumin 80 °C (Rao et al. 

2012; Wang et al. 2009). Glucose, fructose, lactose, and NaCl do not largely influence the 

melting temperature while there is a concentration dependent decrease of Tm with 

increasing methylglyoxal and glutaraldehyde concentration. The Tm decreased to 55 °C 

and 44 °C at 210 mM methylglyoxal and glutaraldehyde concentration respectively. The 

concentration dependent pH changes caused by methylglyoxal and glutaraldehyde are 

likely to have contributed to the decreased heat stability.  



Chapter 2 – Structure and Digestibility of Egg White Aggregates 49 

 

 

 

Figure 2.19 Protein melting temperature in relation to Maillard reaction partner 
concentration. Ovalbumin (1 mg/mL) in the presence of NaCl (light blue) glucose 
(black), fructose (red), lactose (blue), methylglyoxal (green), glutaraldehyde 
(yellow). Error bars show one standard deviation of the mean from triplicate 
experiments. 

 

2.6 Effect of Maillard Reaction on Protein Digestibility  

The Maillard reaction has previously been reported to reduce protein digestibility (de 

Jongh et al. 2011). The effect of different Maillard reaction partners on aggregate structure 

(Section 2.3 to Section 2.5) and aggregate digestibility was investigated. In the first 

instance the highly reactive Maillard reaction partner glutaraldehyde (Figure 2.7, 40 mM 

final concentration), was reacted with raw EW (no heating). As a model Maillard reaction 

partner, glutaraldehyde is highly reactive and causes protein cross-linking as well as the 

formation of brown colour (Caillard et al. 2009; Jumnongpon et al. 2012; Meade et al. 

2003; Yasir et al. 2007). An initial SDS PAGE analysis (Figure 2.20) showed that the 

cross-linking of EW proteins was successful, as indicated by the high intensity band (Lane 

2) which shows the protein fraction that did not migrate into the gel matrix. At 50 mM 

glutaraldehyde no secondary structure changes were observed (Figure 2.16). Cross-linking 

may not have perturbed the secondary structure or, more likely, the low protein 
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concentration of 0.1 mg/mL used in the CD measurements was sufficiently low to prevent 

measurable cross-linking via CD measurements. The protein band at 43 kDa (Lane 2) may 

be attributed to non-cross-linked ovalbumin or to cross-linked low molecular weight 

species (such as lysozyme). 

           

Figure 2.20 Denaturing and reducing SDS PAGE of 1) raw EW; 2) glutaraldehyde treated raw 
EW. 

Figure 2.21 shows the digestion pattern of raw EW incubated with glutaraldehyde. Most 

lanes (2 - 10) show remaining undigested cross-linked protein (indicated by the protein 

“smear” above ~50 kDa). Lane 4 shows the highest level of resistance to enzymatic 

breakdown. It was deemed an artefact due to an unequal loading of the gel because 

replicate experiments showed different patterns. The most probable explanation is an 

unequal total protein concentration per lane. Loading inaccuracies may have arisen due to 

differences in EW aggregate homogenisation and homogenate pipetting for the in vitro 

digestion assays. A relatively high pipetting variability of differently sized homogenised 

particles necessarily would lead to a high variability of the generated peptides. To 

circumvent this problem for future experiments, it is advisable to freeze-dry and powderise 

the egg white aggregates in order to facilitate a more accurate weighing of sample. 
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Apart from the observed smear, the peptide pattern of digested glutaraldehyde treated EW 

shows less band intensity of small peptides (peptides ≤ 15 kDa) compared to untreated 

EW. This decrease in low molecular weight species can be explained by the presence of 

the protein smear caused by less digestible protein.  

 

Figure 2.21 Denaturing and reducing SDS PAGE of glutaraldehyde treated raw EW (10 
minutes) after in vitro digestion. M) Marker; D) raw EW after pepsin and 
pancreatin digestion; 1) EW pH 2; 2) EW pH 2, 200 mM NaCl; 3) EW pH 5; 4) 
EW pH 5, 200 mM NaCl; 5) EW pH 7; 6) EW pH 7, 200 mM NaCl; 7) EW pH 9; 
8) EW pH 9, 200 mM NaCl; 9) EW pH 12; 10) EW pH 12, 200 mM NaCl. 

The decrease of the digestibly of raw EW by glutaraldehyde showed that the Maillard 

reaction can change protein hydrolysis. This confirmed that the Maillard reaction reduces 

protein digestibility as reported by others (Wang & Ismail 2012; de Jongh et al. 2011; 

Corzo-Martínez et al. 2010; Valle-Riestra & Barnes 1970; van Soest & Mason 1991). In 

further in vitro digestion experiments a series of food relevant Maillard reaction partners 

was included (Figure 2.7). The studied food relevant reaction partners included glucose, 

fructose, lactose, and methylglyoxal. Raw EW and heated EW (10 minutes, 5 hours, and 

24 hours) in the presence of Maillard reaction partners were compared. 
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The resistance against proteolysis was assessed. As can be seen in Figure 2.22A, the 

pancreatic in vitro digestion is incomplete for glutaraldehyde even before heating while the 

other Maillard reaction partners do not influence digestibility of EW markedly compared 

to EW without reaction partner. After 10 minutes heating of EW at 80 °C (Figure 2.22B) 

the digestion is more complete (as observed earlier). Glutaraldehyde cross-linked EW 

(Lane 4) is the least digestible as indicated by the smeared protein band. Methylglyoxal 

treated EW (Lane 5) is also gaining resistance to pancreatic hydrolysis at 10 minutes and 

this resistance is further pronounced at 5 hours heating (Figure 2.22C). After 24 hours 

heating, the Maillard reaction renders glucose, fructose, and lactose reacted EW less 

digestible (Figure 2.22D), similar to the methylglyoxal treated EW.  

The resistance of Maillard products to proteolytic enzymes in vitro is likely to reduce the 

nutritional value of proteins in vivo. There is a relatively late onset of marked digestibility 

resistance in the presence of EW and glucose, fructose, and lactose. This indicates that 

short cooking times at 100 °C are likely to only cause minor losses of protein nutritional 

value in vivo. On the other hand, there is a significant decrease of protein digestibility is at 

long heating times. Higher temperatures (which were not included in the presented 

experiments) may contribute further to an earlier onset of Maillard reaction and thereby to 

a loss of protein nutritional value. Therefore, there is a plethora of proteinaceous foods that 

may undergo Maillard causing degradation of protein nutritional value. These foods 

include baked goods such as cakes, breads, and biscuits, but also roasted or fried meats and 

vegetables, as well as chocolates, and toffees.  
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Figure 2.22 Denaturing and reducing SDS PAGE Maillard treated at different heating times at 
80 °C, after sequential in vitro digestion by pepsin and pancreatin (30 minutes 
each). A) raw; B) 10 minutes heating; C) 5 hours heating; D) 24 hours heating.  

 M) Marker; 1) EW + glucose; 2) EW + fructose; 3) EW + lactose 4) EW + 
glutaraldehyde; 5) EW + methylglyoxal; 6) EW + NaCl; 7) EW + water; 8) 
Digestive enzymes only. Gels are representative of three replicates. 
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2.7 Summary and Discussion 

Effects of pH and Salt on Digestibility 

From a nutritional perspective it is desirable to maintain or enhance the degree of protein 

digestibility (Friedman 2003; Friedman 1996; Meade et al. 2005). An increase of 

digestibility improves protein absorption and thereby the nutritional value (Erickson & 

Kim 1990). High quality protein is a limiting nutrient, especially in the developing world 

(Müller 2005; Smil 2002). Additionally, high protein intake is required for infants, 

children, pregnant or lactating women, the elderly, and athletes (Fukagawa 2013; Sullivan 

1999; Godfrey et al. 1996). Protein quality may therefore be measured as a function of 

digestibility. Understanding the mechanisms that govern protein digestibility is important 

to improve food processes and dietary recommendations. 

It was shown that adjusting the salt content and the pH of EW solutions influenced the 

structure of EW as judged by visual differences, and SEM analysis. As can be seen in 

Figure 2.9A, there is no obvious macroscopic difference in pH and salt adjusted unheated 

EW. SEM analysis of the same samples Figure 2.10 showed differences in structure (see 

Section 2.2).  Most heated EW samples turned white due to protein denaturation. EW was 

more opaque at pH 2 and pH 5 without added salt and at pH 12 with added salt (Figure 

2.9B). Interestingly these are the conditions far away (pH 2 and pH 12) and close to the 

isoelectric point (pH 5) of ovalbumin, the main protein fraction of egg white.  

While the presence of 200 mM NaCl and pH adjustment of raw EW may change the 

protein network structure, the presented work indicates that these adjustments prior to in 

vitro digestion did not result in any marked differences to the in vitro digestibility of the 

EW proteins as judged by SDS PAGE analysis. In the studied system, structural changes 

did not cause marked changes in digestibility. This behaviour may be similar in other 

protein rich solutions and gels.  

However, pH may contribute in other ways to changes of protein digestibility. The 

gastrointestinal tract is highly pH regulated (Kararli 1995; Hur et al. 2011; Evans et al. 

1988). Both, during in vivo digestion and in the here employed in vitro digestion assay the 

first step of gastric digestion is the adjustment of food to pH 1.5 - 2. The pH of the 

ingested food affects the amount of acid or base required to regulate the pH value of the 
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food. For example, more alkaline food requires larger amounts of hydrochloric acid 

production in the stomach than acidic food (Walsh et al. 1975). The time to produce the 

required amount of acid for pepsin proteolysis to be effective may thereby influence the 

rate of food digestion (Walsh et al. 1975). However, it seems that once the pH has reached 

optimum for enzymatic hydrolysis (e.g., pH 1.5 - 2 for pepsin) the pre-treatment does not 

influence digestibility. The results indicate that the initial pH of a protein solution does not 

improve or decrease the in vitro digestibility as long as the pH during digestion is constant. 

Heating of EW at 80 °C caused protein denaturation which resulted in an increased protein 

digestibility. The increased digestibility of heat denatured proteins has been observed 

previously (Takagi et al. 2003; Hoppe et al. 2013; Yoshino et al. 2004). Similar to raw EW 

digestibility there was no observed difference of digestibility between heated EW at 

different pH values or in the presence of salt. The employed pH range (pH 2 - 12) and salt 

concentration (0 mM and 200 mM) covered a large proportion of existing foods likely to 

be encountered in everyday life. It is therefore probable that pH and salt treatment of 

protein during food processing does not markedly affect the protein digestibility directly 

by pH or salt induced structural changes of proteins. However, pH sensitive chemical 

reactions that affect protein digestibility (e.g., Maillard reaction) may occur faster or 

slower during food processing at different pH values.  

Effects of Maillard Reaction on Digestibility  

The Maillard reaction can lead to protein cross-linking which carries implications for 

potential food application because it affects gel structure and thereby food consistency 

(Yasir et al. 2007). By adjusting the degree of Maillard reaction it is therefore possible to 

vary rheological properties. Understanding the time and temperature dependence on the 

formation rate of Maillard reaction products is therefore likely to be important in terms of 

design of new food products. The cross-linking often involves lysine and arginine residues 

which are especially reactive (Jumnongpon et al. 2012). This also carries implications with 

regard to the nutritional value of Maillard reaction products because lysine is often a 

limiting amino acid in many foods and may be less bioavailable after modification 

(Section 3.2). Incidentally lysine and arginine also mark important recognition sites for 

proteolytic enzymes such as trypsin (Keil 1992). Since modified amino acid residues may 

not function as recognition sites, the protein may become more resistant to proteolysis as a 
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result (Seiquer et al. 2006; Wang et al. 2005; Brock et al. 2007). However, chymotrypsin 

and pepsin cleavage occurs preferentially at tryptophan, tyrosine and phenylalanine 

residues. Pepsin cleavage also occurs at leucine residues (Keil 1992). Steric hindrance 

could prevent access towards these residues if lysine or arginine residues are in close 

proximity. Maillard reaction products are generally detrimental to protein digestibility 

(Wang & Ismail 2012; Friedman 2003; Meade et al. 2005). The work presented here is 

consistent with this finding. EW that was linked with either methylglyoxal or 

glutaraldehyde was more resistant to in vitro proteolysis by pepsin and pancreatin even 

after short incubation times (10 minutes at 80 °C).  

Fructose, glucose, and lactose treated proteins show a similar resistance to proteolysis, but 

only after long incubation times (5 hours to 24 hours at 80 °C). Analyses of the structural 

features reveal that glutaraldehyde and methylglyoxal cause the most pronounced 

differences. While glutaraldehyde has an impact on the gel structure, secondary structure, 

and on the heat stability of EW protein, it was shown that methylglyoxal leaves the gel 

structure and secondary structure largely intact. It was observed that methylglyoxal, too, 

decreased the melting temperature of EW.  

For further studies it was decided to employ methylglyoxal as a model Maillard reaction 

partner because it was a good mimic of the food grade Maillard reaction partners (glucose, 

fructose, and lactose) while glutaraldehyde was deemed too reactive. Additionally, the 

reaction of glutaraldehyde with proteins may yield a wide variety of reactions and cross-

linked products which could complicate further analysis (Section 2.3). On the other hand, 

the reaction of methylglyoxal with protein is well characterised (Figure 2.8). Furthermore, 

methylglyoxal is more relevant to food processes as it is a degradation product of glucose 

(Lima et al. 2009) (Figure 3.2) and has also been found in detectable concentrations in 

natural sources, such as honey (Mavric et al. 2008).  

 

 

  



Chapter 2 – Structure and Digestibility of Egg White Aggregates 57 

 

 

2.8 References 

Augustin, M.A. & Hemar, Y., 2009. Nano- and micro-structured assemblies for 
encapsulation of food ingredients. Chemical Society Reviews, 38(4), pp.902–912. 

Bechara, E.J.H., Dutra, F., Cardoso, V.E.S. & Sartori, A., 2007. The dual face of 
endogenous α-aminoketones: pro-oxidizing metabolic weapons. Comparative 
Biochemistry and Physiology, Part C, 146(1), pp.88–110. 

Böhm, G., Muhr, R. & Jaenicke, R., 1992. Quantitative analysis of protein far UV circular 
dichroism spectra by neural networks. Protein Engineering, 5(3), pp.191–195. 

Brock, J.W.C., Cotham, W.E., Thorpe, S.R., Baynes, J.W. & Ames, J.M., 2007. Detection 
and identification of arginine modifications on methylglyoxal-modified 
ribonuclease by mass spectrometric analysis. Journal of Mass Spectrometry, 42(1), 
pp.89–100. 

Caillard, R., Remondetto, G.E. & Subirade, M., 2009. Physicochemical properties and 
microstructure of soy protein hydrogels co-induced by Maillard type cross-linking 
and salts. Food Research International, 42(1), pp.98–106. 

Corzo-Martínez, M., Carrera Sánchez, C., Moreno, F.J. & Rodríguez Patino, J.M., 2012a. 
Interfacial and foaming properties of bovine β-lactoglobulin: galactose Maillard 
conjugates. Food Hydrocolloids, 27(2), pp.438–447. 

Corzo-Martínez, M., Carrera-Sánchez, C., Villamiel, M. & Rodríguez-Patino, J.M., 2012b. 
Assessment of interfacial and foaming properties of bovine sodium caseinate 
glycated with galactose. Journal of Food Engineering, 113(3), pp.461–470. 

Corzo-Martínez, M., Soria, A.C., Belloque, J., Villamiel, M. & Moreno, F.J., 2010. Effect 
of glycation on the gastrointestinal digestibility and immunoreactivity of bovine β-
lactoglobulin. International Dairy Journal, 20(11), pp.742–752. 

Curtis, R.A., Ulrich, J., Montaser, A., Prausnitz, J.M. & Blanch, H.W., 2002. Protein–
protein interactions in concentrated electrolyte solutions. Biotechnology and 
Bioengineering, 79(4), pp.367–380. 

Donovan, J.W., Mapes, C.J., Davis, J.G. & Garibaldi, J.A., 1975. A differential scanning 
calorimetric study of the stability of egg white to heat denaturation. Journal of the 
Science of Food and Agriculture, 26(1), pp.73–83. 

Eiser, E., Miles, C.S., Geerts, N., Verschuren, P. & MacPhee, C.E., 2009. Molecular 
cooking: physical transformations in Chinese ‘century’ eggs. Soft Matter, 5(14), 
pp.2725–2730. 

Erickson, R.H. & Kim, Y.S., 1990. Digestion and absorption of dietary protein. Annual 
Review of Medicine, 41(1), pp.133–139. 



Chapter 2 – Structure and Digestibility of Egg White Aggregates 58 

 

 

Evans, D.F., Pye, G., Bramley, R., Clark, A.G., Dyson, T.J. & Hardcastle, J.D., 1988. 
Measurement of gastrointestinal pH profiles in normal ambulant human subjects. 
Gut, 29(8), pp.1035–1041. 

Fadouloglou, V.E., Kokkinidis, M. & Glykos, N.M., 2008. Determination of protein 
oligomerization state: Two approaches based on glutaraldehyde crosslinking. 
Analytical Biochemistry, 373(2), pp.404–406. 

Fay, L.B. & Brevard, H., 2005. Contribution of mass spectrometry to the study of the 
Maillard reaction in food. Mass Spectrometry Reviews, 24(4), pp.487–507. 

Friedman, M., 2003. Nutritional consequences of food processing. Forum of Nutrition, 
56(1), pp.350–352. 

Friedman, M., 1996. Nutritional value of proteins from different food sources. A review. 
Journal of Agricultural and Food Chemistry, 44(1), pp.6–29. 

Fu, T.J., Abbott, U.R. & Hatzos, C., 2002. Digestibility of food allergens and 
nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid - a 
comparative study. Journal of Agricultural and Food Chemistry, 50(24), pp.7154–
7160. 

Fukagawa, N.K., 2013. Protein and amino acid supplementation in older humans. Amino 
Acids, In Press. 

Gabriel, A.A., 2008. Estimation of water activity from pH and °Brix values of some food 
products. Food Chemistry, 108(3), pp.1106–1113. 

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. & 
Bairoch, A., 2005. Protein identification and analysis tools on the ExPASy server. 
In J. M. Walker, ed. The Proteomics Protocols Handbook. Portland: Humana 
Press, pp. 571–607. 

Gerrard, J.A., Brown, P. & Fayle, S., 2002. Maillard crosslinking of food proteins I: the 
reaction of glutaraldehyde, formaldehyde and glyceraldehyde with ribonuclease. 
Food Chemistry, 79(3), pp.343–349. 

Gerrard, J.A., Brown, P. & Fayle, S., 2003. Maillard crosslinking of food proteins II: the 
reactions of glutaraldehyde, formaldehyde and glyceraldehyde with wheat proteins 
in vitro and in situ. Food Chemistry, 80(1), pp.35–43. 

Giosafatto, C.V.L., Rigby, N.M., Wellner, N., Ridout, M., Husband, F. & Mackie, A.R., 
2012. Microbial transglutaminase-mediated modification of ovalbumin. Food 
Hydrocolloids, 26(1), pp.261–267. 

Godfrey, K., Robinson, S., Barker, D., Osmond, C. & Cox, V., 1996. Maternal nutrition in 
early and late pregnancy in relation to placental and fetal growth. British Medical 
Journal, 312(7028), pp.410–410. 

Greenfield, N.J., 2006. Using circular dichroism spectra to estimate protein secondary 
structure. Nature Protocols, 1(6), pp.2876–2890. 



Chapter 2 – Structure and Digestibility of Egg White Aggregates 59 

 

 

Grinberg, N.V., Bibkov, T.M., Grinberg, V.Y. & Tolstoguzov, V.B., 1988. Thermotropic 
gelation of ovalbumin 1. Viscoelastic properties of gels as a function of heating 
conditions and protein concentration at various pH values. Colloid and Polymer 
Science, 266(1), pp.52–59. 

Haar, R., Westphal, Y., Wierenga, P.A. & Schols, H.A., 2011. Cross-linking behavior and 
foaming properties of bovine α-lactalbumin after glycation with various 
saccharides. Journal of Agricultural and Food Chemistry, 59(23). 

Al-Hakkak, J. & Al-Hakkak, F., 2010. Functional egg white–pectin conjugates prepared by 
controlled Maillard reaction. Journal of Food Engineering, 100(1), pp.152–159. 

Al-Hakkak, J. & Kavale, S., 2002. Improvement of emulsification properties of sodium 
caseinate by conjugating to pectin through the Maillard reaction. International 
Congress Series, 1245, pp.491–499. 

Hirst, J.D. & Brooks, C.L., 3rd, 1994. Helicity, circular dichroism and molecular dynamics 
of proteins. Journal of Molecular Biology, 243(2), pp.173–178. 

Hodge, J.E., 1953. Dehydrated foods, chemistry of browning reactions in model systems. 
Journal of Agricultural and Food Chemistry, 1(15), pp.928–943. 

Hoppe, A., Jung, S., Patnaik, A. & Zeece, M.G., 2013. Effect of high pressure treatment on 
egg white protein digestibility and peptide products. Innovative Food Science and 
Emerging Technologies, 17(1), pp.54–62. 

Hu, J., Yu, S. & Yao, P., 2007. Stable amphoteric nanogels made of ovalbumin and 
ovotransferrin via self-assembly. Langmuir, 23(11), pp.6358–6364. 

Hur, S.J., Lim, B.O., Decker, E.A. & McClements, D.J., 2011. In vitro human digestion 
models for food applications. Food Chemistry, 125(1), pp.1–12. 

Ianeselli, L. et al., 2010. Protein-protein interactions in ovalbumin solutions studied by 
small-angle scattering: effect of ionic strength and the chemical nature of cations. 
The Journal of Physical Chemistry B, 114(11), pp.3776–3783. 

De Jongh, H.H.J., Taylor, S.L. & Koppelman, S.J., 2011. Controlling the aggregation 
propensity and thereby digestibility of allergens by Maillardation as illustrated for 
cod fish parvalbumin. Journal of Bioscience and Bioengineering, 111(2), pp.204–
211. 

Jumnongpon, R., Chaiseri, S., Hongsprabhas, P., Healy, J.P., Meade, S.J. & Gerrard, J.A., 
2012. Cocoa protein crosslinking using Maillard chemistry. Food Chemistry, 
134(1), pp.375–380. 

Kararli, T.T., 1995. Comparison of the gastrointestinal anatomy, physiology, and 
biochemistry of humans and commonly used laboratory animals. Biopharmaceutics 
and Drug Disposition, 16(5), pp.351–380. 



Chapter 2 – Structure and Digestibility of Egg White Aggregates 60 

 

 

Katayama, S., Shima, J. & Saeki, H., 2002. Solubility improvement of shellfish muscle 
proteins by reaction with glucose and its soluble state in low-ionic-strength 
medium. Journal of Agricultural and Food Chemistry, 50(15), pp.4327–4332. 

Keil, B., 1992. Specificity of proteolysis, Berlin Heidelberg: Springer. 

Kelly, S.M., Jess, T.J. & Price, N.C., 2005. How to study proteins by circular dichroism. 
Biochimica et Biophysica Acta - Proteins and Proteomics, 1751(2), pp.119–139. 

Kim, E., Petrie, J., Motoi, L., Morgenstern, M., Sutton, K., Mishra, S. & Simmons, L., 
2008. Effect of structural and physicochemical characteristics of the protein matrix 
in pasta on in vitro starch digestibility. Food Biophysics, 3(2), pp.229–234. 

Kinoshita-Kikuta, E., Kinoshita, E. & Koike, T., 2012. Separation and identification of 
four distinct serine-phosphorylation states of ovalbumin by Phos-tag affinity 
electrophoresis. Electrophoresis, 33(5), pp.849–855. 

Li, Y., Lu, F., Luo, C., Chen, Z., Mao, J., Shoemaker, C. & Zhong, F., 2009. Functional 
properties of the Maillard reaction products of rice protein with sugar. Food 
Chemistry, 117(1), pp.69–74. 

Li, Y., Zhong, F., Ji, W., Yokoyama, W., Shoemaker, C.F., Zhu, S. & Xia, W., 2013. 
Functional properties of Maillard reaction products of rice protein hydrolysates 
with mono-, oligo- and polysaccharides. Food Hydrocolloids, 30(1), pp.53–60. 

Lima, M., Moloney, C. & Ames, J.M., 2009. Ultra performance liquid chromatography-
mass spectrometric determination of the site specificity of modification of β-casein 
by glucose and methylglyoxal. Amino Acids, 36(3), pp.475–481. 

Liu, J., Ru, Q. & Ding, Y., 2012a. Glycation a promising method for food protein 
modification: physicochemical properties and structure, a review. Food Research 
International, 49(1), pp.170–183. 

Liu, Y., Zhao, G., Zhao, M. & Ren, J., 2012b. Improvement of functional properties of 
peanut protein isolate by conjugation with dextran through Maillard reaction. Food 
Chemistry, 131(3), p.901. 

Loveday, S.M., Rao, M.A., Creamer, L.K. & Singh, H., 2009. Factors affecting rheological 
characteristics of fibril gels: the case of β-lactoglobulin and α-lactalbumin. Journal 
of Food Science, 74(3), pp.47–55. 

Lucey, J.A., 2002. Formation and physical properties of milk protein gels. Journal of 
Dairy Science, 85(2), pp.281–294. 

Martins, S.I.F.S., Jongen, W.M.F. & van Boekel, M.A.J.S., 2000. A review of Maillard 
reaction in food and implications to kinetic modelling. Trends in Food Science and 
Technology, 11(9–10), pp.364–373. 

Mattes, R.D. & Donnelly, D., 1991. Relative contributions of dietary sodium sources. 
Journal of the American College of Nutrition, 10(4), pp.383–393. 



Chapter 2 – Structure and Digestibility of Egg White Aggregates 61 

 

 

Mavric, E., Wittmann, S., Barth, G. & Henle, T., 2008. Identification and quantification of 
methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum 
scoparium) honeys from New Zealand. Molecular Nutrition and Food Research, 
52(4), pp.483–489. 

Meade, S.J., Miller, A.G. & Gerrard, J.A., 2003. The role of dicarbonyl compounds in 
non-enzymatic crosslinking: a structure–activity study. Bioorganic and Medicinal 
Chemistry, 11(6), pp.853–862. 

Meade, S.J., Reid, E.A. & Gerrard, J.A., 2005. The impact of processing on the nutritional 
quality of food proteins. Journal of AOAC International, 88(3), pp.904–922. 

Meltretter, J., Seeber, S., Humeny, A., Becker, C.-M. & Pischetsrieder, M., 2007. Site-
specific formation of Maillard, oxidation, and condensation products from whey 
proteins during reaction with lactose. Journal of Agricultural and Food Chemistry, 
55(15), pp.6096–6103. 

Migneault, I., Dartiguenave, C., Bertrand, M.J. & Waldron, K.C., 2004. Glutaraldehyde: 
behavior in aqueous solution, reaction with proteins, and application to enzyme 
crosslinking. Biotechniques, 37(5), p.790. 

Moreno, F.J., 2007. Gastrointestinal digestion of food allergens: Effect on their 
allergenicity. Biomedicine & Pharmacotherapy, 61(1), pp.50–60. 

Müller, O., 2005. Malnutrition and health in developing countries. Canadian Medical 
Association Journal, 173(3), pp.279–286. 

Naeem, A., Khan, T.A., Muzaffar, M., Ahmad, S. & Saleemuddin, M., 2010. A partially 
folded state of ovalbumin at low pH tends to aggregate. Cell Biochemistry and 
Biophysics, 59(1), pp.29–38. 

National Research Council, 2005. Dietary reference intakes for water, potassium, sodium, 
chloride, and sulfate, Washington, D.C.: The National Academies Press. 

Nicolai, T., Britten, M. & Schmitt, C., 2011. β-lactoglobulin and WPI aggregates: 
formation, structure and applications. Food Hydrocolloids, 25(8), pp.1945–1962. 

Nielsen, P.M., Petersen, D. & Dambmann, C., 2001. Improved method for determining 
food protein degree of hydrolysis. Journal of Food Science, 66(5), pp.642–646. 

Lo Nostro, P. & Ninham, B.W., 2012. Hofmeister phenomena: an update on ion specificity 
in biology. Chemical Reviews, 112(4), pp.2286–2322. 

Oliver, C.M., Melton, L.D. & Stanley, R.A., 2006. Creating proteins with novel 
functionality via the Maillard reaction: a review. Critical Reviews in Food Science 
and Nutrition, 46(4), pp.337–350. 

Payne, J.W., 1973. Polymerization of proteins with glutaraldehyde. Soluble molecular-
weight markers. Biochemical Journal, 135(4), p.867. 



Chapter 2 – Structure and Digestibility of Egg White Aggregates 62 

 

 

Perez, O.E. & Pilosof, A.M.R., 2004. Pulsed electric fields effects on the molecular 
structure and gelation of β-lactoglobulin concentrate and egg white. Food Research 
International, 37(1), pp.102–110. 

Rao, S.P., Meade, S.J., Healy, J.P., Sutton, K.H., Larsen, N.G., Staiger, M.P. & Gerrard, 
J.A., 2012. Amyloid fibrils as functionalizable components of nanocomposite 
materials. Biotechnology Progress, 28(1), pp.248–256. 

Rees, D.C. & Robertson, A.D., 2001. Some thermodynamic implications for the 
thermostability of proteins. Protein Science, 10(6), pp.1187–1194. 

Renkema, J.M.S., Gruppen, H. & van Vliet, T., 2002. Influence of pH and ionic strength 
on heat-induced formation and rheological properties of soy protein gels in relation 
to denaturation and their protein compositions. Journal of Agricultural and Food 
Chemistry, 50(21), pp.6064–6071. 

Rice, P., Longden, I. & Bleasby, A., 2000. EMBOSS: The European Molecular Biology 
Open Software Suite. Trends in Genetics, 16(6), pp.276–277. 

Russo, D., 2008. The impact of kosmotropes and chaotropes on bulk and hydration shell 
water dynamics in a model peptide solution. Chemical Physics, 345(2-3), pp.200–
211. 

Saeki, H. & Inoue, K., 1997. Improved solubility of carp myofibrillar proteins in low ionic 
strength medium by glycosylation. Journal of Agricultural and Food Chemistry, 
45(9), pp.3419–3422. 

Schnell, S. & Herman, R.A., 2009. Should digestion assays be used to estimate persistence 
of potential allergens in tests for safety of novel food proteins? Clinical and 
Molecular Allergy, 7(1), p.1. 

Seiquer, I., Díaz-Alguacil, J., Delgado-Andrade, C., López-Frías, M., Hoyos, A.M., Galdó, 
G. & Navarro, M.P., 2006. Diets rich in Maillard reaction products affect protein 
digestibility in adolescent males aged 11–14 y. American Journal of Clinical 
Nutrition, 83(5), pp.1082–1088. 

Shirai, N., Tani, F., Higasa, T. & Yasumoto, K., 1997. Linear polymerization caused by 
the defective folding of a non-inhibitory serpin ovalbumin. Journal of 
Biochemistry, 121(4), pp.787–797. 

Smil, V., 2002. Nitrogen and food production: proteins for human diets. Ambio, 31(2), 
pp.126–131. 

Van Soest, P.J. & Mason, V.C., 1991. The influence of the Maillard reaction upon the 
nutritive value of fibrous feeds. Animal Feed Science and Technology, 32(1-3), 
pp.45–53. 

Stein, P.E., Leslie, A.G., Finch, J.T. & Carrell, R.W., 1991. Crystal structure of uncleaved 
ovalbumin at 1.95 A resolution. Journal of Molecular Biology, 221(3), pp.941–
959. 



Chapter 2 – Structure and Digestibility of Egg White Aggregates 63 

 

 

Sugiyama, M., Nakamura, A., Hiramatsu, N., Annaka, M., Kuwajima, S. & Hara, K., 
2001. Effect of salt and heating on a mesoscopic structure composed of ovalbumin 
globules in aqueous solution. Biomacromolecules, 2(4), pp.1071–1073. 

Sullivan, D.H., 1999. Protein-energy undernutrition among elderly hospitalized patients: a 
prospective study. Journal of the American Medical Association, 281(21), 
pp.2013–2019. 

Takagi, K., Teshima, R., Okunuki, H. & Sawada, J.-I., 2003. Comparative study of in vitro 
digestibility of food proteins and effect of preheating on the digestion. Biological 
and Pharmaceutical Bulletin, 26(7), pp.969–973. 

Tong, W., Gao, C. & Möhwald, H., 2008. pH-responsive protein microcapsules fabricated 
via glutaraldehyde mediated covalent layer-by-layer assembly. Colloid and 
Polymer Science, 286(10), pp.1103–1109. 

United States Pharmacopeia, 2009. The United States Pharmacopeia and National 
Formulary (NSF 32-NF27) 32nd ed., Rockville: United States Pharmacopeial 
Convention. 

Unterhaslberger, G., Schmitt, C., Sanchez, C., Appolonia-Nouzille, C. & Raemy, A., 2006. 
Heat denaturation and aggregation of β-lactoglobulin enriched WPI in the presence 
of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0. Food 
Hydrocolloids, 20(7), pp.1006–1019. 

Valle-Riestra, J. & Barnes, R.H., 1970. Digestion of heat-damaged egg albumen by the rat. 
Journal of Nutrition, 100(8), pp.873–882. 

Walsh, J.H., Richardson, C.T. & Fordtran, J.S., 1975. pH dependence of acid secretion and 
gastrin release in normal and ulcer subjects. Journal of Clinical Investigation, 
55(3), p.462. 

Wang, J., Tang, J., Wang, Y. & Swanson, B., 2009. Dielectric properties of egg whites and 
whole eggs as influenced by thermal treatments. LWT - Food Science and 
Technology, 42(7), pp.1204–1212. 

Wang, L., Amphlett, G., Blättler, W.A., Lambert, J.M. & Zhang, W., 2005. Structural 
characterization of the maytansinoid–monoclonal antibody immunoconjugate, 
huN901–DM1, by mass spectrometry. Protein Science, 14(9), pp.2436–2446. 

Wang, Q. & Ismail, B., 2012. Effect of Maillard-induced glycosylation on the nutritional 
quality, solubility, thermal stability and molecular configuration of whey protein. 
International Dairy Journal, 25(2), pp.112–122. 

Wang, W., Nema, S. & Teagarden, D., 2010. Protein aggregation-pathways and 
influencing factors. International Journal of Pharmaceutics, 390(2), pp.89–99. 

Weijers, M., Sagis, L.M.C., Veerman, C., Sperber, B. & Van Der Linden, E., 2002. 
Rheology and structure of ovalbumin gels at low pH and low ionic strength. Food 
Hydrocolloids, 16(3), pp.269–276. 



Chapter 2 – Structure and Digestibility of Egg White Aggregates 64 

 

 

Wickham, M., Faulks, R. & Mills, C., 2009. In vitro digestion methods for assessing the 
effect of food structure on allergen breakdown. Molecular Nutrition & Food 
Research, 53(8), pp.952–958. 

Yasir, S.B.M., Sutton, K.H., Newberry, M.P., Andrews, N.R. & Gerrard, J.A., 2007. The 
impact of Maillard cross-linking on soy proteins and tofu texture. Food Chemistry, 
104(4), pp.1502–1508. 

Yeboah, F.K., Alli, I. & Yaylayan, V.A., 1999. Reactivities of D-glucose and D-fructose 
during glycation of bovine serum albumin. Journal of Agricultural and Food 
Chemistry, 47(8), pp.3164–3172. 

Yoshino, K., Sakai, K., Mizuha, Y., Shimizuike, A. & Yamamoto, S., 2004. Peptic 
digestibility of raw and heat-coagulated hen’s egg white proteins at acidic pH 
range. International Journal of Food Sciences and Nutrition, 55(8), pp.635–640. 

Zhang, Y. & Cremer, P.S., 2006. Interactions between macromolecules and ions: the 
Hofmeister series. Current Opinion in Chemical Biology, 10(6), pp.658–663.



 

 

 

 



Chapter 3 – Proteomic Analysis of Heat Induced Amino Acid Modifications 65 

 

 

Chapter Three 

3 Proteomic Analysis of Heat Induced Amino 

Acid Modifications 

3.1 Introduction 

The uptake of sufficient protein by the body is essential to ensure good physical and 

mental health. Proteins are required to be hydrolysed into single amino acids, di- and 

tripeptides in order to be absorbed by enterocytes (Newey & Smyth 1960; Webb 1990; 

Gilbert et al. 2008) (Section 1.5). If amino acids and peptides are chemically modified they 

can have a lower bioavailability compared to their unmodified counterparts (Elango et al. 

2009; Gilani et al. 2005). Any food processing resulting in an increase of modified amino 

acids is therefore likely to lower the nutritional value of the protein. This is especially 

important for essential amino acids. If an organism is deprived of an essential amino acid, 

protein synthesis is halted and the remaining amino acids are oxidised after absorption 

(Elango et al. 2009). Additionally, a range of modified amino acids possibly pose health 

risks if consumed (Friedman 2010).  

This section focuses on the discussion of food relevant amino acid modifications and a 

holistic approach for the identification of such amino acid modifications in processed 

protein via mass spectrometry using EW as a model system. There is a need for replicable 

and fast methods to accurately evaluate protein quality of food materials after processing 

(Rutherfurd & Moughan 2012). Additionally, it is desirable to understand how and when 

protein modifications occur during commercial and domestic processes (Friedman 2003). 

In vitro digestibility studies coupled with a comprehensive amino acid damage profiling 

may grant an in depth insight of the nutritional quality of a given food.  

Analysis of proteinaceous food products via mass spectrometry is a powerful tool to 

simultaneously profile a wide range of chemical changes, giving this technique an 

advantage over other methods including spectrophotometric methods. Pioneering work by 

Yates et al. (1995) established a method to include chemical modification parameters when 

conducting a database search (Yates et al. 1995). Recently, the approach has been adapted 



Chapter 3 – Proteomic Analysis of Heat Induced Amino Acid Modifications 66 

 

 

and used to evaluate environmental and process-induced modification of proteinaceous 

materials including skin, textiles, and food (Grosvenor et al. 2011). Examples of common 

food relevant amino acid modifications are listed in Table 3.1. The chemical structures of 

example modifications are displayed in Figure 3.1. 

Table 3.1 List of food-relevant amino acid modifications included for the assessment of 
the protein damage score. 

Modification Amino Acid(s) Chemical Modification
Oxidation CMFHWY O(1) 
Dioxidation CFWY O(2) 
Trioxidation C O(3) 
Dehydrated CST H(-2) O(-1) 
Quinone Y H(-2) O(1) 
Kynurenine W C(-1) O(1) 
Nitration FHWY H(-1) N(1) O(2) 
Carbamylation N-term H(1) C(1) N(1) O(1) 
Deamidation NQ, N-term H(-1) N(-1) O(1) 
Carboxymethylated K C(2) H(2) O(2) 
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Figure 3.1 Examples of chemical modifications that may occur during food processing. 1) 
oxidation of tyrosine; 2) dehydration of serine; 3) nitration of tyrosine; 4) 
deamidation of glutamine; 5) glycation of lysine; 6) hydroimidazolone formation 
from arginine (Giulivi et al. 2003; Finot 2005; Abello et al. 2009; Zhang et al. 
1993; Lima et al. 2009; Brock et al. 2007). 
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3.2 Amino Acid Modifications 

Proteinaceous foods that are stored or processed are likely to develop some amino acid 

residue damage over time. These chemical modifications of amino acids include oxidation, 

deamidation, nitration, dehydration, and carboxymethylation, amongst many others. 

Modifications may lead to a lower bioavailability and have been shown to be toxic in some 

cases (Robbins et al. 1980; Šebeková & Somoza 2007; Gross et al. 2011; Friedman 1999).  

 

3.2.1 Oxidation Products 

Food processing may lead to oxidative damage of amino acids, including both single and 

multiple oxidation events leading to a range of products. Oxidative damage of amino acids 

can be inferred by oxidising metal ions, photo oxidation, and oxidation by enzymes or 

lipids (Meade et al. 2005; Stadtman & Levine 2003). During food processing, particularly 

where heating is involved, formation of reactive oxygen species (ROS) such as •OH and 

O2
•- may occur. These species may react with amino acids, peptides and proteins  resulting 

in peptide bond cleavage, peptide cross-linking, and oxidative amino acid modification 

(Stadtman & Levine 2003) which in turn may affect the nutritional value of a given 

protein. 

The single oxidation of cysteine and methionine is enzymatically reversible. The 

bioavailability of cysteine and cystine was found to be similar in the L-configuration but 

not in the D-configuration (Baker 2006). However, previous studies found that the 

reduction of disulfide bonds in soy flour increases the digestibility of the protein fraction 

(Faris et al. 2008). The dioxidation of methionine and the trioxidation of cysteine have 

been reported to render the respective amino acids unavailable (Rutherfurd & Moughan 

2008).  

The oxidation of aromatic amino acids such as tyrosine (Figure 3.1) may lead to the 

formation of 3,4-dihydroxyphenylalanine (DOPA), quinones or bityrosine (Giulivi et al. 

2003). Histidine can be converted to 2-oxohistidine. These changes of amino acid profiles 

during processing are likely to alter the nutritional properties of food. 
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3.2.2 Nitration Products 

The presence of reactive oxygen species may facilitate the formation of reactive nitrating 

agents (Abello et al. 2009). In the presence of nitrating agents, such as peroxynitrite   

(ONOO–) and nitrogen dioxide (NO2), aromatic amino acids (tyrosine, phenylalanine, and 

tryptophan) as well as the non-aromatic amino acids histidine, cysteine, and methionine 

may be nitrated (Figure 3.1) (Abello et al. 2009). The nitration of proteins and peptides has 

been observed in vivo (Ischiropoulos 1998; Abello et al. 2009). It has been reported that 

peptide cleavage by chymotrypsin was attenuated in the presence of nitrated tyrosine 

compared to the unmodified tyrosine control (Souza et al. 2000). A higher degree of 

nitration is therefore likely to influence protein digestibility. 

 

3.2.3 Dehydration Products 

Amino acids can undergo dehydration reactions under processing conditions such as heat 

treatment or alkaline treatment. Serine (Figure 3.1), and threonine are commonly modified 

in this way. Heat treatment of food proteins can cause the formation of dehydroalanine 

(DHA) from cysteine, cystine, and serine phosphate at neutral and alkaline pH, for 

example during alkaline treatment of protein extracts such as soy and caseinate (Finot 

2005). DHA can subsequently react with lysine to form lysinoalanine (LAL), which is 

commonly found in considerable concentration in processed foods. Up to 653 mg of LAL 

per kg of crude protein (653 mg/kg crude protein) was observed in ultra-heat treated milk 

(Faist et al. 2000) and up to 514 mg/kg protein was found in infant formulas (D’Agostina 

et al. 2003). High levels of LAL were also found in pickled century eggs (Chang et al. 

1999). LAL enriched diets have been linked to a decreased digestibility of protein  and 

toxic effect towards rat kidneys (Robbins et al. 1980). 

 

3.2.4 Deamidation Products 

The functional groups of glutamine and asparagine, as well as the N-terminal amino group 

of proteins and peptides may undergo deamidation reactions (Figure 3.1) during food 

processing (Riha et al. 1996). During deamidation, the free amino group is replaced by a 
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hydroxyl group ,i.e., glutamine is transformed to glutamate while asparagine is 

transformed to aspartate (Zhang et al. 1993). During the deamidation reaction, ammonia is 

released which may react in Maillard type reactions influencing the nutritional value of 

proteins (see Section 3.2.5) (Zhang et al. 1993).  

 

3.2.5 Maillard Reaction Products 

Lysine and arginine residues readily react in the Maillard reaction with reducing sugars 

and lipids. Maillard modified amino acids are commonly produced during the heating of 

food. The Maillard reaction is influenced by pH, the presence or absence of water, and 

temperature (Ajandouz et al. 2008). The reaction products have been reported to cause a 

loss in the bioavailability of the modified amino acids and proteins as soon as the reaction 

has progressed past the Amadori compound state, e.g. premelanoidins such as 

carboxymethyllysine, and melanoidins (Finot 2005; Wang & Ismail 2012) (Section 2.6). 

Subsequent complex reactions cause the formation of advanced glycation endproducts 

(AGEs) and may also lead to the cross-linking between two peptides or proteins. Positive 

effects of AGEs are attributed mostly to antioxidant activity (Ames 2007; Lindenmeier et 

al. 2002), whereas negative effects potentially include the promotion of atherosclerosis, 

inflammation, oxidative stress, and nephrotoxicity (Šebeková & Somoza 2007).  

Nε-(fructosyl)lysine and hydroimidazolone (HI) (Figure 3.1) can both be generated during 

the Maillard reaction when glucose is present (Figure 3.2). These two modifications 

modify lysine and arginine residues respectively (Lima et al. 2009; Brock et al. 2007), 

thereby influencing the recognition by trypsin (Keil 1992). Modification of trypsin 

cleavage sites may lead to a decreased protein digestibility as well as lower absorption of 

the modified amino acids (Rérat et al. 2002). 
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Figure 3.2 Proposed mechanism for hydroimidazolone (HI) formation from glucose or 
methylglyoxal and arginine as precursors. Adapted from (Lima et al. 2009). 

 

3.2.6 Carbamylation Products 

Carbamylation of proteins occurs during the reaction of cyanate (a decomposition product 

of urea) with an N-terminal amine. It has been reported that carbamylated albumin is more 

toxic to kidneys compared to unmodified albumin (Gross et al. 2011). 

 

3.2.7 Formation of D‐Amino Acids 

It is well known that the racemisation of naturally prevalent L-amino acids into their D-

isomers can occur under acidic, alkaline and heat treatment (Friedman 1999; Friedman 

2010). Alkaline treatment is commonly applied in food processes such as protein 

extraction from flours and meats (Omana et al. 2010).  

Depending on the amino acid, the ingestion of free D-amino acids by mammals can have 

one of three effects: 1) The D-isomer is utilised to a certain percentage via enzymatic 

conversion into the L-isomer for example D-phenylalanine, D-tryptophan, 2) The D-
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isomer is not utilised because conversion cannot be carried out for example for D-

methionine, D-lysine or 3) the D-isomer has a toxic effect for example D-cysteine, D-

serine, D-proline (Friedman 1999). Toxicology mechanisms are not well characterised but 

assimilation of certain D-amino acids including D-serine and D-lysinoalanine in kidney 

tissues has been related to acute necrosis of tubili (Kaltenbach et al. 1979; Carone et al. 

1985; Friedman 1999). The antagonistic or toxic effects of D-cysteine result in a slower 

weight gain in growing mice (Friedman & Gumbmann 1984) and abnormal behaviour in 

chicks (Yamane et al. 2009). The effect of protein bound D-amino acids is not yet fully 

understood and merits further studies. 

 

3.2.8 Enzymatic Modification Products 

Enzymatic protein cross-linking via microbial transglutaminase (TGAse) (EC 2.3.2.13) is 

often used as structure enhancer and is extensively used as meat glue. TGAse covalently 

creates a ε-(γ-glutamine)-lysine bond (Zhu et al. 1995; Gerrard & Sutton 2005) involving a 

ε-amino group of lysine and the γ-amide group of glutamine residues. It has been observed 

that TGAse cross-linked proteins such as whey proteins exhibit high resistance to 

proteolytic degradation (Cortez et al. 2004; Motoki & Seguro 1998) by common enzymes. 

However, ε-(γ-glutamine)-lysine bonds may be cleaved by the enzyme γ-

glutamyltransferase (EC 2.3.2.2) (Okada et al. 2006; Seguro et al. 1995; Seguro et al. 

1996). γ-glutamyltransferase is found in different tissues including at the brush-border 

membrane inside the small intestine, inside the kidney, and in the blood. Thus, if ε-(γ-

glutamine)-lysine bonds are present due to transglutaminase activity, γ-glutamyltransferase 

may help in hydrolysing these and make the respective single amino acids bioavailable. In 

fact, it was reported that rats showed no significant difference in growth when being fed 

TGAse cross-linked casein compared to free casein (Seguro et al. 1996). The study showed 

that 99% of the 14C labelled lysine was taken up and assimilated by the rat.  

The assessment of the whole impact of food processing on the nutritional value of 

foodstuffs is complicated. Food processing may influence the bioavailability of amino 

acids dramatically. The described amino acid modifications indicate only a limited number 

of the many different pathways that can impact on nutritional availability of certain 

proteins and peptides. 
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3.3 Proteomic Profiling 

In order to determine the character of amino acid modifications, proteomic profiling via 

tandem mass spectrometry (MS/MS) was undertaken. In brief, raw and boiled EW was 

subjected to a tryptic digest, the peptides were cleaned and analysed via high performance 

liquid chromatography (HPLC) separation followed by MS/MS acquisition. The generated 

mass to charge (m/z) mass spectrum was compared to expected theoretical fragments 

(against the NCBInr database using Mascot v2.2.) (Section 7.9). Modifications of peptides 

were detected by including variable modification that corresponded to the expected mass 

change of the modification during database search. Proteomic profiling of EW samples by 

MS/MS characterisation of amino acid modifications showed that a certain baseline level 

of modifications was detectable even in freshly laid eggs. However, a marked increase of 

amino acid damage was induced by boiling the egg white (Table 3.2). The scoring system 

used to assess the amino acid damage (Section 7.9) was based around modification 

hierarchies and takes into account the ratio of observed modified to non-modified amino 

acid residues in combination with a weighting of the severity of the damage (Dyer et al. 

2010). The scores for raw EW (0.70) and boiled EW (1.27) are the sum of all weighted 

scores of the respective sample. The individual damaged amino acids are listed and 

generally show a higher ratio of damaged to undamaged amino acids in the heat treated 

samples. 
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Table 3.2 Protein modifications of raw EW and boiled EW. sw = weighted modification score, aamod = number of a specific amino acid residue 
carrying a specific modification, aatot= total number of a specific amino acid residue observed, fmod= modification factor (e.g. fmod = 0 for 
non-oxidative modification, fmod = 1 for single oxidation, fmod = 2 for double oxidation, fmod = 3 for triple oxidation), qualifying peptides = 
the number of unique peptide identifications meeting the MS/MS score threshold of 45. 

     Raw Egg White Score: 0.70   Boiled Egg White Score: 1.27

Modification Amino Acid fmod aamod aamod/aatot sw(Ox) sw(Non-Ox) aamod aamod/aatot sw(Ox) sw(Non-Ox) 

 
Oxidation 

 
CMFHWY 

 
1 

 
15 

 
C(1/60), F(4/86), M(3/30), 
W(1/27), Y(6/69) 

 
0.29 

 
- 

 
9 

 
F(4/57), M(1/23), 
W(3/28), Y(1/35) 

 
0.25 

 
- 

Dioxidation CFWY 2 1 F(1/86) 0.02 - 2 W(2/28) 0.14 -
Trioxidation C 3 - - - - - - - -
Nitration FHWY 3 3 F(2/86), Y(1/69) 0.11 - 4 F(3/57), H(1/13) 0.39 -

Kynurenine W 3 - - - - - - - -
Quinone Y 3 - - - - - - - -
Carbamylated KR, N-term 1 - - - - - - - -

Deamidated NQ, N-term 1 21 N(14/114), Q(7/81) - 0.21 25 N(19/95), Q(6/66) - 0.29 

Dehydrated ST 1 6 S(5/131), T(1/112) - 0.05 2 S(2/93) - 0.20 

Carboxy-
methylated

K 1 1 K(1/100) - 0.01  -  -  -  -

     sw(raw)  0.43 0.27 sw(boiled)  0.78 0.49 



Chapter 3 – Proteomic Analysis of Heat Induced Amino Acid Modifications 75 

 

 

The comparison of raw and boiled EW (Table 3.2) shows that commonly occurring 

oxidative modifications include single oxidations, dioxidation, and nitration which can 

affect the nutritional properties of proteins in various ways (Section 3.2.1 and Section 

3.2.2). No marked difference was observed between raw and boiled EW for single 

oxidations. However, nitration and, to a lesser degree, dioxidation of amino acids 

increased in the heated sample. Deamidation (Section 3.2.4) and dehydration (Section 

3.2.3) modifications were common non-oxidative modifications. There was a marked 

increase of dehydration of serine and threonine residues as well as deamidation of 

asparagine and glutamine residues in the boiled sample (Table 3.2). Hydrothermal 

degradation of proteins has previously been reported (Friedman 1999),  resulting initially 

in DHA formation, as observed here, and subsequently in protein-protein cross-linking 

influencing protein digestibility.  

 

3.3.1 Amino Acid Damage in the Presence of Maillard Reaction Partners 

at Prolonged Heating Times 

The observed difference in the amino acid damage profile between raw and boiled EW 

prompted further investigations of the relationship between heating time and amino acid 

damage. Furthermore, the effects of the Maillard reaction partners, glucose and 

methylglyoxal, were studied. This allowed a correlation of the observed digestibility 

changes in the presence of Maillard reaction partners (Section 2.6) with observed amino 

acid modifications. A total of nine samples (Table 3.3) were analysed for amino acid 

modifications.  

Table 3.3 Sample list for the determination of time dependence and effect of Maillard 
partner on amino acid modifications. 

  Heating Time [minutes] 
  0 10 60 

EW in Milli-Q water S1 S2 S3 
EW in 100 mM glucose S4 S5 S6 
EW in 100 mM methylglyoxal S7 S8 S9 
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Pure EW in the absence of additional Maillard reaction partners was analysed in order to 

measure the background amino acid modification of a non-oxidative nature (deamidation, 

dehydration, and dehydrogenation). As observed in the preliminary experiment, an 

increase in temperature to 100 °C resulted in the rise of amino acid modifications after 10 

minutes. The replicate experiments showed an increase of the non-oxidative damage score 

from 0.15 to 0.17 (Figure 3.3) which is below the previously observed 0.27 to 0.49 change 

(Table 3.2). The discrepancy in baseline could potentially be accounted for by slight 

variations of experimental conditions. The degree of protein aggregation, the efficiency of 

the tryptic digests, as well as differences in egg whites (two suppliers of day fresh hen eggs 

were used) could have contributed to the observed differences. The observed higher total 

differences before and after heating for the first sample (0.22) compared to the second 

sample (0.02) is likely based on the pre-heating modifications. These pre-existing 

modifications (0.27 and 0.15) are likely to contribute to further modifications of the 

peptide due to their altered chemistry. Furthermore, peptide material present in the control 

samples (unheated) may already be modified. There are likely to be additional modified 

peptides present that are below the quality threshold which prevents these peptides to be 

included in the final score. However, only a small amount of further modification is 

necessary to produce sufficient quantities of modified peptides for robust characterization 

after heating. These small changes may therefore cause previously disregarded peptides to 

be included in the final scoring. Thereby, small changes may contribute to the seemingly 

large difference between the samples. This is a further reason why the unheated control 

sample with already high levels of baseline modification showed a larger difference on 

heating than the unheated control sample with low levels of baseline modifications.  

Since deamidation and dehydration modifications were commonly observed in the treated 

samples they were chosen as marker modifications to assess the heat damage of protein 

EW. There is a marked increase from 0.17 to 0.26 (Figure 3.3) of non-oxidative damage 

(pooled deamidation and dehydration modifications) between 10 minutes and 60 minutes 

of heating. This indicates that prolonged heat exposure results in the increase of amino 

acid modifications. The dehydration of serine and threonine can influence the nutritional 

value of proteins by contributing to cross-linking reactions (Section 3.2.3). The 

deamidation induced amino acid profile change (Section 3.2.4) may not contribute directly 

to a marked loss of nutritional quality. However, it has been reported that the deamidation 
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of proteins alter the structural characteristics of proteins dramatically. Rice and soy protein 

solubility was increased markedly by non-enzymatic and enzymatic deamidation 

respectively (Paraman et al. 2007; Suppavorasatit et al. 2013). Increased deamidation 

causes exposure of acidic glutamate and aspartate which in turn may alter the protein 

aggregate structure and therefore protein digestibility (Carbonaro et al. 1997). However, 

the increased digestibility is unlikely to be an amino acid specific effect because pepsin, 

trypsin, and chymotrypsin do not usually cleave the peptide backbone near glutamine or 

asparagine (or glutamate, aspartate) residues (Keil 1992). 

In addition to dehydration and deamidation, the effects of glucose and methylglyoxal on 

amino acid modifications were monitored. Potential modifications of EW amino acids 

induced by the presence of glucose could be monitored by formation of Nε-

(fructosyl)lysine (Figure 3.1). However, MS/MS analysis of the samples did not reveal 

detectable Nε-(fructosyl)lysine modifications when searching for modifications with the 

mass of +162, which would correspond to the condensation of a hexose, such as glucose, 

to lysine. The absence of Nε-(fructosyl)lysine may indicate that the compound had not 

formed at detectable concentrations, or alternatively, had progressed to more advanced 

glycation products. Nε-(carboxymethyl)lysine (Lima et al. 2009) and Nε-

(carboxyethyl)lysine (Ahmed et al. 1997),  two further glycation products involving lysine 

were only sporadically detected via MS/MS of the nine samples. However, arginine 

residues were readily modified by methylglyoxal to form hydroimidazolone (Figure 3.2) 

which was detectable by MS/MS analysis. Therefore, hydroimidazolone was used to 

monitor the progression of Maillard modification by methylglyoxal. The stacked column 

diagram in Figure 3.3 depicts 1) the non-oxidative damage observed for pure EW (black), 

and 2) the hydroimidazolone modification observed for EW in the presence of 100 mM 

methylglyoxal (red).  
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Figure 3.3 Weighted amino acid modification score. Black) combined deamidation 
(glutamine and asparagine residues) and dehydration (serine and threonine 
residues) damage of EW in Milli-Q water. Red) hydroimidazolone (arginine 
residues) damage of EW arginine in 100 mM methylglyoxal.  

Methylglyoxal reacted instantaneously with arginine residues as judged by the formation 

of hydroimidazolone even before heating (t = 0). The increase of hydroimidazolone 

formation over time reached a total of 0.38 after 60 minutes of heating at 100 °C which 

corresponds to 38 % of observed arginine residues modified to hydroimidazolone. The 

progress of hydroimidazolone formation was monitored for all nine samples. As expected, 

no hydroimidazolone was detected in the pure EW sample (Figure 3.4). However, in the 

presence of glucose, hydroimidazolone was also detected after 60 minutes of heating. This 

indicates that the Maillard modification of glucose treated EW protein has progressed into 

the advanced Maillard reaction products which could possibly explain the lack of 

detectable Nε-(fructosyl)lysine, Nε-(carboxymethyl)lysine, and Nε-(carboxyethyl)lysine. 

The presence of hydroimidazolone may decrease protein quality, because the presence of 

advanced Maillard reaction products generally decrease the nutritional value by described 

mechanisms (Section 3.2.5). The presence of hydroimidazolone in a glucose treated 

sample further supports that methylglyoxal is a useful model to assess the Maillard 

reaction in food systems.  
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Figure 3.4 Weighted hydroimidazolone score (arginine residues) of EW. 

 

3.3.2 Ovalbumin as Marker Protein 

Often it is desirable to monitor the chemical modifications that occur in a mixture of 

proteins. However, if the modifications are drastic, some proteins may become 

undetectable during the modification process due to a mass spectrum that is too 

convoluted. In order to monitor sample quality it can therefore be desirable to have an 

internal marker that is affected by the measured modifications. The abundance of the 

marker may in turn be used to quantify modification induced changes of the sample during 

sample treatment. 

Ovalbumin (PDB entry: 1OVA (Stein et al. 1991)) was evaluated as an internal standard 

because it was the protein most commonly identified during MS/MS analysis of derived 

peptides. Ovalbumin is the most abundant protein in chicken egg white and therefore 

likely to remain present in samples for a long time compared to lower abundance proteins 

such as lysozyme. Table 3.4 lists the identified peptides of all nine samples (S1-S9) from 

MS/MS analysis that were matched to ovalbumin. The observed modifications are also 
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listed. Carbamidomethylation of cysteine is an artefact of the sample preparation using 

iodoacetamide to alkylate cysteine residues (Section 7.9). The untreated EW sample (S1) 

did not show the presence of ovalbumin derived peptides. This is likely due to protease 

inhibiting proteins present in raw EW. The two remaining unheated samples (S4 and S7) 

also show low abundance of ovalbumin derived peptides. Increasing the temperature to 

100 °C generally resulted in a higher abundance of ovalbumin derived peptides (S2, S5, 

and S8) indicating that trypsin digestion is generating more peptides compared to unheated 

EW. This is in good agreement with the results obtained during the in vitro digestibility 

assays that showed increased digestibility of heated EW (Section 2.2). After a prolonged 

heating time of 60 minutes (S3, S6, S9) there were even more peptides generated in sample 

S6 while S3 remained on a similar level as S2. However, for the methylglyoxal treated 

sample (S9) the number of detected ovalbumin peptides decreased markedly compared to 

sample S8. This behaviour may reflect either the increased resistance to tryptic digestion 

(caused by modified arginine residues (Keil 1992)) or the fact that some abundant 

modifications may mask the signal.  

Reassuringly, ovalbumin could be detected in almost all samples and corresponded to the 

overall observation of increased amino acid modifications with increasing harshness of the 

EW treatments. Therefore, ovalbumin seemed a good marker of the total observed 

modifications. It is likely that in other systems (e.g., whey protein or milk) the study of a 

marker protein such as β-lactoglobulin (β-lg) may be of equal value. 

Table 3.4 Identified peptides including modification and modification position. 

Sample  Sequence Modifications 

S1 - - 

S2 R.ADHPFLFCIK.H Carbamidomethyl: 8 
R.LYAEERYPILPEYLQCVK.E Carbamidomethyl: 16 
R.YPILPEYLQCVK.E Carbamidomethyl: 10 
R.YPILPEYLQCVKELYR.G Carbamidomethyl: 10 

S3 R.DILNQITKPNDVYSFSLASR.L Carboxymethyl: 8 
R.ADHPFLFCIK.H Carbamidomethyl: 8 
R.YPILPEYLQCVK.E Carbamidomethyl: 10 
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S4 R.ADHPFLFCIK.H Carbamidomethyl: 8 
R.LYAEERYPILPEYLQCVK.E Carbamidomethyl: 16 
R.YPILPEYLQCVK.E Carbamidomethyl: 10 

S5 R.ELINSWVESQTNGIIR.N Oxidation: 6 
K.ISQAVHAAHAEINEAGR.E Oxidation: 6 
Y.PILPEYLQCVK.E Carbamidomethyl: 9 
R.ADHPFLFCIK.H Carbamidomethyl: 8 
R.LYAEERYPILPEYLQCVK.E Carbamidomethyl: 16 

S6 R.GGLEPINFQTAADQAR.E Deamidated: 9 
N.SWVESQTNGIIR.N Deamidated: 8 
R.GGLEPINFQTAADQAR.E Deamidated: 7 
N.SWVESQTNGIIR.N Deamidated: 6 
R.DILNQITKPNDVYSFSLASR.L Deamidated: 4, 5 
R.ELINSWVESQTNGIIR.N Deamidated: 4, 2 
R.DILNQITKPNDVYSFSLASR.L Deamidated: 4, 10 
K.ISQAVHAAHAEINEAGR.E Deamidated: 3 
R.GGLEPINFQTAADQAR.E Deamidated: 14 
K.ISQAVHAAHAEINEAGR.E Deamidated: 13 
Y.PILPEYLQCVK.E Carbamidomethyl: 9 
R.ADHPFLFCIK.H Carbamidomethyl: 8 
R.LYAEERYPILPEYLQCVK.E Carbamidomethyl: 16 
R.YPILPEYLQCVK.E Carbamidomethyl: 10 

S7 R.YPILPEYLQCVK.E Carbamidomethyl: 10 

S8 K.IKVYLPRMK.M hydroimidazolone: 7 
R.LYAEERYPILPEYLQCVK.E hydroimidazolone: 6 
K.VYLPRMK.M hydroimidazolone: 5 
K.ELYRGGLEPINFQTAADQAR.E hydroimidazolone: 4 
K.LTEWTSSNVMEERK.I hydroimidazolone: 13 
Y.PILPEYLQCVK.E Carbamidomethyl: 9 
R.ADHPFLFCIK.H Carbamidomethyl: 8 
P.ILPEYLQCVK.E Carbamidomethyl: 8 
R.LYAEERYPILPEYLQCVK.E Carbamidomethyl: 16 
R.YPILPEYLQCVK.E Carbamidomethyl: 10 

S9 K.DSTRTQINK.V hydroimidazolone: 4 
  R.YPILPEYLQCVK.E Carbamidomethyl: 10 
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3.4 Summary and Discussion 

The use of mass spectrometry for determining amino acid modifications in processed EW 

was demonstrated. Oxidative damage, deamidation and dehydration were observed to 

increase over time as EW was heated at 100 °C. Furthermore, the reaction with 

methylglyoxal was detectable and showed a similar trend of increasing modification with 

heating time. Together these results indicate that significant damage occurs to the amino 

acid profile of EW proteins during processing. The achieved degree of sensitivity implies 

that even relatively mild processing can induce detectable amino acid modification. 

Ovalbumin proved to be a reasonably good internal standard with sufficient abundance in 

the generated mass spectra even after harsh sample treatment (60 minutes, 100 °C, 100 

mM methylglyoxal).  

The information gained may contribute to the understanding of food protein damage on a 

molecular level. The holistic approach of assessing a series of protein samples can yield 

information on a large proportion of amino acid modifications. To this end, the samples 

should be representative of actual food systems (as was the case here). If the exact mass 

change, resulting from chemical modification, is known, the use of MS/MS analysis is 

reliable and replicable. It should be remembered that some modifications may mask the 

signal of other modifications (as was the case for methylglyoxal modified EW). 

Furthermore, it was demonstrated that a complex sample mixture of proteins can be used 

which is relevant for most food systems as they generally contain protein mixtures. 
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Chapter Four 

4 Dynamic Light and Small Angle X‐ray 

Scattering of Protein Aggregates 

4.1 Introduction 

In recent years, much effort has been put into investigating the molecular mechanisms of 

protein aggregation. Proteins and peptides for pharmaceutical use with short shelf-life 

(Manning et al. 2010; Wang 1999), aggregation prone proteins in disease (Chiti & Dobson 

2006), highly stable enzymes for commercial use  (Eijsink et al. 2005), etc., are targets of 

these studies. In addition, food research focuses on exploiting the versatility of protein 

aggregation because of the structure-function relationship: differently aggregated forms of 

food proteins are likely to offer different functionalities in foods (Gerrard et al. 2012). 

Therefore it is desirable to understand mechanisms of aggregate formation in food proteins 

and the factors that drive aggregation along a certain pathway. 

The common conclusion of many aggregation studies (and reviews) is that it is a 

particularly difficult task to unravel the underlying molecular details, because protein 

aggregation usually occurs rapidly and is often irreversible (Mahler et al. 2009; Wang et 

al. 2010). Ionic strength, pH, and protein concentration affect the protein aggregation 

pathway. More often than not, random aggregates are present rather than ordered 

aggregates. Figure 4.1 illustrates the correlation between different aggregate morphologies 

as a function of pH and ionic strength for a generic protein. The branching of aggregates is 

low at pHs far away from the isoelectric point (IEP) and at low ionic strengths (van der 

Linden & Venema 2007). 

Protein can react covalently with other food molecules, for example, with sugars and lipids 

to form Maillard reaction products (Al-Hakkak & Al-Hakkak 2010). The glycation and the 

formation of advanced glycation products of food proteins by different sugars via the 

Maillard reaction both changes the IEP and affects the structural properties markedly (Gan 

et al. 2008) (Sections 2.3 - 2.5).  
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Figure 4.1 Proposed mechanism of aggregation patterns caused by pH and ionic strength. 
Schematic taken from (van der Linden & Venema 2007). 

There is a suite of techniques available to answer some of the questions of protein 

unfolding. However, many of these techniques are limited in their capabilities to measure 

molecular interactions during aggregation. In general, two or more complementary 

techniques such as electron microscopy (EM), atomic force microscopy (AFM), dynamic 

light scattering (DLS), circular dichroism (CD) spectroscopy, or Fourier transform infrared 

(FTIR) spectroscopy are used to study protein aggregation (Gregoire et al. 2012). 

Additionally, the binding of fluorescent probes, such as fluorescein isothiocyanate (FITC), 

8-anilinonaphthalene-1-sulfonic acid (ANS), Thioflavin T (ThT), Congo red, SYPRO 

Orange, can yield more information on protein conformation and thereby on aggregate 

formation (Jorbágy & Király 1966; Cattoni et al. 2009; Groenning et al. 2007; Howie et al. 

2007; Vedadi et al. 2006). Turbidity measurements are often used as a fairly crude 

pH close to IEPpH far from IEP

increasing ionic strength
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measurement of aggregate formation at a given wavelength, e.g. 500 nm (Weijers et al. 

2008), 540 nm (Xu et al. 1998), 590 nm (Kaewmanee et al. 2011), 660 nm (Tang et al. 

2006). These techniques allow the characterisation of overall structure (microscopy) and 

secondary structure (CD, FTIR and fluorescent probes) of aggregates to a certain degree. 

However, there is a need for a more precise tool to monitor dynamic molecular changes 

along the entire aggregation pathway (from native protein to intermediates to final 

aggregate structure). So far, it has only been possible in very well characterised and fairly 

monodisperse systems, such as amyloid fibril systems, to generate a complete aggregation 

scheme where detailed information is available on intermediate states (Juárez et al. 2009; 

Khurana et al. 2001; Moraitakis & Goodfellow 2003; Oliveira et al. 2009; Svane et al. 

2008). For the majority of proteins however, the aggregate formation is not uniform and 

therefore challenging to characterise. Small angle X-ray scattering (SAXS) bridges the gap 

between high and low resolution techniques. Whilst crystallographers would describe 

SAXS as a low resolution technique, SAXS offers much higher resolution than 

conventional light scattering and electron microscopy. With SAXS the exploration of 

nanometre length scales is possible. This enables the characterisation of both individual 

proteins as well as protein-protein interactions (Jacques & Trewhella 2010; Koch et al. 

2003; Mertens & Svergun 2010; Putnam et al. 2007; Tashiro et al. 2008). However, as 

with other scattering techniques, aggregate formation during SAXS experiments is 

traditionally avoided at all costs because the analysis of polydisperse solutions can be 

challenging (Jacques & Trewhella 2010). In this work, SAXS studies of a polydisperse 

ovalbumin aggregation system were carried out to derive data about the aggregation 

pathway and kinetics of ovalbumin in solution.  

In this chapter, the scattering techniques DLS and SAXS will be discussed with regard to 

their ability to give details about protein aggregation in complex model food systems. 

Studies were carried out on a food-relevant system, using the major EW protein, 

ovalbumin, and two glycation partners (glucose and methylglyoxal (Sections 2.1.4 and 

3.2.5). Ovalbumin in Milli-Q water and ovalbumin in NaCl solution were used as 

references. A series of typical samples that were analysed is shown in Figure 4.2, 

displaying ovalbumin at 0.6 mg/mL under four different test conditions. The findings of 

the DLS and SAXS studies were then compared to transmission electron microscopy 

(TEM) micrographs.  
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Figure 4.2 Ovalbumin samples after 24 hour heating at 80 °C. Ovalbumin in A) Milli-Q 
water, B) 100 mM glucose, C) 100 mM methylglyoxal, D) 100 mM NaCl. 

 

4.2 Scattering of Electromagnetic Waves 

The propagation of waves in matter is often categorised into macroscopic phenomena such 

as reflection, diffraction, absorption, and transmission. However, all of these macroscopic 

categories are examples of scattering of waves on matter. The wave interaction with matter 

occurs between the electrons of the medium and the electromagnetic wave and are 

described by Maxwell’s equations (Als-Nielsen & McMorrow 2011). Maxwell’s equations 

describe the generation and interaction of electric and magnetic fields at the atomic scale. 

Therefore, microscopic and macroscopic phenomena can be explained fully by the 

Maxwell equations. For the scattering of electromagnetic waves on particles there are 

several approximations to the Maxwell equations such as the Rayleigh solution and the 

Mie solution (Als-Nielsen & McMorrow 2011). The Rayleigh approximation describes the 

scattering of electromagnetic waves on spherical particles that are much smaller than the 

wavelength of the light (the diameter of the molecule is less than 1/10-th of the 

wavelength). For example, the laser of the DLS instrument (Malvern Zetasizer) used in the 

experiments operates at 633 nm (red light) which is large compared to most proteins (e.g. 

the longest axis of ovalbumin is about 7-8 nm long). The Mie approximation is a more 

accurate solution of Maxwell’s equations than the Rayleigh approximation. It explains the 

scattering of electromagnetic waves on spherical or cylindrical particles of any particle 

size. Therefore there is no limitation to the particle/wavelength ratio (Als-Nielsen & 
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McMorrow 2011). This is why the Mie approximation is used in analysis of large 

structures, such as protein aggregates, in solution. 

Scattering of electromagnetic waves occurs every time there is a change of refractive index 

(RI) between two different media. This means that at the interface/surface between 

different media (such as water and protein) the change in RI causes scattering of the waves 

(Als-Nielsen & McMorrow 2011).  

X-ray scattering (including SAXS) depends on the interface/surface scattering, too. 

However, the refractive index for X-rays is close to 1 for most materials and is therefore 

not used to describe material/ media differences. Instead of the refractive index, the 

scattering length density (SLD) of a material is used in X-ray scattering. For X-ray 

scattering the SLD is directly proportional to the classical electron radius (re = 2.82 x 10-15 

m) and the electron density (ρe) of a material (Equation 4.1) (Als-Nielsen & McMorrow 

2011). 

Equation 4.1 

ܦܮܵ ൌ 	  ߩ	ݎ

In general, one can distinguish between elastic and inelastic scattering. Elastic scattering 

occurs if the incident wave (or primary wave) and the scattered wave (or secondary wave) 

have the same frequency and energy. In an inelastic scattering process some energy is 

transferred between the primary wave and the scattering particle so that the secondary 

wave is of a different energy and wavelength. Both elastic and inelastic scattering can 

occur simultaneously. For example electrons can scatter visible light or X-rays elastically 

and inelastically. Shape information about the scattering particle can only be obtained from 

elastic scattering because of the coherence of the secondary waves. Inelastic scattering is 

incoherent and contains no shape information but is always present as background 

scattering (Glatter & Kratky 1982). 
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4.2.1 Dynamic Light Scattering (DLS) 

Dynamic light scattering is a well established technique to study protein size in solution 

(Aymard et al. 1999; Nemoto et al. 1993; Weijers et al. 2002). The technique measures the 

scattering of molecules in solution. The signal scattering arises from variations in the RI of 

the material, in this case between the protein aggregates and the surrounding buffer 

solution. The RI at optical wavelengths is related to the electron density of a material. For 

a freely diffusing and unaligned system of low viscosity the molecules in solution scatter 

light in all directions. The multitude of scattering molecules in solution causes destructive 

and constructive interference of the scattered light. This interference pattern can be 

detected by a photo-detector. The resulting speckle pattern (Figure 4.3) is not stationary 

because molecules move around due to Brownian motion (Malvern Instruments 2011). 

 

Figure 4.3 Speckle pattern caused by interference of scattered light. Figure adapted from 
(Malvern Instruments 2011). 
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The speckle pattern fluctuations can be correlated to the size of the particles because large 

particles cause long period fluctuations compared to the short fluctuations caused by small 

particles. More specifically, the size of particles can be estimated by determining the 

diffusion coefficient of the particles. The diffusion coefficient is then used to determine the 

hydrodynamic diameter (dH) via the Stokes-Einstein equation (Equation 4.2) (Berne & 

Pecora 1976). This in turn means that the dH is not a just measurement of the core of the 

particle but includes surface structures such as carbohydrates. Moreover, in protein 

aggregation, an increased dH may indicate a partially unfolded protein. 

Equation 4.2 Stokes-Einstein equation to determine the dH of particles in solution. 

݀ு ൌ
݇ ܶ

ηDߨ3
 

Where dH is the hydrodynamic diameter, kb is the Boltzmann constant, Ta is the absolute 

temperature, η is the viscosity, and D is the diffusion constant. One limitation of the 

technique is that the Stokes-Einstein equation assumes a spherical object that diffuses 

through the solution. This spherical model does not accurately represent other geometrical 

shapes such as cylinders or disks. Therefore the calculated dH of the particles in the test 

sample is only that of a theoretical sphere with the same dH (Berne & Pecora 1976).  
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4.2.2 Small Angle X‐ray Scattering (SAXS) 

SAXS scattering relies on similar principles to X-ray diffraction in terms of wave 

interactions with matter. The simplest case, scattering of X-rays from parallel planes is 

illustrated in Figure 4.4.  

 

Figure 4.4 Bragg’s law of X-ray scattering. Diagram modified from (Als-Nielsen & 
McMorrow 2011). 

For elastic X-ray scattering the angle (ϑ) is the same for both the incident wave and 

scattered wave with regard to the scattering plane, where the scattering plane arises from 

fluctuations in the electron density of the system. The distance (d) between different 

scattering planes can be inferred from the interference between the scattered X-rays from 

each point. The distance can be calculated from the trigonometry of the triangle A, Z, B 

(Equation 4.3) (Als-Nielsen & McMorrow 2011). 

Equation 4.3 Distance between scattering particles or planes. 

݀ ൌ
ܤܣ

sin	ሺߠሻ
 

The distance AB cannot be measured directly. However, when measuring X-ray scattering 

or diffraction, a detector can measure the interference patterns of scattered X-rays. From 

the interference pattern, calculations about distances between scattering centres can be 

Incident Plane 
Wave (k0)
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Wave (k)
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made (Jacques & Trewhella 2010; Mertens & Svergun 2010). An inherent problem of X-

ray scattering is that only the intensity of the scattered wave is known and not the phase. 

Therefore, there may be more than one arrangement of scattering centres that will give the 

same scattering pattern. This uncertainty is commonly referred to as the “phase problem” 

(Glatter & Kratky 1982). 

 X-rays that interfere constructively (are in phase) are detected as bright circular 

constructive interference patterns (and rings) on the detector. From the diagram (Figure 

4.4) it is obvious that for constructive interference to occur, the second wave (bottom 

wave) has to travel the extra distance AB + BC compared to the top wave. Therefore, the 

distance AB + BC added together must be an integer (n) multiple of the wavelength λ to 

fulfil constructive interference. The distances AB and BC are equal. Taking Equation 4.3 

into account yields the equation for Bragg’s law (Equation 4.4) for constructive 

interference (Als-Nielsen & McMorrow 2011). 

Equation 4.4 Bragg’s law for constructive interference: AB + BC must be an integer multiple 
of λ. 

ߣ݊ ൌ ܤܣ  ܥܤ ൌ ܤܣ2 ൌ 2݀ sinሺߠሻ 

Where n is an integer (1, 2, 3, etc.), λ the X-ray wavelength, d the distance between 

scattering centres (or planes in a crystal). The angle ϑ is the angle between the incident ray 

and the scattering plane. The diagram of X-ray scattering (Figure 4.4) also shows that the 

angle between incident beam and scattered beam is 2ϑ. This information is valuable when 

carrying out SAXS measurements. 

In a typical SAXS measurement, the detector measures the interference patterns of 

scattering particles (Figure 4.5). If the scattering centres are randomly oriented relative to 

the incident beam, as is the case for non-oriented protein molecules diffusing freely in 

solution, the interference patterns are isotropic (uniform in all directions) and appear as 

circular patterns on the detector. The incident X-ray wave k0 and the scattered wave k are 

at an angle of 2ϑ to each other. The interference pattern on the detector can be analysed to 

determine the distance between the incident wave and the scattered wave, which can in 

turn be used to calculate the scattering vector Q. For data analysis, the magnitude of the 

calculated Q is then plotted versus the scattering intensity. 
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Figure 4.5 Typical small angle X-ray scattering setup. Diagram taken from (Als-Nielsen & 
McMorrow 2011) with slight modifications. 

The scattering vector Q is known as the “momentum transfer” and is calculated from the 

change in the X-ray wave vector, i.e., k - k0 where k and k0 are the scattered X-ray wave 

vector and incident wave vector respectively. In the case of elastic scattering, k = k0 (Als-

Nielsen & McMorrow 2011). 

Equation 4.5 Definition of the magnitude of the wave vectors k and k0. 

݇ ൌ ݇ ൌ 	
ߨ2
ߣ
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From Equation 4.5 it is clear that the magnitude of the wavevector has the dimension of an 

inverse length (typically Å-1 is used for SAXS). The diagram in Figure 4.6 shows the 

vector addition (k - k0 = Q), and shows that Q is a function of k0 and k and the scattering 

angle ϑ. 

 

Figure 4.6 The scattering vector Q, modified from (Als-Nielsen & McMorrow 2011). 

Trigonometry of the triangle described in Figure 4.6 can be used to solve for Q. 

Equation 4.6  

ܳ ൌ 2	݇	sin	ሺߠሻ 

Combining Equation 4.5 and Equation 4.6 yields the following angle and wavelength 

dependent definition of Q (Equation 4.7). 

Equation 4.7 Angle and wavelength dependent definition of Q (Als-Nielsen & McMorrow 
2011). 

ܳ ൌ 2	
ߨ2
ߣ
	sinሺߴሻ ൌ 	
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The scattering vector Q is therefore related to both the scattering angle ϑ and the 

wavelength and is the preferred unit for reporting the X-ray scattering as it is independent 

of the specific instrumental conditions used. Q can also be shown to be inversely 

proportional to the molecular distances d in the sample solution by combining the 

definition of Q (Equation 4.7) with Bragg’s equation (Equation 4.4) to give Equation 4.8.  

Equation 4.8 Relationship between real space distances and scattering vector Q. 

݀ ൌ
ߨ2
ܳ

 

 

4.2.3 SAXS for Protein Structure Studies in Solution 

The use of small angle X-ray scattering as a technique to study proteins in solution is 

becoming well established (Jacques & Trewhella 2010; Koch et al. 2003; Putnam et al. 

2007). Due to the small wavelength of X-rays (< 1 nm) finer structural detail can be 

resolved by SAXS compared to DLS. Additionally, SAXS measurements do not rely on 

Brownian motion but are a direct representation of the average scattering of the proteins in 

solution (in the X-ray pathway). The information gained during SAXS experiments is 

often used to establish whether the solution structure of a soluble protein is consistent with 

that of the crystal structure (Svergun et al. 1995). Additionally, the quaternary structure 

and even domain movements of proteins in solution may be monitored (Petoukhov & 

Svergun 2013). This is often used to verify the applicability of crystallographic data to 

physiologically relevant environments. If the crystal structure is unknown, SAXS can be 

used to create a 3D bead model of the protein structure consistent with the measured 

scattering data. However, the relatively low information density of SAXS means that for 

reliable modelling it is crucial to have a well characterised protein system in order to 

constrain parameters during modelling (Glatter & Kratky 1982; Putnam et al. 2007). 

Since SAXS measures the total scattering from all particles in the X-ray beam, the 

aggregation pathway of proteins is difficult to analyse. This is due to the mixed 

contributions from different protein species. An inherent difficulty of SAXS data analysis 

is extracting valuable data from polydisperse systems (just as with DLS) (Jacques & 
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Trewhella 2010). In a typical SAXS experiment the scattering intensity I(Q) is measured 

as a function of the scattering vector Q (Figure 4.5). The value of I(Q) depends on several 

parameters (Equation 4.9).  

Equation 4.9 Contributing factors to scattering intensity I(Q) (Glatter & Kratky 1982; Kline 
2006). 

ሺܳሻܫ ൌ ଶܸଶܲሺܳሻܵሺܳሻߩ∆݊	ߦ	  	ܾ݇݃݀ 

Where ξ is the instrument constant accounting for features such as detector efficiency and 

beam intensity, n is the number of particles in the scattering volume, ∆ρ is the SLD 

contrast (∆ρ = ρparticle – ρsolvent), V is the particle volume, P(Q) is the form factor, and S(Q) 

is the structure factor. The form factor describes the size, shape, and surface of the 

scattering particle as shown in Figure 4.7. Obtaining P(Q) directly from the scattering 

pattern by inversion is impossible (Als-Nielsen & McMorrow 2011). However, several 

approaches can be taken to interpret the scattering data. These include model independent 

approaches such as Guinier and Porod analysis and model dependent approaches including 

pair-distribution fitting, form factor fitting of analytical models, and dummy atom 

modelling (Kline 2006; Konarev et al. 2003; Mertens & Svergun 2010). 
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Figure 4.7 Information content of P(Q) from a typical scattering experiment of different 
geometric shapes such as spheres (black) and cylinders (red). The P(Q) profile 
can be split into three regions which contain different information about the 
particle. The Guinier Region (Q ≤ 1/Rg) is used to determine the particle size. The 
intermediate region contains shape information about the particle (e.g. cylinder or 
sphere), while the surface properties of the particle can be deduced rom the Porod 
region (Glatter & Kratky 1982; Kline 2006). 

P(Q) is measured in dilute solutions where interparticle interactions are absent, and the 

structure factor, which contains information about interparticle structure/distances, is 

therefore negligible (S(Q) = 1). At higher particle (protein) concentrations information 

about interparticle distances can be gathered because the separation of the molecules is not 

completely random. The higher order in the separation distances of concentrated proteins 

is usually an effect of electrostatic repulsion or steric hindrance.  
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Radius of 
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Structure

Surface per 
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4.2.3.1 Guinier Analysis 

To gain an overview of the scattering pattern, the raw scattering data are usually plotted as 

intensity vs. scattering vector (I(Q) vs. Q). The Guinier plot (ln(I(Q)) vs. Q2) of SAXS data 

allows the determination of the approximate molecular mass and the radius of gyration 

(Rg) of the scattering particle (Guinier 1955; Petoukhov & Svergun 2013). The radius of 

gyration is defined as the mean square distance from the centre of gravity (Glatter & 

Kratky 1982). Equation 4.10 is used to approximate the Rg of any scattering particle  under 

the assumption that the form factor of any given particle can be described by a Gaussian 

curve (Guinier 1955). 

Equation 4.10 Rg approximation (Glatter & Kratky 1982). 

ሺܳሻܫ ൌ ሺ0ሻ݁ିܫ
ሺொோሻమ

ଷ  

I(Q)) is the scattering intensity, I(0) is the extrapolated intensity at Q = 0 (sometimes 

described as forward scattering intensity). This equation can be rewritten into Equation 

4.11 

Equation 4.11 Logarithmically expanded Equation 4.10. 

݈݊ሺܫሺܳሻሻ ൌ ݈݊൫ܫሺ0ሻ൯ െ	
ܴ

ଶ

3
ܳଶ 

The equation can be regarded as a simple linear y = b + mx equation, where y = ln(I(Q),    

b = ln(I(0), ݉ ൌ െ
ோ

మ

ଷ
 , and x = Q. Plotting the scattering intensity data in this fashion will 

yield the Guinier plot in which the slope of the graph will yield Rg. If the particle shape 

(sphere, rod, ellipse, etc.) is known the determined Rg value can be used to describe the 

dimensions of the scattering particle. The geometrical radius (r) of a sphere for example 

can be calculated from the determined Rg value using Equation 4.12 (Glatter & Kratky 

1982) 
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Equation 4.12 Radius of gyration of a sphere. 

ܴ
ଶ ൌ 	

3
5
 ଶݎ

The I(0) determined from the Guinier plot can be used to determine the molecular weight, 

M [g/mol],  of a scattering particle if the particle concentration is known. The molecular 

weight will be known to the same accuracy as the protein concentration (Putnam et al. 

2007). The Guinier plot also allows qualitative assessment of the polydispersity of the 

sample. A monodisperse scattering system will yield a straight plot line therefore 

calculation of Rg from the slope of the line is possible. However, a polydisperse system 

(such as aggregating protein) will yield a non-linear Guinier plot where the determination 

of Rg is not possible (Glatter & Kratky 1982). Moreover, the Guinier approximation is only 

appropriate when RgQ < 1.3. Software such as AutoRg can automatically calculate the Rg 

from the scattering data (Petoukhov et al. 2012; Petoukhov et al. 2007). 

4.2.3.2  Porod Analysis 

Porod analysis allows the determination of particle volume and surface roughness from 

scattering data. This is achieved by slope analysis of the high Q region where I(Q)  Q-4 

(for a smooth surface) and by determination of I(0) of a scattering particle (Putnam et al. 

2007).  

Equation 4.13 Particle volume determination (Putnam et al. 2007). 

ܸ ൌ 	ߨ2
ሺ0ሻܫ
ܳ

 

Where V is the total particle volume and QP is the Porod invariant. 

Equation 4.14 Particle volume determination (Putnam et al. 2007). 

ܳ ൌ න ܳଶ
ஶ


 ሺܳሻ݀ܳܫ

The determination of the particle volume via Porod approximation relies on good quality 

data as it relies on the entire measured Q range (Putnam et al. 2007). 
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4.2.3.3 Pair‐Distance Distribution Function 

The pair distance distribution function (PDDF or P(r)) is a different representation of the 

scattering data. The P(r) function is a Fourier transform of the I(Q) function (Equation 

4.15). The P(r) shows the relative distance of scattering centres  from one another (in X-

ray scattering the scattering centres are electrons). Therefore the P(r) plots are utilised to 

determine the shape of an object as well as monitoring conformational changes of a given 

macromolecule such as a protein (Glatter & Kratky 1982). 

Equation 4.15 Indirect Fourier transform function for pair distance distribution function from 
the intensity function (Putnam et al. 2007). 

ܲሺݎሻ ൌ 	
ݎ
ଶߨ2

	න ሺܳሻܳܫ sinሺܳݎሻ ݀ܳ
ஶ


 

An overview of different shapes, their corresponding theoretical scattering function as well 

as the P(r) function are shown in Figure 4.8. 

 

Figure 4.8:  P(r) plot of ideally shaped solid sphere (red), rod (green), disc (yellow), hollow 
sphere (blue), dumbbell (pink). Diagram from (Svergun & Koch 2003). 

Because P(r) plots are one dimensional they cannot be used to definitely determine the 

three dimensional shape of the scattering particle. However, a good indication of particle 

shape can be obtained because the P(r) plot describes the probability of the distance 

between one electron and another in a scattering particle (e.g., a protein molecule). For 
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example, a globular object will display a bell shaped P(r) function (Figure 4.8, red line) 

and a rod shaped object will result in a function with a peak at short distances and an 

elongated tail at larger distances (green line), whereas disks show a broad peak (yellow 

line), multi-domain objects show two or more peaks (pink line), and hollow spheres 

display a high proportion of long distances between electrons (blue line). 

 

4.2.3.4 Fitting of Form Factor Functions 

The shape of the scattering intensity function (I(Q)) by dilute monodisperse particles such 

as proteins in solution can be compared to the theoretical scattering of geometrical shapes 

including spheres, rods, ellipsoids, etc. Geometrical shapes can be described by 

mathematical functions. Computer software is usually used to perform the fitting of the 

experimental data to the theoretical form factor. For fitting purposes, IgorPro 6.2.1.0 

software and the NCNR SANS package were employed (Kline 2006). The shape of a 

uniform ellipsoid was used as a model to represent native ovalbumin. The description of 

the uniform ellipsoid P(Q)ell function is given in Equation 4.16. 

Equation 4.16  P(Q)ell form factor function (Kline 2006).  

ܲሺܳሻ ൌ 	
݈݁ܽܿݏ

ܸ
ሺߩ െ ௦௩ሻଶߩ	 	න ݂ଶሾܳݎሺ1  ଶߥଶሺݔ െ 1

ଵ


ሻሻଵ/ଶሿ	݀ݔ  ܾ݇݃ 

Further terms are explained in Equation 4.17, Equation 4.18, and Equation 4.19. 

Equation 4.17 

݂ሺݖሻ ൌ 3 ܸ
ሺsin ݖ െ cos ሻݖ

ଷݖ
 

Equation 4.18 
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ߨ4
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Equation 4.19 

ߥ ൌ
ݎ
ݎ
	 

The function f(z) is the scattering amplitude where  ݖ ൌ ሺ1ݎܳ	  ଶߥଶሺݔ െ 1ሻሻଵ/ଶ. The 

radius ra is the radius of the short axis of the ellipsoid, rb the radius of the long axis. The 

volume Vell is the volume of the ellipsoid and ݔ ൌ ܴଶܳଶ (Norman et al. 2005). The terms 

 ௦௩ refer to the protein and solvent SLD respectively. During fitting, theߩ  andߩ

software changes variable parameters and returns fitted intensity values that are scaled 

(scale) to the absolute intensity scale to match the experimental data. The scale parameter 

can be used to determine the protein volume fraction of the sample. The fitted line is also 

adjusted to account for residual incoherent background (bkg). In addition to the P(Q)ell 

function, some aggregate structures were fitted to a cylinder with elliptical cross-section 

form factor (P(Q)Cyl) function (Kline 2006; Svergun & Feigin 1987). 

4.2.3.5 Fitting to Crystallographic Data 

While it is not possible to derive a definite particle structure directly from SAXS, the 

deriving of a theoretical scattering form factor from a known structure is possible. The 

P(Q) of a protein in solution can be approximated by that of a simple geometrical shape, as 

described in Section 4.2.3.4. However, it is also possible to employ the crystal structure of 

a given protein as a geometrical template to generate the respective form factor. The 

generation of a form factor of crystallographic data can be used to compare the crystal 

structure to the solution structure of a protein. The comparison of experimental SAXS of a 

protein solution with the theoretical scattering of the respective crystal structure can help 

establish if the crystal structure is the biologically relevant structure (Putnam et al. 2007). 

Software such as CRYSOL can generate form factors of any crystal structure which in turn 

can be compared to the experimental data (Svergun et al. 1995). A good fit of experimental 

and theoretical scattering indicates that the solution structure is consistent with the crystal 

structure. 

4.2.3.6 Ab‐initio Shape Determination by Fitting of Bead Models 

There are several approaches to approximate the 3D shape of a scattering particle. Without 

prior knowledge of particle size and shape the ab-initio determination of the 3D structure 
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from the 1D scattering data is often employed (Franke & Svergun 2009; Putnam et al. 

2007). There are several approaches of modelling the 3D structure. The algorithms of the 

different computer software employ dummy particles (such as atoms, residues, or beads) 

that start out at a random distribution. From this distribution the theoretical scattering 

profile is generated and compared with the experimental scattering profile. Computer 

software such as DAMMIF and GASBOR cycle through iterations of dummy particle 

distributions until a converging fit with the experimental data is achieved (Franke & 

Svergun 2009; Putnam et al. 2007). 

4.2.3.7 Fitting of Structure Factor Functions 

The previous sections described how scattering data can be used to analyse the size and 

shape of the scattering particle. However, these types of analysis are only possible in dilute 

concentration in the absence of a structure factor (S(Q)). In more concentrated solutions 

the particles (e.g., proteins) will often assume a more ordered distribution because of 

particle-particle interactions often due to Coulombic interaction (Ianeselli et al. 2010). If 

Coulombic interactions are the dominant factor in the S(Q) they can be modelled 

analytically considering the ionic strength and permittivity of the solution, the net charge 

on the particles and the concentration of the particles. IgorPro 6.2.1.0 software and the 

NCNR SANS package were employed to fit a Coulombic structure factor to concentrated 

protein solutions (Kline 2006). 
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4.3 Dynamic Light Scattering of Soluble Ovalbumin Aggregates 

The biggest caveat for the interpretation of DLS data is that more light is scattered by large 

particles than by small particles. The scattering intensity (I) of scattered light is 

proportional to the 6th power of the diameter (I  d6) (Malvern Instruments 2011). 

Therefore, large particles are over-represented in the raw intensity data if mixtures of 

different particle sizes are measured. However, in DLS, particle size distribution can be 

approximated not only by particle scattering intensity but also by particle volume via Mie 

approximation. An example of intensity vs. volume distribution is shown in Figure 4.9. 

The volume distribution shows a monodisperse solution (monodispersity 99.7 %) of native 

ovalbumin molecules. On the other hand, the intensity distribution shows the presence of 

large structures with diameters up to 200 nm in the sample solution. In this example the 

0.3 % of large aggregates (by volume) contributes to about 88 % of the total scattering 

while the native ovalbumin molecules contribute to only 12 % of the total scattering. 

Because of the large aggregate sizes during ovalbumin aggregation DLS experiments 

could only be conducted for the soluble fraction of protein. The insoluble fraction was 

removed by centrifugation. For size analysis of the soluble aggregates particle size 

distribution by volume rather than by intensity was chosen. 

 

Figure 4.9 DLS particle size distribution of ovalbumin in water before heat treatment by 
volume (A), and by intensity (B). Data were measured in triplicate (red, blue, 
and black lines). 

The ovalbumin solutions for DLS were prepared at the same protein concentration (0.6 

mg/mL) as used in subsequent SAXS measurements (Section 4.4). The starting pH of all 

A B
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solutions was measured to be between 6.5 and 7 for ovalbumin in water, glucose, and 

NaCl. The pH of methylglyoxal treated ovalbumin was between pH 4 (at 0.6 mg/mL 

protein concentration) and pH 5 (at high protein concentrations (45.5 mg/mL)). The 

concentrations of NaCl, glucose, and methylglyoxal were 100 mM. 

Samples were heated to 80 °C which is just above the protein melting point (78 °C) of 

ovalbumin (Kosters et al. 2003). Following heat incubation the samples were kept on ice 

until further analysis. Before analysis, samples were centrifuged to pellet insoluble 

aggregate because only smaller aggregates were accessible by the scattering technique. 

The insoluble fraction was not characterised because the focus of this thesis was to 

characterise the soluble fraction which likely represent early aggregation. 

In general, the samples incubated in the presence of NaCl displayed the highest proportion 

of aggregated protein. After 5 hours incubation, there was a high proportion of insoluble 

aggregate in all samples. However, the methylglyoxal treated solution remained clear even 

after 24 hours heating (Figure 4.2). The high propensity of ovalbumin to aggregate in the 

presence of NaCl is likely due to closer inter-particle distances of ovalbumin molecules in 

solution. The closer packing is made possible by electrostatic shielding of the charged 

ovalbumin molecules and thereby reduced repulsive forces between similarly charged 

ovalbumin molecules (Ianeselli et al. 2010).  

The size distribution graphs (Figure 4.10 to Figure 4.13) show the hydrodynamic diameter 

of the soluble aggregates formed by ovalbumin in the presence of Milli-Q water (Figure 

4.10), 100 mM glucose (Figure 4.11), 100 mM methylglyoxal (Figure 4.12), and 100 mM 

NaCl (Figure 4.13). The chosen buffer conditions supplied an excess of possible reaction 

partners (glucose and methylglyoxal) with respect to available lysine residues and were 

compared to the salt (NaCl) and no salt conditions (water). For data analysis the volume 

weighted representation was chosen to give a better understanding of the overall 

distribution of the protein in solution. 
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Figure 4.10:  Size distribution of soluble ovalbumin aggregate in Milli-Q water over a 
heating period of 24 hours at 80 °C. A) 0 minutes heating, B) 30 minutes 
heating, C) 1 hour heating, D) 5 hours heating, E) 24 hours heating. Triplicate 
measurements represented by black, blue, and red lines.  
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Figure 4.11 Size distribution of soluble ovalbumin aggregate in 100 mM glucose over a 
heating period of 24 hours at 80 °C. A) 0 minutes heating, B) 30 minutes 
heating, C) 1 hour heating, D) 5 hours heating, E) 24 hours heating. Triplicate 
measurements represented by black, blue, and red lines. 

 

A B

C D

E



Chapter 4 – Dynamic Light and Small Angle X-ray Scattering of Protein Aggregates 112 

 

 

 

Figure 4.12 Size distribution of soluble ovalbumin aggregate in 100 mM methylglyoxal over a 
heating period of 24 hours at 80 °C. A) 0 minutes heating, B) 30 minutes heating, 
C) 1 hour heating, D) 5 hours heating, E) 24 hours heating. Triplicate 
measurements represented by black, blue, and red lines. 
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Figure 4.13 Size distribution of soluble ovalbumin aggregate in 100 mM NaCl over a heating 
period of 24 hours at 80 °C. A) 0 minutes heating, B) 30 minutes heating, C) 1 
hour heating, D) 5 hours heating, E) 24 hours heating. Triplicate measurements 
represented by black, blue, and red lines. 
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The monomeric diameter of ovalbumin is about 4 - 5 nm (PDB entry: 1OVA). DLS 

attributes a smaller diameter to native ovalbumin of about 2 - 3 nm in Milli-Q water and in 

100 mM glucose. In the presence of methylglyoxal there are two populations present, a     

2 - 3 nm peak consistent with monomeric ovalbumin and a peak at 4 - 6 nm consistent with 

dimeric ovalbumin. In the presence of 100 mM NaCl there is a distinct peak at 4 - 6 nm 

consistent with dimeric ovalbumin species.  

Heating of the solutions caused the onset of ovalbumin aggregation indicated by the size 

increase of soluble particles in solution. Within 30 minutes of heating the particle size 

increased by about two orders of magnitude for ovalbumin in the presence of water, 

glucose, and NaCl. However, ovalbumin in the presence of methylglyoxal remained a 

dimer.  The picture is much the same after 1 hour of heating at 80 °C. After 5 and 24 hours 

of heating monomeric and dimeric ovalbumin species are reappearing in the water, glucose 

and NaCl samples. This is most likely explained by a growth of most aggregate to 

insolubility. Since the insoluble fraction was always removed by centrifugation, the 

remaining monomeric and dimeric ovalbumin molecules in solution are the main scattering 

particles in solution, despite being heavily reduced in number. Interestingly, there is no 

evidence of monomers or dimers in the methylglyoxal treated sample. This may indicate 

that monomeric species have been cross-linked to sizes beyond the dimer via 

methylglyoxal (Sections 2.1.4 and 3.2.5). Additionally, there is a further size increase of 

soluble ovalbumin in the presence of methylglyoxal to almost 1 µm. This is in contrast to 

all the other cases, where any aggregates greater than approximately 100 nm are 

precipitated out of solution. 

The exact mechanism governing ovalbumin aggregation in the presence of methylglyoxal 

is complex. Methylglyoxal may react with the amino groups of lysine and guanidinium 

groups of arginine in a Maillard reaction (Aćimović et al. 2009; Degenhardt et al. 1998; Lo 

et al. 1994) (Section 2.1.4). Ovalbumin monomers carry 15 arginine and 20 lysine residues 

(Figure 4.14) that possibly react with methylglyoxal. Analysis of the molecular surface of 

the ovalbumin monomer crystal structure (Stein et al. 1991) reveals a rich decoration with 

lysine and arginine residues (Figure 4.14). Since lysine and arginine contribute to the 

protein net charge and IEP , the modification of these residues by methylglyoxal affects 

both net charge and IEP of the modified protein.  
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Figure 4.14 Many of the 35 total lysine and arginine residues decorate the surface of 
ovalbumin (PDB entry: 1OVA). Arginine and lysine residues (blue). 

The 0.6 mg/mL ovalbumin solution treated with 100 mM methylglyoxal had a measured 

pH of 4. The low pH of the solution may have contributed to net charge changes of 

ovalbumin. The low pH 4 would produce a strong positive net charge of +20 (ovalbumin 

has a theoretical IEP 5.0 (Section 2.1.2), compared to a net charge of -10 at pH 7). 

However, the IEP of ovalbumin necessarily has to undergo changes during the reaction of 

the basic lysine and arginine with methylglyoxal to form neutral products. The ratio of 

modified lysine and arginine residues after heating is not known exactly. However, mass 

spectrometric analysis showed that 38% of detected arginine residues had reacted to form 

hydroimidazolone after 1 hour of heating at 100 °C (Section 3.3.1). A conservative 

estimation of 50 % reacted lysine and arginine residues after 24 hours of heating would 

entail a drop of the theoretical IEP to 4.1 (estimated by the EMBOSS software suite (Rice 

et al. 2000)) (Figure 4.15). This is close to the pH of the solution (pH 4) which would 

result in a low net charge of +2. The Coulombic repulsion between ovalbumin proteins 

would be negligible and therefore facilitate aggregation. However, if 100 % of lysine and 

arginine residues reacted the IEP would drop to 3.3 (Figure 4.15) which would entail a 

negative net charge (-15) at a pH 4 causing a stronger electrostatic repulsion between 

ovalbumin monomers even compared to unmodified ovalbumin at pH 7 (estimated charge 

using EMBOSS at pH 7 is -10).  
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Figure 4.15 Theoreical IEPs of ovalbumin when unmodified (black, IEP = 5.0); 50 % modified 
lysine and arginine residues (red, IEP = 4.1); 100 % modified lysine and arginine 
residues (blue, IEP = 3.3). All theoretical values were determined based on pKa 
values of amino acid residues using the EMBOSS software suite (Rice et al. 2000). 

In conclusion, the soluble aggregates differ markedly from one another. By simple 

comparison of the size distribution curves the importance of added salt or Maillard 

reaction partner on aggregate size and kinetics becomes evident. In order to gain further 

insight into the finer mechanisms of ovalbumin aggregation small angle X-ray scattering 

studies were conducted. 

  

IEPIEPT unmodified = 5.0 unmodified = 5.0
IEPIEPT 50 % modified = 4.1 50 % modified = 4.1
IEPIEPT 100 % modified = 3.3 100 % modified = 3.3
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4.4 Small Angle X‐ray Scattering of Ovalbumin Aggregates 

Ovalbumin solutions at a concentration of 0.6 mg/mL and 3.2 mg/mL in Milli-Q water and 

in the presence of 100 mM NaCl, 100 mM glucose, or 100 mM methylglyoxal were 

prepared. The SAXS experiments showed that the dilute concentration of 0.6 mg/mL did 

not cause interparticle interference effects. Moreover, the chosen concentration gave 

sufficient scattering signal for further analysis at the chosen sample to detector distances. 

The concentration of 3.2 mg/mL was chosen as it was the lowest concentration in the 

tested range where an interparticle interference is significant. Two typical scattering 

patterns that were recorded during the experiments are shown in Figure 4.16. The circular 

scattering is caused by ovalbumin in solution as well as by the buffer. It can be seen that 

aggregated ovalbumin scatters more strongly than native ovalbumin. The detector is made 

up of 10 individual panels. The beamstop that reaches from the bottom right to the centre 

of the scattering pattern prevents X-ray damage to the detector from the very intense direct 

beam. 

 

Figure 4.16 Detector generated image of SAXS scattering pattern of ovalbumin in Milli-Q 
water (0.6 mg/mL at 7 m sample to detector distance). A) before heating, B) after 
24 hours heating at 80 °C. The detector is made up of 10 individual panels. The 
beamstop that reaches from the bottom right to the centre of the scattering pattern 
prevents X-ray damage to the detector. 

 



Chapter 4 – Dynamic Light and Small Angle X-ray Scattering of Protein Aggregates 118 

 

 

4.4.1 Quaternary Structure of Native Ovalbumin in Solution 

The initial oligomeric state of ovalbumin before aggregation was assessed prior to heat 

treatment. SAXS measurements of the native quaternary structure were undertaken in 

dilute systems (0.6 mg/mL protein concentration) to avoid particle-particle interactions. At 

the ovalbumin concentration of 0.6 mg/mL there was no evidence of particle-particle 

interaction (no structure factor) visible in the scattering patterns. In order to establish 

whether ovalbumin was monomeric or dimeric in solution at 0.6 mg/mL, the scattering 

profiles of ovalbumin in all four conditions (water, 100 mM glucose, 100 mM 

methylglyoxal, 100 mM NaCl) were measured before heating (Figure 4.17).  The radii of 

gyration (Section 4.2.3.1) of all four protein solutions were between 25.5 ± 0.5 Å and 27.8 

± 1.3 Å (Table 4.3). These findings are consistent with previous literature (Weijers et al. 

2005; Matsumoto & Inoue 1993), where Rg values of 26 Å and 27 Å were attributed to the 

monomeric ovalbumin. However, an Rg value of 28 ± 1 Å was also proposed to be 

consistent with dimeric ovalbumin in solution (Ianeselli et al. 2010), which is 

contradictory to the findings presented here and to the findings of Weijers et al. (2005) and 

Matsumoto & Inoue (1993). 

As seen in Figure 4.17A the scattering of all four solutions before heating agree well with 

the theoretical scattering profile of the monomer (single chain A) of the crystal structure of 

the PDB entry 1OVA (Stein et al. 1991). In comparison, the theoretical scattering of the 

three possible ovalbumin dimers (Chains AB, AC, AD) all show marked differences in the 

scattering profiles (Figure 4.17B). The theoretical scattering was calculated using CRYSOL 

software (Svergun et al. 1995). CRYSOL analysis of chain A yielded an Rg value of 28.1 Å 

for the single chain A which is consistent with the obtained SAXS scattering profiles (25.5 

± 0.5 Å to 27.8 ± 1.3 Å).  Additionally, the calculated (Autoporod) volumes and molecular 

weights of the experimental data agreed well with monomeric chain A of 1OVA. The 

molecular weight of chain A was determined to be 41.9 kDa compared to the 

experimentally determined average molecular weight of 35.5 kDa, calculated using 

Autoporod. The volumes were determined to be 59.4 nm3 for the single chain A and 56.9 

nm3 for the experimentally determined volume, showing good agreement. All these 

findings strongly indicate the presence of a predominantly monomeric ovalbumin species 

at 0.6 mg/mL which is consistent with previous findings reporting monomeric ovalbumin 

between 0.1 mg/mL and 1 mg/mL (Matsumoto & Inoue 1993). 
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Figure 4.17:  SAXS scattering profiles of ovalbumin before heating, in the presence of water, 
glucose, methylglyoxal, and NaCl. A) 1.6 m camera to detector length, B) 
Theoretical scattering of monomeric and dimeric ovalbumin (combinations in 
shades of blue from light to dark: Chains AB, AC, AD, and monomer (black) 
compared with the measured scattering of ovalbumin in water (red).  

A

B
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The experimentally determined scattering profiles of 0.6 mg/mL ovalbumin in Milli-Q 

water, methylglyoxal, and NaCl show high similarity across the entire Q-range (Figure 

4.17A). 

At high Q values, which correspond to small distances in real space (measured at 1.6 m 

sample to detector distance), there is no obvious sign of aggregation (Figure 4.17A). 

However, at lower Q values (measured at 7 m sample to detector distance) there is an 

intensity increase in the low Q region, indicative of early protein aggregation even without 

heating. The ovalbumin aggregation is most pronounced in the presence of Milli-Q water 

followed by NaCl, glucose and methylglyoxal.  

 

Figure 4.18 7.0 m camera to detector length. Red line: ovalbumin in water, yellow line: 
ovalbumin in 100 mM glucose, green line: ovalbumin in 100 mM methylglyoxal, 
blue line: ovalbumin in 100 mM NaCl, black line: theoretical scattering of the 
ovalbumin crystal X-ray structure (PDB entry: 1OVA). 
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4.5 Protein Concentration Effects on Ovalbumin in Solution 

In addition to the buffer conditions, the protein concentration is one of the major factors 

that determine aggregate morphology. Ovalbumin has been shown to form fibrillar 

aggregates of varying contour lengths, ranging from 50 ± 14 nm to 190 ± 70 nm depending 

on the chosen protein concentration (Sagis et al. 2004). The longest fibrils were found near 

the protein concentration at which gel formation starts (cg). Using SAXS, the analysis of a 

series of concentrated protein solutions allows the determination and characterisation of 

the structure factor (S(Q)) within the solution. S(Q) is a measurement of interparticle 

distances which in turn contains information about particle-particle interactions. 

Therefore, a protein concentration dependent study on the effects of the respective buffer 

conditions was undertaken. The sample to detector distance was 3 m, corresponding to a 

Q-range of 0.005 Å-1 - 0.3 Å-1. Figure 4.19 illustrates marked differences of ovalbumin in 

the four different test solutions. Firstly, the low ovalbumin concentrations show similar 

scattering across all four buffer conditions. With increasing ovalbumin concentrations 

there is a distinct development of a scattering peak, especially of ovalbumin in water and 

in 100 mM glucose (Figure 4.19A and B). There is no obvious peak development in either 

methylglyoxal or NaCl buffer. Because the peak is only visible at high concentration and is 

also moving towards a higher Q value (corresponding to smaller distances in real space) 

with increasing protein concentration, it is very likely that the observed peak is a structure 

factor (S(Q)) related peak rather than a form factor (P(Q)) related peak (Ianeselli et al. 

2010). Therefore the peak contains information about the predominant inter-protein 

distances of the proteins in solution, which naturally decreases as the volume fraction of 

protein in solution increases. Similar peak shifts have been observed previously by others 

(Ianeselli et al. 2010) in a concentration range of ovalbumin from 20 - 200 mg/mL. The 

presence of a peak indicates that the proteins in solution have a preferred interparticle 

distance rather than a broad random distribution. This is likely an effect of electrostatic 

repulsion (Coulomb repulsion) in the system, as native ovalbumin is negatively charged 

(net charge is -11 to -12) at pH 7 (Broersen et al. 2007; Ianeselli et al. 2010). The NaCl 

sample shows signs of aggregation at low Q values, whereas the scattering increase is less 

pronounced in the glucose and water samples. Interestingly, there is less aggregation in the 

methylglyoxal treated ovalbumin solution. The suppression of particle-particle repulsion 

by salt of ovalbumin has been observed previously (Ianeselli et al. 2010; Sugiyama et al. 
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2001) and is consistent with enhancing aggregation observed in DLS measurements. 

However, the lack of aggregation and lack of a S(Q) in the methylglyoxal sample indicates 

a different mechanism to salt shielding (Section 4.5.1).  

 

 

Figure 4.19 Concentration range of ovalbumin in A) water, B) glucose, C) methylgyoxal, D) 
NaCl. From lowest concentration (black line) to highest concentration (red 
line). The concentrations are: black 0.8 mg/mL, blue 2.6 mg/mL, green 9.7 
mg/mL, yellow 26.3 mg/mL, red 45.5 mg/mL. 
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C D



Chapter 4 – Dynamic Light and Small Angle X-ray Scattering of Protein Aggregates 123 

 

 

The SAXS data were fitted mathematically to determine both the form factor (to yield 

information about the particle shape) and structure factor (to gain insight into the 

interparticle interactions). Two ovalbumin concentrations were chosen for fitting, 0.8 

mg/mL and 45.5 mg/mL. The low concentration allowed the fitting of a form factor (P(Q)) 

irrespective of a structure factor because protein-protein interactions are negligible (S(Q) = 

1) at sufficiently low concentrations (Glatter & Kratky 1982). The high concentration 

allowed fitting of both form (P(Q)) and structure factor (S(Q)). All of the parameters for 

fitting are listed in Table 4.1 (ovalbumin at 0.8 mg/mL) and Table 4.2 (ovalbumin at 45.5 

mg/mL). For fitting purpose the protein and solvent scattering length densities (SLDs) 

were fixed at calculated values, as was the background scattering.  Water (the solvent) has 

a SLD of 9.43 x 10-6 Å-2 (calculated using the SLD Calculator available at 

http://www.ncnr.nist.gov/resources/sldcalc.html), and an appropriate SLD was used for 

hydrated protein (10.5 x 10-6 Å-2). For  X-ray scattering, the SLD is proportional to the 

electron density and the classical electron radius (2.818 fm) (Koch et al. 2003). The SLD 

of water was held constant for all of the data fits, even for buffers that contained NaCl, 

glucose, or methylglyoxal because the buffers were made up of at least 98.2 % water. 

Therefore the contributions of other compounds were negligible for the overall SLD of the 

solution.  
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4.5.1 Determination of Ovalbumin Form Factor and Structure Factor  

The shape of ovalbumin has previously been described as an ellipsoid with the dimensions 

70 x 45 x 50 Å (PDB: 1OVA (Stein et al. 1991)). For data fitting, the uniform ellipsoid 

model was therefore chosen. The parameters for fitting the ellipsoid form factor (P(Q)ell) 

to the 0.8 mg/mL ovalbumin solutions are listed in Table 4.1. The SAXS scattering data of 

the 0.8 mg/mL concentration were fitted without a structure factor because protein-protein 

interactions are negligible at this low concentration.  

Table 4.1 P(Q)ell fitting parameters for the 0.8 mg/mL ovalbumin solutions. Grey values 
are fixed values. Black values are variable fitted values. Typical error values 
for the radii were between ± 1.8 Å. 

   water glucose methylglyoxal  NaCl 

Scale / 10‐3  1.84  1.78  1.76  1.95 

ra (rotation axis) / Å  44.2  44.3  44.5  65.6 

rb / Å  22.9  22.2  22.2  20.9 

SLD ellipsoid / 10‐6 Å‐2  10.51  10.49  10.48  10.54 

SLD solvent / 10‐6 Å‐2  9.43  9.43  9.43  9.43 

Incoh. bkg /10‐4 cm‐1  1.65  4.18  1.71  1.20 

χ2  116  112  107  152 

√(χ2/n)  0.51  0.51  0.49  0.59 

 

The ellipse radii ra and rb show that the fitted ellipsoids have diameters (d) of about 88-89 

Å (da) and 42-46 Å (db) which is in good agreement with the ovalbumin dimensions 

previously reported (70 Å x 45 Å x 50 Å). Only ovalbumin in NaCl buffer deviates from 

the norm with a da of 131 Å but similar db. This could indicate that some ovalbumin 

molecules are forming dimers in the presence of NaCl (with an end-to-end dimerisation 

rather than side by side). This is consistent with dimeric ovalbumin species observed in 

DLS; however, Figure 4.17 indicates that ovalbumin is monomeric, albeit at a slightly 

lower protein concentration of 0.6 mg/mL. A graph of the low ovalbumin concentration 

fits (Figure 4.20) illustrates that the uniform ellipsoid as a representation of the ovalbumin 

molecule agrees well with the collected experimental data. The fitted curves generally 

overlay well with the experimental data (yellow lines of experimental data overlaid with 

dashed lines of fitted ellipsoid form factor).  
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Figure 4.20 Experimental SAXS data of ovalbumin overlaid with fitted ellipsoid model 
(dotted lines). A) water, B) glucose, C) methylgyoxal, D) NaCl. Yellow line 0.8 
mg/mL, red line 45.5 mg/mL. 

For the high protein concentrations (45.5 mg/mL), P(Q)ell was fitted to the data in 

combination with a screened Coulomb structure factor S(Q)SC using the NCNR SANS 

analysis package (Kline 2006). The dimensions of ovalbumin at 45.5 mg/mL (Table 4.2) 

suggest that end-to-end dimers are formed in all four cases. The structure factor inclusion 

during fitting also suggests that the charge of the dimers is at about 10 for ovalbumin in 

water, glucose, and NaCl. This estimate is 2-fold lower than the expected 20 (the 

calculated net charge of the ovalbumin monomer at pH 7 is -10 (based on pKa values of 

amino acid residues using the EMBOSS software suite (Rice et al. 2000)). The discrepancy 

between the two values cannot be explained by salt bridge formation upon dimerisation 

because of the principle of charge conservation.  
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Table 4.2 Form factor of the ellipsoid (P(Q)ell) in combination with a screened Coulomb 
structure factor (S(Q)SC) fitting parameters for the 45.5 mg/mL ovalbumin 
solutions. Grey values are fixed values. Black values are fitted values. Typical 
error values for the radii were between ± 2.0 Å. The error for charge was ~ 0 in 
all cases apart from NaCl treated sample (error ± 7). 

   water glucose methylglyoxal  NaCl

Volume fraction  0.12  0.12  0.06  0.08 

ra (rotation axis) / Å  70.3  67.2  76.2  75.2 

rb / Å  21.5  21.5  21.0  21.2 

SLD ellipsoid / 10‐6 Å‐2  10.52  10.51  10.86  10.80 

SLD solvent / 10‐6 Å‐2  9.43  9.43  9.43  9.43 

Charge  10.3 10.4 3.0  7.5

Monovalent salt / mM  0.14 0.50 6.74  252.77

Temperature / K  298 298 298  298

Dielectric constant 78 78 78  78

Incoh. bkg /10‐3 cm‐1  7.70  7.60  7.56  9.01 

χ2  1862  1598  947  1080 

√(χ2/n)  2.07  1.91  1.48  1.63 

The lack of an obvious peak for both NaCl and methylglyoxal is indicative of reduction in 

the electrostatic repulsion of the proteins by these compounds. The shielding effect of 

NaCl was expected. Studies on ovalbumin that analysed the behaviour of ovalbumin at 

varying ionic strengths showed this shielding effect (Ianeselli et al. 2010). These studies 

showed that an increase of ionic strength lowers the electrostatic repulsion between 

ovalbumin molecules, leading to the onset of aggregation. The increased scattering of 

ovalbumin in NaCl at low Q distances is due to early aggregation of protein.  

Compared to NaCl methylglyoxal does not carry any charges that could contribute to a 

Coulomb shielding effect. However, at 45.5 mg/mL protein concentration the pH of the 

ovalbumin solution in the presence of methylglyoxal was measured to be pH 5 (compared 

to pH  6.5 - 7.0 of ovalbumin in water, glucose, and NaCl) which is close to the IEP of 

ovalbumin (4.7). This could explain the absence of an interaction peak in the 

methylglyoxal treated samples at high concentrations because the proteins would not carry 

significant net charges (Figure 4.15). 

The lack of a structure factor shown during SAXS studies in the presence of methylglyoxal 

(Figure 4.19) was observed before sample heating. From the mass spectrometric analysis 

(Section 3.3.1) it was observed that before heating only about 10 % of detected arginine 
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residues had reacted with methylglyoxal to form hydroimidazolone (Section 3.2.5). 

Ovalbumin with 10 % methylglyoxal modified lysine and arginine residues would have a 

theoretical IEP of 4.7 (estimated by the EMBOSS software suite (Rice et al. 2000)) (Figure 

4.15) which is close to the measured pH 5 and would result in a low net charge of -5. The 

Coulombic repulsion between ovalbumin proteins would be low and therefore there would 

not be a characteristic Coulombic interaction peak.  Chemically modified ovalbumin has 

previously been reported to form different aggregate structures. Succinylated and 

methylated ovalbumin variants with net charges of -1, -5, -12, and -26 at pH 7 have been 

reported to form different aggregate morphologies depending on the net charge (Weijers et 

al. 2008). Aggregate ordering was reported to increase with increasing protein net charge 

(Figure 4.21). Interestingly, the aggregates formed in the presence of methylglyoxal are 

also more ordered (Section 4.3 (DLS) and Section 4.7 (TEM)) and transparent (Figure 

4.2), but in contrast to succinylation the order increased with decreasing net charge. 

 

Figure 4.21 Figure taken from (Weijers et al. 2008). Net charges of ovalbumin variants 
influence the aggregate morphologies. 
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A further study was carried out, investigating in more detail the effects of methylglyoxal 

concentration on ovalbumin aggregation. A moderately concentrated ovalbumin solution 

of 3.2 mg/mL (i.e., high enough to show a clear structure factor) was studied in the 

presence of methylglyoxal at three methylglyoxal concentrations (0.025 mM, 2.5 mM, 100 

mM), to investigate possible changes in structure factor. The measured pHs of the 

solutions were pH 4 at 100 mM methylglyoxal and pH 7 at 2.5 mM and 0.025 mM 

methylglyoxal. The methylglyoxal concentrations were chosen to form a range that 

covered equimolar ratio of methylglyoxal to available lysine/arginine residues (2.5 mM 

methylglyoxal). There are 35 lysine and arginine residues per ovalbumin monomer which 

is a concentration of 2.6 mM at an ovalbumin concentration of 3.2 mg/mL (molecular 

weight of ovalbumin is 43 kDa). Therefore 2.5 mM of methylglyoxal was chosen as an 

equimolar concentration. The 0.025 mM concentration was a 100-fold dilution and 100 

mM was in excess of present lysine/arginine residues. 

Figure 4.22 shows that with increasing methylglyoxal concentration, the structure factor 

peak flattens out (which can be seen in the Q region between 0.002 Å-1 and 0.02 Å-1) 

showing a clear relationship between methylglyoxal concentration and reduction in 

electrostatic repulsion. However, the observation is that with increasing methylglyoxal 

concentration the interaction peak flattens out. Theoretically, at constant pH 7, a higher 

concentration of methylglyoxal would result in a higher degree of lysine and arginine 

modification which in turn would lower the IEP of the protein and increase the negative 

charge on the protein. Therefore with increasing methylglyoxal concentration an increase 

of the structure factor related peak would be expected. Since the increasing concentration 

of methylglyoxal reduces the interaction peak, it is evident that lysine and arginine 

modification do not markedly contribute to the observed differences between 0.025 mM 

and 2.5 mM methylglyoxal. However, the reduction of the protein electrostatic repulsion 

(and consequent reduction of structure factor) at high methylglyoxal concentration may be 

attributed to both the low pH and the degree of methylglyoxal modification. In order to be 

neutral at pH 4, the ovalbumin monomers have to have lysine and arginine residues 

modified by methylglyoxal 
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Figure 4.22 Scattering plots of ovalbumin 0.8 mg/mL (black line) overlaid with the theoretical 
scattering of an ovalbumin monomer single chain A (red line). In comparison 
ovalbumin 3.2 mg/mL and 0.025 mM methylglyoxal (lightest blue), 2.5 mM 
methylglyoxal (middle blue), and 100 mM methylglyoxal (darkest blue). Grey line 
is the same as the darkest blue line but concentration normalised. Scattering plots 
were generated from Scatterbrain. 

Overall, it appears that the combination of pH drop and methylglyoxal reactivity at 100 

mM methylglyoxal (but not at 2.5 mM or 0.025 mM) has a similar effect on protein 

orientation and dispersion as salt at ambient temperatures, albeit via two very different 

mechanisms. Furthermore, it is likely that the reaction between methylglyoxal and 

lysine/arginine contributes to a charge change as the solutions are heated and the reaction 

rate increased. The three 3.2 mg/mL ovalbumin solutions (100 mM, 2.5 mM, and 0.025 

mM methylglyoxal) were heated at 80 °C for 24 hours in order to establish the differences 

in scattering behaviour (Figure 4.23). Heating leads to a substantially different aggregation 

behaviours between the three conditions which is likely due to available methylglyoxal 

which in turn would influences net charge and thereby the aggregation behaviour of 

proteins. This is established in a completely different SAXS scattering profile. 
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Figure 4.23:  Scattering of ovalbumin 0.8 mg/mL (black line) overlaid with the theoretical 
scattering of a ovalbumin monomer single chain A (red line). For comparison: 
ovalbumin at 3.2 mg/mL at 80 °C. A) 0.025 mM methylglyoxal, B) 2.5 mM 
methylglyoxal C) 100 mM methylglyoxal, blue line: 10 minutes heating,  yellow 
line: 5 hours heating, green line: 24 hours heating. Scattering plots were 
generated from Scatterbrain. 

 

4.6 Heating Induced Changes of Ovalbumin Aggregates  

Heating is known to cause protein denaturation followed by aggregation. For aggregation 

measurements, the sample to detector distance was held constant at 7 m, corresponding to 

a Q-range measured of approximately 0.002 Å-1 - 0.2 Å-1, in order to allow characterisation 

of large aggregates.  

A B

C



Chapter 4 – Dynamic Light and Small Angle X-ray Scattering of Protein Aggregates 131 

 

 

Sample heating was carried out at 80 °C over a 24 hour period. The scattering intensity 

graphs (Figure 4.24) shows an increase of scattering intensity in the low Q region. This 

general upturn is present in all four buffer systems and is indicative of growing aggregate 

size. The slope of the scattering profiles is steepest for the NaCl/ ovalbumin solution 

(Figure 4.24D) which is in good agreement with the DLS data.  

 

Figure 4.24 Scattering plots of ovalbumin heated at 80 °C. Buffer conditions are A) water, B) 
100 mM glucose, C) 100 mM methylglyoxal, D) 100 mM NaCl. Black line: before 
heating, blue line: 10 minutes heating, green line: 1 hour heating, yellow line: 5 
hours heating, red line: 24 hours heating.  

There are distinct differences in the scattering profiles of all four samples, most notably in 

the rate of aggregation. Ovalbumin in the presence of NaCl seems to have reached the 

maximum measurable particle size after 1 hour. There is an obvious down shift of intensity 

at 24 hours heating time in the NaCl and in the glucose treated ovalbumin (Figure 4.24B 

and D). This is consistent with a net loss of the measured protein volume fraction in the X-

ray pathway. The drop of intensity therefore indicates that some of the insoluble aggregate 

has precipitated and is no longer contributing to the total scattering of the sample. This 
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coincides with the observed trend seen in DLS experiments where large amounts of 

insoluble aggregates were present after 24 hours (Section 4.3). Additionally, the shape of 

the scattering intensity does not appear to change markedly in the presence of NaCl after 1 

hour, while for water, glucose, and methylglyoxal there appear to be definite structure 

changes between 1 hour and 5 hours heating time. 

 

4.6.1 Rate of Aggregate Growth 

In an attempt to visualise the kinetics seen in Figure 4.24, two Q ranges were chosen to 

cover the two most dynamic scattering regions, one in the low Q region (Q = 0.003 - 0.025 

Å-1) and one in the high Q region (Q = 0.060 - 0.105 Å-1) (Figure 4.25). 

 

Figure 4.25 Dynamic regions (grey areas) used for the kinetics analysis overlaid with 
scattering data from ovalbumin in the presence of Milli-Q water for 24 hours. 
Black line: before heating, blue line: 10 minutes heating, green line: 1 hour 
heating, yellow line: 5 hours heating, red line: 24 hours heating. 

The average scattering of the two Q ranges was calculated and plotted over time to monitor 

the decrease of small scattering particles compared to the increase of large scattering 
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particles (Figure 4.26). The increase of scattering in the low Q window can be related to 

the increase of aggregates over time while the decrease of scattering in the high Q window 

is indicative of ovalbumin monomer decrease. This fairly simple approach allows easy 

interpretation of some of the underlying aggregation kinetics. The approach of plotting 

average intensities in this manner can be justified with regard to the Porod scattering 

invariant. The scattering invariant law states that the total scattering of a system of fixed 

contrast and fixed total volume fraction of components is constant, regardless of how the 

components are arranged (Glatter & Kratky 1982). A caveat for this approach in this 

instance is that the total protein volume fraction of the studied system may be changing 

due to insoluble aggregate precipitation at long heating times. This effect is probably 

responsible for the decrease in the large particle scattering intensity at long time scales for 

the glucose and NaCl samples.  

 

Figure 4.26 Plots of dynamic I(Q) changes of ovalbumin heated at 80 °C. Buffer conditions 
are A) water, B) 100 mM glucose, C) 100 mM methylglyoxal, D) 100 mM NaCl. 

A B

C D
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Red data set: low Q region (large aggregates), blue data set: high Q region 
representing monomers. 

The plots of the dynamic ranges show that of the tested four buffer conditions ovalbumin 

in water undergoes the slowest aggregation (Figure 4.26A red data), followed by 

ovalbumin in methylglyoxal (Graph C), glucose (Graph B) and NaCl (Graph D). The 

decrease of monomeric ovalbumin scattering (blue data) follows the inverse pattern. All 

samples differ only marginally after the first 10 minutes of heating. The NaCl treated 

ovalbumin at 0 minutes displays a low starting intensity but the intensity after 10 minutes 

heating is very similar to the other three. After 1 hour the scattering intensity decreased in 

all four samples, where the drop is most pronounced in the NaCl treated samples. After 24 

hours the scattering intensity decreased further indicating that most ovalbumin monomers 

are lost in NaCl, followed by water, glucose, and methylglyoxal. The average scattering 

intensity of the high Q region almost drops to zero for ovalbumin in NaCl (Figure 4.26D) 

indicating that only a very small number of monomers are present after 24 hours of 

heating. 

 

4.6.2 Influence of Buffer Conditions on Aggregate Size 

To determine particle size from SAXS measurements, the Guinier plot is often applied 

(Section 4.2.3.1). The Guinier approximation allows the measurement of the radius of 

gyration (Rg). In Figure 4.27 scattering data are presented in Guinier plots. For native 

ovalbumin the low Q values follow a linear trend over a wide range. This indicates the 

absence of aggregated protein (apart from the aggregate described in Figure 4.18) and that 

the Guinier fit can be used to determine Rg with confidence (Jacques & Trewhella 2010). 

With heat denaturation, the functions of all samples become more and more curved at low 

Q2. The upturn in this area is associated with aggregation to form large structures (Jacques 

& Trewhella 2010).  
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Figure 4.27:  Guinier plots of ovalbumin heated at 80 °C. A) Milli-Q water, B) 100 mM glucose, 
C) 100 mM methylglyoxal, D) 100 mM NaCl. Black line: before heating, blue line: 
10 minutes heating, green line: 1 hour heating, yellow line: 5 hours heating, red 
line: 24 hours heating. 

 

Because of the non-linearity of the heated ovalbumin data, the Guinier approximation for 

determining Rg is potentially somewhat erroneous. Therefore, two different approaches 

were taken to determine Rg. The Rg values were determined using Autoporod software. 

Autoporod is part of the ATSAS software package but also integrated into Scatterbrain 

software developed at the Australian Synchrotron (Petoukhov et al. 2012; Petoukhov et al. 

2007). Autoporod combines two computer softwares, i.e. AutoRg (determination of Rg) and 

AutoGNOM (determination of P(r)). AutoRg automatically runs Guinier analysis to 

establish Rg, which in turn is used to assign the maximum particle distance (Dmax) for P(r) 

analysis by AutoGNOM (Petoukhov et al. 2012; Petoukhov et al. 2007). Within 

AutoGNOM, the most suitable Dmax for P(r) analysis is determined by scanning the range 2 
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Rg to 4 Rg in 0.1 Rg steps (Petoukhov et al. 2007). Conversely, from the P(r) distribution 

analysis, the Rg can be calculated. Therefore, Autoporod returns two Rg values, i.e. one 

from Guinier analysis and one from the P(r) distribution. Figure 4.28 shows the 

progression of Rg as a function of heating time. Figure 4.28A shows the Guinier derived Rg 

and Figure 4.28B shows the P(r) derived Rg. 

In addition to this fully automated Autoporod approach for P(r) analysis, the Dmax was also 

adjusted manually. Dmax values were scanned manually using GNOM until a good fit 

between experimental data and P(r) analysis data was achieved. The fitting criteria for 

manual scanning of Dmax were the perceptual criteria embedded in GNOM software. These 

criteria include a χ2 test, smoothness of the solution, and presence of systematic deviations 

between the restored and the experimental curve (Petoukhov et al. 2007; Semenyuk & 

Svergun 1991). The combined numerical value of the different quality criteria is then 

labelled as “good”, “reasonable”, “suspicious”, and “bad”. Dmax adjustments were 

continued until a good or reasonable solution was achieved for each sample. Figure 4.28C 

shows the Rg values derived from P(r) analysis with manually adjusted Dmax. Overall, the 

Rg values follow the same trend regardless of which approach was taken. Figure 4.28D 

shows the averaged plot of Rg with values listed in Table 4.3. The maximum Rg values are 

found for ovalbumin aggregates in the presence of NaCl followed by glucose, water and 

methylglyoxal. This is in good agreement with the results obtained in DLS experiments 

(Section 4.3). In contrast to the DLS experiments, some of the insoluble aggregate fraction 

was accessible via SAXS experiments, which explains the larger observed radii. 
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Figure 4.28:  A) Radius of gyration (Rg) determined by Guinier approximation in Autoporod, B) 
Radius of gyration (Rg) determined by GNOM through P(r) distribution 
approximation in Autoporod, C) Radius of gyration (Rg) determined by GNOM 
through P(r) distribution approximation with manual adjustment of Dmax. D) 
average of A,B,C. Rg is shown over a heating period of 24 hours. Red line: water, 
blue line: methylglyoxal, green line: glucose, yellow line: NaCl. 

 

Table 4.3  Radius of gyration (Rg) values for ovalbumin solutions at different heating 
times. 

Heating Time [h] 
Milli-Q 

Rg of ovalbumin 
[Å] 

NaCl 
Rg of ovalbumin 

[Å]

Glucose 
Rg of ovalbumin 

[Å]

Methylglyoxal 
Rg of ovalbumin 

[Å]

0 27.3 ± 0.9 26.1 ± 0.3 27.8 ± 1.3 25.5 ± 0.5 
0.17 26.9 ± 0.9 27.8 ± 0.4 28.9 ± 2.3 29.1 ± 1.3 

1 92 ± 37 590 ± 140 359 ± 23 71 ± 2.1 
5 150 ± 100 560 ± 100 370 ± 90 175 ± 81 

24 218 ± 56 520 ± 47 325 ± 17 176 ± 76 
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4.6.3 Aggregate Shape and Pair Distance Distribution Function 

P(r) plots are utilised to determine the shape of the scattering particle. It is therefore 

possible to monitor conformational changes of proteins (Section 4.2.3.3). As can be seen in 

Figure 4.29, the peak for native ovalbumin (black line) is at about 29-30 Å which is in 

agreement with previous findings (Ianeselli et al. 2010). The slightly elongated tail 

towards longer distances indicates the ellipsoid shape of ovalbumin. Compared to 

ovalbumin in Milli-Q water and 100 mM glucose (Figure 4.29A, B), the P(r) function of 

ovalbumin in the presence of methylglyoxal and NaCl is more constrained (Figure 4.29C. 

D), representing a more compact shape of the ovalbumin molecule. However, after 10 

minutes heating time, this difference disappears and the shapes of all four P(r) plots are 

very similar. 

 

Figure 4.29 P(r) plots of ovalbumin before heating (black line), and after 10 minutes 
heating at 80 °C. A) water, B) 100 mM glucose, C) 100 mM methylglyoxal, D) 
100 mM NaCl. 
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C D
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Further heating of the ovalbumin solutions results in aggregate formations that differ 

markedly in their pair distance distribution (Figure 4.30) 

 

Figure 4.30 P(r) plots of ovalbumin over 24 hours of heating. Buffer conditions are A) 
water, B) 100 mM glucose, C) 100 mM methylglyoxal, D) 100 mM NaCl. Black 
line: before heating, blue line: 10 minutes heating, green line: 1 hour heating, 
yellow line: 5 hours heating, red line: 24 hours heating. P(r) plots were 
generated using GNOM from the ATSAS software package. 

As aggregation continues over the 24 hour period the P(r) plots show a radical shift to 

larger pair distances (640 - 650 Å in the case of ovalbumin in 100 mM NaCl). The shape 

of the P(r) function of the aggregated ovalbumin in NaCl sample is representative of 

spherical aggregation particles. However, the remaining three conditions show that the 

P(r) function is not bell shaped, but rather representative of rod like or elongated particles 

(compare Figure 4.8, green line). 
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4.7 TEM Micrographs of Ovalbumin Aggregates 

The analysis of SAXS data is often supported by microscopic techniques. Therefore TEM 

micrographs of the ovalbumin aggregates were obtained under the same experimental 

conditions as used in the DLS and SAXS measurements. The displayed micrographs are of 

samples from the soluble fraction (Figure 4.31 to Figure 4.34). Overall, there is no distinct 

growth pattern of discernible intermediates present in any of the samples. The 3D structure 

of the soluble aggregates is compacted onto a “2D” TEM grid. This stacking of aggregates 

on the grid may hinder accurate analysis of the underlying finer aggregate structures. The 

stacking was also observed in very dilute solutions of the soluble fraction. Where possible 

the finer underlying aggregate structures are pointed out (see arrows Figure 4.31 to Figure 

4.34). These finer structures are about 10 nm in width. However, the accurate quantitative 

determination of the length distribution of these fine structures was not possible. Analysis 

by eye suggests a longer length for methylglyoxal and NaCl treated ovalbumin compared 

to water and glucose treated protein.  

The large ovalbumin aggregates formed in the presence of water, glucose, and NaCl look 

very similar. In the NaCl treated ovalbumin solution there is generally less aggregate 

present and after 24 hours of heating aggregate is almost absent. This is consistent with the 

findings of DLS indicating that the centrifugation step eliminated large insoluble 

aggregates. It is furthermore consistent with the decrease of the volume fraction observed 

in SAXS experiments. Ovalbumin in the presence of methylglyoxal shows a distinct 

difference in the large aggregate morphology compared to the other three buffer 

conditions. There is a finer and more structured network rather than clumping. Moreover, 

at 10 minutes heating of ovalbumin in the presence of methylglyoxal, there are no large 

structures present. This is consistent with the DLS data which confirmed the absence of 

large soluble aggregates. However, the TEM micrographs show large structures after 30 

minutes heating which were not seen in the DLS experiments.  
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Figure 4.31 Soluble aggregate formation of ovalbumin at 80 °C in water at five different 
heating times. A) 10 minutes, B) 30 minutes, C) 1 hour, D) 5 hours, E) 24 
hours. The scale bar is 200 nm. The micrographs are representative of 
duplicate measurements. 
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Figure 4.32 Soluble aggregate formation of ovalbumin at 80 °C in 100 mM glucose at five 
different heating times. A) 10 minutes, B) 30 minutes, C) 1 hour, D) 5 hours, E) 
24 hours. The scale bar is 200 nm. The micrographs are representative of 
duplicate measurements 
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Figure 4.33 Soluble aggregate formation of ovalbumin at 80 °C 100 mM methylglyoxal at 
five different heating times. A) 10 minutes, B) 30 minutes, C) 1 hour, D) 5 
hours, E) 24 hours. The scale bar is 200 nm. The micrographs are 
representative of duplicate measurements 
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Figure 4.34 Soluble aggregate formation of ovalbumin at 80 °C in 100 mM NaCl at five 
different heating times. A) 10 minutes, B) 30 minutes, C) 1 hour, D) 5 hours, E) 
24 hours. The scale bar is 200 nm. The micrographs are representative of 
duplicate measurements 
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The observation of distinct fine and overall structural features of the methylglyoxal treated 

ovalbumin sample prompted further model fitting to the SAXS data (Figure 4.35). A 

cylindrical form factor (Section 4.2.3.4) was chosen as the model and was fitted to the 

sample series. This was compared to an ellipsoid form factor fit to the methylglyoxal 

treated ovalbumin before heating.  

 

Figure 4.35 Experimental SAXS data of ovalbumin heated for 24 hours at 80 °C at a protein 
concentration of 0.6 mg/mL. Data were fitted to P(Q)ell and P(Q)Cyl (dashed lines). A) before 
heating, B) 1 hour heating, C) 5 hours heating, D) 24 hours heating. 

The fitted models fit the data reasonably well, indicating that the ellipse and cylinder form 

factor models are appropriate fitting candidates. The derived structural information about 

the ovalbumin sizes are listed in Table 4.4. The two ovalbumin monomer radii are 22 Å 

and 45 Å which is good agreement with the ovalbumin monomer dimensions of 70 Å x 45 
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Å x 50 Å (PDB: 1OVA). The fitting data suggest that the radius within the first hour 

remains fairly constant. However, there is a 2 - 3 fold increase in length, indicative of   

end-to-end elongation. During further aggregation (5 hours and 24 hours) the cylinder 

radius increases to about 90 Å (9 nm) while the length increases to about 7700 - 8000 Å 

(770 - 880 nm). These large structures could represent the fine structure observed during 

TEM analysis, where the aggregate diameters (of fine strands) were determined to be 

about 10 nm (5 nm radius) (Figure 4.33). 

Table 4.4 Fitting parameters for the 0.6 mg/mL ovalbumin solutions at four time points. 
Grey values are fixed values. Black values are variable fitted values. Typical error 
values for the radii were between ± 1.5 Å. The error for cylinder length at 5 hours 
and 24 hours was ± 210 Å. 

  
methylglyoxal 

0 h 
methylglyoxal 

1 h
methylglyoxal 

5 h
methylglyoxal 

24 h 

Scale / 10‐3  1.76  1.6  1.5  1.3 

ra (rotation axis) / Å  22.2  26.3  27.5  30.0 

rb / Å  44.5  46.1  86.6  95.9 

Length / Å  89  224 8020 7680 

SLD ellipsoid / 10‐6 Å‐2  10.48  10.50  10.58  10.59 

SLD solvent / 10‐6 Å‐2  9.43  9.43  9.43  9.43 

Incoh. bkg /10‐4 cm‐1  1.71  0.3  0.0  0.1 

χ2  107  103  389  389 

√( χ2/n)  0.49  0.5  0.9  0.9 
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4.8 Summary and Discussion 

The analysis of polydisperse protein aggregation systems is extremely challenging. DLS 

and especially SAXS experiments clearly can contribute to understanding aggregation 

systems. Not only can SAXS provide high definition assessment of the oligomeric state 

prior to aggregation but also show the inter particle relation in solution. Moreover, it was 

shown that simple geometric models can be used to assess both the pre-aggregate native 

ovalbumin as well as the methylglyoxal treated aggregates. However, SAXS does rely on 

supplementary techniques. Other measurements such as dynamic light scattering, electron 

microscopy (SEM/TEM), and rheology are often necessary to conclusively determine the 

definite shape. 

The protein aggregation experiments showed that NaCl treatment of ovalbumin led to the 

largest particle size resulting in an increased insolubility. Over the measured range 

ovalbumin in water behaved similarly to ovalbumin in glucose. Only at long heating times 

(between 5 hours and 24 hours) glucose treated ovalbumin became increasingly insoluble 

due to larger particle sizes. Methylglyoxal treated ovalbumin showed reduced protein-

protein interactions due to pH changes and produced large soluble aggregates upon 

heating, unlike any of the other studied ovalbumin aggregates. This can be attributed to the 

reactivity of lysine and arginine groups with methylglyoxal, and can be contrasted with the 

markedly different behaviour when the protein-protein interactions were reduced by 

electrostatic screening through NaCl. The gained knowledge about ovalbumin aggregation 

may be relayed to the design of new food stuffs, for example where high soluble protein 

concentrations are desired (see Section 1.3.2). 
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Chapter Five 

5 Safety of Amyloid‐like Aggregates for Food 

Applications 

5.1 Introduction 

Amyloid fibrils can be formed by denatured proteins, protein fragments or peptides. 

Denaturation can be induced by pH, heat, ultrasound, high pressure, partial proteolysis or 

combinations of these (Jones & Mezzenga 2012; Whittingham et al. 2002). The formed 

fibrils are generally insoluble under physiological conditions and display resistance to 

proteolysis  by trypsin or Proteinase K (Conway et al. 2000; Nordstedt et al. 1994; Soto & 

Castaño 1996; Legname et al. 2004; Selvaggini et al. 1993). The amyloid fold is believed 

to be a generic protein conformation that can be assumed by many, if not all, peptides 

under the appropriate conditions (Chiti & Dobson 2006; Stefani & Dobson 2003). 

However, some peptide sequences have a particularly strong tendency to assume the 

amyloid fold (López de la Paz & Serrano 2004; Tenidis et al. 2000; von Bergen et al. 

2000). Moreover, sequence mutations can drastically alter the likelihood of amyloid 

formation from a given peptide (Makin & Serpell 2005; Citron et al. 1992; Goate et al. 

1991).  

The amyloid fold consists of β-strands that are arranged perpendicular to the fibril axis. 

This so called cross-β confirmation can be studied by X-ray diffraction. The diffraction 

patterns usually have interference maxima at 4.8 Å (meridional reflections) and 10 - 11 Å 

(equatorial reflections) (Eanes & Glenner 1968; Serpell 2000; Sunde et al. 1997). These 

reflections represent the mean spacing between β-strands (4.8 Å meridional reflections) 

and β-sheets (10 - 11 Å equatorial reflections) as illustrated in Figure 5.1.  
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Figure 5.1 Left) Detector showing the characteristic amyloid cross-β diffraction pattern, 
right) spacing of β-strands and β-sheets. Diagram taken from (Serpell 2000). 

Mature amyloid fibrils have a diameter of 6 - 12 nm and are made up of a varying number 

of protofilaments which themselves are made up of a number of intertwined β-sheets as 

illustrated in Figure 5.2 (Jiménez et al. 2002; Serpell et al. 2000). The extensive recurring 

β-sheet fold plays an important role in stabilising the fibril structure. In addition to X-ray 

diffraction, amyloid fibrils are routinely characterised using electron microscopy (EM) as 

well as atomic force microscopy (AFM). Amyloid specific fluorescent dyes such as 

Thioflavin-T (ThT) or Congo-Red (CR) further help in the characterisation of amyloid 

fibrils. ThT fluorescence increases upon binding of the dye to amyloid fibrils. The nature 

of the chemical interaction is not completely understood. It has been suggested that ThT 

binds parallel to the fibril axis in the grooves between adjacent β-sheets or adjacent 

protofilaments (Biancalana & Koide 2010; Groenning 2009; Groenning et al. 2007). 

Others suggest that ThT micelles bind to the fibril and are responsible for the increase in 

fluorescence (Khurana et al. 2005). CR binding to amyloid fibrils can be visualised under a 

polarised light microscope due to birefringence of the amyloid fold giving rise to 

“anomalous colors”  (Howie et al. 2007; Nilsson 2004). In this work, TEM microscopy 

and ThT fluorescence were used to characterise fibrils. 
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Figure 5.2 Protofilaments made up of four intertwined β-sheets. Diagram taken from (Sunde 
et al. 1997). 
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5.1.1 Disease Related Amyloid 

There are over 30 diseases, such as Alzheimer’s disease, Creutzfeldt-Jakob disease, 

diabetes (type II), and Parkinson’s disease, that are associated with amyloidosis (Chiti & 

Dobson 2006; Harrison et al. 2007). It has been suggested that amyloid related diseases 

share common amyloid aggregate structures and pathological pathways regardless of the 

source of protein (Glabe 2006; Kayed et al. 2003). A typical pathogenic pathway will be 

explained for the example of Alzheimer’s disease (AD). In AD, the amyloid β-peptides 

(Aβ) are generated through proteolysis of the amyloid precursor protein (APP). 

Amyloidogenic Aβ are 40 - 42 amino acids long and are the building blocks of amyloid 

fibrils and plaques (Hardy & Selkoe 2002; Vassar 2005). The first step in amyloid 

formation is usually nucleation, followed by the association of amyloid forming peptides 

into soluble fibrillar oligomers. The soluble oligomers further aggregate to form insoluble 

amyloid plaques. Interestingly, AD pathogenesis has been linked to the soluble fibrillar 

oligomers, rather than mature fibrils (Tomic et al. 2009). The soluble fibrillar oligomers 

were found in high concentrations in AD brains. In contrast, plaques of insoluble fibrils 

were found in AD brains as well as normal control brains, and were therefore not directly 

linked to neurotoxicity. Soluble fibrillar oligomers are considered by many to be the most 

pathogenic aggregate species across the disease realm (Glabe & Kayed 2006; Glabe 2008; 

Haass & Selkoe 2007; Stroud et al. 2012). However, there is some indication that amyloid 

toxicity is caused by mature fibrils, rather than by fibrillar oligomers (Stefani 2010; 

Gharibyan et al. 2007; Xue et al. 2009). Xue et al. (2009) found a relationship between 

amyloid toxicity and fibril length, and/or rigidity of β2-microglobulin (β2m) in vitro (Xue 

et al. 2009). Bovine insulin has been reported to form either toxic rigid fibrils with parallel 

β-sheet conformation or non-toxic filaments with anti-parallel β-sheet character under 

reducing conditions (Zako et al. 2009).  

It is commonly agreed that the toxicity of fibrillar aggregates is caused by membrane 

disruption (Tofoleanu & Buchete 2012; Glabe & Kayed 2006). This is often associated 

with Ca2+ release and oxidative damage (Stefani & Dobson 2003). Membrane disruption 

could be linked directly to the hydrophobicity and flexibility of the amyloid aggregate 

(Stefani 2010). Therefore, cell lines with differing membrane architectures may react 

differently to the same amyloid aggregate (Stefani 2010). 
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5.1.2 Functional Amyloid 

Functional amyloid fibrils can be categorised into natural and synthetic fibrils. The 

amyloid fold is sometimes harnessed by nature for its functionality as a reinforcement 

material (e.g. in spider silk, bacterial attachment proteins, hydrophobins) (Chiti & Dobson 

2006). The physicochemical properties of fibrils have been compared to steel and silk in 

terms of physical stress resistance (Smith et al. 2006). On the other hand, synthetic fibrils 

formed in vitro can be functionalised for specific new purposes, such as for new materials, 

nanowires, enzyme scaffolds, etc. (Graveland-Bikker & de Kruif 2006; Mankar et al. 

2011; Pilkington et al. 2010; Reches & Gazit 2003). The origin of many synthetic fibrils 

are proteins that are not natively folded into the amyloid fold (bovine serum albumin 

(BSA), human serum albumin (HSA), insulin (INS), -chymotrypsin, apomyoglobin, 

glucagon, calcitonin, crystallins, and hydrophobins, etc.) (Lassé et al. 2012). 

Functionalising amyloid fibrils in vitro relies on the amino acid diversity of proteins. It 

allows for a variety of surface chemistry to be carried out on fibrils. Successful examples 

of chemically modifying fibrils include cross-linking of enzymes (e.g., glucose oxidase, 

hydrolases) to fibrils (Raynes et al. 2011; Pilkington et al. 2010; Kim et al. 2012) and 

cross-linking of fibrils to other surfaces (e.g., cotton, glass beads, gold particles) (Scheibel 

et al. 2003; Reches & Gazit 2003). Additionally, new fibril based fabrics and cell tissue 

scaffolds have been explored (Gras 2007a; Gras 2007b; Mankar et al. 2011; Rao et al. 

2012).  

 

5.1.3 Amyloid‐like Aggregates of Food Proteins 

A study of recent food protein literature revealed that amyloid-like fibrils can be formed in 

several food proteins including whey protein isolate (WPI), kidney bean protein isolate 

(KPI), soy protein isolate (SPI), and ovalbumin (OVA) from egg white. In food 

technology, fibrils are desirable because of their robustness and their rheological behaviour 

in solutions (Loveday et al. 2011; Loveday et al. 2010; Kroes-Nijboer et al. 2012). 

Amyloid fibrils are good gelling agents/thickeners and can be used as foam stabilisers 

because of their high length to width ratio (Loveday et al. 2009). Fibrils could take on 

similar roles to carbohydrate polymers in emulsions. For example, fibrils formed by β-lg 

were able to induce depletion flocculation in a β-lg stabilised oil in water emulsion 
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(Blijdenstein et al. 2004). Interestingly, the depletion flocculation was dependent on β-lg 

fibril length. Moreover, OVA fibrils and WPI fibrils coated emulsion droplets in multi 

layer arrangements with high-methoxyl pectin (HMP) showed high emulsion stability 

(Rossier-Miranda et al. 2010; Sagis et al. 2008; Humblet-Hua et al. 2011). Amyloid-like 

structures from hydrophobins (type II) have been proposed as foam and aerated food 

stabilisers. The use of hydrophobins is currently being investigated by industry as a low fat 

ingredient for traditionally fat emulsion based foods such as cream, milk shakes, and ice 

cream (Aldred et al. 2008; Cox et al. 2009).  

 

5.1.4 Potential Toxicity of Non‐Disease Related Amyloid Fibrils 

Surprisingly little research effort has been put into studying the biological safety of non-

disease related amyloid-like fibrils and their applications. The inherent amyloid fibril 

toxicity found in disease related amyloids could pose potential problems if non-disease 

related amyloid aggregates display the same toxic behaviour towards cells as the disease 

related amyloids do. For example, the amyloid aggregates of the SH3 domain from bovine 

phosphatidyl-inositol-3'-kinase and the amino-terminal domain of the E. coli HypF protein 

showed toxicity towards NIH-3T3 cells (Bucciantini et al. 2002). In both cases, fibrillar 

oligomers rather than the mature amyloid fibrils were reported to be the toxic species.  

The forming of amyloid-like structures from food proteins with the intent to use them in 

food formulations combined with the concern about amyloid fibril pathology in vivo were 

the driving factors for the present work. Four different food protein fibrils (WPI, KPI, SPI, 

and OVA) were synthesised and studied in detail. The well characterised insulin (INS) 

amyloid fibrils were used as a control in all experiments. Because one of the hallmarks of 

true amyloid fibrils is the resistance to proteases (Mishra et al. 2004; Nordstedt et al. 1994; 

Selvaggini et al. 1993; Watts et al. 2011), several in vitro digestibility assays using pepsin, 

pancreatin and Proteinase K, were carried out. Pepsin and pancreatin are both 

physiologically relevant proteases (protease-mixtures) and have served as in vitro model 

proteases to simulate the human stomach (pepsin) and small intestine (pancreatin) (Section 

2.2). Therefore these studies provide a reasonable in vitro model to simulate and to 

monitor the passage and fate of food fibrils through the gastro-intestinal tract. Proteinase K 

is a broad-spectrum and highly active protease that has been used extensively to 
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characterise amyloid fibril protease resistance of disease related amyloid fibrils (Colby et 

al. 2010; Ebeling et al. 1974; Selvaggini et al. 1993). For toxicity studies, the cell viability 

was measured in the presence and absence of native protein, amyloid-like fibrils, sonicated 

(fragmented) fibrils, and pre-fibrillar intermediates to mimic possible states of the protein 

that may be found in food. Caco-2 cells and Hec-1a cell lines were used for cell viability 

studies. Caco-2 cells which are an excellent model for the intestinal barrier (Sambuy et al. 

2005) as well as Hec-1a cells a further epithelial cell line were employed in the cell 

viability studies. Two different cell lines were chosen because their cellular membranes 

have altered compositions. Therefore the potential interaction of fibrils with the respective 

cell membranes could differ (Stefani 2010). 

 

5.2 Food Fibril Characterisation 

Fibril formation was carried out as described (Section 7.17) using literature methods 

(Loveday et al. 2010; Akkermans et al. 2007; Tang et al. 2010; Wang et al. 2011; Sagis et 

al. 2004; Tanaka et al. 2011; Nielsen et al. 2001). For characterisation purposes, the food 

fibrils were negatively stained with uranyl acetate and analysed by transmission electron 

microscopy (TEM) (Section 7.15). ImageJ software (http://rsb.info.nih.gov/ij/) was used 

for measuring fibril dimensions. All fibrils display high length to width ratios. WPI and 

INS form straight fibrils whereas KPI, SPI, and OVA form curly fibrils (Figure 5.3). The 

length of WPI fibrils reached several micrometers, while the diameter was consistently 

about 10 nm which is in good agreement with previously reported amyloid fibrils (Stromer 

& Serpell 2005). Fibrils formed by KPI, SPI, and OVA had similar morphologies and were 

about 8 nm in width and usually about 250 - 300 nm in length.  INS formed long straight 

fibrils that were about 8 - 12 nm thick and usually 500 - 1000 nm long. Fibrils were 

formed at pH 1.6 - pH 2.0 and were stable for several weeks. The stability of fibrils at    

pH 7.5 was tested and confirmed by TEM over a period of 48 hours. 
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Figure 5.3:  TEM micrographs of A) WPI, B) KPI, C) SPI, D) OVA, E) INS at 89,000 x 
magnification. The scale bar is 200 nm. Images are representative of triplicate 
micrographs. 

In addition to fibril morphology, the ThT fluorescence was monitored over a period of      

7 days. Figure 5.4 shows similar ThT fluorescence patterns for all of the five tested 

proteins. There is a sharp increase of ThT fluorescence during the initial heating phase of 

22 hours.  WPI and KPI show a gradual increase of fluorescence, whereas SPI, OVA, and 

INS show an almost instant increase within the first 3 hours of heating. After the heating 

period, the ThT fluorescence of all fibrils reached a intensity peak after 24 hours (with the 

exception of KPI fibrils. This ThT fluorescence decreased for ovalbumin over the 

following 7 days period. The fibril fluorescence indicates that a 7 day period was 

appropriate for fibril formation and that stable fluorescence levels were reached. 
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Figure 5.4:  Normalised ThT fluorescence during 7 day fibril formation. WPI (red), SPI 
(yellow), KPI (green), OVA (blue), INS (black). Error bars show one standard 
deviation of the mean from triplicate experiments. 

The proteins were analysed by SDS PAGE before heat and pH treatment and after heat and 

pH treatment. It was found that the fibril forming conditions were sufficient to hydrolyse 

the food protein (OVA, SPI, WPI) into peptides with a predominant molecular weight of 

less than 15 kDa (Figure 5.5).  
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Figure 5.5 SDS PAGE of A) OVA, B) SPI, C) WPI. Lane 1: Molecular weight marker, 
Lane 2: native protein before heating, Lane 3: native protein after 24 hours at 4 
°C, Lane 4: same as 3 but at pH 2, Lane 5: same as 4 but heated 80 °C, 20 h, 
Lane 6: supernatant of 5, Lane 7: pellet of 5. Images are representative of 
triplicate measurements. 

The combination of acidic pH and elevated temperature has been shown to facilitate β-lg 

hydrolysis with subsequent fibrillation of the peptides (Figure 5.6) (Kroes-Nijboer et al. 

2011). However, while hydrolysis might be sufficient, it is not clear if it is necessary for 

fibrillation of β-lg. There are two proposed mechanisms by which proteins can be 
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incorporated into fibrils (Jones & Mezzenga 2012). As Figure 5.6 illustrates, the protein 

can partially unfold and fibrillate or is hydrolysed prior to fibrillation. The proteins in this 

study were treated with harsh pH and temperature and consequently hydrolysed during the 

treatment, consistent with pathway 2 in Figure 5.6.  

 

Figure 5.6 Two common pathways of amyloid fibril formation. Diagram taken from (Jones 
& Mezzenga 2012). 

5.3 Protease Resistance of Food Fibrils 

For the purpose of assessing the potential health risk of food fibrils, it is important to know 

whether or not the fibrils would withstand the digestion process. Therefore, the degree of 

fibril hydrolysis (by Proteinase K, pepsin, and pancreatin) was assessed by ThT 

fluorescence decrease and TEM analysis. Fibrils in the presence and absence of proteases 

were incubated at 37 °C for 3 hours to simulate passage through stomach and intestine. In 

humans the transit time has been reported to be 60 - 90 minutes in the stomach and 2 - 3 

hours in the small intestine (Graff et al. 2000). The protease to protein ratio chosen for all 

enzymes and fibrils was 1:20 (w/w) in order to simulate physiological conditions more 

closely than the high enzyme to substrate ratio employed in Chapter 2 (Section 2.2). The 

pepsin activity of the pepsin product (Sigma No.: P7000) employed here is rated at 250 

U/mg powder. At the chosen concentration (0.05 mg/mL) this corresponds to 12.5 U/mL. 

Measured levels of pepsin were found to be between 7-70 U/mL in undiluted stomach 

juice (without food) from healthy people (Ulleberg et al., 2011). These values necessarily 
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become diluted during food intake. In the standard assay the protease activity was 800 

U/mL which is clearly higher than physiological. The chosen conditions differ from 

previous studies attesting high fibril digestibility in the presence of pepsin at an enzyme to 

substrate ratio (w/w) of 1:1.65 (Bateman, Ye, & Singh, 2010). ThT fluorescence during 

hydrolysis was monitored and compared to buffer controls (Figure 5.7). For data analysis, 

the fibril + buffer fluorescence at each time point was used to normalise the data. 
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Figure 5.7:  Normalised ThT fluorescence of fibrils in the absence (grey) and presence (black) 
of proteases. The charts show changes in ThT fluorescence during proteolysis over 
three hours. Each panel is grouped into three data sets representing pepsin, 
pancreatin, and Proteinase K and the respective buffer controls. Measurements 
were taken at four time points (t = 0, 20, 60, and 180 min). Panel A) WPI-, B) 
KPI-, C) SPI-, D) OVA-, and E) INS-fibrils. Error bars show one standard 
deviation of the mean from triplicate experiments. 
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The ThT fluorescence experiments show different levels of resistance to proteolytic 

breakdown by the different fibrils. Insulin fibrils that were used as a standard proved to be 

the most resistant fibrils over the 3 hour incubation period indicated by constant ThT 

fluorescence over the entire duration of the assay. This applies to all three proteases 

(pepsin, pancreatin, Proteinase K). In order to test whether the primary sequence of fibril 

forming proteins had an effect on proteolysis, an analysis of the potential cleavage sites for 

the employed proteases was carried out. The online service ExPASy PeptideCutter tool 

(http://web.expasy.org) (Gasteiger et al. 2005) was employed to estimate the potential 

protease cleavage sites of the fibril forming proteins. Since WPI, KPI, and SPI are protein 

mixtures, the major protein fractions (β-lactoglobulin, β-phaseolin, and glycinin G1 

respectively) were chosen for analysis. Four different proteases (chymotrypsin, trypsin, 

pepsin, and Proteinase K) were used for the estimation of cleavage sites. Chymotrypsin 

and trypsin were chosen in place of pancreatin, which is an enzyme mixture containing 

chymotrypsin and trypsin. Table 5.1 lists the number and percentage of cleavage sites for 

each protein. From the percentage values, it is obvious that all five proteins expose similar 

numbers of cleavage sites. Glycinin has a slightly fewer cleavage sites compared to the 

remaining four proteins. 

Table 5.1 Number of cleavage sites for insulin, β-lactoglobulin, β-phaseolin, glycinin G1, 
and ovalbumin determined by PeptideCutter. The percentage values were 
calculated from the number of cleavages and the total residue number. 

Fibril  INS  WPI KPI SPI  OVA

Representative Protein  Insulin  β‐lg β‐phaseolin Glycinin G1  Ovalbumin

UniProt Identifier  INS_Bovin  LACB_BOVIN  PHSB_PHAVU  GLYG1_SOYBN  OVAL_CHICK 

Total Residues  103  178 421 495  386

Number of Cleavages            
Chymotrypsin  27  43 96 85  80

Pepsin  39  57 129 119  97

Proteinase K  54  100 212 216  204

Trypsin  8  18 41 44  33

Percentage of Cleavages             

Chymotrypsin  26%  24% 23% 17%  21%

Pepsin  38%  32% 31% 24%  25%

Proteinase K  52%  56% 50% 44%  53%

Trypsin  8%  10% 10% 9%  9%
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The four types of food protein fibrils display similar digestion patterns. The general pattern 

is a slightly higher resistance towards peptic digestion than towards pancreatic and 

Proteinase K digestion. After 3 hours of digestion by Proteinase K much of the 

fluorescence has dissipated indicating a complete hydrolysis of the food fibrils. However, 

there is still a remarkably high fluorescence after 3 hours of pepsin and pancreatin 

hydrolysis of the fibrils. This in vitro experiment therefore indicates that the fibrils could 

well remain intact as they pass through the gastrointestinal tract if taken up with food. 

However, previous findings attributed a high digestibility of fibrils formed from β-

lactoglobulin under similar conditions (Bateman et al. 2010). The discrepancy between the 

findings may be partially explained by the higher and non-physiological enzyme to 

substrate ratios employed. Increasing the pepsin concentration to 10 mg/mL also resulted 

in the digestion of β-lactoglobulin fibrils (Li et al. 2012).  

TEM micrographs of fibrils were obtained following the 3 hour hydrolysis in order to 

assess the change of morphology of the fibrils before and after treatment. As can be clearly 

seen in Figure 5.8, there are still considerable amounts of fibrils present after the 3 hour 

hydrolysis by pepsin, pancreatin and even by Proteinase K consistent with observations 

from TEM analysis. 
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Figure 5.8:  TEM of fibrils after 3 hours of incubation in buffer (column 1, pepsin buffer; 
column 2, Pancreatin and Proteinase K buffer), and after 3 hours of proteolysis by 
pepsin (column 4), pancreatin (column 4) or Proteinase K (column 5). Panels are 
organised in rows depending on protein source. From top to bottom: WPI, KPI, 
SPI, OVA, INS. 

The presence of fibrils after hydrolysis on the TEM micrographs shows that the fibrils are 

fairly resistant towards proteolysis. Therefore, the two assays concluded that fibrils are 

partially digested, but remain in their fibrillar structure throughout the in vitro digestion. 

The partial resistance of the food fibrils to hydrolysis in the in vitro digestion system 

paired with known role of amyloid fibrils in disease suggested that an assessment of the 

potential effect of food fibrils on cell viability was important.  
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5.4 Cell Viability in the Presence of Fibrils 

Two different cell lines were analysed in the presence and absence of the five types of 

fibrils (WPI, KPI, SPI, OVA, and INS) in order to assess the potential impact of fibrils on 

cell viability. Cell viability was assessed after 24 hours or 48 hours. Building on earlier 

studies exploring enzymatic digestion of mature fibrils (Section Figure 5.3) this section 

explores the effect of not only mature fibrils but also pre-fibrillar aggregates (heated for 22 

hours but not stored for 7 days) and sonicated fibrils on cell viability. These conditions 

were tested as aggregate morphology may play an important role in cell toxicity (Stefani 

2010; Xue et al. 2009). Native protein, pre-fibrillar aggregates, mature fibrils, and 

sonicated fibrils were tested for their potential to cause changes in cell viability of Caco-2 

cells. For methodology of fibril formation see Section 7.17. These four different protein 

states were tested for all five types of fibrils (WPI, KPI, SPI, OVA, and INS). The 20 

treatments of Caco-2 cells are listed in Table 5.2. 

Table 5.2 List of the 20 treatments of Caco-2 cells. Treatments 1 - 5, native protein,         
6 - 10, Fibrils, 11 - 15, sonicated fibrils, 16 - 20, pre-fibrillar aggregates. 

Treatment Protein State Protein
1 

Native 
protein 

WPI 
2 KPI 
3 SPI 
4 OVA 
5 INS 
6 

Fibrils 

WPI 
7 KPI 
8 SPI 
9 OVA 
10 INS 
11 

Sonicated 
fibrils 

WPI 
12 KPI 
13 SPI 
14 OVA 
15 INS 
16 

Pre-fibrillar 
aggregates 

WPI 
17 KPI 
18 SPI 
19 OVA 
20 INS 
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The Caco-2 cells were incubated for 24 hours in the presence of the above listed 20 

different treatments. The water soluble tetrazolium (WST) cell proliferation assay was 

used to measure the cell viability after the treatment. The WST assay relies on the colour 

reaction of a reducible tetrazolium salt from a colourless oxidised form to the orange 

reduced form (Formazan) (Ishiyama et al. 1996). The colour change is a result of NADH 

production of the cells and therefore directly proportional to cell viability (Figure 5.9). 

 

Figure 5.9 Diagram of WST assay, modified from (Berridge et al. 2005). 

There was no marked decrease of cell viability caused by any of the 20 treatments after 24 

hours (Figure 5.10). In fact, some treatments had a positive effect on cell viability. This 

could be an indication that the cells were capable of metabolising the protein, even when 

this protein is contained in fibrillar form. The controls of buffer and media only are very 

similar showing that the buffer conditions do not change the cell viability. 10 % DMSO is 

toxic to cells and was therefore used as a positive control. The no cell control also did not 

show any sign of viability, demonstrating that no contamination was present. 

Interestingly, there is a recurring pattern dependent on the protein source rather than on the 

state of the protein. The order of preference of cells for protein of a specific origin starts 

with WPI as the least accessible protein source, followed by KPI, SPI, OVA, and finally 
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INS with the highest rate of viability (WPI < KPI < SPI < OVA < INS). Since all proteins 

were supplied at the same concentration (0.25 mg/mL final concentration), this might 

indicate preferences of this cell line towards specific protein origin. However, the fact that 

both native and fibrillar protein behave similarly is an intriguing result because the 

digestibility studies have shown that fibrils are somewhat resistant to proteolysis by 

pepsin, pancreatin, and Proteinase K (Figure 5.8), although Figure 5.7 suggests that fibrils 

are hydrolysed to a certain degree. The Caco-2 cell viability study shows that cells do not 

differentiate between native, fibrillar, sonicated fibrillar, or pre-fibrillar protein. This is a 

good indication that fibrils formed by food proteins are not toxic. 

 

 

Figure 5.10:  WST cell proliferation assay of Caco-2 cells treated with WPI, KPI, SPI, OVA, 
and INS protein (0.25 mg/mL final protein concentration) after 24 hours 
incubation time. Black to light grey) WPI, KPI, SPI, OVA, and INS  treatments, 
red) controls. Error bars show one standard deviation of the mean from four 
replicate experiments. 
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In addition to the Caco-2 cell line, the Hec-1a epithelial cell line was also studied. Two 

concentrations of fibrillar protein were added to growing Hec-1a cells. The cells were 

incubated for 48 hours. Cell viability was evaluated using crystal violet assays, a method 

of similar accuracy as WST (Flick & Gifford 1984; Ishiyama et al. 1996). Again, no 

adverse effects of fibrils were observed over the studied time period (Figure 5.11). The 

cells grew equally well in the presence of the control (medium + buffer) compared to the 

treated cells.  

 

Figure 5.11 Hec-1a cell viability after 48 hours of treatment with food fibrils WPI, KPI, 
SPI, OVA, and INS. Red) buffer controls, light grey) fibril concentration A = 
0.2 mg/mL, dark grey) fibril concentration B = 0.1 mg/mL final concentration. 
Error bars show one standard deviation of the mean from four replicate 
experiments. 

A further study was undertaken to assess whether or not partially digested fibrils were 

toxic to cells. WPI fibrils were chosen as a representative model for a food fibril system. 

The assay conditions required careful optimisation because the enzymes used for fibril 

digestion needed to be inactivated before the digested sample was added to the cells. This 

had to be achieved without further disrupting the fibrillar structures. Therefore, the first 

approach was to use a Protease Inhibitor Cocktail (PIC) to inhibit the enzymes after the 3 



Chapter 5 – Safety of Amyloid-like Aggregates for Food Applications 173 

 

 

hour digestion period. A series of treatments, which are listed in Table 5.3, was designed 

to enable an unambiguous distinction of effects of the different assay components.  

Table 5.3 Treatments and controls used for the assessment of fibril hydrolysis on cell 
viability. To stop enzymatic hydrolysis after 3 hours, Protease Inhibitor 
Cocktail (PIC) was added.  

Treatment Fibrils Enzyme PIC Time [min] Addressed Question 
1 - - - 180 Are untreated cells viable for 48 hours?
2 + - - 180 Are fibrils toxic? 
3 - + - 180 Are enzymes toxic or active? 
4 - - + 180 Is the PIC toxic to cells? 
5 - + + 180 Are enzymes inhibited by PIC? 
6 + + + 180 Are digested fibrils toxic? 
7 + + + 0 Are digested fibrils toxic instantly?
8 - - - 180 Same as treatment 1. 

 

The cells were pre-incubated in the absence of foetal bovine serum (FBS) to “starve” them 

overnight prior to the addition of treatments. This was done in order to assess if the protein 

is actually used as nutrient by the cells. The data were normalised against cell viability in 

the presence of buffer only (treatments 1 and 8) (Figure 5.12). In comparison to the 

previous experiments there is a marked increase of cell viability in the presence of fibrils 

(treatment 2). This indicates that the cells can utilise the fibrillar protein as a nutrient 

source, although the contribution of non-fibrillar peptide components could contribute to 

the observed effect. The yield of β-lactoglobulin fibrils formed under similar conditions 

has previously been assessed to be up to 50 % (Hettiarachchi et al. 2012) and up to 80 % 

(Li et al. 2012). The difficult complete separation of fibrillar species from non-fibrillar 

species is unlikely to be of relevance for food processes on an industrial scale. The reasons 

to use crude fibril solution was therefore based on both the high yield of fibrils as well as 

on sample preparation that would be relevant to food processing on an industrial scale. 

Treatment 3 shows that pancreatin is not active but that Proteinase K is still active. The 

PIC is toxic to cells as indicated in treatment 4. Therefore, the determination of decreased 

cell viability was not possible through assessment of treatments 5 - 7. However, there is a 

cumulative effect of toxicity of Proteinase K and PIC as indicated in treatment 5 compared 

to treatment 4. 
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Figure 5.12 Hec-1a cell viability after 48 h. Treatments 1 to 8 correspond to treatments 1 to 8 
described in Table 5.3. Protein concentration A = 0.2 mg/mL. Black) pancreatin 
(pancreatin buffer for treatments without enzyme). Grey) Proteinase K (Proteinase 
K buffer for treatments without enzyme). Enzymatic proteolysis was stopped by 
addition of PIC. Error bars show one standard deviation of the mean from four 
replicate experiments. 

 

Table 5.4  Treatments and controls used for the assessment of fibril hydrolysis on cell 
viability. Samples were heated to 95 °C for 15 minutes to stop enzymatic 
hydrolysis after 3 hours.  

Treatment Fibrils Enzyme Heat Time [min] Addressed Question 
1 - - - 180 Are untreated cells viable for 48 hours?
2 + - - 180 Are fibrils toxic? 
3 - + - 180 Are enzymes toxic or active? 
4 + - + 180 Is the heat inactivation affecting fibrils?
5 - + + 180 Are enzymes inhibited by heating?
6 + + + 180 Are digested fibrils toxic? 
7 + + + 0 Are digested fibrils toxic instantly?

8 WPI - - 180 Native protein instead of fibrils. 
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As can be seen in Figure 5.13, the treatments 1 - 3 confirm again the results found for 

treatments 1 - 3 of the previous experiment (Figure 5.12). Treatment 4 shows that heat 

inactivated the enzymes and therefore is almost identical to treatment 2. Treatment 5 was 

expected to be at the same level as treatment 1. The only possibility of the decrease in cell 

viability would be an effect of the denatured enzymes on the cells. The denatured enzyme 

however does not seem to affect the cell viability if fibrils are present. Potentially, 

interactions between fibrils and aggregated denatured enzyme prevent the detrimental 

effect of denatured enzymes on cell viability. Treatments 6 and 7 show no difference 

between each other and the cell viability does not seem affected by digested fibrillar 

aggregates. Treatment 8 shows the effect of native WPI on cell viability, which is similar 

to the cell viability in the presence of fibrils (treatment 2). 

 

 

 

Figure 5.13 Hec-1a cell viability after 48 h. Treatments 1 to 8 correspond to treatments 1 to 8 
described in Table 5.4. Protein concentration A = 0.2 mg/mL. Black) pancreatin 
(pancreatin buffer for treatments without enzyme), grey) Proteinase K (Proteinase 
K buffer for treatments without enzyme). Enzymatic proteolysis was stopped by 
heating to 95 °C for 15 minutes. Error bars show one standard deviation of the 
mean from four replicate experiments. 
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5.5 Summary and Discussion 

The in vitro digestion studies indicate that amyloid fibrils formed by food proteins are 

somewhat resistant to proteolysis over a 3 hour time course. Therefore, there would be a 

chance for the fibrils to interact with gastro-intestinal cells during this time. The 

interaction of fibrils with the cell lines Caco-2 and Hec-1a was therefore studied to assess 

the impact of fibrils on cell viability. The results presented here alleviate some of the 

concerns about potential health risks of amyloid-like fibrils in food. In the case of the 

studied protein fibrils (and at the studied concentrations), there does not seem to be any 

detrimental effect of fibrils on cell viability. Instead, the in vitro studies suggest that the 

cells can perhaps utilise the fibrillar proteins as a source of nutrients, although the 

contribution of non-fibrillar peptide components requires further investigation. There was 

no indication that sonicated or pre-fibrillar aggregate species decreased cell viability.  
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Chapter Six 

6 Summary and Conclusions 

6.1 Introduction 

The objective of this work, as outlined in the introduction, was to investigate whether 

structural changes to food protein during processing may influence the nutritional value of 

the protein. As food proteins are an essential part of the daily diet they form an integral 

part of our lives. Understanding the complex mechanisms that govern the physicochemical 

determinants of protein aggregation, and the relationship of the aggregated state to 

nutritional value, may contribute to an improvement in protein quality, textural properties 

and functionality in food.  

Egg white (EW) was used as a model system and the processing conditions were carefully 

chosen to simulate a wide range of actual food systems. Structural characterisations of EW 

aggregates were carried out by electron microscopy, dynamic light scattering, and small 

angle X-ray scattering. The relationship of aggregate structure and nutritional impact was 

probed by in vitro analysis of EW digestibility as well as by mass spectrometric analysis of 

nutritionally relevant amino acid modifications that occurred during protein processing. 

Furthermore, the safety of amyloid-like fibrils derived from four different food proteins 

was assessed by in vitro digestibility tests and cell toxicity assays. As new food 

components such as amyloid fibrils are suggested as new structural food ingredients it is 

important to carefully assess the safety of such protein derived structures. 

 

6.2 Characterisation of Nutritional Value of Proteins 

A wide range of EW treatment conditions was screened (Chapter Two) for structural 

differences in the EW and how they translated to resistance of EW to proteolysis. The in 

vitro digestion assay confirmed that heating of EW increased its in vitro digestibility which 

was consistent with previous findings. Interestingly, the pre-treatment of raw and boiled 

EW with 200 mM NaCl or pre-adjustment of pH to pH 2, 5, 7, 9, 12 did not markedly 
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influence the protein in vitro digestibility even though structural differences were 

discovered to be present amongst samples. Such a wide range of conditions had not 

previously been assessed and contributes to the understanding of the structure-function 

relationship of food systems. The results suggest that protein preparations of different pH 

may be equally well digested by the body as long as the digestion conditions are kept 

constant. This insight may prove to be important when optimising the texture of existing 

foods, without compromising nutritional quality. Interestingly, under all test conditions, 

the EW aggregates displayed higher resistance to the in vitro pepsin digestion compared to 

the in vitro pancreatin digestion. Previous studies on protein/oil mixtures have reported 

increased protein resistance to in vitro gastric digestion compared to in vitro pancreatic 

digestion. The proposed mechanism for decreased gastric digestion was the inaccessibility 

of hydrophobic residues to pepsin cleavage (Chen et al. 2006), which may also explain the 

difference observed here.  

The impact of Maillard reaction partners on EW digestibility was assessed. The results 

confirmed the previously reported decreased digestibility of Maillard reacted protein 

compared to pure protein (Friedman 2003). Highly resistant cross-linked EW protein 

species of high molecular weight were observed in the presence of glutaraldehyde and 

methylglyoxal even at room temperature and short heating times (10 minutes at 80 °C) 

respectively. Long heating times (24 hours at 80 °C) of EW in the presence of glucose, 

fructose, and lactose decreased digestibility to a similar degree as methylglyoxal treated 

EW after 5 hours of heating at 80 °C. These findings suggest that food processing at lower 

temperatures and shorter heating times are beneficial to retain protein digestibility. A 

decrease of protein digestibility is likely to occur in foods that are susceptible to the 

Maillard reaction such as fried, roasted, and baked foods. 

Chapter Three addressed the determination of the degree of chemical modification of 

amino acids of processed EW. For the first time, a holistic approach was used, based on 

mass spectrometric analysis, to assess the severity of a wide range of amino acid 

modifications before and after EW processing. The results showed a time and temperature 

dependent increase of detectable amino acid modifications. The monitoring of dehydration 

and deamidation proved to be the most reliable method to monitor the progression of 

hydrothermally induced damage of EW because these modifications were detected 

abundantly. Furthermore the progression of methylglyoxal modification of arginine 
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residues was assessed. After 1 hour of EW heating at 100 °C, 38 % of detectable arginine 

residues had been modified to hydroimidazolone. This finding is consistent with the 

observed decrease of digestibility after short incubation times of methylglyoxal and EW 

(Chapter Two). The high proportion of modified arginine residues combined with the 

decreased protein digestibility implies that important peptide recognition sites for 

proteolytic enzymes such as trypsin were rendered unrecognisable by the modification. 

The combination of in vitro digestibility and mass spectrometric analysis of marker 

modifications may prove a powerful tool to provide quick and thorough insight into the 

effects of protein processing on the nutritional value of a given food.  

 

6.3  Characterisation of Aggregate Structure 

Building on the macroscopic observations made (Chapter Two) attention was focussed on 

developing methods to probe aggregation dynamics at the molecular level. This was 

achieved by analysing the aggregation of EW by DLS, TEM, and SAXS (Chapter Four). 

Purified ovalbumin was used as a model protein to circumvent the complex analysis 

required for a heterogeneous mixture of proteins. It was found that ovalbumin at 0.6 

mg/mL is monomeric in Milli-Q water, 100 mM glucose, 100 mM methylglyoxal. In the 

presence of 100 mM NaCl ovalbumin was observed as monomer and dimer using DLS and 

SAXS. It is likely that the dimerisation point of ovalbumin in NaCl is close to 1 mg/mL. 

This is consistent with findings suggesting that ovalbumin is monomeric between 0.1 

mg/mL and 1 mg/mL (Matsumoto & Inoue 1993). At 45.5 mg/mL, ovalbumin was found 

to exist as a dimeric species.  

An attempt was made to observe the conversion of monomeric ovalbumin into larger 

structures upon heat treatment in order to generate a model of ovalbumin aggregation. 

However, neither DLS nor SAXS was able to capture the early stages of aggregation. 

Instead, a detailed analysis of aggregate growth over time was undertaken. The results 

clearly showed that the presence of NaCl contributed to electrostatic shielding of 

Coulombic repulsion of ovalbumin in solution. This in turn enabled fast aggregation 

kinetics compared to ovalbumin in water and glucose solutions. For the most part, the 

aggregation of ovalbumin in the presence of glucose and water were very similar to each 
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other and no shielding effect was observed. Even at long heating times, the presence of the 

Maillard reaction partner glucose did not contribute to marked changes in aggregate 

structure compared to that of pure ovalbumin in water.  

The most interesting observations of ovalbumin aggregation were made for samples 

treated with methylglyoxal. Methylglyoxal treated ovalbumin aggregated in a markedly 

different manner as shown by all three techniques, DLS, TEM, and SAXS. An in depth 

analysis showed two contributing factors that were responsible for the observed 

differences. Firstly, the addition of methylglyoxal to the ovalbumin solution (at             

45.5 mg/mL) lowered the pH of the solution to pH 5, which is near the IEP of ovalbumin 

(4.7). This resulted in the absence of electrostatic repulsion between ovalbumin monomers. 

This was observed by SAXS studies and fitting structure factor models to the scattering 

data. Secondly, a methylglyoxal specific effect (at 100 mM methylglyoxal and 3.2 mg/mL 

ovalbumin concentration) suggested that the charge and IEP of ovalbumin had decreased 

due to reaction with lysine and arginine residues. Since both effects (pH and 

methylglyoxal reactivity) were closely interlinked it was not possible to selectively 

attribute the observed structural difference to a single mechanism but a combination of pH 

effect and IEP lowering properties of methylglyoxal by reacting with lysine and arginine 

residues. The results indicate that Maillard chemistry may impact on the aggregation 

properties of food proteins (such as ovalbumin) thereby changing the texture as well as the 

nutritional qualities, flavour and aroma. 

The structural analysis of late stage aggregates using SAXS was only possible for the non-

random aggregates that were characteristic in the methylglyoxal treated samples but not 

for ovalbumin aggregated in water, glucose, or NaCl. The heated methylglyoxal treated 

samples displayed scattering behaviour that corresponded to cylindrical structures that 

were also observed during TEM analysis. It was shown that the cylindrical models 

overlaid well with the scattering data and the cylinder radius (9 nm) corresponded 

reasonably well to the TEM measured cylinder diameter (5 nm). 

The determination of aggregation at the molecular level proved to be challenging, 

predominantly because the aggregation system studied was a disordered system. However, 

SAXS scattering proved to be a powerful tool for assessing aggregation kinetics and could 
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even contribute to shape determination of aggregates if the aggregates were ordered. It 

could not provide high resolution information about random aggregates.  

 

6.4 Safety of Food Fibrils 

Amyloid fibrils are associated with neurodegenerative diseases such as Alzheimer’s 

disease, Creutzfeldt-Jakob disease, and Parkinson’s disease. More recently, non-disease-

related amyloid fibrils were shown to have desirable functional properties that make them 

attractive for new materials, tissue engineering, and enzyme scaffolds. Additionally, food 

proteins have been studied as new ingredients to include in food formulations based on 

their structural properties and low calorie count compared to carbohydrates and lipids. 

Chapter Five discussed the potential issue of including protein aggregates that resemble 

disease related protein aggregates into food systems with the concern of potential toxicity 

of these food derived fibrils. 

To the author’s knowledge this work presents, for the first time, an analysis of the 

interaction of food fibrils with human cell lines. Food fibrils displayed some resistance to 

in vitro hydrolysis using pepsin, pancreatin, and Proteinase K. Therefore it was concluded 

that the fibrils may indeed have time to interact with cells of the gastrointestinal tract.  

Toxicity studies were carried out on in vitro cell cultures including the Caco-2 cell line 

which has been reported to be a good model of the intestinal barrier (Sambuy et al. 2005). 

Further experiments were conducted using Hec-1a cells which are an endometrial cancer 

cell line. Overall, fibrils did not display toxicity towards cells in any of the chosen test 

conditions (including mature fibrils, pre-fibrillar aggregates, and sonicated mature fibrils). 

Moreover it was shown that cells proliferated equally well in the presence of fibrils when 

compared to native protein at the same concentration. Fibrils were also metabolised by 

cells that had been deprived of protein prior to fibril treatment. The presented work 

therefore suggests that food fibrils may be safe food ingredients.  
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6.5 Summary and Future Work  

In summary, this work has successfully characterised EW digestibility and amino acid 

modifications over a wide range of processing conditions. The use of SAXS to unravel 

complex aggregation kinetics and structural rearrangements proved to be challenging but 

showed potential in characterising ordered aggregates. Food fibrils were characterised in 

terms of cytotoxicity and this study alleviates some concerns about their potential toxicity 

towards human intestinal cells. 

Future work should correlate mass spectrometrically determined marker amino acid 

modifications (e.g., deamidation, hydroimidazolone formation) to in vivo bioavailability. If 

good agreement can be shown between animal models and the in vitro analysis, in vivo 

models may be able to be used less frequently thereby saving animal lives, cost, and time. 

Due to limited access to the high demand SAXS beamline of the Australian Synchrotron 

further experiments in buffered solution could not be carried out. Future aggregation 

studies of ovalbumin should include working in buffered systems (which was deliberately 

avoided in the presented work to analyse buffer unbiased protein aggregation) of 

methylglyoxal to gain insight independent of pH fluctuations. This should be carried out in 

combination with an ovalbumin sample series which should be pH buffered to shed light 

on the exact mechanisms involved, with appropriate buffer only controls. Furthermore, 

SAXS and DLS analysis would benefit from an improved experimental set-up for 

conducting analysis of protein aggregation. This would include a heated and stirred 

solution, constantly circulated through the capillary/cuvette whilst acquiring scattering 

data. By doing so, a seamless set of scattering data could be collected that would allow a 

detailed analysis of intermediate structures in real time.  

The preliminary work on fibril toxicity should be correlated to in vivo animal studies using 

fibrillar and non-fibrillar protein feed. Toxicity should be tested for each food fibril that is 

proposed as a new food ingredient because fibrils differ in terms of surface chemistry and 

morphology (Bucciantini et al. 2004; Chiti & Dobson 2006), which could influence the 

interaction with cell membranes and thereby cytotoxicity (Stefani & Dobson 2003). 

  



Chapter 6 – Summary and Conclusions  190 

 

 

6.6 References 

Bucciantini, M., Calloni, G., Chiti, F., Formigli, L., Nosi, D., Dobson, C.M. & Stefani, M., 
2004. Prefibrillar amyloid protein aggregates share common features of 
cytotoxicity. Journal of Biological Chemistry, 279(30), pp.31374–31382. 

Chen, L., Remondetto, G.E. & Subirade, M., 2006. Food protein-based materials as 
nutraceutical delivery systems. Trends in Food Science and Technology, 17(5), 
pp.272–283. 

Chiti, F. & Dobson, C.M., 2006. Protein misfolding, functional amyloid, and human 
disease. Annual Review of Biochemistry, 75(1), pp.333–366. 

Friedman, M., 2003. Nutritional consequences of food processing. Forum of Nutrition, 
56(1), pp.350–352. 

Matsumoto, T. & Inoue, H., 1993. Association state, overall structure, and surface 
roughness of native ovalbumin molecules in aqueous solutions at various ionic 
concentrations. Journal of Colloid and Interface Science, 160(1), pp.105–109. 

Sambuy, Y., De Angelis, I., Ranaldi, G., Scarino, M.L., Stammati, A. & Zucco, F., 2005. 
The Caco-2 cell line as a model of the intestinal barrier: influence of cell and 
culture-related factors on Caco-2 cell functional characteristics. Cell Biology and 
Toxicology, 21(1), pp.1–26. 

Stefani, M. & Dobson, C.M., 2003. Protein aggregation and aggregate toxicity: new 
insights into protein folding, misfolding diseases and biological evolution. Journal 
of Molecular Medicine, 81(11), pp.678–699. 



 

 

 

 

 



Chapter 7 – Experimental  191 

 

 

Chapter Seven 

7 Experimental 

7.1 General Materials and Methods 

Unless otherwise stated, chemicals were purchased from Sigma-Aldrich, Invitrogen, or 

Roche. Eggs were bought from local farms around Christchurch, New Zealand. Soy beans 

and kidney beans were bought in local shops in Christchurch, New Zealand. Spray-dried 

egg white was generously provided by Zeagold, New Zealand. Whey protein isolate 895 

(WPI) was generously supplied by Fonterra, New Zealand. 

pH measurements were carried out on an UltraBasic UB10 pH meter (Denver Instrument 

Co.) fitted with a high-performance glass body pH/Tris electrode. For centrifugation of 

small volumes (< 2 mL), an Eppendorf 5810R with a fixed F-45-30-11 rotor was used. 

Larger volumes were centrifuged using a Thermo Scientific Sorvall RC6 plus centrifuge 

equipped with either a FiberLite®  F21-8x50y, F14-6x250y, or F10-6x500y rotor. 

 

7.2 Protein Extraction and Purification 

Ovalbumin (OVA) was purified from day-fresh chicken egg white. Soy protein isolate 

(SPI) and kidney bean protein isolate (KPI) were prepared from freshly ground soy bean 

and kidney bean flour.  

 

7.2.1 Ovalbumin Purification 

Ovalbumin (OVA) was purified from day-fresh hen egg white using anion exchange 

chromatography (de Groot & de Jongh 2003). 100 mL of fresh hen egg white was diluted 

in 200 mL OVA extraction buffer (Table 7.1) and stirred over night at 4 °C. The solution 

was then centrifuged at 10,000 rpm for 20 minutes. The supernatant was then added to 250 

g of DEAE (2-(Diethylamino)ethyl) Sephacel (pre-equilibrated with OVA DEAE buffer 

(Table 7.1)). This suspension was stirred overnight to allow binding of OVA to the resin. 
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The resin was collected and washed with 3 L of distilled water. Subsequently, 200 mL 

fractions of NaCl at different concentrations (20 mM, 40 mM, 60 mM, 80 mM, 100 mM, 

200 mM, 1000 mM) were used to elute ovalbumin. The fractions were collected and tested 

for OVA purity using SDS PAGE. Usually the 100 mM fraction contained pure protein 

that did not require further purification. This fraction was sterile filtered and subsequently 

dialysed against distilled water. The remaining fractions were discarded. 

Table 7.1 Composition of OVA extraction and DEAE buffer. 

Solution Contents and Instructions 
 
OVA extraction buffer 

 
50 mM Tris HCl 
10 mM β-mercaptoethanol 
adjust pH to pH 7.5 
 

OVA DEAE buffer 50 mM Tris HCl 
adjust pH to pH 7.5

 

7.2.2 Soy Bean Protein Isolate (SPI) 

The extraction method of soy protein from soy beans was modified from (Akkermans et al. 

2007). 25 g of finely ground soy bean flour was dissolved in 200 mL of SPI extraction 

buffer (Table 7.2) and stirred for 45 minutes at room temperature. The suspension was 

centrifuged for 30 minutes at 13,000 - 18,000 rpm. The supernatant was filtered several 

times through muslin cloth, No.4 Whatman paper, and 0.2 µm syringe filters. The filtrate 

was then dialysed in 300 volumes of distilled water. The dialysed SPI was adjusted to pH 

1.6 with concentrated HCl and centrifuged at 13,000 - 18,000 rpm for 15 minutes. The 

supernatant was sterile filtered through 0.2 µm filters and stored at 4 °C until further use.  

Table 7.2 Composition of SPI extraction buffer. 

Solution Contents and Instructions 
 
SPI extraction buffer 

 
30 mM Tris 
10 mM β-mercaptoethanol 
adjust to pH 8.0 with NaOH 
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7.2.3 Kidney Bean Protein Isolate (KPI) 

The protein extraction from kidney beans was modified from (Tang et al. 2010). 25 g of 

finely ground kidney bean flour was dissolved in 200 mL of KPI extraction buffer (Table 

7.3). The solution was quickly adjusted to pH 3.5 with concentrated HCl and stirred at 

room temperature for 15 minutes. The solution was filtered and centrifuged at 13,000-

18,000 rpm for 30 minutes. The supernatant was diluted with 5 volumes 4 °C cold water to 

precipitate the protein. The precipitate was centrifuged and resuspended in 50 mL 

resuspension buffer (Table 7.3). This washing procedure was repeated three times. The 

washed KPI was dialysed in 300 volumes of distilled water. The dialysed KPI was 

adjusted to pH 1.6 with concentrated HCl and centrifuged at 13,000-18,000 rpm for 15 

minutes. The supernatant was sterile filtered through 0.2 µm filters and stored at 4 °C until 

further use. 

Table 7.3 Composition of KPI extraction solutions. 

Solution Contents and Instructions 
 
KPI extraction buffer 

 
0.5 M NaCl 
25 mM HCl 
 

Resuspension buffer 0.5 M NaCl

 

7.3 Buffer Exchange and Dialysis 

Buffer exchange or desalting of protein solutions was carried out using either a 5 mL 

HiTrap™ Desalting column or 12,000 MWCO dialysis tubing stored in 0.1 % sodium 

azide. 3 column volumes of buffer were used to equilibrate the column. After loading the 

sample, the desired buffer was used to elute the sample. For dialysis, the tubing was 

washed in distilled water before the sample was loaded into the tubing. Dialysis was then 

carried out in 100 - 300 volumes of distilled water at 4 °C. 
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7.4 Protein Concentration Determination 

Three different methods to determine protein concentration were trialled: Bradford, Biuret 

and UV A280 assays. The Biuret method showed consistent and reliable results across the 

measured protein range. The protein content of all protein solutions was therefore 

quantified using the Biuret method. BSA was used as a standard at the appropriate 

concentration range. Unknown proteins were diluted to the appropriate concentration.  

 

7.4.1 Bradford Protein Assay 

The Bradford assay is based on the colour reaction between protein and Coomassie 

Brilliant Blue G-250 (Bradford 1976). The dye changes from brown to blue in the presence 

of protein. Assays were performed in triplicate in 96 well plates. The wells were preloaded 

with 10 μL protein solution at the appropriate concentration. 200 μL of Bio-Rad protein 

assay reagent (Table 7.4) was added to the protein solution and mixed thoroughly on a 

plate shaker. Plates containing the mixed samples were incubated at room temperature for 

5 min before reading the absorbance at 595 nm on a Labtech FLUOstar OPTIMA plate 

reader. Samples were blanked against the respective protein buffer. A standard curve was 

generated using BSA in a concentration range from 0 to 0.2 mg/mL. 

Table 7.4 Bio-Rad protein assay reagent.  

Solution Contents and Instructions 
 
Bio-Rad protein assay reagent 

 
dilute Bio-Rad protein reagent 1:5 in Milli-Q 
water 
filter through 0.2 µm syringe filter 

 

7.4.2 Biuret Protein Assay 

The Biuret protein assay relies on complex formation between peptide bonds and copper to 

develop a measurable colour change (Krohn 2002). Assays were performed in triplicate in 

96-well plates. The wells were preloaded with 50 μL protein solution. 200 μL of Biuret 

reagent (Table 7.5) was added to the protein solution and mixed thoroughly on a plate 
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shaker. Plates containing the mixed samples were incubated at room temperature for 20 

min before reading the absorbance at 540 nm on a Spectramax M-series multimode plate 

reader. Samples were blanked against the respective protein buffer. A standard curve was 

generated using BSA in a concentration range from 0 to 2.0 mg/mL.  

Table 7.5 Biuret reagent components. 

Solution Contents and Instructions 
 
Biuret reagent 

 
In 400 mL Milli-Q water: 
4 g NaOH 
4.5 g Sodium Tartrate 
1.5 g CuSO4 * 5H2O 
2.5 g Potassium Iodide 
Make to 500 mL

 

7.4.3 NanoDrop UV (A280)  

Protein concentrations were measured using a Thermo Scientific NanoDrop™ ND-1000 

Spectrophotometer (Thermo Fischer Scientific). For pure protein, the absorbance 

coefficient was determined by using the online software Protein Calculator v3.3 

(www.scripps.edu). The calculating operations are based on the number of aromatic 

tryptophan and tyrosine residues but also depend on the presence of disulfide bonds which 

absorb light at 280 nm (Gill & von Hippel 1989). For protein mixtures an absorbance 

coefficient of 1.0 M-1 cm-1 was used. After calibration of the machine with water and 

blanking with respective buffer, the absorbance of 2 μL of protein solution was measured. 

Measurements were undertaken at 280 nm in triplicate. Through application of Beer’s law 

the concentration of protein was calculated automatically by the NanoDrop software. 

 

7.5 Polyacrylamide Gel Electrophoresis (PAGE) 

PAGE was run to confirm the purity of proteins, the degree of Maillard cross-linking and 

fibrillation of proteins. In PAGE, proteins are accelerated by an electric field. Due to 

differences in IEP and resulting net charge at a given pH, proteins are separated by charge. 

In addition, the polyacrylamide functions as a molecular sieve, separating the proteins 
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based on size, shape. In PAGE, polyacrylamide gels are generally made up of two different 

gels, a stacking gel and a separation gel. The stacking gel allows focusing the protein 

sample into a fine band. As the proteins continue into the separation gel, the finer 

polymerisation of acrylamide allows for finer separation (Laemmli 1970). 

 

7.5.1 Native Polyacrylamide Gel Electrophoresis (Native PAGE) 

In native PAGE, proteins are not deliberately denatured. Proteins are separated based on 

molecular weight, intrinsic charge, and the overall shape of the polypeptide chain. Native 

PAGE can indicate quaternary structure (e.g. monomer and multimer distinction) and 

protein-protein interaction.  

For native PAGE, 5 μL Novex®
 Sharp protein standard (Invitrogen) was used as a protein 

ladder. NuPAGE Novex® 4 - 12% Bis-Tris gels or 4 - 20 % Tris-glycine gels were run 

according to the manufacturer’s recommendations in a NuPAGE® gel electrophoresis box 

at 4 °C. Protein samples were mixed with 2 x Tris-glycine native sample buffer. Tris-

glycine gels were run at a constant voltage of 125 V in 1 x Tris-glycine native running 

buffer (Table 7.6). The gels were stained with Coomassie staining solution. Gels were 

destained for at least one hour. To facilitate staining and destaining, gels were briefly 

heated in a microwave for 30 seconds to approximately 50 °C. Alternatively, the staining 

of gels was undertaken using Simple blue stain (Table 7.6) using a three step protocol 

(http://www.labtimes.org). After electrophoresis, gels were placed in distilled water and 

microwaved for 30 seconds. Water was discarded and the gel covered in Simply blue stain 

before microwaving for 30 seconds. The gel was then gently shaken for 15 minutes at 

room temperature. Gel photographs were taken using a Genius2
 BioImaging System 

(Syngene).  

 

7.5.2 Sodium Dodecyl Sulfate PAGE (SDS‐PAGE) 

SDS-PAGE is the most commonly used denaturing electrophoresis. The amphiphilic SDS 

binds non-covalently to protein (1.4 g of SDS / 1 g of protein). The negatively charged 

sulfate group contributes to the linearisation of the polypeptide chain by electrostatic 
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repulsion. Additionally, the negative charge allows for fast electrophoretic separation of 

SDS coupled proteins in an electric field. Reducing agents such as DTT or β-

mercaptoethanol can be included in sample preparation to reduce disulfide bonds. Samples 

are normally heated at 70 - 90 °C for 2-5 min before being loaded onto the gel. The high 

temperature allows the protein to unfold and accelerates disulfide bond reduction. For SDS 

PAGE, 5 μL Novex®
 Sharp protein standard (Invitrogen) was used as a protein ladder. 

SDS-PAGE was run to confirm the purity of proteins but also the degree of Maillard cross-

linking and fibrillation of proteins.  NuPAGE Novex® 4 - 12% Bis-Tris gels or 4 - 20 % 

Tris-glycine gels were run according to the manufacturer’s recommendations in a 

NuPAGE® gel electrophoresis box at room temperature. Protein samples were mixed with 

reducing agent and either 4 x lithium salt of dodecyl sulfate (LDS) sample buffer 

(Invitrogen) or 2 x Tris-glycine SDS sample buffer depending on the nature of the gel. For 

Bis-Tris gels, electrophoresis was run at a constant voltage of 170 V in 1 x MOPS running 

buffer at room temperature. Tris-glycine gels were run at a constant voltage of 125 V in 1 

x Tris-glycine SDS running buffer. The gels were stained with Coomassie staining 

solution. Gels were destained for at least one hour. To facilitate staining and destaining, 

gels were briefly heated in a microwave oven for 30 seconds to approximately 50 °C. 

Alternatively, the staining of gels was undertaken using Simply blue stain using a three 

step protocol. After electrophoresis, gels were placed in distilled water and microwaved 

for 30 seconds. Water was discarded and the gel covered in Simple blue (Table 7.6) stain 

before microwaving for 30 seconds. The gel was then gently shaken for 15 minutes at 

room temperature. Gel photographs were taken using a Genius2
 BioImaging System 

(Syngene). 
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Table 7.6 PAGE buffer compositions. 

Solution Contents and Instructions 
 
MOPS running buffer (1x) 

 
50 mM MOPS 
50 mM Tris base 
0.1 % SDS 
1 mM EDTA 
[pH 7.7] 
 

Tris-glycine SDS running buffer (1x) 25 mM Tris base 
192 mM glycine 
0.1 % SDS 
[pH 8.3] 
 

Tris-glycine native running buffer (1x) 25 mM Tris base 
192 mM glycine 
[pH 8.3] 
 

Coomassie staining solution (1x) 2.5 g/L Coomassie R-250 
10 % (v/v) acetic acid 
45 % (v/v) methanol 
45 % distilled water 
 

Destaining solution (1x) 30 % methanol 
10 % acetic acid 
60 % distilled water 
 

Tris-glycine SDS sample buffer (2x) 126 mM Tris HCl 
20 % glycerol 
4 % SDS 
0.005 % bromophenol blue 
[pH 6.8] 
 

Tris-glycine native sample buffer (2x) 126 mM Tris HCl 
20 % glycerol 
0.005 % bromophenol blue 
[pH 6.8] 
 

LDS sample buffer (4x) 564 mM Tris base 
424 mM Tris HCl 
40 % glycerol 
8 % LDS 
2.04 mM EDTA 
0.88 mM Coomassie Blue G-250 
0.7 mM phenol red 
[pH 8.5] 
 

Reducing agent (10x) 1 M DTT 
10 mM sodium acetate (pH 5.2) 
sterile filtered 
stored at -20 °C 
 

Simple blue stain (1x) 60-80 mg/L Coomassie G-250 
dissolved in 35 mM HCl 
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7.6 Egg White Treatment 

10 egg whites of day-fresh chicken eggs were pooled and homogenised using a household 

kitchen blender for 10 seconds. For the preliminary assessment of whether pH and salt 

concentration affects digestibility, the egg white was adjusted to five different pH values 

(2, 5, 7, 9, and 12) with 1 M HCl or 1 M NaOH and two salt conditions at each pH (0 mM 

and 200 mM NaCl). The different egg white samples were then subjected to various 

temperature treatments (room temperature, 60 °C, 80 °C, 100 °C) for 10 minutes prior to 

subjection to the digestibility assay.  

 

7.6.1 Maillard Reaction 

Egg white samples were treated with different potential Maillard reaction partners at 

different concentrations from 0 - 200 mM. The studied Maillard partners were fructose, 

glucose, lactose, methylglyoxal and glutaraldehyde.  

 

7.7 In Vitro Digestion 

In vitro digestion was carried out based on methods developed in previous studies and the 

U.S. Pharmacopeia with slight modifications (Fu et al. 2002; Kim et al. 2008; United 

States Pharmacopeia 2009). Firstly, protein samples were homogenised using a glass tissue 

homogeniser to simulate mastication. The homogenised sample was subjected to amylase 

(Sigma No.: A3176) digestion to mimic polysaccharide breakdown in the mouth for 5 

minutes at 37 C. The pH was then adjusted to 1.5 with 1 M HCl. Following acidification, 

porcine pepsin (Sigma No.: P7000, 250U/mg) was added and the sample was incubated for 

30 minutes at 37 C. Samples were then neutralised with 1 M NaHCO3 to stop any further 

pepsin digestion. Subsequently, the pH of the sample was adjusted to 7.5 with 167 mM 

KH2PO4 and pancreatin (Sigma No.: P1750) was added. The sequential standard enzyme 

assay (amylase, pepsin, pancreatin) results in addative volume changes. The respective 

volumes at each enzymatic addition gave active concentrations of 0.3 mg/mL amylase, 3.1 

mg/mL pepsin, and 2.5 mg/mL pancreatin. These values correspond to final enzyme to 

protein ratios (w/w) of 0.04 for amylase, 0.4 for pepsin, and 0.5 for pancreatin. For 



Chapter 7 – Experimental  200 

 

 

amyloid fibril digestion, the protein to substrate ratio was 0.05 for all employed proteases 

and fibrils. Samples were digested for up to 8 hours at 37 C. For the OPA assay, pepsin 

digested samples were neutralised to stop further proteolysis and pancreatin digested 

samples were acidified. The samples were centrifuged for two minutes at 14,000 rpm, and 

subsequently frozen and stored at -20 °C until analysed. Three replicates were used in all 

digestion experiments. 

 

7.8 o‐Phthaldialdehyde (OPA) Assay 

The OPA colorimetric assay was used to determine the degree of hydrolysis (DH) after in 

vitro proteolysis. The assay was performed in a cuvette (spectrophotometer) or in a 96-

well plate (plate reader) at 340 nm. The protein containing sample solution was mixed with 

OPA reagent (Table 7.7) in a 1:10 (v/v) (protein solution:OPA reagent) ratio. Samples 

were mixed thoroughly and incubated for exactly 2 minutes. The DH was calculated from 

the blanked absorbance readings following established protocols (Adler-Nissen 1976; 

Nielsen et al. 2001b). Absorbance readings were compared to a 1.3 mM serine standard to 

calculate the α-NH2 equivalents (aaeq) that were generated during hydrolysis. All samples 

and standards were blanked against OPA solution and water. Equation 7.1 describes the 

calculation of (aaeq) for any sample (Nielsen et al. 2001b). Abs is the blanked absorbance 

value, cser the serine concentration in mM, V is the sample volume in L, d is the dilution 

factor (required if the sample was diluted for the OPA assay), m is the mass of the food 

sample (egg white) in g, and %protein is the percentage of protein in the sample (~10 % for 

egg white). 

Equation 7.1 

ܽܽ ൌ
ቆ൬

௦ݏܾܣ
௦௧ௗௗݏܾܣ

൰ ∗ ܿ௦ቇ ∗ ܸ ∗ ݀ ∗ 100

ሺ݉ ∗ %௧ሻ
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From (aaeq), the number of hydrolysis equivalents (h) can be approximated through the 

relationship shown in Equation 7.2 (Adler-Nissen 1979; Nielsen et al. 2001b). 

Equation 7.2 

݄ ൌ 	
൫ܽܽ െ ൯ߚ	

ߙ
 

The values of α and β are slightly variable (α ~ 0.796-1.093 and β ~ 0.342-0.457) for 

proteinacous foods such as soy, casein, and gelatine (Adler-Nissen 1979). A valid 

estimation for any other protein can be undertaken with α at 1.00 and β at 0.40 (Adler-

Nissen 1979). The degree of hydrolysis (DH) can then be calculated from Equation 7.3 

(Nielsen et al. 2001b). 

Equation 7.3 

ܪܦ ൌ
݄
݄௧௧

∗ 100% 

 

Where h are the hydrolysis equivalents formed during proteolysis in mmol/g protein and 

htot is the hydrolysis equivalents at complete hydrolysis to amino acids in mmol/g protein. 

If not known from amino acid analysis, htot is set to be 8 mmol/g assuming an average 

weight of 125 g/mol of amino acids within proteins (Nielsen et al. 2001b). 

Table 7.7 OPA assay reagents and serine standard. 

Solution Contents and Instructions 
 
OPA assay reagent 

 
100 mM sodium borate 
0.1 % SDS 
0.3 mM 
2 % ethanol 
5.7 mM DTT 
 

Serine standard 1.3 mM serine 
stored at -20 °C
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7.9 Mass Spectrometry 

Sample preparation: 

Three egg whites of day-fresh hen eggs were pooled, homogenized, and then sub-samples 

analysed before and after boiling for 10 minutes or 60 minutes (in the presence and 

absence of glucose or methylglyoxal). Samples were enzymatically digested as described 

(Speicher et al. 2000) with some modifications. Briefly, 10 mg of each sample (boiled and 

raw) was reduced with 50 µL 50 mM TCEP (tris(2-carboxyethyl)phosphine) and alkylated 

using 50 µL 360 mM acrylamide prior to tryptic digest for 20 hours. Peptides were 

simultaneously extracted and cleaned from the digestion mixture using EmporeTM discs 

(Meng et al. 2008) and resuspended using 0.2% acetic acid in 2% acetonitrile, before being 

analysed using mass spectrometry. 

LC-MS/MS: 

Isolated peptides were analysed using an Ultimate nanoscale HPLC (LC Packings, 

Amsterdam, The Netherlands) equipped with Famos autosampler and Switchos column 

switching module. The loading pump was an LC-10AT isocratic pump (Shimadzu) at a 

flow rate of 8 µL/min. Samples were loaded on the trap column (5 mm, 300 µm ID) and 

separated on a 190 mm, 75 µm ID analytical column (both in-house packed with 

Microsorb C18 300 Å, 5 µM media, Varian) coupled to a QSTAR Pulsar i mass 

spectrometer (AB Sciex, Foster City, CA, USA) using a Proxeon stainless steel nanospray 

capillary at 2200 V. The gradient was 2-55% B (acetonitrile/0.2% formic acid) over 60 

min at a flow rate of 150 nL/min. MS data were acquired from m/z 400 - 1200 and MS/MS 

from 100 - 1600 m/z accumulating four cycles over 1.5 s duration each. 

Data evaluation: 

For protein identification, data were searched against the NCBInr database using Mascot 

v2.2.06 (Matrix Science, London, UK). Enzyme specificity was set to semi-trypsin. Error 

tolerance was set to 100 ppm for LC-MS and 0.4 Da for MS/MS. Data were compiled and 

analysed using ProteinScape 2.1 (Bruker) with acceptance thresholds for protein and 

peptide scores set at 40 and 20, respectively. Protein and peptide lists were compiled using 

the Protein-Extractor functionality in ProteinScape including automatic assessment of true 
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and false positive identification of peptide matches according to the peptide settings 

detailed above. 

For evaluation and interpretation of peptide modification, parallel searches for varying 

target amino acid modifications, particularly oxidative modifications (Dyer et al. 2010), 

were conducted.  

The proteomic data generated were transformed into a manageable data set by (a) setting 

an appropriate peptide MS/MS score threshold of 45 and (b) omitting redundant peptides; 

choosing only the highest scoring peptides for each modification found. The MS/MS score 

threshold is a measurement of likely accuracy for the predicted peptide sequence, 

calculated through comparison of observed fragment ions with theoretical fragmentation, 

with a higher threshold lowering the probability of detecting a false positive of the same 

mass in the chosen protein databank. Analysis of the data showed very consistent results 

for oxidative and other amino acid modifications between MS/MS score thresholds of 45-

55. A MS/MS score of 45 was chosen to ensure high confidence in correct peptide 

determination, while enabling broad peptide coverage. 
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To compare amino acid modifications between samples, a recently developed damage 

scoring system was utilised to enable robust protein damage comparison (Dyer et al. 

2010). A weighted score rather than a total score for amino acid modification was used to 

account for differences during sample preparation and MS runs (e.g. number of peptides 

analysed). The weighted modification score (sw) was defined by Equation 7.4: 

Equation 7.4 

௪ݏ ൌ
ܽܽௗ

ܽܽ௧௧
ൈ ݂ௗ 

 

sw weighted modification score 

aamod number of a specific amino acid residues carrying a specific modification (within 

the peptides meeting the identification threshold requirements) 

aatot total number of a specific amino acid residue (within total observed peptides 

meeting the threshold identification requirements) 

fmod modification factor that gives a damage ranking for specific modifications based on 

the relative level of modification from the native state (e.g. fmod = 1 for single oxidation, 

fmod = 2 for double oxidation, fmod = 3 for triple oxidation) 

The weighted modification score for amino acid residue damage was divided into two sub-

categories, namely oxidative damage (accounting for single, double, triple oxidation) and 

other damage (deamidation, carbamylation, etc.). 
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7.10 Differential Scanning Fluorometry (DSF)  

For the determination of the protein melting point, DSF was used as the preferred option 

because of its high throughput compared to DSC. DSF is commonly used to assess protein 

stability (Ericsson et al. 2006). The dye employed in this technique fluoresces when 

exposed to hydrophobic protein regions during protein denaturation. 16 µL of protein 

sample (1 mg/mL) was mixed with 80 µL of buffer and 4 µL of 250 x SYPRO® Orange 

dye. Blanks were carried out with 24 µL, of buffer and 1 µL of dye. All samples and 

blanks were loaded into 96-well thin-wall PCR plates (BioRad) in triplicate. The plate was 

sealed with Bio-Rad® Microseal® ‘B’ Film. The sealed plate was then loaded into a 

BioRad IQ5 Multicolor Real-Time PCR Detection System with iCycler (BioRad). Samples 

were heated from 20 °C to 95 °C in increments of 0.2 °C, with a 10 second dwell time at 

each temperature. Fluorescence changes were monitored simultaneously with a charge-

coupled device camera. The wavelengths for excitation and emission were 490 nm and  

575 nm, respectively. Melting temperatures were determined as the maximum point of 

inflection using -dRFU/dt.  

 

7.11 Circular Dichroism (CD) 

UV circular dichroism (CD) was used to analyse the secondary structure of proteins. In 

CD, circularly polarised light interacts with chiral secondary structure of proteins. The α-

helical proteins have absorption minima at 222 nm and 208 nm and a positive maximum at 

193 nm. Predominantly β-sheeted proteins have a negative maximum at 218 nm and a 

positive maximum at 195 nm (Greenfield 2006). CD assays were carried out using samples 

with a concentration of 0.1 to 0.5 mg/mL. A quartz cuvette with 1 mm path length was 

used. CD spectra were recorded from 190 nm to 250 nm in 0.5 nm increments, using a 

Jasco J-815 circular dichroism spectrophotometer. The reported protein spectra were 

blanked against buffer spectra. 
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7.12 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry measures the absorbed or excreted energy of a closed 

system. In protein stability studies, DSC was used to measure the necessary energy to 

denature a protein from its native to an unfolded form. The protein denaturation is 

typically endothermic, therefore requires an energy input. This increase in required energy 

input into the system is measurable. The shape of the heat flow curve and its position 

enables analysis of the melting midpoint as well as change in enthalpy (ΔH). Due to the 

endothermic character of protein denaturation ΔH is negative (Chiu & Prenner 2011).  

Both protein solution (1 mg/mL) and the respective protein buffer were degassed under 

vacuum for 30 minutes. A Nano DSC (TA Instruments) was used to analyse protein 

stability. The DSC cells were conditioned twice with buffer in both sample and reference 

capillary to ensure that both capillaries were behaving uniformly. Subsequently, protein 

solution was loaded into the sample capillary and buffer into the reference capillary. At a 

constant pressure of 3 bar a temperature scan from 20 - 90 °C was performed with a 

scanning rate of 1 °C/ min. After run completion, the buffer reference heat flow curve was 

subtracted from the protein sample heat flow curve. NanoAnalyse software (TA 

Instruments) was used to determine the melting midpoint. 

 

7.13 Dynamic Light Scattering (DLS) 

Dynamic light scattering was used to analyse the size distribution profile and 

hydrodynamic radius of particles in solution. DLS relies on the measurement of the light 

scattering interference caused by particles in solution. The interference fluctuates over 

time, because particles move due to Brownian motion. The interference therefore depends 

on the size of the particles because large particles move slowly whereas small particles 

move quickly through solution. To avoid dust and aggregate contamination, samples were 

prepared carefully. All samples were centrifuged for 5 minutes at 13,200 rpm and the 

supernatant containing soluble protein was transferred into a clean disposable low volume 

cuvette. Dynamic light scattering experiments were performed on a Malvern Zetasizer 

Nano at a fixed backscattering angle of 173 °. For analysis, Malvern Zetasizer Software 

6.32 was utilised. Protein was chosen as the scattering material and water as the dispersant. 
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Each measurement was carried out in triplicate and the results were averaged and checked 

for data quality using Malvern Zetasizer Software 6.32.  

 

7.14 Small Angle X‐ray Scattering (SAXS) 

Samples were prepared by resuspending freeze dried ovalbumin in Milli-Q water followed 

by sterile filtering (0.2 µm). The protein stock and buffers were then mixed in a 1:1 ratio 

(v/v) to give final protein concentrations of 0.6 mg/mL and 3.2 mg/mL. The final buffer 

concentration (glucose, methylglyoxal, NaCl) was 100 mM. The samples were heated at 

80 °C for a period of 24 hours. Aliquots were taken at different time intervals and placed 

on ice until further analysis. For analysis, samples and buffers were degassed for 15 

minutes and then centrifuged for 4 minutes at 900 rpm. 

Scattering experiments were performed at the Australian Synchrotron, Melbourne. The 

employed photon energy of the X-rays was 12 keV (λ = 1.03 Å). Two sample to detector 

distances were chosen to measure both the finer molecular details (1.6 m distance) and 

larger aggregated protein structures (7 m) using a Pilatus 1M detector. A longer distance 

allows the measurement of larger structures because large particles scatter stronger than 

small particles. The measurable Q-range at 1.6 m was from 0.617 Å-1 to 0.086 Å-1 and at   

7 m from 0.1344 Å-1 to 0.0019 Å-1. Samples were loaded into a quartz capillary. The 

sample flowed through the capillary at a speed of 2 µL/s in order to prevent damage to the 

samples through X-ray radiation. Samples were exposed to a series of 2 s X-ray exposures 

(10 exposures = 20 s total exposure time). Potential sample damage was monitored by 

comparing the first and the last exposures of each exposure series. The deposition of 

damaged protein on the quartz capillary, also known as capillary fouling, was monitored 

by buffer control runs between every sample. The capillary was also washed regularly with 

guanidine solution, detergent solution, and water. High concentration and highly 

aggregated samples were run at the end of each experiment series. The generated data were 

calibrated to absolute intensity I(Q) using silver behenate as a standard and water as a 

secondary standard.  

For data analysis, the multiple 2 s scattering patterns of samples and buffers were analysed 

for consistency and subsequently averaged. The averaged buffer scattering was subtracted 
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from the sample scattering. Averaging and subtracting was carried out in 

ScatterBrainAnalysis v1.0.3 software, developed at the Australian Synchrotron. The 

averaged and background corrected scattering profiles were analysed using 

ScatterBrainAnalysis v1.0.3 software and the ATSAS software package, developed at 

EMBL, Hamburg. Many thanks go to Nigel Kirby and Nathan Cowieson from the 

Australian Synchrotron for their support and to Duncan McGillivray (University of 

Auckland) for his expert advice in data analysis. 

 

7.15 Transmission Electron Microscopy (TEM) 

Formvar-coated copper grids (200 mesh) (ProSciTech) were coated with protein samples 

and negatively stained with a 1 % uranyl acetate solution (Whittingham et al. 2002). In 

brief, 5 μL of protein solution was dispensed onto Parafilm. TEM grids were placed onto 

the protein drop for 1 minute and subsequently placed on three 5 μL drops of Milli-Q 

water for 20 seconds each. This was followed by placing the grids onto a 5 μL drop of 

uranyl acetate for 1 minute. TEM micrographs (14,000 x and 89,000 x magnification) were 

obtained on a Morgagni 268D TEM (FEI Company, Oregon, USA) operating at 80 kV, 

fitted with a 40 μm objective aperture. Samples were viewed in triplicate. Many thanks go 

to Jackie Healy (University of Canterbury) for her efforts to obtain TEM micrographs. 

 

7.16 Scanning Electron Microscopy (SEM) 

Electron micrographs were obtained by Neil Andrews (University of Canterbury) using a 

Leica S440 electron microscope (Wetzlar, Germany). Samples were freeze fractured to 

observe the internal microstructure. Both solid and liquid samples were immersed in liquid 

nitrogen and subsequently freeze-dried overnight (Yasir et al. 2007). Following freeze-

drying, the samples were mounted on an aluminum stub and coated in gold using a Polaron 

sputter coater at 1.2 kV and 20 mA for two minutes. The samples were then analysed by 

SEM at 10 kV and 50 pA, and at 20 mm working distance.  
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7.17 Amyloid Fibril Formation 

7.17.1 Fibril Formation of WPI 

A 10 mg/mL solution of WPI in Milli-Q water was adjusted to pH 1.6 using concentrated 

HCl. The solution was stirred at 4 °C over night and then incubated at 80 °C for 22 hours 

(Loveday et al. 2010). After heat incubation, the samples were cooled down on an ice bath 

for 10 minutes and finally stored at room temperature for 7 days to allow for fibril 

formation. Thioflavin T (ThT) fluorescence and TEM were used to monitor fibrillation. 

7.17.2 Fibril Formation of SPI and KPI 

The freshly made and undiluted SPI/ KPI solutions were adjusted to pH 1.6 using 

concentrated HCl. The solutions were then incubated at 80 °C for 22 hours (Akkermans et 

al. 2007; Tang et al. 2010; Wang et al. 2011). After heat incubation, the samples were 

cooled down on an ice bath for 10 minutes and finally stored at room temperature for 7 

days to allow for fibril formation. ThT fluorescence and TEM were used to monitor 

fibrillation. 

7.17.3 Fibril Formation of OVA 

A 10 mg/mL solution of lyophilised ovalbumin in 15 mM β-mercaptoethanol was prepared 

to reduce the sample at 37 °C for two hours in a shaking incubator. The reduced sample 

was diluted eightfold into 100 mM NaCl, pH 1.6. The solutions were subsequently sterile 

filtered. The solutions were then incubated at 80 °C for 22 hours (Sagis et al. 2004; Tanaka 

et al. 2011). After heat incubation, the samples were cooled down on an ice bath for 10 

minutes and finally stored at room temperature for 7 days to allow for fibril formation. 

ThT fluorescence and TEM were used to monitor fibrillation. 

7.17.4 Fibril Formation of Insulin 

5.8 mg/mL of insulin (Sigma) were dissolved in 100 mM NaCl, 25 mM HCl (pH 1.6) and 

sterile filtered (Nielsen et al. 2001a). The solution was incubated at 60 °C for 22 hours. 

After heat incubation, the samples were cooled down on an ice bath for 10 minutes and 

finally stored at room temperature for 7 days to allow for fibril formation. ThT 

fluorescence and TEM were used to monitor fibrillation. 
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7.17.5 Pre‐fibrillar Aggregates and Fibril Sonication 

For cytotoxicity studies mature fibrils were compared with pre-fibrillar aggregates and 

sonicated fibrils. For the formation of pre-fibrillar aggregates the fibril formation protocols 

were followed. However, proteins were not incubated at room temperature for 7 days but 

instead used straight after the 10 minute cooling step. The sonication of mature fibrils was 

carried out in Eppendorf tubes that were placed in a sonicating water bath for 15 minutes. 

 

7.18 Thioflavin T (ThT) Fluorescence 

ThT dye is an amyloid protein specific dye. The increase of ThT fluorescence was used to 

monitor fibrillation of proteins (LeVine 1999). 20 µL sample was first loaded into a black 

96-well Greiner Plate with flat, transparent bottom. 180 µL ThT solution Table 7.8 was 

added to each sample and the plate was stirred on a plate shaker for 20 seconds. After 6 

minutes of incubation at room temperature, the samples were analysed on a Labtech 

FLUOstar OPTIMA plate reader. Samples were excited at 450 nm and the emitted light at 

485 nm was measured. Sample buffer was used as blank and experiments were undertaken 

in triplicate. 

Table 7.8 ThT assay component. 

Solution Contents and Instructions 
 
ThT buffer 

 
50 mM Tris base (0.606 g / 100 mL) 
100 mM NaCl (0.584 g/ 100 mL) 
Adjust to pH 7.5 
Filter through 0.2 µm 
 

ThT dye 2.5 mM ThT in ThT buffer 
Filter through 0.2 µm 
 

ThT solution 176 µL ThT buffer 
4 µL ThT dye
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7.19 Proteolysis of Fibrils  

Fibrils were diluted to 1.0 mg/mL using 25 mM HCl (pH 1.6). For pancreatin and 

Proteinase K (PK) hydrolysis the pH of the fibril solutions was adjusted to 7.5. For pepsin 

it was kept at pH 1.6. Enzymes were added in an enzyme:fibril ratio of 1:20 (w/w). The 

total volume was adjusted with distilled water to yield a final protein concentration of 0.9 

mg/mL. The fibril samples were incubated with the enzymes for 3 hours, taking 135 µL 

aliquots at various time intervals (0, 20, 60, 180 minutes). PK and pancreatin hydrolysis 

were terminated by adjustment to pH 1 - 2 with 1 M HCl, pepsin digestion through 

adjustment to pH 7 with 1 M NaHCO3. Hydrolysis progression of protein fibrils was 

monitored via TEM and decrease of ThT fluorescence. 

Table 7.9 Fibril proteolysis buffers and enzyme stocks. 

Solution Contents and Instructions 
 
Pepsin buffer 

 
10 mM HCl 
100 mM NaCl 
5 mM CaCl2  
Sterile filter 
[pH 3-4] 
 

PP buffer 50 mM Tris base 
100 mM NaCl 
5 mM CaCl2 

Sterile filter  
[pH 7.5] 
 

Pepsin (20 mg/mL) 40 mg/mL pepsin in pepsin buffer 
Dilute 1:1 with 100 % glycerol 
Aliquot into 200 µL 
Freeze and store at -20 °C 
 

Pancreatin (20 mg/mL) 40 mg/mL pancreatin in PP buffer 
Dilute 1:1 with 100 % glycerol 
Aliquot into 200 µL 
Freeze and store at -20 °C 
 

Proteinase K (20 mg/mL) 40 mg/mL Proteinase K in PP buffer 
Dilute 1:1 with 100 % glycerol 
Aliquot into 200 µL 
Freeze and store at -20 °C 
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7.20 Cell Subculturing 

7.20.1 Caco‐2 Cell Line 

Caco-2 cells (passage 31) were cultured according to recommended culture practices with 

slight modifications (Natoli et al. 2012). Cells were grown in working medium I (Table 

7.10) before being washed with PBS and harvested in trypLE Express, centrifuged at 240 g 

and taken up in 10 mL working medium I. Viable cell density was determined using an 

Invitrogen Countess® automated cell counter. The Caco-2 cells were diluted to 2 x 105 

cells/mL in M199+ and used to seed 96-well plates (100 µL/well) for 24 hours at 37 °C. 

The work with Caco-2 cell culture was kindly supported by Dulantha Ulluwishewa 

(AgResearch, Grasslands, New Zealand). 

7.20.2 Hec‐1a Cell Line 

Hec-1a cells (Kamat et al. 2007) (passage 10) were cultured in working medium II (Table 

7.10). Cells were washed with PBS and harvested in trypsin EDTA (1x) for 10-15 minutes. 

The cells were diluted 1:1 in PBS and centrifuged at 1,500 rpm for 5 minutes. The 

supernatant was replaced and the pellet taken up in 10 mL of Working medium II. Viable 

cell density was determined using a hemocytometer. The Hec-1 cells were diluted to 4 x 

108 cells/mL in working media II and used to seed 24-well plates (500 µL/well) for 48 

hours at 37 °C. The work with Hec-1a culture was kindly supported by Kenny Chitcholtan 

(Otago University, New Zealand). 

Table 7.10 Working media used to culture Caco-2 and Hec-1 cells. 

Solution Contents and Instructions 
 
Working medium I 

 
M199 medium (Sigma) 
Non-Essential amino acids (1x) 
Penicillin (100 U/mL) 
Streptomycin (100 mg/mL) 
Fetal bovine serum (FBS) (10 %) 
 

Working medium II Minimum Essential Medium (GIBCO®) 
GlutaMax (1x) 
Penicillin (100 U/mL) 
Streptomycin (100 mg/mL) 
Fetal bovine serum (FBS) (5 %) 
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7.21 Cytotoxicity Assays 

7.21.1 Caco‐2 Cell Line 

Tha Caco-2 cell line is a widely used model for the human intestinal barrier, especially for 

toxicity studies (Natoli et al. 2012; Sambuy et al. 2005). Medium was removed from the 

seeded Caco-2 cells prior to treatment. Each treatment consisted of 50 µL sample protein 

at 1 mg/mL in PBS mixed with 150 µL of Working medium I (Table 7.10). Cells were 

incubated at 37 °C for 24 hours or 48 hours. At least 8 replicates for each condition were 

measured. The four used controls were 1) no cells, 2) cells + medium, 3) cells + medium + 

buffer, 4) cells + medium + DMSO. 

 

7.21.1.1 Water Soluble Tetrazolium (WST) Assay 

After cell treatment, medium was removed and Working medium I mixed with 10 % Cell 

Proliferation Reagent WST-1 (Roche) was added to the treated cells. The WST-1 reagent 

is a soluble tetrazolium salt first described by Ishiyama et al. 1993 (Ishiyama et al. 

1993).The cells were incubated for 2 h at 37 °C before reading absorbance at 450 nm and 

650 nm on a Spectramax plate reader. The background absorbance at 650 nm was 

subtracted from the 450 nm absorbance value. 

 

7.21.2 Hec‐1a Cell Line  

Medium was removed from the seeded Hec-1a cells prior to treatment. Each treatment 

consisted of 50 µL of sample protein at 1 mg/mL in PBS mixed with 450 µL of Working 

medium II respectively.  Cells were incubated at 37 °C for 48 hours. At least 8 replicates 

for each condition were measured. The used control was cells + medium + buffer. 

 

7.21.2.1 Crystal Violet Assay 

The medium of the treated cells was discarded and 300 µL of crystal violet (Flick & 

Gifford 1984) stain was added to each of the 24 wells. After staining for 15 minutes the 
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excess stain was thoroughly washed off with distilled water until completely removed. The 

plates were dried before resolubilising the stained cells in 1 mL of 2 % SDS solution per 

well. After solubilising the dye containing cells, the absorbences of the solutions were 

measured at 570 nm on a Labtech FLUOstar OPTIMA plate reader. 

Table 7.11 Crystal violet assay reagents. 

Solution Contents and Instructions 
 
Crystal violet dye 

 
0.2 g crystal violet powder 
2 mL ethanol 
98 mL Milli-Q water 
 

2 % SDS solution 1 g SDS
ad. 50 mL with Milli-Q water 
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