SOLID STATE SPECTROSCOPY : LASER SELECTIVE EXCITATION OF HOLMIUM IONS IN CRYSTALLINE SOLIDS

A thesis
submitted in partial fulfilment
of the requirements of the Degree
of
Doctor of Philosophy in Physics
in the
University of Canterbury
by
MARJORIE MUJAJI
University of Canterbury
1992

To my parents

Abstract

The technique of laser selective excitation has been used to study the spectra of 23 Ho^{3+} centres present in CaF_{2} and SrF_{2} crystals, in mixed $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}$ and $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}$ crystals and in CsCdBr_{3} crystals.

The polarisation of the fluorescence from $<100\rangle$ and $<111\rangle$ oriented crystals has been used to assign specific Ho^{3+} site symmetries to the various centres and to label the crystal-field energy levels of each centre by their group irreps.

The two principal Ho^{3+} centres (A and B) observed in both $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals have been shown to be of $\mathrm{C}_{4 v}$ and $\mathrm{C}_{3 \mathrm{v}}$ symmetry respectively. The four new centres identified in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals, are derived from the parent $\mathrm{CaF}_{2} \mathrm{C}_{4 \mathrm{v}}$ symmetry (A) centre by an on-axis and an off-axis placement of a dopant cation, Sr^{2+} or Ba^{2+}, in the vicinity of the $\mathrm{Ho}^{3+}-\mathrm{F}^{-}$pair. The three additional centres found in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals are from similar Ca^{2+} and Ba^{2+} substitutions in the SrF_{2} lattice.

Seven centres associated with D^{-}charge compensation were observed in deuterated $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals, with no $\mathrm{C}_{4 v}$ symmetry centre being apparent.

For the $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ system, spectra of the principal dimer centre and three other minority centres are reported. Strong upconversion fluorescence was observed for the principal dimer centre, enabling crystal-field energy levels for 18 Ho^{3+} multiplets to be determined. Low symmetry crystal-field splittings and pair splittings were observed on some of the sharper transitions.

Crystal-field analyses performed for all the $\mathrm{C}_{4 \mathrm{v}}$ and $\mathrm{C}_{3 \mathrm{v}}$ symmetry centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}, \mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals are reported and the resulting crystal-field parameters discussed. Fluorescence lifetimes determined for the major Ho^{3+} centres are also presented.

The high resolution and ODNMR results for the $\mathrm{C}_{4 v}$ symmetry A and SB 1 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals confirm the centre symmetry assignments and the model configurations proposed on the basis of the polarisation ratio measurements. The superhyperfine ODNMR frequencies correlate well with the changes in the crystal-field parameters between the two centres.

ACKNOWLEDGEMENTS

I dedicate this thesis to my parents, whose faith in me, understanding and constant encouragement made the four years away from home bearable - only just!

I would especially like to thank my supervisors, Dr. G.D. Jones and Dr. R.W.G. Syme, for their guidance and the time they put into the discussions at various stages of this project.

I would also like to express my thanks to :

- Wayne Smith, Ron Culley, Ross Ritchie, Tom Walker and other workshop staff, for invaluable technical assistance;
- Robert McGregor and Dave Macdonald of the Chemistry Department, for invaluable advice on glass blowing;
- Dr. Y.L. Khong, for assistance with equipment in the early stages of this project and Keith Murdoch, for helpful discussions;
- Nick Sheen and John Laban, for assistance with adapting the Mössbauer least squares fitting program for lifetime transients;
- Dr. M.F. Reid, for assistance with the crystal-field fitting program;
- Dr. N.B. Manson of the Australian National University, Canberra, for providing the opportunity and financial support for a three week visit to the A.N.U. for high resolution and ODNMR measurements;
- Dr. J.P.D. Martin and Tosporn Boonyarith of the A.N.U., for assisting with the high resolution and ODNMR measurements;
- Steven Hemmingsen, for tracing out the absorption and high resolution spectra;
- Mary Kinnaird, Gill Evans and Beverley Bristowe for skillfully typing this thesis and for being tolerant with the alterations.

I am indebted to the late Dr. P.C. Makado for my interest in the subject.

Finally, I would like to thank the Campbell family and Mrs G. Andrews, for making me feel at home, so far away from home.

Financial support was provided by a Postgraduate Scholarship from the New Zealand Ministry of External Relations and Trade - External Aid Division and a Staff Development Fellowship from the University of Zimbabwe.

CONTENTS

Page
LIST OF FIGURES vii
LIST OF TABLES xv
1 INTRODUCTION 1
1.1 The Rare-Earth Ions 1
1.1.1 Properties of the Ho^{3+} ion 2
1.2 The Fluorite Lattice Structure 5
1.2.1 The $\mathrm{C}_{4 v}$ and $\mathrm{C}_{3 v}$ symmetry centre configurations 7
1.2.2 The modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre configurations 9
1.3 The CsCdBr_{3} Structure 11
1.4 Some Aspects of Other Spectroscopic Studies of Ho^{3+} Ions 15
1.5 Outline of the Thesis 16
2 THEORETICAL ASPECTS 19
2.1 Crystal-Field Theory 19
2.1.1 The free ion Hamiltonian 20
2.1.2 The crystal-field Hamiltonian 23
2.2 Electric Dipole Selection Rules for the
$\mathrm{C}_{4 \mathrm{v}}, \mathrm{C}_{3 \mathrm{v}}$ and C_{6} Symmetry Groups 29
2.3 Polarisation Behaviour of Electric Dipole
Transitions 33
2.4 Electron - Phonon Interaction Effects 38
2.5 Transition Probabilities and Fluorescence Lifetimes 39
3 EXPERIMENTAL 41
3.1 Crystal Preparation 41
3.1.1 Fluorite type crystals 41
3.1.2 CsCdBr_{3} crystals 43
3.2 Deuteration Treatment of the Fluorite Crystals 46
3.3 Cryogenic Aspects 47
3.3.1 Closed-cycle cryostat 48
3.3.2 Liquid helium cryostat 49
3.4 Optical Absorption Spectral Techniques 51
3.5 Laser Selective Excitation Spectral Techniques 51
3.6 Fluorescence Lifetime Measurements 54
4 SPECTROSCOPY OF HO^{3+} IONS IN CaF 2 TYPE CRYSTALS 55
4.1 Spectroscopy of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ Crystals 57
4.1.1 Spectroscopy of the A centre 61
4.1.2 Polarisation study of the A centre 65
4.1.3 Spectroscopy of the B centre 78
4.1.4 Polarisation study of the B centre 83
4.1.5 Upconversion fluorescence of the A and B centres 91
4.2 Spectroscopy of $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$
Crystals 91
4.2.1 Spectroscopy of the CS1 centre 92
4.2.2 Polarisation study of the CS1 centre 98
4.2.3 Spectroscopy of the CS2 centre 102
4.2.4 Polarisation study of the CS2 centre 104

Page

4.2.5 Upconversion fluorescence and spectra recorded above 20 K 115
4.3 Spectroscopy of $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$
Crystals 116
4.3.1 Spectroscopy of the CB1 centre 116
4.3.2 Polarisation study of the CB1 centre 120
4.3.3 Spectroscopy of the CB2 centre 126
4.3.4 Polarisation study of the CB2 centre 133
4.3.5 Upconversion fluorescence and spectra recorded above 20 K 136
4.4 Discussion of the Centres 136
4.5 Spectroscopy of Deuterated $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ Crystals 139
4.5.1 The D^{-}B centre 144
4.5.2 The D1 and D2 centres 144
4.5.3 Discussion of the D^{-}centres 152
5 SPECTROSCOPY OF Ho^{3+} IONS IN SrF 2 TYPE CRYSTALS 154
5.1 The A and B Centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ Crystals 160
5.1.1 Spectroscopy of the SrF_{2} A centre 160
5.1.2 Polarisation study of the SrF_{2} A centre 165
5.1.3 Spectroscopy of the $\mathrm{SrF}_{2} \mathrm{~B}$ centre 172
5.1.4 Polarisation study of the $\mathrm{SrF}_{2} \mathrm{~B}$ centre 175
5.2 The SC1, SC2 and SB1 Centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$
Crystals 178
5.2.1 Spectroscopy of the SC1 centre 178
5.2.2 Spectroscopy of the SB1 centre 183
5.2.3 Polarisation studies of the SC 1 and SB1 centres 188
5.2.4 Spectroscopy of the SC 2 centre 197
5.2.5 Polarisation study of the SC2 centre 201
5.3 Upconversion Fluorescence of the A, B, SC1, SC 2 and SB1 centres 206
5.4 Spectra Recorded up to 55 K for the SC1, SC2 and SB1 Centres 206
5.5 Configurations of the SC1, SC2 and SB1 Centres 209
5.6 Discussion of the Centres 213
5.7 Spectroscopy of the D^{-}Centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ Crystals 215
SPECTROSCOPY OF Ho ${ }^{\mathbf{3 +}}$ IONS IN CsCdBr ${ }_{3}$ CRYSTALS 221
6.1 The Dimer Centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ Crystals 229
6.1.1 Spectroscopy of the dimer centre 229
6.1.2 Splittings on some sharp transitions of the dimer centre 254
(a) Low symmetry splittings 254
(b) Pair splittings 265
6.1.3 Polarisation of the fluorescence transitions 265
6.1.4 Irrep label assignments for the weak transitions 274
6.2 The Minority Centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ Crystals 274
6.2.1 Spectroscopy of the L centre 275
6.2.2 Spectroscopy of the M centre 279
6.2.3 Low symmetry splittings of transitions of the M centre 283
6.2.4 Polarisation of the M centre transitions 283
6.2.5 Spectroscopy of the N centre 286
6.3 Discussion of the Ho^{3+} Centres in CsCdBr_{3} Crystals 288
7 CRYSTAL-FIELD ANALYSES OF Ho ${ }^{\mathbf{3 +}}$ IONS IN SITES OF C 4v AND C C_{3} SYMMETRY 293
7.1 Centres in CaF_{2} and SrF_{2} Type Crystals 297
7.1.1 The A and B centres 297
7.1.2 The modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres 305
7.2 The Dimer and M (single ion) Centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ Crystals 314
8 FLUORESCENCE LIFETIME MEASUREMENTS 324
8.1 Centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ Type Crystals 325
8.1.1 Temporal results 326
8.1.2 Dependence of fluorescence lifetimes on crystal-field parameters 326
8.2 The Dimer Centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ Crystals 343
8.2.1 Temporal results 344
8.2.2 Discussion of the decay and rise times 351
8.2.3 Energy transfer rates for the Ho^{3+} ions in CsCdBr_{3} crystals 354
9 HIGH RESOLUTION SPECTROSCOPY AND
OPTICALLY DETECTED NUCLEAR MAGNETIC RESONANCE STUDIES OF $\mathrm{Ho}^{\mathbf{3 +}}{ }^{\text {IONS }}$ IN SrF_{2} AND CsCdBr ${ }_{3}$ CRYSTALS 356
9.1 Previous High Resolution and ODNMR Studies of the $\mathrm{C}_{4 \mathrm{v}}$ Symmetry Centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ Crystals 360
9.2 Experimental Aspects 364
9.3 High Resolution and ODNMR studies of the A Centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ Crystals 365
9.4 High Resolution and ODNMR Studies of the SB1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ Crystals 371
9.5 High Resolution Studies of the Dimer Centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ Crystals 378
10 SUMMARY AND CONCLUSIONS 382
REFERENCES 387
APPENDIX - PUBLICATIONS 393

LIST OF FIGURES

Figure
Page
Free ion energy level structure of the $4 \mathrm{f}^{10}$
configuration of Ho^{3+}
1.2 $\begin{aligned} & \text { Structure of the alkaline-earth fluoride }\left(\mathrm{MeF}_{2}\right) \\ & \text { crystal lattice }\end{aligned}$
1.3 Model configurations of the two main centres
formed by RE^{3+} ions in the MeF_{2} lattice
$\begin{array}{ll}1.4 & \begin{array}{l}\text { Model configurations of the centres arising from } \\ \text { the introduction of a different alkaline-earth } \\ \text { cation into the regular } \mathrm{MeF}_{2} \text { lattice }\end{array}\end{array}$
1.5 Structure of the CsCdBr_{3} crystal lattice 12
1.6 Cross-section of the CsCdBr_{3} lattice showing
the linear chain structure and the model configuration
of the principal centre formed by RE^{3+} ions
2.1 Schematic diagram of the splittings of the energy
levels of the RE^{3+} ion as a result of the Coulomb,
spin-orbit and crystal-field interactions
2.2 Schematic diagram of the experimental geometry
adopted for polarisation studies
3.1 Set-up for mixing and drying the starting chemicals
for growing CsCdBr_{3} crystals
3.2 The immersion type liquid helium dewar 50
4.1 $\begin{aligned} & 10 \mathrm{~K} \text { absorption spectra of the } \mathrm{Z} \rightarrow \mathrm{E} \text { and } \mathrm{Z} \rightarrow \mathrm{D} \\ & \text { transitions in } \mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.02 \%) \text { crystals }\end{aligned}$ 58
4.2 $\begin{aligned} & 10 \mathrm{~K} \text { broadband and selective excitation spectra of } \\ & \text { the } \mathrm{Z} \rightarrow \mathrm{E} \text { transitions for the } \mathrm{A} \text { and } \mathrm{B} \text { centres in } \\ & \mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%) \text { crystals }\end{aligned}$ 59
$4.3 \begin{aligned} & 10 \mathrm{~K} \text { broadband and selective excitation spectra } \\ & \text { of the } \mathrm{Z} \rightarrow \mathrm{D} \text { transitions for the } \mathrm{A} \text { and } \mathrm{B} \text { centres } \\ & \text { in } \mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%) \text { crystals }\end{aligned}$ 60
$\begin{array}{ll}4.4 & 10 \mathrm{~K} \text { fluorescence spectra for the A centre in } \\ \mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%) \text { crystals }\end{array}$
$4.5 \quad \underset{ }{2 \mathrm{~K}}$ to 55 K fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions
for the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals
4.6 Polarisation of the 10 K fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions of the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals

4.7 Polarisation of the 10 K selective excitation
spectrum of the $Z \rightarrow E$ transitions of the A centre
in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 71
4.8 Energy level diagram for the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for transitions as measured at 10 K 77
4.9 $\quad 10 \mathrm{~K}$ fluorescence spectra for the B centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 79
4.10 2 K to 55 K fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions for the B centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 80
4.11 Energy level diagram for the B centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for transitions as measured at 10 K 87
4.12 10 K upconversion fluorescence spectrum of the $\mathrm{F} \rightarrow \mathrm{Z}$ transitions for the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $Z_{1} \rightarrow D_{4}$ transition at $15682.0 \mathrm{~cm}^{-1}$ 89
4.13 10 K broadband and selective excitation spectra of the $Z \rightarrow E$ transitions for the CS1 and CS2 centres in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 93
4.14 10 K broadband excitation spectrum of the $\mathrm{Z} \rightarrow \mathrm{D}$ transitions for the CS1 and CS2 centres in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 94
4.15 10 K fluorescence spectra for the CS1 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 95
4.16 Polarisation of the 10 K selective excitation and fluorescence spectra of the CS1 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for monitoring or excitation of the $\mathrm{Z}_{1} \mapsto \mathrm{E}_{2}$ transition at $18601.0 \mathrm{~cm}^{-1}$ 99
4.17 10 K fluorescence spectra for the CS2 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 103
4.18 Energy level diagram for the CS2 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for transitions as measured at 10 K 106
4.19 Polarisation of the 10 K selective excitation and fluorescence spectra of the CS2 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for monitoring or excitation of the $Z_{1} \leftrightarrow \mathrm{E}_{2}$ transition at $18608.5 \mathrm{~cm}^{-1}$ 108
4.20 Polarisation of the 10 K fluorescence spectra of the CS2 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{4}$ transition at $18650.8 \mathrm{~cm}^{-1}$ 112

Figure
Page
$\begin{array}{ll}4.21 & 10 \mathrm{~K} \text { broadband and selective excitation spectra of } \\ \text { the } \mathrm{Z} \rightarrow \mathrm{E} \text { transitions for the } \mathrm{CB} 1 \text { and } \mathrm{CB} 2 \text { centres in } \\ \mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%) \text { crystals }\end{array}$
$\begin{array}{ll}4.22 & 10 \mathrm{~K} \text { broadband excitation spectrum of the } \mathrm{Z} \rightarrow \mathrm{D} \\ \text { transitions for the } \mathrm{CB} 1 \text { and } \mathrm{CB} 2 \text { centres in } \\ \mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%) \text { crystals }\end{array}$
$\begin{array}{lll}4.23 & 10 \mathrm{~K} \text { fluorescence spectra for the CB1 centre in } & \\ \mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%) \text { crystals }\end{array}$
$\begin{array}{ll}4.24 & \text { Polarisation of the } 10 \mathrm{~K} \text { selective excitation and } \\ \text { fluorescence spectra of the } \mathrm{CB} 1 \text { centre in } \\ \mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%) \text { crystals, for monitoring } \\ \text { or excitation of the } \mathrm{Z}_{1} \leftrightarrow \mathrm{E}_{2} \text { transition at } \\ 18596.6 \mathrm{~cm}^{-1}\end{array}$
$4.25 \quad 10 \mathrm{~K}$ fluorescence spectra for the CB2 centre in
$\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals
$\begin{array}{lll}\text { 4.26 } & \begin{array}{l}\text { Energy level diagram for the } \mathrm{CB} 2 \text { centre in } \\ \mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%) \\ \text { as measured at } 10 \mathrm{~K}\end{array} & 129\end{array}$
4.27 Polarisation of the 10 K selective excitation and fluorescence spectra of the CB2 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for monitoring or excitation of the $Z_{1} \leftrightarrow E_{2}$ transition at $18606.7 \mathrm{~cm}^{-1}$130
4.28 Polarisation of the 10 K fluorescence spectra of the CB2 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{4}$ transition at $18652.2 \mathrm{~cm}^{-1}$ 134
4.29 10 K absorption spectrum of the $\mathrm{Z} \rightarrow \mathrm{E}$ transitions in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours 141
4.30 10 K fluorescence spectra for the $\mathrm{D}^{-} \mathrm{B}$ centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours 142
4.31 10 K fluorescence spectra for the D1 centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours 145
4.32 10 K fluorescence spectra for the D 2 centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours 146
4.33 Polarisation of the 10 K fluorescence spectra of the D 1 centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours 150
4.34 Polarisation of the 10 K fluorescence spectra of the D2 centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours 151
5.1 10 K absorption spectra of the $\mathrm{Z} \rightarrow \mathrm{E}$ and $\mathrm{Z} \rightarrow \mathrm{D}$ transitions in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.1 \%)$ crystals 157

Figure

Page

5.2 | 10 K broadband and selective excitation spectra of |
| :--- |
| the $\mathrm{Z} \rightarrow \mathrm{E}$ transitions for the A centre in |
| $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals | 158

5.3	10 K broadband and selective excitation spectra
of the $\mathrm{Z} \rightarrow \mathrm{D}$ transitions for the A centre in	
$\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals	

5.4	10 K fluorescence spectra for the A centre in
$\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals	

5.5 55 K fluorescence spectrum of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions for the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 163
5.6 Polarisation of the 10 K selective excitation and fluorescence spectra of the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 166
5.7 Energy level diagram for the A centre in
$\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for transitions as measured at 10 K 171
$5.8 \quad 10 \mathrm{~K}$ fluorescence spectra for the B centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 173
5.9 Energy level diagram for the B centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for transitions as measured at 10 K 177
5.10 10 K broadband and selective excitation spectra of the $\mathrm{Z} \rightarrow \mathrm{E}$ transitions for the SC 1 and SC 2 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 179
5.11 10 K broadband and selective excitation spectra of the $\mathrm{Z} \rightarrow \mathrm{D}$ transitions for the SC 1 and SC 2 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 180
5.1210 K fluorescence spectra for the SC1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 181
5.1310 K broadband and selective excitation spectra of the $\mathrm{Z} \rightarrow \mathrm{E}$ transitions for the SB 1 and SB 2 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 184
5.14 10 K broadband and selective excitation spectra of the $\mathrm{Z} \rightarrow \mathrm{D}$ transitions for the SB 1 centre $\mathrm{inSrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 185
5.15 10 K fluorescence spectra for the SB1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 186
5.16 Polarisation of the 10 K selective excitation and fluorescence spectra of the $\mathrm{SC1}$ centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for monitoring or excitation of the $Z_{1} \leftrightarrow \mathrm{E}_{2}$ transition at $18579.9 \mathrm{~cm}^{-1}$ 189

5.17	Polarisation of the 10 K selective excitation and
fluorescence spectra of the SB1 centre in	
$\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for monitoring or excitation	
of the $\mathrm{Z}_{1} \leftrightarrow \mathrm{E}_{2}$ transition at $18575.8 \mathrm{~cm}^{-1}$	

| 5.18 | 10 K fluorescence spectra for the SC2 centre in |
| :--- | :--- | :--- |
| | $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals |

5.19 Energy level diagram for the SC 2 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for transitions as measured at 10 K 200
5.20 Polarisation of the 10 K selective excitation and fluorescence spectra of the SC2 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for monitoring or excitation of the $Z_{1} \leftrightarrow \mathrm{E}_{2}$ transition at $18590.1 \mathrm{~cm}^{-1}$ 203
5.21 10 K upconversion fluorescence spectra of the $\mathrm{F} \rightarrow \mathrm{Z}$ transitions for the A, SC1 and SB1 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ excitation 207
$5.22 \quad 55 \mathrm{~K}$ fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions for the $\mathrm{SC} 1, \mathrm{SC} 2$ and SB 1 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 208
5.23 10 K fluorescence spectra for the SB 2 centre in $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 211
5.2410 K broadband excitation spectrum of the $Z \rightarrow E$ transitions in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 24 hours 216
5.25 10 K fluorescence spectra for the D 2 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 24 hours 218
5.26 10 K fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions for the D1, D3 and D4 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 24 hours 219
6.1 10 K absorption spectra for the $\mathrm{Z} \rightarrow \mathrm{E}$ and $\mathrm{Z} \rightarrow \mathrm{D}$ transitions in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 225
$6.2 \quad 10 \mathrm{~K}$ broadband and selective excitation spectra of the $Z \rightarrow E$ transitions for the dimer centre in $<111>$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 226
6.3 $\quad 10 \mathrm{~K}$ broadband excitation spectra of the $\mathrm{Z} \rightarrow \mathrm{E}$ transitions for the dimer, L and M centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ and $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 227
6.4 $\quad 10 \mathrm{~K}$ broadband and selective excitation spectra of the $\mathrm{Z} \rightarrow \mathrm{D}$ transitions for the dimer, L and M centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ and $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 228
6.5 $\quad 10 \mathrm{~K}$ fluorescence spectra of transitions from the D, E, F, J, K, M, N and P multiplet levels to the Z multiplet levels for the principal dimer centre in $\mathrm{CsCdBr} 3: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 232

Figure

Page
6.6 10 K fluorescence spectra of transitions from the $\mathrm{E}, \mathrm{F}, \mathrm{M}$,
P and Q multiplet levels to the Y multiplet levels for the
principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3 \mp}(0.3 \%)$ crystals
6.7 10 K fluorescence spectra of transitions from the $\mathrm{F}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{M}, \mathrm{P}, \mathrm{Q}$ and U multiplet levels to the A multiplet levels for the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals

6.8	10 K fluorescence spectra of transitions from the
$\mathrm{M}, \mathrm{P}^{\prime}$ and Q multiplet levels to the B multiplet levels for	
the dimer centre in CsCdBr	$\mathrm{Ho}^{3+}(0.3 \%)$ crystals

6.9 $\quad 10 \mathrm{~K}$ fluorescence spectra of transitions from the P, P^{\prime} and Q multiplet levels to the C multiplet levels for the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals246

6.10 $\quad 10 \mathrm{~K}$ fluorescence spectra of transitions from the M
and Q multiplet levels to the D multiplet levels for
the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 247
6.11 10 K fluorescence spectra of transitions from the P ,
Q and U multiplet levels to the E multiplet levels for the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 248
6.12 Unassigned fluorescence transitions observed for excitation of either the $Z_{1} \rightarrow E_{4}$ or the $Z_{1} \rightarrow D_{5}$ transition of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 249
6.13 Polarisation of the 10 K selective excitation spectrum of the $Z \rightarrow E$ transitions of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 256
6.14 Polarisation behaviour of the two components of each split $E_{1} \rightarrow Z$ and $D_{3} \rightarrow Z$ transition in the 10 K fluorescence spectra of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 258
6.15 Polarisation of the 10 K selective excitation spectrum of the $Z \rightarrow D$ transitions of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 261
6.16 Polarisation of the 10 K fluorescence transitions from the $\mathrm{E}_{1}, \mathrm{~F}_{1}, \mathrm{M}_{1}$ and M_{2} levels to the Y_{1} and Y_{2} levels of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 263
6.17 10 K fluorescence spectra of the transitions from the
E_{1}, E_{3} and F_{1} levels to the Z_{1}, Z_{2} and Z_{3} levels of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, showing pair splittings 266
$6.18 \quad 10 \mathrm{~K}$ fluorescence spectra of the L centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 276
6.19 10 K fluorescence spectra of the M single ion centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 281

Figure
Page
$\begin{array}{lll}6.20 & 10 \mathrm{~K} \text { fluorescence spectra of the } \mathrm{N} \text { centre in } & \\ & \mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%): \mathrm{Na}^{+}(1 \%) \text { crystals }\end{array}$
7.1 Relative magnitudes of the crystal-field parameters for
the $\mathrm{A}, \mathrm{CS} 1$ and CB 1 centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ type crystals
7.2 Relative magnitudes of the crystal-field parameters for the $\mathrm{A}, \mathrm{SC} 1$ and SB 1 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ type crystals

8.1	10 K temporal transients of the fluorescence from the
E and D multiplets of the A and B centres in	
$\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals	

8.2	10 K temporal transients of the fluorescence from the
	E and D multiplets of the CS 1 and CS 2 centres in
$\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals	

$8.3 \quad 10 \mathrm{~K}$ temporal transients of the fluorescence from the
E and D multiplets of the CB 1 and CB 2 centres in
$\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals
8.4 10 K temporal transients of the fluorescence from the E and D
E and D multiplets of the A and SB1 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$
and $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals
$8.5 \quad 10 \mathrm{~K}$ temporal transients of the fluorescence from the
E and D multiplets of the SC 1 and SC 2 centres in
$\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals

8.6	Comparison of the fluorescence lifetime data for the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions of the centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and
$\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ type crystals	

8.7 Comparison of the fluorescence lifetime data for the
$\mathrm{D} \rightarrow \mathrm{Z}$ transitions of the centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and
$\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ type crystals

$8.8 \quad$| 10 K temporal transients for the fluorescence from the |
| :--- |
| D multiplet of the dimer centre in CsCdBr |
| monitoring the $\mathrm{Do}_{1} \rightarrow \mathrm{Z}_{10}$ transition at $15090.5 \mathrm{~cm}^{-1}$ |
| crystals, for |

$8.9 \quad 10 \mathrm{~K}$ temporal transients for the fluorescence from the
E multiplet of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals,
for monitoring the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{7}$ transition at $18137.0 \mathrm{~cm}^{-1}$ 346

8.10 10 K temporal transients for the fluorescence from the
F multiplet of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals,
for monitoring the $F_{1} \rightarrow Z_{2}$ transition at $20384.5 \mathrm{~cm}^{-1}$ 347

$8.11 \quad 10 \mathrm{~K}$ temporal transients for the fluorescence from the
J multiplet of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, for
monitoring the $\mathrm{J}_{1} \rightarrow \mathrm{Z}_{10}$ transition at $23439.5 \mathrm{~cm}^{-1}$ 348

8.12 10 K temporal transients for the fluorescence from
the M, P and Q multiplets of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$
crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ transition at
$18416.3 \mathrm{~cm}^{-1}$
Figure Page
9.1 Profile of an optical transition showing inhomogeneous broadening in relation to the homogeneous broadening 358
9.2 Pictorial representation of the hyperfine line holeburning process in a $\mathrm{C}_{4 v}$ symmetry site 361
9.3 Energy level diagram of the Ho^{3+} ion in a $\mathrm{C}_{4 \mathrm{v}}$ symmetry site showing the hyperfine levels for nuclear $\operatorname{spin} I=7 / 2$ and the superhyperfine levels 363
9.4 2 K high resolution excitation spectra of the $\mathrm{Z}_{2} \rightarrow \mathrm{D}_{1}$ and $Z_{1} \rightarrow D_{1}$ transitions of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ crystals 366
9.5 $\quad 2 \mathrm{~K}$ superhyperfine ODNMR spectra of the nearest neighbour and interstitial ${ }^{19} \mathrm{~F}$ nuclei for the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ crystals 368
9.6 2 K high resolution excitation spectra of the $\mathrm{Z}_{2} \rightarrow \mathrm{D}_{1}$ and $Z_{1} \rightarrow D_{1}$ transitions of the $\mathrm{C}_{4 v}$ symmetry SB1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ crystals 372
9.7 2 K superhyperfine ODNMR spectra of the nearest neighbour and interstitial ${ }^{19} \mathrm{~F}$ nuclei for the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry SB1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ crystals 374
9.8 2 K high resolution excitation spectra of the $Z_{1} \rightarrow D_{1}$ and $Z_{1} \rightarrow D_{2}$ transitions of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 379

LIST OF TABLES

Table Page
1.1 Some ionic data 4
2.1 Symmetries of the crystal-field energy levels for the ${ }^{5} \mathrm{I}_{8},{ }^{5} \mathrm{I}_{7},{ }^{5} \mathrm{~F}_{5},{ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}$ and ${ }^{5} \mathrm{~F}_{3}$ multiplets of Ho^{3+} ions in sites of $\mathrm{C}_{4 \mathrm{v}}, \mathrm{C}_{3 \mathrm{v}}$ and C_{s} point group symmetries 30
2.2 Electric dipole selection rules for even electron systems for the $\mathrm{C}_{4 v}, \mathrm{C}_{3 v}$ and C_{5} point groups 32
2.3 Polarisation intensity ratios predicted for electric dipole transitions for the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre in $\langle 100\rangle$ and $<111\rangle$ oriented crystals 35
2.4 Polarisation intensity ratios predicted for electric dipole transitions for the $\mathrm{C}_{3 v}$ symmetry centre in < $111>$ oriented crystals 36
2.5 Polarisation intensity ratios predicted for electric dipole transitions for the C_{s} symmetry centre in < 100 > oriented crystals 37
4.1 Energy levels of the Z, Y, D, E and F multiplets the A centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 66
4.2 Observed and predicted intensity ratios for the polarised fluorescence transitions of the A centre in $\langle 100>$ and < 111\rangle oriented $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{9}$ transition at $18833.0 \mathrm{~cm}^{-1}$ 72
4.3 Energy levels of the Z, Y, D, E and F multiplets of the B centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 82
4.4 Observed and predicted intensity ratios for the polarised $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence transitions of the B centre in $<111>$ oriented $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 84
4.5 Observed and predicted intensity ratios for the polarised $\mathrm{F} \rightarrow \mathrm{Z}$ fluorescence transitions of the A centre in $\langle 100>$ oriented $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15682.0 \mathrm{~cm}^{-1}$ 90
4.6 Energy levels of the Z, Y, D and E multiplets of the the CS1 centre and their symmetries, as derived from the 10 K spectra of $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 97
4.7 Observed and predicted intensity ratios for the polarised fluorescence transitions of the CS1 centre

 in \(<100>\) and \(<111>\) oriented \(\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)\)

 crystals, for excitation of the \(Z_{1} \rightarrow E_{2}\) transition at \(18601.0 \mathrm{~cm}^{-1}\) 101
 4.8 Energy levels of the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}$ and E multiplets of the
CS 2 centre and their symmetries, as derived from 10 K
spectra of $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals

4.9 Observed intensity ratios for the polarised fluorescence
transitions of the CS2 centre in $<100>$ and
$<111>$ oriented $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals,
for excitation of the $Z_{1} \rightarrow E_{2}$ transition
at $18608.5 \mathrm{~cm}^{-1}$ 110

4.10 Observed and predicted intensity ratios for the polarised
fluorescence transitions of the CS2 centre in $<100>$
oriented $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation
of the $Z_{2} \rightarrow \mathrm{E}_{4}$ transition at $18650.8 \mathrm{~cm}^{-1}$ 113

4.11 Energy levels of the Z, Y, D and E multiplets of the
CB1 centre and their symmetries, as derived from the 10 K
spectra of $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals 121

4.12 Observed and predicted intensity ratios for the
polarised fluorescence transitions of the CB1 centre
in $<100>$ and $<111>$ oriented $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$
crystals, for excitation of the $Z_{1} \rightarrow E_{2}$ transition
at $18596.6 \mathrm{~cm}^{-1}$ 125

4.13 Energy levels of the Z, Y, D and E multiplets of
the CB 2 centre and their symmetries, as derived
from the 10 K spectra of $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$
crystals 128

4.14 Observed intensity ratios for the polarised fluorescence
transitions of the CB2 centre in $<100>$ and
$<111>$ oriented $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$
crystals, for excitation of the $Z_{1}+E_{2}$ transition
at $18606.7 \mathrm{~cm}^{-1}$ 132
4.15 Observed and expected intensity ratios for the polarised fluorescence transitions of the CB2 centre in $<100>$ oriented $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $Z_{2} \rightarrow \mathrm{E}_{4}$ transition at $18652.2 \mathrm{~cm}^{-1}$ 135
4.16 Energies of the $E \rightarrow Z, D \rightarrow Z$ and $E \rightarrow Y$ transitions observed for the $\mathrm{D}^{-} \mathrm{B}$ centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours 143
4.17 Energies of the $\mathrm{E} \rightarrow \mathrm{Z}, \mathrm{D} \rightarrow \mathrm{Z}$ and $\mathrm{E}+\mathrm{Y}$ transitions observed for the D1 and D2 centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours 147
5.1 Energy levels of the Z, Y, D, E and F multiplets of the $\mathrm{SrF}_{2} \mathrm{~A}$ centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 164

5.2 | Observed and predicted intensity ratios for the polarised |
| :--- |
| fluorescence transitions of the A centre in $\langle 100\rangle$ and $\langle 111\rangle$ |
| oriented $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for excitation of the |
| $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18585.7 \mathrm{~cm}^{-1}$, | 168

5.3 Energy levels of the Z, Y, D and E multiplets of the $\mathrm{SrF}_{2} \mathrm{~B}$ centre and their symmetries, as derived from the 10 K spectra of $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 174
5.4 Observed and predicted intensity ratios for the polarised $D \rightarrow Z$ fluorescence transitions of the B centre in < 111> oriented $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.05 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{3}$ transition at $15615.5 \mathrm{~cm}^{-1}$ 176
5.5 Energy levels of the Z, Y, D, E and F multiplets of the SC1 centre and their symmetries; as derived from the 2 K to 55 K spectra of $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 182
5.6 Energy levels of the Z, Y, D, E and F multiplets of the SB1 centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 187
5.7 Observed and predicted intensity ratios for the polarised fluorescence transitions of the SC1 centre in $\langle 100>$ and $<111>$ oriented $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18579.9 \mathrm{~cm}^{-1}$ 191
5.8 Observed and predicted intensity ratios for the polarised fluorescence transitions of the SB1 centre in $\langle 100\rangle$ and $\langle 111\rangle$ oriented $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18575.8 \mathrm{~cm}^{-1}$ 195
5.9 Energy levels of the Z, Y, D and E multiplets of the SC2 centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 199
5.10 Observed intensity ratios for the polarised
fluorescence transitions of the SC2 centre in < 100> and $<111>$ oriented $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for excitation of the $Z_{1} \rightarrow E_{2}$ transition at $18590.1 \mathrm{~cm}^{-1}$ 205
5.11 Energies of the $Z \rightarrow E, E \rightarrow Z, D \rightarrow Z$ and $E \rightarrow Y$ transitions observed for the SB2 centre in $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals at 10 K 212
5.12 Energies of the transitions observed for theD1, D2, D3 and D4 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$crystals deuterated for 24 hours220
6.1 Relative intensities of peak transitions in thefluorescence spectra of the principal dimer centrein $<111>$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals231
6.2 Energy levels for 18 multiplets of the principal dimer centre and their symmetries, as derived from the 2 K and 10 K spectra of $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 251

| 6.3 | Observed intensity ratios for the polarised fluorescence
 transitions from the $\mathrm{E}_{1}, \mathrm{D}_{1}, \mathrm{~J}_{1}$ and F_{1} levels to the |
| :--- | :--- | :---: |
| \mathbf{Z} multiplet levels of the principal dimer centre | |$\quad 268$

6.5 Observed intensity ratios for the polarised fluorescence transitions from the $\mathrm{F}_{1}, \mathrm{Q}_{1}, \mathrm{~K}_{1}, \mathrm{M}_{1}$, U_{1} and P_{1} levels to the A multiplet levels of the principal dimer centre272

6.6 Observed intensity ratios for the polarised
fluorescence transitions from the $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and
P_{1}^{\prime} levels to the B multiplet levels of the
principal dimer centre 272
6.7 Observed intensity ratios for the polarised fluorescence transitions from the $\mathrm{Q}_{1}, \mathrm{P}_{1}, \mathrm{P}_{1}^{\prime}$ and $\mathrm{P}^{\prime}{ }_{2}$ levels to the C multiplet levels of the principal dimer centre 273
6.8 Observed intensity ratios for the polarised
fluorescence transitions from the Q_{1} and U_{1} levels to the D and E multiplet levels respectively of the principal dimer centre 273
6.9 Energies of the transitions observed for the L centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 278
6.10 Energy levels of the Z, Y, D and E multiplets of the M single ion centre and their symmetries, as derived from the 10 K spectra of $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals 282
6.11 Observed intensity ratios for the polarised fluorescence transitions from the E and D multiplets of the M single ion centre in<111> oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3}{ }^{9}(0.01 \%)$ crystals 284
7.1 The free ion parameters adopted from $\mathrm{LaCl}_{3}: \mathrm{Ho}^{3+}$ 296
7.2 $\mathrm{C}_{4 \mathrm{v}}$ symmetry crystal-field level fits to the Z ,
Y, D, E and F multiplets of the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals 298
$7.3 \mathrm{C}_{\mathrm{4v}}$ symmetry crystal-field level fits to the Z , Y, D, E and F multiplets of the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals 299
7.4 Free ion and crystal-field parameters for the $\mathrm{C}_{4 \mathrm{v}}$
symmetry centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals 300
7.5 $\mathrm{C}_{3 \mathrm{v}}$ symmetry crystal-field level fits to the Z ,
$\mathrm{Y}, \mathrm{D}, \mathrm{E}$ and F multiplets of the B centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals 302

Table
Page

7.6	$\mathrm{C}_{3 v}$ symmetry crystal-field level fits to the Z,
Y, D and E multiplets of the B centre in	
$\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals	

7.7 Free ion and crystal-field parameters for the $\mathrm{C}_{3 v}$ symmetry
centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals 304
$7.8 \quad \mathrm{C}_{4 \mathrm{v}}$ symmetry crystal-field level fits to the Z , Y, D and E multiplets of the CS1 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals 306
$7.9 \quad \mathrm{C}_{4 \mathrm{v}}$ symmetry crystal-field level fits to the Z , Y, D and E multiplets of the CB1 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals 307
7.10 Free ion and crystal-field parameters for the modified $\mathrm{C}_{4 v}$ symmetry centres in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals 308
7.11 $\mathrm{C}_{4 \mathrm{v}}$ symmetry crystal-field level fits to the Z ,
Y, D, E and F multiplets of the SC1 centre in $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals 309
7.12 $\mathrm{C}_{4 \mathrm{v}}$ symmetry crystal-field level fits to the Z , $\mathrm{Y}, \mathrm{D}, \mathrm{E}$ and F multiplets of the SB1 centre in $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals 310
7.13 Free ion and crystal-field parameters for the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres in $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals 311
$7.14 \quad C_{3 v}$ symmetry crystal-field fits to 18 multiplets of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals 316
$7.15 \mathrm{C}_{3 \mathrm{v}}$ symmetry crystal-field level fits to the Z , Y, D and E multiplets of the M single ion centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals 319
7.16 Free ion and crystal-field parameters for the dimer and M single ion centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals 320
7.17 Free ion and crystal-field parameters for the Nd^{3+} and Er^{3+} dimer centres in $\mathrm{CsCdBr}_{3}: \mathrm{Nd}^{3+}$ and $\mathrm{CsCdBr} 3: \mathrm{Er}^{3+}$ crystals respectively 321
$8.1 \quad 10 \mathrm{~K}$ fluorescence lifetimes for the Ho^{3+} centres present in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%), \mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and related mixed crystals 339
8.2 Correspondence between the changes in the fluorescence lifetimes and the relative magnitudes of the crystal-field parameters for the $\mathrm{C}_{4 \mathrm{t}}$ symmetry centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%), \mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and related mixed crystals 342
8.3 10 K fluorescence lifetimes data for the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals 352
Table Page
9.1 Relative energy positions for the hyperfine lines of the $Z_{2} \rightarrow D_{1}$ and $Z_{1} \rightarrow D_{1}$ transitions of the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals 367
9.2 Superhyperfine ODNMR frequencies for the nearest neighbour and interstitial ${ }^{19} \mathrm{~F}$ nuclei for the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition of the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals 369
9.3 Relative energy positions for the hyperfine lines of the $\mathrm{Z}_{2} \rightarrow \mathrm{D}_{1}$ and $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transitions of the SB1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals 373
9.4 Superhyperfine ODNMR frequencies for the nearest neighbour and interstitial ${ }^{19} \mathrm{~F}$ nuclei for the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition of the SB 1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals 375
9.5 Relative energies of the hyperfine lines of the $Z_{1} \rightarrow D_{1}$ and $Z_{1} \rightarrow D_{2}$ transitions of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals 380

CHAPTER 1

INTRODUCTION

The results presented in this thesis are from a spectroscopic study of trivalent holmium ions in $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CsCdBr_{3} crystals. These crystals are ideal as hosts for optical studies as they are transparent over a wide spectral range. However, a disadvantage of the CaF_{2} and SrF_{2} crystals is that the axial symmetry centres formed have orientational degeneracy as a result of the equivalence of the symmetry axes, such that centres along the $<100>,<010>$ and $<001>$ directions for example, are indistinguishable. Two disadvantages of the CsCdBr_{3} crystals are that they are (i) soluble in water and (ii) brittle.

The primary objectives of any spectroscopic investigation viz, (i) establishing energy level schemes and the point group symmetries of the various centres present and (ii) establishing the symmetry properties of the wavefunctions of the crystal-field levels, have been achieved in this study.

This chapter presents a summary of the properties of rare-earth ions, Ho^{3+} in particular, and of the crystal structures of the $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CsCdBr_{3} hosts. As a brief review of previous work relevant to each chapter is presented at the beginning of the appropriate chapter, only other studies of Ho^{3+} ions, not directly related to the results presented here, are outlined in Section 1.4 below. An outline of the thesis is presented in Section 1.5.

1.1 The Rare-Earth Ions

The rare-earth ions comprise two groups of fourteen elements each, known as the lanthanide and the actinide series. The lanthanide series, which ranges from cerium (with atomic number $Z=58)$ to lutecium $(Z=71)$, is characterised by the progressive filling of the 4 f shell of the electronic configuration, as one goes along the series, while the actinide series, which ranges from thorium $(Z=90)$ to lawrencium ($\mathrm{Z}=103$) is characterised by the progressive filling of the 5 f shell.

The electronic configuration of the neutral lanthanide atoms consists of a Xenon structure core of 54 electrons $\left((X e)=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10}\right.$ $5 s^{2} 5 p^{6}$), the partially filled 4 f shell and two to three electrons in the outer 6 s and 5 d shells $\left(6 \mathrm{~s}^{2}\right.$ or $5 \mathrm{~d} 6 \mathrm{~s}^{2}$). As the charge Z increases along the lanthanide series, the potential seen by the 4 f electrons deepens as a result of the increased effective nuclear charge caused by the imperfect shielding of the 4 f electrons and their orbitals show a systematic decrease in radius. This regular decrease in the size of the lanthanide with increasing atomic number is known as the lanthanide contraction [132].

The lanthanides can be ionised by removal of the outer electrons, and the most common ionic state is the trivalent in which all the electrons, except for those in the 4 f shell, are in closed shells and therefore spectroscopically inactive in the visible region. The electronic configuration of the trivalent ions is given by (Xe) $4 \mathrm{f}^{\mathrm{N}}$, for N increasing from 1 for Ce^{3+} to 14 for Lu^{3+}. Interactions between the 4 f electrons and the nucleus and between the 4 f electrons themselves, give rise to the energy level structure. Transitions within the $4 \mathrm{f}^{\mathrm{N}}$ configuration result in the sharp lines observed in optical spectra of rare-earth ions in crystalline hosts because of the lanthanide contraction and resultant effective shielding of the $4 f$ electrons from the crystal environment by the $5 \mathrm{~s}^{2} 5 \mathrm{p}^{6}$ closed shells. The transition groups are basically those of the free RE^{3+} ions and their energies are found to be largely independent of the crystal host.

1.1.1 Properties of the $\mathbf{H o}^{\mathbf{3 +}}$ ion

As the results reported in this thesis are for the Ho^{3+} ion, the properties of the lanthanide Ho are now specifically discussed.

Holmium, with atomic number 67, appears towards the end of the lanthanide series. Apart from the Xenon structure core as described above, the electronic configurations of the holmium atom and ions are as follows (with the ground multiplet in brackets) :

$$
\begin{array}{cccc}
\mathrm{Ho} & \mathrm{Ho}^{+} & \mathrm{Ho}^{2+} & \mathrm{Ho}^{3+} \\
4 \mathrm{f}^{\mathrm{I} 1} 6 \mathrm{~s}^{2}\left({ }^{4} \mathrm{I}_{15 / 2}\right) & 4 \mathrm{f}^{11} 6 \mathrm{~s}\left({ }^{5} \mathrm{I}_{8}\right) & 4 \mathrm{f}^{11}\left({ }^{4} \mathrm{I}_{15 / 2}\right) & 4 \mathrm{f}^{10}\left({ }^{5} \mathrm{I}_{8}\right)
\end{array}
$$

Figure 1.1: Free ion energy level structure of the $4 \mathrm{f}^{10}$ configuration of Ho^{3+}.

Table 1.1: Some ionic data

| Ion | Ca^{2+} | Sr^{2+} | Ba^{2+} | F^{-} | Ho^{3+} | Cs^{+} | Cd^{2+} | Br^{-} | Na^{+} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radius (A$)$ | 0.99 | 1.12 | 1.34 | 1.33 | 0.89 | 1.67 | 0.97 | 1.96 | 0.97 |
| Atomic Weight | 40.08 | 87.62 | 137.34 | 19.00 | 164.93 | 132.91 | 112.40 | 79.90 | 22.99 |

Trivalent holmium has an even number of $4 f$ electrons and hence is a non-Kramer's ion. It has an ionic radius of $0.89 \AA$. Its $4 f^{10}$ configuration comprises 107 LSJ multiplets. The free ion energy level structure is presented in Figure 1.1, with multiplets labelled by the ${ }^{2 S+1} \mathrm{~L}_{\mathrm{J}}$ and the letter notations. Both notations are used in this text, with the M_{J} levels resulting from the crystal-field interaction for a particular LSJ multiplet identified by the letter (identifying the multiplet) and a numerical subscript. The ground multiplet ${ }^{5} I_{8}$ is also referred to as the Z multiplet, with the ground state labelled by Z_{1}, and subsequent levels Z_{2}, Z_{3} etc.

The holmium nucleus ${ }^{165} \mathrm{Ho}$ is 100% abundant with nuclear $\operatorname{spin} \mathrm{I}$ of ${ }^{7} / 2$.

1.2 The Fluorite Lattice Structure

The CaF_{2} and SrF_{2} crystal structure, commonly known as the fluorite structure, comprises a cubic lattice arrangement of F^{-}ions with a $\mathrm{Me}^{2+}\left(\mathrm{Ca}^{2+}\right.$ or Sr^{2+}) ion occupying every other cube centre, as shown in Figure 1.2. The separations between the Ca^{2+} or Sr^{2+} ions are $5.45 \AA$ or $5.75 \AA$ respectively. Ionic radii are presented in Table 1.1. The crystal has $\mathrm{O}_{\mathrm{h}}^{5}$ space group symmetry while the F^{-}ion sites have T_{d} point group symmetry and both the Me^{2+} ions and the vacant interstitial sites, O_{h} symmetry.

When a rare-earth ion is introduced into the MeF_{2} lattice, it occupies the position which is normally occupied by the alkaline-earth Me^{2+} ion. For trivalent rare-earth doping therefore, some form of charge compensation is required to maintain the overall neutrality of the system. This is usually in the form of additional interstitial F^{-}ions, and the various positions of these charge compensating interstitial F^{-}ions give rise to different crystal-field symmetries (sites) for the rare-earth ion. The different types of centres arising are discussed in Sections 1.2.1 and 1.2.2 below.

The distribution of the positions of the charge compensating F^{-}ions depends on the concentration of the dopant rare-earth ion as well as the thermal

Figure 1.2: \quad Structure of the alkaline-earth fluoride $\left(\mathrm{MeF}_{2}\right)$ crystal lattice.
history of the crystal and on the particular alkaline-earth ion host lattice.

1.2.1 The $\mathrm{C}_{4 \mathrm{v}}$ and $\mathrm{C}_{3 \mathrm{v}}$ symmetry centre configurations

The two simplest and most common forms of charge compensation in the fluorite lattice crystals, for rare-earth ion concentrations of 0.05% or less, are shown in Figure 1.3. In Figure 1.3(a), the charge compensating interstitial F^{-}ion occupies the cube next to the rare-earth ion in a $<100>$ direction, the so-called nearest neighbour (NN) interstitial position. The rare-earth ion resides in a site of $\mathrm{C}_{4 \mathrm{v}}$ point group symmetry, with the $\mathrm{RE}^{3+}-\mathrm{F}^{-}$pair forming a $\mathrm{C}_{4 \mathrm{v}}$ (tetragonal) symmetry centre. In Figure $1.3(\mathrm{~b})$, the charge compensating interstitial F^{-}ion occupies the next nearest neighbour (NNN) interstitial position, which gives the rare-earth ion site $\mathrm{C}_{3 v}$ point group symmetry and the resulting $\mathrm{RE}^{3+}-\mathrm{F}^{-}$centre, $\mathrm{C}_{3 \mathrm{v}}$ (trigonal) symmetry.

The $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre is the most common centre present in all $\mathrm{CaF}_{2}: \mathrm{RE}^{3+}$ crystals and in $\mathrm{SrF}_{2}: \mathrm{RE}^{3+}$ crystals for rare-earth dopants from the first part of the series while the $\mathrm{C}_{3 v}$ symmetry centre is prevalent in $\mathrm{SrF}_{2}: \mathrm{RE}^{3+}$ crystals for rare-earth ions in the latter part of the series [18]. Both types of centres have been identified for Ho^{3+} ions in CaF_{2} and SrF_{2} crystals here and will be discussed in Chapters 4 and 5.

The crystal field at the rare-earth ion site splits the energy levels of the rare-earth ion to a different pattern and extent for different symmetries, giving a pattern of crystal-field levels characteristic of a given centre.

The different centres can be studied by the laser selective excitation technique developed by Tallant and Wright [122]. In this technique, if the laser is tuned to a well isolated absorption transition of a given centre, the resulting fluorescence belongs just to this single distinct centre and, monitoring a particular intense fluorescence transition gives the excitation spectrum of only the given centre. The absorption transitions can all be identified as to centre in this manner and the spectrum of each centre studied separately.

For higher rare-earth dopant concentrations, cluster centres, formed by
(a)

(b)

$\bigcirc \mathrm{RE}^{3+}$

- F^{-}

Figure 1.3: Model configurations of the two main centres formed by RE^{3+} ions in the MeF_{2} lattice :
(a) the $\mathrm{C}_{4 \mathrm{v}}$ (tetragonal) symmetry centre;
(b) the $\mathrm{C}_{3 \mathrm{v}}$ (trigonal) symmetry centre.
aggregation of two or more RE^{3+} ions may result $[68,117,120,121,122]$. Such centres were not observed here at the low Ho^{3+} concentrations of 0.02% or less chosen.

By deuterating $\mathrm{CaF}_{2}: \mathrm{RE}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{RE}^{3+}$ crystals, using the method described in Chapter 3, some new centres arise from the charge compensation by D^{-}rather than F^{-}ions, as well as from D^{-}substitutions of one or more lattice F^{-} ions. These new centres can either have the same symmetry as the corresponding F^{-}centres, differing only in transition energies and hence energy levels or have lower symmetry because of the lattice substitutions of F^{-}ions. Comparison of these deuterated crystals with hydrogenated and tritiated crystals gives information about the D^{-}and T^{-}isotope shifts.

1.2.2 The modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre configurations

CaF_{2} crystals containing up to 1% of either Sr^{2+} or Ba^{2+} ions and SrF_{2} crystals containing up to 1% of Ca^{2+} or Ba^{2+} ions, contain a further two new centres, both of which are derived from the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre discussed in Section 1.2.1 above. One of these new centres retains the $\mathrm{C}_{4 v}$ symmetry of the parent centre, while the second is a C_{s} symmetry centre as shown in Figure 1.4. The introduced $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$ or Ca^{2+} cation will be referred to as the dopant alkaline-earth or dopant Me^{2+} ion, while the new crystal is referred to as "mixed", to distinguish it from the parent crystal.

As shown in Figure 1.4(a), the dopant alkaline-earth ion substituting for the host alkaline-earth ion next to the interstitial F^{-}ion, on the $\mathrm{RE}^{3+}-\mathrm{F}^{-}$axis opposite to the RE^{3+} ion gives a centre which preserves the $\mathrm{C}_{4 \mathrm{v}}$ point group symmetry. The dopant alkaline-earth ion substituting for the host alkaline-earth ion off the $\mathrm{RE}^{3+}-\mathrm{F}^{-}$axis as in Figure 1.4 (b) and (c) gives rise to a C_{s} symmetry centre. The (100) plane C_{s} symmetry centre (Figure $1.4(\mathrm{~b})$) and the (110) plane C_{s} symmetry centre (Figure $1.4(\mathrm{c})$) are spectroscopically distinguished by their polarisation behaviour, as discussed by Khong [63] for the case of Pr^{3+} and discussed here in Chapter 4 for Ho^{3+}. Modified $\mathrm{C}_{4 v}$ symmetry centres with the
(a)

(b)

(c)

$\bigcirc \mathrm{RE}^{3+}$

- F^{-}

Dopant Me^{2+}

Figure 1.4: Model configurations of the centres arising from the introduction of a different alkaline-earth cation into the regular MeF_{2} lattice :
(a) the on-axis modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre;
(b) the off-axis (100) plane C_{s} symmetry centre - the $C_{s}(b)$ configuration;
(c) the off-axis (110) plane C_{s} symmetry centre - the $\mathrm{C}_{\mathrm{s}}(\mathrm{a})$ configuration.
configurations in Figure 1.4 (a) and (b) have been identified in both $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ type crystals and are discussed in Chapters 4 and 5 respectively.

Further more remote replacements of the host cation by the dopant cation are still possible, but these will occur at least two lattice spacings away from the rare-earth ion and do not have a large effect on its immediate surroundings and hence its crystal-field levels. Centres comprising more than one dopant alkaline-earth are statistically not expected for the 1% or less dopant alkaline-earth concentrations used in this study and were not apparent in any of the spectra studied.

1.3 The CsCdBr_{3} Structure

The compound CsCdBr_{3} belongs to a large group of halide salts which adopt the hexagonal crystal structure of CsNiCl_{3} [84]. These halide salts, commonly referred to as ABX_{3} compounds, have infinite linear chains of $\left[\mathrm{BX}_{6}\right]^{4-}$ octahedra lying parallel to the crystallographic c axis as shown in Figure 1.5, with the monovalent A ions located between the chains maintaining the overall neutrality of the system.

As the separation between adjacent divalent (B^{2+}) ions is much smaller within the chains than between the chains, the intra-chain ion-ion interaction is much stronger than any inter-chain interaction, giving the compounds a pseudo one-dimensional character (Figure $1.6(\mathrm{a})$). For the CsCdBr_{3} case, the Cd^{2+} ions have separations of $3.35 \AA$ along a given chain and $7.68 \AA$ between neighbouring chains [69].

For most of the ABX_{3} compounds, the $\left[\mathrm{BX}_{6}\right]^{4-}$ octahedra have a slight departure from exact octahedral geometry [84], being elongated along the c axis, resulting in a overall trigonal distortion along that axis. This elongation was attributed to intra-chain electrostatic repulsion between neighbouring B^{2+} ions by McPherson et al. [84].

When trivalent rare-earth ions are introduced into the CsCdBr_{3} crystals, the
$\Uparrow c$ axis

Figure 1.5: Structure of the CsCdBr_{3} crystal lattice.
$\Uparrow c$ axis

- $\mathrm{Cd}^{2+} \mathrm{OBr}^{-}$
$\bigcirc \mathrm{RE}^{3+}$

Figure 1.6: \quad Cross-section of the CsCdBr_{3} lattice showing :
(a) the linear chain structure;
(b) the model configuration of the principal centre formed by RE^{3+} ions.
most prevalent centre formed is of the RE^{3+} - vacancy $-\mathrm{RE}^{3+}$ arrangement, as shown in Figure $1.6(\mathrm{~b})$. As three Cd^{2+} ions are replaced by two trivalent $\left(\mathrm{RE}^{3+}\right)$ ions, overall charge neutrality is realised. EPR measurements on Gd^{3+} [52] and optical measurements on both $\mathrm{Nd}^{3+}[11]$ and Tb^{3+} [13] have shown that at least 90% of the RE^{3+} ions introduced into the CsCdBr_{3} crystals exist in such pair arrangements.

Formation of the dimer centre at low dopant concentrations to 0.01% readily occurs, in contrast to other crystalline hosts such as CaF_{2} and LiYF_{4} which require dopant concentrations of at least 1%. This is the main justification for the study of the ABX 3 compounds. Further, all RE^{3+} ion pairs along the chains have a common well defined separation and the same crystalline environment. Because of the interaction between the two ions, the dimer centre exhibits unusually strong upconversion, whereby fluorescence is observed from higher energy multiplets than excited. The upconversion mechanisms may be studied through spectral and temporal measurements.

The CsCdBr_{3} crystal has the $\mathrm{D}_{6 \mathrm{~h}}^{4}$ space group symmetry and the Cd^{2+} ions are at sites of $D_{3 d}$ point group symmetry. Because of the presence of the other RE^{3+} ion, the RE^{3+} ion of a given pair resides in a site of $\mathrm{C}_{3 v}$ point group symmetry.

Other minority centres of either the form $\mathrm{RE}^{3+}-\mathrm{RE}^{3+}$ - vacancy or single RE^{3+}, with remote RE^{3+} charge compensation or nearby impurity charge compensation are also observed to form, as discussed by Barthou and Barthem [12] for the Nd^{3+} case and discussed here in Chapter 6 for the Ho^{3+} case. Further varieties of the RE^{3+} - vacancy $-\mathrm{RE}^{3+}$ dimer centre may be achieved through heterogeneous RE^{3+} co-doping as shown by McPherson and McPherson [82] for the $\mathrm{Ce}^{3+}-\mathrm{Tm}^{3+}$ pair. Furthermore, co-doping the RE^{3+} ion with a monovalent $\left(\mathrm{M}^{+}\right)$ion such as $\mathrm{Li}^{+}, \mathrm{Ag}^{+}$or Na^{+}gives a new single RE^{3+} centre of the form $\mathrm{RE}^{3+}-\mathrm{M}^{+}$, as discussed by Barthem et al. [11] for Nd^{3+}.

1.4 Some Aspects of Other Spectroscopic Studies of $\mathbf{H o}^{\mathbf{3 +}}$ Ions

Ho^{3+} ions are also studied in various other host crystals through energy transfer, two photon absorption and upconversion phenomena. Such studies are prompted by the fact that holmium is the second most extensively used rare-earth activator in laser crystals, after neodymium [61]. For the Ho^{3+} ion, ${ }^{5} \mathrm{I}_{7} \rightarrow{ }^{5} \mathrm{I}_{8}$ is the principal transition for stimulated emission and the host crystals include YAlO_{3}, $\mathrm{YLiF}_{4}, \mathrm{BaY}_{2} \mathrm{~F}_{4}, \mathrm{HoF}_{3}, \mathrm{YAG}$ and CaWO_{4} among many other materials discussed by Kaminskii [61].

The high level of interest in the Ho^{3+} ion, both spectroscopically and for possible technological applications, is highlighted by the diversity of these studies.

Watts [126] reported on fluorescence from the ${ }^{5} \mathrm{~F}_{3},{ }^{5} \mathrm{~F}_{4}$ and ${ }^{5} \mathrm{~S}_{2}$ multiplets of Ho^{3+} for excitation of the ${ }^{2} \mathrm{~F}_{7 / 2}+{ }^{2} \mathrm{~F}_{5 / 2}$ transition of Yb^{3+} in LiYF F_{4} crystals doubly doped with Ho^{3+} and Yb^{3+} ions. Absorption by the Yb^{3+} ion and subsequent transfer of the energy to the $\mathrm{Ho}^{3+5} \mathrm{I}_{6}$ multiplet was the energy transfer mechanism proposed for the visible fluorescence observed with infrared excitation. The energy mismatch of about $1000 \mathrm{~cm}^{-1}$ between the ${ }^{5} \mathrm{I}_{6}-{ }^{5} \mathrm{I}_{8}$ multiplets of Ho^{3+} and the ${ }^{2} \mathrm{~F}_{5 / 2}-{ }^{2} \mathrm{~F}_{7 / 2}$ multiplets of Yb^{3+} could be accounted for by emission of two phonons as LiYF_{4} has phonon energies of up to $500 \mathrm{~cm}^{-1}$.

Results from two photon absorption studies have been reported for $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ at 300 K for excitation by neodymium glass and ruby lasers [40]. The resulting ${ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4} \rightarrow{ }^{5} \mathrm{I}_{8}$ fluorescence was found to be strongly dependent on temperature and this temperature dependence was attributed to electron - phonon interaction effects. Upconversion fluorescence was also observed for two photon excitation of Ho^{3+} ions in $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CdF_{2} crystals [91]. Sequential two photon absorption ${ }^{5} \mathrm{I}_{8} \rightarrow{ }^{5} \mathrm{~F}_{5} \rightarrow{ }^{3} \mathrm{D}_{2}$, and direct two photon absorption ${ }^{5} \mathrm{I}_{8} \rightarrow{ }^{3} \mathrm{~L}_{8}$, were proposed as the mechanisms resulting in the observation of fluorescence from the higher energy ${ }^{3} \mathrm{D}_{2}$ and ${ }^{3} \mathrm{~L}_{8}$ multiplets, respectively.

More recently, room temperature laser emission has been obtained in Ho^{3+} doped YAG [65] and fibres [5, 17, 46]. In YAG: $\mathrm{Ho}^{3+}: \mathrm{Tm}^{3+}[65]$, laser emission
was observed at $2.1 \mu \mathrm{~m}$ from the ${ }^{5} \mathrm{I}_{7} \rightarrow{ }^{5} \mathrm{I}_{8}$ transition of Ho^{3+} with excitation of the ${ }^{3} \mathrm{H}_{4}$ multiplet of Tm^{3+}. Laser emission at $2.08 \mu \mathrm{~m}$ and $1.38 \mu \mathrm{~m}$ was observed in Ho^{3+} doped fluorozirconate fibres [17], arising from the ${ }^{5} \mathrm{I}_{7} \rightarrow{ }^{5} \mathrm{I}_{8}$ and ${ }^{5} \mathrm{~S}_{2} \rightarrow{ }^{5} \mathrm{I}_{5}$ transitions respectively, for excitation with the 488 nm argon ion laser line. The ${ }^{5} \mathrm{I}_{7}+{ }^{5} \mathrm{I}_{8}$ emission was also observed at $2.04 \mu \mathrm{~m}$ [46] in Ho^{3+} doped silica fibres for excitation with the 457.9 nm argon ion laser line. In the fluorozirconate fibre [5], laser emission has been reported at $0.55 \mu \mathrm{~m}\left({ }^{5} \mathrm{~S}_{2} \rightarrow{ }^{5} \mathrm{I}_{8}\right)$ and $0.75 \mu \mathrm{~m}\left({ }^{5} \mathrm{~S}_{2} \rightarrow{ }^{5} \mathrm{I}_{7}\right)$ for a Krypton ion laser excitation of the ${ }^{5} \mathrm{~F}_{5}$ multiplet. The two upconversion pathways proposed involve initial excitation to the ${ }^{5} \mathrm{~F}_{5}$ multiplet, followed by non-radiative relaxation to either the ${ }^{5} \mathrm{I}_{6}$ or the ${ }^{5} \mathrm{I}_{7}$ multiplets. A second excitation populates either the ${ }^{5} \mathrm{G}_{5}$ or the ${ }^{5} \mathrm{~F}_{3}$ multiplets respectively, and non-radiative relaxation from either multiplet populates the ${ }^{5} \mathrm{~S}_{2}$ multiplet, from whose fluorescence transitions lasing occurs.

1.5 Outline of the Thesis

The objectives of this study were :
(i) to determine the Ho^{3+} centres present in each of the $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CsCdBr_{3} crystal systems and derive the energy level schemes for the various centres from their excitation and fluorescence spectra. Although the excitation and fluorescence spectra for the two centres of $\mathrm{C}_{4 \mathrm{v}}$ and $\mathrm{C}_{3 \mathrm{v}}$ symmetry, present in the parent $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals have been reported [117], the corresponding energy level schemes have not been derived;
(ii) to determine the point group symmetry of each identified Ho^{3+} centre through polarisation ratio measurements of the transitions in (i);
(iii) to assign irreducible representation (irrep) labels to the various crystal-field levels of each centre, based on the polarisation ratio measurements of (ii);
(iv) to compare the various centres, both within the same host and between different hosts;
(v) to carry out crystal-field fits and obtain energy level irrep labels to compare with and supplement those determined from polarisation measurements;
(vi) to obtain fluorescence lifetimes for the centres;
(vii) to independently determine the centre symmetry and ground state Z_{1} irrep label assignments for the particular centres in SrF_{2} and CsCdBr_{3} crystals through high resolution and ODNMR measurements.

In Chapters 2 and 3, the theoretical and experimental aspects respectively, relevant to the results presented here, are discussed. The theoretical aspects include crystal-field theory, electric dipole and polarisation selection rules, electron - phonon interaction effects and electric dipole transition probabilities. Crystal growth and preparation, cryogenic systems, laser selective excitation and fluorescence lifetime measurement techniques are discussed in Chapter 3.

The laser selective excitation and transition polarisation results obtained for the Ho^{3+} centres in $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CsCdBr_{3} crystals are presented in Chapters 4, 5 and 6 respectively. Energy level schemes are derived for each centre, irrep label assignments made for the crystal-field levels and model configurations proposed for the different centres. The discussion section at the end of each chapter compares the results for the various centres. For $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ whose laser selective excitation has not been reported before, it is shown that the dominant centre is of $\mathrm{C}_{4 \mathrm{v}}$ symmetry, in contrast to the EPR measurements of Ranon and Lee [103], where resonances for the $C_{3 v}$ symmetry centre only were observed. An explanation of this paradox is given. For the $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ system which has not been studied at all before, upconversion mechanisms are proposed for the principal dimer centre and the several small splittings observed on some of the sharper transitions interpreted.

Chapter 7 summarises results from the crystal-field fits for the $\mathrm{C}_{4 \mathrm{v}}$ and $\mathrm{C}_{3 \mathrm{v}}$ symmetry centres in the three crystal systems, $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CsCdBr_{3}. Crystal-field parameters are compared with those for Er^{3+}, for the parent $\mathrm{C}_{4 v}$ and $\mathrm{C}_{3 \mathrm{v}}$ symmetry Ho^{3+} centres in both CaF_{2} and SrF_{2} crystals. For the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$, the crystal-field parameters are compared with those of the Nd^{3+} and Er^{3+} dimer centres in the same host.

In Chapter 8, the temporal results for the various centres are presented and qualitatively interpreted in terms of the changes in the crystal-field parameters, for centres in CaF_{2} and SrF_{2} type crystals. For the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$, the upconversion mechanisms are further discussed in relation to the fluorescence lifetimes of the various multiplets and energy transfer rates compared to those for the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Er}^{3+}$.

In Chapter 9, the hyperfine and superhyperfine lines of two of the three $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres observed in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ are presented and compared with those for the previously studied $\mathrm{CaF}_{2} \mathrm{C}_{4 \mathrm{v}}$ symmetry centre. These confirm the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre assignments made for the centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$. For the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$, results from a preliminary high resolution study are also presented.

Lastly, in Chapter 10, the main results and conclusions from this study of Ho^{3+} ions in the $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CsCdBr_{3} hosts are summarised and suggestions for further work given.

CHAPTER 2

THEORETICAL ASPECTS

This chapter presents an overview of the theoretical aspects relevant to the work done here. These aspects include crystal-field theory, electric dipole selection rules and polarisation selection rules. Electron-phonon coupling effects and electric dipole transition probabilities are also briefly discussed.

Crystal-field theory is extensively discussed in the work of Wybourne [132], Judd [57], Hüfner [53] and Dieke [35] among others. Transition probabilities are discussed by Riseberg and Weber [114] while local mode vibrations are discussed by Newman [92].

2.1 Crystal-Field Theory

For trivalent rare-earth ions, transitions within the $4 \mathrm{f}^{\mathrm{N}}$ configuration give rise to the optical line spectra observed. Such transitions usually arise from an electric dipole transition process, made possible by the mixing-in of opposite parity states from the $4 \mathrm{f}^{\mathrm{N}-1} 5 \mathrm{~d}$ configuration, which occurs for rare-earth ions residing in sites without inversion symmetry.

The three main interactions responsible for the energy level structure of rare-earth ions are
(i) the Coulomb interaction between the electrons, H_{c};
(ii) the spin-orbit coupling, H_{so};
and (iii) the crystalline electric field, V_{cf}.
For a rare-earth ion in a crystalline environment, the total Hamiltonian can be written as

$$
\mathrm{H}=\mathrm{H}_{\mathrm{fi}}+\mathrm{V}_{\mathrm{cf}}
$$

where H_{fi} and V_{cf} are the free ion and crystal-field Hamiltonians respectively.

2.1.1 The free ion Hamiltonian

For a free ion with charge Ze and N electrons, H_{f} is given by

$$
H_{f i}=\frac{-t^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}-\sum_{i=1}^{N} \frac{Z e^{2}}{I_{i}}+\sum_{i<j}^{N} \frac{e^{2}}{r_{i j}}+\sum_{i=1}^{N} \zeta\left(r_{i}\right)\left(s_{i} \cdot \ell_{i}\right)
$$

where the first two terms represent the total kinetic energy of the electrons and the potential energy of the electrons in the Coulomb field of the nucleus respectively. The third term is the Coulomb potential energy $\left(\mathrm{H}_{\mathrm{c}}\right)$ arising from repulsion between pairs of electrons while the last term is the spin-orbit interaction energy (H_{so}).

As the exact solution of this Hamiltonian cannot be obtained for systems of more than one electron, the central field approximation is evoked to solve equation 2.2 [132]. In this approximation, each electron is assumed to be moving in a spherically symmetric potential $-\mathrm{U}\left(\mathrm{r}_{\mathrm{i}}\right) / \mathrm{e}$, independent of the other electrons. The potential $-U\left(\mathrm{r}_{\mathrm{i}}\right) / \mathrm{e}$ arises from the field of the nucleus and the spherically averaged potential fields of each of the other electrons.

The Hamiltonian for the central field approximation, H_{cf}, is then given by

$$
\mathrm{H}_{\mathrm{cf}}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\frac{-\hbar_{2}^{2}}{2 \mathrm{~m}} \nabla_{\mathrm{i}}^{2}+\mathrm{U}\left(\mathrm{r}_{\mathrm{i}}\right)\right] .
$$

This Hamiltonian is a sum of single electron Hamiltonians and the Schrodinger's equation can be solved by a product of single electron wavefunctions. The state of each electron is denoted by the quantum numbers n, ℓ, m_{ℓ}, and m_{s}, while the configuration of N electrons is labelled by n and ℓ only. In the central field approximation, all the states of a particular configuration have the same energy.

The combined perturbation potential V , from the residual electrostatic potential and the spin-orbit interaction, given by

$$
V=\sum_{i=1}^{N}\left[-\frac{Z e^{2}}{r_{i}}-U\left(r_{i}\right)\right]+\sum_{i<j}^{N} \frac{e^{2}}{r_{i j}}+\sum_{i=1}^{N} \zeta\left(r_{i}\right)\left(s_{i} \cdot \ell_{i}\right),
$$

gives the free ion energy level structure.
As the first term of the residual electrostatic potential, $\sum_{i=1}^{N}\left[-\frac{Z e^{2}}{r_{i}}-U\left(r_{i}\right)\right]$, is spherically symmetric, it shifts the whole energy level structure without removing any degeneracies. The repulsive Coulomb (for electrons in incomplete shells) and spin-orbit terms lift the degeneracy of the $4 \mathrm{f}^{\mathrm{N}}$ configuration to give free ion |LSJ $>$ energy levels.

There are three appropriate approaches to calculating the free ion energy levels of the $4 \mathrm{f}^{\mathrm{N}}$ configuration :
(i) the Russell-Saunders (LS) coupling scheme where the Coulomb interaction is much larger than the spin-orbit interaction. The energy level structure is obtained from diagonalising the Coulomb interaction with the spin-orbit interaction added as a small perturbation. This is applicable for the lighter elements;
(ii) the j -j coupling scheme, for which the spin-orbit interaction term is much larger than the Coulomb term and the latter is treated as a small perturbation. This is applicable for the heavier elements;
(iii) the intermediate coupling scheme, for which the Coulomb and spin-orbit interactions are comparable in magnitude. The LS and j -j coupling limits are not adequate representations and matrix elements for the combined interaction have to be diagonalised. This is the scheme best adopted for the rare-earth ions.

Using the tensor operator methods of Racah, energies for the Coulomb and spin-orbit interactions are derived [132] to be

$$
\begin{equation*}
E_{c}=\sum_{k=0,2,4,6} f_{k} F^{k} \tag{a}
\end{equation*}
$$

for the Coulomb interaction where the F^{k} are the Slater radial integrals and the f_{k} represent the angular part of the interaction;
and

$$
\begin{equation*}
\mathrm{E}_{\mathrm{so}}=\mathrm{A}_{\mathrm{so}} \zeta \tag{~b}
\end{equation*}
$$

for the spin-orbit interaction where ζ as in equation $2.3(\mathrm{~b})$ is the spin-orbit integral and A_{so} represents the angular part of the spin-orbit interaction.

Derivation of these Coulomb and spin-orbit interaction energy expressions are discussed in Wybourne [132], Judd [57] and Hüfner [53] among others.

Configuration interaction effects, both Coulombic and magnetic, are sometimes added to the free ion Hamiltonian of equation 2.2, to improve the correlation between the observed and the calculated free ion energies [100]. These effects are included in second-order perturbation, through the two-body and three-body effective operators.

The Coulombic part of the configuration interaction [58], $\mathrm{H}_{\mathrm{c}-\mathrm{ci}}$ is given by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}-\mathrm{ci}}=\alpha \mathrm{L}(\mathrm{~L}+1)+\beta \mathrm{G}\left(\mathrm{G}_{2}\right)+\gamma \mathrm{G}\left(\mathrm{R}_{7}\right)+\sum_{\mathrm{i}=2,3,4,6,7,8} \mathrm{t}_{\mathrm{i}} \mathrm{~T}^{\mathrm{i}} \tag{a}
\end{equation*}
$$

where α, β and γ are the parameters associated with the two-body Coulombic correction terms; $G\left(G_{2}\right)$ and $G\left(R_{7}\right)$ are Casimir's operators for the G_{2} and R_{7} groups respectively and L is the total orbital angular momentum. The parameters α, β and γ represent those Coulombic correction terms which, because they do not transform as the f_{k} operators, cannot be absorbed into the F^{k} parameters. The three-body Coulombic effects which are relevant for configurations with three of more f electrons, are expressed through the T^{i} parameters and the corresponding t_{i} operators.

The magnetic-correlated part of the configuration interaction [60], $\mathrm{H}_{\mathrm{m}-\mathrm{ci}}$ is given by

$$
\begin{equation*}
H_{m-c i}=\sum_{f=2,4,6} p_{f} P^{f}+\sum_{h=0,2,4} m_{h} M^{h} \tag{~b}
\end{equation*}
$$

where the P^{f} are the electrostatically correlated parameters with the corresponding operators, p_{f}. The Marvin integrals M^{h} represent the spin-spin and spin-other-orbit relativistic corrections and the m_{h} are the corresponding operators. The first term is the more significant of the two two-body magnetic correction terms.

Inclusion of these Coulombic and magnetic correction terms to give the total free ion Hamiltonian $\mathrm{H}_{\mathrm{fi}}^{\prime}$ as

$$
H_{f i}^{\prime}=H_{f i}+H_{c-c i}+H_{m-c i}
$$

significantly reduces the discrepancies between the experimental and the calculated free ion energy levels.

2.1.2 The crystal-field Hamiltonian

In order to be able to solve the Hamiltonian

$$
H=H_{f i}+V_{c f}
$$

by perturbation theory, it is necessary to compare the relative magnitudes of the crystal-field interaction and the free ion interactions of Section 2.1.1 above. Three cases arise :-
(i) $\quad \mathrm{V}_{\mathrm{cf}}>\mathrm{H}_{\mathrm{c}}>\mathrm{H}_{\mathrm{so}}$
(ii) $\mathrm{H}_{\mathrm{c}}>\mathrm{V}_{\mathrm{cf}}>\mathrm{H}_{\mathrm{s}}$
and
(iii) $\mathrm{H}_{\mathrm{c}}>\mathrm{H}_{\mathrm{so}}>\mathrm{V}_{\mathrm{cf}}$.

Case (i) is applicable for paramagnetic ions with incomplete 4 d and 5 d shells. Case (ii) is common for elements of the 3d group and case (iii) is applicable for rare-earth ions. The crystal-field interaction is small in this case because the incompletely filled $4 \mathrm{f}^{\mathrm{N}}$ shell is shielded from the influence of its environment by the outer completely filled $5 s^{2}$ and $5 p^{6}$ shells.

Because the interaction of the rare-earth ion with the crystalline environment is relatively weak, sharp lines are observed in the spectra of rare-earth ions in solids and this coupled with the multitude of energy levels possible for a given f^{N} configuration, gives a large amount of spectral information about the ions.

The relative magnitudes of the energy splittings resulting from the three interaction terms applicable to rare-earth ions are shown in Figure 2.1. The electrostatic Coulomb interaction gives rise to Russell-Saunders LS terms with
separations of about $10000 \mathrm{~cm}^{-1}$ and the spin-orbit interaction splits each of these terms into several J multiplets with typical separations of $1000 \mathrm{~cm}^{-1}$. Finally, the crystal field either partially or fully removes the J degeneracy of each multiplet. The resulting Stark energy levels extend over several $100 \mathrm{~cm}^{-1}$.

The crystal-field Hamiltonian is treated as a perturbation to the free ion Hamiltonian. Since the free ion eigenfunctions have spherical symmetry and transform as the spherical harmonics $\mathrm{Y}_{\mathrm{kq}}(\theta, \phi)$, the crystal-field Hamiltonian is also conveniently expressed in terms of operators $C_{q}^{(k)}$ that transform as spherical harmonics:

$$
V_{c f}=\sum_{k, q, i} B_{q}^{k}\left(C_{q}^{(k)}\right)_{i}
$$

where the summation in i is over all the electrons of the $4 \mathrm{f}^{\mathrm{N}}$ configuration. The $\mathrm{B}_{\mathrm{q}}^{\mathrm{k}}$ are the crystal-field parameters representing the radial part of the crystal-field Hamiltonian and the $\mathrm{C}_{\mathrm{q}}^{(\mathrm{k})}$ are the Racah spherical tensors of rank k representing the angular part of the interaction. The Racah spherical tensor operators are related to the spherical harmonics Y_{kq} by

$$
C_{q}^{(k)}=\sqrt{\frac{4 \pi}{2 k+1}} Y_{k q} .
$$

The possible (k, q) values allowed are governed by the following conditions :-
(i) the triangular rule, that for angular momenta ℓ_{1} and $\ell_{2}, \ell_{1}+\ell_{2} \leqslant k$. For f electrons $\ell=3$, therefore $\mathrm{k} \leqslant 6$.
(ii) for interaction within a configuration of equivalent electrons, the odd k terms vanish as only the even parity terms are allowed.

Therefore the even k values $0,2,4$ and 6 only need be considered.
As the first term in the crystal-field expansion, $k=q=0$, is spherically symmetric and therefore shifts all the energy levels by the same amount, it does not contribute to energy level splittings. This leaves only the $\mathrm{k}=2,4,6$ terms to be considered.

Coulomb Spin-orbit Crystal-field

Figure 2.1:
Schematic diagram of the splittings of the energy levels of the RE^{3+} ion as a result of the Coulomb, spin-orbit and crystal-field interactions.

Further, the possible $B_{q}^{k} C_{q}^{(k)}$ terms are restricted by the site symmetry of the rare-earth ion to those satisfying the n-fold rotational symmetry of the RE^{3+} ion site. In the JM basis representation, the non-zero $\mathrm{B}_{\mathrm{q}}^{\mathrm{k}} \mathrm{C}_{\mathrm{q}}^{(\mathrm{k})}$ terms are :
(a) for a $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre, V_{cf} is given by

$$
\begin{align*}
\mathrm{V}_{\mathrm{C}_{4 \mathrm{v}}} & =\mathrm{B}_{\mathrm{A}}^{2} \mathrm{C}_{0}^{(2)} \\
& +\mathrm{B}_{\mathrm{A}}^{4}\left[\mathrm{C}_{0}^{(4)}-\sqrt{\frac{7}{10}}\left(\mathrm{C}_{4}^{(4)}+\mathrm{C}_{4}^{(4)}\right)\right] \\
& +\mathrm{B}_{\mathrm{A}}^{6}\left[\mathrm{C}_{0}^{(6)}+\sqrt{\frac{1}{14}}\left(\mathrm{C}_{4}^{(6)}+\mathrm{C}_{-4}^{(6)}\right)\right] \\
& +\mathrm{B}_{\mathrm{C}}^{4}\left[\mathrm{C}_{0}^{(4)}+\sqrt{\frac{5}{14}}\left(\mathrm{C}_{4}^{(4)}+\mathrm{C}_{(4)}^{(4)}\right)\right] \\
& +\mathrm{B}_{\mathrm{C}}^{6}\left[\mathrm{C}_{0}^{(6)}-\sqrt{\frac{7}{2}}\left(\mathrm{C}_{4}^{(6)}+\mathrm{C}_{-4}^{(6)}\right)\right] \tag{a}
\end{align*}
$$

where B_{c}^{4} and B_{c}^{6} are the parameters of the cubic crystal-field terms and the B_{A}^{k} are the crystal-field parameters of the axial crystal-field terms which are chosen as orthogonal combinations of the cubic crystal-field terms.

This Hamiltonian is related to the

$$
\begin{align*}
\mathrm{V}_{\mathrm{C}_{4 \mathrm{v}}^{\prime}} & =\mathrm{B}_{0}^{2} \mathrm{C}_{0}^{(2)}+\mathrm{B}_{0}^{4} \mathrm{C}_{0}^{(4)}+\mathrm{B}_{0}^{6} \mathrm{C}_{0}^{(6)} \\
& +\mathrm{B}^{4}\left[\mathrm{C}_{0}^{(4)}+\sqrt{\frac{5}{14}}\left(\mathrm{C}_{4}^{(4)}+\mathrm{C}_{4}^{(4)}\right)\right] \\
& +\mathrm{B}^{6}\left[\mathrm{C}_{0}^{(6)}-\sqrt{\frac{7}{2}}\left(\mathrm{C}^{(6)}+\mathrm{C}_{4}^{(6)}\right)\right] \tag{~b}
\end{align*}
$$

used by Freeth et al. [42, 43] through the following relations of the crystal-field parameters :

$$
\begin{align*}
& \mathrm{B}_{\mathrm{A}}^{2}=\mathrm{B}_{0}^{2} \\
& \mathrm{~B}_{\mathrm{A}}^{4}=\frac{5}{12} \mathrm{~B}_{0}^{4} \\
& \mathrm{~B}_{\mathrm{A}}^{6}=\frac{7}{8} \mathrm{~B}_{0}^{6} \\
& \mathrm{~B}_{\mathrm{C}}^{4}=\mathrm{B}^{4}+\frac{7}{12} \mathrm{~B}_{0}^{4} \\
& \mathrm{~B}_{\mathrm{C}}^{6}=\mathrm{B}^{6}+\frac{1}{8} \mathrm{~B}_{0}^{6} . \tag{c}
\end{align*}
$$

(b) for a $\mathrm{C}_{3 \mathrm{v}}$ symmetry centre, V_{cf} is given by

$$
\begin{align*}
& V_{C_{3 v}}=B_{A}^{2} C_{0}^{(2)} \\
& +\mathrm{B}_{\mathrm{A}}^{4}\left[\mathrm{C}_{6}^{(4)}-\frac{1}{2} \sqrt{\frac{7}{10}}\left(\mathrm{C}_{3}^{(4)}-\mathrm{C}_{-3}^{(4)}\right)\right] \\
& +\mathrm{B}_{\mathrm{A}}^{6}\left[\sqrt{\frac{11}{42}}\left(\mathrm{C}_{3}^{(6)}-\mathrm{C}_{-3}^{(6)}\right)+\sqrt{\frac{5}{21}}\left(\mathrm{C}_{6}^{(6)}+\mathrm{C}^{(6)}{ }^{6}\right)\right] \\
& +\hat{\mathrm{B}}_{\mathrm{A}}^{6}\left[\mathrm{C}_{0}^{(6)}+\frac{4}{7} \sqrt{\frac{10}{21}}\left(\mathrm{C}_{3}^{(6)}-\mathrm{C}_{3}^{(6)}\right)-\frac{4}{7} \sqrt{\frac{11}{21}}\left(\mathrm{C}_{6}^{(6)}+\mathrm{C}_{6}^{(6)}\right)\right] \\
& +\mathrm{BC}^{4}\left[\mathrm{C}_{0}^{(4)}+\sqrt{\frac{10}{7}}\left(\mathrm{C}_{3}^{(4)}-\mathrm{C}_{-3}^{(4)}\right)\right] \\
& +\mathrm{BC}^{6}\left[\mathrm{C}_{0}^{(6)}-\sqrt{\frac{35}{96}}\left(\mathrm{C}_{3}^{(6)}-\mathrm{C}_{-3}^{(6)}\right)+\frac{1}{8} \sqrt{\frac{77}{3}}\left(\mathrm{C}_{6}^{(6)}+\mathrm{C}^{(6)}\right)\right] \text {, } \tag{a}
\end{align*}
$$

where B_{C}^{4} and B_{C}^{6} are the crystal-field parameters of the cubic crystal-field terms referred to the $<111\rangle$ axis as the z axis. The B_{A}^{k} are the trigonal crystal-field parameters of the axial crystal-field terms, which are combinations of the $C_{q}^{(k)}$ chosen to be orthogonal to the cubic crystal-field terms. These parameters are related to the those of the Hamiltonian

$$
\begin{align*}
V_{C_{3 v}}^{\prime} & =B_{0}^{2} C_{0}^{(2)}+B_{0}^{4} C_{0}^{(4)}+B_{0}^{6} C_{0}^{(6)} \\
& +B_{3}^{4}\left(\mathrm{C}_{3}^{(4)}-\mathrm{C}_{-3}^{(4)}\right) \\
& -\mathrm{B}_{3}^{6}\left(\mathrm{C}_{3}^{(6)}-\mathrm{C}_{-3}^{(6)}\right) \\
& +\mathrm{B}_{6}^{6}\left(\mathrm{C}_{6}^{(6)}+\mathrm{C}_{-6}^{(6)}\right) \tag{b}
\end{align*}
$$

of Hutchings [54] by the relations:

$$
\begin{align*}
& \mathrm{B}_{\mathrm{A}}^{2}=\mathrm{B}_{0}^{2} \\
& \mathrm{~B}_{\mathrm{A}}^{4}=\frac{2 \sqrt{70}}{27}\left(\sqrt{\frac{10}{7}} \mathrm{~B}_{0}^{4}-\mathrm{B}_{3}^{4}\right) \\
& \mathrm{B}_{\mathrm{A}}^{6}=\frac{\sqrt{42}}{21}\left(\sqrt{10} \mathrm{~B}_{6}^{6}-\sqrt{11} \mathrm{~B}_{3}^{6}\right) \\
& \hat{\mathrm{B}}_{\mathrm{A}}^{6}=\frac{56}{81}\left(\frac{7}{8} \mathrm{~B}_{0}^{6}-\sqrt{\frac{10}{21}} \mathrm{~B}_{3}^{6}-\sqrt{\frac{11}{21}} \mathrm{~B}_{6}^{6}\right) \\
& \mathrm{B}_{\mathrm{C}}^{4}=\frac{2 \sqrt{70}}{27}\left(\frac{1}{2} \sqrt{\frac{7}{10}} \mathrm{~B}_{0}^{4}+\mathrm{B}_{3}^{4}\right) \\
& \mathrm{B}_{\mathrm{C}}^{6}=\frac{56}{81}\left(\frac{4}{7} \mathrm{~B}_{0}^{6}+\sqrt{\frac{10}{21}} \mathrm{~B}_{3}^{6}+\sqrt{\frac{11}{21}} \mathrm{~B}_{6}^{6}\right) . \tag{c}
\end{align*}
$$

The crystal field either partially or fully removes the J degeneracy of the multiplet to give a set of crystal-field energy levels. The wavefunctions of these resulting crystal-field levels can be expressed as linear combinations of the basis functions, $\left|\gamma \mathrm{SLJJ}_{z}\right\rangle$, characterised by the $\mathrm{L}, \mathrm{S}, \mathrm{J}$ and J_{z} quantum numbers. The matrix elements for the crystal-field interaction between these JJ_{z} basis states are then given by

$$
\left\langle\gamma \mathrm{SLJ}_{z}\right| \mathrm{V}_{\mathrm{cf}}\left|\gamma^{\prime} \mathrm{SL}^{\prime} \mathrm{J}^{\prime} J_{\mathrm{z}}^{\prime}\right\rangle=\sum_{\mathrm{k}, \mathrm{q}} \mathrm{~B}_{\mathrm{q}}^{\mathrm{k}}\left\langle\gamma \mathrm{SLJJ}_{z}\right| \mathrm{U}_{\mathrm{q}}^{(\mathrm{k})}\left|\gamma^{\prime} \mathrm{SL}^{\prime} \mathrm{J}^{\prime} J_{z}^{\prime}\right\rangle\left\langle\ell\left\|\mathrm{C}^{(\mathrm{k})}\right\| \ell\right\rangle
$$

where

$$
\left\langle\ell\left\|C^{(k)}\right\| \ell>=(-1)^{\ell}(2 \ell+1)\left(\begin{array}{lll}
\ell & k & \ell \\
0 & 0 & 0
\end{array}\right) .\right.
$$

The $<\gamma \mathrm{SLJJ}_{z}\left|\mathrm{U}_{\mathrm{q}}^{(\mathrm{k})}\right| \gamma^{\prime} \mathrm{SL}^{\prime} \mathrm{J}^{\prime} \mathrm{J}_{\mathrm{z}}^{\prime}>$ are diagonal in S and, by application of the Wigner-Erckart theorem, can be reduced to

$$
\left.\left.\left.<\gamma \mathrm{SLJJ}_{z}\left|\mathrm{U}_{\mathrm{q}}^{(\mathrm{k})}\right| \gamma^{\prime} \mathrm{SL}^{\prime} \mathrm{J}^{\prime} \mathrm{J}_{\mathrm{z}}^{\prime}\right\rangle=(-1){ }_{\left(-\mathrm{J}_{\mathrm{z}}\right.}^{\mathrm{J}-\mathrm{J}_{\mathrm{z}}} \underset{\mathrm{q}}{\mathrm{~J}} \underset{\mathrm{z}}{\prime} \mathrm{~J}^{\prime}\right)<\gamma \mathrm{SLJ}\left\|\mathrm{U}^{(\mathrm{k})}\right\| \gamma^{\prime} \mathrm{SL}^{\prime} \mathrm{J}^{\prime}\right\rangle
$$

where

$$
\begin{aligned}
\left\langle\gamma \mathrm{SLJ}\left\|\mathrm{U}^{(\mathrm{k})}\right\| \gamma^{\prime} \mathrm{SL}^{\prime} \mathrm{J}^{\prime}>\right. & =(-1)^{\mathrm{S}+\mathrm{L}^{\prime}+\mathrm{J}+\mathrm{k}} \sqrt{(2 \mathrm{~J}+1)\left(2 \mathrm{~J}^{\prime}+1\right)}\left\{\begin{array}{lll}
\mathrm{J} & \mathrm{~J}^{\prime} & \mathrm{k} \\
\mathrm{~L}^{\prime} & \mathrm{L} & \mathrm{~S}
\end{array}\right\} \\
& \times<\gamma \mathrm{SL}\left\|\mathrm{U}^{(\mathrm{k})}\right\| \gamma^{\prime} \mathrm{SL}^{\prime}>
\end{aligned}
$$

The 3 j and 6 j symbols introduced here are tabulated by Rotenberg et al. [115] and the doubly reduced matrix elements of the tensor operator $\mathrm{U}^{(\mathrm{k})}$ are tabulated by Nielson and Koster [93].

Diagonalising the energy matrix generated from equation 2.9 yields eigenvalues and corresponding eigenfunctions for the particular point group symmetry crystal field. The resulting eigenvalues correspond to the crystal-field energy levels observed experimentally while the eigenfunctions are the corresponding $\mid \mathrm{JJ}_{\mathrm{z}}>$ label combination wavefunctions.

It is also possible to include correlation effect terms to the crystal-field Hamiltonian but, as these additional effects are not included in any of the
crystal-field fittings done here, they will not be discussed further.

2.2 Electric Dipole Selection Rules for the $\mathrm{C}_{4 v}, \mathrm{C}_{3 \mathrm{v}}$ and C_{s} Symmetry Groups

The crystal-field wavefunctions for a centre having a RE^{3+} ion in a cubic symmetry site are labelled by the irreducible representations (irreps) Γ_{i} of the O_{h} group. For axial symmetry centres such as $C_{4 v}$ and $C_{3 v}$ symmetry centres, the wavefunctions can be labelled by irreps Γ_{i} and γ_{i} where Γ_{i} is the irrep label of the parent cubic wavefunction and γ_{i} is the point group irrep label. For an even electron system like Ho^{3+}, the energy levels can have one of the irreps Γ_{1} to Γ_{S} of the O_{h} group, and in the $\mathrm{C}_{4 \mathrm{v}}$ symmetry case, these energy levels also belong to one of the irreps γ_{1} to γ_{5} of the $C_{4 v}$ group. For $C_{3 v}$ symmetry, the energy levels can have one of the $C_{3 v}$ point group irreps γ_{1}, γ_{2} and γ_{3} in addition to the Γ_{i} irrep of the O_{h} group, and, for C_{s} symmetry, the applicable point group irrep labels are γ_{1} and γ_{2} of the C_{s} group.

The decomposition from O_{h} to one of the lower symmetry groups $\mathrm{C}_{4 \mathrm{v}}, \mathrm{C}_{3 \mathrm{v}}$ or C_{s}, is given by the compatibility tables such as listed by Koster et al. [67]. The number of crystal-field energy levels of a particular irrep symmetry can therefore be derived for each multiplet. For the $\mathrm{Z}\left({ }^{5} \mathrm{I}_{8}\right), \mathrm{Y}\left({ }^{5} \mathrm{I}_{7}\right), \mathrm{D}\left({ }^{5} \mathrm{~F}_{5}\right), \mathrm{E}\left({ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}\right)$ and $\mathrm{F}\left({ }^{5} \mathrm{~F}_{3}\right)$ multiplets of Ho^{3+}, these are summarised in Table 2.1 (a), (b) and (c), for the $\mathrm{C}_{4 \mathrm{v}}, \mathrm{C}_{3 \mathrm{v}}$ and C_{s} symmetry centres respectively.

In addition to the crystal-field selection rules outlined below, electric dipole transitions are also governed by the selection rules applicable for strict Russell-Saunders L S J states [132]:

$$
\begin{aligned}
& \Delta l= \pm 1 \\
& \Delta S=0 \\
& |\Delta \mathrm{~L}|,|\Delta \mathrm{J}| \leqslant 2 \ell
\end{aligned}
$$

Table 2.1: \quad Symmetries of the crystal-field energy levels for the ${ }^{5} \mathrm{I}_{8},{ }^{5} \mathrm{I}_{7},{ }^{5} \mathrm{~F}_{5}$, ${ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}$ and ${ }^{5} \mathrm{~F}_{3}$ multiplets of the Ho^{3+} ions in sites of
(a) $\mathrm{C}_{4 v}$ point group symmetry;
(b) $\mathrm{C}_{3 \mathrm{v}}$ point group symmetry;
(c) C_{s} point group symmetry.
(a)

$\mathrm{C}_{4 v}$	Symmetry					Multiplet
	γ_{1}	γ_{2}	γ_{3}	γ_{4}	γ_{5}	
200000000	3	2	2	2	4	${ }^{5} \mathrm{I}_{8}$
	1	2	2	2	4	${ }^{5} \mathrm{I}_{7}$
	1	2	1	1	3	${ }^{5} \mathrm{~F}_{5}$
	1	-	1	1	1	${ }^{5} \mathrm{~S}_{2}$
	2	1	1	1	2	${ }^{5} \mathrm{~F}_{4}$
	-	1	1	1	2	${ }^{5} \mathrm{~F}_{3}$

(b)

$\mathrm{C}_{3 v}$	Symmetry			Multiplet
	γ_{1}	γ_{2}	γ_{3}	
$\begin{gathered} \frac{n}{0} \\ 0 . \\ \stackrel{y}{0} \\ \hline 0 \\ \dot{0} \\ \dot{8} \end{gathered}$	3	2	6	${ }^{5} \mathrm{I}_{8}$
	2	3	5	${ }^{5} \mathrm{I}_{7}$
	1	2	4	${ }^{5} \mathrm{~F}_{5}$
	1	-	2	${ }^{5} \mathrm{~S}_{2}$
	2	1	3	${ }^{5} \mathrm{~F}_{4}$
	1	2	2	${ }^{5} \mathrm{~F}_{3}$

(c)

C_{s}	Symmetry		Multiplet
	γ_{1}	γ_{2}	
	9	8	${ }^{5} \mathrm{I}_{8}$
-	7	8	${ }^{5} \mathrm{I}_{7}$
$\stackrel{4}{4}$	5	6	${ }^{5} \mathrm{~F}_{5}$
-	3	2	${ }^{5} \mathrm{~S}_{2}$
7	5	4	${ }^{5} \mathrm{~F}_{4}$
	3	4	${ }^{5} \mathrm{~F}_{3}$

(a) $\mathrm{C}_{4 v}$ symmetry centres:

For the $\mathrm{C}_{4 \mathrm{v}}$ symmetry group, the electric dipole operator $\gamma_{\text {ed }}$ transforms as either the $\gamma_{1}(z)$ or the $\gamma_{s}(x, y)$ irreps. An electric dipole transition $\gamma_{a} \rightarrow \gamma_{b}$ is therefore allowed (i.e. can have a non-vanishing transition probability) if

$$
\gamma_{\mathrm{a}} \times \gamma_{e d} \supset \gamma_{\mathrm{b}}
$$

Using the $C_{4 v}$ group multiplication table on page 45 of Koster et al. [67], the electric dipole selection rules governing transitions between levels of different irrep symmetries can be derived. The selection rules applicable for an even-electron system such as Ho^{3+} are presented in Table 2.2(a), where π and σ polarisations are defined as the E vector of the incident radiation parallel and perpendicular respectively, to the $\mathrm{C}_{4 \mathrm{v}}$ symmetry z axis.
(b) $\mathrm{C}_{3 \mathrm{v}}$ symmetry centres:

For the $C_{3 v}$ symmetry group, the electric dipole operator $\gamma_{\text {ed }}$ transforms as either the $\gamma_{1}\left(z^{\prime}\right)$ or the $\gamma_{3}\left(x^{\prime}, y^{\prime}\right)$ irreps. Transitions $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{b}}$ are allowed if

$$
\gamma_{\mathrm{a}} \times \gamma_{\mathrm{ed}} \supset \gamma_{\mathrm{b}}
$$

For the γ_{1}, γ_{2} and γ_{3} irreps in $\mathrm{C}_{3 v}$ symmetry, the selection rules obtained from the $\mathrm{C}_{3 \mathrm{v}}$ group multiplication table on page 55 of Koster et al. [67], are presented in Table 2.2(b). Here π and σ polarisations are defined by the E vector of the incident radiation parallel and perpendicular to the three-fold C_{3} principal axis z^{\prime}.
(c) C_{s} symmetry centres:

For the C_{s} symmetry group, the electric dipole operator transforms as either the $\gamma_{1}\left(x^{\prime \prime}, z^{\prime \prime}\right)$ or the $\gamma_{2}\left(y^{\prime \prime}\right)$ of the C_{s} group.

For the C_{5} symmetry γ_{1} and γ_{2} irreps, the C_{s} group multiplication table on page 33 of Koster et al. [67], gives the selection rules presented in Table 2.2(c). Here π and σ polarisations are defined by the E vector of the incident radiation parallel and perpendicular to the $y^{\prime \prime}$ axis of the C_{s} group. The $y^{\prime \prime}$ axis is perpendicular to the $\mathrm{x}^{\prime \prime} \mathrm{z}^{\prime \prime}$ reflection plane.

Table 2.2: Electric dipole selection rules for even electron systems for:
(a) the $\mathrm{C}_{4 \mathrm{v}}$ group;
(b) the $\mathrm{C}_{3 \mathrm{v}}$ group;
(c) the C_{s} group.
(a) C_{4}

	γ_{1}	γ_{2}	γ_{3}	γ_{4}	γ_{5}
γ_{1}	π				σ
γ_{2}		π			σ
γ_{3}			π		σ
γ_{4}				π	σ
γ_{5}	σ	σ	σ	σ	π

(b) $\mathrm{C}_{3 v}$

	γ_{1}	γ_{2}	γ_{3}
γ_{1}	π		σ
γ_{2}		π	σ
γ_{3}	σ	σ	$\pi \sigma$

(c) C_{s}

	γ_{1}	γ_{2}
γ_{1}	$\sigma_{x z}$	π
γ_{2}	π	$\sigma_{x z}$

2.3 Polarisation Behaviour of Electric Dipole Transitions

The electric dipole selection rules, as given in Section 2.2 above, are for an individual centre located at a particular orientation. To obtain the overall polarisation effect for a particular centre having several equivalent orientations, one needs to sum over all the possible orientations of that particular centre with respect to some specified polarisation geometry. It is assumed that there are equal populations of all the possible orientations.

The polarisation geometry shown in Figure 2.2, was used for the measurements here. The nomenclature $x(a b) z$ is adopted where :
x is the direction of the incident laser radiation;
a ($=\mathrm{y}$ or z) is the polarisation of the E vector of the incident laser radiation ;
$\mathrm{b}(=\mathrm{y}$ or x$)$ is the polarisation of the emitted fluorescence radiation; and $\quad z$ is the direction of propagation of the fluorescence radiation.

The crystals used for polarisation studies are oriented in either the $<100>$ or the <111> geometries as described in Chapter 3. The polarisation ratios predicted for the $\mathrm{C}_{4 \mathrm{v}}, \mathrm{C}_{3 \mathrm{v}}$ and C_{5} symmetry centres in CaF_{2} and SrF_{2} type crystals, for even electron systems, are presented in Tables 2.3, 2.4 and 2.5 respectively. The derivations of these polarisation ratios are documented by Reeves et al.[106] for the $C_{4 v}$ and $C_{3 v}$ symmetry centres and by Khong [63] for the C_{s} symmetry centres.

Transitions of $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres have well defined polarisation ratios for either $\langle 100\rangle$ or $<111\rangle$ orientations. In contrast, $\mathrm{C}_{3 v}$ symmetry centres do not have any net polarisation effects in $\langle 100\rangle$ oriented crystals [32]. $\mathrm{C}_{3 \mathrm{v}}$ symmetry centres are therefore studied through the polarisation behaviour of their fluorescence transitions in the $<111\rangle$ orientation in which well defined polarisation ratios are expected (Table 2.4). These predicted polarisation ratios are independent of the direction of the laser beam within the selected <111> plane [32].

Crystal

Figure 2.2: \quad Schematic diagram of the experimental geometry adopted for polarisation studies.

Table 2.3: Polarisation intensity ratios predicted for electric dipole transitions for the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre in $\langle 100\rangle$ and $<111>$ oriented crystals.

		$<100>$ orientation			<111> orientation	
Pump transition	Decay transition	$\mathbf{x}(\mathrm{yy}) \mathrm{z}$	$\mathrm{x}(\mathrm{yx}) \mathrm{z}$	$x\left(z^{\text {y }}\right.$) z	$\frac{x^{\prime}\left(y^{\prime} y^{\prime}\right) z^{\prime}}{x^{\prime}\left(y^{\prime} x^{\prime}\right) z^{\prime}}$	$\frac{x^{\prime}\left(y^{\prime} \mathbf{x}^{\prime}\right) x^{\prime}}{\mathbf{x}^{\prime}\left(\mathbf{z}^{\prime} x^{\prime}\right) z^{\prime}}$
$\gamma_{a}+\gamma_{a}$	$\gamma_{a} \rightarrow \gamma_{a}$	1	0	0	3	$1 / 2$
	$\gamma_{\mathrm{a}} \rightarrow \gamma_{s}$	0	1	1	$3 / 5$	$5 / 4$
$\gamma_{\mathrm{a}} \leftrightarrow \gamma_{5}$	$\gamma_{a} \rightarrow \gamma_{a}$	0	1	1	$3 / 5$	$5 / 4$
	$\gamma_{\mathrm{a}} \rightarrow \gamma_{5}$	2	1	1	$9 / 7$	$7 / 8$

$\mathrm{a}=1,2,3,4$ or 5
$a^{\prime}=1,2,3$ or 4

Table 2.4: Polarisation intensity ratios predicted for electric dipole transitions for the C_{3} symmetry centre in $<111>$ oriented crystals.

Pump transition	Decay trausition	$\frac{x^{\prime}\left(y^{\prime} y^{\prime}\right) z^{\prime}}{x^{\prime}\left(y^{\prime} x^{\prime}\right) z^{\prime}}$	$\frac{x^{\prime}\left(y^{\prime} x^{\prime}\right) z^{\prime}}{\mathbf{x}^{\prime}\left(z^{\prime} x^{\prime}\right) z^{\prime}}$
$\gamma_{\mathrm{a}}+\gamma_{\mathrm{a}}$	$\gamma_{\mathrm{a}}+\gamma_{\mathrm{a}}$	3	2
	$\gamma_{\mathrm{a}} \leftrightarrow \gamma_{3}$	$3 / 7$	$7 / 8$
	$\gamma_{3} \rightarrow \gamma_{3}$	$3 / 7 \rightarrow 3$	$7 / 8+2$
$\gamma_{\mathrm{a}} \mapsto \gamma_{3}$	$\gamma_{\mathrm{n}}+\gamma_{\mathrm{a}}$	$3 / 7$	$7 / 8$
	$\gamma_{\mathrm{a}} \mapsto \gamma_{3}$	15/11	11/10
	$\gamma_{3} \rightarrow \gamma_{3}$	$3 / 7 \rightarrow 15 / 11$	$7 / 8+11 / 10$
$\gamma_{3}+\gamma_{3}$	$\gamma_{\mathrm{a}}+\gamma_{\mathrm{e}}$	$3 / 7+3$	$7 / 8+2$
	$\gamma_{\mathrm{a}} \leftrightarrow \gamma_{3}$	$3 / 7+15 / 11$	$7 / 8 \rightarrow 11 / 10$
	$\gamma_{3} \rightarrow \gamma_{3}$	arbitrary	arbitrary

Table 2.5: Polarization intensity ratios predicted for electric dipole transitions for the C_{s} symmetry centres in $<100>$ oriented crystals.

From polarisation ratio measurements on suitably oriented crystals, the following deductions can be made about a particular rare-earth ion centre :-
(i) the symmetry of the centre can be established;
(ii) the numbers of transitions observed in both the excitation and fluorescence spectra can be accounted for;
and (iii) irrep labels for the individual energy levels can be determined.

2.4 Electron - Phonon Interaction Effects

Electron - phonon interactions effects are important in rare-earth doped crystal systems in which light ions, hydrogen (H^{-}) or deuterium (D^{-}) for example, replace the fluorine (F^{-}) ions as charge compensators. This interaction then arises from the modulation of the crystal field at the rare-earth ion site by the vibration of the light ions (H^{-}or D^{-}).

The coupling between the electronic levels of the rare-earth ion and the local mode vibrational levels of the H^{-}or D^{-}ion are revealed in the fluorescence spectra through the presence of local mode vibronic transitions. Local mode vibronic fluorescence transitions occur at energies of the transitions between the electronic levels of the rare-earth ion less the appropriate local mode vibrational energies of the H^{-}and D^{-}ion respectively. These usually occur at about 1% of the intensity of the usual electronic transitions. Local mode vibrational energies of H^{-}ions adjacent to the rare-earth ions are reviewed by Newman [92].

The centre of gravity of the electronic energy levels of the rare-earth ion is lower for the H^{-}and D^{-}charge compensated centres compared to the F^{-} compensated centres. This arises from the change in the covalent bonding between the rare-earth ion and its ligand ions, especially the H^{-}and D^{-}ions and also from the changes in the crystal field at the rare-earth ion site for H^{-}and D^{-} charge compensation compared to F charge compensation. Covalency effects have been shown to give the major contribution to this decrease [56].

2.5 Transition Probabilities and Fluorescence Lifetimes

As discussed earlier in Section 2.1, electric dipole transitions are allowed within the $4 \mathrm{f}^{\mathrm{N}}$ configuration as a result of the opposite parity admixtures from excited configurations of appropriate parity like $4 \mathrm{f}^{\mathrm{N}-1} 5 \mathrm{~d}$ and $4 \mathrm{f}^{\mathrm{N}-1} 5 \mathrm{~g}$. The odd k spherical harmonics $\mathrm{C}_{\mathrm{q}}^{(\mathrm{k})}$ in the static or dynamic crystal field are responsible for these admixtures. For ions in non-centrosymmetric sites, these admixtures are contained in the odd -k (odd parity) terms of the crystal-field expansion V_{cf}.

Considering states ϕ_{β} from opposite parity configurations which have been admixed into the states of the $4 \mathrm{f}^{\mathrm{N}}$ configuration, the eigenfunctions of the $\mathrm{a}^{\text {th }}$ level in the $4 \mathrm{f}^{\mathrm{N}}$ configuration is, to first order, given by

$$
\left|\psi_{\mathrm{a}}\right\rangle=\left|\phi_{\mathrm{a}}\right\rangle-\sum_{\beta} \frac{\left\langle\phi_{\beta}\right| V_{\mathrm{c}}^{\mathrm{odd}}\left|\phi_{\mathrm{a}}\right\rangle\left|\phi_{\beta}\right\rangle}{\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\beta}}
$$

where $\left|\phi_{\mathrm{a}}\right\rangle=\left|\mathrm{f}^{\mathrm{N}} \gamma \mathrm{SLJJ}_{\mathrm{z}}\right\rangle$.

The electric dipole operator P given by

$$
\mathbf{P}=-\mathrm{e} \sum_{\mathrm{q}, \mathrm{i}} \mathrm{r}_{\mathrm{i}}\left(\mathrm{C}_{\mathrm{q}}^{(1)}\right)_{\mathrm{i}}
$$

with components $P_{e}=-\mathrm{e} \sum_{i} r_{i}\left(C_{e}^{(1)}\right)_{i}$ for $\varrho=0$, ± 1, has matrix elements between the states $\left|\psi_{\mathrm{a}}\right\rangle$ and $\left|\psi_{\mathrm{b}}\right\rangle$ of the form:

$$
\begin{align*}
\left\langle\psi_{\mathrm{a}}\right| \mathbf{P}\left|\psi_{\mathrm{b}}\right\rangle= & \sum_{\beta}\left[\frac{\left\langle\phi_{\mathrm{a}}\right| \mathbf{P}\left|\phi_{\beta}><\phi_{\beta}\right| V_{\mathrm{c}}^{\text {odd }}\left|\phi_{\mathrm{b}}\right\rangle}{\mathrm{E}_{\mathrm{b}}-\mathrm{E}_{\beta}}\right. \\
& \left.+\frac{\left\langle\phi_{\mathrm{a}}\right| V_{\mathrm{cf}}^{\text {odd }\left|\phi_{\beta}><\phi_{\beta}\right| \mathbf{P}\left|\phi_{\mathrm{b}}\right\rangle}}{\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\beta}}\right]
\end{align*}
$$

The evaluation of these matrix elements is hindered by lack of knowledge of the odd-k terms of the crystal field and the energy levels of the excited configuration. However, by adopting the Judd [59] and Ofelt [94] approach which is based on the assumptions that
(i) all excited configuration levels are degenerate with respect to all the quantum numbers except n and ℓ so that summation over β can be carried out (closure of equation 2.13);
(ii) both the energy denominators $\mathrm{E}_{\mathrm{b}}-\mathrm{E}_{\beta}$ and $\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\beta}$ can be approximated by a common average energy denominator $\Delta \mathrm{E}_{\mathrm{av}}$.

The matrix elements can then be written as

$$
\left.\left\langle\psi_{\mathrm{a}}\right| \mathbf{P}_{\mathrm{e}}\left|\psi_{\mathrm{b}}\right\rangle=\sum_{\mathrm{q}, \lambda \in \mathrm{ven}} \mathrm{Y}(\lambda, \mathrm{q}, \varrho)<\mathrm{f}^{\mathrm{N}} \gamma \mathrm{SLJ}_{2}\left|\mathrm{U}_{\mathrm{e}}^{(\lambda)+\mathrm{q}}\right| \mathrm{f}^{\mathrm{N}} \gamma^{\prime} \mathrm{SL}^{\prime} \mathrm{J}^{\prime} \mathrm{J}_{\mathrm{z}}^{\prime}\right\rangle
$$

where the energy denominator $\Delta \mathrm{E}_{\mathrm{av}}$, the odd -k crystal-field parameters and the radial integrals are all incorporated into the parameters $Y(\lambda, q, \varrho)$. The $\mathrm{C}_{\mathrm{q}}^{\mathrm{k}}\left|\phi_{\beta}><\phi_{\beta}\right| \mathrm{C}_{\mathrm{e}}^{(1)}$ are equivalent to $\mathrm{U}_{\mathrm{e}}^{(\lambda)}(\lambda$ even $)$.

The line strength S of a radiative transition from level a to level b, defined as the square of the electric dipole matrix elements for spontaneous transition probabilities, is therefore given by

$$
\left.\mathbf{S}=\left|\left\langle\psi_{\mathrm{a}}\right| \mathbf{P}\right| \psi_{\mathrm{b}}\right\rangle\left.\right|^{2}
$$

and the spontaneous electric dipole transition probability $\mathrm{W}_{a \mathrm{~b}}^{\mathrm{R}}$, is of the form :

$$
\mathbf{W}_{a \mathrm{~b}}^{\mathrm{R}} \alpha \mathbf{S}
$$

and therefore

$$
\mathrm{W}_{\mathrm{ab}}^{\mathrm{R}} \alpha\left|\sum_{\mathrm{q}, \lambda \text { even }} \underset{\mathrm{Y}(\lambda, \mathrm{q}, \mathrm{Q})<\mathrm{f}^{\mathrm{N}} \gamma \mathrm{SLJ}_{z} \mid \mathrm{U}_{\mathrm{e}}^{(\lambda)}(\mathrm{q})}{ }\right| \mathrm{f}^{\mathrm{N}} \gamma^{\prime} \mathrm{SL}^{\prime} \mathrm{J}^{\prime} \mathrm{J}_{\mathrm{z}}^{\prime}>\left.\right|^{2} .
$$

The radiative decay time $\tau_{\mathrm{ab}}^{\mathrm{R}}$ for transitions from a level a to all the terminal levels b, is of the form

$$
\frac{1}{\tau_{\mathrm{ab}}^{\mathrm{R}}}=\sum_{\mathrm{b}} \mathrm{~W}_{\mathrm{ab}}^{\mathrm{R}}
$$

CHAPTER 3

EXPERIMENTAL

3.1 Crystal Preparation

Most of the crystals used in this study were grown by the author. For the CaF_{2} and SrF_{2} type crystals, a A.D. Little 38 KW radio frequency induction furnace was used while a Department built two-zone variable-gradient Bridgman furnace was used for growing the CsCdBr_{3} type crystals. Both furnaces employ the Bridgman-Stockbarger technique of lowering the molten starting material through a temperature gradient.

A further two $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals with Ho^{3+} concentrations of 0.005% and 0.1% respectively, were purchased from Optovac Inc. for use as reference samples for the study of the additional centres found in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals.

The crystal growing procedures will now be briefly described.

3.1.1 Fluorite type crystals

The starting material comprised $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and BaF_{2} off-cuts supplied by Optovac Inc. and 99% pure HoF_{3} obtained from Alfa Inorganics Inc.. For the crystals used for this study, the 10 to 12 g of off-cuts used for growing each crystal were crushed to smaller pieces. HoF_{3} concentrations in the range 0.0005% to 0.1% were generally added with the 0.005% and 0.01% concentrations being used mostly for the CaF_{2} and SrF_{2} type crystals respectively, whose laser selective excitation spectra are presented here. The measured rare-earth and alkaline-earth fluorides were placed in a graphite crucible with a tight fitting lid. The graphite crucible had a bore 10 mm in diameter and 40 mm deep. The crucible was then mounted centrally within a graphite cylinder inside the R.F. furnace. Between the graphite cylinder and the induction coil of the furnace was a layer of Union Carbide Fibrefrax insulation of $96 \mathrm{~kg} / \mathrm{m}^{3}$ density.

The chamber of the furnace was evacuated to less than 2×10^{-5} torr before power was turned on. The furnace was then left at power settings of 0.6 A and 1.4 KV for at least four hours in order to bake out any moisture that may have accumulated while the starting material was being mounted. After this period, the power was then gradually increased to 2.0 A and 3.1 KV for CaF_{2} or 2.2 A and 3.2 KV for SrF_{2} type crystals, while monitoring the pressure in the chamber. Once the required power settings had been attained, the crucible was lowered through the temperature gradient at either $3.5 \mathrm{~mm} / \mathrm{h}$ or $2.5 \mathrm{~mm} / \mathrm{h}$. The slower rate was adopted for growing crystals to be used for polarisation studies as such crystals resulted in better oriented samples. Crystals to be used for the general spectroscopic measurements were lowered at the faster rate of $3.5 \mathrm{~mm} / \mathrm{h}$. Growth times were either 24 or 30 hours depending on which of the two lowering rates was chosen. At the end of the growth period, the power was gradually reduced over a period of three hours. A mechanical device (installed during the second half of this study) automatically started winding the power down once the crucible reached the bottom of the furnace. The crystals obtained had up to 30 mm long usable sections.

For unoriented samples, 2-3 mm thick discs were cut off using a rotary diamond saw. These were then polished using Carborundum abrasive paper grades P280, P800 and P1200 in succession. Carborundum silicon carbide grain GRIT No. 800 mixed with a little water to make a paste was then used for an optical finish.

Samples to be used for polarisation studies had to be oriented in either the $<100>$ or the $<111>$ directions. As CaF_{2} and SrF_{2} crystals cleave along the (111) planes, these were used as the reference planes for the crystal orienting process. A cleavage plane was found by chipping off small bits from the edge of the crystal until the characteristic cleavage surface was identified. Once one such surface had been obtained, the second cleavage plane was easily identified as two cleavage planes intersect at an angle of 109.7° along a $<110>$ axis. A brass rod having a
wedge at this angle was found useful for identifying the second cleavage plane. Having identified the two intersecting cleavage planes, the crystal could be either $<100>$ or $<111>$ oriented as required.

For $\langle 100\rangle$ oriented samples, the two intersecting (111) planes were glued into the fitting wedge of the brass rod using araldite epoxyl resin glue (from Ciba-Geigy) and left overnight to set. The brass rod was then tightly clamped to the diamond saw bench with the crystal aligned such that the $<110>$ axis was parallel to the surface and perpendicular to the cutting edge of the blade.

Taking the axis of the brass rod perpendicular to both the surface of the blade and the $\langle 110\rangle$ axis of the crystal as the zero angle $\left(0^{\circ}\right)$, the rod was rotated by a swivel joint through $+45^{\circ}$ and -45°, with a cut through the crystal being made at each angle. The new surfaces intersect at 90° and define the (100) planes of the crystal. Samples of 2-3 mm thicknesses were then cut parallel to one of the (100) planes to give two parallel (100) planes and a third, perpendicular. This third (100) face was reserved for laser entrance while the two parallel faces were for observation of the resulting fluorescence. Again a laser exit face had to be ground, using the P280 abrasive paper, parallel to the entrance face. The samples were then polished, with great care so as not to alter the orientation.

For $<111>$ oriented samples, 2-3 mm thick slices were chipped off parallel to one of the (111) planes. This gave samples with two parallel (111) faces and a third (111) face at an angle of 109.7° to be used as the entrance face for the laser beam. An exit face for the laser beam had to be ground and polished using the abrasive paper and silicon carbide grain. The cleaved (111) surfaces did not need any polishing.

3.1.2 CsCdBr_{3} crystals

Starting materials for CsCdBr_{3} crystals were 99.9% pure CsBr obtained from Aldrich Chemical Company Inc. and 99% pure CdBr_{2} from Hopkins and Williams. The dopants were $\mathrm{Ho}_{2} \mathrm{O}_{3}$ (99.9% pure) from Semi-elements Inc. and NaBr (c.p. grade) from Riedel-De Haen. An oxide had to be used for the
rare-earth dopant as the bromide was not available, but this would then be converted to a bromide during the HBr treatment described below. The chemicals were dried by baking in a vacuum oven for at least two days before use.

The U-shaped tube as in Figure 3.1, was made from 8 mm internal diameter Pyrex glass tubing. The tube has a 2 mm wide constriction about 15 mm from the tip. This is so that as the tube passes through the temperature gradient the molten starting mixture starts to crystallise at the pointed tip, many small crystals form in the bulb but only a single crystal grows past the constriction. Consequently while the material in the bulb part of the tube is in poly-crystalline form, the rest of the boule is made up of a single crystal. The U-shaped glass tube was dried overnight in a hot oven.

For $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, Ho^{3+} concentrations of $0.01 \%, 0.1 \%$ and 0.3% were used while for $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}: \mathrm{Na}^{+}$crystals the two crystals grown had $0.3 \% \mathrm{Ho}^{3+}: 1 \% \mathrm{Na}^{+}$and $0.05 \% \mathrm{Ho}^{3+}: 0.2 \% \mathrm{Na}^{+}$concentrations respectively. The Na^{+}concentration was always higher to ensure preferential formation of $\mathrm{Ho}^{3+}-\mathrm{Na}^{+}$pair centres.

Stoichiometric quantities of the starting chemicals were mixed and dried using the technique developed by Mr R. Ritchie of the Department. In this procedure, the chemicals are added to the sieve end of the U-shaped tube as shown in Figure 3.1. Hydrogen bromide (HBr) gas, pre-bubbled through concentrated sulphuric acid to dry, is allowed to flow through the mixture. Initially taps 1 and 2 of Figure 3.1 are closed while taps 3 and 4 are open, allowing the dry HBr gas to flow along the direction shown by the solid arrow in Figure 3.1. The electric furnace is then turned on and, through the furnace controller, set to heat up to $560^{\circ} \mathrm{C}$ in $2 \frac{1}{2}$ hours. This ensures that the chemicals are well dried in an HBr gas atmosphere before melting. At the end of the $2 \frac{1}{2}$ hour period, the temperature is held at $560^{\circ} \mathrm{C}$ for a further 30 minutes with the HBr gas bubbling through the molten mixture. The part of the glass tube below the furnace is then warmed up using a gas torch so that the molten mixture would trickle down to the

Figure 3.1: \quad Set-up for mixing and drying the chemicals for growing CsCdBr_{3} crystals.
bottom of the tube rather than solidify mid-way down the tube as it cools. To reverse the gas flow, taps 1 and 2 are opened and taps 3 and 4 closed so that the gas flows through the mixture as shown by the dashed arrows in Figure 3.1. This forces the molten mixture to trickle through the sieve to the bottom of the tube. Any that solidifies before reaching the bottom is melted with the gas torch before the ampule is carefully sealed off just above the mixture.

For the crystal growth, a Department built two-zone variable-gradient Bridgman furnace had its "cool" and "hot" zone temperatures set to $330^{\circ} \mathrm{C}$ and $520^{\circ} \mathrm{C}$ respectively. The temperatures took up to 10 minutes to stabilise. A motor was then set to lower the sealed off ampule through the temperature gradient at the rate of $0.86 \mathrm{~mm} / \mathrm{h}$. The growth period was 8-10 days, after which the crystal was annealed using the two-stage temperature control. Firstly, the "hot" zone temperature ($520^{\circ} \mathrm{C}$) was lowered to match the "cool" zone temperature $\left(330^{\circ} \mathrm{C}\right)$ over a period of 15 hours. Both zone temperatures were then lowered from $330^{\circ} \mathrm{C}$ to room temperature over 14 hours. Usable crystals of up to 30 mm in length were obtained.

Although CsCdBr_{3} is not appreciably hygroscopic, the crystals were kept in a dry box in which the humidity was kept below 20% with drying pellets. As CsCdBr_{3} crystals cleave easily in (1110) planes, samples for use were generally cleaved off the boule. The crystals are too soft and brittle to be easily polished.

3.2 Deuteration Treatment of the Fluorite Crystals

The Hall and Schumacher [44] method of hydrogenation was used with deuterium $\left(D_{2}\right)$ gas. This involves heating a crystal in contact with aluminium metal in temperatures of up to $900^{\circ} \mathrm{C}$ in a few cm of Hg pressure of D_{2} for a set period of time. For their hydrogenated CaF_{2} crystals, Hall and Schumacher [44] reported obtaining interstitial hydrogen ion densities of up to $10^{19} / \mathrm{cm}^{3}$ by this method.

For the deuteration of crystals used in this study, flat coils of aluminium wire were wound to place against both surfaces of a polished crystal. Thin crystals of $1-1.5 \mathrm{~mm}$ thickness were deuterated so as to have a uniform D^{-} content across the whole width of the crystal. Thicker crystals tended to develop a D^{-}gradient with more towards the surfaces than in the centre of the crystal Both the coils and the crystal were carefully cleaned with acetone before the crystal was inserted between the coils making sure that there was contact between the crystal and the aluminium coils. The crystal and coils assembly was then placed in a clean alumina crucible which was gently lowered to the bottom of a quartz tube. The quartz tube was placed centrally in an electric furnace and evacuated for a few hours using a vacuum backing pump. The furnace was then set to $100^{\circ} \mathrm{C}$ and left for about 6 hours to remove any traces of water vapour. After this drying period, a mercury diffusion pump was used to attain a vacuum of better than 10^{-4} torr. Dry deuterium gas was then flushed through the system twice before a partial pressure of 20 mmHg of D_{2} gas was introduced and the tube sealed off. The temperature of the furnace was then gradually raised to $850^{\circ} \mathrm{C}$ over a period of $2 \frac{1}{2}$ hours and maintained at this temperature for the desired duration of the deuteration period. The deuteration periods for the crystals measured here were between 4 and 24 hours.

At the end of the deuteration period, the crystals were quickly quenched to room temperature, by removal of the furnace whilst still at $850^{\circ} \mathrm{C}$, to minimise formation of cluster centres during cooling. Fragments of aluminium wire attached to the surface of the crystal during the deuteration process were etched off with dilute hydrochloric acid. The samples were then lightly polished again, using the P1200 abrasive paper and silicon carbide grain.

3.3 Cryogenic Aspects

The results reported here were performed at crystal temperatures ranging from 2 K to 77 K with most of the measurements being done at 10 K . Two types
of cryostats were used, one covering temperatures from 10 K upwards while the other used liquid helium at 2 K . These are now separately discussed.

3.3.1 Closed-cycle cryostat

For the 10 K to 77 K experiments, a CTI-Cryogenics Model 21C Cryodyne two-stage closed-cycle conducting type cryostat with a water cooled compressor unit was used. Two types of crystal holders were used with this cryostat depending on whether optical absorption or laser selective excitation experiments were to be performed.

As absorption measurements require thicker samples than for laser spectroscopy, the crystal holder for optical absorption studies comprised a copper block 40 mm long and 15 mm wide attached to a circular copper plate by a shaft 10 mm long. The copper plate matched the cold head of the cryostat. This type of holder enabled samples of the same crystal of up to 40 mm thick to be mounted at the same time. For the laser spectral experiments, the crystal holder comprised a copper block 40 mm long and 15 mm wide attached to a circular copper plate which matched the cold head of the cryostat. The holder had two slots 4 mm wide and 14 mm apart and a single crystal could be mounted across each slot. Fluorescence could be observed from either side of, and at right angles to, the block.

Indium foil was used on both holders, between the samples and the copper block and between the circular copper plate and the cold head of the cryostat, to improve thermal contact. This was especially important for the Ho^{3+} work reported here as some new spectral lines started to appear at crystal temperatures of about 15 K . The temperature of the sample, as measured by a silicon diode attached to the base of the cold head, was monitored and controlled by a Palm Beach Cryophysics Inc. Model 4025 Cryogenic Thermometer/Controller. The base temperature of 9.5 K was usually attained in 40 minutes and the temperature of the sample could be raised by means of a heating element. When changing the crystal temperature to a new setting, say from 10 K to $20 \mathrm{~K}, 15-20$ minutes was
allowed for after the controller had reached that set temperature, for the crystal to reach thermal equilibrium.

3.3.2 Liquid helium cryostat

For the experiments conducted at liquid helium temperature a glass dewar as shown in Figure 3.2 was used, with the samples directly immersed in the superfluid helium. The dewar built in the Department is based on a design from Dr N.B. Manson of the Laser Physics Centre, Australian National University. Modifications were made to the liquid helium fill and sample rod access lines.

For the dewar built here, as shown in Figure 3.2, the helium fill line and sample rod were combined. The helium fill tube has small holes towards the bottom. The helium transfer tube fitted inside the fill tube and the liquid would trickle down the tube and out through the small holes into the glass dewar. The sample holders were thin (1 mm thick) copper plates 22 cm long and 11 mm wide attached to a brass rod. The end of the brass rod screwed onto the bottom of the helium fill tube. The copper plate had two circular slots 5 mm in diameter and 5 mm apart. Samples were glued across the slots with aeroldite glue. For absorption studies, samples could be glued across the whole width of the copper plate. The sample rod assembly could be moved up and down to access either sample with the optical beam.

The outer jacket of the dewar was evacuated over a period of at least 6 hours before being closed off. With the sample mounted and the inner chamber sealed, the outer chamber was filled with liquid nitrogen for periods ranging from 4-12 hours, prior to liquid helium being transferred to the dewar. The helium was then pumped to its super fluid state in about 5 minutes, with a Dynavac 450 $\ell /$ min pump.

The dewar has a 5ℓ capacity and, once pumped to superfluid state, the helium lasted for 5-6 hours. Refilling tended to cloud the windows and so the dewar was normally left to warm up to room temperature before another liquid helium transfer could be made. The outer jacket was evacuated before each

Figure 3.2: The immersion type liquid helium dewar.
helium usage.

3.4 Optical Absorption Spectral Techniques

For absorption spectroscopy a 100 W Tungsten halogen lamp with a 12 V regulated power supply was used as the light source. The absorption spectra were recorded photo-electrically using a Spex 17000.75 m single monochromator equipped with an EMI 9558 S20 photomultiplier tube. The photomultiplier tube was thermo-electrically cooled to $-25^{\circ} \mathrm{C}$ by a Products for Research Inc. Model TE-104 cooler. Output from the photomultiplier tube, as measured by a Keithley Instruments 610B electrometer, was passed through a Department-built active filter and variable offset device before being plotted out by a Sekonic SS250F chart recorder.

For the results presented here, crystal thicknesses of $10-30 \mathrm{~mm}$ were used for a satisfactory signal to noise ratio. Spectrometer slit widths of $45-60 \mu \mathrm{~m}$ were needed, and for a more uniform spectral response, the scrambler in front of the entrance slit of the spectrometer was removed.

3.5 Laser Selective Excitation Spectral Techniques

For the first half of this work, a Spectra Physics Model 17115 W argon ion laser with a Model 270 exciter was used as the excitation source. Later, a Spectra Physics Model 2045E 15 W argon ion laser with a Model 2570E supply was installed. Argon laser powers in the range $1.5-5 \mathrm{~W}$ were used to pump a Spectra Physics model 375 dye laser. Two dyes, Coumarin 540 and Rhodamine 640 perchlorate, obtained from Exciton Chemical Company Inc. were used for the spectroscopic results presented here. The Coumarin 540 dye has a lasing range of 18100-19200 cm^{-1} when excited by the 488 nm laser line while the Rhodamine 640 dye lases in the range $14950-16100 \mathrm{~cm}^{-1}$ with excitation from the 514.5 nm argon laser line. These dye ranges cover the absorption spectral regions of the $\mathrm{E}\left({ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}\right)$ and $\mathrm{D}\left({ }^{5} \mathrm{~F}_{5}\right)$ multiplets respectively, of the Ho^{3+} ion.

For the Coumarin 540 dye typical output powers were in the range $18-60 \mathrm{~mW}$. During the first 100 hours of dye use, an input laser power in the $3-3.5 \mathrm{~W}$ range would give an average of 50 mW of dye laser output power. Thereafter only $15-25 \mathrm{~mW}$ could be achieved for argon laser powers of up to 5 W . After about 150 hours of operation, $10-20$ drops of cyclo-octatatraene(COT) (from Exciton Chemical Company) had to be added to the dye to improve the output power. The COT increased the dye laser power by 20-40\% for periods of up 30 hours of use. Dye changes were made after every 250-300 hours of use.

The Rhodamine 640 dye gave more output power than the Coumarin 540 dye. For the measurements presented here, dye laser output powers of 100-120 mW were used and this required only 1.5 W of argon laser input power. The dye also lasts longer than the Coumarin 540 dye.

A birefringent filter rotated by a model 375 stepper motor unit allowed the dye range to be scanned in small steps of $0.5 \mathrm{~cm}^{-1}$. The drive unit gave dye energy positions reproducible to within $0.2 \mathrm{~cm}^{-1}$ for successive scans. The output from the dye laser had a linewidth of $0.5 \mathrm{~cm}^{-1}$ and a frequency drift of up to $\pm 1 \mathrm{~cm}^{-1}$ over 12 hours.

With crystals mounted for laser experiments, as set out in Section 3.3, one of two types of spectra could be recorded from the fluorescence observed in opposite directions perpendicular to the crystal. The first type of spectra, known as laser excitation (broadband) spectra were recorded using the Spex 17000.75 m single monochromator and EMI 9558 S20 photomultiplier tube. The Spex 1700 monochromator, set to zero order and equipped with Corning glass filters CS2-59, CS2-60, CS2-61 or CS2-64, was used to monitor all the fluorescence from the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions in the $15000 \mathrm{~cm}^{-1}$ region. The output from the photomultiplier tube was displayed on the 610 B electrometer and, through a voltage to frequency converter, was recorded on a frequency counter.

The second set of spectra to be measured were laser excited fluorescence spectra, for which a Spex 14030.85 m double monochromator and an RCA 31034 photomultiplier tube were used. The photomultiplier tube was thermo-electrically cooled to $-25^{\circ} \mathrm{C}$. Depending on the intensity of the fluorescence being measured, slit widths of $10-200 \mu \mathrm{~m}$ were mostly used. The output from the photomultiplier tube was passed through a Princeton model 1121 amplifier/discriminator unit before being displayed on the Princeton Applied Research model 1112 photon counter.

Collection, display and storage of data was controlled by an Apple Me microcomputer. The signal output from either the frequency counter (for broadband spectra) or the photon counter (for laser excited fluorescence spectra) was displayed on the computer screen, stored on floppy discs and plotted out by a Hewlett Packard HP7475A plotter.

For polarisation measurements, the configuration as in Figure 2.2 was used. The polarisation of the E vector of the laser could be changed between the y and z directions with a Spectra Physics 310 polarisation rotator. A polaroid sheet mounted between the collimating and focussing lenses (for the fluorescence detection) was used as the analyser. By rotating the polaroid sheet to the y or x directions as shown in Figure 2.2, the polarisation of the fluorescence to be measured could be chosen. Although the general nomenclature $\mathrm{x}(\mathrm{ab}) \mathrm{z}$, where : x is the direction of incidence of the laser; $\mathrm{a}(=\mathrm{y}$ or z$)$ is the polarisation of the E vector of the laser; $b(=y$ or $x)$ is the polarisation of the fluorescence;
and $\quad z$ is the direction of propagation of the fluorescence, is usually adopted for describing the polarisation geometry, the (ab) only notation is used for all the results to be presented here, as x and z are the same throughout. Therefore, polarisation ratios are simply recorded as yy : yx rather than $\mathrm{x}(\mathrm{yy}) \mathrm{z}$: $\mathrm{x}(\mathrm{yx}) \mathrm{z}$.

3.6 Fluorescence Lifetime Measurements

For fluorescence lifetime measurements, a PRA model LN1000 nitrogen laser was used to excite a PRA model LN107 dye laser, both from Photochemical Research Associates Inc.. The dye laser was driven by a DD1790 drive unit. The nitrogen laser was specified to have an average energy of 1.1 mJ per pulse at 337.1 nm and a pulse duration of 800 ps while the dye laser was specified as having an average energy per pulse of $115 \mu \mathrm{~J}$.

The various dyes used for excitation of several Ho^{3+} multiplets as discussed in Chapter 8 are as follows :-

Dye	Dye range $(\mathbf{n m})$	$\mathbf{H o}^{\mathbf{3 +}}$ multiplets excited
Rhodamine 640	$620-670$	$\mathrm{D}\left({ }^{5} \mathrm{~F}_{5}\right)$
Coumarin 540A	$520-580$	$\mathrm{E}\left({ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}\right)$
Coumarin 481	$460-510$	$\mathrm{~F}\left({ }^{5} \mathrm{~F}_{3}\right)$
Stilbene 420	$400-470$	$\mathrm{~J}\left({ }^{5} \mathrm{G}_{5}\right)$

The Spex 17000.75 m single monochromator and EMI 9558 S20 photomultiplier tube were used to record the fluorescence, with the spectrometer set to monitor a specific transition for a particular centre. The output from the photomultiplier tube was recorded by a Hitachi model VC 6275 digital storage oscilloscope triggered by the nitrogen laser pulse as monitored by an RCA 931A S11 photomultiplier tube. With an appropriate terminating load, the digital storage oscilloscope was used to average 256 sweeps of the whole transient.

A GW BASIC program written by K. Murdoch and updated by P. Wells of the Department was then used to transfer the resultant transient from the digital storage oscilloscope to an IBM PC microcomputer and store the data on floppy discs.

CHAPTER 4

SPECTROSCOPY OF Ho ${ }^{\mathbf{3 +}}$ IONS IN CaF $\mathbf{C H}_{2}$ TYPE CRYSTALS

The first reported laser selective excitation study of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ was performed by Seelbinder and Wright [117]. Spectral and temporal measurements were presented for the two major single Ho^{3+} ion centres (labelled A and B) identified. Spectral measurements covered both absorption and fluorescence transitions between the ${ }^{5} \mathrm{I}_{8}$ and each of the ${ }^{5} \mathrm{~F}_{5},{ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4},{ }^{5} \mathrm{~F}_{3},{ }^{3} \mathrm{~K}_{8},{ }^{5} \mathrm{~F}_{1}$ and ${ }^{5} \mathrm{G}_{6}$ multiplets and fluorescence transitions between the ${ }^{5} \mathrm{~S}_{2}$ and ${ }^{5} \mathrm{I}_{7}$ multiplets. Fluorescence lifetime measurements were also presented for transitions from the $\mathrm{D}\left({ }^{5} \mathrm{~F}_{5}\right), \mathrm{E}\left({ }^{5} \mathrm{~S}_{2}\right)$ and $\mathrm{F}\left({ }^{5} \mathrm{~F}_{3}\right)$ multiplets of both the A and B centres. Cluster centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.2 \%)$ crystals, both pure and double doped with Ho^{3+} and Er^{3+}, were also studied through upconversion and pair interactions between similar and dissimilar ions. As the energy levels of Ho^{3+} and Er^{3+} lie in the same spectral region for most of the multiplets, it was difficult to discriminate between the transitions of $\mathrm{Ho}^{3+}-\mathrm{Er}^{3+}, \mathrm{Ho}^{3+}-\mathrm{Ho}^{3+}$ and $\mathrm{Er}^{3+}-\mathrm{Er}^{3+}$ centres. In such cases time resolved studies were sometimes helpful as the mixed $\mathrm{Ho}^{3+}-\mathrm{Er}^{3+}$ centres were found to have much shorter fluorescence lifetimes than Ho^{3+} ion centres.

EPR measurements at 4.2 K on the tetragonal symmetry (A) centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.1 \%)$ crystals were performed by Kornienko and Rybaltovskii in 1972 [66]. Using a microwave source in the range $70-75 \mathrm{GHz}$, a ground state splitting of 50.8 GHz was determined for the A centre. A more recent measurement of 60 GHz was reported by Hasan [47] from high resolution laser measurements.

Campbell [24] measured this ground state splitting to be $1.85 \pm 0.2 \mathrm{~cm}^{-1}$ from the far infrared absorption spectrum of a 48 mm thick $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.05 \%)$ crystal.

Although the $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ system has been studied in some detail as outlined above, energy levels for the two known single $\mathrm{Ho}^{3+}-\mathrm{F}^{-}$centres (A and B) have not yet been derived from the reported transition energies [117], nor have the symmetry irrep labels of the various Ho^{3+} energy levels been established. The
site symmetries of the Ho^{3+} ions in these two centres were proposed [117] to be tetragonal and trigonal for the A and B centres respectively, on the basis of the similarity of the spectra of these centres to those of the corresponding Er^{3+} centres [122], but without definitive proof being given. A consequence of this is that, until recently [109], it was not known whether the ground state of Ho^{3+} in the A centre is a doublet or singlet level. Irrep label assignments made by the study reported here have helped explain the hyperfine structures observed for this centre [81]. The first section (4.1) of this chapter is mainly directed at (i) using polarisation measurements to substantiate earlier site symmetry assignments for the A and B centres, (ii) deriving energy levels for these two centres and (iii) assigning irrep labels to the various crystal-field energy levels derived.

As this work is concerned with the study of the spectroscopy of just the single Ho^{3+} ion centres, low Ho^{3+} dopant concentration of no more than 0.005% was chosen in order to have minimal formation of cluster centres. An understanding of the behavior of single ion centres is a prerequisite for the future study of cluster centres.

Additionally, results from a study of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals containing 1% of SrF_{2} or BaF_{2} are also presented with model assignments for the two new centres observed for each system. Although the results presented here for these mixed crystal centres are for 1% of Sr^{2+} and Ba^{2+}, the two centres were observed at lesser strength for dopant alkaline-earth concentrations down to 0.1%. The 1% concentration was chosen as it gave spectral lines of sufficient intensity for detailed study. Comparisons are made between these new centres and the A centre, as well as between the new centres themselves.

In Section 4.5 , results from a study of deuterated $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals are also presented. Although attempts to identify the exact D^{-}analogue of the $\mathrm{F}^{-} \mathrm{A}$ centre were unsuccessful, two low symmetry D^{-}centres of A centre parentage and the D^{-}analogue of the B centre were found and their spectroscopy is described.

4.1 Spectroscopy of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ Crystals

Absorption Spectra

The most straight forward way of determining the distribution and relative concentrations of the various centres present in a given crystal system is by optical absorption spectroscopy. It is however necessary to systematically vary both the dopant concentration and crystal thickness in order to obtain transitions with a good signal to noise ratio.

For $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$, a dopant concentration of 0.02% in 10 mm thick samples was found to give sufficiently intense and narrow absorption features representative of the two single Ho^{3+} ion centres (A and B) present in the low concentration Ho^{3+} crystals (Figure 4.1). The absorption lines were found to be ten times stronger for the transitions to the ${ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}$ multiplets in the 535 nm region compared to transitions to the ${ }^{5} \mathrm{~F}_{5}$ multiplet in the 640 nm region.

Laser Selective Excitation Spectra

Laser excitation spectra in both the 18000 and $15000 \mathrm{~cm}^{-1}$ regions were obtained with monitoring all of fluorescence transitions in the $15000 \mathrm{~cm}^{-1}$ region simultaneously. These so-called broadband laser selective excitation spectra display the same features as the corresponding absorption spectra (Figures 4.2(a) and 4.3(a)). The transitions maintain the same relative intensities for Ho^{3+} concentrations over the range 0.0005% to 0.02%. Centres present for such low Ho^{3+} concentrations were attributed to single $\mathrm{Ho}^{3+}-\mathrm{F}^{-}$centres by Seelbinder and Wright [117], henceforth referred to as [SW]. $\mathrm{A} \mathrm{Ho}^{3+}$ concentration of 0.005% was chosen for the laser selective excitation work reported here.

By laser selective excitation with monitoring of specific Ho^{3+} transitions, all observed transitions were found to belong to one of two centres denoted A and B , following the identifications of [SW]. The relevant excitation spectra are shown in Figures 4.2 (b),(c) and 4.3 (b),(c) for the $Z \rightarrow E$ and $Z \rightarrow D$ transitions respectively.

Figure 4.1: $\quad 10 \mathrm{~K}$ absorption spectra in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.02 \%)$ crystals :
(a) $\mathrm{Z} \dashv \mathrm{E}$ transitions;
(b) $\mathrm{Z} \rightarrow \mathrm{D}$ transitions.

Figure 4.2: $\quad 10 \mathrm{~K}$ broadband and selective excitation spectra of the E multiplet in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) broadband excitation spectrum, monitoring all the $\mathrm{D} \dashv \mathrm{Z}$ transitions;
(b) A centre excitation spectrum, monitoring the $\mathrm{E}_{1}+\mathrm{Z}_{4}$ transition at $18483.5 \mathrm{~cm}^{-1}$;
(c) B centre excitation spectrum, monitoring the $E_{2} \rightarrow Z_{3}$ transition at $18504.5 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate lower and upper multiplet crystal-field level identifications.

Figure 4.3: $\quad 10 \mathrm{~K}$ broadband and selective excitation spectra of the D multiplet in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) broadband excitation spectrum, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transition;
(b) A centre excitation spectrum, monitoring all the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$ transitions at $15522.5 \mathrm{~cm}^{-1}$;
(c) B centre excitation spectrum, monitoring the $\mathrm{D}_{2}+\mathrm{Z}_{3}$ transition at $15541.0 \mathrm{~cm}^{-1}$.

4.1.1 Spectroscopy of the A centre

In the $Z \rightarrow E$ excitation spectrum of the A centre (Figure 4.2(b)) transitions to seven upper levels are apparent. The three lowest and sharpest of these at $18613.2,18655.1$ and $18726.8 \mathrm{~cm}^{-1}$ show a common doublet splitting of $1.9 \mathrm{~cm}^{-1}$ on each line peak, which for the remaining broad transitions is not resolved. This $1.9 \mathrm{~cm}^{-1}$ splitting has previously been observed in EPR [66] and in high resolution laser spectroscopy [47] measurements and was attributed to the low-lying first excited state, Z_{2}, which is just $1.9 \mathrm{~cm}^{-1}$ above the ground state, Z_{1}. The two lowest transitions in the $\mathrm{Z} \rightarrow \mathrm{D}$ excitation spectrum (Figure 4.3(b)) also clearly show this splitting.

From the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectrum (Figure 4.4(a)) the four transitions to the Z_{3}, Z_{5}, Z_{10} and Z_{12} levels were found to occur as pairs with a common separation of $14.0 \mathrm{~cm}^{-1}$. As such patterns were not observed in either the excitation spectrum (Figure 4.2(b)) or for the $\mathrm{E} \rightarrow \mathrm{Z}_{1}, \mathrm{Z}_{2}$ fluorescence transitions, no level could be unambiguously identified as being $14.0 \mathrm{~cm}^{-1}$ above or below the lowest observed E multiplet level at $18613.2 \mathrm{~cm}^{-1}$. To identify the missing unobserved E multiplet level, additional spectral measurements were carried out at 2 K . These indicate that there is a level $14.0 \mathrm{~cm}^{-1}$ below the lowest observed E level at $18613.2 \mathrm{~cm}^{-1}$. The reasoning used is as follows :

When the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectrum was measured at 2 K , (Figure $4.5(a))$, only the lower energy transitions of each pair showing the $14.0 \mathrm{~cm}^{-1}$ separation were observed. As the temperature was raised from 10 K to 20 K , the higher energy transition of each pair as well as the transition at $18613.2 \mathrm{~cm}^{-1}$ were found to grow in intensity. Additional transitions at 18483.5, 18144.0 and $18121.0 \mathrm{~cm}^{-1}$ were found to be single, with the two at 18483.5 and $18144.0 \mathrm{~cm}^{-1}$ being present in the 2 K spectrum, while the $18121.0 \mathrm{~cm}^{-1}$ transition was absent. All these observations can be accounted for by a level at $18599.0 \mathrm{~cm}^{-1}\left(14.0 \mathrm{~cm}^{-1}\right.$ lower in energy than $18613.2 \mathrm{~cm}^{-1}$) which is inferred to be the lowest level E_{1} of the E multiplet. The single transitions at 18483.5 and $18144.0 \mathrm{~cm}^{-1}$ originate from

Figure 4.4: $\quad 10 \mathrm{~K}$ fluorescence spectra for the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals:
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{9}$ transition at $18833.0 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15682.0 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{9}$ transition at $18833.0 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate upper and lower multiplet crystal-field level identifications.

Figure 4.5: Variable temperature (2 K to 55 K) fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions for the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18613.2 \mathrm{~cm}^{-1}$:
(a) 2 K spectrum;
(b) 10 K spectrum;
(c) 20 K spectrum;
(d) 30 K spectrum;
(e) 55 K spectrum.
this level while that at $18121.0 \mathrm{~cm}^{-1}$ was assigned as originating from the E_{2} level at $18613.2 \mathrm{~cm}^{-1}$.

The $E \rightarrow Y$ spectrum (Figure 4.4(c)) has two sets of transition pairs with the same $14.0 \mathrm{~cm}^{-1}$ separation as observed for four pairs of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions. These were found to have the same temperature dependence behaviour as the transition pairs in the $\mathrm{E}+\mathrm{Z}$ spectrum, with the higher component being frozen out at 2 K and having increased intensity in the 20 K spectra. The single transition at $13304.5 \mathrm{~cm}^{-1}$ was also absent at 2 K and increased in intensity as the temperature was raised, showing that this transition also originates from the E_{2} level at $18613.2 \mathrm{~cm}^{-1}$. The other single transitions at $13326.0,13267.0,13244.0$ and $13186.0 \mathrm{~cm}^{-1}$ were all observed in the 2 K spectra and therefore originate from the E_{1} level at $18599.0 \mathrm{~cm}^{-1}$.

Above 15 K , further new transitions started to appear and gained intensity as the temperature was gradually raised to 55 K . As can be seen from Figure 4.5 for the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence transitions, most of these new transitions were present by 20 K and became more intense with increasing temperature. There are no new transitions in the spectra above 30 K (Figure $4.5(\mathrm{~d})$) and for temperatures above 55 K , all the transitions became too broad with resulting overlapping of the A and B centre transitions. A further two E levels, E_{4} and E_{5} at 18666.5 and $18681.5 \mathrm{~cm}^{-1}$ respectively, were identified from these temperature dependence studies. As transitions to these levels were not observed in the 10 K excitation spectra, the $Z_{1}, Z_{2} \rightarrow E_{4}, E_{5}$ transitions themselves must be forbidden for $C_{4 v}$ symmetry centres and the E_{4} and E_{5} levels must therefore have different irrep labels from either the Z_{1} or Z_{2} levels. Fluorescence transitions from either the E_{4} or E_{5} levels to any of the other Z levels would not be expected to be observed at 10 K as the E_{4} and E_{5} levels are sufficiently higher in energy than the E_{1} and E_{2} levels not to be originating levels at 10 K . At temperatures above 10 K however, both levels become sufficiently populated for emission and although their specific transitions to either the Z_{1} or Z_{2} levels are electric dipole forbidden and therefore
not observed, transitions to the Z_{3}, Z_{5} and Z_{10} levels, in particular, are observed (Figure 4.5(e)). Also although neither the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{6}$ nor $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{6}$ transitions are observed, at temperatures above 10 K both the $\mathrm{E}_{3} \rightarrow \mathrm{Z}_{6}$ and $\mathrm{E}_{4} \rightarrow \mathrm{Z}_{6}$ transitions are observed, thus identifying the Z_{6} level to be at $158.0 \mathrm{~cm}^{-1}$.

The $\mathrm{D} \rightarrow \mathrm{Z}$ transitions observed for $\mathrm{Z} \rightarrow \mathrm{E}$ excitation are comparatively weak requiring integration times as long as $5-10 \mathrm{~s}$ for reasonable signal to noise ratios. In contrast, for direct $Z \rightarrow D$ excitation the fluorescence was just as strong as that observed for the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions for direct excitation of the E multiplet. It is concluded that when the E multiplet is being excited, the population of the D multiplet which depends on multiphonon relaxation across the $3000 \mathrm{~cm}^{-1} \mathrm{E}$ to D multiplet energy gap, is weakly fed, hence the weak fluorescence.

The $\mathrm{D} \rightarrow \mathrm{Z}$ spectrum (Figure 4.4(b)) was closely similar to that for $\mathrm{E} \rightarrow \mathrm{Z}$ except for the additional feature centred at $15322.0 \mathrm{~cm}^{-1}$ corresponding to two Z levels of 284.5 and $292.5 \mathrm{~cm}^{-1}$ energies respectively, which does not correspond to any of the observed $\mathrm{E} \rightarrow \mathrm{Z}$ transitions. Some of the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions were also found to occur in pairs with a separation of $4.5 \mathrm{~cm}^{-1}$, with the components having a similar temperature dependence behaviour to the previously discussed $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions. From this, a level at $15605.0 \mathrm{~cm}^{-1}\left(4.5 \mathrm{~cm}^{-1}\right.$ below the lowest observed D multiplet level at $15609.5 \mathrm{~cm}^{-1}$) was inferred. At 2 K , transitions from the D_{3} level at $15623.0 \mathrm{~cm}^{-1}$ were not apparent while the $\mathrm{D}_{2} \rightarrow \mathrm{Z}_{1}, \mathrm{Z}_{2}$ transitions were appreciably weaker than at 10 K but still observable because of the small energy separation ($4.5 \mathrm{~cm}^{-1}$) between the D_{1} and D_{2} levels. No other possible transitions from the D_{2} level to the other Z levels were apparent. Transitions assigned to the D_{1} level $\left(15605.0 \mathrm{~cm}^{-1}\right)$ were strongest at 2 K and decreased in intensity with increasing temperature. The energy levels derived are presented in Table 4.1.

4.1.2 Polarisation study of the A centre

Polarisation results obtained in both the $<100\rangle$ and $<111\rangle$ oriented samples (Figure 4.6 and Table 4.2) were found to be fully consistent with a

Table 4.1: \quad Energy levels (in cm^{-1}) of the Z, Y, D, E and F multiplets of the A centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$ unless otherwise stated.

Level	$\mathbf{Z}\left({ }^{5} \mathbf{I}_{\mathbf{8}}\right)$	$\mathbf{Y}\left(\mathbf{5}_{\mathbf{7}}\right)$	$\mathbf{D}\left({ }^{5} \mathbf{F}_{\mathbf{5}}\right)$	$\mathbf{E}\left({ }^{5} \mathbf{S}_{\mathbf{2}},{ }^{5} \mathbf{F}_{\mathbf{4}}\right)$	$\mathbf{F}\left({ }^{\mathbf{5}} \mathbf{F}_{\mathbf{3}}\right)$
1	$0 \pm 0.2\left(\gamma_{1}\right)$	$5257.0\left(\gamma_{5}\right)$	$15605.0\left(\gamma_{3}\right)$	$18599.0\left(\gamma_{3}\right)$	$20741.6\left(\gamma_{2}\right)$
2	$1.9 \pm 0.2\left(\gamma_{2}\right)$	$5273.0\left(\gamma_{3}\right)$	$15609.5\left(\gamma_{5}\right)$	$18613.2\left(\gamma_{1}\right)$	$20781.6\left(\gamma_{5}\right)$
3	$83.0\left(\gamma_{5}\right)$	$5274.0\left(\gamma_{5}\right)$	$15623.0\left(\gamma_{2}\right)$	$18655.1\left(\gamma_{5}\right)$	-
4	$115.5\left(\gamma_{3}\right)$	-	$15682.0\left(\gamma_{1}\right)$	$18666.5\left(\gamma_{4}\right)$	-
5	$128.0\left(\gamma_{5}\right)$	-	$15752.2\left(\gamma_{5}\right)$	$18681.5\left(\gamma_{3}\right)$	$20924.5\left(\gamma_{5}\right)$
6	$158.0\left(\gamma_{4}\right)$	$5308.5\left(\gamma_{1}\right)$	$15756.1\left(\gamma_{2}\right)$	$18726.8\left(\gamma_{5}\right)$	
7	$284.5\left(\gamma_{1}\right)$	$5332.0\left(\gamma_{5}\right)$	-	$18750.1\left(\gamma_{1}\right)$	-
8	$292.5\left(\gamma_{2}\right)$	$5355.0\left(\gamma_{3}\right)$	$15823.5\left(\gamma_{5}\right)$	$18834.9\left(\gamma_{2}\right)$	
9	$455.0\left(\gamma_{3}\right)$	-		$18859.5\left(\gamma_{5}\right)$	
10	$475.0\left(\gamma_{5}\right)$	$5413.0\left(\gamma_{5}\right)$		$18888.3\left(\gamma_{1}\right)$	
11	$492.0\left(\gamma_{1}\right)$	-			

(a)

(b)

σ

Figure 4.6:
Polarisation of the 10 K fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions of the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{9}$ transition at $18833.0 \mathrm{~cm}^{-1}$
(a) $\mathrm{E}+\mathrm{Z}$ transitions
(b) $E \rightarrow Y$ transitions

Transition labels are as in Figure 4.4
tetragonal symmetry assignment for the A centre. These ratios were distinct and consistent in the spectra to 55 K where new transitions appear. It can be seen from Figure $4.6(\mathrm{a}),(\mathrm{b})$ and Table 4.2 that the transition pairs with the $14.0 \mathrm{~cm}^{-1}$ energy separation show the same polarisation behaviour for both components and which is indicative of transitions of the type $\gamma_{a^{\prime}}+\gamma_{5}$ (refer to Table 2.3) and therefore the common terminating Z level of both components of the pair has to be of γ_{5} type. The Z_{3}, Z_{5}, Z_{10} and Z_{12} levels at $83.0,128.0,475.0$ and $513.0 \mathrm{~cm}^{-1}$ respectively, are therefore all identified as γ_{s} type levels. Since any $\gamma_{a^{\prime}} \rightarrow \gamma_{s}$ transition is allowed by the $\mathrm{C}_{4 v}$ symmetry selection rules, it can be deduced that the two lowest levels E_{1} and E_{2} of the E multiplet have different irrep labels, because the E_{2} level at $18613.2 \mathrm{~cm}^{-1}$ is observable in absorption from the $\mathrm{Z}_{1}, \mathrm{Z}_{2}$ levels while the E_{1} level at $18599.0 \mathrm{~cm}^{-1}$ is not observable by transitions from the $\mathrm{Z}_{1}, \mathrm{Z}_{2}$ levels. The single transitions at $18483.5,18144.0$ and $18121.0 \mathrm{~cm}^{-1}$ corresponding to the $E_{1} \rightarrow Z_{4}, E_{1} \rightarrow Z_{9}$ and $E_{2} \rightarrow Z_{11}$ transitions respectively, are all principally π polarised showing that they are transitions of the type $\gamma_{a} \rightarrow \gamma_{\mathrm{a}}$. Therefore the Z_{4} and Z_{9} levels at 115.5 and $455.0 \mathrm{~cm}^{-1}$ respectively, have the same irrep label as the E_{1} level while the Z_{11} level at $492.0 \mathrm{~cm}^{-1}$ is necessarily of the same type as the E_{2} level.

Several transitions, as shown in Figure 4.6, lie close to other transitions and could not be identified clearly in the unpolarised spectra, but are quite clearly apparent in the polarisation spectra. For example, the two transitions at 18144.0 and $18121.0 \mathrm{~cm}^{-1}$, are masked by the close lying strong transitions at 18138.0 and $18124.0 \mathrm{~cm}^{-1}$ respectively (Figure $4.6(\mathrm{a})$). It was possible to resolve these close lying transitions in such cases because a $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{a}}$ type transition happens to occur next to a $\gamma_{a^{\prime}} \rightarrow \gamma_{s}$ type transition and these have opposite polarisation behaviour. Likewise the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{5}$ transition at $18485.0 \mathrm{~cm}^{-1}$ was also more evident in the σ polarisation spectrum because the adjacent and stronger transition at $18483.5 \mathrm{~cm}^{-1}$ is mainly π polarised (Figure 4.6(a)).

Excitation of any of the $Z_{1} \rightarrow E_{2}, Z_{1} \rightarrow E_{7}, Z_{2} \rightarrow E_{9}$ and $Z_{1} \rightarrow E_{11}$ transitions
resulted in fluorescence with the same polarisation behaviour for each particular transition, consistent with a common $\gamma_{a} \rightarrow \gamma_{a}$ pump transition and either $\gamma_{a} \rightarrow \gamma_{a}$ or $\gamma_{a^{\prime}} \rightarrow \gamma_{5}$ decay transitions. On the other hand, excitation of the $Z_{1} \rightarrow \mathrm{E}_{3}$ and $Z_{1} \rightarrow E_{6}$ transitions gave polarisation ratios consistent with $\gamma_{a^{\prime}} \rightarrow \gamma_{5}$ pump transitions and $\gamma_{a} \rightarrow \gamma_{a}$ or $\gamma_{a^{\prime}} \rightarrow \gamma_{s}$ decay transitions in each case. The polarisation ratios observed for excitation of the $Z_{1} \rightarrow E_{10}$ transition were indicative of a $\gamma_{\mathrm{a}^{\prime}} \rightarrow \gamma_{\mathrm{s}}$ pump transition though partially masked by background fluorescence from both the E_{9} and E_{11} levels.

By monitoring a transition of $\gamma_{a} \rightarrow \gamma_{a}$ type, for example the $E_{1} \rightarrow Z_{4}$ transition at $18483.5 \mathrm{~cm}^{-1}$, in the two possible analyser positions, polarised excitation spectra were observed (Figure 4.7). Such spectra distinguished clearly the γ_{s} type levels of the upper E multiplet from those of the $\gamma_{\mathrm{a}^{\prime}}$ type, for transitions originating from the same lower multiplet Z level. In particular, the E_{10} level at $18859.5 \mathrm{~cm}^{-1}$ was positively identified in this manner (Figure 4.7).

Although the ${ }^{5} \mathrm{~S}_{2}$ and ${ }^{5} \mathrm{~F}_{4}$ multiplets are quite close in energy, levels belonging to the ${ }^{5} \mathrm{~S}_{2}$ multiplet have been assigned to be the set lower in energy than those for the ${ }^{5} \mathrm{~F}_{4}$ multiplet in both $\mathrm{LaF}_{3}: \mathrm{Ho}^{3+}$ [26] and $\mathrm{LaCl}_{3}: \mathrm{Ho}^{3+}$ [99]. It has therefore been assumed, in the following analysis, that the ${ }^{5} \mathrm{~S}_{2}$ multiplet is lower in energy than the ${ }^{5} \mathrm{~F}_{4}$ multiplet in the CaF_{2} case too.

For the ${ }^{5} S_{2}$ multiplet two upper levels E_{2} and E_{3} have been directly observed. The five remaining levels $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{9}, \mathrm{E}_{10}$ and E_{11} observed are assigned to the ${ }^{5} \mathrm{~F}_{4}$ multiplet and comprise two γ_{s} and three $\gamma_{a^{\prime}}$ irrep label type levels. The six levels observed for the ${ }^{5} \mathrm{~F}_{5}$ multiplet comprise three γ_{5} and three γ_{a} - irrep label type levels. Examination of the summary of expected transition types in Table 2.1(a) shows that the ground multiplet levels Z_{1} and Z_{2} can only have γ_{1} and γ_{2} symmetry irrep labels to account for the number of observed levels in both the E and D multiplets. Further, the E_{2} level can only have a γ_{1} symmetry irrep label since a $\mathrm{J}=2$ multiplet such as ${ }^{5} \mathrm{~S}_{2}$ does not possess any γ_{2} type levels. The Z_{11} level is therefore assigned as of γ_{1} type, the same as for the E_{2} level. All the
unobserved levels are those of either γ_{3} or γ_{4} symmetry.
Although from the $\mathrm{C}_{4 v}$ symmetry selection rules, $\gamma_{1} \mapsto \gamma_{2}$ type transitions are not allowed, transitions from both the Z_{1} and Z_{2} levels to the E_{2} level and vise versa are observed. With just a small $\left(1.9 \mathrm{~cm}^{-1}\right)$ separation between the two singlet Z_{1} and Z_{2} levels, their electronic wavefunctions are sufficiently mixed by the hyperfine nuclear interaction (Chapter 9) to result in both transitions being allowed. In the absence of any hyperfine mixing, all transitions should be of pure $\gamma_{1} \rightarrow \gamma_{1}$ or $\gamma_{2}+\gamma_{2}$ and $\gamma_{\mathrm{a}^{\prime}} \rightarrow \gamma_{5}\left(\mathrm{a}^{\prime}=1,2\right)$ type only. A temperature of 2 K is not low enough to completely freeze out transitions involving the Z_{2} level, which would result in the excitation of only those levels with the same irrep as the Z_{1} level in addition to the always allowed γ_{5} type levels. As the $\mathrm{Z}_{2} \mapsto \mathrm{E}_{2}$ transition is observed to be much weaker than $\mathrm{Z}_{1} \mapsto \mathrm{E}_{2}$, the Z_{1} level is assigned to be of γ_{1} type, the same as for the E_{2} level, to give the observed strong $\gamma_{1} \mapsto \gamma_{1}$ transition. The Z_{2} level is therefore assigned as a γ_{2} type level.

The irrep label assignments of the $\mathrm{Z}_{1}\left(\gamma_{1}\right), \mathrm{Z}_{2}\left(\gamma_{2}\right), \mathrm{Z}_{3}\left(\gamma_{5}\right), \mathrm{Z}_{5}\left(\gamma_{s}\right), \mathrm{Z}_{10}\left(\gamma_{5}\right)$ and $\mathrm{Z}_{12}\left(\gamma_{s}\right)$ levels are all consistent with the earlier theoretical crystal-field calculations of Reid and Butler [109] for the case of their crystal-field parameter $\mathrm{X}_{\mathrm{C}_{4 \mathrm{v}}}$ being less than $365 \mathrm{~cm}^{-1}$. There is further agreement with that analysis in that the Z_{4} and Z_{9} levels should have the same irrep label and likewise the Z_{1} and Z_{11} levels, as observed. From comparison with their fit the Z_{4} and Z_{9} levels are assigned as γ_{3} type levels while the Z_{6} level is assigned as a γ_{4} type level. This establishes the Z_{1} level as a γ_{1} type level and identifies the E_{1} level as a γ_{3} type level, the same as the Z_{4} and Z_{9} levels. With the E_{3}, E_{6} and E_{10} levels already established as being of γ_{5} type levels, the remaining three E levels, E_{7}, E_{9} and E_{11} can only comprise the two γ_{1} and one γ_{2} type levels of the ${ }^{5} \mathrm{~F}_{4}$ multiplet. The E_{9} level at $18834.9 \mathrm{~cm}^{-1}$ is assigned as a γ_{2} type level because the $Z_{1}, Z_{2} \rightarrow \mathrm{E}_{9}$ transition was found to be weaker at 2 K than at 10 K , compared to the corresponding transitions to the $\mathrm{E}_{2}, \mathrm{E}_{7}$ and E_{11} levels at the same temperatures which all maintained the same intensity ratios with temperature. This is

Figure 4.7: Polarisation of the 10 K selective excitation spectrum of the $Z \rightarrow E$ transitions of the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, monitoring the $\mathrm{E}_{\mathrm{l}} \rightarrow \mathrm{Z}_{4}$ transition at $18483.5 \mathrm{~cm}^{-1}$:
(a) unpolarised spectrum showing the symmetries of the energy levels;
(b) π polarisation;
(c) σ polarisation.

Table 4.2: Observed and predicted intensity ratios for the polarised fluorescence transitions of the A centre in $<100>$ and $<111>$ oriented $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{9}$ transition at $18833.0 \mathrm{~cm}^{-1}$.

* $\mathrm{E}_{7} \rightarrow \mathrm{Z}_{10}$
* $\mathrm{E}_{6}-\mathrm{Z}_{11}$
* $\mathrm{E}_{6} \rightarrow \mathrm{Z}_{12}$
* $\mathrm{E}_{5}+\mathrm{Z}_{3}$
* $\mathrm{E}_{5}+\mathrm{Z}_{4}$
* $\mathrm{E}_{5} \rightarrow \mathrm{Z}_{5}$
* $\mathrm{E}_{4} \rightarrow \mathrm{Z}_{3}$
* $\mathrm{E}_{4}+\mathrm{Z}_{6}$
* $\mathrm{E}_{4} \rightarrow \mathrm{Z}_{10}$
* $\mathrm{E}_{3} \rightarrow \mathrm{Z}_{3}$
* $\mathrm{E}_{3} \rightarrow \mathrm{Z}_{4}$
* $\mathrm{E}_{3} \rightarrow \mathrm{Z}_{5}$
* $\mathrm{E}_{3} \rightarrow \mathrm{Z}_{6}$
* $\mathrm{E}_{3} \rightarrow \mathrm{Z}_{10}$
* $\mathrm{E}_{3} \rightarrow \mathrm{Z}_{11}$
$\mathrm{E}_{2}+\mathrm{Z}_{1}$
$\mathrm{E}_{2}+\mathrm{Z}_{2}$
$\mathrm{E}_{2}+\mathrm{Z}_{3}$
$\mathrm{E}_{2}+\mathrm{Z}_{5}$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{10}$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{11}$
$\mathrm{E}_{2}+\mathrm{Z}_{12}$
$\mathrm{E}_{4}+\mathrm{Z}_{3}$
$\mathrm{E}_{\mathrm{t}} \rightarrow \mathrm{Z}_{4}$

$$
E_{l} \rightarrow Z_{5}
$$

$$
\mathrm{E}_{1}+\mathrm{Z}_{9}
$$

$$
E_{1}+Z_{10}
$$

$\mathrm{E}_{1}+\mathrm{Z}_{13}$

* $\mathrm{E}_{5} \rightarrow \mathrm{Y}_{1}$
* $\mathrm{E}_{5}+\mathrm{Y}_{3}$
* $\mathrm{E}_{5} \rightarrow \mathrm{Y}_{7}$
* $\mathrm{E}_{5} \rightarrow \mathrm{Y}_{8}$
$18276.0 \quad 1 \quad 4.0 \quad 0: 1$
$18232.0 \quad 1 \quad: 4.3 \quad 0: 1$
$18217.5 \quad 5.7: 1 \quad 1: 0$
$18598.5 \quad 1 . \quad: 6.7 \quad 0: 1$
$18565.0 \quad 5.9: 1 \quad 1: 0$
$18553.5 \quad 1 \quad: 4.9 \quad 0: 1$
$18583.5 \quad 1 \quad: 7.3 \quad 0: 1$
$18509.0 \quad 7.3: 1 \quad 1: 0$
$18191.0 \quad 1 \quad: 5.0 \quad 0: 1$
$18572.0 \quad 5.1: 1 \quad 1: 0$
$\begin{array}{llll}18539.0 & 1 & : 6.6 & 0: 1\end{array}$
$18526.5 \quad 7.5: 1 \quad 1: 0$
$18497.0 \quad 1 \quad 5.3 \quad 0: 1$
$18179.5 \quad 8.5: 1 \quad 1: 0$
$18162.5 \quad 1 \quad: 7.8 \quad 0: 1$
$18613.2 \quad 18.4: 1 \quad 1: 0$
$3.1 \quad 3.0$
$18611.3 \quad 17.5: 1 \quad 1: 0$
$18530.0 \quad 1 \quad: 11.6 \quad 0: 1$
$0: 1$
$0: 1$
$\begin{array}{llll}18121.0 & 10.6 & : 1 & 1: 0\end{array}$
2.9
3.0
$3.5 / \mathrm{s}$
$3.5 / 5 \quad 3 / 5$
$3.5 / 5 \quad 3 / 5$
$\begin{array}{llll}18100.0 & 1 & 8.3 & 0: 1\end{array}$
$18516.0 \quad 1 \quad: 12.5 \quad 0: 1$
$18483.512 .3: 1 \quad 1: 0$
$0: 1$
1:0
$0: 1$
$18086.0 \quad 1 \quad: 11.7 \quad 0: 1$
$13425.0 \quad 1 \quad: 7.4 \quad 0: 1$
$13408.0 \quad 5.2: 1 \quad 1: 0$
$13349.5 \quad 1 \quad: 4.2 \quad 0: 1$
$13327.0 \quad 8.6: 1 \quad 1: 0$

Table 4.2 cont....

Transition	Wavenumber $(\pm 0.5) \mathrm{cm}^{-1}$	\quad Polarisation Ratios $(\pm 5 \%)$ $<100>$ orientation $<111>$ orientation [yy: yx] [y'y $\left./ y^{\prime} x^{\prime}\right]$ Observed Expected Observed				
* $\mathrm{E}_{4} \rightarrow \mathrm{Y}_{1}$	13409.5	1	: 6.5	0:1		
* $\mathrm{E}_{4} \rightarrow \mathrm{Y}_{7}$	13335.0	1	: 4.8	0:1		
* $\mathrm{E}_{4} \rightarrow \mathrm{Y}_{10}$	13254.0	1	: 4.5	0:1		
* $\mathrm{E}_{3} \rightarrow \mathrm{Y}_{1}$	13398.5	6.1	: 1	1:0		
* $\mathrm{E}_{3}+\mathrm{Y}_{2}$	13382.0	1	: 5.7	$0: 1$		
* $\mathrm{E}_{3} \rightarrow \mathrm{Y}_{3}$	13381.0	9.6	: 1	1:0		
* $\mathrm{E}_{3} \rightarrow \mathrm{Y}_{6}$	13347.0	1	: 5.0	0:1		
* $\mathrm{E}_{3} \rightarrow \mathrm{Y}_{7}$	13323.5	8.0	: 1	1:0		
* $\mathrm{E}_{3} \rightarrow \mathrm{Y}_{8}$	13301.0	1	: 4.2	0:1		
* $\mathrm{E}_{3} \rightarrow \mathrm{Y}_{10}$	13242.5	6.5	: 1	1:0		
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{1}$	13356.0	1	: 10.4	0:1	3.0/5	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{3}$	13339.0	1	: 10.9	0:1	3.0/5	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$	13304.5	10.3	: 1	1:0	2.7	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13342.0	1	: 12.4	0:1	3.5/5	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{2}$	13326.0	16.0	: 1	1:0	2.7	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{3}$	13325.0	1	: 7.5	0:1	-	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{7}$	13267.0	1.	: 13.5	0:1	$3.0 / 5$	$3 / 5$
$\mathrm{E}_{1}+\mathrm{Y}_{8}$	13244.0	14.1	: 1	1:0	2.7	3.0
$\mathrm{E}_{1}+\mathrm{Y}_{10}$	13186.0	1	: 10.7	0:1	3.0/5	$3 / 5$
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1}$	15623.0	10.8	: 1	1:0	2.0	3.0
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{2}$	15621.0	11.6	: 1	1:0	1.9	3.0
$\mathrm{D}_{3}+\mathrm{Z}_{3}$	15540.5	1	: 13.4	0:1	3.0/5	$3 / 5$
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{8}$	15330.5	6.5	: 1	1:0	2.0	3.0
$\mathrm{D}_{2}+\mathrm{Z}_{1}$	15609.5	1	: 9.1	0:1	$3.0 / 5$	$3 / 5$
$\mathrm{D}_{2}+\mathrm{Z}_{2}$	15607.5	1	: 8.9	0:1	$3.5 / \mathrm{s}$	$3 / 5$
$\mathrm{D}_{2}+\mathrm{Z}_{3}$	15527.0	8.4	: 1	1:0	2.3	3.0
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{4}$	15494.5	1	: 11.6	0:1	$3.0 / 5$	$3 / 5$
$\mathrm{D}_{2}+\mathrm{Z}_{5}$	15483.0	9.6	: 1	1:0	1.9	3.0
$\mathrm{D}_{2}+\mathrm{Z}_{7}$	15325.0	1	: 8.8	0:1	$3.5 / 5$	$3 / 5$
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{8}$	15317.5	1	: 7.4	0:1	${ }^{3.5}$.5	$3 / 5$
$\mathrm{D}_{2}+\mathrm{Z}_{10}$	15135.0	7.1	: 1	1:0	2.1	3.0

Table 4.2 cont....

Transition	Wavenumber $(40.5) \mathrm{cm}^{-1}$	<10	Polari $>$ orien yy: yx] ed	ation Rati tation Expected	$\begin{aligned} & \pm 5 \%) \\ & \langle 111\rangle 0 \\ & \text { [y y } \\ & \text { Observed } \end{aligned}$	
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{11}$	15117.5	1	: 7.1	0:1	3.0/5	$3 / 5$
$\mathrm{D}_{2}+\mathrm{Z}_{12}$	15095.5	6.3	: 1	1:0	1.9	3.0
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$	15522.5	1	: 8.9	0:1	3.0/5	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{4}$	15489.5	12.0	: 1	1:0	2.3	3.0
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{9}$	15148.0	7.2	: 1	1:0	2.3	3.0
$\mathrm{D}_{1}+\mathrm{Z}_{10}$	15129.0	1	: 7.3	0:1	$3.5 / \mathrm{s}$	$3 / \mathrm{s}$
$\mathrm{D}_{1}+\mathrm{Z}_{12}$	15091.0	1	: 7.2	0:1	$3.5 / 5$	$3 / 5$

* polarisation ratios measured at 55 K , with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18613.2 \mathrm{~cm}^{-1}$.
consistent with the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{9}$ transition, being the principal transition, showing a decrease in intensity at 2 K arising from the decrease in the population of the Z_{2} level at that temperature. The corresponding $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{9}$ transition should be much weaker, as observed, as it can only occur through the hyperfine interaction wavefunction mixing between the Z_{1} and Z_{2} levels and is therefore only weakly allowed.

From the polarisation measurements up to 55 K , irrep labels for those levels missing from the $10 \mathrm{KE} \leftrightarrow \mathrm{Z}$ spectra (because their irrep labels are different from those of the Z_{1} and Z_{2} levels) were established. Polarisation studies at 55 K (Table 4.2) show the transitions assigned as $\mathrm{E}_{4} \rightarrow \mathrm{Z}_{3}, \mathrm{E}_{5} \rightarrow \mathrm{Z}_{3}$, $E_{5} \rightarrow Z_{5}, E_{3} \rightarrow Z_{6}$ and $E_{4} \rightarrow Z_{10}$ have polarisation ratios of 0:1 while the $E_{3} \rightarrow Z_{3}$, $E_{5}+Z_{4}, E_{3} \rightarrow Z_{5}$ and $E_{4} \rightarrow Z_{6}$ transitions are all polarised with ratios of 1:0. The polarisation ratios for the transitions from the E_{3} level are consistent with the γ_{s} assignment made for this level. Ratios for the transitions from the E_{4} and E_{5} levels to the Z_{3}, Z_{5} and Z_{10} levels, all of which have γ_{5} symmetry, require that the E_{4} and E_{5} levels be either of γ_{3} or γ_{4} symmetry. However the E_{4} and E_{5} levels cannot have the same irrep label because the only common transitions they have are to the γ_{5} type levels. As the $\mathrm{E}_{4} \rightarrow \mathrm{Z}_{6}$ transition is observed to be π polarised, consistent with a $\gamma_{a} \rightarrow \gamma_{a}$ type transition, the E_{4} and Z_{6} levels have the same irrep label γ_{4}. The $\mathrm{E}_{5} \rightarrow \mathrm{Z}_{4}$ transition was also observed to be π polarised, therefore the E_{5} and Z_{4} levels necessarily have a common irrep label of γ_{3}. From the earlier assignments made for the Z_{6} and Z_{4} levels, the E_{4} and E_{5} levels are therefore assigned as γ_{4} and γ_{3} type levels respectively. From the $\mathrm{E} \rightarrow \mathrm{Y}$ polarisation spectra (Figure $4.6(\mathrm{~b})$), the transition pairs with the $\mathrm{E}_{1}-\mathrm{E}_{2}$ energy separation of $14.0 \mathrm{~cm}^{-1}$ are all polarised with ratios of $0: 1$ for $Z_{1}, Z_{2} \rightarrow E_{9}\left(\gamma_{a} \rightarrow \gamma_{a}\right)$ excitation. The single transitions at 13267.0 and $13186.0 \mathrm{~cm}^{-1}$ originating from the E_{1} level are also observed to be of σ polarisation. The $\mathrm{Y}_{1}, \mathrm{Y}_{3}, \mathrm{Y}_{7}$ and Y_{10} levels at $5257.0,5274.0,5332.0$ and $5413.0 \mathrm{~cm}^{-1}$ respectively, are therefore all identified as γ_{5} type levels. As the $\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$ transition at $13304.5 \mathrm{~cm}^{-1}$ is observed
to be of π polarisation, the Y_{6} level is a γ_{1} type level, similar to the E_{2} level. As the $E_{1} \rightarrow Y_{2}$ and $E_{1} \rightarrow Y_{8}$ transitions at 13326.0 and $13244.0 \mathrm{~cm}^{-1}$ respectively, are also observed to be of the same π polarisation, the Y_{2} and Y_{8} levels are assigned the same γ_{3} irrep as for the E_{1} level.

From the polarisation ratios observed for the $D \rightarrow Z$ transitions with $Z_{1} \rightarrow E_{9}$ excitation (Table 4.2), the $D_{1} \rightarrow Z_{4}$ and $D_{1} \rightarrow Z_{9}$ transitions are both of π polarisation, consistent with $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{a}}$ type fluorescence. The $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1}$ and $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{2}$ transitions are also observed to be of π polarisation with the $D_{3} \rightarrow Z_{2}$ transition being the stronger. The D_{3} level is therefore assigned as of γ_{2} symmetry consistent with the weakly allowed $\mathrm{Z}_{1} \mapsto \mathrm{D}_{3}$ transition of $\gamma_{1} \leftrightarrow \gamma_{2}$ type, while the D_{1} level is assigned as of the γ_{3} type, the same as for the Z_{4} and Z_{9} levels. The D_{2} level is assigned as a γ_{s} type level for the following three reasons. Firstly, transitions to and from the Z_{1} and Z_{2} levels are of the same intensity as both transitions are allowed. Secondly, transitions to all the Z levels (except Z_{13}) are observed, which is characteristic of γ_{s} type upper state. Thirdly, transitions from the D_{2} level to all the γ_{s} type levels (as identified from the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectrum in Figure 4.4(a)) are observed to be of π polarisation while those to γ_{a}. type levels are observed to be of σ polarisation, consistent with $\gamma_{5} \rightarrow \gamma_{5}$ and $\gamma_{5} \rightarrow \gamma_{\mathrm{a}}$ - type fluorescence transitions respectively, for $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{a}}$ excitation.

The feature centred at $15322.0 \mathrm{~cm}^{-1}$ is resolved into three transitions in the polarisation spectra, with the lower two transitions at 15317.5 and $15325.0 \mathrm{~cm}^{-1}$ polarised with a ratio of $0: 1$ and the third transition at $15330.5 \mathrm{~cm}^{-1}$ polarised with a ratio of $1: 0$. These three transitions have been assigned as the $D_{2} \rightarrow Z_{8}$, $\mathrm{D}_{2} \rightarrow \mathrm{Z}_{7}$ and $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{8}$ transitions respectively. The Z_{8} level at $292.5 \mathrm{~cm}^{-1}$ must be a γ_{2} irrep label type level since the $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{8}$ transition is observed to be of π polarisation ($\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{a}}$), leaving the Z_{7} level at $284.5 \mathrm{~cm}^{-1}$ as the third and remaining γ_{1} type level of the Z multiplet. Polarised excitation spectra as for the $\mathrm{Z} \rightarrow \mathrm{E}$ transitions were used to assign irrep labels to the $\mathrm{D}_{4}, \mathrm{D}_{5}, \mathrm{D}_{6}$ and D_{8} levels as γ_{1}, γ_{5}, γ_{2} and γ_{5} respectively.

Figure 4.8: Energy level diagram for the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for transitions as measured at 10 K .

With the Z_{7} level being assigned as a γ_{1} type level, it is not obvious why the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{7}$ transition should be so weak, showing only as a small feature on a magnified scale.

An energy level scheme showing all the levels derived, together with their proposed irrep labels is presented in Figure 4.8 and Table 4.1. These data were used as the basis for the crystal-field calculations outlined in Chapter 7, where good crystal-field fits are reported.

4.1.3 Spectroscopy of the B centre

A total of nine transitions are identified from the ground Z_{1} level to the E multiplet levels for the B centre. The $Z \rightarrow E$ excitation spectrum (Figure 4.2(c)) shows three close lying transitions at the low energy end of the spectrum. These have separations of $2.0 \mathrm{~cm}^{-1}$ and $1.0 \mathrm{~cm}^{-1}$ respectively between them. No other transitions in the $\mathrm{Z} \rightarrow \mathrm{E}$ excitation spectrum show such close energy separations. Transitions from the first excited Z_{2} level at $27.0 \mathrm{~cm}^{-1}$ above the Z_{1} level were also observed to most of the levels and are so identified. Although the $Z_{1} \rightarrow E_{6}$ transition is weak, the $Z_{2} \rightarrow E_{6}$ transition is strong and gives confidence in the identification of the upper multiplet E_{6} level.

For $\mathrm{Z} \rightarrow \mathrm{D}$ excitation, seven levels were identified for the D multiplet (Figure $4.3(\mathrm{c})$) with the D_{1} and D_{2} levels being only $1.5 \mathrm{~cm}^{-1}$ apart. The $D_{1} \rightarrow Z_{4}$ transition was fairly weak, being only about 5% of the intensity of the $Z_{1} \rightarrow D_{3}$ transition which is the strongest observed transition. The D_{5} and D_{6} levels were sufficiently overlapped to be indistinguishable in the excitation spectrum, with the combined $Z_{1} \rightarrow D_{5}, D_{6}$ transition broader than any of the other transitions and of about the same linewidth as the overlapped $Z_{1}+D_{1}$ and $Z_{1} \rightarrow D_{2}$ transitions. Since the $Z_{1} \rightarrow D_{7}$ transition, about $20 \mathrm{~cm}^{-1}$ higher in energy than the $Z_{1} \rightarrow D_{5}, D_{6}$ transitions, is narrower, the broadening of the $Z_{1} \rightarrow D_{5}, D_{6}$ transitions could only be attributed to the overlap of two close lying transitions, giving an upper limit of $1 \mathrm{~cm}^{-1}$ for the $D_{5}-D_{6}$ energy level separation. Transitions from the Z_{2} level were observed to all the D levels with the $Z_{2} \rightarrow D_{4}$ transition being particularly

Figure 4.9: $\quad 10 \mathrm{~K}$ fluorescence spectra for the B centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{4} \rightarrow \mathrm{E}_{4}$ transition at $18633.7 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{7}$ transition at $15647.0 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{\mathrm{i}} \rightarrow \mathrm{E}_{4}$ transition at $18633.7 \mathrm{~cm}^{-1}$.

Figure 4.10: Variable temperature (2 K to 55 K) fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions for the B centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $Z_{1} \rightarrow \mathrm{E}_{4}$ transition at $18633.7 \mathrm{~cm}^{-1}$:
(a) 2 K spectrum;
(b) 10 K spectrum;
(c) 30 K spectrum;
(d) 55 K spectrum.

Transitions identified by * are for the A centre.
strong compared to the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition.
For both the E and D multiplets, the B centre levels (Table 4.3) are much closer together than those for the A centre, being even more so for the D multiplet where the seven B centre levels span only a $45 \mathrm{~cm}^{-1}$ region compared to $220 \mathrm{~cm}^{-1}$ for the A centre. The barycentres of the energy level patterns are also lower for the B centre than for the A centre. Overall, the fluorescence is typically ten times stronger for the A centre than for the B centre, under comparable excitation conditions.

From the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectrum (Figure 4.9(a)), transitions to the Z_{1}, Z_{2} and Z_{3} levels show the $E_{1}-E_{2}-E_{3}$ energy level separations of 2.0 and $1.0 \mathrm{~cm}^{-1}$ respectively (insert of Figure $4.9(\mathrm{a})$). Transitions to the remaining Z levels are sufficiently broad not to reveal any such splittings.

The $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure 4.9(c)) comprises transitions occurring either in the aforementioned triplets with 2.0 and $1.0 \mathrm{~cm}^{-1}$ separations or in pairs with a $3.0 \mathrm{~cm}^{-1}$ separation, identifying, respectively, transitions originating from either all of the E_{1}, E_{2} and E_{3} levels or just the E_{1} and E_{3} levels. Transitions from all the E_{1}, E_{2} and E_{3} levels were observed to the $Y_{1}, Y_{2}, Y_{3}, Y_{5}, Y_{6}, Y_{8}$ and Y_{9} levels while transitions from just the E_{1} and E_{3} levels were observed to the Y_{4}, Y_{7} and Y_{10} levels. Thus, all ten levels $\mathrm{Y}_{1}-\mathrm{Y}_{10}$ of the Y multiplet have been clearly identified (Table 4.3).

As for the A centre, fluorescence from the D multiplet was comparatively weak for $Z \rightarrow E$ excitation and quite strong for direct $Z \rightarrow D$ excitation. Transitions to the Z_{1}, Z_{2} and Z_{3} levels were found to be sharp and narrow while those to the remaining Z levels were weak and broad (Figure 4.9(b)). Transitions from the D_{1} and D_{2} levels to the Z_{1} and Z_{2} levels show the $D_{1}-D_{2}$ energy level separation of $1.5 \mathrm{~cm}^{-1}$ while there is only one transition observed to the Z_{3} level. Because the D levels are fairly close together, transitions to the Z_{1} level through to the Z_{6} level were observed from most upper D multiplet levels. The $\mathrm{D}_{5}-\mathrm{D}_{6}$ energy level separation, measured to be $0.8 \mathrm{~cm}^{-1}$, is very distinct in transitions to

Table 4.3: \quad Energy levels (in cm^{-1}) of the Z, Y, D, E and F multiplets of the B centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$ unless otherwise stated.

Level	$\mathbf{Z}\left({ }^{5} \mathbf{I}_{\mathbf{8}}\right)$	$\mathbf{Y}\left({ }^{5} \mathbf{I}_{\mathbf{7}}\right)$	$\mathbf{D}\left({ }^{5} \mathbf{F}_{\mathbf{5}}\right)$	$\mathbf{E}\left({ }^{5} \mathbf{S}_{\mathbf{2}},{ }^{5} \mathbf{F}_{\mathbf{4}}\right)$	${ }^{*}{ }_{\mathbf{F}\left({ }^{5} \mathbf{F}_{\mathbf{3}}\right)}$
1	$0\left(\gamma_{3}\right)$	$5202.5\left(\gamma_{3}\right)$	$15604.0 \pm 0.2\left(\gamma_{2}\right)$	$18567.5 \pm 0.2\left(\gamma_{3}\right)$	$20715.0\left(\gamma_{3}\right)$
2	$27.0\left(\gamma_{3}\right)$	$5212.7\left(\gamma_{1}\right)$	$15605.5 \pm 0.2\left(\gamma_{3}\right)$	$18569.5 \pm 0.2\left(\gamma_{1}\right)$	$20722.4\left(\gamma_{1}\right)$
3	$65.0\left(\gamma_{1}\right)$	$5218.9\left(\gamma_{3}\right)$	$15613.0\left(\gamma_{3}\right)$	$18570.5 \pm 0.2\left(\gamma_{3}\right)$	$20749.5\left(\gamma_{2}\right)$
4	$81.0\left(\gamma_{2}\right)$	$5223.5\left(\gamma_{2}\right)$	$15618.0\left(\gamma_{2}\right)$	$18633.7\left(\gamma_{3}\right)$	$20779.3\left(\gamma_{3}\right)$
5	$138.5\left(\gamma_{3}\right)$	$5235.3\left(\gamma_{3}\right)$	$15627.7 \pm 0.2\left(\gamma_{1}\right)$	$18657.8\left(\gamma_{1}\right)$	$20800.8\left(\gamma_{2}\right)$
6	$178.5\left(\gamma_{3}\right)$	$5239.5\left(\gamma_{1}\right)$	$15628.5 \pm 0.2\left(\gamma_{3}\right)$	$18665.2\left(\gamma_{2}\right)$	
7	-	$5240.9\left(\gamma_{2}\right)$	$15647.0\left(\gamma_{3}\right)$	$18712.8\left(\gamma_{3}\right)$	$18751.0\left(\gamma_{3}\right)$
8	$213.5\left(\gamma_{1}\right)$	$5253.9\left(\gamma_{3}\right)$		$18773.5\left(\gamma_{1}\right)$	
9	$367.5\left(\gamma_{3}\right)$	$5272.9\left(\gamma_{3}\right)$			
10	$417.5\left(\gamma_{3}\right)$	$5280.9\left(\gamma_{2}\right)$			

* Levels for the F multiplet were derived from the spectra of [SW], as no upconversion fluorescence was observed here.
the Z_{3} level (insert of Figure 4.9(b)). Transitions to the Z_{2} level also show this $0.8 \mathrm{~cm}^{-1}$ separation but are too weak to be observed clearly for the intensity scale used in Figure 4.9, while the transitions to the Z_{1} level just show a single broad transition with a flat top. Transitions from either the D_{1} or D_{4} levels to the Z_{3} level were not observed. The $\mathrm{D} \rightarrow \mathrm{Z}$ transitions identify the same levels of the Z multiplet as were found from the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence transitions, yielding the Z_{2} and Z_{3} level energies as 27.0 and $65.0 \mathrm{~cm}^{-1}$ respectively.

At 2 K the fluorescence spectra were very similar to those at 10 K , except that fluorescence from the E_{1} and D_{1} levels was appreciably stronger than that from the E_{2} and D_{2} levels. As the temperature was raised above 10 K , transitions from higher E levels became apparent (Figure 4.10). Up to 30 K (Figure 4.10(c)), the $\mathrm{E}_{4} \rightarrow \mathrm{Z}_{2}$ transition was the only new transition apparent that was absent at 10 K . However, at 55 K (Figure $4.10(\mathrm{~d})$) transitions from the E_{4} and E_{5} levels to all levels up to the Z_{8} level, became apparent. The $E_{1}-E_{2}-E_{3}$ energy splittings were no longer obvious because of temperature broadening of the various transitions. For temperatures above 55 K , several A centre transitions started to appear as a result of the onset of overlap between the broadened A and B centre transitions and resulting simultaneous pumping occurring.

4.1.4 Polarisation study of the B centre

For a centre with exact $\mathrm{C}_{3 v}$ symmetry, no polarisation effects are expected in $<100>$ oriented samples. The fluorescence should therefore be independent of the polarisation used. In <111> oriented samples however, well defined polarisation ratios, as presented in Table 2.4, are expected for a centre with $\mathrm{C}_{3 \mathrm{v}}$ symmetry in CaF_{2} type crystals. It is observed that for $\mathrm{Z} \rightarrow \mathrm{E}$ excitation, there is no significant change in intensity for the two analyser positions for any transitions in $\langle 100\rangle$ oriented samples, indicative of a centre with exact trigonal symmetry. However, for $\mathrm{Z} \rightarrow \mathrm{E}$ excitation the fluorescence transitions did not show any well defined polarisation behaviour in the $<111>$ crystal orientation geometry either, with most of the polarisation ratios being close to unity. This was found to be the

Table 4.4: Observed and predicted intensity ratios for the polarised $\mathrm{D} \neg \mathrm{Z}$ fluorescence transitions of the B centre in $\langle 111\rangle$ oriented $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for the excitation transitions shown.

Transition	$\begin{aligned} & \text { Wavenumber }(\pm 0.5) \\ & \quad\left(\mathrm{cm}^{-1}\right) \end{aligned}$	Polarisation ratios [$\left.y^{\prime} y^{\prime} / y^{\prime} x^{\prime}\right](\pm 10 \%)$						Expected
		Observed$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$	Expected	Observed				
				$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{2}$	$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{3}$	$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{6}$	$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{7}$	
$\mathrm{D}_{6}+\mathrm{Z}_{1}$	15628.6	0.62	$3 / 7-15 / 11$	2.05	1.25	(laser)	0.99	arb
$\mathrm{D}_{6} \rightarrow \mathrm{Z}_{2}$	15601.8	-	"	1.44	1.27	1.48	2.00	"
$\mathrm{D}_{6}+\mathrm{Z}_{3}$	15563.6	14.1/11	15/11	0.96	0.93	0.95	1.04	$3 / 7-15 / 11$
$\mathrm{D}_{6}+\mathrm{Z}_{5}$	15491.0	1.10	$3 / 7-15 / 11$	0.83	0.92	0.83	0.93	arb
$\mathrm{D}_{6} \rightarrow \mathrm{Z}_{6}$	15450.5	1.05	"	0.99	0.88	0.83	0.56	"
$\mathrm{D}_{5} \rightarrow \mathrm{Z}_{2}$	15601.2	14.0/11	15/11	0.70	0.66	0.68	0.65	$3 / 7-5 / 11$
$\mathrm{D}_{5} \rightarrow \mathrm{Z}_{3}$	15562.8	$3.2 / 7$	$3 / 7$	2.29	2.09	2.47	2.52	$3 / 7-3.00$
$\mathrm{D}_{4} \rightarrow \mathrm{Z}_{2}$	15591.0	14.3/11	15/11	0.61	0.65	0.62	0.57	$3 / 7-15 / 11$
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1}$	15613.0	0.76	$3 / 7-15 / 11$	1.51	(laser)	1.61	1.85	arb
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{2}$	15586.4	0.78	-	1.56	1.43	1.64	1.92	"
$\mathrm{D}_{3}+\mathrm{Z}_{5}$	15548.0	14.2/11	15/11	0.76	0.74	0.71	0.56	$3 / 7-15 / 11$
$\mathrm{D}_{2}+\mathrm{Z}_{1}$	15605.5	-	$3 / 7-15 / 11$	(laser)	1.66	2.04	2.13	arb
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{2}$	15578.5	1.27		0.72	0.80	0.77	0.64	-
$\mathrm{D}_{2}+\mathrm{Z}_{3}$	15541.0	14.0/11	15/11	0.63	0.74	0.64	0.55	$3 / 7-15 / 11$
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{5}$	15467.0	1.04	$3 / 7-15 / 11$	0.74	0.85	0.72	0.65	arb
$\mathrm{D}_{2}+\mathrm{Z}_{6}$	15427.5	0.90	"	1.22	1.05	1.37	1.44	"
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{8}$	15392.0	14.1/11	15/11	0.60	0.66	0.58	0.62	$3 / 7-15 / 11$ cont...

Table 4.4 cont...

Transition	$\begin{aligned} & \text { Wavenumber }(\pm 0.5) \\ & \quad\left(\mathrm{cm}^{-1}\right) \end{aligned}$	Polarisation ratios [$\left.y^{\prime} y^{\prime} / y^{\prime} x^{\prime}\right](\pm 10 \%)$						Expected
		Observed$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$	Expected					
				$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{2}$	$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{3}$	$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{6}$	$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{7}$	
$\mathrm{D}_{2}+\mathrm{Z}_{9}$	15240.5	1.04	$3 / 7-15 / 11$	0.72	0.82	0.79	0.64	arb
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{10}$	15190.0	0.60	"	1.42	1.69	2.70	1.86	"
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{1}$	15604.0	(laser)	15/11	-	0.53	0.61	0.50	$3 / 7-15 / 11$
$\mathrm{D}_{1}+\mathrm{Z}_{2}$	15577.0	14.3/11	15/11	0.61	0.59	0.64	0.52	"

case irrespective of the particular $\mathrm{Z}_{1} \rightarrow \mathrm{E}$ transition being excited. For $\mathrm{Z} \rightarrow \mathrm{D}$ excitation however, the well defined polarisation ratios presented in Table 4.4 and consistent with a trigonal symmetry assignment of the B centre were obtained for all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions. As can be seen from Table 4.4, exciting the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{2}$, $Z_{1} \rightarrow D_{3}, Z_{1} \rightarrow D_{6}$ and $Z_{1} \rightarrow D_{7}$ transitions gave similar polarisation ratios while the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition gave a different set of ratios. Although the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition was too weak to give conclusive results, its polarisation ratios were more comparable with those obtained for $Z_{1} \rightarrow D_{1}$ excitation. From Table 2.4, the ratios obtained with $Z_{1} \rightarrow D_{1}$ and $Z_{1} \rightarrow D_{4}$ excitation were those expected from a $\gamma_{\mathrm{a}} \leftrightarrow \gamma_{3}$ pump transition, while ratios from excitation of the $Z_{1} \rightarrow D_{2}, Z_{1} \rightarrow D_{3}$, $Z_{1} \rightarrow D_{6}$ and $Z_{1} \rightarrow D_{7}$ transitions were as expected for a $\gamma_{3} \leftrightarrow \gamma_{3}$ pump transition. All these results conclusively confirm that the B centre is of exact trigonal symmetry.

Because the excitation spectra show transitions from the Z_{1} level to all the expected upper levels of both E and D multiplets, the $\mathrm{C}_{3 \mathrm{v}}$ selection rules indicate that the ground state can only be a γ_{3} irrep level. The E_{1}, E_{2} and E_{3} levels being the lowest three levels of the E multiplet, are levels of the ${ }^{5} \mathrm{~S}_{2}$ multiplet. Since all transitions from the E_{1}, E_{2} and E_{3} levels were observed to the Z_{1}, Z_{2} and Z_{3} levels, the Z_{2} and Z_{3} levels cannot be of γ_{2} symmetry because the ${ }^{5} S_{2}$ multiplet does not have any γ_{2} type level in $\mathrm{C}_{3 \mathrm{v}}$ symmetry. From the observed polarisation ratios for the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions for $\mathrm{Z} \rightarrow \mathrm{D}$ excitation and from the assignment of the Z_{1} level as of γ_{3} symmetry, the D_{2}, D_{3}, D_{6} and D_{7} levels are all assigned to be γ_{3} type levels as well. The remaining $\mathrm{D}_{1}, \mathrm{D}_{4}$ and D_{5} levels therefore comprise the two γ_{2} and one γ_{1} type levels of the D multiplet. Because transitions from both the D_{1} and D_{4} levels to the Z_{3} level were not observed while the $D_{5}+Z_{3}$ transition was observed, the D_{1} and D_{4} levels have the same irrep label type while the D_{5} level has the same irrep as the Z_{3} level. The D_{1} and D_{4} levels are therefore assigned as being γ_{2} type levels, leaving the D_{5} level as the only γ_{1} level of the ${ }^{5} \mathrm{~F}_{5}$ multiplet. The Z_{3} level itself is also a γ_{1} type level because the

Figure 4.11: Energy level diagram for the B centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for transitions as measured at 10 K The bold lines represent a set of three transitions from the $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} levels to the particular Y multiplet level.
$D_{5}+Z_{3}$ transition is observed with ratios characteristic of a $\gamma_{a} \rightarrow \gamma_{a}$ fluorescence transition (Table 4.4). Finally, using Tables 2.1(b) and 2.4, the six levels $\mathrm{Z}_{1}, \mathrm{Z}_{2}$, Z_{5}, Z_{6}, Z_{9} and Z_{10} are all assigned to be of γ_{3} type as well.

Assignment of the Z_{3} level as a γ_{1} symmetry type level is consistent with one of the $\mathrm{E}_{1}, \mathrm{E}_{2}$ or E_{3} levels having γ_{1} symmetry. The E_{6} level was assigned as of γ_{2} type because the $\mathrm{E}_{6} \rightarrow \mathrm{Z}_{3}$ transition was absent from the $20-55 \mathrm{~K}$ spectra (Figure 4.10).

For the $\mathrm{E} \rightarrow \mathrm{Y}$ transitions (Figure 4.9(c)), seven sets of three levels have the previously described $E_{1}-E_{2}-E_{3}$ energy level separations and the remaining three sets have just two levels $3.0 \mathrm{~cm}^{-1}$ apart. The transitions with the $3.0 \mathrm{~cm}^{-1}$ separations identify the three γ_{2} type levels of the Y multiplet and the γ_{3} type levels of the ${ }^{5} \mathrm{~S}_{2}$ multiplet. As $\gamma_{1} \leftrightarrow \gamma_{2}$ type transitions are forbidden, transitions from the ${ }^{5} \mathrm{~S}_{2}$ multiplet levels to the γ_{2} levels of the Y multiplet will necessarily only occur in pairs. Since transitions from the E_{2} level to the Y_{4}, Y_{7} and Y_{10} levels are all absent, the E_{2} level is assigned as a γ_{1} type level and the Y_{4}, Y_{7} and Y_{10} levels are all γ_{2} type levels of the Y multiplet. Hence the remaining levels $Y_{1}, Y_{2}, Y_{3}, Y_{5}, Y_{6}, Y_{8}$ and Y_{9} comprise five of γ_{3} symmetry and two of γ_{1} symmetry types.

An energy level scheme showing all the levels derived and the proposed irrep labels is presented in Figure 4.11 and Table 4.3.

Because polarisation ratios could not be observed for $Z \rightarrow E$ excitation it is not possible to deduce from polarisation ratio measurements the irrep labels for any of the higher E multiplet levels. For such levels, irrep labels were assigned in accordance with the crystal-field calculations discussed in Chapter 7. There is confidence in such assignments because the irrep labels derived from the polarisation study here were found to agree completely with those predicted by the crystal-field calculations. For $\mathrm{Z} \rightarrow \mathrm{E}$ excitation, it appears that because of the small energy separations between the lowest three E levels, the polarisation ratios measured are always a superposition of the polarisation ratios of transitions from

(b)

(c)

Figure 4.12: $\quad 10 \mathrm{~K}$ upconversion fluorescence spectrum of the $\mathrm{F} \rightarrow \mathrm{Z}$ transitions for the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15682.0 \mathrm{~cm}^{-1}$:
(a) unpolarised;
(b) π polarisation;
(c) σ polarisation.

Table 4.5:	Observed and predicted intensity ratios for the polarised $\mathrm{F} \rightarrow \mathrm{Z}$ fluorescence transitions of the A centre in $\langle 100\rangle$ oriented $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15682.0 \mathrm{~cm}^{-1}$.			
Transition	$\underset{\mathrm{cm}^{-1}}{\text { Wavenumber }(\pm 0.5)}$	Polarisation Ratios ($\pm 10 \%$) [yy: yx]		
		Obs		Expected
$\mathrm{F}_{2}+\mathrm{Z}_{1}$	20781.5	1	: 4.6	$0: 1$
$\mathrm{F}_{2} \rightarrow \mathrm{Z}_{2}$	20779.5	1	: 4.3	0:1
$\mathrm{F}_{2}+\mathrm{Z}_{3}$	20698.0	4.1	: 1	1:0
$\mathrm{F}_{2}+\mathrm{Z}_{10}$	20305.5	6.1	: 1	1:0
$\mathrm{F}_{1}+\mathrm{Z}_{2}$	20739.5	7.9	: 1	1:0
$\mathrm{F}_{1}+\mathrm{Z}_{3}$	20659.5	1	: 3.7	0:1
$\mathrm{F}_{1} \rightarrow \mathrm{Z}_{5}$	20614.0	1	: 4.6	0:1
$\mathrm{F}_{1} \rightarrow \mathrm{Z}_{8}$	20441.0	7.0	: 1	1:0
$\mathrm{F}_{1}+\mathrm{Z}_{10}$	20268.0	1	: 3.9	0:1
$\mathrm{F}_{1}+\mathrm{Z}_{12}$	20227.5	1	: 3.7	0:1

two γ_{3} type levels with a γ_{1} level in-between to a particular \mathbf{Z} or Y multiplet level. This would happen irrespective of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}$ transition pumped since the $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} levels are all originating levels for the observed fluorescence. Transitions from higher energy levels observed in the $20-55 \mathrm{~K}$ spectra were too weak to give any conclusive results as to polarisation ratio.

4.1.5 Upconversion fluorescence of the A and B centres

For the A centre, upconversion fluorescence was observed from both the $\mathrm{F}\left({ }^{5} \mathrm{~F}_{3}\right)$ (Figure 4.12(a)) and E multiplets for $\mathrm{Z} \rightarrow \mathrm{D}$ excitation. The fluorescence was quite weak with that from the E multiplet being only 10^{-5} the intensity obtained for direct excitation of this multiplet.

This upconversion fluorescence was polarised identically to that observed for direct excitation in respect of the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions. From the polarisation spectra for the $F \rightarrow Z$ transitions presented in Figure 4.12(b),(c) and Table 4.5, the $\mathrm{F}_{1}+\mathrm{Z}_{2}$ and $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{8}$ transitions are observed to be principally π polarised, consistent with $\gamma_{a} \rightarrow \gamma_{a}$ fluorescence transitions for a $\gamma_{a} \rightarrow \gamma_{a}$ pump transition. This identifies the F_{1} level as a γ_{2} type level. Transitions to the Z_{3}, Z_{5}, Z_{10} and Z_{12} levels are all σ polarised as expected for $\gamma_{a^{\prime}} \rightarrow \gamma_{5}$ fluorescence transitions. As the $F_{2} \rightarrow Z_{1}, Z_{2}$ transitions at $20781.5,20779.5 \mathrm{~cm}^{-1}$ respectively are both σ polarised while the $\mathrm{F}_{2} \rightarrow \mathrm{Z}_{3}$ and $\mathrm{F}_{2} \rightarrow \mathrm{Z}_{10}$ transitions at 20698.0 and $20305.5 \mathrm{~cm}^{-1}$ respectively, are observed to be π polarised, the F_{2} level is assigned as a γ_{s} type level.

For the B centre, no upconversion fluorescence for $\mathrm{Z} \rightarrow \mathrm{D}$ excitation was observable at all from either the E or F multiplets, giving an upper limit of well less than 10^{-7} of that for direct excitation for the E multiplet.

No upconversion fluorescence was observed for $Z \rightarrow E$ excitation for either the A or B centres setting an upper limit of 10^{-7} for both these cases.

4.2 Spectroscopy of $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{\mathbf{2}}: \mathrm{Ho}^{\mathbf{3 +}}(\mathbf{0 . 0 0 5 \%})$ Crystals

Laser excitation spectra of $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals monitoring
all fluorescence transitions in the $15000 \mathrm{~cm}^{-1}$ region showed new transitions fairly close in energy to parent A centre transitions. By laser selective excitation of several of the new $Z \rightarrow E$ transitions, two distinct centres were identified. These are arbitrarily labelled as CS1 and CS2 in Figure 4.13. Because these transitions are weak, being only $5-10 \%$ of the intensity of the A centre transitions and quite close in energy to them, well discriminated selective excitation spectra, with minimal interference by neighbouring transitions of either the A or B centres, could only be obtained by monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition of the appropriate centre in each case. Neither the CS1 nor CS2 centres could be selectively excited clearly in the D multiplet region because their transitions were much weaker and either overlapped or were so close to corresponding transitions of the A and B centres that simultaneous excitation of the different centres could not be avoided. Transitions corresponding to the CS1 and CS2 centres for $\mathrm{Z} \rightarrow \mathrm{D}$ excitation are so identified in the broadband excitation spectra given in Figure 4.14. These transitions were classified through their fluorescence spectra.

4.2.1 Spectroscopy of the CS1 centre

Both the excitation and fluorescence spectra for the CS1 centre (Figures 4.13(b) and 4.15) are similar to those for the A centre except for an overall shift of all the energy levels to lower energies. $A Z_{1}-Z_{2}$ level splitting of $2.0 \mathrm{~cm}^{-1}$ is apparent in the transitions to the E_{2}, E_{3} and E_{6} levels. As found for the A centre, four sets of transition pairs are observed in the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectrum for $Z_{1} \rightarrow E_{2}$ excitation (Figure 4.15(a)). The $E_{1}-E_{2}$ energy level separation of $11.0 \mathrm{~cm}^{-1}$ for this centre is somewhat smaller than the $14.0 \mathrm{~cm}^{-1}$ found for the A centre. The four transition pairs are to the Z_{3}, Z_{5}, Z_{10} and Z_{12} levels identified as for the A centre. Three single transitions are observed at 18490.5, 18148.5 and $18128.0 \mathrm{~cm}^{-1}$ (in the 10 K spectra).

As for the A centre, spectra up to 30 K were recorded to determine the origin of the transition pairs. At 20 K , the higher energy transition in each pair as well as the single transition at $18128.0 \mathrm{~cm}^{-1}$ became more intense than at 10 K

Figure 4.13: 10 K broadband and selective excitation spectra of the E multiplet in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) broadband excitation spectrum, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(b) CS1 centre excitation spectrum, monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition at $18601.0 \mathrm{~cm}^{-1}$;
(c) CS2 centre excitation spectrum, monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition at $18608.5 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate lower and upper multiplet crystal-field level identifications.

Figure 4.14: 10 K broadband excitation spectrum of the D multiplet in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) broadband spectrum in pure $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$;
(b) broadband spectrum in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$.

Figure 4.15: 10 K fluorescence spectra for the CS1 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18601.0 \mathrm{~cm}^{-1}$;
(b) $D \rightarrow Z$ transitions, for excitation of the $Z_{1} \dashv D_{4}$ transition at $15663.5 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18601.0 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate upper and lower multiplet crystal-field level identifications.

These transitions therefore originate from the lowest directly observed E_{2} level at $18601.0 \mathrm{~cm}^{-1}$ while the remainder originate from a lower E_{1} level whose energy is inferred as $18590.0 \mathrm{~cm}^{-1}, 11.0 \mathrm{~cm}^{-1}$ lower than the E_{2} level. The transition pairs from the E_{1} and E_{2} levels identify the four levels Z_{3}, Z_{5}, Z_{10} and Z_{12} at 70.0, 115.0, 458.5 and $506.5 \mathrm{~cm}^{-1}$ respectively, as being γ_{5} type levels. The single transitions at $18490.5,18148.5$ and $18128.0 \mathrm{~cm}^{-1}$ are assigned as the $E_{1} \rightarrow Z_{4}, E_{1} \rightarrow Z_{9}$ and $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{11}$ transitions respectively.

The $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure 4.15(c)) has two sets of transition pairs with the $\mathrm{E}_{1}-\mathrm{E}_{2}$ energy separation of $11.0 \mathrm{~cm}^{-1}$. The higher energy transition in each pair was more intense at 20 K than at 10 K . Of the five single transitions at $13323.5,13306.0,13267.0,13245.0$ and $13192.0 \mathrm{~cm}^{-1}$, only the transition at $13306.0 \mathrm{~cm}^{-1}$ was found to increase in intensity in going from 10 K to 20 K while the other four became weaker. The transition at $13306.0 \mathrm{~cm}^{-1}$ is therefore assigned as originating from the E_{2} level, giving the Y_{6} level energy as $5295.0 \mathrm{~cm}^{-1}$ while the transitions at $13323.5,13267.0,13245.0$ and $13192.0 \mathrm{~cm}^{-1}$ all originate from the E_{1} level to the Y multiplet levels $\mathrm{Y}_{2}, \mathrm{Y}_{7}, \mathrm{Y}_{8}$ and Y_{10} at 5266.5, 5323.0, 5345.0 and $5398.0 \mathrm{~cm}^{-1}$ respectively.

From the $\mathrm{D} \rightarrow \mathrm{Z}$ spectrum (Figure $4.15(\mathrm{~b})$), the $\mathrm{Z}_{1}-\mathrm{Z}_{2}$ energy level separation of $2.0 \mathrm{~cm}^{-1}$ is apparent in the sharpest fluorescence transitions from the D_{2} and D_{3} levels at 15603.0 and $15614.0 \mathrm{~cm}^{-1}$ respectively. The $D_{1}+Z_{1}, Z_{2}$ transitions were not observed, but transitions observed to the Z_{3}, Z_{5}, Z_{10} and Z_{12} levels place the D_{1} level at $15600.0 \mathrm{~cm}^{-1}$. The $D_{1}-D_{2}$ energy level separation of $3.0 \mathrm{~cm}^{-1}$ found is slightly smaller than the $4.5 \mathrm{~cm}^{-1}$ determined for the A centre. The broad feature centred at $15310.0 \mathrm{~cm}^{-1}$ in the $\mathrm{D} \rightarrow \mathrm{Z}$ spectrum does not show clearly in the $\mathrm{E} \rightarrow \mathrm{Z}$ spectrum.

As raising the crystal temperature above 10 K resulted in unavoidable simultaneous excitation of the parent A centre, the higher energy $E \rightarrow Z$ transitions for the CS1 centre could not be identified. As a result, energies for the E_{4}, E_{5} and Z_{6} levels could not be determined as done for the A centre.

Table 4.6:
Energy levels (in cm^{-1}) of the Z, Y, D and E multiplets of the CS1 centre and their symmetries, as derived from the 10 K spectra of $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\mathbf{Z}\left({ }^{5} \mathbf{I}_{8}\right)$	$\mathbf{Y}\left({ }^{5} \mathbf{I}_{7}\right)$	$\mathbf{D}\left({ }^{5} \mathbf{F}_{5}\right)$	$\mathbf{E}\left({ }^{5} \mathbf{S}_{\mathbf{2}}{ }^{\mathbf{5}} \mathbf{F}_{4}\right)$
	$0\left(\gamma_{1}\right)$	$5254.5\left(\gamma_{5}\right)$	$15600.0\left(\gamma_{3}\right)$	$18590.0\left(\gamma_{3}\right)$
1	$2.0\left(\gamma_{2}\right)$	$5266.5\left(\gamma_{3}\right)$	$15603.0\left(\gamma_{5}\right)$	$18601.0\left(\gamma_{1}\right)$
2	$70.0\left(\gamma_{5}\right)$	$5269.5\left(\gamma_{5}\right)$	$15614.0\left(\gamma_{2}\right)$	$18646.6\left(\gamma_{5}\right)$
3	$99.5\left(\gamma_{3}\right)$	-	-	
4	$115.0\left(\gamma_{5}\right)$	-	-	
5	-	$5295663.5\left(\gamma_{1}\right)$	-	$18725.6\left(\gamma_{5}\right)$
6	$296.0\left(\gamma_{1}\right)$	$5323.0\left(\gamma_{5}\right)$	$18744.3\left(\gamma_{1}\right)$	
7	$301.0\left(\gamma_{2}\right)$	$5345.0\left(\gamma_{3}\right)$	-	
8	$441.5\left(\gamma_{3}\right)$	-	$18808.5\left(\gamma_{2}\right)$	
9	$458.5\left(\gamma_{5}\right)$	$5398.0\left(\gamma_{5}\right)$	$18848.0\left(\gamma_{5}\right)$	
10	$473.0\left(\gamma_{1}\right)$	-	$18870.5\left(\gamma_{1}\right)$	
11	$506.5\left(\gamma_{5}\right)$			

The energy levels derived for the CS1 centre are presented in Table 4.6.

4.2.2. Polarisation study of the CS1 centre

Polarisation measurements made on both $\langle 100\rangle$ and $\langle 111\rangle$ oriented crystals, as listed in Table 4.7, are fully consistent with a $\mathrm{C}_{4 \mathrm{v}}$ symmetry assignment for this centre.

For $Z_{1} \rightarrow E_{2}$ excitation of the $<100>$ oriented crystal, the $E \rightarrow Z$ transitions displayed the following polarisation behaviour :
(i) the transition pairs were all polarised $0: 1$, consistent with a γ_{5} irrep label assignment for the Z_{3}, Z_{5}, Z_{10} and Z_{12} levels;
(ii) for the single transitions at $18490.5,18148.5$ and $18128.0 \mathrm{~cm}^{-1}$ the polarisation ratios of 1:0 observed indicate a $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{a}}$ type transition. With the first two transitions identified as being the $E_{1} \rightarrow Z_{4}$ and $E_{1}+Z_{9}$ transitions, a γ_{3} irrep is assigned for the Z_{4}, Z_{9} and E_{1} levels. The transition at $18128.0 \mathrm{~cm}^{-1}$ corresponds to the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{11}$ transition making the Z_{11} level a γ_{1} type level, the same as the E_{2} level.

This analysis gives an exact one to one correspondence between all the A and CS1 centre transitions. Again the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{9}$ and $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{11}$ transitions are more easily separated in the polarised spectra (Figure 4.16(a)) for exactly the same reasons as discussed for the corresponding A centre transitions. Similar irrep label assignments were found for the D and Y levels. From the polarised excitation spectra (Figure $4.16(\mathrm{c})$), the $\mathrm{E}_{3}, \mathrm{E}_{6}$ and E_{10} levels are all γ_{5} type levels. Because the $D \rightarrow Z$ transitions were quite weak, polarisation ratios were only measurable for transitions up to the $D_{1} \rightarrow Z_{3}$ transition at $15530.0 \mathrm{~cm}^{-1}$, however these data were sufficient for assigning irrep labels to all the D multiplet levels.

The proposed model for this centre is for the Sr^{2+} ion to be located on the $\mathrm{Ho}^{3+}-\mathrm{F}^{-}$axis, on the opposite side of the interstitial F^{-}ion as shown in Figure 1.4(a). Such a configuration preserves the $\mathrm{C}_{4 \mathrm{v}}$ symmetry of the parent A centre but still has a sufficiently different crystal field at the Ho^{3+} ion site to cause an
(a)

σ

(b)

$$
\sigma
$$

(c)

Figure 4.16: Polarisation of the 10 K selective excitation and fluorescence spectra of the CS1 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18601.0 \mathrm{~cm}^{-1}$;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18601.0 \mathrm{~cm}^{-1}$;
(c) $\mathrm{Z} \rightarrow \mathrm{E}$ transitions, monitoring the $\mathrm{E}_{2}+\mathrm{Z}_{1}$ transition at $18601.0 \mathrm{~cm}^{-1}$:
Transition labels are as in Figures 4.13(b) and 4.15.

Table 4.7: Observed and predicted intensity ratios for the polarised fluorescence transitions of the CS1 centre in $<100>$ and $<111>$ oriented $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18601.0 \mathrm{~cm}^{-1}$.

Transition	$\begin{aligned} & \text { Wavenumber } \\ & (\pm 0.5) \mathrm{cm}^{-1} \end{aligned}$	Polarisation Ratios ($\pm 10 \%$)			
		$<100\rangle$	ientation	$\langle 111\rangle$	rientation
		Observed	Expected	Observed	Expected

$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{3}$	18531.0	1	$: 7.8$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{5}$	18486.5	1	$: 8.8$	$0: 1$	$3.0 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{10}$	18142.5	1	$: 7.9$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{11}$	18128.0	7.6	$: 1$	$1: 0$	2.3	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{3}$	18520.0	1	$: 8.2$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{E}_{4}$	18490.5	14.9	$: 1$	$1: 0$	2.3	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{5}$	18475.0	1	$: 9.0$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{9}$	18148.5	5.5	$: 1$	$1: 0$	-	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{10}$	18130.5	1	$: 8.6$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{13}$	18083.5	1	$: 7.7$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{1}$	13346.5	1	$: 6.8$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{3}$	13331.5	1	$: 3.6$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$	13306.0	18.5	$: 1$	$1: 0$	2.2	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13335.0	1	$: 9.8$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{2}$	13323.5	13.0	$: 1$	$1: 0$	2.3	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{3}$	13320.0	1	$: 4.1$	$0: 1$	$4.0 / 5$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{7}$	13267.0	1	$: 8.2$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{10}$	13192.0	1	$: 5.6$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{2}$	15612.0	6.7	$: 1$	$1: 0$	2.1	3.0
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{1}$	15603.0	1	$: 8.7$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{2}$	15601.0	1	$: 8.1$	$0: 1$	$4.0 / 5$	$3 / 5$
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{3}$	15533.0	7.7	$: 1$	$1: 0$	2.3	3.0
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$	15530.0	1	$: 6.1$	$0: 1$	$4.0 / 5$	$3 / 5$
						3

overall shift of all levels to slightly lower energies. The complete energy level scheme together with the proposed irrep labels are presented in Table 4.6. The energy level diagram is closely similar to that given in Figure 4.8 for the A centre, except for the small shifts in energies, and therefore need not be separately reproduced here.

4.2.3 Spectroscopy of the CS2 centre

More transitions were observed in both the excitation and fluorescence spectra (Figures 4.13 (c) and 4.17) for the CS2 centre than for either the CS1 or A centres. The main features of the spectra of the CS2 centre are :-
(i) the $Z_{1}, Z_{2} \mapsto \mathrm{E}_{1}$ transitions which are unobserved for the CS1 and A centres are now observed;
(ii) the $\mathrm{E}_{1}-\mathrm{E}_{2}$ energy separation of $13.5 \mathrm{~cm}^{-1}$ lies between the $11.0 \mathrm{~cm}^{-1}$ found for the CS1 centre and the $14.0 \mathrm{~cm}^{-1}$ for the A centre;
(iii) a $Z_{1}-Z_{2}$ level separation of $2.0 \mathrm{~cm}^{-1}$ is apparent in the sharper transitions to the lowest energy levels of the E and D multiplets;
(iv) transition pairs are now observed for all transitions involving γ_{5} (doublet) type levels of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres;
(v) all possible transitions are allowed, as the maximum possible 17 levels are observed for the Z multiplet, 12 levels for the Y multiplet and 13 out of the possible 14 for the E multiplet;
(vi) the excitation transitions are all at least $5 \mathrm{~cm}^{-1}$ higher in energy than corresponding single transitions for the CS1 centre but lower in energy than those for the A centre. In general, the CS2 centre energies are closer to those of the A centre than to those of the CS1 centre.

From the $E \rightarrow Z$ spectrum shown in Figure 4.17(a), it can be seen that transitions that occur in pairs for the CS1 centre now consist of two sets of close energy pairs, with each pair having the $E_{1}-E_{2}$ level separation of $13.5 \mathrm{~cm}^{-1}$. For

Figure 4.17: 10 K fluorescence spectra for the CS2 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18608.5 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition at $15679.0 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18608.5 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate upper and lower multiplet crystal-field level identifications.
example, the CS1 centre transition pair at 18531.0 and $18520.0 \mathrm{~cm}^{-1}$ is now split in the CS2 centre to become four transitions at 18533.0, 18528.0, 18519.5 and $18515.0 \mathrm{~cm}^{-1}$. These transitions can be classified as (i) a pair at 18533.0 and $18519.5 \mathrm{~cm}^{-1}$ and (ii) a pair at 18528.0 and $18515.0 \mathrm{~cm}^{-1}$, with the separation within each pair being $13.5 \mathrm{~cm}^{-1}$ and the separation between these particular two pairs $4.5 \mathrm{~cm}^{-1}$. The $4.5 \mathrm{~cm}^{-1}$ is assigned as the splitting of the $Z_{3} \gamma_{5}$ (doublet) terminating level in the CS2 centre. This second separation will be distinctly different for each set of four transitions as different γ_{s} terminating levels are involved. From the energy level scheme given in Figure 4.18, the Z_{3}, Z_{5}, Z_{10} and Z_{12} levels of the CS 1 centre are split by $4.5,6.0,8.5$ and $5.5 \mathrm{~cm}^{-1}$ respectively, for the CS2 centre. All four transitions in a particular group have comparable intensities while those transitions that were absent for the CS1 centre, for example the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{1}, \mathrm{Z}_{2}$ transitions, are still relatively weak. The three single transitions for this CS2 centre are observed at $18485.0,18148.0$ and $18123.0 \mathrm{~cm}^{-1}$ compared to the corresponding $18490.5,18148.5$ and $18128.0 \mathrm{~cm}^{-1}$ transitions respectively, found for the CS1 centre.

From the $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure 4.17(c)), low symmetry splittings are also observed for transitions to the $\mathrm{Y}_{1}, \mathrm{Y}_{3}, \mathrm{Y}_{7}$ and Y_{10} levels of the CS1 centre. Such splittings are measured to be $1.0,2.0,11.5$ and $19.0 \mathrm{~cm}^{-1}$ respectively, being a range of both very small and very large values in comparison to the Z level splittings.

Splittings of the $D \rightarrow Z$ transitions (Figure $4.17(\mathrm{~b})$) are all the same as for the corresponding $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, apart from the additional D_{2} level splitting of $7.0 \mathrm{~cm}^{-1}$.

The energy levels derived for the CS2 centre are presented in Table 4.8.

4.2.4 Polarisation study of the CS2 centre

Polarisation measurements obtained with either $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ excitation (Figure 4.19, Table 4.9) or $Z_{2} \rightarrow E_{4}$ excitation (Figure 4.20, Table 4.10) are summarised below.

Table 4.8: \quad Energy levels (in cm^{-1}) of the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}$ and E multiplets of the CS2 centre and their symmetries, as derived from the 10 K spectra of $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\mathbf{Z}\left({ }^{5} \mathbf{I}_{8}\right)$	$\mathbf{Y}\left({ }^{5} \mathbf{I}_{7}\right)$	$\mathbf{D}\left({ }^{5} \mathbf{F}_{5}\right)$	$\mathbf{E}\left({ }^{5} \mathbf{S}_{\mathbf{2}}{ }^{5}{ }^{5} \mathbf{F}_{4}\right)$
	$0\left(\gamma_{1}\right)$	$5255.5\left(\gamma_{2}\right)$	$15604.0\left(\gamma_{1}\right)$	$18595.0\left(\gamma_{1}\right)$
1	$2.0\left(\gamma_{2}\right)$	$5256.5\left(\gamma_{1}\right)$	$15611.0\left(\gamma_{2}\right)$	$18608.5\left(\gamma_{1}\right)$
2	$75.5\left(\gamma_{1}\right)$	$5267.0\left(\gamma_{2}\right)$	-	$18650.5\left(\gamma_{2}\right)$
3	$80.0\left(\gamma_{2}\right)$	$5269.0\left(\gamma_{1}\right)$	$18652.8\left(\gamma_{1}\right)$	
4	$110.0\left(\gamma_{1}\right)$	$5272.5\left(\gamma_{1}\right)$	$18621.0\left(\gamma_{2}\right)$	$15679.0\left(\gamma_{1}\right)$
5	$119.0\left(\gamma_{2}\right)$	$5301.5\left(\gamma_{1}\right)$		$18677.6\left(\gamma_{2}\right)$
6	$125.0\left(\gamma_{1}\right)$	$5321.0\left(\gamma_{2}\right)$	$18713.0\left(\gamma_{2}\right)$	
7	$277.0\left(\gamma_{1}\right)$	$5327.5\left(\gamma_{2}\right)$	$18736.4\left(\gamma_{1}\right)$	
8	$285.0\left(\gamma_{2}\right)$	$5332.5\left(\gamma_{1}\right)$	$18748.2\left(\gamma_{1}\right)$	
9	$447.0\left(\gamma_{1}\right)$	$5350.0\left(\gamma_{1}\right)$	-	
10	$454.0\left(\gamma_{1}\right)$	$5396.5\left(\gamma_{1}\right)$	$18785.0\left(\gamma_{2}\right)$	
11	$465.0\left(\gamma_{2}\right)$	$5415.5\left(\gamma_{2}\right)$	$18825.0\left(\gamma_{2}\right)$	
12	$473.5\left(\gamma_{1}\right)$		$18849.5\left(\gamma_{1}\right)$	
13	$485.5\left(\gamma_{1}\right)$		$18880.8\left(\gamma_{1}\right)$	
14	$488.0\left(\gamma_{2}\right)$			
15	$509.0\left(\gamma_{1}\right)$			
16	$514.5\left(\gamma_{2}\right)$			

Figure 4.18: Energy level diagram for the CS 2 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for the $\mathrm{E}+\mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions as measured at 10 K . For the particular Z levels not accessed by transitions from the E_{1}, E_{2} levels, transitions from the D_{1} level are shown. The energy levels on the left are those of the CS1 centre. Energy level irreps for the CS2 centre are presented in Table 4.8.
(a) For $Z_{1} \rightarrow \mathrm{E}_{2}\left(\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{a}}\right)$ excitation :-
(i) the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions at $18485.0,18148.0$ and $18123.0 \mathrm{~cm}^{-1}$ were found to be π polarised (Figure 4.19(a)) just as were the $E_{1} \rightarrow Z_{4}$, $E_{1} \rightarrow Z_{9}$ and $E_{2} \rightarrow Z_{11}$ transitions of the CS1 centre;
(ii) both sets of transitions from the E_{1} and E_{2} levels to split γ_{5} levels were similarly polarised $0: 1$ with, for example, the four transitions at $18533.0,18528.0,18519.5$ and $18515.0 \mathrm{~cm}^{-1}$ having measured polarisation ratios of 1:4.9, 1:5.0, 1:6.6 and 1:7.1 respectively (Table 4.9);
(iii) the $\mathrm{E}_{1}+\mathrm{Z}_{1}$ transition is found to be only slightly polarised with a ratio of $1: 2$ while the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{2}$ transition is σ polarised with a ratio of 1:5.1 (Figure 4.19(a), Table 4.9);
(iv) all the $\mathrm{E} \rightarrow \mathrm{Y}$ transitions (Figure $4.19(\mathrm{~b})$) follow the same pattern as those for the CS1 centre except for the two transitions at 13335.5 and $13322.0 \mathrm{~cm}^{-1}$ which, although only $13.5 \mathrm{~cm}^{-1}$ apart, are polarised oppositely with ratios of 1:9.4 and 12.1:1 respectively (Table 4.9). The transition at $13328.0 \mathrm{~cm}^{-1}$ is only slightly π polarised while its partner at $13341.5 \mathrm{~cm}^{-1}$ is clearly σ polarised;
(v) polarisation ratios for $\mathrm{D}+\mathrm{Z}$ transitions were as observed for the CS1 centre, characteristic of fluorescence from a pure γ_{5} type upper level;
(vi) polarised $Z \rightarrow E$ excitation spectra show the transitions at 18748.2, 18825.0 and $18880.8 \mathrm{~cm}^{-1}$ being mainly π polarised while the remainder are all σ polarised (Figure 4.19(c));
(vii) with the E vector of the laser oriented along the z axis (laser polarised E_{z}), transitions that were polarised 1:0 for the E vector of the laser along the y axis (laser polarised E_{y}) are not observed. Fluorescence transitions that were polarised $0: 1$ for the laser polarised E_{y} are observed, but do not show any polarisation effects,

(c)

Figure 4.19: Polarisation of the 10 K selective excitation and fluorescence spectra of the CS2 centre in $\mathrm{Ca}_{0.00} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) $E \rightarrow Z$ transitions, for excitation of the $Z_{1}+E_{2}$ transition at $18608.5 \mathrm{~cm}^{-1}$;
(b) $Z \rightarrow E$ transitions, monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition at $18608.5 \mathrm{~cm}^{-1}$;
(c) $Z \rightarrow E$ transitions, monitoring the $E_{2} \rightarrow Z_{1}$ transition at $18608.5 \mathrm{~cm}^{-1}$.
Transition labels are as in Figures 4.13(c) and 4.17.

Table 4.9: Observed intensity ratios for the polarised fluorescence transitions of the CS 2 centre in $<100>$ and $<111>$ oriented $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}\left(\gamma_{1} \rightarrow \gamma_{1}\right)$ transition at $18608.5 \mathrm{~cm}^{-1}$.

Transition	$\underset{\left(\mathrm{cm}^{-1}\right)}{\text { Wavenumber }(\pm 0.5)}$	$\begin{gathered} \text { Obs } \\ \langle 100> \\ {[y y} \end{gathered}$	ved Polari rientation x]	$\begin{aligned} & \text { Ratios }(\pm 5 \%) \\ & <111\rangle \text { orientation } \\ & {\left[y^{\prime} y^{\prime} / y^{\prime} x^{\prime}\right]} \end{aligned}$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{3}$	18533.0	1	4.9	0.7
$\mathrm{E}_{2}+\mathrm{Z}_{4}$	18528.0	1	5.0	0.6
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{6}$	18490.5	1	6.5	0.7
$\mathrm{E}_{2}+\mathrm{Z}_{7}$	18483.5	1	6.0	0.7
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{12}$	18143.5	1	4.9	0.8
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{13}$	18135.0	1	6.9	0.7
$\mathrm{E}_{2}+\mathrm{Z}_{14}$	18123.0	8.9	1	2.2
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{1}$	18595.0	1	2.0	0.8
$\mathrm{E}_{1}+\mathrm{Z}_{2}$	18593.0	1	5.1	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{3}$	18519.5	1	6.6	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$	18515.0	1	7.1	0.6
$\mathrm{E}_{1}+\mathrm{Z}_{5}$	18485.0	8.8	1	2.0
$\mathrm{E}_{1}+\mathrm{Z}_{6}$	18476.0	1	4.7	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{7}$	18470.0	1	4.5	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{10}$	18148.0	5.5	1	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{12}$	18130.0	1	5.7	0.8
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{16}$	18086.0	1	6.3	0.7
$\mathrm{E}_{1}+\mathrm{Z}_{17}$	18081.0	1	6.1	0.7
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{1}$	13353.0	,	: 7.9	0.8
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{2}$	13352.0	1	$\bigcirc 7.5$	0.7
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{3}$	13341.5	1	: 7.4	0.6
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{5}$	13335.5	1	: 9.4	0.8
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$	13307.0	10.0	: 1	1.6
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13339.5	1	: 6.2	0.8
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{2}$	13338.5	1	: 6.0	0.8
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{3}$	13328.0	2.9	: 1	1.4
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{4}$	13326.0	17.8	: 1	1.9
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{5}$	13322.0	12.1	: 1	2.9
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{7}$	13274.0	1	: 7.7	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{8}$	13267.5	1	: 7.4	0.6
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{9}$	13262.5	1	: 8.3	0.7
$\mathrm{E}_{1}+\mathrm{Y}_{10}$	13245.0	4.9	: 1	1.9
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{11}$	13198.5	1	: 5.9	0.7
$\mathrm{E}_{1}+\mathrm{Y}_{12}$	13179.5	1	: 5.4	0.7
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1}$	15621.0	11.2	: 1	2.0
$\mathrm{D}_{3}+\mathrm{Z}_{2}$	15619.0	15.0	: 1	2.1
$\mathrm{D}_{2}+\mathrm{Z}_{1}$	15611.0	1	: 17.0	0.6
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{2}$	15609.0	1	: 15.9	0.7
$\mathrm{D}_{2}+\mathrm{Z}_{4}$	15528.0	5.0	: 1	2.1
$\mathrm{D}_{1}+\mathrm{Z}_{1}$	15604.0	1	: 6.8	0.7
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{2}$	15602.0	1	: 10.1	0.7
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$	15527.0	1	: 7.3	0.7
$\mathrm{D}_{1}+\mathrm{Z}_{4}$	15524.0	1	: 6.0	0.6
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{8}$	15327.0	1.5	: 1	1.4
$\mathrm{D}_{1}+\mathrm{Z}_{9}$	15319.0	1	: 4.1	0.8
$\mathrm{D}_{1}+\mathrm{Z}_{11}$	15150.0	2.4	: 1	1.4
$\mathrm{D}_{1}+\mathrm{Z}_{15}$	15116.0	1	: 5.8	0.7

having isotropic polarisation ratios of exactly $1: 1$.
(b) For $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{4}\left(\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{b}}\right)$ excitation :-
(i) the transitions at $18485.0,18148.0$ and $18123.0 \mathrm{~cm}^{-1}$ were observed to be σ polarised (Figure 4.20(a), Table 4.10);
(ii) of the transitions from the E_{1} and E_{2} levels to split γ_{5} levels, one member of the pair is π polarised while the other is σ polarised. Transitions from both the E_{1} and E_{2} levels to the higher energy component of the pair are polarised one way while transitions from both E levels to the lower component are oppositely polarised. As an example, considering the four levels at 18533.0, 18528.0, 18519.5 and $18515.0 \mathrm{~cm}^{-1}$ (Figure $4.20(\mathrm{a})$, Table 4.10), the pair of levels at 18533.0 and $18519.5 \mathrm{~cm}^{-1}$ ($13.5 \mathrm{~cm}^{-1}$ apart) are both polarised $0: 1$ while the other two at 18528.0 and $18515.0 \mathrm{~cm}^{-1}$, also $13.5 \mathrm{~cm}^{-1}$ apart, are both polarised 1:0. For transitions from the E_{1} level to both components of the Z_{12} level, the higher transition is π polarised. There is no evident set pattern as to which component is polarised in a given way;
(iii) the $E_{1} \rightarrow Z_{1}$ transition is σ polarised while the $E_{1} \rightarrow Z_{2}$ transition is π polarised;
(iv) all the $\mathrm{E} \rightarrow \mathrm{Y}$ transitions (Figure 4.20 (b), Table 4.10) show the same pattern as the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions in that transitions from the same E level to the two components of a γ_{5} level are oppositely polarised. Transitions that were polarised 1:0 for $Z_{1} \rightarrow E_{2}$ excitation are now polarised 0:1. The transition pairs at 13335.5 and $13322.0 \mathrm{~cm}^{-1}$ and at 13328.0 and $13341.5 \mathrm{~cm}^{-1}$ both show opposite polarisations as observed for $Z_{1} \rightarrow E_{2}$ excitation;
(v) For the laser polarised E_{z}, transitions that had ratios of 1:0 for the laser polarised E_{y} are not observed while transitions that were polarised $0: 1$ for the laser polarised E_{y}, are observed without any

Figure 4.20: Polarisation of 10 K fluorescence spectra of the CS2 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{4}$ transition at $18650.8 \mathrm{~cm}^{-1}$:
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions;
π polarisation
--------- σ polarisation.

Transition labels are as in Figure 4.17.

Table 4.10: Observed and expected intensity ratios for the polarised fluorescence transitions of the CS2 centre in $<100>$ oriented
$\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2} \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{4}$ ($\gamma_{2} \rightarrow \gamma_{1}$) transition at $18650.8 \mathrm{~cm}^{-1}$.

Transition	$\underset{\left(\mathrm{cm}^{-1}\right)}{\text { Wavenumber }(\pm 0.5)}$	Polarisation Ratios ($\pm 5 \%$)		
		Obs	ed	Expected
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$	18608.5	1	7.1	0:1
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{2}$	18606.5	3.9	1	1:0
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{3}$	18533.0	1	5.6	0:1
$\mathrm{E}_{2} \rightarrow \mathrm{Z} 4$	18528.0	6.2	1	1:0
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{6}$	18490.5	5.1	1	1:0
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{7}$	18483.5	1	5.2	0:1
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{12}$	18143.5	5.9	1	1:0
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{13}$	18135.0	1	7.0	0:1
$\mathrm{E}_{2}+\mathrm{Z}_{14}$	18123.0	1	8.1	0:1
$\mathrm{E}_{1}+\mathrm{Z}_{1}$	18595.0	1	6.9	0:1
$\mathrm{E}_{1}+\mathrm{Z}_{2}$	18593.0	6.4	1	1:0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{3}$	18519.5	1	5.2	0:1
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$	18515.0	5.0	1	1:0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{5}$	18485.0	1	7.2	0:1
$\mathrm{E}_{1}+\mathrm{Z}_{6}$	18476.0	7.1	1	1:0
$\mathrm{E}_{1}+\mathrm{Z}_{7}$	18470.0	1	5.4	0:1
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{10}$	18148.0	1	4.9	0:1
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{12}$	18130.0	6.8	1	1:0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{16}$	18086.0	1	6.0	0:1
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{17}$	18081.0	7.6	1	1:0
$\mathrm{E}_{2}+\mathrm{Y}_{3}$	13341.5	1	4.4	0:1
$\mathrm{E}_{2}+\mathrm{Y}_{5}$	13335.5	9.1	1	1:0
$\mathrm{E}_{2}+\mathrm{Y}_{6}$	13307.0	11.	9.0	0:1
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13339.5	11.2	1	1:0
$\mathrm{E}_{1}+\mathrm{Y}_{2}$	13338.5	1	10.4	0:1
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{3}$	13328.0	5.1	1	1:0
$\mathrm{E}_{1}+\mathrm{Y}_{4}$	13326.0	1	8.0	0:1
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{5}$	13322.0	1	6.1	0:1
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{7}$	13274.0	11.6	1	1:0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{8}$	13267.5	4.4	1	1:0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{9}$	13262.5	1	8.6	0:1
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{11}$	13198.5	1	6.3	0:1
$\mathrm{E}_{1}+\mathrm{Y}_{12}$	13179.5	7.3	1	1:0

preferred polarisation for the laser polarised E_{z}, with exact ratios of 1:1 being obtained;
(vi) the $D \rightarrow Z$ fluorescence was too weak to give any reliable polarisation results and no quantitative results were measured.

From the observation of transitions that were forbidden for both the A and CS1 centres as well as observation of splittings of the $\mathrm{C}_{4 \mathrm{v}} \gamma_{5}$ type levels, the symmetry of the CS2 centre has to be lower than $\mathrm{C}_{4 v}$ symmetry. The CS2 centre is therefore assigned as being a low symmetry C_{5} centre. Polarisation results obtained for $Z_{1} \rightarrow E_{2}$ excitation (Table 4.9) show that the CS2 centre is certainly of $C_{4 v}$ symmetry parentage. The polarisation results for $Z_{1} \rightarrow E_{2}$ excitation, as discussed above, do not distinguish between the so-called $C_{s}(a)$ and $C_{s}(b)$ configurations described by Khong [63], and shown here in Figure 1.4 (b) and (c), as the excitation transition is still of $\gamma_{a} \rightarrow \gamma_{a}$ type in C_{s} symmetry. To distinguish between the two possible C_{s} centre configurations, one needs to pump a transition of the type $\gamma_{\mathrm{a}} \leftrightarrow \gamma_{\mathrm{b}}$, for which the $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{b}}$ fluorescence transition would have the different yy:yx ratios of $2: 1$ and $1: 0$ for the $C_{s}(a)$ and $C_{s}(b)$ configurations respectively, (Table 2.5). This was done as follows :-

The E_{4} level observed at $18652.8 \mathrm{~cm}^{-1}$ arises from a low symmetry splitting of the E_{3} level of both the CS1 and A centres. The $Z_{2} \rightarrow E_{4}$ pump transition at $18650.8 \mathrm{~cm}^{-1}$ was appropriate to give fluorescence polarisation ratios as summarised in (b) above and in Table 4.10 which are consistent with the $\mathrm{C}_{\mathrm{s}}(\mathrm{b})$ configuration. The resulting polarisation spectra for the $E \rightarrow Z$ and $E \rightarrow Y$ transitions are shown in Figure 4.20. The CS2 centre is therefore proposed to have the Sr^{2+} ion located off the $\mathrm{Ho}^{3+}-\mathrm{F}^{-}$axis as shown in Figure 1.4(b) to give a C_{s} symmetry centre with the $C_{s}(b)$ configuration. Because the $Z_{2} \rightarrow E_{4}$ transition is quite weak and close to the B centre $Z_{1} \rightarrow E_{5}$ transition, some simultaneous excitation could not be avoided. The B centre transitions in Figure 4.20 are themselves not polarised.

From the predicted ratios of Table 2.5 and knowing that the E_{1}, E_{2} and Z_{1}
levels are all γ_{1} type levels in C_{s} symmetry while the Z_{2} level has γ_{2} symmetry, irrep labels for all the remaining levels could be deduced from the polarisation ratios obtained with $Z_{2} \rightarrow E_{4}$ excitation. Given that the two possible irreps of the C_{s} symmetry are γ_{1} and γ_{2}, and having established the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{4}$ transition as a $\gamma_{2} \rightarrow \gamma_{1}$ type transition, fluorescence transitions from the E_{1} and E_{2} levels that are polarised 1:0 $\left(\gamma_{1} \rightarrow \gamma_{2}\right)$ identify γ_{2} terminating levels while those polarised 0:1 $\left(\gamma_{1} \rightarrow \gamma_{1}\right)$ identify γ_{1} type lower multiplet levels.

For the $\mathrm{E} \rightarrow \mathrm{Z}$ spectra, two sets of transitions were found to be oppositely polarised, ((iv) in (a) and (b) above). It is likely that this arises from an overlap of two transitions to two levels lying within $0.5 \mathrm{~cm}^{-1}$ of each other or alternatively with a $14.0 \mathrm{~cm}^{-1}$ separation. In the first case, transitions from the same E level would be indistinguishable and the ratio measured would be for the stronger of the two transitions. In the latter case, a transition from the E_{2} level to the higher energy Y level overlaps with that from the E_{1} level to the lower energy Y level of the pair since the two sets of Y and E multiplet levels have almost the same separation. This overlap is highly likely given the many energy levels possible for the multiplets here and that all transitions are allowed in C_{s} symmetry.

All the derived energy levels, together with their proposed irrep labels are presented in Table 4.8. The energy level scheme presented in Figure 4.18 shows the relation between the CS1 and CS2 energy levels. The labelling of levels as Z_{1}, Z_{2}, Z_{3}...etc for the CS2 centre is necessarily different from that of the $C_{4 v}$ symmetry centres, for example, the Z_{\cap} level of the CS2 centre does not correspond to the Z_{7} level of the CS1 centre. The labelling adopted for the CS2 centre will also apply to the other C_{s} symmetry centres to be detailed later.

4.2.5 Upconversion fluorescence and spectra recorded above 20 K

Upconversion fluorescence was not observed for either the CS1 or CS2 centres for $Z \rightarrow E$ excitation. Some weak fluorescence, less than 10^{-6} the intensity of that for direct excitation, was observed from E and F multiplets, for $Z \rightarrow D$
excitation.
Raising the temperature of the crystal to above 20 K resulted in unintentional simultaneous excitation of the parent A centre. Any CS1 and CS2 fluorescence was swamped by that from the A centre and any additional high energy levels for the E multiplets of either the CS1 or CS2 centres could not be determined.

4.3 Spectroscopy of $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.00} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(\mathbf{0 . 0 0 5 \%})$ Crystals

For $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, the laser excitation spectra for monitoring all fluorescence transitions in the $15000 \mathrm{~cm}^{-1}$ region while exciting either the $Z \rightarrow E$ or $Z \rightarrow D$ transitions had weak new features as shown in Figures 4.21 and 4.22 respectively. As for the $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, two new centres arbitrarily labelled CB1 and CB2, with transition intensities of about 5% of corresponding transitions of the A centre, were identified. Completely discriminated selective excitation spectra, free from transitions of the A centre, could only be obtained by monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition of the appropriate centre. Such completely selected excitation spectra for the $Z \rightarrow D$ transitions were not possible. Both the CB 1 and CB 2 centres have levels somewhat lower in energy than the corresponding CS1 and CS2 centres respectively, with the CB2 centre energy levels being slightly higher in energy than those of the CB1 centre.

4.3.1 Spectroscopy of the CB1 centre

From the excitation and fluorescence spectra of Figures 4.21(b) and 4.23, the CB 1 centre is closely similar to both the A and CS 1 centres. The $\mathrm{Z}_{1}-\mathrm{Z}_{2}$ energy separation of $2.0 \mathrm{~cm}^{-1}$ is clearly apparent on the sharp transitions to the E_{2}, E_{3} and E_{6} levels.

In the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectrum (Figure 4.23(a)), four pairs of transitions with a common energy interval of $10.5 \mathrm{~cm}^{-1}$ are observed. From these transition pairs, the energies inferred for the $\mathrm{Z}_{3}, \mathrm{Z}_{5}, \mathrm{Z}_{10}$ and Z_{12} levels are 63.5, $107.5,451.5$ and $503.5 \mathrm{~cm}^{-1}$ respectively. The E_{1} level is deduced to be at

Figure 4.21: 10 K broadband and selective excitation spectra of the E multiplet in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) broadband excitation spectrum, monitoring all the $\mathrm{D}+\mathrm{Z}$ transitions;
(b) CB1 centre excitation spectrum, monitoring the $\mathrm{E}_{2}+\mathrm{Z}_{1}$ transition at $18596.6 \mathrm{~cm}^{-1}$;
(c) CB2 centre excitation spectrum, monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition at $18606.7 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate lower and upper multiplet crystal-field level identifications.

Figure 4.22: 10 K broadband excitation spectrum of the D multiplet in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, monitoring all the $\mathrm{D} \dashv \mathrm{Z}$ transitions :
(a) broadband spectrum in pure $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$;
(b) broadband spectrum in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$.

Figure 4.23: 10 K fluorescence spectra for the CB 1 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18596.6 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15655.5 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18596.6 \mathrm{~cm}^{-1}$;
Transitions are labelled by the appropriate upper and lower multiplet crystal-field level identifications.
$18586.0 \mathrm{~cm}^{-1}, 10.5 \mathrm{~cm}^{-1}$ lower than the lowest observed E_{2} level of the E multiplet at $18596.6 \mathrm{~cm}^{-1}$. This $\mathrm{E}_{1}-\mathrm{E}_{2}$ energy separation is quite similar to the $11.0 \mathrm{~cm}^{-1}$ found for the CS1 centre. Three single transitions are also observed at 18494.0, 18152.5 and $18132.5 \mathrm{~cm}^{-1}$, all slightly higher than the corresponding transitions for the CS1 centre.

Spectra measured at 20 K show that the transitions at 18494.0 and $18152.5 \mathrm{~cm}^{-1}$ originate from the E_{1} level while the transition at $18132.5 \mathrm{~cm}^{-1}$ originates from E_{2}, in an exactly analogous way to those found for both the A and CS1 centres.

The $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure 4.23(c)), shows two sets of transitions with the same common $E_{1}-E_{2}$ energy level separation of $10.5 \mathrm{~cm}^{-1}$, yielding the Y_{1} and Y_{3} levels as being at 5250.0 and $5270.0 \mathrm{~cm}^{-1}$ respectively. Of the five single transitions at $13324.0,13307.5,13266.5,13248.5$ and $13195.5 \mathrm{~cm}^{-1}$, the transition at $13307.5 \mathrm{~cm}^{-1}$ had more intensity at 20 K than at 10 K and is assigned as originating from the E_{2} level while the remaining four transitions originate from the E_{1} level.

The $D \rightarrow Z$ spectrum (Figure 4.23(b)) is similar to the $E \rightarrow Z$ spectrum, except for the specific additional feature centred at $15305.0 \mathrm{~cm}^{-1}$ which is only visible on a magnified scale in the $E \rightarrow Z$ spectrum. The $Z_{1}-Z_{2}$ energy separation of $2.0 \mathrm{~cm}^{-1}$ is apparent in the sharpest transitions from the D_{2} and D_{3} levels at 15600.0 and $15608.5 \mathrm{~cm}^{-1}$ respectively. The D_{1} level was deduced to be at $15598.5 \mathrm{~cm}^{-1}$ and the $D_{1}-D_{2}$ energy level separation of $1.5 \mathrm{~cm}^{-1}$ is small compared to 3.0 and $4.5 \mathrm{~cm}^{-1}$ found for the CS1 and A centres, respectively.

The energy levels derived for the CB1 centre are presented in Table 4.11.

4.3.2 Polarisation study of the CB1 centre

From examination of the results of polarisation measurements on both $<100>$ and $<111>$ oriented crystals (Table 4.12), the CB1 centre clearly has $\mathrm{C}_{4 v}$ symmetry. From measurements on the $\langle 100\rangle$ oriented crystals the following features were observed with $Z_{1} \rightarrow E_{2}$ excitation :-

Table 4.11: \quad Energy levels (in cm^{-1}) of the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}$ and E multiplets of the CB 1 centre and their symmetries, as derived from the 10 K spectra of $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\mathbf{Z}\left({ }^{5} \mathbf{I}_{\mathbf{8}}\right)$	$\mathbf{Y}\left({ }^{5} \mathbf{I}_{7}\right)$	$\mathbf{D}\left({ }^{5} \mathbf{F}_{5}\right)$	$\mathbf{E}\left({ }^{\mathbf{5}} \mathbf{S}_{\mathbf{2}}{ }^{\mathbf{s}} \mathbf{F}_{\mathbf{4}}\right)$
	$0\left(\gamma_{1}\right)$	$5250.0\left(\gamma_{5}\right)$	$15598.5\left(\gamma_{3}\right)$	$18586.0\left(\gamma_{3}\right)$
1	$2.0\left(\gamma_{2}\right)$	$5262.0\left(\gamma_{3}\right)$	$15600.0\left(\gamma_{5}\right)$	$18596.6\left(\gamma_{1}\right)$
2	$63.5\left(\gamma_{5}\right)$	$5270.0\left(\gamma_{5}\right)$	$15608.5\left(\gamma_{2}\right)$	$18644.1\left(\gamma_{5}\right)$
3	$92.0\left(\gamma_{3}\right)$	-	-	
4	$107.5\left(\gamma_{5}\right)$	-	-	
5	-	$5289.0\left(\gamma_{1}\right)$	-	
6	$296.0\left(\gamma_{1}\right)$	$5319.5\left(\gamma_{5}\right)$	$18728.2\left(\gamma_{1}\right)$	$18743.0\left(\gamma_{5}\right)$
7	$303.0\left(\gamma_{2}\right)$	$5337.5\left(\gamma_{3}\right)$	-	
8	$433.5\left(\gamma_{3}\right)$	-	$18797.4\left(\gamma_{2}\right)$	
9	$451.5\left(\gamma_{5}\right)$	$5390.5\left(\gamma_{5}\right)$	$18843.0\left(\gamma_{5}\right)$	
10	$464.5\left(\gamma_{1}\right)$	-	$18864.9\left(\gamma_{1}\right)$	
11	$503.5\left(\gamma_{5}\right)$			

(a)

(b)

(c)

Figure 4.24:

Polarisation of the 10 K selective excitation and fluorescence spectra of the CB1 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18596.6 \mathrm{~cm}^{-1}$;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18596.6 \mathrm{~cm}^{-1}$;
(c) $\mathrm{Z} \rightarrow \mathrm{E}$ transitions, monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition at $18596.6 \mathrm{~cm}^{-1}$.
Transition labels are as in Figures 4.21(b) and 4.23.

(i) both transitions of a given pair (Figure 4.24(a)) were σ polarised as found for both the CS1 and A centres. The Z_{3}, Z_{5}, Z_{10} and Z_{12} levels are therefore necessarily of γ_{5} symmetry;
(ii) as the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}, \mathrm{E}_{1} \rightarrow \mathrm{Z}_{9}$ and $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{11}$ transitions at 18494.0, 18152.5 and $18132.5 \mathrm{~cm}^{-1}$ respectively, are all π polarised (Figure $4.24(\mathrm{a})$, Table 4.12), the E_{1}, Z_{4} and Z_{9} levels are all assigned as γ_{3} levels while the E_{2} and Z_{11} levels are of γ_{1} symmetry;
(iii) transitions to the $\mathrm{Y}_{1}, \mathrm{Y}_{3}, \mathrm{Y}_{7}$ and Y_{10} levels are all σ polarised (Figure 4.24(b), Table 4.12) identifying these levels as γ_{5} type levels;
(iv) as for the A and CS1 centres, the $E_{2}+Y_{6}, E_{1}+Y_{2}$ and $E_{1}+Y_{8}$ transitions are all π polarised, consistent with irrep labels of γ_{1}, γ_{3} and γ_{3} for Y_{6}, Y_{2} and Y_{8} energy levels respectively;
(v) polarisation ratios for the $D_{2} \rightarrow Z$ transitions were all consistent with a γ_{s} irrep label assignment for the D_{2} level. Transitions from the D_{1} and D_{3} levels to the Z_{4}, Z_{9} and Z_{11} levels were π polarised. Irrep labels could then be assigned based on whether or not a transition to the Z_{4} level was observed and in the case of the D_{3} level, also on the relative intensities of the transitions to the Z_{1} and Z_{2} levels, as discussed for the case of the A centre. The feature centred at $15305.0 \mathrm{~cm}^{-1}$ was resolved in the polarised spectra into three partially overlapped transitions corresponding to the $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{8}$, $\mathrm{D}_{2} \rightarrow \mathrm{Z}_{7}$ and $\mathrm{D}_{2} \rightarrow \mathrm{Z}_{8}$ transitions as found for the A centre;
(vi) irrep label assignments for the remaining upper E and D levels were based on polarised excitation spectra.

The energy levels together with the proposed irrep labels are presented in Table 4.11. Again, the energy level diagram is closely similar to that for the A centre (Figure 4.8), except for the shift of all the levels to lower energies and is therefore not reproduced specifically here. As for the the CS1 centre, the CB1

Table 4.12: Observed and predicted intensity ratios for the polarised fluorescence transitions of the CB1 centre in $\langle 100\rangle$ and $<111\rangle$ oriented $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18596.6 \mathrm{~cm}^{-1}$.

Transition	Wavenumber $(+0.5) \mathrm{cm}^{-1}$	$\begin{gathered} \quad \begin{array}{c} \text { Polarisati } \\ <100>\text { orientation } \\ \text { [yy }: \mathrm{yx}] \\ \text { Observed } \end{array} \text { Expected } \end{gathered}$	$\begin{aligned} & \text { Ratios }(\pm 5 \%) \\ & \quad<111>\text { orientation } \\ & {\left[y^{\prime} y^{\prime} / y^{\prime} x^{\prime}\right]} \\ & \text { Observed Expected } \end{aligned}$

$\mathrm{E}_{2}+\mathrm{Z}_{3}$	18533.0	1	$: 7.3$	$0: 1$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{5}$	18489.0	1	$: 7.1$	$0: 1$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{10}$	18145.0	1	$: 6.9$	$0: 1$
$\mathrm{E}_{2}+\mathrm{Z}_{11}$	18132.5	7.1	$: 1$	$1: 0$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{3}$	18522.5	1	$: 6.2$	$0: 1$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$	18494.0	7.1	$: 1$	$1: 0$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{5}$	18478.5	1	$: 6.0$	$0: 1$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{9}$	18152.5	7.3	$: 1$	$1: 0$
$\mathrm{E}_{1}+\mathrm{Z}_{10}$	18134.5	1	$: 8.0$	$0: 1$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{13}$	18082.5	1	$: 7.2$	$0: 1$

$3.5 / 5$	$3 / 5$
$4.0 / 5$	$3 / 5$
$4.0 / 5$	$3 / 5$
2.1	3.0
$3.5 / 5$	$3 / 5$
2.2	3.0
$4.0 / 5$	$3 / 5$
2.1	3.0
$4.0 / 5$	$3 / 5$
$4.0 / 5$	$3 / 5$

$\mathrm{E}_{2}+\mathrm{Y}_{1}$	13346.5	1	$: 9.2$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2}+\mathrm{Y}_{3}$	13327.0	1	$: 6.2$	$0: 1$	$4.0 / 5$	$3 / 5$
$\mathrm{E}_{2}+\mathrm{Y}_{6}$	13307.5	5.0	$: 1$	$1: 0$	2.1	3.0
$\mathrm{E}_{1}+\mathrm{Y}_{1}$	13336.0	1	$: 5.6$	$0: 1$	$3.0 / 5$	$3 / 5$
$\mathrm{E}_{1}+\mathrm{Y}_{2}$	13324.0	9.9	$: 1$	$1: 0$	2.1	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{3}$	13316.0	1	$: 6.7$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{7}$	13266.5	1	$: 8.7$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{10}$	13195.5	1	$: 7.1$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{1}$	15600.0	1	$: 4.4$	$0: 1$	$4.0 / 5$	$3 / 5$
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{2}$	15598.0	1	$: 4.5$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{3}$	15536.0	8.2	$: 1$	$1: 0$	2.2	3.0
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$	15534.5	1	$: 8.8$	$0: 1$	$3.0 / 5$	$3 / 5$

centre is proposed to comprise a Ba^{2+} ion on - axis with the $\mathrm{Ho}^{3+}-\mathrm{F}^{-}$pair, with the Ba^{2+} ion adjacent to the charge compensating interstitial F^{-}ion and on the opposite side from the Ho^{3+} ion, as shown in Figure 1.4(a).

4.3.3 Spectroscopy of the CB2 centre

Transitions for the CB2 centre (Figures 4.21(a) and 4.25) are slightly higher in energy than those for the CB1 centre. This centre is similar to the CS2 centre in that:-
(i) the $Z_{1}-Z_{2}$ energy separation is $2.0 \mathrm{~cm}^{-1}$ and the $E_{1}-E_{2}$ separation is $13.5 \mathrm{~cm}^{-1}$ (Figure 4.25), slightly larger than the $10.5 \mathrm{~cm}^{-1}$ found for the CB1 centre;
(ii) the $Z_{1}, Z_{2} \mapsto \mathrm{E}_{1}$ transition is observed for the CB 2 centre but not for the CB1 centre;
(iii) splittings are apparent on all transitions to levels that correspond to the γ_{s} type levels of the CB1 centre. Again the observed splittings vary among the various transitions without any simple trend being apparent.

The splittings of the γ_{s} type levels are all larger than those for the CS2 centre, being more than twice as large in most cases (Figures 4.18 and 4.26). The Z_{3} level splitting, for example, is $9.5 \mathrm{~cm}^{-1}$ for the CB 2 centre (Figure 4.26) and only $4.5 \mathrm{~cm}^{-1}$ for the CS 2 centre (Figure 4.18). Likewise, the D_{2} level is split by $14.0 \mathrm{~cm}^{-1}$ in the CB 2 centre and only $7.0 \mathrm{~cm}^{-1}$ in the CS 2 centre. Low symmetry splittings for the Y_{1} and Y_{3} levels are more than three times those found for corresponding levels of the CS2 centre, with the Y_{7} level being split by about the same amount in both centres while the Y_{10} level is split by $43.0 \mathrm{~cm}^{-1}$ for the CB 2 centre and only $19.0 \mathrm{~cm}^{-1}$ for the CS2 centre. The energy levels derived are presented in Table 4.13.

Figure 4.25: 10 K fluorescence spectra for the CB2 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) $E \rightarrow Z$ transitions, for excitation of the $Z_{1} \rightarrow E_{2}$ transition at $18606.7 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{3} \rightarrow \mathrm{D}_{5}$ transition at $15676.0 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18606.7 \mathrm{~cm}^{-1}$.

Table 4.13: \quad Energy levels (in cm^{-1}) of the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}$ and E multiplets of the CB 2 centre and their symmetries, as derived from the 10 K spectra of $\mathrm{Ca}_{0.99} \mathrm{Ba}_{9.0} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\mathbf{Z}\left({ }^{5} \mathrm{I}_{8}\right)$	$\mathbf{Y}\left({ }^{5} \mathrm{I}_{7}\right)$	$\mathbf{D}\left({ }^{5} \mathbf{F}_{\mathbf{s}}\right)$	$\mathbf{E}\left({ }^{5} \mathbf{S}_{\mathbf{2}}{ }^{5}{ }^{5} \mathbf{F}_{4}\right)$
1	$0\left(\gamma_{1}\right)$	$5254.5\left(\gamma_{1}\right)$	$15600.0\left(\gamma_{1}\right)$	$18593.1\left(\gamma_{1}\right)$
2	$2.0\left(\gamma_{2}\right)$	$5261.0\left(\gamma_{2}\right)$	$15601.5\left(\gamma_{2}\right)$	$18606.7\left(\gamma_{1}\right)$
3	$69.0\left(\gamma_{2}\right)$	$5266.5\left(\gamma_{1}\right)$	$15615.5\left(\gamma_{1}\right)$	$18651.5\left(\gamma_{2}\right)$
4	$79.5\left(\gamma_{1}\right)$	$5267.5\left(\gamma_{2}\right)$	$15619.5\left(\gamma_{2}\right)$	$18654.2\left(\gamma_{1}\right)$
5	$105.5\left(\gamma_{1}\right)$	$5273.5\left(\gamma_{1}\right)$	$15676.0\left(\gamma_{1}\right)$	$18660.7\left(\gamma_{2}\right)$
6	$103.5\left(\gamma_{2}\right)$	$5295.0\left(\gamma_{1}\right)$	$18664.5\left(\gamma_{1}\right)$	
7	$110.0\left(\gamma_{1}\right)$	$5297.5\left(\gamma_{2}\right)$	$18673.4\left(\gamma_{1}\right)$	
8	$283.0\left(\gamma_{1}\right)$	$5312.5\left(\gamma_{1}\right)$	$18704.1\left(\gamma_{2}\right)$	
9	$293.5\left(\gamma_{2}\right)$	$5336.0\left(\gamma_{2}\right)$	$18746.6\left(\gamma_{1}\right)$	
10	$442.5\left(\gamma_{1}\right)$	$5350.0\left(\gamma_{1}\right)$	$18753.4\left(\gamma_{2}\right)$	
11	-	$5380.5\left(\gamma_{2}\right)$	$18784.2\left(\gamma_{2}\right)$	
12	$456.0\left(\gamma_{1}\right)$	$5423.5\left(\gamma_{1}\right)$	$18818.3\left(\gamma_{1}\right)$	
13	$472.5\left(\gamma_{2}\right)$		$18849.0\left(\gamma_{2}\right)$	
14	$482.5\left(\gamma_{1}\right)$		$18883.1\left(\gamma_{1}\right)$	
15	$485.0\left(\gamma_{2}\right)$			
16	$504.0\left(\gamma_{2}\right)$			
17	$515.5\left(\gamma_{1}\right)$			

Figure 4.26: Energy level diagram for the CB 2 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions as measured at 10 K . For the particular Z levels not accessed by transitions from the $\mathrm{E}_{1}, \mathrm{E}_{2}$ levels, transitions from the D_{1} level are shown. The energy levels on the left are those for the CB1 centre. Energy level irreps for the CB2 centre are presented in Table 4.12.
(a)

(b)

(c)

Figure 4.27:
Polarisation of the 10 K selective excitation and fluorescence spectra of the CB2 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18606.7 \mathrm{~cm}^{-1}$;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18606.7 \mathrm{~cm}^{-1}$;
(c) $Z \rightarrow E$ transitions, monitoring the $E_{2} \rightarrow Z_{1}$ transition at $18606.7 \mathrm{~cm}^{-1}$.
Transition labels are as in Figures 4.21 (c) and 4.25.

Table 4.14: Observed and expected intensity ratios for the polarised fluorescence transitions of the CB2 centre in $\langle 100\rangle$ and $<111\rangle$ oriented $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ $\left(\gamma_{1} \rightarrow \gamma_{1}\right)$ transition at $18606.7 \mathrm{~cm}^{-1}$.

Transition	$\underset{\left(\mathrm{cm}^{-1}\right)}{\text { Wavenumber }(\pm 0.5)}$	$\begin{gathered} \text { Obs } \\ <100> \\ {[y y:} \end{gathered}$	rved Polar rientation $y x]$	$\begin{aligned} & \text { natios }(\pm 5 \%) \\ & <111>\text { orientation } \\ & {\left[y^{\prime} y^{\prime} / y^{\prime} x^{\prime}\right]} \end{aligned}$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{3}$	18537.5	1	6.0	0.6
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{4}$	18527.5	1	: 5.9	0.7
$\mathrm{E}_{2}+\mathrm{Z}_{6}$	18503.0	1	: 5.3	0.7
$\mathrm{E}_{2}+\mathrm{Z}_{7}$	18496.0	1	: 7.4	0.7
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{12}$	18151.0	1	: 5.0	0.8
$\mathrm{E}_{2}+\mathrm{Z}_{14}$	18124.0	5.3	: 1	2.0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{1}$	18593.0	1	: 1.7	0.8
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{2}$	18591.0	1	: 5.7	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{3}$	18524.0	1	: 6.2	0.7
$\mathrm{E}_{1}+\mathrm{Z}_{4}$	18513.5	1	: 5.1	0.7
$\mathrm{E}_{1}+\mathrm{Z}_{5}$	18487.5	7.0		2.0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{6}$	18489.5	1	: 4.7	0.8
$\mathrm{E}_{1}+\mathrm{Z}_{7}$	18483.0	1	: 6.9	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{10}$	18150.5	5.1	: 1	2.0
$\mathrm{E}_{1}+\mathrm{Z}_{12}$	18137.0	1	: 4.8	0.8
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{16}$	18089.0	1	: 5.2	0.8
$\mathrm{E}_{1}+\mathrm{Z}_{17}$	18077.5	1	: 5.3	0.8
$\mathrm{E}_{2}-\mathrm{Y}_{1}$	13352.0	1	: 4.9	0.7
$\mathrm{E}_{2}+\mathrm{Y}_{2}$	13345.5	1	: 5.6	0.7
$\mathrm{E}_{2}+\mathrm{Y}_{4}$	13340.0	1	: 4.2	0.7
$\mathrm{E}_{2}+\mathrm{Y}_{5}$	13333.5	1	: 9.5	0.6
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$	13312.0	8.3	: 1	2.1
$\mathrm{E}_{2}+\mathrm{Y}_{7}$	13309.5	1	: 4.5	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13338.5	1	: 6.2	0.7
$\mathrm{E}_{1}+\mathrm{Y}_{2}$	13332.0	1	: 6.3	0.8
$\mathrm{E}_{1}+\mathrm{Y}_{3}$	13326.5	9.5	: 1	2.6
$\mathrm{E}_{1}+\mathrm{Y}_{4}$	13325.5	1	: 7.0	0.7
$\mathrm{E}_{1}+\mathrm{Y}_{5}$	13319.5	5.1	: 1	2.0
$\mathrm{E}_{1}+\mathrm{Y}_{6}$	13298.0	1	: 4.3	0.8
$\mathrm{E}_{1}+\mathrm{Y}_{7}$	13295.5	1	: 4.5	0.8
$\mathrm{E}_{1}+\mathrm{Y}_{8}$	13280.5	1	: 5.5	0.7
$\mathrm{E}_{1}+\mathrm{Y}_{9}$	13257.0	1	: 6.3	0.7
$\mathrm{E}_{1}+\mathrm{Y}_{10}$	13243.0	4.8	: 1	2.0
$\mathrm{E}_{1}+\mathrm{Y}_{11}$	13212.5	1	: 8.2	0.7
$\mathrm{E}_{1}+\mathrm{Y}_{12}$	13169.5	1	: 6.7	0.6
$\mathrm{D}_{3}+\mathrm{Z}_{1}$	15615.5	5.2	: 1	2.2
$\mathrm{D}_{3}+\mathrm{Z}_{2}$	15613.5	5.0	: 1	2.0
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{1}$	15601.5	1	: 5.9	0.5
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{3}$	15532.5	1	: 6.0	0.8
$\mathrm{D}_{2}+\mathrm{Z}_{4}$	15522.5	1	: 4.9	0.6
$\mathrm{D}_{1}+\mathrm{Z}_{1}$	15600.0	1	$\vdots 6.2$	0.7
$\mathrm{D}_{1}+\mathrm{Z}_{2}$	15598.0	1	: 5.8	0.7
$\mathrm{D}_{1}+\mathrm{Z}_{3}$	15531.0	5.9	: 1	2.6
$\mathrm{D}_{1}+\mathrm{Z}_{4}$	15521.0	4.7	: 1	1.9
$\mathrm{D}_{1}+\mathrm{Z}_{8}$	15317.0	4.3	: 1	2.4
$\mathrm{D}_{1}+\mathrm{Z}_{9}$	15306.5	1	: 2.8	0.8
$D_{1}+Z_{13}$ $D_{1}+Z_{15}$	15127.5 15115.0	1	: 3.3	0.8
$\mathrm{D}_{1}+\mathrm{Z}_{45}$	15115.0	1	: 3.8	0.8

4.3.4 Polarisation study of the CB2 centre

As for the CS2 centre, polarisation ratios were obtained with excitation of both the $Z_{1} \rightarrow E_{2}$ and $Z_{2} \rightarrow E_{4}$ transitions (Figures 4.27 and 4.28 respectively) with the following results :-
(a) For $Z_{1} \rightarrow E_{2}\left(\gamma_{a} \rightarrow \gamma_{a}\right)$ excitation :
(i) the pairs of transitions to the split γ_{s} type levels are polarised 0:1, with the exception of the transition at $13319.5 \mathrm{~cm}^{-1}$ which is mainly π polarised (Figure 4.27);
(ii) the single transitions corresponding to $\gamma_{a} \rightarrow \gamma_{a}$ type transitions of the CB1 centre are π polarised. Although the transition at $13298.0 \mathrm{~cm}^{-1}$ has been correlated to that at $13312.0 \mathrm{~cm}^{-1}$, they have opposite polarisations. It may be coincidental that the two Y levels have the same energy separation as the $E_{1}-E_{2}$ energy level separation as proposed for the CS2 centre;
(iii) the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{1}$ transition is almost unpolarised with a polarisation ratio of just $1: 1.7$ while the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{2}$ transition is σ polarised with a ratio of 1:5.7 (Table 4.14);
(iv) with the laser polarised E_{z}, all the transitions that were polarised 1:0 for the laser E_{y} are not observed while those that were polarised 0:1 for the laser polarised E_{y} are observed for the laser polarised E_{z}, but without any net polarisation.
(b) For $Z_{2}+E_{4}\left(\gamma_{a}+\gamma_{b}\right)$ excitation :-
(i) fluorescence from $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{a}}$ type transitions was found to be polarised $0: 1$ while that by $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{b}}$ type transitions was polarised 1:0 (Figure 4.28, Table 4.15). The two transition components from those transitions involving $\mathrm{C}_{4 \mathrm{v}} \gamma_{5}$ type levels had opposite polarisation ratios;
(ii) the $\mathrm{E}_{1}+\mathrm{Z}_{1}$ transition is now mainly σ polarised while the $\mathrm{E}_{1}+\mathrm{Z}_{2}$ transition is π polarised (Table 4.15);

Figure 4.28: Polarisation of the 10 K fluorescence spectra of the CB 2 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{4}$ transition at $18652.2 \mathrm{~cm}^{-1}$:
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions
(b) $\mathrm{E}+\mathrm{Y}$ transitions

Transition labels as in Figure 4.25.

Table 4.15: Observed and expected intensity ratios for the polarised fluorescence transitions of the CB2 centre in $\langle 100\rangle$ oriented $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}^{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{4}$ $\left(\gamma_{2}^{\rightarrow} \gamma_{1}\right)$ transition at $18652.2 \mathrm{~cm}^{-1}$.

Transition	$\underset{\left(\mathrm{cm}^{-1}\right)}{\text { Wavenumber }(\pm 0.5)}$	$\begin{aligned} & \text { Polarisation Ratios }(\pm 5 \%) \\ & \quad[y y: y x] \\ & \text { Observed } \end{aligned} \quad \text { Expected }$		
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$	18606.7	1	: 5.5	$0: 1$
$\mathrm{E}_{2}+\mathrm{Z}_{2}$	18604.7	4.1	: 1	1:0
$\mathrm{E}_{2}+\mathrm{Z}_{3}$	18537.5	6.1	: 1	1 : 0
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{4}$	18527.5	1	: 7.0	$0: 1$
$\mathrm{E}_{2}+\mathrm{Z}_{7}$	18496.0	1	: 5.7	$0: 1$
$\mathrm{E}_{2}+\mathrm{Z}_{12}$	18151.0	1	: 5.8	$0: 1$
$\mathrm{E}_{2}+\mathrm{Z}_{14}$	18124.0	1	: 8.2	$0: 1$
$\mathrm{E}_{1}+\mathrm{Z}_{1}$	18593.0	1	: 4.9	$0: 1$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{2}$	18591.0	7.0	: 1	$1: 0$
$\mathrm{E}_{1}+\mathrm{Z}_{3}$	18524.0	6.7		$1: 0$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$	18513.5	1	: 5.2	$0: 1$
$\mathrm{E}_{1}+\mathrm{Z}_{5}$	18487.5	1	: 6.3	$0: 1$
$\mathrm{E}_{1}+\mathrm{Z}_{7}$	18483.0	1	: 5.4	$0: 1$
$\mathrm{E}_{1}+\mathrm{Z}_{10}$	18150.5	1	: 6.6	$0: 1$
$\mathrm{E}_{1}+\mathrm{Z}_{12}$	18137.0	1	: 6.0	$0: 1$
$\mathrm{E}_{1}+\mathrm{Z}_{16}$	18089.0	7.2	: 1	$1: 0$
$\mathrm{E}_{1}+Z_{17}$	18077.5	1	: 8.8	$0: 1$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$	13312.0	1	: 4.9	$0: 1$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{3}$	13326.5	1	: 6.9	$0: 1$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{4}$	13325.5	5.2	: 1	1: 0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{5}$	13319.5	1	: 5.4	$0: 1$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{8}$	13280.5	1	: 8.7	$0: 1$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{9}$	13257.0	9.3	: 1	$1: 0$
$\mathrm{E}_{1}+\mathrm{Y}_{10}$	13243.0	1	: 6.4	$0: 1$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{11}$	13212.5	8.5	: 1	1 : 0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{12}$	13169.5	1	: 5.0	$0: 1$

(iii) fluorescence transitions that were π polarised for the laser polarised E_{y} are absent when the laser polarisation is rotated to E_{z}. Transitions that were σ polarised for E_{y} are observed for E_{z} but with no net preferred polarisation (i.e. ratios of 1:1).

Figure 4.26 shows the CB2 centre levels in relation to the CB1 centre levels. Irrep labels have been assigned based on the polarisation ratios obtained with $Z_{2} \rightarrow E_{4}$ excitation as described in Section 4.2 .4 for the CS2 centre and are given in Table 4.13.

The CB 2 centre is therefore believed to be of $\mathrm{C}_{5}(\mathrm{~b})$ symmetry with the Ba^{2+} ion in the (100) plane as shown in Figure 1.4(b). This is identical to the model proposed for the CS2 centre.

4.3.5 Upconversion fluorescence and spectra recorded above 20 K

As for the CS1 and CS2 centres, some upconversion fluorescence was observed for $Z \rightarrow D$ excitation but was too weak to measure while no upconversion fluorescence was observed for $Z \rightarrow E$ excitation.

Attempts at identifying other high energy E multiplet levels by measuring up to 55 K spectra were unsuccessful due to unavoidable simultaneous excitation of A centre transitions.

4.4 Discussion of the Centres

This section collects together and summarises the main features of the various centres($\mathrm{A}, \mathrm{B}, \mathrm{CS} 1, \mathrm{CS} 2, \mathrm{CB} 1$ and CB 2) in CaF_{2}. In Chapter 5 these centres will be further compared to those in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals.

From polarisation studies, the A and B centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ have been shown conclusively to have exact $C_{4 v}$ and $C_{3 v}$ symmetry respectively, as first proposed by [SW]. All the transitions reported by [SW] have been confirmed, and extended with observation of additional transitions such as the $\mathrm{Z}_{1,2} \rightarrow \mathrm{E}_{10}$ and $Z_{1} \rightarrow D_{4}$ transitions for the A and B centres respectively. The major contribution from the study here has been the determination of a complete set of energy levels
and the assignment of irrep labels to all levels for both centres. The spectral measurements up to 55 K were helpful for identifying some additional levels and confirming the various $\mathrm{E}_{2} \rightarrow \mathrm{Z}$ and $\mathrm{E}_{2} \rightarrow \mathrm{Y}$ level transition assignments. Measurements at 2 K were essential for inferring the presence of the lowest E_{1} level of the E multiplet and transitions to and from it. The crystal-field calculations of Reid and Butler were helpful as aids to determining irrep label assignments.

For all the centres, nearly all the energy levels for the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}$ and E multiplets and some for the F multiplet have been identified with irrep labels assigned, giving reliable energy level schemes.

Comparison of the energy levels of the four new centres observed in both $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ and $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ with those of the parent A centre yields the following relationships:
(i) the two $C_{4 v}$ symmetry centres, CS1 and CB1, have $E_{1}-E_{2}$ energy level separations of 11.0 and $10.5 \mathrm{~cm}^{-1}$ respectively, both somewhat smaller than the A centre value of $14.0 \mathrm{~cm}^{-1}$;
(ii) the two C_{s} symmetry centres, CS 2 and CB 2 , have an $\mathrm{E}_{1}-\mathrm{E}_{2}$ energy level separation of $13.5 \mathrm{~cm}^{-1}$, closely comparable to that for the A centre;
(iii) for each crystal system, the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre has lower energy transitions than the corresponding C_{s} symmetry centre;
(iv) all additional transitions observed for the C_{s} centres could be fully accounted for through low symmetry splittings of $\mathrm{C}_{4 \mathrm{v}} \gamma_{5}$ type levels or through the presence of transitions strictly forbidden for exact $\mathrm{C}_{4 \mathrm{v}}$ symmetry;
(v) the transitions that were forbidden under exact $C_{4 v}$ symmetry selection rules have generally quite weak intensity for the C_{s} symmetry centres.

Model assignments were made on the basis of choosing positions for the
dopant alkaline-earth cation that were as close as possible to the Ho^{3+} ion while being consistent with the assigned Ho^{3+} site symmetry determined from the polarisation of the spectra (either the $\mathrm{C}_{4 \mathrm{v}}$ or $\mathrm{C}_{8}(\mathrm{~b})$ arrangement). Other choices involving more remote placements of the dopant alkaline-earth ion would have their transitions within the linewidths of the parent A centre transitions. For the CS1 and CB1 $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres, the model given in Figure 1.4(a) is the one with the most altered Ho^{3+} ion environment. Because the only other possibilities all involve the dopant alkaline-earth cation being at least two lattice spacings away from the Ho^{3+} ion, such substitutions would not influence the environment around the rare-earth ion to any great extent. It is to be expected that they would only give rise to transitions within the linewidth of the transitions of the parent $C_{4 v}$ symmetry centre. A dopant alkaline-earth cation located in the position shown in Figure 1.4(a) however would create the largest distortion through possible repositioning of both the interstitial F^{-}ion and the four F^{-}ions located between the interstitial F^{-}ion and the dopant alkaline-earth cation, with resulting maximum effect on the Ho^{3+} ion environment. As the region around the interstitial F^{-}ion is already spatially extended there is not much difference between having a new cation, Sr^{2+} or Ba^{2+}, in the neighbouring cube, hence the almost identical energies observed for the CS1 and CB1 centres. As exact analogues of each other, both the CS1 and CB1 centres have been assigned to this same specific model.

Similarly, for the two C_{s} symmetry centres, it is the dopant alkaline-earth cation closest to the Ho^{3+} ion that would give the maximum change to the Ho^{3+} site environment. The two models given in Figure 1.4 (b) and (c) are equally likely configurations that satisfy C_{s} symmetry. Distinction between the two is possible through polarisation studies with $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{b}}$ type pump transitions, as per Table 2.5. The C_{s} configuration of Figure $1.4(\mathrm{~b})$ has been assigned to both the CS 2 and CB 2 centres because the polarisation results for $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{4}$ excitation of each centre were found to unequivocally indicate the $\mathrm{C}_{\mathrm{s}}(\mathrm{b})$ symmetry assignment.

Although the CS2 and CB2 centres have quite similar energy level patterns, the low symmetry splittings for corresponding transitions were found to be much larger for the CB 2 centre than for the CS 2 centre. This is reasonable as the Ba^{2+} ion, being larger than the Sr^{2+} ion, would alter the surrounding host lattice F^{-}ions more, resulting in larger low symmetry splittings of the γ_{5} levels.

The CS1 and CB1 centres are analogous to the so-called A2 centre reported for the Pr^{3+} ion in CaSrF_{2} and CaBaF 2 crystals while the CS2 and CB2 centres are equivalent to the so-called A 1 centre of Pr^{3+} in the same crystals [63].

4.5 Spectroscopy of Deuterated $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ Crystals

Deuterated centres were studied in preference to the hydrogenated centres as it is well established that D^{-}centres, in general, have stronger fluorescence than the corresponding H^{-}centres [107]. The reduction of fluorescence intensity in all hydrogenic type centres is through non-radiative quenching effects involving the hydride or deuteride local modes. For Ho^{3+}, the effects appeared to be quite severe, sufficient to preclude a detailed determination of the energy levels of even the D^{-}analogue of the A centre described earlier. It was found, from the onset, that although the D^{-}centre transitions were comparatively strong in absorption, they had weak fluorescence under laser excitation.

The main experimental problem in studying the $\mathrm{Ho}^{3+}-\mathrm{D}^{-}$centres was that the transitions did not show up as well in the broadband excitation spectra, in marked contrast to the other rare-earths previously studied viz, $\mathrm{Er}^{3+}[32]$ and Pr^{3+} [90]. For the Ho^{3+} case, one had to start off with a search of approximate positions derived from the absorption spectrum, find a fluorescence transition to monitor and then try to optimise the fluorescence signal. This procedure was laborious, time consuming and required careful tuning because most of the D^{-} transitions were quite close to F^{-}centre transitions. Even setting the spectrometer to monitor the vibronic transitions of the D^{-}transitions $500 \mathrm{~cm}^{-1}$ lower in energy than the electronic transitions and hence well removed from any
F^{-}centre electronic transitions did not provide any better discrimination. The coupling between the. F^{-}and D^{-}centres by radiation coupling and by cross-pumping appears to be quite strong for Ho^{3+}.

Additional information on these centres may have been obtained from comparable studies on hydrogenated and tritiated samples, but, in view of the much weaker fluorescence from H^{-}centres compared to D^{-}centres, such studies were not attempted because of the already weak D^{-}fluorescence for all three D^{-} centres observed.

The centres in deuterated $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals were first studied by an Honours III student, M. Paris [95]. The high Ho^{3+} concentration adopted (0.05%) combined with the long deuteration periods of up to 90 hours resulted in very rich absorption spectra. Classifying the absorption transitions to the various centres was found to be difficult because of considerable overlap between different D^{-}centre transitions and between the D^{-}and F^{-}centre transitions. Of the fifteen D^{-}centre transitions pumped, none had a common fluorescence spectrum. There were only a few common transitions for some spectra, which is not sufficient for assigning transitions to particular centres. None of the spectra measured correlated to the D^{-}analogues of the $\mathrm{F}^{-}, \mathrm{A}$ and B centres.

In the study here, Ho^{3+} concentrations of 0.005% were used in conjunction with short deuteration periods of just 4 to 12 hours, in order to obtain just a few of the simpler D^{-}centres. Only a few new transitions were observed in the absorption spectra of such samples (Figure 4.29).

Because the D^{-}transitions are relatively weak under laser excitation, selective excitation spectra well discriminated from F^{-}centres could not be obtained. The fluorescence was weak, being only $0.5-1 \%$ of that of the F A centre. From comparison of several fluorescence spectra, three D^{-}centres were identified. Of these, one is analogous to the $\mathrm{F}^{-} \mathrm{B}$ centre and has been labelled the $\mathrm{D}^{-} \mathrm{B}$ centre while the other two are low symmetry centres related to the $\mathrm{F}^{-} \mathrm{A}$ centre. These two centres are arbitrarily labelled D1 and D2. A careful search

Figure 4.29: 10 K absorption spectrum of the $\mathrm{Z} \rightarrow \mathrm{E}$ transitions in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours.

Figure 4.30: 10 K fluorescence spectra for the $\mathrm{D}^{-} \mathrm{B}$ centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals after 4 hours of deuteration, for excitation of the transition at $18571.7 \mathrm{~cm}^{-1}$:
(a) $\mathrm{E}+\mathrm{Z}$ transitions;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions.

Transitions identified by * are for the $\mathrm{F}^{-} \mathrm{B}$ centre.

Table 4.16: Energies (in cm^{-1}) of the $\mathrm{E} \rightarrow \mathrm{Z}, \mathrm{D} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions observed for the $\mathrm{D}^{-} \mathrm{B}$ centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, after 4 hours deuteration. Uncertainty is $\pm 1 \mathrm{~cm}^{-1}$.

$\mathbf{E}+\mathbf{Z}$ transitions	$\mathbf{D} \rightarrow \mathbf{Z}$ transitions	$\mathbf{E} \rightarrow \mathbf{Y}$ transitions
18571.7	15596.0	13380.5
18538.0	15589.0	13377.0
18504.5	15561.0	13375.5
18483.0	15528.0	13374.5
18449.0	15364.0	13373.0
18387.0	15354.0	13355.5
18352.0	15334.0	13353.0
18202.0	15170.0	13350.5
18150.0		13346.5
18144.0		13344.0
		13342.0
		13339.5
		13337.0
		13334.5
		13326.5
		13323.5
		13321.5
		13319.5
		13312.0
	13309.5	
		13306.5
		13303.0
	13297.5	
	13291.0	
	13286.0	
	13276.0	

for the D^{-}analogue of the F^{-}A centre was unsuccessful. The three centres are now briefly discussed in turn.

4.5.1 The D^{-}B centre

Excitation of the transition at $18571.7 \mathrm{~cm}^{-1}$ (Figure 4.29), resulted in fluorescence spectra (Figure 4.30) similar to those for the $\mathrm{F}^{-} \mathrm{B}$ centre except for a shift in energy of the transitions. As this pump transition is only $1.2 \mathrm{~cm}^{-1}$ higher than the $Z_{1} \rightarrow E_{3}$ transition for the $F^{-} B$ centre, fluorescence from the latter centre could not be completely eliminated. The $E_{1}-E_{2}-E_{3}$ energy level separations of this D^{-}centre could not be resolved, though the transitions to the Z_{2} and Z_{3} levels did show some structure. As for the $\mathrm{F}^{-} \mathrm{B}$ centre, only transitions to the $\mathrm{Z}_{1}, \mathrm{Z}_{2}$ and Z_{3} levels at $0,33.5$ and $63.0 \mathrm{~cm}^{-1}$ respectively, are sharp in the $\mathrm{E} \rightarrow \mathrm{Z}$ spectrum (Figure 4.30(a)).

The $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure 4.30(c)), also shows transitions for both the F^{-} B and $\mathrm{D}^{-} \mathrm{B}$ centres. The D^{-}centre transitions span a larger spectral range than the F^{-}centre transitions. Because of low fluorescence signal as well as appreciable overlap with the $F^{-} B$ centre transitions, the $E_{1}-E_{2}-E_{3}$ energy level separations could not be deduced from this spectrum as done for the F^{-}centre.

The $\mathrm{D} \rightarrow \mathrm{Z}$ transitions (Figure $4.30(\mathrm{~b})$) were quite weak. Any small $D_{1}-D_{2}$ energy level separation as found for the F centre was not apparent.

Since only one level for the E and D multiplets has been identified, transition energies rather than energy levels are presented in Table 4.16. The $\mathrm{E} \rightarrow \mathrm{Z}$ transitions identify closely similar Z levels for this D^{-}centre as corresponding transitions for the F^{-}centre.

4.5.2 The D1 and D2 centres

Both these centres show more transitions than can be accommodated by an exact $C_{4 v}$ symmetry centre and are assigned as being C_{s} symmetry centres.

For the D 1 centre, the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{D} \rightarrow \mathrm{Z}$ transitions occur in two groups (Figure 4.31 (a) and (b)). The pump transition at $18584.4 \mathrm{~cm}^{-1}$, as well as the fluorescence transition at $18550.0 \mathrm{~cm}^{-1}$, shows a $2.0 \mathrm{~cm}^{-1}$ splitting. It is not clear

Figure 4.31: 10 K fluorescence spectra for the D 1 centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals after 4 hours deuteration, for excitation of the transition at $18584.4 \mathrm{~cm}^{-1}$:
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions;
(b) $\mathrm{D} \dashv \mathrm{Z}$ transitions;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions.

Figure 4.32: 10 K fluorescence spectra for the D 2 centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals after 4 hours deuteration, for excitation of the transition at $18620.8 \mathrm{~cm}^{-1}$:
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions.

Table 4.17: Energies (in cm^{-1}) of the $\mathrm{E} \rightarrow \mathrm{Z}, \mathrm{D}+\mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions observed for the D1 and D2 centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, after 4 hours deuteration. Uncertainty is $\pm 1 \mathrm{~cm}^{-1}$.

Transitions	D1	D2

18900.9
18733.9
18584.4
18582.5
18550.0
18548.0
18494.0 18482.0 18475.5 18457.0 18425.0 18410.0 18355.0 18178.5 18121.0 18110.0 18062.5
$\mathrm{D} \rightarrow \mathrm{Z}$

15561.0	15495.0
15558.0	15487.0
15527.0	15481.0
15478.0	1547.0
15471.0	15470.0
15460.0	15466.0
1545.0	15458.0
15443.0	15454.0
15434.0	15450.0
15401.0	15446.0
15333.0	15442.0
1539.0	15437.0
15160.0	15364.0
15100.0	1536.0
15089.0	15354.0
15040.0	15182.0
	15181.0
	15173.0

Table 4.17 cont...

Transitions	D1	D2
$E \rightarrow Y$	13364.0	13383.5
	13362.5	13376.0
	13343.0	13363.0
	13339.0	13357.5
	13328.0	13355.0
	13320.0	13323.5
	13294.0	13282.0
	13276.0	13273.0
	13259.0	13246.5
	13210.5	13200.5
	13115.5	1318.0
		13140.0
	18143.0	17884.0
	18132.5	17702.0
	18084.0	
	1829.5	
	17960.0	
	17908.0	
	17678.0	

whether this is indeed the $Z_{1}-Z_{2}$ splitting because it would give an $E_{1}-E_{2}$ energy level separation of $33.0 \mathrm{~cm}^{-1}$ which is not apparent on any of the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions. Also, although the transition at $15561.0 \mathrm{~cm}^{-1}$ in the $\mathrm{D} \rightarrow \mathrm{Z}$ spectrum has a $2.0 \mathrm{~cm}^{-1}$ splitting, all transitions in the $\mathrm{D} \rightarrow \mathrm{Z}$ spectrum correspond to some transition in the $\mathrm{E} \rightarrow \mathrm{Z}$ spectrum, if the levels at 18584.4 and $15561.0 \mathrm{~cm}^{-1}$ are assumed to be the corresponding upper multiplet emitting levels. The transition at $18550.0 \mathrm{~cm}^{-1}$ cannot, therefore, be to the Z_{1} and Z_{2} levels as there are no transitions observed to the higher Z levels. The other transition at $18733.9 \mathrm{~cm}^{-1}$ belonging to this centre gives fluorescence that is almost wholly swamped by that for F^{-}A centre. The vibronic transitions are relatively strong with the transitions at 18084.0 and $18029.5 \mathrm{~cm}^{-1}$ (Figure 4.31(a)) being comparable in intensity to the electronic transitions. These vibronic transitions correspond to local mode phonon energies of 500.0 and $518.0 \mathrm{~cm}^{-1}$.

The D2 centre is characterised by $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence transitions occurring in three groups (Figure 4.32(a) and (b)). Two. transitions at 18620.8 and $18532.6 \mathrm{~cm}^{-1}$ in the absorption spectrum belong to this centre. The correspondence between the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{D} \rightarrow \mathrm{Z}$ transitions is not very apparent and indeed the number of emitting levels for the upper E and D multiplets is not clear as some of the higher energy transitions have a common $4.0 \mathrm{~cm}^{-1}$ energy separation. From this occurrence, it is difficult to deduce whether this is actually a $Z_{1}-Z_{2}$ energy level separation or just similar E and D low energy level separations. Only two vibronic transitions were observed at 17701.5 and $17597.0 \mathrm{~cm}^{-1}$ (insert of Figure $4.32(\mathrm{a})$), corresponding to the two strong electronic transitions at 18193.0 and $18088.5 \mathrm{~cm}^{-1}$ respectively. These two vibronic transitions are weak compared to those for the D1 centre and give a common phonon energy of $491.5 \mathrm{~cm}^{-1}$. As already mentioned, monitoring these vibronic transitions to determine the D2 centre excitation transitions did not result in any better discrimination from the F^{-}centre transitions.

Observed transition energies for both centres are summarised in Table 4.17.

Figure 4.33:
Polarisation of the 10 K fluorescence spectra of the D 1 centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%$ crystals deuterated for 4 hours, for excitation of the transition at $18584.4 \mathrm{~cm}^{-1}$:
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions.

Figure 4.34: Polarisation of the 10 K fluorescence spectra of the D 2 centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals deuterated for 4 hours, for excitation of the transition at $18620.8 \mathrm{~cm}^{-1}$:
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions.

Transitions for both the D1 and D2 centres were polarised showing polarisation ratios similar to those for $\mathrm{C}_{4 v}$ symmetry centres in the $\langle 100\rangle$ oriented crystals (Figures 4.33 and 4.34) and both centres should therefore be derived from the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre.

4.5.3 Discussion of the D^{-}centres

The D^{-}A centre could not be detected at all. It is possible that its transitions are completely swamped by overlap with transitions for one of the F^{-} centres, resulting in undetectable excitation and fluorescence transitions for this centre. From comparison with other rare-earths $\left(\mathrm{Er}^{3+}, \mathrm{Nd}^{3+}\right.$ and $\left.\mathrm{Pr}^{3+}\right)$, there is no reason why there should not be a $\mathrm{D}^{-} \mathrm{A}$ centre for Ho^{3+} even for the low deuteration periods used here. Furthermore, infrared local modes of the $\mathrm{D}^{-} \mathrm{C}_{4 \mathrm{v}}$ centre have been reported [55].

The $\mathrm{D}^{-} \mathrm{B}$ centre has similar characteristics to the $\mathrm{F}^{-} \mathrm{B}$ centre and is therefore assigned as a $\mathrm{C}_{3 \mathrm{v}}$ symmetry centre with an analogous configuration to the $\mathrm{F}^{-} \mathrm{B}$ centre. Due to feeble fluorescence intensity for this centre, wide monochromator slits of 100 to $200 \mu \mathrm{~m}\left(1-2 \mathrm{~cm}^{-1}\right.$ resolution) were used and any $E_{1}-E_{2}-E_{3}$ or $D_{1}-D_{2}$ energy level separations could not be measured.

The D1 and D2 centres are believed to be modifications of the $\mathrm{D}^{-} \mathrm{A}$ centre. Vibronic transitions were relatively strong for the D1 centre. The most likely model for the D 1 centre is the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry $\mathrm{Ho}^{3+}-\mathrm{D}^{-}$centre reduced to C_{s} symmetry by a D^{-}substitution for one of the eight F^{-}ions in the first coordinate shell which is the configuration proposed for the $\mathrm{C}_{s}(1)$ centre found in deuterated $\mathrm{CaF}_{2}: \mathrm{Pr}^{3+}$ crystals [105]. For the D 2 centre both the spectral pattern and observation of a related low vibronic transition interval of $491.5 \mathrm{~cm}^{-1}$ suggests that the configuration is significantly different from that of the D1 centre. The observed polarisation ratios suggest a $\mathrm{C}_{4 \mathrm{v}}$ parentage for this centre as well. It is possible that there are more D^{-}ions involved in this centre, as was proposed for the $\mathrm{C}_{\mathrm{s}}(2)$ centre of Pr^{3+} [105].

Neither the D1 nor the D2 centre exhibits any bleaching phenomena,
reversible or otherwise, such as that reported for C_{s} symmetry centres in Nd^{3+} [45], $\mathrm{Pr}^{3+}[105,106]$ and $\mathrm{Er}^{3+}[32]$ doped crystals. In all, the hoped for characterisation of the deuteride analogue centre of the F^{-}A centre and of the observation of reversible bleaching for the C_{s} symmetry centres was completely precluded by the relative weakness of the Ho^{3+} fluorescence in D^{-}centres, the considerable overlap of D^{-}transitions with those of the F^{-}centres and the apparent complete absence of any simple D^{-}centres even at low deuteration levels.

CHAPTER 5

SPECTROSCOPY OF Ho ${ }^{\mathbf{3 +}}$ IONS IN SrF ${ }_{2}$ TYPE CRYSTALS

The most striking feature of the spectroscopy of rare-earth ions introduced into SrF_{2} and BaF_{2} crystals at low concentrations is the observed change in the symmetry of the principal rare-earth ion centre from a tetragonal symmetry configuration at the beginning of the rare-earth series to a trigonal symmetry one towards the end [18]. Such a symmetry change does not occur in CaF_{2} crystals.

From various EPR measurements in SrF_{2} crystals, the change over is determined to occur in the vicinity of the rare-earth ions Dy^{3+} and Ho^{3+}. Of the rare-earth ions studied, Ce^{3+} [18], Nd^{3+} [15] and Sm^{3+} [7] ions have only tetragonal symmetry RE^{3+} centres, $\mathrm{Gd}^{3+}[119]$ and $\mathrm{Dy}^{3+}[6,39]$ ions have both tetragonal and trigonal symmetry RE^{3+} centres present, while $\mathrm{Er}^{3+}[8,18]$ and Yb^{3+} [104] ions have only trigonal and cubic symmetry RE^{3+} centres present. For Tb^{3+} ions in SrF_{2} crystals, two types of tetragonal symmetry centres were observed [9]. The EPR results reported for $\operatorname{SrF}_{2}: \mathrm{Ho}^{3+}(0.1 \%)$ crystals [103] indicate that the principal centre has trigonal symmetry. These particular measurements were done at both X band $(\sim 10 \mathrm{GHz})$ and K band $(\sim 35 \mathrm{GHz})$ frequencies and the spectra obtained were solely for Ho^{3+} ions in sites of $\mathrm{C}_{3 \mathrm{v}}$ symmetry, with EPR resonances of neither cubic nor tetragonal symmetry centres being detected. It was concluded from these studies that the principal Ho^{3+} ion centre in SrF_{2} is of $\mathrm{C}_{3 \mathrm{v}}$ symmetry.

For rare-earth ions in BaF_{2} crystals, the ions at the beginning of the series have a principal centre of tetragonal symmetry while for those ions towards the end of the series, the principal centre is of trigonal symmetry. The change over in the principal centre symmetry from tetragonal to trigonal is expected to occur in the vicinity of the Pr^{3+} and Nd^{3+} ions [18].

The aforementioned EPR results for Ho^{3+} ions in SrF_{2} crystals [103] are not in agreement with the spectroscopic results presented here where the principal
centre has been found to be of tetragonal symmetry, with the trigonal symmetry centre being at only 2% of the tetragonal symmetry centre concentration. Possible resolution of this principal centre symmetry anomaly is presented in Section 5.6.

An argon ion laser excitation study of $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(1 \%)$ has been reported [70]. Using the $457.9,465.9,472.7,476.5,488.0$ and 514.5 nm argon laser lines, three fluorescence groups were observed in the $530.0-561.5 \mathrm{~nm}, 635.0-662.5 \mathrm{~nm}$ and 745.0-770.0 nm regions. The group in the $530.0-561.5 \mathrm{~nm}$ region was assigned as ${ }^{5} \mathrm{~F}_{4},{ }^{5} \mathrm{~S}_{2} \rightarrow{ }^{5} \mathrm{I}_{8}$ fluorescence transitions, that in the $635.0-662.5 \mathrm{~nm}$ region was assigned as arising from the overlapped ${ }^{5} \mathrm{~F}_{3} \rightarrow{ }^{5} \mathrm{I}_{7}$ and ${ }^{5} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{I}_{8}$ fluorescence transitions while the group in the $745.0-770.0 \mathrm{~nm}$ region was ascribed to the ${ }^{5} \mathrm{~F}_{4},{ }^{5} \mathrm{~S}_{2} \rightarrow{ }^{5} \mathrm{I}_{7}$ transitions. The study however did not elucidate any centre distributions and symmetries nor present any energy level assignments.

The spectroscopic results presented here for Ho^{3+} ions in SrF_{2} crystals are based on $2 \mathrm{~K}, 10 \mathrm{~K}$ and up to 55 K spectral measurements and related polarisation studies. As such, the study of Ho^{3+} ion centres in SrF_{2} crystals here parallels that for the A and B centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals as presented in Chapter 4. The similarities and differences between the spectra of Ho^{3+} ions in SrF_{2} and CaF_{2} crystals will be high-lighted. Additionally, three other centres labelled here SC1, SC 2 , and SB 1 arising from the presence of small amounts of Ca^{2+} and Ba^{2+} ions in the SrF_{2} starting material are described.

In a similar previous laser selective excitation study of Er^{3+} ions in $\mathrm{SrF}_{2}: \mathrm{Er}^{3+}(0.05 \%)$ crystals [30,68], four centres were found, and arbitrarily labelled $\mathrm{J}, \mathrm{N} 1, \mathrm{~N} 2$ and N3. Of these, the J centre was proposed to be of exact trigonal symmetry and N3 was assigned as a tetragonal symmetry centre, with the N1 and N2 centres as slight modifications thereof.

An additional four centres, associated with deuterium ions, found in weakly deuterated $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, are described in Section 5.7. All these four centres have some resemblance to the F^{-}A centre but none of them was the
exact D^{-}analogue. These four D^{-}centres have been arbitrarily labelled $\mathrm{D} 1, \mathrm{D} 2$, D3 and D4.

Absorption Spectra

Although Ho^{3+} absorption transitions were readily observed in 10 mm thick $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.02 \%)$ crystals, none could be observed at measurable intensity in similar thicknesses of SrF_{2} crystals. Both the Ho^{3+} concentration and crystal thickness had to be gradually increased until sufficient intensity absorption transitions were observed for $0.1 \% \mathrm{Ho}^{3+}$ concentration crystals of $25-30 \mathrm{~mm}$ thickness.

The transitions are many and rather broad which is not unexpected as, at such high Ho^{3+} concentrations, both single $\mathrm{Ho}^{3+}-\mathrm{F}^{-}$ion centres and cluster centres would be present. The $Z \rightarrow E$ and $Z \rightarrow D$ absorption spectra for $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.1 \%)$ crystals, as recorded at 10 K , are presented in Figure 5.1. The absorption transitions ascribed to the $\mathrm{Z} \rightarrow \mathrm{D}$ transitions were found to be much weaker than those for the $Z \rightarrow E$ transitions.

Laser Selective Excitation Spectra

In contrast to optical absorption measurements where concentrations of 0.1% were needed, broadband excitation spectra measured in 0.005% and 0.01% Ho^{3+} concentrations show narrow and intense features, which maintained the same relative intensities for Ho^{3+} concentrations over the range 0.001% to 0.02%. Both the $Z \rightarrow E$ and $Z \rightarrow D$ broadband excitation spectra have fewer transitions than the absorption spectra measured in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.1 \%)$ crystals, as only single Ho^{3+} ion centres are present in the lower Ho^{3+} concentration crystals. However, the broadband excitation spectra measured for $0.1 \% \mathrm{Ho}^{3+}$ doped crystals are closely similar to the absorption spectra of Figure 5.1.

As fluorescence intensities in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals were found to be typically 20 times less than those in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals for the same Ho^{3+} dopant concentration, a Ho^{3+} concentration of 0.01% was chosen for the $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ studies reported here.

Figure 5.1: $\quad 10 \mathrm{~K}$ absorption spectra in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.1 \%)$ crystals :
(a) $Z \rightarrow E$ transitions;
(b) $\mathrm{Z} \dashv \mathrm{D}$ transitions.

Figure 5.2: $\quad 10 \mathrm{~K}$ broadband and selective excitation spectra for the E multiplet of the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) broadband excitation spectrum, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(b) SrF_{2} A centre excitation spectrum, monitoing the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition at $18585.7 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate lower and upper multiplet crystal-field level identifications.

Figure 5.3: $\quad 10 \mathrm{~K}$ broadband and selective excitation spectra for the D multiplet of the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) broadband excitation spectrum, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(b) $\mathrm{SrF}_{2} \mathrm{~A}$ centre excitation spectrum, monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$ transition at $15539.5 \mathrm{~cm}^{-1}$.

By laser selective excitation, five distinct centres, labelled A, B, SC1, SC2 and SB1 in Figures 5.2, 5.3, 5.10, 5.11, 5.13 and 5.14 were identified. The concentrations of the SC1, SC2 and SB1 centres, as judged by excitation intensity, which depends on fluorescence efficiency, was about half that of the A centre while the B centre was found to be present only at 2% of the concentration of the A centre. As in the case of the CS1, CS2, CB1 and CB2 centres, it was only possible to obtain completely discriminated selective excitation spectra for each of the $\mathrm{A}, \mathrm{SC} 1, \mathrm{SC} 2$ and SB 1 centres by monitoring the respective $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition of each centre. Because of its comparative weakness, it was not possible to obtain any completely discriminated excitation spectrum for the B centre. The spectroscopy of the various centres are now discussed in turn.

5.1 The A and B Centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{\mathbf{3 +}}(\mathbf{0 . 0 1 \%})$ Crystals

5.1.1 Spectroscopy of the $\mathrm{SrF}_{\mathbf{2}}$ A centre

Selective excitation spectra for both the $\mathrm{Z} \rightarrow \mathrm{E}$ and $\mathrm{Z} \rightarrow \mathrm{D}$ transitions are presented in Figures 5.2 and 5.3 respectively and the fluorescence spectra in Figure 5.4. The spectra of this centre were found to be closely similar in both excitation and fluorescence to those of the A centre of CaF_{2}, with an overall shift in all the levels to lower energies. The transitions to the $\mathrm{E}_{2}, \mathrm{E}_{3}$ and E_{6} levels in the excitation spectrum have a common $Z_{1}-Z_{2}$ spacing of $2.7 \mathrm{~cm}^{-1}$, which is larger than the $1.9 \mathrm{~cm}^{-1}$ observed for the $\mathrm{CaF}_{2} \mathrm{~A}$ centre. The A centre's first excited level Z_{2} is therefore slightly higher in SrF_{2} than in CaF_{2}.

The $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectrum (Figure 5.4(a)) has four sets of transition pairs with a common separation of $6.0 \mathrm{~cm}^{-1}$, compared to $14.0 \mathrm{~cm}^{-1}$ for the CaF_{2} A centre. The E_{1} level for this centre is thus at $18579.5 \mathrm{~cm}^{-1}$, some $6.0 \mathrm{~cm}^{-1}$ lower than the E_{2} level at $18585.7 \mathrm{~cm}^{-1}$ which is the lowest directly observed level of the E multiplet. Three single transitions were observed at 18504.0, 18202.5 and $18182.5 \mathrm{~cm}^{-1}$. When the temperature of the crystal was raised to 20 K the particular transition at $18182.5 \mathrm{~cm}^{-1}$ as well as the higher energy transition of each
transition pair increased in intensity. These transitions must therefore originate from the E_{2} level while the remaining single transitions at 18504.0 and $18202.5 \mathrm{~cm}^{-1}$ and the lower energy transition of each pair originate from the E_{1} level.

At 30 K , transitions from the E_{3} level at $18624.8 \mathrm{~cm}^{-1}$ became apparent while transitions from the E_{5} through to E_{11} levels were still scarcely visible. By 40 K , all the additional transitions had appeared clearly and increased further in intensity as the temperature was gradually raised to 55 K . The fluorescence spectrum for the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions at 55 K is shown in Figure 5.5. A further E level at $18671.5 \mathrm{~cm}^{-1}$ was identified from these high temperature transitions. This E_{5} level does not show any transitions to the Z_{1} and Z_{2} levels, but is revealed through its well defined transitions to the Z_{3}, Z_{4} and Z_{10} energy levels.

The $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure 5.4(c)) has two sets of transition pairs having the same $E_{1}-E_{2}$ energy level separation of $6.0 \mathrm{~cm}^{-1}$. Of the five single transitions observed at $13348.5,13330.0,13296.0,13276.0$ and $13231.0 \mathrm{~cm}^{-1}$, only the transition at $13330.0 \mathrm{~cm}^{-1}$ gained intensity as the crystal temperature was raised to 20 K . This transition therefore originates from the E_{2} level and is to the Y_{6} level at $5255.5 \mathrm{~cm}^{-1}$ (Table 5.1). The remaining four transitions from the E_{1} level to the $\mathrm{Y}_{3}, \mathrm{Y}_{7}, \mathrm{Y}_{8}$ and Y_{10} levels at $5231.0,5283.5,5303.5$ and $5348.5 \mathrm{~cm}^{-1}$ respectively (Table 5.1), were all weaker in the 20 K spectrum than in the 10 K spectrum. This is the same behaviour as observed for the $\mathrm{E} \rightarrow \mathrm{Y}$ transitions of the CaF_{2} A centre.

In the $\mathrm{D} \rightarrow \mathrm{Z}$ spectrum (Figure $5.4(\mathrm{~b})$), transitions from the D_{1} and D_{3} levels to the Z_{1} and Z_{2} levels show the $2.7 \mathrm{~cm}^{-1} Z_{1}-Z_{2}$ energy level separation. The $D \rightarrow Z$ spectrum is closely similar to that for the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions except for the additional feature centred at $15330.5 \mathrm{~cm}^{-1}$ whose analogue is very weak in the $E \rightarrow Z$ spectrum. As observed for the $\mathrm{CaF}_{2} A$ centre, the fluorescence from the D multiplet was strong for direct $Z \rightarrow D$ excitation and weak for $Z \rightarrow E$ excitation. The D_{\downarrow} level has transitions clearly distinguishable to most of the Z levels while

Figure 5.4: $\quad 10 \mathrm{~K}$ fluorescence spectra for the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18585.7 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15642.3 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18585.7 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate upper and lower multiplet crystal-field level identifications. The laser position is identified by "L".

Figure 5.5: $\quad 55 \mathrm{~K}$ fluorescence spectrum of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions for the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18585.7 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate upper and lower multiplet crystal-field level identifications. The laser position is identified by "L".

Table 5.1: Energy levels (in cm^{-1}) of the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}, \mathrm{E}$ and F multiplets of the $\mathrm{SrF}_{2} \mathrm{~A}$ centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$ unless otherwise indicated.

Level	$\mathrm{Z}\left(\mathrm{F}_{\mathbf{8}}\right)$	$\mathbf{Y}\left(\mathrm{F}_{7}\right)$	D ${ }^{5} \mathrm{~F}_{5}$)	$E\left({ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}\right)$	$\left.\mathrm{F}^{5} \mathrm{~F}_{3}\right)$
1	$0 \pm 0.2\left(\gamma_{1}\right)$	$5220.5\left(\gamma_{5}\right)$	15593.0(γ_{5})	$18579.5\left(\gamma_{3}\right)$	20735.5 $\left(\gamma_{2}\right)$
2	$2.7 \pm 0.2\left(\gamma_{2}\right)$	-	-	18585.7(γ_{1})	20756.5(γ_{s})
3	$52.5\left(\gamma_{5}\right)$	5231.0(γ_{3})	15599.0(γ_{2})	$18624.8\left(\gamma_{s}\right)$	-
4	$75.5\left(\gamma_{3}\right)$	$5241.5\left(\gamma_{s}\right)$	15642.3(γ_{1})	-	-
5	$89.0\left(\gamma_{5}\right)$	-	15727.8(γ_{5})	18671.5(γ_{3})	-
6	-	$5255.5\left(\gamma_{1}\right)$	$15735.1\left(\gamma_{2}\right)$	$18718.7\left(\gamma_{s}\right)$	
7	$255.5\left(\gamma_{1}\right)$	5283.5 γ_{5})	-	18729.0(γ_{1})	
8	$265.5\left(\gamma_{2}\right)$	$5303.5\left(\gamma_{3}\right)$	$15764.1\left(\gamma_{5}\right)$	$18771.0\left(\gamma_{2}\right)$	
9	$377.0\left(\gamma_{3}\right)$	-		-	
10	$393.0\left(\gamma_{5}\right)$	$5348.5\left(\gamma_{s}\right)$		$18817.5\left(\gamma_{5}\right)$	
11	403.0(γ_{1})	-		$18833.7\left(\gamma_{1}\right)$	
12	$430.0\left(\gamma_{4}\right)$				
13	$443.0\left(\gamma_{5}\right)$				

the D_{3} level does not have any transitions to the Z_{4}, Z_{9} and Z_{11} levels. Transitions to the $Z_{1}, Z_{3}, Z_{5}, Z_{10}$ and Z_{13} levels all show the $D_{1}-D_{3}$ energy level separation of $6.0 \mathrm{~cm}^{-1}$. In CaF_{2} the energy of the lowest D multiplet level was inferred to be lower than the lowest directly observed level through observation of transition pairs with a constant energy separation of $4.5 \mathrm{~cm}^{-1}$, but no such pairing was observed here for SrF_{2}. All the observed transitions have been found to originate from just the two levels at 15593.0 and $15599.0 \mathrm{~cm}^{-1}$. The level at $15593.0 \mathrm{~cm}^{-1}$ is therefore the lowest energy level D_{1} of the D multiplet.

The energy levels derived are presented in Table 5.1.

5.1.2 Polarisation study of the SrF_{2} A centre

Polarisation ratios were measured for both $\langle 100\rangle$ and $\langle 111\rangle$ oriented crystals. Results obtained for $E \rightarrow Z$ and $E \rightarrow Y$ transitions with $Z_{1} \rightarrow E_{2}$ excitation (Figure 5.6) and for $\mathrm{D} \rightarrow \mathrm{Z}$ transitions with $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ excitation are presented in Table 5.2. Only the $<100>$ orientation results will be discussed here as the same conclusions can be reached from the results from either orientation.

In both the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ spectra (Figure 5.6 (a) and (b)), the transition pairs are polarised with a $0: 1$ ratio. This is consistent with a γ_{5} irrep label assignment for the Z_{3}, Z_{5}, Z_{10} and Z_{13} levels at $52.5,89.0,393.0$ and $443.0 \mathrm{~cm}^{-1}$ respectively, as well as for the Y_{1} and Y_{4} levels at 5220.5 and $5241.5 \mathrm{~cm}^{-1}$ respectively. The single transitions at $18504.0,18202.5$ and $18182.5 \mathrm{~cm}^{-1}$ were all measured to be π polarised and are therefore assigned to be $\gamma_{\mathrm{a}}+\gamma_{\mathrm{a}}$ type transitions. The $\mathrm{E} \rightarrow \mathrm{Y}$ transitions at $13348.5,13330.0$ and $13276.0 \mathrm{~cm}^{-1}$ were also π polarised, while the two transitions at 13296.0 and 13231.0 were σ polarised. These last two transitions identify the Y_{7} and Y_{10} levels as γ_{5} type levels. Using the same arguments as applied in the analysis for the $\mathrm{CaF}_{2} \mathrm{~A}$ centre, the E_{1} and E_{2} levels have γ_{3} and γ_{1} symmetry irrep labels respectively. The Y_{6} level is also of γ_{1} symmetry while the Y_{3} and Y_{8} levels have γ_{3} symmetry labels. Similarly the Z_{4} and Z_{9} levels are both γ_{3} type levels and the Z_{11} level is of γ_{1} symmetry.

The $D_{1} \rightarrow Z_{1}$ and $D_{1} \rightarrow Z_{2}$ transitions at 15593.0 and $15590.3 \mathrm{~cm}^{-1}$
(a)

(b)

σ

(c)

Figure 5.6: σ

Polarisation of the 10 K selective excitation and fluorescence spectra of the A centre in $\mathrm{Sr}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18585.7 \mathrm{~cm}^{-1}$;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18585.7 \mathrm{~cm}^{-1}$;
(c) $Z \rightarrow E$ transitions, monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition at $18585.7 \mathrm{~cm}^{-1}$.
Transition labels are as in Figures 5.2(b) and 5.4.

Table 5.2: Observed and predicted intensity ratios for the polarised fluorescence transitions of the A centre in $<100\rangle$ and $<111\rangle$ oriented $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18585.7 \mathrm{~cm}^{-1}$.

Transition	Wavenumber $(\pm 0.5) \mathrm{cm}^{-1}$	Polarisation Ratios (${ }^{\text {a }}$ \%)			
		<100>	ntation	< $111>$ orientation [$y^{\prime} y^{\prime} / y^{\prime} x^{\prime}$]	
		[yy : yx]			
		Observed	Expected	Observed	Expected

$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{3}$	18533.0	1	: 7.8	$0: 1$	3.0/5	$3 / 5$
$\mathrm{E}_{2}+\mathrm{Z}_{5}$	18497.0	1	: 10.7	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{10}$	18192.5	1	: 12.7	0:1	3.5/5	$3 / 5$
$\mathrm{E}_{2}+\mathrm{Z}_{11}$	18182.5	11.3	: 1	1:0	2.2	3.0
$\mathrm{E}_{2}+\mathrm{Z}_{13}$	18142.5	1	: 10.7	$0: 1$	3.5/5	$3 / 5$
$\mathrm{E}_{1}+\mathrm{Z}_{3}$	18527.0	1	: 7.4	0:1	4.0/5	$3 / 5$
$\mathrm{E}_{1}+\mathrm{Z}_{4}$	18504.0	9.5	: 1	1:0	2.5	3.0
$\mathrm{E}_{1}+\mathrm{Z}_{5}$	18490.5	1	: 10.1	0:1	4.0/5	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{9}$	18202.5	9.3	: 1	1:0	-	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{10}$	18187.0	1	: 12.7	0:1	4.0/5	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{13}$	18136.0		: 10.7	0:1	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{1}$	13365.0	1	: 10.8	$0: 1$	4.0/5	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{4}$	13344.0	1	: 8.3	$0: 1$	4.0/5	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$	13330.0	18.5	: 1	1:0	2.7	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13359.0	1	: 9.7	0:1	3.5/s	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{3}$	13348.5	19.7	: 1	1:0	2.7	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{4}$	13338.0	1	: 12.7	0:1	3.5/5	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{7}$	13296.0	1	: 11.1	0:1	4.0/5	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{8}$	13276.0	11.3	: 1	1:0	2.2	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{10}$	13231.0	1	: 8.1	0:1	4.0/5	$3 / 5$
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1}$	15599.0	8.2	: 1	1:0	2.1	3.0
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{2}$	15596.3	9.7	: 1	1:0	2.3	3.0
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{3}$	15546.5	1	: 7.4	0:1	3.5/5	$3 / 5$
$\mathrm{D}_{3}+\mathrm{Z}_{5}$	15511.0	1	: 8.0	0:1	2.5/5	$3 / 5$

Cont...

Table 5.2 cont....

Transition	$\begin{aligned} & \text { Wavenumber } \\ & (\pm 0.5) \mathrm{cm}^{-1} \end{aligned}$	Polarisation Ratios $(\pm 5 \%)$ $<100>$ orientation $<111>$ orientation [yy:yx] $\left[y^{\prime} y^{\prime} / y^{\prime} x^{\prime}\right]$ Observed Expected Observed Expected				
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{8}$	15334.0	8.8	: 1	1:0	2.0	3.0
$\mathrm{D}_{3}+\mathrm{Z}_{13}$	15156.0	1	: 6.5	0:1	$4.0 / 5$	$3 / 5$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{1}$	15593.0	1	: 8.0	0:1	$3.5 / 5$	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{2}$	15590.3	1	: 8.5	0:1	3.0/5	$3 / \mathrm{s}$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$	15539.5	9.2	: 1	1:0	2.4	3.0
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{4}$	15518.0	1	: 7.5	0:1	$3.5 / 5$	$3 / 5$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{5}$	15504.5	6.8	: 1	1:0	2.0	3.0
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{7}$	15337.5	1	: 7.0	0:1	4.0/5	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{8}$	15327.5	1	: 6.9	0:1	$4.0 / \mathrm{s}$	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{9}$	15213.0	1	: 6.8	0:1	4.0/5	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{10}$	15200.0	7.2	: 1	1:0	2.3	3.0
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{11}$	15189.0	1	: 6.6	0:1	$3.5 / 5$	$3 / 5$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{12}$	15163.0	1	: 6.0	0:1	4.0/5	$3 / 5$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{13}$	15150.0	6.2	: 1	1:0	2.0	3.0

respectively, were both σ polarised while the $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1}$ and $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{2}$ transitions at 15599.0 and $15596.3 \mathrm{~cm}^{-1}$ respectively, were found to be π polarised. Given that the Z_{1} and Z_{2} levels are γ_{1} and γ_{2} type levels respectively, the D_{1} level is of γ_{5} symmetry while the D_{3} level is of $\gamma_{a^{\prime}}$ symmetry. As the $D_{3} \rightarrow Z_{1}$ transition is weak compared to the $D_{3} \rightarrow Z_{2}$ transition, the D_{3} level is assigned to be of γ_{2} symmetry. The $D_{3} \rightarrow Z_{1}$ transition is then only allowed through the hyperfine mixing of the Ho^{3+} electronic wavefunctions of the Z_{1} and Z_{2} levels, hence its weak intensity. Transitions from the D_{1} level to the γ_{s} type Z levels are all π polarised while transitions to the $\mathrm{Z}_{4}, \mathrm{Z}_{9}, \mathrm{Z}_{11}$ and Z_{12} levels are all σ polarised. The broader feature centred at $15330.5 \mathrm{~cm}^{-1}$ was resolved in the polarisation spectra to three transitions at $15334.0,15327.5$ and $15337.5 \mathrm{~cm}^{-1}$. The first two transitions correspond to the $D_{3} \rightarrow Z_{8}$ and $D_{1} \rightarrow Z_{8}$ transitions respectively, while the $15337.5 \mathrm{~cm}^{-1}$ line is the $D_{1} \rightarrow Z_{7}$ transition. Of these, the $D_{1} \rightarrow Z_{7}$ and $D_{1} \rightarrow Z_{8}$ transitions were both σ polarised, consistent with being $\gamma_{S} \rightarrow \gamma_{\mathrm{a}^{\prime}}$ type transitions, while the $D_{3} \rightarrow Z_{8}$ transition was π polarised ($\gamma_{a} \rightarrow \gamma_{a}$ type transition) identifying the Z_{8} level at $265.5 \mathrm{~cm}^{-1}$ as a γ_{2} type level. The previously undetected Z_{7} level at $255.5 \mathrm{~cm}^{-1}$ is therefore of γ_{1} symmetry.

From the polarised excitation spectra, the $\gamma_{\mathrm{a}^{\prime}}+\gamma_{s}$ transitions in both the E (Figure $5.6(\mathrm{c})$) and D multiplets were found to be σ polarised with monitoring of the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition at $18585.7 \mathrm{~cm}^{-1}$ or the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$ transition at $15539.5 \mathrm{~cm}^{-1}$ respectively. The γ_{a}. transitions could then be assigned as either γ_{1} or γ_{2} in an analogous way to that done for the $\mathrm{CaF}_{2} \mathrm{~A}$ centre. The transition at $18768.0 \mathrm{~cm}^{-1}$ was relatively weak at 2 K compared to 10 K , consistent with its being a $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{8}$ transition rather than a $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{8}$ transition. The E_{8} level is therefore of γ_{2} symmetry, with the strong $\gamma_{2} \rightarrow \gamma_{2}$ and weak $\gamma_{1} \rightarrow \gamma_{2}$ transitions. As the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition is much stronger than the $Z_{2} \rightarrow D_{4}$ transition in the 10 K excitation spectrum (Figure $5.3(\mathrm{~b})$), the D_{4} level is assigned as a γ_{1} type level.

All these polarisation results for both $<100>$ (Figure 5.6) and <111> oriented crystals (Table 5.2) support an exact $\mathrm{C}_{4 \mathrm{v}}$ symmetry assignment for this

Figure 5.7: Energy level diagram for the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for transitions as measured at 10 K
centre. The centre has therefore been labelled the $\mathrm{SrF}_{2} \mathrm{~A}$ centre in analogy to the $\mathrm{CaF}_{2} \mathrm{~A}$ centre. An energy level diagram showing all the observed fluorescence transitions and their polarisation for the $<100\rangle$ orientation is presented in Figure 5.7. Energy levels for the Z, Y, D, E and F multiplets, as presented in Table 5.1, were used for the crystal-field calculations reported in Chapter 7.

5.1.3 Spectroscopy of the $\mathrm{SrF}_{2} \mathrm{~B}$ centre

The B centre is so labelled because of the similarities of the fluorescence spectra of this centre with those of the earlier discussed $\mathrm{CaF}_{2} \mathrm{~B}$ centre. Because the fluorescence was comparatively weak, being only 2% of the A centre fluorescence, the spectroscopic results presented in Figure 5.8 were measured in SrF_{2} crystals with a Ho^{3+} concentration of 0.05% rather than the 0.01% used in the spectroscopic measurements for the other four centres. Well discriminated selective excitation spectra could not be obtained and higher energy levels for this centre could only be identified through comparison of fluorescence spectra. Transitions for this centre are so labelled in the broadband excitation spectra presented in Figures 5.2 and 5.3.

From the $E \rightarrow Z$ spectrum (Figure $5.8(a)$), the $E_{1}-E_{2}-E_{3}$ energy level separations are apparent in transitions to the Z_{2} and Z_{3} levels. The separations were measured to be 2.4 and $1.6 \mathrm{~cm}^{-1}$ respectively, about $0.5 \mathrm{~cm}^{-1}$ larger than those found for the $\mathrm{CaF}_{2} \mathrm{~B}$ centre. For excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18564.0 \mathrm{~cm}^{-1}$, the fluorescence spectra obtained are closely similar to those for the $\mathrm{CaF}_{2} \mathrm{~B}$ centre (Figure 4.9). The Z_{2} level at $26.5 \mathrm{~cm}^{-1}$ is almost exactly the same energy as for the Z_{2} level in CaF_{2} but the Z_{3} level at $52.5 \mathrm{~cm}^{-1}$ is lower than the corresponding level at $65.0 \mathrm{~cm}^{-1}$ in CaF_{2}. In general, all B centre energy levels are appreciably lower in SrF_{2} (Table 5.3) than in CaF_{2} (Table 4.3) crystals.

The $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure 5.8(c)) has transitions occurring in groups of either three or two. There are seven groups of three transitions with the characteristic $E_{1}-E_{2}-E_{3}$ energy level separations of 2.5 and $1.5 \mathrm{~cm}^{-1}$

Figure 5.8: $\quad 10 \mathrm{~K}$ fluorescence spectra for the B centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.05 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1}+\mathrm{E}_{2}$ transition at $18564.0 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D}+\mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{3}$ transition at $15615.5 \mathrm{~cm}^{-1}$;
(c) $E \rightarrow Y$ transitions, for excitation of the $Z_{1} \rightarrow E_{2}$ transition at $18564.0 \mathrm{~cm}^{-1}$.
Transitions identified by * are for a different centre.

Table 5.3: Energy levels (in cm^{-1}) of the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}$ and E multiplets of the $\mathrm{SrF}_{2} \mathrm{~B}$ centre and their symmetries, as derived from the 10 K to 55 K spectra of $\mathrm{SrF}_{2}: \mathrm{HH}^{37}(0.05 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\left.7{ }^{(51} \mathrm{I}_{8}\right)$	$\mathbf{Y}\left(\mathrm{S}_{7}\right)$	D $\left(^{5} \mathrm{~F}_{5}\right.$)	$\mathrm{E}\left(\mathrm{S}_{2}{ }^{5}{ }^{5} \mathrm{~F}_{4}\right)$
1	$0\left(\gamma_{3}\right)$	5183.0(γ_{3})	15595.5 γ_{2})	18561.6(γ_{1})
2	$26.5\left(\gamma_{3}\right)$	$5189.0\left(\gamma_{2}\right)$	15601.5 $\left(\gamma_{3}\right)$	18564.0(γ_{3})
3	$52.5\left(\gamma_{1}\right)$	$5193.5\left(\gamma_{3}\right)$	15615.5(\%2)	$18565.6\left(\gamma_{3}\right)$
4	$70.0\left(\gamma_{2}\right)$	$5200.5\left(\gamma_{1}\right)$	-	-
5	$148.0\left(\gamma_{3}\right)$	$5208.5\left(\gamma_{1}\right)$	-	$18666.7\left(\gamma_{1}\right)$
6	-	$5214.0\left(\gamma_{2}\right)$	$15630.5\left(\gamma_{1}\right)$	-
7	$163.0\left(\gamma_{3}\right)$	5219.5 $\left(\gamma_{3}\right)$	-	-
8	$184.0\left(\gamma_{1}\right)$	$5226.0\left(\gamma_{3}\right)$		$18736.5\left(\gamma_{3}\right)$
9	-315.0(γ_{3})	$5241.0\left(\gamma_{3}\right)$		18767.2(γ_{1})
10	$354.0\left(\gamma_{3}\right)$	$5247.0\left(\gamma_{2}\right)$		
11	$359.5\left(\gamma_{1}\right)$			

respectively, and three groups of two transitions with the $E_{2}-E_{3}$ energy level separation of $1.5 \mathrm{~cm}^{-1}$. Comparison with the closely similar $\mathrm{CaF}_{2} \mathrm{~B}$ centre transitions requires that the E_{1} level be of γ_{1} symmetry and the E_{2} and E_{3} levels be γ_{3} symmetry type levels. The $\mathrm{E} \rightarrow \mathrm{Y}$ transition pairs would then be to the γ_{2} type levels of the Y multiplet.

Again the $\mathrm{D} \rightarrow \mathrm{Z}$ spectrum (Figure $5.8(\mathrm{~b})$) is closely similar to that found for the $\mathrm{CaF}_{2} \mathrm{~B}$ centre both in energy level pattern and in the weakness of the low energy transitions. The four D multiplet levels D_{1}, D_{2}, D_{3} and D_{6} at 15595.5, $15601.5,15615.5$ and $15630.5 \mathrm{~cm}^{-1}$ respectively (Table 5.3) were identified by fluorescence transitions originating from them, but neither the $D_{1} \rightarrow Z_{3}$ nor $D_{3} \rightarrow Z_{3}$ transitions were observed here. The $D_{1}-D_{2}$ energy level separation of $6.0 \mathrm{~cm}^{-1}$ is large compared to the $1.5 \mathrm{~cm}^{-1}$ observed for the CaF_{2} case.

5.1.4 Polarisation study of the $\mathrm{SrF}_{2} \mathrm{~B}$ centre

Polarisation measurements were made for some of the stronger $D \rightarrow Z$ transitions (Table 5.4), for $Z_{1} \rightarrow D_{3}$ excitation. The $Z_{1} \rightarrow D_{3}$ transition was the only one well separated from corresponding transitions of the other four centres, so additional $\mathrm{Z}+\mathrm{D}$ excitation measurements could not be made for comparison. From the polarisation ratios in Table 2.4, the $\mathrm{D}_{1}+\mathrm{Z}_{1}$ and $\mathrm{D}_{1}+\mathrm{Z}_{2}$ transitions are of the form $\gamma_{a} \rightarrow \gamma_{3}$ while the $D_{2} \rightarrow Z_{1}$ and $D_{2} \rightarrow Z_{2}$ transitions are of the $\gamma_{3} \rightarrow \gamma_{3}$ type. The Z_{1} and Z_{2} levels are therefore γ_{3} type levels. Because the $D_{3} \rightarrow Z_{1}$ and $D_{3} \rightarrow Z_{2}$ transitions are also of $\gamma_{a} \rightarrow \gamma_{3}$ type while the $D_{3} \rightarrow Z_{4}$ transition is of $\gamma_{a}+\gamma_{a}$ type, the D_{3} and Z_{4} levels have the same irrep label (either γ_{1} or γ_{2}) and the D_{2} level is of γ_{3} symmetry.

Since the $E_{1} \rightarrow Z_{3}$ transition is observed, but the $D_{1}, D_{3} \rightarrow Z_{3}$ transitions are not, the D_{1} and D_{3} levels are assigned as γ_{2} type levels and the Z_{3} level as a γ_{1} level. The polarisation ratio observed for the $D_{3} \rightarrow Z_{4}$ transition requires that the Z_{4} level be of γ_{2} symmetry as well. The D_{6} level is assigned as a γ_{1} level because the $D_{6} \rightarrow Z_{3}$ transition is observed while the $D_{6} \rightarrow Z_{4}$ transition is not.

Irrep label assignments for the remaining E, Y and Z levels are derived

Table 5.4: Observed and predicted intensity ratios for the polarised $\mathrm{D}+\mathrm{Z}$ fluorescence transitions of the B centre in $<111>$ oriented $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.05 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{3}$ transition at $15615.5 \mathrm{~cm}^{-1}$.

Transition	Wavenumber ($\mathbf{\pm 0 5)}$ $\left(\mathbf{c m}^{-1}\right)$	Polarisation ratios $\left[y^{\prime} y^{\prime} / y^{\prime} \mathbf{x}\right](\pm 10 \%)$ Observed	Expected
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1}$	15615.5	(laser)	$15 / 11$
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{2}$	15590.0	$14.0 / 11$	$15 / 11$
$\mathrm{D}_{3} \rightarrow \mathrm{Z}_{4}$	15545.0	$3.2 / 7$	$3 / 7$
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{1}$	15601.5	1.01	$3 / 7-15 / 11$
$\mathrm{D}_{2} \rightarrow \mathrm{Z}_{2}$	15573.5	1.05	$3 / 7-15 / 11$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{1}$	15595.5	$14.3 / 11$	$15 / 11$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{2}$	15568.5	$14.9 / 11$	$15 / 11$

Figure 5.9: Energy level diagram for the B centre in $\mathrm{Sr}_{2}: \mathrm{Ho}^{3+}(0.05 \%)$ crystals, for transitions as measured at 10 K The bold lines represent a set of three transitions from the $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} levels of the particular Y multiplet level.
from the crystal-field analysis just as done for the $\mathrm{CaF}_{2} \mathrm{~B}$ centre. The polarisation ratios obtained (Table 5.4) are consistent with an exact $\mathrm{C}_{3 v}$ symmetry assignment for this centre.

The energy level scheme showing all the observed transitions is presented in Figure 5.9 and all the levels derived for the Z, Y, D and E multiplets are presented in Table 5.3.

5.2 The SC1, SC2 and SB1 Centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{\mathbf{3 +}}(\mathbf{0 . 0 1 \%})$ Crystals

In addition to transitions of the A and B centres, transitions of three other minor centres were also observed in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals. Intensities of transitions of these centres were found to vary with temperature with those of the SB1 centre being about 30% and those of the SC1 and SC2 centres only 5-10\% of those of the A centre at 2 K . At 10 K all three centre transitions were about 40% of the A centre transition intensities. The model configurations of the SC1, SC 2 and SB 1 centres will be discussed in Section 5.5.

All three centres have some spectral similarity with the SrF_{2} A centre. The $E_{2} \rightarrow Z_{1}$ and $D_{1} \rightarrow Z_{3}$ transitions of each centre were monitored in turn to obtain well discriminated $Z \rightarrow E$ and $Z \rightarrow D$ excitation spectra respectively, for each centre.

5.2.1 Spectroscopy of the SC 1 centre

Transitions to the E_{2} and E_{3} levels of the $\mathrm{SC1}$ centre (Figure 5.10(c)) show a common spacing of $2.5 \mathrm{~cm}^{-1}$ from the $\mathrm{Z}_{1}-\mathrm{Z}_{2}$ energy level separation, about the same as the $2.7 \mathrm{~cm}^{-1}$ observed for the $\mathrm{SrF}_{2} \mathrm{~A}$ centre.

As transition pairs observed in the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectrum (Figure $5.12(a)$) have a common separation of $4.5 \mathrm{~cm}^{-1}$, the E_{1} and E_{2} levels are concluded to be separated by $4.5 \mathrm{~cm}^{-1}$ for this centre, a slightly smaller value compared to the $6.0 \mathrm{~cm}^{-1}$ determined for the A centre. Of the three single transitions observed at $18513.5,18202.5$ and $18178.5 \mathrm{~cm}^{-1}$, only the two transitions at 18513.5 and $18202.5 \mathrm{~cm}^{-1}$ were still present in the 2 K spectrum and are

(b)

WAVENUMBER $/ \mathrm{cm}^{-1}$

Figure 5.10: 10 K broadband and selective excitation spectra for the E multiplets of the SC 1 and SC 2 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) broadband excitation spectrum in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(b) broadband excitation spectrum in $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(c) SC1 centre excitation spectrum, monitoring the $\mathrm{E}_{2}+\mathrm{Z}_{1}$ transition at $18579.9 \mathrm{~cm}^{-1}$;
(d) SC 2 centre excitation spectrum, monitoring the $\mathrm{E}_{2}+\mathrm{Z}_{1}$ transition at $18590.1 \mathrm{~cm}^{-1}$

Figure 5.11: 10 K broadband and selective excitation spectra for the D multiplets of the SC 1 and SC 2 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) broadband excitation spectrum in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(b) broadband excitation spectrum in $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(c) $\mathrm{SC1}$ centre excitation spectrum, monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$ transition at $15548.5 \mathrm{~cm}^{-1}$;
(d) SC 2 centre excitation spectrum, monitoring the $\mathrm{D}_{1}+\mathrm{Z}_{4}$ transition at $15534.5 \mathrm{~cm}^{-1}$.

Figure 5.12: 10 K fluorescence spectra for the SC 1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18579.9 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \mapsto \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \mapsto \mathrm{D}_{4}$ transition at $15630.0 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18579.9 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate upper and lower multiplet crystal-field level identifications. The laser position is identified by "L". Transitions marked * in (c) are for the SB1 centre.

Table 5.5: Energy levels (in cm^{-1}) of the Z, Y, D, E and F multiplets of the SCl centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{Sr}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\mathbf{Z}\left({ }^{5} \mathbf{I}_{8}\right)$	$\mathbf{Y}\left({ }^{5} \mathbf{I}_{7}\right)$	$\mathbf{D}\left({ }^{5} \mathbf{F}_{5}\right)$	$\mathbf{E}\left({ }^{5} \mathbf{S}_{\mathbf{2}}{ }^{5} \mathbf{F}_{4}\right)$	$\mathbf{F}\left({ }^{5} \mathbf{F}_{3}\right)$
1	$0\left(\gamma_{1}\right)$	$5217.0\left(\gamma_{5}\right)$	$15590.0\left(\gamma_{5}\right)$	$18574.5\left(\gamma_{3}\right)$	$18579.9\left(\gamma_{1}\right)$
2	$2.5\left(\gamma_{2}\right)$	-	-	$18626.4\left(\gamma_{5}\right)$	$20736.0\left(\gamma_{2}\right)$
3	$41.5\left(\gamma_{5}\right)$	$5231.5\left(\gamma_{3}\right)$	$15594.5\left(\gamma_{2}\right)$	-	$20750.0\left(\gamma_{5}\right)$
4	$61.0\left(\gamma_{3}\right)$	$5246.0\left(\gamma_{5}\right)$	$15630.0\left(\gamma_{1}\right)$	-	
5	$80.0\left(\gamma_{5}\right)$	-	$15735.4\left(\gamma_{5}\right)$	$18672.0\left(\gamma_{3}\right)$	$18725.5\left(\gamma_{5}\right)$
6	-	$5249.5\left(\gamma_{1}\right)$	$15742.4\left(\gamma_{2}\right)$	$18725.1\left(\gamma_{1}\right)$	-
7	$279.0\left(\gamma_{1}\right)$	-	$18757.2\left(\gamma_{2}\right)$	-	
8	$282.0\left(\gamma_{2}\right)$	$5289.0\left(\gamma_{5}\right)$	$15767.7\left(\gamma_{5}\right)$	$18817.3\left(\gamma_{5}\right)$	$18831.0\left(\gamma_{1}\right)$
9	$372.0\left(\gamma_{3}\right)$	$5302.5\left(\gamma_{3}\right)$			
10	$389.0\left(\gamma_{5}\right)$	-			
11	$401.0\left(\gamma_{1}\right)$	$5345.0\left(\gamma_{5}\right)$			
12	$430.0\left(\gamma_{4}\right)$				
13	$445.5\left(\gamma_{5}\right)$				

assigned as originating from the E_{1} level at $18574.5 \mathrm{~cm}^{-1}$. The remaining transition at $18178.5 \mathrm{~cm}^{-1}$ was only present in the 10 K and higher temperature (to 55 K) spectra and therefore originates from the E_{2} level at $18579.9 \mathrm{~cm}^{-1}$.

The $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure 5.12(c)) comprises two sets of transition pairs with the $4.5 \mathrm{~cm}^{-1} \mathrm{E}_{1}-\mathrm{E}_{2}$ energy level separation and five single transitions. Of the five single transitions only that at $13330.0 \mathrm{~cm}^{-1}$ was not observed in the 2 K spectrum and therefore must originate from the E_{2} level.

From the $D \rightarrow Z$ spectrum (Figure 5.12(b)), transitions to the Z_{1}, Z_{2} and Z_{3} levels occur as pairs with a $4.5 \mathrm{~cm}^{-1}$ energy separation which is assigned as the $D_{1}-D_{3}$ energy level separation. Transitions are observed from the D_{1} level to almost all of the Z levels. Fewer transitions are observed from the D_{3} level with the $D_{3} \rightarrow Z_{1}$ transition having only about 5% of the intensity of the $D_{3} \rightarrow Z_{2}$ transition.

Energy levels derived for the SC1 centre are presented in Table 5.5.

5.2.2 Spectroscopy of the SB1 centre

The SB1 centre (Figures 5.13, 5.14 and 5.15) has the following specific features in common with the SC1 centre just discussed :
(i) an $\mathrm{Z}_{1}-\mathrm{Z}_{2}$ energy level splitting of $2.5 \mathrm{~cm}^{-1}$ is apparent on transitions to both the E_{2} and E_{3} levels;
(ii) four sets of transition pairs occur in the $\mathrm{E} \rightarrow \mathrm{Z}$ spectrum (Figure 5.15(a)) and two sets in the $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure 5.15(c)). The $E_{1}-E_{2}$ energy level separation deduced from the common separation is $5.0 \mathrm{~cm}^{-1}$ which is almost the same as for the SC 1 centre;
(iii) three single transitions occur in the $\mathrm{E} \rightarrow \mathrm{Z}$ spectrum and five in the $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum. Of these, the transitions at 18181.5 and $13328.5 \mathrm{~cm}^{-1}$ are assigned as originating from the E_{2} level;
(iv) the $D_{1}-D_{3}$ energy level separation is $5.0 \mathrm{~cm}^{-1}$. Transitions from the D_{1} level are observed to most of the Z levels and a few are

Figure 5.13: 10 K broadband and selective excitation spectra for the E multiplets of the SB1 and SB2 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.0 \mathrm{I}} \mathrm{F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) broadband excitation spectrum in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(b) broadband excitation spectrum in $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(c) SB1 centre excitation spectrum, monitoring the $\mathrm{E}_{2}+\mathrm{Z}_{1}$ transition at $18575.8 \mathrm{~cm}^{-1}$;
(d) SB2 centre excitation spectrum, monitoring the transition at $18525.4 \mathrm{~cm}^{-1}$.

Figure 5.14: 10 K broadband and selective excitation spectra for the D multiplet of the SB 1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) broadband excitation spectrum in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(b) broadband excitation spectrum in $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(c) SB1 centre excitation spectrum, monitoring the $D_{1} \rightarrow Z_{3}$ transition at $15552.0 \mathrm{~cm}^{-1}$.

Figure 5.15: $\quad 10 \mathrm{~K}$ fluorescence spectra for the SB 1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18575.8 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{4} \rightarrow \mathrm{D}_{4}$ transition at $15624.0 \mathrm{~cm}^{-1}$;
(c) $E \rightarrow Y$ transitions, for excitation of the $Z_{1} \rightarrow E_{2}$ transition at $18575.8 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate upper and lower multiplet crystal-field level identifications. The laser position is identified by "L".

Table 5.6: Energy levels (in cm^{-1}) of the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}, \mathrm{E}$ and F multiplets of the SB 1 centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\mathrm{Z}\left(\mathrm{I}_{8}\right)$	$\mathbf{Y}\left(\mathrm{S}_{7}\right)$	D ${ }^{(5} \mathrm{F}_{5}$)	$E\left({ }^{5} S_{2}{ }^{5} \mathrm{~F}_{4}\right)$	$F\left({ }^{5} \mathrm{~F}_{3}\right)$
1	$0\left(\gamma_{1}\right)$	$5215.5\left(\gamma_{5}\right)$	$15588.0\left(\gamma_{5}\right)$	18571.0(γ_{3})	20737.0(γ_{2})
2	$2.5\left(\gamma_{2}\right)$	-	-	18575.8(γ_{1})	20746.0(γ_{5})
3	37.0(γ_{5})	$5230.5\left(\gamma_{3}\right)$	15593.0(γ_{2})	18625.2(γ_{s})	-
4	$54.0\left(\gamma_{3}\right)$	$5245.5\left(\gamma_{5}\right)$	15624.0(γ_{1})	-	-
5	$76.0\left(\gamma_{5}\right)$	-	15733.6(γ_{s})	$18671.0\left(\gamma_{3}\right)$	-
6	$91.0\left(\gamma_{4}\right)$	$5247.0\left(\gamma_{1}\right)$	15750.5(γ_{2})	$18723.8\left(\gamma_{s}\right)$	
7	291.0($\left(\gamma_{1}\right)$	$5305.0\left(\gamma_{5}\right)$	-	18722.1(γ_{1})	
8	$305.0\left(\gamma_{2}\right)$	$5301.5\left(\gamma_{3}\right)$	$15770.9\left(\gamma_{5}\right)$	18747.8(γ_{2})	
9	$378.0\left(\gamma_{3}\right)$	-		-	
10	383.5(γ_{5})	$5341.5\left(\gamma_{s}\right)$		18815.0(γ_{s})	
11	394.0(γ_{1})	-		18829.1(γ_{1})	
12	$430.0\left(\gamma_{4}\right)$				
13	$445.5\left(\gamma_{5}\right)$				

observed from the D_{3} level (Figure 5.15(b)). The $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1}$ transition is much weaker than the $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{2}$ transition.

Energy levels for the SB1 centre (Table 5.6) are generally lower in energy than those for the SC1 centre (Table 5.5) which are, in turn, lower in energy than those of the SrF_{2} A centre (Table 5.1).

5.2.3 Polarisation studies of the SC1 and SB1 centres

Polarisation results obtained for $Z_{1} \rightarrow E_{2}$ excitation for each centre are summarised in Tables 5.7 and 5.8. Results for the $<100>$ orientation (Figures 5.16 and 5.17 respectively) are summarised as follows :-
(i) transition pairs in both $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ spectra were polarised with a ratio of $0: 1$. These identify the $Z_{3}, Z_{5}, Z_{10}, Z_{13}, Y_{1}$ and Y_{4} levels as γ_{s} type levels;
(ii) single transitions in the $\mathrm{E} \rightarrow \mathrm{Z}$ spectrum were polarised 1:0 and the Z_{4}, Z_{9} and Z_{11} levels derived from these transitions are assigned the same irrep labels as the corresponding energy levels for the $\mathrm{SrF}_{2} \mathrm{~A}$ centre;
(iii) Of the five single transitions in the $\mathrm{E} \rightarrow \mathrm{Y}$ spectra, two are polarised with a ratio of $0: 1$ and are therefore to γ_{s} type levels. The three remaining transitions are of $\gamma_{a} \rightarrow \gamma_{a}$ type giving the Y_{6} level as of γ_{1} symmetry and the Y_{3} and Y_{8} levels as of γ_{3} symmetry;
(iv) as the transitions from the D_{1} level to the Z_{3}, Z_{5}, Z_{10} and Z_{13} levels were π polarised, the D_{1} level is certainly a γ_{s} type level as for the A centre. Transitions from the D_{3} level yield a γ_{a} irrep for this level with γ_{2} being chosen on the basis of the relative intensities of transitions to the Z_{1} and Z_{2} levels;
(v) all excitation transitions (Figures 5.16(c) and 5.17(c)) were well polarised and irrep labels could be assigned along similar lines to that done for the SrF_{2} A centre. For both the SC 1 and SB 1 centres, the γ_{5} type level of the E_{6} and E_{7} energy level pair was

(c)

Figure 5.16: -

Polarisation of the 10 K selective excitation and fluorescence spectra of the SC1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18579.9 \mathrm{~cm}^{-1}$;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18579.9 \mathrm{~cm}^{-1}$;
(c) $Z \rightarrow E$ transitions, monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{1}$ transition at $18579.9 \mathrm{~cm}^{-1}$
Transition labels are as in Figures 5.10(c) and 5.12.

Table 5.7: Observed and predicted intensity ratios for the polarised fluorescence transitions of the SC1 centre in $<100>$ and $<111>$ oriented $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18579.7 \mathrm{~cm}^{-1}$ 。

Transition	Wavenumber $(\pm 0.5) \mathrm{cm}^{-1}$	Polarisation Ratios ($\pm 5 \%$)			
		$\langle 100\rangle$	tion	< $111>$ orientation [$\left.y^{\prime} y^{\prime} / y^{\prime} x^{\prime}\right]$	
		$[y y ; y x]$			
		Observed	Expected	Observed	Expected

Table 5.7 cont...

Transition	Wavenumber$(\pm 0.5) \mathrm{cm}^{-1}$$(\pm 0.5) \mathrm{cm}^{-1}$	Polarisation Ratios ($\pm 5 \%$)			
		$[y y: y x]$		$<111>$ orientation [$y^{\prime} y^{\prime} / y^{\prime} x^{\prime}$]	
				$\left[y^{\prime} y^{\prime} /\right.$	Expected

$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{4}$	15529.0	1	$: 5.5$	$0: 1$	$4.0 / \mathrm{s}$	$3 / 5$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{7}$	15311.0	1	$: 5.0$	$0: 1$	$3.5 / \mathrm{s}$	$3 / \mathrm{s}$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{8}$	15308.0	1	$: 5.2$	$0: 1$	$4.0 / 5$	$3 / \mathrm{s}$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{9}$	15218.0	1	$: 5.0$	$0: 1$	$4.0 / \mathrm{s}$	$3 / \mathrm{s}$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$	15201.5	6.0	$: 1$	$1: 0$	2.0	3.0
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{11}$	15190.0	1	$: 5.5$	$0: 1$	$4.0 / \mathrm{s}$	$3 / \mathrm{s}$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{13}$	15147.0	5.2	$: 1$	$1: 0$	2.1	3.0

(c)

Figure 5.17 Polarisation of the 10 K selective excitation and fluorescence spectra of the SB1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18575.8 \mathrm{~cm}^{-1}$;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18575.8 \mathrm{~cm}^{-1}$;
(c) $\mathrm{Z} \rightarrow \mathrm{E}$ transitions, monitoring the $\mathrm{E}_{2}+\mathrm{Z}_{1}$ transition at $18575.8 \mathrm{~cm}^{-1}$.
Transition labels are as in Figures 5.13(c) and 5.15.

Table 5.8: Observed and predicted intensity ratios for the polarised fluorescence transitions of the SB1 centre in $<100>$ and $<111>$ oriented $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18575.8 \mathrm{~cm}^{-1}$.

Transition	Wavenumber $(\pm 0.5) \mathrm{cm}^{-1}$	Polarisation Ratios $(\pm 5 \%)$ $<100>$ orientation $<111>$ orientation [yy :yx] $\left[y^{\prime} y^{\prime} / y^{\prime} x^{\prime}\right]$ Observed Expected Observed Expected				
$\mathrm{E}_{2}+\mathrm{Z}_{3}$	18538.5	1	: 5.2	0:1	3.5/5	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{5}$	18499.5	1	: 11.4	0:1	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{10}$	18192.5	1	: 8.9	0:1	4.0/5	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{11}$	18181.5	9.9	: 1	1:0	2.7	3.0
$\mathrm{E}_{1}+\mathrm{Z}_{3}$	18534.0	1	: 5.7	0:1	$4.0 / \mathrm{s}$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$	18517.0	10.4	: 1	1:0	2.5	3.0
$\mathrm{E}_{1}+\mathrm{Z}_{5}$	18495.0	1	: 5.5	0:1	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{1}+\mathrm{Z}_{9}$	18193.0	8.0	: 1	1:0	2.4	3.0
$\mathrm{E}_{1}+\mathrm{Z}_{10}$	18187.5	1	: 9.3	0:1	4.0/5	$3 / 5$
$\mathrm{E}_{1}+\mathrm{Z}_{13}$	18125.5	1	: 5.8	0:1	4.0/5	$3 / 5$

$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{1}$	13360.0	1	$: 12.3$	$0: 1$	$3.5 / \mathrm{s}$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{4}$	13330.0	1	$: 6.2$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$	13328.5	14.8	$: 1$	$1: 0$	2.3	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13355.5	1	$: 9.9$	$0: 1$	$4.0 / \mathrm{s}$	$3 / \mathrm{s}$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{3}$	13340.5	16.6	$: 1$	$1: 0$	2.7	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{4}$	13325.5	1	$: 12.5$	$0: 1$	$3.5 / 5$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{7}$	13266.0	1	$: 5.2$	$0: 1$	$4.0 / \mathrm{s}$	$3 / 5$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{8}$	13269.5	8.3	$: 1$	$1: 0$	2.3	3.0
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{10}$	13229.5	1	$: 8.6$	$0: 1$	$3.5 / 5$	$3 / 5$

$\mathrm{D}_{3}+\mathrm{Z}_{1}$	15593.0	5.5	$: 1$	$1: 0$	2.0	3.0
$\mathrm{D}_{3}+\mathrm{Z}_{2}$	15590.5	5.2	$: 1$	$1: 0$	2.2	3.0
$\mathrm{D}_{3}+\mathrm{Z}_{3}$	15556.0	1	$: 5.7$	$0: 1$	$3.5 / 5$	$3 / \mathrm{s}$
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{1}$	15588.0	1	$: 6.0$	$0: 1$	$3.5 / \mathrm{s}$	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{2}$	15585.5	1	$: 6.3$	$0: 1$	$3.0 / \mathrm{s}$	$3 / \mathrm{s}$
$\mathrm{D}_{1}+\mathrm{Z}_{3}$	15552.0	6.8	$: 1$	$1: 0$	2.4	3.0
$\mathrm{D}_{1}+\mathrm{Z}_{4}$	15534.5	1	$: 6.0$	$0: 1$	$4.0 / \mathrm{s}$	$3 / \mathrm{s}$
$\mathrm{D}_{1}+\mathrm{Z}_{5}$	15513.0	1	$: 5.8$	$0: 1$	$3.5 / \mathrm{s}$	$3 / \mathrm{s}$
$\mathrm{D}_{1}+\mathrm{Z}_{6}$	15497.0	1	$: 5.0$	$0: 1$	$4.0 / 5$	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{7}$	15297.0	1	$: 5.4$	$0: 1$	$4.0 / 5$	$3 / 5$

Table 5.8 cont....

Transition	Wavenumber $(\pm 0.5) \mathrm{cm}^{-1}$	Polarisation Ratios $(\pm 5 \%)$$<100>$ orientation[yy:yx]< $111>$ orientationObserved \quad ExpectedObserved $\left.y^{\prime} / y^{\prime} x^{\prime}\right]$Expected				
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{8}$	15283.0	1	: 5.2	0:1	$4.0 / 5$	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{9}$	15210.5	1	: 4.9	0:1	3.5/5	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{10}$	15205.5	6.9	: 1	1:0	2.2	3.0
$\mathrm{D}_{1}+\mathrm{Z}_{11}$	15195.0	1	: 5.0	0:1	$3.0 / 5$	$3 / 5$
$\mathrm{D}_{1}+\mathrm{Z}_{13}$	15144.0	5.9	: 1	1:0	2.1	3.0

higher in energy than the γ_{1} level whereas the opposite is true for these same levels of the SrF_{2} A centre.

Both the SC1 and SB1 centres show polarisation ratios characteristic of exact $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres and have been assigned as such. The possible configuration for these centres is proposed to be analogous to that proposed for the CS1 and CB1 centres and will be discussed in Sections 5.5 and 5.6.

Energy level diagrams for both centres are quite similar to that for the SrF_{2} A centre (Figure 5.7) except for changes in transition energies as listed in Tables 5.7 and 5.8 respectively. Energy levels obtained for the Z, Y, D, E and F multiplets are presented in Tables 5.5 and 5.6 for the SC1 and SB1 centres respectively.

5.2.4 Spectroscopy of the $\operatorname{SC} 2$ centre

Both the excitation and fluorescence spectra for this centre (Figures 5.10(d), 5.11(d) and 5.18) are significantly different from those for the SC1 and SB1 centres, with more transitions being observed for the SC2 centre. The main features of the spectra of this centre are :
(i) a $\mathrm{Z}_{1}-\mathrm{Z}_{2}$ energy level splitting of $2.5 \mathrm{~cm}^{-1}$ was apparent on transitions to low energy levels of both the E and D multiplets (Figures 5.10(d) and 5.11(d)) respectively;
(ii) both the $E_{1} \rightarrow Z_{1}$ and $E_{1} \rightarrow Z_{2}$ transitions were observed for this centre (Figure 5.18(a)). The $\mathrm{E}_{1}-\mathrm{E}_{2}$ energy level separation was measured to be $6.5 \mathrm{~cm}^{-1}$ which is similar to that for the $\mathrm{SrF}_{2} \mathrm{~A}$ centre and slightly larger than that for both the SC1 and SB1 centres;
(iii) level pairs were observed in all cases for levels derived from the γ_{5} type levels of the SC1 and SB1 centres. As observed for the CS2 and CB2 centres, these γ_{s} type level splittings range in magnitude from as small as $2.5 \mathrm{~cm}^{-1}$ for the Y_{1} level to $39.0 \mathrm{~cm}^{-1}$ for the Y_{7}

Figure 5.18: $\quad 10 \mathrm{~K}$ fluorescence spectra for the SC 2 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18590.1 \mathrm{~cm}^{-1}$;
(b) $D \rightarrow Z$ transitions, for excitation of the $Z_{1} \rightarrow D_{4}$ transition at $15650.5 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18590.1 \mathrm{~cm}^{-1}$.

Table 5.9: Energy levels (in cm^{-1}) of the Z, Y, D and E multiplets of the SC 2 centre and their symmetries, as derived from the 2 K to 55 K spectra of $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\mathbf{Z}\left(\mathrm{I}_{\mathbf{I}}\right)$		$D\left({ }^{5} \mathrm{~F}_{5}\right)$	$E\left({ }^{5} S_{2},{ }^{5} \mathrm{~F}_{4}\right)$
1	$0\left(\gamma_{1}\right)$	$5223.5\left(\gamma_{2}\right)$	15593.0(γ_{1})	18583.5(γ_{1})
2	$2.5\left(\gamma_{2}\right)$	$5226.0\left(\gamma_{1}\right)$	$15597.0\left(\gamma_{2}\right)$	18590.1 $\left(\gamma_{1}\right)$
3	$52.5\left(\gamma_{2}\right)$	$5232.0\left(\gamma_{1}\right)$	15604.0(γ_{1})	18627.6(γ_{2})
4	58.0(γ_{1})	$5241.0\left(\gamma_{1}\right)$	$15650.5\left(\gamma_{2}\right)$	18636.0(γ_{1})
5	80.0(γ_{1})	$5246.0\left(\gamma_{2}\right)$	$15730.8\left(\gamma_{1}\right)$	18666.7(γ_{2})
6	89.5(γ_{2})	5260.5 (γ_{1})	$15738.5\left(\gamma_{2}\right)$	18669.6(γ_{1})
7	97.5(γ_{1})	$5251.0\left(\gamma_{1}\right)$	$15765.1\left(\gamma_{2}\right)$	-
8	$250.0\left(\gamma_{1}\right)$	5285.0(γ_{2})		18718.9(γ_{2})
9	$255.0\left(\gamma_{2}\right)$	-		18734.0(γ_{1})
10	-	$5309.5\left(\gamma_{1}\right)$		-
11	-	5314.0(γ_{1})		$18765.8\left(\gamma_{2}\right)$
12	390.0(γ_{1})	$5353.0\left(\gamma_{2}\right)$		18778.7(γ_{2})
13	$396.5\left(\gamma_{2}\right)$			18818.9(γ_{1})
14	409.0(γ_{1})			$18837.8\left(\gamma_{1}\right)$
15	-			
16	439.0(γ_{1})			
17	$445.5\left(\gamma_{2}\right)$			

Figure 5.19: Energy level diagram for the SC 2 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for the $\mathrm{E}+\mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions as measured at 10 K For the particular Z levels not accessed by transitions from the E_{1}, E_{2} levels, transitions from the D_{1} level are shown. The energy levels on the left are those for the SC1 centre. Energy level irreps for the SC2 centre are presented in Table 5.9.
level (Figure 5.19). Splittings for the Z levels range from $5.5 \mathrm{~cm}^{-1}$ for the Z_{3} level to $9.5 \mathrm{~cm}^{-1}$ for the Z_{10} level, while that for the D_{1} level is just $4.0 \mathrm{~cm}^{-1}$;
(iv) two single transitions were observed at 18503.5 and $18181.5 \mathrm{~cm}^{-1}$ in the $\mathrm{E} \rightarrow \mathrm{Z}$ spectrum (Figure 5.18(a)) and three at 13351.5, 13330.0 and $13274.0 \mathrm{~cm}^{-1}$ in the $\mathrm{E} \rightarrow \mathrm{Y}$ spectrum (Figure $5.18(\mathrm{c}$));
(v) transitions corresponding to the $D_{1} \rightarrow Z_{7}$ and $D_{1} \rightarrow Z_{8}$ transitions in the SC1 and SB1 centres were well separated in the unpolarised spectra of the SC 2 centre by $4.5 \mathrm{~cm}^{-1}$ (Figure $5.18(\mathrm{~b})$);
(vi) all excitation transitions were found to be higher in energy than those of corresponding transitions of the $\mathrm{SrF}_{2} \mathrm{~A}, \mathrm{SC1}$ and SB 1 centres.

Observations (i) through to (v) are as found for the CS2 and CB2 centres in the $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ and $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals respectively. For both the CS2 and CB2 centres though, their excitation transitions were lower in energy than for the CaF_{2} A centre whereas, for the SC 2 centre here, the excitation transitions are higher in energy than even those of the $\mathrm{SrF}_{2} \mathrm{~A}$ centre.

Energy levels derived for the SC2 centre are presented in Table 5.9.

5.2.5 Polarisation study of the SC2 centre

Although transitions for this centre were not as well polarised as those for the other centres just discussed, the ratios obtained still show evidence of a parent $\mathrm{C}_{4 v}$ symmetry centre. As for the CS2 and CB2 centres, polarisation ratios were measured for $Z_{1} \rightarrow E_{2}\left(\gamma_{\mathrm{a}}+\gamma_{\mathrm{a}}\right)$ excitation in both $\langle 100\rangle$ and $\langle 111\rangle$ oriented samples (Table 5.10) and for $\mathrm{Z}_{2}+\mathrm{E}_{6}\left(\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{b}}\right)$ excitation in the $<100>$ orientation. Polarisation ratios measured in the $\langle 100\rangle$ orientation (Figure 5.20) are summarised below.
(a) For $Z_{1} \rightarrow E_{2}$ excitation :-
(i) the transition pairs to split γ_{s} levels were σ polarised, except for
three transitions at $18525.5,18486.0$ and $13337.5 \mathrm{~cm}^{-1}$ which were π polarised. It is believed that these differences come from having overlapping levels and transitions as discussed for the CS2 and CB2 centres;
(ii) the single transitions at $18503.5,18181.5,13351.5,13330.0$ and $13274.0 \mathrm{~cm}^{-1}$ were all π polarised. The $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{1}$ transition was partially polarised with a ratio of $1: 2.9$ while the $E_{1} \rightarrow Z_{2}$ transition was completely σ polarised. The difference in polarisation for these two transitions was also observed for the CS2 and CB2 centres;
(iii) transitions from both components of the split D_{1} level were polarised, as for the SC 1 centre, with ratios characteristic of a γ_{5} irrep, for both components;
(iv) with the E vector of the laser along the z axis (laser polarised E_{z}) all transitions that were π polarised with the E vector of the laser along the y axis (laser polarised E_{y}) were now not observed while transitions that were σ polarised with the laser polarised E_{y} were observed for the laser polarised E_{z}, but with polarisation ratios of unity.
(b) For $Z_{2} \rightarrow E_{6}$ excitation, transitions that were π polarised for $Z_{1} \rightarrow E_{2}$ excitation were now found to be σ polarised while transitions that were σ polarised for $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ excitation were now found to be π polarised. The $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{1}$ transition was σ polarised and the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{2}$ transition was π polarised. Component transitions from a given E level to a split γ_{5} level were always of opposite polarisations.

As all these results are as found for the CS2 and CB2 centres, the SC2 centre is proposed to be a $\mathrm{C}_{\mathrm{s}}(\mathrm{b})$ symmetry centre with the exact configuration to be further discussed in Sections 5.5 and 5.6. An energy level diagram showing the SC2 energy levels in relation to the SC1 levels is presented in Figure 5.19. Energy levels derived for the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}$ and E multiplets are given in Table 5.9. These are

(c)

σ

Figure 5.20:
Polarisation of the 10 K selective excitation and fluorescence spectra of the SC2 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) $E \rightarrow Z$ transitions, for excitation of the $Z_{1} \rightarrow E_{2}$ transition at $18590.1 \mathrm{~cm}^{-1}$;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18590.1 \mathrm{~cm}^{-1}$;
(c) $\mathrm{Z} \rightarrow \mathrm{E}$ transitions, monitoring the $\mathrm{E}_{2}+\mathrm{Z}_{1}$ transition at $18590.1 \mathrm{~cm}^{-1}$.
Transition labels are as in Figures 5.10(d) and 5.18.

Table 5.10: Observed intensity ratios for the polarised fluorescence transitions of the SC2 centre in $<100>$ and $<111>$ oriented $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18590.1 \mathrm{~cm}^{-1}$.

Transition	$\begin{aligned} & \text { Wavenumber }(\pm 0.5) \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Observed Po $<100>$ orientation [yy : yx]	R Ratios ($\pm 5 \%$) $<100>$ orientation [$\left.y^{\prime} y^{\prime} / y^{\prime} x^{\prime}\right]$
$\mathrm{E}_{2}+\mathrm{Z}_{3}$	18538.0	$1: 3.5$	0.7
$\mathrm{E}_{2}+\mathrm{Z}_{4}$	18532.5	$1: 2.9$	0.8
$\mathrm{E}_{2} \rightarrow \mathrm{Z}_{14}$	18181.5	7.1: 1	2.1
$\mathrm{E}_{1}+\mathrm{Z}_{1}$	18583.5	$1: 2.9$	0.8
$\mathrm{E}_{1}+\mathrm{Z}_{2}$	18581.0	1 : 6.4	0.8
$\mathrm{E}_{1}+\mathrm{Z}_{3}$	18531.0	1 : 4.4	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$	18525.5	4.3: 1	2.0
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{5}$	18503.5	$6.9: 1$	2.3
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{6}$	18494.0	1 : 4.2	0.8
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{7}$	18486.0	$3.3: 1$	2.2
$\mathrm{E}_{1}+\mathrm{Z}_{12}$	18193.5	$1: 7.0$	0.8
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{13}$	18187.0	$1: 6.4$	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{16}$	18144.5	$1: 6.9$	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{17}$	18138.0	$1: 6.3$	0.7
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{1}$	13366.5	$1: 4.3$	0.6
$\mathrm{E}_{2}+\mathrm{Y}_{2}$	13364.0	$1: 3.7$	0.8
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{4}$	13349.0	$1: 7.2$	0.6
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{5}$	13344.0	1 : 4.1	0.7
$\mathrm{E}_{2}+\mathrm{Y}_{7}$	13339.0	1 : 3.9	0.7
$\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$	13330.0	17.7 : 1	1.8
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13360.0	1 : 4.5	0.6
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{2}$	13357.0	$1: 6.4$	0.5
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{3}$	13351.5	12.3 : 1	1.6
$\mathrm{E}_{1}+\mathrm{Y}_{4}$	13342.5	1 : 4.1	0.6
$\mathrm{E}_{1}+\mathrm{Y}_{5}$	13337.5	2.4 : 1	1.1
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{7}$	13332.5	$1: 8.2$	0.7
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{8}$	13298.5	$1: 10.9$	0.6
$\mathrm{E}_{1}+\mathrm{Y}_{10}$	13274.0	3.9 : 1	1.9
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{11}$	13269.5	$1: 8.5$	0.5
$\mathrm{E}_{1}+\mathrm{Y}_{12}$	13230.5	$1: 6.5$	0.6

labelled in an analogous manner to that done for the CS2 and CB2 centres.

5.3 Upconversion Fluorescence of the $\mathrm{SrF}_{2} \mathbf{A}, \mathrm{~B}, \mathrm{SC1}, \mathrm{SC} 2$ and SB1 Centres

For $\mathrm{Z} \rightarrow \mathrm{E}$ excitation, no upconversion fluorescence was observed for any of the five centres.

For $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ excitation, weak upconversion fluorescence was observed from the E and F multiplets for just the $\mathrm{A}, \mathrm{SC1}$ and SB1 centres. Fluorescence from the E multiplet was 10^{-5} times weaker than that obtained from direct excitation and that from the F multiplet was about ten times weaker than that from the E multiplet. As for the CaF_{2} case, the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence was polarised exactly as found for direct excitation while polarisation ratios for the $\mathrm{F} \rightarrow \mathrm{Z}$ transitions were not measurable because the fluorescence was just too weak. The Z level pattern for each centre was clearly apparent and completely consistent with the Z levels derived from the $D \rightarrow Z$ and $E \rightarrow Z$ transitions. Spectra for the $F \rightarrow Z$ transitions are shown in Figure 5.21 (a), (b) and (c) for the $\mathrm{SrF}_{2} \mathrm{~A}, \mathrm{SC1}$ and SB 1 centres respectively.

For the SC2 and B centres, no upconversion fluorescence was detected, setting an upper limit of 10^{-7} of the intensity of the principal $D_{1} \rightarrow Z_{3}$ and $D_{1} \rightarrow Z_{2}$ transitions respectively, for any such fluorescence.

5.4 Spectra Recorded up to 55 K for the SC1, SC2 and SB1 Centres

For $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ excitation, fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions were recorded for temperatures up to 55 K for the $\mathrm{SC} 1, \mathrm{SC} 2$ and SB1 centres. Some levels whose transitions from the Z_{1} and Z_{2} levels or from the E_{1} and E_{2} levels are absent in the 10 K spectra could be identified from such spectra.

Fluorescence spectra recorded at 55 K for each of the three centres are presented in Figure 5.22. As in the $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ case, all new transitions had appeared by 30 K and increased in intensity as the temperature was raised further
(a)

(b)

Figure 5.21: $\quad 10 \mathrm{~K}$ upconversion fluorescence spectra of the $\mathrm{F}+\mathrm{Z}$ transitions for the A, SC1 and SB1 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for $\mathrm{Z}+\mathrm{D}$ excitation:
(a) SrF_{2} A centre spectrum, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15642.3 \mathrm{~cm}^{-1}$;
(b) SC 1 centre spectrum, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15630.0 \mathrm{~cm}^{-1}$;
(c) SB1 centre spectrum, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15624.0 \mathrm{~cm}^{-1}$.

Figure 5.22: $\quad 55 \mathrm{~K}$ fluorescence spectra of the $\mathrm{E}+\mathrm{Z}$ transitions for the SC1, SC2 and SB 1 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) SC1 centre spectrum, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18579.9 \mathrm{~cm}^{-1}$;
(b) SC2 centre spectrum, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18590.1 \mathrm{~cm}^{-1}$;
(c) SB1 centre spectrum, for excitation of the $Z_{1} \rightarrow E_{2}$ transition at $18575.8 \mathrm{~cm}^{-1}$.
Transition labels are as in Figure 5.5.
to 55 K . Above 55 K there was overlap from fluorescence transitions from other centres, as the respective pump transitions began to overlap.

5.5 Configurations of the SC1, SC2 and SB1 Centres

It was initially rather surprising that the centres SC1 and SB1 had the same symmetry as the SrF_{2} A centre. From the $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ study, it has been established that additional $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres could arise from an on-axis substitution of the host cation by a dopant cation, while a dopant cation located off the $\mathrm{Ho}^{3+}-\mathrm{F}^{-}$axis would reduce the symmetry to give a low symmetry C_{5} centre. The observation that the two centres SC1 and SB1 have the same features as the CS1 and CB1 centres while the SC2 centre is more like the CB2 centre, led to the conclusion that there must be small amounts of Ca^{2+} and Ba^{2+} ions in the host SrF_{2} crystals used here.

Hence, $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals containing 1% of either CaF_{2} of BaF_{2} were grown and studied. Broadband excitation spectra for , the $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals as shown in Figures 5.10 (b) and 5.11 (b), show transitions assigned to the SC1 and SC2 centres become more intense than those assigned to the A and SB1 centres. Transitions from the SC1 and SC2 centres were of comparable intensity to those of the $\mathrm{SrF}_{2} \mathrm{~A}$ centre in the same crystal. Transitions for the SB1 centre were observed to be $30-50 \%$ weaker in the mixed $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystal than in the parent $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystal.

From broadband excitation spectra for $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, Figures 5.13 (b) and $5.14(\mathrm{~b})$, transitions due to the SB 1 centre were found to increase by three to five times over those found in the parent $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, with the SC1 and SC2 centre transitions barely visible and the A centre at least twice as weak as in the parent crystal. A fourth centre labelled SB2 in Figure 5.13 (b), also appeared in this crystal. As the transition at $18571.9 \mathrm{~cm}^{-1}$ for this SB 2 centre was close to the $\mathrm{Z}_{2} \rightarrow \mathrm{E}_{2}$ transition for the SB 1 centre at $18573.0 \mathrm{~cm}^{-1}$, fluorescence transitions for the SB2 centre could not be obtained
well discriminated from those of the SB 1 centre. The $\mathrm{E} \rightarrow \mathrm{Z}$ spectrum for the SB2 centre is quite similar to those for the $\mathrm{SC} 1, \mathrm{SC} 2$ and SB 1 centres. The strong transition at $18525.4 \mathrm{~cm}^{-1}$ in the $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectrum (Figure $5.23(\mathrm{a})$) is clearly from this centre. Monitoring this transition gave a well discriminated excitation spectrum (Figure 5.13(d)) which had just as many transitions as did the SC 2 centre. The $\mathrm{D} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ spectra shown in Figure 5.23 (b) and (c), also show transitions for the SB1 centre as well as those for the SB2 centre. Unfortunately because of the unavoidable overlap with transitions of the SB1 centre, it could not be established whether or not any low symmetry splittings of the $C_{4 v}$ symmetry γ_{5} type levels were present. Nevertheless, this centre is proposed to be the Ba^{2+} analogue of the SC 2 centre. As its energy level scheme could not be established, only transition energies of this centre are listed in Table 5.11.

Two SrF_{2} crystals with Ho^{3+} concentrations of 0.005% and 0.1% respectively, were purchased from Optovac Inc. as reference crystals to verify the source of the Ca^{2+} and Ba^{2+} ions present in the $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals grown here from Optovac stock SrF_{2} off-cuts. The Optovac crystals were also found to have all the $\mathrm{SC} 1, \mathrm{SC} 2, \mathrm{SB} 1$ and SB 2 centres presented above in the same relative intensities as found here. The only difference is that crystals grown here were found to have slightly lower Ho^{3+} concentration than those from Optovac for the same dopant level, most likely due to some segregation of Ho^{3+} ions during growth of those crystals grown here.

By comparison of the relative fluorescence intensities, the Ca^{2+} and Ba^{2+} concentration in the nominally pure SrF_{2} starting material is about 0.2%. The centres SC1, SC2 and SB1 are therefore ascribed to the presence of small amounts of Ca^{2+} and Ba^{2+} ions respectively in the nominally pure starting SrF_{2} material. It could be that the N 1 and N 2 centres in $\mathrm{SrF}_{2}: \mathrm{Er}^{3+}$ are from similar levels of Ca^{2+} and Ba^{2+} ions in the SrF_{2} used for the $\mathrm{SrF}_{2}: \mathrm{Er}^{3+}$ crystals.

The SC1 and SB1 centres are assigned as having a Ca^{2+} and Ba^{2+} ion
(a)

(b)

Figure 5.23: 10 K fluorescence spectra for the SB2 centre in $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for excitation of the transition at $18573.0 \mathrm{~cm}^{-1}$:
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions.

Transitions marked by * are for the SB1 centre.

Table 5.11: Energies $\left(\right.$ in $^{\mathrm{cm}^{-1}}$) of the $\mathrm{Z} \rightarrow \mathrm{E}, \mathrm{E} \rightarrow \mathrm{Z}, \mathrm{D} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ transitions observed for the SB 2 centre in $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals at 10 K . Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

$\mathbf{Z} \rightarrow \mathbf{E}$ transitions	$\mathbf{E} \rightarrow \mathbf{Z}$ transitions	$\mathbf{D} \rightarrow \mathbf{Z}$ transitions	$\mathbf{E} \rightarrow \mathbf{Y}$ transitions
18833.1	18546.0	15618.0	13362.5
18816.6	18538.5	15584.0	13354.0
18791.0	18525.4	15556.0	13340.0
18777.5	18505.5	15456.0	13331.0
18739.8	18189.0	15280.0	13328.0
18720.9	18180.5	15269.0	13323.5
18684.4	18117.0	15162.0	13320.5
18654.9	18112.0	15132.0	13314.5
18650.3			13264.5
18629.3			13257.5
18622.5			13237.5
18573.0			13220.5

respectively, located adjacent to the interstitial F^{-}ion on the $\mathrm{Ho}^{3+}-\mathrm{F}^{-}$axis, giving a $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre with the same configuration as proposed for the CS1 and CB1 centres (Figure 1.4(a)). The SC 2 centre is assigned as having a Ca^{2+} ion located in the same position relative to the Ho^{3+} ion, as was the Ba^{2+} of the CB 2 centre, giving a $\mathrm{C}_{8}(\mathrm{~b})$ symmetry centre (Figure 1.4(b)). By qualitative comparison, it is believed that the SB 2 centre has the same $\mathrm{C}_{s}(\mathrm{~b})$ symmetry configuration.

5.6 Discussion of the Centres

Although $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ has been well studied by EPR, fluorescence and lifetime measurements, relatively little had been reported on $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$. This study therefore gives the first detailed analysis of the five centres present at the $0.01 \% \mathrm{Ho}^{3+}$ concentration level, together with model assignments based on spectral polarisation measurements.

Although the Sr^{2+} ion is intermediate in ionic size to the Ca^{2+} and Ba^{2+} ions, there does not appear to be any special manifestation of these relative sizes in the spectra of the SC1 and SB1 centres. The only noticeable difference is that levels for the SB1 centre have lower energies than for the SC1 centre just as the CB 1 centre also has lower energy levels than the CS1 centre. In both cases these differences follow from the slightly expanded lattice for Ba^{2+} ions present. In all cases the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres having a different interstitial alkaline-earth cation always have slightly lower energies than the parent A centre for both CaF_{2} and SrF_{2} type crystals. The $\mathrm{E}_{1}-\mathrm{E}_{2}$ and $\mathrm{D}_{1}-\mathrm{D}_{3}$ energy level separations are closely similar for the modified $\mathrm{C}_{4 v}$ symmetry centres in the same host. The close similarity in the energy level patterns and irrep label assignments for the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres compared to the parent $\mathrm{C}_{4 \mathrm{v}}(\mathrm{A})$ centre gives confidence in the model assignments made.

The SC 2 centre is different from the CaF_{2} type C_{8} symmetry centres in that its energy levels are higher than those of the parent SrF_{2} A centre. The γ_{s} type level splittings follow the same pattern as for the CS2 and CB2 centre energy
levels in having a combination of the smallest and largest splittings in the Y multiplet and in-between sizes for the Z and D multiplet levels. The C_{5} symmetry centre of each case has the same $E_{1}-E_{2}$ energy level separation as the corresponding parent A centre. The component transitions of some pairs have opposite polarisations, for excitation of the $Z_{1} \rightarrow E_{2}$ transition of the SC 2 centre and it is always the case that the mainly π polarised component of the pair has a polarisation ratio close to unity which may be an indication of a partial overlap of oppositely polarised transitions. This would account for some of the unobserved levels since all transitions are allowed in C_{s} symmetry.

For all the centres, the $Z_{1}-Z_{2}$ energy level splitting does not change much between the A and respective mixed crystal centres. The small difference of up to $0.2 \mathrm{~cm}^{-1}$ in the measured positions of the Z_{2} level in different centres might not be a real effect but merely better resolution for the case of the A centre.

The principal A centre has been shown to have Ho^{3+} ions in sites of $\mathrm{C}_{4 \mathrm{v}}$ symmetry while the $\mathrm{C}_{3 v}$ symmetry B centre is quite weak. This is in contradiction to the EPR measurements which predict a principal Ho^{3+} centre of $\mathrm{C}_{3 \mathrm{v}}$ symmetry in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ [103]. A possible reason for this is that the Z_{1} and Z_{2} levels of the A centre have both been determined to be crystal-field singlets with an energy separation of $2.7 \mathrm{~cm}^{-1}$. This centre therefore would not give rise to any EPR resonances at either X band $(9.5 \mathrm{GHz})$ or K band (35 GHz). EPR measurements at about 75 GHz , as done for $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ [66] would be required to detect the presence of any EPR resonances of this $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre and to measure the corresponding $\mathrm{Z}_{1}-\mathrm{Z}_{2}$ energy level splitting. On the other hand, the trigonal centre, although having much weaker optical transitions, would give rise to EPR resonances at both X and K bands because the ground state is a γ_{3} (doublet) level. Hence the principal centre anomaly can be reasonably accounted for.

The observation of both $\mathrm{C}_{4 v}$ and $\mathrm{C}_{3 v}$ symmetry centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ is not too surprising. Although Er^{3+} ions in SrF_{2} crystals have a purely trigonal centre, Dy^{3+} ion in SrF_{2} on the other side of Ho^{3+} in the rare-earth series has both $\mathrm{C}_{4 \mathrm{v}}$
and $\mathrm{C}_{3 v}$ symmetry centres. It could very well be that the change in symmetry of the principal centre from mainly tetragonal to mainly trigonal symmetry does occur between the Ho^{3+} and Er^{3+} ions.

5.7 Spectroscopy of the D^{-}Centres in $\mathrm{SrF}_{2} \mathbf{2} \mathrm{Ho}^{\mathbf{3 +}}(\mathbf{0} 0.005 \%)$ Crystals

Hydrogenic centres in SrF_{2} crystals have been studied through infrared and EPR spectroscopy for all rare-earths [36]. A hydrogenic centre of $\mathrm{C}_{4 \mathrm{v}}$ symmetry was reported for all rare-earths up to Ho^{3+} in the rare-earth series but was absent for ions from Er^{3+} onwards. Additional rhombic centres were identified for the RE^{3+} ions from La^{3+} to Ho^{3+} while low symmetry centres were found for the remaining six small ionic radii rare-earths from Dy^{3+} onwards.

For optical studies, deuterated rather than hydrogenated crystals were chosen as fluorescence from the deuterated centres is much stronger than that from hydrogenated centres. As for the CaF_{2} case, the crystals were only lightly deuterated with typical deuteration periods of $12-24$ hours. For the parent $\mathrm{F}^{-} \mathrm{A}$ centre, sufficient intensity absorption lines could only be obtained for thick $(30 \mathrm{~mm})$ samples at high Ho^{3+} concentrations of about 0.1%, hence transitions for cluster centres were expected to be present too. The broadband excitation spectrum for $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ after 24 hours deuteration had only a few new weak features at lower energies than those of the F^{-}centres (Figure 5.24).

With SrF_{2} fluorescence already being weaker than for CaF_{2} for the parent A centre, the fluorescence of the new deuterated centres was very weak, being about 1% of the $\mathrm{SrF}_{2} \mathrm{~F}^{-}$A centre intensity. Transitions for the D^{-}analogue of the F^{-}A centre were searched for but not found. Instead four centres with some similarity to the $\mathrm{SrF}_{2} \mathrm{~A}$ centre were identified. These centres have been arbitrarily labelled D1, D2, D3 and D4. Transitions energies for the four centres are listed in Table 5.12.

For the D 2 centre, both the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ fluorescence transitions were measured (Figure 5.25). For the D1, D3 and D4 centres only the $E \rightarrow Z$

Figure 5.24: 10 K broadband excitation spectrum of the E multiplet in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals after 24 hours deuteration.
fluorescence transitions were strong enough to be recorded (Figure 5.26). The Raman line of SrF_{2} at $290.0 \mathrm{~cm}^{-1 \dagger}$ was apparent in all the $10 \mathrm{~K} \mathrm{E} \rightarrow \mathrm{Z}$ fluorescence spectra (Figures 5.25 and 5.26), indicating the relative weakness of the fluorescence.

Spectra for the D1 and D2 centres are similar to those for the D1 and D2 centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}: \mathrm{D}^{-}$. The transition at $18150.0 \mathrm{~cm}^{-1}$ in the $\mathrm{E} \rightarrow \mathrm{Z}$ spectrum for the D1 centre appears to be a vibronic transition, but local mode phonon energies could not be deduced as no other vibronic transitions were found. It is likely that the D1 centre is derived from the $\mathrm{SrF}_{2} \mathrm{~A}$ centre and has the same configuration as the corresponding D 1 centre in deuterated CaF_{2} crystals. The $\mathrm{D} 2, \mathrm{D} 3$ and D4 centres are quite likely to be derived from the $\mathrm{SC} 1, \mathrm{SB} 1$ and SC 2 centres respectively.

[^0]

Figure 5.25: 10 K fluorescence spectra for the D 2 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals after 24 hours deuteration, for excitation of the transition at $18536.3 \mathrm{~cm}^{-1}$:
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions;
(b) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions.

Figure 5.26: $\quad 10 \mathrm{~K}$ fluorescence spectra of the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions for the D1, D3 and D4 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals after 24 hours deuteration :
(a) D1 centre spectrum, for excitation of the transition at $18528.3 \mathrm{~cm}^{-1}$;
(b) D3 centre spectrum, for excitation of the transition at $18531.5 \mathrm{~cm}^{-1}$;
(c) D4 centre spectrum, for excitation of the transition at $18553.5 \mathrm{~cm}^{-1}$.

Table 5.12: Energies (in cm^{-1}) of the transitions observed for the D1, D2, D3 and D4 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, after 24 hours deuteration. Uncertainty is $\pm 1 \mathrm{~cm}^{-1}$.

Transitions	D1	D2	D3	D4
$\mathrm{E} \rightarrow \mathrm{Z}$	18528.3	18536.3	18531.5	18553.5
	18495.0	18522.5	18494.0	18518.0
	18491.0	18512.0	18489.0	18507.0
	18486.0	18503.5	18197.0	18495.0
	18473.0	18499.0	18182.0	18486.0
	18189.0	18493.5	18175.0	18245.0
	18180.0	18490.0	18126.0	18136.0
	18171.0	18260.0		
	18150.0*	18214.5		
	18135.0	18201.0		
	18119.0	18194.5		
		18127.0		
$E \rightarrow Y$		13396.5		
		13385.5		
		13379.5		
		13374.0		
		13332.0		
		13329.5		
		13322.0		
		13310.0		
		13279.0		
		13269.0		
		13205.5		
		13152.0		
		13135.5		

* Vibronic transition

CHAPTER 6

SPECTROSCOPY OF Ho^{3+} IONS IN CsCdBr ${ }_{3}$ CRYSTALS

CsCdBr_{3} is an ideal host for study of dimer centres as these form even at low (0.01%) dopant concentrations. This is in contrast to other host crystals such as CaF_{2} and LiYF_{4}, which require dopant concentrations of several $\%$ to produce appreciable concentrations of cluster centres, because of the randomness of the dopant distribution. More importantly, in CsCdBr_{3} the two ions of a dimer centre have a well defined separation as well as identical crystalline environments.

Interest in this particular host stemmed from a study of $\mathrm{CsCdBr}_{3}: \mathrm{Er}^{3+}(0.7 \%)$ by Cockroft et al. [28, 31]. Of the centres present in this crystal, only the principal dimer centre was studied in any detail [31] and found to exhibit upconversion fluorescence, with such transitions having intensities of up to 30% of the intensity of the strongest $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{3}$ transition, for excitation of the E multiplet. Energy levels of the multiplets of Er^{3+} up to $36000 \mathrm{~cm}^{-1}$ were inferred. In addition, small splittings of typically $0.5 \mathrm{~cm}^{-1}$ were observed on some of the sharper transitions and were attributed to interactions between the two Er^{3+} ions of a dimer centre. In two separate subsequent studies [29,85] the dynamics of the upconversion fluorescence for the various multiplets has been studied through fluorescence lifetime measurements. In the $1 \% \mathrm{Er}^{3+}$ doped crystal studied by Cockroft, Jones and Nguyen [29], eight minor centres were also present, six of which were found to exhibit upconversion.

Other trivalent rare-earth ions in CsCdBr_{3} that have been studied by laser spectroscopy include $\mathrm{Tb}^{3+}[13,72], \mathrm{Nd}^{3+}[10,11,12], \operatorname{Pr}^{3+}[27,41,90,101,102]$, $\mathrm{Ce}^{3+}[14]$ and $\mathrm{Ce}^{3+}-\mathrm{Tm}^{3+}$ pairs [82].

For Tb^{3+}, luminescence ascribed to the principal $\mathrm{Tb}^{3+}-\mathrm{Tb}^{3+}$ dimer centre was measured at both 4.2 K and room temperatures [72] and the cross relaxation mechanism pertaining to the ${ }^{5} \mathrm{D}_{3}$ and ${ }^{5} \mathrm{D}_{4}$ multiplets discussed [13]. The temperature dependence of the relaxation rate was proposed to be due to the
population of the higher energy levels of both the ${ }^{7} \mathrm{~F}_{6}$ and the ${ }^{5} \mathrm{D}_{3}$ multiplets, for temperatures approaching 75 K . Thermal population of the higher lying energy levels would result in better matching of the energy gaps between the various multiplets. The decrease in the relaxation rate for temperatures above 75 K was ascribed to increases in the energy mismatch for the relevant multiplets as the even higher energy levels of the ${ }^{7} \mathrm{~F}_{6}$ and ${ }^{5} \mathrm{D}_{3}$ multiplets become populated.

In $\mathrm{CsCdBr}_{3}: \mathrm{Nd}^{3+}[11,12]$, two centres were identified as having respectively single Nd^{3+} ions and Nd^{3+} ion pairs with upconversion fluorescence observed for the pair centre. Nd^{3+} ions co-doped with one of the monovalent (M^{+}) ions Li^{+}, Na^{+}and Ag^{+}give rise to centres of the form $\mathrm{Cd}^{2+}-\mathrm{Nd}^{3+}-\mathrm{M}^{+}-\mathrm{Cd}^{2+}$, and these were also studied [11]. The transitions for such centres were found to be satellite lines either close to or within the linewidth of the principal $\mathrm{Cd}^{2+}-\mathrm{Nd}^{3+}-\mathrm{V}-\mathrm{Nd}^{3+}-\mathrm{Cd}^{2+}$ dimer centre transitions. However, for some multiplets the fluorescence lifetimes of the $\mathrm{Nd}^{3+}-\mathrm{M}^{+}$centre were much longer than those of the regular $\mathrm{Nd}^{3+}-\mathrm{Nd}^{3+}$ dimer centre, and time resolved studies could be used to distinguish between the centres [11]. Fluorescence lifetime measurements for several multiplets of both centres highlighted the various relaxation channels available. From a further study of the $0.3 \% \mathrm{Nd}^{3+}$ doped crystals [12], the spectroscopy and dynamics for a new centre proposed to be of the form $\mathrm{Cd}^{2+}-\mathrm{Nd}^{3+}-\mathrm{Nd}^{3+}-\mathrm{V}-\mathrm{Cd}^{2+}$ were presented. Though present at a much weaker concentration than the more usual dimer centre, this centre was found to increase in intensity with increasing Nd^{3+} concentration.

In $\mathrm{CsCdBr}_{3}: \mathrm{Pr}^{3+}$, eight centres were identified for Pr^{3+} concentrations of either 0.1% or 0.3% [41]. Two of these centres were found to exhibit significant upconversion fluorescence. The principal dimer centre has also been studied through high resolution laser and Zeeman spectroscopy [27, 101, 102]. Current studies of double doped $\mathrm{CsCdBr}_{3}: \operatorname{Tm}^{3+}(0.5 \%): \operatorname{Pr}^{3+}(0.1 \%)$ [90] show evidence of overlapping between the $\mathrm{Tm}^{3+}-\mathrm{Tm}^{3+}$ and $\mathrm{Tm}^{3+}-\mathrm{Pr}^{3+}$ pair centre transitions.

For the Ce^{3+} ion [14], emission in the $580-650 \mathrm{~nm}$ and $380-435 \mathrm{~nm}$
regions was reported for ultraviolet excitation, for the $\mathrm{Ce}^{3+}-\mathrm{Ce}^{3+}$ dimer, $\mathrm{Ce}^{3+}-\mathrm{Li}^{+}$dimer and single Ce^{3+} ion centres.

Energy transfer mechanisms between heterogeneous rare-earth ion centres have also been studied for the $\mathrm{Ce}^{3+}-\mathrm{Tm}^{3+}$ centre [82] which shows efficient energy transfer from Ce^{3+} to Tm^{3+} for excitation of the $4 \mathrm{f}-5 \mathrm{~d}$ transition of Ce^{3+} at about $27800 \mathrm{~cm}^{-1}$.

Spectroscopic study of crystals doped with two different rare-earths seemed a logical extension. With energy exchange occurring between the two different rare-earth ions of the resulting centre, further insight into the energy transfer mechanisms might be gained. Hence, crystals doubly doped with $0.3 \% \mathrm{Er}^{3+}$ and 1% of one of $\mathrm{Yb}^{3+}, \mathrm{Ce}^{3+}$ or Lu^{3+} were grown and studied. These ions were chosen as they would give rise to different $\mathrm{Er}^{3+}-\mathrm{RE}^{3+}$ centres without complicating the spectra too much as they, themselves, have at most transitions to and from a single excited multiplet in the infrared region of the spectrum.

In all three cases, there were no distinct transitions observed in either the absorption or excitation spectra that could be attributed to an Er^{3+} ion coupled to a $\mathrm{Yb}^{3+}, \mathrm{Ce}^{3+}$ or Lu^{3+} ion nearby. It is quite possible that the transitions from such heterogeneous pairs lie within the linewidth of the homogeneous Er^{3+} dimer pair centre transitions. As the fluorescence from the $\mathrm{Er}^{3+}-\mathrm{Er}^{3+}$ dimer centre was found to be about ten times weaker in the doubly doped crystals compared to the parent Er^{3+} only crystals, this is indirect evidence that the second rare-earth dopant was incorporated in the crystal. However, fluorescence from Yb^{3+} ions was searched for in the $10000 \mathrm{~cm}^{-1}$ region of the expected ${ }^{2} \mathrm{~F}_{5 / 2} \rightarrow{ }^{2} \mathrm{~F}_{7 / 2}$ transitions, with $\mathrm{Z} \rightarrow \mathrm{E}$ excitation of the Er^{3+} ion, without success. As the Er^{3+} fluorescence in this same region for the ${ }^{4} \mathrm{I}_{11 / 2} \rightarrow{ }^{4} \mathrm{I}_{15 / 2}$ transitions is quite strong, it appears that the Yb^{3+} fluorescence could be strongly quenched by the Er^{3+} ions. Another reason could be that energy transfer is relatively inefficient between Er^{3+} and Yb^{3+} because the phonon energies of CsCdBr_{3} of up to $163 \mathrm{~cm}^{-1}$ [96] are too low to bridge the energy gap between the ${ }^{4} \mathrm{I}_{11 / 2}$ energy levels of Er^{3+} and the ${ }^{2} \mathrm{~F}_{5 / 2}$
energy levels of Yb^{3+}. Because of these problems in detecting the $\mathrm{Er}^{3+}-\mathrm{Yb}^{3+}$ dimer centre transitions, attention was directed to characterising Ho^{3+} dimer centre transitions in the single Ho^{3+} doped CsCdBr_{3} crystal host.

Following the study of Ho^{3+} ions in fluorite type crystals, a study of the $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ system seemed appropriate for investigation of Ho^{3+} ion pair interactions and upconversion fluorescence processes. The spectroscopy of Ho^{3+} ions in CsCdBr_{3} had not been done before and would supplement the knowledge of the behaviour of trivalent rare-earth ions in this crystal host. Similarities with the Er^{3+} case were expected, as well as some differences, arising from the spectral and energy irrep label differences between Kramer's and non-Kramer's ions.

Absorption Spectra

Optical absorption spectra, as measured in $15-20 \mathrm{~mm}$ thick crystals of $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$, show strong absorption features for both the $\mathrm{Z} \rightarrow \mathrm{E}$ and $\mathrm{Z} \rightarrow \mathrm{D}$ transitions (Figure 6.1). These strong transitions were classified as belonging to just one centre, the well established dimer centre, which is the major centre in these crystals.

Laser Selective Excitation

Laser excitation spectra measured with monitoring of all fluorescence transitions in the $15000 \mathrm{~cm}^{-1}$ region in CsCdBr_{3} crystals containing 0.3% and 0.1% Ho^{3+} ions had the same features as the absorption spectra. Because there were no observable differences between the spectra measured for 0.3% and $0.1 \% \mathrm{Ho}^{3+}$ concentrations, apart from the slightly narrower transitions observed for the 0.1% crystals, the $0.3 \% \mathrm{Ho}^{3+}$ doped samples were studied in most cases. The relevant broadband excitation spectra for the $\mathrm{Z} \rightarrow \mathrm{E}$ and $\mathrm{Z} \rightarrow \mathrm{D}$ transitions are presented in Figures 6.2, 6.3 and 6.4. By laser selective excitation, transitions for the major dimer centre were distinguished from those of the minor centre, which is arbitrarily labelled the L centre. This L centre (transitions marked by L in Figures 6.3(a) and 6.4(a)) will be discussed in Section 6.2.1.

In CsCdBr_{3} crystals containing $0.01 \% \mathrm{Ho}^{3+}$, transitions belonging to the L

Figure 6.1: $\quad 10 \mathrm{~K}$ absorption spectra in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals :
(a) $\mathrm{Z} \rightarrow \mathrm{E}$ transitions;
(b) $\mathrm{Z} \rightarrow \mathrm{D}$ transitions.

(b)

Figure 6.2: $\quad 10 \mathrm{~K}$ broadband and selective excitation spectra of the E multiplet in $<111>$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals :
(a) broadband excitation spectrum, monitoring all the $\mathrm{D}+\mathrm{Z}$ transitions;
(b) excitation spectrum for the principal dimer centre, monitoring the $\mathrm{P}_{1}^{\prime} \rightarrow \mathrm{C}_{1}$ transition at $17330.0 \mathrm{~cm}^{-1}$.
Transitions are labelled by the appropriate lower and upper multiplet crystal-field level identifications.

Figure 6.3: $\quad 10 \mathrm{~K}$ broadband excitation spectra of the E multiplet in unoriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ and $\mathrm{CsCdBr}_{3}(0.01 \%)$ crystals, monitoring all the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions :
(a) broadband spectrum in unoriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals showing the L centre transitions;
(b) broadband spectrum in unoriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals showing the M centre transitions;
(c) excitation spectrum of the principal dimer centre in unoriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, monitoring the $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{2}$ transition at $20384.5 \mathrm{~cm}^{-1}$.

Figure 6.4: $\quad 10 \mathrm{~K}$ broadband and selective excitation spectra of the D multiplet in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ and $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) broadband excitation spectrum in $<111>$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, monitoring the $\mathrm{D}+\mathrm{Z}$ transitions; (b) broadband excitation spectrum in unoriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, monitoring all the $\mathrm{D} \dashv \mathrm{Z}$ transitions;
(c) excitation spectrum of the principal dimer centre in unoriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, monitoring the $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{2}$ transition at $20384.5 \mathrm{~cm}^{-1}$.
centre, which were clearly present in the $0.1-0.3 \%$ samples, were wholly absent. Transitions assigned to the dimer centre still dominate while several other new transitions are now apparent. These new transitions occur at quite different energies from those of the L centre and are attributed to another centre, arbitrarily labelled the M centre (Figures 6.3(b) and 6.4(b)), to be discussed in Sections 6.2.2 to 6.2.4.

An additional centre found in CsCdBr_{3} crystals doubly doped with Ho^{3+} and Na^{+}ions which has been arbitrarily labelled the N centre, will be discussed in Section 6.2.5.

Because the lowest three levels of the Z multiplet, Z_{1}, Z_{2} and Z_{3}, are quite close in energy for all the centres found here, being separated by just 5.5 and $3.5 \mathrm{~cm}^{-1}$ respectively for the principal dimer centre, both the absorption and excitation spectra recorded at 10 K show transitions originating from all three levels. At 2 K , transitions from the Z_{1} level only were observed. The results presented here are mostly as measured at 10 K since the measurements at 2 K were used just to confirm the lowest energy level and transition assignments for each of the Z, D and E multiplets.

6.1 The Dimer Centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ Crystals

6.1.1 Spectroscopy of the dimer centre

With excitation of the $Z_{1} \rightarrow E_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$, thirty groups of fluorescence transitions were observed in the $11000-30000 \mathrm{~cm}^{-1}$ spectral range accessible with the Spex 1403 double monochromator used here. In some cases, such as for the $\mathrm{D} \rightarrow \mathrm{Z}$ and $\mathrm{F} \rightarrow \mathrm{Y}$ transitions, there was some overlap of transitions between the different multiplet pairs. Analysis of such spectra was aided by comparison with other transitions from different upper multiplets to the same lower multiplet. Energy levels up to the $35522.5 \mathrm{~cm}^{-1}\left(\mathrm{U}_{2}\right)$ level of the ${ }^{3} \mathrm{~F}_{2}$ multiplet were derived. The small splittings apparent on some of the observed transitions will be discussed in Section 6.1.2.

For excitation of the $Z_{1} \rightarrow D_{5}$ transition at $15442.2 \mathrm{~cm}^{-1}$, the same fluorescence spectra as for $Z \rightarrow E$ excitation were obtained, except for the absence of any transitions from the $\mathrm{U}\left({ }^{3} \mathrm{~F}_{2}\right)$ multiplet. This is to be expected as energy transfer between the two ions of a dimer centre, for $\mathrm{Z} \rightarrow \mathrm{D}$ excitation, would not be sufficient to reach the U multiplet energy levels at about $35500 \mathrm{~cm}^{-1}$, which is more than twice the pump energy.

The fluorescence spectra, labelled with transition assignments between the various multiplets, are presented in Figures 6.5 to 6.11 .

Upconversion fluorescence was strong for both $Z \rightarrow E$ and $Z \rightarrow D$ excitation (Table 6.1). In particular, the $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{2}$ transition was found to be 29% of the intensity of the $E_{1} \rightarrow Z_{7}$ transition for $Z_{1} \rightarrow E_{4}$ excitation and 6.7% of the intensity of the $D_{1} \rightarrow Z_{10}$ transition for $Z_{1} \rightarrow D_{5}$ excitation, these being the highest efficiencies measured. Upconversion fluorescence intensities for all the other transitions were found to be less than 2% of either the $E_{1} \rightarrow Z_{7}$ or $D_{1}+Z_{10}$ transition, which is much lower than those found for the $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{2}$ transition. In general, overall relative upconversion efficiencies are found to be higher for $Z \rightarrow E$ than for $\mathbb{Z} \rightarrow \mathbf{D}$ excitation.

The $F_{1} \rightarrow Y_{5}$ transition was about 75% of the intensity of the $D_{1} \rightarrow Z_{10}$ transition for $Z_{1} \rightarrow E_{4}$ excitation but only 0.5% of the same transition for $Z_{1} \rightarrow D_{5}$ excitation. The weak intensity observed for $\mathrm{D} \rightarrow \mathrm{Z}$ excitation (Figure 6.5(a)) is partially accounted for by the lower upconversion efficiency to the F multiplet (29% with $Z \rightarrow E$ excitation and 6.7% with $Z \rightarrow D$ excitation). The intensity ratios of the $F_{1} \rightarrow Z_{2}$ to $F_{1} \rightarrow Y_{5}$ transitions and $E_{1} \rightarrow Z_{7}$ to $E_{1} \rightarrow Y_{1}$ fluorescence transitions are about the same for both excitations.

The two weak transition groups found in the 14000 and $11000 \mathrm{~cm}^{-1}$ regions (Figure 6.12) remain unassigned. These transitions could be from some higher energy multiplets which were not identified in this study. It is not clear though as to what the terminating multiplets could be because the energy separations of the transitions in both groups do not resemble separations between the energy levels

Table 6.1: Relative intensities of peak transitions in the fluorescence spectra of the principal dimer centre in $\langle 11\rangle$ oriented $\mathrm{CsCdBr} 3: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, as measured at 10 K with excitation of the $Z_{1} \rightarrow E_{4}$ and $Z_{1} \rightarrow D_{5}$ transitions respectively. Intensities are relative to the $E_{1} \rightarrow Z_{7}$ and $D_{1} \rightarrow Z_{10}$ transitions, for excitation to the E and D multiplets respectively.

Transition	$\begin{aligned} & \text { Wavenumber }(\pm 0.5) \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Relative Intensities	
		$\mathbf{Z}_{1} \rightarrow \mathbf{E}_{4}$	$Z_{1} \rightarrow D_{5}$
$\mathrm{D}_{1}+\mathrm{Z}_{10}$	15090.5	26.9	1000
$\mathrm{E}_{1}+\mathrm{Z}_{7}$	18137.0	1000	2.83
$\mathrm{F}_{1}+\mathrm{Z}_{2}$	20384.5	290	67.4
$\mathrm{J}_{1} \rightarrow \mathrm{Z}_{5}$	23501.5	2.35	0.110
$\mathrm{M}_{1} \rightarrow \mathrm{Z}_{10}$	27030.5	0.0235	-
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13222.0	950	2.27
$\mathrm{F}_{1}+\mathrm{Y}_{5}$	15207.5	19.6	5.04
$\mathrm{M}_{1} \rightarrow \mathrm{Y}_{1}$	22154.5	8.54	0.0329
$\mathrm{Q}_{1} \rightarrow \mathrm{Y}_{1}$	27751.0	0.129	-
$\mathrm{F}_{1} \rightarrow \mathrm{~A}_{3}$	11765.5	1.24	0.0210
$\mathrm{K}_{1} \rightarrow \mathrm{~A}_{1}$	17002.0	1.33	0.0318
$\mathrm{M}_{2} \rightarrow \mathrm{~A}_{1}$	18656.5	0.538	
$\mathrm{P}_{1} \rightarrow \mathrm{~A}_{1}$	21553.0	2.69	0.0483
$\mathrm{Q}_{2} \rightarrow \mathrm{~A}_{6}$	24166.0	0.172	
$\mathrm{Q}_{2}+\mathrm{B}_{2}$	21676.0	4.24	0.0266
$\mathrm{P}_{1}^{\prime}+\mathrm{C}_{1}$	17330.0	1.31	0.0262
$\mathrm{Q}_{2} \rightarrow \mathrm{C}_{1}$	19632.0	4.42	0.0145
$\mathrm{Q}_{2} \rightarrow \mathrm{D}_{\lambda}$	17540.00	0.956	-
$\mathrm{Q}_{2} \rightarrow \mathrm{E}_{1}$	14530.5	1.12	0.0214
$\mathrm{U}_{1}+\mathrm{E}_{1}$	17181.5	0.789	-

Figure 6.5: $\quad 10 \mathrm{~K}$ fluorescence spectra of transitions to the Z multiplet levels for the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of either the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$ or the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition at $15442.2 \mathrm{~cm}^{-1}$:
(a) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions (for $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ excitation);
(b) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions;
(c) $\mathrm{F} \rightarrow \mathrm{Z}$ transitions;
(d) $J \rightarrow Z$ transitions;
(e) $\mathrm{K} \rightarrow \mathrm{Z}$ transitions, with the overlapping $\mathrm{P}^{\prime} \rightarrow \mathrm{Y}$ transitions as shown;
(f) $\mathrm{M} \rightarrow \mathrm{Z}$ transitions;
(g) $O \rightarrow Z$ transitions;
(h) $\mathrm{P} \rightarrow \mathrm{Z}$ transitions.

Transitions are labelled by the appropriate upper and lower multiplet crystal-field level identifications.

(c)

Figure 6.6: $\quad 10 \mathrm{~K}$ fluorescence spectra of transitions to the Y multiplet levels for the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of either the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ or the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition :
(a) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, with the overlapping $\mathrm{C} \rightarrow \mathrm{Z}$ transitions as shown;
(b) $\mathrm{F} \rightarrow \mathrm{Y}$ transitions, unlabelled transitions are for $\mathrm{D} \rightarrow \mathrm{Z}$ as in Figure 6.5(a);
(c) $\mathrm{M} \rightarrow \mathrm{Y}$ transitions;
(d) $\mathrm{P} \rightarrow \mathrm{Y}$ transitions;
(e) $\mathrm{Q} \rightarrow \mathrm{Y}$ transitions.

of any of the multiplets identified here. The group in the $11600-11000 \mathrm{~cm}^{-1}$ region extends below $11000 \mathrm{~cm}^{-1}$ which is the limit of the spectrometer used here. The spectrum for the group of transitions in the $14100-13300 \mathrm{~cm}^{-1}$ region, as shown in Figure 6.12(a), in general resembles the spectra reported for Sm^{2+} ions in $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and BaF_{2} crystals [130]. It is therefore possible that some of the broader transitions in this region are due to Sm^{2+} ions. A study of $\mathrm{CsCdBr}_{3}: \mathrm{Sm}^{2+}$ crystals would help establish whether or not any of these transitions are due to Sm^{2+} ions, as trace amounts of Sm^{2+} are often present in the starting rare-earth materials for growing crystals.

The energy levels derived for the Ho^{3+} dimer centre are presented in Table 6.2. A total of 86 levels for 18 multiplets have been identified. Most of the multiplets below $35000 \mathrm{~cm}^{-1}$ have been found to be originating multiplets for fluorescence transitions and this is possible because the low phonon energies of up to $163 \mathrm{~cm}^{-1}$ for CsCdBr_{3} [96], compared to $465 \mathrm{~cm}^{-1}$ for CaF_{2} [38] and $360 \mathrm{~cm}^{-1}$ for SrF_{2} [112], result in less non-radiative quenching between close-lying multiplets. As most of the Ho^{3+} multiplets are separated by at least $2000 \mathrm{~cm}^{-1}$, it would require about twenty phonons to bridge such an energy gap during multiphonon assisted decay. Decay processes requiring many phonons are quite improbable. It has been found, for the principal Nd^{3+} dimer centre [11], that only multiplets lying within $1000 \mathrm{~cm}^{-1}$ of each other are appreciably populated by multiphonon relaxation processes.

With an energy gap of $3000 \mathrm{~cm}^{-1}$ between the E and D multiplets of Ho^{3+}, the population of the D multiplet following $Z \rightarrow E$ excitation is not through multiphonon relaxation but by energy transfer between the two ions of a dimer centre. Considering the two equivalent Ho^{3+} ions of a centre, both absorb a $18416.3 \mathrm{~cm}^{-1}$ photon (pump transition) and may relax to the lowest level E_{1} of the E multiplet at $18315.2 \mathrm{~cm}^{-1}$. Energy transfer occurs in such a way that one ion loses some $3000 \mathrm{~cm}^{-1}$ of energy and the other gains about a similar amount. After this transfer, the donor Ho^{3+} ion will be in the excited D multiplet while the

Figure 6.7: $\quad 10 \mathrm{~K}$ fluorescence spectra of transitions to the A multiplet levels for the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of either the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ or the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition :
(a) $\mathrm{F} \rightarrow \mathrm{A}$ transitions;
(b) $\mathrm{H} \rightarrow \mathrm{A}$ transitions;
(c) $\mathrm{J} \rightarrow \mathrm{A}$ transitions, unlabelled transitions are for $\mathrm{D} \dashv \mathrm{Z}$ as in Figure 6.5(a);
(d) $\mathrm{K} \rightarrow \mathrm{A}$ transitions;
(e) $\mathrm{M} \rightarrow \mathrm{A}$ transitions;
(f) $\mathrm{P} \rightarrow \mathrm{A}$ transitions, with the overlapping $\mathrm{H} \rightarrow \mathrm{Z}$ transitions as shown;
(g) $\mathrm{Q} \rightarrow \mathrm{A}$ transitions;
(h) $\mathrm{U} \rightarrow \mathrm{A}$ transitions (for $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ excitation).

(c)

(f)

(h)

Figure 6.8: $\quad 10 \mathrm{~K}$ fluorescence spectra of transitions to the B multiplet levels, for the principal dimer centre in $\mathrm{CsCdBr}_{3} ; \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of either the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ or the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition :
(a) $\mathrm{M}+\mathrm{B}$ transitions;
(b) $\mathrm{P}^{\prime} \rightarrow \mathrm{B}$ transitions;
(c) $\mathrm{Q} \dashv \mathrm{B}$ transitions, with the overlapping $\mathrm{I}+\mathrm{Z}$ transitions as shown.
acceptor Ho^{3+} ion can be in either of the higher energy $\mathrm{H}\left({ }^{3} \mathrm{~K}_{8}\right)$ or $\mathrm{I}\left({ }^{5} \mathrm{G}_{6}\right)$ multiplets. This would account for the fluorescence observed from all three multiplets, D, H and I.

The F multiplet would be populated through multiphonon relaxation from either the H or I multiplets as they are relatively close-lying. There are minimal non-radiative decay processes from the F multiplet to the next E multiplet as this latter multiplet lies about $2000 \mathrm{~cm}^{-1}$ lower in energy than the F multiplet. Because of the weak quenching processes in CsCdBr_{3}, the fluorescence from the F multiplet is expected to be quite strong while that from either the H or the I multiplets is relatively weak, as observed. Further evidence of this particular decay process is in the observation of the same rise time for monitoring both the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$ and the $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{2}$ fluorescence transitions (Chapter 8).

Similar decay channels that explain the observation of fluorescence from higher energy levels than those excited include :

$$
\begin{aligned}
& {[\mathrm{E} ; \mathrm{E}] \longrightarrow[\mathrm{C} ; \mathrm{J}]} \\
& {[\mathrm{E} ; \mathrm{E}] \longrightarrow[\mathrm{B} ; \mathrm{K}]} \\
& {[\mathrm{E} ; \mathrm{E}] \longrightarrow[\mathrm{A} ; \mathrm{O}, \mathrm{M}]} \\
& {[\mathrm{E} ; \mathrm{E}] \longrightarrow\left[\mathrm{Y} ; \mathrm{P}^{\prime}, \mathrm{P}\right]} \\
& {[\mathrm{E} ; \mathrm{E}] \longrightarrow[\mathrm{Z} ; \mathrm{U}]}
\end{aligned}
$$

where the first set of brackets shows the initial state of the two Ho^{3+} ions of the pair and the second set shows the final states of the same two Ho^{3+} ions after the energy transfer. Other non-radiative relaxation processes are also possible.

For the particular $[\mathrm{E} ; \mathrm{E}] \longrightarrow[\mathrm{A} ; \mathrm{O}, \mathrm{M}]$ process above, the actual energy transfer involves the A and O multiplets only in the final state. The M multiplet would be populated by later multiphonon relaxation since there is an energy separation of only about $965 \mathrm{~cm}^{-1}$ between the M and O multiplets. Fluorescence from the O multiplet was found to be much weaker than that from the M multiplet, consistent with substantial non-radiative decay from it to the lower-lying M multiplet. Similarly for the $[\mathrm{E} ; \mathrm{E}] \longrightarrow\left[\mathrm{Y} ; \mathrm{P}^{\prime}, \mathrm{P}\right]$ process, the energy transfer

Figure 6.9: $\quad 10 \mathrm{~K}$ fluorescence spectra of transitions to the C multiplet levels for the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of either the $\mathrm{Z}_{1}+\mathrm{E}_{4}$ or the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition :
(a) $\mathrm{P} \rightarrow \mathrm{C}$ transitions;
(b) $\mathrm{P}^{\prime} \rightarrow \mathrm{C}$ transitions, unlabelled transitions are for $\mathrm{U} \rightarrow \mathrm{E}$ as in Figure 6.11(c);
(c) $\mathrm{Q} \mapsto \mathrm{C}$ transitions.
(a)

Figure 6.10: 10 K fluorescence spectra of transitions to the D multiplet levels, for the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of either the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ or the $\mathrm{Z}_{4} \rightarrow \mathrm{D}_{5}$ transition :
(a) $\mathrm{M} \rightarrow \mathrm{D}$ transitions;
(b) $\mathrm{Q} \dashv \mathrm{D}$ transitions.
(a)

(c)

Figure 6.11: 10 K fluorescence spectra of transitions to the E multiplet levels, for the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of either the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ or the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition :
(a) $\mathrm{P} \rightarrow \mathrm{E}$ transitions;
(b) $\mathrm{Q} \mapsto \mathrm{E}$ transitions;
(c) $\mathrm{U} \rightarrow \mathrm{E}$ transitions (for $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ excitation), unlabelled transitions are for $\mathrm{P}^{\prime} \rightarrow \mathrm{C}$ as in Figure 6.9(b).

Figure 6.12: Unassigned fluorescence transitions observed for excitation of either the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ or the $\mathrm{Z}_{4} \rightarrow \mathrm{D}_{5}$ transition of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals.
involves only the Y and P^{\prime} multiplets. As the P multiplet, being only $800 \mathrm{~cm}^{-1}$ lower in energy than the P^{\prime} multiplet is fed by multiphonon relaxation, the fluorescence from the P^{\prime} multiplet is expected to be weaker than that from the P multiplet, as observed. The $[\mathrm{E} ; \mathrm{E}] \longrightarrow[\mathrm{Z} ; \mathrm{U}]$ process involves the Z and V $\left({ }^{3} \mathrm{G}_{s}\right)$ multiplets initially, followed by a subsequent relaxation to the U multiplet. In this case, fluorescence by transitions originating from the V multiplet was not observed.

Using the same analysis some of the possible relaxation pathways for the alternative $\mathrm{Z} \rightarrow \mathrm{D}$ excitation are :

$$
\begin{aligned}
& {[\mathrm{D} ; \mathrm{D}] \longrightarrow[\mathrm{A} ; \mathrm{I}, \mathrm{H}, \mathrm{~F}]} \\
& {[\mathrm{D} ; \mathrm{D}] \longrightarrow\left[\mathrm{Z} ; \mathrm{P}^{\prime}, \mathrm{P}\right]} \\
& {[\mathrm{D} ; \mathrm{D}] \longrightarrow[\mathrm{Y} ; \mathrm{K}]} \\
& {[\mathrm{D} ; \mathrm{D}] \longrightarrow[\mathrm{B} ; \mathrm{E}]}
\end{aligned}
$$

In identifying possible decay channels, the particular process resulting in the population of the Q multiplet at $\sim 32850 \mathrm{~cm}^{-1}$ appears to be special and more complicated than any of the above. In the first instance, this Q multiplet being at $\sim 32850 \mathrm{~cm}^{-1}$ had not been expected to fluoresce at all with $\mathrm{Z} \rightarrow \mathrm{D}$ excitation, as $30900 \mathrm{~cm}^{-1}$ is the upper limit for upconversion from a simple dimer pair ion interaction. Fluorescence from the Q multiplet to the $\mathrm{Y}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E multiplets was observed for both $Z \rightarrow E$ and $Z \rightarrow D$ excitations. There appears to be no direct way of populating the Q multiplet from excitation of just two Ho^{3+} ions especially with the single frequency laser excitation carried out here. From energy considerations, one requires at least an ion in an E multiplet level to interact with another in a D multiplet level, as upconversion in this case would result in the donor ion relaxing to the ground multiplet while the acceptor ion is excited to either the R or the S multiplets at about $33600 \mathrm{~cm}^{-1}$. Multiphonon relaxation could then lead to the population of the Q multiplet just $800 \mathrm{~cm}^{-1}$ lower in energy than the R multiplet. Although there is no direct way for the $[\mathrm{E} ; \mathrm{E}] \longrightarrow[\mathrm{D} ; \mathrm{E}]$ or the $[\mathrm{D} ; \mathrm{D}] \longrightarrow[\mathrm{D} ; \mathrm{E}]$ decay processes to occur, the

Table 6.2: Energy levels (in cm^{-1}) for 18 multiplets of the principal dimer centre and their symmetries, as derived from the 2 K and 10 K spectra of $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\mathrm{Z}\left({ }^{5} \mathrm{I}_{8}\right)$	Y(SH_{7})	A(${ }^{(1)}{ }_{6}$)	$\mathrm{B}^{(} \mathrm{I}_{5}$)	$C\left({ }^{5} \mathrm{~L}_{4}\right)$	D ${ }^{(5} \mathrm{F}_{5}$)	$\mathrm{E}\left({ }^{5} \mathrm{~S}_{2}{ }^{5} \mathrm{~F}_{4}\right)$
1	$0.0\left(\gamma_{3}\right)$	5092.8(γ_{3})	8595.5 γ_{1})	11164.0(γ_{2})	$13215.5\left(\gamma_{3}\right)$	$15307.5\left(\gamma_{3}\right)$	18315.2(γ_{3})
2	$5.5\left(\gamma_{2}\right)$	5095.0(γ_{1})	8606.0(γ_{3})	$11171.5\left(\gamma_{3}\right)$	$13221.0\left(\gamma_{2}\right)$	15314.5(γ_{2})	18340.5(γ_{1})
3	$9.0\left(\gamma_{3}\right)$	$5166.0\left(\gamma_{3}\right)$	8624.5(γ_{2})	$11191.5\left(\gamma_{3}\right)$	-	$15341.5\left(\gamma_{3}\right)$	18342.5(γ_{3})
4	$26.0\left(\gamma_{1}\right)$	$5174.0\left(\gamma_{2}\right)$	8641.0(γ_{1})	$11221.5\left(\gamma_{3}\right)$	-	$15411.5\left(\gamma_{1}\right)$	18416.3(γ_{3})
5	$155.0\left(\gamma_{3}\right)$	$5182.5\left(\gamma_{2}\right)$	$8670.5\left(\gamma_{3}\right)$	$11227.5\left(\gamma_{2}\right)$	$13338.0\left(\gamma_{1}\right)$	15442.2(γ_{s})	18434.9(γ_{3})
6	$162.0\left(\gamma_{3}\right)$	$5187.0\left(\gamma_{3}\right)$	8681.5 $\left(\gamma_{3}\right)$	$11248.5\left(\gamma_{3}\right)$	$13369.5\left(\gamma_{3}\right)$	$15471.0\left(\gamma_{3}\right)$	18439.2(γ_{1})
7	$178.0\left(\gamma_{3}\right)$	$5195.5\left(\gamma_{3}\right)$	8708.0(γ_{2})			$15483.0\left(\gamma_{2}\right)$	18443.1(γ_{2})
8	188.5(γ_{1})	$5215.0\left(\gamma_{2}\right)$	8735.5(γ_{3})				$18448.2\left(\gamma_{1}\right)$
9	$190.5\left(\gamma_{1}\right)$	$5236.5\left(\gamma_{3}\right)$	8768.5 (γ_{1})				18457.2(γ_{3})
10	$217.0\left(\gamma_{2}\right)$	$5285.5\left(\gamma_{1}\right)$					
11	$237.0\left(\gamma_{3}\right)$						Cont

Table 6.2 (p.2) cont....

Level	$F\left({ }^{5} \mathrm{~F}_{3}\right)$	$\mathrm{H}\left({ }^{(} \mathrm{K}_{8}\right)$	$1\left({ }^{5} \mathrm{G}_{6}\right)$	J(5GG5)	K $\left({ }^{(} \mathrm{G}_{4}\right)$	$\mathbf{M}\left({ }^{3} \mathrm{H}_{5}\right)$	$\mathrm{O}\left({ }^{5} \mathrm{G}_{3}\right)$
1	20390.0(γ_{2})	$21076.5\left(\gamma_{3}\right)$	$21727.5\left(\gamma_{3}\right)$	$23656.5\left(\gamma_{3}\right)$	$25597.0\left(\gamma_{3}\right)$	27247.5(γ_{3})	$28214.0\left(\gamma_{3}\right)$
2	20435.0(\%/3)	21079.5(γ_{1})	$21738.0\left(\gamma_{2}\right)$	$23675.5\left(\gamma_{2}\right)$	-	$27251.5\left(\gamma_{1}\right)$	
3		$21083.5\left(\gamma_{3}\right)$		23684.0(γ_{3})	$25626.5\left(\gamma_{3}\right)$		
4		-			-		
5		-			$25637.5\left(\gamma_{3}\right)$		
6		$21096.5\left(\gamma_{3}\right)$					

Table 6.2 (p.3) cont....

Level	$\mathbf{P}\left({ }^{3} \mathbf{K}_{\mathbf{6}}\right)$	$\mathbf{P}^{\prime}\left(\mathbf{3}_{\mathbf{2}}\right)$	$\mathbf{Q}\left({ }^{3} \mathbf{D}_{\mathbf{3}}\right)$	$\mathbf{U}\left(\mathbf{F}_{\mathbf{2}}\right)$
1	$29748.5\left(\gamma_{1}\right)$	$30546.0\left(\gamma_{1}\right)$	$32844.0\left(\gamma_{2}\right)$	$35499.0\left(\gamma_{3}\right)$
2	$29758.0\left(\gamma_{3}\right)$	$30564.5\left(\gamma_{3}\right)$	$32847.5\left(\gamma_{3}\right)$	$35522.5\left(\gamma_{1}\right)$
3	$29769.0\left(\gamma_{3}\right)$		$32866.0\left(\gamma_{1}\right)$	
4	$29786.0\left(\gamma_{2}\right)$		$32894.0\left(\gamma_{3}\right)$	
5	$29806.5\left(\gamma_{2}\right)$			

$[\mathrm{D} ; \mathrm{E}] \longrightarrow[\mathrm{Z} ; \mathrm{Q}]$ process seems to be the only reasonable one that can account for the observed fluorescence from the Q multiplet. One possibility is that two sets of pairs of Ho^{3+} ions are involved in getting the two Ho^{3+} ions in a dimer from either of the two excited states (E or D) to the $[\mathrm{D} ; \mathrm{E}]$ stage required to account for emission from the Q multiplet. Two laser excitation experiments and concentration dependence studies would help verify whether or not such complex double ion pair processes do occur. Another possibility is that since the fluorescence lifetime of the F multiplet is about half the fluorescence lifetimes of the E and D multiplets (Chapter 8), the acceptor ion in the F multiplet (from the $[\mathrm{E} ; \mathrm{E}] \longrightarrow[\mathrm{D} ; \mathrm{F}]$ scheme above) could decay to the ground state and be re-excited to the E multiplet whilst the donor ion is still in the D multiplet, giving a hetero-excited pair. In this way the ions in the E and D multiplets are from the same pair but in different excited states and co-operative upconversion would give either ion the required energy to reach the Q multiplet. This is possible since the lifetimes of fluorescence transitions from both the D and E multiplets are comparatively long and quite similar. This upconversion process would be independent of which of the two multiplets E or D is being excited provided the lifetime of the fluorescence from the intermediate B multiplet (for the $[D ; D] \longrightarrow[B ; E]$ scheme) is relatively shorter than that for the E multiplet. These two possibilities will be further discussed in Section 6.3.

6.1.2 Splittings on some sharp transitions of the $\mathbf{H o}^{\mathbf{3 +}}$ dimer centre

Two different kinds of splittings were observed in the $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ spectra. These have been classified as either low symmetry crystal-field splittings or pair splittings depending on whether they are greater or less than $0.5 \mathrm{~cm}^{-1}$ respectively, and will be discussed in turn :

(a) Low symmetry splittings

Ho^{3+} ions in centres of $\mathrm{C}_{3 \mathrm{v}}$ symmetry have energy levels necessarily transforming as one of the irreps γ_{1}, γ_{2} or γ_{3} of the $\mathrm{C}_{3 v}$ group, with the γ_{1} and γ_{2} irreps being of single dimension while the γ_{3} irrep is of double dimension. Any
change in the crystal field around the Ho^{3+} ion from exact $\mathrm{C}_{3 \mathrm{v}}$ symmetry would split the γ_{3} (doublet) levels, thereby removing the degeneracy. Splittings resulting from such lifting of the γ_{3} type level degeneracy have been termed low symmetry crystal-field splittings and have been used to identify the parent $\mathrm{C}_{3 \mathrm{v}}$ symmetry γ_{3} type levels for the Ho^{3+} dimer centre.

As can be seen from the spectra in Figures 6.13 to 6.16, the observed splittings range in magnitude from $1.2 \mathrm{~cm}^{-1}$ to $2.5 \mathrm{~cm}^{-1}$. Specific cases will now be discussed in turn :

(i) Transitions between the E and Z multiplet levels

From the $\mathrm{Z} \rightarrow \mathrm{E}$ excitation spectra (Figure 6.13), splittings of $2.5 \mathrm{~cm}^{-1}$, $1.6 \mathrm{~cm}^{-1}$ and $1.9 \mathrm{~cm}^{-1}$ can be seen on the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{1}, \mathrm{Z}_{1} \rightarrow \mathrm{E}_{5}$ and $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{9}$ transition lines respectively (Figure 6.13 (b) and (e)). In each case, one component of the split transition is purely σ polarised while the other is nearly π polarised. For the E_{1} and E_{5} energy levels, the σ polarised component is the higher energy member of the pair while for the E_{9} energy level, the σ polarised component is of lower energy than the π component.

As the $Z_{1} \rightarrow E_{3}$ and $Z_{1} \rightarrow E_{4}$ transitions are broad, they cannot be expected to show any resolvable splittings. With the spectral resolution limit being set at $0.5 \mathrm{~cm}^{-1}$ by the linewidth of the laser, splittings of less than $1 \mathrm{~cm}^{-1}$ could not be observed in the excitation spectra. The fact that transitions to the E_{3} and E_{4} levels are broad could be taken as an indication of the presence of incipient splittings approaching $1 \mathrm{~cm}^{-1}$.

In the fluorescence spectra (Figure 6.14), transitions from the E_{1} level to the $Z_{1}, Z_{3}, Z_{4}, Z_{5}, Z_{7}, Z_{8}, Z_{9}$ and Z_{11} levels all show a common splitting measured to be $2.5 \mathrm{~cm}^{-1}$ while the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{6}$ transition (Figure 6.14(c)) has a smaller splitting of $1.3 \mathrm{~cm}^{-1}$. The $E_{1} \rightarrow Z_{2}$ and $E_{1} \rightarrow Z_{10}$ transitions (Figure 6.14 (a) and (e)) do not show any splittings at all, with the two transitions being purely σ polarised.

Of the nine $E_{1} \rightarrow Z$ transitions showing splittings, the lower energy components of the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}, \mathrm{E}_{1} \rightarrow \mathrm{Z}_{8}$ and $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{9}$ transitions (Figure 6.14 (b) and

Figure 6.13
Polarisation of the 10 K selective excitation spectrum of the $\mathrm{Z} \rightarrow \mathrm{E}$ transitions of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, monitoring the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{7}$ transition at $18137.0 \mathrm{~cm}^{-1}$. Transitions to the $\mathrm{E}_{1}, \mathrm{E}_{5}$ and E_{9} energy levels show splittings of $2.5,1.6$ and $1.9 \mathrm{~cm}^{-1}$ respectively.
$-\pi$ polarisation $-\cdots-\sigma$ polarisation
(d)) are purely σ polarised while the higher energy components are mainly π polarised. The remaining five transitions showing the $2.5 \mathrm{~cm}^{-1}$ low symmetry splitting have the higher energy component purely σ polarised and the lower mainly π polarised. The $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{6}$ transition has both components stronger in σ polarisation than in π.

From the $C_{3 v}$ group selection rules, the number of levels of γ_{1}, γ_{2} or γ_{3} type irrep labels expected for each multiplet are as set out in Table 2.1(b). For the Z multiplet there are three levels of γ_{1} type symmetry, two of γ_{2} and six of γ_{3} type symmetry.

Based on the above analysis of the behaviour of the splittings on the $E_{1} \rightarrow Z$ transitions under polarisation, the Z_{2} and Z_{10} energy levels are assigned as γ_{2} type levels because they are the only two with the common characteristics of no splittings in transitions from the E_{1} level and in having purely σ polarised transitions from the E_{1} level. The Z_{4}, Z_{8} and Z_{9} levels are all assigned as γ_{1} type levels because the split components are polarised identically in their transitions from the E_{1} level. The remaining six levels $Z_{1}, Z_{3}, Z_{5}, Z_{6}, Z_{7}$ and Z_{11} are assigned to be of γ_{3} symmetry. Since the splitting of $2.5 \mathrm{~cm}^{-1}$ is common to five of the six levels, the E_{1} level is assigned as being a γ_{3} type level with a low symmetry crystal-field splitting of $2.5 \mathrm{~cm}^{-1}$. The assignment of a γ_{3} type label to the Z_{1} level follows from the total number of levels (nine for the E multiplet and seven for the D multiplet) observed in the excitation spectra.

Although the γ_{3} symmetry levels of the Z multiplet are also expected to show splittings, such splittings appear to be less than the E_{1} splitting and not resolvable. The reduced overall splitting observed for the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{6}$ transition is an indication of two possible sets of overlapping splittings.

In the same way as for the E_{1} level, the E_{3}, E_{4}, E_{5} and E_{9} levels are also assigned as γ_{3} symmetry levels as transitions from the Z_{1} level to these E multiplet levels either show a splitting or are broad. The $Z_{1} \rightarrow E_{7}$ transition is not split at all and is purely σ polarised and hence the E_{7} level at $18443.1 \mathrm{~cm}^{-1}$ is assigned as

Figure 6.14: \quad Polarisation behaviour of the two components of each split $\mathrm{E}_{1} \rightarrow \mathrm{Z}$ and $\mathrm{D}_{3} \rightarrow \mathrm{Z}$ transition in the 10 K fluorescence spectra of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals.
(a) $E_{1}+Z_{1,2,3}$
(c) $E_{1}+Z_{5,6}$
(e) $E_{1} \rightarrow Z_{10,11}$
(b) $\mathrm{E}_{1}+\mathrm{Z}_{4}$
(d) $\mathrm{E}_{1}+\mathrm{Z}_{7,8,9}$
(f) $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1,2,3}$
$-----\sigma$ polarisation
Transitions identified by * are for the L centre.
of γ_{2} symmetry, consistent with the criteria for the similar assignment for the Z_{2} and Z_{10} levels. As the $Z_{1} \rightarrow E_{2}, Z_{1} \rightarrow E_{6}$ and $Z_{1} \rightarrow E_{8}$ transitions do not show any splittings and are principally π polarised, the $\mathrm{E}_{2}, \mathrm{E}_{6}$ and E_{8} levels are all assigned the γ_{1} irrep label.

(ii) Transitions between the D and Z multiplet levels

As can be seen from the $\mathrm{Z} \rightarrow \mathrm{D}$ excitation spectra in Figure 6.15, the only observable splitting is for the $Z_{1}+D_{3}$ and the $Z_{3} \rightarrow D_{3}$ transitions. This was measured to be $1.9 \mathrm{~cm}^{-1}$ for both transitions. Transitions to the $\mathrm{D}_{1}, \mathrm{D}_{5}$ and D_{6} levels are all fairly broad and incipient splittings approaching $1 \mathrm{~cm}^{-1}$ cannot be ruled out.

As the D_{2} and D_{7} levels at $15314.5 \mathrm{~cm}^{-1}$ and $15483.0 \mathrm{~cm}^{-1}$ respectively, have transitions from the Z_{1} and Z_{3} levels that are not split and are σ polarised, and have transitions from the Z_{2} level that are π polarised, the D_{2} and D_{7} levels are assigned as γ_{2} irrep levels, the same as for the Z_{2} and Z_{10} levels. The D_{1}, D_{3}, D_{5} and D_{6} levels are all γ_{3} type levels. The $Z_{1} \rightarrow D_{4}$ transition at $15411.5 \mathrm{~cm}^{-1}$ is very weak and the D_{4} level is assigned as being the only γ_{1} type level of the D multiplet.

All the $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence transitions show no other splittings, apart from the aforementioned $1.9 \mathrm{~cm}^{-1}$ apparent on the $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{1}$ and $\mathrm{D}_{3} \rightarrow \mathrm{Z}_{3}$ transitions (Figure 6.14(f)). The observed polarisation ratios for all the $D_{1} \rightarrow Z$ transitions (Table 6.3) are in agreement with the irrep label assignments made from the polarisation of the $E_{1} \rightarrow Z$ fluorescence transitions, except for the two levels Z_{2} and Z_{10}. The $E_{1} \rightarrow Z_{2}$ and $E_{1} \rightarrow Z_{10}$ transitions were found to be purely σ polarised while the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{2}$ and $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$ transitions were mainly π polarised. Since the D_{1} level is definitely a γ_{3} type level because transitions to all Z levels are observed, the transitions to the Z_{2} and Z_{10} levels were expected to be mainly σ polarised in accordance with the $\mathrm{C}_{3 v}$ selection rules, and not π. This anomalous polarisation observed for the $D_{1} \rightarrow Z_{2}$ and the $D_{1} \rightarrow Z_{10}$ transitions cannot be accounted for.

Figure 6.15: Polarisation of the 10 K selective excitation spectrum of the $\mathrm{Z} \rightarrow \mathrm{D}$ transitions of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$ transition at $15090.5 \mathrm{~cm}^{-1}$. Transitions to the D_{3} level show a splitting of $1.9 \mathrm{~cm}^{-1}$. π polarisation
$\ldots-\sigma$ polarisation.
Transitions identified by * are for the L centre.

(iii) Transitions from the E_{1}, F_{1} and M_{1} levels to the Y multiplet levels

The $E_{1} \rightarrow Y_{1}$ and $E_{1} \rightarrow Y_{2}$ transitions are quite close giving a $Y_{1}-Y_{2}$ energy level separation of $2.2 \mathrm{~cm}^{-1}$ while the Y_{1} level is itself split by $1.2 \mathrm{~cm}^{-1}$. The spectrum for the $E_{1} \rightarrow Y_{1}, Y_{2}$ transitions (Figure 6.16(a)) is therefore rendered complicated by the superposition of the $2.5 \mathrm{~cm}^{-1}$ splitting of the E_{1} level, the $1.2 \mathrm{~cm}^{-1}$ splitting in the Y_{1} level and the close proximity of the Y_{1} and Y_{2} levels. Additional pair splittings, as discussed later in Section 6.1.2(b), are also present. The $E_{1} \rightarrow Y_{6}$ and $E_{1} \rightarrow Y_{7}$ transitions clearly show the $2.5 \mathrm{~cm}^{-1}$ splitting associated with the E_{1} level. The $E_{1} \rightarrow Y_{7}$ transition has an additional splitting of $1.1 \mathrm{~cm}^{-1}$ which is ascribed to a splitting of the Y_{7} level itself. Because the $E_{1} \rightarrow Y_{6}$ transition is quite broad any up to $1 \mathrm{~cm}^{-1}$ splitting could have been masked. The $\mathrm{E}_{2} \rightarrow \mathrm{Y}_{7}$ transition shows the $1.1 \mathrm{~cm}^{-1}$ splitting assigned to the Y_{7} level without any accompanying E_{1} level splitting of $2.5 \mathrm{~cm}^{-1}$ which further supports the conclusion that the E_{1} and Y_{7} levels are split by 2.5 and $1.1 \mathrm{~cm}^{-1}$ respectively. The $\mathrm{E}_{2} \rightarrow \mathrm{Y}_{6}$ transition is broad and does not show any noticeable splittings.

From the $F_{1} \rightarrow Y_{1}$ spectrum in Figure $6.16(b)$, the $1.2 \mathrm{~cm}^{-1}$ splitting of the Y_{1} level is apparent as well as the pair splittings for both the F_{1} and Y_{1} levels to be discussed in Section 6.1.2(b). Since the $F_{1} \rightarrow Y_{2}$ transition is absent, the F_{1} and Y_{2} levels must have different irrep labels (γ_{1} or γ_{2}) resulting in a forbidden $\gamma_{1} \mapsto \gamma_{2}$ type transition.

The $M_{1} \rightarrow Y_{1}, Y_{2}$ and $M_{2} \rightarrow Y_{1}, Y_{2}$ transitions as shown in Figure 6.16(c) all have separations in accordance with the $Y_{1}-Y_{2}$ energy level separation of $2.2 \mathrm{~cm}^{-1}$. Although the $\mathrm{M}_{1} \rightarrow \mathrm{Y}_{1}, \mathrm{Y}_{2}$ and $\mathrm{M}_{2} \rightarrow \mathrm{Y}_{1}, \mathrm{Y}_{2}$ transitions are fairly broad, the Y_{1} splitting of $1.2 \mathrm{~cm}^{-1}$ is still apparent but any splittings attributable to the M_{1} and M_{2} levels were not observed. As the $M_{2} \rightarrow Y_{2}$ transition is purely π polarised, the M_{2} and Y_{2} levels have the same irrep label.

(iv) Weak fluorescence transitions

Low symmetry splittings were not observed for any of the $\mathrm{J} \rightarrow \mathrm{Z}, \mathrm{Q} \rightarrow \mathrm{B}$ or $\mathrm{Q} \rightarrow \mathrm{C}$ transitions. Most of these transitions are broad, with linewidths of

Figure 6.16:
Polarisation of the 10 K fluorescence transitions from the $\mathrm{E}_{1}, \mathrm{~F}_{1}, \mathrm{M}_{1}$ and M_{2} levels to the Y_{1} and Y_{2} levels of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$. The energy level diagrams on the right show transitions between components of the upper and lower multiplet levels, corresponding to the spectra on the left.
(a) $\mathrm{E}_{1}+\mathrm{Y}_{1,2}$
(b) $\mathrm{F}_{1}+\mathrm{Y}_{1,2}$, transitions marked * are $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{2}$ and $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$ as in Figure 6.15(a)
(c) $\mathrm{M}_{1,2}+\mathrm{Y}_{1,2}$

- π polarisation $\quad-\cdots--\sigma$ polarisation
$1-5 \mathrm{~cm}^{-1}$, and any splittings could be easily masked. The remaining transitions were too weak for any splittings to be detected. Any upconversion fluorescence transitions whose intensities were less than 0.2% of the main $E_{1} \rightarrow Z_{7}$ or $D_{1} \rightarrow Z_{10}$ transition for $Z_{1} \rightarrow E_{4}$ and $Z_{1} \rightarrow D_{5}$ excitation respectively, were not examined in detail for evidence of low symmetry splittings.

(b) Pair splittings

In addition to the low symmetry splittings discussed in (a) above, a further set of smaller splittings in the range $0.20-0.44 \mathrm{~cm}^{-1}$ was observed on several of the sharper transitions. Only the most intense and sharpest transitions were searched for such splittings as spectrometer slit widths of just $10 \mu \mathrm{~m}$ for the entrance and exit slits of the spectrometer were required to achieve better than $0.2 \mathrm{~cm}^{-1}$ resolution.

These so-called pair splittings were measured for the $E_{1} \rightarrow Z_{1}, Z_{2}$ transitions (Figure $6.17(\mathrm{a})$) as $0.30 \mathrm{~cm}^{-1}$ while the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{2}$ transition does not show any splitting. The $\mathrm{E}_{3} \rightarrow \mathrm{Z}_{1}, \mathrm{Z}_{3}$ transitions (Figure $6.17(\mathrm{~b})$) show quite similar splittings measured to be $0.20 \mathrm{~cm}^{-1}$. These splittings are assigned to the upper E_{1} and E_{3} levels respectively, since splittings in the Z levels should be common to both the $E_{1} \rightarrow Z_{1}, Z_{3}$ and $E_{3} \rightarrow Z_{1}, Z_{3}$ as well as $D \rightarrow Z$ transitions. Both the $F_{1} \rightarrow Z_{1}$ and $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{3}$ transitions were found to have a splitting of $0.24 \mathrm{~cm}^{-1}$ (Figure 6.17 (c)). Likewise, the $E_{1} \rightarrow Y_{1}$ and $F_{1} \rightarrow Y_{1}$ transitions show a common pair splitting of $0.44 \mathrm{~cm}^{-1}$ (Figure 6.16 (a) and (b)) which is additional to the 0.30 and $0.24 \mathrm{~cm}^{-1}$ attributed to the E_{1} and F_{1} levels respectively. The pair splitting for the Y_{1} level is therefore inferred as $0.44 \mathrm{~cm}^{-1}$.

For each transition showing a pair splitting, both components have the same polarisation, either π or σ. These pair splittings are attributed to the coupling between the two Ho^{3+} ions of a dimer centre. Similar splittings have been reported for Er^{3+} ions in the same crystal host [31].

6.1.3 Polarisation of the fluorescence transitions

All irrep label assignments have been based on polarisation measurements.

Figure 6.17: $\quad 10 \mathrm{~K}$ fluorescence spectra of the transitions from the $\mathrm{E}_{1}, \mathrm{E}_{3}$ and F_{1} levels to the Z_{1}, Z_{2} and Z_{3} levels of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$. Transitions to the Z_{1} and Z_{3} levels show additional small splittings :
(a) $\mathrm{E}_{1}+\mathrm{Z}_{1,2,3}$;
(b) $\mathrm{E}_{3} \rightarrow \mathrm{Z}_{1,2,3} ;$
(c) $\mathrm{F}_{1}+\mathrm{Z}_{1,2,3}$.

For purposes of the following discussion the polarisation results have been grouped according to the particular terminating multiplet. Although the results are presented for transitions from the lowest level of the upper multiplet in each case, the same arguments were applied to assign irrep labels for the higher energy levels of a given multiplet.

(i) Transitions from the D_{1}, E_{1}, F_{1} and J_{1} levels to the Z multiplet levels

Polarisation results for the $D_{1} \rightarrow Z$ and $E_{1} \rightarrow Z$ transitions have already been discussed in detail in Section 6.1.2(a) above, so attention here will be directed to the $\mathrm{F}_{1} \rightarrow \mathrm{Z}$ and $\mathrm{J}_{1} \rightarrow \mathrm{Z}$ transitions.

The $F_{1} \rightarrow Z_{2}$ transition was almost wholly π polarised with a polarisation ratio of $22: 1$ (Table 6.3). This is an indication of a $\gamma_{\mathrm{a}} \rightarrow \gamma_{\mathrm{a}}(\mathrm{a}=1$ or 2) type transition and, since the Z_{2} level has already been assigned as of γ_{2} symmetry, the F_{1} level is assigned to be the same. This assignment is supported by there being no transitions from the F_{1} level to the γ_{1} type levels $\mathrm{Z}_{1}, \mathrm{Z}_{8}$ and Z_{9}. Although the $F_{1} \rightarrow Z_{2}$ transition has the highest upconversion intensity of all measured transitions, all the other $\mathrm{F}_{1} \rightarrow \mathrm{Z}$ transitions were quite weak making their polarisation character uncertain. The $\mathrm{F}_{1}+\mathrm{Z}_{10}$ transition was slightly σ polarised when it should have been π polarised. The assignment of the F_{1} level as a γ_{2} type level has been made on the stringent criteria of a completely polarised $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{2}$ transition and the total number of $F_{1} \rightarrow Z$ transitions observed.

Since all the Z levels have been identified through transitions from the J_{1} level, this J_{1} level can only be a γ_{3} type level. The polarisation results for all transitions except the $J_{1} \rightarrow Z_{2}$ and $J_{1} \rightarrow Z_{10}$ transitions are fully consistent with this assignment. The $\mathrm{J}_{1} \rightarrow \mathrm{Z}_{2}$ and $\mathrm{J}_{1} \rightarrow \mathrm{Z}_{10}$ transitions, although weak, were stronger in π polarisation with ratios of $1.2: 1$ and $1.5: 1$ respectively, while both were expected to be mainly σ polarised since they are $\gamma_{3} \rightarrow \gamma_{2}$ type transitions. This polarisation anomaly is as found for the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{2}$ and $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$ transitions (Section 6.1.2(a)).

Table 6.3: Observed intensity ratios for the polarised fluorescence transitions from the E_{1}, D_{1}, J_{1}, and F_{1} levels to the Z multiplet levels of the principal dimer centre in $\langle 11\rangle$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of the $Z_{1} \rightarrow E_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$. For the split transitions, polarisation ratios for both components are given. Uncertainty is $\pm 15 \%$.

	$\mathbf{E}_{1}\left(\gamma_{3}\right)$	$\mathrm{D}_{1}\left(\gamma_{3}\right)$	$\mathrm{J}_{1}\left(\gamma_{3}\right)$	$\mathrm{F}_{1}\left(\gamma_{2}\right)$
$\mathbf{Z}_{1}\left(\gamma_{3}\right)$	$\begin{aligned} & 1 \\ & 5.0 \end{aligned}: \frac{5.0}{1}$	2.4 : 1	$1: 1.3$	1 : 4.0
$\mathbf{Z}_{2}\left(\gamma_{2}\right)$	$1: 5.0$	1.7 : 1	$1.2: 1$	22.7: 1
$\mathbf{Z}_{3}\left(\gamma_{3}\right)$	${ }_{2.4}: 4.1 .7$	$1.1: 1$	$5.7: 1$	$1: 4.0$
$\mathbf{Z}_{4}\left(\gamma_{1}\right)$	$\frac{4.9: 1}{1}: 4.4$	$1: 1.7$	$1: 3.7$	N/A
$\mathbf{Z}_{5}\left(\gamma_{3}\right)$	${ }_{1}{ }_{4.4}: 3.19$	$3.3: 1$	$5.2: 1$	1 : 4.6
$\mathbf{Z}_{6}\left(\gamma_{3}\right)$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}: 3.2$	$1: 3.0$	$1: 2.7$	$1: 1.6$
$\mathrm{Z}_{7}\left(\gamma_{3}\right)$	$\begin{aligned} & 1 \\ & 4.5\end{aligned}: \begin{aligned} & \text { a } \\ & \text { 1 }\end{aligned}$	8.8 : 1	$1: 1.7$	1.7 : 1
$\mathbf{Z}_{8}\left(\gamma_{1}\right)$	$\begin{aligned} & 4.9: 1 \\ & 1: 3.7 \end{aligned}$	$1: 2.0$	$1: 2.0$	N/A
$\mathbf{Z}_{9}\left(\gamma_{1}\right)$	$\begin{aligned} & 4.2: 1 \\ & 1: 4.7 \end{aligned}$	$1: 6.3$	$1: 2.2$	N/A
$\mathbf{Z}_{10}\left(\gamma_{2}\right)$	$1: 3.1$	8.1 : 1	$1.5: 1$	$1: 1.5$
$\mathbf{Z}_{11}\left(\gamma_{3}\right)$	$\begin{aligned} & 1 \\ & 4.6\end{aligned}: 3.9$	$2.3: 1$	$5.1: 1$	$1: 4.7$

Table 6.4: Observed intensity ratios for the polarised fluorescence transitions from the $E_{1}, M_{1}, F_{1}, Q_{1}$ and P_{1} levels to the Y multiplet levels of the principal dimer centre in $<111>$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of the $Z_{1} \rightarrow E_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$. For the split transitions, polarisation ratios for both components are given. Uncertainty is $\pm 15 \%$.

	$\mathbf{E}_{\mathbf{1}}\left(\gamma_{3}\right)$	$\mathbf{M}_{\mathbf{1}}\left(\gamma_{3}\right)$	$\mathbf{F}_{\mathbf{1}}\left(\gamma_{2}\right)$	$\mathbf{Q}_{\mathbf{1}}\left(\gamma_{2}\right)$	$\mathbf{P}_{\mathbf{1}}\left(\gamma_{1}\right)$
$\mathbf{Y}_{\mathbf{1}}\left(\gamma_{3}\right)$	$6.3: 1$	$1: 3.0$	$1: 2.7$	$1: 2.0$	$1: 1.2$
$\mathbf{Y}_{2}\left(\gamma_{1}\right)$	$1: 2: 1$	$1: 4.5$	$\mathrm{~N} / \mathrm{A}$	N / A	$3.7: 1$
$\mathbf{Y}_{3}\left(\gamma_{3}\right)$	$4.7: 1$	$1: 1.1$	$1: 3.1$	$1: 1.8$	$1.5: 1$
$\mathbf{Y}_{4}\left(\gamma_{2}\right)$	$1: 2.4$	$1: 2.4$	$3.9: 1$	$2.0: 1$	$\mathrm{~N} / \mathrm{A}$
$\mathbf{Y}_{5}\left(\gamma_{2}\right)$	$1: 2.9$	$1: 2.1$	$5.5: 1$	$2.9: 1$	$\mathrm{~N} / \mathrm{A}$
$\mathbf{Y}_{6}\left(\gamma_{3}\right)$	$3.3: 1$	$1.9: 1$	$1: 4.2$	$1: 1.9$	$1: 1.8$
$\mathbf{Y}_{7}\left(\gamma_{3}\right)$	$1.5: 1$	$2.9: 1$	$1: 3.2$	$1: 2.2$	$1: 2.1$
$\mathbf{Y}_{8}\left(\gamma_{2}\right)$	$1: 2.8$	$1: 3.3$	$1: 3.5$	$6.3: 1$	$1.5: 1$
$\mathbf{Y}_{9}\left(\gamma_{3}\right)$	$7.4: 1$	$1: 3.9$	$1: 2.4$	$1: 1.8$	$\mathrm{~N} / \mathrm{A}$
$\mathbf{Y}_{\mathbf{1 0}}\left(\gamma_{1}\right)$	1	$: 3.1$	$1: 2.0$	$\mathrm{~N} / \mathrm{A}$	N / A

() transition too weak to measure polarisation ratios
(ii) Transitions from the $E_{1}, F_{1}, M_{1}, P_{1}$ and Q_{1} levels to the Y multiplet levels

From the $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, the $\mathrm{Y}_{1}, \mathrm{Y}_{6}$ and Y_{7} levels are all γ_{3} type levels because they all possess low symmetry crystal-field splittings.

Non-observance of the $F_{1} \rightarrow Y_{2}$ and $F_{1} \rightarrow Y_{10}$ transitions establishes the Y_{2} and Y_{10} levels to be γ_{1} type levels since the F_{1} level is already assigned to be of γ_{2} symmetry. As transitions from the F_{1} level to the Y_{4}, Y_{5} and Y_{8} levels are largely π polarised, these three levels have γ_{2} type symmetry labels. The Y_{3} and Y_{9} levels are assigned as γ_{3} type levels.

Transitions from the M_{1} level to all ten Y levels were observed therefore the M_{1} level is necessarily a γ_{3} type level. The polarisation ratios (Table 6.4) are consistent with both these M_{1} and Y multiplet level assignments.

As transitions from the P_{1} level to the three levels Y_{4}, Y_{5} and Y_{3} were not observed, the P_{1} level is likely to be a γ_{1} level. The polarisation spectra although weak, did show the $P_{1} \rightarrow Y_{2}$ transition to be principally π polarised ($\gamma_{1} \rightarrow \gamma_{1}$) with transitions to γ_{3} type levels being slightly σ polarised.

The $Q_{1} \rightarrow Y_{2}$ and $Q_{1} \rightarrow Y_{10}$ transitions were not observed. As the observed $\mathrm{Q}_{1} \rightarrow \mathrm{Y}$ transitions had similar polarisation ratios to those for the $\mathrm{F}_{1} \rightarrow \mathrm{Y}$ transitions the F_{1} and Q_{1} levels are likely to have the same γ_{2} irrep label, therefore the Q_{1} level has been assigned as a γ_{2} type level.
(iii) Transitions from the $F_{1}, K_{1}, M_{1}, P_{1}, Q_{1}$ and U_{1} levels to the A multiplet levels

From the measured polarisation ratios of transitions to the first seven levels identified for the A multiplet (Table 6.5), the six energy levels $\mathrm{F}_{1}, \mathrm{~K}_{1}, \mathrm{M}_{1}, \mathrm{P}_{1}, \mathrm{Q}_{1}$ and U_{1} can be subdivided into three different categories, with the F_{1} and Q_{1} levels in one, the K_{1}, M_{1} and U_{1} levels in the other and the P_{1} level in the third. Each category will now be discussed separately :

Transitions to the A_{1} and A_{4} levels were not observed from either the F_{1} or Q_{1} levels. Transitions from both the F_{1} and Q_{1} levels to the A_{3} and A_{7} levels
were much stronger in π polarisation than in σ while transitions to the $\mathrm{A}_{2}, \mathrm{~A}_{5}$ and A_{6} levels were principally σ polarised. Since the F_{1} and Q_{1} levels are both γ_{2} type levels, the A_{3} and A_{7} levels are also γ_{2} while the A_{1} and A_{4} levels are γ_{1} and the A_{2}, A_{5} and A_{6} levels are γ_{3} type levels.

Although the polarisation ratios for the transitions from the K_{1}, M_{1} and U_{1} levels to the A multiplet levels are not particularly consistent, all three have been assigned as γ_{3} type levels because transitions to most of the nine A multiplet levels A_{1} to A_{9}, as derived from the $\mathrm{F} \rightarrow \mathrm{A}, \mathrm{P} \rightarrow \mathrm{A}$ and $\mathrm{Q} \rightarrow \mathrm{A}$ transitions, have been observed in each case.

The $P_{1} \rightarrow A_{3}$ and $P_{1} \rightarrow A_{7}$ transitions were not observed. The $P_{1} \rightarrow A_{1}$ and $P_{1} \rightarrow A_{4}$ transitions were π polarised while the $P_{1} \rightarrow A_{2}, P_{1} \rightarrow A_{5}$ and $P_{1} \rightarrow A_{6}$ transitions were mainly σ polarised. All these results are consistent with the γ_{1} assignment made in (ii) above for the P_{1} level.

(iv) Transitions from the P_{1}^{\prime} and Q_{1} levels to the B multiplet levels

Six energy levels have been identified for the B multiplet. Transitions from the $\mathrm{Q}_{1}\left(\gamma_{2}\right)$ level to all the six B multiplet levels were observed and so the only irrep labels applicable are γ_{2} and γ_{3}. The $\mathrm{Q}_{1}+\mathrm{B}_{1}$ and $\mathrm{Q}_{1} \rightarrow \mathrm{~B}_{5}$ transitions were mainly π polarised while the remaining four transitions were mainly σ polarised (Table 6.6). The B_{1} and B_{5} levels are therefore assigned as γ_{2} type levels while the B_{2}, B_{3}, B_{4} and B_{6} levels are all of γ_{3} symmetry.

As no transitions to either the B_{1} or B_{5} levels were observed from the P_{1}^{\prime} level while transitions to the B_{2}, B_{3}, B_{4} and B_{6} levels were observed to be principally σ polarised, the P_{1}^{\prime} level is a γ_{1} type level. Although the $M_{1} \rightarrow B$ level transitions were too weak for any polarisation ratio measurements, the observance of transitions from the M_{1} level to all six B levels is fully consistent with the earlier γ_{3} symmetry assignment for this level ((iii) above).
(v) Transitions from the P_{1}, P_{1}^{\prime} and Q_{1} levels to the C multiplet levels

Four levels have been identified for the C multiplet. Of the transitions observed from the Q_{1} level, the $\mathrm{Q}_{1} \rightarrow \mathrm{C}_{5}$ transition is absent, the $\mathrm{Q}_{1} \rightarrow \mathrm{C}_{2}$ transition

Table 6.5: Observed intensity ratios for the polarised fluorescence transitions from the $F_{1}, Q_{1}, K_{1}, M_{1}, U_{1}$ and P_{1} levels to the A multiplet levels of the principal dimer centre in $<111>$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of the $Z_{1} \rightarrow E_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$. Uncertainty is $\pm 15 \%$.

	$\mathbf{F}_{1}\left(\gamma_{2}\right)$	$\mathbf{Q}_{\mathbf{1}}\left(\gamma_{2}\right)$	$\mathbf{K}_{\mathbf{1}}\left(\gamma_{\mathbf{3}}\right)$	$\mathbf{M}_{\mathbf{1}}\left(\gamma_{3}\right)$	$\mathbf{U}_{1}\left(\gamma_{\mathbf{3}}\right)$	$\mathbf{P}_{\mathbf{1}}\left(\gamma_{1}\right)$
$\mathbf{A}_{\mathbf{1}}\left(\gamma_{1}\right)$	N / A	N / A	$1: 4.1$	$1.5: 1$	$1: 1.5$	$3.4: 1$
$\mathbf{A}_{2}\left(\gamma_{3}\right)$	$1: 4.7$	$1: 3.0$	$1: 6.5$	$2.5: 1$	$1: 5.0$	$1: 4.3$
$\mathbf{A}_{3}\left(\gamma_{2}\right)$	$5.8: 1$	$5.1: 1$	$1: 3.2$	()	()	N / A
$\mathbf{A}_{4}\left(\gamma_{1}\right)$	N / A	N / A	$1: 1.2$	()	()	$2.2: 1$
$\mathbf{A}_{5}\left(\gamma_{3}\right)$	$1: 1.3$	$1: 1$	$1: 3.9$	$1.7: 1$	()	$1: 2.5$
$\mathbf{A}_{6}\left(\gamma_{3}\right)$	$1: 4.0$	$1: 1$	()	$1: 1.1$	()	$1: 3.5$
$\mathbf{A}_{7}\left(\gamma_{2}\right)$	$5.4: 1$	$4.8: 1$	()	()	()	N / A

Table 6.6: Observed intensity ratios for the polarised fluorescence transitions from the Q_{1}, Q_{2} and P_{1}^{\prime} levels to the B multiplet levels of the principal dimer centre in $\langle 111\rangle$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of the $Z_{1} \rightarrow E_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$. Uncertainty is $\pm 15 \%$.

	$\mathbf{Q}_{1}\left(\gamma_{2}\right)$	$\mathbf{Q}_{2}\left(\gamma_{3}\right)$	$\mathbf{P}_{\mathbf{1}}^{\prime}\left(\gamma_{1}\right)$
$\mathbf{B}_{1}\left(\gamma_{2}\right)$	$4.8: 1$	$1: 6.9$	$\mathrm{~N} / \mathrm{A}$
$\mathbf{B}_{2}\left(\gamma_{3}\right)$	$1: 6.5$	$1: 1.9$	$1: 2.4$
$\mathbf{B}_{3}\left(\gamma_{3}\right)$	$1: 3.4$	$1.7: 1$	$1: 3.8$
$\mathbf{B}_{4}\left(\gamma_{3}\right)$	$1: 3.3$	$1: 1.1$	()
$\mathbf{B}_{5}\left(\gamma_{2}\right)$	$3.2: 1$	$1: 2.5$	$\mathrm{~N} / \mathrm{A}$
$\mathbf{B}_{6}\left(\gamma_{3}\right)$	$1: 3.7$	$2.0: 1$	$1: 3.4$

() transition too weak to measure polarisation ratios

Table 6.7: Observed intensity ratios for the polarised fluorescence transitions from the $\mathrm{Q}_{1}, \mathrm{P}_{1}, \mathrm{P}_{1}^{\prime}$ and P_{2}^{\prime} levels to the C multiplet levels of the principal dimer centre in $\langle 111\rangle$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of the $Z_{1} \rightarrow \mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$. Uncertainty is $\pm 15 \%$.

	$\mathrm{O}_{1}\left(\gamma_{2}\right)$	$\mathbf{P}_{1}\left(\gamma_{1}\right)$	$\mathbf{P}^{\prime}{ }_{1}\left(\gamma_{1}\right)$	$\mathbf{P}_{2}^{\prime}\left(\gamma_{3}\right)$
$\mathrm{C}_{1}\left(\gamma_{3}\right)$	$1: 3.8$	$1: 1.3$	1 : 1.8	$1.3: 1$
$\mathrm{C}_{2}\left(\gamma_{2}\right)$	2.5 : 1	N/A	N/A	$1: 4.0$
$\mathrm{C}_{5}\left(\gamma_{1}\right)$	N/A	3.8 : 1	5.7 : 1	()
$\mathrm{C}_{6}\left(\gamma_{3}\right)$	$1 . \quad: 2.3$	()	$1: 2.7$	$1: 2.5$
()	transition too	to measure	sation ratios	

Table 6.8: Observed intensity ratios for the polarised fluorescence transitions from the Q_{1}, Q_{2} and U_{1} levels to the D and E multiplet levels respectively, of the principal dimer centre in $<111\rangle$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$. Uncertainty is $\pm 15 \%$

	$\mathbf{Q}_{\mathbf{1}}\left(\gamma_{2}\right)$		$\mathbf{Q}_{\mathbf{2}}\left(\gamma_{3}\right)$	
$\mathbf{D}_{1}\left(\gamma_{3}\right)$	1	$: 4.7$	1	$: 4.7$
$\mathbf{D}_{2}\left(\gamma_{2}\right)$	5.4	$: 1$	1	$: 2.1$
$\mathbf{D}_{3}\left(\gamma_{3}\right)$	1	$: 4.6$	2.4	$: 1$
$\mathbf{D}_{5}\left(\gamma_{3}\right)$	1	$: 3.0$	4.1	$: 1$

	$\mathbf{U}_{\mathbf{1}}\left(\gamma_{\mathbf{3}}\right)$	
$\mathbf{E}_{1}\left(\gamma_{3}\right)$	1	$: 5.0$
	5.4	$: 1$
$\mathbf{E}_{3}\left(\gamma_{3}\right)$	1	$: 5.0$
$\mathbf{E}_{4}\left(\gamma_{3}\right)$	1	$: 5.0$
$\mathbf{E}_{5}\left(\gamma_{3}\right)$	4.8	$: 1$
$\mathbf{E}_{8}\left(\gamma_{3}\right)$	1	$: 4.8$

is mainly π polarised while the $\mathrm{Q}_{1} \rightarrow \mathrm{C}_{1}$ and $\mathrm{Q}_{1} \rightarrow \mathrm{C}_{6}$ transitions are mainly σ polarised (Table 6.7). Because the Q_{1} level has already been assigned as of γ_{2} symmetry, the C_{2} level is also a γ_{2} symmetry level, the C_{5} level a γ_{1} symmetry level and the C_{1} and C_{6} levels are γ_{3} symmetry levels.

Transitions from the P_{1}^{\prime} and P_{1} levels to the C_{2} level were absent while those to the C_{5} level were π polarised in both cases. This agrees with the irrep labels already assigned to both the P_{1}^{\prime} and P_{1} levels (in (iii) and (iv) above).

(vi) Remaining unassigned transitions

Both the transitions in the $14100-13300 \mathrm{~cm}^{-1}$ region which could be due to Sm^{2+} ions and those in the $11160-11000 \mathrm{~cm}^{-1}$ region whose origin is as yet not established were found to be well polarised, just like most of the transitions for the dimer centre.

6.1.4 Irrep label assignments for the weak transitions

In assigning irrep labels, polarisation results have been used in conjunction with the total numbers of transitions observed between any two multiplets. Some transitions, $\mathrm{O} \rightarrow \mathrm{Z}$ for example (Figure $6.5(\mathrm{~g})$), are too weak for polarisation studies. However, since the Z_{2} and Z_{4} levels have been established to be γ_{2} and γ_{1} type levels respectively, the presence or absence of transitions to such levels could be used to deduce the irrep labels of the upper multiplet energy levels. As transitions from the O_{1} level to both the Z_{2} and Z_{4} levels were observed, O_{1} was assigned to be a γ_{3} type level. Similarly as the $I_{1}+Z_{2}$ and $I_{1} \rightarrow Z_{4}$ transitions were both observed (Figure 6.8(c)), the I_{1} level was assigned as a γ_{3} type level.

These energy levels and the proposed irrep labels have been used in the crystal-field calculations to be described in Chapter 7.

6.2 The Minority Centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ Crystals

In addition to the dominant dimer centre transitions in the excitation spectra of Figures 6.3 and 6.4 , other weaker centre transitions are also present. For the 0.1% and $0.3 \% \mathrm{Ho}^{3+}$ doped CsCdBr_{3} crystals studied here, these weak
transitions have been found to belong to a single centre arbitrarily labelled the L centre. This L centre to be described in Section 6.2.1, has similar characteristics to the principal dimer centre in that transition energies are closely similar and upconversion fluorescence is observed for both the principal dimer and L centres.

In the $0.01 \% \mathrm{Ho}^{3+}$ doped CsCdBr_{3} crystals, transitions of a different minority centre are observed as shown in Figures 6.3(b) and 6.4(b) and have significantly different energies from the L centre transitions. Transitions for this new centre which has been arbitrarily labelled the M centre, occur at up to $8 \mathrm{~cm}^{-1}$ higher energies than corresponding transitions for the principal dimer centre. Unlike the L centre, the M centre does not exhibit any upconversion fluorescence, but shows similar low symmetry crystal-field splittings to those found for the dimer centre.

A further minority centre arbitrarily labelled the N centre, was found in $\mathrm{CsCdBr} 3_{3}$ crystals doubly doped with Ho^{3+} and Na^{+}ions. The N centre is therefore assigned as a $\mathrm{Ho}^{3+}-\mathrm{Na}^{+}$pair. It was found to display similar spectral features to the M centre of the weakly doped $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals.

The three minority centres will now be described in turn :

6.2.1 Spectroscopy of the L centre

Transitions for this centre are shown by L in Figures 6.3(a) and 6.4(a). Although some of the L centre transitions could be easily identified in the excitation spectra, fluorescence transitions varied from being completely overlapped with those of the principal dimer centre transitions to being only separated by about $3 \mathrm{~cm}^{-1}$ (Figure 6.18). Transitions unique to the L centre are listed in Table 6.9, as they were insufficient to allow an energy level scheme to be derived.

Upconversion fluorescence was observed from the F multiplet (Figure 6.18(a)) for $\mathrm{Z} \rightarrow \mathrm{E}$ excitation, and from both the F and E multiplets for $\mathrm{Z} \rightarrow \mathrm{D}$ excitation.

It is not clear whether any splittings as observed for the dimer centre occur

Figure 6.18: 10 K fluorescence spectra of the L centre in $\mathrm{CsCdBr}_{3} ; \mathrm{Ho}^{3+}(0.3 \%)$ crystals, for excitation of the transition at $18362.6 \mathrm{~cm}^{-1}$:
(a) $\mathrm{F} \rightarrow \mathrm{Z}$ transitions;
(b) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions;
(c) $\mathrm{D} \rightarrow \mathrm{Z}$ and $\mathrm{F} \rightarrow \mathrm{Y}$ transitions;
(d) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions.

Table 6.9: Energies (in cm^{-1}) of the transitions observed for the L centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals, as measured at 10 K . Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

$\mathbf{Z} \rightarrow \mathbf{E}$	$\mathbf{E}+\mathbf{Z}$	$\mathbf{Z} \rightarrow \mathbf{D}$	$\mathbf{D}+\mathbf{Z}$	$\mathbf{F} \rightarrow \mathbf{Z}$	$\mathbf{E} \rightarrow \mathbf{Y}$
18496.9	18340.5	15510.9	15320.0	20407.0	13246.5
18476.8	18336.5	15503.7	15316.5	20400.5	13243.5
18472.5	18332.0	15493.5	15293.5	20371.0	13235.0
18465.2	18324.5	15490.4	15290.0	20369.0	13218.0
18432.6	18316.0	15366.1	15231.0	20364.5	13217.0
18412.2	18305.5	15360.9	15220.5	20235.5	13215.0
18403.5	18299.5	15320.2	15191.5	20097.0	13183.5
18362.6	18297.0	15290.1	15175.5		13174.5
18360.5	18286.0		15083.0	13162.5	
	18149.5			15070.5	13076.0
	18147.0			13040.5	
	18135.5			13016.0	
				13006.0	
				13002.5	
				12995.0	
				12954.0	

in any of the L centre transitions because transitions for this centre could not be distinguished sufficiently from those for the dimer centre. Polarisation studies could not be carried out for this centre because the fluorescence was too weak to give any conclusive results and the centre could not be selectively excited.

Since the L centre which is only found in the 0.1% and $0.3 \% \mathrm{Ho}^{3+}$ doped crystals and is absent from the $0.01 \% \mathrm{Ho}^{3+}$ doped crystal exhibits upconversion, it is not likely to be a single Ho^{3+} ion centre. The observation of relatively strong upconversion fluorescence strongly suggests that there is more than one Ho^{3+} ion in this centre. It is therefore tentatively supposed that the L centre is of the form $\mathrm{Cd}^{2+}-\mathrm{Ho}^{3+}-\mathrm{Ho}^{3+}-\mathrm{V}-\mathrm{Cd}^{2+}$ similar to the B centre reported for $\mathrm{CsCdBr}_{3}: \mathrm{Nd}^{3+}(0.3 \%)$ crystals [12]. This $\mathrm{Nd}^{3+} \mathrm{B}$ dimer centre was characterised by energy transfer rates ten times greater than those obtained for the principal Nd^{3+} dimer centre. For the ${ }^{4} \mathrm{G}_{5 / 2}$ multiplet of Nd^{3+} for example, the energy transfer rates for the principal dimer and the B centres were calculated to be $2 \times 10^{5} \mathrm{~s}^{-1}$ [11] and $14 \times 10^{6} \mathrm{~s}^{-1}$ [12] respectively. It was concluded from such fluorescence lifetime measurements that the B centre Nd^{3+} ions are more strongly coupled and hence closer together than the Nd^{3+} ions in the principal dimer centre. Although fluorescence measurements could not be done in this study for the $\mathrm{Ho}^{3+} \mathrm{L}$ centre, this $\mathrm{Ho}^{3+} \mathrm{L}$ centre is assigned as of the same configuration as the $\mathrm{Nd}^{3+} \mathrm{B}$ centre, on the basis of observation of upconversion fluorescence and the Ho^{3+} concentration dependence of the L centre intensity.

6.2.2 Spectroscopy of the M centre

This M centre was only found in the $0.01 \% \mathrm{Ho}^{3+}$ concentration crystal and not in either the 0.1% or $0.3 \% \mathrm{Ho}^{3+}$ concentration crystals. Transitions for the M centre are shown by M in Figures 6.3(b) and 6.4(b).

Fluorescence transitions for $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ (Figure 6.19 (a) and (c)) were found to be well separated from those of the dimer centre. Although the $\mathrm{D} \rightarrow \mathrm{Z}$ spectrum (Figure $6.19(\mathrm{~b})$) also includes some dimer centre transitions, such transitions are relatively weak and easily distinguished from those of the M centre.

For excitation of either the $Z_{1} \rightarrow E_{3}$ or $Z_{1} \rightarrow E_{4}$ transitions at $18350.9 \mathrm{~cm}^{-1}$ and $18428.3 \mathrm{~cm}^{-1}$ respectively, only the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{E} \rightarrow \mathrm{Y}$ fluorescence (Figure 6.19 (a) and (c)) was observed, without any upconversion or $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence being observed. For excitation of the $Z_{1} \rightarrow D_{1}$ transition at $15309.5 \mathrm{~cm}^{-1}$ or the $Z_{1} \rightarrow D_{3}$ transition at $15348.8 \mathrm{~cm}^{-1}$, only the $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence (Figure 6.19 (b)) was observed with no upconversion fluorescence at all.

Because there is no upconversion fluorescence observed for excitation of either the E or D multiplets for this centre, the M centre is assigned to be a single Ho^{3+} ion centre. The configuration of the single Ho^{3+} ion M centre could be either
(i) $\mathrm{a} \mathrm{Ho}^{3+}$ ion near a vacancy or a Cd^{2+} ion, with the second Ho^{3+} ion too far away for any interaction to occur;
or
(ii) $\mathrm{a} \mathrm{Ho}^{3+}$ ion charge compensated by some monovalent ion, present as an impurity in the starting chemicals.

Absence of any $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence for $\mathrm{Z} \rightarrow \mathrm{E}$ excitation is consistent with the earlier proposition that the population of the D multiplet only occurs through upconversion mechanisms (as discussed for the dimer centre (Section 6.1.1)) rather than through phonon assisted decay from the E to the D multiplet as is the case in the CaF_{2} type crystals.

Although no excitation spectra for the M centre transitions could be obtained well discriminated from those of the principal dimer centre, excitation spectra for the dimer centre well discriminated from any of the minority centre transitions were obtained by monitoring the $F_{1} \rightarrow Z_{2}$ transition obtained from upconversion. The remaining transitions were then pumped and found to all belong to the M centre.

Fluorescence spectra for all three spectral regions (18000, 15000 and $13000 \mathrm{~cm}^{-1}$) for the M centre closely resemble those for the dimer centre apart from an overall shift in all transitions to lower energies. The $E_{1} \rightarrow Z_{7}$ transition is the strongest transition for both the M and dimer centres, with that for the M

Figure 6.19: 10 K fluorescence spectra of the single $\mathrm{Ho}^{3+} \mathrm{M}$ centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the $Z_{1} \rightarrow \mathrm{E}_{3}$ transition at $18350.9 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition at $15309.5 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{3}$ transition at $18350.9 \mathrm{~cm}^{-1}$.
The laser position is identified by "L".
Transitions identified by * are for the principal dimer centre.

Table 6.10: Energies (in cm^{-1}) of the Z, Y, D and E multiplets of the M single ion centre and their symmetries, as derived from the 10 K spectra of $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals. Uncertainty is $\pm 0.5 \mathrm{~cm}^{-1}$.

Level	$\mathbf{Z}\left(\mathbf{I}_{\mathbf{8}}\right)$	$\mathbf{Y}\left(\mathbf{I}_{7}\right)$	$\left.\mathbf{D}^{5} \mathbf{F}_{5}\right)$	$\left.\mathbf{E}^{5}{ }^{5} \mathbf{S}_{2},{ }^{5} \mathbf{F}_{4}\right)$
1	$0.0\left(\gamma_{3}\right)$	$5093.0\left(\gamma_{1}\right)$	$15309.5\left(\gamma_{3}\right)$	$18320.1\left(\gamma_{3}\right)$
2	$7.5\left(\gamma_{2}\right)$	$5102.0\left(\gamma_{3}\right)$	$15318.1\left(\gamma_{2}\right)$	-
3	$10.0\left(\gamma_{3}\right)$	$5105.0\left(\gamma_{2}\right)$	$15348.8\left(\gamma_{3}\right)$	$18350.9\left(\gamma_{3}\right)$
4	$32.5\left(\gamma_{1}\right)$	$5155.0\left(\gamma_{3}\right)$	-	$18428.3\left(\gamma_{3}\right)$
5	$197.5\left(\gamma_{3}\right)$	$5183.0\left(\gamma_{2}\right)$	$15470.8\left(\gamma_{3}\right)$	-
6	$204.5\left(\gamma_{3}\right)$	$5208.5\left(\gamma_{3}\right)$	$15481.8\left(\gamma_{2}\right)$	$18437.0\left(\gamma_{2}\right)$
7	$215.5\left(\gamma_{3}\right)$	$5213.0\left(\gamma_{2}\right)$	$15497.9\left(\gamma_{3}\right)$	$18440.8\left(\gamma_{3}\right)$
8	$233.5\left(\gamma_{1}\right)$	$5220.5\left(\gamma_{3}\right)$		$18461.7\left(\gamma_{3}\right)$
9	$241.0\left(\gamma_{1}\right)$	$5249.5\left(\gamma_{3}\right)$		$18465.3\left(\gamma_{1}\right)$
10	$247.0\left(\gamma_{2}\right)$	$5291.5\left(\gamma_{1}\right)$		
11	$269.0\left(\gamma_{3}\right)$			

centre being only 5% of the intensity of the dimer centre transition. The energy levels derived for the $\mathrm{Z}, \mathrm{Y}, \mathrm{D}$ and E multiplets of the M centre are presented in Table 6.10.

6.2.3 Low symmetry splittings of transitions of the M centre

Splittings assigned as low symmetry crystal-field splittings for the dimer centre were also observed for the M centre. On the whole, such transition splittings were smaller for this centre than for corresponding transitions of the dimer centre.

The E_{1} to $Z_{1}, Z_{3}, Z_{4}, Z_{6}, Z_{7}, Z_{8}, Z_{9}$ and Z_{11} transitions all show a common splitting of $2.0 \mathrm{~cm}^{-1}, 0.5 \mathrm{~cm}^{-1}$ less than the $2.5 \mathrm{~cm}^{-1}$ found for the dimer centre, The $E_{1} \rightarrow Z_{2}$ and $E_{1} \rightarrow Z_{10}$ transitions do not show any splitting, while the $E_{1} \rightarrow Z_{5}$ has a smaller splitting of $1.0 \mathrm{~cm}^{-1}$, giving the same overall pattern as found for the dimer centre. All the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions do not show any splittings.

Transitions from the E_{1} level to the Y_{1}, Y_{2}, Y_{6} and Y_{8} levels show the 2.0 cm^{-1} splitting assigned to the E_{1} level. Transitions to the Y_{2} and Y_{8} levels had further splittings of $1.5 \mathrm{~cm}^{-1}$ and $0.5 \mathrm{~cm}^{-1}$ respectively which are assigned as the respective low symmetry crystal-field splittings for the Y_{2} and Y_{8} levels of this centre.

6.2.4 Polarisation of the M centre transitions

As for the dimer centre, the measured polarisation ratios were well defined being mostly either $2: 1$ or $1: 3$ (Table 6.11). The $\mathrm{E}_{1}+\mathrm{Z}_{2}$ and $\mathrm{E}_{1}+\mathrm{Z}_{10}$ transitions were principally σ polarised, while the high energy components of the $E_{1} \rightarrow Z_{4}$, $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{8}$ and $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{9}$ transitions were mainly π polarised and the low energy components σ polarised. For transitions to the $\mathrm{Z}_{1}, \mathrm{Z}_{3}, \mathrm{Z}_{6}, \mathrm{Z}_{7}$ and Z_{11} levels, the low energy components were principally π polarised and the higher energy σ polarised. This is an identical polarisation pattern to that found for the dimer centre.

The $D_{1} \rightarrow Z_{2}$ and $D_{1} \rightarrow Z_{10}$ transitions of the M centre did not show any definite polarisation with ratios being close to unity in both cases. This is not

Table 6.11: Observed intensity ratios for the polarised fluorescence transitions from the E and D multiplets of the M single ion centre in $\langle 111\rangle$ oriented $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{3}$ transition at $18350.9 \mathrm{~cm}^{-1}$. For the split transitions, polarisation ratios for both components are given.

Transition	$\underset{\left(\mathrm{cm}^{-1}\right)}{\text { Wavenumber }(\pm 05)}$	Polarisation Ratios ($\mathbf{* 1 5 \%}$) [$\left.y^{\prime} y^{\prime}: y^{\prime} x^{\prime}\right]$	
$\mathrm{E}_{3}+\mathrm{Z}_{2}$	18343.5	1	2.1
$\mathrm{E}_{3}+\mathrm{Z}_{3}$	18341.0	2.0	1
$\mathrm{E}_{1}+\mathrm{Z}_{1}$	$\begin{aligned} & 18322.0 \\ & 18320.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 1 \end{aligned}$
$\mathrm{E}_{1}+\mathrm{Z}_{2}$	18314.5	1	2.5
$\mathrm{E}_{1}+\mathrm{Z}_{3}$	$\begin{aligned} & 18312.0 \\ & 18310.0 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
$\mathrm{E}_{1}+\mathrm{Z}_{4}$	$\begin{aligned} & 18289.5 \\ & 18287.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 3.0 \end{aligned}$
$\mathrm{E} \rightarrow \mathrm{Z}_{5}$	$\begin{aligned} & 18124.5 \\ & 18123.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
$\mathrm{E}_{1}+\mathrm{Z}_{6}$	$\begin{aligned} & 18118.0 \\ & 18116.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 2.0 \end{aligned}$	${ }_{1}^{2.0}$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{7}$	$\begin{aligned} & 18106.5 \\ & 18104.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 1 \end{aligned}$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{8}$	$\begin{aligned} & 18088.5 \\ & 18086.5 \end{aligned}$	${ }_{1}^{2.0}$	$\begin{aligned} & 1 \\ & 2.9 \end{aligned}$
$\mathrm{E}_{1}+Z_{9}$	$\begin{aligned} & 18081.0 \\ & 18079.0 \end{aligned}$	$\frac{1.5}{1}$	$\begin{aligned} & \frac{1}{2.4} \end{aligned}$
$\mathrm{E}_{1} \rightarrow \mathrm{Z}_{10}$	18075.0	1	3.0
$\mathrm{E}_{1}+\mathrm{Z}_{11}$	$\begin{aligned} & 18053.0 \\ & 18051.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 1 \end{aligned}$
$\mathrm{D}_{1}+\mathrm{Z}_{2}$	15302.0	1	1.1
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$	15299.5	1.9	1
$\mathrm{D}_{1} \rightarrow \mathrm{Z}_{4}$	15277.5	1	1.3
$\mathrm{D}_{1}+\mathrm{Z}_{5}$	15113.0	1.3	1
$\mathrm{D}_{1}+\mathrm{Z}_{6}$	15105.5	1	1.2
$\mathrm{D}_{1}+\mathrm{Z}_{7}$	15094.0	1	1.4
$\mathrm{D}_{1}+\mathrm{Z}_{8}$	15077.0	1.1	1
$\mathrm{D}_{1}+\mathrm{Z}_{9}$	15068.5	1	2.0
$\mathrm{D}_{1}+\mathrm{Z}_{10}$	15064.0	1	1
$\mathrm{D}_{1}+\mathrm{Z}_{11}$	15040.5	1.6	1
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$	13229.0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.7 \end{aligned}$
$\mathrm{E}_{1} \rightarrow \mathrm{Y}_{2}$	$\begin{aligned} & 13221.5 \\ & 13219.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 2.1 \end{aligned}$	3.6

Table 6.11 cont....

$\mathrm{E}_{1}+\mathrm{Y}_{3}$	13217.0	1	$:$	3.9
$\mathrm{E}_{1}+\mathrm{Y}_{4}$	13167.0	2.4	$:$	1
$\mathrm{E}_{1}+\mathrm{Y}_{5}$	13139.0	1	$:$	2.2
$\mathrm{E}_{1}+\mathrm{Y}_{6}$	13113.5	1	\vdots	1.6
	13111.5	1	$:$	1.5
$\mathrm{E}_{1}+\mathrm{Y}_{7}$	13109.0	1	$:$	2.6
$\mathrm{E}_{1}+\mathrm{Y}_{8}$	13101.5	1.7	\vdots	1
	13099.5	5.0	$:$	1
$\mathrm{E}_{1}+\mathrm{Y}_{9}$	13072.5	1	$:$	3.0
$\mathrm{E}_{1}+\mathrm{Y}_{10}$	13030.5	1.6	$:$	1

consistent with either the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{2}$ and $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{10}$ transition results for this centre or the corresponding results for the same transitions of the dimer centre where the same two transitions were found to be principally π polarised. Although the ratios obtained for the $\mathrm{D} \rightarrow \mathrm{Z}$ transitions are not as good as for $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, probably due to overlap with transitions from the dimer centre, it is difficult to explain why the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{2}$ and $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$ transitions are almost unpolarised. Corresponding transitions for the dimer centre did not match with the ratios obtained from the $\mathrm{E} \rightarrow \mathrm{Z}$ and $\mathrm{F} \rightarrow \mathrm{Z}$ transitions. The remaining $\mathrm{D} \rightarrow \mathrm{Z}$ transitions of the M centre were polarised the same as corresponding transitions for the dimer centre.

Both components of the $\mathrm{E}_{1} \rightarrow \mathrm{Y}_{1}$ and $\mathrm{E}_{1} \rightarrow \mathrm{Y}_{6}$ transitions were mainly σ polarised. Transitions to the $\mathrm{Y}_{3}, \mathrm{Y}_{5}, \mathrm{Y}_{7}$ and Y_{9} levels were all σ polarised while transitions to the Y_{2} and Y_{8} levels have oppositely polarised components, with the higher energy component from the E_{1} level being mainly π polarised. Transitions to the Y_{4} and Y_{10} levels were broad and mainly π polarised.

Irrep label assignments were made using the same analysis as that described for the dimer centre.

6.2.5 Spectroscopy of the \mathbf{N} centre

The N centre was identified in both the $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%): \mathrm{Na}^{+}(1 \%)$ and the $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.05 \%): \mathrm{Na}^{+}(0.2 \%)$ crystals and is proposed to be a single Ho^{3+} - single Na^{+}centre of the form $\mathrm{Cd}^{2+}-\mathrm{Ho}^{3+}-\mathrm{Na}^{+}-\mathrm{Cd}^{2+}$. Most of the transitions for this centre were found to have almost identical energies to those of the M (single ion) centre and could not be resolved from these. Evidence for the presence of Na^{+}ions in the sample was found in the relative increase in intensity of the M centre transitions in this crystal compared to those in the parent crystal. The $\mathrm{Ho}^{3+}-\mathrm{Na}^{+}$centre has the same characteristics as the single $\mathrm{Ho}^{3+} \mathrm{M}$ centre in that there is no upconversion fluorescence observed for either $Z \rightarrow E$ or $Z \rightarrow D$ excitation and there is no $D \rightarrow Z$ fluorescence observed for $Z \rightarrow E$ excitation. There is overlap from dimer centre transitions in the spectra presented here which

Figure 6.20: 10 K fluorescence spectra of the N centre in $\mathrm{CsCdB}_{3}: \mathrm{Ho}^{3+}(0.3 \%): \mathrm{Na}^{+}(1 \%)$ crystals :
(a) $\mathrm{E} \rightarrow \mathrm{Z}$ transitions, for excitation of the transition at $18351.4 \mathrm{~cm}^{-1}$;
(b) $\mathrm{D} \rightarrow \mathrm{Z}$ transitions, for excitation of the transition at $15502.7 \mathrm{~cm}^{-1}$;
(c) $\mathrm{E} \rightarrow \mathrm{Y}$ transitions, for excitation of the transition at $18351.4 \mathrm{~cm}^{-1}$.
were measured in the $0.3 \% \mathrm{Ho}^{3+}: 1 \% \mathrm{Na}^{+}$doped crystals. Although the spectra from the lower concentration $\left(0.05 \% \mathrm{Ho}^{3+}: 0.2 \% \mathrm{Na}^{+}\right)$doped samples were better able to be discriminated, the resulting fluorescence was too weak to show any splittings clearly.

Like the M and dimer centres, the N centre transitions also have some low symmetry crystal-field splittings measured to be $2.7 \mathrm{~cm}^{-1}$ for the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions. This is larger than the $2.0 \mathrm{~cm}^{-1}$ found for the M centre but close to the $2.5 \mathrm{~cm}^{-1}$ found for the dimer centre. Though clearly similar, the M and N single Ho^{3+} ion centres are not the same because the crystal field at the Ho^{3+} ion site is different for the two centres, as evidenced by the difference in the low symmetry crystal-field splittings.

As no distinct transitions could be identified for this centre because of overlap with the M centre transitions, the energy level schemes for the M and N centres are proposed to be almost identical. Typical spectra are presented in Figure 6.20. No polarisation measurements were possible.

6.3 Discussion of the Ho^{3+} Centres in CsCdBr_{3} Crystals

From the study of the spectral transitions of the principal dimer centre, an energy level scheme complete with irrep label assignments has been obtained, as done for the other rare-earths ions $\mathrm{Er}^{3+}, \mathrm{Nd}^{3+}$ and Pr^{3+} already studied in the same crystal host. Observation of pair splittings is as for the Er^{3+} dimer centre. While low symmetry crystal-field splittings would not occur for the Kramer's ions Nd^{3+} and Er^{3+}, such splittings have not been reported for Pr^{3+}, the other even electron rare-earth ion studied so far. Observation of low symmetry crystal-field splittings in this study of Ho^{3+} gives evidence that the Ho^{3+} and probably other rare-earth ions, in CsCdBr_{3} crystals, are displaced from sites of exact $\mathrm{C}_{3 \mathrm{v}}$ symmetry.

The observation of fluorescence from the Q multiplet at $\sim 32850 \mathrm{~cm}^{-1}$ with excitation of both the $Z \rightarrow E$ and $Z \rightarrow D$ transitions can be accounted for by one of
(i) that not only do the two ions making up a dimer centre interact to give upconversion but also ions from neighbouring pairs may interact. This long range interaction would result in the observation of fluorescence originating from higher energy levels than can be accounted for by the simple dimer cooperative upconversion processes.

Any such long range interaction between different ion pairs would be dependent on the dopant concentration. For the 0.1% and $0.3 \% \mathrm{Ho}^{3+}$ concentrations used here, there did not seem to be any such increase in intensity of fluorescence from the Q multiplet at the higher concentration.

Also, for interaction of different pairs of ions one would expect a different final result for excitation of different multiplets as the paired ions do not necessarily have to have the E and D multiplets as intermediate states for the different excitations. Different higher energy multiplets should be accessible with excitation of different multiplets. There is no evidence of this in the fluorescence spectra measured here with $Z \rightarrow E$ and $Z \rightarrow D$ excitation.
(ii) There could be a manifestation of significant differences in the lifetimes of the final states (multiplets) of the donor and acceptor ions in a pair whereby an initially homo-excited pair eventually behaves more like a hetero-excited pair. In such cases, fluorescence would also be observed from more and higher energy multiplets than can be accounted for by simple direct upconversion process.

This latter process is quite probable for the case encountered here for Ho^{3+}, for two reasons. Firstly, lifetime measurements (to be
discussed in Chapter 8) show the same rise time for the F and D multiplets. The transient obtained for monitoring the $D_{1} \rightarrow Z_{10}$ transition also shows the F multiplet fluorescence lifetime forming part of that rise time. Secondly, assuming the process to be lifetime dependent, all that is required is that one of the multiplets after the first energy exchange has a shorter lifetime than the other. The process would then be independent of both dopant concentration and which of the E and D multiplets is being excited, as observed here.

Based on the evidence from the fluorescence lifetime measurements, and the lack of concentration dependence for the fluorescence from the Q multiplet, it is proposed that the latter process (as in (ii) above) is responsible for the population of this Q multiplet.

Polarisation measurements have been useful for irrep label assignments to the various levels. It is not clear why the $D_{1} \rightarrow Z_{2}, D_{1} \rightarrow Z_{10}, J_{1} \rightarrow Z_{2}$ and $J_{1} \rightarrow Z_{10}$ transitions are mainly π polarised when they are expected to be σ polarised, for the level assignments given. The $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{2}$ and $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{10}$ transitions indicate a strict selection rule which allows transitions between only one component of the $C_{3 v}$ symmetry γ_{3} level and a γ_{2} symmetry level but allows transitions between both components and γ_{1} type levels.

The highest upconversion ratio of 29% obtained for the $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{2}$ transition in Ho^{3+} is comparable to the 31% reported for the $\mathrm{G}_{1} \rightarrow \mathrm{Z}_{3}$ transition in Er^{3+} [31]. Such strongest upconversion fluorescence transitions originate from the same spectral region (20400-20100 cm^{-1}) for both Ho^{3+} and Er^{3+} ions.

Two main results emerge from the study of the Ho^{3+} minority centres in CsCdBr_{3} crystals. Firstly, the minority centres are not always single Ho^{3+} ion centres but, depending on the dopant concentration, could be either Ho^{3+} cluster or single Ho^{3+} ion centres. Secondly, the crystal-field environment at the rare-earth ion site in the single Ho^{3+} ion centre is not too different from that in
the Ho^{3+} dimer centre, with both centres not being of exact $\mathrm{C}_{3 \mathrm{v}}$ symmetry. The change in the dimer centre environment though, is sufficiently large to shift levels by at least $2 \mathrm{~cm}^{-1}$ to lower energies from the single ion levels as well as give larger low symmetry crystal-field splittings.

The N centre transitions could not be clearly distinguished from those of the M centre, showing that the energy levels of the single Ho^{3+} centre and those of the $\mathrm{Ho}^{3+}-\mathrm{Na}^{+}$centre are close enough to be indistinguishable. The Na^{+}ion therefore, has minimal influence on the crystalline environment at the rare-earth ion site. For Nd^{3+} ions co-doped with one of $\mathrm{Li}^{+}, \mathrm{Na}^{+}$and Ag^{+}[11], transitions for the $\mathrm{Nd}^{3+}-\mathrm{Li}^{+}, \mathrm{Nd}^{3+}-\mathrm{Na}^{+}$and $\mathrm{Nd}^{3+}-\mathrm{Ag}^{+}$centres were found to be within the linewidth of the single Nd^{3+} ion centre.

Since the L centre exhibits upconversion fluorescence and shows a concentration dependence similar to that of the $\mathrm{Nd}^{3+} \mathrm{B}$ centre [12], it is proposed that this L centre is a dimer centre of the form $\mathrm{Cd}^{2+}-\mathrm{Ho}^{3+}-\mathrm{Ho}^{3+}-\mathrm{V}-\mathrm{Cd}^{2+}$. Because the Ho^{3+} ions in this centre are closer together than those in the well established $\mathrm{Cd}^{2+}-\mathrm{Ho}^{3+}-\mathrm{V}-\mathrm{Ho}^{3+}-\mathrm{Cd}^{2+}$ dimer centre, energy transfer processes are likely to be more efficient for the L centre than for the principal dimer centre. Ho^{3+} concentrations of $0.5-1.0 \%$ might be more suitable for the study of this L centre as it is likely to have stronger fluorescence at higher concentrations, although the principal dimer centre will still dominate. Characterisation of the upconversion fluorescence transitions and the respective lifetimes would help establish whether or not the mechanism by which the Q multiplet is populated is the same for both centres. Such measurements could easily be done if the intensity of the L centre fluorescence could be at least double that from the $0.3 \% \mathrm{Ho}^{3+}$ doped crystals and the transitions better discriminated from those of the principal dimer centre. At the 0.3% concentration, upconversion fluorescence could be measured only for the F and E multiplets. It is hoped that at the higher Ho^{3+} concentrations, fluorescence from the higher energy multiplets would be strong enough to do both spectral and fluorescence
lifetime measurements. Upconversion mechanisms and energy transfer rates could then be compared between the two centres.

It is unlikely that co-doping two different rare-earth ions would yield any more information about the dimer centre, unless the dopants have reasonably close energy levels such as for Er^{3+} and Ho^{3+} for example. Heterogeneous rare-earth ion pair studies have been successful only in the case of the $\mathrm{Ce}^{3+}-\mathrm{Tm}^{3+}$ pair centre [82] because the $4 \mathrm{f}-5 \mathrm{~d}$ transitions of Ce^{3+} at about $27800 \mathrm{~cm}^{-1}$ overlap with the ${ }^{1} \mathrm{D}_{2}$ multiplet of Tm^{3+}. The relative positions of the multiplets of the two different rare-earth ions in the dimer centre is of importance in the CsCdBr_{3} crystal host, because of the low phonon energies. This is also shown by the absence of any new transitions that could be ascribed to the $\mathrm{Er}^{3+}-\mathrm{Yb}^{3+}$ pair centre in the $\mathrm{CsCdBr}_{3}: \mathrm{Er}^{3+}: \mathrm{Yb}^{3+}$ crystals studied here, as discussed earlier (at the beginning of this Chapter). The Ho^{3+} and Er^{3+} ions would therefore be suitable as co-dopants because they have several overlapping multiplets. Such a choice however would require careful sorting of the $\mathrm{Er}^{3+}-\mathrm{Ho}^{3+}$ centre transitions from those of $\mathrm{Er}^{3+}-\mathrm{Er}^{3+}$ and $\mathrm{Ho}^{3+}-\mathrm{Ho}^{3+}$ pair centres, as transitions for the latter two centres could easily be simultaneously excited. A heavier and larger monovalent ion co-dopant such as K^{+}or Rb^{+} might give different low symmetry splittings and even shift all energy levels from those of the single ion centre if the crystal field at the rare-earth ion site is significantly altered by the presence of the larger neighbouring monovalent ion. Other AMX_{3} type hosts like CsMgCl_{3} are obvious alternative hosts for studying the Ho^{3+} dimer and single ion centres.

CHAPTER 7

CRYSTAL-FIELD ANALYSES OF $\mathrm{Ho}^{\mathbf{3 +}}$ IONS IN SITES OF C Av $_{v}$ AND C $\mathrm{C}_{3 v}$ SYMMETRY

Crystal-field calculations have been done for Ho^{3+} ions in LaF_{3} [25, 26], $\mathrm{LiYF}_{4}[98]$ and LaCl_{3} [33, 99] crystals among other hosts. In all cases, there were reported good fits of the theoretical energy levels to those measured experimentally. For the C_{2} symmetry Ho^{3+} site in $\mathrm{LaF}_{3}: \mathrm{Ho}^{3+}, 204$ experimental levels from 35 multiplets were fitted with an overall standard deviation of only $10 \mathrm{~cm}^{-1}$ [25]. Although this standard deviation is small, individual levels have differences of up to $25 \mathrm{~cm}^{-1}$ between observed and calculated energies. In $\mathrm{LiYF}_{4}: \mathrm{Ho}^{3+}$, correlated and spin-correlated crystal-field effects were included in the calculations with significant improvement to the fits to the levels of the ${ }^{3} \mathrm{~K}_{8,7}$, ${ }^{5} \mathrm{G}_{5,4,2}$ and ${ }^{3} \mathrm{H}_{6,5}$ multiplets [98]. For the $\mathrm{C}_{3 \mathrm{~h}}$ symmetry Ho^{3+} site in LaCl_{3} [33], 128 levels were fitted using twenty free parameters resulting in an overall standard deviation of $5.2 \mathrm{~cm}^{-1}$, again with differences for individual levels of up to $34 \mathrm{~cm}^{-1}$. Inclusion of spin-correlated crystal-field effects [108] was found to improve the fit to the ${ }^{3} \mathrm{~K}_{8}$ multiplet levels, reducing the standard deviation for this multiplet $\sigma\left({ }^{3} \mathrm{~K}_{8}\right)$ from $15.5 \mathrm{~cm}^{-1}$ to $3.5 \mathrm{~cm}^{-1}$.

For the $\mathrm{C}_{4 \mathrm{v}}$ centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$, Reid and Butler [109], using the point group basis representation, derived the relative positions of the levels of the ${ }^{5} \mathrm{I}_{8}$ multiplet and traced the $\mathrm{C}_{4 \mathrm{v}}$ levels and their irrep labels back to their respective cubic level origins. Because of insufficient experimental data, their scheme was based on crystal-field parameters interpolated from those of the other RE^{3+} $\left(\mathrm{Ce}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Er}^{3+}\right.$ and $\left.\mathrm{Yb}^{3+}\right)$ ions. Neither the $\mathrm{C}_{3 \mathrm{v}}$ centre in CaF_{2} nor any centre in SrF_{2} or CsCdBr_{3} have received any attention, because their energy levels had not been well established to date. Having determined, in the work reported here, a fair number of the possible energy levels for the two major centres and two modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres in both $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals and for
a further two centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, it was appropriate to attempt some crystal-field fittings, to try to establish how the spectroscopic similarities and differences between the particular centres would appear in the respective crystal-field parameters. Crystal-field fits were also performed to provide an independent check on the irrep label assignments made from polarisation measurements.

The crystal-field routine used here was that supplied by Dr M.F. Reid of the University of Hong Kong. The crystal-field Hamiltonian used is of the form

$$
\mathrm{H}=\mathrm{H}_{\mathrm{o}}+\mathrm{H}_{\mathrm{el}}+\mathrm{H}_{\mathrm{so}}+\mathrm{H}_{\mathrm{cf}},
$$

where
(i) H_{o} is the spherically symmetric part of the free ion Hamiltonian comprising the kinetic energy of the $4 \mathrm{f}^{10}$ electrons and their central-field Coulomb interaction with the nucleus;
(ii) $\quad \mathrm{H}_{\mathrm{el}}=\sum \mathrm{f}_{\mathrm{k}} \mathrm{F}^{\mathrm{k}}+\alpha \mathrm{L}(\mathrm{L}+1)+\beta \mathrm{G}\left(\mathrm{G}_{2}\right)+\gamma \mathrm{G}\left(\mathrm{R}_{7}\right)+\sum \mathrm{t}_{\mathrm{i}} \mathrm{T}^{\mathrm{i}}$

$$
k=0,2,4,6 \quad i=2,3,4,6,7,8
$$

The first term is the usual electrostatic interaction between the ten $4 f$ electrons while the higher order terms are the electrostatic correlation terms for two-body and three-body configuration interactions respectively. The F^{k} are the electrostatic integrals and the f_{k} form the angular part of the electrostatic interaction. α, β and γ are the two body parameters, $\mathrm{G}\left(\mathrm{G}_{2}\right)$ and $\mathrm{G}\left(\mathrm{R}_{7}\right)$ are Casimir's operators for the groups G_{2} and R_{7} respectively and L is the total orbital angular momentum. T^{i} and t_{i} are the three body parameters and operators respectively;
(iii) $\quad H_{s o}=A_{s o} \zeta+\sum_{f=2,4,6} p_{f} P^{f}+\sum_{h=0,2,4} m_{h} M^{h}$
where the first term is the usual spin-orbit interaction term and the other two are the magnetically correlated (spin-spin and
spin-other-orbit) and electrostatically correlated spin-orbit terms respectively. Here ζ is the spin-orbit integral and $A_{s o}$ is the angular part of the spin-orbit interaction. The M^{h} (Marvin integrals) and p^{f} are the magnetic and electrostatic correlation parameters respectively with m_{h} and p_{f} as corresponding parameters;
$\mathbf{H}_{\text {cf }}=\sum_{\mathrm{k}, \mathrm{q}, \mathrm{i}} \mathrm{B}_{q}^{\mathrm{k}}\left(\mathrm{C}_{\mathrm{q}}^{(\mathrm{k})}\right)_{i}+\mathrm{V}_{\mathrm{ccf}}+\mathrm{V}_{\mathrm{sccf}}$
The first term is the usual crystal-field Hamiltonian. Correlation and spin correlation crystal-field effects $\left(V_{\text {ccf }}\right.$ amd $V_{\text {sccf }}$ respectively) can also be added as higher order terms. These have not been written out in full as they are not used in the crystal-field analysis attempted here. The $\mathrm{B}_{9}^{\mathrm{k}}$ are the crystal-field parameters and $\mathrm{C}_{\mathrm{q}}^{(\mathrm{k})}$ are Racah tensor operators which transform as corresponding spherical harmonics. For $\mathrm{C}_{4 \mathrm{v}}$ and $\mathrm{C}_{3 \mathrm{v}}$ symmetry centres studied here, the respective crystal fields of the form given in Chapter 2 have been used.

The free ion parameters are adopted from the analysis of $\mathrm{LaCl}_{3}: \mathrm{Ho}^{3+}$ [33] and the crystal-field parameters from the crystal-field analysis of $\mathrm{CaF}_{2}: \mathrm{Er}^{3+}[30$, 42] have been used as a starting point for the fitting procedure. The standard deviation σ for the crystal-field fit of the levels of each centre was calculated from

$$
\sigma=\sum\left[\left(\Delta \mathrm{E}_{\mathrm{i}}\right)^{2} /(\mathrm{n}-\mathrm{p})\right]^{\frac{1}{2}},
$$

where $\Delta \mathrm{E}_{\mathrm{i}}$ is the difference between experimental and theoretical energies for each particular level, n is the total number of experimental energy levels used for the particular fit and p is the number of parameters that were varied.

As the crystal-field fitting program was used with a $4 f^{+}$rather than a $4 f^{10}$ configuration, all the crystal-field ($\mathrm{B}_{\mathrm{q}}^{\mathrm{k}}$), spin-orbit (ζ) and three-body (T^{i}) parameters obtained from the fits have opposite signs to those expected for a $4 \mathrm{f}^{10}$ configuration. The parameters reported here (Tables 7.4, 7.7, 7.10, 7.13, 7.16 and

Table 7.1: The free ion parameters adopted from $\mathrm{LaCl}_{3}: \mathrm{Ho}^{3+}[33]$ and not varied here (all quantities in cm^{-1})

Parameter	Value
α	17.3
β	-624
γ	2084
$\mathrm{~T}^{2}$	287
$\mathrm{~T}^{3}$	37
$\mathrm{~T}^{4}$	98
$\mathrm{~T}^{6}$	-313
$\mathrm{~T}^{7}$	421
$\mathrm{~T}^{8}$	359
M^{0}	3.04
P^{2}	528

7.17) have been corrected accordingly for this sign change.

7.1 Centres in CaF_{2} and SrF_{2} Type Crystals

There were four aims to this crystal-field analysis :-
(i) to establish trends in parameters in going from A to the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres;
(ii) to compare parameters for the CaF_{2} and SrF_{2} host crystals for both the A and B centres;
(iii) to compare parameters for the A and B centres for Ho^{3+} to those previously determined for Er^{3+} as these two ions are expected to have similar crystal-field parameters;
(iv) to establish irrep labels for some of the levels for the B centres in CaF_{2} and SrF_{2}.

7.1.1 The A and B centres

The fitted energy levels and corresponding irrep labels for the A and B centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals are presented in Tables 7.2, 7.3, 7.5 and 7.6. For both the A and B centres of Ho^{3+}, the corresponding crystal-field parameters for Er^{3+} are given in brackets for each host (Tables 7.4 and 7.7).

The Er^{3+} parameters given here for the A centre have been derived from those of Freeth et al. [42, 43] by using equations $2.7(\mathrm{c})$, which give the relationship between the $\mathrm{C}_{4 \mathrm{v}}$ symmetry crystal-field Hamiltonian used here and that used by Freeth et al. [42, 43]. Such a conversion was necessary for a direct comparison to be made between the crystal-field parameters of Ho^{3+} and Er^{3+} ions in the same $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre. For the $\mathrm{Er}^{3+} \mathrm{B}$ and J centres, the crystal-field parameters given here are those of Cockcroft et al. [30].

For the CaF_{2} A centre, 39 levels were fitted with a standard deviation of 3.9 cm^{-1} (Tables 7.2 and 7.4) and for the $\mathrm{CaF}_{2} \mathrm{~B}$ centre 41 levels were fitted with a standard deviation of $3.3 \mathrm{~cm}^{-1}$ (Tables 7.5 and 7.7). There is good agreement with Er^{3+} parameters for both the A and B centres (Tables 7.4 and 7.7). For the

Table 7.2: $\quad \mathrm{C}_{4 \mathrm{4}}$ symmetry crystal-field level fits to the ${ }^{5} \mathrm{I}_{8}(\mathrm{Z}),{ }^{5} \mathrm{I}_{7}(\mathrm{Y}),{ }^{5} \mathrm{~F}_{5}(\mathrm{D}),{ }^{5} \mathrm{~S}_{2}(\mathrm{E})$, ${ }^{5} \mathrm{~F}_{4}(\mathrm{E})$ and ${ }^{3} \mathrm{~F}_{3}(\mathrm{~F})$ multiplets of the A centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

Multiplet	State	Symmetry	Calculated	Observed	Difference
${ }^{5} \mathrm{I}_{8}$	Z_{1}	γ_{1}	-2.3	0.0	2.3
	Z_{2}	γ_{2}	-1.4	1.9	3.3
	Z_{3}	γ_{s}	84.6	83.0	-1.6
	Z_{4}	γ_{3}	117.9	115.5	-2.4
	Z_{5}	γ_{5}	133.7	128.0	-5.7
	Z_{6}	γ_{4}	162.2	158.0	-4.2
	Z_{7}	γ_{1}	288.0	284.5	-3.5
	Z_{8}	γ_{2}	292.3	292.5	0.2
	Z9	γ_{3}	450.1	455.0	4.9
	Z_{10}	γ_{s}	472.3	475.0	2.7
	Z_{11}	γ_{1}	494.5	492.0	-2.5
	\mathbf{Z}_{12}	γ_{s}	510.9	513.0	-2.1
	Z_{13}	γ_{4}	512.1	-	
${ }^{5} \mathrm{I}_{7}$	Y_{1}	γ_{s}	5255.6	5257.0	1.4
	Y_{2}	γ_{3}	5272.0	5273.0	1.0
	Y_{3}	γ_{5}	5270.2	5274.0	3.8
	Y_{4}	γ_{2}	5274.1	-	
	Y_{5}	γ_{4}	5281.0	-	
	Y_{6}	γ_{1}	5305.7	5308.5	2.8
	Y_{7}	γ_{s}	5333.2	5332.0	-1.2
	Y_{8}	γ_{3}	5356.9	5355.0	-1.9
	Y_{9}	γ_{4}	5406.9	-	
	Y_{10}	γ_{s}	5416.7	5413.0	-3.7
	Y_{11}	γ_{2}		-	
${ }^{5} \mathrm{~F}_{5}$	D_{1}	γ_{3}	15606.1	15605.0	
	D_{2}	γ_{5}	15609.2	15609.5	0.3
	D_{3}	γ_{2}	15623.3	15623.0	-0.3
	D_{4}	γ_{1}	15673.1	15682.0	8.9
	D_{5}	γ_{s}	15756.8	15752.2	-4.6
	D_{6}	γ_{2}	15759.6	15756.1	-3.5
	D_{7}	γ_{4}	15771.7		
	D_{8}	γ_{5}	15823.2	15823.5	0.3
${ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}$	E_{1}	γ_{3}	18606.2	18599.0	-7.2
	E_{2}	γ_{1}	18615.4	18613.2	-2.2
	E_{3}	γ_{5}	18657.3	18655.1	-2.2
	E_{4}	γ_{4}	18660.9	18666.5	5.6
	Es	γ_{3}	18673.7	18681.5	7.8
	E_{6}	γ_{s}	18730.2	18726.8	-3.4
	E_{7}	γ_{1}	18749.0	18750.1	1.1
	E_{8}	γ_{4}	18790.2	-	
	E_{9}	γ_{2}	18833.1	18834.9	1.8
	E_{10}	γ_{5}	18859.5	18859.5	0
	E_{11}	γ_{1}	18889.6	18888.3	-1.3
${ }^{5} \mathrm{~F}_{3}$	F_{1}	γ_{2}	20741.0	20741.6	0.6
	F_{2}	γ_{5}	20780.6	20781.6	1.0
	F_{3}	γ_{3}	20846.1	-	
	F_{4}	γ_{4}	20862.7	-	
	F_{5}	γ_{5}	20925.9	20924.5	-1.4

Table 7.3: $\quad \mathrm{C}_{4 \mathrm{4}}$ symmetry crystal-field level fits to the ${ }^{5} \mathrm{I}_{8}(\mathrm{Z}),{ }^{5} \mathrm{I}_{7}(\mathrm{Y}),{ }^{5} \mathrm{~F}_{5}(\mathrm{D}),{ }^{5} \mathrm{~S}_{2}(\mathrm{E})$, ${ }^{5} \mathrm{~F}_{4}(\mathrm{E})$ and ${ }^{5} \mathrm{~F}_{3}(\mathrm{~F})$ multiplets of the A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

Multiplet	State	Symmetry	Calculated	Observed	Difference
${ }^{5} \mathrm{I}_{8}$	Z_{1}	γ_{1}	-3.1	0.0	3.1
	Z_{2}	γ_{2}	-1.6	2.7	4.3
	Z_{3}	γ_{s}	54.2	52.5	-1.7
	Z_{4}	γ_{3}	79.2	75.5	-3.7
	Z_{5}	γ_{5}	96.5	89.0	-7.5
	Z_{6}	γ_{4}	119.4	-	
	Z_{7}	γ_{1}	261.4	255.5	-5.9
	Z_{8}	γ_{2}	266.2	265.5	-0.7
	Z9	γ_{3}	377.6	377.0	-0.6
	Z_{10}	γ_{5}	389.8	393.0	3.2
	Z_{11}	γ_{1}	403.0	403.0	0
	Z_{12}	γ_{4}	429.2	430.0	0.8
	Z_{13}	γ_{s}	438.2	443.0	4.8
${ }^{5} \mathrm{I}_{7}$	Y_{1}	γ_{s}	5221.4	5220.5	-0.9
	Y_{2}	γ_{2}	5222.8	-	
	Y_{3}	γ_{3}	5233.2	5231.0	-2.2
	Y_{4}	γ_{s}	5241.2	5241.5	0.3
	Y_{5}	γ_{4}	5247.9	-	
	Y_{6}	γ_{1}	5252.7	5255.5	2.8
	Y_{7}	γ_{5}	5285.5	5283.5	-2.0
	Y_{8}	γ_{3}	5301.4	5303.5	2.1
	Y_{9}	γ_{4}	5341.9	- ${ }^{-18.5}$	
	Y_{10}	γ_{5}	5347.9	5348.5	0.6
	Y_{11}	γ_{2}	5353.5	538.5	
${ }^{5} \mathrm{~F}_{5}$	D_{1}	γ_{s}	15591.4	15593.0	1.6
	D_{2}	γ_{3}	15592.0	-	
	D_{3}	γ_{2}	15598.2	15599.0	0.8
	D_{4}	γ_{1}	15636.0	15642.3	6.3
	D_{5}	γ_{s}	15730.5	15727.8	-2.7
	D_{6}	γ_{2}	15737.8	15735.1	-2.7
	D_{7}	γ_{4}	15746.0	-	
	D_{8}	γ_{s}	15766.9	15764.1	-2.8
${ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}$	E_{1}	γ_{3}	18582.6	18579.5	-3.1
	E_{2}	γ_{1}	18586.4	18585.7	-0.7
	E_{3}	γ_{5}	18624.0	18624.8	0.8
	E_{4}	γ_{4}	18627.6	-	
	E_{5}	γ_{3}	18664.5	18671.5	7.0
	E_{6}	γ_{s}	18722.6	18718.7	-3.9
	E_{7}	γ_{1}	18724.4	18729.0	4.6
	E_{8}	γ_{2}	18772.1	18771.0	-1.1
	E9	γ_{4}	18773.3	-	
	E_{10}	γ_{s}	18818.6	18817.5	-1.1
	E_{11}	γ_{1}	18837.1	18833.7	-3.4
${ }^{5} \mathrm{~F}_{3}$	F_{1}	γ_{2}	20736.0	20735.5	-0.5
	F_{2}	γ_{5}	20755.5	20756.5	1.0
	F_{3}	γ_{3}	20823.5	-	
	F_{4}	γ_{4}	20845.5	-	
	F_{5}	γ_{s}	20882.6	-	

Table 7.4: Free ion and crystal-field parameters for the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals. Parameters for the $\mathrm{Er}^{3+} \mathrm{A}$ centre in $\mathrm{CaF}_{2}: \mathrm{Er}^{3+}$ are given in brackets (all quantities (except n) are in cm^{-1}).

Parameter	$\mathrm{CaF}_{\mathbf{2}} \mathbf{A}$ centre	$\mathrm{SrF}_{\mathbf{2}} \mathbf{A}$ centre
F^{2}	95961 ± 26	96009 ± 15
$\mathrm{~F}^{4}$	66875 ± 19	66868 ± 19
$\mathrm{~F}^{6}$	47099 ± 38	46886 ± 37
ζ	$2139 \pm 2(2390)$	2139 ± 2
$\mathrm{~B}_{\mathrm{A}}^{2}$	$685 \pm 9(608)$	338 ± 9
$\mathrm{BA}_{\mathrm{A}}^{4}$	$356 \pm 9(409)$	297 ± 9
$\mathrm{~B}_{\mathrm{A}}^{6}$	$419 \pm 7(403)$	325 ± 8
$\mathrm{BC}_{\mathrm{C}}^{4}$	$-1085 \pm 8(-1172)$	-1030 ± 8
$\mathrm{~B}_{\mathrm{C}}^{6}$	$557 \pm 4(505)$	488 ± 4
n	39	36
σ	3.9	3.7

A centre, the Ho^{3+} parameters are within 10% of the Er^{3+} parameters with the fourth degree axial and cubic parameters being smaller in magnitude for Ho^{3+} while both the second and the sixth degree axial parameters are larger than for Er^{3+}. For the B centre, corresponding Ho^{3+} and Er^{3+} parameter values lie within 25% of each other, except for the fourth degree cubic parameter which is 45% smaller for Ho^{3+} than for Er^{3+}.

For the SrF_{2} A centre, 36 levels were fitted with a standard deviation of $3.7 \mathrm{~cm}^{-1}$ (Tables 7.3 and 7.4). The resulting second degree axial crystal-field parameter $\mathrm{B}_{\mathrm{A}}^{2}$, is about half that for the $\mathrm{CaF}_{2} \mathrm{~A}$ centre. Corresponding to this change in the crystal-field parameter B_{A}^{2}, is the observed energy separations between the lowest levels of a given multiplet (except Z) which are reduced by about 50% in going from CaF_{2} to SrF_{2}. The higher degree axial and cubic crystal-field parameters are all reduced in SrF_{2} by up to 25% of the CaF_{2} values. For the B centre, the second degree axial crystal-field parameter $\mathrm{B}_{\mathrm{A}}^{2}$ in SrF_{2} is reduced by 75% from that in CaF_{2} while the fourth degree axial crystal-field parameter $\mathrm{B}_{\mathrm{A}}^{4}$ is 2.5 times larger. The sixth degree axial and cubic crystal-field parameters are decreased by up to 35% in SrF_{2} compared to CaF_{2}. As for the $\mathrm{CaF}_{2} \mathrm{~B}$ centre, the axial and cubic components of the crystal field are of comparable magnitude for the $\mathrm{Ho}^{3+} \mathrm{B}$ centre (Table 7.7). Both the previously discussed polarisation results and the crystal-field parameters found here, suggest the same $\mathrm{C}_{3 \mathrm{v}}$ configuration for the $\mathrm{SrF}_{2} \mathrm{~B}$ centre as for the $\mathrm{CaF}_{2} \mathrm{~B}$ centre.

In $\mathrm{SrF}_{2}: \mathrm{Er}^{3+}$ crystals, the principal centre labelled J, was found by both EPR $[8,18]$ and laser selective excitation $[30,68]$ measurements, to be of $\mathrm{C}_{3 \mathrm{v}}$ symmetry. This J centre was proposed to have a different configuration from that of the B centre in $\mathrm{CaF}_{2}: \mathrm{Er}^{3+}$, although they both have the $\mathrm{C}_{3 \mathrm{v}}$ symmetry. For the B centre, a model configuration in which the eight-fold symmetry from the cubic arrangement of the nearest neighbour lattice F^{-}ions around the Er^{3+} ion, was broken by the presence of a vacancy at one of the F^{-}sites was proposed $[30,75$, 128], while the J centre was assigned the more usual next nearest neighbour F^{-}

Table 7.5: $\quad \mathrm{C}_{3 \mathrm{v}}$ symmetry crystal-field level fits to the ${ }^{5} \mathrm{I}_{8}(\mathrm{Z}),{ }^{5} \mathrm{I}_{7}(\mathrm{Y}),{ }^{5} \mathrm{~F}_{5}(\mathrm{D}),{ }^{5} \mathrm{~S}_{2}(\mathrm{E})$, ${ }^{5} \mathrm{~F}_{4}(\mathrm{E})$ and ${ }^{5} \mathrm{~F}_{3}(\mathrm{~F})$ multiplets of the B centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

Multiplet	State	Symmetry	Calculated	Observed	Difference
${ }^{5} \mathrm{I}_{8}$	Z_{1}	γ_{3}	-2.9	0.0	2.9
	Z_{2}	γ_{3}	28.2	27.0	-1.2
	Z_{3}	γ_{1}	64.5	65.0	0.5
	Z_{4}	γ_{2}	79.4	81.0	1.6
	Z_{5}	γ_{3}	144.5	138.5	-6.0
	Z_{6}	γ_{3}	178.9	178.5	-0.4
	Z_{7}	γ_{2}	183.3	-	
	Z_{8}	γ_{1}	214.1	213.5	-0.6
	Z9,	γ_{3}	365.7	367.5	1.8
	Z_{10}	γ_{3}	413.6	417.5	3.9
	Z_{11}	γ_{1}	422.9	423.5	0.6
${ }^{5} \mathrm{I}_{7}$	Y_{1}	γ_{3}	5202.2	5202.5	0.3
	Y_{2}	γ_{1}	5216.2	5212.7	-3.5
	Y_{3}	γ_{3}	5224.2	5218.9	-5.3
	Y_{4}	γ_{2}	5221.1	5223.5	2.4
	Y_{5}	γ_{3}	5234.8	5235.3	0.5
	Y_{6}	γ_{1}	5237.8	5239.5	1.7
	Y_{7}	γ_{2}	5238.3	5240.9	2.6
	Y_{8}	γ_{3}	5252.5	5253.9	1.4
	Y_{9}	γ_{3}	5274.2	5272.9	-1.3
	Y_{10}	γ_{2}	5282.2	5280.9	-1.3
${ }^{5} \mathrm{~F}_{5}$	D_{1}	γ_{2}	15608.4	15604.0	-4.4
	D_{2}	γ_{3}	15606.0	15605.5	-0.5
	D_{3}	γ_{3}	15613.2	15613.0	-0.2
	D_{4}	γ_{2}	15617.8	15618.0	0.2
	D_{5}	γ_{1}	15629.9	15627.7	-2.2
	D_{6}	γ_{3}	15631.7	15628.5	-3.2
	D_{7}	γ_{3}	15649.0	15647.0	-2.0
${ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}$	E_{1}	γ_{3}	18566.4	18567.5	1.1
	E_{2}	γ_{1}	18566.8	18569.5	2.7
	E_{3}	γ_{3}	18569.6	18570.5	1.0
	E_{4}	γ_{3}	18627.9	18633.7	5.8
	E_{5}	γ_{1}	18654.9	18657.8	2.9
	E_{6}	γ_{2}	18657.4	18665.2	7.8
	E_{7}	γ_{3}	18717.4	18712.8	-4.6
	E_{8}	γ_{3}	18750.9	18751.0	0.1
	E9	γ_{1}	18772.3	18773.5	1.2
${ }^{5} \mathrm{~F}_{3}$	F_{1}	γ_{3}	20718.8	20715.0	-3.8
	F_{2}	γ_{1}	20719.9	20722.4	2.5
	F_{3}	γ_{2}	20751.1	20749.5	-1.6
	F F_{4} F	γ_{3}	20780.4	20779.3	-1.1
	F_{5}	γ_{2}	20802.9	20800.8	-2.1

Table 7.6: $\quad \mathrm{C}_{3 v}$ symmetry crystal-field level fits to the ${ }^{5} \mathrm{I}_{8}(\mathrm{Z}),{ }^{5} \mathrm{I}_{7}(\mathrm{Y}),{ }^{5} \mathrm{~F}_{5}(\mathrm{D}),{ }^{5} \mathrm{~S}_{2}(\mathrm{E})$ and ${ }^{5} \mathrm{~F}_{4}(\mathrm{E})$ multiplets of the B centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

Multiplet	State	Symmetry	Calculated	Observed	Difference
${ }^{5} \mathrm{I}_{8}$	Z_{1}	γ_{3}	4.5	0.0	-4.5
	Z_{2}	γ_{3}	20.6	26.5	5.9
	Z_{3}	γ_{1}	55.5	52.5	-3.0
	Z_{4}	γ_{2}	67.8	70.0	2.2
	Z_{5}	γ_{3}	144.2	148.0	3.8
	Z_{6}	γ_{2}	158.8	-	
	Z_{7}	γ_{3}	167.6	163.0	-4.6
	Z_{8}	γ_{1}	184.2	184.0	-0.2
	Z_{9}	γ_{3}	313.5	315.0	1.5
	Z_{10}	γ_{3}	353.2	354.0	0.8
	Z_{11}	γ_{1}	361.4	359.5	-1.9
${ }^{5} \mathrm{I}_{7}$	Y_{1}	γ_{3}	5184.7	5183.0	-1.7
	Y_{2}	γ_{2}	5187.7	5189.0	1.3
	Y_{3}	γ_{3}	5196.0	5193.5	-2.5
	Y_{4}	γ_{1}	5200.3	5200.5	0.2
	Y_{5}	γ_{1}	5211.8	5208.5	-3.3
	Y_{6}	γ_{2}	5213.0	5214.0	1.0
	Y_{7}	γ_{3}	5217.5	5219.5	2.0
	Y_{8}	γ_{3}	5222.8	5226.0	3.2
	Y_{9}	γ_{3}	5241.2	5241.0	-0.2
	Y_{10}	γ_{2}	5247.1	5247.0	-0.1
${ }^{5} \mathrm{~F}_{5}$	D_{1}		15596.0	15595.5	-0.5
	D_{2}	γ_{3}	15601.8	15601.5	-0.3
	D_{3}	γ_{2}	15613.0	15615.5	2.5
	D_{4}	γ_{3}	15615.0		
	D_{5}	γ_{3}	15627.0	-	
	D_{6}	γ_{1}	15632.0	15630.5	-1.5
	D_{7}	γ_{3}	15640.3		
${ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}$		γ_{1}	18560.7	18561.6	0.9
	E_{2}	γ_{3}	18564.1	18564.0	-0.1
	E_{3}	γ_{3}	18566.2	18565.6	-0.6
	E_{4}	γ_{3}	18639.6	-	
	Es_{5}	γ_{1}	18667.3	18666.7	-0.6
	E_{6}	γ_{2}	18673.4	-	
	E_{7}	γ_{3}	18718.6	-	
	E_{8}	γ_{3}	18735.1	18736.5	1.4
	E_{9}	γ_{1}	18767.8	18767.2	-0.6

Table 7.7: Free ion and crystal-field parameters for the $C_{3 v}$ symmetry centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals. Parameters for the $\mathrm{Er}^{3+} \mathrm{B}$ and J centers are given in brackets in the respective columns (quantities in cm^{-1}).

Parameter	$\mathrm{CaF}_{\mathbf{2}} \mathbf{B}$ centre	$\mathrm{SrF}_{\mathbf{2}} \mathbf{B}$ centre
F^{2}	95896 ± 20	95382 ± 31
$\mathrm{~F}^{4}$	67035 ± 16	67182 ± 17
$\mathrm{~F}^{6}$	47029 ± 29	45527 ± 45
ζ	2140 ± 2	$2136^{ \pm 2}$
$\mathrm{~B}_{\mathrm{A}}^{2}$	$197 \pm 7(140.6)$	$52 \pm 8(189.0)$
$\mathrm{B}_{\mathrm{A}}^{4}$	$-72 \pm 9(-76.7)$	$-184 \pm 10(-246.8)$
$\mathrm{B}_{\mathrm{A}}^{6}$	$223 \pm 8(-341.6)$	$-149 \pm 7(-280.4)$
$\hat{\mathrm{B}}_{\mathrm{A}}^{6}$	$-676 \pm 6(-530.7)$	$-526 \pm 6(103.6)$
$\mathrm{B}_{\mathrm{C}}^{4}$	$46 \pm 6(82.8)$	$-58 \pm 7(1113.0)$
$\mathrm{B}_{\mathrm{C}}^{6}$	$681 \pm 5(581.0)$	$605 \pm 5(986.7)$
n	41	30
σ	3.3	2.9

interstitial configuration of Figure 1.2(b) [30, 75]. This difference in the configurations for the two Er^{3+} centres is apparent in the crystal-field parameters obtained for the two centres [30] which are included in Table 7.7. For the $\mathrm{Er}^{3+} \mathrm{B}$ centre, the axial and cubic crystal-field parameters are comparable whereas for the J centre, the axial crystal-field parameters are much smaller than the cubic crystal-field parameters.

There is not much resemblance between the $\mathrm{Ho}^{3+} \mathrm{SrF}_{2} \mathrm{~B}$ centre and the $\mathrm{Er}^{3+} \mathrm{J}$ centre parameters, with the fourth degree cubic crystal-field parameter $\mathrm{B}_{\mathrm{c}}^{4}$ for the $\mathrm{Ho}^{3+} \mathrm{B}$ centre being only 5% of that for the $\mathrm{Er}^{3+} \mathrm{J}$ centre. Therefore, although the $\mathrm{Er}^{3+} \mathrm{J}$ centre of SrF_{2} does not have the same configuration as the $\mathrm{Er}^{3+} \mathrm{B}$ centre of CaF_{2}, the B centres in CaF_{2} and SrF_{2} for Ho^{3+} are expected to have the same configuration as the $\mathrm{Er}^{3+} \mathrm{B}$ centre because all the crystal-field parameters are comparable for the Ho^{3+} centres.

For the energy levels of both the $\mathrm{C}_{4 v}$ and the $\mathrm{C}_{3 v}$ symmetry centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$, irrep label assignments based on crystal-field calculations (Tables 7.2, 7.3, 7.5 and 7.6) were in agreement with those based on polarisation measurements (Tables 4.1, 4.3, 5.1 and 5.3). For the $\mathrm{C}_{3 \mathrm{v}}$ symmetry centres, irrep labels (γ_{1} and γ_{3}) for some of the levels were identified by these crystal-field calculations as the polarisation data were insufficient for a complete assignment.

7.1.2 The modified C $_{4 v}$ symmetry centres (CS1, CB1, SC1 and SB1)

The fitted energy levels for the CS1 and CB1 centres are presented in Tables 7.8 and 7.9 respectively, while those for the $\mathrm{SC1}$ and $\mathrm{SB1}$ centres are presented in Tables 7.11 and 7.12 respectively. The resulting crystal-field parameters are presented in Table 7.10 for the CS1 and CB1 centres and Table 7.13 for the SC 1 and SB 1 centres.

The relative magnitudes of the crystal-field parameters obtained for the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals, with respect to the corresponding A centre, are shown schematically in Figures 7.1 and 7.2

Table 7.8: $\quad \mathrm{C}_{4 v}$ symmetry crystal-field level fits to the ${ }^{5} \mathrm{I}_{8}(\mathrm{Z}),{ }^{5} \mathrm{I}_{7}(\mathrm{Y}),{ }^{5} \mathrm{~F}_{5}(\mathrm{D}),{ }^{5} \mathrm{~S}_{2}(\mathrm{E})$ and ${ }^{5} \mathrm{~F}_{4}(\mathrm{E})$ multiplets of the CS 1 centre in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

Multiplet	State	Symmetry	Calculated	Observed	Differnce
	Z_{1}	γ_{1}	-1.8	0.0	1.8
	Z_{2}	γ_{2}	-0.1	2.0	2.1
	Z^{2}	γ_{5}	70.3	70.0	-0.3
	Z_{4}	γ_{3}	100.4	99.5	-0.9
	Z_{5}	γ_{5}	118.8	115.0	-3.8
	Z_{6}	γ_{4}	143.1	-	
	Z_{7}	γ_{1}	296.0	296.0	0
	Z_{8}	γ_{2}	301.9	301.0	-0.9
	Z9	γ_{3}	441.5	441.5	0
	Z_{10}	γ_{5}	458.0	458.5	0.5
	Z_{11}	γ_{1}	474.6	473.0	-1.6
	Z_{12}	γ_{s}	503.8	506.5	2.7
	Z_{13}	γ_{4}	499.3		
${ }^{5} \mathrm{I}_{7}$	Y_{1}	γ_{s}	5252.7	5254.5	1.8
	Y_{2}	γ_{3}	5265.0	5266.5	1.5
	Y_{3}	γ_{5}	5268.7	5269.5	0.8
	Y_{4}	γ_{2}	5257.8	.	
	Y_{5}	γ_{4}	5278.9	-	
	Y_{6}	γ_{1}	5293.7	5295.0	1.3
	Y_{7}	γ_{5}	5323.4	5323.0	-0.4
	Y_{8}	γ_{3}	5343.8	5345.0	1.2
	Y_{9}	γ_{4}	5395.4	-	
	Y_{10}	γ_{s}	5402.6	5398.0	-4.6
	Y_{11}	γ_{2}	5409.0	538.0	
${ }^{5} \mathrm{~F}_{5}$	D_{1}	γ_{3}	15601.8	15600.0	-1.8
	D_{2}	γ_{5}	15603.0	15603.0	0
	D_{3}	γ_{2}	15614.0	15614.0	0
	D_{4}	γ_{1}	15660.8	15663.5	2.7
	D_{5}	γ_{5}	15761.8	-	
	D_{6}	γ_{2}	15766.3	-	
	D_{7}	γ_{4}	15778.4	-	
	D_{8}	γ_{s}	15813.0	-	
${ }^{5} \mathrm{~S}_{2},{ }^{s} \mathrm{~F}_{4}$	E_{1}	γ_{3}	18593.6	18590.0	-3.6
	E_{2}	γ_{1}	18600.8	18601.0	0.2
	E_{3}	γ_{5}	18644.9	18646.6	1.7
	E_{4}	γ_{4}	18648.0	-	
	E_{5}	γ_{3}	18668.5		
	E_{6}	γ_{5}	18729.8	18725.6	-4.2
	E_{7}	γ_{1}	18740.9	18744.3	3.4
	E_{8}	γ_{4}	18790.9	--	
	E_{9}	γ_{2}	18805.2	18808.5	
	E_{10}	γ_{s}	18848.1	18848.0	-0.1
	E_{11}	γ_{1}	18872.0	18870.5	-1.5

Table 7.9: $\quad \mathrm{C}_{4 \mathrm{v}}$ symmetry crystal-field level fits to the ${ }^{5} \mathrm{I}_{8}(\mathrm{Z}),{ }^{5} \mathrm{I}_{7}(\mathrm{Y}),{ }^{5} \mathrm{~F}_{5}(\mathrm{D}),{ }^{5} \mathrm{~S}_{2}(\mathrm{E})$ and ${ }^{5} \mathrm{~F}_{4}(\mathrm{E})$ multiplets of the CB1 centre in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

| Multiplet $_{5}$ | $\mathrm{~S}_{8}$ | State | Symmetry | Calculated | Observed |
| :---: | :---: | :---: | :---: | :---: | :---: | Difference

Table 7.10: Free ion and crystal-field parameters for the modified $C_{4 v}$ symmetry centres in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals (quantities in cm^{-1}).

Parameter	CS1 centre	CB1 centre
F^{2}	96887 ± 29	96796 ± 31
$\mathrm{~F}^{4}$	66522 ± 17	66553 ± 18
$\mathrm{~F}^{6}$	49005 ± 43	48786 ± 46
ζ	2143 ± 2	2142 ± 2
$\mathrm{~B}_{\mathrm{A}}^{2}$	508 ± 6	428 ± 7
$\mathrm{~B}_{\mathrm{A}}^{4}$	367 ± 7	356 ± 7
$\mathrm{~B}_{\mathrm{A}}^{6}$	376 ± 5	370 ± 6
$\mathrm{~B}_{\mathrm{C}}^{4}$	-1169 ± 6	-1196 ± 7
$\mathrm{~B}_{\mathrm{C}}^{6}$	557 ± 3	556 ± 3
n	30	30
σ	2.6	2.8

Table 7.11. $\quad \mathrm{C}_{4 \mathrm{v}}$ symmetry crystal field level fits to the ${ }^{5} \mathrm{I}_{8}(\mathrm{Z}),{ }^{5} \mathrm{I}_{7}(\mathrm{Y}),{ }^{5} \mathrm{~F}_{5}(\mathrm{D}),{ }^{5} \mathrm{~S}_{2}(\mathrm{E})$, ${ }^{4} \mathrm{~F}_{4}(\mathrm{E})$ and ${ }^{5} \mathrm{~F}_{3}(\mathrm{~F})$ multiplets of the SC 1 centre in $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{3}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

${ }_{{ }_{5}^{5} \mathrm{I}_{8}}^{\text {Multiplet }}$	State	Symmetry	Calculated	Observed	Difference
	Z_{1}	γ_{1}	-3.4	0.0	3.4
	Z_{2}	γ_{2}	-1.8	2.5	4.3
	Z_{3}	γ_{5}	44.0	41.5	-2.5
	Z_{4}	γ_{3}	65.7	61.0	-4.7
	Z_{5}	γ_{5}	87.3	80.0	-7.3
	Z_{6}	γ_{4}	108.4	--	
	Z_{7}	γ_{1}	278.5	279.0	0.5
	Z_{8}	γ_{2}	283.8	282.0	-1.8
	Z9	γ_{3}	375.3	372.0	-3.3
	Z_{10}	γ_{5}	386.7	389.0	2.3
	Z_{11}	γ_{1}	398.7	401.0	2.3
	Z_{12}^{12}	γ_{4}	430.9	430.0	-0.9
	Z_{13}	γ_{5}	442.5	445.5	3.0
${ }^{5} \mathrm{I}_{7}$	Y_{1}	γ_{s}	5217.3	5217.0	-0.3
	Y_{2}	γ_{2}	5216.6	-	
	Y_{3}	γ_{3}	5232.3	5231.5	-0.8
	Y_{4}	γ_{5}	5245.0	5246.0	1.0
	Y_{5}	γ_{4}	5249.6		
	Y_{6}	γ_{1}	5247.9	5249.5	1.6
	Y_{7}	γ_{s}	5292.2	5289.0	-3.2
	Y_{8}	γ_{3}	5300.7	5302.5	1.8
	Y_{9}	γ_{4}	5339.2	-	
	Y_{10}	γ_{5}	5344.9	5345.0	0.1
	Y_{11}	γ_{2}	5350.2	.	
${ }^{5} \mathrm{~F}_{5}$	D_{1}	γ_{5}	15587.4	15590.0	2.6
	D_{2}	γ_{3}	15591.0	-	
	D_{3}	γ_{2}	15591.8	15594.5	2.7
	D_{4}	γ_{1}	15625.8	15630.0	4.2
	D_{5}	γ_{s}	15735.2	15735.4	0.2
	D_{6}	γ_{2}	15747.6	15742.4	-5.2
	D_{7}	γ_{4}	15751.1	-7707	
	D_{8}	γ_{5}	15769.0	15767.7	-1.3
${ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}$	E_{1}	γ_{3}	18578.6		-4.1
	E_{2}	γ_{1}	18582.1	18579.9	-2.2
	E_{3}	γ_{s}	18624.2	18626.4	2.2
	E_{4}	γ_{4}	18627.3	-	
	E_{5}	γ_{3}	18668.9	18672.0	3.1
	E_{6}	γ_{5}	18726.1	18725.5	-0.6
	E_{7}	γ_{1}	18719.6	18725.1	5.5
	E_{8}	γ_{2}	18760.5	18757.2	-3.3
	$\mathrm{E}_{\mathrm{E}_{9}}$	γ_{4}	18780.3	188173	
	E_{10}	$\gamma_{\text {s }}$	18817.9	18817.3	-0.6
	E_{11}	γ_{1}	18836.1	18831.0	-5.1
${ }^{5} \mathrm{~F}_{3}$	F_{1}	γ_{2}	20735.2	20736.0	0.8
	F_{2}	γ_{5}	20748.7	20750.0	1.3
	F_{3}	γ_{3}	20829.1	-	
	F_{4}	γ_{4}	20849.8	-	
	F_{5}	γ_{5}	20879.8	-	

Table 7.12: $\quad \mathrm{C}_{4 v}$ symmetry crystal-field level fits to the ${ }^{5} \mathrm{I}_{8}(\mathrm{Z}),{ }^{5} \mathrm{I}_{7}(\mathrm{Y}),{ }^{5} \mathrm{~F}_{5}(\mathrm{D}),{ }^{5} \mathrm{~S}_{2}(\mathrm{E})$, ${ }^{5} \mathrm{~F}_{4}(\mathrm{E})$ and ${ }^{5} \mathrm{~F}_{3}(\mathrm{~F})$ multiplets of the SB 1 centre in $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

Multiplet	State	Symmetry	Calculated	Observed	Difference
${ }^{5} \mathrm{I}_{8}$	Z_{1}	γ_{1}	-1.1	0.0	1.1
	Z_{2}	γ_{2}	1.0	2.5	1.5
	Z_{3}	γ_{5}	36.9	37.0	0.1
	Z_{4}	γ_{3}	54.7	54.0	-0.7
	Z_{5}	γ_{5}	82.6	76.0	-6.6
	Z_{6}	γ_{4}	97.2	91.0	-6.2
	Z_{7}	γ_{1}	293.3	291.0	-2.1
	Z_{8}	γ_{2}	300.9	305.0	4.1
	Z9	γ_{3}	376.0	378.0	2.0
	Z_{10}	γ_{5}	382.4	383.5	1.1
	Z_{11}	γ_{1}	391.5	394.0	2.5
	Z_{12}	γ_{4}	431.9	430.0	-1.9
	Z_{13}	γ_{5}	443.9	445.5	1.6
${ }^{5} \mathrm{I}_{7}$	Y_{1}	γ_{5}	5214.4	5215.5	1.1
	Y_{2}	γ_{2}	5212.5		
	Y_{3}	γ_{3}	5230.0	5230.5	0.5
	Y_{4}	γ_{s}	5246.9	5245.5	-1.4
	Y_{5}	γ_{4}	5250.9		
	Y_{6}	γ_{1}	5247.5	5247.0	-0.5
	Y_{7}	γ_{5}	5299.9	5305.0	5.1
	Y_{8}	γ_{3}	5301.4	5301.5	0.1
	Y_{9}	γ_{4}	5340.5	- 531.5	
	Y_{10}	γ_{5}	5344.9	5341.5	-3.4
	Y_{11}	γ_{2}		5	
${ }^{5} \mathrm{~F}_{5}$	D_{1}	γ_{5}	15583.0	15588.0	5.0
	D_{2}	γ_{3}	15587.9	-	
	D_{3}	γ_{2}	15585.6	15593.0	7.4
	D_{4}	γ_{1}	15619.7	15624.0	4.3
	D_{5}	γ_{5}	15736.6	15733.6	-3.0
	D_{6}	γ_{2}	15756.2	15750.5	-5.7
	D_{7}	γ_{4}	15757.3	-	
	D_{8}	γ_{5}	15770.4	15770.9	0.5
${ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{~F}_{4}$			18575.6		-4.6
	E_{2}	γ_{1}	18578.6	18575.8	-2.8
	E_{3}	γ_{5}	18623.8	18625.2	1.4
	E_{4}	γ_{4}	18626.5		
	E_{5}	γ_{3}	18671.4	18671.0	-0.4
	E_{6}	γ_{5}	18728.4	18723.8	-4.6
	E_{7}	γ_{1}	18715.6	18722.1	6.5
	E_{8}	γ_{2}	18750.5	18747.8	-2.7
	E_{9}	γ_{4}	18787.2		
	E_{10}	γ_{s}	18815.3	18815.0	-0.3
	E_{11}	γ_{1}	18834.7	18829.1	-5.6
${ }^{5} \mathrm{~F}_{3}$	F_{1}	γ_{2}	20737.2	20737.0	-0.2
	F_{2}	γ_{s}	20740.7	20746.0	5.3
	F_{3}	γ_{3}	20828.4	-	
	F F F	γ_{4} γ_{5}	20852.5 20878.8	-	
	F_{5}	γ_{5}	20878.8	-	

Table 7.13: \quad Free ion and crystal-field parameters for the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres in $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals (quantities in cm^{-1}).

Parameter	SC1 centre	SB1 centre
F^{2}	96129 ± 26	96272 ± 30
$\mathrm{~F}^{4}$	66844 ± 19	66830 ± 22
$\mathrm{~F}^{6}$	47148 ± 37	47487 ± 43
ζ	2140 ± 2	2141 ± 3
$\mathrm{~B}_{\mathrm{A}}^{2}$	235 ± 9	153 ± 10
$\mathrm{~B}_{\mathrm{A}}^{4}$	261 ± 10	271 ± 10
$\mathrm{~B}_{\mathrm{A}}^{6}$	287 ± 7	229 ± 8
$\mathrm{~B}_{\mathrm{C}}^{4}$	-1119 ± 8	-1185 ± 8
$\mathrm{~B}_{\mathrm{C}}^{6}$	502 ± 4	509 ± 5
n	36	37
σ	3.6	4.2

Figure 7.1: Relative magnitudes of the crystal-field parameters for the $\mathrm{A}, \mathrm{CS} 1$ and $\mathrm{CB1}$ centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ type crystals.

Figure 7.2: \quad Relative magnitudes of the crystal-field parameters for the $\mathrm{A}, \mathrm{SC1}$ and $\mathrm{SB1}$ centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ type crystals.
respectively.
In general, there is a decrease in the second degree axial crystal-field parameter in going from the A centre to the modified centres, with the Ba^{2+} centre having the lowest values in both CaF_{2} and SrF_{2}. The cubic part of the field (which is derived from the eight neighbouring F^{-}ions) is the same in the parent and modified centres while the axial components are markedly altered in the modified centres. This is to be expected as, from the $\mathrm{C}_{4 \mathrm{v}}$ model assigned to these centres, the dopant cation is most likely to have some effect on the interstitial F^{-}ion but, being two lattice spacings away from the Ho^{3+} ion, is unlikely to have any effect on the eight F^{-}ions surrounding the Ho^{3+} ion, which give the main contribution to the cubic crystal field.

For all centres, irrep labels determined from the crystal-field analysis (Tables 7.8, 7.9, 7.11 and 7.12) are in agreement with those from polarisation studies (Tables 4.6, 4.11, 5.5 and 5.6).

7.2 The Dimer and \mathbf{M} (single ion) Centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ Crystals

Pr^{3+} and Nd^{3+} are among the most widely studied rare-earths in CsCdBr_{3}. For Pr^{3+} [102], it was found that the octahedral part of the field at the rare-earth ion site was appreciably larger than the axial part. It was concluded that the rare-earth ions in CsCdBr_{3} crystals were in a mainly octahedral field with an additional weak trigonal distortion. For Nd^{3+} [10] a crystal-field analysis of the 48 levels derived gave a standard deviation of $15 \mathrm{~cm}^{-1}$, although differences were up to $117 \mathrm{~cm}^{-1}$ between observed and calculated energies for individual levels. The crystal field of the Nd^{3+} ions of the dimer centre was concluded to be largely cubic.

For the Ho^{3+} dimer centre here, 86 levels were used for the crystal-field fit which gave a standard deviation of $21 \mathrm{~cm}^{-1}$, with differences of up to $50 \mathrm{~cm}^{-1}$ between the observed and calculated energies for individual levels. For the M (single ion) centre a standard deviation of $16 \mathrm{~cm}^{-1}$ was obtained for 34 levels.

The levels are presented in Table 7.14 for the dimer centre and Table 7.15 for the M centre. Fewer levels were available for the M centre as it does not exhibit any upconversion fluorescence which precludes identification of levels of higher energy multiplets than the E multiplet. For the M centre, there was not much difference in the crystal-field fit resulting from setting α, β and γ to either the LaCl_{3} values or the dimer centre values, but the dimer centre values were chosen for the results presented here, for consistency with that centre. Parameters for both centres are presented in Table 7.16.

There is little change in the parameters between the dimer and the M single ion centre, except for the fourth degree axial and the sixth degree cubic crystal-field parameters, $\mathrm{B}_{\mathrm{A}}^{4}$ and $\mathrm{B}_{\mathrm{C}}^{4}$, which for the M centre are larger than those for the principal dimer centre.

From the possible model configurations of the M centre given in Chapter 6 (Section 6.2.2), this M centre is either of the form $\mathrm{Cd}^{2+}-\mathrm{Ho}^{3+}-\mathrm{Cd}^{2+}-\mathrm{Cd}^{2+}$ with the second Ho^{3+} ion further away along the chain, or of the form $\mathrm{Cd}^{2+}-\mathrm{Ho}^{3+}-\mathrm{M}^{+}-\mathrm{Cd}^{2+}$ where M^{+}is a monovalent ion. In either configuration , the Ho^{3+} ion does not have any neighbouring vacant site and this accounts for the axial component of the crystal field being stronger for the M centre, than for the dimer centre where there is a neighbouring vacant site. For the dimer centre, the presence of the vacant site also induces the repositioning of the six Br^{-}ions around each Ho^{3+} ion. The Br^{-}ions in the dimer centre are likely to be further out spatially compared to those around the Ho^{3+} ion of the M centre, thereby causing some reduction in the cubic crystal field at the Ho^{3+} site in the dimer centre. Both these effects are manifested in the following two observations made about the energy levels :-
(i) levels for the dimer centre have somewhat lower energies than for the single ion centre;
and (ii) the observed low symmetry crystal-field splittings are larger for the dimer centre than for the M single ion centre.

Table 7.14: $\quad C_{3 v}$ symmetry crystal-field level fits to 18 multiplets of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

Multiplet	State	Symmetry	Calculated	Observed	Difference
${ }^{5} \mathrm{I}_{8}(\mathrm{Z})$	Z_{1}	γ_{3}	10.2	0	-10.2
	Z_{2}	γ_{2}	36.1	5.5	-30.6
	Z_{3}	γ_{3}	19.6	9.0	-10.6
	Z_{4}	γ_{1}	55.3	26.0	-29.3
	Z_{5}	γ_{3}	135.1	155.0	19.9
	Z_{6}	γ_{3}	167.1	162.0	-5.1
	Z_{7}	γ_{3}	208.5	178.0	-30.5
	Z_{8}	γ_{1}	175.5	188.5	13.0
	Z9	γ_{1}	190.6	190.5	-0.1
	Z_{10}	γ_{2}	226.1	217.0	-9.1
	Z_{11}	γ_{3}	224.8	237.0	12.2
${ }^{5} \mathrm{I}_{7}(\mathrm{Y})$	Y_{1}	γ_{3}	5109.7	5092.8	-16.9
	Y_{2}	γ_{1}	5114.2	5095.0	-19.2
	Y_{3}	γ_{3}	5115.6	5166.0	50.4
	Y_{4}	γ_{2}	5131.0	5174.0	43.0
	Y_{5}	γ_{2}	5193.3	5182.5	-10.8
	Y_{6}	γ_{3}	5170.6	5187.0	16.4
	Y_{7}	γ_{3}	5221.1	5195.5	-22.6
	Y_{8}	γ_{2}	5206.7	5215.0	8.3
	Y_{9}	γ_{3}	5234.8	5236.5	1.7
	Y_{10}	γ_{1}			45.8
${ }^{5} \mathrm{I}_{6}(\mathrm{~A})$	A_{1}		8617.1	8595.5	-21.6
	A_{2}	γ_{3}	8621.4	8606.0	-15.4
	A_{3}	γ_{2}	8619.8	8624.5	4.7
	A_{4}	γ_{1}	8646.2	8641.0	-5.2
	A_{5}	γ_{3}	8634.9	8670.5	. 35.6
	A_{6}	γ_{3}	8701.7	8681.5	-20.2
	A_{7}	γ_{2}	8687.1	8708.0	20.9
	A_{8}	γ_{3}	8721.6	8735.5	13.9
	A_{9}	γ_{1}	8729.7	8768.5	38.8
${ }^{5} \mathrm{I}_{5}(\mathrm{~B})$	B_{1}	γ_{2}	11170.5	11164.0	-6.5
	B_{2}	γ_{3}	11181.5	11171.5	-10.0
	B_{3}	γ_{3}	11192.6	11191.5	-1.1
	B_{4}	γ_{3}	11225.1	11221.5	-3.6
	B_{s}	γ_{2}	11238.4	11227.5	-10.9
	B_{6}	γ_{3}	11259.3	11248.5	-10.8
	B_{7}	γ_{1}	11269.7	-	
${ }^{5} \mathrm{I}_{4}$ (C)	C_{1}			13215.5	31.0
	C_{2}	γ_{2}	13230.9	13221.0	-9.9
	C_{3}	γ_{1}	13252.6	-	
	C_{4}	γ_{3}	13282.8	- 33380	
	C_{5}	γ_{1}	13365.2	13338.0	-27.2
	C_{6}	γ_{3}	13366.3	13369.5	3.2

Table 7.14 (p.2) cont....

Multiplet	State	Symmetry	Calculated	Observed	Difference
${ }^{5} \mathrm{~F}_{5}(\mathrm{D})$	D_{1}	γ_{3}	15322.8	15307.5	-15.3
	D_{2}	γ_{2}	15312.4	15314.5	2.1
	D_{3}	γ_{3}	15359.5	15341.5	-18.0
	D_{4}	γ_{1}	15386.3	15411.5	25.2
	D_{5}	γ_{3}	15455.6	15442.2	-13.4
	D_{6}	γ_{3}	15476.5	15471.0	-5.5
	D_{7}	γ_{2}	15456.8	15483.0	26.2
${ }^{5} \mathrm{~S}_{2}(\mathrm{E})$	E_{1}	γ_{3}	18317.9	18315.2	-2.7
	E_{2}	γ_{1}	18327.0	18340.5	13.5
	E_{3}	γ_{3}	18332.2	18342.5	10.3
${ }^{5} \mathrm{~F}_{4}(\mathrm{E})$	E_{4}	γ_{3}	18416.2	18416.3	0.1
	E_{5}	γ_{3}	18438.2	18434.9	-3.3
	E_{6}	γ_{1}	18396.3	18439.2	42.9
	E_{7}	γ_{2}	18439.4	18443.1	3.7
	E_{8}	γ_{1}	18480.2	18448.2	-32.0
	E_{9}	γ_{3}	18481.2	18457.2	-24.0
${ }^{5} \mathrm{~F}_{3}(\mathrm{~F})$	F_{1}	γ_{2}	20401.2	20390.0	-11.2
	F_{2}	γ_{3}	20467.7	20435.0	32.7
	F_{3}	γ_{3}	20508.3	-	
	F_{4}	γ_{1}	20529.6	-	
	F_{5}	γ_{2}	20563.3	-	
${ }^{3} \mathrm{~K}_{8}(\mathrm{H})$	H_{1}	γ_{3}	21075.6	21076.5	0.9
	H_{2}	γ_{1}	21076.1	21079.5	3.4
	H_{3}	γ_{3}	21081.3	21083.5	2.2
	H_{4}	γ_{1}	21089.2	-	
	H_{5}	γ_{1}	21094.3	-	
	H_{6}	γ_{3}	21099.1	21096.5	-2.6
	H_{7}	γ_{3}	21112.8	-	
	H_{8}	γ_{2}	21141.0	-	
	H_{9}	γ_{2}	21151.5	-	
	H_{10}	γ_{3}	21156.4	-	
	H_{11}	γ_{3}	21159.1	-	
${ }^{5} \mathrm{G}_{6}(\mathrm{I})$	I_{1}	γ_{3}	21729.5	21727.5	-2.0
	I_{2}	γ_{2}	21716.3	21738.0	21.7
	I_{3}	γ_{3}	21755.5	-	
	I_{4}	γ_{2}	21758.9	-	
	I_{5}	γ_{1}	21805.4	-	
	I_{6}	γ_{1}	21856.3	-	
	I_{7}	γ_{3}	21898.9	-	
	I_{8}	γ_{3}	21928.7	-	
	I_{9}	γ_{1}	21934.8	-	
${ }^{5} \mathrm{G}_{5}(\mathrm{~J})$		γ_{3}			-26.4
	J_{2}	γ_{2}	23677.2	23675.5	-1.7
	J_{3}	γ_{3} γ_{1}	23703.3	23684.0	-19.3
	J_{5}	γ_{2}	23748.1	-	
	J_{6}	γ_{3}	23765.2	-	
	J_{7}	γ_{3}	23783.1	-	

Table 7.14 (p.3) cont....

Multiplet	State	Symmetry	Calculated	Observed	Difference
${ }^{5} \mathrm{G}_{4}(\mathrm{~K})$	K_{1}	γ_{3}	25577.7	25597.0	19.3
	K_{2}	γ_{1}	25541.7	-	
	K_{3}	γ_{3}	25609.7	25626.5	16.8
	K_{4}	γ_{2}	25622.1	-	
	K_{5}	γ_{3}	25628.9	25637.5	8.6
	K_{6}	γ_{1}	25629.8	-	
${ }^{3} \mathrm{H}_{5}(\mathrm{M})$	M_{1}	γ_{3}	27242.4	27247.5	5.1
	M_{2}	γ_{1}	27258.3	27251.5	-6.8
	M_{3}	γ_{3}	27285.7	-	
	M_{4}	γ_{3}	27323.7	-	
	M_{5}	γ_{2}	27341.0	-	
	M_{6}	γ_{3}	27355.1	-	
	M_{7}	γ_{2}	27363.5	-	
${ }^{5} \mathrm{G}_{3}(\mathrm{O})$	O_{1}	γ_{3}	28196.5	28214.0	17.5
	O_{2} O_{3}	γ_{1} γ_{3}	28214.1	-	
	O_{4}	γ_{2}	28226.4	-	
	O_{5}	γ_{2}	28331.4	-	
${ }^{3} \mathrm{~K}_{6}(\mathrm{P})$	P_{1}	γ_{1}	29765.5	29748.5	-17.0
	P_{2}	γ_{3}	29774.3	29758.0	-16.3
	P_{3}	γ_{3}	29778.9	29769.0	-9.9
	P_{4}	γ_{2}	29785.6	29786.0	0.4
	P_{5}	γ_{2}	29802.4	29806.5	4.1
	P_{6}	γ_{3}	29804.6	-	
	P_{7}	γ_{1}	29814.5	-	
	P_{8}	γ_{3}	29816.6	-	
	P_{9}	γ_{1}	29832.2	-	
${ }^{3} \mathrm{D}_{2}\left(\mathrm{P}^{\prime}\right)$	P_{1}^{\prime}	γ_{1}	30551.0	30546.0	-5.0
	P_{2}	γ_{3}	30573.2	30564.5	-8.7
	P_{3}^{\prime}	γ_{3}	30594.0	-	
${ }^{3} \mathrm{D}_{3}(\mathrm{Q})$	Q_{1}	γ_{2}	32812.8	32844.0	31.2
	Q_{2}	γ_{3}	32845.8	32847.5	1.7
	Q_{3}	γ_{1}	32868.7	32866.0	-2.7
	Q_{4}	γ_{3}	32881.0	32894.0	13.0
	Q	γ_{2}	32948.1	-	
${ }^{3} \mathrm{~F}_{2}(\mathrm{U})$			35511.9	35499.0	-12.9
	U_{2}	γ_{1}	35523.6	35522.5	-1.1
	U_{3}	γ_{3}	35591.5	-	

Table 7.15: $\quad \mathrm{C}_{3 v}$ symmetry crystal-field level fits to the ${ }^{5} \mathrm{I}_{8}(\mathrm{Z}),{ }^{5} \mathrm{I}_{7}(\mathrm{Y}),{ }^{5} \mathrm{~S}_{2}(\mathrm{E})$, and ${ }^{5} \mathrm{~F}_{4}(\mathrm{E})$ multiplets of the M single ion centre of $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals. All quantities are in cm^{-1} in air.

Multiplet	State	Symmetry	Calculated	Observed	Difference
${ }^{5} \mathrm{I}_{8}$	Z_{1}	γ_{3}	-3.5	0.0	-3.5
	Z_{2}	γ_{2}	22.6	7.5	-15.1
	Z_{3}	γ_{3}	22.1	10.0	-12.1
	Z_{4}	γ_{1}	27.4	32.5	5.1
	Z_{5}	γ_{3}	197.1	197.5	0.4
	Z_{6}	γ_{3}	211.9	204.5	-7.4
	Z_{7}	γ_{3}	233.5	215.5	-18.0
	Z_{8}	γ_{1}	212.1	233.5	21.4
	Z9	γ_{1}	221.2	241.0	19.8
	Z_{10}	γ_{2}	229.9	247.0	17.1
	Z_{11}	γ_{3}	268.4	269.0	0.6
${ }^{5} \mathrm{I}_{7}$	Y_{1}	γ_{1}	5105.3	5093.0	-12.3
	Y_{2}	γ_{3}	5114.3	5102.0	-12.3
	Y_{3}	γ_{2}	5107.2	5105.0	-2.2
	Y_{4}	γ_{3}	5123.5	5155.0	31.5
	Y_{5}	γ_{2}	5199.5	5183.0	-16.5
	Y_{6}	γ_{3}	5202.1	5208.5	6.4
	Y_{7}	γ_{2}	5214.1	5213.0	-1.1
	Y_{8}	γ_{3}	5235.7	5220.5	-15.2
	Y_{9}	γ_{3}	5257.7	5249.5	-8.2
	Y_{10}	γ_{1}	5262.6	5291.5	28.9
${ }^{5} \mathrm{~F}_{5}$	D_{1}	γ_{3}	15308.4	15309.5	1.1
	D_{2}	γ_{2}	15294.0	15318.1	24.1
	D_{3}	γ_{3}	15353.6	15348.8	-4.8
	D_{4}	γ_{1}	15342.5	-	
	D_{5}	γ_{3}	15471.1	15470.8	0.3
	D_{6}	γ_{2}	15487.9	15481.8	-6.1
	D_{7}	γ_{3}	15515.6	15497.9	-17.7
${ }^{5} \mathrm{~S}_{2}$	E_{1}	γ_{3}	18330.2	18320.1	-10.1
	E_{2}	γ_{1}	18321.1	-	
	E_{3}	γ_{3}	18345.6	18350.9	5.3
${ }^{5} \mathrm{~F}_{4}$	E_{4}	γ_{3}	18413.9	18428.3	14.4
	E_{5}	γ_{1}	18381.7		
	E_{6}	γ_{2}	18438.7	18437.0	-1.7
	E_{7}	γ_{3}	18443.8	18440.8	-3.0
	E_{8}	γ_{3}	18464.1	18461.7	-2.4
	E_{9}	γ_{1}	18464.4	18465.3	0.9

Table 7.16: \quad Free ion and crystal-field parameters for the dimer and M single ion centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals (quantities in cm^{-1}).

Parameter	Dimer Centre	M Single Ion Centre
F^{2}	93661 ± 50	93734 ± 167
F^{4}	62833 ± 112	63676 ± 111
F^{6}	45144 ± 82	46242 ± 244
α	9 ± 4	9*
β	-516 ± 21	-516*
γ	2784 ± 50	2784*
ξ	2136 ± 6	2135 ± 12
$\mathrm{B}_{\mathrm{A}}^{2}$	443 ± 39	387 ± 39
$\mathrm{B}_{\mathrm{A}}^{4}$	-674 ± 42	-1317 ± 39
BA^{6}	412 ± 41	387 ± 33
$\hat{B}_{\text {A }}^{6}$	30 ± 37	74 ± 38
BC^{4}	482 ± 33	384 ± 36
B_{6}^{6}	24 ± 34	-171 ± 32
n	86	34
σ	21	16

* α, β and γ were not varied for the M single ion centre.

Table 7.17: \quad Free ion and crystal-field parameters for the Nd^{3+} and Er^{3+} dimer centres in CsCdBr_{3} crystals (quantities in cm^{-1}).

Parameter	$\mathbf{N d}^{\mathbf{3 +}}$	$\mathbf{E r}^{\mathbf{3 +}}$
F^{2}	70807	97772 ± 67
$\mathrm{~F}^{4}$	51875	70366 ± 80
$\mathrm{~F}^{6}$	35144	48154 ± 82
α	21.9	17.7
β	-670	-582
γ	1586	1800
ξ	875	2363 ± 8
$\mathrm{~B}_{\mathrm{A}}^{2}$	-302	-148 ± 52
$\mathrm{~B}_{\mathrm{A}}^{4}$	-1474	-992 ± 53
$\mathrm{~B}_{\mathrm{A}}^{6}$	206	254 ± 46
$\hat{\mathrm{~B}}_{\mathrm{A}}^{6}$	392	101 ± 53
$\mathrm{~B}_{\mathrm{C}}^{4}$	496	472 ± 44
$\mathrm{~B}_{\mathrm{C}}^{6}$	8	14 ± 39
n	48	46
σ	15	22

Parameters for Nd^{3+} were derived from Fit B of Barthem, Buisson and Cone [10] by using equations 2.8 (c).
(i) would be a direct result of a more expanded arrangement of the Br^{-}ligands around the Ho^{3+} ion of the dimer centre, giving reduced Coulomb and crystal-field interactions. As Cd^{2+} is larger than Ho^{3+} (or any other rare-earth), it is possible that the Ho^{3+} ion is not centrally placed in the same way as the Cd^{2+}, but is slightly shifted off centre and probably off the c axis as well. Such a shift would be larger for the Ho^{3+} ion of the dimer centre that for the Ho^{3+} ion of the M single ion centre because of the vacancy, hence the larger low symmetry crystal-field splittings observed for the dimer centre ((ii) above). The Ho^{3+} ions in both centres are not in sites of exact $\mathrm{C}_{3 \mathrm{v}}$ symmetry.

The crystal-field parameters for the Nd^{3+} dimer centre derived from those of Barthem et al. [10] by using equations 2.8(c), and those for the Er^{3+} dimer centre obtained from a calculation done here using the energy level data of Cockroft et al. [29] are presented in Table 7.17.

From comparison of the parameters for the $\mathrm{Ho}^{3+}, \mathrm{Nd}^{3+}$ and Er^{3+} dimer centre crystal-field parameters (Tables 7.16 and 7.17), it can be seen that the cubic crystal-field parameters are comparable to the axial crystal-field parameters for all three centres. This is contrary to the conclusion made by Barthem et al. [10] that the crystal-field at the Nd^{3+} ion site is approximately cubic. In their calculations, the crystal-field Hamiltonian used is that of equation 2.8(b), and for this Hamiltonian, the crystal field would be largely cubic if the relations

$$
\begin{aligned}
& \mathrm{B}_{3}^{4}=-1.195 \mathrm{~B}_{0}^{4} \\
& \mathrm{~B}_{3}^{6}=0.604 \mathrm{~B}_{0}^{6} \\
& \mathrm{~B}_{6}^{6}=0.633 \mathrm{~B}_{0}^{6}
\end{aligned}
$$

hold for the crystal-field parameters obtained [54]. From the crystal-field parameters of their Fit B [10], the following relations are obtained

$$
\begin{aligned}
& \mathrm{B}_{3}^{4}=-1.237 \mathrm{~B}_{0}^{4} \\
& \mathrm{~B}_{3}^{6}=0.638 \mathrm{~B}_{0}^{6} \\
& \mathrm{~B}_{6}^{6}=0.140 \mathrm{~B}_{0}^{6} .
\end{aligned}
$$

However, parameters constrained to satisfy the cubic symmetry relations of

Hutchings [54] above, (Fit C of Barthem et al. [10]) were also found to give a satisfactory crystal-field fit, leading to the conclusion that the crystal-field at the Nd^{3+} ion site is largely cubic.

The results obtained here (Tables 7.16 and 7.17) show the cubic crystal-field parameters being comparable to the axial crystal-field parameters, and the crystal-field at the $\mathrm{Ho}^{3+}, \mathrm{Nd}^{3+}$ and Er^{3+} ion sites cannot be said to be largely cubic.

CHAPTER 8

FLUORESCENCE LIFETIME MEASUREMENTS

In addition to the spectroscopic results presented in Chapters 4,5 and 6, fluorescence lifetimes were measured for the Ho^{3+} centres in the CaF_{2} and SrF_{2} type crystals, and for the Ho^{3+} dimer centre in CsCdBr_{3}. Fluorescence lifetime measurements are important for evaluating ion-lattice and ion-ion interactions for particular host and dopant systems. Such knowledge is required for an understanding of fluorescence processes and relaxation mechanisms for rare-earth ions in excited electronic states.

The fluorescence lifetimes measured are determined by the combined effects of the two main processes of radiative and non-radiative decay. The latter includes relaxation by phonon emission and energy transfer processes resulting from ion-ion coupling. Radiative relaxation includes pure electronic and phonon-assisted emission transitions. These processes depend on several aspects, including the particular ion and lattice involved, magnitudes of the various energy gaps, the temperature and the nature of coupling between ions.

The general expression for the observed transient of an excited state a is of the form :

$$
\frac{1}{\tau_{a b}}=\sum_{b} W_{a b}^{R}+\sum_{b} W_{a b}^{N R},
$$

for transitions from a to all final states b. Here $\tau_{a b}$ is the measured lifetime, $W_{a b}^{R}$ is the radiative decay probability and $W_{a b}^{N R}$ is the non-radiative probability. $W_{a b}^{R}$ and $W_{a b}^{N R}$ can vary from being of comparable magnitude to being widely different. For systems of essentially uncoupled ions, such as dilute systems, the contribution to $\mathrm{W}_{\mathrm{ab}}^{\mathrm{NR}}$ is wholly from multiphonon emission processes.

The least squares fitting routine GUSCOR used to fit the fluorescence lifetime transients observed here was written by Dr. J.B. Ward of the Department.

Depending on the shape of the transients observed, one of two expressions
could be used to obtain either just the fluorescence decay time of a state or both the fluorescence rise and decay times.

Transients without a rise time were fitted to the expression

$$
\mathrm{I}=\mathrm{A}+\mathrm{Be}^{-\mathrm{t} / \mathrm{d}},
$$

where d is the lifetime of the particular multiplet and A and B are the base-line and amplitude parameters respectively.

Transients showing a rise time were fitted to the expression

$$
I=A+B\left(e^{-t / d}-e^{-t / f}\right)
$$

where d and f are the fluorescence decay and rise times respectively.
Expression 8.3 is applicable to the upconversion fluorescence transients observed for the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals while expression 8.2 is for transients obtained from direct excitation of the respective multiplets in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}, \mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals.

8.1 Centres in CaF_{2} and SrF_{2} Type Crystals

In 1978, fluorescence lifetime measurements for the A and B centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$, for Ho^{3+} concentrations in the range $0.01-0.1 \%$ and for temperatures varied between 80 K and 573 K were reported [71]. As expected, the fluorescence lifetimes were found to decrease with increase in both the Ho^{3+} concentration and the temperature. Later, Seelbinder and Wright [117] presented low temperature $(10 \mathrm{~K})$ fluorescence lifetime measurements for $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals. Fluorescence decay times for the D, E and F multiplets for both the A and B centres, and for the D multiplet of the C, D and E cluster centres were reported. More recently, Tang et al. [123] used fluorescence lifetime measurements to distinguish between transitions for the A and B centres in a laser excitation study of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals at 77 K .

Riseberg and Moos [113] measured multi-phonon relaxation rates for the F and E multiplets of Ho^{3+} in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(1 \%)$ crystals, among other systems.

Multi-phonon relaxation processes were found to depend on the crystal host (both through the respective phonon cut-off frequency and magnitude of the static crystal field), the relevant energy gaps between the multiplets and the temperature. The spontaneous multi-phonon emission transition rate was found to have an exponential dependence on the energy gap separating an emitting multiplet from the next lower energy multiplet.

8.1.1 Temporal results

Fluorescence lifetimes measured here for the E and D multiplets of the A and B centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ are in exact agreement with those obtained by Seelbinder and Wright for their 0.01% doped crystals. For the E multiplet, the A centre has a longer fluorescence lifetime than the B centre, while for the D multiplet the B centre has the longer lifetime. The temporal transients are presented in Figure 8.1 and the corresponding fluorescence lifetimes listed in Table 8.1.

For the modified centres found in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}$ crystals, the fluorescence lifetimes are close to those measured for the A centre, indicating a parent A centre origin for the four centres CS1, CS2, CB1 and CB2. The transients are presented in Figures 8.2 and 8.3, and the resulting fluorescence decay times also listed in Table 8.1.

In $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ fluorescence lifetimes were measured for the $\mathrm{A}, \mathrm{SC} 1, \mathrm{SC} 2$ and SB1 centres while fluorescence for the B and SB2 centres was just too weak to give any reliable lifetime results. The transients for the $\mathrm{A}, \mathrm{SB1}, \mathrm{SC1}$ and SC 2 are presented in Figures 8.4 and 8.5, while the measured fluorescence lifetimes are included in Table 8.1.

The relative magnitudes of the observed fluorescence lifetimes for the E and D multiplets of the A and the respective modified centres in both CaF_{2} and SrF_{2} type crystals are shown schematically in Figures 8.6 and 8.7 respectively.

8.1.2 Dependence of fluorescence lifetimes on crystal-field parameters

The analysis here is a preliminary attempt to understand the fluorescence

Figure 8.1:
10 K temporal transients for the A and B centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) the A centre $\mathrm{E}+\mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18613.2 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$ transition at $18483.5 \mathrm{~cm}^{-1}$;
(b) the B centre $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ transition at $18633.7 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{E}_{2} \rightarrow \mathrm{Z}_{2}$ transition at $18542.5 \mathrm{~cm}^{-1}$;
(c) the A centre $D \rightarrow Z$ fluorescence, with excitation of the $Z_{1} \rightarrow D_{2}$ transition at $15609.5 \mathrm{~cm}^{-1}$ and monitoring the $D_{1} \rightarrow Z_{3}$ transition at $15522.5 \mathrm{~cm}^{-1}$;
(d) the B centre $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15618.0 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{D}_{2} \rightarrow \mathrm{Z}_{3}$ transition at $15541.0 \mathrm{~cm}^{-1}$.
The solid curves give the best fits to the temporal transient data with the resulting decay times as presented in Table 8.1

Figure 8.2: $\quad 10 \mathrm{~K}$ temporal transients for the CS 1 and CS 2 centres in $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) the CS1 centre $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18601.0 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$ transition at $18490.5 \mathrm{~cm}^{-1}$;
(b) the $\operatorname{CS} 2$ centre $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18608.5 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{5}$ transition at $18485.0 \mathrm{~cm}^{-1}$;
(c) the CS 1 centre $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15663.5 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$ transition at $15530.0 \mathrm{~cm}^{-1}$;
(d) the CS2 centre $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition at $15679.0 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{D}_{1}+\mathrm{Z}_{4}$ transition $15524.0 \mathrm{~cm}^{-1}$.

Figure 8.3: $\quad 10 \mathrm{~K}$ temporal transients for the CB 1 and CB 2 centres in $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals :
(a) the CB 1 centre $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18596.6 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$ transition at $18494.0 \mathrm{~cm}^{-1}$;
(b) the CB 2 centre $\mathrm{E} \rightarrow \mathrm{Z}^{\prime}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18606.7 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{5}$ transition at $18487.5 \mathrm{~cm}^{-1}$;
(c) the CB 1 centre $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15655.5 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$ transition at $15534.5 \mathrm{~cm}^{-1}$;
(d) the CB2 centre $D \rightarrow Z$ fluorescence, with excitation of the $Z_{1} \rightarrow D_{5}$ transition at $15676.0 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{4}$ transition at $15521.0 \mathrm{~cm}^{-1}$.
The solid curves give the best fits to the temporal transient data with the resulting decay times as presented in Table 8.1
(a)
(b)

(c)
(d)
lifetime trends without attempting a detailed transition probability calculation.
In Chapter 2 (Section 2.5) it is shown that the radiative transition probability $\mathrm{W}_{\mathrm{ab}}^{\mathrm{R}}$ from a level a with wavefunction $\mid \gamma \mathrm{SLJJ}_{\mathrm{z}}>$ to all the terminating levels b whose wavefunctions are $\left|\gamma^{\prime} \mathrm{SL}^{\prime} \mathrm{J}^{\prime} \mathrm{J}^{\prime}{ }_{\mathrm{z}}\right\rangle$, is given by the expression

$$
\mathrm{W}_{\mathrm{ab}}^{\mathrm{R}} \alpha\left|\sum_{\mathrm{q}, \lambda} \underset{\text { even }}{ } \mathrm{Y}(\lambda, \mathrm{q}, \mathrm{Q})<\gamma \mathrm{SLJJ}_{z}\right| \mathrm{U}_{Q}^{(\lambda)}\left(\gamma^{\prime}\right){\gamma^{\prime}}^{\prime} \mathrm{S}^{\prime} \mathrm{J}_{z}^{\prime}>\left.\right|^{2},
$$

where $\mathrm{Y}(\lambda, \mathrm{q}, \varrho)$ includes the odd-parity crystal-field terms.
As the parameters of the odd terms in the crystal-field expansion are not known, any trends in the spontaneous emission transition probabilities, and therefore the corresponding radiative fluorescence lifetimes of the various centres are established using the same approach as used by Reeves [105], in which the following assumptions are made :
(i) for centres of the same symmetry, the wavefunctions of corresponding energy levels are almost similar;
(ii) there is direct correspondence between the even and the odd terms of the crystal-field expansion among similar centres and the parameters for the odd terms of the crystal-field expansion are scaled up or down from the even term parameters determined from the crystal-field.

The spontaneous emission transition probability is therefore proportional to the square of the appropriate even-term crystal-field parameter and, for two centres of the same symmetry, the A and CS 1 centres in CaF_{2} type crystals for example, the relative magnitude of the radiative fluorescence lifetime is given by:

$$
\frac{\tau(\mathrm{A})}{\tau(\mathrm{CS} 1)}=\left|\frac{\mathrm{B}_{a}^{\mathrm{k}}(\mathrm{CS} 1)}{\mathrm{B}_{\mathrm{q}}^{\mathrm{k}}(\mathrm{~A})}\right|^{2},
$$

where $\tau(\mathrm{A})$ and $\tau(\mathrm{CS} 1)$ are the radiative fluorescence lifetimes of the A and CS1 centres and the $\mathrm{B}_{\mathrm{q}}^{\mathrm{k}}$ are the crystal-field parameters from Chapter 7 .

This approach is no more than qualitatively valid, and can only hold for particular crystal-field parameters giving dominant contributions. So far, it has

Figure 8.4: $\quad 10 \mathrm{~K}$ temporal transients for the $\mathrm{SrF}_{2} \mathrm{~A}$ and SB 1 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals respectively:
(a) the SrF_{2} A centre $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18585.7 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$ transition at $18504.0 \mathrm{~cm}^{-1}$;
(b) the $S B 1$ centre $E \rightarrow Z$ fluorescence, with excitation of the $Z_{1} \rightarrow E_{2}$ transition at $18575.8 \mathrm{~cm}^{-1}$ and monitoring the $E_{1} \rightarrow Z_{4}$ transition at $18517.0 \mathrm{~cm}^{-1}$;
(c) the SrF_{2} A centre $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15642.3 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$ transition at $15539.5 \mathrm{~cm}^{-1}$;
(d) the $S B 1$ centre $D \rightarrow Z$ fluorescence, with excitation of the $Z_{1} \rightarrow D_{4}$ transition at $15624.0 \mathrm{~cm}^{-1}$ and monitoring the $D_{1} \rightarrow Z_{3}$ transition at $15552.0 \mathrm{~cm}^{-1}$.
The solid curves give the best fits to the temporal transient data with the resulting decay times as presented in Table 8.1

Figure 8.5: $\quad 10 \mathrm{~K}$ temporal transients for the $\mathrm{SC1}$ and SC 2 centres in $\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals :
(a) the SCl centre $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18579.9 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{E}_{1} \rightarrow \mathrm{Z}_{4}$ transition at $18513.5 \mathrm{~cm}^{-1}$;
(b) the SC 2 centre $\mathrm{E} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{2}$ transition at $18590.1 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{E}_{1}+\mathrm{Z}_{5}$ transition at $18503.5 \mathrm{~cm}^{-1}$;
(c) the SCl centre $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence, with excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15630.0 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{3}$ transition at $15548.5 \mathrm{~cm}^{-1}$;
(d) the SC2 centre $\mathrm{D} \rightarrow \mathrm{Z}_{\text {fluorescence, with excitation of the }} \mathrm{Z}_{1} \rightarrow \mathrm{D}_{4}$ transition at $15650.5 \mathrm{~cm}^{-1}$ and monitoring the $\mathrm{D}_{1}+\mathrm{Z}_{4}$ transition at $15535.0 \mathrm{~cm}^{-1}$.
The solid curves give the best fits to the temporal transient data, with the resulting decay times as presented in Table 8.1.

been found useful for analysis of the fluorescence lifetimes of the H^{-}and D^{-} charge compensated $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres in $\mathrm{Pr}^{3+}[105,106]$ and $\mathrm{Nd}^{3+}[45]$ in relation to the corresponding fluorescence lifetime for the $\mathrm{F}^{-} \mathrm{C}_{4 \mathrm{v}}$ centre. Changes in the measured fluorescence lifetimes were largely reflected in the variations in the second degree axial parameter $\mathrm{B}_{\mathrm{A}}^{2}$.

Assuming further that the fluorescence lifetimes measured here for the Ho^{3+} centres are wholly from radiative relaxation processes, the single crystal-field parameter for each centre whose change, compared to the corresponding parameter of the respective A centre, can account for the change in the fluorescence lifetime measured for the centre is established. Although more than one parameter is expected to have some effect on the resultant fluorescence lifetime, the parameters chosen have the most effect in each case.

For the A centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals, the E multiplet fluorescence lifetime τ_{E} seems to follow on the crystal-field parameter $\mathrm{B}_{\mathrm{A}}^{4}$ while that for the D multiplet (τ_{D}) follows changes in the crystal-field parameter $\mathrm{B}_{\mathrm{A}}^{2}$. Relative changes in the fluorescence lifetimes and the corresponding parameters are shown in Table 8.2(a).

The general trend for the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres in both the CaF_{2} and SrF_{2} type crystals is that the fourth degree parameters can account for changes in τ_{E} while changes in the sixth degree parameters appear to be responsible for changes in τ_{D} in going from the parent $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre to the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres, as shown in Table 8.2(b).

For the two C_{s} symmetry centres, CS 2 and $\mathrm{CB} 2, \tau_{\mathrm{E}}$ is shorter while τ_{D} is longer than the corresponding lifetimes for the CS 1 and CB 1 centres respectively. For the SC 2 centre however both τ_{E} and τ_{D} are longer than for the SC 1 centre. Mixed centres for Pr^{3+} [63] were found to have longer fluorescence lifetimes than the parent $\mathrm{C}_{4 \mathrm{v}}$ centre and for these Pr^{3+} centres, the changes in energy levels and crystal-field parameters were more pronounced in going from the parent $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre to the mixed crystal centres.

Table 8.1: 10 K fluorescence lifetimes for the Ho^{3+} centres present in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%), \mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ and related mixed crystals for direct excitation of the respective multiplet.

Crystal host	Centre	Lifetimes $(\mu \mathrm{s})$	
		$\mathrm{E}\left({ }^{5} \mathrm{~S}_{2}\right)$	$\mathrm{D}\left({ }^{5} \mathrm{~F}_{5}\right)$
		1328 ± 27	73.1 ± 0.7
CaF_{2}	A	532 ± 10	114 ± 1
	B	1236 ± 25	84.2 ± 0.8
$\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}$	CS 1	1080 ± 22	87.8 ± 0.9
	CS 2	1282 ± 26	81.2 ± 1.6
$\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}$	CB 1	1228 ± 25	90.9 ± 1.8
	CB 2		
		1863 ± 37	270 ± 5
SrF_{2}	A	1314 ± 26	263 ± 5
$\mathrm{Sr}_{0.99} \mathrm{Ca}_{0.01} \mathrm{~F}_{2}$	SC 1	1611 ± 32	286 ± 6
	SC 2	2363 ± 47	248 ± 5
$\mathrm{Sr}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}$	SB 1		

Figure 8.6:
Comparison of the fluorescence lifetime data for the $\mathrm{E} \rightarrow \mathrm{Z}$ transitions of:
(a) the centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ type crystals;
(b) the centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ type crystals.

Figure 8.7: \quad Comparison of the fluorescence lifetime data for the D$\lrcorner \mathrm{Z}$ transitions of:(a) the centres in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ type crystals; (b) the centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ type crystals.

Table 8.2: Correspondence between the changes in the fluorescence lifetimes and the relative magnitudes of the crystal-field parameters for (a) the $\mathrm{C}_{4 v}$ symmetry $\mathrm{SrF}_{2} \mathrm{~A}$ centre and (b) the modified $\mathrm{C}_{4 v}$ symmetry centres in the $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ type crystals

(a) | Multiplet | $\frac{\tau\left(\mathrm{SrF}_{2} A \text { centre }\right)}{\tau\left(\mathrm{CaF}_{2} A \text { centre }\right)}$ | Relevant B_{4}^{k} |
| :---: | :---: | :---: |
| E | 1.40 | $\left.\frac{\mathbf{B}_{4}^{k}\left(\mathrm{CAF}_{2} \text { A centre }\right)}{\mathbf{B}_{4}^{k}\left(\mathrm{SrF}_{2} \text { A centre }\right)}\right\|^{2}$ |
| D | 3.69 | $\mathrm{~B}_{\mathrm{A}}^{4}$ |
| $\mathrm{~B}_{\mathrm{A}}^{2}$ | 1.44 | |

(b)

Multiplet	CaF_{2}			SrF_{2}				
	$\text { Centre } \frac{T(\text { centre })}{T(A \text { centre })}$		Rel evant $\mathbf{B}_{\boldsymbol{q}}^{\mathbf{k}}$	$\left\|\frac{B_{q}^{k}(\mathrm{~A} \text { centre })}{\mathrm{B}_{q}^{\mathrm{k}}(\text { centre })}\right\|^{2}$	Centre	$\frac{\tau(\text { centre })}{\tau\left(\text { SrF }_{2} \text { A centre }\right)}$	Rel evant $\mathbf{B}_{\mathbf{q}}^{\mathbf{k}}$	$\left\|\frac{\mathbf{B}_{9}^{\mathrm{k}}\left(\mathrm{SrF}_{2} \mathrm{~A} \text { centre }\right)}{\mathbf{B}_{4}^{\mathrm{k}}(\text { centre })}\right\|^{2}$
E	CS1	0.93	B^{4}	0.94	SC1	0.71	B^{4}	0.85
	CB1	0.97	BA^{4}	1.00	SB1	1.27	$\mathrm{B}_{\text {A }}^{4}$	1.20
D	CS1	1.15	B^{6}	1.24	SC1	0.97	B_{6}^{6}	0.92
	CB1	1.11	$\mathrm{B}_{\text {A }}^{6}$	1.28	SB1	0.92	B^{6}	0.92

8.2 The Dimer Centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{\mathbf{3 +}}$ Crystals

Fluorescence lifetime measurements for the principal dimer centre give insight into the possible upconversion mechanisms for dimer centres in CsCdBr_{3} crystals. For the Nd^{3+} [11] dimer centre, the Nd^{3+} ions were found to have much shorter fluorescence lifetimes than those in the single Nd^{3+} ion centres. Various decay channels for the ${ }^{4} \mathrm{~F}_{7 / 2},{ }^{4} \mathrm{~F}_{9 / 2}$ and ${ }^{4} \mathrm{G}_{5 / 2}$ multiplets of Nd^{3+} were derived from relative magnitudes of the lifetimes and transition intensities observed for the fluorescence from these and other lower energy multiplets.

For Er^{3+}, Cockroft et al. [29] carried out a detailed analysis of the dynamics of the upconversion from the Er^{3+} dimer centre. They were able to deduce energy transfer rates between pairs from the rise and decay times following the analysis of Buisson and Vial [20] for Pr^{3+} ions in LaF_{3} crystals. Also for Er^{3+}, McPherson and Meyerson [85], using the transients obtained for emission from the ${ }^{4} \mathrm{G}_{9 / 2}$ and ${ }^{4} \mathrm{G}_{11 / 2}$ multiplets showed that multi-phonon relaxations were a more probable process than either energy transfer or radiative relaxation processes.

The analysis of Buisson and Vial [20] was also used here to obtain upconversion energy transfer rates from the rise times measured for the Ho^{3+} dimer centre. For an initial population of N_{d} pairs of ions excited by the laser pulse, the time variation of N_{d} is given by

$$
\dot{N}_{\mathrm{d}}=-2 \mathrm{~W}_{2} \mathrm{~N}_{\mathrm{d}}-\mathrm{W}_{\mathrm{t}} \mathrm{~N}_{\mathrm{d}},
$$

where W_{2} is the radiative decay rate of the excited multiplet and W_{t} is the upconversion energy transfer rate. Upconversion will result in N_{3} ions being excited to a higher energy state than pumped. The time evolution of N_{3} is given by

$$
\dot{N}_{3}=W_{t} N_{d}-W_{3} N_{3},
$$

where W_{3} is the radiative decay rate for the higher energy state.
Solving for N_{3} from 8.4 and 8.5 yields

$$
N_{3}=\frac{N_{9}^{0} W_{t}}{\left(W_{3}-\left(2 W_{2}+W_{t}\right)\right)}\left[e^{-\left(2 W_{2}+W_{t}\right) t}-e^{-W_{3} t}\right]
$$

where $\mathrm{N}_{\mathrm{d}}^{0}$ is the population of excited dimers soon after the laser pulse. The rise is the greater of the two rates $\left(2 \mathrm{~W}_{2}+\mathrm{W}_{\mathrm{t}}\right)$ and W_{3} and the decay rate is the lesser.

The results for the Ho^{3+} principal dimer centre give the following correspondence between the decay and rise times of equations 8.3 and 8.6:-

$$
\begin{equation*}
\mathrm{d}=1 / \mathrm{W}_{3} \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{f}=1 /\left\{2 \mathrm{~W}_{2}+\mathrm{W}_{\mathrm{t}}\right\} \tag{b}
\end{equation*}
$$

For weakly coupled pairs, W_{t} would approach zero and the rise time would then be equal to half the fluorescence lifetime of the pumped state. For rapid transfer rates and small radiative decay rates as observed for the Ho^{3+} dimer centre here, the rise time measured is almost equal to the upconversion energy transfer time.

8.2.1 Temporal results for $\mathbf{H o}^{3+}$ ions in CsCdBr_{3} crystals

Attempts to measure fluorescence lifetimes for the minority L, N and the single Ho^{3+} ion (M) centres here were unsuccessful because the fluorescence was too weak to monitor under pulse laser excitation. Results for the principal dimer centre only are presented here.

Fluorescence lifetimes for the Ho^{3+} dimer centre presented here have been measured for three different excitation cases:-
(i) direct excitation to the J, F, E and D multiplets for measuring the respective multiplet fluorescence lifetimes;
(ii) with $\mathrm{Z} \rightarrow \mathrm{E}$ excitation, for measuring upconversion fluorescence rise and decay times;
(iii) with $\mathrm{Z} \rightarrow \mathrm{D}$ excitation, for measuring upconversion fluorescence transients, as in (ii) above.

The temporal transients obtained are presented in Figures 8.8 to 8.12 , while the fluorescence rise and decay times are given in Table 8.3. The same fluorescence lifetime results were obtained for Ho^{3+} concentrations of $0.3 \%, 0.1 \%$ and 0.01%. The three excitation cases are now discussed separately :
(i) Only fluorescence lifetimes for the J, F, E and D multiplets could

Figure 8.8: $\quad 10 \mathrm{~K}$ temporal transients for the fluorescence from the D multiplet of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals for monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$ transition at $15090.5 \mathrm{~cm}^{-1}$ and excitation of :
(a) the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition at $15442.2 \mathrm{~cm}^{-1}$;
(b) the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$.

The solid curve gives the best fit to the data, with the resulting lifetimes as presented in Table 8.3.

Figure 8.9: 10 K temporal transients for the fluorescence from the E multiplet of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, for monitoring the $\mathrm{E}_{1}+\mathrm{Z}_{7}$ transition at $18137.0 \mathrm{~cm}^{-1}$ and excitation of :
(a) the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$;
(b) the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{s}$ transition at $15442.2 \mathrm{~cm}^{-1}$.

The solid curves give the best fits to the data, with the resulting lifetimes as presented in Table 8.3.

Figure 8.10: $\quad 10 \mathrm{~K}$ temporal transients for the fluorescence from the F multiplet of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, for monitoring the $\mathrm{F}_{1} \rightarrow \mathrm{Z}_{2}$ transition at $20384.5 \mathrm{~cm}^{-1}$ and excitation of :
(a) the $\mathrm{Z}_{1} \rightarrow \mathrm{~F}_{2}$ transition at $20435.0 \mathrm{~cm}^{-1}$;
(b) the $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$;
(c) the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition at $15442.2 \mathrm{~cm}^{-1}$.

The solid curves give the best fits to the data, with the resulting lifetimes as presented in Table 8.3.

Figure 8.11: 10 K temporal transients for the fluorescence from the J multiplet of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, for monitoring the $\mathrm{J}_{1} \rightarrow \mathrm{Z}_{10}$ transition at $23439.5 \mathrm{~cm}^{-1}$ and excitation of :
(a) the $\mathrm{Z}_{1} \rightarrow \mathrm{~J}_{1}$ transition at $23656.5 \mathrm{~cm}^{-1}$;
(b) the $\mathrm{Z}_{1}+\mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$;
(c) the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{5}$ transition at $15442.2 \mathrm{~cm}^{-1}$.

The solid curves give the best fits to the data, with the resulting lifetimes as presented in Table 8.3.

Figure 8.12: $\quad 10 \mathrm{~K}$ temporal transients for the fluorescence from the M, P and Q multiplets of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, for excitation of the $\mathrm{Z}_{1}+\mathrm{E}_{4}$ transition at $18416.3 \mathrm{~cm}^{-1}$ and monitoring :
(a) the $\mathrm{M}_{1} \rightarrow \mathrm{Y}_{1}$ transition at $22154.0 \mathrm{~cm}^{-1}$;
(b) the $\mathrm{P}_{1} \rightarrow \mathrm{~A}_{1}$ transition at $21153.0 \mathrm{~cm}^{-1}$;
(c) the $\mathrm{Q}_{1} \rightarrow \mathrm{~B}_{1}$ transition at $21672.5 \mathrm{~cm}^{-1}$.

The solid curves give the best fits to the data, with the resulting lifetimes as presented in Table 8.3.
be measured with direct excitation as available dyes only covered their respective regions. The fluorescence lifetimes for the E and D multiplets were found to be comparatively long, being $1086 \mu \mathrm{~s}$ and $1116 \mu \mathrm{~s}$ respectively, while that for the F multiplet was about half these E and D lifetime values, being $535 \mu \mathrm{~s}$. The J multiplet had a relatively short lifetime of only $33.7 \mu \mathrm{~s}$. Since the next lower energy multiplet $I\left({ }^{5} \mathrm{G}_{6}\right)$ is about $1900 \mathrm{~cm}^{-1}$ lower than the J multiplet, it is unlikely that non-radiative relaxation to this lower multiplet is responsible for shortening the lifetime for the J multiplet. Also as fluorescence from the J multiplet was appreciably stronger than that from the I multiplet, the J multiplet must be a more efficiently fluorescing multiplet than the I multiplet.
(ii) With $Z \rightarrow$ E excitation, rise times were observed for the D, F, J, M, P and Q multiplets. For the D and F multiplets, the decay times were similar to the lifetimes measured with direct excitation to the respective multiplets. The F, M and Q multiplets have a common rise time of about $37.6 \mu \mathrm{~s}$, the P multiplet has a shorter rise time of $13.1 \mu \mathrm{~s}$, and the J multiplet a longer rise time of $63.1 \mu \mathrm{~s}$. The decay time of $109.2 \mu \mathrm{~s}$ observed for the J multiplet for $\mathrm{Z} \rightarrow \mathrm{E}$ excitation is three times longer than that obtained from direct excitation.

The fluorescence transient obtained for monitoring the $\mathrm{D} \rightarrow \mathrm{Z}$ emission, with $Z+E$ excitation, was rather different in that the transient was found to have two different rise times. The first rise time measured to be $37.2 \mu \mathrm{~s}$ was obtained from fitting data points of the first $100 \mu \mathrm{~s}$ of the transient. The second rise time of $562 \mu \mathrm{~s}$ fits data points for the remainder of the rise part of the transient. The two rise times were obtained from fitting the corresponding
part of the "rise" transient separately with the same decay transient. Using either of the $37.2 \mu \mathrm{~s}$ and 562μ s rise times gave similar values of $1348 \mu \mathrm{~s}$ and $1298 \mu \mathrm{~s}$ respectively for the decay time, which are close to the fluorescence lifetime of the D multiplet of $1116 \mu \mathrm{~s}$. As the composite temporal transient could not be fitted in its entirety using the expression 8.3 , only the measured transient is presented in Figure 8.8(b).
(iii) For $\mathrm{Z}+\mathrm{D}$ excitation, temporal transients were obtained only for the E, F and J multiplets as the fluorescence from the other multiplets was too weak to measure. For both the E and F multiplets, the decay times were comparable to the fluorescence lifetimes as measured with direct excitation of the respective multiplet. The decay time for the J multiplet was found to be about three times shorter than that for direct excitation. Rise times were measured to be $6.1,13.0$ and $10.6 \mu \mathrm{~s}$ for the E, F and J multiplets respectively (Table 8.3).

8.2.2 Discussion of the decay and rise times

For the D, E and F multiplets, the decay times observed from the upconversion fluorescence are just the fluorescence lifetimes of the corresponding upper multiplets. For the F multiplet, the decay times obtained for both $\mathrm{Z} \rightarrow \mathrm{E}$ and $\mathrm{Z} \rightarrow \mathrm{D}$ excitation were found to be similar to the fluorescence lifetime obtained from direct excitation of that multiplet. Decay times measured for the J multiplet are different for each excitation, with the times for $\mathrm{Z} \rightarrow \mathrm{E}$ and $\mathrm{Z} \rightarrow \mathrm{D}$ excitations being three times longer and three times shorter respectively, than that obtained from direct excitation.

Since the fluorescence lifetime for the J multiplet is 33.7μ s for direct excitation (Table 8.3), it had been expected that the decay times from the transients obtained for both $\mathrm{Z} \rightarrow \mathrm{E}$ and $\mathrm{Z} \rightarrow \mathrm{D}$ excitation would be of the same magnitude. Instead, the decay times of 109.2μ s obtained for $\mathrm{Z} \rightarrow \mathrm{E}$ excitation

Table 8.3: 10 K fluorescence lifetime data for the Ho^{3+} dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$ crystals.

Upper multiplet of fluorescence transition measured	$\underset{\operatorname{Rise}(\mu \mathrm{s})}{$ Fluorescence lifetime Decay $(\mu \mathrm{s})$$}$		Energy transfer time ($\mu \mathrm{s}$)	Absorption transition being pumped
${ }^{5} \mathrm{~F}_{5}(\mathrm{D})$	$\begin{array}{r} 37.2 \pm 1.1 \\ 562 \pm 1.7 \end{array}$	$\begin{aligned} & 1116 \pm 22 \\ & 1348 \pm 27 \\ & 1298 \pm 26 \end{aligned}$	39.9 ± 2.0	$\begin{aligned} & \mathrm{Z}_{1} \rightarrow \mathrm{D}_{5} \\ & \mathrm{Z}_{1} \rightarrow \mathrm{E}_{4} \end{aligned}$
${ }^{5} \mathrm{~S}_{2}(\mathrm{E})$	$6.1^{ \pm} 0.1$	$\begin{aligned} & 1086 \pm 22 \\ & 1303 \pm 26 \end{aligned}$	$6.2^{-} 0.3$	$\begin{aligned} & \mathrm{Z}_{1} \rightarrow \mathrm{E}_{4} \\ & \mathrm{Z}_{1} \rightarrow \mathrm{D}_{5} \end{aligned}$
${ }^{5} \mathrm{~F}_{3}(\mathrm{~F})$	36.0 ± 0.7 13.0 ± 0.3	$\begin{aligned} & 535 \pm 11 \\ & 612 \pm 12 \\ & 650 \pm 13 \end{aligned}$	$\begin{aligned} & 38.6 \pm 1.2 \\ & 13.3 \pm 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{1}+\mathrm{F}_{1} \\ & \mathrm{Z}_{1} \rightarrow \mathrm{Z}_{4} \\ & \mathrm{Z}_{1} \rightarrow \mathrm{D}_{5} \end{aligned}$
${ }^{5} \mathrm{G}_{5}(\mathrm{~J})$	$63.1^{ \pm} 1.3$ 10.6 ± 0.2	$\begin{array}{r} 33.7 \pm 0.7 \\ 109.2 \pm 2.2 \\ 13.2 \pm 0.3 \end{array}$	$\begin{aligned} & 71.4 \pm 2.2 \\ & 10.8 \pm 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{1}+\mathrm{J}_{1} \\ & \mathrm{Z}_{1} \rightarrow \mathrm{E}_{4} \\ & \mathrm{Z}_{1} \rightarrow \mathrm{D}_{5} \end{aligned}$
${ }^{3} \mathrm{H}_{5}(\mathrm{M})$	37.6 ± 0.8	104.5 ± 2.1	40.4 ± 1.8	$\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$
${ }^{3} \mathrm{~K}_{6}(\mathrm{P})$	13.1 ± 0.3	84.1 ± 1.7	13.4 ± 0.6	$\mathrm{Z}_{1}+\mathrm{E}_{4}$
${ }^{3} \mathrm{D}_{3}(\mathrm{Q})$	39.4 ± 0.8	100.7 ± 2.0	42.5 ± 1.9	$\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$

* No rise time (and energy transfer time) as multiplet is pumped directly.
and the $13.2 \mu \mathrm{~s}$ obtained for $\mathrm{Z} \rightarrow \mathrm{D}$ excitation are vastly different from the fluorescence lifetime value of the J multiplet. The common factor of three between the magnitudes of the decay times obtained for $Z \rightarrow E$ and $Z \rightarrow D$ excitation and fluorescence lifetime measured for direct excitation might have some relevance to the mechanism involved. No satisfactory explanation of this result has been found at this stage.

The representative rise times are about $37.6 \mu \mathrm{~s}$ (as obtained from the F, M and Q multiplets) and $10.0 \mu \mathrm{~s}$ (as obtained from the E, F and J multiplets) for excitation of the E and D multiplets respectively (Table 8.3). These short rise times compare well with both the $25-28 \mu \mathrm{~s}$ values obtained for the ${ }^{4} \mathrm{G}_{9 / 2}$ and ${ }^{4} \mathrm{G}_{11 / 2}$ multiplets of Er^{3+} [85] for excitation of the ${ }^{4} \mathrm{~S}_{3 / 2}$ multiplet and the $1.8 \mu \mathrm{~s}$ rise time obtained for the ${ }^{4} \mathrm{~F}_{5 / 2}$ and ${ }^{4} \mathrm{~F}_{3 / 2}$ multiplets of Nd^{3+} [11] for excitation of the ${ }^{4} \mathrm{~F}_{7 / 2}$ multiplet.

The different rise times of $63.1 \mu \mathrm{~s}$ and $13.1 \mu \mathrm{~s}$ obtained for the J and P multiplets respectively, for $\mathbf{Z} \rightarrow \mathbf{E}$ excitation (Table 8.3), are likely to arise from there being different transfer rates associated with the ${ }^{5} \mathrm{~S}_{2}$ and ${ }^{5} \mathrm{~F}_{4}$ multiplets. In this case, the rise times observed would depend on which of the composite E multiplets, ${ }^{5} \mathrm{~S}_{2}$ or ${ }^{5} \mathrm{~F}_{4}$, the dimer centre ions were in just before the interaction. As the E_{4} level at $18416.3 \mathrm{~cm}^{-1}$ which is being pumped belongs to the ${ }^{5} \mathrm{~F}_{4}$ multiplet, it is possible for the ions to either interact at that energy or, through multiphonon ralaxation processes, they may interact at the lower energy of $18315.2 \mathrm{~cm}^{-1}$ which belongs to the ${ }^{5} \mathrm{~S}_{2}$ multiplet. As these two multiplets are about $100 \mathrm{~cm}^{-1}$ apart, it is reasonable to expect different interaction rates for the ion pairs in either multiplet.

Observation of the two different rise times for $Z \rightarrow E$ excitation and monitoring $\mathrm{D} \rightarrow \mathrm{Z}$ fluorescence supports the upconversion scheme based on hetero-excited pair ions as proposed in Chapter 6 for the emission originating from the Q multiplet. The first rise time compares well with rise times for the F , M and Q multiplets, for $Z \rightarrow E$ excitation and therefore arises from interaction of
the two ions in the E multiplet, which is responsible for the upconversion fluorescence observed from the F and D multiplets. The second rise time of $562 \mu \mathrm{~s}$ being similar to the fluorescence lifetime of the F multiplet is proposed to arise from the $\mathrm{F} \rightarrow \mathrm{Z}$ multiplet radiative decay which occurs faster than the $\mathrm{D} \rightarrow \mathrm{Z}$ multiplet radiative decay because of the shorter lifetime for the F multiplet. This is immediately followed by re-excitation of the same ion from the ground multiplet to the E multiplet by the laser pump frequency. At this stage the two ions from the same pair which were originally in the E multiplet are now in a hetero-excited pair with one ion in the E multiplet and the other in the D multiplet. This is exactly the sort of intermediate state which is required for the $[\mathrm{E} ; \mathrm{D}] \longrightarrow[\mathrm{Q} ; \mathrm{Z}]$ process leading to the observation of fluorescence from the Q multiplet.

8.2.3 Energy transfer rates for the $\mathbf{H o}^{\mathbf{3 +}}$ ions in CsCdBr_{3} crystals

For the principal Er^{3+} centre [29], a rise time of $226 \mu \mathrm{~s}$ was obtained for the ${ }^{2} \mathrm{H}_{9 / 2}$ multiplet with excitation of the ${ }^{4} \mathrm{I}_{9 / 2}$ multiplet while a similar rise time of $178 \mu \mathrm{~s}$ was obtained for the ${ }^{4} \mathrm{~F}_{7 / 2}$ multiplet with excitation of the ${ }^{4} \mathrm{I}_{11 / 2}$ multiplet. The corresponding energy transfer rates for the ${ }^{4} \mathrm{I}_{9 / 2}$ and ${ }^{4} \mathrm{I}_{11 / 2}$ multiplets of Er^{3+} were calculated to be $1741 \mathrm{~s}^{-1}$ and $128.3 \mathrm{~s}^{-1}$ respectively. The fluorescence lifetime measured for direct excitation of the ${ }^{4} \mathrm{~S}_{3 / 2}$ multiplet of Er^{3+} is $400 \mu \mathrm{~s}$ [31]. Therefore, using the rise time of 25μ s observed for the fluorescence from the ${ }^{4} \mathrm{G}_{11 / 2}$ multiplet [85] for example, the energy transfer rate for Er^{3+} ions excited to the ${ }^{4} \mathrm{~S}_{3 / 2}$ multiplet is calculated to be $35000 \mathrm{~s}^{-1}$. For the Er^{3+} principal dimer centre therefore, energy transfer is comparatively faster for excitation of the ${ }^{4} S_{3 / 2}$ multiplet than for excitation of the ${ }^{4} I_{9 / 2}$ and ${ }^{4} I_{11 / 2}$ multiplets in the near infrared region of the spectrum.

Having measured the intrinsic lifetimes $\left(1 / W_{2}\right)$ for both the E and D multiplets for Ho^{3+} here, upconversion energy transfer times $\left(1 / W_{t}\right)$ for $Z \rightarrow E$ and $Z \rightarrow D$ excitation were calculated from equation 8.7(b). These are included in Table 8.3. The fluorescence decay times for both the E and D multiplets are two orders of magnitude longer than the energy transfer times. Corresponding
energy transfer rates are much larger compared to the measured radiative decay rates for the E and D multiplets. Considering the F multiplet with $\mathrm{Z}_{1} \rightarrow \mathrm{E}_{4}$ excitation for example, the radiative decay rate for the E multiplet (W_{E}) is $920.81 \mathrm{~s}^{-1}$ and so $2 \mathrm{~W}_{\mathrm{E}}+\mathrm{W}_{\mathrm{t}}$ is $27778 \mathrm{~s}^{-1}$. The transfer rate W_{t} is therefore $25936 \mathrm{~s}^{-1}$ giving a transfer time of only $38.6 \mu \mathrm{~s}$ for ions in the E multiplet. Similarly, for $Z \rightarrow D$ excitation W_{D} is $896.06 \mathrm{~s}^{-1}$ and $2 W_{D}+W_{t}$ is equal to $76923 \mathrm{~s}^{-1}$. This gives a transfer rate of $75131 \mathrm{~s}^{-1}$ and a transfer time of $13.3 \mu \mathrm{~s}$ for pair ions excited to the D multiplet. Because the transfer rates here are much faster than the decay rates, the rise times measured almost solely comprise upconversion transfer times for the E and D multiplets. Energy transfer is faster for $\mathrm{Z} \rightarrow \mathrm{D}$ excitation than for $\mathrm{Z} \rightarrow \mathrm{E}$ excitation. The Ho^{3+} ions in this centre must be strongly coupled since the energy transfer times are so very short.

The energy transfer rate of $25936 \mathrm{~s}^{-1}$ for Ho^{3+} ions excited to the E multiplet is comparable to the $35000 \mathrm{~s}^{-1}$ derived for Er^{3+} ions excited to the similar energy $\mathrm{E}\left({ }^{4} \mathrm{~S}_{3 / 2}\right)$ multiplet of Er^{3+}. Fluorescence lifetime data for excitation of the ${ }^{4} \mathrm{~F}_{9 / 2}$ (D) multiplet of Er^{3+}, which lies in the same spectral region as the ${ }^{5} \mathrm{~F}_{5}(\mathrm{D})$ multiplet of Ho^{3+}, are not available and so comparison of transfer rates cannot be made for the D multiplets.

On the whole, the temporal results for the Ho^{3+} principal dimer centre substantiate the upconversion mechanisms proposed. The energy transfer rates for $\mathrm{Nd}^{3+}, \mathrm{Ho}^{3+}$ and Er^{3+}, for excitation in the visible region, are all very fast and comparable while the transfer rates for infrared excitation appear to be relatively slow, as evidenced by the results of Cockcroft et al. [29] for Er^{3+}.

CHAPTER 9

HIGH RESOLUTION SPECTROSCOPY AND OPTICALLY DETECTED NUCLEAR MAGNETIC RESONANCE STUDIES OF H0 ${ }^{\mathbf{3 +}}$ IONS IN SrF $\mathbf{2}_{2}$ AND CsCdBr_{3} CRYSTALS

The work reported in this Chapter was performed during a three week visit to the Australian National University, Canberra, as part of an ongoing collaboration between the two groups.

Introduction

Low temperature optical spectra of rare-earth ions in crystalline solids comprise groups of sharp transitions, most of which have small linewidths of $1 \mathrm{~cm}^{-1}$ or less. The linewidths are determined by both homogeneous and inhomogeneous broadening. Homogeneous broadening is caused by processes such as spontaneous phonon emission and spin (nuclear or electronic) fluctuations, which give rise to dynamical perturbations on the transition frequency. These dynamical perturbations are operative for all ions in the crystal and set a limiting linewidth to the transition. Inhomogeneous broadening arises from residual static lattice strains or from chemical impurities or other defects in the crystal, which give rise to different local environments for the different ions in the crystal.

For absorption transitions to a particular \mathbf{J} multiplet at low temperatures, the transitions to the higher energy levels of the upper multiplet are homogeneously broadened by spontaneous phonon emission by relaxation to the lowest lying energy level of the excited multiplet and residual inhomogeneous broadening effects are negligible. Transitions to the lowest lying energy level are frequently wholly inhomogeneously broadened because the energy gap to the next lower energy multiplet levels is usually large, compared to the separations between levels of the same multiplet, and can only be bridged by the relatively slow multiphonon relaxation processes, hence the lowest energy level of the excited
multiplet has a long fluorescence lifetime and a small homogeneous linewidth. The overall linewidth of transitions to such levels is therefore completely determined by inhomogeneous broadening, as shown in Figure 9.1.

Absorption transitions measured in low resolution ($0.2 \mathrm{~cm}^{-1}$) spectroscopy have additional broadening from unresolved hyperfine structure, arising from the coupling of the $4 f$ electrons with the magnetic moment of the nucleus.

In high resolution spectroscopic studies, the hyperfine lines may be clearly resolved and these are commonly studied by the spectral holeburning technique, in which a narrow band single frequency laser is used to selectively excite a small portion of the inhomogeneously broadened transition. Bleaching of the absorption is observed as the ions resonant with the laser are removed from the ground state, creating a hole (a dip in intensity of the excited portion of the transition). The ion population driven from the ground state is stored in one of the other electronic or spin levels, known as reservoirs. These population reservoirs include the excited state itself, a metastable excited electronic state, hyperfine and superhyperfine levels. For rare-earth ions, the most important reservoirs are the hyperfine levels of the ground electronic state and the nuclear spin superhyperfine levels. An increase in the intensity of the hyperfine or superhyperfine reservoir level (antihole) is observed while a hole is being burnt in one of the hyperfine lines. The resolution in such holeburning experiments is limited by the frequency bandwidth of the laser.

A more powerful technique is that of optically detected nuclear magnetic resonance (ODNMR), as the resolution is that of the width of the rf resonance itself and is not limited by the bandwidth of the laser. In ODNMR experiments, an rf field is applied to the sample while burning a hole in one of the hyperfine lines and monitoring the resulting fluorescence. An increase in fluorescence is detected when the rf field resonates with any of the hyperfine or superhyperfine level splittings and the ion population in the reservoir level is driven back to the initial level, resonant with the laser. Superhyperfine resonances arise when an

Figure 9.1: Profile of an optical transition showing inhomogeneous broadening (linewidth Γ_{ih}) in relation to homogeneous broadening (linewidth Γ_{h}).
anion nucleus in the neighbourhood of the rare-earth ion undergoes a spin flip in the magnetic field of the rare-earth ion. The process is shown schematically in Figure 9.2. By sweeping the rf field, all the ground state nuclear spin levels can be determined.

Holeburning and ODNMR experiments have been performed extensively for the $\mathrm{Pr}^{3+} \mathrm{C}_{4 \mathrm{v}}$ symmetry centre in CaF_{2} [21, 77, 78, 79] and SrF_{2} [80, 105] crystals. The Pr^{3+} ion in the $\mathrm{C}_{4 \mathrm{v}}$ symmetry site has an orbitally degenerate γ_{5} ground state and the characteristic six line fluorescence pattern for the ${ }^{141} \mathrm{Pr}$ nuclear spin I of $5 / 2$ was observed for excitation to the ${ }^{1} \mathrm{D}_{2}$ multiplet [21, 79]. The observed hyperfine lines had a common separation of 2.7 GHz and the hyperfine structure is attributed to the γ_{5} doublet ground state of the lowest ${ }^{3} \mathrm{H}_{4}$ multiplet. Superhyperfine frequencies have been measured for the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres formed by the Pr^{3+} ion charge compensated by F^{-}ions [21] as well as H^{-}, D^{-}and T^{-}ions [80]. For the F^{-}compensated $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre [21], superhyperfine resonancies were reported for the nearest neighbour (NN) lattice ${ }^{19} \mathrm{~F}$, the interstitial ${ }^{19} \mathrm{~F}$ and the next nearest neighbour (NNN) ${ }^{19} \mathrm{~F}$ nuclei. The relative positions of the NNN F^{-}ions with respect to the Pr^{3+} ion were determined from the local Pr^{3+} field measured at the F^{-}ion sites but exact positions for the NN and interstitial F^{-}ions could not be determined as the covalency effects, which are significant for both the $\mathrm{NN} \mathrm{F}^{-}$and the interstitial F^{-} ions, are not known. All the NNN F ions, except for the four furthest from the interstitial, were found to be shifted away from the Pr^{3+} ion and towards each other. The remaining four NNN F^{-}ions, furthest from the interstitial F^{-}ion, were found to retain the same positions as without the Pr^{3+} ion. Relative positions of the NN and interstitial F^{-}ions were estimated from those of the NNN F^{-}ions.

From the resonance frequencies found for the $\mathrm{H}^{-}, \mathrm{D}^{-}$and T^{-}compensated $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres, the relative positions of the Pr^{3+} ion and the neighbouring ligands were proposed [80] as follows :-

The Pr^{3+} and H^{-}ions were displaced from the cube centre positions towards each other, while the four NN F- ions between the Pr^{3+} and interstitial H^{-}ions were pushed outwards. The other set of four $\mathrm{NN} \mathrm{F}^{-}$ ions further away from the interstitial H^{-}ion retained the same positions as with an F^{-}interstitial ion. Changes in the positions of the four $\mathrm{NN} \mathrm{F}^{-}$ions between the Pr^{3+} ion and the interstitial ion were found to be relatively small for the D^{-}and T^{-}charge compensated centres compared to those for the H^{-}compensated centre.

9.1 Previous High Resolution and ODNMR Studies of the $\mathrm{C}_{4 \mathrm{v}}$ Symmetry Centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ Crystals

Hyperfine structures for ${ }^{165} \mathrm{Ho}$ have been reported for the C_{4} symmetry centre in $\mathrm{LiYF}_{4}: \mathrm{Ho}^{3+}[2,3,4]$, the $\mathrm{C}_{3 \mathrm{~h}}$ symmetry centre in $\mathrm{LaCl}_{3}: \mathrm{Ho}^{3+}$ [34], the $\mathrm{C}_{3 \mathrm{v}}$ symmetry centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}[48,49]$ and the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}[47,81]$. For the $\mathrm{C}_{3 \mathrm{~h}}$ and $\mathrm{C}_{3 \mathrm{v}}$ symmetry centres, the characteristic eight line hyperfine structure arises from a degenerate ground state. For Ho^{3+} ions in sites of $\mathrm{C}_{4 v}$ point group symmetry, the ground state Z_{1} is an orbital singlet γ_{1} level, but the D_{2} level in CaF_{2} at $15609.5 \mathrm{~cm}^{-1}$ is a doubly degenerate γ_{5} level. If both levels were isolated, an eight line hyperfine structure in the $Z_{1} \rightarrow D_{2}$ transition would arise from the hyperfine splittings of the degenerate γ_{s} upper state as ${ }^{165}$ Ho has nuclear spin I of $7 / 2$. Superhyperfine levels would not be observed as the isolated singlet Z_{1} level does not have a magnetic moment.

From the laser selective excitation results presented in Chapter 4, it was observed that, for the $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$, the ground state Z_{1} is not isolated as the first excited Z_{2} level is only $1.9 \mathrm{~cm}^{-1}$ higher in energy. This small separation between the Z_{1} and Z_{2} levels results in the mixing of the wavefunctions for the Z_{1} and Z_{2} energy levels through the hyperfine interaction. In the resultant hyperfine structures for the $Z_{1} \rightarrow D_{2}$ and $Z_{2} \rightarrow D_{2}$ transitions, as measured by Hasan [47] and Martin et al. [81], this wavefunction mixing is

Figure 9.2: Pictorial representation of the hyperfine line holeburning process in a $\mathrm{C}_{4 \mathrm{v}}$ symmetry site :
(a) the RE^{3+} ion is in its ground state and spin flips of the surrounding ${ }^{19} \mathrm{~F}$ nuclei are inhibited by the strong coupling with the RE^{3+} local magnetic field;
(b) \& (c) the RE^{5+} ion is optically excited and its magnetic field greatly reduced, leaving the surrounding ${ }^{19} \mathrm{~F}$ nuclei free to undergo spin flips;
(d) the $R E^{3+}$ ion returns to its ground state, but is out of resonance with the laser because of the energy shift caused by the new configuration of neighbouring ${ }^{19} \mathrm{~F}$ nuclear spins and a hole is burnt at the laser frequency.
evidenced by :-
(i) hyperfine structures with only five lines, instead of the eight expected for a $\gamma_{1} \rightarrow \gamma_{5}$ type transition for nuclear spin I of $7 / 2$;
(ii) a significant departure from the Boltzmann intensity distribution expected for the hyperfine line structure. The three innermost lines were more than twice as strong as the two outer lines, in contrast to the expected gradual exponential increase in intensity. For the Pr^{3+} case, the intensities of the hyperfine lines were observed to vary by less than 20%;
(iii) a relatively large pseudo quadrupole splitting which results in the uneven separations between the hyperfine lines. The separation between the hyperfine lines varied from 0.7 GHz to 3.3 GHz whereas, for Pr^{3+}, the six hyperfine lines had a common splitting of 2.77 GHz .
(i) and (ii) result from the overlap between some of the hyperfine lines.

The wavefunction mixing also gives rise to an effective magnetic moment which results in the observation of ground state superhyperfine ODNMR lines. These superhyperfine resonances were observed by Martin et al. [81] in the $8-24 \mathrm{MHz}$ range for the nearest neighbour and interstitial F^{-}ions and in the $0.5-3.5 \mathrm{MHz}$ range for the next nearest and next next nearest neighbour F^{-}ions. The resonance frequencies measured could be assigned to one of the four $\pm 7 / 2$, $\pm 5 / 2, \pm 3 / 2$ and $\pm 1 / 2$ hyperfine $\left(I_{2}\right)$ levels of the ground state (Figure 9.3).

The wavefunctions of the singlet Z_{1} and Z_{2} levels are of γ_{1} and γ_{2} symmetry respectively. Although these wavefunctions transform differently in $\mathrm{C}_{4 \mathrm{v}}$ symmetry and therefore do not interact through the crystal field, the presence of the hyperfine interaction couples the wavefunctions through the parallel hyperfine interaction $A_{j} I_{z} J_{z}$ of the Hamiltonian given below, giving the ground state a pseudo degenerate character. The Hamiltonian for the hyperfine coupling H_{bf} has the form

Figure 9.3: Energy level diagram of the Ho^{3+} ion in the $\mathrm{C}_{4 \mathrm{v}}$ symmetry site showing the hyperfine levels for nuclear spin $\mathrm{I}=7 / 2$ and the superhyperfine levels. Superhyperfine levels are observed for the singlet Z_{1} level because of the hyperfine coupling between the Z_{1} and Z_{2} levels, which results in an enhanced magnetic moment.

$$
\mathrm{H}_{\mathrm{hf}}=\mathrm{A}_{\mathrm{j}}\left\{\mathrm{I}_{\mathrm{z}} \mathrm{~J}_{\mathrm{z}}+\frac{\left(\mathrm{I}^{+} \mathrm{J}^{-}+\mathrm{I}^{-} \mathrm{J}^{+}\right)}{2}\right\}
$$

where A_{j} is the magnetic hyperfine constant.
From the analysis of the nearest neighbour and interstitial F^{-}resonance frequencies for the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{2}$ transition of the $\mathrm{Ho}^{3+} \mathrm{C}_{4 \mathrm{v}}$ symmetry centre in CaF_{2} crystals [81], it was found that the ratios of the superhyperfine frequencies measured were close to the ratios of I_{z} for a particular pair of spin levels. This strong dependence on I_{z} shows that the first term of the Hamiltonian is the major contribution to the hyperfine interaction.

The hyperfine and superhyperfine spectra measured here for the $\mathrm{SrF}_{2} \mathrm{~A}$ and SB 1 centres in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ show two sets of four line structures in the high resolution (2 MHz) spectra for $\mathrm{Z}_{1}, \mathrm{Z}_{2} \rightarrow \mathrm{D}_{1}$ excitation (Figures 9.4 and 9.6). The two centres have $Z_{1}-Z_{2}$ separations of 2.7 and $2.5 \mathrm{~cm}^{-1}$ respectively and a γ_{s} degenerate D_{1} energy level. The superhyperfine resonances are found to occur at lower frequencies (Tables 9.2 and 9.4) compared to those for the $\mathrm{CaF}_{2} \mathrm{~A}$ centre.

For the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$, both the Z_{1} and the D_{1} energy levels are of the degenerate γ_{3} symmetry and the eight line pattern expected for a nuclear spin I of $7 / 2$ is apparent (Figure 9.8), but complete analysis is hindered by the overlapping effects of the low symmetry crystal-field present and by ion pair splittings.

The results for the three centres, $\mathrm{SrF}_{2} \mathrm{~A}, \mathrm{SB} 1$ and the dimer centre, are discussed in turn in Sections 9.3, 9.4 and 9.5 respectively.

Similar measurements could not be made for the SC1 centre whose signal intensity was too weak to give any reliable results.

9.2 Experimental Aspects

The $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ and $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals used were cooled to either 4.2 K or 2 K .

The 514.5 nm argon ion laser line from a Spectra Physics model 2030 argon
ion laser was used as the pump source for a CR 699 coherent ring dye laser. The DCM red dye used covered the ${ }^{5} \mathrm{~F}_{5}$ multiplet region of the Ho^{3+} ion in both SrF_{2} (15550-15800 cm^{-1}) and $\mathrm{CsCdBr}_{3}\left(15300-15500 \mathrm{~cm}^{-1}\right.$) and the output from the dye laser had a linewidth of $1-2 \mathrm{MHz}$.

For the high resolution experiments, the dye laser was operated in scanning mode over a 20 GHz range.

For the ODNMR experiments, the crystal was mounted in the centre of a five turn copper coil. With the dye laser operated in fixed frequency mode, an rf frequency over the $1-21 \mathrm{MHz}$ range as produced by a Hewlett Packard 8443A tracking generator and amplified by an ENI 10 W power supply was swept through the coil whilst the sample was irradiated with laser light.

The resulting fluorescence, for both high resolution and ODNMR experiments was detected by a Spex 1400 double monochromator equipped with a thermo-electrically cooled EMI GENCOM ZD-50 photomultiplier tube. A Princeton Applied Research 4202 signal averager was used to average a preset number of scans in each case.

9.3 High Resolution and ODNMR Studies of the A Centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ Crystals

The hyperfine and superhyperfine spectra are shown in Figures 9.4 and 9.5 respectively and the corresponding data is presented in Tables 9.1 and 9.2 respectively, for excitation of the $Z_{1} \rightarrow D_{1}$ transition at $15593.0 \mathrm{~cm}^{-1}$ and the $\mathrm{Z}_{2} \rightarrow \mathrm{D}_{1}$ transition at $15590.3 \mathrm{~cm}^{-1}$, and monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$ transition at $15200.0 \mathrm{~cm}^{-1}$. The hyperfine structure (Figure 9.4) has the same general shape as that observed for the CaF_{2} A centre [47, 81]. The lines are broader for the SrF_{2} case here because of the small amounts (of about 0.2%) of Ca^{2+} and Ba^{2+} ions present in the crystals, as discussed in Chapter 5. The superhyperfine lines observed arise from resonances of the eight nearest neighbour lattice F^{-}ions and of the one interstitial F^{-}ion. The eight nearest neighbour F^{-}ions give rise to two

Figure 9.4: 2 K high resolution excitation spectra of the (a) $\mathrm{Z}_{2} \rightarrow \mathrm{D}_{1}\left(15590.3 \mathrm{~cm}^{-1}\right)$ and (b) $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}\left(15593.0 \mathrm{~cm}^{-1}\right)$ transitions of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ crystals.

Table 9.1: Relative energy positions for the hyperfine lines of the $\mathrm{Z}_{2} \rightarrow \mathrm{D}_{1}$ and $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transitions of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals
Transition Relative hyperfine line

positions (GHz)
$Z_{2} \rightarrow D_{1}$ 02.464.016.51
$Z_{1} \rightarrow D_{1}$03.89

$$
4.93
$$

$$
6.43
$$

Figure 9.5: $\quad 2 \mathrm{~K}$ superhyperfine ODNMR spectra of the nearest neighbour and interstitial ${ }^{19} \mathrm{~F}$ nuclei for the $\mathrm{Z}_{1}+\mathrm{D}_{1}$ transition of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ crystals. The spectra are numbered 1 to 4 according to the hyperfine line of Figure 9.4(b) burnt.

Table 9.2: Superhyperfine ODNMR frequencies for the nearest neighbour and interstitial ${ }^{19} \mathrm{~F}$ nuclei for the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry A centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals, as measured at 2 K .

I_{z} level	Measured ODNMR frequencies (MHz)		Ratio of frequencies	Ratio of $\mathrm{I}_{\mathbf{z}}$ values
	Nearest neighbour ${ }^{19} \mathrm{~F}$ nuclei	Interestial ${ }^{19} \mathrm{~F}$ nucleus		
7/2	10.7	11.94	1	1
	10.1			
$5 / 2$	7.89	8.81	0.737	0.714
	7.45			
$3 / 2$	4.79	5.35	0.447	0.429
	4.52			

distinct superhyperfine lines from the following sets of four F^{-}ions :-
(i) the four F^{-}ions between the Ho^{3+} ion and the interstitial F^{-}ion;
(ii) the remaining four F^{-}ions further away from the interstitial F^{-}ion.

The two sets of ions are inequivalent because of the presence of the interstitial ion. The ions in set (i) experience a different field of the Ho^{3+} ion resulting in a slight shift of the resultant superhyperfine resonance to lower frequency relative to that of the ions in (ii).

By burning a hole in each of the hyperfine lines of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition at $15593.0 \mathrm{~cm}^{-1}$ shown in Figure 9.4(b), the corresponding superhyperfine resonances were measured (Figure 9.5). Because of overlap between the hyperfine lines as a result of the broadness of the transitions, burning a hole in any single hyperfine line gave weaker resonances for the other lines as well. The resonances for the particular transition being burnt were much stronger than any from the other overlapping hyperfine lines, enabling characterisation of the lines according to their I_{z} (nuclear) spin levels.

For ${ }^{165}$ Ho nuclei with spin I of $7 / 2$, the three sets of superhyperfine lines observed are assigned to correspond to I_{z} values of $7 / 2,5 / 2$ and $3 / 2$ (Figure 9.3). No resonances corresponding to the I_{z} value of $1 / 2$ were detected. As shown in Table 9.2, the resonances are mostly from the dominant first term of the hyperfine Hamiltonian, which gives a strong I_{z} dependence of the measured frequencies, as found for the CaF_{2} case.

For the $\mathrm{CaF}_{2} \mathrm{~A}$ centre, resonances due to the nearest neighbour and interstitial F^{-}ions were found to occur in the $8-24 \mathrm{MHz}$ range while corresponding resonances for the SrF_{2} case here are found to occur in the lower $5-11 \mathrm{MHz}$ range (Figure 9.5). Overall, the resonance frequencies for the SrF_{2} A centre are about half of those for the $\mathrm{CaF}_{2} \mathrm{~A}$ centre, with the separations between the resonances of the two sets of four nearest neighbour F^{-}ions being three times larger for the SrF_{2} case (Table 9.2).

The hyperfine field of the rare-earth ion, at the neighbouring ligand site
comprises a dipolar field from the electrons of the rare-earth and a covalent bonding effect from the overlap between the valence orbitals of the rare-earth ion and those of the neighbouring ligand ions. Covalent bonding effects are strong for the nearest neighbour and interstitial F^{-}ions but are much less at the more distant sites. The hyperfine resonances from the nearest neighbour and interstitial F^{-}ions are dependent on both the dipolar field and the covalent bonding effects, while the hyperfine field experienced by the next nearest neighbour F^{-}ions is almost wholly from the dipolar effects.

These results from both high resolution and ODNMR studies of the $\mathrm{SrF}_{2} \mathrm{~A}$ centre confirm the $\mathrm{C}_{4 \mathrm{v}}$ symmetry assignment made for this centre.

As the $Z_{1}-Z_{2}$ energy level separation of $2.7 \mathrm{~cm}^{-1}$ for the $\mathrm{SrF}_{2} \mathrm{~A}$ centre here is larger than the $1.9 \mathrm{~cm}^{-1}$ for the $\mathrm{CaF}_{2} \mathrm{~A}$ centre, the hyperfine interaction mixing effects are weaker for the SrF_{2} case and lower frequency resonances are obtained.

9.4 High Resolution and ODNMR Studies of the SB1 Centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{\mathbf{3 +}}(\mathbf{0 . 0 0 1 \%}$) Crystals

The high resolution spectra for the $\mathrm{C}_{4 v}$ symmetry SB1 centre, as shown in Figure 9.6, were obtained with excitation of the $Z_{1} \rightarrow D_{1}$ and $Z_{2} \rightarrow D_{1}$ transitions at 15588.0 and $15585.5 \mathrm{~cm}^{-1}$ respectively, while monitoring the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$ transition at $15205.5 \mathrm{~cm}^{-1}$. Both transitions show the same four line structure as found for the $\mathrm{SrF}_{2} \mathrm{~A}$ centre, but with different separations for some of the lines, as can be seen from comparison of Tables 9.1 and 9.3.

Just as for the SrF_{2} A centre, the hyperfine lines could be assigned to particular I_{z} values of $7 / 2,5 / 2$ and $3 / 2$ (Figure 9.3) from their superhyperfine lines while no resonance was observed for I_{z} of $1 / 2$. The hyperfine line marked by * in Figure 9.6 does not give any superhyperfine resonances and is likely to be from a different centre. Again, as found for both the $\mathrm{CaF}_{2} \mathrm{~A}$ centre [81] and the $\mathrm{SrF}_{2} \mathrm{~A}$ centre, the I_{z} dependence of the resonance frequencies is pronounced (Table 9.4).

Figure 9.6:
2 K high resolution excitation spectra of the (a) $\mathrm{Z}_{2} \rightarrow \mathrm{D}_{1}\left(15585.5 \mathrm{~cm}^{-1}\right)$ and (b) $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}\left(15588.0 \mathrm{~cm}^{-1}\right)$ transitions of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry SB 1 centre in $\mathrm{SrF}_{2} \mathrm{Ho}^{3+}(0.001 \%)$ crystals.

Table 9.3: Relative energy positions for the hyperfine lines of the $Z_{2} \rightarrow D_{\perp}$ and $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transitions of the $\mathrm{C}_{4 v}$ symmetry SB 1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals

Transition	Relative hyperfine line positions (GHz)
$\mathrm{Z}_{2} \rightarrow \mathrm{D}_{1}$	0
	1.99
	3.57
	7.75
$\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$	0
	2.07^{*}
	3.87
	5.86
	8.46

Figure 9.7: $\quad 2 \mathrm{~K}$ superhyperfine ODNMR spectra of the nearest neighbour and interstitial ${ }^{19} \mathrm{~F}$ nuclei for the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition of the $\mathrm{C}_{4 v}$ symmetry SB1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.001 \%)$ crystals. The spectra are numbered 1 to 4 according to the hyperfine line of Figure 9.6 (b) burnt.

Table 9.4: Superhyperfine ODNMR frequencies for the nearest neighbour and interstitial ${ }^{19} \mathrm{~F}$ nuclei for the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry SB 1 centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals, as measured at 2 K .

I_{x} level	Measured ODNMR frequencies (MHz)		Ratio of frequencies	Ratio of $\mathrm{I}_{\mathbf{z}}$ values
	Nearest neighbour ${ }^{19} \mathrm{~F}$ nuclei	Interestial ${ }^{19} \mathrm{~F}$ nucleus		
7/2	$\begin{aligned} & 10.7 \\ & 10.1 \end{aligned}$	9.84	1	1
$5 / 2$	$\begin{aligned} & 7.89 \\ & 7.45 \end{aligned}$	7.26	0.737	0.714
$3 / 2$	$\begin{aligned} & 4.83 \\ & 4.52 \end{aligned}$	4.40	0.447	0.429

From the superhyperfine results given in Figure 9.7 and Table 9.4, it can be seen that the nearest neighbour F^{-}ion resonances have identical frequencies to those for the $\mathrm{SrF}_{2} \mathrm{~A}$ centre. The nearest neighbour F^{-}ions therefore retain the same positions in going from the parent $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre to the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres. The cubic arrangement of the F^{-}ions around the Ho^{3+} ion is therefore not altered at all by the presence of the Ba^{2+} ion placed two lattice spacings away. Observation of the same resonance frequencies for the nearest neighbour F^{-}ions for both the $\mathrm{SrF}_{2} \mathrm{~A}$ and SB 1 centres supports the earlier crystal-field analyses which give almost the same cubic crystal-field parameters.

The resonance frequency for the interstitial F^{-}ion was found to be vastly shifted for the SB1 centre compared to those for the A centres, with the resonance frequency lower even than those for either set of nearest neighbour F^{-}ions. Introduction of the Ba^{2+} ion next to the interstitial F^{-}ion therefore has a marked effect on the position of the interstitial F^{-}ion. It is likely that the Ba^{2+} ion, being larger than the Sr^{2+} ion, causes repositioning of the interstitial F^{-}ion in the following way :-
the lattice F^{-}ions between the Ba^{2+} and the interstitial F^{-}ions shift outwards to accommodate the Ba^{2+} ion. The interstitial F^{-}ion is then likely to shift towards the Ba^{2+} ion, away from the Ho^{3+} ion. Such repositioning would reduce the dipolar field experienced and hence lower the resonance frequency for the interstitial F^{-}ion.

An alternative and less likely mechanism is that since the region between the interstitial F^{-}ion and the rare-earth ion is already spatially extended, as determined by Burum et al. [21] for the Pr^{3+} case, the lattice F^{-}ions retain the same positions as in the parent SrF_{2} A centre but the interstitial F^{-}ion shifts towards the Ho^{3+} ion to accommodate the Ba^{2+} ion. Since the interstitial F^{-}ion at this new site is nearer the Ho^{3+} ion, the dipolar field is increased, but if the covalency effects outweigh this dipolar field increase, the resultant resonance frequency could be lower than that for the parent $\mathrm{SrF}_{2} \mathrm{~A}$ centre.

From the crystal-field calculations (Chapter 7), the second degree axial crystal-field parameter $\mathrm{B}_{\mathrm{A}}^{2}$, which is largely determined by the interstitial F^{-}ion, was found to be about half that for the $\mathrm{SrF}_{2} \mathrm{~A}$ centre. This result together with the common resonance frequencies measured for the nearest neighbour ${ }^{19} \mathrm{~F}$ nuclei resonancies, favour the repositioning of the interstitial F^{-}ion towards the Ba^{2+} ion as the more likely configuration of the SB1 centre.

Measurements for the SC1 centre could not be obtained as its signal intensity was too weak in the crystals available. It is however expected that Ca^{2+}, being smaller than Sr^{2+}, would give resonances for the interstitial F^{-}ion at slightly lower frequencies than those for the $\mathrm{SrF}_{2} \mathrm{~A}$ centre. The change is not expected to be as large as observed here for the SB1 centre and a small shift, to lower frequency, in the resonances due to the interstitial F^{-}ion in the SC1 centre would follow the relatively small decrease in the value of the second degree axial crystal-field parameter $\mathrm{B}_{\mathrm{A}}^{2}$ (Chapter 7) compared to that for the $\mathrm{SrF}_{2} \mathrm{~A}$ centre.

Similar studies for the $\mathrm{C}_{4 v}$ symmetry CS1 and CB1 centres found in the CaF_{2} type crystals would be helpful for a complete understanding of the resonances from the interstitial F^{-}ion and the model configuration proposed for these centres. As both Sr^{2+} and Ba^{2+} are larger than the Ca^{2+} host alkaline-earth, both centres are expected to show the same behaviour as the SB1 centre above, with the CB1 centre showing the greater change. Because of the greater energy separation between the nearest neighbour and interstitial F^{-}ion resonances in the parent $\mathrm{CaF}_{2} \mathrm{~A}$ centre, it is unlikely that the interstitial resonance frequencies would shift lower than those for the nearest neighbour F^{-}ions. A similar small shift in the resonance of the interstitial F^{-}ion to lower frequency was observed for the A2 centre in $\mathrm{Ca}_{0.995} \mathrm{Sr}_{0.005} \mathrm{~F}_{2}: \mathrm{Pr}^{3+}$ crystals [64], for which the Sr^{2+} ion is located on the $\mathrm{Pr}^{3+}-\mathrm{F}^{-}$axis with the $\mathrm{C}_{4 v}$ symmetry configuration of Figure 1.4(a).

9.5 High Resolution Studies of the Dimer Centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ Crystals

High resolution measurements have been reported for the Pr^{3+} $\mathrm{Z}_{1}\left({ }^{3} \mathrm{H}_{4}\right) \rightarrow \mathrm{D}_{1}\left({ }^{1} \mathrm{D}_{2}\right)$ transition (near $\left.17010 \mathrm{~cm}^{-1}\right)$ in $\mathrm{CsCdBr}_{3}: \mathrm{Pr}^{3+}(0.1 \%)$ crystals [27]. The line shape obtained was proposed to be from the combined effects of the hyperfine interaction and the low symmetry distortion from exact $\mathrm{C}_{3 \mathrm{v}}$ symmetry. From the spectral holeburning measurements made in the -80 to 80 MHz range for applied electric fields of up to $666 \mathrm{~V} / \mathrm{cm}$, the hole was found to split into two components whose separation was linearly dependent on the applied electric field. From these results, it was concluded that the effect of pair ion interaction was smaller than the inhomogeneous linewidth of the transition.

High resolution measurements were performed here on $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ and $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{2}$ transitions of the dimer centre at 15307.5 and $15314.5 \mathrm{~cm}^{-1}$ respectively, with monitoring of the $\mathrm{D}_{1} \rightarrow \mathrm{Z}_{10}$ transition at $15090.5 \mathrm{~cm}^{-1}$. The spectra are shown in Figure 9.8 (a) and (b) respectively, and the hyperfine line positions are presented in Table 9.5.

The spectrum for excitation of the $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}$ transition at $15307.5 \mathrm{~cm}^{-1}$ (Figure 9.8(a)), comprises two overlapping sets of eight line patterns. The first set of eight lines are compactly spaced with separations of 1.05 GHz while the second set of eight lines consists of two subsets of four lines each that are more widely spaced, with separations of 3.15 GHz in each subset and 7.75 GHz between the two innermost lines of the set. As both sets are centred in the same region, only six lines from the second set are apparent in Figure 9.8(a). Small splittings of up to 0.5 GHz are apparent on some of the lines. Using the π and σ polarisation convention defined as the E vector of the laser parallel and perpendicular respectively, to the caxis, these six lines were all found to be σ polarised. The closely spaced eight lines were all found to be π polarised. As this $Z_{1} \rightarrow D_{1}$ transition is of $\gamma_{3} \rightarrow \gamma_{3}(\mathrm{E} \rightarrow \mathrm{E})$ type in $\mathrm{C}_{3 \mathrm{v}}$ symmetry, the two sets

Figure 9.8: $\quad 2 \mathrm{~K}$ high resolution excitation spectra of the (a) $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{1}\left(15307.5 \mathrm{~cm}^{-1}\right)$ and (b) $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{2}\left(15314.5 \mathrm{~cm}^{-1}\right)$ transitions of the principal dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals.

Table 9.5: \quad Relative energy positions for the hyperfine lines of the $Z_{1} \rightarrow D_{1}$ and $\mathrm{Z}_{1} \rightarrow \mathrm{D}_{2}$ transitions of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals

of lines arise from superimposed hyperfine splittings from both the Z_{1} and the D_{1} levels. The more compact set of eight lines are therefore assigned as $\mathrm{E}^{+} \rightarrow \mathrm{E}^{+}$or $\mathrm{E}^{-} \rightarrow \mathrm{E}^{-}$type transitions, while the second set are $\mathrm{E}^{+} \leftrightarrow \mathrm{E}^{-}$type transitions.

The high resolution spectrum for excitation of the $Z_{1} \rightarrow D_{2}$ transitions at $15314.5 \mathrm{~cm}^{-1}$ (Figure 9.8(b)) was found to have a single set of eight lines, some of which also show small splittings of about 0.5 GHz . This set of lines were found to be σ polarised, which is consistent with the D_{2} level being of γ_{2} symmetry, as previously assigned in Chapter 6.

From the analysis of the dimer centre transitions in Chapter 6, low symmetry crystal-field splittings could not be determined for transitions from the D_{1} level but were estimated to be at most $1 \mathrm{~cm}^{-1}$ from the broad profile of the $D_{1} \rightarrow Z_{1}$ and $D_{1} \rightarrow Z_{3}$ transitions. The high resolution spectra obtained here are therefore complicated by the presence of three comparable interactions, viz :-
(i) the hyperfine coupling;
(ii) the low symmetry crystal-field interaction;
(iii) the inter-ionic coupling between the Ho^{3+} ions of a pair.

Detailed analysis of the hyperfine line structures would require further knowledge of the low symmetry crystal-field and pair splittings before lines from the hyperfine coupling alone can be identified. As all the transitions are quite broad, lower Ho^{3+} concentration crystals might yield sharper and better defined lines.

Further high resolution measurements for excitation of the sharper transitions of the E and F multiplets are likely to be easier to analyse as the low symmetry crystal-field and pair splittings of these transitions are clearly resolved in the low resolution spectra (Chapter 6). A high resolution analysis of these well resolved transitions is expected to give a better measure of the low symmetry crystal-field effects and the ion pair interaction in the high resolution spectra, which would be helpful for interpreting the results found here for excitation of the $Z_{1} \rightarrow D_{1}$ and $Z_{1} \rightarrow D_{2}$ transitions.

CHAPTER 10

SUMMARY AND CONCLUSIONS

Results of a laser selective excitation study of Ho^{3+} ions in the three crystal hosts, $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CsCdBr_{3}, have been described. Ho^{3+} centre symmetries and crystal-field energy level irrep labels have been determined and model configurations proposed for the various centres.

In $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, polarisation ratio measurements have been used to confirm the $\mathrm{C}_{4 \mathrm{v}}$ and $\mathrm{C}_{3 \mathrm{v}}$ symmetry assignments proposed by [SW] for the A and B centres respectively. The major contribution of this study towards the interpretation of the spectra of these two Ho^{3+} centres has been in deriving the energy level schemes and assigning irrep labels to the crystal-field energy levels of both centres.

For the four new centres (CS1, CS2, CB1 and CB2) identified in the mixed $\mathrm{Ca}_{0.99} \mathrm{Sr}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ and $\mathrm{Ca}_{0.99} \mathrm{Ba}_{0.01} \mathrm{~F}_{2}: \mathrm{Ho}^{3+}(0.005 \%)$ crystals, the Ho^{3+} site symmetries and crystal-field energy level irrep labels have been established from polarisation studies. The model configurations proposed show all four centres to be derived from the $\mathrm{C}_{4 v}$ symmetry A centre by either an on-axis or an off-axis placement of the dopant Sr^{2+} or Ba^{2+} cation. The on-axis substitution of the host cation preserves the $\mathrm{C}_{4 \mathrm{v}}$ symmetry of the parent centre, as shown by the similarities of both the CS1 and CB1 centre spectra and polarisation behaviour to those of the $\mathrm{C}_{4 \mathrm{v}}$ symmetry parent A centre. The off-axis substitution, which creates a C_{5} symmetry centre, is shown by splittings on the $\mathrm{C}_{4 \mathrm{v}}$ symmetry γ_{5} (doublet) type energy levels of the CS2 and CB2 centres. Polarisation studies show both the CS2 and CB2 centres to be (100) plane C_{s} symmetry centres with the $\mathrm{C}_{\mathrm{s}}(\mathrm{b})$ configuration.

Of the five centres observed in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}(0.01 \%)$ crystals, two are the SrF_{2} analogues of the A and B centres found in CaF_{2}. Unlike in CaF_{2} where the A and B centres are of comparable intensities, the $\mathrm{SrF}_{2} \mathrm{~B}$ centre is only 2% of the
intensity of the $\mathrm{SrF}_{2} \mathrm{~A}$ centre. With the principal centre in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ being of $\mathrm{C}_{4 v}$ symmetry while that in $\mathrm{SrF}_{2}: \mathrm{Er}^{3+}$ is trigonal [30, 68], the change over in the principal centre symmetry from $\mathrm{C}_{4 v}$ to $\mathrm{C}_{3 \mathrm{v}}$, for rare-earth ions in SrF_{2} crystals occurs between the Ho^{3+} and Er^{3+} ions.

The three remaining centres, $\mathrm{SC} 1, \mathrm{SC} 2$ and SB 1 , also present in $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals are from Ca^{2+} and Ba^{2+} impurities in the nominally pure SrF_{2} starting material. The SC1 and SB1 centres have been assigned the same $\mathrm{C}_{4 \mathrm{v}}$ symmetry configuration as for the CS1 and CB1 centres, on the basis of the similarity between their spectra and polarisation behaviour and those of the $\mathrm{SrF}_{2} \mathrm{~A}$ centre. The SC 2 and SB 2 centres are proposed to have the same $\mathrm{C}_{\mathrm{s}}(\mathrm{b})$ configuration as the CS2 and CB2 centres.

The laser selective excitation study of deuterated $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ crystals was not as successful as had been hoped. Although the D^{-} analogue of the $\mathrm{CaF}_{2} \mathrm{~B}$ centre was identified, neither of the two other centres found in $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}: \mathrm{D}^{-}$crystals could be assigned as the $\mathrm{D}^{-} \mathrm{C}_{4 \mathrm{v}}$ symmetry centre analogous to the $\mathrm{CaF}_{2} \mathrm{~A}$ centre. In $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}: \mathrm{D}^{-}$crystals, the four centres found have some resemblance to the $\mathrm{SrF}_{2} \mathrm{~A}, \mathrm{SC} 1, \mathrm{SC} 2$ and SB 1 centres, but none of the four D^{-}centres could be assigned as a $\mathrm{C}_{4 \mathrm{v}}$ symmetry centre.

For $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, the spectroscopy of the principal dimer centre has been documented, as done for $\mathrm{Nd}^{3+}[10,11], \mathrm{Er}^{3+}[29,31]$ and Pr^{3+} [102]. The relatively strong upconversion fluorescence enabled energy levels up to $35522.5 \mathrm{~cm}^{-1}$ to be identified. Several energy transfer mechanisms have been proposed for the upconversion fluorescence observed. The small pair splittings of 0.20 to $0.44 \mathrm{~cm}^{-1}$ (from the coupling of the two Ho^{3+} ions of a dimer centre) and the low symmetry crystal-field splittings of up to $2.5 \mathrm{~cm}^{-1}$ apparent on some of the sharper transitions have been discussed. The low symmetry crystal-field splittings give direct evidence that the Ho^{3+} ions in CsCdBr_{3} crystals are not in sites of exact $\mathrm{C}_{3 \mathrm{v}}$ symmetry.

Three minority centres L, M and N , present in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%)$,
$\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.01 \%)$ and $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}(0.3 \%): \mathrm{Na}^{+}(1 \%)$ crystals respectively, have also been discussed and model configurations proposed.

The crystal-field fits show good agreement between the experimental and the calculated energies of the crystal-field levels. For both the $C_{4 v}$ and $C_{3 v}$ symmetry centres, the irrep label assignments based on polarisation measurements have been confirmed and the symmetries of the unassigned levels determined.

Fluorescence lifetimes have been measured for the major centres in CaF_{2} and SrF_{2} type crystals, except the weak $\mathrm{SrF}_{2} \mathrm{~B}$ and SB 2 centres. For the CS1, $\mathrm{CS} 2, \mathrm{CB} 1$ and CB 2 centres, the fluorescence lifetimes are similar to those for the CaF_{2} A centre while the SC1, SC2 and SB1 centres have lifetimes similar to those of the SrF_{2} A centre. This is consistent with the modified centres being derived from the respective $\mathrm{C}_{4 \mathrm{v}}$ symmetry A centres.

For the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$, fluorescence lifetime measurements confirm the energy transfer mechanism proposed for the population of the Q multiplet at $\sim 32850 \mathrm{~cm}^{-1}$. The energy transfer rates were found to be comparable to those for the Er^{3+} dimer centre, for excitation to multiplets in the same spectral region.

The high resolution and ODNMR measurements confirm the $\mathrm{C}_{4 \mathrm{v}}$ symmetry assignment proposed for the $\mathrm{SrF}_{2} \mathrm{~A}$ and SB 1 centres. Observation of the same superhyperfine ODNMR frequencies for the eight nearest neighbour F^{-}ions in both the $\mathrm{SrF}_{2} \mathrm{~A}$ and the SB 1 centres shows that the dopant cation does not have any appreciable effect on the positions of the nearest neighbour lattice F^{-}ions and only affects the positioning of the interstitial F^{-}ion, as evidenced by the decrease in its resonance frequency in going from the $\mathrm{SrF}_{2} \mathrm{~A}$ centre to the SB 1 centre.

From the preliminary high resolution study of the dimer centre in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, the symmetry assignments for the $\mathrm{Z}_{1}, \mathrm{D}_{1}$ and D_{2} energy levels have been confirmed. $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ is a promising candidate for high resolution studies of the pair splittings and low symmetry crystal-field effects, with the requirement that either the ${ }^{5} \mathrm{~S}_{2}$ or the ${ }^{5} \mathrm{~F}_{3}$ multiplet rather than the ${ }^{5} \mathrm{~F}_{5}$
multiplet be excited, as both effects are well resolved for some transitions of the ${ }^{5} \mathrm{~S}_{2}$ and ${ }^{5} \mathrm{~F}_{3}$ multiplets in the $0.2 \mathrm{~cm}^{-1}$ resolution spectra.

A total of $23 \mathrm{Ho}^{3+}$ centres, comprising six F^{-}and three D^{-}centres in CaF_{2} type crystals, six F^{-}and four D^{-}centres in SrF_{2} type crystals and two dimer and two single Ho^{3+} ion centres in CsCdBr_{3} crystals, have been documented in this study. Laser selective excitation has been shown to be a useful technique for identifying and studying the various Ho^{3+} centres present in these $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CsCdBr_{3} type crystals and polarisation, a powerful tool for determining the centre symmetries and crystal-field energy level irrep labels.

Extensions of this study of Ho^{3+} ions in $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and CsCdBr_{3} type crystals would include :
(i) EPR measurements in the 75 GHz range to confirm the principal centre symmetry assignment made here for $\mathrm{SrF}_{2}: \mathrm{Ho}^{3+}$ and directly measure the $\mathrm{Z}_{1}-\mathrm{Z}_{2}$ separation;
(ii) high resolution and ODNMR studies of the CS1, CB1 and SC1 centres in suitably doped crystals, to monitor the frequency changes for the resonance from the interstitial F^{-}ion and derive its position relative to that of the Ho^{3+} ion for all the modified $\mathrm{C}_{4 \mathrm{v}}$ symmetry centres in the mixed crystals;
(iii) high resolution studies of lowly doped ($<0.01 \%$) $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, to characterise the pair splittings, low symmetry crystal-field effects and hyperfine interaction effects;
(iv) Zeeman spectroscopy of the principal dimer and M single ion centres in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals, for further study of the pair splittings and the low symmetry crystal-field effects;
(v) spectroscopic and temporal measurements of the visible upconversion fluorescence in $\mathrm{CsCdBr}_{3}: \mathrm{Ho}^{3+}$ crystals for excitation in the infrared. The resulting upconversion mechanisms and
energy transfer rates can then be compared with those for the Er^{3+} dimer centre.

REFERENCES

[1] Ackerman J.F., Cole G.M. and Holt S.L., Inorg. Chem. Acta Rev. 8, 323 (1974)
[2] Agladze N.I. and Popova M.N., Solid State Comm. 55, 1097 (1985)
[3] Agladze N.I., Vinogradov E.A. and Popova M.N., Sov. Phys. JETP 64, 716 (1986)
[4] Agladze N.I., Vinogradov E.A. and Popova M.N., Opt. Spectrosc. (USSR) 61, 1 (1986)
[5] Allain J.Y., Monerie M. and Poignant H., Electron. Lett. 26, 261 (1990)
[6] Antipin A.A., Davydova M.P., Eremin M.V., Luks R.K., and Stolov A.L., Opt. Spectrosc. 33, 372 (1972)
[7] Antipin A.A., Kurkin I.I., Livanova L.D., Potvorova L.Z. and Shekun L. Ya., Sov. Phys. - Technical Physics 11, 821 (1966)
[8] Antipin A.A., Kurkin I.N., Livanova L.D., Potvorova L.Z. and Shekun L. Ya., Sov. Phys. - Solid State 8, 2130 (1967)
[9] Antipin A.A., Livanova L.D. and Shekun L. Ya., Sov. Phys. - Solid State 10, 1025 (1968)
[10] Barthem R.B., Buisson R. and Cone R.L., J. Chem. Phys. 91, 627 (1989)
[11] Barthem R.B., Buisson R., Madéore F., Vial J.C. and Chaminade J.P., J. Phys. (Paris) 48, 379 (1987)
[12] Barthou C. and Barthem R.B., J. Lumin. 46, 9 (1990)
[13] Berdowski P.A.M., Lammers M.J.J. and Blasse G., J. Chem. Phys. 83, 476 (1985)
[14] Blasse G., Wolfert A. and McPherson G.L., J. Solid State Chem. 57, 396 (1985)
[15] Bleaney B., Llewellyn P.M. and Jones D.A., Proc. Phys. Soc. B69, 858 (1956)
[16] Boyn R., Phys. Stat. Sol. (b) 148, 11 (1988)
[17] Brierley M.C., France P.W. and Millar C.A., Electron. Lett. 24, 539 (1988)
[18] Brown M.R., Roots K.G., Williams J.M., Shand W.A., Groter C. and Kay H.F., J. Chem. Phys. 50, 891 (1969)
[19] Brown M.R., Thomas H., Whiting J.S.S. and Shand W.A., J. Chem. Phys. 50, 881 (1969)
[20] Buisson R. and Vial J.C., J. Phys. (Paris) Lett. 42, L115 (1981)
[21] Burum D.P., Shelby R.M. and Macfarlane R.M., Phys. Rev. B 25, 3009 (1982)
[22] Butler P.H., Point Group Symmetry Applications (Plenum Press : New York, 1981)
[23] CRC Handbook of Chemistry and Physics, ed. Weast R.C., (CRC Press : Cleveland, 1970)
[24] Campbell J.A., private communication
[25] Carnall W.T., Goodman G.L., Rajnak K. and Rana R.S., J. Chem. Phys. 90, 3443 (1989)
[26] Caspers H.H., Rast H.E. and Fry J.L., J. Chem. Phys. 53, 3208 (1970)
[27] Chaminade J.P., Macfarlane R.M., Ramaz F. and Vial J.C., J. Lumin. 48 \& 49, 531 (1991)
[28] Cockcroft N.J., Ph.D. Thesis, University of Canterbury (1987)
[29] Cockcroft N.J., Jones G.D. and Nguyen D.C., Phys. Rev. B 45, 5187 (1992)
[30] Cockcroft N.J., Jones G.D. and Syme R.W.G., J. Chem. Phys. 92, 2166 (1990)
[31] Cockcroft N.J., Jones G.D. and Syme R.W.G., J. Lumin. 43, 275 (1989)
[32] Cockcroft N.J., Thompson D., Jones G.D. and Syme R.W.G., J. Chem. Phys. 86, 521 (1987)
[33] Crosswhite H.M., Crosswhite H., Edelstein N. and Rajnak K., J. Chem. Phys. 67, 3002 (1977)

Dieke G.H., Physica 33, 212 (1967)
[35] Dieke G.H., Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience : New York, 1968)
[36] Edgar A., Freeth C.A. and Jones G.D., Phys. Rev. B 15, 5023 (1977)
[37] Edgar A., Jones G.D. and Presland M.R., J. Phys. C: Solid State Phys. 12, 1569 (1979)
[38] Elcombe M.M. and Pryor A.W., J. Phys. C: Solid State Phys. 3, 492 (1970)
[39] Eremin M.V., Luks R.K. and Stolov A.L., Sov. Phys. - Solid State 12, 2820 (1971)
[40] Ershov B.V., Pimenov Yu.P., Prokhorov A.M. and Fedorov V.B., Sov. Phys. - Solid State 10, 1300 (1968)
[41] Foo S.P., Honours III Project Report, University of Canterbury (1989)
[42] Freeth C.A. and Jones G.D., J. Phys. C: Solid State Phys. 15, 6833 (1982)
[43] Freeth C.A., Jones G.D. and Syme R.W.G. J. Phys. C: Solid State Phys. 15, 5667 (1982)
[44] Hall J.L. and Schumacher R.T., Phys. Rev. 127, 1892 (1962)
[45] Han T.P.J., Ph.D. Thesis, University of Canterbury (1988)
[46] Hanna D.C., Percival R.M., Smart R.G., Townsend J.E. and Tropper A.C., Electron. Lett. 25, 593 (1989)
[47] Hasan Z., Solid State Comm. 73, 109 (1990)
[48] Hasan Z., Danby R. and Manson N.B., J. Lumin. 40 \& 41, 397 (1988)
[49] Hasan Z., Ghafoori Fard H. and Manson N.B., J. Lumin. 45, 304 (1990)
[50] Hayes W., Crystals with the Fluorite Structure (Clarendon Press : Oxford, 1974)
[51] Hayes W., Jones G.D. and Twidell J.W., Proc. Phys. Soc. (London) 81, 371 (1963)
[52] Henling L.M. and McPherson G.L., Phys. Rev. B 16, 4756 (1977)
[53] Hüfner S., Optical Spectra of Transparent Rare Earth Compounds (Academic Press: New York, 1978)
[54] Hutchings M.T., Point-Charge Calculations of Energy Levels of Magnetic Ions in Crystalline Electric Fields in Solid State Physics Vol. 16, ed. Seitz F. and Turnbull D. (Academic Press : New York, 1964)
[55] Jones G.D., Peled S., Rosenwaks S. and Yatsiv S., Phys. Rev. 183, 353 (1969)
[56] Jones G.D. and Satten R.A., Phys. Rev. 147, 566 (1966)
[57] Judd B.R., Operator Techniques in Atomic Spectroscopy (McGraw Hill : New York, 1963)
[58] Judd B.R., Phys. Rev. 141, 4 (1966)
[59] Judd B.R., Phys. Rev. 127, 750 (1962)
[60] Judd B.R., Crosswhite H.M. and Crosswhite H., Phys. Rev. 169, 130 (1968)
[61] Kaminskii A.A., Laser Crystals : their Physics and Properties (Springer Series in Optical Sciences Vol. 14), translation ed. Ivey H.F. (Springer-Verlag : Berlin, 1981)
[62] Kaplyanskii A.A. and Medvedev V.N., Opt. Spectrosc. 18, 451 (1965)
[63] Khong Yoon Loong, Ph. D. Thesis, University of Canterbury (1991)
[64] Kong Yoon Loong, private communication
[65] Kintz G.J., Esterowitz L. and Allen R., Electron. Lett. 23, 616 (1987)
[66] Kornienko L.S. and Rybaltovskii A.O., Sov. Phys. - Solid State 13, 1785 (1972)
[67] Koster G.F., Dimmock J.O., Wheeler R.G. and Starz H., Properties of the Thirty-two Point Groups (M.I.T. Press : Cambridge, Massachusetts, 1963)
[68] Kurz M.D. and Wright J.C., J. Lumin. 15, 169 (1977)
[69] Lai K.K., Ph. D. Thesis, University of Canterbury (1987)
[70] Lal B. and Ramachandra Rao D., Indian J. Phys. 54B, 84 (1980)
[71] Lal B. and Ramachandra Rao D., Chem. Phys. Lett. 53, 250 (1978)
[72] Lammers M.J.J. and Blasse G., Chem. Phys. Lett. 126, 405 (1986)
[73] Lea K.R., Leask M.J.M. and Wolf W.P., J. Phys. Chem. Solids 23, 1381 (1962)
[74] Lesniak K., J. Phys. C: Solid State Phys. 19, 2721 (1986)
[75] Lesniak K. and Richardson F.S., J. Phys. : Condens. Matter 4, 1743 (1992)
[76] Lupei V., J. Phys. C: Solid State Phys. 12, LA5 (1979)
[77] Macfarlane R.M., Burum D.P. and Shelby R.M., Phys. Rev. B 29, 2390 (1984)
[78] Macfarlane R.M. and Shelby R.M., Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids, Chapter 3 in Spectroscopy of Solids Containing Rare Earth Ions, ed. Kaplyanskii A.A. and Macfarlane R.M. (Elsevier Science : Amsterdam, 1987)
[79] Macfarlane R.M., Shelby R.M. and Burum D.P., Opt. Lett. 6, 593 (1981)
[80] Manson N.B., Hasan Z., Fisk P.T.H., Reeves R.J., Jones G.D. and Macfarlane R.M., J. Phys. C., to be published
[81] Martin J.P.D., Boonyarith T., Manson N.B., Mujaji M. and Jones G.D., to be published
[82] McPherson A.M. and McPherson G.L., Solid State Comm. 37, 501 (1981)
[83] McPherson G.L. and Henling L.M., Phys. Rev. B 16, 1889 (1977)
[84] McPherson G.L., McPherson A.M. and Atwood J.L., J. Phys. Chem. Solids 41, 495 (1980)
[85] McPherson G.L. and Meyerson S.L., Chem. Phys. Lett. 167, 471 (1990)
[86] McPherson G.L., Wai-ming Heung and Barraza J.J., J. Am. Chem. Soc. 100, 469 (1978)
[87] Merz J.L. and Pershan P.S., Phys. Rev. 162, 217 (1967)
[88] Merz J.L. and Pershan P.S., Phys. Rev. 162, 235 (1967)
[89] Miller M.P. and Wright J.C., J. Chem. Phys. 71, 324 (1979)
[90] Murdoch K., private communication
[91] Narayana Rao D., Prasad J. and Prasad P.N., Phys. Rev. B 28, 20 (1983)
[92] Newman R.C., Infra-red Studies of Crystal Defects, ed. Coles B.R. and Mott N. (Taylor \& Francis Ltd. : London, 1973)
[93] Nielson C.W. and Koster G.F., Spectroscopic Coefficients for p^{n}, d^{n} and f^{n} Configurations (M.I.T. Press : Cambridge, Massachusetts, 1964)
[94] Ofelt G.S., J. Chem. Phys. 37, 511 (1962)
[95] Paris M.I., Honours III Project Report, University of Canterbury (1986)
[96] Pilla O., Cazzanelli E., Blanzat B., Andraud C., and Pelle F., Phys. Stat. Sol. (b) 144, 845 (1987)
[97] Popov V.V. and Pissarenko V.F., Phys. Stat. Sol. 32, K143 (1969)
[98] Pourat B., Pilawa B. and Kahle H.G., J. Phys. : Condens. Matter 3, 6069 (1991)
[99] Rajnak K. and Krupke W.F., J. Chem. Phys. 46, 3532 (1967)
[100] Rajnak K. and Wybourne B.G., Phys. Rev. 132, 280 (1963)
[101] Ramaz F., Macfarlane R.M. and Vial J.C., to be published
[102] Ramaz F., Vial J.C., Macfarlane R.M., Chaminade J.P. and Madéore F., to be published
[103] Ranon U. and Lee K., Phys. Rev. 188, 539 (1969)
[104] Ranon U. and Yaniv A., Phys. Lett. 9, 17 (1964)
[105] Reeves R.J., Ph. D. Thesis, University of Canterbury (1987)
[106] Reeves R.J., Jones G.D. and Syme R.W.G., Phys. Rev. B., to be published
[107] Reeves R.J., Jones G.D., Cockroft N.J., Han T.P.J. and Syme R.W.G., J. Lumin. 38, 198 (1987)
[108] Reid M.F., J. Chem. Phys. 87, 2875 (1987)
[109] Reid M.F. and Butler P.H., J. Phys. C: Solid State Phys. 15, 4103 (1982)
[110] Reid M.F., private communication
[111] Reisfeld R. and Jorgensen C.K., Lasers and Excited States of Rare Earths, Chapter 2 in Inorgaic Chemistry Concepts Vol. 1
(Springer-Verlag : Berlin, 1977)
[112] Richman I., Phys. Rev. 133, A1364 (1964)
[113] Riseberg L.A. and Moos H.W., Phys. Rev. 174, 429 (1968)
[114] Riseberg L.A. and Weber M.J., Relaxation Phenomena in Rare-Earth Luminescence, Chapter III in Progress in Optics XIV, ed. Wolf E. (North-Holland: Amsterdam, 1976)
[115] Rotenberg M., Bivins R., Metropolis N. and Wooten J.K., The 3-j and 6-j Symbols (M.I.T. Press : Cambridge, Massachusetts, 1959)
[116] Seelbinder M.B., Ph.D. Thesis, University of Wisconsin (University Microfilms : Ann Arbor, Michigan, 1980)
[117] Seelbinder M.B. and Wright, J.C., Phys. Rev. B 20, 4308 (1979) [SW]
[118] Sendova-Vassileva M., Iliev M. and Chadwick A.V., J. Phys. : Condens. Matter 3, 5407 (1991)
[119] Sierro J., Phys. Lett. 4, 178 (1963)
[120] Tallant D.R., Miller M.P. and Wright J.C., J. Chem. Phys. 65, 510 (1976)
[121] Tallant D.R., Moore D.S. and Wright J.C., J. Chem. Phys. 67, 2897 (1977)
[122] Tallant D.R. and Wright J.C., J. Chem. Phys. 63, 2074 (1975)
[123] Tang S.H., Zhang H.Y., Kuok M.H. and Kee S.C., Phys. Stat. Sol. (b) 168, 351 (1991)
[124] Timans J.W.J. and Den Hartog H.W., Phys. Stat. Sol. (b) 73, 283 (1976)
[125] Voron'ko Yu.K., Kaminskii A.A., Osiko V.V. and Prokhorov A.M., Soviet Phys. - JETP Lett. 1, 3 (1965)
[126] Watts R.K., J. Chem. Phys. 53, 3552 (1970)
[127] Weber M.J. and Bierig R.W., Phys. Rev. 134, A1492 (1964)
[128] Welsh H.K., J. Phys. C: Solid State Phys. 18, 5637 (1985)
[129] Wolfert A. and Blasse G., J. Solid State Chem. 55, 344 (1984)
[130] Wood D.L. and Kaiser W., Phys. Rev. 126, 2079 (1962)
[131] Wright J.C., Up-Conversion and Excited State Energy Transfer in Rare-Earth Doped Materials, Chapter 4 in Topics in Applied Physics Vol. 15, ed. Fong F.K. (Springer-Verlag : Berlin, 1976)
[132] Wybourne B.G., Spectroscopic Properties of Rare Earths (Interscience : New York, 1965)
[133] Yen W.M., Experimental Studies of Energy Transfer in Rare Earth Ions in Crystals, Chapter 4 in Spectroscopy of Solids Containing Rare Earth Ions, ed. Kaplyanskii A.A. and Macfarlane R.M. (Elsevier Science : Amsterdam, 1987)

APPENDIX

Publications co-authored

1. Upconversion Fluorescence Spectroscopy of Ho^{3+} Dimer Pairs in CsCdBr_{3}
M. Mujaji, G.D. Jones and R.W.G. Syme, J. Lumin., to be published in the proceedings of the 8 th international conference on Dynamical Processes in Excited States of Solids, August 1991.
2. A Polarisation Study and Crystal-Field Analysis of the Laser Selective Excitation Spectra of Ho^{3+} Ions in CaF_{2} and SrF_{2} crystals M. Mujaji, G.D. Jones and R.W.G. Syme, submitted to Phys. Rev. B (1992).
3. Hyperfine Coupling between Crystal Field Levels in the Tetragonal Center of $\mathrm{CaF}_{2}: \mathrm{Ho}^{3+}$ and its Measurement via Laser Spectroscopy J.P.D. Martin, T. Boonyarith, N.B. Manson, M. Mujaji and G.D. Jones, to be published.

[^0]: \dagger Denham P., Field G.R., Morse P.L.R. and Wilkinson G.R., Proc. Roy. Soc. (Lond.) A317, 55 (1970)

