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Abstract 

Previous Mossbauer studies ofthe FexNh-xCl2 system led to conflicting 

hypothesises about the exact magnetic behaviour of the Fe2+ ions in the 

mixed magnetic phase. This phase occurs between the Fe2+ concentration 

values of x=0.03 and 0.12, and at temperatures than 45 K. Tamald and 

Ito (1991,1993) used a model which had co-existing magnetic order, with 

some Fe2+ and Ni2+ spins aligned near the crystalline c axis, while the others 

aligned near the perpendicular xy plane (model1). The relative population 

of the two sites is dependent on the concentration x and the temperature. 

Pollard et al (1982,1991) used a similar model, but with the spins aligned 

parallel to the x axis or the xy plane (model 2). Again, the populations 

of the two sites depended on x and temperature. 

New Mossbauer studies were clone, and the results are displayed and 

cussed in this thesis. The new studies concerned mixtures within the mixed 

phase (x=0.031 and 0.052) and the pure anti-ferromagnetic phase (x=0.15). 

Models 1 and 2 both generated similar simulated spectra, which gave similar 

fits to the experimental spectra. Model 1 generated spectra which fit only 

marginally better than model 2 spectra. Therefore it was not possible to 

conclude which model gave a better description of the FexNh-:vC12 system, 

using the new Mossbauer studies. 

Monte Carlo studies were also done, to provide a possible explanation 

for the complex magnetic behaviour which occurs in the mixed phase of 

Fe:vNi1_xCl2 . The results showed that a random distribution of metal ions 

does not create co-existing spin order. However, clusters of Fe2+ ions em­

bedded in regions of Fe:vNi1_:vC12 with low values of x did create co-existing 

magnetic order. The spins aligned near the crystalline c axis or the xy plane, 

in agreement with model 1. Hence it was concluded that an un-even distri­

bution of metal ions in FexNh-xClz exists, and directs the complex mixed 

phase behaviour which has been observed experimentally by workers using 

Mossbauer spectroscopy and Neutron diffraction techniques. The Monte 

Carlo programs mentioned in this thesis were written by the Author. 
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Chapter 1 

Introduction to the study of the FexNh-xCb 

magnetic system. 

1.1 Introduction. 

This chapter introduces the FexNh-xCl2 mixed magnetic crystal and descri­

bes its structure, magnetic properties and the various experimental studies 

that have been performed on it in the past. The justification for further 

study by Mossbauer spectroscopy is to clear up past experimental disagree­

ments about some of the system's magnetic properties. 

Since current theories of mixed-magnetic systems are not capable of de­

scribing the FexNi1_xCl2 system sufficiently well (as will be discussed in 

chapter 3), numerical studies using the Monte Carlo technique were per­

formed (see chapter 5). This work together with new Mossbauer studies 

(described in chapter 6) form the topic of this thesis. 

1.2 Physical characteristics of FexNil-xCb. 

The FexNi1_xCb system (with 0 :::; x :::; 1 ) consists of a random mixture 

of two compounds, FeCb and NiCb. Both compounds have the CdCl2 

structure below their melting points of 670 C and 1000 C respectively and 

at ambient pressure or lower (Vettier and Yelon 1975). The structure is 

shown in figure 1.1 as reproduced from p 4702 of Vettier and Yelon (1975). 

The plane of the layers is the xy plane, and the perpendicular (z) direc­

tion to the plane is the c axis. The crystal structure of FexNir-xCl2 consists 

of layers of magnetic-metal ions (either Fe2+ or Ni2+) separated from ad­

jacent layers by two layers of chloride ions (Cl-). The crystal space group 

of FexNh-xCb is Dgd, with each metal ion experiencing a crystal field of 

1 



1.2. Physical characteristics of Fe,Nh-,Cl2· 2 

Figure 1.1: Crystal structure of the Fe:cl'H1_,C12 system. 

Cl- ion. 

Easy plane of pure N i Cl 2 (xy plane). 

Easy axis of pure FeCb (c axis). 



1.3. The magnetic properties of Fe.,Nh-.,012. 3 

approximately cubic symmetry, with a slight trigonal distortion along the 

crystalline c axis. 

The lattice constants for FeC12 and NiCh differ by 3%, having the values 

3.593 A and 3.483 A respectively (Donnay and Ondk 1973). The ionic sizes 

are also similar, 0.76 A and 0.72 A for Fe2+ and Ni2+ respectively '(Kittel 

1986). The metal ions are positioned in a hexagonal array, with an extra 

position at the centre of each hexagon; each ion can then be visualised as 

either being on the outer perimeter of a hexagon or at its centre. Figure 1.2 

provides a two-dimensional representation of one layer of the lattice, where 

each line intersection in the figure is the location for a metal ion. Adjacent 

layers of metal ions can be visualised as being above or below the figure, 

but displaced such that the third layer above or below the layer has ions at 

the same locations (as seen from the view shown in figure 1.1). Two such 

ions are indicated. 

This visualisation correctly represents all of the relations between ions 

(such as which ion is the neighbour of a specific ion), and is of particular use 

in numerical simulations of the system, as will be discussed later (Hernandez 

et al 1993) in chapter 5. 

1.3 The magnetic properties of FexNh-xCh. 

Pure FeCh and NiC12 crystals are both antiferromagnets below their Neel 

temperatures of 23.6 K and 52 K respectively, with no significant magnetic 

field being detectable outside a sample of either compound (Wilkinson et al 

1959 and Lines 1963 respectively). Both have an effective spin 1 (I gel et al 

1990). 

Both FeCl2 and NiCh are anti-ferromagnetic metamagnets. This class 

of magnetic material has the unusual property that a relatively small ma­

gnetic field along their crystalline c axes will align all the metal ion spins 

parallel to it. This is consistent with (in the case of no external field being 

present) all the magnetic spins being aligned parallel in layers, and anti par­

allel to the spins in adjacent layers, and is in agreement with experimental 

data (Starr 1940). If the interlayer exchange interactions between the metal 
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Figure 1.2: Schematic views of metal ions layers in the Fe,.Nit-xCl2 system. Metal ions 

are located at the line intersections. 

Plan view of part of a metal ion layer. 

-/- A metal ion. 

Side view of 4 adjacent metal ion layers. 

o A metal ion. 
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ions are antiferromagnetic and weaker than the intra-layer exchange inter­

actions (which are ferromagnetic), then this behaviour can be accounted 

for. The only interaction an external field has to overcome is just the rela­

tively weak interlayer interaction. Neutron diffraction studies of FeC12 and 

NiCh are consistent with this picture, as described later in this chapter. 

Of particular interest are the interlayer exchange interactions, since the wa­

vefunctions of two magnetic ions in adjacent cation layers do not overlap 

because between them is a large distance, containing non-magnetic chloride 

ions. The exchange interaction involves overlap between the magnetic and . 

non-magnetic ions, and is known as super-exchange (vVagner 1972). 

Magnetic anisotropy, that is an interaction between the ionic spins and 

the lattice, which aligns the spins in particular directions ( Chikazumi and 

Charap 1964), is important for both FeCh and NiQ12 . The anisotropy stron­

gly aligns the Fe spins along the crystalline c axis in FeC12 , which is labelled 

the easy axis for the Fe spins, whereas the Ni spins are only weakly held by 

magnetic anisotropy in the xy plane in NiC12 (the easy plane for Ni spins) 

(Wilkinson et al 1959 and Fujita et al 1969 respectively). In a mixture of 

the two compounds, the two different magnetic ions will introduce conflic­

ting ordering influences into the system; spins will tend to align parallel 

to the c axis and influence neighbouring spins to do likewise, through the 

exchange interaction; Ni spins will attempt to align neighbouring spins in 

the xy plane. This is an example of a system with competing interacti­

ons (competing to create order) and is a class of system which has been 

extensively studied both theoretically and experimentally over the last few 

decades (Ito 1986). As will be discussed in detail in chapter 3, both theore­

tical studies (via renormalization group theory and mean-field theory) and 

experimental studies show several phases exist on the magnetic-phase dia­

gram, depending on the concentration of Fe and the temperature. Phases 

exist where the spins behave as for the pure systems (i.e. all spins align 

along the c axis or in the xy plane), or differently in a mixed phase where 

the different ionic species have different orientations. 

The following sections briefly describe neutron diffraction and Moss bauer 

experiments, which have helped to determine the exchange and magnetic 
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anisotropy interaction strengths for FeCl2 and NiCb. These were useful for 

creating realistic numerical models of FexNh-xClz (see chapter 5). 

1.4 Experimental studies of FexNh-xCh single cry­

stals. 

1.4.1 Mossbauer studies. 

Figure 1.3 shows a magnetic-phase diagram of FeC12 single crystals derived 

from Mossbauer and neutron diffraction studies (Ito 1986). Present in the 

phase diagram are four phases; two pure anti-ferromagnetic phases (pha­

ses 2 and 3), a paramagnetic phase (phase 1) with no average spin order 

at any ionic site and a mixed phase (phase 4) where neutron-diffraction 

experiments detected order parallel to the c axis and in the xy plane. 

Analysis of 57Fe Mossbauer spectra for the mixed phase also shows 

two orientations for the Fe spins. However there are different conclusi­

ons about the orientations. Tamaki and Ito (1991, 1993) examined in de­

tail, by the Mossbauer effect, the spin behaviour for the Fe concentrations 

x 0.034, 0.068 and 0.079, all of which fall within the mixed phase (phase 

4) of figure 1.3. An analysis of their l\tlossbauer spectra showed not one di­

rection for the Fe spins but two; there were coexisting populations present, 

with some spins oriented close to the c axis (population 1), while others lay 

almost in the xy plane (population 2). As the temperature was lowered from 

its paramagnetic value, population 1 grew at the expense of population 2, 

and the spins of population 2 slowly moved out of close proximity to the xy 

plane, and oriented closer to the c axis. Similar spin behaviour also occurs 

in the CsMn1_xCoxC13 ·2H20 mixture of antiferromagnets (Kato 1994). Ho­

wever, most other mixed magnetic systems simply show one orientation for 

each species in the mixed phase, which is consistent with several theoretical 

studies (see chapter 3). 



Figure 1.3: Magnetic phase diagram for Fe:z:Ni1-::Cl2 reproduced from Ito (1986). 
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Other workers utilising Mossbauer spectroscopy also detected the pre­

sence of Fe2+ ions with different spin orientations coexisting in the mixed 

phase, but the exact behaviour within those domains was different. Again a 

paramagnetic phase and two pure anti-ferromagnetic phases were detected 

(and in the same regions as shown in figure 1.3). In the mixed phase, the 

Fe spins oriented either parallel or perpendicular to the c axis (they lie in 

the xy plane); as temperature decreases, the proportion of spins parallel 

to the c axis increases (Pollard et al 1991). There was no reorientation of 

population 2 spins out of the xy plane as observed by Tamaki et al and the 

orientations themselves were different. The spins orientations and populati­

ons for several different values of the Fe concentration x are shown in tables 

1.1 to 1.3 from Tamaki et al (1991, 1993), and the results from Pollard et al 

(1982,1991) are shown in table 1.4 to allow a direct comparison. In each 

table, Fe spin orientations are given in degrees with respect to the crystal c 

axis. 

As is clear in tables 1.1 to 1.4, increasing concentrations of Fe increa­

ses spin order close to the c axis, as does decreasing the temperature. As 

the temperature decreases, energy differences between states becomes more 

important in determining spin orientations; whereas energy differences bet­

ween different orientations becomes irrelevant near or higher than the pa­

ramagnetic temperature for the system. So the ability of the Fe magnetic 

anisotropy to orient spins close to the c axis is enhanced. And higher con­

centrations of Fe in the system means more magnetic-anisotropy energy is 

present in the system, trying to create order along the c axis. 

Pollard et al (1991) also analysed previous Mossbauer spectra that Ito 

et al (1983) had previously recorded, but had not been able to analyse suc­

cessfully, by taking into account thickness effects which the original authors 

had not. ·when this was done, results similar to those in table 1.4 were ob­

tained, with parallel and perpendicular order (to the c axis) being present 

simultaneously in the mixed phase. 

Although the two group's results differ, they do share the same obser­

vation of the coexistence phenomena of different spin behaviours, which 

does not agree with several theoretical predictions for mixtures of magnets 
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with competing order parameters. These predictions and their relationship 

to Mossbauer spectra obtained from the FexNh-xC12 system will be discus­

sed in chapter 3. 

T(K) Fe spin orientations(0
) Proportions in the spectrum. 

4.2 20 and 90 0.5 and 0.5 
10 20 and 68 0.45 and 0.55 
15 20 and 73 0.4 and 0.6 
25 20 and 80 0.3 and 0.7 
40 20 and 90 0 and 1.0 
48 20 and 90 0 and 1.0 

Table 1.1: Mossbauer data for the Fe concentration x=0.034, with the spin orientations 

taken relative to the crystalline c axis. Data from Tamaki et al (1993). 

T(K) Fe spin orientations(0
) Proportions in the spectrum. 

4.2 20 1.0 
25 20 and 75 0.85 and 0.15 
35 20 and 80 0.7 and 0.3 
42 20 and 85 0.5 and 0.5 
44 20 and 90 0.4 and 0.6 
46 20 and 90 0.3 and 0.7 
47 20 and 90 0.2 and 0.8 
48 20 and 90 0.2 and 0.8 

Table 1.2: Mossbauer data for the Fe concentration x=0.068, with the spin orientations 

taken relative to the crystalline c axis. Data from Tamaki et al (1991). 
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T(K) Fe spin orientations(0
) Proportions in the spectrum. 

49 20 and 60 0.2 and 0.8 
40 20 1.0 

Table 1.3: Mossbauer data for the Fe concentration x=0.079, with the spin orientations 

taken relative to the crystalline c axis. Data from Tamald et al (1993). 

T(K) Fraction of Fe spins parallel to the c axis. 
25 0.74 
35 0.57 
42 0.35 
44 0.27 
46 0.08 

Table 1.4: Mossbauer data for the Fe concentration x=O.lO, with the spins found either 

parallel or perpendicular to the crystalline c axis. Data from Pollard et al (1991). 

1.4.2 Neutron diffraction studies of FexNi1_xCb. 

Ito et al (1983) studied FexNi1-xCh by neutron diffraction over the Fe con­

centration range of x 0.005 to 0.12, which, at low temperatures, has the 

crystal in the mixed phase, or in a phase with spins in the xy plane as can 

be seen in figure 1.3. Again it is found that spin order both parallel and 

perpendicular to the c axis exists in the mixed phase. However since neu­

tron diffraction measures large-scale magnetisation and not the orientations 

of individual spins, the technique cannot be used to investigate individual 

Fe spin behaviours, for which Mossbauer spectroscopy is ideally suited. 

It should be emphasised that neutron diffraction techniques cannot di­

stinguish between Fe and Ni spins; both species contribute to the number 

of neutrons detected at different scattering angles. The results showing si­

multaneous parallel and perpendicular order is in fact mainly due to the 

presence of Ni spins, since they make up the bulk of the spins present in 

the mixed phase region (as x is less than 0.12 in that region). 
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It was also noted that the lower phase transition from spins aligned along 

(or anti parallel to) the c axis to the mixed phase is broad. This would indi­

cate a possible coupling between the parallel and perpendicular components 

of the spins. If such couplings were random from site to site, the system 

would break up into domains, each of which has their own slightly different 

transition temperature, hence explaining the broadened phase transitions 

(Wong 1986). Such random interaction terms could be very small and still 

explain the broadened transition; the average interaction is inversely propor­

tional to the size of the domains in question (ImrJy 1975), and the domains 

may be large. 

Other neutron-diffraction studies of relevance have studied the pure 

FeC12 and NiC12 constituents of FexNh-xClz mainly to calculate the va­

lues of the various exchange interactions and magnetic anisotropies. The 

different studies all show the presence of strong ferromagnetic exchange in­

teractions between nearest neighbours and weaker antiferromagnetic ones 

between next nearest neighbours in the metal ion planes; also a weak anti­

ferromagnetic exchange interaction between nearest neighbours in different 

planes. The values of the exchange constants for nearest in-plane, next­

nearest in-plane and nearest between-plane spin pairs are 7.88 K, -1.04 K 

and -0.36 K respectively for FeClz (Birgeneau et al 1972), and 43.4 K, -

9.7K and -1.54K respectively for NiClz (Lindgard et al1975). The nearest 

between-plane exchange constants were calculated on the assumption that 

each metal ion interacts with 6 metal ions on adjacent planes, and the ex­

change constants given assume that the total exchange energy of the system 

is written in terms of a sum over spin pair exchange energies, without double 

counting. 

Since Mossbauer spectroscopy and neutron diffraction studies measure 

different aspects of the FexNi1_xClz system, they are complementary to one 

another. 
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1.5 Theoretical studies of the FexNh-xCl2 system. 

These studies will be discussed in chapter 3 where the main conclusion that 

will be drawn is that a numerical approach to the understanding of the spin 

behaviours in FexNh-xC12 is preferable to a theoretical model. The theore­

tical methods are useful for systems which are uniform in space. Numerical 

simulations can easily model any spatial variations in the system, such as 

clusters of Fe ions which may form, possibly giving rise to the coexisting Fe 

spin populations which are observed by Mossbauer spectroscopy. 

1.6 Overview of the thesis. 

Theoretical details of Mossbauer spectroscopy relevant to the experimental 

studies of FexNi1_xC12 detailed in this thesis are described in chapter 2. The 

important hyperfine interactions are described, as well as the interpretation 

of Mossbauer spectra obtained from single crystal absorbers. 

The most commonly used theoretical models of mixed-magnetic systems 

are discussed in chapter 3. Mean-field theory and its applications to ma­

gnetic systems is discussed in sections 3.2 and 3.3. The more modern renor­

malisation group theory is described in sections 3.4 - 3.6. It is concluded 

that a numerical approach to the description of FexNh-xC12 is required, and 

the Monte Carlo technique which was used for this purpose is discussed in 

section 3. 9. 

Chapter 4 describes the procedures which were used to produce Mossbauer 

spectra of FexNi1_xC12 single crystals. The methods used to create the sin­

gle crystal absorbers are listed in section 4.2, and details of the Mossbauer 

equipment and usage in obtaining adequate absorption spectra are detailed 

in section 4.3. 

Chapter 5 discusses in detail the Monte Carlo techniques used to model 

the FexNi1_xC12 system. It is found that a completely random distribution 

of metal ions within layers does not give a satisfactory explanation for the co­

existing magnetic order detected by Mossbauer spectroscopy occuring in the 

mixed phase of FexNh-xC12. This is discussed in section 5.2. Sections 5.3 

and 5.4 describe cluster-based simulations that do provide an explanation 
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for the co-existing magnetic behaviour. Alternative explanations are briefly 

described in section 5.5. 

The interpretation of the Mossbauer spectra which were obtained for 

this thesis in terms of hyperfine parameters at the 57Fe nuclei is discussed 

in chapter 6. This chapter also contains a discussion about what can be 

concluded from the Mossbauer and numerical studies described in this the­

sis, as they apply to the FexNh-xC12 system, and mixed magnetic systems 

in general. 



Chapter 2· 

Mossbauer spectroscopy. 

2.1 Introduction. 

This chapter describes the Mossbauer effect and techniques based on it, 

which are useful for determining a number of nuclear and electronic varia-· 

bles for a variety of atomic and ionic systems. The analysis of experimen­

tal Mossbauer spectra is discussed, with particular attention being paid to 

the spectra obtained for 57Fe nuclei, which are the nuclei investigated by 

Mossbauer spectroscopy in the case of the FexNh-xCl2 system. 

2.2 The Mossbauer effect. 

2.2.1 Resonant absorption of radiation- the Mossbauer effect. 

When a free atomic or ionic nucleus emits 1 radiation, arguments based 

on the conservation of energy and momentum for the system show that 

the energy of the 1-ray is less than the energy gap between the nuclear 

transitions that gave rise to the radiation (Bancroft 1973). This energy 

difference can be expressed as 

=ER+Eo (2.1) 

14 
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where Et is the energy difference between the nuclear levels that gave rise 

to the transition, E1 is the actual photon energy, and ER and En refer 

to the energy of recoil of the nucleus and energy due to the velocity of the 

nucleus before the transition occurred (the Doppler term). As a consequence 

of the recoil and Doppler terms, the photon energy on average is less than 

the transition energy, and takes on different possible values (i.e. is broa­

dened) creating an emission line with a width far greater than the value 

which follows solely from a consideration of the Heisenberg lifetime for the 

transition. 

If an atom or ion possessing a similar nuclear transition to the emit­

ting nucleus were to absorb the 1 radiation, there would be little resonant 

absorption since the distribution of energies of the radiation are shifted be­

low the transition energy, while the process of absorption of the 1-ray with 

the absorbing nucleus shifts the possible energies of absorption on average 

above the transition energy (and broadening also occurs). 

In 1957 Mossbauer discovered that, in certain cases, the energies of the 

1-rays could closely match the transition energy, with a line width close 

to the value from the uncertainty in the lifetime of the transition. The 

same was true for the absorbing process. This is known as the Mossbauer 

effect (Wertheim 1964). The emitting and absorbing nuclei are both fixed 

in a solid (such as a crystal lattice), and as a result the energy loss clue to 

recoil can be very much lessened, as the whole lattice can now recoil, not 

simply one nucleus alone (Frauenfelder 1963). Quantum mechanically, the 

recoil energy can be transferred to possible phonon (vibrational) excitations 

in the lattice, but only if the energy is close to a possible phonon energy 

for the crystal, which is quantised. If it is transferred, the nucleus recoils. 

If not, then the entire lattice recoils, which has a far larger mass than a 

single nucleus; hence the recoil energy is far lower than that associated with 

one nucleus emitting or absorbing radiation. The fraction of 1-rays that 

are emitted or absorbed via this lattice recoil mechanism is denoted f, the 

recoil-less fraction. These are the rays that form the absorption lines in 

Mossbauer spectra. Likewise Doppler energy broadening is dramatically 

decreased through the same mechanism (Gibb 1976). 
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The absorber used in a Mossbauer experiment will typically have several 

different absorptions transitions present, and the source one transition only. 

The source radiation energy is altered by vibrating the source away from 

and towards the absorber. The Doppler effect then varies the source photon 

energy to span the energy range of interest (to cover all of the absorption 

transitions). Counts are then made at each velocity of the number of 1-rays 

that passed through the absorber, allowing the measurement of the relative 

absorption at different energies to be made; these absorptions can then be 

related to nuclear and electronic quantities. If the spectral lines are narrow 

enough, very small shifts in these quantities can be measured. 

A useful expression for the spectra obtained from Mossbauer absorption 

experiments is given by 

1
~ v . 

n(v) = fsno(1-h) S(E+E-)e-cr(E)TAdE+(1-fs+fsh)no+na (2.2) 
E1 C 

where n( v) is the number of 1-rays detected at velocity v, cis the speed of 

light, fs is the recoil-less fraction for 1 emission (for the transition of inte­

rest) from the source, and n0 is the number of 1-rays detected at velocities 

where no absorption occurs (Pollard 1982). na is the number of counts re­

ceived from radiation, which is due to transitions other than the Mossbauer 

transition. h is the fraction of radiation which does not pass through the 

absorber; due for example to holes in the absorber (which could not comple­

tely be eliminated). E represents the radiation energy, which is integrated 

over the range E 1 to E2 which is taken as -oo to +oo because the energy 

range detected is much greater than the linewidth of the source profile, and 

the detector response is virtually constant over that range (Ure and Flinn 

1971 and Pollard 1982). The function S in the integral is the source pro­

file, giving the probability of finding radiation at any particular energy E. 

e-cr(E)TA gives the probability that radiation is transmitted by the absorber, 

where TA is the effective absorber thickness (a measure of the amount of 

absorbing material present). 
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The first term in equation 2.2 creates absorption lines in the Mossbauer 

spectrum. It represents the number of 1-rays which can be absorbed by 

the Mossbauer transition, but which are transmitted instead. fsno(1- h) 

is the number of 1 photons available to be absorbed at any velocity, which 

are recoil-less and actually pass through the absorber. The fraction of these 

transmitted is given by the convolution integral. The second term measures 

the number of Moss bauer transition 1-rays that cannot be absorbed, because 

they involve recoiling processes (the 1- fs fraction), or simply do not pass 

through the absorber (the fsh fraction). These rays simply add to the total 

background count of radiation observed where no absorption takes places, 

as do the rays represented by the third term in equation 2.2. 

The aim of Mossbauer spectroscopy is to determine the cause of the 

transmission term in the convolution integral in equation 2.2, and to relate 

it to the nuclear and electronic quantities which the experimenter wishes to 

determine. This process is discussed in the final section of this chapter. 

2.2.2 Characteristics of useful Mossbauer nuclei. 

The nuclei used in Mossbauer experiments must have several features to 

allow the spectra to be easily obtainable and useful. The recoil-less fraction 

f must be high, to get many resonance events occurring. The half life of 

the transition must be large enough to ensure small widths of the spectral 

lines, but not so long that achieving resonance energy is impossible with 

vibrations of the experimental apparatus shifting the lines apart. The /­

rays must be easily detectable. A source with a long half life must exist so 

that many of the states that give rise to the emission of the source 1-rays 

can always be present. The nuclei must be stable enough to remain in the 

experimental apparatus long enough to act as an absorber (Gibb 1976). 

57 Co is such a source, with a useful 14.4 ke V transition between nuclear 

spins states of ~ and ~ with a half-life of T1. = 10-7 seconds. This half-life 
2 

can be related to the linewidth r (the energy difference between points on 

the emission line with half maximum intensity) by equation 2.3 (Wertheim 

1964) 
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(2.3) 

where h is Planck's constant, which gives r = 4.6 x 10-9 eV (This is equi­

valent to a Doppler shift in the 14.4 ke V 1-ray energy due to a velocity 

of 0.1mm/s). This is smaller than the transition energy of 14.4 keV by a 

factor of 10-13 , and allows high resolution studies to be carried out, such as 

hyperfine interactions in FexNh-xC12 single crystals. 
57Fe is a relatively rare isotope of iron, with a natural abundance of 

2.1(1) % (CRC 1997), but it can be easily doped into samples to achieve 

satisfactory spectra. In the FexNh-xCh system, FeC12 (containing only the 
57 Fe isotope) was added to the mixture before it forms into a single crystal, 

as will be discussed in chapter 4. 

The next section discusses the quantities of interest which can be calcu- . 

lated via Mossbauer spectra, for the absorption spectra which are commonly 

taken for systems such as FexNh-xCh. 

2.3 Nuclear and electronic quantities obtained 

from Mossbauer spectroscopy. 

The following quantities discussed are termed hyperfine interactions since 

they involve weak interactions between the nucleus and its environment. 

2.3.1 The isomer shift. 

The isomer shift (also known as the chemical isomer shift or centre shift) 

is the change in electrical energy associated with the interaction between 

orbiting electrons and the nucleus, and takes into account the fact that the 

nucleus is not a point charge. If the nucleus is assumed (to a good approxi­

mation) to be spherical, then the energy difference between an excited state 

and the ground state can be written as 

(2.4) 
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where 6Ee and 6E9 , Re and R9 represents the energy shifts and nuclear radii 

for the excited and ground states of the nucleus respectively, ]{ is a constant 

depending on the nucleus and '1/J(O)s represents the wavefunction at the 

nucleus for s electrons; this term depends on the electronic state of the atom 

or ion, whereas the other expressions in equation 2.4 are nuclear quantities 

which don't change unless a different nuclear species is used. Other electron 

orbitals can also contribute to this energy difference indirectly, by shielding 

the s electron wavefunction from the nucleus (by decreasing 'lj;(o); ) (Gibb 

1976). 

The energy difference between and E9 is that of the photon emitted, 

and will in general be different for the source and absorber nuclei. The 

difference is termed the isomer shift IS (Thosar et al 1983) 

(2.5) 

where the subscripts A and S in equation 2.5 refer to the absorber and 

source nuclei, and the various terms are defined as in equation 2.4. This 

energy difference in the photon emitted by the source and absorbed by the 

absorbing nuclei shifts all the Mossbauer spectral lines equally, as no term 

in equation 2.5 refers to the nuclear spin. 

2.3.2 Nuclear electric quadrupole coupling to the electric field 

gradient. 

The nuclear electric quadrupole interaction is an interaction between the 

nuclear electric quadrupole moment and the spatial gradient of the electric 

field at the Moss bauer nucleus. quadrupole moment Q (a measure 

of the difference between the nuclear shape and a perfect sphere) can be 

expressed as 

(2.6) 
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where e is the electron charge, pis the density of charge at a volume element 

dT, r is the distance of the volume element from the nucleus and e is the 

angle between vector r and the nuclear spin axis (Gibb 1976). Q for the 

ground state of 57 Fe (with nuclear spin I = ~) is zero, while Q = 0.21 x 

10-28m2 for the I= ~ excited state (Mossbauer effect data index 1976). 

The nuclear electric quadrupole interacts with the electric field gradient 

tensor which has components 

(2.7) 

where Vis the electric potential at the nucleus, and Xi, Xj (with i,j = 1...3) 

refer to the Cartesian x, y or z axes (Kolk 1984). 

For convenience the principal axis system is chosen to describe the elec­

tric field gradient since in that case the gradient terms in equation 2.7 are 

all equal to zero except for the diagonal terms Vxx, llyy and Vzz· These com­

ponents are not independent; they can be inter-related by the expression 

(2.8) 

smce the components must obey the Laplace equation, and there is no 

electronic charge in the nuclear region other than s electrons. Since they 

have a spherically symmetrical distribution about the nucleus, they do not 

contribute to the right hand side of expression 2.8 (Thosar et al 1983). 

Only two variables are needed to write down the quadrupole interaction. 

These are usually chosen to be Vzz and 

(2.9) 
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where the z axis is chosen such that IVzzl > IVYYI 2: IVxxl in the principal axis 

system, and fJ is the asymmetry parameter which expresses the difference 

between Vxx and Vyy for the chosen a.xis system. It has values between 0 

and 1 (Thosar et al 1983). 

The Hamiltonian for the electric quadrupole interaction can be written 

as 

(2.10) 

where I is the nuclear spin and I is the nuclear spin operator with Cartesian 

components Ix, Iy and Iz (Thosar et al 1983). The eigenvalues Eqs of the 

electric quadrupole Hamiltonian are given by 

1 

JejQVzz ( 2 ( )) ( fJ
2

) 2 Eqs = 4I( 2I _ 1) 3m1 - I I+ 1 1 + 3 (2.11) 

where mr is the projection of the nuclear spin along the z axis with the 

values ±~, ±~ for the excited state of 57Fe. These pairs of values for mr 

form two doublets, separated by an energy QS equal to 

(2.12) 

(Thosar et al 1983). 

The electric field gradient tensor vE is created by external charges on 

neighbouring atoms or ions (the lattice contribution) and electrons orbiting 

the Moss bauer nucleus (the valence electron contribution) (Kolk 1984). 

2.3.3 Hyperf:ine magnetic fields. 

Magnetic fields at the nucleus can interact with the nuclear magnetic mo­

ment It via the Hamiltonian term 
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(2.13) 

where B is the magnetic field acting at the nucleus, Jl.N is the nuclear ma­

gneton and g1 is the Lande g factor when the nucleus is in the spin state I 

and has the value 0.18121(2) and -0.10354(3) for a 57Fe ion nucleus in the 

ground and excited state, respectively (Mossbauer effect data index 1976). 

The magnetic field can have a source external or internal to the Mossbauer 

atom or ion. In this work on FewNh-xCh the external magnetic field was 

zero. The eigenvalues of expression 2.13 are given by 

(2.14) 

where m 1 are the possible values of the magnetic quantum number for the 

nucleus (which give the quantised values for the projection of the nuclear 

spin along a z axis chosen parallel to the magnetic field B), and tL and B 

are the magnitudes of the nuclear magnetic moment and magnetic field at 

the nucleus, respectively (Kolk 1984). The internal magnetic field can itself 

have several sources. Interactions between outer electrons and s electrons 

leads to a magnetic field at the nucleus, termed the Fermi-contact term Bs 

(2.15) 

where p.0 and p.8 are the magnetic permeability of free space and the Bohr 

magneton, respectively. The '1/J terms represent electron spin densities at the 

nucleus, either parallel (up) or anti-parallel (down) to the nuclear magnetic 

moment (Thosar et al 1983). The Fermi-contact term can also be written 

as 

(S) (2.16) 



2.3. Nuclear and electronic quantities obtained from Mossbauer spectroscopy. 23 

where Be is the Fermi-contact effective field of approximate magnitude -44 

T (Greenwood and Gibb 1971) and Sis the electronic spin. The presence of 

orbital angular momentum can also induce a magnetic field at the nucleus. 

This field B L is given by 

(2.17) 

where (r-3) refers to the expectation value of r- 3 where r is the distance of 

electrons from the nucleus (and has a value of approximately 3.7 au), and 

L is the orbital angular momentum operator (Kolk 1984). If the orbital 

angular momentum is quenched (has a zero expectation value), then spin­

orbit interactions can still produce a contribution to this field (Thosar et al 

1983). A further magnetic field term describes the interaction between the 

orbital spin and the nuclear magnetic moment 

BD = !lof-LB (r-3 ) I~ [L(L. S) + (L. S)L]- L(L + 1)s) 
847r \2 

(2.18) 

(Kolk 1984). 

The combination of all these fields gives the total field B 

(2.19) 

which appears in equation 2.13 to give the hyperfine magnetic splittings 

observed in the Mossbauer spectra. 

2.3.4 Combined hyperfine interactions. 

In general the isomer shift, electric quadrupole and magnetic hyperfine in­

teractions are all present and together determine the energies levels of the 
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different nuclear spin states, via the total Hamiltonian Htatal 

(2.20) 

where IS refers to the isomer-shift energy and HQs and HM refers to the 

electric field gradient and magnetic energy expressions of equations 2.10 and 

2.13 respectively. The isomer-shift term simply moves the entire spectrum 

towards positive or negative Doppler velocities; the latter two interactions 

are the important factors in determining the energies and intensities of the 

Mossbauer absorption lines. 

vVhen only one of the latter two interactions is present (and 17 = 0 if 

that interaction is the quadrupole-coupling interaction), then the energy 

eigenstates of equation 2.20 are single Iz angular momentum states. In 

general, with all three hyperfine interactions present, the energy eigenstates 

are linear combinations of Iz angular momentum states, and equation 2.20 

has no simple analytical solution. Its matrix representation must then be 

diagonalized to calculate the energy eigenstates and eigenvalues (Greenwood 

and Gibb 1971). 

2.4 The absorption of 1 radiation. 

The previous sections have described how nuclear energy levels are shifted 

due to hyperfine interactions. A transition between two energy levels creates 

(absorbs) a photon, given rise to an emission (absorption) line with an 

intensity In that can be split into two factors, one of which is independent 

of angular factors, while the other is not. The first factor is given by the 

Clebsch-Gorda1i coefficient 

(Intensityfactorh = (hJ- m1mji2m 2)
2 (2.21) 

where 11 and 12 are the spins of the two nuclear states in question, and 
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m1 and m2 are the z components of the appropriate nuclear spins. This 

equation is valid for transitions between pure angular momentum states. J 

is the quantum number of the vector sum 11 + 12 and m = m1 m2. The 

transitions of importance for this thesis that occur in 57Fe nuclei are the 

Nit transitions, i.e. magnetic dipole transitions with J 1, which occur 

between the nuclear states with spin I ~ or ~. There are nominally eight 

such transitions, but two are forbidden by the selection rule m = 0, ±1 

(Greenwood and Gibb 1971). 

The second factor (Intensity factor) 2 depends on angles defined relative 

to the quantisation axis used (which is along the magnetic field if no electric 

quadrupole interactions are present, and along Vzz if are). The factors are 

simple, and are listed for each Nh transition in 57Fe in Gibb (1976) p 41. 

The total intensity In for an absorption line in a Mossbauer spectrum is 

then given by 

In = (Intensity factor )I · (Intensity factor) 2 (2.22) 

general, the eigenstates will not be single angular momentum 

states, leading to complex expressions for the absorption line intensities, 

and eight lines then occur in the Mossbauer spectrum (Kolk 1984). 

2.5 Conclusions. 

The various hyperfine interactions described in this chapter can be used to 

generate a predicted Mossbauer spectrum, with absorption lines at positions 

determined by those interactions. This spectrum can then be compared 

with an experimental one, to determine the values of the interactions in 

the physical system. Further information can be obtained from the line 

intensities in the spectrum, such as the orientation in space of the magnetic 

field and electric field gradient principal-axis directions (Gibb 1976). 



Chapter 3 

The theory of critical phenomena. 

3.1 Introduction. 

The study of critical behaviour, that is the behaviour of a system when 

it is close to a discontinuous change in its free energy, is a field that has 

advanced rapidly over the last few decades. Earlier mean-field techniques 

dating back to the 1930s are now being replaced by more sophisticated 

methods, especially renormalization group theory (RGT). Also the concept 

of universality has developed, describing the way many completely different 

systems exhibit similar critical behaviour (Ma 1976). 

However the simple nature of the mean-field theories and the fact that 

the predictions of RGT become inadequate as physical systems move away 

from criticality means that mean-field theory continues to be widely used 

(Ma 1976). This chapter will concentrate particularly on the critical be­

haviour and phase diagrams of magnetic systems, the topic of this thesis 

for the FexNi1_xCh system. Specifically we deal with random mixtures of 

compounds with competing magnetic anisotropies, a subgroup of a general 

class of systems which have come under particular study over the last two 

decades, that of systems with competing interactions. Each compound in 

the mixture has its own value and kind of magnetic anisotropy and spin, 

which affects the orientations of spins on neighbouring compounds via the 

quantum-exchange interaction. The anisotropy trying to line up a certain 

spin along its easy (i.e. minimum energy) axis competes with the exchange 

interaction which tries to align that spin parallel (anti-parallel) to neigh­

bouring spins, in the case of ferromagnetism ( antiferromagnetism). 

This chapter describes the modern theories of critical phenomena in 

sections 3.2, 3.5 and 3.6 and their applications to mixed magnetic systems 

26 
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in sections 3.3 and 3.8. Numerical modelling is discussed in section 3.9. 

3.2 Mean-field theory. 

Mean-field theory is based on the assumption that the effect on one parti­

cular part of a system by the remaining parts can be accurately expressed 

by representing those other parts by their thermal averages. Consider the 

case of a mixture of several different atomic species which form a simple 

mixed magnetic system which can be represented by the Heisenberg model 

Hamiltonian 

Hi= -2 L Jijsi · sj. 
j 

(3.1) 

Sj represents a spin which interacts with Si with the sum over j taking 

into account all interacting spins, and Jij is the exchange coupling constant 

between the spins (Hook and Hall1991). In mean-field theory the spins Sj 

are replaced by <Sj>, their thermal averages. All spins belonging to the 

same atomic species are assumed for simplicity to have the same thermal 

average. An effective field is then defined (Smart 1966) which replaces the 

exchange interaction and interacting spins Sj by an equivalent magnetic 

field (often termed a molecular field) via 

(3.2) 

where g is the g factor for the atom or ion in question, and f3 is the Bohr 

magneton. This Hamiltonian for the spin Si is equivalent to equation 3.1, 

where the effective field Be is given by 

(3.3) 

Extra terms can be added to equation 3.2 to describe magnetic anisotropy 

or any other interactions. 
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The energies for particular orientations of the spin Si can then be found 

from equation 3.2 for each atomic species, allowing the thermal average of 

Si to be found (in terms ofthe spin averages of the neighbouring spins). Sol­

ving the resulting equations then gives the thermal averages for each atomic 

species, allowing phase diagrams for the system to be constructed (Smart 

1966). Mean-field theory does have serious limitations. As the temperature 

T approaches its critical temperature Tc, thermodynamic quantities descri­

bing a spin system fluctuate strongly about their mean values, with spins 

fluctuating in a closely correlated way. Since mean-field theory describes 

the behaviours of spins in terms of interactions with only a small number 

of spins (typically their nearest or next nearest neighbours only) it cannot 

describe the long range correlations of spins which are observed experimen­

tally (Ma 1976). In fact mean-field theory assumes each spin belonging to 

the same atomic species has the same thermal average, hence is comple­

tely correlated, at all temperatures. This assumption of mean-field theory 

is always a problem, since even for random mixtures different spins will 

have a different local environment with different numbers of each species 

surrounding them, and hence cannot have the same thermal average. 

More complex theories have been devised to take these spin fluctuations 

into account with the most widely used being RGT. However the predictions 

of RGT become inaccurate far from phase lines and points. The region of 

a phase diagram where RGT can usefully be applied is called the critical 

region, and that region can be calculated (Ma 1976). However, this region 

tends to be very small. For example, the critical region in the Fe1_xCoxC12 

system has been calculated to be restricted to temperatures within 10-5 K 

of the tetracritical point for the system (Wong et al 1983). 

3.3 Mean-field theory applied to systems with com­

peting magnetic anisotropy. 

Someya (1982) derived the phase diagram for Fe1_xCoxCb which is a ran­

dom mixture of the antiferromagnets FeC12 and CoCb. FeC12 has uniaxial 

anisotropy (along its c axis) while CoCb has anisotropic exchange leading 
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to order in the plane perpendicular to the easy axis of FeClz (the xy plane). 

Assuming the exchange constants took their pure compound values even in 

the mixture, Someya derived the thermal averages of the spins obtaining a 

phase diagram with four distinct phases, as shown in figure 3.1. 

A tetracritical point forms a junction between the four different phases. 

Of particular interest is the oblique phase, where the spins on average align 

at an angle to both the c axis and the xy plane. This angle (different 

for the two different species) depends on the relative concentration of the 

two compounds and the temperature, and tends towards the easy axis (or 

plane) of whichever compound dominates. A similar prediction was derived 

by Matsubara and Inawashiro (1977) where they described a theoretical 

random mixture of antiferromagnets with magnetic anisotropy described 

via anisotropic exchange only. They also used mean-field theory to generate 

a phase diagram for the CoxFe1_xCh2H20, system, which compared well 

with experiments (Matsubara and Inawashiro 1979). A more recent study 

performed by Mana (1990) also gave equivalent results. 

Igel et al (1990) studied the FexNh-xCh system using mean-field theory, 

and generated a magnetic phase diagram which agreed well with faraday­

rotation experiments. However, they did not investigate the mixed phase 

for the case where no external magnetic field is present. 

3.4 Modern theories of critical phenomena. 

Since the most important modern theory, RGT, grew out ofthe homogeneity 

hypothesis of critical phenomena, that theory will be described first. RGT 

will then be described, with its predictions for mixed magnetic systems. A 

physical justification for RGT will be given in the next subsection. 

3.4.1 Scale invariance of systems at critical points. 

The modern theories of critical phenomena are based on the observation 

that physical systems become scale invariant as a critical point is reached. 

This invariance is a consequence of the fluctuations of order parameters 

away from their average values. As temperature increases, fluctuations are 
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Figure 3.1: Phase diagram for the mh.ture Fel-xCoxCl2 . There are four phases present, 

where spins can (I) lie along the c a.-tis, (II) be in an oblique phase, (III) lie in the xy 

plane or (IV) have no mean magnetisation. Reproduced from Someya (1982). 
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increasingly likely, since their thermodynamic Boltzmann factor incre­

ases. In particular, long wavelength fluctuations become common. In the 

case of magnetic systems of spins, these large scale fluctuations will corre­

late spins at large distances, even if the actual interactions in the system 

are of short range only. If block spins are then defined (as described in 

section 3.6) t? describe spin order over large scales, scale invariance exists, 

as the block spins are now closely correlated over large distances, behaviour 

which also exists at smaller length scales between distant individual spins. 

As the critical temperature is reached, the fluctuations can span the entire 

system, leading to scale invariance at all length scales (Amit 1984). The 

spin configuration at any time will show small fluctuations within bigger 

ones, and averaging the configurations over time lead to identical average 

spin configurations at all length scales (Bellac 1991). 

As discussed in section 3.2, mean-field theory cannot describe fluctuati­

ons in order parameters, which become increasingly important as the critical 

temperature is approached. However, in the case of a system with more than 

4 spatial dimensions, or with infinite range interactions between spins, the 

mean-field description becomes exact (for systems with 3 order parameters, 

like the metal ion spins of FeCl2 or NiC12) (Binney 1992). 

Scale invariance will be discussed further in section 3.6. 

3.5 The homogeneity hypothesis. 

As the critical temperature Tc is approached thermodynamic quantities can 

be represented via critical exponents in terms of powers of (T - Tc ) with 

T < or > Tc. For example the heat capacity C is given by 

(Amit 1984). 

An important quantity in the study of critical phenomena is the spin cor­

relation function r, which describes the extent to which spins align relative 

to one another on average. The function is defined by 
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where xi-Xj is the distance between two spins (Si and Sj) and <> repres­

ents the thermal average (Lawrie 1990). The quantity Si- <Si> represents 

the fluctuation of spin Si from its thermal mean (similarly for spin Sj)· If 

two spins are always aligned then r = 1; if uncorrelated, r will tend to zero. 

r can also be written in the form 

(3.5) 

with lql small, where h is a magnetic field (if it exists) and q is a Fourier 

variable (physically, a vector in the reciprocal lattice space of the system) 

where 

S(q) ex: j dDxexp(-iq.x)S(x) (3.6) 

and 

f(x) ex: j dDqexp(iq.x)f(q) (3.7) 

gives the relationship between r in X and q space (Ma 1976 and 'Nilson 

and Kogut 1974). Din equations 3.6 and 3.7 represents the spatial dimen-

sian of the crystal (which is usually a dimensional structure) and the 

reciprocal lattice space. The variables b, y, y1 and y2 are constants to be 

determined. Equation 3.5 defines the homogeneity hypothesis. Manipula­

tion of this equation gives the critical exponents and relationships between 

them, which compare very well with exponents derived from experimental 

studies (Ma 1976). 
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The homogeneity hypothesis has a physical justification in RGT. 

3.6 Renormalization group theory. 

The key idea in RGT is to study a system at different length scales where 

it is found that as a system approaches criticality the laws describing the 

system become scale invariant; the Hamiltonian remains the same indepen­

dent of which length scale is used to study the system. In a magnetic system 

such as a ferromagnet, the Hamiltonian involves spin variables, and, looking 

at the system at different length scales, means defining a block spin for a 

block of lattice sites. A typical definition is 

S(block) =Lsi (3.8) 

where the variable i labels the spins contained within a block. A new (block) 

Hamiltonian is constructed, as a function of the (block) spins, but of the 

same form (e.g. the Ising model) as the original Hamiltonian. The spins 

are then rescaled via S(block) ---+ a(ab)S(block) where a block size of ab is 

used with lattice constant a, and b is a positive integer. a(b) is an arbitrary 

function of b, allowing the block spin magnitudes to be arbitrarily set. 

Distances are rescaled via x ---+ (l/b)x = x' (Ma 1976) so that the size 

of the blocks measured in the new length scale x' is equal to the lattice 

constant a. 

Effectively the system has been viewed through a 'microscope' such that 

only degrees of freedom for large portions of the system are seen (the block 

spins). The lattice itself looks the same due to the length rescaling. The 

combination of defining a block spin, rescaling lengths and spins is called 

a (real space) renormalization group transformation (Wilson and Kogut 

1974). 
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Figure 3.2: The Hamiltonian coefficient space. The variables gi are the coefficients 

appearing in an arbitrary Hamiltonian. Shown is a theoretical critical surface with a 

pathway representing successive applications of renormalization transformations, driving 

the initial set 9i at the starting point s towards a fixed point. 
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If renormalization group transformations are done one after another, fi­

xed point behaviour is reached which means that the coefficients in the Ha­

miltonian remain the same after further transformations are performed;the 

system looks the same at all higher length scales. The values of the co­

efficients which remain invariant can be used to graphically define a fixed 

point in a space whose axes are defined by those coefficients, as illustrated 

in figure 3.2. 

If we represent the set of coefficients in the Hamiltonian by p,, and the 

renormalization group transformation by an operator Rb, then we write the 

fixed point behaviour as 

(3.9) 

where p, = p,* at the fixed point, which from equation 3.9 is unchanged under 

Rb. The region in parameter space within which Rb takes p, top,* is called the 

critical plane. This is also illustrated in figure 3.2. Any particular physical 

system could have many fixed points (Wilson and Kogut 1974). Every 

system also has a critical region in its phase diagram, where the system is 

scale invariant for a finite number of renormalization transformations. Far 

from this critical region, the predictions of RGT become more difficult to 

calculate, and mean-field theory gives an adequate description (Ma 1976). 

Renormalization group transformations are often performed on physical 

systems with Hamiltonians rewritten in terms of Fourier variables as used 

in equations 3.6 and 3.7. Instead of creating block spins we integrate out 

certain of the S ( q) degrees of freedom (the Fourier transforms of the spins), 

leaving Hamiltonians describing a more restricted group of S ( q). This pro­

cess can be shown to be equivalent to blocking spins as described above (Ma 

1976). 

Critical exponents are derived by studying the behaviour of p, near J-L* 

under the action of Rb, as described by Ausloos and Elliot (1983). We 

consider p, near p,*, and expand as follows 
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(3.10) 

where Ei are eigenfunctions of Rb such that 

(3.11) 

Then 

(3.12) 

where bYi are the eigenvalues of Ei. The variables ti are real numbers. 

Depending on the signs of Yi, certain variables under the transformation Rb 

become irrelevant. For example, after many applications of Rb a coefficient 

bYi --+ 0 if Yi < 0. Thus only certain t/s, which in the case of simple magnetic 

systems are (T-Tc)/ Tc and the magnetic field h, remain of any importance 

in describing the behaviour of f-L after many iterations of Rb· The correlation 

function can then be written as 

(3.13) 

for lql small. RGT has thus derived the homogeneity relation, which has 

the same form as equation 3.5 with the variables ti chosen as above, which 

previously had no theoretical justification. 

It should be noted that scale invariance implies large scale correlated 

fluctuations of spin order, as seen experimentally as T approaches Tc , hence 

RGT can account for experimentally observed behaviour that mean-field 

theory cannot. 

Because irrelevant terms scale away when a system is rescaled, many 

different systems have the same critical behaviour; all they need is the same 

or similar fixed points (and set of eigenvalues and eigenvectors for Rb), which 
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lead to the same homogeneity relations and therefore critical exponents. 

This important phenomenon is known as Universality (Ma 1976). Systems 

as different as liquids, magnetic systems and binary alloys can have the same 

fixed points. The different kinds of systems need a similar Hamiltonian (in 

form) and the spatial dimension d and order parameter dimension n must be 

the same, to possess the same critical behaviour. That is, universality classes 

(classifications of systems according to d, n) exist. Systems of a particular 

class described at the lowest length scales exist on the same critical plane. 

The task of RGT is to find the fixed points Ei and eigenvalues Ai thus 

deriving the critical behaviour and universality classes. This brings out 

similarities between completely different systems; a quest for symmetry and 

order, which is common in physics. 

3. 7 Field theoretical description. 

Field theoretical descriptions provide the most mathematically rigorous 

form of RGT. These descriptions of spin systems use a field to represent 

the magnetisation at different spatial points (strictly speaking, the mean 

magnetisation for a small volume about a point). A Hamiltonian is then 

written which determines the behaviour of this field (Binney et al 1992): 

(3.14) 

where the integral is taken over the volume of a system of spins (of spatial 

dimension d). This Hamiltonian (known as the Landau-Ginzberg model) 

is identical in form to the one defining the .Aq} theory of particle quantum 

field theory, where the first term in equation 3.14 is a 'kinetic' term, the 

second a mass term (where J.L is the mass) and the final term (with coup­

ling constant .A) describes particle interactions between spin-less interacting 

particles (Ramond 1981). However, in that case, the field ¢ represents an 

operator which creates states with particles at particular places from the 
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vacuum state which has no particles and the integral is over four dimen­

sional spacetime. Since the mathematical methods used in field theoretical 

statistical mechanics share much in common with those used in quantum 

field theory, the next section briefly describes them. 

3.7.1 Calculational methods in quantum field theory. 

The usual first step is to create a function Z, which is the sum of the pro­

babilities for every possible field configuration. This is equivalent to the 

partition function of statistical mechanics. Propagator functions can then 

be defined as derivatives of the function Z with respect to source tenus J 

(representing magnetic or other fields). These propagators are the proba­

bility amplitudes that a particle will propagate from one spacetime point 

to another. Propagators involving several particles propagating together 

can be formed which represent a variety of scattering processes. If the field 

description is transformed into a Fourier representation in terms of particle 

momenta, via for example a variable transformation like (Teller 1995) 

(3.15) 

then propagators can be formed that represent the probability amplitudes 

that particles of a certain momenta propagate. Here a(k, t) is a creation 

operator that creates a state with a particle of momentum k from the va­

cuum state, and the integral is over all values for the particle momentum 

k. The propagators can be written as a perturbation series in the coupling 

constant A leading to the well known Feynmann diagrams, each of which de­

scribe how a particle can propagate. Each diagram represents a numerical 

contribution to the total probability amplitude (a possible way) particles 

propagate, some involving the creation/annihilation of short lived (virtual) 

particles (Mandl and Shaw 1984). 

A serious problem arises when the numerical contribution to the particle 

propagators represented by the various Feynmann diagrams are computed; 

many end up being infinite, which would seem at first glance to render the 
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theory useless. The terms in question can be written as a function of the 

expression 

(3.16) 

where f.t is the mass of the particles in question appearing in the Hamiltonian 

for the system (an example is equation 3.14). The integral term in equation 

3.16 is infinite for several Feynmann diagrams. 

The key to extracting useful information from these infinite expressions 

is to use an approach called renormalization. If the term Jvf in expression 

3.16 is taken to be the observable mass of the particles, then the Feynmann 

propagators will be finite. The mass f.t is taken to be the 'bare' mass of the 

particle, which is the mass of a particle if no self interactions (of a particle 

with its own field) existed. The (infinite) integral expression in equation 

3.16 is then a correction to the (infinite) bare mass f.t, which takes into 

account the self interaction to give the observable (finite) mass Jvf. The 

mass Jvf is then set equal to experimental values of the particle in question. 

Effectively, we have defined the infinities in the theory away (Ramond 1981). 

vVhen this procedure is done results are obtained, which are very close 

to their experimentally determined values. For example the Lande g factor 

for electrons and Lamb shifts for simple atoms as calculated by quantum 

electrodynamics are extremely accurate (Ramond 1981). Such agreement 

clearly indicates the renormalization procedure (whether of mass as above 

or of other quantities such as charge in more complicated theories) is valid. 

Even so, the procedure is still open to interpretation, especially the fact 

that mathematically in expression 3.16 we are subtracting one infinite quan­

tity from another to get a finite quantity Jvf, which would seem to be an 

impossibility. One way to remove this problem is to realise that in equation 

3.16 at the higher values of k (which cause the infinities in the integral), 

the theory is not well defined; for example complicated expressions would 

have to be added to model the effects of gravity, which is an important 

interaction at very high energies (equivalent to large values of particle mo­

mentum k). Such corrections could render the integral finite, thus we would 
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be subtracting two finite quantities to get the observable mass M (Teller 

1994). 

3. 7.2 The renormalization procedure applied to statistical me­

chanics. 

The previous ideas from particle quantum field theory can be applied to 

statistical mechanics, where the field ¢ in equation represents not a particle 

creation operator but a measure of local magnetisation. Again propagator 

functions are derived, but this time they represent the spin correlation func­

tions. So instead of representing the probability that a particle propagates 

from one spacetime point to another, the propagator functions indicate to 

what extent spins at particular spatial points line up together on average. 

More complicated propagator functions represent to what extent several 

spins align together on average, rather than describing complicated particle 

scattering processes as in quantum field theory. 

Again the concept of renormalization proves valuable. An example is 

the calculation of the Fourier transform of the first Feynmann diagram for 

the second order correlation function f 2 (the correlation function between 

two particular spins) where 

(3.17) 

Here k and q are vectors in the reciprocal lattice space for the crystal, and 

the constants ~L, a and). are the constants from equation 3.14. The Fourier 

transform of the correlation function is given by 

(3.18) 

where the vector x is a displacement vector between the two spins whose 

correlation we wish to measure. The upper limit, L, on the integral is 

termed a cutoff, and is not taken to infinity since it can be shown that the 
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smoothness of the field varies inversely with L; and the magnetisation field 

¢ cannot vary on scales less than the lattice constant for the system (as the 

spins are located at lattice points). Field configurations that vary on a very 

small scale are not physical. As the cutoff is lowered, since the field will 

vary only over a large distance scale, we have an equivalent picture to the 

spin blocking method of studying systems near critical point, as discussed 

previously (see section 3.6). 

This propagator is of particular interest since 0) is inversely pro-

portional to the magnetic susceptibility of the physical system, and this can 

be measured. If the mass term fJ is renormalized as follows 

(3.19) 

then the expression for r2(k) reduces to m2 + a 2k2 which is a very simple 

result. Higher order Feynmann diagrams require a modified renormalization 

method but the principle is the same. The advantage of the renormalizing 

procedure is that is removes the cutoff L from the theory; various quantities 

calculated are then independent of scale, which is the phenomenon of scaling 

invariance existing in nature, as previously discussed. 

3. 8 Renormalization group theory applied to the case 

of random mixtures. 

Arahony and Fishman (1976) and Fishman and Arahony (1978) set out the 

first rigorous RGT treatment of mixed systems with competing magnetic 

anisotropy. Their approach was based on the Hamiltonian 

L)Jijsi.sj DiJlm11 Sil.sjl m21 si2·Sjz]) 
ij 

(3.20) 

where sil' si2 are ml and mz dimensional components of the vector si 
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respectively. For example, if Sil is chosen to be Biz in a Carte-

sian axis system (a convenient choice if there is magnetic anisotropy along 

the z axis, for example). Hamiltonian describes the case of magnetic 

anisotropy due to anisotropic exchange. The variables Dij energetically fa­

vour alignment of the spins so that they only have the 8 1 (for Dij > 0) 

or 8 2 (Dij < 0) components non zero, depending on the identities of the 

compounds at sites i, j. The Hamiltonian was then rewritten in terms of 

Fourier vectors S ( q) and the fixed points and behaviour of the system near 

criticality were found, as discussed in section 3.6. 

They concluded a 'decoupled' fixed point describes the system at the 

tetracritical point, where the two subsystems (the two compounds) order 

independently from one another. Effectively, the two compounds see each 

other as a non magnetic impurity. Of importance in this decoupling is 

the lack of long-range forces i.e. only short range isotropic and anisotropic 

exchange between nearest neighbours was modelled. Figure 3.3 reproduces 

the phase diagram derived from their RGT study. 

As was found in the mean-field studies, below the fixed point is a mixed 

phase region, where both S 1 and S 2 order (are non zero simultaneously). 

But the phase diagram around the tetracritical point is smooth, as opposed 

to the kinked phase diagram predicted by mean-field theory. 

Even though the Hamiltonian in equation 3.20 was specific to compounds 

with anisotropy due to anisotropic exchange, the results also apply to mix­

tures of compounds with single ion or planar anisotropy (Ausloos and Elliot 

1983) such as the FexNh-xCl2 system. 

Other workers more recently studying mixed systems using field theoreti­

cal RGT got equivalent results, but did note that the lower phase transitions 

are not necessarily sharp (as found by Aharony and Fishman 1976, 1978) 

in the presence of random fields or off diagonal exchange interactions (Oku 

and Igarashi 1983). 
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Figure 3.3: Phase diagram for a mixture (AxBl-x) of compounds (A,B) with competing 

magnetic anisotropy. Reproduced from Arahony and Fishman (1978) 
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3.9 Numerical simulations. 

3.9.1 The need for numerical simulations. 

The theoretical approaches mentioned up to now all suffer from limitations 

which restrict their use in accurately modelling systems with competing 

order, which includes the mixed magnetic system of FexNh-mCh. 

The basic assumptions of mean-field theory allow systems to be easily 

modelled, but the assumptions are not strictly valid. In the case of spins on 

different lattice sites interacting, each spin does not interact with the ther­

mal average of neighbouring spins (represented by the mean field). Only if 

those other spins did not fluctuate much from their thermal average would 

this approximation hold. And individual spins do fluctuate significantly 

(except at very low temperatures) since the energies for different spin ori­

entations are similar as exchange interactions and any magnetic anisotropy 

present are weak interactions. 

Mean-field theory also assumes that the environment of each spin is 

identical, with the number of each ionic or atomic species in close proximity 

with the spins determined solely by their overall relative concentration in the 

mixture. This effectively removes the randomness from a mixed system such 

as FexNit-xC12 . And the assumed uniformity of neighbouring spin identities 

also ignores the possibility that clusters of different species may occur in 

the real system, which may be responsible for the complex spin behaviour 

observed in the Mossbauer spectral data for the FexNh-mClz system. 

The more modern RGT also has limited applicability to mixed magnetic 

systems. As mentioned previously, the critical region in the phase diagram, 

where RGT is a good description, can be very small. This means the mixed 

phase behaviour which is of particular interest cannot be modelled adequa­

tely, as most of it is out of the critical region. In fact, most experimental 

studies of mixed magnetic systems do not show the decoupling of order pa­

rameters predicted by RGT. Systems which show this decoupling are rare 

(see for example Mook et al 1981 and Schobinger-Papamantellos 1981). 

Clusters are also not easy to model with RGT. Previous models of mixed 

magnetic systems assumed a random distribution of ionic or atomic identity 
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at each lattice site (Aharony and Fishman 1976). This allows the problem to 

be readily solved, but lacks realism if clusters do form in the mixed system. 

For these reasons, theoretical modelling of the FexNh-xCl2 system was 

not attempted, since a realistic model would not be possible with either 

mean-field theory or RGT. And a realistic model is necessary to account 

for the complex behaviours that have been detected experimentally by 

Mossbauer and neutron diffraction studies of the system. 

Therefore a numerical study of FexNh-xC12 was attempted, which allows 

the system to be realistically modelled and solved, since an exact analytical 

solution was not sought. Every possible known interaction could be included 

in the system's Hamiltonian, as well as any possible distribution of ions, 

including clusters of ions. 

The following subsection describes the numerical modelling technique 

chosen (the Monte Carlo technique). 

3.9.2 The Monte Carlo technique. 

The Monte Carlo numerical technique refers to the use of random numbers 

to solve problems that are usually impossible or difficult to solve analytically 

(Sobol1994). vVhen the problem involves modelling systems of interacting 

spins, the usual approach involves generating arrays of numbers representing 

the spins or spin components, with appropriate terms to represent interac­

tions between the spins, external magnetic fields, etc. Physical quantities 

of interest (such as magnetisation and magnetic susceptibility) can then be 

directly determined from the arrays of numbers. 

The arrays of numbers must of course be chosen in such a way that 

their behaviour mimics the behaviour of real spins. Simply choosing con­

figurations entirely at random (a simple sampling method) would lead to 

inaccuracy, since real systems have a tendency to exist in low energy states, 

rather than than occupying all possible states equally. vVhat is required is 

importance sampling, where configuration states are considered in propor­

tion to their true probability. 

In the case where the physical system of spins is in equilibrium (which 

is the assumed case for the crystal samples that gave rise to the Mossbauer 
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data for the FexNi1_xCl2 system, quoted in this thesis) the probability that 

any particular configuration of spins exists on measuring the system can be 

written as 

P(x) = -exp ---1 ( H(x)) 
z kT 

(3.21) 

with 

Z = .z= exp ~- H(x)) 
kT 

[All configurations 

(3.22) 

where the expression P(x) in equation 3.21 represents the probability that 

a particular configuration represented by x exists (x is in general a matrix 

with elements containing the spin components with respect to the spatial 

axes). Equation 3.21 contains the partition function Z, which normalises 

the probabilities to 1. H(x) is the energy (or Hamiltonian) of the system 

of spins when in the state x and the quantities k and T are the Boltzmann 

constant and temperature (measured in Kelvin) respectively (Binder and 

Heermann 1992). 

The importance sampling technique used in this thesis is based on the 

Metropolis Algorithm which generates a number of configurations in turn, 

each of which is derived from the previous one. Once an initial configuration 

has been chosen, some or all of the degrees of freedom (the spins) are altered 

to form a new configuration. This alteration consists of re-orienting each 

spin, in 3 dimensional space for spins in the FexNh-xCh case. The energy 

of the system before and after the alterations are made is calculated, and 

the new configuration is accepted as a valid configuration for describing the 

physical system with a probability equal to 

exp ( -~c~) (3.23) 
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if the energy difference (final initial configuration energy) denoted by oH 
is positive. It is selected as a configuration for sure if 15H is negative. 

This ensures that the chance any particular configuration is chosen as a 

legitimate 'snapshot' of the system of spins is consistent with the Boltzmann 

distribution given by equation 3.21. The series of configurations chosen as 

valid descriptions of the system is termed a Markov chain, and the process 

of choosing them, a Markov process. 

The thermal average Q of any quantity Q that depends on the spin 

configurations can then be easily calculated via 

Q ~ L Q(x) exp( ~:(x)) 
[All configurations] 

(3.24) 

where Q(x) is the value of the quantity Q when the system has the spin 

configuration x. The simplest such quantity is 

energy, with the term Q(x) H(x). 

average of the total 

The Monte Carlo method does have limitations. It cannot follow spin 

behaviour as a function of time (dynamics), and there are problems with 

the Markov process itself. The various problems and their relevance to the 

Monte Carlo simulations of the FexNh-xCh system which were carried out 

will be discussed in detail in chapter 7. 

3.10 Conclusions. 

While both mean-field theory and RGT offer useful theoretical frameworks 

for understanding mixed magnetic systems, both have limitations which do 

not allow them to accurately model the FexNh-xC12 system. For this reason 

the Monte Carlo numerical technique was chosen to model the system. The 

results from these simulations will be discussed in chapter 6. 



Chapter 4 

Techniques involved in the Mossbauer study 

of FexNi1-xCl2 crystals. 

4.1 Introduction. 

This chapter describes the experimental techniques used to produce single 

crystals of FexNh-xCl2 , and to measure their Mossbauer spectra. 

4.2 Production of FexNh-xCh absorbers. 

4.2.1 Manufacture of FexNh-xC12 powders. 

Analar powders of NiCl2 were used. FeCh with enhanced levels of 57Fe was 

added, to guarantee strong Mossbauer absorption spectra. The following 

procedures were followed for each crystal made. 

First, a small amount (typically 3-5 milligrams) of 57Fe metal was placed 

into a beaker containing pure HCl and distilled water, and the contents stir­

red for 24 hours by a (heated) magnetic stirrer. After this time the 57Fe had 

dissolved completely, creating 57FeCb·4H20. Analar Powders ofFeCl2 ·4I-b0 

and NiCh·6H20 were then added and stirred until dissolved. The solution 

dried in a vacuum system to remove excess water and remaining acid (which 

was unattached to metal atom complexes). 

The resulting mixture was then placed into a long glass tube, inser­

ted into a heater set to 400 C. This removed much of the remaining water 

from the Fe and Ni compounds, since they decompose at 250 K and 350 K 

respectively. 

During the drying process, N2 gas and HCl gas was passed through the 

tube, to sweep away any vapourised water. The HCl gas inhibited oxidation 
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of divalent 57 Fe to Fe3+ in the form of FeCl3 , and the inert N 2 insured the 

atmosphere inside the tube was constantly flowing through the open end, 

hence sweeping out the water vapour. 

Finally, the dried powder (which was orange coloured from the presence 

of NiC12 and relatively little FeCb) was placed in a quartz tube which was 

evacuated, and heated for a day at 370 C to insure last vestiges of water 

were removed. The transfer of the powder into its tube was rapid, since 

FeCb is highly hygroscopic. This baking temperature of 370 C removed any 

FeCh that was still present as this evaporates at 306 C (CRC 1997). It was 

sublimated under vacuum heating of the sample. 

4.2.2 Growing single crystals of FexNh-xCb 

The prepared dehydrated powder was then sealed in its quartz tube for pla­

cing into a Bridgemann furnace. The tubes terminated in a small bulb with 

a sharpened point, to promote the growth of adequate size single crystals. 

If several single crystals grew from the pointed end, only one would enter 

the main body of the tube because of the narrow neck separating the bulb 

from the rest of the tube. 

The Bridgemann furnace was heated just above 1000 C to melt both 

compounds since NiC12 melts at 1001 C, while FeCb melts at 670 C (CRC 

handbook). No temperature probe was available for 1000 C, so the tempe­

rature profile of the Bridgemann furnace for a setting of 900 C was determi­

ned, and is shown in figure 4.1, and would be similar in shape to the 1000 C 

profile. 

The quartz tubes were small enough to be lowered into the very hot 

central region of the profile (where temperatures are greater than 1010 C), 

ensuring that the powder was everywhere melted and hence avoiding mul­

tiple seeds points forming which would have led to several coexisting single 

crystals growing. The tubes had the pointed ends facing down and were 

lowered through the temperature gradient at a rate of 1.1 mmh-1 . 
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Figure 4.1: Bridgemann furnace temperature profile at 900 C. 
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The single crystals produced varied in quality and usability. Several were 

polycrystalline rather than single crystals, rendering them useless. Even the 

single crystals had concentration gradients within a cross-sectional sample 

of a given crystal. 

4.2.3 The production of Mossbauer absorbers. 

The single crystals studied by Mossbauer spectroscopy are listed in table 

4.1, which includes the nominal and actual Fe content of the crystals. Also 

displayed are the experimentally measured equivalent amounts of natural 

Fe per square centimeter, that is, the amounts of natural Fe that would 

provide the same area densities of 57Fe. The actual Fe content was analy­

sed by electron diffraction by the Department of Electrical and Electronic 

engineering, University of Canterbury, New Zealand. It is apparent that Fe 

levels the listed crystals were significantly lower than expected; possibly 

many Fe atoms had segregated to either end of the crystal. 

Nominal Fe concentration x Actual Fe concentration. 
0.08 0.031 [1.1] 

0.09 0.052 [3.5} 

0.25 0.15 [1.5] 

Table 4.1: Fe content of the Fe:vNi1-xCh absorbers. The numbers in square brackets are 
the equivalent amounts of natural Fe (in mg per square centimeter). 
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4.2.4 Final preparation of the Moss bauer absorbers and the coo­

ling procedure followed. 

Mossbauer absorbers were created by cleaving fragments off the face of the 

crystalline samples of FexNi1_xCh grown, using a razor blade. Cellotape­

stripping methods proved inadequate as the resulting crystal fragments were 

so thin that the resulting signal-to-noise ratio in the Mossbauer spectra was 

very low, giving low quality spectra. The sizes of the crystals grown (and 

the fact that even good single crystals had only small regions with smooth 

surfaces for easy cleavage) meant that small fragments were used from the 

same part of a given crystal. 

The absorbers were overlaid with a lead shield, to prevent ')'-rays passing 

through small gaps between adjacent crystallites, which decreases the signal 

to noise ratio. Even so, it proved impossible to completely eliminate this 

leak-through problem. 

Finally the absorbers were mounted in a cryostat through which cold 

liquid cryogen was drawn to achieve the desired absorber temperature. Li­

quid N2 and He was used for the high temperature (T> 50 K) and low 

temperature runs respectively (down to 4.2 K). Exact temperature control 

was difficult, with an uncertainty in the temperatures of ±0.2 K for most 

temperatures, increasing to ±0.3 K for 4.2 to 15 K. 

4.3 Mossbauer studies of the FexNi1_xC12 absorbers. 

4.3.1 The Mossbauer apparatus and basic experimental proce­

dures adopted. 

The Mossbauer absorbers were placed in a cryostat, in a stationary posi­

tion. The Mossbauer spectrometer was manufactured by Ranger Scientific 

incorporated, and consisted of a VT 900 velocity transducer which moved 

the radiation source relative to the absorber in a triangular saw-toothed 

pattern of velocities, both away and towards the absorber. A PA 900 pro­

portional counter placed behind the absorber (away from the source) coun­

ted the radiation detected in particular velocity intervals (divided into 1020 
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channels). The output from the PA 900 counter was sent to an Apple lie 

computer. The entire apparatus was vibration insulated to minimise any 

vibrational broadening, so that only 1-ray energy modulation due to the ve­

locity transponder was present. The apparatus was aligned (to an accuracy 

of 3-5°) so that 1-rays from the source would be incident at right angles to 

the crystal planes of the absorbing material. 

Since the radiation source is more intense when closer to the detector, 

the resulting background counts were different for different channels. This 

was corrected for by adding the channel counts for the same velocities (which 

occur twice per transponder cycle) together, which led to a constant baseline 

independent of the channel (velocity). This folding procedure was repeated 

for every spectrum recorded. 

The source was 57 Co in a Rh matrix supplied by Amersham. This de­

cays into stable 57Fe with a half-life of 270 days (Wertheim 1964). The 

14.4 ke V 1-rays emitted came from a transition between chemically-unsplit 

excited and ground states, making the source profile a simple Lorentzian 

shape. However, other source and matrix 1-rays and X-rays were present 

and these increase the background readings of radiation detected at each 

velocity channel without creating any absorption lines, and hence decrea­

ses the signal to noise ratio. To reduce this background the levels of the 

discriminator were set to select the 14.4 ke V Moss bauer 1-rays. 

There was a small amount of 57 Fe impurity in the front window of 

the PA 900 detector, which resulted in two small lines in any Mossbauer 

spectrum taken. These were subtracted from all spectra during analy­

sis. The fraction of Moss bauer 1-rays (and those that are detected by 

the PA 900, but come from other transitions) was determined by placing 

a thin (0.13 mm thick) copper shield in front of the detector, which blocked 

out the Mossbauer 1-rays but allowed most of the higher energy photons 

to pass through (95.25%). The total 1-ray flux was then measured over 

a 100 second period, and compared with the case where the copper shield 

was absent. This gives the ratio between the Mossbauer and other 1-rays 

present for the entire Mossbauer experiment. This process was repeated for 

every Mossbauer measurement. 
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The velocity scale was calibrated with respect to the spectrum of iron 

foil. This was done by taking a spectrum of the Mossbauer iron-standard 

SRM No. 1541 (supplied by the National Bureau of Standards, US depart­

ment of Commerce), which has calibrated lines at known velocities. These 

calibration spectra were taken every few Mossbauer measurements, typi­

cally at the start and end of a sequence of several studies and determined 

the channel to be used for folding the spectra. Isomer shifts were quoted 

relative to the centroid of the standard iron foil line positions. 

4.3.2 Fitting the spectra to determine Mossbauer 

observables. 

Once the Mossbauer spectra were recorded they were fitted with Lorentzian 

shaped lines using a least squares routine. The fitted quantities could be 

set seperately for each absorption site, and were as follows (with quantities 

and symbols defined as in chapter 2); 

(a) a and f3, the angles between the direction of the incoming 1'-rays and 

the z and x axes of the principal axis system respectively; 

(b) Bhr, the magnitude of the total hyperfine magnetic field at the nucleus; 

(c) EQVZ2 = ~leiQVzz; 

(d) 17, the asymmetry parameter; 

(e) ehf and rPhJ, the angles between the total hyperfine magnetic field at 

the nucleus and the z and x axes of the principal axis system respectively; 

(f) IS, the Isomer shift; 

(g) r, the halfwidth (in mm/s) of the absorption lines 

(h) and D, the dip, a quantity measuring the depth of the absorption site 
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(relative to the background count). 

specific values for the quantities (a) (h) used to model the Mossbauer 

spectra obtained for this thesis, and the restrictions placed on them, will be 

described in chapter 5. 

The computer programs used to compare experimental with simulated 

spectra were SINGLE and MOSCOR, based on original code by D H Jo­

nes of Liverpool University and J B vVard while on leave at Portland State 

University, respectively. SINGLE calculated simulated spectra· using the 

quantities (a) (h), which could be fixed or allowed to vary. The program 

simulated spectra appropriate for absorption sites from a single crystal sam­

ple, and could simulate paramagnetic or magnetic spectra. The line shapes 

simulated were Lorentzian, which are consistent with experimental line sha­

pes in the limit where a very thin Mossbauer source and absorber sample 

are used (Gibb 1976). 

The program MOSCOR compared the simulated spectra with the expe­

rimental ones, which were inputed from a seperate data file. program 

varied quantities from the list (a) - (h) (or a restricted set chosen by the 

user) and perfomed a least squares fit, using the reduced x2 statistical test 

to measure the goodness of fit between the calculated and experimental 

spectra. vVhen the goodness of fit could no longer be improved, the final 

values of the fixed and varied quantities were stored in a further data file. 

The program also calculated the relative areas of the absorption spectra due 

to different absorption sites. 



Chapter 5 

A Monte Carlo simulation study of the 

FexNh-xCh system. 

5.1 Previous Monte Carlo studies of mixed magnetic 

systems. 

In 1978 Inawashiro simulated the magnetic behaviour of the system AvBl-x 

consisting of a mixture of two anti-ferromagnetic species A and B of spin 

1 with magnetic anisotropy due to anisotropic exchange (Inawashiro 1978). 

The spins were randomly sprinkled about a 2D square lattice with 20 sites 

to a side and had perpendicular easy axes with the same magnitude of 

sotropy. The spins were treated semi-classically in that they were allowed to 

orient themselves in space in a classical way, but with the quantum mecha­

nical exchange interaction contained within the Hamiltonian. Spin averages 

of the spins at each separate lattice site were obtained and the usual four 

phases predicted by mean-field theory and seen in many experiments were 

produced. Since the magnitudes of the anisotropy constants for the diffe­

rent species were the same, the mixed phase occurred about a tetracritical 

point at x=0.5. 

In that phase, local clusters of A and B atoms created coexisting popu­

lations of atoms with different spin behaviours, with high A content clusters 

forcing local spins to align on average close to the easy axis for the A atom, 

similarly for clusters with many B atoms. Such clusters dictated the out­

come since they were relatively large and common throughout the lattice. 

This was because the concentrations within the mixed phase were all close 

to x=0.5, hence both species were equally numerous and, by random chance, 

clusters of either species often formed. These results are highly reminiscent 
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of the spin behaviours found in FexNi1_xCl2 . However they were clearly 

tied to the presence of relatively large clusters of high A or B concentra­

tion, which do not occur very often in a sample of FexNi1_xCl2 , since the 

tetracritical concentration is then at x=0.09, for which the Fe2+ ion is rela­

tively rare. Hence clusters of Fe2+ ions are relatively few. 

Their results can be compared to those of Aplesnin (1988) who modelled 

on a 30 by 30 square lattice a theoretical mixture of two antiferromagnets 

with a perpendicular easy axis and easy plane, and again the same exchange 

constants. In the case where the exchange and anisotropy constants were 

similar in magnitude, the intermediate region was an oblique phase with 

some spins aligned along the easy axis or easy plane. 

Kato (1994) studied 

competition exists between the strong axial single-ion anisotropy of 

Co2+ ions and the weak anisotropy of the Mn2+ ions, which naturally order 

in a plane perpendicular to the Co2+ easy axis. Nuclear magnetic resonance 

(NMR) experiments of the system (Kubo et al 1984)989) indicated that in 

the intermediate (mixed phase) region two different phases coexist, with 

the average spins aligned along the easy axis of Mn2+ or Co2+ separated by 

domain wall regions where the spins align at an to both easy axes. 

The authors used several simplifications in modelling the mixture, in­

cluding the use of a simple small 20 by 20 site square lattice, and identical 

exchange constants for each antiferromagnet. They also used highly-ordered 

configurations of Co2+ and Mn2+ ions rather than truly random ones. For 

example in the intermediate region Co2+ ions were grouped into rectangu­

lar arrays rather than being scattered randomly about the lattice. Their 

Monte Carlo results agreed well with the NMR results, with the coexisting 

spin populations and domain wall structures being detected. However, their 

results could be a consequence of how they artificially constructed their con­

figurations of ions and may not be valid for truly random distributions of 

ions. It should be noted that the lattice constants for CsMnCb.2H20 and 

CsCoCls.2H20 differ by only 2% (Igarashi et al 1992). 

Nevertheless the results from these previous studies all strongly suggest 

clusters of pure ions within mixtures have a noticeable effect, directing the 
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creation of coexisting populations with different average spin behaviours. 

5.2 Monte Carlo simulations of the FexNh-xCl2 sy­

stem. 

In the present study, Monte Carlo simulations of FexNh-xC12 were perfor­

med via a semi-classical model where the spins could be oriented in any 

direction in space. As a check on the computation, results were obtained 

for a simulation of the Ising model applied to pure FeC12• This was then 

compared with previous studies on this compound. The Fortran computer 

programs (Ising and Many for the Ising model and Heisenberg-like model 

respectively) were written in Vax Fortran. 

5.2.1 Common features of the simulations. 

The models used the Hamiltonian 

for the Ising model and 

H -Jij I:sisj 

i>j 

H - L ( JijS'j SJ A(St) 2
) 

q,i>j 

(5.1) 

(5.2) 

for the Heisenberg model. variable Si in equation 5.1 represents the 

effective spin ±1 (Ising model) or effective spin component (Heisenberg-like 

model) of the ith spin with magnitude 1, and S{ represents the qth spatial 

component of the ith spin in equation 5.2 (where q = 1. .. 3). The index i 

sums over every spin, j sums over every nearest, next-nearest and between 

plane nearest-neighbouring spin of the ith spin. The J terms are exchange 

terms for effective spin pairs. These terms exhibit anisotropy, since their z 

components are 40% larger than their x and y components for Fe2+ pairs 

(Birgeneau et al 1972). The second term in equation 5.2 represents the 
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magnetic anisotropy with A the single-ion anisotropy constant. This term 

is not needed in the Ising model since either possible orientation (parallel 

or anti-parallel to the c axis) has the same anisotropy energy. 

Values for the various exchange constants for pure FeCb and NiCb could 

be obtained from inelastic neutron scattering studies of the compounds 

(Birgeneau et al 1972, Wiltshire and Hayes 1978 and Lindgard et al 1975) 

but were initially set to agree with those set by Hernandez et al (1993a) 

to allow a direct comparison with their Monte Carlo study of pure FeCh. 

These values were 6.74K, -1.01 K and -0.07K for nearest-neighbour, next­

nearest-neighbour and between plane nearest-neighbour spin pairs respec­

tively. They used these constants to obtain the correct Neel temperature of 

FeC12 of 23.15 K in their simulations. 

Both simulations used a lattice corresponding to a slanted cube of lattice 

sites pictured in Figure 5.1, consisting of a leaning stack of rhombuses. 

This shape was chosen for programming convenience, and accurately 

modelled the true physical lattice. 

Each line intersection in figure 5.1 represents an FeZ+ or Ni2+ ion. The 

lattice sites were labelled by the integer indices (K,I,J) as shown, with three 

corner ions of the lattice indicated in the figure with these indices as coor­

dinates. The spatial components of the spins at each lattice site were coded 

in a matrix M(K,I,J). The indices ran from 1 to an integer L which could 

be arbitrarily chosen. 

Periodic boundary conditions were used to ensure that every spin, inclu­

ding the ones at the edges of the lattice, had the same number of neighbours. 

Thus a spin at the top of the sample had nearest between- layer-neighbours 

at the very bottom of the sample, and so on. To have simply left the edge 

spins with free ends (with certain neighbours non-existent) would probably 

have caused more inaccuracy (Binder and Heermann 1992). 

In performing the Monte Carlo operations each site was visited a loop 

over the indices K,I,J with each site being visited once per Monte Carlo 

step. During each visit, a new spin orientation was randomly chosen, and 

the energy before (E) and after ( E') this reorientation occurred was cal­

culated. The standard Metropolis probability function was used to decide 
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Figure 5.1: Lattice used in the Monte Carlo simulations. 

(~ 2 sites to a side = 1728 sites.) 

r At every line intersection: an Fe or Ni ion. 
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whether to accept that new state or to keep the previous state as the re­

presentation of the spin for that step. As was discussed in chapter 3, the 

Metropolis function ensures that the configurations of spins produced by 

the Monte Carlo simulations, each produced from the previous configura­

tion (that is, a Markov chain) are produced in proportion to their thermo­

dynamic Boltzmann factor exp ( "k:) with k the Boltzmann constant, and 

T the temperature in Kelvin. Hence the theoretical spin behaviour will be 

similar to the physical spin behaviours (Binder and Beerman 1992). This 

function is defined as follows: 

( E'- E) p = exp - kT (E' > E) (5.3) 

or 

P= 1 (E' < E) (5.4) 

The states for the first half of each computer simulation were not ana­

lysed since the system required time to reach equilibrium about the lowest 

energy states. 

A problem common to all Monte Carlo simulations is worth mentioning. 

Since the simulations use very small lattices in comparison with the real 

samples of the various materials, finite size effects are present (Binder and 

Heermann 1992). The system can access states with high average energy 

per spin since the total energy can still be low since few spins are present. 

However, these states are not accessible in a real sample with many spins 

present, where that same high energy per spin translates to a very high total 

energy. Therefore quantities calculated will always be an approximation, 

even if a very large number of steps are used in the simulation. 

5.2.2 The Ising model. 

The Ising model gave only an approximate description of the FeClz system. 

It is a reasonable description, since the iron spins spend much of their time 

close to the c axis due to their strong uniaxial magnetic anisotropy. However 
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configurations with the spin directions at many possible angles to the c axis 

are possible physically. The Ising model will therefore ignore many possible 

configurations of spins, including many of quite low energy with little spin 

disorder present. And the experimental results indicate spin averages that 

do not lie parallel or anti-parallel to the c axis in the mixed phase, making 

an Ising simulation inadequate to account for observations. 

The problem of spontaneous symmetry breaking arose in the results. 

The lowest energy state is one in which all the Fe spins orient parallel or anti­

parallel to the c axis, with neighbouring spins anti-parallel to one another. 

However the exact opposite state (spins that were parallel to the c axis now 

antiparallel, and vice versa) has the same energy and will occur occasionally, 

if the system consists of few spins, as is the case for Monte Carlo simulations, 

which use small lattices for reasons of computer processing speed. When 

the Ising simulations were run, it was noticed that spins tended to align 

in one direction, but all spins could flip to the opposite orientation more 

frequently as the temperature increased. This change to the opposite state 

would be very rare for a large physical system, and the effect was corrected 

for by taking absolute values of the magnetisations calculated. 

The simulations were started with all spins parallel to one another within 

each plane and anti-parallel to the spins in adjacent planes, and run times 

were set for 20 000 Monte Carlo steps. 

Quantities calculated in the simulation were the staggered magnetisation 

lv'I and initial magnetic susceptibility x (the magnetic susceptibility when 

the magnetic field is zero). 

(5.5) 

(5.6) 

where, in equation 5.5, the sum is over all spins for one Monte Carlo step 
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with the labels 1 and 2 signifying which sub-lattice the spins belong to (i.e. 

whether the spin is on a plane with an odd or even value of the coordinate 

variable K). The variable IYI represents the average spin magnitude over the 

whole lattice, summing the spins on the different sublattices differently since 

the spins orient opposite directions within the different sublatticesjlayers. 

This quantity was averaged over the entire Monte Carlo simulation. The 

quantity < JYJ > in equation 5.6 represents that average. N is the total 

number of spins, and T in equation 5.6 is the temperature in Kelvin. 

A graph of magnetisation vs temperature derived using the Ising model 

for a lattice with is displayed in figure 5.2, together with values for the 

magnetisation obtained from NMR studies (Jacobs and Lawrence 1967). 

The Monte Carlo magnetisation curves are slightly higher than the curve 

derived from the NMR study. This is probably because only two states were 

available to each spin; the lower energy states occurred when the spins were 

parallel to a majority of in-plane nearest neighbours. Other possible states 

were very high in energy, since spins with several neighbours misaligned 

necessarily means total misalignment with those neighbouring spins, as only 

perfect alignment or misalignment was possible. 

The Monte Carlo process therefore often rejected those higher energy 

states. In comparison, the physical system should allow many states with 

spins at a variety of angles, with spins close to being parallel to one another. 

These configurations, which are not allowed in the Ising model, are of low 

energy yet decrease the staggered magnetisation, so their absence increases 

the magnetisations calculated from the Ising model. 

Hernandez et al (1993a,1993b and 1994) using the Monte Carlo Ising 

model, simulated the dilute magnetic system FeaJVIg1_xCl2 , a random mix­

ture of the antiferromagnet FeClz and the non-magnetic compound MgCl2 • 

As part of their work, they studied pure FeCh and found the tempera­

tures where the initial magnetic susceptibilities reached a peak for several 

different lattice sizes. Figu·re 5.3 shows the results derived from the present 

work on the Ising model with results from Hernandez and Diep (1994) plot­

ted also for comparison. In this figure, the magnetic susceptibility is shown 

as a function of temperature and the lattice size L. Only the peak values of 
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Figure 5.2: Magnetisation data as a function of temperature for FeCh derived from Ising 

Monte Carlo simulations using a lattice with 1=16 (o) and NMR studies (Jacobs and 

Lawrence 1967) (*).Exchange constants used were 6.74K, -1.01K and -0.07K for the 

nearest in plane neighbour, next-nearest in plane neighbour and nearest adjacent plane 

neighbour respectively. Uncertainties for both data sets are indicated by vertical lines. 
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Figure 5.3: Initial magnetic susceptibility data calculated in the present study from 

Ising Monte Carlo models using a lattice size 1=20 (D), 1=30 (o) and 1=40 (6) vs 

temperature. The peaks in the curves derived from Hernandez and Diep (1994) are also 

indicated (*)· The exchange constants chosen were as for figure 5.2. Uncertainties are 

indicated by vertical lines. 
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the curves from Hernandez and Diep were given. 

The peaks in the curves derived from Hernandez and Diep were in good 

agreement with the Ising model for 1=20 used in the present work, but were 

too low for the 1=30 and 1=40 cases. This may be because great care was 

taken to find the peak positions in the present work with many different 

readings close to the peak positions being taken. It was noted that as the 

system size 1 increased, the peak moved towards T=23.12 K, close to the 

measured Neel temperature of 23.6 K for FeCl2 . 

It was therefore concluded that the model used in the program Ising in 

the present work gave results equivalent to past workers results and consi­

stent with experimental observations. The program was then developed fur­

ther into the program MANYDIR to model the more complex FexNh-xCb 

system. 

5.2.3 Simulations allowing many spin orientations. 

Simulations allowing only a small finite number of spin orientations were 

performed, the available states being graphically represented in figure 5.4. 

In the figure the small circles represent the available spin states, at se­

veral different angles with respect to the c axis (angle B) and an arbitrary 

perpendicular axis (azimuthal angle ¢). If the available spin states are re­

presented by vectors radiating from the centre of a sphere of radius 1 out 

to the sphere's surface, then figure 5.4 shows a 2D view of the sphere from 

directly above. The small circles indicate where the spin vectors intercept 

the surface of the sphere, and are labelled with their e and ¢ values. In 

the figure only the spins intercepting the upper hemisphere of the sphere 

and equator (B = 90 °) are shown. When the simulations were performed 

for the pure FeCb and NiCl2 cases, a serious problem was noted when 26 

states were made available. A very large anisotropy constant was required 

to confine the Ni2+ spins to the xy plane at high temperatures (T > 30 K). 

In fact the anisotropy constant had to be 30 times larger than its experi­

mental value of 1 K (Lingard et al 1975). Otherwise the spins had a strong 

tendency to align parallel/ anti-parallel to the c axis, which occurred even 

when the anisotropy constant for Ni2+ was set to zero. 
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Figure 5.4: Spin orientations available in Heisenberg Monte Carlo models using a finite 
number of spin states. 
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This effect was thought to be a consequence of the lack of smoothness in 

available state array (that is each point on the sphere of available states 

in figure 5.4 is not equivalent in terms of angles relative to neighbouring 

spin states). The problem remained even when more states were made 

available (114 states). This made the mixed system impossible to model; 

since the anisotropy constant for FeC'b is ten times larger than the NiCb 

constant, which would thus require an anisotropy constant for pure FeCh of 

300 ( c .f. experimental value of 10 K). This grossly exaggerated value would 

mean the anisotropy would totally dominate over the exchange interactions, 

a situation which does not occur in the experimental case. 

To overcome this problem, the available spin states were made conti­

nuous in space (In fact 418 states were made available) and the problem of 

confining the Ni2+ spins to the xy plane disappeared, with a more realistic 

value for the Ni2+ anisotropy constant (2 K) being enough to confine the 

spins even at the high temperature of .so K. 
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Each spin was analysized separately and its angle B from the c axis 

was recorded, as well as the staggered magnetisation for each ionic species. 

Simulations were run with zero anisotropy constants, to check for random 

behaviour of the magnetisations which was expected in that case. In this 

test, the spins behaved as expected, drifting randomly in 3D space, with no 

attraction to any axis or plane. 

With non zero anisotropy constants, it was noticed that the xy type 

anisotropy of NiCb caused the Ni2+ spins to slowly drift around the c axis 

in the pure NiC12 case. As a result the spin components and magnetisations 

averaged to zero after many Monte Carlo steps. To correct for this, the 

spin components were recorded and averaged in groups large enough to get 

accurate results for the angle B , yet insufficient for the spins to have drifted 

much about the c axis. These values for B were then averaged. The spins 

were all initially aligned with B set at 45 o or 135 o depending on which 

sublattice the spins belonged to. This orientation was chosen to ensure the 

end point did not depend on the initial orientations. 

Simulations were performed to determine the values of the exchange and 

anisotropy constants needed to accurately model the pure FeC12 and NiCb 

systems. The constants attempted were similar to the values chosen by 

previous workers and based on experimental work. Two approximations 

were used in common with mean-field studies of mixed systems (Igel et al 

1990, Matsubara and Inawashiro 1976 and Someya 1981). The exchange 

constants for an Fe2+ -Ni2+ pair were taken to be the geometric mean of the 

pure Fe2+ -Fe2+ and Ni2+ -Ni2+ values and the anisotropy constants were not 

varied with temperature. The magnetisations were only weakly dependent 

on the anisotropy constants since these were smaller than the exchange con­

stants. The anisotropy determined the directions for the spin averages, and 

was not important in determining their average values. In any case, varia­

tions of the anisotropy constants with temperature would be very difficult 

to simulate since very large constants would be needed at low temperatu­

res (experimentally the anisotropy increases with decreasing temperature) 

as over strengthening of the anisotropy constant for Ni2+ was necessary to 
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confine the Ni2+ spins to the xy plane for the pure NiC12 case at high tempe­

rature. Such large values for the anisotropy constant would unrealistically 

under estimate the importance of the exchange interactions for determining 

magnetisations and spin behaviours. The anisotropy constant for FeCb was 

also increased to avoid the Ni2+ anisotropy being relatively over-emphasised, 

which would deform the magnetic phase diagram of FexNil-xCb. The ratio 

between the increased anisotropy constants was set equal to the original 

ratio between the experimental values of the constants. 

The value of the Ni2+ anisotropy constant chosen finally was that value 

just sufficient to hold the spins to the xy plane at the high temperature of 

50 K, for a large (L=12) lattice simulation. It was noticed that larger values 

of L meant a smaller anisotropy constant was necessary, but those larger 

system sizes took a long time to simulate (several days compared with 10 

hours for a run of 20 000 Monte Carlo steps). With a large group of ions as 

in a real crystal, the chance that many spins differ far from the most likely 

orientation is slight as that would represent a very large energy compared to 

the ground state. The more spins present, the greater this energy difference 

will be. A small sample as studied in Monte Carlo simulations with given 

anisotropy constants will therefore have the ability to drift further from 

the ground state, for example by drifting out of the xy plane. Thus over 

estimates of the anisotropy constants is less and less necessary to confine 

the spins to the xy plane as the system size is increased. 

The magnetisation curves derived from the Monte Carlo simulations in 

this work are compared with experiments (Lingard et al 1974, Jacobs and 

Lawrence 1967) for FeCb and NiCh in figures 5.5 and 5.6 respectively with 

the final choice of constants indicated. 

The spins had the correct behaviour with the Fe2+ spins fluctuating 

about the c axis and the Ni2+ spins randomly moving about the xy plane. 

However the simulation magnetisations were typically 5-10% lower than the 

experimental values. This is probably due to the small size of the systems 

under study (123=1728 spins) with the spins again fluctuating more strongly 

about their easy axis/planes than would spins in the physical case, reducing 

their magnetisations below the physical values. 



5.2. Monte Carlo simulations of the FexNh-xCh system. 70 

Figure 5.5: Magnetisation data for FeCb calculated by the Monte Carlo Heisenberg 

model (o) vs experimental data (Lingard et al 1974) (*) as a function of temperature. 

Exchange constants used were 5.8K, -0.72K and -0.07K for the nearest in plane neigh­

bour, next-nearest in plane neighbour and nearest adjacent plane neighbour respectively 

together with an anisotropy constant of 15 K. Uncertainties for the experimental data 

are indicated by the vertical lines. 
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Figure 5.6: Magnetisation average for NiC12 calculated by the Monte Carlo Heisenberg 

model ( o) and experimental data (Jacobs and Lawrence 1967) ( *) as a function of tem­

perature. Exchange constants used were 30.5 K, -6.45 K and -0.33 K for the nearest 

in-plane neighbour, next-nearest in-plane neighbour and nearest adjacent-plane neigh­

bour respectively together with an anisotropy constant of -2 K. Uncertainties for the 

experimental data are indicated by the vertical lines. 
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The simulations exhibited statistical errors too small to be plotted on the 

curves when the simulations were run for 40 000- 80 000 Monte Carlo steps, 

and the resulting curves are not perfectly smooth to within the (practically 

zero) errors. The calculation of the errors assumed statistical independence 

of the magnetisations from step to step, yet each configuration of spins is 

closely correlated to the configuration from the previous Monte Carlo step. 

Hence the average magnetisation for a finite number of Monte Carlo steps 

will slowly fluctuate about the true average value (the value for an infinite 

number of Monte Carlo steps) and will have an error somewhat larger than 

the one calculated. 

These problems not withstanding, the curves were close enough to the 

experimental ones to be considered adequate Monte Carlo representations 

of the pure physical systems, and the exchange and anisotropy constant 

values were retained for the FexNh-xC12 system. Several long (more than 

40 000 steps) simulations were run and the results are displayed in figure 

5. 7. The arrows in figure 5. 7 indicate the directions along which Fe2+ spins 

are oriented on average, and the c axis is also indicated. The shape of the 

phase diagram is good, with the correct pure anti-ferromagnetic phases ob­

served with the average spins all close to the c axis for x large or confined 

to the xy plane for x small. However at intermediate concentrations (near 

x=0.09) the spins aligned at an angle to the c axis and no coexisting popu­

lations were seen in accordance with the predictions from mean-field theory. 

Past workers' results detected coexisting spin behaviours within the inter­

mediate region when clusters of pure species were significant in mixtures as 

mentioned in section 5.1; in FexNh-xCb the intermediate phase occurs for 

small values of x (from 0.03 to 0.09) and so large clusters would be rare. 

However on the assumption that clusters are necessary to form these coexi­

sting populations, several different ionic clustering regimes were attempted, 

with the aim being to find a method of constructing clusters in a physically 

reasonable way which can consistently explain the experimental results. 
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Figure 5.7: Monte Carlo phase diagram for Fe::Ni1-xCh. The simulations were perfor­

med assuming a random distribution of metal ions. 
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ions embedded in a lattice of Ni2+ ions. 

0 Fe ion. 

5.3 Cluster simulation results for an x 

FexNh-xCl2 crystal. 

5.3.1 Pure Fe2+ clusters. 

0.08 

Figure 5.8 shows the cluster used for a system with 1=12 and x 0.08 which 

was experimentally found to be within the mixed phase up to a temperature 

of approximately 50 K (Tamaki and Ito 1993). The large central cluster 

of Fe2+ ions was set in a lattice of Ni2+ ions. 30 K the spins 

became almost paramagnetic, with only a small magnetisation. This was 

significantly lower than the experimentally determined Neel temperature 

of 50 K. The exchange interactions were not able to hold Fe2+ spin order 

at this temperature, probably because most neighbours of the FexNi1_xCh 

ions were other Fe2+ ions in the cluster, and the Fe2+ -Fe2+ interaction is 

significantly smaller than the Fe2+ -Ni2+ interaction. 
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Figure 5.9: Ion configuration with five small clusters of 
of Ni2+ ions. 
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ions embedded in a lattice 

It can therefore be concluded that more couplings to the Fe2+ spins must 

be of the Fe2+ -Ni2+ type. If pure clusters of Fe2+ ions are responsible for 

the Fe2+ spin behaviour then they must be smaller to reduce the number of 

Fe2+ -FeZ+ interactions. Further simulations were attempted using 5 small 

pure Fe2+ clusters of 27 spins each, as shown in figure 5.9. However at 30 K 

the magnetisation of Fe2+ spins was again found to be small. 

The next simulations involved impure clusters, which contain many 

Fe2+ -Ni2+ linkages and could theoretically be large enough to significantly 

affect the overall spin behaviour. 
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5.3.2 Impure clusters. 

The following simulations all involved impure clusters containing a high 

Fe2+ concentration, embedded in an environment of FexNi1_xCh with x 

low. 

Any clusters of high Fe2+ content which might exist and influence the 

overall spin behaviour are of an unknown nature. Therefore clusters with 

several different Fe2+ contents were simulated, as well as different cluster 

sizes and shapes. 

Models with centrally located cubic clusters of size 53 to a side were mo­

delled for the concentrations x=0.5 and 0.72 within the cluster respectively. 

The result again was' paramagnetic behaviour setting in at temperatures 

significantly less than 50 K. It set in above 20 K and 30 K for the cluster 

concentrations x = 0.5 and 0.72 respectively. 

This recurring problem could be due to the use of a geometric mean in 

calculating the exchange interaction J Fe-Ni for a Fe2+ -Ni2+ pair where 

JFe-Ni = (5.7) 

If this was lower than the true value then, since this interaction is larger 

than the Fe2+-Fe2+ interaction (and is therefore relatively significant in 

determining Fe2+ behaviour) the energy tending to order Fe2+ spins would 

be too low in the simulations. This would be particularly significant at high 

temperatures, where a large energy is needed to keep Fe2+ spins ordering 

at all. Lower energies will mean lower Fe2+ magnetisations (and premature 

paramagnetic behaviour) . A low Fe2+ magnetisation would mean the Fe2+ 

anisotropy would have little impact on the system since each Fe2+ spin 

would have no strong tendency to align along its minimum energy axis, 

hence, in interacting with neighbouring spins, no strong tendency to align 

that other spin along the c axis would exist. vVhen the Fe2+ spins become 

paramagnetic, no influence on neighbouring spin behaviours would exist at 

all. 
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Attempts were then made to take this into account, and clusters with 

more realistic shapes (spherical rather than cubic) were used. Also lower 

concentrations of Fe2+ within the clusters were simulated, since having un­

realistically high concentrations would also tend to reduce Fe2+ order at high 

temperatures, since the Fe2+ -Fe2+ interaction is significantly lower than the 

Fe2+ -Ni2+ linkage, as mentioned previously. 

5.3.3 A spherical cluster containing an Fe content of x=0.35. 

Figure 5.10 shows a cluster with x=0.35 (within the cluster), and table 5.1 

lists the results for the simulation. The Fe2+ -Ni2+ interaction was increased 

by 25 percent. 

T(K) e( degrees) 
10 13 ± 5 (100%) 
20 10 ± 2 (100%) 
40 18 2 (100%) 

42.5 30 5 (100%) 
43.5 53± 5 (50%) and 73 ± 5 (50%) 
45 40 ± 5 (55%) and 63 ± 2 (45%) 
46 90 5 : ahnost paramagnetic (100%) 
48 paramagnetic (100%) 

Table 5.1: Fe2+ spin behaviour for one large impure cluster: x=0.35 within the cluster. 

x = 0.08 for the lattice on average. B is the angle between the average spins and the c 

axis. lFe-Ni = 

The results show Fe2+ spin order persisting even at the high temperature 

of 46 K. At high temperatures two coexisting populations were detected, 

with spins oriented near the c axis or around 45° to 50° to the xy plane. As 

the temperature increased, spins originally oriented near the c axis jumped 

into the other population. 

The temperatures where the different simulation spin behaviours occur­

red differed slightly (by 2-3 K) from the experimental data, a minor diffe­

rence which is probably clue in part to the lower simulation magnetisations, 

a problem of the small lattice size (compared to the real crystal size) as 
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mentioned previously. 

Several variations on the model were also simulated with different values 

of the Fe2+ -Ni2+ exchange constant, as well as higher and lower concentra­

tions of Fe2+ ions overall (a sample of a real crystal of a size 123 will vary 

in concentration from place to place). Table 5.2 lists the important results 

from those simulations. 

T(K) e (degrees) : factor = 1.25 (x = 0.068) 
43 50 ± 10 (100%) 
44 43 ± 5 (34%) and 61 ± 5 (66%) 
45 46 ± 5 (100%) 

T(K) e (degrees): factor= 1.2 (x = 0.08) 
45 73 ± 2 (100%) 

T(K) 8 (degrees) : factor = 1.3 (X = 0.08) 
42.5 27 ± 2 (54%) 
45· 53 ± 2 (76%) 

T(K) e (degrees) : factor= 1.25 (x = 0.092) 
43 20 ± 5 (100%) 
44 33 ± 2 (100%) 
45 40 ± 5 (100%) 

Table 5.2: Fe2+ spin behaviour for one large impure cluster for different values 

of the Fe-Ni exchange constant. x=0.34 within the cluster. x = 0.08 for the 

lattice on average. B is the angle between the average spins and the c axis. 

lFe-Ni =(factor)) ]Fe-Fe· ]Ni-Ni 

Of particular note from table 5.2 is the behaviour at the higher and 

lower concentrations. A higher concentration of Fe2+ ions alters the spin 

behaviours, with higher concentrations of Fe2+ ions leading to spin order 

closer to the c axis. 

5.4 Cluster simulation results for an x 

FexNil-xCb crystal. 

0.034 

Simulations were then performed using the concentration x = 0.034 to again 

allow a comparison with Moss bauer results (Tamaki and Ito 1993). 60 Fe2+ 
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Figure 5.10: One large impure cluster containing an Fe content of x=0.35. 
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ions were embedded in a lattice of 123 sites, with 30 inside a small central 

cluster (with x = 0.35 within it). Table 5.3lists the results. The interaction 

constants were the same as used in section 5.3.3. 

T(K) e (degrees) 
4.2 33 ± 5 (68%) and 73 ± 2 (32%) 
10 33 ± 10 (55%) and 78 ± 5 (45%) 
15 45 ± 10 (55%) and 75 ± 5 (45%) 
25 78 ± 2 (100%) 

42.5 78 ± 5 (100%) 

Table 5.3: Fe2+ spin average behaviour for one impure cluster with x=0.34 within the 

cluster. x = 0.034 for the lattice on average. e is the angle between the average spins 

and the c axis. lFe-Ni = 1.25) lFe-Fe · lNi-Ni 

Local concentrations of Fe2+ ions directed local behaviour, creating co­

existing populations of spins which changed their orientations and relative 

populations with temperature. 

Since a real system would probably contain a mixture of cluster sizes 

and contents, any simulation based on only one or several clusters will be 

unrealistic to some extent. For this reason, the final simulations attempted 

consisted of large lattices with a mixture of clusters present. 

5.4.1 Large lattices with mixed clusters: x=0.034. 

A large system of size 203 was modelled, consisting of three large clusters 

containing 363, 162 and 72 lattice sites with local Fe2+ concentrations in 

each cluster of x=0.3, 0.25 and 0.15 respectively, embedded in a low Fe2+ 

concentration region as before. The average value of the Fe2+ concentration 

x was 0.034. 

Table 5.4 lists the results. The orientation of the Fe2+ spins at 10 K was 

the same as for the smaller system (see table 5.3) and only showed a small 

variation at 15 K. 

A variety of other Monte Carlo simulations of the FexNh-xCh system 

were done, which are not discussed in this chapter, since they gave similar 

results to those simulations described. 
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It is also important to note that the Ni2+ spins aligned near the FeZ+ 

spins in every simulation which was performed, but with an orientation from 

0° to 20° closer to the crystalline xy plane. 

T(K) e (degrees) 
10 33 ± 10 (32%) and 78 ± 10 (53%) 
15 38 ± 10 (38%) and 78 10 (62%) 
25 81 5 (100%) 

Table 5.4: Fe2+ spin behaviour for a mixture of several impure clusters, for x = 0.034. 8 

is the angles between the average spins and the c axis. lFe-Ni = 1 

5.5 Physical interpretations of the Monte Carlo clu­

ster simulations. 

The previous Monte Carlo simulation results showed that clusters with high 

FeZ+ content embedded in an environment with a lower FeZ+ concentration 

can create co-existing magnetic order dominated by the FeZ+ and Ni2+ ani­

sotropies for temperatures and FeZ+ concentrations that bring the system 

within the mixed region of the phase diagram of FexNh-xCh. This beha­

viour is reminiscent of the experimental data for FexNh-xC12 . A random 

distribution of metal ions could not this kind of magnetic order, so 

the Monte Carlo results provide evidence for clustering behaviour within 

FexNh-xClz. 

5.5.1 Clustering in mixed magnetic systems. 

Several workers have found evidence for ionic clustering behaviour in mixed 

magnetic systems. Kato (1994) modelled the CsMn1_xCoxC13.2H20 system 

assuming clusters of Co ions form ordered clusters in the mixed magnetic 

phase (as mentioned at the beginning of this chapter). Other workers have 

explained co-existing magnetic order on the assumption that random fields 

are present in the mixed systems. These possibilities are discussed in the 

following subsections. 
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5.5.1.1 Ionic clusters in FexNh-xCh. 

As noted in chapter 1, the lattice constants for FeC12 and NiCb differ by 

only 3%. This means that the FexNh-xC12 system should consist of a fairly 

even random distribution of metal ions, without very significant clustering 

(this is not inconsistent with the clusters used in the Monte Carlo simulati­

ons described in this chapter). What clustering there would be is a difficult 

question, as the triangular lattice structure within the metal ion layers of 

FexNh-xClz prevents the close packing of the ions with small ions neigh­

bouring larger ones. As previously mentioned, clustering also appears to 

exist in the CsMn1_xCoxCh.2H20 system, where the lattice constants of 

the. constituent antiferromagnets difi'er by only 2%. 

However, lattice constants for FeCh and CoCb are only 1% different, 

which should result in an even more random distribution of ions in the 

compound Fe1_xCoxCb, with little or no clustering of same-species ions. 

This idea is consistent with Mossbauer studies of the system (Howes et al 

1984), which showed that only one phase is present in the mixed phase 

of the compound, as is tlie case with most mixed magnetic systems with 

competing magnetic anisotropy. 

The following subsection describes the effects random fields have on 

mixed magnetic systems, which constitute another possible mechanism for 

the creation of coexisting magnetic order in FexNh-xClz. 

5.5.1.2 Random fields. 

Ising systems subject to random fields (with different magnitudes and ori­

entations at each lattice site) were first considered in a detailed way by 

Imry and Ma (1975). They found that long range order is destroyed, and 

domains form with the spins in the up or clown state. The direction of the 

average random field within a domain determines the magnetic order of that 

domain. The size of the domains are inversely proportional to the average 

magnitude of the random fields which act on the system. 
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These ideas were adapted by vVong et al (1983, 1980) to describe the mi­

xed anti-ferromagnetic system Fe1_xCoxClz. Their neutron diffraction stu­

dies showed that lower magnetic transitions (from pure anti-ferromagnetic 

to mixed-magnetic phases) were broadened. However, both mean-field theory 

and renormalization group theory (RGT) predict sharp second-order transi­

tions between the different magnetic phases, assuming simple Hamiltonians 

with only diagonal exchange and magnetic anisotropy terms (detailed in 

chapter 3). Wong et al accounted for the broadened transitions by noting 

that no lattice sites are strictly identical. Off-diagonal exchange constants 

could exist, and would have random values for each pair of interacting ions, 

resulting in a system with a random molecular field at each ionic site. Hence 

domains should form, with different magnetic order within each, which ex­

plains the neutron diffraction data. The non-diagonal exchange interactions 

could be comparable in magnitude to the exchange interactions, as the orbi­

tal moment in Fe1_xCoxC12 are not quenched (Katsumata et al 1985). Re­

normalization group studies working with Hamiltonians containing random 

off-diagonal exchange terms also support this view (Oku 1983). Howes et al 

(1984) also found this broadened behaviour using Mossbauer spectroscopy, 

with the lower phase transitions occurring over a 10 percent concentration 

range. 

Katsumata et al (1992) used the same argument to explain coexisting 

magnetic order in the mixed system Fe0.75 Co0.25 Br2 , which has a magnetic 

phase diagram (and four phase structure) similar to that of FexNh-xCl2 . 

They performed neutron diffraction studies which again showed broadened 

lower magnetic transitions. They also detected coexisting order in the phase 

predicted by simple mean-field theory and RGT studies to be pure anti­

ferromagnetic, with both Fe2+ and Co2+ spins oriented on average parallel 

to the easy axis of Fe2+ (the c axis). They explained this co-existence by 

assuming the random fields affecting the system had a non-zero average. 

They represented the non-diagonal exchange interactions between spins by 

the term J S~YS1 where J is the non-diagonal exchange integral (and is 

random from site to site). S~Y and S1 are the components of spins i, j in 

the xy plane or parallel to the c axis, respectively. If J has a non-zero 
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average, then ordering in the xy plane should create domains which order 

obliquely to the xy plane, with a non zero component along the c axis on 

average for the whole system (as opposed to zero on average if J had an 

average of zero). However, the authors did not offer an explanation for the 

non-zero average of J. 

Elastic neutron diffraction studies have also been performed on the 

FexNh-xC12 system (Ito et al 1983). The phase line boundaries were quite 

sharp, but there was diffuse scattering at x 0.12, which could indicate a 

coupling between the parallel and perpendicular spins components, as for 

the previously mentioned system in this section. 

If random fields were creating the co-existing magnetic order observed in 

the mixed phase of FexNh-xCl2 using Mi:issbauer spectroscopy, they would 

have to have a significant non-random average value, to create the two 

domain types observed. However, there is no mechanism for this. Even so, 

Monte Carlo simulations were performed with random distributions of ions, 

and random non-diagonal exchange interactions at each site were included. 

The resulting magnetic order in the mixed phase was simply the single 

phase predicted by mean-field theory and found previously in section 5.2.3. 

This was the case for a variety of maximum magnitudes for the random 

exchange interactions. Therefore random fields were rejected as a possible 

explanation for the complex magnetic order found the mixed phase of 

FexNh-xCb. 

5.6 Conclusions. 

The Monte Carlo simulations described in this chapter indicate that the 

complex behaviour of Fe2+ and Ni2+ spins in the mixed magnetic phase of 

FexNh-xCh cannot be accounted for by assuming a completely random dis­

tribution of metal ions. However, clusters of high Fe2+ content embedded 

in a low Fe2+ environment could create magnetic order similar to that ob­

served experimentally using Mi:issbauer spectroscopy. This is in contrast to 

most other mixed magnetic systems that have been observed experimentally, 

which have one phase within the mixed region of their phase diagrams. 



Chapter 6 

Fitting of the Mossbauer spectra of 

FexNil-xCb. 

6.1 Introduction. 

As discussed in chapter 4, several single crystals of the mixed compound 

FexNh-xC12 were studied using Mossbauer spectroscopy, with the aim of 

determining the Fe spin behaviour in the mixed phase region of the magnetic 

phase diagram (since the behaviour in this phase has lead to disagreement 

in conclusions between two different groups). Although the concentrations 

of Fe within the prepared crystals did not all lie within that mixed phase, 

they all nevertheless help to determine the sizes and shapes of the various 

magnetic phases. 

The different crystals were studied to determine their anti-ferromagnetic 

and paramagnetic behaviours, at low (typically less than 50 K) and high 

temperatures respectively. The following sections describe the Mossbauer 

spectra obtained for each crystal studied, and attempts to determine basic 

nuclear and electronic properties. This was clone by comparing the experi­

mentally obtained spectra with computed spectra, as discussed in chapter 

2. 

6.2 Mossbauer spectra for an FexNi1_xC12 crystal with 

X 0.031. 

6.2.1 Paramagnetic spectra. 

The quantities QS and IS discussed in this and the following sections are 

described in chapters 2 and 4. The fitted values of the electric quadrupole 

85 
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splitting QS and the chemical isomer shift IS 

T(K) QS (n1n1js) IS (m1njs) r (mm/s) 
140 1.225(8) 1.159( 4) 0.237( 4) 
130 1.228(7) 1.166( 4) 0.236(8) 
115 1.253( 6) 1.175(3) 0.240(6) 
100 1.245( 6) 1.177(3) 0.235(6) 
95 1.270( 6) 1.190(3) 0.241(6) 
90 1.264(6) 1.185(3) 0.236(6) 
80 1.269(6) 1.188(3) 0.245(6) 

Table 6.1: Nuclear quantities for an FexNh-xCl2 crystal with x = 0.031 at paramagnetic 

temperatures. QS is the electric quadrupole splitting, IS is the isomer shift and r is the 

half width, as defined in chapter 2. The numbers in the brackets indicate the uncertainty 

in the last significant figure. 

are listed in table 6.1 with uncertainties equal to twice the statisti-

cal error for each quantity, which is a procedure adopted for all quantities 

quoted for the rest of this chapter. The of parameters EQV Z2, 17hr, Ohr 

and ¢hf are not determined unambiguously from magnetically split spectra, 

as Mossbauer spectra allow only 3 linear combinations of these variables to 

be determined. However, Bhf can be determined unambiguously (Karyagin 

1966). 

The quadrupole splittings QS are displayed graphically in figure 6.1 and 

the fitted and experimental Mossbauer spectra are shown in figure 6.2. The 

points in figure 6.2 are from the experimental spectra, and the continuous 

curves are the fitted spectra. This is also true for all of the other spectra 

displayed in this chapter. The crystal proved to be spectroscopically thin, 

with the area ratio between the large and small spectral lines being 2.5 

on average, The spectra were fitted by allowing the variables a, QS, IS 

and r to vary, and compared well with the experimental spectra, using an 

average value for a of 20°. This effective a value accounts for misalignment 

between the incoming gamma rays and a line perpendicular to the crystal c 

axis, which corresponds with the principal electric field gradient axis since 
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there is no magnetic field at the nucleus on average. It also accounts for 

line broadening may have contributed to the line intensity ratio being less 

than the theoretical value of 3 (Bancroft 1973). The widths of the lines 

were only 0.24 mm/s on average, compared to a theoretical minimum value 

of 2f = 0.2 mm/s. Therefore thickness broadening effects were small. The 

effects of thickness broadening would have been even less significant at lower 

temperatures, where the magnetic splitting lowers the divergence of the lines 

away from a Lorentzian shape. 

This follows since the paramagnetic lines with particular depths split 

into a larger number of lines with smaller depths. Therefore deeper layers 

in the crystal will receive more radiation at velocities where absorption 

occurs, leading to less absorption saturation. The computed spectra were 

only very weakly dependent on the angle (3, which was therefore set to zero 

and not varied. 

Figure 6.1: Electric quadrupole splitting QS for x 0.031 at paramagnetic temperatures. 
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Figure 6.2: Mossbauer and fitted spectra for an Fe,Nh-xClz crystal with x = 0.031 at 
paramagnetic temperatures. 
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6.2.2 Magnetic spectra. 

The magnetic spectra for the FexNi1_xCl2 crystal with x = 0.031 were fitted 

in two different ways, to determine which of the two models for the mixed 

phase (Pollard et al (1991) and Tamaki and Ito (1991, 1993)) respectively, 

as discussed in chapter 1), give the best agreement with the experimental 

data. The models of Tamaki and Ito and Pollard et al are labelled models 

1 and model 2 respectively. 

Modell involves two co-existing sites in the mixed phase, which are both 

oblique to the c axis and the xy plane. Therefore a full set of parameters 

a, Bhf, EQVZ2, 1], ehf, CPllf, IS, rand Dip (quantities defined in chapter 

4) were varied for each site. B11r was initially set to 20° and 65° - 90° for the 

two sites labelled site 1 and site 2, respectively. 

Model 2 was more restricted, with the values for B11r, chr and 17 all set 

permanently to zero for site 1, so that for this site B 11f was parallel to the 

principal z axis. The second site was fitted with all parameters allowed to 

vary, with ehf initially set to 85° 0 

Figures 6.3 and 6.4 show the experimental vs fitted spectra for the two 

models. Figures 6.5 to 6.8 display graphically the electric quadrupole split­

ting and hyperfine magnetic fields computed for the two models, and figures 

6.9 and 6.10 show the relative proportion of site 1 in each model. The im­

portant nuclear quantities obtained are listed in tables 6.2 and 6.3. 

The populations of spins for either model which create a hyperfine ma­

gnetic field close to the c axis is termed population 1 (their magnetic site 

is labelled site 1). The other population which generated a hyperfine field 

near the xy plane is termed population 2 (with their magnetic site labelled 

site 2). This notation is followed for the rest of this chapter. 

An attempt was made to eliminate any line broadening, if present. A 

variant on the program MOSCOR was used, based on ideas from Ure and 

Flinn (1971). Briefly, the absorption cross-section as a function of velocity 

was extracted from a Fourier analysis of each spectrum, which allowed ideal 

thin-absorber spectra to be constructed. However, the resulting spectra 

were insignificantly different in shape from the original ones, leading to 

nearly identical fits. 
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Figure 6.3: Mossbauer and fitted spectra for an FexNh-xCh crystal witl1 x = 0.031 at 
magnetic temperatures: model 1. 
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6.2. Mossbauer spectra for an Fe,Nil-.,Ch crystal with x 0.031. 

Figure 6.4: Mi:issbauer and fitted spectra for an FexNh_,Cl2 crystal with x 

magnetic temperatures: model 2. 
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Figure 6.5: Magnetic hyperfine field for an FexNi1-xC12 crystal with x = 0.031: model 
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Figure 6.6: Magnetic hyperfine field for an FexNir-xC12 crystal with x = 0.031: model 
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Figure 6.7: Electric quadrupole splitting factor QS for an Fe:uNh-.,Cb crystal with 

x = 0.031 at magnetic temperatures: model 1. 
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Figure 6.8: Electric quadrupole splitting factor QS for an Fe:uNh-:uCh crystal with 

x = 0.031 at magnetic temperatures: model 2. 
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Figure 6.9: Relative proportion of spin population 1 for an Fe:vNi1-xCl2 crystal with 

x 0.031 at magnetic temperatures: model L 
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Figure 6.10: Relative proportion of spin population 2 for an FexNh-xCb crysta1 with 

x = 0.031 at magnetic temperatures: model 2. 
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6.2. Mi:issbauer spectra for an Fe,Nh_,Cl2 crystal with x = 0.031. 95 

(Modell) T(K) Bhf(T) QS(1n1n/s) eh£(0
) 

50 (P2) 1.10(8) 1.29(3) 90(0) 
45 (P2) 2.82( 6) 1.27(3) 90(0) 
40 (P2) 3.84(7) 1.23(3) 90(0) 
30 (P1) 3.3(3) 1.39(7) 28(16) 
30 (P2) 5.2(1) 1.2(3) 85(4) 
10 (P1) 3.6(1) 1.57( 6) [17 to 19] (14) 
10 (P2) 5.8(3) 1.2(1) (61 to 69] (3) 
5.5 (P1) 3.7(2) 1.58(9) [21 to 24] (12) 
5.5 (P2) 5.9(3) 1.2(1) (62 to 70] (3) 

(Model 2) T(K) Bhf(T) QS(mm/s) eh£(0
) 

50 (P2) 1.12(8) 1.29(3) 90(0) 
45 (P2) 2.82( 6) 1.27(3) 90(0) 
40 (P2) 3.86( 6) 1.23(3) 90(0) 
30 (P1) 2.96(9) 1.41(5) 0(0) 
30 (P2) 5.1(3) 1.23(7) [84 to 90] (3) 
10 (P1) 3.47(3) 1.58(5) 0(0) 
10 (P2) 6.0(2) 1.07(5) 85(0) 
5.5 (P1) 3.53( 4) 1.57(3) 0(0) 
5.5 (P2) 6.5(3) 1.0(1) 85(0) 

Table 6.2: Data obtained from the best fits to the spectra for a FexNi1_,Ch crystal with 

a;= 0.031. Model 1 is that of Tamaki and Ito, and model 2 is that of Pollard et al. Bhf 

is the hyperfine magnetic field at the nucleus, QS is the quadrupole splitting and e is 
the angle between the hyperfine field and the z axis of the principal axis system. Pl and 

P2 represents spin populations 1 and 2 respectively. The numbers in the curved brackets 

indicate the uncertainty in the last significant figure. 
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(Model 1) T(K) IS(mm/s) f(mn1/s) Relative area 
50 (P2) 1.189(6) 0.25(1) 1.0 
45 (P2) 1.179(6) 0.25(1) 1.0 
40 (P2) 1.197(6) 0.26(1) 1.0 
30 (P1) 1.21(1) 0.26(2) 0.46 
30 (P2) 1.20(1) 0.25(3) 0.54 
10 (P1) 1.2I(2) 0.28(2) 0.62 
10 (P2) l.I6(2) 0.28(2) 0.38 
5.5 (P1) 1.21(3) 0.27(2) 0.60 
5.5 (P2) 1.15(3) 0.27(2) 0.40 

(Model 2) T(K) I S(mrn/s) f(rnm/s) Relative area 
50 (P2) 1.187(6) 0.25(1) 1.0 
45 (P2) 1.179(6) 0.24(1) 1.0 
40 (P2) 1.196( 6) 0.25(1) 1.0 
30 (PI) 1.20(1) 0.26(2) 0.38 
30 (P2) 1.20(1) 0.26(2) 0.62 
10 (P1) 1.20(1) 0.28(2) 0.62 
IO (P2) l.I9(2) 0.28(2) 0.38 
5.5 (PI) 1.21(2) 0.30(2) 0.66 
5.5 (P2) I.18(2) 0.29(2) 0.34 

Table 6.3: Data obtained from the best fits to the spectra for a Fe,Ni1_.,Cl2 crystal 
with x 0.031. IS is the isomer shift, r is the half width of the absorption site and 
the relative area is the proportion of the total absorption spectrum due to a particular 
population of spins. PI and P2 represents spin populations 1 and 2 respectively. The 
numbers in the brackets indicate the uncertainty in the last significant figure. 
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The angle a decreased from 20° to 2° for both models. Figures 6.3 and 

6.4 show fitted spectra that are quite similar for the two models, both of 

which are close to the experimental spectra. Model 1 spectra were slightly 

more consistent with the experimental spectra, and in fact the angle Bhr for 

site 2 in model 2 had to be set at most temperatures (indicated in tables 6.2 

and 6.3 by a zero statistical error for B11r) or site 2 would become consistent 

with model 1. The angles Bhf were significantly different for the two models 

below 30K. 

The main difference between the two models is in the behaviour of the 

electric quadrupole splittings at low temperatures, with the splittings de­

crease sharply for site 2 in model 2. 

The difference between the fitted spectra generated from each model 

does not appear to be sufficient to state with certainty which model is 

better at modelling mixed magnetic behaviour for an FexNh-xC12 crystal 

for an Fe concentration of x 0.031. 

6.3 Mossbauer spectra for an FexNh-xCl2 crystal with 

X 0.052. 

6.3.1 Paramagnetic spectra. 

Table 6.4 lists nuclear quantities determined by a comparison between the 

experimental and fitted Mossbauer spectra, which are shown in figure 6.11. 

The spectrum for 130 K had to be truncated since an error in the recor­

ding process led to data corruption for many readings at negative detector 

velocities. 

Again the spectral lines were narrow, with r equal to 0.24mm/s on 

average. The area ratio between the two lines was found to be 2.6 on 

average. The effective value of a varied from 18° to 15° as temperature 

decreased. The electric quadrupole splittings are shown in figure 6.12. 



~ 
0 ..... 

-+-> 

fr 
0 
r:.n 

..0 
<r: 
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Figure 6.11: Mossbauer and fitted spectra for an FexNi1-xCh crystal with x = 0.052 at 
paramagnetic temperatures. 
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6.3. Mossbauer spectra for an Fe,Nh-,Ch crystal with x =: 0.052. 

Figure 6.12: Electric quadrupole splitting QS for an 

at paramagnetic temperatures. 
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6.3. Miissbauer spectra for an Fe,Nh-:vCb crystal with x = 0.052. 100 

T(K) QS (mm/s) IS (mn1js) r (mm/s) 
130 1.228( 6) 1.158( 4) 0.238(6) 

117.8 1.228( 6) 1.158(3) 0.238(1) 
100 1.240( 6) 1.161(3) 0.243(5) 
80 1.251(5) 1.175(3) 0.238(5) 

Table 6.4: Nuclear quantities for an FexNh-xCb crystal with x 0.052 at paramagnetic 

temperatures. QS is the electric quadrupole splitting, IS is the isomer shift and r is the 

half width, as defined in chapter 2. The numbers in the brackets indicate the uncertainty 

in the last significant figure. 

6.3.2 Magnetic spectra. 

Figures 6.13 and 6.14 show the fitted and experimental Mossbauer spectra 

for the crystal, for model 1 and 2 respectively. The magnetic hyperfine fields 

ar~ shown in Figures 6.15 and 6.16, and the electric quadrupole splittings are 

shown in figures 6.17 and 6.18. Finally, the relative proportion of population 

1 in the total Mossbauer spectra are shown in figures 6.19 and 6.20. The 

nuclear quantities of interest derived from these spectra are listed in tables 

6.5 and 6.6. Again, the two models generated spectra which were similar. 

Both showed similar discrepancies between fitted and experimental spectra. 

However, in this case, the angle Bhr for models 1 and 2, for both sites 1 

and 2, were very close. This was also true of the other hyperfine quantities 

shown in figures 6.5 and 6.6, and the relative proportions of.spin populations 

1 and 2. Also, both models required values of a which decreased from 20° 

to 2° as temperature decreased. 

Hence, within the statistical errors (and taking into account ambiguities 

in the nuclear data), it is difficult to distinguish the models at all. From 

either model, it can be concluded that the angles between the magnetic 

hyperfine fields, and the z axis of the principal axis system, are close to 

oo and 90° for sites 1 and 2, respectively. This data is consistent with the 

magnetic order being along or close to the crystalline c axis and xy planes 

for sites 1 and 2 respectively, as mentioned previously (see chapter 1). 
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Figure 6.13: Mi:issbauer and fitted spectra for an Fe;))Nh_.,Clz crystal with x 0.052 at 

magnetic temperatures: model 1. 

4- -2 -1 0 1 
Velocity (mm/s) 

+ 

2 3 4 



6.3. Mossbauer spectra for an Fe,Nh-xCh crystal with x 0.052. 102 

Figure 6.14: Mossbauer and fitted spectra for an Fe:uNi1-:uClz crystal with x = 0.052 at 

magnetic temperatures: model 2. 
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6.3. Mossbauer spectra for an Fe,Nit_,Cl2 crystal with x = 0.052. 103 

Figure 6.15: Magnetic hyperfine field for an Fe.,Ni1_xCh crystal with x = 0.052: model 
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Figure 6.16: Magnetic hyperfine field for an FexNh-xCh crystal with x = 0.052: model 
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6.3. Mossbauer spectra for an Fe.,Nh-.,Cl2 crystal with x = 0.052. 104 

Figure 6.17: Electric quadrupole splitting QS for an FexNh-:vC12 crystal with x = 0.052 

at magnetic temperatures: model 1. 
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Figure 6.18: Electric quadrupole splitting QS for an Fe:vNh-xCl2 crystal with x = 0.052 

at magnetic temperatures: model 2. 
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6.3. Mossbauer spectra for an Fe,Ni1_,Cl2 crystal with x = 0.052. 105 

Figure 6.19: Relative proportion of spin population 1 for an Fe:nNh-:nCb crystal with 

x = 0.052 at magnetic temperatures: model 1. 
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Figure 6.20: Relative proportion of spin population 1 for an Fe:nNi1_:nCl2 crystal with 

x = 0.052 at magnetic temperatures: model 2. 
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6.3. Mossbauer spectra for an Fe,Nit_,CJ2 crystal with x = 0.052. 106 

(Model 1) T(K) Bhf(T) QS(mm/s) ehf(
0

) 

50 (P2) 1.09(8) 1.31(3) 90(0) 
40 (P1) 2.1(1) 1.37(8) [12 to 16) (20) 
40 (P2) 3.6(2) 1.28(3) 90(0) 
30 (P1) 2.9(1) 1.44( 4) [16 to 17) (14) 
30 (P2) 4.9(4) 1.32(9) 87(15) 
25 (P1) 3.0(1) 1.49(6) [14 to 16) (12) 
25 (P2) 5.8(6) 1.10(2) [78 to 86) (7) 
10 (P1) 3.2(1) 1.57( 4) [17 to 20) (8) 
10 (P2) 6(1) 1.15(31) [77 to 89) (11) 
5.5 (P1) 3.2(2) 1.57( 6) [16 to 18) (12) 
5.5 (P2) 6(1.0) 1.07(3) [80 to 86] (22) 

(Model 2) T(K) Bhf(T) QS(mm/s) ehf(
0

) 

50 (P2) 1.08(6) 1.31(2) 90(0) 
40 (P1) 2.07( 4) 1.37(1) 0(0) 
40 (P2) 3.6(1) 1.27(3) 90(10) 
30 (P1) 2.81(3) 1.44(1) 0(0) 
30 (P2) 4.7(3) 1.31( 6) 85(0) 
25 (P1) 2.95(2) 1.49(1) 0(0) 
25 (P2) 5.8(3) 1.04(8) 85(0) 
10 (P1) 3.07(2) 1.57(1) 0(0) 
10 (P2) 5.3(4) 1.11(7) 85(0) 
5.5 (P1) 3.13(2) 1.58(1) 0(0) 
5.5 (P2) 5.6( 4) 1.08(8) 85(0) 

Table 6.5: Data obtained from the best fits to the spectra for a FexNi1-xClz crystal with 

x = 0.052. Bhr is the hyperfine magnetic field at the nucleus, QS is the quadrupole 

splitting and e is the angle between the hyperfine field and the z axis of the principal 

axis system. Pl and P2 represents spin populations 1 and 2 respectively. The numbers 

in the curved brackets indicate the uncertainty in the last significant figure. 
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(Model 1) T(K) JS(mm/s) r(mm/s) Relative area 
50 (P2) 1.211( 4) 0.24(1) 1.0 
40 (P1) 1.21(1) 0.25(1) 0.60 
40 (P2) 1.21(1) 0.25(1) 0.40 
30 (P1) 1.20(1) 0.27(1) 0.80 
30 (P2) 1.19(2) 0.27(1) 0.20 
25 (P1) 1.204( 6) 0.28(1) 0.81 
25 (P2) 1.204( 6) 0.28(1) 0.19 
10 (P1) 1.197(5) 0.28(1) 0.91 
10 (P2) 1.197(5) 0.28(2) 0.09 
5.5 (P1) 1.199(7) 0.29(2) 0.88 
5.5 (P2) 1.199(7) 0.29(2) 0.12 

(Model 2) T(K) JS(mm/s) r(mm/s) Relative area 
50 (P2) 1.21(1) 0.23(1) 1.0 
40 (P1) 1.21(1) 0.25(1) 0.61 
40 (P2) 1.21(1) 0.25(1) 0.39 
30 (P1) 1.20(1) 0.26(1) 0.77 
30 (P2) 1.21(1) 0.26(1) 0.23 
25 (P1) 1.21(1) 0.27(1) 0.79 
25 (P2) 1.21(1) 0.27(1) 0.21 
10 (P1) 1.20(1) 0.28(1) 0.82 
10 (P2) 1.20(1) 0.28(1) 0.18 
5.5 (P1) 1.20(1) 0.29(1) 0.80 
5.5 (P2) 1.20(1) 0.29(1) 0.20 

Table 6.6: Data obtained from the best fits to the spectra for a FexNi1-xCl2 crystal 

with x = 0.052. IS is the isomer shift, r is the half width of the absorption site and 

the relative area is the proportion of the total absorption spectrum due to a particular 

population of spins. Pl and P2 represents spin populations 1 and 2 respectively. The 

numbers in the brackets indicate the uncertainty in the last significant figure. 
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6.4 Mossbauer spectra for x 0.15 

6.4.1 Paramagnetic spectra. 

Table 6.7lists the quantities of interest derived from the paramagnetic 

tra of the crystaL The linewidths were noticeably larger than was the case 

with the previous two Fe concentrations within FexNh-xCl2 absorbers. The 

average value of the effective angle a was 24° this time, indicating thickness 

effects were more important with this sample. Figure 6.21 shows the fitted 

vs experimental spectra for the crystal, while figure 6.22 shows the electric 

quadrupole splittings as a function of temperature. 

T(K) QS (mm/s) IS (n1mjs) r (mm/s) 
150 1.18(1) 1.136(2) 0.26(2) 
130 1.26(1) 1.166( 4) 0.26(1) 
120 1.26(5) 1.170(3) 0.27(1) 
110 1.28(1) 1.177( 4) 0.25(1) 
100 1.29(1) 1.178(3) 0.25(1) 
90 1.29(1) 1.187(3) 0.26(1) 
80 1.29(1) 1.190(3) 0.26(1) 
55 1.30(1) 1.195( 4) 0.26(1) 

Table 6.7: Nuclear quantities for an Fe,Nh-xClz crystal with x = 0.15 at paramagnetic 

temperatures. Q S is the electric quadrupole splitting, IS is the isomer shift and r is the 

half width as defined in chapter 2. The numbers in the brackets indicate the uncertainty 

in the last significant figure. 
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Figure 6.21: Mossbauer and fitted spectra for an Feo:Nh-o:Ch crystal with x 0.15 at 
paramagnetic temperatures. 
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Figure 6.22: Electric quadrupole splitting QS for an Fe.,Ni1-xC12 crystal with x 0.15 

at paramagnetic temperatures. 
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6.4.2 Magnetic spectra. 

Sample thickness corrections were introduced, but again gave insignificant 

changes to the experimental Mossbauer spectra. 

Models 1 and 2 this time involved only one site, with the hyperfine ma­

gnetic field close to the z axis of the principal axis system (i.e. site 1). The 

two models gave results that were not distinguishable at any temperature, 

and therefore this section lists only the results from model 2. These results 

are listed in table 6.8. Figure 6.23 displays the fitted and experimental spec­

tra, and figures 6.24 and 6.25 shows the fitted values of magnetic hyperfine 

fields and electric quadrupole splittings respectively. 

Clearly, the best fit to the spectra involved magnetic order along the z 

axis of the principal axis system, which is consistent with magnetic order 

along the crystalline c axis only. 

I T(K) I Bhf(T) I QS(lnm/s) I I S(n1rn/s) I r(lnm/s) I 
45 1.02(1) 1.35(1) 1.207(5) 0.30(1) 
40 1.90(1) 1.36(1) 1.207(4) 0.29(1) 
30 2.62(3) 1.45(1) 1.207( 6) 0.30(1) 
20 2.83(2) 1.51(1) 1.202(5) 0.31(1) 
10 2.83(2) 1.54(1) 1.194(6) 0.29(1) 
5.5 2.83(2) 1.54(1) 1.194(6) 0.29(1) 

Table 6.8: Data obtained from the best fits to the spectra for a Fe,Nh-:uCl2 crystal using 

model 2, with x = 0.15. Bhr is the hyperfine magnetic field at the nucleus, QS is the 

quadrupole splitting, IS is the isomer shift and r is the half width. Only spin population 

l exists. Bhr is fixed at zero. The numbers in the brackets indicate the uncertainty in the 

last significant figure. 
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Figure 6.23: Mi:issbauer and fitted spectra for an FexNh-xCh crystal with x = 0.15 at 

magnetic temperatures: model 2. 
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Figure 6.24: Magnetic hyperfine field for an Fe,Nil-xCh crystal with x 0.15: model 
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Figure 6.25: Electric quadrupole splitting QS for an Fe,cNi1-xCh crystal with x = 0.15 

at magnetic temperatures: model 2. 
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Chapter 7 

Discussion and conclusions. 

New Mossbauer spectra of the FexNh-xCh mixed magnetic system were 

obtained, for crystals with a relative Fe content of x = 0.031, 0.052 and 

0.15, with the first two concentrations bringing the system into the mixed 

magnetic phase of FexNh-xCb at temperatures less than 50 K. This phase 

was of particular interest, since the behaviour of the Fe spins in the mixed 

phase has been interpreted differently by two groups of workers (as discussed 

in chapter 1). 

An analysis of this new .Mossbauer data did not lead to a conclusive 

determination of the magnetic ordering in the mixed phase. The Tamaki 

and Ito (1991, 1993) model (model 1), which had the hyperfine magnetic 

fields either near the z axis of the principal axis system (site 1) or rising 

out of the xy plane (site 2), generated simulated spectra which were only 

marginally better than simulated spectra from model 2 due to Pollard et al 

(1991) which had the hyperfine magnetic fields parallel to the principal z 

axis or nearly perpendicular to it (sites 1 and 2 for model 2). Both models 

generated fitted spectra that gave good approximations to the experimen­

tally determined spectra, with small remaining anomalies in line shapes 

and depths. These anomalies are not unexpected, since all the Mossbauer 

absorbers produced came from single crystals having small concentration 

gradients. Also, thickness effects were evident in the FexNh-xC12 crystals 

with the higher Fe contents of x = 0.052 and 0.15. 

The two models gave similar trends and values for most hyperfine quanti­

ties, with the exception being the quadrupole splittings QS. Model 2 calcu­

lated quadrupole splittings which decreased sharply at temperatures below 

30 K for site 2, while model1 gave a slower decrease of QS for that site. Pre­

vious workers calculated that model 2 data was consistent with the magnetic 

114 
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order being parallel or perpendicular to the crystalline c axis (Pollard et al 

1991). This analysis took the crystalline environment of FexNi1_xCl2 into 

account, and allowed the principal axis z to be different from the crystalline 

c axis. Workers who used model 1 previously (Tamaki and Ito 1991,1993) 

assumed that the principal z axis coincides with the crystalline c axis at all 

concentrations, which led them to conclude that the spins for site 1 and 2 

were both oblique to the crystal axes. 

Since models 1 and 2 both generate fitted spectra with approximately 

the same accuracy of fit (compared with the experimental spectra obtained 

for this thesis), the present work has not discriminated which model gives 

the better fit. 

A theoretical study of the FexNh-xCl2 mixed magnetic system was not 

attempted, since the complexity of the system limits the usefulness of the 

primary theoretical models of magnetic systems. Mean-field theory, which 

is easily applied to systems of magnetic spins, has the limitation that spin 

order throughout the system is identical for particular species of atoms or 

ions. This ignores many spin configurations that are energetically favoura­

ble, even though they are more disordered that the average mean-field state. 

Also, the possibility that complex clustering of ionic species occurs in mixed 

magnetic systems is neglected. Certainly, a mean-field approach could not 

predict the complex magnetic order that is experimentally observed in the 

mixed phase of FexNi1_xC12 , where magnetic order near the crystalline c 

axis and the xy plane coexists. 

The more recent renormalization group theory is more exact, since it 

takes account of the long wavelength fluctuations in the magnetic order, 

which become important as critical points (lines) are approached. However, 

it is only useful over a very small critical region, which does not include most 

of the mixed phase. Also, the complexity of the theory limits its usefulness, 

with simple Hamiltonians being used to model magnetic systems. Again, 

these theories do not take into account possible clustering. 

Because of these restrictions to the applicability of theoretical models to 

the FexNh-xCl2 system, the numerical Monte Carlo technique was applied 

instead. This method had the advantage that the complicated structure 
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of FeCl2 and NiCh were simple to program, and clusters of metal ions 

could easily be simulated. Also, all of the interactions between the metal 

ions could be included (the magnetic anisotropy and the various exchange 

interactions between nearest in-plane, next-nearest in-plane and between­

plane nearest-neighbouring metal-ion spins). 

However, the results from simulating the FexNh-xCh system, assuming 

a random distribution of ions, proved disappointing, with only one phase 

being predicted in the magnetic mixed phase for each ionic species. Even 

so, the overall structure of the magnetic phase diagram was predicted well, 

with the four experimentally observed phases being present. 

Simulations using clusters of Fe ions were then performed, which gave 

orientations for the spins which were similar to moclell values in the mixed 

phase. Although the exact results depended on the size and Fe content of 

the clusters chosen, they did have the common feature that Fe spins within 

the clusters were aligned close to (but not parallel to) the c axis, while the 

spins in the regions between the clusters aligned close to (but not wholly 

in) the xy plane. 

Based on these calculations, the physical FexNi1_xCh system would thus 

appear to be a system containing small clusters of relatively high Fe content, 

embedded in regions with relatively lower Fe content. The change of the 

relative proportion of spins in site 1 or 2 is attributed to the ions in different 

clusters having different behaviour as the temperature varies. The smaller 

clusters tend to align near the c axis at low temperatures, but become 

dominated by the void regions as the temperature increases, and then align 

near the xy plane. This same change behaviour occurs also for the larger 

clusters, but at higher temperatures. However, there exists no independent 

confirmation of the existence of these clusters in FexNi1_xCh. 

Any future work performed on the FexNh-xCl2 system should concen­

trate on gaining high quality Moss bauer spectra for the region of the mixed 

phase with an Fe content near x = 0.03, since then the simulated spectra 

generated from models 1 and 2 show the greatest contrast, and high quality 

spectra could lead to a firm conclusion about which model better describes 

the magnetic behaviour of FexNi1_xCh. 
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