
A New Algorithm and Data

Structures for the All Pairs

Shortest Path Problem

Mashitoh Binti Hashim

Department of Computer Science and Software Engineering

University of Canterbury

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD) in Computer Science

2013

mailto:mas287@yahoo.comt
http://cosc.canterbury.ac.nz
http://www.canterbury.ac.nz

Abstract

In 1985, Moffat-Takaoka (MT) algorithm was developed to solve the all pairs short-

est path (APSP) problem. This algorithm manages to get time complexity of

O(n2 log n) expected time when the end-point independent model of probabilistic

assumption is used. However, the use of a critical point introduced in this algo-

rithm has made the implementation of this algorithm quite complicated and the

running time of this algorithm is difficult to analyze. Therefore, this study intro-

duces a new deterministic algorithm for the APSP that provides an alternative to

the existing MT algorithm. The major advantages of this approach compared to

the MT algorithm are its simplicity, intuitive appeal and ease of analysis. Moreover,

the algorithm was shown to be efficient as the expected running time is the same

O(n2 log n). Performance of a good algorithm depends on the data structure used

to speed up the operations needed by the algorithm such as insert, delete-min and

decrease-key operations. In this study, two new data structures have been imple-

mented, namely quaternary and dimensional heaps. In the experiment carried out,

the quaternary heap that employed similar concept with the trinomial heap with a

special insertion cache function performed better than the trinomial heap when the

number of n vertices was small. Likewise, the dimensional heap data structure ex-

ecuted the decrease-key operation efficiently by maintaining the thinnest structure

possible through the use of thin and thick edges, far surpassing the existing binary,

Fibonacci and 2-3 heaps data structures when a special acyclic graph was used.

Taken together all these promising findings, a new improved algorithm running on

a good data structure can be implemented to enhance the computing accuracy and

speed of todays computing machines

I lovingly dedicate this thesis to my family, especially...

to my husband, Mohd Izhair, for his love, his patience and supporting me each

step of the way;

to my chidren, Rabbiatul Adawiyah and Muadz Aliman, for being that little

sunshine in my life;

to my mother, Sofiah, for her love and encouragement;

and

to my late father, Hashim, who has been my constant source of inspiration.

Acknowledgements

I would like to acknowledge many people for helping me through the completion

of this thesis. Firstly, I acknowledge with my sincere gratitude and appreciation

the professional supervision from Prof. Dr. Tadao Takaoka. His attention to every

detail and academic precision provided me the necessary direction and focus for my

study. You are a great teacher who is not only the selfless giver but also the mentor

of my life.

I also would like to thank Associate Professor Dr Mukundan for being my second

supervisor. You are a great friend to have.

I thank Professor Peter Eades, and Professor Hirata for being my examiners, who

provided encouraging and constructive feedback. It is no easy task, reviewing a

thesis, and I am grateful for their thoughtful and detailed comments.

My heartfelt thanks are extended to my friends at UC, Amali, Saima, Dr. Ray

Hidayat, Sagaya, Cihui (Huazhong University of Science and Technology, during

his exchange program at UC), Jason, Ravi, Muhammad, Kapila, Boli, Ibrahim and

many more. To Amali, thanks a lot. Without your support and advice, it would

be hard for me to proceed. To Saima, we have shared many memories together. I

really love your cooking!

I wish to thank for all technical support I received at UC, especially to Joff and Phil.

Thanks to my friends at Universiti Pendidikan Sultan Idris for all the help I have

received, especially to Dr. Ramlah, Haslina, Dr. Norasikin, Dr. Che Soh, Rasyidi,

Dr. Khairulanuar and Tuan Haji Zahar.

I am also grateful to many persons who shared their memories, experiences and

always be there for my family, especially to my neighbors, Pam and Peter, Dr.

Khairuddin and kak Ita, Kak Jah and abg Hassan, Dr. Fahmi and Niza, Dr. Nor-

shidrah and abg Jaafar, Dr. Mazwin and abg Wan, Marina and abg Mizi, Mazlina

and abg Dino, Sabariah and Haneef, Faizi and Rita, Dr. Suriani and abg. Don, Kak

Julie and Dr. Husaini, and many more.

Thanks also for invaluable support I received from my mother, Sofiah and my sib-

lings, Manisah, Mohd Fadzil, Marina, Mohd Azhar and Maziah and their families.

Thanks for believing in me and remembering me in your constant prayers. To my

mother in-law, Hatanah and my in-laws, Wan Zaiton, Rosman, Zuhailah, Hazrina,

Hazir and Din, thank you as well.

To my wonderful children, thank you for bearing with me and being my greatest

supporters. To my husband, my friend, mentor and critic, thank you for not letting

me give up and giving me all the encouragement I needed to continue. I love you

so much.

Lastly I would like to thank the Ministry of Higher Education in Malaysia for funded

my scholarship. Also to Universiti Pendidikan Sultan Idris (UPSI), Malaysia for al-

lowing me to pursue my studies especially to Cik Zarina who has made difficult

things easy.

Last but not least, I would like to thank Harish Bhanderi for making a standard

Cambridge University PhD/MPhil thesis latex template available to use.

My experience at the University of Canterbury has been an excellent one.

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

Glossary xiv

1 Introduction 1

2 Shortest Path Background 8

2.1 Introduction . 8

2.2 Basic Terminology . 9

2.2.1 Time Complexity . 10

2.3 Graph Terminology . 12

2.4 Shortest Path Algorithms . 14

2.4.1 Dijkstra’s Algorithm . 17

2.4.2 Floyd-Warshall Algorithm . 20

2.5 Shortest Path Data Structures . 21

2.5.1 Binary heap . 25

2.5.2 Fibonacci heap . 26

2.5.3 2-3 heap . 26

2.5.4 Trinomial heap . 27

2.6 Shortest Path Application . 31

3 New Data Structures 32

3.1 Introduction . 32

3.1.1 Polynomial of trees . 34

vi

CONTENTS

3.2 A Quaternary Heap . 36

3.2.1 Quaternary heap operations . 38

3.2.1.1 Insert operation . 39

3.2.1.2 Delete-min operation . 41

3.2.1.3 Decrease-key operation . 42

3.3 A Dimensional Heap . 47

3.4 A Workspace . 50

3.5 Tree Potential . 51

3.6 Amortized Cost Analysis . 51

3.7 The Dimensional Heap Operations . 53

3.7.1 Merge Operation . 54

3.7.2 Insert Operation . 55

3.7.3 Delete-min Operation . 57

3.7.4 Decrease-key Operation . 58

3.8 Experimental Results and Analysis . 61

3.8.1 The performance of the quaternary heap 62

3.8.2 The performance of the dimensional heap 66

3.8.3 Concluding Remarks . 69

4 An O(n2 log n) Expected Time Algorithm 70

4.1 Introduction . 70

4.2 Unlimited Scanning Algorithms . 73

4.3 Simple Scanning by One . 76

4.4 Limited Scanning Algorithms . 79

4.4.1 Limited scanning up to a fixed number of times algorithms 79

4.4.2 Timestamp Scanning . 82

4.5 A New Algorithm . 86

4.5.1 Correctness . 90

4.5.2 Analysis of the New Algorithm . 91

4.6 Algorithm Implementation Details . 93

4.7 Experimental Results and Analysis . 95

vii

CONTENTS

5 Concluding Remarks and Future Work 105

5.1 Measurement Technique . 106

5.2 Future Research . 107

5.2.1 Better scanning technique . 107

5.2.2 Using a pair-wise algorithm . 107

5.2.3 The best constant time for the decrease-key operation 108

5.3 Concluding Remarks . 110

References 111

viii

List of Figures

1.1 Example of route suggested by TomTom GPS . 1

1.2 A typical network where n = 6 and m = 11 . 2

1.3 Relationship between shortest path problem, algorithm and data structure. Find-

min is an example of operation used by the algorithm 5

2.1 An example of a digraph . 13

2.2 An example of a path from i to j via k. 20

2.3 Different heap structures after performing a few heap operations 25

2.4 An example of a trinomial tree structure . 28

2.5 The resulting sub trees when node e is removed from the tree. Break-up operation

will result in sub trees rooted at a, f and g . 29

3.1 Basic terminology of a tree . 33

3.2 A complete polynomial tree of degree 2 . 35

3.3 Optional caption for list of figures . 37

3.4 An example of a quaternary heap . 38

3.5 A basic node structure in the quaternary heap 39

3.6 Two entrances introduced in the quaternary heap 41

3.7 Sub-tress, 2T(i), 3T(i − 1) and 3T(0)obtained when the root node of 3T(i) is

removed . 43

3.8 Rearrangement process in the quaternary heap 44

3.9 Different cases of reordering process in the quaternary heap 44

3.10 Different v’s positions . 45

3.11 Different v’s positions on the main trunk . 46

3.12 Different v’s positions on a complete trunk . 46

ix

LIST OF FIGURES

3.13 A basic node structure in the dimensional heap 47

3.14 An example of a dimensional heap (d indicates dimension) 48

3.15 An example of a complete dimensional heap . 49

3.16 Internal representation of node connectivity in T(3) in Figure 3.14 49

3.17 Workspace definition of node x . 50

3.18 Merging of two trees, T(1) + T(1), resulted in a new T(2) 53

3.19 An example of a merge process . 55

3.20 The process of inserting node x with key(x) = 3 to the existing heap 56

3.21 The result after performing delete-min on Figure 3.14 57

3.22 Performing a decrease-key operation on node K with the new key(K) value . . . 59

3.23 Decrease-key operation on node H. The lower dimension sibling of parent’s node

is thin . 60

3.24 Decrease-key operation on node H. The lower dimension sibling of parent’s node

is thick . 60

3.25 An example of an acyclic graph that has five vertices 69

4.1 Optional caption for list of figures . 71

4.2 Some intermediate stage during the expansion of S in Dantzig’s algorithm 75

4.3 Some intermediate stage during the expansion of S in Spira’s algorithm 78

4.4 Optional caption for list of figures . 83

4.5 The three areas of vertices distribution . 87

4.6 Some intermediate stage during the expansion of S in Spira’s algorithm 89

4.7 Illustration of the expiring vertex v0 requiring all u ∈ S to point to the next

candidates in the valid area. 89

4.8 Optional caption for list of figures . 95

4.9 Running times for the APSP algorithms . 100

5.1 Optional caption for list of figures . 108

5.2 Decrease-key operation on node H. The lower dimension sibling of parent’s node

is thick . 109

x

List of Tables

1.1 Different running times with different input sizes 4

2.1 Naming functions in the big O notation . 10

2.2 Landau notations used for describing time complexities 11

2.3 Performing Dijkstra’s algorithm on Figure 1.2 . 19

2.4 The great data structures inventors . 24

3.1 The descriptions of each attribute of a node in the quaternary heap 39

3.2 The total number of node-to-node key comparisons needed in a Binary heap

when solving the SPSP problem using different samples of sparse digraphs . . . 63

3.3 The total number of node-to-node key comparison between the trinomial and the

quaternary heaps. The insertion process for each data structure is similar 65

3.4 The total number of node-to-node key comparison between the trinomial and the

quaternary heaps. In this experiment, the concept of adaptive cache is used in

the quaternary heap . 65

3.5 The total number of node-to-node key comparison between the trinomial and the

quaternary heaps using sparse digraphs . 66

3.6 The total number of node-to-node key comparison between heaps using sparse

graphs . 67

3.7 The total number of node-to-node key comparison between heaps using dense

graphs . 68

3.8 The total number of node-to-node key comparison between heaps using acyclic

graphs . 69

xi

LIST OF TABLES

4.1 The total number of key comparison for MT and the new algorithm when three

samples of graphs, n = 5 in Figure 4.8 are used. G1, G2 and G3 represent the

graphs used in the experiment. 96

4.2 The total number of key comparison for the new algorithm 96

4.3 The total number of key comparison for MT algorithm 97

4.4 The total number of key comparison for the new algorithm 97

4.5 The total number of key comparison between MT and the new algorithm 97

4.6 The total number of key comparison between MT and the new algorithm. The

”New” represents the new algorithm . 98

4.7 The total number of key comparison between MT and the new algorithm when

a graph sample, s = 10 . 98

4.8 The total number of key comparison between MT and the new algorithm with

n = 1000 . 99

4.9 The total number of key comparison between MT and the new algorithm using

a different machine . 99

4.10 Running times for the APSP algorithms . 99

4.11 The total number of key comparison in heap operations 100

4.12 The total number of key comparison in comparing the d[v]’s values 101

4.13 The total number of key comparison in scanning part 101

4.14 The total number of key comparison with different k parameters 102

4.15 The total number of key comparison that can be saved if a batch processing

technique is used in increase-key function . 103

xii

List of Algorithms

1 Dijkstra’s Algorithm . 18

2 Floyd’s Algorithm . 21

3 Decrease-key procedure in the trinomial heap . 30

4 A generic algorithm to solve SSSP . 72

5 Dantzig’s algorithm to solve SSSP . 74

6 Spira’s algorithm to solve SSSP problem . 77

7 The original MT’s algorithm to solve the SSSP problem. 82

8 A revised MT algorithm to solve the SSSP problem. 84

9 A new algorithm to solve the SSSP problem. 88

xiii

Glossary

a word-RAM model a computation

model that its memory consists

of an unbounded sequence of reg-

isters which each holds an integer

value or a real number

acyclic graph a graph in which there are no

cycles

amortized cost the idea is that some ex-

pensive operations can increase

the potential, so that later oper-

ations can be done cheaply due to

the increased of potential

APSP abbreviation of all pairs shortest

path; the APSP problem is a prob-

lem to determine the shortest path

from each vertex to every other

vertices in a graph

asymptotic analysis an analysis that ex-

amines how the efficiency of a pro-

gram changes as the program's in-

put size approaches infinity. It ob-

serves the growth rate of the pro-

gram when different input sizes are

given

average-case analysis the running time is

the expected time for an algorithm

to solve the problem over all in-

puts of size n

branch a path connecting two nodes

cycle a special path is obtained from a

vertex v back to itself in a graph

dense graph when the number of edges, m,

is close to n2, where n is the num-

ber of vertices

directed graph a graph that has all di-

rected edges; each edge can be tra-

versed only in a specific direction

edge a pair of vertices

graph a graph, G, is defined as a data

structure that consists of a set of

vertices or nodes, V , and a set of

edges or arcs, E, G = (V,E)

main trunk the highest level trunk that

connects the highest dimension

nodes

node represent a vertex with its key

value

path a path is defined as a sequence of

vertices in which each pair of suc-

cessive vertices is connected by an

edge. The first vertex in the path

is called a start vertex or an origin

vertex and the last vertex is known

xiv

GLOSSARY

as the end vertex or a destination

vertex

root a node that is located at the top

level of a tree and it has no parent

node

sparse graph a graph that has only a few

edges such as m = 2n

SPSP abbreviation of single pair short-

est path; the SPSP problem is a

problem to determine the shortest

path from a source vertex to des-

tination vertex in a graph

SSSP abbreviation of single source

shortest path; the SSSP problem is

a problem to determine the short-

est path from a source vertex to

all vertices in a graph

the comparison-addition model this

model assumes that all input dis-

tance data consist of m real num-

bers

trunk a path that connect several nodes;

maximum number of nodes on a

trunk applies for a different heap

undirected graph the edges of the graph

are drawn with no arrow; they can

be traversed in either direction

unweighted graph opposite of a weighted

graph; it shows the existence of a

connection between two nodes

weighted graph a graph that has weighted

edges

worst-case analysis the total running time

is the maximum time taken for an

algorithm to solve the problem on

any input of size n

xv

GLOSSARY

xvi

1

Introduction

“Which way to go, Sam?”, John asked his friend when they were going out for fishing. Sam

took out his TomTom Global Positioning System (GPS), and selected Twizel as a destination

from Christchurch. They were planning to go fishing at Mount Cook. “Dont worry. Just trust

GPS. I am confident that this is the shortest way and we could reach there in 3 hours and

53 minutes,’ replied Sam as he pointed to the estimated time to arrive displayed on the GPS

screen. “Are you sure this is the shortest route?” asked John again. “Yes, I have selected the

shortest route in distance, but not in time, as we can use off-road highways to reach there.

Hope, we can save fuel and as well as enjoying sightseeing,” replied Sam.

Figure 1.1: Example of route suggested by TomTom GPS

The above conversation is about using a system to help in finding the shortest route to go

from one town to another. Two choices are given here; whether to arrive at the destination at

the shortest possible time or to choose the shortest route, regardless of how long it takes to reach

1

1. INTRODUCTION

the desired destination. If the road network from Christchurch to Twizel were represented by

a weighted graph, finding the above route would be a well-known application in a graph theory

known as the shortest path problem.

The problem of finding the shortest route from Christchurch and Twizel above is specifically

called the single pair shortest path problem (SPSP). Other variations of this problem are the

single source shortest path problem (SSSP) and the all pairs shortest path problem (APSP).

The SSSP is a problem to find the shortest paths from one location, called a source node, to

all other nodes in the graph. If the shortest paths between every pair of nodes are sought, the

problem is called the APSP.

Initially, the shortest path problem is a problem of finding the shortest path from a specific

node s, called a source, to a second specified node, called a destination. The shortest path

obtained might consist of a collection of edges comprising the shortest path from s. Figure 1.2

shows an example of a typical graph. The distance values or edge costs that connect one node

to another are enclosed in parenthesis; for example, the distance value from node 0 to node 1

is 3.

3 1

2 4

5 0

(5)

(2) (7)

(3)

(3) (4)

(9)

(2)

(5)

(1)

(2)

Figure 1.2: A typical network where n = 6 and m = 11

When all edge costs are non-negative, as shown in Figure 1.2, an efficient algorithm can be

used to solve the problem. The shortest path algorithm is a program, or set of instructions that

can be executed to provide the shortest path between locations. There are many algorithms

2

which can be used to find the shortest distance. To solve the problem, the basic algorithm

works like this. Starting with the source node s, the algorithm finds the shortest path from the

source to the nearest node. The same steps are taken in subsequent iteration. The procedure

requires a maximum of m− 1 iterations to find the shortest path from s to another node where

m is the total number of edges in the graph.

The edge cost can be any non-negative numbers. Recall the scenario discussed earlier. If we

consider the time taken to arrive at the destination to be the most importan factor, then the

edge cost represents the fastest time to go from one location to another. However, if the shortest

route is required, the edge cost should be the shortest distance. In many other applications,

the edge cost may represent capacity, length, speed, noise and so on.

Let us assume that Sam has two GPS systems which are different models and use two

different algorithms. To compute the shortest distance from Christchurch to Twizel, the first

GPS gives the result in two seconds, while the other takes five seconds. It is clear that the

time taken varies even though the suggested routes are the same. In a case where there is no

urgency, the time taken may not be considered. However, in an urgent case, for example if an

ambulance crew needs tp fomd a route to pick up a critically ill patient, the second GPS might

not be the right choice.

The exact speed of an algorithm depends on many factors such as implementation details,

where the algorithm is run, and the input size to the algorithm. It is possible to use two

algorithms to solve the same problem. The first algorithm has been executed on a powerful

machine and the second one has been run on a slower machine. For the same amount of inputs,

it was found that the first algorithm run on the powerful machine performs better compared

to the second one. If both algorithms are executed on the same machine, using a small input

size, the first algorithm solves the problem much faster, but in the case of a larger input size,

the second algorithm is significantly superior. Table 1.1 illustrates different running times with

different input sizes for these two algorithms. Both algorithms show that the running times

comensurates with increase in input sizes. If the input size is relatively small, algorithm 1 is

extremely fast. On the other hand, Algorithm 2 performs better when the input size is bigger.

Now, which algorithm should we chose?

In answering this question, a proper algorithm analysis should be constructed. The purpose

of algorithm analysis is not about determining how long does one algorithm take to solve one

particular problem, but to see the performance of the algorithm when solving the same problem

with different input sizes. In other words, it is about to see the growth rate of the running

3

1. INTRODUCTION

Input Size Algorithm 1 Algorithm 2
100 10−6 seconds 10−4 seconds
1000 10−3 seconds 10−1 seconds
10000 3 seconds 1 second
100000 3 minutes 10 seconds

Table 1.1: Different running times with different input sizes

time when the problem size increases. If the running time is the only issue (not the growth

rate or the performance of the algorithm), then moving the algorithm to a faster computer

makes the algorithm better, as it can complete the given task faster. If only a slower machine is

available, this algorithm might not perform as well as expected. Therefore, algorithm analysis

should be machine independent and performed without regard to any specific computer. In

computer science, this analysis is known as asymptotic analysis. Asymptotic analysis evaluates

the performance of an algorithm based on the given input size and not the actual run time on

different machines.

As the input size or input data are both one of many factors that affect the running time of

an algorithm, quick access the data is extremely important. The use of a good data structure

here is equally important. A data structure is a particular way to store, search and retrieve

data. It consists of a set of procedures for certain tasks. The data is organized and stored

properly by the data structure for easy maintainance and accessibility.

The relationship between algorithm and data structure is just like that between employer

and semployee. As an ’employer,’ an algorithm does not have to worry about how the task is

going to be carried out by the ’employee,’ that is, the data structure. When an instruction is

given to the data structure to do a certain task, the algorithm expects that the task will be

done perfectly and efficiently as has been ordered. If the data structure used gives easier and

faster access to the input data, the time taken to solve the problem will be significantly reduced.

In a case when a large input size is involved and the use of memory is limited, the right data

structure to choose is essential. As the data structure used by an algorithm can greatly affect

the algorithm’s performance, the design and implementation of good data structure are vital.

Figure 1.3 shows the shortest path concept in general.

Heap data structure is used to help in solving the shortest path problem. A heap is a

specialized tree based data structure where all elements are arranged accordingly to certain

priority. The smallest or largest element normally will be placed on the top of the tree which

is called a root level. Every single heap has its heap property to maintain the tree structure. A

4

head

Problem

Algorithm

Data structure

find APSP

results
 3

 6

 2

 23

 11

 12

find- min()

results

Figure 1.3: Relationship between shortest path problem, algorithm and data structure. Find-min
is an example of operation used by the algorithm

heap property must be satisfied whenever changes are made to the elements in the heap, such

as when a new element is inserted into the heap, the existing key element is changed, or when

an element is removed from the heap. Chapter Three will discuss details about the tree or heap

data structure.

Underlying the introductory sections are three objectives. Firstly, to introduce the shortest

path problem; secondly, to reinforce the important of research in finding an efficient shortest

path algorithm; and thirdly, to stress the importance of data structures to be used with the

algorithm. The aim of this research is to develop a faster algorithm to solve the all pair shortest

path problem and to develop good data structures that can be used to facilitate the process

of finding the shortest path. The motivation of this thesis is to design the best shortest path

algorithm to help find the shortest distance from one location to other locations. Even though

this research has been carried out for many years, there are still many applications requiring an

algorithm to solve related problem, especially during critical time such as when disaster strikes.

Below are some scenarios that reveal the importance of this area of research.

A large explosion occurred in the Pike River mine in New Zealand in 2010. 31 miners

were trapped and only two miners managed to escape. It was extremely dangerous to go into

the mine looking for any survivors; instead, a robot was used. The robot needed to travel

through certain points with a specific amount of battery charge. Since the robot was battery

powered, and the distance to travel was uncertain, the robot should have been set up to go to

the needed points in the most effective battery charge. The path followed needed to be the

shortest one. The robot should have been capable of sending the fastest signal to the operator

in order to update any finding. Again, a very good shortest path algorithm is needed to assist

the operation. The robot controller also should be prepared to send two or three robots at

5

1. INTRODUCTION

the same time. Another shortest path algorithm was required. Nobody knew whether a clever

shortest path algorithm was used to program the robot. In fact, the rescue operation failed

because the robot was not waterproofed and water caused it to malfunction.

In 2011, when 9.0 magnitude earthquake and tsunami hit Japan, 2,500 evacuation centers

were set up to accommodate displaced and injured people. People were transported from the

disaster areas to the evacuation centers. Survival of the disaster-stricken people depended a lot

on planning the most efficient path. Once again, a clever shortest path algorithm was needed

to find the quickest route for the rescue work.

These are examples of applications that reveal the importance of finding the best way to

solve the shortest path problem. Even though the shortest path problem has been investigated

since 1950s, research in this area is still active and many applications are still using it.

This thesis presents a new algorithm, which provides an alternative to the fastest algorithm

that solves the all pairs shortest path problem (APSP) in O(n2 log n) expected time. A well

known Moffat-Takaoka (MT) algorithm (1) that manages to solve the APSP in the fastest time

was developed almost three decades ago. Since then, there has been no other algorithm that

can solve the problem better than that. The use of a critical point in the algorithm makes the

algorithm hard to analyze to see the running time of the algorithm. The first contribution of

this thesis is to show that a small modification of the MT algorithm can achieve the optimal

complexity of O(n2 log n) with a simpler analysis. This thesis also presents two new data

structures to facilitate the process of finding the shortest distance. The first data structure,

which is comparable to the trinomial heap (2), shows better performance in the total number of

key comparisons, when n values are small (n values denote the number of vertices in a graph).

The second data structure, a dimensional heap that is forced to maintain the thinnest structure

possible has also been developed. Surprisingly, if m decrease-key operations are called (m is

the number of edges in a graph), the dimensional heap shows outstanding results. Empirical

studies demonstrate that this data structure is able to perform better than the existing binary,

Fibonacci (3) and 2-3 heaps (4).

The chapters in this thesis are organised as follows. Chapter One briefly gives an intro-

duction to the shortest path problem. Chapter Two provides background information for the

shortest path problem, including a long history of the problem, some basic concepts that read-

ers need to know, and previous algorithms and data structures used to solve the shortest path

problem. Chapter Three explains two new data structures that have been developed with as-

sociate results obtained from the experiment. Next, Chapter Four describes a new alternative

6

algorithm that solves the all pairs shortest path problem in O(n2 log n) expected time. This

chapter also produces some experimental results. The last chapter summaries all the findings

and concludes all chapters.

7

2

Shortest Path Background

This chapter presents some background information about shortest path problems. The graph

concept is addressed in this chapter for better understanding of the problems. Time complexity

is briefly mentioned to measure the efficiency of the computation method used in this thesis.

Some interesting historical achievements in research in this area are described. This includes

research in the shortest path algorithms and research in the data structures, mainly in the heap

structures. As Dijsktra’s algorithm provides the foundation of many shortest path algorithms,

detailed explanation of this algorithm is included. Floyd’s algorithm is also described in this

chapter as this algorithm is a pioneer algorithm in solving all pairs shortest path problems.

Descriptions for a few data structures such as binary, Fibonacci, 2-3 heap and trinomial heaps

are also given.

2.1 Introduction

If people are asked how to find a route from one city to another, they can easily provide a few

suggestions. This is a very simple question that almost everyone can easily understand and

sometimes help us find solutions. Sometimes a machine may be used to solve the problem when

the input data is large. This is why the idea of the shortest path problem as a fundamental

problem in the computer science area was conceptualized. When the programming pioneer

Edsger Dijkstra was asked to demonstrate the performance of the new ARMAC1 machine in

1956, he had to find a problem that everyone could understand, as not everyone knew about

computers at that time. To do that, he designed a program to find the shortest route between

two cities in the Netherlands. The program used 64 cities in the Netherlands to demonstrate

the performance of the new machine for solving the problem. Even though this great idea

8

2.2 Basic Terminology

only took Dijkstra 20 minutes to design the algorithm (without using any pen or paper), now

this idea is studied worldwide and Dijkstra’s method has been used for solving many related

problem.

The next section discusses basic concepts that one must know in order to understand this

topic further.

2.2 Basic Terminology

The shortest path problem is represented by a graph, G = (V,E) where V is the set of vertices

or nodes and E is the set of edges or arcs. Sometimes, the graph is known as a network. Each

single graph has its own properties which distinguishes the graph from one type to another.

Different graphs also require different methods of implementation. Therefore, to find ways or

algorithms to solve the shortest path problem, one should know the graph. This is mainly

because the shortest path problem is solved based on the type of graph and its properties that

are used.

The shortest path problem can be classified into three main problems: single pair shortest

path (SPSP), single source shortest path (SSSP) and all pairs shortest path (APSP). If the

problem is finding the shortest path between two locations, the problem is called SPSP. Some-

times, this problem is also called point-to-point problem. When the shortest route is sought

from one vertex to all other vertices in the graph, for example, finding the shortest route from

one city to all available cities, the problem is known as the SSSP problem. The APSP problem

is a problem for determining the shortest path from each vertex to every other vertices in a

graph.

Since Dijkstra introduced the shortest path problem, many algorithms have been developed

to solve these problems. One algorithm claims that its implementation is better than another,

and others demonstrate that the algorithms that they have developed can be executed faster

or simpler than others. Thus, a good computational model should be used as a tool to analyze

and compare algorithmic efficiency. A comparison-addition model and a word-RAM (Random

Access Machine) model are two common independent methods to measure time complexity.

The comparison-addition model is briefly explained in (5). This model assumes that all input

distance data consist of m real numbers. Only comparison and addition can be performed on

distance data, apart from operations on control variables. For the algorithm that deploys this

computational model, operations for execution should depend on the output of the comparison

9

2. SHORTEST PATH BACKGROUND

operation. Each addition or comparison operation is assumed to have been done in constant

time. A word-RAM model, on the other hand, is a simple model of computation. Its memory

consists of an unbounded sequence of registers which each hold an integer value or a real

number. Memory instructions involve arithmetic operations, comparisons and bitwise boolean

operations. In this model, it is assumed any register can be read or written in constant time.

However, this thesis focuses only on the use of the comparison-addition model involving key

comparisons.

The computational model measures the time complexity to compare the performance of

one algorithm to another. The amount of time taken to solve one particular problem with

the increase of input sizes is what defines time complexity of the algorithm. Sometimes, space

complexity is also used to compare the efficiency of the algorithms. However, choosing which

complexity is more important to use often depends on the limitations of the technology available

at time of analysis. For the time complexity, the objective of this measurement is to determine

the feasibility of an algorithm by estimating an upper bound on the amount of work performed.

To know more about time complexity, the next section is given.

2.2.1 Time Complexity

Time complexity, T (n), is measured using Big O notation, a family member of Landau notation.

The letter O is used because the rate of growth of a function is also called its order. The time

complexity, T (n), of an algorithm is O(f(n)) if, for a positive constant, C, with n input sizes,

T (n) ≤ Cf(n) (2.1)

In 2.1, T (n) grows at the order of f(n) and therefore, it can be written as T (n) = O(f(n)). This

indicates that the running time of T (n) cannot exceed the functional order of f(n). The analysis

of this time complexity is also known as asymptotic analysis. Common functions obtained when

analyzing algorithms are shown in Table 2.1.

Notation Name
O(1) constant

O(log n) logarithmic
O(n) linear
O(n2) quadratic
O(nc) polynomial
O(cn) exponential

Table 2.1: Naming functions in the big O notation

10

2.2 Basic Terminology

Seeing the performance of algorithms means seeing the growth rate of this function. Let

two algorithms A and B solve a problem C and let fA(n) and fB(n) be the time complexities

of algorithms A and B, respectively. If both algorithms have the same time complexity, that

means, fA(n) ≈ fB(n). Algorithm A is said to be better if fA(n) = O(fB(n)).

In addition to the big O notations, another Landau symbol used in computing the running

times is described in Table 2.2. However, as the big O notation is widely used for comparing

functions, this thesis will use only big O notation for describing the running time. Note that

in Table 2.2, C ia a constant variable.

Notation Definition Analogy
f(n) = O(g(n)) f(n) ≤ Cg(n) ≤
f(n) = o(g(n)) limn→∞

f(n)
g(n) = 0 <

f(n) = Ω(g(n)) g(n) = O(f(n)) ≥
f(n) = ω(g(n)) g(n) = o(f(n)) >
f(n) = θ(g(n)) f(n) = O(g(n)) and g(n) = O(f(n)) =

Table 2.2: Landau notations used for describing time complexities

There are three types of time complexity analyses, which are worst-case, average-case and

best-case. In the worst-case analysis, T (n) = maximum time taken for an algorithm to solve

the problem on any input of size n. This time complexity is commonly used in analysis as it

is guaranteed that each operation requires less than T (n) time to finish the task. When some

assumptions must be made, for example an assumption of statistical distribution of inputs are

needed, T (n) = expected time of algorithm over all inputs of size n. This form of analysis

is known as average-case analysis. In the average case, when the same set of operations are

executed more than once, different running time are obtained. This mainly because algorithm

performance depends on the type of input to the algorithm. Best-case analysis, the last type of

analysis, usually works fast only on some special inputs. This analysis, however, is rarely used

for comparing the performance between two algorithms.

Amortized cost analysis of running time is also used in this thesis. In amortized cost anal-

ysis, a sequence of operations is analyzed. If an operation takes T (n) time and m operations

are performed, worst case analysis gives the total time of mT (n), rather pessimistic. If most

operations take less than T (n) time, the average time may become much smaller. The term

“amortized” rather than “average” is used, and it is said that the amortized time is much

smaller, because “average” is used when randomness comes from the input data. In the amor-

tized analysis, there is no concept of randomness. To help in amortized analysis, the concept of

11

2. SHORTEST PATH BACKGROUND

potential may be used. The idea is that some expensive operations can increase the potential, so

that later operations can be done cheaply, thanks to the increased potential. Detailed examples

will be seen in Chapter Three.

As the shortest path problem can be represented by a graph, the next section will review

some essential graph terminology for better understanding of the problem.

2.3 Graph Terminology

In the shortest path problem, the graph is used to represent data or a problem to be solved.

A graph, G, is defined as a data structure that consists of a set of vertices or nodes, V , and a

set of edges or arcs, E, G = (V,E). A common notation used in the graph is n to denote the

number of vertices, n = |V | and m to denote the number of edges, m = |E|. An edge is defined

as a pair of vertices. It can be represented by (u, v) to show that vertex u and v are connected.

A directed edge may also be represented as (u, v) where u is known as the origin vertex and v

is called the destination. The unordered pairs are known as undirected edges.

Edges which have associate costs are known as a weighted edges. Such weights might

represent air-fare cost, the distance between two locations, the speed limit between two points

and so on. The edge weight typically shows cost of traversing from one node to another node. A

weighted graph is a graph that has weighted edges; otherwise, the graph is known as unweighted

graph. The unweighted graph shows the existence of a connection between two nodes. To show

that one operation must be done first, before another operation in job scheduling, an unweighted

graph can be used.

Graphs can also be classified into directed and undirected graphs. A graph that has all

directed edges is known as a directed graph or digraph. In a directed graph, each edge can only

be traversed in a specific direction. The edges are drawn as arrows and can only be traversed

by following the direction of said arrows. Thus, edges (u, v) and (v, u) are not the same edges.

If the edges of the graph are drawn with no arrow, that means they can be traversed in either

direction. This type of graph is know as an undirected graph.

When the number of edges, m, is close to n2, where n is the number of vertices, a graph

is said to be dense. An apposite for the dense graph is a sparse graph. A sparse graph has

only a few edges, such as m = 2n. Outgoing edges and incoming edges of vertex x are terms

used to describe the edges from and into vertex x. In a directed graph that has n vertices, the

12

2.3 Graph Terminology

number of edges, m ≤ n(n−1). For an undirected graph, m ≤ n(n−1)
2 . Therefore, a graph with

n vertices has at most O(n2) edges.

(4)

(2) (2)

(6)

(3)

C B

E

D A

Figure 2.1: An example of a digraph

For an easy explanation, see Figure 2.1, which shows a simple digraph that has 5 vertices

and 5 edges, V = {A,B,C,D,E} and E = {(A,B), (B,C), (C,D), (D,E), (E,A)}. The cost

for edge (A,B) is 4, cost(A,B) = 4. The graph is a sparse graph with m = n.

One of the most basic graph terminology related to shortest paths is that of a path. A

path is defined as a sequence of vertices in which each pair of successive vertices is connected

by an edge. The first vertex in the path is called a start vertex or an origin vertex, while the

last vertex is known as the end vertex or a destination vertex. A path, P can be written as

P = ((v1, v2), (v2, v3), . . . , (vk, vk+1)), where a pair (vi, vi+1) ∈ E.

Sometimes a special path is obtained from a vertex v back to itself. This path is known as

a cycle in the graph. acylic is a term used to decribe a graph in which there are no cycles.

There are two common ways to represent a graph. The first technique is to use an adjacency

matrix to create the graph and the second technique is to use an adjacency list. In the adjacency

matrix, a graph is created by storing the adjacency information in a matrix of |V | × |V |. In

such a matrix, rows represent source vertices and columns represent destination vertices. Each

pair is considered as an edge and the cost for this edge is stored in the matrix.

Using the adjacency list representation requires vertices to be stored as records. There is

a list of adjacent vertices for each vertex v ∈ V to show the destination vertices from v. The

associate edge cost can be stored in the list structure.

In this thesis, most of the graphs used were created using the adjacency list representation.

In the graphs, the edge costs were randomly generated to have random integer values.

13

2. SHORTEST PATH BACKGROUND

The followings section will briefly explain past research in the area of the shortest path

problem.

2.4 Shortest Path Algorithms

In the late 1950’s, when the shortest path (SP) problem was established, many computer

scientists tried to solve the problem. Different techniques or algorithms were proposed based

on the type of problem which needed to be solved. Mostly, this depends on the weight given to

the graph and the problem size. The SP problem size is measured by the number of vertices,

n, and the number of edges, m in a graph. The values of n and m reflect the type of the graph,

whether dense or sparse graphs.

Edge weight or cost varies from one graph to another. For a weighted graph, there is a

certain edge cost assigned to each edge of the graph. Edge cost may be either negative or

non-negative values. Not all algorithms that solve the shortest path problem accept all types

of values. Usually, different edge cost values will require different algorithms to solve the SP

problem.

The first established algorithm is known as Dijkstra’s algorithm (6). This algorithm can be

used to work out the shortest path problem if a graph with non-negative edge costs is given.

When the algorithm was introduced, there was no priority queue used with the algorithm. The

time complexity of this algorithm was O(n2). In 1984, when the Fibonacci was developed,

Dijkstra’s algorithm solved the single source shortest path (SSSP) problem in O(m+ n log n),

where n and m represent the number of vertices and edges in the graph.

When the given edge costs are in a range, for example each edge cost is bounded by [0, C],

better time complexity can be achieved. The idea in terms of bound C was first introduced

by Dial (7) in 1969. Using the edge cost in the range [0, C], Dial managed to solve the SSSP

problem in O(m + nC). Ahuja et al. (8) explored this idea by introducing different priority

queues to be used by Dijkstra’s algorithm. With the newly implemented one-level form of radix

heap, they managed to solve the SSSP in O(m+n logC). When the two-level form of radix heap

and the combination of a radix heap and Fibonacci heaps were used, Dijkstra’s algorithm solved

the SSSP in O(m + n logC
log logC) and O(m + n

√
logC) respectively. Later, Cherkassky, Goldberg

and Silverstein (9) improved the performance to O(m + n 3
√

logC
1+ε

) expected time for any

fixed ε > 0. In 2003, with some improvement on certain operations in the priority queue used,

Thorup (10) managed to solve the SSSP problem in O(m+ n log logC) or O(m+ n log log n).

14

2.4 Shortest Path Algorithms

The most recent result in the area of SSSP was discovered by Orlin et al. (11). They have

shown that in a situation where only few distinct edge costs allowed, the SSSP problem can

be solved in linear time. Orlin et al. in (11) also suggested that to get O(m) time complexity,

the number of distinct edge costs, K, should be less than the density of the graph, nK ≤ 2m.

Otherwise, the algorithm runs in O(m log nK
m) time. To obtain required results, an efficient

technique was used for implementing Dijkstra’s algorithm to solve the SSSP. Even though

various improved results have been discovered, Dijkstra’s algorithm remains the best original

technique used to resolve the SSSP problem.

Dijkstra’s algorithm can also be utilized to solve the Single Pair Shortest Path (SPSP)

problem. Here, the shortest path between two locations is sought. A well-known algorithm

for solving the SPSP problem is known as A∗ search algorithm (12). The A∗ search algorithm

is essentially the same as Dijktra’s algorithm, except there is a heuristic concept introduced

in this algorithm. In a heuristic concept, approximate solutions are suggested when solving

the problem. The process usually estimates which is the best node to search next rather than

searching all nodes, one by one. By combining the efficiency of heuristics, performance to solve

a particular problem can be greatly improved. This is exactly what is needed in real-time

systems such as path finding. Another commonly used algorithm is bidirectional search that

runs two simultaneous searches (13). Later, some enhancement to the bidirectional search with

heauristic approaches resulted in many new algorithms such as proposed in (14) (15) (16) (17).

Performances for some of these algorithms were compared in (18).

There are many other algorithms focus on a pre-processing technique to solve the shortest

path problem especially when a large network is involved. The most common technique used

is dividing a graph into a number of disjunct subgraphs connected by a boundary graph, called

highway hierarchies. The highway hierarchies approach was introduced by Sanders and Schultes

(19) in 2005. They conducted experiments with a real-world road network to test the effec-

tiveness of the approach. As a conclusion, they have suggested that the highway hierarchies

method is not only promoting space efficiency, but also modest and robust (20). However, only

undirected graphs were used in their system. Some improvement over this technique can be

found in (21).

For the all pairs shortest path (APSP) problem, Floyd’s algorithm (22) can be used. Floyd’s

algorithm has a time complexity ofO(n3), which is equivalent to performing Dijkstra’s algorithm

n times. As the APSP algorithm is the main theme of this thesis, Floyd’s algorithm will be

discussed further in the next section.

15

2. SHORTEST PATH BACKGROUND

All the shortest path algorithms discussed above only work for the non-negative edge costs.

If the negative length is allowed, Bellman Ford’s algorithm (23) is one of the good algorithms

to choose. This algorithm runs in O(mn) time in solving the SSSP problem. For the APSP

problem, Johnson’s algorithm (24) is the best option for the negative edge costs. Johnson’s

algorithm can solve APSP problem in O(mn+n2 log n). For a sparse graph, Johnson’s algorithm

performs better than Floyd’s algorithm as the complexity of Floyd’s algorithm is O(n3).

For the sake of theoritical explanation, Cherkasky et al. (9) ran several experiments to

observe the behavior of different types of shortest path algorithms. For a non-negative edge

cost, Dijsktra’s algorithm was found to be a robust algorithm. They also observed that a specific

problem structure effected the performance of an algorithm. The performance of the algorithm

also decreases when small changes such as an addition of an artificial source are added to the

algorithm.

Many algorithms execute n× Dijkstra’s algorithm to solve the APSP problem. However,

different time bounds obtained depend on the technique used to solve the problem. When

Dijkstra’s algorithm is used to solve the APSP problem, the time execution is O(mn+n2 log n).

Here, Dijkstra’s algorithm is used together with the Fibonacci heap.

It can be seen that two parameters are used when describing the time complexity for an

algorithm. This is mainly due to the density of the graph used. For a dense graph, m = O(n2)

while for a sparse graph, m = O(n). Therefore, for a sparse graph, m and n parameters are

used to represent the complexity of the APSP, while for a dense graph, only the n parameter

is used.

The best time complexity in the area of sparse graph for the APSP algorithm was explored

by Seth Pettie (25). The complexity achieved was O(mn+ n2 log logn). This complexity beat

the long-standing complexity of O(mn + n2 log n) which uses Dijsktra’s algorithm with the

Fibonacci heap implementation.

In the area of dense digraphs, complexity is measured using two analyses, worst case and

average case analysis. The best known result for the worst case is slightly sub-cubic by Han

and Takaoka(26), which is in O(n3(log logn)
log2 n

). In (27), Chan summaries all good achievement

APSP algorithms for general dense real-weighted graphs. Readers are advised to see Table 1 in

(27) for the summary. The other area is for the average case analysis, which is the main theme

of this thesis. Algorithms that solve APSP in the expected time analysis will be discussed in

detail in Chapter Four.

16

2.4 Shortest Path Algorithms

The following sections discuss two algorithms that are commonly used to solve the SP

problem.

2.4.1 Dijkstra’s Algorithm

Given a weighted graph, G = (V,E), where V is a set of vertices and E is a set of edges, and

s is a source vertex in V , find the path of shortest length connecting s to all vertices in V .

This is the SSSP. The problem is trying to get the minimum cost between vertex s to all other

vertices, v ∈ V . If the minimum cost is found, then d(v) denotes the minimum edge cost from

s to v. Initially, d(s) is assumed to be 0, d(s) = 0 to denote that s is the source or the start

vertex.

The length of the directed edge connecting vertex u to vertex v is represented as cost(u, v).

The eponymous Dijkstra’s algorithm is used to solve the single source shortest path problem

(SSSP) for a non-negative edge lengths graph. The single source shortest path algorithm is

described in the following. Let G = (V,E) be a directed graph where V is the set of vertices

and E ⊆ V x V is the set of edges. OUT (v) is defined as a set of vertices w such that there

is a directed edge from vertex v to vertex w. The non-negative cost of edge (v, w) is denoted

by cost(v, w). It is assumed that cost(v, v) = 0 and cost(v, w) = ∞ if there is no edge from

v to w. A vertex s is denoted as the source vertex. The shortest path from s to vertex v is

the path such that the sum of edge costs of the path is minimum among all paths from s to

v. The minimum cost is also called the shortest distance. In Dijkstra’s algorithm, two set of

vertices, S and F , are maintained. The set S, called the solution set, is the set of vertices to

which the shortest distances have been finalized and the set F , called the frontier, is the set of

vertices which can be reached from S by a single edge. Vertices that remain outside S and F

are considered unexplored vertices that need to be explored.

In solving a single-shortest path problem, Dijkstra’s algorithm maintains a distance value

d[v] for each vertex v in the graph. The value of d[v] indicates the shortest distance from the

source vertex to vertex v. If v is in F , d[v] is the distance of the shortest path that lies in S

except for the end point v.

Initially, the source vertex s, with d[s] = 0 is put in S. Vertices in OUT (s) are put in F

with their keys values. The key value of v ∈ OUT (s) is computed as d[v] = d[u]+ cost(u, v).

The algorithm works as the following:

1. A vertex v that has the minimum distance among those in F is selected.

17

2. SHORTEST PATH BACKGROUND

2. If v is outside S, move v from F to S and the following steps are taken. Otherwise, the

first step is repeated.

3. The shortest distance from s to v, d[v] is now known and finalised.

4. For every vertex w ∈ OUT (v), a new distance key, key, is calculated by adding the

shortest distance of v and the edge length from v to w, key = d[v] + cost(v, w).

5. If w is already in F , the new key is compared with the existing d[w] and the minimum

distance is assigned to d[w].

6. If w is not in F , it will added into F with d(w) = key.

This process continues from the first step until there is no vertex in F . If F is empty, the

shortest distance from s to all vertices has been finalised and all vertices are now known as

labelled vertices. Algorithm 1 shows Dijkstra’s algorithm to solve the shortest path problem.

Algorithm 1 Dijkstra’s Algorithm

1: ∀v ∈ V : d[v] =∞;
2: S = ∅; d[s] = 0;F = {s};
3: while |S| < n do
4: find v in F with d[v] = min{d[i] : i ∈ F}; / ∗ delete−min ∗ /
5: S = S + {v};F = F − {v};
6: for each vertex w ∈ OUT (v) do
7: if w /∈ S then
8: if w ∈ F then
9: if d[v] + cost(v, w) < d[w] then

10: d[w] = d[v] + cost(v, w); / ∗ decrease− key ∗ /
11: else
12: d[w] = d[v] + cost(v, w); / ∗ insert ∗ /
13: F = F + {w};

There are a few operations involved in running the Dijkstra’s algorithm. When a vertex with

the minimum key value is removed from F , a delete-min operation is called. When a vertex with

certain key value needs to be updated in F , a decrease-key operation is used. Inserting a new

vertex in F requires an insert operation. Therefore, a good data structure that supports theses

operations is needed when executing Dijkstra’s algorithm. The data structure used to support

the operations should have a reasonable time complexity. In a graph that has n vertices and

m edges, delete-min and insert operations are executed n times. The decrease-key operation

is done in m times in the worst case. As the decrease-key operation is done very frequently,

18

2.4 Shortest Path Algorithms

especially when m ≈ n2, many kinds of data structures, such as binary (28), Fibonacci (3),

2-3 heaps (4) and trinomial (2) heaps try to reduce the decrease-key complexity by adding

complexity on the delete-min function.

Analysis of Dijkstra’s algorithm depends on the data structure used. If the data structure

is a linear array, the total running time of the algorithm is O(m + n2), that is ≈ O(n2) time,

where n = |V | and m = |E|. This is because the delete-min takes O(n) time and it has to

be performed n times. Therefore a total time for the delete-min is O(n2). Each operation of

decrease-key takes O(1) time and there are m operations. Hence, the running time of decrease-

key operation is O(m) time. To run Dijkstra’s algorithm using a linear array data structure

will take O(m+ n2) ≈ O(n2) time.

If the Dijkstra algorithm is run using a binary heap data structure, the running time is

different from the above. In the binary heap, delete-min takes O(log n) time. The insert and

the decrease-key operations take O(log n) time. Hence, the total running time of the algorithm

with the binary heap is O(m log n+n log n) = O((m+n) log n) time. If all nodes are reachable

from the source, s, then the running time becomes O(m log n) time. For higher graph densities,

the number of edges, m is almost n2; this will give a time of complexity O(n2 log n) time if

Dijkstra’s algorithm is running with the binary heap.

Table 2.3 shows how Dijkstra’s algorithm works when a graph in Figure 1.2 is used. The

solution set is labelled as S and d[i] shows distance of the shortest path.

Iteration S d[1] d[2] d[3] d[4] d[5]
1 {0} 3 5 ∞ ∞ ∞
2 {0, 1} 3 5 4 ∞ ∞
3 {0,1, 3} 3 5 4 8 6
4 {0,1 , 3, 2} 3 5 4 7 6
5 {0, 1, 3, 2, 5} 3 5 4 7 6
6 {0, 1, 3, 2, 5, 4} 3 5 4 7 6

Table 2.3: Performing Dijkstra’s algorithm on Figure 1.2

When n× SSSP problem is solved, the APSP problem is catered. Many APSP algorithms

that have been developed employ this method to solve the problem. The common APSP

algorithm is Floyd’s algorithm that will be discussed in the following section. This algorithm,

however use matrix operation rather than using the common technique, n× SSSP algorithm in

solving the APSP problem.

19

2. SHORTEST PATH BACKGROUND

2.4.2 Floyd-Warshall Algorithm

Floyd’s algorithm (22) is designed to find the shortest path between all the vertices in a graph.

To implement this algorithm, a two-dimensional array is usually used to build a matrix. The

size of the matrix is n×n, where n represents the total number of vertices in a graph. Each row

in the matrix denotes a ”starting” vertex in a graph while each column in the matrix represents

an ”ending” point in the graph. If there is an edge that connect a starting vertex i and an

ending vertex j, then the cost of this edge is placed in position (i, j) of the matrix with the

edge cost value, d[i, j] . The edge cost 0 is given when the stating vertex and the ending vertex

are equivalent, i.e. d[i, i] = 0. An infinite value is placed in the (i, j) position of the matrix if

there is no edge that connect the two vertices, i and j. This is to specify the impossiblity of

directly moving from i to j.

The fundamental basis of Floyd’s algorithm is to determine whether a path from a vertex

i to j via k is shorter than the existing best known path from i to j, d[i, j]. The new path is

given as d[i, j] = d[i, k] + d[j, k]. If the new path that goes via k is shorter, then, the old value

of d[i, j] will be replaced with the new value. Figure 2.2 shows simple paths from vertex i to

vertex j.

k

i j

Figure 2.2: An example of a path from i to j via k.

A detailed description Floyd’s algorithm is given below.

20

2.5 Shortest Path Data Structures

Algorithm 2 Floyd’s Algorithm

1: if there is no edge between i and j then
2: d[i, j] =∞;
3: else
4: d[i, j] = cost(i, j);

5: if i is equal to j then
6: d[i, j] = 0;

7: for k = 1 to n do
8: for i = 1 to n do
9: for j = 1 to n do

10: if d[i, j] > d[i, k] + d[k, j] then
11: d[i, j] = d[i, k] + d[k, j];

From the Algorithm 2 above, it is clear that Floyd’s algorithm takes O(n3) time to execute

the APSP. The time complexity obtained in solving APSP by Floyd’s algorithm is a worst case

time. However, this thesis mainly focuses on analyzing the APSP algorithm using an average

case analysis. Some algorithms that solve the APSP problem in the average case time are Spira

(29), Bloniarz’s algorithm (30) and Moffat-Takaoka (MT) algorithm (1). The details of these

algorithm are explained in chapter 4.

The next section will discuss the heap data structures and explains the commonly used data

structures such as binary, Fibonacci, 2-3 heap and trinomial heaps.

2.5 Shortest Path Data Structures

When solving the shortest path problem, the use of a good data structure is essential. Data

structures work closely to serve algorithms, in order to improve the running time to solve the

problem. In the worst case running time, algorithm performances can be improved by clever

data structures. Consider a few cases below that show the effect of using data structure to the

algorithm performances.

Dijkstra’s algorithm When a priority queue is used, Dijkstra’s algorithm can solve the short-

est path problem in O(m + n log n) time. Without the priority queue, the best time for

solving the problem by Dijkstra’s algorithm is in O(n2).

The maxflow algorithms: When dynamic trees are used by the maxflow algorithms, time

complexity is improved from O(n2
√
m) time to O(nm) time.

21

2. SHORTEST PATH BACKGROUND

Algorithm for general weighted matchings: With the use of mergeable priority queues,

an algorithm for general weighted matchings is able to solve the problem from O(n3) to

O(nm log n).

The above cases show that it is very important to use data structures for solving a particular

problem, as the time complexity will change drastically. Different types of data structures used

to solve a specific problem also may have different running times.

When Dijsktra’s algorithm solved the shortest path problem using Fibonacci heap, it showed

that SSSP problem could be solved in O(m + n log n) time. However, when other heaps were

used to replace Fibonacci heap, different time complexities were obtained. In 1990, when

radix heap (8) was introduced to use with Dijkstra’s algorithm, time complexity obtained was

O(m+ n logC) where C was the maximum edge cost. When some modifications were made to

the radix heap with two-level form, the complexity of executing Dijkstra’s algorithm became

O(m + n logC
log logC). Furthermore, when radix heap was combined with Fibonacci heap to solve

Dijkstra’s algorithm, the performance obtained was O(m+n
√

logC). The complexities obtained

show that using different data structures resulted in different runtime.

Open problem by (8) whether SSSP could be solved in O(m+n log logC) has been answered

by (10). Mikkel Thorup in (10) shows that with the integer priority queue that performs

decrease-key operation in constant time, the SSSP problem can be solved efficiently, that is in

O(m+ n log logC) time.

The data structures used in solving the shortest path problem are classified into two cate-

gories depending on the type of analysis used. The first one is data structures with the worst

case analysis and the second one is the data structure with the amortized cost analysis.

In worst case analysis, a well known binary heap (28) is the first heap that should be

highlighted. Almost in every application that requires a priority to be used, this heap is chosen

for its simplicity and ease of implementation. The heap is also stable and manage to perform

well. For main operations such as insert, delete-min and decrease-key operations, this heap

performs all operations in O(log n) time. Following the binary heap is a leftist heap, developed

by Crane (31) in 1972. Then, binomial heap (32) was developed by Vullemin that also supports

all the heap operations in O(log n) worst-case time per operation.

Leading amortized cost analysis is Fibonacci heap, which was introduced in 1987 by Fredman

and Tarjan (3). In this heap, insert and decrease-key operation are done in O(1) amortized

time and delete-min in O(log n) amortized time. However, this heap has its limitations. As a

22

2.5 Shortest Path Data Structures

practical matter, this heap is not efficient; it is also hard to implement, as the structure of this

heap is complicated (33)(34)(35).

The skew heap (36) that allows self-adjusting structure was developed by Sleator and Tarjan.

This heap is the amortized version of leftist heap and has the same complexity as Fibonacci

heap. However, decrease-key is performed in O(log n) time. Driscoll, Gabow, Sharairman and

Tarjan therefore introduced a relaxed heap (37) in 1988. This is the first heap that allows the

heap order to be violated. That means that the key value of a child node is allowed to be

smaller than the parent’s key value. The relaxed heap uses the same concept as the binomial

heap. This heap gives theoretical improvement over Fibonacci heap for the achievement in the

worst case analysis. However, the heap is also difficult to implement.

A new heap, called a 2-3 heap, was introduced in 1999 by Takaoka (4). This heap uses the

idea of 2-3 tree. Using dimension and workspace structure to design the decrease-key operation,

this heap practically performs better than Fibonacci heap. A year later, Takaoka introduced

trinomial heap (2) that supports the decrease-key operation in O(1) worst case time. This

heap employs the idea of a bad child or a violation node introduced in the relaxed heap (37).

Compared to a relaxed heap that uses binary linking, a trinomial heap applies ternary linking

in its implementation.

A pairing heap, developed by Fredman, Sedgewick, Sleator and Tarjan, is another efficient

heap in practice (34). With the self-adjusting structure, the objective of introducing this heap

was to beat the performance of Fibonacci heap. The heap is based on the binomial heap,

but it was developed in the amortized time. However, the amortized cost from the decrease-

key is not constant. It is difficult to analyze the decrease-key operation of this heap. Firstly,

Fredman provided analysis for the decrease key operation as Ω(log log n) (33). This analysis,

however was reviewed by Pettie (38), and he proved that the decrease-key operation was done

in O(22
√
log logn). A small modification was made to the pairing heap; with the modification,

Elmasry (39) gave O(log log n) for the decrease-key operation.

Other heaps that have the same complexity as Fibonacci heap are thin and thick heaps (40)

and quake heap (41). Heaps recently developed include the rank-pairing heap (42), violation

heap (35) and strict heap (34).

With any other data structures such as Fibonacci, 2-3 heaps or trinomial heap, the running

time depends on how the operations of delete-min and decrease-key are performed. For example,

if the delete-min takes O(log n) time and decrease-key is in O(1) time, then the total running

23

2. SHORTEST PATH BACKGROUND

time is O(m + n log n) time. Note that the expected number of decrease-key operations when

solving the shortest path problem is O(n log(m
n)) (43).

Table 2.4 summarizes some famous figures and their invented data structures.

Year Author Heaps
1964 William Binary heap
1972 Crane Leftist heap
1978 Vuillemin Binomial heap
1986 Sleator and Tarjan Skew heap
1987 Fredman and Tarjan Fibonacci heap
1988 Driscoll, Gabow, Sharairman and Tarjan Relaxed-heap
1990 Ahuja, Mehlhorn, Orlin and Tarjan Radix heap
1999 Takaoka 2-3 heap
1999 Fredman, Sedgewick, Sleator and Tarjan Pairing heap
2000 Takaoka Trinomial heap
2008 Kaplan and Tarjan Thin and thick heaps
2009 Chan Quake heap
2010 Elmasry Violation heap
2012 Brodal, Lagogiannis and Tarjan Strict Fibonacci heap

Table 2.4: The great data structures inventors

The next section will describe four types of priority queues or heaps used in solving the

shortest path problem. In the explanation, three important operations will be discussed. They

are insert, delete-min and decrease-key operations as these are the main operations required for

solving the shortest path problem. Insert operation is a process to insert a new node or element

into the heap. The delete-min process removes a node that has the minimum key value from

the heap, while the decrease-key decreases the key value of a node to a new lower key value.

The heap structure varies from one priority queue to another. Let the following be an

example of a sequence of operations:

1: insert(5);

2: insert(3);

3: insert(8);

4: insert(2);

5: delete-min();

6: insert(7);

7: insert(4);

8: delete-min();

9: insert(1);

24

2.5 Shortest Path Data Structures

9 6 7

5 8

4

(a) Binary heap

8 5

7

6

9

4

(b) Fibonacci heap

8

5
7

4

9

6

(c) 2-3 heap

9

8
7

6
5

4

(d) Trinomial heap

Figure 2.3: Different heap structures after performing a few heap operations

10: insert(9);

11: insert(6);

12: delete-min();

The final structure of different heaps are shown in Figure 2.3 when the above operations are

executed.

Brief explanations about these heaps are given in the following section.

2.5.1 Binary heap

A binary heap data structure is a complete binary tree. In this heap, each node has a higher

priority than its children. The heap must be a complete binary tree. Therefore, no level is

allowed to have less than two nodes except the lowest tree level. If a new node is inserted into

the heap, the node will be added at the lowest level from left to right. If the key value of the

inserted node is less than the parent’s key value, the node will propagate to the higher level.

For this insertion process, time complexity is obviously in O(log n).

Deleting a node from the heap will remove the root node as the root node has the smallest

key value. When the root node is removed, binary heap requires the root’s position to be filled

with other nodes. To do this, a child with a smaller key value will move up to the root’s position

25

2. SHORTEST PATH BACKGROUND

and the old position of this node will be replaced by its child node that has a lower key value.

This process is repeated until one position at the bottom level heap is empty. This position

will be filled up by the rightmost node in the lowest level, which is the last node in the heap.

Delete-min process in the binary heap also requires O(log n).

For the decrease-key operation, the node with the lower key value after the decrease-key

operation must find a new position by percolating up. When the correct position is found, the

process will end. This process, therefore will take O(log n) time as well.

2.5.2 Fibonacci heap

Fibonacci heap was introduced with amortized cost complexity. This heap performs all op-

erations such as insert and decrease-key operations in O(1) amortized cost. Only delete-min

operation is done in O(log n) amortized time.

The Fibonacci heap uses a collection of heap-ordered trees. Each of the tree has its root

node and the root nodes are linked to each other but unordered. There is a pointer that always

points to the minimum node in the heap. When a new node is inserted into the heap, the node

will be placed at the root level. The node is also the only node in the new tree resulted in the

insertion process. If only the insertion process is done, Fibonacci heap will have many trees

and each tree has only one node. This is a relaxed structure introduced in the Fibonacci heap

to maintain O(1) insertion process. Fibonacci uses a degree as a term to differentiate one tree

to another. The degree is defined as the number of children it has.

Removing a node from the heap is the most complicated operation in this heap. When a

the minimum node is removed, the children nodes will be broken apart into smaller sub trees.

These trees will be added back to the root list. Nodes in the root list that have the same degree

will be merged resulting in a new structure with a higher tree degree.

In the decrease-key operation, when the old key is replaced with a new one, the heap order

has to be checked. If the heap order is violated, the link between the node and its parent is

truncated. The decreased node and its subtrees will be merged to the root level. At the root

level, the new key of the decreased node is compared with the current minimum and the the

pointer that points to the minimum node will be updated if necessary.

2.5.3 2-3 heap

The 2-3 heap shares almost similar structure to the Fibonacci heap. The trunk concept is

introduced in this heap to show the number of nodes allowed in each trunk. In the 2-3 heaps,

26

2.5 Shortest Path Data Structures

the trunk can be either 2 or 3 nodes in length. The 2-3 heap also consists of a collection of trees

in different degrees. These trees are linked to each other. The 2-3 heaps defines dimension and

workspace that help in performing certain operations. The lowest dimension is said to be in

dim 0.

An insert operation involves merging the new node into the right most tree in the heap.

During the insertion process, the heap order must be maintained. When merging the new node

into the tree in the heap, it may be possible to create a carry tree. The carry key is created

when the length of the main trunk is 3. The degree of the carry tree is higher by one. Thus,

the carry tree will propagate to the left and merge with the same tree degree. In the worst

case, the insertion process will take O(log n) as the result of the propagation.

The delete-min operation in this heap is similar to the delete-min operation in the Fibonacci

heap. The link between a parent and the children nodes is removed. The minimum node is

deleted from the heap while the children nodes will be merged back into the heap. In the

decrease-key operation, the node whose key was decreased is first removed from the tree. This

node however will be merged back to the heap at the main trunk level. When removing the

node, some rearrangement of the workspace is needed. Detailed definitions and explanations of

the operation are explained in (4).

2.5.4 Trinomial heap

The trinomial heap uses the idea of a bad child or inconsistent node, where a limited number

of inconsistent nodes are allowed to be in the tree. In this thesis the words “inconsistent”

and “active” are used interchangeably for convenience. Precisely speaking, active encompasses

inconsistent. A node can become inconsistent and then consistent passively by some operation

at the parent. It is expensive to check an active node is consistent with its parent. Definition of

this heap is similar to the 2-3 heap. A very simple trinomial heap structure is given in Figure

2.4. In Figure 2.4, node a has two children b and c. Node b and c are called partner nodes,

and normally sorted in non-decreasing order, unless they are active. Nodes b and d are called

siblings. Sibling nodes are distinguished by dimensions. Node d is a child of a. Node d is a

higher dimensional child of a than b is. A trunk that has nodes a and d is called the main

trunk in this tree. In general the trunk of the highest dimension is the main trunk. Node b is

an active node, where a black circle is used to represent this node in the tree. Node b is called

the first child and node c denotes as the second child on the trunk that connects a, b and c.

The first child and second child terms are used to describe the nodes’s position on the trunk.

27

2. SHORTEST PATH BACKGROUND

An active node is not allowed in the main trunk; if the wrong order occurs, the two nodes are

swapped together with the underlying trees.

 b

 c

 a

d

main trunk

Figure 2.4: An example of a trinomial tree structure

In this heap, two internal operations are introduced. These operations are called reordering

and rearrangement. Sometimes, reordering is called a promotion process. When a trunk has

inconsistent nodes, that means the key value of the head node might be lower than one or two

nodes that are located on the same trunk. If this happens, reordering will reorder the position

of the nodes to maintain the heap property. With this technique, the number of inconsistent

nodes will be reduced.

Another internal operation is rearrangement. Rearrangement is a process for rearranging

nodes that are located on two different trunks. This is done when there are two trunks of

the same dimensions have inconsistent nodes. Each might have one inconsistent node. The

rearrangement process will rearrange the position of all nodes in these two trunks so that the

heap property is maintained. Rearranging the nodes by its key values will help in maintaining

the heap structure, thus reducing the number of inconsistent nodes.

The insertion process works in a similar manner to the 2-3 heap. When a new node is

inserted into the heap, the node will be merged to the right most tree in the heap. If the results

of the merge operation is a carry tree, the carry tree will propagate to the left. The delete-min

operation is quite tricky in the trinomial heap. This is mainly because the trinomial heap allows

the heap to have inconsistent nodes. To search for the minimum node means, not only the root

nodes are scanned, but also the inconsistent nodes list should also be examined. This takes

O(log n) time to search for the minimum node as the number of active nodes is bounded by

O(log n).

During the deletion process, the number of active nodes may decrease. If the minimum node

was an active node, it must be made active. This is to make sure that the number of active

28

2.5 Shortest Path Data Structures

 a

d b

 c

 e

g f

 h j

 i

k

(a) A trinomial tree structure before the break-up operation

 a

d b

 c g f

 h j

 i

k

(b) The tree during the break-up operation

Figure 2.5: The resulting sub trees when node e is removed from the tree. Break-up operation
will result in sub trees rooted at a, f and g

nodes is decreased at least by one when the minimum node is removed.

When the minimum node is chosen to be deleted, operation break-up must be performed.

The resulting break-up depends on whether or not the minimum node is a root node or an

active node. In the break-up operation, the higher dimension parts of the tree will be broken

apart, producing trunks to be merged back into the heap at the root level. The child trunk will

also be merged to the root level after the link between the minimum node and the child trunk

is broken. Nodes in the break-up may go from active to inactive. If the first child is an active

node, the second child may be possible an active node as well. However, if the first child is not

an active node, the second child activeness does not have to be checked. After the break up,

the length of the main trunk decreases by one. The current tree position will become empty

unless the minimum node has a partner node.

29

2. SHORTEST PATH BACKGROUND

Figure 2.5 shows an example of break-up operation at node e. When e is removed from the

tree, the length of the main trunk becomes 2, where nodes a and i are treated as the first and

the second child node on the main trunk. Node a is also considered as a new partner of node

i and the same the other way around. As a child node of the removed node, node g becomes

a nonactive node. The second node on the trunk that connected nodes e, g, h, that is node

h is also made nonactive. Thus, with the break-up operation, the number of active nodes is

decreased by three; one from the removed node, e and another two from g and g. The new

trees, rooted at a, f and g, will be merged back to the root level with the existing trees in the

heap. The delete-min operation is obviously done in O(log n) time.

The decrease-key operation is quite relax in the trinomial heap. The position of the node

which the key is decreased on a trunk is important. The decreased node might have to be

swapped with a higher location node on the same trunk if the new key is smaller than the

higher node. This is to ensure that the heap order is correct. The decreased node is made

a new inconsistent node if the number of inconsistent nodes in the heap is still in tolerance.

Otherwise, reordering and rearrangement process has to be performed to keep the number of

inconsistent nodes under control. To describe the decrease-key process, Algorithm 3 is given.

Let v be the node that the key value is decreased.

Algorithm 3 Decrease-key procedure in the trinomial heap

1: if v is a root node OR v is an active node then
2: rearrangement is not necessary;

3: if v has a parent node AND v is the second child then
4: if key(v) < key(first child) then
5: swap v with the first child to maintain the correct ordering;
6: else
7: if the first child is active then
8: make v as a new active node;
9: if the number of active nodes reaches its limit then

10: rearrangement is needed;

11: else . v is the first child
12: v will be made active ;
13: if the number of active nodes reaches its limit then
14: rearrangement is needed;

15: if key(v) < key(first child) then . v is the second node on the main trunk
16: swap v with the first child to maintain the correct ordering;

In (2), the decrease-key operation can be implemented in O(1) for both worst case and

amortized time.

30

2.6 Shortest Path Application

2.6 Shortest Path Application

The shortest path problems are common problems that are relatable to our daily life. The

simple examples given in the introductory chapter was about using a Gobal Positioning System

(GPS) system to find the route from Christchurch to Twizel. The second application was about

robots used in the emergency procedure, and the last was about allocating displaced and injured

people in the minimum time possible during the disaster.

The above applications are closely related to the route finding, which is the main application

of the shortest path problem. Route finding is very important not only in the transportation

system, but also in diverse areas such as in computer games engines, social networking systems

as well as in the operational research.

Finding the best route to drive from one location to another is the main objective of a good

transportation system. Here, the shortest path algorithm may also be used as a planning tool

such as to predict the traffic flows that can be helped to find the fewest route possible during

an emergency. It should also be able to provide a drive guiding system. In the computer games,

the path finding is essential for the game engine to assist users in plotting routes. While, in the

social networking, path finding is used to find the connection between two users.

Other shortest path applications are widely used in the operational research such as in the

fleet management system in underground mines. It can also be used in routing telecommunica-

tion messages, maps and so on. Indeed, it should be used in any application where the optimal

routings must be found.

31

3

New Data Structures

This chapter presents new data structures which have been developed to facilitate the process

of finding the shortest paths by an algorithm. First, as an alternative to the existing heaps (as

described in the previous chapter), this chapter will describe and formalize the new heaps, and

discuss their performance and whether they are better than that of the existing ones. It focuses

two types of heap structures, dense and thin. In order to determine whether the dense data

structure is good, the quaternary heap has been developed. This data structure, comparable to

the trinomial heap, shows better performance in the total number of key comparisons when n

values are small (n denotes the number of vertices in a graph). Next, this chapter will discuss

the development of a new data structure called a dimensional heap. A dimensional heap is

forced to maintain the thinnest structure possible. Surprisingly, if m decrease-key operations

are called (m is the number of edges in a graph), the dimensional heap shows outstanding

results. Empirical studies demonstrate that this data structure performs better than existing

binary, Fibonacci and 2-3 heaps.

3.1 Introduction

In this section, descriptions of tree and r -ary tree are given. A tree is defined as a priority queue

that consists of nodes and branches. Each branch connects two nodes together. If each node in

the tree is arranged according to its key value, this special type of tree is known as a heap. In

the minimum heap data structure, the key value of a parent node is always lower than or equal

to those of children nodes; for all nodes v ∈ V , excluding the root, key(parent(v)) ≤ key(v) (V

denotes the set of vertices or nodes). The same concept is applied across the heap. Therefore,

the root node of the minimum heap always has a minimum key value among other key values.

32

3.1 Introduction

The root node is also the only node in the heap when there is only one node in the heap.

The term heap and tree are used interchangeably to describe the heap data structure in this

Chapter.

The first branch exists from the root node when a second node is added to the tree. In other

words, whenever a new node is inserted to the tree, there will be a presence of a new branch

connecting the existing node and the new node. A path that connects several nodes is called

a trunk. The length of a trunk is the number of branches plus 1, that is, the number of nodes

comprising the trunk. The first node in the trunk is called the head or parent node. Other

nodes are children of the head nodes. The nodes on the same trunk are called partners. A tree

is created when a group of trunks are connected in some fashion. An example of a tree with its

terminology is given in Figure3.1.

root node main trunk

branch

node

trunk

Tree/heap

a

b
c d

e

Figure 3.1: Basic terminology of a tree

Each node in a tree is said to be in certain dimension. Dimension of node v is stated as

dim(v). Let us define the dimension using Figure 3.1. If node v is located on a trunk in the

lowest level (the trunk slopes towards bottom-left), it is said that node v is in dimension 1,

dim(v) = 1. When the trunk slopes towards the bottom-right, nodes on this trunk are said to

be in second dimension, dim(v) = 2. The parent node on each trunk is always in one dimension

higher than the highest dimension child. For example, if the highest dimension child is i, then

the parent node will be in dimension i + 1. The parent node can be the root node if it has

the smallest key value. Thus, the dimension of the tree is said to be in the same dimension of

the root node. In Figure 3.1, node a is the root node. Nodes c and d are children of node a.

Dimensions of node d, dim(d) = 1 and node c, dim(c) = 2. The highest dimension of the child

node is 2; therefore, the dimension of the root node, dim(a) = 2 + 1 = 3.

Two nodes are called partner nodes if they are connected to each other on the same trunk.

However, they can be only classified as the partner nodes if they are in the same dimensions.

33

3. NEW DATA STRUCTURES

In Figure 3.1, nodes d and e are called partner nodes, and normally sorted in non-decreasing

order, unless they are active.

On each trunk, the maximum number of nodes, i.e., the length is limited. This limitation

depends on the type of the heap. In Figure 3.1, the length of the main trunk is 2 and that of

all other is 4. The main trunk is defined as a trunk that connects two trees of the same degrees

together.

The degree of a node is known by calculating the number of children nodes. The degree of

node x is denoted as deg(x). If the degree of the root node is i, then the degree of a tree is

also i as it depends on the degree of the root node. In Figure 3.1, deg(d) = deg(e) = 0 as both

d and e have no child node. As c has only one child, then deg(c) = 1. The degree values of

deg(a) = 2 and deg(b) = 2 as each has two children nodes. The structure of the higher degree

tree is always comprised of a few lower degree tree structures in it.

3.1.1 Polynomial of trees

This section provides a more formal description of a polynomial tree. Definition of the poly-

nomial tree here is borrowed from (4) and (2). A linear list of r nodes creates a linear tree of

size r. The linear tree of size r is called an r tree. Let S and T be two trees. The product of

the two trees, P = ST , is defined in such a way that every node in S is replaced by a copy of

T and every branch in S connecting two nodes u and v now connects the roots of the roots of

the trees substituted for u and v in S. In general ST 6= TS. The sum of two trees, S + T is

defined as a collection of two trees S and T .

In some situations, r trees can be linked to each other. The process of linking these trees is

known as an r -ary linking. The result of the r -ary linking is an r -ary polynomial of trees. In

the r-ary polynomial of trees, there will be a collection of r trees. The collection of trees is said

to be the sum of r trees.

The r -ary polynomial of trees, P , of degree k − 1 is defined by:

P = ak−1r
k−1 + . . .+ a1r

1 + a0 (3.1)

where the size of ai is 0 ≤ ai ≤ r − 1. In this notation, boldface for a tree and non-boldface

for the size of the corresponding tree are used. The term ai represents a coefficient in the

polynomial while ri denotes a complete r -ary tree of degree i. The coefficient in the polynomial

34

3.1 Introduction

can be calculated by counting the number of trees of size ai. These trees are located on the

main trunk.

The plus symbol,“+” in the equation 3.1 denotes the addition of a collection of trees. Bold

r is used to describe a linear tree of size r. The different value of r distinguishes the type of

the r-ary tree. If r = 3, the r-ary tree is called a trinomial tree (2). The tree is defined as a

quaternary tree if r = 4 (a quaternary heap is a new heap that will be described further in the

next section).

Figure 3.2 shows an example of a complete polynomial tree of degree 2. The leftmost tree

in this polynomial tree has ai = 2 and r2. Thus, combining ai and r2, this tree is represented

by 2× r2 and the node count of this tree is 2× 42 = 32. The polynomial tree in this example

is expressed as:

P = a2r
2 + a1r + a0 (3.2)

Figure 3.2: A complete polynomial tree of degree 2

In the r-ary polynomial tree, the rightmost tree is the lowest degree tree. Moving from the

right to the left in the r-ary polynomial tree, the higher degree trees can be found. The right

most tree in the above P can be written as a0r
0. This tree is called T(0) as the degree value

is 0. The tree with the degree k − 1 is called T(k − 1).

Then the above polynomial tree can be written as:

P = ak−1T(k − 1) + . . .+ a1T(1) + a0T(0)

Two trees of the same degrees can be merged by adding their coefficient values. The result

35

3. NEW DATA STRUCTURES

of merging aiT(i) + a′iT(i), where “+” here means the merge process, is (ai + a′i)T(i) if

ai + a′i < r. Otherwise, the merge operation will create a carry tree ri+1. Figure 3.3 shows the

results obtained when two trees are merged. Figures 3.3(a) and 3.3(b) show example of results

obtained when the coefficient values, ai + a′i < r. When ai + a′i = r, the merge process will

create a carry tree of one degree higher as shown in Figure 3.3(c). Figure 3.3(d) shows not only

a carry tree, but also the tree with the existing degree is maintained when ai + a′i > r.

Details explanation of r-ary tree can be found in (4) and (2).

3.2 A Quaternary Heap

The first data structure which has been developed is called a quaternary heap. A quaternary

heap is defined as an extended version of the trinomial heap (2). The only difference between

these two heaps is the trunk size or the length of the trunk. In this quaternary heap, the length

of main trunks can be 0 to 3, and other trunks have length 4. Key values in a trunk are sorted

in non-decreasing order, except for the head node.

The design of a quaternary heap is also similar to a trinomial heap. When linking nodes by

a trunk, a certain number of inconsistent nodes is allowed. The inconsistent nodes are nodes

that have key values greater than the parent’s key value. The idea of these inconsistent nodes

are derived from a relaxed heap (44). In the relaxed heap, these nodes are called bad children.

In this thesis, the terms inconsistent node, active node and bad node are used interchangebly

to represent the same meaning.

A collection of quaternary trees forms a quaternary heap. The quaternary trees are known

by their degrees. The degree of a quaternary tree is given by the degree of the root node.

Generally, T(i) is said to be a tree of degree i, which is the degree of the root. The degree of a

node can be obtained by calculating the total number of trunks that connect to the node.

A quaternary heap with an underlying polynomial of trees P = 2T(2) + 3T(1) + 3T(0) is

shown in Figure 3.4. Trees within the quaternary heap are linked to each other by their roots.

A pointer H is used to point to the lowest degree tree in the heap. Inconsistent nodes are

indicated by black circles.

The rightmost tree is the lowest degree tree. The degree of the tree increases from right to

left trees in the heap. The quaternary tree T(i) contains a maximum of 3T(i− 1) trees. If the

quaternary tree of 1T(i) is merged to 3T(i), the result will be a new 1T(i + 1). This means

that the degree of the tree is increased by one, thus

36

3.2 A Quaternary Heap

head

 8

 9

 17

 5

 41

 52

 13

 15
<- merge -> 8

 9

 17

 5

 41

 52

 13

 15

(a) The merge of 1T(1) tree with another 1T(1) tree

head

 8

 9

 17

 5

 41

 52

 13

 15
 3

 6

 8

 2

<- merge ->
 8

 9

 5 3

 6

 8

 2

 41

 52

 13

 15

 17

(b) The merge of 2T(1) tree with 1T(1) tree

head

 8

 9

 17

 5

 41

 52

 13

 15
 3

 6

 8

 2

 23

 40

 11

 12 <- merge ->
 8

 9

 5

 13

 41

 3

 6

 8

 2

 23

 40

 11

 12

 52

 15 17

(c) The merge of 2T(1) tree with another 2T(1) tree

head

 3

 6

 8

 2

 23

 40

 11

 12
 5

 8

 13

13

 1

 12

 30

 8

 9

 21

 37

 8

 4

 8

 12

12

 3

 6

 8

 2

 21

 37

 8

 9

 30

12

23

 40

 11

 5

 8

 13

 1

<- merge -> 4

(d) The merge of 2T(1) tree with 3T(1) tree

Figure 3.3: Merging process involving different types of trees

37

3. NEW DATA STRUCTURES

 2 1

 12

 15

 23

 11

 12

 8

 9

 9

 14

 18 14

 15

 21

 8

 11

 13

 6

 7

 13

 15

 27

 5

 6

 7

 8 9

 10

 33

 4

 3

 14

 19

 21

 9

 8

 9

 17

 8

 11

 11

 14

 5

head

 1

 4

 53

H

Figure 3.4: An example of a quaternary heap

Lemma 1 For the quaternary tree 1T(i), there are 4i nodes.

Proof The proof is by induction on i. The basic of the quaternary tree is 1T(0). A quaternary

tree T(i) consists of a maximum of 4T(i−1). Therefore 1T(i) has 4i−1+4i−1+4i−1+4i−1 = 4i

nodes.

From lemma 1, the number of nodes in the quaternary heap in Figure 3.4 can be calculated

as below:

|P | = 2T(2) + 3T(1) + 3T(0)

= 2× 42 + 3× 41 + 3× 40

= 47

A basic node structure in the quaternary heap is shown in Figure 3.5. The structure type

used for nodes is very similar to that used for other heaps (3), (4) and (2). The main difference

is that below partner and above partner pointers are used which points to nodes partners on

the same trunk. A description of each node’s attributes is presented in Table 3.1.

3.2.1 Quaternary heap operations

Common operations supported by the quaternary heap are described. These operations are

insert, delete-min and decrease-key.

insert(H,x): inserts element x into the heap pointed by the H pointer.

delete-min(H): removes and returns the minimum key value from the heap.

38

3.2 A Quaternary Heap

parent

child

above_partner

below_partner

dim

vertex_no key right left

active_entry

Figure 3.5: A basic node structure in the quaternary heap

Attributes Descriptions
parent a pointer to point to the parent of the node
child a pointer to point to the child of the node.
vertex no the number of the graph vertex that the node corresponds to
key the key value of the node

below partner
a pointer to point to the below partner of the node.
(Below partner is a node that is located below the node on the trunk)

above partner
a pointer to point to the above partner of the node.
(Above partner is a node that is located above the node on the trunk)

dim a dimension of the node is equal to the degree of the node

active entry
an indicator to check node’s consistency
(If the node is not active this field will be NULL)

left a pointer to point to the left sibling of the same parent
right a pointer to point to the right sibling of the same parent

Table 3.1: The descriptions of each attribute of a node in the quaternary heap

decrease-key(H,x, k): replaces the key value of node x with k value. Here the value of k is

always lower than or equal to the current key value of x.

The details of each operation are described in the followings.

3.2.1.1 Insert operation

Insert process is a process to insert a new key into a heap. It may also be defined as a process

to merge a new tree of type T(0) into the heap. The particular process depends on whether

there are any existing trees of the same type in the heap. There are four cases that need to be

considered:

Case 1 There is no existing tree of type T(i), then simply insert the new tree into the T(i)

position on the heap at the root level.

39

3. NEW DATA STRUCTURES

Case 2 There is an existing tree of type T(i) with coefficient value, ai = 1, that is 1T(i). The

insert process will create a new 2T(i). Only one comparison is needed to compare the

root values.

Case 3 There are two existing trees of type T(i) with coefficient value, ai = 2, that is 2T(i).

The insert process will create a new 3T(i). At most two comparisons are needed.

Case 4 There are three existing trees of type T(i) with coefficient value, ai = 3, that is 3T(i).

The insert process is supposed will create a new 4T(i). However, the coefficient value

reaches the limit (that is 4). This new tree structure is called a carry tree of T(i+1) with

coefficient value, ai+1 = 1 . Thus, the new tree is 1T(i+ 1). This carry tree is forced to

continue the insertion process with the tree of type T(i+ 1) at the root level.

Generally, to insert only a single node to the heap, the new node will be added to the

rightmost tree, on the T(0) position. However, contrary to the trinomial heap, an insertion

cache is introduced in this quaternary heap. For this purposes, an adaptive cache on the

incoming stream of nodes is created to catch up to four consecutive nodes. Each new node will

be compared with the largest node held by the cache. Let the current node in the adaptive

cache be called a cached node. The next incoming node is a node which is ready to be inserted

after the current node. If the key value of the next incoming node is greater than the key value

of the cached node, one comparison is needed and the new node will be placed below the cached

node on a trunk. The adaptive cache now has two nodes in it.

In the insertion cache, whenever a new node is inserted, the key value of the new node

will always be compared with the key value of the lowest node in the adaptive cache. Thus,

only one key comparison is needed. If there are many sequences of monotone-increasing key

values, there are likely many completed trunks created in the cache. The trunk will then be

flushed from the adaptive cache and be merged to the tree T(1) heap position at the root level.

Otherwise, if it resulted in an incomplete trunk, this trunk will be merged to the T(0) heap

position. That is, two entrances to the heap, T(0) and T(1) are provided. The cache concept

technique can reduce the number of node-to-node key comparisons when inserting the new node

into its correct tree position. Figure 3.6 shows some intermediate stage during the insertion

operation. In the figure, there is a sequence of incoming stream of nodes that consists of nodes

5, 12, 27, 35, 67, 80 and 6.

The insertion process in the cache takes one comparison. It is expected that 4-node trunks

can absorb the effect of partially sorted sequences better than 3-node trunks. In other words,

40

3.2 A Quaternary Heap

Input sequences: 5, 12, 27, 35, 67, 80, 6

 12

 5 insert (5)

 5 insert (12)

insert (27)

insert (35)

27

35

 5

 12

 5

12

 53

complete trunk merge the trunk to

T(1) tree in the heap

insert (67) 67

80

67 insert (80)

incomplete trunk merge the trunk to

T(0) tree in the heap

6 insert (6)

Cached nodes

Figure 3.6: Two entrances introduced in the quaternary heap

the quaternary heap can behave adaptively for partially sorted inputs. For other insertions

described in the four cases above, different running time is obtained. For cases 1-3, the running

time is in O(1) time. However, when a carry tree is created (case 4), the carry key propagates to

merge with the higher degree tree. Therefore the insert process is in the worst case in O(log n)

time.

3.2.1.2 Delete-min operation

Delete-min is a process that performs the following three steps: finds the minimum node in the

heap, removes the minimum node from the heap, and re-arranges the heap accordingly after the

minimum node has been removed. In the quaternary heap, to find the minimum node, three

41

3. NEW DATA STRUCTURES

locations should be found. First, the minimum node in the heap can be found by searching the

root nodes of all trees in the heap that pointed to by a pointer H. This process takes O(log n)

time. Then, the minimum node should also be searched from the active node list. This also

takes O(log n) time. Lastly, the root node in the cache memory is sought that takes O(1) time.

These three minimum nodes from different locations will be compared, and the node with the

lowest key value will be chosen as the minimum node that will be removed from the heap.

Once the minimum key is found, it must be deleted from the heap. If the minimum node is

found from the cache area or from T(0), O(1) time is taken to remove the node. No arrangement

is made to the heap. The lower node located on the same trunk with the minimum node will

be chosen as the new root of the tree, if it exists.

If the minimum node is obtained from the root node, the tree will be broken apart into

smaller sub-trees. Let v be a root node of aiT(i), where 1 < ai < 4 in the quaternary

heap. When v is removed, sub-trees, biT(i),biT(i − 1),. . . , biT(0) are obtained, resulted in

the removing of v from the heap. The number of these sub-trees depends on the value of ai

of the tree aiT(i) rooted at v. However, if ai = 1, then only trees of biT(i − 1),. . . , biT(0)

are obtained. In other words, there no sub-tree of deg(v) exists anymore. Figure 3.7 shows an

example of a tree that breaks into three separated sub-trees when the root node is removed.

Obviously, to merge these sub-trees back to the heap at the root level takes O(log n) time.

3.2.1.3 Decrease-key operation

To discuss decrease-key operations, two internal operations should be explored. For a trinomial

heap, these operations are called reordering and rearrangement. Active nodes are first created

due to inconsistency at the beginning, but can become consistent when the key of the head

node decreases.

Rearrangement

The arrangement of nodes in a trunk is another technique for reducing the number of

active nodes in the heap. Usually this process comes before the reordering process. The

rearrangement process will rearrange the position of the same dimension active nodes that are

located on two different trunks. During the rearrangement process, two or three active nodes of

same dimensions are placed on the same trunk and later the reordering process is called. This

process is also similar to the rearrangement operation in a trinomial heap. See an example of

the rearrangement process, see Figure 3.8.

Steps in the rearrangement are described as follows.

42

3.2 A Quaternary Heap

 18

 2

head

H
 5 4

 12

 15

 23

 11

 12

 8

 9

 14

 9

 14

 18

 15

 21

 8

 11

 13

 6

 7

 13

 15

 27

 6

 7

 8 9

 10

 33

 4

 1

 22

 44

 51

 13

 16

 11

 12

 33

 14

 17

 31 30

 31

 55

 6

 12

 2

 8

 11

 13

 6

 7

 13

 15

 27

 6

 7

 8 9

 10

 33

 4

 22

 44

 51

 13

 16

 11

 12

 33

 14

 17

 31 30

 31

 55

 6

 12

 4

 12

 15

 23

 11

 12

 14

 9

 14

 15

 21

 5

 8

 9

3T(2)

2T(2) 3T(1) 3T(0)

Figure 3.7: Sub-tress, 2T(i), 3T(i − 1) and 3T(0)obtained when the root node of 3T(i) is
removed

1 Identify active nodes, its below partner, above partner, and parent. Mark them with v1, v2, v3

and Pv.

2 If there are two or three inactive nodes on the same trunk, the active nodes have to be made

inactive. If the key of v2 or v3 are less than the parent key, a promotion or reordering

operation is called.

3 The second trunk is checked for other inactive nodes. Here, the trunk is labeled with

w1, w2, w3 and Pw.

4 If there are two or three active nodes on the same trunk, the second and the third node are

made inactive and perform promotion if necessary.

5 Arrange v1, v2, v3 and w1, w2 and w3 accordingly.

Reordering

Reordering is the process of reordering node position on the same trunk. It is done to reduce

the number of active nodes in the tree. Let u, v and w be active nodes on a trunk of dimension

i, placed according to the ascending order of key values, key(u) ≤ key(v) ≤ key(w).

43

3. NEW DATA STRUCTURES

 Pv

 v1

v2

 v3

Pw

 w1

w2

w3

Pv

 v2

w2

w3

Pw

 w1

v1

v3

(Before) (After)

Pv

 v2

w2

w3

w1

 v1

Pw

v3

Figure 3.8: Rearrangement process in the quaternary heap

The head node of this trunk is Pu and this node is in dimension i+ 1. During the ordering

process, key(w) will be compared with key(Pu). If key(Pu) < key(w), node w will be made

inactive, and nothing else. In this case, one active node is reduced. In a case where only the

nodes u and v be active nodes, key value of node v will be compared with key(Pu). Node v will

also be made an inactive node if key(Pu) < key(v). Otherwise, Pu is moved to the appropriate

position on the trunk, and its dimension is decreased to i. Node u will replace the old position

of Pu, and its dimension now becomes, dim(u) = i + 1. With a reordering operation, the

number of inactive nodes can be reduced. However, replacing Pu with u as the new head node

may cause another decrease-key operation at dimension i + 1. Figure 3.9 demonstrates the

reordering process in a quaternary heap.

 15

 1

4

 8

 1

 4

8

15

 15

 1

4

 18

 1

 4

15

18

(Before) (After)

 7

 1

4

 8

 7

 1

4

8

Figure 3.9: Different cases of reordering process in the quaternary heap

The decrease-key process in the quaternary heap deploys the same decrease-key technique

such in the trinomial heap. The objective of this operation is to decrease the key value of the

44

3.2 A Quaternary Heap

node to a new key value which is lower or equal to the current key value. Heap violation might

occur as the result of this operation. In the quaternary heap, once the key value of a node

is less than its parent node, the node is said to be an inconsistent or an active node. The

quaternary heap permits certain nodes to be inconsistent nodes. Two or three inconsistent

nodes are allowed to be on the same trunk or even of the same dimensions. However, the

number of inconsistent nodes is limited and it is always kept under control by performing two

operations: reordering and rearrangement as explained before.

There are a few cases of decrease-key operation. It depends on the position of the decreased

node, v on a trunk.

Case 1 If v is a root node, rearrangement is not necessary as the key value of root is always

smaller than other nodes.

Case 2 This case involves active nodes. If v is the first child and it was an active node,

rearrangement is not necessary as the number of active nodes is maintained. If v is the

middle or the last node on a trunk and its key has become less than the upper node(s)

on the trunk, which were active nodes, v is swapped with the upper node(s)to maintain

the correct ordering of the heap. Then, v is made an active node.

v

v

v

Figure 3.10: Different v’s positions

Case 3 In this case, v is not an active node and it is located on the main trunk. If the key

value of v is smaller, it has to be swapped with other key values to maintain the correct

heap ordering. After it has been swapped, v might become the root node, therefore the

tree of that particular dimension is made rooted at v.

Case 4 This is a complete trunk where there is a parent node. Node v is located somewhere

on the trunk and it can be the first node, the middle node or the last one. If v is the

middle or the last node on the trunk, v is swapped with the upper node(s) on the trunk

45

3. NEW DATA STRUCTURES

v

v v

Figure 3.11: Different v’s positions on the main trunk

to maintain the correct ordering. In a case where v is the first child or becomes the first

child after the key value is decreased, v is made an active node. The number of active

nodes might reach the tolerance level after v becomes active. Thus, rearrangement might

need to be performed to control the number of active nodes in the heap.

v

v

v

p p p

Figure 3.12: Different v’s positions on a complete trunk

The number of active nodes in the quaternary heap is maintained within tolerance. To

do that, a counter is used to count the total number of active nodes. If the total number of

active nodes exceed the allowed number, rearrangement or/and reordering operations will be

performed. Using the pigeon hole principle, it is known that if the number of inactive nodes

reaches its limitation, then, there must be at least two active nodes of the same dimensions

existed. Thus, this will cause no chain effect. For the quarternary heap, decrease-key operation

is done in O(1) worst case time.

In the next section, another new heap is explained. If the quaternary heap always maintains

the dense structure, the next invented heap tries to maintain the thinnest structure possible.

46

3.3 A Dimensional Heap

3.3 A Dimensional Heap

A dimensional heap is a collection of trees that are based on binary linking and satisfy the

minimum heap property. This implies that an element with the lowest key value is always at

the root level. Just like the existing 2-3 heap, the dimensional heap is constructed by binary

linking of trees repeatedly, that is, repeating the process of making the product of linear tree

and a tree of lower dimension.

Each tree in the heap consists of nodes and branches. Every two nodes are connected to

each other by a single line that is called a branch. Note that some common heap data structure

terminology applied here are equivalent to the existing terms defined in Table 3.1, unless it is

stated in another meaning. A node is said to be in dimension 0 if the node is a leaf node. This

means the node has no child node underneath. When any node becomes a parent node, the

dimension of the node is changed to a higher one. In the dimensional heap, a parent node in

dimension i can have a maximum of 2 children nodes in each of dimensions i − 1, i − 2, ..., 0.

Each child of a parent is connected to each other by left and right pointers. These children

are called siblings. The other existing heaps such as 2-3 heap (4) and trinomial heap(2) share

almost the same structure as the dimensional heap. Compared to other heaps, a new indicator

is introduced in the dimensional heap that is called thickness. This indicator is used to check

whether the node has any sibling that is in the same dimension. If the same dimension siblings

are found, the thickness of the node is set to be true and false otherwise.

A basic structure of a node in the heap is shown in Figure 3.13.

 parent

left right child

key dim

thickness

Figure 3.13: A basic node structure in the dimensional heap

A dimensional heap of dimension n− 1 is given by

an−1T(n− 1) + ...+ a1T(1) + T(0) (3.3)

47

3. NEW DATA STRUCTURES

From 3.3 T(i) is a tree of degree i and ai is a linear tree co-efficient. A symbol T used here

represents a tree. Each ai is either 0 or 1. If ai = 0, that means no existence of tree T (i). The

tree of T(i) exists if only ai = 1. If there are two children of dimension i, the dimension is said

to be thick and they are called thick siblings.

d = 2 d = 0

d = 0

d = 3 1

2 4

9

3

8 5

7

d = 1

d = 1

d = 0

6

2

5 7

8

d = 2

d = 1 d = 0

d = 0

d = 0

Figure 3.14: An example of a dimensional heap (d indicates dimension)

Figure 3.14 shows a heap that consists of two trees, T(3) and T(2). The nodes are identified

by their key values for simplicity. The root nodes are nodes with key values (1) and (2). There

are two thick edges from a node with key value (3), that is (3, 8) and (3, 5). A tree T(3) has 3

children of dimensions 2,1 and 0. The lowest dimension child, that is a child node in dimension

0, is always located at the left most location of the children, while the highest dimension child

is located at the right most of the tree (Figure 3.14 uses d to represent a dimension). The thick

lines used in the Figure is to indicate the thick edges. The tree is called a complete tree if it

has two children in each dimension as shown in Figure 3.15. All edges in the complete tree are

only thick edges. For the sake of clarity, the tree structure of T(3) in Figure 3.14 is provided

in Figure 3.16.

48

3.3 A Dimensional Heap

 d = 3

1

7

9

4

5

6

3 4

2 3

8

9

5

8

7

9 8

5

2

6

7

2

4

3

6 8

6

Figure 3.15: An example of a complete dimensional heap

to B

3 1

0 2

1 4

0 9

0 8

0 5

0 7

1 6

2 3

A

to A

A’

to A’

to B’

B’

B

0

0

0

0

0

1 1

0

0

Figure 3.16: Internal representation of node connectivity in T(3) in Figure 3.14

The next section discusses a workspace, tree potential, and amortized cost concepts that

are essential before dimensional heaps operations are described.

49

3. NEW DATA STRUCTURES

3.4 A Workspace

A workspace of node x is a term used to define four neighboring nodes of x. The workspace of

node x with dimension of x, dim(x) = i consists of two nodes of dim(i) and two other nodes in

higher dimensions. These higher dimension nodes must be one of dim(i + 1) that defines as a

parent of x and the other one is a sibling of the parent or a parent of the parent.

To find the workspace of x, first select the node itself to be the primary node in the

workspace. Second, traverse to the parent’s node and choose the parent as the next node

in the workspace. Third, if the parent labeled as y node has a thick sibling, traverse to the

parent’s thick sibling and select the node as the third one. Let that node be called node u.

Finally, choose u’s child, i.e. v, as the fourth node in the workspace. This workspace can be

called the right workspace of x.

If the right workspace does not exist, as there is no node u in the tree, the left workspace is

looked for. To find the left workspace, traverse to the parent’s parent labeled with r. Choose

node r as the third node in the workspace. The last node to be chosen is the parent’s left

sibling, s that has a lower dimension than the parent but apparently same dimension with x.

Figure 3.17 shows different workspaces of node x.

 y u

v x

(a) An example of the right workspace
of x

r

s y

x

(b) An example of the left
workspace of x

Figure 3.17: Workspace definition of node x

There is a case where the workspace can not be reached. In this case, the node itself might

be the root node of the tree or the parent of the node has no other sibling. The workspace

is not defined in these nodes as they are located at the highest dimension of the tree. Any

operation occurs at these nodes will effect the tree structure, whether the tree grows or shrinks.

50

3.5 Tree Potential

That means, the tree may no longer remain within standard arrangement for its respective

dimension.

Every node in the dimensional heap can use their workspace nodes to assist them in per-

forming an expensive heap operation, as such when the decrease-key function is executed.

3.5 Tree Potential

A potential, Φ, of the dimensional tree is calculated based upon summing the total number of

edges in the tree. When there are two nodes on a trunk, the trunk is said to have one potential,

Φ = 1. In a tree, some nodes have a thick sibling, which means that these nodes share the

same parent and have the same dimension of nodes. These thick siblings are connected to the

parent’s node by thick edges. For the each thick edge, the potential is defined as Φ = 1 as well.

These thick siblings are in the same dimensions. Let et and ek represent the total number of

thin edges and thick edges. If a tree, T(i) has the thin and thick edges, the total potential in

given by:

ΦT (n) = et + ek

The total number of potential in the heap in Figure 3.14 that has two trees, T(2) and T(3) is

calculated as below:

T(2) : et = 3, thus, ΦT(2) = 3

T(3) : et = 6, ek = 2, thus, ΦT(3) = 6 + 2 = 8

To count the total number of potential in the heap is to sum the total potential for all trees in

the heap. Therefore, the total number of potential in the heap is

∑
Φn = 3 + 8 = 11

The potential concept will be used in the next section.

3.6 Amortized Cost Analysis

Amortized cost is used to analyze the time taken per operation. The idea of using this analysis

is to get the average over the sequence of operations. When running a large program, many

operations are involved. Some operations are very expensive to run and some other operations

51

3. NEW DATA STRUCTURES

are relatively cheap. However, the number of frequency in running the both operations are dif-

ferent; some cheap operations are used more and occur more frequently compared to expensive

ones. With the amortized cost concept, it is somehow guaranteed that the time taken to run a

program is efficient.

In a tree or a heap data structure, two main elements are used to measure the amortized cost.

The first element is the difference of the potential of the tree before and after the measured

operation is called and the second element is the number of key comparisons used by the

operation. The potential of a tree is defined as the sums of edges in the tree, while key

comparisons are calculated when the operation compares two or more key values of nodes.

Denote Φi as the potential of a tree after the i-th heap operation. An amortized cost of the

i-th after the i-th operation in a tree is defined ai = ti− (Φi−Φi−1), where ai is the amortized

cost of the operations, ti is the total number of comparisons calculated for performing the

operations, Φi−1 is the potential before the operations are performed and Φi is the potential

after the operations have been accomplished. The sum of the amortized costs of heap operations

gives the overall amortized cost A, which is

A =
∑
i

ai

Meanwhile, the number of key comparisons gives overall actual cost for the heap operations.

Thus, the total costs of heap operations is given by:

T =
∑
i

ti

The total amortized costs over N heap operations gives:

A = a1 + a2 + . . .+ aN

= (t1 − (Φ1 − Φ0)) + t2 − (Φ2 − Φ1) + . . .+ (tN − (ΦN − ΦN−1)

= t1 + t2 + . . .+ tN + (ΦN − Φ0) + ((Φ1 − Φ1) + (Φ2 − Φ2) + . . .+ (ΦN−1 − ΦN−1))

= t1 + t2 + . . .+ tN + (ΦN − Φ0)

= T + (ΦN − Φ0)

where T is the total number of key comparisons or the total of actual cost, Φ0 is the heap’s

initial potential and ΦN is the potential of the last state. At the starting state, the potential

Φ0 is zero and end state is the same, then ΦN −Φ0 = 0. Therefore, the total amortized cost is

52

3.7 The Dimensional Heap Operations

reduced to:

A = T

that is the total amortized cost of heap operations is equal to the total of actual cost.

From this analysis, there are three possible outcomes to be achieved, in terms of whether

each ai is positive, 0 or negative. If positive value is achieved, it means that a cost was incurred

during the operation. Negative result on the other hand means a profit was gained during the

operation. If a zero result is obtained, the cost of the particular operation is essentially free.

An example of a simple amortized cost calculation is described below.

3

7

1

9

<merge>

1

9

3

7

Figure 3.18: Merging of two trees, T(1) + T(1), resulted in a new T(2)

Figure3.18 shows the merge of two trees of T(1) . The potential of each tree before merging

is 1, thus, for the two trees, Φ = 1 + 1 = 2. To merge the tree, one comparison is needed to

compare the root nodes. After the merge operation, a new T(2) is created. This new tree has

a potential, Φ = 1 + 1 + 1 = 3. The amortized cost for a single m merge operation is:

am = tm − (Φm − Φm−1)

= 1− (3− 2) = 0

The motivation for amortized analysis is that implementing an expensive and tricky operation

has a lot of cheap operations before it. Using this concept, the worst case analysis of each

operation can be said to not estimate the overall performance.

3.7 The Dimensional Heap Operations

In this section, several basic operations in the dimensional heap are given.

53

3. NEW DATA STRUCTURES

Merge: Compare the two root elements, the smaller remains the root of the result, the larger

element and its subtree is appended as a child of this root.

Insert: Create a new node in dimension 0 and place to the heap in tree 0.

Delete-min: Find the minimum key value at root level in each tree in the heap and remove

the node that has the minimum key value from the heap.

Decrease-key: Decrease the key value of the required node and do some tree arrangement of

the heap.

3.7.1 Merge Operation

Given a dimensional heap of dimension i as ai−1T(i− 1) + ...+ a1T(1) + T(0). To expand the

trees in the heap means to add a new node to the heap. If the lowest dimension tree of the

heap already has a node on it, then the new node must be merged with the existing one. This

is how the merge operation comes to play. Generally, to link a minimum of two nodes together

requires a merge operation. There are two cases which arise when the merge function is called.

case ai = 0 : The new node or tree is simply added in the correct T position.

case ai = 1 : A carry key of T(i) is made with one key comparison, and increases the potential

by one.

Two trees in same dimensions can be merged by comparing the root nodes’ key values.

Given two trees that are called A and B, the idea is to combine these A and B trees together.

The merge process is done as follows. First, both of the trees must be in same dimensions.

Next, the key values of the root nodes in tree A and tree B are compared. If the key value of

the root node of tree A is less than the key value of the root node of the second tree, the root

node of A becomes the new root node of the new tree, or the root node of B otherwise. Note

that when the roots are merged, the trees underneath also move accordingly. See Figure 3.19.

54

3.7 The Dimensional Heap Operations

2

9

<merge>

3 3

8 5

1

2 1 3

6 5

1

2 1 3

6 5

2

9 3 3

8 5

Figure 3.19: An example of a merge process

The result of merging two trees is a new higher dimension tree. For example, as shown

in Figure 3.19, when trees of dimension 2 are merged, a new tree T(3) is created. With this

technique, the previous effort used to create the existing tree branches of each T(2) is not

wasted.

The amortized cost for this operation is always free, which is 0. This is because, when two

trees are merged, one comparison is needed to choose the new root node and the potential

value is one as one new branch is created after the merge. Therefore, the amortized cost for

one merge operation is a1 = t1 − (Φ1 − Φ0) = 1− 1 = 0.

3.7.2 Insert Operation

Inserting or adding a new node to a heap is the most basic operation and must be performed

at the early stage after initializing the heap. It has to be done at least once, before other

operations such as merge, delete-min or decrease-key operations is called. To insert a new node

to the heap means to add the node to the lowest dimension tree, that is T(0).

55

3. NEW DATA STRUCTURES

T(0)

7 4

9
3

8 5

7

T(1) T(3)

2

5 7

8 6

3 x

insert (x,3)

4

9

3

8 5

7

T(2) T(3)

2

5 7

8 6

3

7

x

Figure 3.20: The process of inserting node x with key(x) = 3 to the existing heap

Let x be the new node to be added to the heap. If T(0) is empty, insert x at T(0) and x

becomes the only node in T(0). If there is the existing T(0) in the heap, key(x) is compared

with the key value of root node of T(0). If key(x) is less than or equal to the key of the root

node, make a carry tree to T(1) with x as the new root node. This may propagate to the higher

T(i) if there are existing trees of T(1), . . . ,T(i− 1) in the heap. Figure 3.20 explains the steps

taken when node x with key(x) = 3 is added to the heap. In this example, the current heap

has trees of T(0),T(1) and T(3).

The insert operation works as follows. Firstly, key(x) is compared with (7) at T(0). Sec-

ondly, they are merged to create a new T(1) with x as the root node. Note that key(x) is

less than or equal to the previous T(0) root key value. When the new T(1) is created, T(0) is

released to be empty as there is no more node in T(0). Thirdly, the new T(1) will be merged

with the existing T(1) in the heap after comparing key(x) and (4). As key(x) ≤ (4), x is

56

3.7 The Dimensional Heap Operations

chosen to be the root node of the new T(2) as the result of merging trees of T(1). Finally, the

propagation ends as there is no more tree of T(2).

The amortized cost to insert a new node in the heap is always free. If there is an existing

node in T(0), one comparison is needed and one potential is gained, making the amortized cost

zero. The process is also free if there is no node in T(0) as no comparison neither potential are

used or gained with this process. In the worst case, insert operation is done in O(log n) time

as the result of propagating T(i) to T(i+ 1).

3.7.3 Delete-min Operation

The delete-min operations is described in details. The use of delete-min operation is to return

the minimum key from the heap. To do this, delete-min must search for the smallest key value

at the root level in each tree. When the node with the minimum key is found, the operation

will break apart all children of the minimum node and merge them to the appropriate trees.

Let the root of tree T(i) have the minimum key. Children of tree T(i) are trees of T(i −

1),T(. . .),T(0). These children trees will be disconnected from the minimum node that is their

parents’ node. These trees will then be merged to the trees of the same dimension in the heap.

For example, the tree T(i − 1) will be merged to the existing tree T(i − 1) in the heap. The

merge concept is similar to the description of merging operation in 3.7.1.

T(0)

2 4

9
3

8 5

7

T(1) T(3)

2

5 7

8 6

Figure 3.21: The result after performing delete-min on Figure 3.14

For clarity purposes, Figure 3.14 is referred to. Let the delete-min operation be called. The

process will first compare the key value of (2) and (1) that are located at the root level. The

node with the key value (1) is chosen, thus delete-min process occurs at T(3). The children

57

3. NEW DATA STRUCTURES

nodes, T(0) with the root key value (2), T(1) with the root key value (4) and T (2) with the

root key value (3) will be cut off from the T(3). As the heap has none existing T(0) and T(1)

trees, these broken trees, i.e. T(0) and T(1) as a result of cutting off from the minimum node

will become the new tree of T(0) and T(1) in the heap. However, the child tree of T(2) will be

merged to the existing T(2) tree in the heap. The result after the delete-min process occurred

is demonstrated in Figure 3.21.

The amortized cost for one delete-min operation is 3 log n as one log n comes from the fact

that to search for the minimum node requires log n time. The other 2 log n comes from cutting

branches under the minimum node.

3.7.4 Decrease-key Operation

The decrease-key operation is used to update the key value of a node in the heap. The updating

process reduces the key value to a smaller one. When the key value of a node is decreased,

the current structure of a heap might violate as the heap does not follow the minimum heap

property.

In the dimensional heap, a decrease-key process requires the workspace of a decreased node to

be identified beforehand. However, there are two special cases which frequently occur and make

the decrease-key of the dimensional heap best implemented, thus not requiring any information

about the workspace. The cases are:

case 1 : The decreased node is located at the root level position.

case 2 : The decreased node has a thick sibling

Case 1: When a key of a root node is decreased, nothing is changed, as the structure of

the tree remains the same. This is because, the new key value is always lower than the existing

key value when the decrease-key process occurred.

Case 2: Let a decrease-key operation is performed on node v. If the parent of v has other

child of same dimension as v or in other words, thick edges present, cut tree(v) and move v

with its subtree to the root level. The thickness of node v and the sibling node becomes false

and only one thin edge remain. To show and example of this case, Figure 3.22 is referred. In

this Figure, the node is labeled together with the key value in bracket to make the explanation

easier.

58

3.7 The Dimensional Heap Operations

T(3)

A(1)

B(12) C(7) D(4) E(10)

F(18)
 H(30)

G(15)

I(19)

J(11)
K(13)

(a) Before key(K) is decreased

A(1)

C(7)

J(11)

T(3)

 B(12) D(4) E(10)

F(18)
 H(30)

I(19)

K(7)

G(15)

T(0)

(b) The result after key(K) was decreased

Figure 3.22: Performing a decrease-key operation on node K with the new key(K) value

For an explanation of the case 2, let a decrease-key is performed on node K with a new

key value, key(K) = 7. Make the key(K) = 7 replacing key(K) = 13. Then, the edge (E,K)

is cut off from E. The merge process is called to merge K into an appropriate position at the

tree level. The edge of (E,G) becomes a thin one as only one edge of dimension 0 left in the

tree.

Other cases: to perform a decrease-key, a workspace nodes are needed. Let the parent

u of v be on the i-th dimension of its parent. The decrease-key operation is called to reduce

key(v). If u has one child, i.e. v, move u to the lower dimension if the lower dimension is

thin. If node u itself be the only child of dimension i, as a result of relocation of u, the parent

of u loses dimension i. The effect of this will propagate to higher dimensions. If the current

tree’s dimension was n and the adjustment makes it n− 1, the resulting tree will be inserted to

T(n− 1). However, if the lower dimension of u is already thick, move one child to dimension i,

make binary linking and recover the heap property. With one comparison, the heap property

can be recovered. Figure 3.23 and 3.24 show the result when key(H) is decreased. In Figure

3.23, a parent of the decreased-node has a thin lower dimension node while in Figure 3.24, the

parent of H has thick nodes in the lower dimension. Note that the existing tree is shrunk as

the result of the decrease-key operation in Figure 3.23, resulting in a new T(2) that replacing

T(3).

59

3. NEW DATA STRUCTURES

T(3)

A(1)

B(12) D(4) E(10)

F(18) H(30) G(15)

I(19)

K(13)

(a) Before key(H) is decreased

T(2)

A(1)

B(12) D(4)
E(10)

 H(10)

G(15) K(13)

T(0)

 F(18)

 I(19)

(b) The result after key(H) was decreased

Figure 3.23: Decrease-key operation on node H. The lower dimension sibling of parent’s node
is thin

T(3)

A(1)

B(12)

H(30)

D(4)
E(10)

F(18) G(15)

I(19)

K(13)

 C(7)

(a) Before key(H) is decreased

 H(10)

T(0)

T(3)

A(1)

B(12) D(4)
E(10)

F(18) G(15)

I(19)

K(13) C(7)

(b) The result after key(H) was decreased

Figure 3.24: Decrease-key operation on node H. The lower dimension sibling of parent’s node
is thick

The amortized cost ai for the i-th operation is defined by ai = ti − (Φi − Φi−1).

Decrease-key of node at the root level : The amortized cost is zero as nothing is changed.

Decrease-key of thick node : To cut the node from the tree will decrease the potential from

2 to 1, Φ = 2 − 1 = 1. As defined in the earlier section, the potential for a pair of thick

edges is 2. If one of the thick edges is cut, only one thin edge remains, hence, the potential

becomes 1. When the decreased node is merged to the root level of dimension i, if there

60

3.8 Experimental Results and Analysis

is no existing T(i), no key comparison is made. Otherwise, one comparison is needed and

the potential is increased by 1. Let us consider decrease-key at node K in Figure 3.22.

ai = ti − (Φi − Φi−1)

= 0− (9− 10)

= 1

Relocate node to the lower dimension node as shown in Figure 3.23 : No compari-

son is made, thus the amortized cost:

ai = ti − (Φi − Φi−1)

= 0− (7− 8)

= 1

Swapping a thick node with the decreased node as shown in Figure 3.24 : One com-

parison is required to compare the key value of the parent’s node with its thick sibling on

the left. The amortized cost is as follows:

ai = ti − (Φi − Φi−1)

= 1− (8− 9)

= 2

The amortized complexity of decrease-key is constant.

3.8 Experimental Results and Analysis

This section presents the results of the experimental comparison of different heaps data struc-

tures. Section 3.8.1 contains the number of key comparison results for the quaternary heap.

Section 3.8.2 presents the number of key comparisons of the dimensional heap.

61

3. NEW DATA STRUCTURES

The experiment were initially done using an Intel(R) Core(TM) 2 Quad CPU Q8400 @

2.66Ghz, 3.24 Gb of RAM machine, running Fedora Linux operating system, at the University

of Canterbury, New Zealand. All data structure implementations were written in the C pro-

gramming language. These programs were compiled using the gcc compiler. All of the results

from the experiments reported in this chapter were collected on the sane hardware. In the

experiments which were carried out, only 10 samples of graph were used.

To see the validity of samples needed to get the results, further experiments were run using

an Intel(R) Xeon (R) CPU E5645 @ 2.40Ghz, 4.0 Gb of RAM machine, running on Ubuntu

Linux operating system, at Sultan Idris Education University, Malaysia. In this experiment,

a binary heap was used as it is a well known heap data structure and widely used in real life

applications. Sparse digraphs were used as an input with the average outgoing edges from each

graphs were four. The average total number of key comparisons needed to solve Dijkstra’s Single

Pair Shortest Paths (SPSP) problem was recorded. Standard deviation (SD) and coefficient of

variation (CV) were also calculated. The CV is defined as the ratio of the standard deviation

to the mean. With the CV, the dispersion of the total key comparisons around the mean of

the total number of key comparisons can be measured. For the experiments, the number of

samples chosen were 10, 50 and 100. The results can be seen in Tables 3.2.

Even though the number of samples are different, very similar results were obtained. The

coefficient of variations, CVs for all the results were less than 1%. As the value of coefficient

of variation is low, the results have less variability and high stability. Therefore, it can be

suggested that ten samples are enough to run the experiments to compare the performances of

different heaps with Dijkstra’s algorithm.

3.8.1 The performance of the quaternary heap

Experiments were conducted to see the number of key comparisons between the quaternary

and the trinomial heaps. Only the trinomial heap has been chosen to be compared with the

quaternary heap because it is very comparable to the quaternary heap. The idea of the qua-

ternary heap is also based on the existing trinomial heap. The way they were implemented is

the same. The only difference between the two heaps is trunk size. The maximum number of

nodes allowed in each trunk is three in the trinomial heap, whereas, in the quaternary heap,

the trunk size is extended to have one more node. That means, the maximum number of nodes

in the quaternary heap’s trunk is four. The quaternary heap also requires more storage and

manipulation of six pointers per node compared to five pointers per node in a trinomial heap.

62

3.8 Experimental Results and Analysis

(a) Sparse digraphs with samples, s = 10

Input Size, n Min (×103) Max (×103) Mean (×103) SD (×103) CV(%)
2000 24.07 24.52 24.28 0.11 0.47
4000 52.41 52.83 52.67 0.13 0.25
6000 82.35 82.84 82.56 0.16 0.19
8000 113.22 113.78 113.52 0.18 0.16
10000 144.32 145.12 144.67 0.25 0.17

(b) Sparse digraphs with samples, s = 50

Input Size, n Min (×103) Max (×103) Mean (×103) SD (×103) CV(%)
2000 24.06 24.60 24.33 0.11 0.47
4000 52.21 53.10 52.70 0.17 0.33
6000 81.86 83.15 82.60 0.24 0.29
8000 113.03 114.05 113.42 0.24 0.22
10000 144.19 145.65 144.77 0.26 0.18

(c) Sparse digraphs with samples, s = 100

Input Size, n Min (×103) Max (×103) Mean (×103) SD (×103) CV(%)
2000 24.01 24.60 24.33 0.12 0.49
4000 52.26 53.11 52.71 0.19 0.36
6000 81.92 83.00 82.53 0.22 0.26
8000 112.80 114.23 113.37 0.27 0.24
10000 144.00 145.31 144.70 0.27 0.18

Table 3.2: The total number of node-to-node key comparisons needed in a Binary heap when
solving the SPSP problem using different samples of sparse digraphs

63

3. NEW DATA STRUCTURES

The goal of developing the quaternary data structure is to see the performance of the heap

over the existing trinominal heap. In other words, with a dense structure that has more nodes on

one trunk, does the new data structure perform better in term of number of key comparisons?

In this chapter, a dense structure refers to a heap that has more nodes on a trunk, while a

sparse structure is the opposite of the dense structure. In the quaternary heap, the concept of

adaptive cache to keep the nodes temporary in it before they are flushed to the heap structure

is used. When a special type of input sequences that are known in advanced are given to the

data structure, does this contribute to the good performance of the data structure? In this case,

if the input stream is in an ascending order, a complete trunk can be created in the adaptive

cache which later will be flushed straight away to T(1).

While designing the quaternary heap, it was conjectured that the data structure might have

a potential to perform better than the trinomial heap as more complete trunks could be created.

It was quite curious to see whether better performance would be shown when a dense type of

data structure was used.

To answer these question, a well known algorithm to solve the single source shortest path

problem, which is Dijkstra’s algorithm was used as the main algorithm. Firstly, dense digraphs

with different input sizes were employed and the edge costs were randomly generated. The edge

cost of the digraphs were then sorted in ascending order beforehand. This was to ensure that

the input used were in an ascending order of sequences in advance.

When a large problem size, n was used, trinomial heap always showed less number of key

comparison than the quaternary heap, even as a minimum of n = 100. Therefore, when running

the experiment, the number of n was reduced to the minimum value to see whether was there

any chance that the quaternary heap could beat the trinomial heap.

The quaternary heap with a simple insertion process was compared first with the trinomial

heap. The results are shown in Table 3.3. The units numbers are node-to-node key comparisons.

Table 3.3 shows that when the total number of vertices, n, is very low, that is n ≤ 30,

the quaternary heap gives a lower number of key comparisons compared to the trinomial heap.

However, when n becomes bigger, the trinomial heap becomes superior. In this experiment, the

insertion process in the quaternary heap is similar to the trinomial heap.

In the simple insertion process, every new node will be inserted into T(0). The key of the

new node will be compared with the root node first before comparing with other nodes on a

trunk in T(0). If there are three nodes on the trunk, that means, at most 3 key comparisons

have to be performed on a trunk at T(0). A complete trunk can be created as a result of the

64

3.8 Experimental Results and Analysis

Input Size, n Trinomial Heap (×103) Quaternary Heap (×103)
10 359.60 317.20
20 2739.40 2608
30 8369.00 8292.20
40 17191.40 17413.40
50 30310.00 31097.00
60 46691.00 48087.60
70 68498.40 72994.40
80 93571.00 100980.80
90 127390.60 133122.00
100 164913.40 172787.80

Table 3.3: The total number of node-to-node key comparison between the trinomial and the
quaternary heaps. The insertion process for each data structure is similar

insertion of a new node. This complete trunk will be merged to the T(1), and thus, to other

higher tree degree. This is the main reason why the number of key comparisons is higher in

the quaternary heap than the trinomial heap.

After some modifications were made to the insertion process in the quaternary heap, different

results were obtained, as shown in Table 3.4.

Input Size, n Trinomial Heap (×103) Quaternary Heap (×103)
10 359.60 247.20
20 2739.40 2508.40
30 8369.00 7918.00
40 17191.40 16940.20
50 30310.00 29497.80
60 46691.00 45972.20
70 68498.40 68049.80
80 93571.00 93972.60
90 127390.60 128881.00
100 164913.40 168787.80

Table 3.4: The total number of node-to-node key comparison between the trinomial and the
quaternary heaps. In this experiment, the concept of adaptive cache is used in the quaternary
heap

When the insertion cache was introduced in the quaternary heap, the quaternary heap gave

better results. This heap takes advantage of having an ascending order of the input stream by

creating a complete trunk in the adaptive cache. For an adaptive cache, the key value of the

new inserted node will be compared only with the key value of the node that is located at the

end of the trunk. Thus, only one key comparison is needed. When n < 80, this data structure

is able to perform better than the trinomial heap. The results of the quaternary heap with

some modification of the insertion process are shown in Table 3.4.

65

3. NEW DATA STRUCTURES

Even though many complete trunks can be created in the adaptive cache and later will be

merged with the existing T(1) in the heap, the number of key comparisons is still higher in

the quaternary heap. These results show that at one point, when n reaches a certain limit, the

simple adaptive cache concept can not help in reducing the number of key comparisons in the

quaternary heap.

When research into quaternary heap began, the researchers had strong feelings that sparse

digraphs were not suitable to use with the quaternary heap. This was mainly because of the

structure of the quaternary heap itself, which allowed more nodes on a trunk. The more nodes

that the trunk had, the more key comparisons were needed to insert a new node in the heap.

Some experiments were done to confirm that the quaternary heap was not suitable to use with

sparse digraphs. Table 3.5 shows the results obtained when the sparse digraphs have been used.

Input Size, n Trinomial Heap (×103) Quaternary Heap (×103)
10 359.60 369.40
20 2739.40 2890.20
30 8369.00 8504.00
40 17191.40 19676.80
50 30310.00 33111.00
60 46691.00 50788.40
70 68498.40 77323.20
80 93571.00 105665.00
90 127390.60 141041.20
100 164913.40 176990.00

Table 3.5: The total number of node-to-node key comparison between the trinomial and the
quaternary heaps using sparse digraphs

If the dense structure can not give promising results, is there any chance that a very sparse

structure can help reducing the number of key comparisons? With that question in mind, the

dimensional heap has been developed and the results are shown in the following section.

3.8.2 The performance of the dimensional heap

Experiments have been carried out to see the performance of the new invented heap with well

known existing heaps such as binary (28), Fibonacci (3) and 2-3 (4) heaps. Binary heap was used

because it is easy to understand and code. Fibonacci heap was chosen because together with

the binary heap; these heaps often act as benchmarks to compare with other data structures.

It is important to see the performance of these heaps as it is said that binary heaps usually

outperform Fibonacci heaps (45). Fibonacci heap is also the first data structure that uses

66

3.8 Experimental Results and Analysis

amortized cost in analyzing its performance. It is also interesting to compare the performance

of the 2-3 heap as this heap is rarely used even though practically, it shows better performance

than the Fibonacci heap (4).

These experiments traced different heaps calls from Dijkstra’s shortest-path algorithm. For

this experiment, Dijkstra’s algorithm was run on three kinds of digraphs: dense, sparse and

acyclic digraphs. All heaps were implemented using a linked list for standardization. The same

programming style was used to program all heaps.

First, the results show the number of key comparisons when sparse digraphs were used.

Table 3.6 shows the results. The results demonstrate that 2-3 heap performs best among other

heaps. In this experiment, each of vertex, v ∈ V (V is the set of vertices) had been assigned to

have four outgoing edges (edge factor = 4). The edge costs were randomly generated.

Input Size, n Binary (×103) Fibonacci (×103) 2-3 (×103) Dheap (×103)
2000 22.18 24.32 17.55 25.23
4000 48.320 54.81 37.84 56.68
6000 75.97 87.51 58.46 90.54
8000 104.64 121.73 80.07 125.83
10000 133.88 156.89 102.01 162.23

Table 3.6: The total number of node-to-node key comparison between heaps using sparse graphs

In solving the single source shortest path problem (SSSP), Dijkstra’s algorithm requires

operations such as insert, delete-min and decrease-key operations. In a graph that has n

number of vertices and m number of edges, Dijkstra can solve the SSSP in O(m+n log n) time.

Here n delete-min and insert operations are called and m decrease-key operations are required.

The dimensional heap does not give a good performance when the sparse graph is used. The

decrease key operation is rarely called by Dijksta’s algorithm. The results are satisfied with

the finding in (45) that observes that decrease-key function does not appear to be called many

times to update the edge cost when a sparse graph is used.

When dense graphs are used, the result is shown in Table 3.7. The units numbers of node-

to-node key comparisons.

In Table 3.7, the performance of the dimensional heap is improved. The results show that

dimensional heap clearly outperform Fibonacci and 2-3 heaps. It was also quite interesting to

see the good performance shown by the binary heap. As the problem size increases, it is said

that binary heap is supposed to grow super linearly, thus, other data structures can easily beat

the performance of this heap (45).

67

3. NEW DATA STRUCTURES

Input Size, n Binary (×103) Fibonacci (×103) 2-3 (×103) Dheap (×103)
2000 46.73 43.90 39.28 41.78
4000 83.24 95.08 87.98 89.39
6000 114.66 148.92 156.87 139.90
8000 141.28 203.45 231.94 189.80
10000 174.11 260.14 301.65 244.21

Table 3.7: The total number of node-to-node key comparison between heaps using dense graphs

In dense graphs with n number of vertices, the number of edges, m is given by m = n2. The

more edges the graph has, the more keys updates are required. Therefore, using a dense graph

can promote the use of the decrease-key function as it will update the key values. Even though

the decrease key function is called more frequent when the dense graph is used compared to

the sparse graph, this function is still called less than m times. The use of the decrease key

function when solving the shortest path problem is not fully optimized.

As the dimensional heap gives special ways to perform the decrease operation, the perfor-

mance of this process should be explored. If only a normal digraph such as a dense or a sparse

graph is used where the edge costs are randomly generated, the performance of the decrease-key

operation can not be seen. To see the performance of the decrease-key operation in solving the

shortest path problem, a special type of graph should be used. The objective of this experiment

is to see that when the decrease-key operations are executed incredibly frequent, as many as m

times, which data structure is the best?

Towards that purpose, acyclic digraphs were used in this experiment. The edge costs were

specifically given for each (u, v), where (u, v) ∈ E (E denotes the set of vertices in a graph).

Let u be the source vertex, v be the destination vertex and n be the total number of vertices in

a graph, g. The below algorithm was used to generate the edge cost for each edge in the graph.

procedure create edges(g)

for u = 0 and u < n do

for v = u+ 1 and v < n do

cost(u, v) = (v − 1)× (n− u);

increase v by one;

increase u by one;

end procedure

An example of the acyclic graph that force to perform m-decrease-key operation is shown

in Figure 3.25.

68

3.8 Experimental Results and Analysis

0 1 2 3 4 (0)

(5)

(10)

(15)

(4)

(8)

(12)

(3)

(6)

(2)

Figure 3.25: An example of an acyclic graph that has five vertices

When running Dijkstra’s algorithm with the acyclic graphs, the outstanding result obtained

as stated in Table 3.8.

Input Size, n Binary (×103) Fibonacci (×103) 2-3 (×103) Dheap (×103)
2000 22.95 17.30 16.40 14.35
4000 49.97 35.90 36.71 32.88
6000 78.55 56.83 56.71 47.42
8000 108.14 72.90 75.47 64.95
10000 138.33 93.35 97.68 84.21

Table 3.8: The total number of node-to-node key comparison between heaps using acyclic graphs

The results show that the dimensional heap performs exceptionally well when the acyclic

digraphs are used. In fact, the new invented heap required less number of key comparisons than

other tested heaps.

3.8.3 Concluding Remarks

The quaternary heap outperforms the trinomial heap when the total number of vertices, n is

small enough. However, when n grows, trinomial heap shows better performance. If there is an

option to choose a heap, quaternary heap should be considered when only for a small number

of problem size. The decrease-key function plays a very important role when comparing the

data structures as this operation is very expensive in most of data structures. In a dimensional

heap, the decrease-key function is a special function. When m decrease key function is called in

solving the shortest path problem, dimensional heap shows outstanding results, and is therefore

one of the best options for the data structure.

69

4

An O(n2 log n) Expected Time

Algorithm

In this chapter, all pairs shortest path (APSP) algorithms for the average case analysis are

explored. The expected running time to solve the APSP in this area is O(n2 log n) by the

Moffat-Takaoka (MT) algorithm. For solving an APSP, a weighted digraph with edge weights

drawn from a random probability distribution is used. For an introduction, this Chapter will

discuss a few algorithms that use various techniques for solving the APSP. The existing MT

algorithm has been simplified and modified for better analysis. The purpose of this chapter is

to show that a small modification of the MT algorithm can achieve the optimal complexity of

O(n2 log n) with a simpler analysis. To accomplish this, a new algorithm has been developed

which is simpler than the MT algorithm. Throughout this Chapter, analyses will be carried

out based on the average case analysis that uses complete dense digraphs.

4.1 Introduction

The all pairs shortest path (APSP) can be solved using n single source shortest path (SSSP)

problems. Consider the problem of finding the APSP that is represented as a graph. Let

G = (V,E) be a directed graph with non-negative edge costs with no self-loop. Here, V and E

are the sets of vertices and edges such that |V | = n and |E| = m. Labelled vertices are vertices

for which the shortest distances from a source s are already known. These vertices are kept

in a solution set, S. The cost of edge (u, v) is given by c(u, v). The cost of a path is the sum

of the costs of edges that form the path. The shortest path from u to v is the path with the

minimum cost. The path cost of v through u is given by d[v] = d[u] + c(u, v). If there is any

70

4.1 Introduction

value of d[v], then d[v] refers to the shortest path cost from s to v that has been found sor far.

Initially, d[s] = 0 and for all other v ∈ V, d[v] =∞.

The edges from each vertex v are sorted in non-decreasing order of edge costs. This process

is called pre-sort or pre-processing. A pointer is maintained for the sorted list. The sorted edge

list from each vertex v is maintained by putting the endpoints of the sorted edges from v. The

example of pre-sort edge list for a sparse graph in Figure 4.1(a) is shown in Figure 4.1(b). If a

dense graph is used, O(n2 log n) is required to sort the edge lists for the single source problem.

A pre-sort is done only once, and the effort used for sorting can be shared over all sources.

3 1

2 4

5 0

(5)

(2) (7)

(3)

(3) (4)

(9)

(2)

(5)

(1)

(2)

(a) A simple graph with n = 5

1

0

3

2

5

4

1 2

3

4 1

5 4

3 5

2

0

(b) Non-decreasing pre-sort edge list for
4.1(a)

Figure 4.1: A simple sparse graph with its non decreasing pre-sort edge list

For each vertex u ∈ S, a candidate is maintained. A candidate, ce(u), is defined as the

endpoint of the shortest edge from u. It is said to be clean if ce(u) /∈ S, and non-clean

otherwise. A pointer, P (u) is used to point to the current ce(u) and it moves from pointing to

the ce(u) to another endpoint, which defines the next current edge, or simply the next ce(u).

The function “next of ce(v)” is to advance the pointer, P [v], by one and takes the P [v]-th

member in the list. A set F is used as a frontier set that contains candidates of u ∈ S. The

vertices in F will later be chosen to be included in S. Some algorithms that will be discussed

here require L(v) that defines a list of vertices that have v as their candidates. For all u ∈ L[v],

u must already be in S.

A time stamp concept will also be used in this chapter. A time stamp of v, T [v] denotes

the stage when v is included in S. At the beginning, the size of the solution set, |S| is zero.

When the first vertex v is inserted in S, then |S| = 1. Thus, T [v] = 1. In other words, if

71

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

|S| = j, T [v] = j. The basic idea of expanding S for all algorithms explained here is relatively

similar to Dijkstra’s algorithm (6). To solve the all pair shortest path problem, n single source

algorithm is used. For ensuring algorithm efficiency, the implementation of the shortest path

algorithms was facilitated by a binary heap (28). A generic algorithm to solve an SSSP is given

in Algorithm 4.

Algorithm 4 A generic algorithm to solve SSSP

1: procedure Single source(n)
2: for v ∈ V do d[v] =∞;
3: ce(s) = next of ce(s); t = ce(s);
4: d[s] = 0; d[t] = c(s, t); F = {s};
5: organize F in a priority queue with d[t] as key;
6: S = ∅;
7: while |S| < n do
8: find u in F with minimum key; . find-min
9: v = ce(u);

10: if v /∈ S then
11: S = S ∪ {v};
12: update(v);

13: update(u);

14: end
15: procedure update(v)
16: perform some scanning by increasing P (v);
17: let w = ce(v);
18: d[w] = min {d[w], d[w] + c(v, w)};
19: key(v) = d[v] + c(v, w);
20: if v ∈ F then
21: increase-key(v); . increase-key v with key(v)
22: else
23: insert(v) with key(v); F = F ∪ {v}; . insert(v)

24: reorganize F into the heap with new key(v);

25: end

Algorithm 4 works as follows: First, a vertex u that has the minimum key value is selected

from the priority queueor sometimes heap is used here. Then, a candidate, v of u, ce(u) is

obtained. If v is not a member of the solution set, S, it is inserted to S and d[v] is set to be the

final distance cost, or the shortest path from the source, s. Later, update procedure is called to

update v, followed by updating u.

The update(v) procedure is called to update v with a new candidate and its key value. A

pointer of v, P (v) that points to its candidate will be reviewed. Let w be the current candidate

of v, pointed to by P (v). The path cost from v to w is obtained, and if the cost is smaller than

the existing d[w], the value of d[w] will be updated with d[w] = d[v] + c(v, w), where c(v, w) is

72

4.2 Unlimited Scanning Algorithms

the edge cost from v to w. Lastly, if v is already in the heap, an increase-key function is called

to increase the key value of v with the new key, key(v) = d[v] + c(v, w). If w is not in F , it is

inserted into the heap with the above key value.

Selecting the next candidate varies from one algorithm to another. To select the candidate, a

scanning process is performed. Consider the generic algorithm to solve a single source problem,

as shown in Algorithm 4. In the update(v) procedure, a pointer P (v) is used to find the

candidate that is located in the pre-sort array. Some algorithms require P (v) to move only

one step ahead, some demand P (v) to move until a clean candidate is found, and some other

algorithms are flexible by asking P (v) to move a certain number of steps according to some

criterion. Note that the movement of P [v] for all v in V is represented in the algorithm as

ce(v) = next of ce(v).

In the following section, various scanning techniques used in finding the next candidate are

explored. The techniques used vary from one algorithm to another; thus, each has significantly

different performance parameters. The different techniques used are divided into the following

three main categories: unlimited scanning, simple scanning, and limited scanning.

4.2 Unlimited Scanning Algorithms

The scanning process on vertex v is a routine to find and select a new candidate of v, ce(v).

The term unlimited scanning comes from the fact that scanning is done repeatedly, with no

limit until the required clean candidate is found. The first and foremost algorithm to discuss

is Dantzig’s algorithm (46).

Dantzig’s algorithm only allows clean candidates to be chosen. That means, for each u ∈

S, ce(u) must be a vertex that has not been included in the solution set yet. To find v, the

update procedure as shown in Algorithm 4 is modified as follows. Let w be the candidate of v.

If w is already in S, increase P (v) by one and a new w is checked. If the new w is also in S,

P (v) will move to the next edge again. This process is a repeated process until the last w is

guaranteed to be a clean one.

To describe Dantzig’s in further detail, let vertex u in S have a candidate v. The distance

or key value of u is defined by the distance from s to u plus the edge cost of (u, v), where s

is the source vertex. The candidate v might also be the candidates of other u in S with some

distance values. Those u are kept in the list L[v]. To expand S, the candidate v of u with

the smallest key value is chosen and labelled. When the candidate v is included in S, no other

73

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

Algorithm 5 Dantzig’s algorithm to solve SSSP

1: procedure Single source(n)
2: for v ∈ V do d[v] =∞;;
3: t = ce(s); ce(s) = next of ce(s); . P [s] increases by one
4: d[s] = 0; d[t] = c(s, t); F = {s};
5: organize F in a priority queue with d[t] as key;
6: S = ∅;
7: while |S| < n do
8: find u in F with minimum key; . find-min
9: v = ce(u);

10: if v /∈ S then
11: S = S ∪ {v};
12: Dantzig’s update(v);

13: for u ∈ L[v] do
14: Dantzig’s update(u); . update all incoming edges to v

15: end
16: procedure Dantzig’s update(v)
17: let w = ce(v);
18: while w ∈ S do . scanning effort
19: ce(v) = next of ce(v);
20: w = ce(v);

21: d[w] = min {d[w], d[w] + c(v, w)};
22: L[w] = L[w] ∪ {v}; . append v to L[w]
23: key(v) = d[v] + c(v, w);
24: if v ∈ F then
25: increase-key(v); . increase-key v with key(v)
26: else
27: insert(v) with key(v); F = F ∪ {v}; . insert(v)

28: reorganize F into the heap with new key(v);

29: end

74

4.2 Unlimited Scanning Algorithms

vertex can possibly choose it as a candidate. Therefore, other vertices whose candidates have

just been labelled, that is, u ∈ L[v], need to be revised with new candidates. The process is

repeated until all vertices are labelled. Figure 4.2 shows an example of a stage in Dantzig’s

algorithm. Dantzig’s algorithm is shown in Algorithm 5.

v

u

u

u

v’
S

j

size = n - j size = j

u

v’

v’
v’

v’

Figure 4.2: Some intermediate stage during the expansion of S in Dantzig’s algorithm

In Dantzig’s algorithm, the candidate v is always a clean one. Choosing only a clean

candidate for each u in S requires significant effort, as it is essential to perform unlimited

scanning of the edge list to find this candidate. By doing detailed scanning, the minimum

weight candidate in the heap is guaranteed to be unlabelled vertex, which can be included in S.

In this algorithm, the expansion of S is clearly proven to be O(n) time but the scanning effort

used to scan for a clean candidate is very expensive. When |S| = j, O(j) effort is required to

search for a clean candidate, totalling O(n2) efforts are needed for n number of vertices. The

cost to do pre-sort of edges is O(n2 log n) time. Therefore, to solve the single source shortest

path(SSSP) problem, Dantzig’s requires O(n2 + n2 log n) time and O(n3) time for the all-pairs

shortest path problem(APSP).

When the Dantzig algorithm was first implemented, no priority queue was used. This

algorithm was also designed to solve a single source shortest path problem. However, as the

cost of pre-sorting itself is O(n2 log n) time for a dense graph, this algorithm is best practiced

to solve the APSP problem as the cost of pre-sorting can be absorbed in O(n3).

75

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

4.3 Simple Scanning by One

Here, Spira’s algorithm(29) is described. In Spira’s algorithm, a priority queue is proposed to

facilitate a few operations, such as finding and deleting the minimum key and updating key

values. Spira also applied the same ideas as Dantzig. The edges from each vertex v ∈ V are

sorted in non-decreasing order that takes O(n2 log n) time for a complete n vertices graph. A

pointer is also maintained for the sorted list. A pointer P (v) always points to the current edge

and it will be moved by one in update to get to the next edge.

Spira’s algorithm maintains the solution set, denoted by S, which is the set of vertices to

which shortest paths have so far been established by the algorithm, in a priority queue Q. The

key for u in the queue, key(u), is given by key(u) = d[u] + c(u, ce(u)), where d[u] is the known

shortest distance from the source to u.

Compared to Dantzig’s, Spira’s allows a candidate of u ∈ S to be in S, which is a non-clean

candidate. To expand S, this algorithm works similarly to Dantzig’s but does not require u to

be updated with the new unlabelled candidate.

The queue is initialized with one element of s, the source. Let key(s) = c(s, t), where

edge(s, t) is the shortest edge from s. Obviously t is included in the solution set as the second

member. In general, suppose u is the minimum of the queue, that is, key(u) is minimum in the

queue. If v = ce(u) is not in S, it can be included in S with d[v] = key(u), and then included

in Q with key(v) = d[v] + c(v, w), where (v, w) is the shortest edge from v.

Regardless of whether the above v is in S or not, the pointer on the edge list from u is

advanced to the next element because edge (u, v) is no longer useful, which means that this

edge is not going to be examined for other shortest paths.

The priority queue Q needs to support find-min, increase-key and insert operations ef-

ficiently, which is expressed by the repertory (find-min, increase-key, insert). Spira used a

tournament tree for a priority queue in his algorithm, which supports the first operation in

O(1) time and the last two operations in O(log n) time. In this thesis, a more common data

structure is used, ordinary binary heap, which supports the same set of operations with the

same time complexity. All pointers for edge lists are initialized to 0. To point to the first

member in the edge list, P [v] = 1. The sorted list of edges for each vertex starts from index 1.

The algorithm for the single source problem follows.

Figure 4.3 shows the expansion of the solution set, S at the j-th stage.

76

4.3 Simple Scanning by One

Algorithm 6 Spira’s algorithm to solve SSSP problem

1: procedure Single source(n)
2: for v ∈ V do d[v] =∞;
3: ce(s) = next of ce(s); t = ce(s) ; . t is the first candidate of s
4: d[s] = 0 ; F = {s} ; d[t] = c(s, t);
5: organise F in a priority with key(s) = c(s, t);
6: S = ∅;
7: while |S| < n do
8: find u in F with minimum key;
9: v = ce(u);

10: if v /∈ S then
11: S = S ∪ {v};
12: spira update(v);

13: spira update(u);

14: end
15: procedure spira update(v)
16: ce(v) = next of ce(v), . scanning effort
17: w = ce(v);
18: d[w] = min {d[w], d[v] + c(v, w)};
19: key(v) = d[v] + c(v, w);
20: if v is in a heap then
21: increase-key(v); . increase-key v with key(v)
22: else
23: insert(v); F = F ∪ {v}; . insert(v)

24: reorganize F into the heap with new key(v);

25: end

77

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

j
size = n - j

v

u

u

u

v’

S

u

size = j

v’
v’

v’

v’

Figure 4.3: Some intermediate stage during the expansion of S in Spira’s algorithm

For the analysis, the endpoint independence model is used for the probabilistic assumption.

In this model, when the edge list is scanned, any vertex appears independently with a probability

of 1
n . When there are less than n edges, it is assumed that edges with costs of infinity, randomly

and independently attached at the end of the list. This model was chosen as it is commonly

used for the average case analysis.

Let U = (T1, . . . , Tn−1) be the times for expanding the solution set by one at each stage of

the size. Let EX be the expectation operator over the sample space of random variable(s) X.

Then, ignoring some overhead time between expansion processes, the expected value EU [T] of

the total time T = T1, . . . , Tn−1

EU [T] = EU [T1 + . . .+ Tn−1] = EU [T1] + . . .+ EU [Tn−1].

From the theorem of total expectation, EY [EX [X|Y]] = EX,Y [X], where X|Y is the condi-

tional random variable of X conditioned by Y . In this analysis, X represents a particular Ti,

Y is for the rest and (X,Y) for U . The fact that EX [X|Y] is the same for all Y is used from

the endpoint independence. This idea enables us to localize analysis in each stage of expansion,

and will be used in later sections for various analyses.

To analyze Spira’s, let Tj represent the expansion of the solution set, S from size j to j + 1

where |S| = j. At the j-th stage, the heap contains j candidates. The probability that v

is outside S at line 10 is n−j
n from the endpoint independence. The number of executions of

find-min at line 8 is given by the reciprocal of this probability; that is, n
n−j , which corresponds

to the above EX [E[X|Y]]. Note that EX [X|Y] = EY [X|Y] in this scenario, since n
n−j does not

78

4.4 Limited Scanning Algorithms

depend on Y , that is other Ti’s for i 6= j.

Each time when the find-min is executed, O(1) time is spent in finding the minimum node

and O(log n) time in update at line 13. Thus from the above total expectation, the expected

time for line 8 and 13 is:

n log n

n−1∑
j=1

1

n− j
= O(n log2 n)

The update at line 12 is executed exactly n − 1 times. Thus a separate analysis can give

us O(n log n) time, which is absorbed into the above main complexities. The APSP takes

O(n2 log2 n)time. In this thesis, the base for logarithm is not specified, as the quantities are

equivalent within O-notation.

Spira’s algorithm is inefficient as it allows u with a non-clean candidate to be in the heap

with a relatively large probability, and later to be chosen. The running time is increased for

this uneconomical operation. In the following section, the scanning method is ameliorated to

improve the probability that the candidates are clean by some limited scanning.

4.4 Limited Scanning Algorithms

As it is important to only scan for clean candidates to reduce time spent on the expansion

of S, a few algorithms have been implemented using a concept of limited scanning. These

algorithms attempt to overcome the inefficiency of algorithms 4.2 and 4.3, by attempting to

search for a clean candidate in certain time limitation. There are two different ways to do this:

the movement of pointer is limited up to m particular times; another is to use a timestamp

concept. The timestamp, T [v] refers to the stage when vertex v is included in S. To prepare for

the later explanation, the T [v] can be regarded as the time stamp of v. For v in S, 1 ≤ T [v] ≤ j,

where j is the size of S. When a source vertex s is included in S, the value of j is one. Hence,

T [s] = 1. At j-th stage, vertex v is inserted, thus, T [v] = j. The details of algorithms under

this category will be explained further below.

4.4.1 Limited scanning up to a fixed number of times algorithms

The candidate ce(u) of u is clean if it is outside S, and non-clean, otherwise. In Spira’s

algorithm, when the next edge from the edge list in update is chosen,the new candidate may be

non-clean. It may be expensive to scan the edge list until a clean candidate if found as in (46).

However a careful design of scanning strategy may bring down the complexity.

79

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

To avoid a potentially long scanning time, Bloniarz(30) introduced the idea of limited edge

scanning for a clean candidate. The technique leads to asymptotically improved running time

as it makes the probability to get a clean candidate higher. Bloniarz not only proposed an

effective scanning technique; it is also effectively free. The free concept is used to describe that

the operation is completely absorbed by other operations.

Let m be the number of times that the pointer is increased. The pointer of v, P (v) is

increased until a clean candidate is found or m reaches dlog ne edges. If the clean candidate

is obtained during the scanning process, it will selected as the next candidate. Otherwise, if

m ≥ dlog ne, the selected candidate is allowed to be a non-clean one. Bloniarz’s algorithm

improves the running time over Spira’s algorithm by trying to avoid choosing a vertex in S.

Bloniarz’s update procedure is shown below.

1: procedure Bloniarz’s update(v)

2: counter = 0; // counter = m

3: let w = ce(v);

4: while w ∈ S and counter ≤ dlog ne do . scanning effort

5: ce(v) = next of ce(v);

6: w = ce(v);

7: d[w] = min {d[w], d[w] + c(v, w)};

8: key(v) = d[v] + c(v, w);

9: if v ∈ F then

10: increase-key(v); . increase-key v with key(v)

11: else

12: insert(v) with key(v); F = F ∪ {v}; . insert(v)

13: reorganize F into the heap with new key(v);

14: end

This algorithm solves the all pairs shortest path problem (APSP) with expected time

O(n2 log n log∗ n). Under suitable probability distributions and implementations restrictions,

Bloniarz’s obtains Ω(n log n) time for lower bound in the worst case and O(n log n log∗ n) upper

bound in the average case to solve the single source shortest path(SSSP) (47).

The next algorithm is Takaoka-Moffat’s algorithm (47). This algorithm is very comparable

to Bloniarz’s method; it uses a hybrid technique of scanning, that is, the m scanning time is

applied, with the usage of timestamp idea. Similar to Bloniarz’s, Takaoka-Moffat’s algorithm

80

4.4 Limited Scanning Algorithms

attempts to locate a clean candidate, by moving a pointer of v, P (v) over the sorted edge list.

This process ends when a clean candidate is found or when the total count m to move the pointer

is greater than n
n−T [v] , regardless whether the candidate is clean or not. The total frequency, f ,

that is, the number of delete-mins is proved in (47) to be f =
∑n−1

j=1
1
pj

= 2n loge loge n+ const.

Thus, the total running time to perform heap operations is O(n log n log log n) as increase-key

procedure takes O(log n) time. The find-min is done in O(1) time. Another important factor

to consider is scanning effort used to find clean candidates. The scanning effort to scan a clean

candidate is 1
pj

∑j
i=1

1
j .

n
n−i as t can be any integer from 1 to j with probability 1

j . The scanning

effort above is shown to be O(n log n) time, which is absorbed in the main complexity.

1: procedure Takaoka-Moffat’s update(v)

2: counter = 0;

3: let w = ce(v);

4: while w ∈ S and counter ≤ n
n−T [v] do . scanning effort

5: ce(v) = next of ce(v);

6: w = ce(v);

7: d[w] = min {d[w], d[w] + c(v, w)};

8: key(v) = d[v] + c(v, w);

9: if v ∈ F then

10: increase-key(v); . increase-key v with key(v)

11: else

12: insert(v) with key(v); F = F ∪ {v}; . insert(v)

13: reorganize F into the heap with new key(v);

14: end

The above algorithms were implemented by using the same strategy; they start by initializing

a source vertex s and expand S by inserting the shortest path from s. Some algorithms are

superior in the total time of heap operations while others have better running time in scanning

effort. It is known that the crucial point in any APSP algorithms analysis is to measure

the total number of comparisons of all operations in the heap and the scanning effort to get

clean candidates. Unlimited scanning effort was introduced in Dantzigs algorithm, resulting

in time for a single source problem in O(n2) (46). Spira ignores the concept of searching for

good candidates, which eases scanning effort while increasing the total number of comparisons.

81

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

Limiting the scanning efforts to balance with the time spent for expanding seems to be the best

strategy so far to solve the shortest path problems as in (30) (47) (1).

4.4.2 Timestamp Scanning

The Moffat-Takaoka(MT)(1) algorithm solves the APSP problem in O(n2 log n) by dividing

the expansion of S into two phases. This blended technique uses Dantzig’s algorithm for the

expansion of S in the first phase, followed by Spira’s algorithm in the second phase. When

|S| ≤ n− n
logn , the algorithm is said to be in the first phase and the second phase otherwise.

These phases are divided by a critical point CP the moment when the size of the solution set

is equal to |S| = n− n
logn . Algorithm 7 shows the implementation of MT algorithm.

Algorithm 7 The original MT’s algorithm to solve the SSSP problem.

1: for v ∈ V do P (v) = 0;
2: t = ce(s) ;
3: S = {s};
4: d[s] = 0 ; F = {s} ;
5: d[t] = d[s] + c(s, t);
6: organise F in a priority with key(s) = c(s, t);
7: while |S| ≤ n− n

logn do . first phase
8: follow Dantzig’s algorithm

9: end
10: re-initialize a heap with keys in U .
11: while |S| > n− n

logn do . second phase
12: follow Spira’s algorithm

13: end

This algorithm performs an unlimited search for clean candidates before the critical point,

and a limited search after the critical point. To identify the critical point, an array element

T [v] is maintained, which gives the order in which v is included in S, and is called the time

stamp of v. Like Spira’s algorithm, members of S are organized in a binary heap. The time

for heap operations is measured by the number of (key) comparisons. As in Algorithm 6, all

pointers for edge lists are initialized as 0.

Initially, each vertex v ∈ S has a candidate ce(v), which the endpoint vertex of the shortest

edge from v. Before the critical point, CP, each candidate of v ∈ S is required to be only a clean

one; it means ce(v) should be located outside the current S. This can be done by scanning the

sorted list of v’s endpoints until a clean vertex is found. However, after the CP, ce(v) can be a

non-clean candidate. Let U = V −S, that is, |U | = n
logn . In the second phase, only U -vertices,

82

4.4 Limited Scanning Algorithms

that is, vertices v ∈ U , are used as candidates and inserted into a heap. The expansion of S in

MT algorithm is shown in Figure 4.4.

2

3

5

9

1

7

S

CP
j

size = n - j size = j

4

6

10

8

(a) One intermediate stage in Phase 1

S

CP

Set U

6

10
4 5

size = n/log2 n size = n - n/log2

n

3

2

(b) One intermediate stage in Phase 2

Figure 4.4: Some intermediate stage during the expansion of S in MT’s algorithm

In (48), the MT algorithm is simplified as shown in Algorithm 8. The critical point is

maintained as CP = n− n
logn . However, the timestamp concept is used to split edges into two

phases. When T [w] ≤ n− n
logn , that means candidate w is said to be included in S in the first

phase. If T [w] > n− n
logn , candidate w is in the U set.

The list L[v], called the batch list, for each vertex v, whose members are vertices u such

that ce(u) = v is maintained. The key for vertex u in the priority queue, key(u), is given by

key(u) = d[u] + c(u, ce(u)). Whether v is found to be a member of S at line 12 or not, those

members in L[v] need to be updated at line 22 to have more promising candidates. Also v itself

needs to be treated to have a reasonable candidate at line 18 when v is included in S. How

much scanning needs to be done for a good candidate is the major problem hereafter.

Computing time consists of two major components. One is the number of key comparisons in

the heap operations and the other is the time for the scanning effort on the edge lists. The times

before CP and after CP are both O(n log n) and balanced in both comparisons and scanning.

If the limit is set to infinity for all computations, an unlimited search for clean candidates is

carried out, and the resulting algorithm is Dantzig’s algorithm (46), which is more expensive.

Before CP, all candidates are clean, meaning that the expansion of S from j to j+ 1 is done

with probability 1 at line 12 and O(n log n) heap operations are done in total. Scanning effort

to go outside S is O(log n) before CP, resulting in O(n log n) time.

Let U = V −S when |S| = n− n
logn , that is, |U | = n

logn . Before CP all candidates are clean,

meaning the if-condition at line 12 is satisfied with probability 1 and O(n log n) time is spent

83

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

Algorithm 8 A revised MT algorithm to solve the SSSP problem.

1: procedure single source(n)
2: for v ∈ V do T [v] =∞;
3: t = ce(s);
4: j = 1; S = {s}; T [s] = 1;
5: ce(s) = next of ce(s); . P [s] increases by one
6: d[s] = 0 ; F = {s} ;
7: d[t] = c(s, t);
8: organise F in a priority with key(s) = c(s, t);
9: while |S| < n do

10: find u0 in F with minimum key;
11: v = ce(u0);
12: if v /∈ S then
13: S = S ∪ {v}; j = j + 1; T [v] = j;
14: if j ≤ n− n

logn then
15: limit =∞;
16: else
17: limit = n− n

logn ;

18: update(v);

19: if limit <∞ then . first phase
20: for u ∈ L[v] do
21: delete u from L[v];
22: update(u); . u0 is included

23: else . second phase
24: update(u0);

25: end
26: procedure update(v)
27: w = ce(v);
28: while w ∈ S and T [w] ≤ limit do . scanning effort
29: ce(v) = next of ce(v);
30: w = ce(v);

31: L[w] = L[w] ∪ {v}; . append v to L[w]
32: d[w] = min{d[w], d[v] + c(v, w)};
33: key(v) = d[v] + c(v, w);
34: if v is in a heap then
35: increase-key(v); . increase-key v with key(v)
36: else
37: insert(v); F = F ∪ {v}; . insert(v)

38: reorganize F into the heap with new key(v);

39: end

84

4.4 Limited Scanning Algorithms

for insert operations in total. Scanning effort to get a candidate outside S is O(log n) before

CP, resulting in O(n log n) time.

In the first phase, candidates of labelled vertices must be clean candidates. Labeling vertices

as members in S is modeled as the coupon collector’s problem(49). To collect n different coupons

means O(n log n) coupons are needed. After CP, all candidates are limited to U , meaning that

the process is modeled as collecting n
logn coupons. Thus,

n

log n
log

(
n

log n

)
=

n

log n
(log n− log(log n))

=
n

log n

(
1− log(log n)

log n

)
≤ n

= O(n)

Therefore, O(n) trials are needed, meaning O(n log n) comparisons are required. The useful

lemma is stated.

Lemma 1 Let there be a heap of n elements with random keys. If keys of nodes are changed

at random with the assumption that the probability that the key of a node be changed is p, then

the tree can be restored back into a heap in O(pn+ log n) expected time.

Proof The results given in (1).

The analysis of increase-key in update before CP involves some probabilistic analysis on

members in the batch list. In (1), vertices u in the batch list L[v] are processed for increase-key

in a bottom-up fashion, and the time for this is shown to be O(log n) before CP from Lemma

1. Since p can be substituted as 1
n−j and j for n, thus, the summation for the batch processing

for the restoration of the heap becomes

n−1∑
j=1

(
j

n− j
+ log j

)
= O(n log n)

This form j
n−j + log j remains O(log n) until the critical point is reached, but exceeds the

target complexity after it. To avoid this analysis, (50) uses a Fibonacci heap with (delete-min,

decrease-key, insert) for maintaining candidates of vertices in a queue. This simplifies analysis

for the update for L[v], but after CP, the heap must be re-initialized to include S and operations

must be switched to (delete-min, increase-key, insert).

85

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

The scanning effort is not easy to analyze after CP, as the last movement of the pointer at

each vertex (called an over-run) does not always lead to successful inclusion of the candidate

vertex. In (1) the probabilistic dependence before and after CP regarding the amount of over-run

was overlooked, and in (50) an analysis on this part is given, where the over-run associated with

each vertex is regarded as a random variable conditioned by the behavior of Spira’s algorithm.

This analysis of ”over-run” motivates the simplified new algorithm in the next section for a

simpler analysis.

4.5 A New Algorithm

The MT algorithm shows that the expected running time to solve the all-pairs shortest path

problem(APSP) is O(n2 log n). The drawback of this algorithm is only the use of a critical point,

which is bumpy and insufficiently smooth in this algorithm. In the first phase, unlimited search

is done. When the algorithm enters the second phase, it has to perform a simple scan, means

the behaviour of MT algorithm is changed. If this algorithm can be improved by removing the

critical point concept, is there any chance that the running time complexity maintained? With

this question in mind, a new algorithm has been developed, removing the concept of a critical

point, and always make a balance of the total run time complexity during the expansion of the

solution set from the beginning towards the end when solving the APSP problem.

The new algorithm devides all vertices into three set of vertices: solution set, buffer zone

and new area. These divisions are maintained upon the expansion of S from j = i to j = i+ 1,

where j = |S|. The buffer zone is a subset of recent members of the solution with a size n
logn .

Vertices v such that T (v) is from j − n
logn to j are members. When a vertex is put in the

solution set, a time stamp is given to it, which is the new size of the solution set. The concept

of time stamp used here is similar to the time stamp introduced in the earlier sections. The

new area is outside the solution set. The set given by the union of the buffer zone and the new

area is called the valid area. For easy explanation of these sets of vertices, Figure 4.5 can be

referred to.

In the new algorithm, the candidate vertices for all u ∈ S are kept in the valid area. The

candidates are said to be clean candidates if they are in the new area, but maintaining them

there is expensive. The strategy of keeping candidates in the valid area is used, that is, ”half-

clean” throughout the computation. The new algorithm is seamless, so to speak.

86

4.5 A New Algorithm

j

n - j

solution set new area

buffer

zone

n / log n

valid area

Figure 4.5: The three areas of vertices distribution

In general, this algorithm is also similar to Takaoka-Moffat’s and Bloniarz’s algorithms which

scan the pre-sorted edge lists to find clean candidates. However, during the expansion of S,

this algorithm allows candidates for all u ∈ S to be chosen from the valid area; that means the

candidate that will be chosen can be a non-clean one if it is selected from the buffer zone.

The data structure L, called the batch list, is also used and was needed in the MT algorithm

for maintaining completely clean candidates before the critical point. This data structure is

utilized to keep candidates half-clean, which means candidates are outside the solution set with

some probability. For the priority queue, the classical binary heap is used. As Goldberg and

Tarjan (51) have pointed out, the binary heap is the best choice from a practical point of view

for the implementation of Dijkstra’s algorithm, since decrease-key in a Fibonacci heap, which

takes O(1) amortized time, is not performed frequently on average. It is shown in the new

algorithm’s framework as well that the binary heap works well.

The solution set is expanded in the same way as other algorithms by choosing the minimum

vertex, u in the heap. The candidate of u, v = ce(u) is identified. If v is not in S, it will be

added in S. Here j will be increased by one, thus T [v] = j. Then, vertices u and v will be

updated with new candidates. The new candidates can only be chosen from the valid area of

size
(

(n− j) + n
logn

)
. In other words, if the endpoint of the current edges of vertices u and v

are outside the valid area, then the pointer should keep moving to find the next candidate in

the buffer zone or in the new area. The details of this algorithm are illustrated in the Algorithm

9. Some intermediate stage during the expansion of S is given in Figure 4.6. A primary version

of this algorithm can be found in (52).

The amount of scanning can be determined by the bound on pointer movements in (47),

(30) and (48), which is called bound-oriented scanning, whereas in (1) and (50) scanning is

87

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

Algorithm 9 A new algorithm to solve the SSSP problem.

1: procedure single source(n)
2: for v ∈ V do T [v] =∞;
3: t = ce(s) ;
4: j = 1; S = {s}; T [s] = 1;;
5: ce(s) = next of ce(s);
6: d[s] = 0 ; F = {s} ;
7: d[t] = d[s] + c(s, t);
8: organise F in a priority with key(s) = c(s, t);
9: while |S| < n do

10: find u0 in F with minimum key;
11: v = ce(u0);
12: if v /∈ S then
13: S = S ∪ {v}; j = j + 1;
14: T [v] = j;
15: update(v);
16: for u ∈ L[v0] do
17: delete u from L[v0]; . v0 is the expiring vertex
18: update(u);

19: delete u0 from L[v];
20: update(u0);

21: end
22: procedure update(v)
23: w = ce(v);
24: while w ∈ S and T [w] ≤ n− n

logn do . scanning effort

25: ce(v) = next of ce(v);
26: w = ce(v);

27: L[w] = L[w] ∪ {v}; . append v to L[w]
28: d[w] = min{d[w], d[v] + c(v, w)};
29: key(v) = d[v] + c(v, w);
30: if v is in a heap then
31: increase-key(v); . increase-key v with key(v)
32: else
33: insert(v); F = F ∪ {v}; . insert(v)

34: reorganize F into the heap with new key(v);

35: end

88

4.5 A New Algorithm

v0

u

u

u

v

v’

j

size = n - j size = n / log n

u

v’

v’

u

to v’

Figure 4.6: Some intermediate stage during the expansion of S in Spira’s algorithm

done until a specifed destination is found, which is called destination-oriented scanning. The

proposed algorithm belongs to the category of destination oriented search, that is, a one-phase

algorithm with destination-oriented scanning. Spira’s algorithm that has been explained in the

earlier section is a special case in this category with the destination being any set. It also

belongs to the former category of bound-oriented where the bound is 1.

At a certain j-th stage, there will be a vertex v0 that T [v0] = j − n
logn . This v0 is on the

border of the valid area. It may be called an expiring vertex. Those vertices, u , which are

currently pointing to v0 have to point to the next suitable candidates v’ as illustrated in Figure

4.6. This can be seen at lines 16-18 in Algorithm 9. The expiring vertex in depicted in Figure

4.7. The new algorithm, Algorithm 9, does a limited search for clean candidates in the edge

u

n / log n

v0
v’

v’

v’

j

v’
u

u

u

Figure 4.7: Illustration of the expiring vertex v0 requiring all u ∈ S to point to the next
candidates in the valid area.

list. The target is dynamically changing and given by the set of vertices whose time stamp is

89

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

greater than j − N , where N = n
logn and j is the size of the current solution set. The size of

the valid area is n− j +N . The probability to hit the valid area is (n−j+N)
n , and the number

of pointer movements to hit this area is n
(n−j+N) . The fact that n

(n−j+N) ≤ log n for all j is

important, as the over-run can be bounded by O(log n) on average, and need not be analyzed

separately. Members of S are organized in a binary heap as in Algorithm 8. The while loop

starting from line 9 is the main iteration. Vertex v0 is the expiring vertex from the valid area,

that is, T [v0] = j −N .

The idea of this simplified algorithm is to optimize the choice of selecting a good or clean

candidate. To choose only the clean candidate is very expensive and to choose only the next

candidate such as Spira algorithm is also not the best practice as it is very pricy to expand the

solution set. It is MT algorithm that motivates the establishement of this new algorithm. It

is said that the best algorithm should be simple and easy to implement and this is how this

algorithm is represented; solving a problem smoothly and steadily from the beginning until

the end. Smoothly and steadily mean, there is no concept of changing the behaviour of the

algorithm during the expansion of S such as the critical point concept in MT algorithm. In

other words, the algorithm does not distinguish between phases. It stops when all vertices have

been labelled.

4.5.1 Correctness

The correctness of a generic algorithm with limited scan including algorithms 6, 7, 8 and 9

comes from the following two lemmas borrowed from (30).

Here, limited search means the pointer on the edge list moves until it hits a vertex outside S

or goes a certain number of steps according to some criterion of the algorithm. Spira is a special

case of limited search. Proof is done by induction following the execution of the algorithm.

Lemma 2 Assume vertex v ∈ S is such that ce(v) is not in S and d[v]+c(v, ce(v)) = min{d[u]+

c(u, ce(u))|u ∈ S}. Then the final distance from the source to ce(v) is given by d[v]+c(v, ce(v)).

Also d[u] for u in S are all correct shortest distances from the source.

Proof If there is a shorter distance to ce(v), it must come from some u in S with d[u] +

c(path(u, ce(v))), where c(path(u, ce(v))) is the cost of some path, path(u, ce(v)), from u to

ce(v) and the first edge on the path goes out of S. From Lemma 3 below, the endpoints of

edges from u shorter than (u, ce(u)) are all in S, and thus this first edge must be longer than

or equal to (u, ce(u)). Then this distance must be greater than or equal to d[v] + c(v, ce(v))

90

4.5 A New Algorithm

defined above, a contradiction. Thus, the shortest distance to ce(v) is correctly computed and

S is a correct solution set after inclusion of ce(v).

Lemma 3 For any v ∈ S, vertices in the edge list of v from position 1 to P [v] − 1 are all in

S. Also c(u, ce(u)) ≤ c(u,w) for any edge (v, w) such that w /∈ S.

Proof From the nature of the algorithm, the pointer movement stops whenever the algorithm

finds a candidate outside S. It may stop without finding a candidate outside S.

Setting S = V yields the following theorem:

Theorem 1 Any algorithm that is a variation of Spira’s algorithm with limited scan is correct

4.5.2 Analysis of the New Algorithm

Lemma 4 The find-min operation at line 10 is executed O(n) times, on average.

Proof Let pj be the probability that v = ce(u0) is clean at line 12 when |S| = j. Then pj =

n−j
n−j+N . It holds that pj = (n−j)

n , when j < N , and (n−j)
(n−j+N) , otherwise. Thus, pj ≥ n−j

n−j+N

for all j. Since the expected number of trials for ce(u0) being clean is 1
pj

, the expected number

of find-min executions as

n−1∑
j=1

1

pj
≤

n−1∑
j=1

n− j +N

n− j

=
n−1∑
j=1

(
1 +

N

n− j

)
= O(n)

As each find-min requires O(1) time, the expected time for all find-min is O(n). Now update is

analyzed in two components. One is the time for heap operations, the other being the scanning

efforts. For the initial case of j < N , v0 is undefined. Thus in the following summations, j

starts from N .

Lemma 5 The expected number of comparisons in update is O(n log n) in total.

Proof Increase-key or insert is performed at the end of each update, spending O(log n) time.

The update at line 15 is done n− 1 times, meaning O(n log n) time for this part. The u0 given

at line 10, is updated at line 20. This part takes O(n log n) time as line 10 is executed in

O(n) time on average. The analysis on general u in line 16-18 follows. Since u is already in

91

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

Q, increase-key will take place. The batch processing is done for all increase-key ’s at line 31

for each L[v0]. That is, after all changes of key values are done for all u ∈ L[v0]. The tree is

organized back to a heap in the bottom-up fashion in the same way as in (1). The probability

that ce(u) = v0 for u is 1
(n−j+N) . Interpreting this probability as p and the size of the heap as

j in Lemma 1, the time for the restoration of the heap is bounded by the following summation.

n−1∑
j=N

(
j

n− j +N
+ log j

)
≤

n−1∑
j=1

(
j

n− j +N
+ log j

)
= O(n log n)

Thus the expected total time for comparisons in update is O(n log n).

Lemma 6 The total scanning effort is O(n log n).

Proof The scanning effort of update(v) and update(u0) at lines 15 and 20 is O(n log n) in total

since these lines are executed O(n) times and each takes O(log n) time. The probability that

u ∈ S has v0 as its candidate is 1
(n−j+N) . There are j such members in S, resulting in the

expected number of such u’s being j
(n−j+N) . The probability that the candidate hitting the

valid area is (n−j+N)
n . Thus the scanning effort for each such u is n

(n−j+N) . From endpoint

independence, those two values can be multiplied and the expected scanning effort for all u0 at

line 18 is

n−1∑
j=N

jn

(n− j +N)2
≤

n−1∑
j=1

jn

(n− j +N)2

≤
n−1∑
j=1

n2

(n− j +N)2

=

n−1∑
j=1

1

(1− j
n + 1

logn)2

=

n−1∑
j=1

n

(1− j
n + 1

logn)2
× 1

n

=

∫ 1

0

n

(1− x+ 1
logn)2

dx

= O(n log n)

92

4.6 Algorithm Implementation Details

From those lemmas, the following theorem can be reached.

Theorem 2 The expected running time of Algorithm 9 is O(n log n), and its APSP version

runs in O(n2 log n) time on average.

4.6 Algorithm Implementation Details

The algorithms presented in this thesis use complete dense directed graphs. This means, m =

n(n − 1), where n is the number of vertices and m is the number of edges. Edge costs are

randomly generated with non-negative edge costs with no self-loop.

All algorithm implementations were written in the C programming language. The same

programming style was used to program all algorithms. These programs were compiled using

the gcc compiler. To get the all pairs shortest path (APSP) results, n single source shortest

path(SSSP) problem was solved.

The maximum problem graph size, a graph with n vertices and m edges, used in this

experiments was limited by available RAM. To measure run time, varies samples of graphs were

generated due to variation in edge costs which occurred among randomly generated graphs.

The results on page 96 to 98 were obtained from the experiments that had been done using

Intel(R) Xeon (R) CPU E5645 @ 2.40Ghz, 4.0 Gb of RAM machine, running on Ubuntu Linux

operating system, at Sultan Idris Education University, Malaysia. In these experiments, for the

number of vertices, n ≤ 1500, 50 samples of graphs were used. For n = 2000 and n = 2500, 20

and 10 samples of graphs were used. The variety of the number of samples chosen was due to

the performance of the hardware used to run the program.

The results showed on page 99 - 103 were obtained using an Intel(R) Core(TM) 2 Quad

CPU Q8400 @ 2.66Ghz, 3.24 Gb RAM machine running the Fedora Linux operating system,

at the University of Canterbury, New Zealand. In these experiments, 10 graph samples were

used, from n = 500 to n = 2500.

Algorithms compared here sort the edges from each vertex v in non-decreasing order of

edge costs beforehand, in a method called pre-sort. These algorithms use a binary heap to

match them with main operations such as find-min, increase-key and insert operations. For

pre-sorting, a quicksort technique was used. Efficiency and a fast sorting method were the

reasons why this sorting technique was chosen.

In this thesis, the efficiency of algorithms is compared mainly by calculating the number of

key comparisons in the heap operations and in the algorithms themselves. This measurement

93

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

is chosen because it is not only machine independent, but also the most expensive operation in

these algorithms.

To see whether the algorithms that have been developed are correct, two methods can

be used. The first method is to compare the result obtained from the experiment with results

produced by Floyd’s algorithm. The shortest distance results, generated from Floyd’s algorithm

are guaranteed to be correct as this algorithm is implemented as a simple tight product of three

nested loops as explained in chapter 2. If the shortest path results obtained from an algorithm

are equal to the results obtained by Floyd’s algorithm, the algorithm is said to be correct. The

experiment suggests that the algorithms were accurate, as the shortest distance results obtained

were equivalent to those produced by Floyd.

The second method which can be used is to get the results using hand calculation that can

also be called manual calculation. This can be done when the size of graph is very small as it

is easier to trace the result step by step. In this method, an assumption can be made; if the

total number of key comparisons generated by the program are equal to the total number of

key comparisons using hand calculation, the algorithm can be accepted as correct. An example

of the second method used to test the correctness of MT and the new algorithm is further

decribed.

In the experiment that was carried out, three samples of graphs had been generated for a

single n vertices. The three graph samples that have been used are shown in Figure 4.8. A

manual counter was used to calculate the total number of key comparisons at three places: in

the heap operations, in the algorithm when the d[v]’s key were compared, and in the algorithm

when scanning was being done to choose the best candidates. When ever a new key comparison

was needed, the counter value would incrementally increase by one. The results obtained using

the manual calculation method was then be compared with the results obtained when the

algorithms were run using a compiler. The experiment results showed that our algorithms

were correct, as the results obtained from the program execution were equivalent to the results

obtained using manual calculation.

To understand the results better, mean and standard deviation for each sample were calcu-

lated. To do this, two functions had been included in the test program to calculate the mean and

standard deviation. Table 4.1 shows the results obtained from this experiment. With widely

different means, the coefficient of variation(CV) was used to interpret the results instead of

the standard deviation. From the results obtained as shown in Table 4.1, CVs for the both

algorithms are less than 10%. This suggests that good results have been obtained, as the range

94

4.7 Experimental Results and Analysis

 0

1

2

3

4

4 (27)

1 (335)

3 (421)

 2 (492)

0 (59)

3 (426)

4 (736)

2 (926)

4 (123)

0 (368)

1 (429)

3 (530)

2 (58)

0 (135)

4 (167)

1 (802)

1

2

0

3 (42) (373) (456) (919)

(a) The first graph sample

 0

1

2

3

4

1 (370)

2 (526)

4 (873)

 3 (980)

0 (170)

2 (281)

4 (327)

3 (925)

0 (505)

1 (729)

3 (857)

4 (895)

2 (364)

1 (367)

0 (545)

4 (750)

1

2

3

0 (178) (584) (651) (808)

(b) The second graph sample

 0

1

2

3

4

2 (12)

1 (368)

4 (539)

 3 (586)

2 (378)

0 (570)

3 (601)

4 (902)

3 (280)

4 (441)

0 (492)

1 (756)

4 (117)

1 (619)

0 (689)

2 (729)

1

0

3

2 (675) (771) (856) (927)

(c) The third graph sample

Figure 4.8: Three different graphs are generated with random edge costs for n = 5. The graphs
are represented using adjacency lists

of the total number of key comparisons are close to the total number of key comparisons of the

mean.

4.7 Experimental Results and Analysis

This section presents the results of the experimental comparisons of algorithms.

The main purpose of these experiments was to compare the new algorithm with the Moffat-

Takaoka(MT) algorithm. MT algorithm defines a limit variable to distinguish between the two

phases. The revised version of MT algorithm as shown in Algorithm 8 was used rather than

the previous version of MT algorithm as shown in Algorithm 7 for its close similarity to the

new algorithm.

95

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

Algorithm G1 G2 G3 Min Max Mean SD CV
MT 155 156 136 136 156 149.00 9.20 6.2%

The New Algorithm 163 176 138 138 176 159.00 15.77 9.9%

Table 4.1: The total number of key comparison for MT and the new algorithm when three
samples of graphs, n = 5 in Figure 4.8 are used. G1, G2 and G3 represent the graphs used in the
experiment.

Results. Our experimental results show that the results obtained between these two algo-

rithms are quite close. MT algorithm shows slightly better performance than the new algorithm.

However, the new deterministic algorithm for the APSP is provided as an alternative to the

existing MT algorithm. The major advantages of this approarch compared to the MT algorithm

are its simplicity, intuitive appeal and ease of analysis. Moreover, the algorithm is shown to

be reliable as the expected running time is O(n2 log n). When comparing results of the APSP

obtained from this algorithm with Floyd’s algorithm, the same results are achieved; it means

the algorithm is correct with respect to a specification. To our knowledge, this is the first

alternative algorithm that solves the APSP in O(n2 log n) expected time. For almost 35 years,

MT algorithm remains the only fast algorithm within the context. The use of a critical point

to divide the algorithm into two phases makes the algorithm hard to analyze. The probabilistic

dependence before and after the critical point produces over-run that might be overlooked.

A conceptual contribution of this algorithm is not only it can solve the APSP problem in

O(n2 log n) expected time, but also make the analysis better by removing the over-run analysis.

The details of the results follow:

The results to confirm that the new algorithm is run in O(n2 log n) expected time as it has

been proved in the previous section are given first. To do this, the total number of key com-

parisons of the new algorithm obtained from the experiment, is divided by (n2 log n). The

near-constant values obtained as shown in Table 4.2, confirm that the running time of this new

algorithm is O(n2 log n) expected time. Note that the units shown in all tables are number of

key comparisons.

Input Size, n New Algo (×107) n2 log n(×107) New Algo
n2 logn

500 1.14 0.22 5.09
1000 5.02 1.00 5.03
1500 11.56 2.37 4.87
2000 20.14 4.39 4.59
2500 32.57 7.05 4.62

Table 4.2: The total number of key comparison for the new algorithm

96

4.7 Experimental Results and Analysis

Table 4.3 shows the number of key comparisons when MT algorithm has been run. The min-

imum and the maximum number of key comparisons between the samples have been recorded

when executing the program.

Input Size, n Min (×107) Max (×107) Mean (×107) SD (×107) CV (%)
500 0.87 1.18 1.01 0.07 7.19
1000 3.98 5.43 4.51 0.29 6.54
1500 9.27 13.09 10.51 0.98 9.29
2000 16.57 20.93 18.42 1.34 7.28
2500 26.65 38.15 30.04 2.89 9.62

Table 4.3: The total number of key comparison for MT algorithm

For the new algorithms, the results is shown in Table 4.4.

Input Size, n Min (×107) Max (×107) Mean (×107) SD (×107) CV(%)
500 0.99 1.32 1.14 0.07 6.69
1000 4.48 5.94 5.01 0.29 5.91
1500 10.31 14.07 11.55 0.97 8.41
2000 18.20 22.71 20.14 1.35 6.73
2500 29.10 40.78 32.57 2.94 9.03

Table 4.4: The total number of key comparison for the new algorithm

From the results obtained in Table 4.3 and 4.4, it is suggested that the both algorithms are

correct. For example, in the new algorithm, the target set to which the end point of candidate

is sought is changing all the time, which causes more randomness. Therefore the standard

deviation is quite large. Comparing the CV of both the algorithms, it can be suggested that

the dispersion of the number of key comparisons over the mean are equal for the both algorithms

as they are less than 10%.

To see which algorithm shows better performance, the total number of key comparisons of

MT algorithm was compared with the total number of key comparisons of the new algorithm.

The result is shown in Table 4.5. The mean of both algorithms is used to represent the total

number of key comparisons.

Input Size, n MT (×107) The New Algorithm (×107)
500 1.01 1.14
1000 4.51 5.01
1500 10.51 11.55
2000 18.42 20.14
2500 30.04 32.57

Table 4.5: The total number of key comparison between MT and the new algorithm

97

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

It is interesting to see how many samples of graphs are needed to run for a specific n vertices.

Is 10 samples of graphs enough to test these algorithms? Table 4.6 shows the total number of

key comparison when only 10 samples of graphs have been used for different n vertices. Means,

standard deviations and coefficient of variations were calculated by the program when the both

algorithm were being executed. Table 4.7 summarizes the findings.

Input Size, n Minimum Maximum Mean SD CV

×107 ×107 ×107 ×107 %

MT New MT New MT New MT New MT New
500 0.93 1.06 1.12 1.27 1.00 1.13 0.06 0.06 5.7 5.4

1000 3.93 4.40 5.90 6.41 4.47 4.98 0.57 0.58 12.6 11.6

1500 9.29 10.28 11.32 12.31 10.19 11.22 0.75 1 0.73 6.4

2000 17.18 18.74 21.00 22.69 18.82 20.52 1.12 1.14 5.9 5.5

2500 26.88 29.38 33.64 36.19 29.67 32.18 1.88 1.89 6.3 5.9

Table 4.6: The total number of key comparison between MT and the new algorithm. The ”New”
represents the new algorithm

Input Size, n MT (×107) The New Algorithm (×107)
500 1.00 1.13
1000 4.47 4.98
1500 10.18 11.22
2000 18.81 20.52
2500 29.67 32.17

Table 4.7: The total number of key comparison between MT and the new algorithm when a
graph sample, s = 10

It is hard to say whether 10 samples of graphs are enough to test these algorithm as when

n = 1000, CV > 10%. However, the findings shows that better CV is achieved with other n

vertices, CV ≤ 10%.

Before an assumption could be made for the distribution of the number of key comparisons,

the two algorithms were then run 100 times each with n = 1000, and the mean, SD and CV

were recorded. The results are shown is Table 4.8.

When n = 1000 and samples, s = 10, CV > 10%. However, when the same number

of vertices , n = 1000 uses 100 samples of graphs, CV ≤ 10%. From the results it can be

suggested that when the number of samples are very large, better CV will be obtained. An

assumption has been made by the results obtained in Table 4.6 that 10 samples of graphs are

enough to compare the MT and the new algorithm proposed in this thesis. This is mainly

98

4.7 Experimental Results and Analysis

Items MT The New Algorithm
Min (×107) 3.92 4.41
Max (×107) 5.77 6.28
Mean (×107) 4.45 4.95
SD (×107) 0.36 0.36
CV 8.1% 7.3%

Table 4.8: The total number of key comparison between MT and the new algorithm with n =
1000

because of from n = 500 to n = 2500, 80% of CVs are less than 10% even though only 10

samples of graphs have been used in the experiments.

To give better results, experiments to compare the performance between MT and the new

algorithm have been done on a different machine. When a different machine had been used,

the results obtained are shown in Table 4.9.

Input Size, n MT (×107) The New Algorithm (×107)
500 1.00 1.13
1000 4.47 4.98
1500 10.18 11.22
2000 18.81 20.52
2500 29.67 32.17

Table 4.9: The total number of key comparison between MT and the new algorithm using a
different machine

Even though different machines with different specifications and locations were used, the

results obtained from the both machines were similar.

If the CPU computation time is concerned, the running time obtained for both algorithm

when CPU time is calculated is shown in Figure 4.9.

Input Size, n MT (seconds) The New Algorithm (seconds)
500 0.35 0.42
1000 1.62 1.79
1500 3.92 4.22
2000 7.20 7.95
2500 11.77 12.95

Table 4.10: Running times for the APSP algorithms

The CPU running time of the new algorithm does not perform as good as the MT algorithm.

This is because of the implementation of the new algorithm requires the use of two-dimensional

arrays more often than the MT algorithm. Using two-dimensional arrays is relatively slow in

the C language.

99

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

number of vertices, n

tim
e

(s
ec

on
ds

)

MT
New algorithm

Figure 4.9: Running times for the APSP algorithms

The results shown in Table 4.5 and graph in Figure 4.9 demonstrate that the MT algorithm

is a bit superior than the new algorithm. To see the reasons why the number of comparisons

in the new algorithm had been slighly higher, further experiments were done by dividing the

complexity of key comparisons into a few different parts.

In general, there are three places where the key comparison is done: in heap operations

such as when executing insert, find-min and increase-key operations, in the algorithm when

the minimum d[v] is chosen and in the algorithm when scanning process to find the candidate is

performed. Table 4.11 lists the results of the both algorithms if only key comparisons in heaps

operations are considered.

Input Size, n MT (×107) The New Algorithm (×107)
500 0.55 0.67
1000 2.44 2.90
1500 5.41 6.33
2000 9.96 11.45
2500 15.08 17.28

Table 4.11: The total number of key comparison in heap operations

The results show that between 50 to 60% of the total complexity are derived from this

operation. The both algorithms require almost the equal number of key comparison from the

total complexity.

Key comparison is also needed when comparing the minimum d[v] value in the update

procedure. If this is the only measurement used as key comparisons, results obtained are shown

100

4.7 Experimental Results and Analysis

in Table 4.12. The number of key comparisons in this part consumes less than 10% from the

total complexity. Both algorithms show almost the same results.

Input Size, n MT (×107) The New Algorithm (×107)
500 0.09 0.11
1000 0.38 0.43
1500 0.86 0.98
2000 1.56 1.78
2500 2.46 2.78

Table 4.12: The total number of key comparison in comparing the d[v]’s values

Scanning to get the candidate for each vertex v of the both algorithms also requires key

comparisons to be measured. The scanning technique used to get the next candidate varies

between these two algorithms, as explained in the earlier sections. Table 4.13 shows the results

when scanning is chosen as key comparisons.

Input Size, n MT (×107) The New Algorithm (×107)
500 0.36 0.36
1000 1.65 1.65
1500 3.91 3.91
2000 7.30 7.28
2500 12.13 12.11

Table 4.13: The total number of key comparison in scanning part

In Table 4.13, the new algorithm requires less or almost the same pointer movement such

in the MT algorithm. Both algorithms spend between 35 to 40% comparing keys from the

total complexity. Even though the new algorithm does not require the changes of behaviour at

certain point, the results obtained show that a clever method is deployed in this new algorithm.

In other words, the new algorithm always tries to balance this scanning technique with the

overall complexity. This is a novel method introduced by the new algorithm.

Results obtained in Table 4.11, 4.12 and Table 4.13 describe that when the number of

scanning to get the best candidate is increased, then the number of key comparisons to perform

heap operations is decreased. This situation leads to a situation similar to Dantzig’s algorithm.

The MT algorithm defines the critical point to avoid this scenario. When the size of the

solution set is close to n, more scanning is done, which requires more key comparisons. The new

algorithm removes the critical point by trying to balance the scanning effort when expanding

the solution set. However, the effort is improved, the total performance still can not beat

the MT alfgorithm. To balance between key comparisons in many parts, the new algorithm

101

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

uses fewer key comparisons in scanning, resulting in more key comparisons used in the heap

operations. This is the main reason why the new algorithm achieves slightly lower performance

than the MT algorithm when the number of key comparisons is measured.

The buffer zone, N of size n
logn in the new algorithm can be parameterized as kN , depending

on the characteristic of the computer used with specific speeds for comparisons and pointer

movements. Results of this tuning are shown in Table 4.14. Units are 107.

New Algorithm (varies k)
n MT algorithm 0.6 0.8 1.0 1.2 1.4

500 1.00 1.14 1.13 1.13 1.15 1.18
1000 4.47 5.04 4.98 4.98 5.04 5.14
1500 10.19 11.40 11.21 11.22 11.25 11.39
2000 18.82 20.94 20.51 20.52 20.63 20.93

Table 4.14: The total number of key comparison with different k parameters

These results demonstrate that when the k value is changed, the total number of key com-

parison will also be slightly changed. The best k parameter to use in this new algorithm is

when the value of k = 0.8, as shown in Table 4.14.

Another finding from these experiments regards the performance of key comparison when

some modification is made to the inrease-key operation in the heap. This modification is

required to maintain a batch list from the algorithms. The increase-key function is called

to increase the key value of a node. This will be done by the priority queue. When there

are two keys in the algorithm that need to be updated, then, the increase-key function will

be called twice to update each keys. The more the function is executed, the more the key

comparisons is done. In the algorithms that have been discussed here, when the edge list of

L[v] has to be updated, that means there might be more than one keys have to be revised. This

therefore increases the total number of key comparisons. To avoid this, updating those u ∈ L[v]

should be done in a batch list; the L[v] is sent to the increase-key function in a batch and the

heap will change the keys with the new keys and re-balance the heap after all keys have been

updated. Increasing key values in a batch can reduce the number of key comparisons. Table

4.15 demonstrates the total number of key comparisons which can be recovered when the batch

processing technique is used.

Results in Table 4.15 were obtained by deducting the total number of key comparisons

received by a single inrease-key operation with a batch processing increase-key. The results

102

4.7 Experimental Results and Analysis

Input Size, n MT The New Algorithm
500 6829.50 1923.20
1000 14665.40 4148.40
1500 17890.70 6509.40
2000 22554.80 7940.20
2500 30633.10 10497.80

Table 4.15: The total number of key comparison that can be saved if a batch processing technique
is used in increase-key function

show that the MT algorithm gains three times more benefit from this technique than the new

algorithm. Batch processing is done when all u ∈ L[v], need to be updated to find other

candidates. The MT algorithm requires this update before the critical point, however it relaxs

the idea after the critical point. The new algorithm, on the other hand, requires this update

for all u ∈ S that are pointing to the expiring vertex, v0. The batch list is called L[v0]. The

total number of u ∈ L[v] is more than u ∈ L[v0]. Therefore, the total complexity in the MT

algorithm is reduced by this technique. This is one of the other factors contributing to the

better performance of the MT algorithm.

From the experiment and the analysis that have been done, it is suggested that the new

algorithm is simpler than the MT algorithm in three aspects: analysis, design and code imple-

mentation.

Simpler in analysis: In the second phase of MT algorithm, each candidate of the vertices

in the solution set S is located in U . The set U is the set of unlabeled vertices, where at the

end of the first phase, the size of U , |U | is b n
lognc by design. As the candidates of every vertices

in S must be in U at the end of Phase 1, Moffat and Takaoka assume that the vertices in U

are randomly scattered throughout each adjacency list. It is expected that log n of edges are

required to be scanned. Thus, the total scanning effort for the first phase is O(n log n) as n log n

edges will be scanned. However, Mehlhorn and Priebe (50) argue this assumption is inaccurate

as they point out that U is determined by the orderings of the adjacency lists and cannot be

fixed independently. They state that the total of n−b n
lognc edges out of the source are scanned

in the first phase. The last b n
lognc edges in the adjacency list of the source will determine the

vertices in U . This can be obtained by assuming that the edge costs for all outgoing edges

from the source are 1, and the rest are 2. In (50), the authors also argue whether the number

of iterations needed to expand the size of S in Phase 2 and the scanning effort needed in the

update procedure are independent or not. The changing process from the first phase to the

second phase in the MT algorithm makes the algorithm very difficult to analyze. The new

103

4. AN O(N2 LOGN) EXPECTED TIME ALGORITHM

algorithm, however, is easier to analyze as there is no changing process from the beginning to

the end when solving a problem.

Simpler in design: In each iteration process for the expansion of the solution set S, there

are certain steps to be followed. At first S is empty. The first vertex to be included in S is

a source vertex s. The size of S is expanded when a new vertex is inserted in S. In the MT

algorithm, when the number of vertices in the solution set |S| = n− n
logn , some modifications

to the steps in the iteration have to be made. This is mainly because the critical point has been

reached and the algorithm is entering the second phase. During the second phase, the iteration

should be modified to perform other procedures as the candidates of every vertices in S must

be vertices in the U set only. On the other hand, the new proposed algorithm promotes the

same way of solving the problem from the beginning, when S is empty until all vertices have

been included in S. The new algorithm has an even consistency or follows the same steps all

the way to solve a particular problem. The same heap data structure is also used all the way.

That is why the new algorithm is simpler compared to the MT algorithm.

Simpler in code implementation: As the iteration to include the vertices in the solution set

is the same for all vertices, the code is simpler in implementation as no critical point is needed

to be checked. Our experiments show that the line of codes to write the algorithm is slightly

higher in the MT algorithm compared to the new algorithm even though the same programming

style for the inclusion of vertices in the solution set is used.

In conclusion, the design of the new algorithm is very promising. It balances heap operations,

which are measured by the number of node-to-node key comparison, and scanning effort, which

is measured by pointer movements. In other words, the new algorithm balances two different

complexities of different natures. It also permits a simple and easy implementation in one of

the most crtical steps in the existing MT algorithm, yet the new algorithm is easier to analyze.

Even though the current performance of the new algorithm is not strong, as technology improves

and computers grow more powerful, it will be possible to add more features to improve the

performance of the new algorithm.

104

5

Concluding Remarks and Future

Work

The primary objective of this thesis is to solve the all pairs shortest paths problem (APSP)

most efficiently. This was achieved through the development of a new shortest path algorithm

which attained optimal complexity of O(n2 log n) with a simpler analysis. The analysis is done

based on the average case analysis. The existing well known algorithm, Moffat-Takaoka (MT)

algorithm which solves the APSP in the same time complexity employed two phases in solving

the problem. The introduction of a critical point to divide the two phases makes the algorithm

superior and unbeatable. No matter how much, the critical point has caused a tougher analysis,

yet, it is still difficult to understand the algorithm itself. However, the new algorithm introduced

in this thesis removes the critical point concept.

The MT algorithm was developed in 1985. Since then, no other algorithm can solve the

problem better than that for a dense non-negative digraph. When this MT algorithm was

presented, the analysis of this algorithm had been reviewed by other authors as it had flaws

in the algorithm analysis. It appeared that the probabilistic dependence before and after the

critical point produces over-run have been overlooked. On the other hand, it has been shown

that this algorithm is relatively faster and it manages to obtain the best time complexity.

What motivates the introduction of a new algorithm was to challenge MT algorithm’s time

complexity which, the research also aimed to produce an alternative algorithm that can be

used to solve the APSP in the same way. To achieve this, the research found two elements

contributing to the performance of the existing algorithm; scanning method used to select the

best nodes for the operation and the frequency of the heap operations called by the algorithm.

105

5. CONCLUDING REMARKS AND FUTURE WORK

This research has successfully removed the critical point concept by balancing these two com-

plexities from the beginning until the end. In other words, the algorithm runs smoothly and

steadily without having to change its behavior along the process, having the the same scanning

technique being used through out the runtime. Even though the experimental results did not

achieve the expected shown best performances, somehow providing the alternative algorithm is

a great achievement. A conceptual contribution of this algorithm does not only solves the APSP

problem in O(n2 log n) expected time, but also improves by removing the over-run analysis.

Guided by the importance of using a good data structure to speed up the process of solving

the shortest path problem, this thesis too explored the priority queues or heaps areas. This is

in fact the second contribution of this thesis. This research presented two new data structures

called quaternary and dimensional heaps. This research has also shown that under certain

circumstances, it is possible for the new data structures to outperform the existing well known

heaps such as trinomial, binary, Fibonacci and 2-3 heaps.

The first data structure known as a quaternary heap is very comparable to the trinomial

heap. This data structure was developed to see the performance of a dense structure heap with

special input sequences. Thus, an insertion cache was used in this heap. Overall performance

obtained from the experimental results showed that this heap could beat the trinomial heap

when the number of vertices, n was relatively small. The research then explored the performance

of a thin structure heap with the use of workspace and dimension when performing a decrease-

key operation in the heap. The objective was to produce a better decrease-key function tohelp

speed up the update key process. Experimental results showed that when m times decrease-

key operations were called, where m denoted the number of edges in a graph, the dimensional

heap gave outstanding results and could easily beat other heaps performances such as binary,

fibonacci and 2-3 heaps

5.1 Measurement Technique

In this thesis, the efficiency of algorithms and data structures was measured by calculating

the number of key comparisons. A single key comparison was done when there were two key

values of two nodes to be compared before executing certain operations. Actual CPU time

computation was not used as the measurement. This was mainly because of the concept of

computer itself. It is well known that every computer performs different operations at different

speeds, varying in memory size, processor and disk speeds.

106

5.2 Future Research

The measurement in the experiment was done more abstractly by counting the number of

basic operations required to run the algorithm. The key comparison was chosen since it was

the basic operation and the most expensive operation for this algorithm. It is also machine

independent.

5.2 Future Research

By reflecting on the results obtained from this research, several interesting research topics and

recommendations have been observed. These would allow other researchers to further evaluate

and expand the findings of this thesis.

5.2.1 Better scanning technique

The difference between one algorithm and another which solves the all pairs shortest path

problem (APSP) in different time complexities, is the scanning technique used to find a suitable

node to be explored after the insertion of the adjacent node. This scanning process is done

to expand the size of the solution set and this process is the most expensive operation in

the algorithm. The equally expensive operation is the key comparisons needed by a heap

data structure. However, these two expensive operations are related to each other. The more

scanning operation is done, the less key comparisons used by the data structure and it is the

same the other way around. If these two complexities are balanced, a faster algorithm to solve

the APSP is possible. Can we perhaps create a perfect balance between these two complexities?

5.2.2 Using a pair-wise algorithm

The existing best algorithms usually solve the APSP algorithm by performing n× single source

shortest path (SSSP) problems. If a pair-wise algorithm (53) is used to solve the problem,

can we get better performance? The idea of the pair-wise algorithm comes from the hidden

path algorithm (54). To solve the all pairs shortest path problem then , Dijkstra’s algorithm

is executed in parallel to all nodes in the graph. Using limited edge costs, (55) shows that

the APSP problem can be solved in O(mn + n2 log(c
n)), where c is the maximum edge cost,

n is the number of vertices and m is the number of edges in a graph. The algorithm in (55)

uses a pair-wise algorithm with a cascading bucket system data structure. Research using this

technique could be explored and the best data structure to use with this algorithm also should

be developed. It is an open problem of which technique is the best to use.

107

5. CONCLUDING REMARKS AND FUTURE WORK

5.2.3 The best constant time for the decrease-key operation

A potential value for each edge is assigned using the amortized cost analysis. In the dimensional

heap, each thin edge is assigned to have potential 1, Φ = 1 while two thick edges are assigned

to have potential 1 for the each edge, thus Φ = 2 for two thick edges. When the heap structure

is very thin, performing a decrease key operation results in many thick edges. Figure 5.1 shows

the decrease-key operation on node a. Figure 5.1(a) describes the heap structure before the

operation and Figure 5.1(b) shows the structure after the decrease-key operation has been

performed.

a

(a) The heap structure before the decrease-key

a

(b) The heap structure after the decrease-key

Figure 5.1: A decrease-key operation is called to decrease key value of node a

When the thinnest structure becomes the dense structure after the decrease-key operation,

the potential is reduced at least by one. For example, the potential for the tree structure in

5.1(a) is 31, Φ = 31 and the potential of 5.1(b) is 30, Φ = 30. When key(a) is decreased, no

key comparison is made. The amortized cost for this operation is given by:

ai = ti − (Φi − Φi−1) = 0− (30− 31) = 1 (5.1)

When the decrease-key operation is performed, the tree must be restructured. The re-

108

5.2 Future Research

structuring propagates to higher dimensions. With the thinnest structure, going to the higher

dimension is not that expensive. This is the merit of the dimensional heap; it provides simplic-

ity for the work space and is generally more efficient in the decrease-key operation than other

heaps.

T(3)

A(1)

B(12)

H(30)

D(4)
E(10)

F(18) G(15)

I(19)

K(13)

 C(7)

(a) Before key(H) is decreased

 H(10)

T(0)

T(3)

A(1)

B(12) D(4)
E(10)

F(18) G(15)

I(19)

K(13) C(7)

(b) The result after key(H) was decreased

Figure 5.2: Decrease-key operation on node H. The lower dimension sibling of parent’s node is
thick

However, consider an example of a dimensional tree with a combination of thick and thin

edges as shown in Figure 5.2. As there is a need of one key comparison for the decrease-key

process, then

ai = ti − (Φi − Φi−1) = 1− (8− 9) = 2 (5.2)

The question is, can we reduce the constant factor obtained by 5.2? Is it possible to change

the heap structure of this type of tree after the decrease-key operation with other heap structure

such as 2-3 heap? The idea is to make the constant factor from the amortized cost as low as

possible. This is mainly because if the running time becomes important, then the constants

and low-order terms do matter in terms of which algorithm is actually faster. Research in this

area should also be explored.

109

5. CONCLUDING REMARKS AND FUTURE WORK

5.3 Concluding Remarks

Simplicity is one of the most important criteria needed for a good algorithm (56). Algorithmic

design should be clearly stated and easily understood by those who are going to convert the

algorithm into a real-world program. There is often a conflict in selecting between a fast and

a simple algorithm. Typically, the more complex the algorithm, the more difficult it is to

implement. Thus, an algorithm might easily encounter subtle bugs after it has been in use for

a substantial period of time. Choosing the best algorithm must be done wisely.

With future advances in technology such as CPUs, there is always a chance that better

algorithms can be created as well as data structures that can work perfectly with the algorithm.

CPU hardware and features are rapidly evolving. We should not be too concerned about

improving the efficiency of an algorithm, since what is considered inefficient today will in turn

become at least adequately efficient on the faster hardware within a few years’ time.

110

References

[1] Alistair Moffat and Tadao Takaoka. An all pairs shortest path algorithm

with expected time O(n2 log n). SIAM J. Comput., 16(6):1023–1031, December 1987.

6, 21, 82, 85, 86, 87, 92

[2] Tadao Takaoka. Theory of Trinomial Heaps. In Proceedings of the 6th Annual

International Conference on Computing and Combinatorics, COCOON ’00, pages 362–

372, London, UK, UK, 2000. Springer-Verlag. 6, 19, 23, 30, 34, 35, 36, 38, 47

[3] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their

uses in improved network optimization algorithms. J. ACM, 34(3):596–615, July

1987. 6, 19, 22, 38, 66

[4] Tadao Takaoka. Theory of 2-3 heaps. Discrete Appl. Math., 126(1):115–128, March

2003. 6, 19, 23, 27, 34, 36, 38, 47, 66, 67

[5] Seth Pettie and Vijaya Ramachandran. Computing Undirected Shortest Paths

with Comparisons and Additions, 2001. 9

[6] Edsger. W. Dijkstra. A Note on Two Problems in Connexion with Graphs.

Numerische Mathematik, 1:269–271, 1959. 14, 72

[7] Robert B. Dial. Algorithm 360: shortest-path forest with topological ordering

[H]. Commun. ACM, 12(11):632–633, November 1969. 14

[8] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows:

theory, algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1993. 14, 22

111

http://dx.doi.org/10.1137/0216065
http://dx.doi.org/10.1137/0216065
http://dl.acm.org/citation.cfm?id=646718.702069
http://doi.acm.org/10.1145/28869.28874
http://doi.acm.org/10.1145/28869.28874
http://dx.doi.org/10.1016/S0166-218X(02)00219-6
http://doi.acm.org/10.1145/363269.363610
http://doi.acm.org/10.1145/363269.363610

REFERENCES

[9] Boris Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest Paths

Algorithms: Theory And Experimental Evaluation. Mathematical Programming,

73:129–174, 1993. 14, 16

[10] Mikkel Thorup. Integer priority queues with decrease key in constant time and

the single source shortest paths problem. In Proceedings of the thirty-fifth annual

ACM symposium on Theory of computing, STOC ’03, pages 149–158, New York, NY, USA,

2003. ACM. 14, 22

[11] James B. Orlin, Kamesh Madduri, K. Subramani, and M. Williamson. A faster

algorithm for the single source shortest path problem with few distinct positive

lengths. J. of Discrete Algorithms, 8(2):189–198, June 2010. 15

[12] P.E. Hart, N.J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2):100–107, 1968. 15

[13] Ira Pohl. Bi-directional Search. Machine Intelligence, 6:127–140, 1971. 15

[14] T. Ikeda, Min-Yao Hsu, Hiroshi Imai, S. Nishimura, H. Shimoura, T. Hashimoto,

K. Tenmoku, and K. Mitoh. A fast algorithm for finding better routes by AI

search techniques. In Vehicle Navigation and Information Systems Conference, 1994.

Proceedings., 1994, pages 291–296, 1994. 15

[15] Jrgen Eckerle. An optimal bidirectional search algorithm. In Bernhard Nebel

and Leonie Dreschler-Fischer, editors, KI-94: Advances in Artificial Intelligence,

861 of Lecture Notes in Computer Science, pages 394–394. Springer Berlin Heidelberg,

1994. 15

[16] Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path:

A* Search Meets Graph Theory. pages 156–165, 2004. 15

[17] Kazuaki Yamaguchi and Sumio Masuda. An A* Algorithm with a New Heuristic

Distance Function for the 2-Terminal Shortest Path Problem. IEICE Trans.

Fundam. Electron. Commun. Comput. Sci., E89-A(2):544–550, February 2006. 15

[18] L. Fu, D. Sun, and L. R. Rilett. Heuristic shortest path algorithms for trans-

portation applications: state of the art. Comput. Oper. Res., 33(11):3324–3343,

November 2006. 15

112

http://doi.acm.org/10.1145/780542.780566
http://doi.acm.org/10.1145/780542.780566
http://dx.doi.org/10.1016/j.jda.2009.03.001
http://dx.doi.org/10.1016/j.jda.2009.03.001
http://dx.doi.org/10.1016/j.jda.2009.03.001
http://dx.doi.org/10.1007/3-540-58467-6_37
http://dx.doi.org/10.1093/ietfec/e89-a.2.544
http://dx.doi.org/10.1093/ietfec/e89-a.2.544
http://dx.doi.org/10.1016/j.cor.2005.03.027
http://dx.doi.org/10.1016/j.cor.2005.03.027

REFERENCES

[19] Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact

Shortest Path Queries. In GerthStlting Brodal and Stefano Leonardi, edi-

tors, Algorithms ESA 2005, 3669 of Lecture Notes in Computer Science, pages 568–579.

Springer Berlin Heidelberg, 2005. 15

[20] Peter Sanders and Dominik Schultes. Engineering highway hierarchies. J. Exp.

Algorithmics, 17:1.6:1.1–1.6:1.40, September 2012. 15

[21] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner.

Highway Hierarchies Star. Technical report, ARRIVAL Project, November 2006. work

presented at 9th DIMACS Challenge on Shortest Paths. 15

[22] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–, June

1962. 15, 20

[23] Richard Bellman. On a Routing Problem. Quarterly of Applied Mathematics,

16:87–90, 1958. 16

[24] Donald B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Net-

works. J. ACM, 24(1):1–13, January 1977. 16

[25] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted

graphs. Theor. Comput. Sci., 312(1):47–74, January 2004. 16

[26] Yijie Han and Tadao Takaoka. An O(n3 log logn
log2 n

) Time Algorithm for All Pairs

Shortest Paths. In SWAT, pages 131–141, 2012. 16

[27] Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted

graphs. In Proceedings of the thirty-ninth annual ACM symposium on Theory of comput-

ing, STOC ’07, pages 590–598, New York, NY, USA, 2007. ACM. 16

[28] John William Joseph Wiiliams. Algorithm 232: Heapsort. Communications of the

ACM, 7(6):596–615, 1964. 19, 22, 66, 72

[29] Philip M. Spira. A New Algorithm for Finding all Shortest Paths in a Graph

of Positive Arcs in Average Time 0(n2 log2n). SIAM J. Comput., 2(1):28–32, 1973.

21, 76

113

http://dx.doi.org/10.1007/11561071_51
http://dx.doi.org/10.1007/11561071_51
http://doi.acm.org/10.1145/2133803.2330080
http://doi.acm.org/10.1145/367766.368168
http://doi.acm.org/10.1145/321992.321993
http://doi.acm.org/10.1145/321992.321993
http://dx.doi.org/10.1016/S0304-3975(03)00402-X
http://dx.doi.org/10.1016/S0304-3975(03)00402-X
http://doi.acm.org/10.1145/1250790.1250877
http://doi.acm.org/10.1145/1250790.1250877

REFERENCES

[30] Peter Bloniarz. A shortest-path algorithm with expected time O(n2 log n log∗ n).

In Proceedings of the twelfth annual ACM symposium on Theory of computing, STOC ’80,

pages 378–384, New York, NY, USA, 1980. ACM. 21, 80, 82, 87, 90

[31] Clark Allan Crane. Linear lists and priority queues as balanced binary trees. PhD

thesis, Stanford, CA, USA, 1972. AAI7220697. 22

[32] Jean Vuillemin. A data structure for manipulating priority queues. Commun.

ACM, 21(4):309–315, April 1978. 22

[33] Michael L. Fredman. On the efficiency of pairing heaps and related data struc-

tures. J. ACM, 46(4):473–501, July 1999. 23

[34] Gerth Stølting Brodal, George Lagogiannis, and Robert E. Tarjan. Strict

fibonacci heaps. In Proceedings of the 44th symposium on Theory of Computing, STOC

’12, pages 1177–1184, New York, NY, USA, 2012. ACM. 23

[35] Amr Elmasry, Claus Jensen, and Jyrki Katajainen. On the power of structural

violations in priority queues. In Proceedings of the thirteenth Australasian symposium

on Theory of computing - Volume 65, CATS ’07, pages 45–53, Darlinghurst, Australia,

Australia, 2007. Australian Computer Society, Inc. 23

[36] Daniel Dominic Sleator and Robert Endre Tarjan. Self adjusting heaps. SIAM

J. Comput., 15(1):52–69, February 1986. 23

[37] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan.

Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel

computation. Commun. ACM, 31(11):1343–1354, November 1988. 23

[38] Seth Pettie. Towards a Final Analysis of Pairing Heaps. In Proceedings of the 46th

Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pages 174–183,

Washington, DC, USA, 2005. IEEE Computer Society. 23

[39] Amr Elmasry. Pairing heaps with O(log log n) decrease cost. In Proceedings of

the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages

471–476, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

23

114

http://doi.acm.org/10.1145/800141.804687
http://doi.acm.org/10.1145/359460.359478
http://doi.acm.org/10.1145/320211.320214
http://doi.acm.org/10.1145/320211.320214
http://doi.acm.org/10.1145/2213977.2214082
http://doi.acm.org/10.1145/2213977.2214082
http://dl.acm.org/citation.cfm?id=1273694.1273700
http://dl.acm.org/citation.cfm?id=1273694.1273700
http://dx.doi.org/10.1137/0215004
http://doi.acm.org/10.1145/50087.50096
http://doi.acm.org/10.1145/50087.50096
http://dx.doi.org/10.1109/SFCS.2005.75
http://dl.acm.org/citation.cfm?id=1496770.1496822

REFERENCES

[40] Haim Kaplan and Robert Endre Tarjan. Thin heaps, thick heaps. ACM Trans.

Algorithms, 4(1):3:1–3:14, March 2008. 23

[41] Timothy Chan. Quake heaps: a simple alternative to Fibonacci heaps. 2009. 23

[42] Siddhartha Sen Bernhard Haeupler and Robert E. Tarjan. On Rank-Pairing

Heaps. SIAM J. Comput, 40(6):14631485, 2011. 23

[43] Kohei Noshita. A theorem on the expected complexity of dijkstra’s shortest

path algorithm. Journal of Algorithms, 6(3):400 – 408, 1985. 24

[44] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan.

Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel

computation. Commun. ACM, 31(11):1343–1354, November 1988. 36

[45] Andrew V. Goldberg. A Practical Shortest Path Algorithm with Linear Ex-

pected Time. SIAM J. Comput., 37(5):1637–1655, February 2008. 66, 67

[46] George B. Dantzig. On the Shortest Route Through Network. Management

Science, 6(2):187–190, 1960. 73, 79, 81, 83

[47] Tadao Takaoka and Alistair Moffat. An O(n2 log log log n) Expected Time Al-

gorithm for the all Shortest Distance Problem. In Proceedings of the 9th Symposium

on Mathematical Foundations of Computer Science, MFCS ’80, pages 643–655, London,

UK, UK, 1980. Springer-Verlag. 80, 81, 82, 87

[48] Tadao Takaoka and Mashitoh Hashim. A simpler algorithm for the all pairs

shortest path problem with o(n2 log n) expected time. In Proceedings of the 4th

international conference on Combinatorial optimization and applications - Volume Part II,

COCOA’10, pages 195–206, Berlin, Heidelberg, 2010. Springer-Verlag. 83, 87

[49] William Feller. An Introduction to Probability Theory and Its Applications. John Wiley

and Sons, Inc, Canada, 1971. 85

[50] Kurt Mehlhorn and Volker Priebe. On the all-pairs shortest-path algorithm

of Moffat and Takaoka. Random Struct. Algorithms, 10(1-2):205–220, February 1997.

85, 86, 87, 103

115

http://doi.acm.org/10.1145/1328911.1328914
http://www.sciencedirect.com/science/article/pii/0196677485900094
http://www.sciencedirect.com/science/article/pii/0196677485900094
http://doi.acm.org/10.1145/50087.50096
http://doi.acm.org/10.1145/50087.50096
http://dx.doi.org/10.1137/070698774
http://dx.doi.org/10.1137/070698774
http://dl.acm.org/citation.cfm?id=645714.758077
http://dl.acm.org/citation.cfm?id=645714.758077
http://dl.acm.org/citation.cfm?id=1940424.1940440
http://dl.acm.org/citation.cfm?id=1940424.1940440
http://dx.doi.org/10.1002/(SICI)1098-2418(199701/03)10:1/2<205::AID-RSA11>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1098-2418(199701/03)10:1/2<205::AID-RSA11>3.0.CO;2-7

REFERENCES

[51] Andrew V. Goldberg and Robert E. Tarjan. Expected Performance of Di-

jkstra’s Shortest Path Algorithm. Technical report, NEC RESEARCH INSTITUTE

REPORT, 1996. 87

[52] Mashitoh Hashim and Tadao Takaoka. A new Algorithm for solving the All

pairs shortest path problem in O(n2 log n) expected time. In in NZCSRSC 2010

conference, 2010. 87

[53] Tadao Takaoka and Mashitoh Hashim. Sharing Information in All Pairs Short-

est Path Algorithms. In Alex Potanin and Taso Viglas, editors, Computing: The

Australasian Theory Symposium (CATS 2011), 119 of CRPIT, pages 131–136, Perth,

Australia, 2011. ACS. 107

[54] David R. Karger, Daphne Koller, and Steven J. Phillips. Finding the hid-

den path: time bounds for all-pairs shortest paths. SIAM Journal on Computing,

22(6):1199–1217, 1993. cited By (since 1996) 43. 107

[55] T. Takaoka. Efficient algorithms for the all pairs shortest path problem with

limited edge costs. 128, pages 21–26, 2012. cited By (since 1996) 0. 107

[56] Al Aho and Jeff Ullman. Foundations of Computer Science. 1992. 110

116

http://crpit.com/confpapers/CRPITV119Takaoka.pdf
http://crpit.com/confpapers/CRPITV119Takaoka.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027869078&partnerID=40&md5=f5c286315349b64adc41e2e0fadb287e
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027869078&partnerID=40&md5=f5c286315349b64adc41e2e0fadb287e
http://www.scopus.com/inward/record.url?eid=2-s2.0-84864014387&partnerID=40&md5=e08c8dbc4024161df1b0f29fd0efccf6
http://www.scopus.com/inward/record.url?eid=2-s2.0-84864014387&partnerID=40&md5=e08c8dbc4024161df1b0f29fd0efccf6

	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	1 Introduction
	2 Shortest Path Background
	2.1 Introduction
	2.2 Basic Terminology
	2.2.1 Time Complexity

	2.3 Graph Terminology
	2.4 Shortest Path Algorithms
	2.4.1 Dijkstra's Algorithm
	2.4.2 Floyd-Warshall Algorithm

	2.5 Shortest Path Data Structures
	2.5.1 Binary heap
	2.5.2 Fibonacci heap
	2.5.3 2-3 heap
	2.5.4 Trinomial heap

	2.6 Shortest Path Application

	3 New Data Structures
	3.1 Introduction
	3.1.1 Polynomial of trees

	3.2 A Quaternary Heap
	3.2.1 Quaternary heap operations
	3.2.1.1 Insert operation
	3.2.1.2 Delete-min operation
	3.2.1.3 Decrease-key operation

	3.3 A Dimensional Heap
	3.4 A Workspace
	3.5 Tree Potential
	3.6 Amortized Cost Analysis
	3.7 The Dimensional Heap Operations
	3.7.1 Merge Operation
	3.7.2 Insert Operation
	3.7.3 Delete-min Operation
	3.7.4 Decrease-key Operation

	3.8 Experimental Results and Analysis
	3.8.1 The performance of the quaternary heap
	3.8.2 The performance of the dimensional heap
	3.8.3 Concluding Remarks

	4 An O(n2logn) Expected Time Algorithm
	4.1 Introduction
	4.2 Unlimited Scanning Algorithms
	4.3 Simple Scanning by One
	4.4 Limited Scanning Algorithms
	4.4.1 Limited scanning up to a fixed number of times algorithms
	4.4.2 Timestamp Scanning

	4.5 A New Algorithm
	4.5.1 Correctness
	4.5.2 Analysis of the New Algorithm

	4.6 Algorithm Implementation Details
	4.7 Experimental Results and Analysis

	5 Concluding Remarks and Future Work
	5.1 Measurement Technique
	5.2 Future Research
	5.2.1 Better scanning technique
	5.2.2 Using a pair-wise algorithm
	5.2.3 The best constant time for the decrease-key operation

	5.3 Concluding Remarks

	References

