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Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of 

Doctor of Phylosophy 

Conidium “fitness” in Trichoderma 

Amir Daryaei 

A major constraint for use of biocontrol agents (BCAs) is inconsistent performance under changeable 

environmental conditions. This study aimed to develop new knowledge of effects of growth 

conditions, to increase persistence and efficiency of the key agent Trichoderma atroviride LU132, and 

to understand the factors which may influence conidium “fitness” for biocontrol formulations of 

conidia, that are robust (long-surviving) and active against target plant pathogens. Effects of culture 

conditions, (incubation period, temperature, nutrients, water activity and pH) productivity, 

germinability and bioactivity of T. atroviride LU132 conidia were assessed, in assays against the soil-

borne plant pathogen, Rhizoctonia solani. Conidium fitness was assessed after storage and in 

glasshouse pot experiments. Biochemical and ultrastructural characteristics of conidia produced in 

different culture conditions were also examined, in relation to conidium fitness. 

The influence of incubation temperatures (20, 25, or 30°C) on the production of conidia was assessed 

under constant light over a 25 d period. Two measures of quality of the resulting conidia were also 

determined; - germination and subsequent bioactivity against Rhizoctonia solani. Maximum conidium 

production occurred at 25°C after 20 d but was less at 25 d. Conidia produced at 30°C germinated 

more rapidly and gave the greatest bioactivity against R. solani in comparison with incubation at 20 or 

25°C. An incubation period of 25 d gave the greatest bioactivity compared with shorter incubation 

periods. To examine the effects of extending incubation time on conidium production, germination 

and bioactivity, the experiment was extended at 25°C for up to 50 d, which resulted in a second peak 

of conidium production at 45-50 d. These conidia had optimum germination after 20 and 25 d 

incubation, and optimum bioactivity was achieved with conidia harvested after 15 d. Therefore, 

temperatures near 25°C and incubation period of 15 d were shown to be optimum for production of 

T. atroviride LU132. Formulations of T. atroviride based on optimised production of conidia may not 

result in optimal bioactivity. This is the first report indicating that the temperature at which conidia of 

T. atroviride are produced affects germination and bioactivity. Conidium production of this biocontrol 

strain was shown to be a continuous process, and a scheduled dark/light regime increased conidium 

production. Furthermore, conidium production is likely to be on 20 d base cycle, which is probably 



ii 
 

dependent on colony age rather than abiotic factors. This is also the first report of bimodal conidium 

production in a Trichoderma biological control agent. 

Identification of the production and storage factors that affect conidium fitness can assist the success 

of biological control agents. Conidia from the culturing regimes which resulted in greatest and least 

bioactivity against R. solani in dual culture were selected to assess effects of storage conditions on 

conidium fitness. Conidia were examined after storage at 30˚C and at 0 or 50% relative humidity (RH) 

over six months. Fitness declined over time, and the decline was greater for 50% RH than 0% RH. The 

greatest number of conidia and greatest germination resulted from C to N ratios of 5:1 or 160:1, 

amended with sucrose at 25°C, but greatest bioactivity resulted from conidia produced at 30˚C. 

However, fewer conidia were produced at 30˚C, and the least germination and bioactivity resulted 

from conidia produced at 20°C, both amended with dextrose. The conidia adapted to high 

temperature of 30°C (amended with dextrose) or nourished at C to N ratio of 5:1 (amended with 

sucrose) showed the greatest conidium fitness. 

Further experiments assessed effects of temperature and hydrocarbon type. Interactions of 

temperatures (20 or 30°C) vs sugars (dextrose, 4.2 g/L or sucrose, 4.2 g/L in constant C:N ratios of 5:1) 

were examined for bioactivity and colonisation potential in pot experiments with ryegrass in the 

presence of R. solani. Conidia produced at 20°C with dextrose (4.2 g/L in constant C:N ratio of 5:1) 

gave the greatest bioactivity, where rhizosphere and bulk soil assessments were carried out. The 

bimodal population cycle in T. atroviride LU132 recurred in pot experiments (recorded as colony 

forming unit (CFU)) in a manner similar to that observed in agar plates, but in an approx. 15 d cycle, 

indicating that simulated natural conditions shortened the Trichoderma life cycle. 

Biochemical and ultrastructural studies were carried out to determine relationships between quality 

variations and cellular characteristics for conidia produced in different culturing conditions. The effect 

of culture conditions on trehalose accumulation was most marked, while differences in arabitol and 

mannitol were much less. The least trehalose accumulation was detected in conidia produced at 20°C 

(13 mg/g dry conidia). This could justify the least conidium survival and bioactivity during storage. 

Fatty acids detected in conidia by gas chromathography were palmitic acid (16:0), stearic acid (18:0), 

oleic acid (18:1 c9) and linoleic acid (18:2 c9, 12). Linoleic acid was the most abundant (overall mean 

of 26%), and stearic acid was the least abundant (8%). The conidium production treatment at 20°C 

gave the greatest amount of fatty acids (66 µg/g of dry conidia), giving conidia deep dormancy or other 

deterioration effects, while the C:N 5:1 treatment which gave high bioactivity after storage gave the 

least conidium fatty acid content (12 µg/g dry conidia). 



iii 
 

Ultrastructural differences of conidia were linked to differences in conidium survival and successful 

biocontrol establishment. Low electron density of conidium contents and accumulation of lipid 

droplets were associated with less integrity and viability. Conidia produced at 20°C showed significant 

disorganisation of cellular structures. 

This research has provided new insights which can form the basis of efficient production of 

Trichoderma-based biocontrol agents. Additional insights into the basis of conidium fitness in T. 

atroviride LU132 have also been provided. 

Keywords: Trichoderma atroviride LU132, biocontrol agent, optimum production, bioactivity, 

germination, culture condition, bimodal conidium production, Trichoderma life cycle, Rhizoctonia 

solani, C:N ratio, dextrose, sucrose, lipid droplet. 
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Preface 

This thesis is presented in six chapters. Each chapter is written as a separate paper, including relevant 

literature citations and appendices. 

Chapter 1 describes microbial biological control in crop production, with presentation of appropriate 

definitions. Key biocontrol agents used for management of plant diseases, and their typical modes of 

action, are outlined, with particular emphasis on the fungal genus Trichoderma. Some illustrative 

examples of biocontrol products are highlighted, describing difficulties faced for their registration, 

production, variability and constraints in application and efficacy for management of plant diseases. 

Information on Trichoderma as an important biological control agent is summarised, with aspects of 

taxonomy, nutrition and ecology discussed. Applicability of this fungus for biological control is then 

considered, with consideration of variability, constraints on performance and methods of production 

to increase quantity and quality. This chapter concludes by outlining the aims of the present study. 

Chapter 2 describes a series of experiments designed to assess effects of different culture conditions 

(temperature, nutrient, pH and water activity) on conidium production, germination and bioactivity 

for T. atroviride LU132 against Rhizoctonia solani colony growth. This was to provide key knowledge 

as a basis for optimising commercial production of this fungus as a biological control agent. 

Chapter 3 describes an experiment to define the intrinsic stability of T. atroviride LU132 conidia 

produced under different incubation and nutritional conditions, and to identify the influence of 

storage conditions on conidium viability and bioactivity. 

Chapter 4 describes experiments that explored effects of T. atroviride LU132 conidium incubation 

conditions on ryegrass host plant growth parameters, rhizosphere and endophytic colonization in 

presence or absence of R. solani. 

Chapter 5 describes experiments that examined biochemical and ultrastructural changes in conidia of 

T. atroviride LU132, to determine key cellular characteristics of conidia that vary in relation to 

bioactivity as indicated in previous sections of this study. 

Chapter 6 presents a summary of the outcomes from the study, a general discussion, some general 
conclusions and suggestions for further research. 
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Table 1.1 Details of the active organisms, trade names, manufacturers, target pathogens and crops for representative commercial biological control 
agents (BCAs). 

BCA/s Trade name/s Manufacturer/s, Country Target pathogen/s Crops Reference 

Agrobacterium 
radiobacter 

Dygall AgBio Research, New 
Zealand 

Agrobacterium tumefaciens Fruit and ornamental 
trees 

Stewart  (2001) 

Bacillus subtilis Kodiak (HB, AT) Gustafson Inc, USA Rhizoctonia, Fusarium, 
Alternaria 

Cotton and legumes Stewart  (2001) 

Conithyrium minitans Contans Prophyta Ltd, Germany Sclerotinia sclerotiorum and S. 
minor 

Vegetables and field 
crops 

De Vrije et al. (2001) 

Fusarium oxysporum 
(Non-pathogenic) 

Fusaclean L and G [Fo47] NPP, France F. oxysporum Carnation and tomato Desai et al. (2002) 

Pseudomonas spp. Proradix Sourcon Padena, Germany Rhizoctonia solani Tomato Berg, (2009) 

T. harzianum & T. viride Trichopel, Trichojet, 
Trichodowels, Trichoseal 

Agrimm Technologies, New 
Zealand 

Amillaria, Botrysphaeria and 
other fungal diseases 

Various Verma et al. (2007a) 

T. harzianum & T. 
polysporum 

Binab Bio-Innovation, U.K., 
Sweden 

Tree-bound pathogens Various Verma et al. (2007a) 

Trichoderma sp. Biofungus De Ceuster, Belgium A wide range of pathogens Flowers, strawberry, 
tree, vegetables 

Stewart (2001) 

Trichoderma spp. Monitor SD M/s Agriland Biotech Pvt. 
Ltd, India 

Soil-borne plant pathogens Various Desai et al. (2002) 

T. viride Trieco Ecosense Labs, India Rhizoctonia spp., Pythium 
spp., Fusarium spp., and 
Botrytis cinerea 

Various Desai et al. (2002) 

T. atroviride Esquive WP Agrauxine, ZA de Troyalac’h, 
Europe Union 

Eutypa, Botryosphaeria spp., 
Phaeomoniella, 
Phaeoacremonium 

Vineyards, nursery, 
Grapes- root, dieback 

Klaic  et al. (2013) 

T. asperellum T34 Biocontrol Biocontrol Technologies S.L., 
Fargro Ltd, European Union  

F. oxysporum Various Fernández et al. 
(2014) 

5
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competency involves growth and development in close associations with host root systems, although 

these are not necessarily indices of bioactivity (Howell, 2003). For instance, Trichoderma koningii has 

shown ability to colonise roots of cotton seedlings while providing little or no biological control activity 

against R. solani (Howell, 2007). Similarly, Trichoderma species may be able to supress and replace 

endogenous fungi on root surfaces (Kumar, 2013). 

Induced resistance: Trichoderma spp. are also known to induce systemic or localised resistance in 

plants (Harman, 2006). For example, T. virens reduced Verticillium wilt of cotton by inducing terpenoid 

synthesis in host plants (Hanson & Usda, 2000). In another study, bean leaves were protected against 

Colletotrichum lindemuthianum and Botrytis cinerea 10 d after root inoculation with a strain of T. 

harzianum (De Meyer et al., 1998). Trichoderma spp. produce a wide range of enzymes, including 

cellulases, hemicellulases, proteases, and β-1,3-glucanase (Mukherjee et al., 2008; Verma et al., 

2007a). Identification of the genes encoding these enzymes has been exploited in plant breeding to 

produce transgenic plants with resistance to certain diseases (Howell, 2003; Harman, 2006). For 

example, expression of the chitinase Chit42 from T. harzianum resulted in a wide spectrum of host 

resistance to both foliar and soil-borne plant pathogens in tobacco and potato plants (Lorito et al., 

1998). In another study, enhanced resistance to apple scab has been demonstrated in transgenic apple 

plants through expression of endo- and exo-chitinase genes from T. atroviride (Bolar et al., 2001). 

Induction of resistance in plants through expression of inducer genes in T. hamatum has been related 

to biotic and abiotic stresses in addition to metabolism of RNA, DNA and proteins (Alfano et al., 2007). 

Under favourable growth conditions, defence mechanisms mediated by jasmonic acid and salicylic 

acid will be suppressed following defence activation caused by threats (environmental stress or 

pathogen attack), while host growth will be suppressed. Kazan and Manners (2012) proposed a model 

for the contribution of Trichoderma to balance between plant growth promotion and induced 

resistance. This balance comes with some costs through up-regulation or down-regulation of related 

genes because the host plant’s sources of energy are limited. Therefore, when plants are under 

environmental stress or attack by pathogens, allocation of limited energy sources will be compensated 

via suppression of plant growth (Heil, 2002). For example, Trichoderma production of indole-3-acetic 

acid stimulates up-regulation of defence-related genes to increase the level of jasmonic acid/ethylene 

and/or salicylic acid. In turn, suppression of plant growth will occur and the host will compensate the 

cost with increased lateral root production (Kazan & Manners, 2012). 

Endophytic colonisation: Endophyte microorganisms ubiquitously colonize almost all vascular plant 

species, and have also been reported in ferns, mosses and marine algae (Tan & Zou, 2001). They are 

bacteria or fungi which show a range of relationships with host plants, from latent phytopathogenesis 

to mutualistic symbiosis (Sieber, 2007). They live inside host plants intra- and/or inter-cellularly, and 



11 
 

spend all or part of their life cycles entirely within plant tissues without causing symptoms of disease 

(Vega Fernando et al., 2010). Some endophytes produce alkaloids which are toxic to livestock, but the 

major positive effects of these compounds are to increase resistance to insect herbivores, by inducing 

naturally adapted defence systems (Clay, 1988). Endophytes can also improve photosynthetic 

efficiency, nutrient uptake, water usage and tolerance to abiotic stresses (Singh et al., 2011). Uptake 

of nutrients by plants requires complex processes to enable them to be accessed by roots. Some soil 

elements such as inorganic nutrients are not in the form that can be absorbed by plants or are in very 

low concentrations. Endophytes can assist in the capture of nitrogen resulting in a reduction in the 

need for chemical fertilizers (Lyons et al., 1990; Lewis et al., 1996; Hurek et al., 2002). Endophytes 

such as Trichoderma spp. improve nutrient uptake and make these elements available for plants but 

inaccessible to plant pathogens (Monte, 2001). Endophytes can alleviate water shortage and also 

capture nitrogen in order to reduce the need for chemical fertilizers. Therefore, plants inoculated with 

beneficial endophytes also adapted to extreme environmental conditions can increase crop tolerance 

to unfavourable conditions such as heat and drought (Hurek et al., 2002). Furthermore, using 

endophytes to enhance plant growth is often more efficient and less costly than plant genetic 

modification to withstand abiotic stresses (Malinowski & Belesky, 2006). 

Growth promotion: Trichoderma strains colonise root systems to reduce disease severity and also 

improve the growth of the plants (Harman & Bjorkman, 1998; Bae et al., 2009). The ability of these 

fungi to colonise plant roots is related to their ability to tolerate plant secretions and other toxic 

compounds, and also their ability to utilise plant root exudates. Some strains can establish long-lasting 

root colonization and penetration into root epidermis cells (Benitez et al., 2004; Harman et al., 2004). 

They are able to produce metabolites that enhance plant growth through rhizosphere competency 

and endophytic colonisation. However, the production of metabolites is a strain-specific characteristic 

in Trichoderma (Hoyos-Carvajal et al., 2009). The promotion of plant growth or induction of resistance 

is not always in correlation with biological control activity. For example, T. stromaticum as a 

mycoparasite of the cacao witches’ broom pathogen Moniliophthora perniciosa, has shown 

endophytic colonisation in shoots and roots, resulting biological control capability against the 

pathogen (De Souza et al., 2008). 

Most Trichoderma spp. use a combination of mechanisms to control plant pathogens (Cotxarrera et 

al., 2002). For example, tomato wilt caused by Fusarium oxysporum was suppressed by T. asperellum 

through a combination of mechanisms including antibiosis, mycoparasitism, and competition for 

nutrients (Cotxarrera et al., 2002). Furthermore, the biological control activity may be elevated in 

presence of particular pathogens. For example, Cooney & Lauren (1998) showed that the presence of 

pathogenic fungi induced metabolite production and bioactivity of BCAs, and reported 300 - 700% 
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Trichoderma reproduction and growth are heavily influenced by temperature and culture age (e.g. 

Hallsworth & Magan, 1996). Temperature is probably the principal abiotic factor determining the 

quality and quantity of BCA colonies (Hallsworth & Magan, 1996). Existing literature reveals a wide 

range of temperatures at which Trichoderma species can grow, from 0°C in T. polysporum to 40°C in 

T. koningii (Tronsmo & Dennis, 1978). However, the optimum temperature for most Trichoderma spp. 

is in the 25 - 30°C range (Klein & Eveleigh, 1998). For example, Knudsen & Li (1990) demonstrated that 

conidium production of T. harzianum was different at 10, 15 or 28°C with optimum production at 28°C. 

They also showed that conidium production of this fungus increased with increasing culture age (i.e. 

incubation time) up to 14 d. Similarly, Gupta & Sharma (2013) determined that maximum colony 

growth and conidium production of Trichoderma occurred at 28°C. 

Trichoderma atroviride LU132 was chosen for the present research as it has been commercialised. The 

potential significance of culture conditions on biological control activity of this strain was examined, 

with the aim of increasing the quality of conidium production for biological control products. Although 

the effects of culture conditions on conidium production of this strain have been previously studied 

(Steyaert et al., 2010a; b), there is no information regarding the effect of culture conditions on fitness 

of the conidia. Since conidium quality is an important factor for production of a BCA, the present study 

aimed to examine temperature and culture age as the principal factors affecting conidium fitness for 

Trichoderma biological control formulations. Elevated production temperature has been studied 

previously for entomopathogenic fungi, showing that an increase of 10°C occurred during solid-

substrate culture (Hallsworth & Magan, 1996). In the present study, conidia obtained from cultures 

grown at different temperatures and for different periods were evaluated for germination and 

bioactivity against the soil-borne plant pathogen Rhizoctonia solani, in laboratory-based experiments. 

This pathogen has shown pathogenicity on ryegrass and was selected as a model system due to its 

known susceptibility to T. atroviride LU132, and its amenability for use in dual plate bioassays, for 

rapid identification of differences in bioactivity. 

A series of experiments is described here, which assessed effects of different culture conditions 

(temperature, nutrient, pH and water activity after 15 to 25 d incubation) on T. atroviride LU132 

conidium production, germination and bioactivity. In light of results obtained, a subsequent 

experiment was carried out to assess effects of extended incubation period (50 d) and different 

light/dark regimes. This was to provide key knowledge as a basis for optimising commercial production 

of this fungus as a BCA. 
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effect, with optimum conidium production at 25oC, and progressively fewer conidia were produced at 

20oC or 30oC (Figure 2.2). The population of conidia after 5 d incubation was less than other incubation 

times at each temperature, and the greatest conidium production occurred after 20 d incubation. 

Furthermore, across all three temperatures, there was a clear trend of increasing numbers of conidia 

with increasing incubation time up to 20 d, and then a decline in numbers of conidia after 25 d. 

Germination: In the germination assessments, after 12 h, conidia from each temperature and 

incubation time were swollen, and some had small germ tubes, but signs of obvious germination 

appeared after 14 h at 22°C. After 22 h, conidia from the temperature and incubation time treatments 

had large proportions of germination. The germination percentage of conidia assessed using AUC 

showed a significant effect of temperature, with an increasing trend in the germination percentage 

with increasing temperature. Mean germination of conidia produced at 20oC was 55%, and 72% for 

those produced at 30oC (Table 2.1). Incubation time affected (P < 0.001) conidium germination. The 

conidia harvested at 20 d across the different temperatures had the least germination (mean = 58%), 

while conidia harvested at 10 d had the greatest germination (68%). 

Bioactivity: Trichoderma atroviride LU132 conidia produced at different temperatures and 

incubation times showed inhibition and overgrowth activity against R. solani on dual culture agar 

plates. Colonies which developed from conidia produced at 30°C gave small but statistically significant 

increases in inhibition of the Rhizoctonia colonies (mean = 78%), compared with colonies from conidia 

produced at 25°C (76%; Table 2.1). The greatest inhibition of R. solani growth was for T. atroviride 

LU132 from conidia harvested at 25 d (mean = 80%), which was greater than mycelial growth inhibition 

from conidia harvested at all other incubation times (74 - 76%). Macroscopic observations revealed 

that the growth of R. solani mycelia was inhibited soon after contact with T. atroviride LU132, in all of 

the three PDA medium concentrations tested (Figure 2.3). The three strengths of PDA were tested to 

determine which medium concentration gave the clearest confrontation reaction between T. 

atroviride LU132 and R. solani. The different medium strengths did not affect (P > 0.05) the percentage 

inhibition of R. solani colonies in the dual culture plates. 
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Table 2.1 Main effect means of numbers of conidia, germination and bioactivity for Trichoderma atroviride LU132, grown for five incubation times up to 25 d, at 
different temperatures and at three medium strengths (full, half or quarter strength PDA). 
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LSD0.05 37.7 76.9 10.9 0.7 0.9 0.5 0.5 2.1 1.2 1.2 1.6 

Significance2 *** *** *** *** *** *** ns ns *** *** *** 

1 Values averaged over time based on the trapezoidal area under the curve (AUC). 
2 *** : the effects of treatments are statistically significant at P = 0.001; ns= not significant (P > 0.05). 
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Figure 2.2 Mean numbers of Trichoderma atroviride LU132 conidia produced 
in cultures grown at different temperatures (20, 25, or 30°C) for five 
incubation times (5, 10, 15, 20, or 25 d). Values for each temperature 
accompanied by a common letter are not significantly different, according to 
unprotected Fisher’s test of least significant difference (LSD0.05 = 38 for 20°C, 
77 for 20°C and 11 for 30°C). 
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Figure 2.3 Examples of different degrees (A to D) of inhibition of Rhizoctonia solani colony 
growth (left colony in each Petri plate) after contact with Trichoderma atroviride LU132 
(right colony), in dual inoculated agar plates. 

The overgrowth of R. solani by the mycelial growth of T. atroviride LU132 was significantly affected (P 

< 0.001) by medium strength, incubation time, and temperature (Table 2.1). There was a small but 

significant temperature effect of T. atroviride LU132 mycelial growth over the R. solani colonies, 

whereby mycelium from conidia grown at 25°C overgrew the R. solani colony areas by a mean of 41%, 
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Figure 2.4 Mean numbers of Trichoderma atroviride LU132 conidia 
produced at 25°C after different incubation periods (5 - 50 d). Values with 
a letter in common are not significantly different according to unprotected 
Fisher’s test of least significant difference (LSD0.05 = 65). 

Germination: There were significant differences (P < 0.001) in percentage germination for conidia 

produced at 25°C and harvested at ten incubation times (Table 2.2). The greatest mean germination 

percentage (50 - 51%) was recorded for conidia produced after 20 and 25 d incubation. The mean 

percentage germination of conidia harvested after incubation for 50 d (28%) and 5 d (29%) was 

significantly less than for all of the other incubation times (33 - 51%) apart from 40 d (30%). The 

germination trends across the 50 d incubation period showed increasing germination percentage for 

conidia harvested at 5 d to 20 d, then a subsequent general decline until 50 d, but with a small increase 

at 45 d. 

Bioactivity: Incubation period had a significant effect on the percentage inhibition of R. solani colony 

growth by T. atroviride LU132 (P < 0.001). The greatest mean inhibition of 74% occurred with colonies 

from conidia harvested at 15 d (Table 2.2). There was an increase in mean colony inhibition with 

increasing incubation period from 5 to 15 d (from 65% to 74%), but after that inhibition fluctuated. 

The conidia harvested at 35 d provided the least R. solani colony inhibition (mean = 61%). The 

overgrowth of Rhizoctonia colonies by T. atroviride LU132 mycelia was affected by incubation period 

(P < 0.001). Conidia produced after 15 d gave the greatest overgrowth of 73%, greater than the mean 

values from mycelia from conidia produced after 45 - 50 d, which gave the least overgrowth of 39 - 

41%. Colonies from conidia produced up to 15 d showed increased coverage of R. solani by T. 

atroviride LU132 (mean from 57 to 73%), then this generally declined to 41% at 50 d. 
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was greater conidium production from LD1 than from LD2 (LD1 – LD2 = 4.82 × 108 conidia/mL). This 

was also evident where the colonies were transferred back to light (LDL1 – LDL2 = 4.28 × 108 

conidia/mL). Figure 2.7 illustrates the amount of conidium production as polynomial curves with 

different intercepts, where colonies were incubated in constant light or transferred to dark after 20 d 

or 25 d in light. The least conidium production occurred in the LD2 regime, followed by greater 

production in constant light (L) and even greater production in the LD1 regime. The mean number of 

conidia after a period of darkness in LD1 was greater than LD2 and also for extended incubation time 

in constant light, in the order of regimes LD1 > L > LD2. 

 
 

  
Figure 2.6 Mean numbers of Trichoderma atroviride LU132 conidia produced in different light (L) 
/dark (D) regimes. Graphs LD1 and LD2 show conidium production from colonies initially 
incubated for, respectively, 20 d or 25 d in light, after transfer to dark for different time periods. 
Graphs LDL1 and LDL2 show conidium production from colonies initially, respectively, for 20 d or 
25 d in light, after transferring to dark and then light. Values with letters in common are not 
significantly different according to Fisher’s unprotected test of least significant difference. LSD0.05 
for LD1 = 58, for LD2 = 50, for LDL1 = 49 and for LDL2 = 82. 
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Table 2.3 Average increase in numbers of conidia (mean number 
conidia/mL) of Trichoderma atroviride LU132 produced in different 
light (L)/dark (D) regimes, assessed using AUC means. 

Average increase1 Difference 

LD1: 2.2 × 109 
LD1 − LD2 = 4.82 × 108 

LD2: 1.72 × 109 

LDL1: 2.41 × 109 
LDL1 − LDL2 = 4.28 × 108 

LDL2: 1.98 × 109 

1 LD1, colonies initially 20 d in light then transferred to dark. 
LD2, colonies initially 25 d in light then transferred to dark. 
LDL1, colonies from LD1 transferred back to light. 
LDL2, colonies from LD2 transferred back to light. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 2.7  Polynomials of numbers of Trichoderma atroviride L132 conidia 
produced in different light regimes. These were: L, colonies continuously in 
light for 50 d (LSD0.05 = 81); LD1, colonies initially incubated for 20 d in light 
(LSD0.05 = 64); and LD2, colonies initially incubated for 25 d in light then 
transferred to dark (LSD0.05 = 60). 

yLD2 = 88.743x + 1452.7, LSD0.05 = 59.5
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(Figure 2.8). Bimodal conidium production has been reported previously for pathogenic fungi including 

Botryosphaeria dothidea, B. obtusa, B. rhodina (Copes & Hendrix, 2004), and Fusicladium carpophilum 

(Scherm et al., 2008), in respect of the seasonal dynamics of conidium production. 

 

Figure 2.8 Bimodal conidium production in Trichoderma atroviride LU132 
during 50 d incubation time at 25°C. Dotted lines show two hypothetical 
cycles of conidium production. Numbers above each bar represent the mean 
numbers of conidia (x106) determined in the 50 d experiment reported here. 

Two peaks in conidium production were observed after 20 and 45 - 50 d culture periods. Previous 

studies have demonstrated that factors such as volatile metabolites stimulate growth, conidium 

production and germination of fungi (Bruce et al., 1996). For example, volatile metabolites in T. 

atroviride stimulated conidium production by 50 to 1,500% (Nemcovic et al., 2008). Stoppacher et al. 

(2010), examining dynamics of volatile metabolite profiles of T. atroviride, demonstrated fluctuations 

in production of these compounds, to maximums after 3 - 4 d. Optimum production of two volatile 

metabolites, 1-octen-3-ol and 3-octanone, occurred simultaneously with conidium production. In the 

present study, the first peak in conidium production at 20 d was probably related to mycelial 

maturation and differentiation into phialides to produce conidia. The effect of volatile metabolites 

was not studied, but could also have contributed to maturation and conidiation at this stage of 

conidium production. 

As nutrients in the growth medium were used over time, the nutrient deprived conditions that 

resulted could have stimulated conidium production (Betina, 1995). For example, Steyaert et al. 

(2010b) demonstrated that nutrient-rich media containing carbon and nitrogen repressed 

carbon/nitrogen catabolite genes in Trichoderma spp., while under nitrogen or carbon starvation 
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conidiation was induced by carbon/nitrogen catabolite derepression genes of the fungus. In the 

present study, the conidium production peak at 20 d in the first incubation experiment (25 d) and also 

the second conidium production peak at 45 to 50 d under extended incubation (50 d) were probably 

related to starvation stimuli. However, Chovanec et al. (2001) postulated that aging-induced 

conidiation is initiated by gene regulation in microorganisms rather than by nutrient status. 

Trichoderma atroviride LU132 conidia produced at different temperatures and incubation times were 

able to germinate, and the most rapid germination occurred with conidia produced at the high 

incubation temperature, 30oC, followed by 25 and 20oC. Fungal cells are dehydrated under high 

temperatures, and dehydration coincides with accumulation of intracellular polyols such as trehalose 

and glycerol. Other stress factors are also likely to occur following high temperature treatments, 

including oxidation, and pH alteration. The transfer of these conidia to fresh media allows them to 

show maximum germination and growth (e.g. Sterflinger, 1998). The polyol content of conidia has 

been correlated with changes in germination percentage (e.g. Hallsworth & Magan, 1996). Elevated 

germination percentage in T. atroviride LU132 in the present germination assays could be due to 

optimization of polyol concentration in conidia during conidium production at 30oC. Pedreschi et al. 

(1997) noted that the concentration of trehalose (a typical polyol) in conidia did not normally increase 

under steady-state culture conditions, with heat shock and destabilizing enzymes being required for 

accumulation of trehalose in conidia. Therefore, high temperatures may not guarantee increased 

trehalose content in conidia (Hallsworth & Magan, 1996). However, the greater germination at 30°C 

detected in the present study did not agree with the results of Abbas et al. (1995), who demonstrated 

that high temperature caused reduced metabolic activity, followed by reduced conidium germination 

and bioactivity, for the bioherbicide fungus Alternaria helianthi. The decline in conidium germination 

and bioactivity coincided with decreased content of polysaccharides and proteins but increased lipid 

content. 

Based on the observed bimodal profile of conidium production, one possible explanation for the trend 

for a decline in germination after 20 d incubation is that these conidia were probably a mix of older 

conidia from the first cycle of production and young conidia from the second cycle, which affected the 

overall conidium germination. Medium composition has been shown to greatly influence the 

physiology and vigour of fungi (Darby & Mandels, 1955). After 20 d, vegetative hyphae growing under 

nutrient exhausted conditions could have produced less vigorous or immature conidia, a response 

suggested by Hallsworth & Magan (1996). Based on their findings that the polyol content of conidia 

decreased with increasing culture age for the entomopathogenic fungi Beauveria bassiana, 

Metarhizium anisopliae and Paecilomyces farinosus, they suggested that late-produced conidia may 

contain less polyols than those produced earlier. Furthermore, they concluded that the decline in 
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viability of harvested conidia as cultures aged was associated with this decline in polyol content. In 

the present study, the average germination of conidia harvested at 5 and 50 d incubation were the 

least in the extended culture age experiment. These results are similar to those of Darby & Mandels 

(1955) with the bioherbicide agent, Myrothecium verrucaria, where very young conidia were not 

mature enough to germinate rapidly, while old conidia failed to germinate because of additional 

nutrient requirements for germination or a second dormancy. In addition, the respiratory activity of 

M. verrucaria increased with age to a maximum level, followed by a decline, and these two stages 

were identified as maturation and senescence, respectively. 

Inhibition and overgrowth of R. solani cultures by T. atroviride LU132 were the only visible evidence 

of bioactivity observed by naked eyes in the present study. Die-back or lysis of R. solani hyphae caused 

by T. atroviride LU132 was not observed. The effect of temperature on bioactivity was small and 

statistically significant, but was probably biologically insubstantial. Optimum inhibition of R. solani 

occurred for conidia produced at 30°C, and the optimum overgrowth was from conidia produced at 

25°C. These different temperature optima for inhibition and overgrowth activity are similar to those 

observed by Jahromi et al. (1998). They showed that the temperature at which conidia were formed 

did not influence the bioactivity of the colonies from these conidia, while the medium composition 

was the most important factor affecting conidium bioactivity. The greatest bioactivity (overgrowth) 

consistently occurred on half strength PDA, indicating that R. solani did not compete with T. atroviride 

LU132 in these nutrient conditions. Intermidiate bioactivity occurred on quarter strength PDA, 

suggesting that in these conditions both organisms were possibly nutrient stressed. 

Maximum conidium production occurred at 25°C, but differences in bioactivity from Trichoderma 

colonies from conidia produced at different temperatures and incubation times were not biologically 

significant. Similarly, Jones et al. (2003) reported that for the sclerotial mycorparasite Coniothyrium 

minitans, fewer conidia were produced during solid state fermentation at the high temperatures (27 

- 30°C) recorded at the top of a fermenter, compared with the constant 18°C found at the bottom of 

the fermenter, and although germination of the conidia produced under high temperatures was also 

less, sclerotial parasitism was similar from conidia produced at both temperature regimes. 

In the light/dark regime experiments, periods of darkness increased conidium production by 

Trichoderma colonies, but reduced conidium production occurred in both the LD1 and LD2 regimes 

after 5 d in darkness. This is similar to the results of Flaherty & Dunkle (2005), who showed that 

continuous light hindered development of conidiophores in Exserohilum turcicum, the pathogen 

causing Northern leaf blight in maize, while mature conidia were formed by cultures grown under 

light/dark cycles or continuous dark. In addition, analysis of ergosterol content and genomic DNA 

showed that vegetative growth was much greater in cycles of light/dark than in constant light or 
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constant darkness. The expression of 12 putative regulatory genes during dark-induced conidiation 

showed that for the majority of these genes, maximum expression occurred 2 h after initiation of the 

dark period, which coincided with the period of darkness required to initiate conidiation. For most of 

the genes this was followed by a decline to initial levels after 4 - 24 h in darkness. However for two 

genes, the expression remained increased when in darkness for 24 h, but decreased back to initial 

levels when the cultures were placed back under light. These genes were indicated to be involved in 

asexual development. In the present study conidium production occurred in constant light, but was 

increased by changing the light/dark regime. It is therefore possible that further increases in conidium 

production could be achieved by further manipulation of the dark/light conditions. 

The need for a dark period for conidium production in T. atroviride LU132 was probably affected by 

the colony age, as conidium production in the LD1 regime was greater than for LD2. Transfer of 

colonies to the dark or to dark/light conditions at 25 d did not result in conidium production to the 

same level, either for the LD2 or LDL2 regimes, compared with colonies transferred at 20 d to dark or 

dark/light for either the LD1 or LDL1 treatments. However, Trichoderma species are known to require 

light for the biosynthesis of secondary metabolites, such as peptaibols, which are highly important as 

antibiotics in antagonistic activity (e.g. Tisch & Schmoll, 2010). Although light is important in fungal 

life cycles, Friedl et al. (2008) emphasised that T. atroviride conidiation is strongly carbon-source 

dependent, and light only enhances the extent of conidium production. From the results of the 

present study, the influence of light on production of T. atroviride LU132 conidia is apparently more 

dependent on colony age rather than on other factors, as previously mentioned. 

Conidium production in T. atroviride LU132 is likely to be on a 20 d base cycle, with a second cycle 

occurring that is probably independent of light and other abiotic factors. It is assumed that the 

colonies would be aging, with starvation and metabolite accumulation occurring after 20 d of culture. 

This promoted the fungus to initiate conidium germination in the cultures, at least by those conidia 

that were physiologically prepared for germination. The second cycle of conidium production was 

completed after 45 - 50 d incubation (Figure 2.9). 



44 
 

 

Figure 2.9 Bimodal conidium production in Trichoderma atroviride LU132 
during 25 d in constant light (L) at different temperatures (20, 25 or 30°C) or 
50 d incubation at 25°C but in different light regimes (L, LD1 or LD2). Dotted 
lines indicate the two peaks of conidium production in hypothetical cycles. 

This is the first report suggesting that the temperature at which conidia are produced affects 

germination and bioactivity in Trichoderma. This study has demonstrated that temperatures near 25°C 

and incubation periods of approx. 20 d are likely to be optimum for conidium production of T. 

atroviride LU132. The study has also shown that the optimum temperature for production of this strain 

is not the same as the optimum for bioactivity. Optimum bioactivity resulted from conidia produced 

at 30°C and harvested at 15 d. Based on the bimodal conidium production cycles detected in this study, 

20-d-old conidia will be mixed with fresh conidia from the second cycle of production in cultures of 

the strain. Ten-d-old conidia are likely to be too young to show maximum antagonism bioactivity 

responses. Older conidia (15 d) are less likely to include a mixture of young and old conidia, resulting 

in greater overall bioactivity. Conidia of T. atroviride LU132 obtained after 15 d incubation are likely 

to be of optimum bioactivity, germinability and the most suitable for use in commercial production of 

biological control products. 
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in C:N ratios ranging from 5:1 to 160:1. The solutions were buffered with phosphate buffers (KH2PO4 

and K2HPO4) and required water was added to the medium for each treatment. The pH was adjusted 

to 5.5 with HCl or KOH. The solutions were then mixed with agar prior to sterilisation. Media and 

amendments were sterilised by autoclaving, except for soy peptone and sucrose solutions, which were 

filtered through 0.22 μm filters (Express™ Plus, Millipore Corporation). Trichoderma atroviride LU132 

conidium preparation and inoculation were done as described in Sections 2.2.1.1 and 2.2.1.2. Petri 

dishes were incubated for 15 d, under constant light at 25°C. 

Table 2.4 Different amounts of nitrogen (g/L) and corresponding 
different amounts of carbon (g/L) giving different C:N ratios in 
the growth media for Trichoderma atroviride LU132. 

C:N ratio 
Carbon g/L 

4.2 8.4 16.8 

5:1 0.84 1.68 3.36 

10:1 0.42 0.84 1.68 

20:1 0.21 0.42 0.84 

40:1 0.11 0.21 0.42 

80:1 0.05 0.11 0.21 

160:1 0.03 0.05 0.11 

Trehalose and glycine-betaine: To measure the effect of exogenous sources of trehalose and glycine-

betaine on conidium production, germination, and bioactivity, buffered basal medium agar was 

amended with a C:N 5:1 containing 8.4 g/L carbon determined from the carbon amendment 

experiment (above). This ratio gave the greatest conidium production in that experiment. Trehalose 

(D-(+)-trehalose dehydrate, Sigma®) or glycine-betaine (Sigma®) were separately added after 

autoclaving of the medium (as described previously), to final concentrations of 0.1, 0.6 or 1.2 mM of 

these compounds. The experimental control was basal medium amended with a C:N 5:1 with carbon 

source concentration of 20 g/L sucrose, determined in the C:N ratio experiment (above). Petri dishes 

(9 cm diam.) each containing 40 mL of amended agar medium were inoculated with T. atroviride LU132 

conidium suspensions as described in Section 2.2.1.2. Petri dishes were incubated for 15 d, under 

constant light at 25°C. 
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Table 2.5 Main effect means for conidium production, germination and bioactivity of T. atroviride LU132 from treatments of different C:N ratios and 
carbon contents in growth media.. 

Treatment 

Conidia no. (× 106/mL) 
Average germination % 

(AUC)1 
Bioactivity (inhibition %) Bioactivity (overgrowth %) 

Carbon g/L 
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 e
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 Carbon g/L 
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 Carbon g/L 
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 Carbon g/L 
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4.2 8.4 16.8 4.2 8.4 16.8 4.2 8.4 16.8 4.2 8.4 16.8 

C
ar

b
o

n
-t

o
-n

it
ro

ge
n

 (
C

:N
) 

5:1 1933 2517 2227 2226 79 74 68 74 77 71 71 73 78 78 50 69 

10:1 1500 2050 1803 1784 73 69 64 69 72 71 69 71 70 63 58 64 

20:1 920 1273 1620 1271 71 66 59 65 71 69 68 69 63 48 73 62 

40:1 620 987 1290 966 66 62 54 61 69 68 67 68 48 58 48 52 

80:1 350 637 1037 674 61 56 54 57 68 68 65 67 60 57 57 58 

160:1 230 380 723 444 56 52 49 52 66 64 61 63 55 48 77 60 

Main effect 
mean 

926 1307 1450  68 63 58  70 68 67  63 59 61  

LSD0.05 37.6 53.2 0.5 0.7 1.1 1.6 1.7 2.4 

Significance2 *** *** *** *** ns *** *** *** 
1 Averaging over time, based on the trapezoidal area under the curve (AUC). 
2 ***: the effects of treatments are statistically significant at P = 0.001; ns: not significant (P > 0.05). 

5
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Figure 2.11 Culture morphological and colour variations, and corresponding mean numbers of conidia per plate, obtained for Trichoderma 
atroviride LU132 grown on media with different C:N ratios and carbon contents (LSD0.05 = 9.21 × 108). The morphologies shown are 
representative of three independent replicates with similar results. 
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Table 2.6 Main effect means for conidium production, germination and bioactivity of 
Trichoderma atroviride LU132 from treatments of different trehalose and glycine-
betaine concentrations (mM/L) in growth media..  

Treatment 

  Bioactivity 

Conidia no. 
(×106 conidia/mL) 

Average 
germination 

(AUC)1 
Inhibition% Overgrowth% 

Trehalose 
(mM) 

0.1 2130 61 67 42 

0.6 2500 72 70 55 

1.2 2643 78 75 65 

Glycine-betaine 
(mM) 

0.1 1893 50 71 50 

0.6 2117 61 67 62 

1.2 2397 55 63 75 

Control (C:N 5:1) 2403 70 71 62 

LSD0.05 61.6 1.1 2 3 

Significance2 *** *** *** *** 
1 Averaging over time based on the trapezoidal area under the curve (AUC). 
2 ***: the effects of treatments are statistically significant at P = 0.001. 

 

 
 

Figure 2.12 A: Rugosity of a Trichoderma atroviride LU132 culture after conidia harvest. 
B: clumped and chains of conidia in SDW, obtained from a culture where the fungus was 
grown at high carbon concentration (16.8 g/L) and a C:N 5:1. 
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It is therefore expected that these types of conidia, obtained in the present study, would later show 

stability during long-term storage. Furthermore, high carbon concentrations and also in interaction 

with C:N ratios, typically at 5:1, resulted in compact hypha and severe colony rugosity, which in turn 

contributed to the mucilage in the conidium suspensions. Profuse exopolysaccharide matrix and 

phenotypic characteristics such as wrinkled colonies are referred to as “rogue” phenotypes, which 

have been linked to increased survival and stability in variable environments (Rashid et al., 2003). In 

the present study, conidia obtained from rugose colonies gave chains or clumped conidia, and this 

aggregation caused difficulties in conidium counting. However, as discussed above, these conidia may 

show stability during storage.  

The present study indicated that a C:N 5:1 is optimal for conidium production, and in interaction with 

a carbon concentration of 8.4 g/L, these growth medium conditions gave the greatest conidium 

production, while higher concentrations of carbon or C:N ratios gave the least number of conidia 

produced. The decreased conidium production due to increased C:N ratio is in accordance with results 

reported by Yu et al. (1998) for conidium yield of the bioherbicide fungus Colletotrichum coccodes. 

Furthermore, the present results are also similar to those of Schisler et al. (1991), who demonstrated 

that conidium production of C. truncatum, as well as efficacy in infectivity (germination and 

appressorium formation) against Sesbania exatata, were greater when growth medium C:N ratio was 

reduced to 5:1. 

In the present study, germination percentage of conidia produced under different nutrient 

amendment conditions was reduced when either C:N ratio or carbon concentration was increased. At 

similar nitrogen concentrations, there was a decrease in germination percentage with increasing 

carbon concentrations. This indicates the strong effect of carbon concentration rather than nitrogen 

concentration, so that increased sucrose as a carbon source reduced germination percentage, and 

reduced sucrose gave the greatest germination proportions. Increased germination was probably 

related to optimization of the contents of trehalose and some other polyols (e.g. glycerol and 

erythritol) in conidia during their production. Conidia containing these compounds germinate more 

rapidly when transferred to a new environment (Pedreschi et al., 1997; Bonaterra et al., 2005). The 

reduced germination percentage of T. atroviride LU132 in the present study could be related to 

increased conidium matrix due to extra carbon source, as an inhibiting factor for germination, as has 

been shown for Colletotrichum graminicola (Nicholson & Moraes, 1980; McRae & Stevens, 1990).  

Bioactivity of T. atroviride LU132 conidia amended with different C:N ratios and carbon concentrations 

showed similar trends as for the germination results, where rapid germination and growth by T. 

atroviride LU132 conidia in dual culture plates resulted in greater inhibition activity against colony 

growth of R. solani. Similarly, as seen for germination, inhibition activity of T. atroviride LU132 colonies 
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produced at equal nitrogen concentrations decreased with increasing carbon concentration. 

Overgrowth activity by T. atroviride LU132 conidia fluctuated across nutrient amendments so no 

correlation with any nutrient variations could be made. 

The T. atroviride LU132 colonies grew and developed under constant light, and soy peptone was the 

primary organic nitrogen source. Primary nitrogen sources promote photoconidiation in Trichoderma 

spp. more strongly than secondary nitrogen sources (Steyaert et al., 2010b). Sucrose as a disaccharide 

hydrocarbon source was used in the present study as it has been shown to have quantitative and 

qualitative effects on conidium production in correlation with high survival rates (van Laere, 1989). 

In the presence of the preferred nutrient, catabolite repression will occur in the gene regulation 

pathways, and derepression of non-preferred nutrients will occur when there is a depletion of 

preferred nutrients. Excessive nutrient availability will also cause nutrient catabolite repression. For 

example, Steyaert et al. (2010b) demonstrated that nutrient-rich media containing carbon/nitrogen 

repressed carbon/nitrogen catabolite genes in Trichoderma spp., while under nitrogen or carbon 

starvation, conidiation was induced by carbon/nitrogen catabolite derepression under gene 

regulation. In the present study, the amount of sugar in media varied from 10 g/L (4.2 g/L carbon) to 

40 g/L (16.8 g/L carbon), this last concentration being excessive for T. atroviride LU132. The 

Trichoderma colonies reacted to different carbon concentrations, as indicated by variations in colony 

morphology. Severe rugosity was observed in colonies produced on high carbon concentration media, 

especially with low C:N ratios, while colonies with low density occurred at high C:N ratios. 

Morphological variations were not related to differences in biological control activity of conidia 

produced. However, as discussed earlier, C:N ratios may affect conidium survival. A well balanced C:N 

ratios (1:5 to 1:10), but based on different carbon concentrations, supported reasonable conidium 

production, but with a high C:N ratio of 160:1, conidium production was least. Catabolite repression 

probably affected conidium production reducing Trichoderma development at high C:N ratios and 

specifically at high carbon concentrations. The main effect of carbon concentration on T. atroviride 

LU132 was apparent as production of very dense mycelial growth (from low to severe rugosity) in agar 

cultures, while the main effect of C:N ratios was expressed as a change from high to sparse conidium 

production correlated with the shift from low C:N ratio of 5:1 to high C:N ratio of 160:1. 

Different concentration of trehalose and glycine-betaine in the basal agar growth medium (C:N 5:1, 

8.4 g/L carbon) affected the quantity and quality of conidia produced. Trehalose at intermediate and 

high concentrations promoted conidium production and percentage germination, but all tested 

glycine-betaine concentrations gave less conidium production and germination compared with the nil 

glycine-betaine treatment. Inhibition and overgrowth activity of T. atroviride LU132 colonies was 

increased from conidia produced at high trehalose concentrations in comparison to the experimental 
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control. Previous studies have demonstrated increased intracellular accumulation of compatible 

solutes such as trehalose and glycine-betaine by extra-cellular addition of these compounds during 

production of fungal and bacterial inocula (Kets & Bonts, 1994; Kets et al., 1996; Bonaterra et al., 

2005). Herzog et al., 1990 suggested that betaine might protect enzymatic activity of trehalase 

resulting in the regulation of intracellular trehalose level. In turn, betaine accumulation as nutrient 

reserve in cells is dependent on nitrogen availability. While ample amount of nitrogen is available, 

intracellular trehalose content becomes depressed or exhausted. Although trehalose and glycine-

betaine absorbance by cells is related to nitrogen availability, the uptake of these compatible solutes 

has been referred to as isolate-specific characteristics (Louis et al., 1994). In the present study, the 

negative effects of glycine-betaine on quantity and quality of T. atroviride LU132 conidia was much 

greater than the effects of trehalose amendments. However, T. atroviride LU132 colonies resulting 

from conidia produced at high glycine-betaine concentrations gave the greatest overgrowth activity 

against R. solani. Biochemical analyses and examination of test conidia produced may reveal if the 

basal medium (C:N 5:1, 8.4 g/L carbon) and trehalose and glycine-betaine conditioning had inhibitory 

effects on absorbance of these amendments. Therefore, how much these compounds have been 

taken into the cells in the experiments described here should be determined using appropriate 

biochemical analyses. These analyses are reported in Chapter 5 of this study.  
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pH 3.5, 1.03 × 1010 pH 4.5, 1.11 × 1010 

  

pH 5.5, 7.63 × 109 pH 6.5, 1.27 × 1010 

  

pH 7.5, 1.09 × 109 pH 8.5, 5 × 107 

  

Figure 2.13 Variation in morphology of T. atroviride LU132 colonies in agar 
plates at different pH values (5% buffer). Mean numbers of conidia 
produced are also indicated. The Petri plates shown are representative of 
three replicate plates for each pH value. 

 

Table 2.7 Main effect means for conidium production of Trichoderma atroviride LU132 
conidia produced from different medium pHs and different buffer concentrations, after 
15 d culture at 25°C. 

Treatment 
Conidia no. (×106/mL) 

5% buffer 10% buffer 20% buffer 40% buffer 

pH 

3.5 1030 803 640 0.02 

4.5 1110 933 0 0.08 

5.5 763 587 0 0 

6.5 1273 1070 0.1 0 

7.5 109 33 0 0 

8.5 5 0 0 0 

LSD0.05 75.1 67.8 14.5  
Significance1 *** *** *** - 
1 ***: the effects of treatments are statistically significant at P = 0.001. 
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increased buffer concentration inhibited further conidium production and decreased germinability. 

Since the buffer capacity and pH in culture media should be optimised to give greatest fungal 

productivity, in the present study conidia produced at higher buffer concentrations were not tested 

for germination and bioactivity because only the culture conditions which gave greatest conidium 

production were assessed for these characteristics.  

Trichoderma atroviride LU132 colonies altered the pH level in the culture media containing different 

buffer concentrations. Steyaert et al. (2010a) studied photoconidiation of several Trichoderma species 

in ambient pH (buffered (0.4 M) or unbuffered) in PDA cultures. Trichoderma atroviride LU132 did not 

produce conidia in buffered PDA at pH values above 4.4, while conidia were produced on unbuffered 

PDA at pH values from 2.8 to 5.2 and alkalisation rather than the predicted acidification occurred, 

which is similar with shift in pH seen as in the present study. Furthermore, the pH-dependence of 

photoconidiation was affected by the buffering capacity of the medium, indicating that as well as pac1 

genes, other genes are also involved in enabling T. atroviride LU132 to react to ambient pH and 

buffering capacity (pH status). This also occurred in the present study, where T. atroviride LU132 did 

not produce conidia at most pH values where high buffer concentrations were used. Similarly, T. 

harzianum has shown pac1 to cross-regulate other genes suggesting conidiation is probably 

dependent on buffering condition rather than pH levels (Moreno-Mateos et al., 2007). As has been 

outlined in Section 2.4.1, there may be differences in the role of pac1 in the antagonism of different 

phytopathogens by Trichoderma. This gene has a positive role in expression of genes involved in 

antagonistic activity such as chit42 (chitinase) and gid74 (cell wall protein) genes, while negatively 

affecting the expression of genes involved in overgrowth activity such as papA (protease) and gtt1 

(glucose permease) (Moreno-Mateos et al., 2007). In the present study, the results suggest that pac1 

had a positive role in the expression of genes involved in the bioactivity of T. atroviride LU132 in dual 

culture assays against the R. solani colonies. At the higher pH from 5.5 to 7.5, greater pac1 expression 

(to alter pH) is suggested to have occurred and therefore both inhibition and overgrowth activities 

were increased, while down regulation of genes involved in inhibition activity at pH 4.5 would be 

hypothesised to lead to up regulation of genes involved in overgrowth activity at the greatest value 

compared with other pH values. Since genes involved in overgrowth activity were probably not 

suppressed at a pH range from 5.5 to 7.5, buffering status is also likely to be involved in expression of 

these genes. 

Optimum conidium production was observed at pH 6.5. Optimum conidium fitness (maximum 

germination and inhibition of R. solani colonies) occurred at pH 7.5. Almost no change in pH from the 

initial value seen occurred for either of these pH values. This suggests a trade-off between optimum 

pH for productivity and that for bioactivity. It has been suggested that the addition of nutrients (PDB) 
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would promote conidiation since the ability of the fungus to alter pH has been correlated with nutrient 

availability (Pažout et al., 1982). Similarly, a marked increase in pH value has been related to depletion 

of carbohydrate sources in culture medium for T. reesei (Bailey & Tähtiharju, 2003). For Penicillium 

cyclopium, low glucose content in the culture medium caused the pH of the medium to rise due to the 

utilisation of organic acid, thus inhibiting further conidium development. In a medium with high 

glucose content conidium production was not inhibited (Pažout & Schröder, 1988). However, in the 

present study with T. atroviride LU132, the addition of nutrients at pH 7.5 and high buffer 

concentration (20%) improved growth compared with low nutrient concentrations, only slight 

conidium production occurred. This may be due to the addition of nutrients, which can cause low 

osmolarity resulting in disruption of the cellular hydrogen bonds causing DNA supercoiling, which in 

turn disrupts cellular mechanisms (Higgins et al., 1988; Galán & Curtiss, 1990). 

Maximum germination, and inhibition activity against R. solani (in the dual culture assays) was 

measured for conidia obtained from medium at pH 7.5 (5% buffer concentration). Accumulation of 

low-molecular-weight polyols (such as trehalose and erythritol) in conidia have been shown to 

correlate with increased germination rates when these conidia were transferred to new environments 

(Hallsworth & Magan, 1996; Pedreschi et al., 1997; Bonaterra et al., 2005). In the present study, pH 

7.5 at 5% buffer concentration possibly induced accumulation of these compounds resulting in 

maximum germination and bioactivity of T. atroviride LU132.   
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The stability of Trichoderma conidia in terms of viability and bioactivity is heavily influenced by abiotic 

factors and the nutritional composition of growth media, which affect biological control efficacy and 

desiccation tolerance (Agosin & Acuilera, 1998). Conidium germination in other fungi is dependent on 

protein synthesis, as demonstrated in Aspergillus nidulans, Neurospora crassa, and Fusarium solani 

(Cochrane & Cochrane, 1970; Loo, 1976; Osherov & May, 2000). Mirkes (1974) demonstrated that 

dormant conidia of Neurospora crassa contained pre-existing pools of free ribosomes, which interact 

with mRNA to form polysomes in the presence of nutrient sources, for example carbon. During 

storage, the dormancy status is likely to be associated with substantial changes in physiology and 

biochemistry of conidia (Mandels, 1981). For example, dormancy in Myrothecium verucaria was 

maintained by physical separation of endogenous reserves of the substrate from metabolic enzymes, 

e.g. trehalose from trehalase (Mandels, 1963; Mandels et al., 1965; Mandels and Maguire, 1972). Also, 

insolubility and compartmentalisation of reserves of lipids in some conidia has been postulated as a 

mechanisms for enhancing conidium survival (Reisener, 1976). 

Previous studies have shown that in several microorganisms conidium compatible solutes such as 

trehalose and polyols can be associated with osmotic adjustments, and can protect cell membranes 

and proteins from inactivation and denaturation (Brown & Simpson, 1972; Crowe et al., 1984; 

Carpenter & Crowe, 1988). Trehalose and polyol compounds have been shown to contribute to 

acceleration of germination, enhancement of bioactivity, and resistance to adverse environmental 

conditions such as desiccation, freezing, heat, osmotic or oxidative stress, nutrient starvation, 

dehydration, and exposure to toxic chemicals (Al-Hamdani & Cooke, 1987; Hallsworth & Magan, 1994; 

Hallsworth & Magan, 1995; Bonaterra et al., 2005). 

Exposure to sublethal stress treatments has also been shown to cause accumulation of compatible 

solutes in beneficial microorganisms (Bonaterra et al., 2007; Liu et al., 2009). For example, Palazzini et 

al. (2009) reported that osmo-adaptation to low water activity enhanced the biological control activity 

of Bacillus subtilis and Brevibacillus sp. under adverse environmental conditions. Similarly, stress 

tolerance and biological control efficacy of the yeast antagonist Metschnikowia fructicola were 

enhanced by high temperature and oxidative stress, suggesting that the heat-shock treatment caused 

cross-protection to reactive oxygen species and high temperatures (Liu et al., 2011). Moreover, 

exposing the yeast Candida oleophila to sub-lethal levels of oxidative stress, resulted in tolerance to 

lethal levels of peroxide hydrogen, low pH and high temperature. This treatment also enhanced 

biological control activity of C. oleophila against infection of apple fruit by Penicillium expansum and 

Botrytis cinerea (Liu et al., 2012). 

The overall objective of the experiments outlined in this Chapter was to define the intrinsic stability 

of Trichoderma atroviride LU132 conidia produced under different incubation and nutritional 
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Petri plates were incubated in conditions as described in Chapter 2, corresponding to each conidium 

production treatment. After 15 d incubation, one plate was randomly selected from each replicate or 

block of each conidium production treatment, and the conidia were harvested (as described in Section 

2.2.1.2) to be assessed for the numbers of conidia, percentage germination, and bioactivity (as fresh 

conidia). The other 150 plates from each treatment were considered as pseudoreplicates and 

harvested as described in Section 2.2.1.2. 

Harvested conidia from each treatment were bulked together and dried in a laminar flow cabinet 

overnight to be used in a storage experiment. The batch of bulked conidia for each treatment was 

divided between sterile blue glass microtubes (as suggested by Islam et al., 2007). Microtubes were 

stored unsealed for up to six months at 30˚C under two humidity storage conditions: 0% RH over silica 

gel or 50% RH achieved by placing the microtubes over a saturated salt solution (LiCl) at a 

concentration (8.5 M/kg) corresponding to an aw of 0.500 (Barbosa-Cánovas et al., 2008). 

The storage experiment was set up as a randomised complete block design in three blocks for each 

humidity. Each block contained five microtubes (for five storage assessment times) for each of the ten 

production treatment (50 microtubes per block × three blocks = 150 microtubes). 

Table 3.1 Culturing conditions used for production of Trichoderma atroviride LU132 conidia 
for assessing effects on viability and bioactivity at different times during six months storage 
under different conditions. 

Treatments1 
Culture conditions 

T (°C) aw pH C (g/L) C:N C Source2 Buffer3 

20°C 20 0.995 5.6 10 10:1 Dex - 

30°C 30 0.995 5.6 10 10:1 Dex - 

aw 0.985 25 0.985 5.5 30 30:1 Dex + Gly Phosphate 

aw 0.961 25 0.961 5.5 80 80:1 Dex + Gly Phosphate 

C:N 5:1 25 0.998 5.5 4.2 5:1 Suc Phosphate 

C:N 160:1 25 0.993 5.5 16.8 160:1 Suc Phosphate 

1.2 mM Tre 25 0.994 5.5 8.4 5:1 Suc + Tre Phosphate 

1.2 mM GB 25 0.994 5.5 8.4 5:1  Suc + GB Phosphate 

pH 5.5 25 0.993 5.5 10 10:1 Dex Phosphate 

pH 7.5 25 0.976 7.5 10 10:1 Dex Phosphate 

1 Tre: trehalose, GB: glycine-betaine. 
2 Dex: dextrose; Gly: glycerol; Suc: sucrose. 
3 Phosphate buffer Na2HPO4 (0.1 mM) in water activity test and appropriate concentrations of K2HPO4 
/KH2PO4 to adjust required pH in nutrient and pH tests. 
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significantly (P = 0.001) greater than for all the other growth medium treatments, while at 50% RH, 

conidia produced at C:N 160:1 (29%) gave the greatest average germination. 

Table 3.3 Mean numbers (×107/mL) of Trichoderma atroviride LU132 conidia from different 
culture production treatments (see Table 3.1), and reduction (%) after storage for six months 
(SE)1, under storage conditions of 0% RH, 50% RH and across both storage conditions combined 
(0 and 50% RH). Data is based on AUC2 values. 

Treatment3 
0% RH 50% RH (0 + 50)% RH 

Conidia no. %SE Conidia no. %SE Conidia no. %SE 

20°C 1015 45 885 54 950 50 

30°C 568 79 678 74 623 77 
aw 0.985 758 65 835 63 797 64 

aw 0.961 1001 44 904 53 953 49 
C:N 5:1 1161 40 971 52 1066 46 

C:N 160:1 1130 44 1059 50 1094 47 

1.2 mM Tre 741 62 736 61 739 62 

1.2 mM GB 552 78 670 67 611 73 

pH 5.5 891 64 754 69 822 67 
pH 7.5 767 64 867 63 817 64 

LSD0.05 27 5.6 32.2 5.5 75.6 5.7 
Overall mean 858 59 836 61 847 60 

Significance of contrasts between valid comparisons4 

20°C vs 30°C *** *** *** *** *** *** 

C:N 5:1 vs C:N 160:1 * ns *** ns ns ns 

1.2 mM Tre vs 1.2 mM GB *** *** *** * ** *** 
1 SE: storage effect as % reduction. 
2 AUC: area under the curve. 
3 Tre: trehalose, GB: glycine-betaine. 
4 *, **, ***: the effects of treatments are statistically significant at P = 0.05, 0.01 or 0.001, respectively; ns: 
not significant (P > 0.05). 

For all culture condition treatments, storage for six months resulted in reduced germination due to 

effects of drying, storage or combined effects of drying and storage. Drying, as indicated by the drying 

effect (DE), caused the greatest reduction in average germination with conidia produced at pH 7.5 

(56% reduction) before storage at time 0, while the least reduction in average germination occurred 

for conidia produced at aw 0.985 (−43%) and 1.2 mM glycine-betaine (−41%) followed by 20°C (−35%). 

These negative reductions can be translated as positive proportion change (increase) in germination 

compared with corresponding values of average germination when conidia were fresh. For example, 

the 20°C treatment gave 55% actual germination when conidia were fresh and there was 35% increase 

in proportion of germination after drying, which means 55 × 35/100 ≈ 19% increase in actual 

germination. Therefore, average percentage germination of dried conidia is calculated as 55 + 19 = 74. 

Storage at 0% RH for six months resulted in the greatest reduction (96 - 100%) in germination for 
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conidia produced at 20°C, aw 0.961, 1.2 mM trehalose, 1.2 mM glycine-betaine, pH 5.5 and pH 7.5, and 

the least reduction by C:N 5:1 (71%). In storage at 50% RH, the least reduction in germination of 

conidia occurred with conidium production treatments of C:N 5:1 (85%) and C:N 160:1 (83%), which 

were significantly less (P < 0.001) compared with all other culture conditions (99 - 100%). 

Accumulation of drying and storage effects (DE+SE) caused reductions in average proportions of 

conidium germination. The least reduction was recorded for conidia produced with C:N 5:1 (35% 

reduction) at 0% RH storage, followed by 55% at 50% RH storage and 79% across both storage 

conditions combined. These values were significantly (P < 0.001) less than all the other growth 

medium treatments. 

Regarding the valid comparison treatments, there were significant differences (P < 0.01) between 

percentage germination of each valid production treatment at each storage condition and also both 

storage conditions combined (Table 3.4). There was less reduction in germination for conidia from the 

30°C growth treatment compared with 20°C. Conidia produced at 20°C gave the least average 

germination (6 - 8%) and significantly less (P = 0.001) than average germination for conidia produced 

at 30°C (23 - 34%), at different storage conditions and combined. After storage at 0% RH, the average 

germination of conidia produced with C:N 5:1 (38%) was greater (P = 0.001) than average germination 

with C:N 160:1 (23%). Significant differences (P = 0.01) in average germination occurred between C:N 

5:1 (32%) and C:N 5:1 (26%) across both storage conditions combined. In contrast, at 50% RH, 

germination of conidia produced from a C:N ratio of 160:1 (29%) was greater (P = 0.001) compared 

with those produced with C:N of 5:1 (26%). Trehalose amendment gave greater (P < 0.01) average 

germination (19 - 25%) compared with glycine-betaine (14 - 17%) in each of both storage conditions 

and for both conditions combined. 

There was a delay in germination initiation for stored conidia compared with fresh conidia. No 

germination was observed after 12 h incubation for the dried conidia immediately after harvest (0 

month), whereas for fresh conidia, germination had been initiated for most treatments after 12 h 

incubation or earlier (Figure 3.1). The maximum germination progressively decreased with increasing 

storage time, across both storage conditions combined for all treatments. Some culture conditions 

gave greater negative impacts on germination than others. For example, although dried conidia 

produced at 20°C and C:N 5:1 initially (0 month) had the same percentage germination (93%), after 

one month storage there was no germination of conidia produced at 20°C, while germination was still 

70% for conidia produced at C:N 5:1. The percentage germination of conidia at each of the five storage 

assessment times in each storage condition (0% or 50% RH) or across both conditions combined are 

shown in Appendix 3.2. 
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Table 3.4 The mean germination (%) of Trichoderma atroviride LU132 conidia from different culture production treatments (see Table 3.1) as fresh or 
after storage for six months based on AUC1 values and also reduction2 (%) after drying (DE), storage (SE) and combined (DE+SE) under storage condition 
of 0% RH, 50% RH and across both storage conditions combined (0 and 50% RH). Data is based on AUC2 values for 12-22 h germination assessment. 

Treatment3 %Ger4 (Fresh) %DE 
0% RH 50% RH 0% + 50% RH 

%Ger %SE %(DE+SE) %Ger %SE %(DE+SE) %Ger %SE %(DE+SE) 

20°C 55 −35 8 100 100 6 100 100 7 100 100 

30°C 74 5 34 81 68 23 99 99 28 90 91 

aw 0.985 21 −43 10 84 74 9 100 100 9 92 89 

aw 0.961 78 13 24 96 95 14 100 100 19 98 98 

C:N 5:1 79 7 38 71 35 26 85 55 32 78 79 

C:N 160:1 49 35 23 80 86 29 83 86 26 82 90 

1.2 mM Tre 78 6 25 96 95 19 100 100 22 98 98 

1.2 mM GB 55 −41 17 100 100 14 100 100 16 100 100 

pH 5.5 63 17 10 100 100 10 100 100 10 100 100 

pH 7.5 86 56 10 97 96 10 100 99 10 98 100 

LSD0.05 1.8 2.2 0.6 4.6 5.8 0.8 1.2 1.8 4.4 6.2 6.6 
Overall mean 64 2 20 91 85 16 97 94 18 94 94 

Significance of contrasts between valid comparisons5 

20°C vs 30°C *** *** *** *** *** *** ns ns *** *** ** 

C:N 5:1 vs C:N 160:1 *** *** *** *** *** *** * *** ** ns ** 

1.2 mM Tre vs 1.2 mM GB *** *** *** ns ns *** ns ns ** ns ns 
1 AUC: area under the curve. 
2 DE: % reduction due to drying effect, SE: % reduction due to storage effect after six months, DE + SE: % reduction due to combination of drying and storage effects. 
3 Tre: trehalose, GB: glycine-betaine. 
4 Ger: germination. 
5 *, **, ***: the effects of treatments are statistically significant at P = 0.05, 0.01 or 0.001, respectively; ns: not significant (P > 0.05). 
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Figure 3.1 Mean percentage 
germination after 12 to 22 h 
incubation for Trichoderma 
atroviride LU132 conidia either 
immediately after harvest (Fresh) 
or after drying and storage across 
both 0 and 50% RH combined at 
different times (0 to six months ) 
for the different culture 
conditions (see Table 3.1). The 
culture conditions for conidium 
production were:  temperature 
(20 or 30°C), aw (0.985 or 0.961), 
C:N (5:1 or 160:1), trehalose (1.2 
mM) or, glycine-betaine (1.2 
mM) and pH (5.5 or 7.5). 
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15%), at different storage conditions and combined. the storage treatment of  0% RH, the C:N 5:1 ratio 

production treatment (15% reduction) versus C:N 160:1 (10%) treatment gave no significant difference 

in percentage reduction in bioactivity and similarly across both storage conditions combined for the 

C:N 5:1 (17%) versus C:N 160:1 (10%) treatments. However, the C:N 5:1 treatment (19%) versus C:N 

160:1 (10%) showed significant difference (P = 0.05) when stored at 50% RH. There was no significant 

difference in reduction of bioactivity after six months storage between the valid comparison 

treatments of 1.2 mM trehalose (36% reduction) versus 1.2 mM glycine-betaine (33%) at storage 

condition of 0% RH, 1.2 mM trehalose (46%) versus 1.2 mM glycine-betaine (44%) at storage condition 

of 50% RH, 1.2 mM trehalose (41%) versus 1.2 mM glycine-betaine (38%), across both storage 

conditions combined (0 and 50% RH). The percentage bioactivity of T. atroviride LU132 colonies 

against R. solani colony growth at each of the five storage assessment times in each of the two storage 

conditions, and across both conditions combined, is shown in Appendix 3.3. 
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Table 3.5 Mean bioactivities (%) of conidia from Trichoderma atroviride LU132 colonies from different culture production treatments 
(see Table 3.1), against Rhizoctonia solani colnoy growth. Conidia were either fresh or stored for six months. Data presented are based 
on AUC1 values and also reduction2 (%) after drying (DE), storage (SE) and combined (DE+SE), under storage conditions of 0% RH, 50% 
RH and across both storage conditions combined (0 and 50% RH). 

Treatment3 %Bio4 (Fresh) %DE 
0% RH 50% RH 0% + 50% RH 

%Bio %SE %(DE+SE) %Bio %SE %(DE+SE) %Bio %SE %(DE+SE) 

20°C 74 23 30 100 100 25 100 100 28 100 100 

30°C 77 6 68 13 12 64 15 16 66 14 19 

aw 0.985 68 12 59 18 28 53 33 32 56 25 34 

aw 0.961 74 19 56 27 36 52 39 45 54 33 45 

C:N 5:1 77 4 65 15 11 64 19 17 65 17 20 

C:N 160:1 61 −12 63 10 13 63 10 12 63 10 −1 

1.2 mM Tre 75 7 57 36 40 52 46 45 55 41 45 

1.2 mM GB 63 5 56 33 42 48 44 50 52 38 42 

pH 5.5 69 9 50 53 58 41 61 63 46 57 61 

pH 7.5 76 16 53 50 53 48 57 59 51 54 61 

LSD0.05 1.8 2.8 2.1 8.7 8.7 1.7 8.2 8.7 3.7 7.5 6.6 

Overall mean 71 9 56 35 39 51 42 44 53 39 43 

Significance of contrasts between valid comparisons5 

20°C vs 30°C ** *** *** *** *** *** *** *** *** *** *** 

C:N 5:1 vs C:N 160:1 *** *** ns ns ns ns * ns ns ns *** 

1.2 mM Tre vs 1.2 mM GB *** ns ns ns ns *** ns ns ns ns ns 
1 AUC: area under the curve for 22 h germination assessment. 
2 DE: % reduction due to drying effect, SE: % reduction due to storage effect over five assessment times, DE + SE: % reduction due to combination of 
drying and storage effects. 
3 Tre: trehalose, GB: glycine-betaine. 
4 Bio: bioactivity. 
5 *, **, ***: the effects of treatments are statistically significant at P = 0.05, 0.01 or 0.001, respectively; ns: not significant (P > 0.05). 
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conidia during storage. For example, Moore & Higgins (1997) showed that high C:N ratio in culture 

medium for the entomopathogenic fungus Metarhizium flavoviride gave greater viability during 

storage than for low C:N ratio. In contrast, Montazeri & Greaves (2002) showed that low C:N ratio for 

production of Colletotrichum truncatum gave conidia with more desiccation tolerance than those 

produced at high C:N ratio. These variable results indicate that this factor has variable effects for 

different fungi, and may differently affect different Trichoderma species. This response should be 

verified for T. atroviride, and should be carefully assessed when other species are considered. 

The growth medium C:N ratio treatment of 5:1 gave high conidium production, germination and 

bioactivity for fresh T. atroviride LU132 conidia (see Chapter 2), and also stability and bioactivity after 

storage. Carbohydrate type and concentration, pH, and water availability have elsewhere been shown 

to be key factors determining the trehalose content of conidia during culturing conditions (Hallsworth 

& Magan, 1994). Trehalose and sucrose have also been shown to protect membranes and proteins in 

bacteria during drying (Leslie et al., 1995). In the present study, the 5:1 C:N ratio treatment probably 

provided an effective balance of C to N, and resulted in optimized polyol content (e.g. glycerol and 

erythritol) during conidium production. Storage at 30°C was not excessive for survival of conidia 

produced at the 5:1 C:N  treatment, possibly due to the conidia having strong cell walls and 

membranes, and elevated contents of compatible solutes. 

Conidia produced in cultures supplemented with 1.2 mM trehalose and 1.2 mM glycine-betaine had 

lower conidium fitness compared with the conidia produced at different C:N ratios. Although, the 

overall C:N ratio in the base medium for trehalose and glycine-betaine was the same as that in the 5:1 

C:N treatment, these media contained 8.4 g/L of carbon, while the 5:1 C:N medium contained 4.2 g/L 

carbon. Other researchers have shown that addition of compatible solutes such as trehalose and 

glycine-betaine increases the intracellular accumulation of these compounds during the production of 

BCA inocula (Kets & Bonts, 1994; Kets et al., 1996; Pedreschi et al., 1997; Bonaterra et al., 2005). In 

the present study, there were no positive effects caused by either trehalose or glycine-betaine 

treatments on the quantity and quality of the conidia to withstand unfavourable environmental 

conditions during storage, with the exception that glycine-betaine addition increased germination 

after drying (%DE) compared with the fresh conidia (Table 3.4). This indicated that excessive sucrose 

as a carbon source possibly inhibited absorption of trehalose and glycine-betaine into the fungal cells 

during growth and development. These compounds did not improve conidium stability and bioactivity, 

possibly because they did not affect cell wall or membrane integrity, or accumulation of trehalose, 

polyols or glycine-betaine, so temperature of 30°C during storage was above the extreme threshold 

and therefore detrimental for these conidia. 
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In this study, conidia produced under different culture conditions were exposed to stresses of drying 

and storage, and these resulted in substantial decreases in the number, germination and bioactivity 

of conidia during six months of storage. Dry conditions (0% RH) were more suitable for storage of the 

conidia than storage at 50% RH. This indicates that drying induced water content during storage that 

was more optimal for maintenance of viability after long-term storage (Moore et al., 1995). It has also 

been reported that low water activity in the conidia of Neurospora crassa reduced the metabolic 

activity of dry conidia and maintained viability for long-term of storage (Fahey et al., 1978). In another 

example, the conidia of Coniothyrium minitans showed delayed germination after drying, but 

maximum germination was achieved similar to non-dried conidia (Jones et al., 2004).  

In the present study, conidia were dried in a laminar flow cabinet under airflow for 24 h at room 

temperature. This time of dehydration was reasonably rapid, and could have affected conidium 

fitness. The rate of drying has been known to be a factor affecting the longevity of BCAs based fungal 

conidia. Viability of microorganisms during storage is generally influenced by drying processes 

(Antheunisse & Arkestelin-Dilksman, 1979), storage conditions (Mary et al., 1985), and the rehydration 

processes (Leach & Scott, 1959). Rapid drying has been shown to decrease conidium survival 

compared with slow drying (Hong et al., 2000). Furthermore, viability may be maintained by gradual 

drying processes compared with rapid drying (Friesen et al., 2005). 

Rehydration of test conidia in the present study was done in water immediately at each assessment 

time. This rapid rehydration could be another factor affecting conidium fitness. The impact of 

rehydration has been studied in Metarhizium anisopliae by Moore et al. (1997). They found that rapid 

rehydration of conidia, where dried conidia were pre-soaked in water, gave much lower germination 

percentages than when the conidia were initially rehydrated over a saturated water atmosphere prior 

to placing in water. Similarly, Magalhães & Boucias (2004) showed that gradually rehydrated conidia 

of Metarhizium anisopliae gave greater germination percentages than those rehydrated more rapidly. 

In the present study, rapid drying, along with desiccation due to high temperature during storage 

(30°C) resulted in considerable reductions in the number of conidia, germination percentage and 

bioactivity against R. solani. 

Dehydration, thermal stress and oxidation are principal factors which irreversibly affect conidium 

fitness, due to their ability to damage cellular membranes and structural integrity. These effects 

manifest as vesicle fusion, redistribution of inter-membrane particles, and phase transitions of 

phospholipid bilayers (Crowe et al., 1984; Aguilera & Karel, 1997; Ananta et al., 2005; Morgan et al., 

2006; Fernandez-Sandoval et al., 2012). However, temperature has been reported to be more 

important than dehydration and oxidation for effects on longevity and bioactivity of Beauveria 

brongniartii and Metarhizium anisopliae during storage (Horaczek & Viernstein, 2004). Furthermore, 
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 Trichoderma conidia to be stored are affected by dehydration, temperature and other factors such as 

oxidation, before and during storage, and also by rehydration after storage. 

 No significant effects on bioactivity were detected between the C:N 5:1 and C:N 160:1 conidium 

production treatments, indicating that C:N ratio in culture medium of T. atroviride LU132 was not 

important as a factor affecting conidium survival. 

 Excessive sucrose in growth media probably inhibited absorption of trehalose and glycine-betaine, 

and affected conidium fitness.   
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Appendix 3.2 Mean percentage germination of T. atroviride LU132 conidia produced from different culture production treatments (see Table 3.1) at each 

storage assessment time (0, 0.5, 1, 3 and six months) when stored at 30°C and 0% RH, 50% RH and across both storage conditions combined (0 and 50% RH). 

Data is based on AUC (as described in Chapter 2, Section 2.2.1.7) averaged over 12 - 48 h germination assessments at each storage assessment time. 

Treatment1 
Assessment time (month) at 0% RH 50% RH 0 and 50% RH 

0 0.5 1 3 6 0 0.5 1 3 6 0 0.5 1 3 6 

20°C 93 70 0 0 0 93 42 0 0 0 93 56 0 0 0 

30°C 91 51 73 48 26 91 42 54 47 4 91 47 63 47 15 

aw 0.985 62 28 21 13 11 62 38 24 13 1 62 33 23 13 6 

aw 0.961 91 69 62 25 8 91 34 58 18 3 91 52 60 22 6 

C:N 5:1 93 42 73 60 33 93 30 67 35 24 93 36 70 47 28 

C:N 160:1 75 58 53 47 21 75 50 62 63 15 75 54 57 55 18 

1.2 mM Tre 92 71 65 38 10 92 37 64 26 0 92 54 65 32 5 

1.2 mM GB 93 58 36 29 3 93 36 61 13 0 93 47 48 21 2 

pH 5.5 86 47 36 5 1 86 31 28 14 0 86 39 32 9 1 

pH 7.5 76 36 32 13 10 76 23 31 18 6 76 30 32 16 8 

LSD0.05 1.0 1.0 2.0 1.9 3.5 1.0 2.8 2.8 2.6 1.3 1 1.6 1.3 1.6 1.8 

Overall mean 85 53 45 28 12 85 36 45 25 5 85 45 45 26 9 

Significance of contrasts between valid comparisons2 

20°C vs 30°C ** *** *** *** *** * ns *** *** *** * ns *** *** *** 

C:N 5:1 vs C:N 160:1 *** *** *** *** *** *** *** *** *** *** *** * *** ns *** 

1.2 mM Tre vs 1.2 mM GB ns *** *** *** *** ns ns ** *** ** ns ns *** ** ns 
1 Tre: trehalose, GB: glycine-betaine. 
2 *, **, ***: The effects of treatments are statistically significant at P = 0.05, 0.01 or 0.001, respectively; ns: not significant (P > 0.05). 
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Appendix 3.3 Mean inhibition proportions (%) of Trichoderma atroviride LU132 colonies from different culture production treatments (see Table 3.1) against 

Rhizoctonia solani colony growth at each storage assessment time (0, 0.5, 1, 3 and six months) when stored at 30°C and 0% RH, 50% RH and across both 

storage conditions combined (0 and 50% RH). 

Treatment1 
Assessment time (month) at 0% RH 50% RH 0 and 50% RH 

0 0.5 1 3 6 0 0.5 1 3 6 0 0.5 1 3 6 

20°C 57 69 47 29 0 57 71 44 18 0 57 70 46 24 0 

30°C 73 72 70 69 63 73 73 64 63 62 73 73 67 66 63 

aw 0.985 59 68 69 57 49 59 59 62 53 40 59 63 66 55 44 

aw 0.961 61 69 64 55 44 61 68 64 51 37 61 69 64 53 41 

C:N 5:1 74 71 59 67 63 74 72 65 64 60 74 72 62 66 62 

C:N 160:1 68 71 59 65 61 68 69 64 61 61 68 70 61 63 61 

1.2 mM Tre 69 74 64 57 44 69 68 66 49 38 69 71 65 53 41 

1.2 mM GB 59 69 65 57 40 59 67 66 43 33 59 68 65 50 37 

pH 5.5 63 70 67 49 29 63 66 54 37 24 63 68 61 43 27 

pH 7.5 63 67 64 56 32 63 67 61 49 27 63 67 63 53 29 

LSD0.05 2.2 4.8 2.4 3.7 5.1 2.2 2.6 3.2 3.4 5.0 2.2 3.4 4.0 5.8 4.6 

Overall mean 65 70 63 56 43 65 68 61 49 38 65 69 62 53 40 

Significance of contrasts between valid comparisons2 

20°C vs 30°C *** ns *** *** *** *** ns *** *** *** *** ns *** *** *** 

C:N 5:1 vs C:N 160:1 *** ns ns ns *** ** ns ns ns ns *** ns ns ns ns 

1.2 mM Tre vs 1.2 mM GB *** ns ns ns ns *** ns ns ** ns *** * ns ns ns 
1 Tre: trehalose, GB: glycine-betaine. 
2 *, **, ***: The effects of treatments are statistically significant at P = 0.05, 0.01 or 0.001, respectively; ns: not significant (P > 0.05). 
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production conditions on conidium quality, both the ability of Trichoderma conidia to colonise and to 

maintain populations in host rhizospheres, and ability to promote plant growth and suppress soil-

borne disease, have not been investigated. The study by Lynch et al. (1991) illustrated that a threshold 

level of Trichoderma was needed to give effective control of the R. solani and Pythium ultimum 

initiated damping-off in lettuce. However, Hohmann et al. (2011) showed that increased Trichoderma 

inoculum and rhizosphere colonisation may not always be beneficial. Conidium quality in Trichoderma 

may influence rhizosphere colonisation, since conidia are able germinate, grow and multiply in the 

rhizosphere, and this ability is potentially influenced by the incubation conditions and media 

composition during their production. 

Most of the studies on biological control activity in Trichoderma spp. have focused on mycoparasitism 

of fungal plant pathogens. Application of Trichoderma-based BCAs into the soil can reduce disease 

severity and improve the growth of treated plants (Harman & Björkman, 1998; Bae et al., 2009). For 

example, Trichoderma can improve the growth of lettuce and suppress R. solani and P. ultimum 

damping-off (Lynch et al., 1991). It has been postulated that Trichoderma spp. promote plant growth 

in a manner similar to mycorrhizae through penetration of root tissue (Yedidia et al., 1999).  

Trichoderma spp. are common soil saprophytes, opportunistic and avirulent plant symbionts, and are 

well-recognized potential BCAs of soilborne plant pathogens (Harman, 2000). They produce 

metabolites that enhance plant growth and resistance to biotic and abiotic stresses through 

rhizosphere competency and endophytic colonisation, and these responses are strain-specific 

characteristics mainly correlated with biological control activity (Hoyos-Carvajal et al., 2009b). 

However, for Trichoderma stromaticum, a mycoparasite of the cacao witches’ broom pathogen 

Moniliophthora perniciosa, endophytic colonisation of shoots and roots induced resistance and 

growth promotion, but were not responsible for suppression of the pathogen (De Souza et al., 2008). 

Furthermore, four Trichoderma spp. showed colonization of above ground tissues of cacao trees 

(Bailey et al., 2009). They were mostly re-isolated from stems (xylem and bark) and apical meristems 

rather than leaves. Glandular trichomes were also colonized by Trichoderma spp., where they formed 

appressorium-like bodies during stem colonization. In another example, T. atroviride was reported as 

an endophyte in the roots of the medicinal herb Salvia miltiorrhiza (Ming et al., 2012). 

In the previous sections of the present study, T. atroviride LU132 fresh or dry conidia obtained from 

different culture growing conditions were assessed (during six months of storage) for quantity and 

quality (two measures; germination and subsequent bioactivity against Rhizoctonia solani). The aim 

of the experiments described here was to explore the effects of culture growing conditions on the 

biological control activity of T. atroviride LU132 conidia for protection of ryegrass against the soilborne 









 

108 
 

were not significantly different from the non-inoculated plants. Trichoderma atroviride LU132 

conidium treatments in the presence of the lowest pathogen concentration (Rs1) increased seedling 

emergence compared with the pots inoculated with Rs2 and Rs3 concentrations, but was not 

significantly different from the non-inoculated pots. Increasing R. solani inoculum concentration 

significantly reduced all growth parameters compared with the non-inoculated plants. Plants co-

inoculated with T. atroviride LU132 treatments and a high concentration of the pathogen (Rs3) had 

increased parameters compared with those inoculated only with Rs3. 

A 

 

B 

 
Figure 4.1 Ryegrass plants (A: shoots and B: roots) inoculated with 
high concentrations of Rhizoctonia solani (Rs3) inocula (4% w/w) 
per pot in the presence or absence of Trichoderma atroviride LU132 
treatments 28 d after sowing. Trichoderma atroviride conidia for 
potting mix inoculations were produced at 20°C or 30°C on media 
amended with sucrose (20°C-Suc & 30°C-Suc) or dextrose (20°C-Dex 
& 30°C-Dex), at C:N ratios of 5:1. 
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Table 4.1 Mean seedling emergence and growth parameters of ryegrass plants inoculated with 
or without Trichoderma atroviride LU132 conidia produced under different incubation 
temperatures (20°C or 30°C) and media emended with dextrose (Dex) or sucrose (Suc), and 
inoculated with different concentrations of Rhizoctonia solani (Rs). 

Treatment1 
Seedling 

emergence2 % 
No. of 
tillers3 

Total fresh 
weight4/g 

Total dry 
weight4/g 

Root 
length5 

(cm) 

No. of 
lateral 

roots5 

Nil 83 20 7.9 0.76 1397 8712 

20°C-Dex 88 22 9.2 0.83 1224 6924 

20°C-Suc 89 23 8.8 0.84 1526 10241 

30°C-Dex 88 20 9.2 0.84 1443 8494 

30°C-Suc 87 23 9.4 0.86 1259 7652 

Rs1 65 19 7.1 0.73 1133 6453 

Rs2 56 17 5.6 0.59 1020 6169 

Rs3 43 10 0.8 0.09 297 1570 

Rs1 × 20°C-Dex 79 18 7.2 0.67 1147 6761 

Rs1 × 20°C-Suc 81 23 7.9 0.76 1269 7286 

Rs1 × 30°C-Dex 82 21 7.7 0.72 1265 6563 

Rs1 × 30°C-Suc 80 20 7.7 0.74 1336 7406 

Rs2 × 20°C-Dex 65 19 8.1 0.73 1199 6931 

Rs2 × 20°C-Suc 63 18 7.2 0.69 1095 6464 

Rs2 × 30°C-Dex 67 17 7.4 0.70 1121 6502 

Rs2 × 30°C-Suc 61 16 6.9 0.63 1161 7133 

Rs3 × 20°C-Dex 53 12 2.9 0.27 559 3121 

Rs3 × 20°C-Suc 76 16 2.9 0.28 523 2894 

Rs3 × 30°C-Dex 81 16 2.7 0.28 504 2925 

Rs3 × 30°C-Suc 60 13 2.7 0.26 440 2617 

LSD0.05 4 0.7 0.8 0.08 116.5 935 

1 Rs1 = 0.04%, Rs2 = 0.4% and Rs3 = 4% w/w of rice grains inoculated with Rhizoctonia solani added to potting 
mix (PM); T. atroviride LU132 conidia for PM inoculation were produced at 20°C or 30°C amended with 
sucrose (20°C-Suc & 30°C-Suc) or dextrose (20°C-Dex & 30°C-Dex) at C:N ratio of 5:1. 
2 Average seedling emergence (from up to 20 plants) over 5, 6, 7, 10 and 15 DAS using AUC. 
3 Average number of tillers (from up to 20 plants) over 15, 20 and 35 DAS using AUC. 
4 Total weight of roots and shoots (mean of three plants). 
5 Root length and number of lateral roots (mean of three plants).  
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number of Trichoderma CFUs/g dry potting mix in the pots inoculated with conidia produced at 30°C 

with sucrose was greater than for the other T. atroviride LU132 conidium production treatments, up 

to 14 d after sowing. Thereafter, the populations were constantly less than those for the other T. 

atroviride LU132 production treatments up to 49 d after sowing. In the presence or absence of the 

pathogen, two peaks in Trichoderma populations were observed, occurring at 14 d and up to a 

maximum at 35 d after sowing. Trichoderma isolates characteristic of T. atroviride LU132 recovered 

after 14 d on TSM from the 20°C-Dex and 30°C-Suc treatments produced faster growing colonies, with 

these colonies maturing more quickly (as evidenced by dark green conidium colour) compared with 

those recovered from the 20°C-Suc and 30°C-Dex treatments, at all assessment times of 7, 14, 21, 28, 

35, 42 or 49 d after sowing (Figure 4.3). 

 

 

Figure 4.2 Mean Trichoderma atroviride LU132 populations recovered from 
A) the rhizosphere of ryegrass plants and B) the bulk potting mix (PM) over 
time in the presence or absence of Rhizoctonia solani (Rs). T. atroviride 
LU132 conidia for inoculation were produced at 20°C or 30°C on media 
amended with sucrose (Suc) or dextrose (Dex) at C:N ratio of 5:1. Rs 
inoculation was at a ratio of 0.4 g/L (w/w) potting mix. LSD0.05 = 0.15 for 
rhizosphere soil, and = 0.14 for bulk soil. 
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20°C-Dextrose 

 

20°C-Sucrose 

 

30°C-Dextrose 

 

30°C-Sucrose 

 

Figure 4.3 Appearance of 14-d-old Trichoderma colonies characteristic of 
Trichoderma atroviride LU132 on TSM recovered from potting mix amended 
with conidia produced from colonies incubated at 20°C or 30°C and on media 
amended with either dextrose or sucrose. 
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Figure 4.4 PCR amplification of genomic DNA of Trichoderma isolates using the 
tef71f and tef997R primer set. Lanes: M: molecular size marker (1 Kb Plus DNA 
Ladder, Invitrogen™, Life Technologies™), 1 - 6: isolates from ryegrass roots, 7 - 
12: isolates from stems, 13 - 19: isolates from leaves, 20: positive T. atroviride 
LU132 control (obtained from the Biocontrol Microbial Culture Collection, Bio-
Protection Research Centre, Lincoln University, New Zealand), 21: negative 
control (pure water). Amplified fragments were analysed by electrophoresis in a 
1% agarose gel. The expected length of amplified fragments was 926 bp. 

Microscope examination revealed fungal structures in root and stem sheath tissues of plants grown 

in pots (Figure 4.5) and on agar in tissue culture containers (Figure 4.6). No signs of fungi were seen in 

the non-inoculated plants (negative controls). Fungal hyphae were aligned both along and across host 

cells, and were frequently branched, lobed and formed infection bodies (haustorium-like structures, 

Figure 4.5C) inside the cells of plant tissues. Typical Trichoderma conidia and conidiophores were 

observed in some stem sheath samples from tissue culture plants (Figure 4.6B and C).   
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A 

 

B 

 

C 

 

Figure 4.5 Micrographs of ryegrass plant tissued from seedlings grown in 
potting mix inoculated with Trichoderma atroviride LU132, 21 d after sowing. 
A: Fungal mycelium observed in a ryegrass root. B: Fungal mycelium observed 
in a ryegrass stem sheath. C: Haustorium-like structures (HLS) in a ryegrass 
stem sheath. 
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mix did colonise the rhizosphere. Conidium production treatments gave greater populations 

compared with non-inoculated potting mix, but this was not always translated into ryegrass growth 

promotion in the absence of the pathogen. 

Considering the conidium production treatments, in the absence of the pathogen, conidia produced 

at 20°C with sucrose were the most effective at increasing ryegrass growth. However these conidia 

were not the most rhizosphere competent, especially during initial stages of rhizosphere colonisation. 

Conidium production treatments at 20°C with dextrose and 30°C with sucrose were the least effective, 

and also decreased mean root lengths and numbers of lateral roots of the ryegrass plants. These 

treatments resulted in the greatest initial populations (first 14 d), suggesting that large Trichoderma 

populations in the rhizosphere probably inhibited plant growth in the absence of the pathogen, 

especially in the early stages of plant growth. These results are similar to those by Heil (2002) and 

Kazan & Manners (2012),  who indicated that suppression of host growth by Trichoderma resulted 

from costs associated with up-regulation of host defence-related genes. In the presence of R. solani, 

the benefits of large Trichoderma populations probably outweighed the cost to the plants of 

supporting the large population, although these two treatments gave reduced ryegrass seedling 

emergence. 

Trichoderma applications with conidia from different conidium production treatments promoted 

ryegrass seedling emergence and growth parameters, except for the conidia produced in the 20°C-

Dex and 30°C-Suc treatments, which reduced ryegrass root lengths and numbers of lateral roots. 

Ousley et al. (1993) demonstrated the inhibitory effects of several Trichoderma strains on seedling 

emergence and growth of lettuce (Latuca sativa L.) in non-sterilised potting compost. Inhibitory 

effects of Trichoderma application on plant yields have been correlated with production of 

metabolites, which could act as auxin-like compounds as was recorded for 6-pentyl-α-pyrone 

produced by T. harzianum at concentrations over 10-4 M (Cutler et al., 1986; Cutler et al., 1989). 

Trichoderma atroviride LU132 treatments interacted with different concentrations of R. solani inocula 

and significant differences occurred for some ryegrass host parameters, such as root length. At low R. 

solani inoculum concentrations, T. atroviride LU132 conidium treatments increased plant parameters 

including seedling emergence and total fresh weight compared with the pathogen only (Rs1) 

treatment at the corresponding inoculum concentration, but in many cases these parameters were 

not different from the non-inoculated controls. However, although all T. atroviride LU132 conidium 

treatments increased ryegrass growth at the high R. solani inoculum concentrations compared with 

the pathogen only treatment at the same concentration, these effects were not comparable to the 

non-inoculated treatment (control). At lower concentrations of R. solani, however, the amounts of 

disease suppression were statistically significant. As with other BCAs, Trichoderma has been shown to 
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provide variable biological control efficacy at high pathogen pressures resulting from large amounts 

of pathogen inoculum (Agbenin, 2011). McLean et al. (2012) studied the effects of pathogen pressure 

caused by Sclerotium cepivorum on biological control efficacy of T. atroviride LU132 for control of 

onion white rot. Their results indicated that this BCA was only effective at decreasing disease incidence 

where onion white rot incidence levels were low. 

Trichoderma atroviride LU132 protected ryegrass from the negative effects of R. solani at early stages 

of plant growth, including during seedling emergence. This suggests that T. atroviride LU132 

suppressed R. solani growth and development but was not able to provide the same level of ryegrass 

growth promotion as occurred in the absence of the pathogen. Similarly, the results outlined in 

Chapter 2 of the present study showed that T. atroviride LU132 outcompeted R. solani on dual plate 

assays. It has been suggested that Trichoderma metabolites contribute fungistatically to supress the 

growth and development of R. solani in soil or in agar dual cultures, which are proposed to be 

differentially modulated by NADPH oxidase (Dr Artemio Mendoza-Mendoza, 2014; personal 

communication). 

In the present study, T. atroviride LU132 treatments increased ryegrass biomass in the presence and 

absence of the pathogen, demonstrating the beneficial effects of this isolate on plant performance. 

This was in agreement with the results of Kandula et al. (2007), who showed that T. atroviride LU132 

promoted growth of ryegrass in the absence of the pathogen. However, these results were in contrast 

with those of Hohmann et al. (2011) who reported no growth promotional effects of T. atroviride 

LU132 in Pinus radiata seedlings, suggesting possible host-specific behaviour for this strain. Similarly, 

Cripps-Guazzone (2014) showed that T. atroviride LU132 has host-specific rhizosphere competency, 

being rhizosphere competent on sweetcorn, ryegrass, cauliflower and clover, but not on onion. 

Regliński et al. (2012) reported positive effects from several T. atroviride isolates on growth 

parameters of Pinus radiata. Trichoderma fungus induced systemic resistance in the plant resulting in 

reduction of dieback incidence caused by Diplodia pinea. Induced resistance was not examined in the 

present study, however, T. atroviride LU132 in other plant systems has been shown to promote plant 

growth but has not been shown to induce systemic resistance. Maag et al. (2013) showed that while 

T. atroviride LU132 colonised the roots of oilseed rape (Brassica napus) and increased the total plant 

biomass, the accompanying increase in levels of jasmonic acid were due to the feeding behaviour of 

Plutella xylostella caterpillars rather than from Trichoderma induction. 

With T. atroviride LU132 conidium production treatments, the increase in root length was correlated 

with increased numbers of lateral roots, whereas some treatments (20°C-Dex and 30°C-Suc) reducing 

root length also reduced numbers of lateral roots. The increase in the number of lateral roots has been 
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related to auxin or auxin-like compounds (Casimiro et al., 2001). For example, T. atroviride and T. 

virens promoted Arabidopsis seedling growth through an auxin-dependent mechanism, which was in 

accordance with proliferation of lateral roots (Contreras-Cornejo et al., 2009). However, production 

of these compounds beyond certain levels may become toxic to plants and have inhibitory effects on 

root development (Cutler et al., 1986; Cutler et al., 1989). In the present study, therefore, excess 

production of hormones such as auxin-like compounds could have been inhibitory to root length and 

the numbers of lateral roots, which was possibly correlated with large rhizosphere Trichoderma 

populations from conidia produced from the 20°C-Dex and 30°C-Suc production treatments. 

Trichoderma populations in rhizosphere soil were greater than those in bulk potting mix. This could 

be due to more nutrients being available in plant rhizospheres (from root exudates) than in bulk 

potting mix. Root exudates could have provided organic carbon, resulting in increased rhizosphere 

microbial populations (Foster, 1986). For example, it has been documented that as much as 40% of 

plant products from photosynthesis are released as root exudates (Bais et al., 2006). 

Trichoderma populations increased at 14 d then declined, then increased again. This suggests a 

bimodal population cycle, possibly resulting from a bimodal conidium production cycle similar to that 

described in Chapter 2, but following a different time frame. Although depletion of nutrients can 

stimulate conidium production (Horwitz et al., 1985; Betina, 1995), aging-induced conidiation initiated 

by gene regulation has been postulated as the main stimulation for conidium production rather than 

nutrient status (Chovanec et al., 2001). However, in a study by Hohmann et al. (2012), the decline in 

population of Trichoderma was suggested to be associated with depletion of nutrients in the soil, 

suggesting that immature roots at early stages of root colonisation do not provide sufficient nutrients 

to stimulate Trichoderma populations. Furthermore, population growth is likely to be related to the 

composition of root exudates, which cause changes in the soil structure and soil microbial activity. 

With reference to the bi-phasic Trichoderma growth cycle indicated from results in Chapter 2, the 

decline in the numbers of CFUs in rhizosphere and bulk potting mix after 14 d could be due to a shift 

from hyphal growth to conidium proliferation. Bae and Knudsen (2005) suggested that conidium 

production from T. harzianum hyphae was initiated when soil conditions were favourable, but 

increased numbers of conidia reduced biological control efficacy. 

Trichoderma was recovered from the plant parts sampled in the pot experiment onto TSM agar 

cultures, and was then verified by PCR. No Trichoderma colonies were produced from the final surface 

sterilisation wash, confirming effectiveness of the sterilisation method used. Microscopic observation 

of endophytic colonisation in ryegrass from axenic agar cultures revealed hyphae and reproductive 

structures characteristic of Trichoderma similar to those from the pot experiment plants. 

Furthermore, no endophytic colonisation was observed in non-inoculated plants both from axenic 
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agar cultures and the pot experiment. Trichoderma penetration of plant tissue to establish avirulent 

symbiotic interactions with host plants has been previously reported (Harman et al., 2004b; Hohmann 

et al., 2012). With regarding the balance between plant growth and defence proposed by Kazan and 

Manners (2012), Trichoderma may be able to colonise the plants endophytically via inactivation of 

plant defence systems triggered by gibberellic acid (Hermosa et al., 2012). Therefore, root colonisation 

in the present study could cause growth promotion effects by Trichoderma and then suppression of 

host defence systems allowing for successful Trichoderma entry. Dr Artemio Mendoza-Mendoza 

(2014, personal communication) studied the endophytic colonisation of Arabidopsis thaliana by 

Trichoderma spp., and has found that Trichoderma spp. probably produce volatile and diffusible 

molecules which remotely promote plant growth before direct contact with plants. These metabolites 

synchronously allow successful endophytic entry via inactivation of plant defence systems. Dr 

Mendoza-Mendoza’s research showed that Trichoderma spp. produce auxins dependent of 

tryptophan, which are able to degrade indole acetic acid of the host plant through suppression of 

auxin responsive genes in primary roots. 

Sucrose as a hydrocarbon source during T. atroviride LU132 conidium production has been shown to 

result in superior conidium fitness, particularly enhancing conidium survival and bioactivity after 

storage (see Chapter 3). However, in the present study, 21 d after sowing, conidia produced at 20°C 

gave greater rhizosphere colonisation than conidia produced at 30°C, and then within each conidium 

production temperature (20°C or 30°C), conidia produced with dextrose (20°C-Dex or 30°C-Dex) gave 

greater colonisation than those produced using sucrose. This effect lasted for a period of 35 d (from 

14 to 49 d after sowing). Dextrose as a carbon source in media amended to a C:N ratio of 5:1 is 

therefore likely to be a preferable carbon source to provide adequate physiological metabolism for T. 

atroviride LU132. Trichoderma atroviride LU132 conidia produced from medium with sucrose as the 

carbon source and incubation at 30°C (30°C-Suc) gave greater populations 14 d after sowing, both in 

rhizosphere and bulk potting mix. This treatment compared with culture media amended with 

dextrose at 30°C (30°C-Dex) showed the greatest Trichoderma colonisation in potting mix for the first 

14 d after sowing ryegrass plants. However since the Trichoderma population levels for the sucrose 

were not maintained to 49 d after sowing this indicates that sucrose was probably quickly exhausted 

as an energy source. These findings suggest that conidia produced on media containing sucrose 

probably had stimulated germination and initial growth, with sucrose suggested to be metabolically 

optimal for conidium production of T. atroviride LU132 at temperatures from 25°C (suggested from 

previous experiments in this study) to close to 30°C. Dextrose, on the other hand, is suggested to be 

optimal at lower temperatures close to 20°C. In the presence of plant roots or other microorganisms 

in soil, the nutrient resources of conidia produced on media containing sucrose at 30°C might be 
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 The bimodal population cycle in T. atroviride LU132 (described in Chapter 2) recurred in pot 

experiments (recorded at CFU levels), in a manner similar to that observed previously in agar 

plates. 

 Trichoderma atroviride LU132 increased some growth parameters of ryegrass plants, but not root 

length and numbers of lateral roots 

 Trichoderma atroviride LU132 established endophytic colonisation and potential symbiotic 

interaction with ryegrass plants. 

 Conidia produced on media containing dextrose colonised the bulk and rhizosphere potting mix 

where ryegrass plants were growing to a higher level compared to conidia produced with sucrose. 

 Sucrose in conidium production medium may have stimulated germination and initial fungal 

growth for the first 14 d of Trichoderma life cycle compared with dextrose. 

 Sucrose was metabolically optimal for conidium production of T. atroviride LU132 at temperatures 

close to 30°C, while dextrose was optimal at lower temperature close to 20°C. 

 Conidia produced at 30°C may undergo physiological conversion of nutrient reserves to complex 

compounds such as fatty acids, which may not be easily available sources of energy compared 

with hydrocarbons. 
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Appendix 4.2 Log10 and back-transformed Trichoderma population data (CFU/ g dried potting mix) originating from T. atroviride LU132 conidia produced in 

different culture conditions. Populations were assessed at different days after sowing (0, 7, 14, 21, 28, 35, 42 and 49), recovered from bulk potting mix (PM) 

in the presence or absence of Rhizoctonia solani. 

Trichoderma populations over time recovered from bulk potting mix inoculated with T. atroviride LU132 conidia produced under 
different culture conditions planted with ryegrass in the presence or absence of Rhizoctonia solani. 

DAS1 
Treatment2 

20°C-Dex 20°C-Suc 30°C-Dex 30°C-Suc Rs×20°C-Dex Rs×20°C-Suc Rs×30°C-Dex Rs×30°C-Suc 

0 6.3 (2.1×106)3 6.3 (2×106) 6.3 (2×106) 6.3 (2.1×106) 6.3 (1.9×106) 6.4 (2.5×106) 6.3 (2.2×106) 6.3 (2.2×106) 

7 6.9 (7.4×106) 6.7 (5.3×106) 6.8 (6.6×106) 7.0 (9.9×106) 6.4 (2.6×106) 6.4 (2.7×106) 6.4 (2.5×106) 6.4 (2.3×106) 

14 7.2 (1.6×107) 6.9 (7.2×106) 7.0 (1.1×107) 7.4 (2.3×107) 6.7 (4.6×106) 6.6 (4×106) 6.5 (3.4×106) 6.6 (3.8×106) 

21 6.8 (7×106) 6.6 (3.7×106) 6.5 (2.9×106) 6.3 (2×106) 6.3 (2×106) 6.2 (1.5×106) 6.1 (1.2×106) 6.1 (1.2×106) 

28 7.7 (5.5×107) 7.5 (3×107) 7.4 (2.4×107) 7.2 (1.4×107) 6.7 (5.5×106) 6.6 (4.2×106) 6.6 (4.3×106) 6.5 (3.4×106) 

35 8.2 (1.5×108) 8.0 (9.2×107) 7.8 (6.9×107) 7.6 (4.4×107) 7.3 (2.1×107) 7.3 (2.5×107) 7.3 (1.9×107) 7.3 (1.9×107) 

42 8.0 (1×108) 7.8 (6.6×107) 7.6 (4.1×107) 7.4 (2.7×107) 7.2 (1.5×107) 7.2 (1.6×107) 7.2 (1.5×107) 7.2 (1.5×107) 

49 7.9 (8.2×107) 7.7 (4.8×107) 7.5 (3.1×107) 7.3 (2.1×107) 6.7 (5.4×106) 6.8 (6.4×106) 6.8 (6.3×106) 6.6 (4.1×106) 

Overall 
mean 

7.4 (2.4×107) 7.2 (1.5×107) 7.1 (1.3×107) 7.1 (2.1×107) 6.7 (5.1×106) 6.7 (4.9×106) 6.7 (4.5×106) 6.6 (4.2×106) 

LSD0.05 (LS Ratio) = 0.14 (1.4)4 

1 Day after sowing. 
2 Trichoderma conidia were produced at 20°C or 30°C amended with sucrose (Suc) or dextrose (Dex) at C:N ratio of 5:1 inoculation in potting mix in 
presence or absence of Rhizoctonia solani (Rs) at ratio of 0.4% w/w of potting mix. 
3 The values in the table represent log10 and numbers in brackets are back-transformed data to give CFUs of Trichoderma colony per gram of dry potting 
mix recovered from bulk potting mix. 
4 The LSD of 0.15 is for comparing any two log10 means, and the LS Ratio of 1.4 is for comparing any two back-transformed means. 
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mutants in studies of hypo- and hyper-osmotic shock, and showed that the concentrations of arabitol 

and glycerol were significantly greater in the mutants than in the wild type of the fungus. 

Fatty acids are involved in cellular mechanisms, as key components of membranes, nutrient sources 

and transport of energy, and also play roles as gene regulators (Rustan & Drevon, 2005). Fatty acids 

predominantly found in organisms range from C14 to C20 molecules, but most key fatty acids contain 

16 or 18 carbon atoms (Weete, 1980). Palmitic acid (16:0) can be converted to stearic acid (18:0) and 

other 18 carbon fatty acid isomers via elongation and desaturation reactions (Rustan & Drevon, 2005; 

Ando et al., 2009). Trichoderma spp., for example, have been reported to convert palmitic acid to 

stearic acid via elongation and to oleic acid (18:1 c9), and then to α–linolenic acid through desaturation 

(18:3 c9, 12, 15). Trichoderma spp. have been used as catalysts for fatty acid biotransformation for 

industrial production of polyunsaturated fatty acids, of which the conjugated forms of these 

compounds have been known for their biologically beneficial effects on human and animal health 

(Needleman et al., 1986; Ando et al., 2009). Accurate determination of the fatty acid content of conidia 

is crucial for optimisation of culture conditions, and for monitoring the efficiency of conidium 

production processes (Laurens et al., 2012). 

Generally, low C:N ratios are associated with protein metabolism in microorganisms, while a low rate 

of protein synthesis as the result of a high C:N ratio is linked with high lipid production (Weete, 1980). 

In a study by Jackson (1997), the nutritional requirements for Colletotrichum truncatum inoculum 

production were optimised based on a C:N ratio of 10:1 to give effective biological control activity 

against the deleterious weed, Sesbania exaltata. Assessment of the conidium composition showed 

that conidia produced in a media containing C:N ratios of 30:1 or 80:1 consumed amino acids prior to 

glucose while those produced at 10:1 gave balanced utilisation of nitrogen and carbon sources. The 

effectiveness of biological control activity by conidia produced at C:N of 10:1 was related to the conidia 

containing more protein and less lipid compared with conidium production treatments at C:N of 30:1 

or 80:1. The increased lipid contents were correlated with the presence of lipid droplets in the conidia 

and was attributed to the conversion of excessive carbon to lipids. Generally, lipid production is 

related to increasing glucose content in the culture media, as demonstrated by Prill et al. (1935) and 

Ward et al. (1935). However, when the utilisation of nitrogen and carbon sources is not balanced due 

to an excess of sugars, many fungi convert excess carbohydrates to lipids (Prill et al., 1935; Chesters 

& Peberdy, 1965; Weete, 1980). The ability to convert sugars to lipids in fungi has been termed “fat 

coefficient” or “lipid yield” which is dependent on the medium composition, culture conditions and is 

fungal species-specific. However, based upon the type of carbon source, the order of conversion is 

greater for glucose than sucrose (Ward et al., 1935). Growth temperature or medium pH do not 

influence the accumulation of lipids in fungi, but temperature could affect the degree of lipid 
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unsaturation (Weete, 1980). For example, high temperature of ≥ 25°C during the growth of 

Phytophthora spp. caused accumulation of saturated (palmitic acid, 16:0) or low weight unsaturated 

(linoleic acid, 18:2 c9, 12) fatty acids, while temperatures ≤ 20°C prompted accumulation of 

unsaturated (oleic acid 18:1 9) or high weight polyunsaturated (eicosapentaenoic acid, 20:5 c5, 8, 11, 

14, 17) fatty acids (Duan et al., 2011). 

Ultrastructural studies of conidia have been widely used for taxonomic differentiation, as well as 

determination of conidium germinability and dormancy (Bartnicki-Garcia, 1968; Hawker et al., 1970). 

Transmission electron microscopy (TEM) has been widely used to differentiate conidium 

ultrastructure. Further, biochemical differences can be indicated from differences in electron 

transparency and these attributes were illustrated for Botrytis cinerea by Gull & Trinci (1971). 

Maturation of T. viride was related to structural changes such as increased conidium size, number of 

mitochondria and conidium wall thickness, while electron dense bodies and endoplasmic reticulum 

disappeared (Rosen et al., 1974). Components similar to electron dense bodies in T. viride have been 

observed in B. cinerea (Buckley et al., 1966) and Penicillium megasporum (Remsen et al., 1967), which 

are broken down to smaller particles with their density gradually decreasing during conidium 

germination. Differences in the ultrastructure of conidia (e.g. in external cell walls) have been linked 

to differences in conidium survival and successful establishment of biological control agents (BCAs; 

Munoz et al., 1995). Despite much research on the structural changes that occur in conidia during 

germination, maturation and dormancy, there is little information regarding the effects of growth 

medium composition on these structural changes or the relationship between these structural 

changes and conidium fitness. 

In previous chapters, the variations of bioactivity of T. atroviride LU132 conidia produced under 

different culture conditions were suggested to be possibly related to biochemical contents and/or 

ultrastructural characteristics. The present chapter explores biochemical and ultrastructural changes 

of T. atroviride LU132, to determine key characteristics of conidia that vary in bioactivity as indicated 

in previous experiments of this study.  
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order) by C:N ratio 160:1 or pH 7.5 treatments (55 mg/g dry conidia), 30°C (54 mg/g dry conidia), 1.2 

mM Trehalose (53 mg/g dry conidia), 30°C-Suc (50 mg/g dry conidia) (Appendices 5.1 and 5.2). HPLC 

chromatographs for sugars analyses are presented in Appendix 5.4 for those treatments used for 

conidium production treatments in Chapter 4 and for conidia produced at 20°C-Dex as fresh and after 

six months storage (20°C-Dex, 6 mo) to determine the effects of storage period. 

Table 5.2 Mean amounts of three sugars (mg/g of dry conidia) in conidia of 
Trichoderma atroviride LU132 produced from different culture conditions 
(see Table 3.1), as fresh conidia or after storage for six months (6 mo). 

Treatment1 Arabitol Mannitol Trehalose 

20°C2 13 121 13 
30°C 11 130 54 
C:N 5:1 8 92 62 
C:N 160:1 17 94 55 
1.2 mM Tre 10 95 53 
1.2 mM GB 9 92 37 
20°C-Dex 7 95 38 
20°C-Dex, 6 mo 9 83 29 

LSD0.05 1.3 24.6 1.2 

Overall mean 11 100 43 

Significance of contrasts between valid comparisons3 

20°C vs 30°C *** ns *** 
C:N (5:1) vs C:N (160:1) *** ns *** 
1.2 mM Tre vs 1.2 mM GB *** ns *** 
20°C-Dex vs 20°C-Dex, 6 mo *** ns *** 
1 Tre: trehalose, GB: glycine-betaine; 20°C-Dex: conidia produced at 20°C or 30°C, 
amended with dextrose (Dex). 
2 20°C or 30°C conidia produced on PDA at 20°C or 30°C. 
3 ***: the effects of treatments are statistically significant at P = 0.001; ns: not 
significant (P > 0.05). 
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Chapter 4, and also for conidia produced at 20°C-Dex as fresh conidia or stored for six months, to 

compare the effect of storage. 

Table 5.3 Mean total amounts, the main fatty acids, (µg/g of dry conidia), and the mean percentage 
unsaturation, in conidia of Trichoderma atroviride LU132 produced from different culture 
conditions (see Table 3.1) as fresh or conidia after six months (6 mo) storage. 

Treatment1 
Total 

FA 
Mean % 

unsaturation 
C16:0 C18:0 C18:1 c9 C18:2 c9, 12 

20°C2 66 19 17 6 33 32 

30°C 35 59 18 6 37 33 

C:N 5:1 12 39 20 8 19 32 

C:N 160:1 48 25 22 6 32 33 

1.2 mM Tre 15 26 25 13 12 30 

1.2 mM GB 25 21 20 9 13 27 

20°C-Dex 20 60 28 9 24 38 

20°C-Dex, 6 mo 27 17 18 9 12 18 

LSD0.05 0.5 3 0.6 0.4 0.4 0.4 

Overall mean   20 8 21 26 

Significance of contrasts between valid comparisons2 
   

20°C vs 30°C *** *** ** ns *** ** 

C:N (5:1) vs C:N (160:1) *** *** *** ** *** ** 

1.2 mM Tre vs 1.2 mM GB *** *** *** *** ns *** 

20°C-Dex vs 20°C-Dex, 6 mo *** *** *** ns *** *** 
1 Tre: trehalose, GB: glycine-betaine; 20°C-Dex: conidia produced at C:N (5:1) at 20°C and amended with 
dextrose (Dex). 20°C or 30°C conidia produced on PDA at 20°C or 30°C. 
2 **, ***: the effects of treatments are statistically significant at P = 0.01 or 0.001, respectively; ns: not significant 
(P > 0.05). 
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lipids. Plasma membranes were disrupted and there were many indentations in the membranes. 

When abundant lipid droplets were observed, mitochondria were disorganised or transformed from 

round to oval or oblong. Depending on how much of the inner conidium volume was occupied with 

lipids, the number of vacuoles decreased as lipid content increased. Conidia produced at 30°C had 

more complete integrity of nuclei, vacuoles and mitochondria, and had solid cell walls. The cell walls 

not separated from the plasma membranes as was observed in conidia produced at 20°C. The number 

of lipid droplets were similar to that seen in conidia produced at 20°C, and the lipid droplets in conidia 

with few droplets were dense with inclusion bodies. 

Fresh conidia produced at C:N ratios of 5:1 versus 160:1: The external wall layers in conidia produced 

from growth medium containing a C:N ratio of 5:1 were thin compared with conidia produced at C:N 

ratio of 160:1, but had thicker internal wall layers. Conidia produced at C:N 160:1 had internal wall 

layers substituted with lipids. Plasma membranes in conidia produced at C:N 5:1 had a few indents 

but were not disrupted, while the plasma membranes of conidia from C:N 160:1 were disrupted with 

distinctive borders separated from wall layers and with accompanying lipid accumulation. The 

cytoplasm of conidia from the C:N 5:1 was more dense than that for conidia from the C:N 160:1 

treatment. Nuclei in the conidia from C:N 5:1 were quite distinctive and large, but nuclei in conidia 

from the C:N 160:1 were much less distinct, and the nucleolus had moved to one side of the cytoplasm. 

The conidia produced from C:N 160:1 had many small lipid droplets, while those produced from C:N 

5:1 usually contained one or two large lipid droplets. 

Fresh conidia produced at 20°C-Dex versus after 6 month storage (20°C-Dex, 6 mo): Conidia produced 

from the 20°C-Dex growth treatment had thin external wall layers with the immediate internal wall 

layers occupied by lipids. For the conidia produced at 20°C-Dex after six months storage the external 

wall layers were also thin but the internal wall layers were stable and distinctive from the cytoplasm, 

with thin borders of lipid layers. Plasma membranes in conidia produced in the 20°C-Dex treatment 

were stable with a few indents. These conidia also had dense cytoplasm, numerous mitochondria, 

large nuclei and traces of lipid droplets, while the conidia after six months storage (20°C-Dex, 6 mo) 

had smaller mitochondria, smaller deformed nuclei, and greater numbers and larger lipid droplets.  
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Figure 5.1 Electron micrographs of Trichoderma atroviride LU132 conidia produced from conidium 
production treatments of 20°C, 30°C, C:N ratio 5:1, C:N ratio 160:1 or at 20°C-Dex (produced at 
C:N ratio 5:1 at 20°C with dextrose) and also stored conidia of 20°C-Dex treatment after six 
months storage (20°C-Dex, 6 mo) at 30°C and 0% RH. Continued on the next page. 
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least bioactivity after storage, except for the 30°C treatment. Much lower mannitol concentrations 

were detected for conidium production treatments such as C:N 5:1 and C:N 160:1, which gave 

optimum bioactivity after storage (Appendix 5.3). This indicates that lower concentration of mannitol 

could confer resistance in conidia to dry (0%) storage conditions during long periods after production. 

This result is consistent with a previous study by Teixidó et al. (1998). Furthermore, the role of 

mannitol in scavenging reactive oxygen species has been demonstrated, especially in plant pathogenic 

fungi (Smirnoff & Cumbes, 1989, Voegele et al., 2005). Mannitol in Alternaria alternata was shown to 

produce enzymes scavenging reactive oxygen species which protected the fungus from oxidative 

stress mediated by host plants. Jennings et al. (2002) showed that a mutant of tobacco, constitutively 

expressing manitol dehydrogenase, was able to catabolise mannitol of fungal origin resulting in no 

plant infection. In the present study, conidia produced at 30°C experienced several stresses including 

high temperature followed by water shortage and oxidative stress. These conditions gave conidia with 

high bioactivity and survival during storage. Thus, it is likely that high levels of accumulated mannitol 

in conidia produced at 30°C protected them from oxidation stress during the periods of storage.  

High trehalose concentrations were detected in the conidia with the greatest bioactivity, suggesting 

that trehalose supported conidium fitness, although this was not the case for some conidia which 

contained high concentrations of trehalose (Table 5.2 and Appendices 5.1 and 5.2). For example, 

conidia from the 1.2 mM trehalose production treatment, containing high trehalose concentrations 

(53 mg/g of dry conidia), or similarly pH 7.5 conidia (55 mg/g of dry conidia), and these conidia did not 

show reasonable bioactivity after storage. From the results outlined in Chapter 3, it was suggested 

that excessive sucrose as a carbon source during conidium production inhibited absorption of 

trehalose into T. atroviride LU132 cells during growth and development. However, no expected 

beneficial effects of trehalose addition allowing them to withstand unfavourable environmental 

conditions during storage were observed for the conidia produced with 1.2 mM trehalose. This may 

have resulted from the conidia being in a state of deep dormancy following rapid drying before 

storage. The negative effects of rapid drying and subsequent rehydration of fungal conidia have been 

studied previously (Moore et al., 1997; Hong et al., 2000; Friesen et al., 2005). These studies have 

demonstrated that for formulation development of fungal BCAs, the conidia must be dried to induce 

dormancy which increases the shelf-life and also protects the resulting formulation from microbial 

contamination (Jin & Custis, 2011). However, dormancy results in physical separation of endogenous 

reserves (e.g. trehalose) from metabolic enzyme (trehalase) (e.g. Mandels and Maguire, 1972). Some 

of the conidia in the present study containing high concentrations of trehalose did not show expected 

bioactivity in relation to their trehalose content. Furthermore, high storage temperature (30°C) could 
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have elevated the levels of dormancy as an immediate or gradual response to the stresses of drying, 

at least for some of the test conidia. 

Induction of trehalose was not solely correlated to heat shock (as has been demonstrated by Pedreschi 

et al., 1997) or external trehalose addition (as has been demonstrated by Kets & Bonts, 1994; Kets et 

al., 1996; Pedreschi et al., 1997; Bonaterra et al., 2005), as elevated levels were also recorded for some 

other conidia, such as those from the C:N 160:1 and pH 7.5 production treatments. Furthermore, 

increased trehalose accumulation was not observed for conidia produced under other cultural 

conditions when temperature was the only treatment difference applied, as for the treatments used 

in experiments described in Chapter 4 (20°C-Dex, 20°C-Suc, 30°C-Dex). An exception was the 30°C-Suc 

treatment. This indicates that while temperature is a key factor affecting trehalose content of conidia 

the high trehalose content could be supported in the presence of sucrose as a carbon source in the 

30°C-Suc (50 mg/g of dry conidia) treatment compared with dextrose in 30°C-Dex (32 mg/g of dry 

conidia). However, for all of these four conidium production treatments, high levels of bioactivity after 

six months of storage were seen compared with other treatments (Appendix 5.3). 

Fatty acid analyses: The results of the fatty acid analyses for conidia produced in different culture 

conditions showed the close relationship between culture conditions composition of fatty acids in 

conidia. Furthermore, the results showed qualitative and quantitative changes in fatty acid 

composition during culture production and storage. Trichoderma atroviride LU132 is categorised as a 

mesophilic fungus with optimum conidium production occurring at approximately 25°C. Mesophilic 

and psychrophilic fungi are similar in their proportions of unsaturation of cellular lipids, while 

thermophilic species contain less unsaturated lipids (Sumner et al., 1969). Saturated fatty acids are 

more stable than unsaturated fatty acids and may support greater longevity during storage, while 

greater proportions of unsaturated lipids (reflected as the number of double bonds in lipid molecules) 

rather than saturated lipids result in less stability and more susceptibility to oxidation (Rustan & 

Drevon, 2005). It has also been demonstrated that linoleic acid (18:2 c9, 12) is a major membrane 

component in conidia of T. harzianum, and decreased concentration of this fatty acid probably 

indicated conidium senescence or deterioration (Serrano‐Carreon et al., 1992). 

There are contradictory findings regarding effects of unsaturated fatty acids on microorganism shelf 

life. For example, high concentrations of linoleic acid (18:2 c9, 12) have been related to increased 

membrane sensitivity to peroxidation and cellular senescence (May & McCay, 1968; Mowri et al., 

1984), while the percentage of unsaturated fatty acid content of Trichoderma conidia in the present 

study, and also in that of Agosin et al. (1997), were not found to be correlated with long term stability. 

In general, most of the tested conidia contained similar amounts of linoleic acid and also high levels 



 

147 
 

of unsaturation, at least for conidia produced from the growth treatments of 20°C-Dex (60% 

unsaturation) or 30°C (59% unsaturation). 

High concentrations of total fatty acids are likely to reflect low bioactivity during storage for 20°C 

treatments (66 µg/g of dry conidia), resulting in deep dormancy or deterioration effects (Appendix 

5.3). However, this result did not correlate with the amount of unsaturation. It has been demonstrated 

that low temperature (≤ 20°C) prompts accumulation of polyunsaturated fatty acids (Levin, 1972; 

Duan et al., 2011), which are susceptible to oxidation resulting in rapid conidium senescence (Rustan 

& Drevon, 2005). Furthermore, the large percentage of unsaturation for the 30°C conidium production 

treatment of was unexpected, as it was expected that saturated fatty acids would accumulate in these 

conidia. 

When T. atroviride LU132 colonies were grown at a high carbon to nitrogen ratio (i.e. 160:1), which 

has been suggested to be detrimental to protein synthesis (Weete, 1980), the lipid content of the 

conidia was increased but a high sugar concentration in C:N 160:1 conidia resulted in protective effects 

during storage (Appendix 5.3). In fungi, it has been shown that high C:N ratio is associated with 

increased lipid accumulation (Weete, 1980). Conversion of excess carbon to lipids in conidia (Jackson, 

1997) has been associated with excess glucose in culture media (Prill et al., 1935; Ward et al., 1935), 

and it has been suggested that high levels of carbon supply are needed for lipid synthesis (Woodbine, 

1959). For example, increased carbohydrate concentration in the culture medium for Aspergillus 

parasiticus gave increased total lipid content (Shih & Marth, 1974). 

High levels of unsaturated fatty acids were accumulated in 20°C-Dex conidia (60%) produced in culture 

medium with a C:N 5:1 (4.2 g/L carbon, dextrose), while conidia produced on media amended with 

sucrose had less unsaturated fatty acids. This agrees with the results of Ward et al. (1935), where 

simple sugars such as dextrose (glucose), rather than sucrose, were preferred for conversion to fatty 

acids. 

Ultrastructural analyses: The results of electron microscope examination revealed that T. atroviride 

LU132 conidia have different cell ultrastructure as they develop under different culture conditions, 

and also when stored for a long period. Ultrastructural changes could therefore be related to culture 

growth medium differences and also to variations in conidium fitness. 

Conidia produced at 20°C showed the least viability and bioactivity after storage. Ultrastructural 

observations indicated that these characteristics could be related to disorganisation of conidium 

contents, malformation, and reduced amounts of less electron dense lipid droplets, while these 

conidia contained the greatest accumulation of fatty acids (66 µg/g of dry conidia) compared with 

other conidium production treatments assessed in this study. Conidia produced at 20°C showed the 
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least storage capability, indicating low heat tolerance to 30°C during storage following desiccation at 

0% RH. It has been demonstrated that water shortage results in weak interactions between biological 

molecules in cells, since water is a key biological solvent (Szent-Gyorgyi, 1964). Desiccation will, in 

turn, cause accumulation of non-aqueous macromolecules such as lipids, resulting in frequent cellular 

vacuolisation (Buckley et al., 1966). Regarding the results of the storage experiments in the present 

study, production of the T. atroviride LU132 at 20°C did not support conidium viability and bioactivity 

after six months storage at 30°C and 0% RH. Conidia that can resist unfavourable conditions may have 

physical attributes (e.g. strengthened cell walls) or have accumulated beneficial compounds (e.g. 

trehalose), to allow them to resist drying and unfavourable storage conditions. Trehalose analysis for 

this treatment showed 13 mg/g of dry conidia, which was the least amount compared with other 

conidium production treatments. 

Conidium production at 30°C gave conidia that were able to withstand stresses during storage while 

maintaining reasonable viability, apparently at least in part supported by structural properties. The 

culture conditioning at 30°C resulted in conidia that were possibly thermo-, osmo-, and oxidation-

adapted. These conidia had electron dense cytoplasmic contents. Although the number of lipid 

droplets were less these were denser and retracted cytoplasm was not common, compared with that 

observed in conidia produced at 20°C. This suggests that dense lipid droplets are sources of energy 

supporting the viability of Trichoderma conidia produced at 30°C. Similar results have been reported 

in Saccharomyces cerevisiae. Athenstaedt et al. (1999) showed that lipid droplets in this yeast could 

store proteins, which could, under certain circumstances, become active. For instance, the Erg1p 

enzyme is a protein which has been shown to be stored in lipid droplets and is involved in steroid 

metabolism. 

In the present study, accumulated lipid droplets could have been sources of energy for conidia 

produced at C:N 5:1 and 160:1, both of which were shown to contain highly electron dense lipids. Both 

of these conidium production treatments gave reasonable to optimum bioactivity after storage, but 

fresh conidia from the 160:1 C:N treatment resulted in low levels of productivity, germinability and 

bioactivity (indicated in Chapter 2). It has been demonstrated that a high C:N ratio is associated with 

low rates of protein synthesis and high lipid production, while a low C:N ratio is associated with protein 

metabolism (Weete, 1980). This is because at high C:N ratios, amino acid sources will be rapidly 

exhausted prior to carbohydrates, so that increased lipids is correlated with the presence of lipid 

droplets in conidia, apparently resulting from the conversion of excess carbon to lipids (Jackson, 1997). 

In the present study, from the large number of dense lipid droplets observed in T. atroviride LU132 

conidia, it could be expected that these would support high levels of viability and bioactivity during 

storage, which were evident from the results from effects of long term storage. When the temperature 
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Appendix 5.2 Mean amounts of sugars (mg/g of dry conidia) in Trichoderma atroviride LU132 conidia 

produced in different culture conditions (see Table 3.1), either freshly harvested or after storage at 

0% RH and 30°C for six months (6 mo). 

Treatment1 
Sugar 

Arabitol Mannitol Trehalose 

20°C 13 121 13 

30°C 11 130 54 

aw 0.985 6 144 24 

aw 0.961 7 104 32 

C:N 5:1 8 92 62 

C:N 160:1 17 94 55 

1.2 mM Tre 10 95 53 

1.2 mM GB 9 92 37 

pH 5.5 21 144 37 

pH 7.5 12 127 55 

20°C-Dex 7 95 38 

20°C-Suc 7 99 34 

30°C-Dex 5 81 32 

30°C-Suc 6 118 50 

20°C-Dex, 6 mo 9 83 29 

20°C-Suc, 6 mo 9 117 35 

30°C-Dex, 6 mo 8 109 48 

30°C-Suc, 6 mo 4 78 23 

LSD0.05 1.3 24.6 1.2 

Overall mean 9 107 39 

Significance of contrasts between valid comparisons2 

20°C vs 30°C ** ns *** 

C:N 5:1 vs C:N 160:1 *** ns *** 

1.2 mM Tre vs 1.2 mM GB ns ns *** 

20°C-Dex vs 20°C-Suc ns ns *** 

30°C-Dex vs 30°C-Suc ns * *** 

20°C-Dex vs 30°C-Dex ns ns *** 

20°C-Suc vs 30°C-Suc ns ns *** 

20°C-Dex vs 20°C-Dex, 6 mo ** ns *** 

20°C-Suc vs 20°C-Suc, 6 mo ** ns ns 

30°C-Dex vs 30°C-Dex, 6 mo ns ns *** 

30°C-Suc vs 30°C-Suc, 6 mo ** ** *** 
1 20°C or 30°C conidia produced on PDA at 20°C or 30°C, Tre: trehalose, GB: glycine-
betaine; 20°C-Dex or 30°C-Dex: conidia produced at 20°C or 30°C, amended with 
dextrose; 20°C-Suc or 30°C-Suc: conidia produced at 20°C or 30°C, amended with 
sucrose. 
2 *, **, ***: the effects of treatments are statistically significant at P = 0.05, 0.01, 
0.001, respectively; ns: not significant (P > 0.05). 
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Appendix 5.3 Mean germination and bioactivity percentages of Trichoderma atroviride LU132 conidia 

produced in different culture conditions (see Table 3.1), using AUC (as described in Chapter 2, Section 

2.2.1.7), either freshly harvested or after storage at 0% RH and 30°C for six months (6 mo). These data 

were obtained from culture conditions outlined in Chapter 3 and 4. 

Treatment1 
%Germination2 

(Fresh) 
%Germination 

(6 mo) 
%Bioactivity 

(Fresh) 
%Bioactivity 

(6 mo) 

20°C 55 9 74 28 

30°C 74 44 77 66 

aw 0.985 21 17 68 56 

aw 0.961 78 31 74 54 

C:N 5:1 79 48 77 65 

C:N 160:1 49 47 61 63 

1.2 mM Tre 78 36 75 55 

1.2 mM GB 55 27 63 52 

pH 5.5 63 18 69 46 

pH 7.5 86 21 76 51 

20°C-Dex 88 76 79 71 

20°C-Suc 80 63 72 58 

30°C-Dex 74 55 70 61 

30°C-Suc 82 69 75 66 
1 20°C or 30°C conidia produced on PDA at 20°C or 30°C, Tre: trehalose, GB: glycine-betaine; 
20°C-Dex or 30°C-Dex: conidia produced at 20°C or 30°C, amended with dextrose; 20°C-Suc 
or 30°C-Suc: conidia produced at 20°C or 30°C, amended with sucrose. 
2 AUC: data is based on area under the curve. 
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Appendix 5.4 HPLC chromatographs of standard sugars: arabitol (20 ppm), mannitol (40 ppm) and 

trehalose (40 ppm), and sugars extracted from in Trichoderma atroviride LU132 conidia, either freshly 

harvested or after storage at 0% RH and 30°C for six months (6 mo) for valid treatment comparisons. 

These include: conidia produced at 20°C or 30°C on PDA, at C:N ratios 5:1 or C:N 160:1 ameded with 

sucrose, at C:N 5:1 amended with sucrose and trehalose (1.2 mM Tre) or sucrose and glycine-betaine 

(1.2 mM GB), and at C:N 5:1 and 20°C and amended with dextrose (20°C-Dex) as fresh and after 

storage for six months (20°C-Dex, 6 mo). Vertical axis is HPLC column absorbance (mV) and horizontal 

axis is retention time (min). 
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C:N ratio 5:1 
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Appendix 5.5 List of standards of fatty acids and proportions (%) of each fatty acid in each set of 

standards. 

ME61 (1 mg/injection) BR2 (0.25 mg/injection) GLC411 (1 mg/injection) 

Compound (%) Compound (%) Compound (%) 

C4:0 4 C13:0 anteiso 12.5 C8:0 3.23 

C6:0 2 C13:0 12.5 C10:0 3.23 

C8:0 1 C14:0 iso 12.5 C12:0 3.23 

C10:0 3 C14:0 12.5 C12:1 3.23 

C12:0 4 C15:0 anteiso 12.5 C14:0 3.23 

C14:0 10 C15:0 12.5 C14:1 c9 3.23 

C14:1 c9 2 C16:0 iso 12.5 C16:0 3.23 

C16:0 25 C16:0 12.5 C16:1 c9 3.23 

C16:1 c9 5   C18:0 3.23 

C18:0 10 BR3 (0.25 mg/injection) C18:1 c6 3.23 

C18:1 c9 25 compound (%) C18:1 c9 3.23 

C18:2 c9,12 3 C15:0 anteiso 12.5 C18:1 c11 3.23 

C18:3 c9,12,15 4 C15:0 12.5 C18:2 c9,12 3.23 

C20:0 2 C16:0 iso 12.5 C18:3 c6,9,12 3.23 

 C16:0 12.5 C18:3 c9,12,15 3.23 

ME93 (1 mg/injection) C17:0 anteiso 12.5 C20:0 3.23 

Compound (%) C17:0 12.5 C20:1 c5 3.23 

C14:1 t9 5 C18:0 iso 12.5 C20:1 c8 3.23 

C14:1 c9 10 C18:0 12.5 C20:1 c11 3.23 

C15:0 iso 3   C20:3 c8,11,14 3.23 

C15:1 2   C20:4 c5,8,11,14 3.23 

C16:1 t9 9.8   C20:3 c11,14,17 3.23 

C17:0 iso 3   C22:0 3.23 

C17:1 5.2   C22:1 c13 3.23 

C18:0 anteiso 2   C22:2 c13,16 3.23 

C18:1 t11 10   C22:3 3.23 

C18:1 c6 4.9   C22:4 n-6 3.23 

C18:1 c11 5.1   C24:0 3.23 

C18:2 t9,12 5   C24:1 c15 3.23 

C19:0 10   
C22:6 c4, 7, 10, 13, 16, 
19 3.23 

C18:3 c6,9,12 2     

C20:1 t11 3     

C22:1 t13 10     

C24:0 5     

C26:0 5     
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Continued from list of standards 

GLC463 (1 mg/injection) CLA c9 t11 (0.061 mg/injection) 

Compound (%) Compound (%) Compound (%) 

C4:0 1 C18:1 t11 1 CLA c9 t11 100 

C5:0 1 C18:1 c6 1   

C6:0 1 C18:1 c9 4 CLA C23:0 (0.126 mg/injection) 

C7:0 1 C18:1 c11 1 Compound (%) 

C8:0 2 C18:2 t9,12 2 CLA C23:0 100 

C9:0 1 C18:2 c9,12 4   

C10:0 2 C19:0 1   

C11:0 1 C19:1 1   

C11:1 1 C18:3 c6,9,12 1   

C12:0 4 C18:3 c9,12,15 (ALA) 4   

C12:1 2 C20:0 4   

C13:0 1 C20:1 c5 2   

C13:1 1 C20:1 c8 2   

C14:0 4 C20:1 c11 2   

C14:1 c9 2 C20:2 c11,14 2   

C15:0 1 C20:3 c8,11,14 1   

C15:1 1 C20:4 c5,8,11,14 1   

C16:0 4 C20:3 c11,14,17 2   

C16:1 t9 1 C22:0 2   

C16:1 c9 4 C22:1 c13 4   

C17:0 2 C20:5 c5,8,11,14,17 (EPA) 2   

C17:1 2 C22:2 c13,16 1   

C18:0 4 C22:3 2   

C18:1 t9 1 C22:4 1   

  C24:0 2   

  C24:1 c15 1   

  C22:5 c7,10,13,16,19 (DPA) 2   

  C22:6 c4,7,10,13,16,19 (DHA) 2   
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Appendix 5.6 Mean total and main fatty acids contents (µg/g of dry conidia) and the mean percentage 

unsaturation in of Trichoderma atroviride LU132 conidia produced in different culture conditions (see 

Table 3.1), either freshly harvested or after storage at 0% RH and 30°C for six months (6 mo). 

Treatment1 Total FA2 
%Mean 

unsaturation 
C16:0 C18:0 C18:1 c9 C18:2 c9, 12 

20°C 66 19 17 6 33 32 

30°C 35 59 18 6 37 33 

aw 0.985 32 33 19 7 34 27 

aw 0.961 31 27 20 6 34 30 

C:N 5:1 12 39 20 8 19 32 

C:N 160:1 48 25 22 6 32 33 

1.2 mM Tre 15 26 25 13 12 30 

1.2 mM GB 25 21 20 9 13 27 

pH 5.5 32 21 20 9 26 26 

pH 7.5 38 16 20 9 26 23 

20°C-Dex 20 60 28 9 24 38 

20°C-Suc 48 14 18 6 20 30 

30°C-Dex 19 16 18 11 10 19 

30°C-Suc 26 16 19 9 13 22 

20°C-Dex, 6 mo 27 17 18 9 12 18 

20°C-Suc, 6 mo 23 27 18 8 13 16 

30°C-Dex, 6 mo 23 26 18 8 13 18 

30°C-Suc, 6 mo 27 23 17 9 13 15 

LSD0.05 0.5 3 0.6 0.4 0.4 0.4 

Overall mean - - 20 8 21 26 

Significance of contrasts between valid comparisons3    

20°C vs 30°C *** *** ** ns *** ** 

C:N 5:1 vs C:N 160:1 *** *** *** *** *** ** 

1.2 mM Tre vs 1.2 mM GB *** *** *** *** ns *** 

20°C-Dex vs 20°C-Suc *** *** *** *** *** *** 

30°C-Dex vs 30°C-Suc *** *** *** *** *** *** 

20°C-Dex vs 30°C-Dex *** ns ** *** *** *** 

20°C-Suc vs 30°C-Suc *** ns ** *** *** *** 

20°C-Dex vs 20°C-Dex, 6 mo *** *** *** ns *** *** 

20°C-Suc vs 20°C-Suc, 6 mo *** *** ns *** *** *** 

30°C-Dex vs 30°C-Dex, 6 mo *** *** ns *** *** ** 

30°C-Suc vs 30°C-Suc, 6 mo ** *** *** ns ns *** 
1 20°C or 30°C conidia produced on PDA at 20°C or 30°C, Tre: trehalose, GB: glycine-betaine; 20°C-Dex or 30°C-
Dex: conidia produced at 20°C or 30°C, amended with dextrose; 20°C-Suc or 30°C-Suc: conidia produced at 
20°C or 30°C, amended with sucrose. 
2 FA: fatty acid. 
3 *, **, ***: the effects of treatments are statistically significant at P = 0.05, 0.01, 0.001, respectively; ns: not 
significant (P > 0.05). 
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Appendix 5.7 Mean percentages of fatty acid unsaturation and concentration (µg/g of dry conidia) of 

main fatty acids (C16:0, C18:0, C18:1 c9, C18:2 c9 12) in Trichoderma atroviride LU132 conidia, either 

freshly harvested or after storage at 0% RH and 30°C for six months (6 mo) for valid treatment 

comparisons. These include: conidia produced at 20°C or 30°C on PDA, at C:N ratios 5:1 or C:N 160:1 

amended with sucrose, at C:N 5:1 amended with sucrose and trehalose (1.2 mM Tre) or sucrose and 

glycine-betaine (1.2 mM GB), and at C:N 5:1 and 20°C and amended with dextrose (20°C-Dex) as fresh 

and after storage for six months (20°C-Dex, 6 mo). 
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Appendix 5.8 Mean fatty acids (µg/g of dry conidia) in trace amounts in Trichoderma atroviride LU132 

conidia produced in different culture conditions (see Table 3.1), either freshly harvested or after 

storage at 0% RH and 30°C for six months (6 mo). 

Treatment1 
C

17
:0

 is
o

 

C
18

:3
 c

9
,1

2,
 1

5
 

C
19

:0
 

C
20

:2
 c

1
1,

 1
4

 

C
20

:5
 c

5
, 8

, 1
1

, 1
4,

 1
7

 

C
21

:0
 

C
23

:0
 

20°C2 0 2 2 0 0 3 0 

30°C 0 0 0 0 0 0 0 

aw(0.985) 0 0 0 0 5 0 0 

aw(0.961) 0 0 2 0 3 2 2 

C:N (5:1) 0 0 0 0 6 0 3 

C:N (160:1) 0 0 1 0 1 0 1 

Tre (1.2 mM) 2 0 3 0 3 0 4 

GB (1.2 mM) 0 0 2 2 3 0 2 

pH (5.5) 1 0 2 2 2 0 2 

pH (7.5) 0 0 2 2 2 0 1 

20°C-Dex 1 0 0 0 0 0 0 

20°C-Suc 3 3 2 2 2 0 2 

30°C-Dex 3 0 5 4 3 0 4 

30°C-Suc 0 0 3 3 2 0 2 

20°C-Dex, 6 
mo 

0 1 2 0 0 2 0 

20°C-Suc, 6 mo 3 0 2 0 0 2 0 

30°C-Dex, 6 
mo 

0 0 6 0 0 6 3 

30°C-Suc, 6 mo  0 3 0 0 3 2 

LSD0.05 0.1 0.1 0.3 0.2 0.4 0.2 0.3 

Overall mean 1 2 2 1 2 1 1 
1 Tre: trehalose, GB: glycine-betaine; 20°C-Dex or 30°C-Dex: conidia produced at C:N (5:1) at 
20°C or 30°C, amended with dextrose (Dex) or sucrose (Suc). 
220°C or 30°C conidia produced on PDA at 20°C or 30°C 
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Appendix 5.9 Gas chromatographs of fatty acids analysis for Trichoderma atroviride conidia, either 

freshly harvested or after storage at 0% RH and 30°C for six months (6 mo) for valid treatment 

comparisons. These include: conidia produced at 20°C or 30°C on PDA, at C:N ratios 5:1 or C:N 160:1 

amended with sucrose, at C:N 5:1 amended with sucrose and trehalose (1.2 mM Tre) or sucrose and 

glycine-betaine (1.2 mM GB), and at C:N 5:1 and 20°C and amended with dextrose (20°C-Dex) as fresh 

and after storage for six months (20°C-Dex, 6 mo). Vertical axis is GC column absorbance (mV) and 

horizontal axis is retention time (min). 
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Appendix 5.10 Electron micrographs of Trichoderma atroviride LU132 conidia produced at conidium 

production treatments of aw 0.985, aw 0.961, 1.2 mM Tre amended with sucrose and trehalose, 1.2 

mM GB amended with sucrose and glycine-betaine, pH 5.5, pH 7.5, 20°C-Suc, 30°C-Dex, 30°C-Suc 

(produced at C:N 5:1 at 20°C or 30°C with dextrose or sucrose) and also stored conidia for six months 

(20°C-Suc, 6 mo; 30°C-Dex, 6 mo; 30°C-Suc,6 mo) at 30°C and 0% RH. 
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DLD: dense lipid droplet, DPM: disrupted plasma membrane, EW: external wall layer, IW: internal wall layer, 
L: lomosome, LD: lipid droplet, G: golgi apparatus, M: mitochondria, N: nucleus, NU: nucleolus, PM: plasma 
membrane, V: vesicle. Scale bars = 1 µm. 
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incubation, so that temperatures near 25°C and incubation periods of 15 d were shown as likely to be 

optimum for conidium production of T. atroviride LU132 for biocontrol applications. 

The bimodal conidium production observed during extended incubation periods of up to 50 d 

suggested that the first cycle occurred at 5 to 25 d and the second cycle between 25 to 50 d. 

Considering these cycles of conidium production and colony age, a 15 d incubation period was shown 

to be optimum, since the conidia from this stage of culturing were neither too young, as seen for 10-

d-old conidia, nor too old and mixed with the first cycle of conidia at 20 d. Bimodal conidium 

production has been reported previously for pathogenic fungi in respect to the seasonal dynamics of 

conidium production (e.g. Copes & Hendrix, 2004; Scherm et al., 2008). In order to investigate the 

factors involved in bimodal conidium production, manipulation of light regimes for growing cultures 

of T. atroviride LU132 suggested that a scheduled dark/light regime gave increased conidium 

production compared with continuous light or dark regimes. This indicates that Trichoderma colonies 

require a period of darkness to initiate more conidiation, probably mediated by gene regulation. This 

has been demonstrated previously for Exserohilum turcicum, the pathogen causing Northern leaf 

blight in maize (Flaherty & Dunkle, 2005). From the results of experiments performed in this part of 

the study, including effects of temperature, extended incubation period and light/dark regimes, T. 

atroviride LU132 conidium production is likely to follow a 20 d primary cycle. A second cycle of 

conidium production follows that is probably dependent on colony age under gene regulation rather 

than abiotic factors during culturing. The results indicated that culture conditions only accelerate or 

delay the Trichoderma cycles of conidium production. 

For the culture medium conditions, including nutrients, pH and water activity (at constant 

temperature of 25°C for 15 d), which resulted in low and high levels of T. atroviride LU132 conidium 

fitness, their effects on viability and bioactivity after long term storage for six months at 30°C and at 0 

or 50% RH were assessed. Based on valid treatment comparisons, conidia produced at 30°C apparently 

survived unfavourable storage conditions by means of physical attributes (e.g. strengthened cell walls) 

or via accumulation of beneficial compounds (e.g. trehalose). In contrast, conidia produced at 20°C 

were not able to withstand unfavourable storage conditions. Levels of intracellular accumulation of 

trehalose, lipid profiles and cell wall proteins have been shown to affect the survival and stress 

resistance in fungal spores (Hottiger et al., 1987; Hallsworth & Magan, 1996; Agosin et al., 1997; 

Agosin & Acuilera, 1998; Hounsa et al., 1998). Conidia produced at 30°C probably experienced several 

stresses including high temperature followed by water shortage and oxidative stress. Temperature 

and water activity interdependently affect fungal growth (Brownell & Schneider, 1985). These 

stressful culture conditions probably resulted in the strengthening of conidium cell walls and elevated 

content of polyol compounds, resulting in thermo-, osmo-, and oxidation-adapted conidia with 
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reasonable bioactivity and viability. The numbers of conidia produced at the higher temperature were 

low, however. For example, high levels of accumulated mannitol in conidia produced at 30°C probably 

protected T. atroviride LU132 colonies from oxidation stress during the periods of culturing. The role 

of mannitol to scavenge reactive oxygen species has been previously demonstrated (Smirnoff & 

Cumbes, 1989). Conidium production treatments assessed in Chapter 4 (20°C-Dex, 20°C-Suc, 30°C-

Dex, except 30°C-Suc) did not increase trehalose content of conidia. Optimum bioactivity indicated 

that temperature was likely to be a key factor affecting trehalose content (50 mg/g of dry conidia), as 

seen in conidia produced at 30°C on media containing sucrose as a carbon source rather than dextrose 

(32 mg trehalose /g of dry conidia). Since the trehalose content of the conidia did not directly reflect 

conidium fitness, other sugars may contribute to the viability and bioactivity of T. atroviride LU132 

conidia obtained from different culturing conditions. 

In this study, conidia produced at 20°C with the least bioactivity during storage contained large 

amounts of fatty acids (66 µg/g dry conidia). It was expected that the greatest fatty acid accumulation 

would be in conidia grown with a C:N ratio of 160:1, as it has been suggested that high concentrations 

of carbon will be converted to fatty acids due to the presence of excess carbon in the culture media 

leading to lipid synthesis (Woodbine, 1959). It has also been demonstrated that high levels of 

hydrocarbon source can increase the viability of conidia during storage, but also result in weak 

conidium fitness in fresh conidia (Nicholson & Moraes, 1980; McRae & Stevens, 1990). This supports 

the results obtained for conidia produced from the C:N 160:1 treatment in the present study. The 

culturing conditions in the C:N 160:1 treatment produced conidia which were probably protected from 

desiccation during storage. Excess hydrocarbon in the culture medium probably provided a physical 

barrier to protect conidia in storage, rather than protecting them through accumulation of lipids. 

Changes in fatty acid structure were not influenced by culture conditions. Culturing at 30°C gave high 

proportions of unsaturation of fatty acids, while it was expected that there would be accumulation of 

saturated fatty acids, as suggested by Levin (1972) and Duan et al. (2011). Low temperatures in the 

culture media can cause increases in concentrations of polyunsaturated fatty acids, resulting in 

increased susceptibility to oxidation and rapid conidium senescence (Rustan & Drevon, 2005). 

However, in the present study, the least accumulation of unsaturated fatty acids (19 µg/g of dry 

conidia) was recorded in conidia produced at 20°C. The qualitative effect of fatty acid composition in 

T. atroviride LU132 is therefore likely to be an isolate-specific characteristic, or colony age may be a 

factor affecting the fatty acid profile. 

Ultrastructural examination of conidia produced from different culture conditions showed how the 

integrity of conidium structures may be involved in conidium stability and viability. Ultrastructural 

differences of conidia (e.g. in external cell walls) have been linked to differences in conidium survival 
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and successful biological control establishment (Munoz et al., 1995). Conidia produced at 20°C showed 

significant disorganisation of cellular structures. Low electron density of conidium contents and 

accumulation of lipid droplets were associated with less integrity and viability. Lipid droplets filled 

with electron dense bodies possibly support conidium fitness, as it has been demonstrated that lipid 

droplets could store proteins such as the Erg1p enzyme in Saccharomyces cerevisiae. This enzyme 

becomes active for steroid metabolism under certain circumstances (Athenstaedt et al., 1999). 

In this study, some conidia showed high levels of vacuolisation. This could be related to lack of water 

availability resulting in accumulation of non-aqueous macromolecules such as lipids (Buckley et al., 

1966). The negative effect of desiccation was seen in conidia produced at 20°C, where they showed 

the least viability and bioactivity in storage. These conidia contained the least amounts of trehalose, 

which was measured by biochemical analyses. Although, the biochemical contents detected in conidia 

produced on dextrose and at 20°C (20°C-Dex treatment) did not give them optimum stability or 

bioactivity, these conidia showed undisrupted ultrastructure, they maintained viability during storage 

and also retained significant bioactivity in agar plate and pot experiments. 

Study on the interactions between hydrocarbon source (dextrose or sucrose at a C:N 5:1), and 

temperature (20°C vs 30°C) established optimum conditions for producing large numbers of high 

quality conidia. Those produced on dextrose and at 20°C (20°C-Dex conidia) had the greatest ability to 

colonise the rhizospheres of host ryegrass plants and bulk potting mix in the absence of the plant 

pathogen R. solani. Hydrocarbon metabolism could be increased at high temperatures resulting in 

conversion of nutrient resources to complex compounds, which may not be as easily available as 

energy sources (Bossert & Bartha, 1984; Leahy & Colwell, 1990). Furthermore, simple carbohydrates 

such as glucose and organic nitrogen are preferred nutrient sources for microorganisms, so that 

metabolism of non-preferred nutrients (complex carbohydrates and organic nitrogen) are repressed 

(New et al., 2014). The present study has shown that dextrose is therefore likely to be a preferable 

carbon source to provide adequate physiological metabolism for T. atroviride LU132 at an incubation 

temperature of 20°C and C:N ratio of 5:1. Although, disaccharides (e.g. sucrose in the present study) 

have been recognised as the best carbon sources protecting microorganisms from environmental 

stresses and giving high survival rates (Redway & Lapage, 1974; Van Laere, 1989), in the present study, 

the monosaccharide dextrose gave superior colonisation potential in pot experiments. Sucrose was 

metabolically optimised in T. atroviride LU132 conidia at incubation temperatures of 30°C (30°C-Suc) 

and gave greater populations for 14 d after sowing in both rhizosphere and bulk potting mix. Sucrose 

was probably then rapidly exhausted as an energy source and the population did not recover during 

the remaining duration of the experiment. These findings suggest that dextrose would be optimal as 

a sugar at low temperatures close to 20°C, while sucrose could be optimal at temperatures from 25°C 
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In the storage experiment described in Chapter 3, the impact of drying and hydration after storage 

was not studied, while these factors are likely to affect the quality of conidia for use as BCAs. Drying 

and hydration of T. atroviride LU132 conidia should be optimised to reduce conidium mortality during 

preparation and storage. Although desiccation will put conidia into dormancy, different rates of drying 

could render the conidia into a deep dormancy accompanied with physiological separation between 

cellular contents. In this situation, the enzymes involved in activation of dormant conidia would be 

unavailable. 

Quantitative PCR techniques could be usefully applied to studies where enumeration of conidia are 

required. The present study used labour-intensive plate assays counting colony forming units for 

Trichoderma population quantification, in host rhizospheres and in bulk soil. Quantitative PCR would 

require specific primers for T. atroviride LU132. This technology could also be employed for rapid 

detection of T. atroviride LU132 as a potential endophyte in ryegrass plants. Endophytic colonisation 

of T. atroviride LU132 was not studied in depth, as this was beyond the scope of the present study. 

Strain-specific qPCR could be used for comprehensive assessment in field situations to determine if 

this fungus internally colonises host plants. However, early results of an endophytic study carried out 

in a field experiment carried out at the Bio-Protection Research Centre (Lincoln University, New 

Zealand) have shown that several T. atroviride strains, including T. atroviride LU132, in competition 

with indigenous endophytic fungi, did not successfully establish endophytic relationships with 

ryegrass plants (W. Kandula, personal communication, 2014). 

A study of complex interactions between T. atroviride LU132, plants and pathogens using proteomics 

and metabolomics would provide valuable information regarding the complex tripartite interactions 

(Trichoderma-host plant-pathogen) involved, and this would assist optimal application of this fungus 

for biological control. The pot experiments in the present study were carried out in a pasteurised 

potting mix. Application of T. atroviride LU132 in soil under field conditions and using proteomics and 

metabolomics technologies may provide more information for effective formulation development. 

Trichoderma isolates have the ability to produce a wide range of metabolites, including volatile and 

non-volatile compounds, in response to stimuli from other organisms or in different environments, 

while metabolite production is reduced in other situations (Reino et al., 2008; Stoppacher et al., 2010). 

However, only a few studies have fully addressed this property of Trichoderma species (Wheatley et 

al., 1997; Nemčovič et al., 2008; Vinale et al., 2008). Trichoderma metabolites would have significant 

attributes in biological control activity against target pathogens, and also affect the success of 

colonisation of plants roots in soil. Production of these metabolites may protect a variety of plants via 

antibiotic effects and/or induction of host defence systems, and identification of these metabolites 

and their activity could provide new strategies for management of plant diseases. 







 

177 
 

Hounsa, C.-G., Brandt, E. V., Thevelein, J., Hohmann, S., & Prior, B. A. (1998). Role of trehalose in survival of 
Saccharomyces cerevisiae under osmotic stress. Microbiology, 144(3), 671-680. 

Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological 
Reviews, 54(3), 305-315. 

Levin, R. A. (1972). Effect of cultural conditions on the fatty acid composition of Thiobacillus novellus. Journal of 
Bacteriology, 112(2), 903-909. 

Longa, C. M. O., Pertot, I., & Tosi, S. (2008). Ecophysiological requirements and survival of a Trichoderma 
atroviride isolate with biocontrol potential. Journal of Basic Microbiology, 48(4), 269-277. 

McRae, C. F., & Stevens, G. R. (1990). Role of conidial matrix of Colletotrichum orbiculare in pathogenesis of 
Xanthium spinosum. Mycological Research, 94(7), 890-896. 

Munoz, G. A., Agosin, E., Cotoras, M., San Martin, R., & Volpe, D. (1995). Comparison of aerial and submerged 
spore properties for Trichoderma harzianum. FEMS Microbiology Letters, 125(1), 63-70. 

Nemčovič, M., Jakubikova, L., Viden, I., & Farkas, V. (2008). Induction of conidiation by endogenous volatile 
compounds in Trichoderma spp. FEMS Microbiology Letters, 284(2), 231-236. 

New, A. M., Cerulus, B., Govers, S. K., Perez-Samper, G., Zhu, B., Boogmans, S., Xavier, J. B., Verstrepen, K. J. 
(2014). Different levels of catabolite repression optimize growth in stable and variable environments. 
PLoS biology, 12(1), 1-22. 

Nicholson, R. L., & Moraes, W. B. C. (1980). Survival of Colletotrichum graminicola: Importance of the spore 
matrix. Phytopathology, 70, 255-261. 

Redway, K., & Lapage, S. (1974). Effect of carbohydrates and related compounds on the long-term preservation 
of freeze-dried bacteria. Cryobiology, 11(1), 73-79. 

Reino, J. L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2008). Secondary metabolites from species of 
the biocontrol agent Trichoderma. Phytochemistry Reviews, 7(1), 89-123. 

Röhrig, J., Kastner, C., & Fischer, R. (2013). Light inhibits spore germination through phytochrome in Aspergillus 
nidulans. Current genetics, 59(1-2), 55-62. 

Rustan, A. C., & Drevon, C. A. (2005). Fatty acids: structures and properties. Encyclopedia of Life Sciences, 1-7. 
Scherm, H., Savelle, A. T., Boozer, R. T., & Foshee, W. G. (2008). Seasonal dynamics of conidial production 

potential of Fusicladium carpophilum on twig lesions in southeastern peach orchards. Plant Disease, 
92(1), 47-50. 

Schubert, M., Mourad, S., Fink, S., & Schwarze, F. (2009). Ecophysiological responses of the biocontrol agent 
Trichoderma atroviride (T-15603.1) to combined environmental parameters. Biological Control, 49(1), 
84-90. 

Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 
28(4), 1057-1060. 

Stewart, A. (2001). Commersial biocontrol-reality or fantasy? Australasian Plant Pathology, 30, 127-131. 
Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R., & Schuhmacher, R. (2010). Identification and profiling of 

volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of 
Microbiological Methods, 81(2), 187-193. 

Thomas, M. B., & Jenkins, N. E. (1997). Effects of temperature on growth of Metarhizium flavoviride and 
virulence to the variegated grasshopper, Zonocerus variegatus. Mycological Research, 101(12), 1469-
1474. 

Van Laere, A. (1989). Trehalose, reserve and/or stress metabolite? FEMS Microbiology Letters, 63(3), 201-209. 
Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: 

Panoply of biological control. Biochemical Engineering Journal, 37(1), 1-20. 
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–

pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. 
Wheatley, R., Hackett, C., Bruce, A., & Kundzewicz, A. (1997). Effect of substrate composition on production of 

volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. International 
Biodeterioration & Biodegradation, 39(2-3), 199-205. 

Woodbine, M. (1959). Microbial fat: Microorganisms as potential fat producers. Progress in industrial 
microbiology, 1, 181-245. 

Xue, J., Zhang, Y., Wang, C., Wang, Y., Hou, J., Wang, Z., Gu, L., Sung, C. (2013). Effect of nutrition and 
environmental factors on the endoparasitic fungus Esteya vermicola, a biocontrol agent against pine 
wilt disease. Current Microbiology, 67, 306-312. 

Zhao, S., & Shamoun, S. F. (2006). Effects of culture media, temperature, pH, and light on growth, sporulation, 
germination, and bioherbicidal efficacy of Phoma exigua, a potential biological control agent for salal 
(Gaultheria shallon). Biocontrol Science and Technology, 16(10), 1043-1055.



 

178 
 

General Appendix A 

Culture media and procedures for TEM in this study 

 

Potato Dextrose Agar (PDA): 39 g of PDA powder (Difco™) was suspended in 1 L of distilled water in 

a 1 L capacity Schott bottle. Medium was sterilised by autoclaving at 121°C for 15 min (10.34 Kpa). 

After cooling down in water bath at 50°C, the medium was poured into Petri plates in a laminar air 

flow cabinet, and the plates were kept until complete solidification of medium. Plates were then 

sealed with parafilm tape and stored at 4°C. 

Potato Dextrose Broth (PDB): Preparation of PDB medium was performed as described for PDA 

preparation but at concentration of 24 g/L. 

Trichoderma Selective Medium (TSM): Following materials were suspended in distilled water and 

autoclaved as decribed for preparation of PDA. After cooling down in water bath at 50°C, 

chloramphenicol was added as antibiotic. 

Bacteriological agar (Scharlau®) 20.0 g/L 

Glocose 3.00 g/L 

Ammonium nitrate (NH4NO3) 1.00 g/L 

Dipotassium hydrogen orthophosphate trihydrate (K2HPO4 • 7H2O) 0.90 g/L 

Magnesium sulphate 7 hydrate (MgSO4 • 7H2O) 0.20 g/L 

Potassium chloride (KCL) 0.15 g/L 

Terrachlor® 75 WP (quintozene 750 g/kg a.i.) 0.20 g/L 

Rose Bengal 0.15 g/L 

Iron sulphate (Ferrous sulphate) 7 hydrate (FeSO4 • 7H2O) 1.00 g/L 

Manganous sulphate tetrahydrate (MnSO4 • 4H2O) 0.65 g/L 

Zinc sulphate (ZnSO4 • 7H2O) 0.90 g/L 

Chloramphenicol (after atoclave) 2.50 mg/L 

The above recipe is a modified version of the medium initially developed by Elad et al. (1981), modified 

by Elad & Chet (1983) and modified again by Askew & Laing (1993). 

Fixation and processing for resin embedding for transmission electron microscopy 

Fixation: Normal fixative is a solution of 2.5% glutaraldehyde, 2% formaldehyde in a 0.1M phosphate 

buffer solution (pH 7.2). Example: 10 ml stock (25%) glutaraldehyde, 20 ml 10% fresh formaldehyde 



 

179 
 

solution, 50 ml 0.2 M phosphate buffer, made up to 100ml with distilled water. Different proportions 

of phosphate buffers (1 M KH2PO4 or K2HPO4) were mixed and final pH was adjusted at 7.2. 

Higher concentrations of fixative (up to 5% glutaraldehyde and 4% formaldehyde may be required for 

some specimens). Glass pipettes not plastic will be used to transfer fixatives (bulb not mouth). 

Samples were each agitated with a pipette tip to break up the conidium mass, and were then left 

under vacuum for 10 min to remove air bubbles. After standing for 24 h at 4°C, samples were washed 

three times with phosphate buffer (pH 7.2), and post-fixation was performed in 1% (w/v) aqueous 

osmium tetroxide. 

Dehydration: Ethanol dilution series of 10%, 20%, 30%, 50%, 70%, 95% and 100% were made and the 

samples were dehydrated for 15 min at each step. 

Resin embedding: Spurr’s resin was used in this stage. This is a 4 component low viscosity epoxy resin 

that is mixed prior to use. The firmness and viscosity of the resin depend on the ratio of the 

components used. The general method is as follows: 

ERL-4221 (vinylcyclohexene dioxide)   5 g  

DER-736 (diglycidyl ether of a propylene glycol)  3 g  

NSA (nonenylsuccinic anhydride)   13 g 

DMAE (dimethylaminoethanol)    0.18g 

The first three components in the order given will be added into a 100 ml tripour beaker with a dry 

magnetic stirrer bar.  The mixture will be covered on magnetic stirrer for three minutes.  DMAE will 

be added to the mixture and the recent mixture will be covered for at least 30 minutes before use. 

Mixture remains usable for the rest of the day and can be stored (sealed with parafilm) for two days 

stored at 4°C. 

After last rehydration, 100% ethanol will be replaced with 50:50 Spurr’s resin (making up resin at least 

30 minutes before use). Samples in resin will be agitated on a rotator overnight. The embedding 

procedure will be repeated twice with two changes of pure resin the next day. The embedded sample 

will be left in an oven at 70°C overnight (8 h maximum). 

Sectioning: Embedded samples were sectioned using a Leica UCT ultramicrotome (Leica Microscopy 

Systems Ltd., Heerbrugg, Switzerland) at a thickness of 110 nm. Sections were placed on grids and 

stained with 1% (w/v) aqueous uranyl acetate followed by aqueous lead citrate. 
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General Appendix B 
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