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A List of the Symbols used throughout the Thesis .. 

The following is an incomplete list of symbols used in the thesis. The symbols 

which have been omitted are those which are defined and used only in the space of 

a few pages. 

LATIN LETTERS. 

H 

N 

c 

c(x) 

f 
g 

k 

n 

The matrix containing (approximated) curvature information appearing 

in each L 00 QP. ( Ch. 1) the Hessian of the Lagrangian. 

The n x n identity matrix. 

The number of test points generated by the MOS. 

The upper bound imposed on the magnitude of each element of s. 

The semi-infinite constraint's index set. 

(Ch. 1) The finite set of constraints {bj(t) ::::; 0} defines the set T. 

The var~ance parameter for the Brovvnia.n Motion Process. 

The estimate of the variance parameter for the Brownian Motion Process. 

The Ma.ratos effect correction vector (or second order correction). 

This symbol is used (mostly in Ch. 1) to denote an ordinary constraint. 

The objective function of the semi-infinite programme. 

The semi-infinite constraint function. 

The SIP iteration number. In chapter 5 k is used to denote the number 

of SIP iterations performed in solving a SIP. 

The (simple) lower bound on the ith component of x. 

The dimension of x. 

The dimension of t. 

= as(k) + o:2c(k). The quadratic arc along which a. search for the next 

iterate is conducted. 

s The proposed step (or search direction) from the current iterate. 

t The vector of index variables of the semi-infinite constraint. 

1li The (simple) upper bound on the ith component of x. 

x The vector of variables with respect to which the objective function 

f ( x) is minimized. 

Xi The ith element of x. 
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GREEK LETTERS. 

6. 

r(x) 
Governs the size of the trust region. 

The set of global maximisers of g(x, t) with respect tot, where t E T 

is required. 

( Ch. 2) 3( x) is used to denote the set of extensions of a local maximiser 

of g(x0 , .) evaluated at some point x. 

<[>' The magnitude of the most negative directional derivative of the L 1 exact 

penalty function at the final iterate x~. 

a The variable used to conduct the line (or arc) search. 

f3 The ratio of successive trial values of a used in the arc search. 

8i The ith increment used in generating the Halton sequence. 

((s) An approximation to B(x + s) formed using linearizations of g(x, t) with 

respect to x for each t in A. At iteration k, 
((k)(s) = ma.x{[g(x(k), t) + sT\7 xg(x(k), t)]+: t E A(k)}. 

e B( X) is the maximum value the sem_i-infinite constraint function g takes 

on T, or 0, whichever is larger: B(x) = ma.xtET[g(x, t)]+· 

Bcap vVhen B exceeds Bcap, an extra. constra.int is imposed on the LooQP. 

The effect of this extra. constraint is to ensure that the search direction s 

is not one of ascent for B. Additionally, in the corresponding arc search, 

any 0: value which produces an increase in e is automatically rejected. 

Bcrossover vVhen B exceeds Bcrossoven any increases in the penalty parameters are 

made to v. Otherwise they are made to [l. 

A The vector of Lagrange multipliers for the SIP. 

>-;st Estimates of the SIP's optimal Lagrange multipliers. 

fl Penalty parameter. 

/lmin (Ch. 5) When decreases in the penalty parameters are permitted, this 

variable is the lower limit for [l. 

v Penalty parameter. 

l!min ( Ch. 5) When decreases in the penalty parameters are permitted, this 

variable is the lower limit for v. 

( Ch. 1) A Lagrange multiplier for the problem of finding a local 

maximiser of g(x, t) with respect tot. 

Ki The ith prime used in generating the Halton sequence. 



p This parameter is used in the arc search. It is the minimum acceptable 

ratio of the actual descent to that predicted by the L00 QP. 

T A point in T which is a local, and sometimes a global maximiser of g. 

¢ The exact non-differentiable penalty function: 

¢(J-L,v;x) = f(x) + J-LB(x) + ~v82 (x). 

The strictly convex piecewise quadratic local approximation to ¢ in the 

neighbourhood of the current iterate. 

~(x(k),A(k);J-L,v;s) = f(x(k)) + sT\lf(x(k)) + ~sTHs + f-t((s) + ~v(Z(s). 

CALLIGRAPHIC LETTERS AND OTHER SYMBOLS. 

A The (finite) subset ofT from which the approximation ((s) to the 

maximum constraint violation B( x(k) + s) is foi·med. 

Asoc The (finite) subset ofT found by the MOS subalgorithm. A~~b is 

used in calculating the second order correction c(k). 

1-{ The Halton sequence. 

Hm The first m points of the Halton sequence. 

Q(k) The subset of A(k) which gives rise to the L,::oQP constraints which 

are active at the solution of the L00 QP formed in the kth 

iteration. 

T The sequence of test points generated by the MOS. 

TN The first N points of the sequence T. 

0 The empty set. 

€max The maximum length, measured using the oo-norm, of a link between 

two test points. 

6-J( i) The linkage parameter of the link upwards from test point i. 

SJmax The maximum value SJ( i) may take. 

4- Denotes the end of a proof, definition, or assumption. 

SUPERSCRIPTS AND SUBSCRIPTS. 

?(0
) The initial value of ? . 

?(k) The value ? takes at the iterate x(k). 

?* The value the variable ? takes at the point x*, where x* is a 

vii 
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solution point of the SIP. 

?~ The value the variable ? takes at the point x~, where x~ is the final iterate 

generated by the quasi-Newton algorithm. 

ACRONYMS. 

SIP 

PFP 

NLP 

MOS 

QP 

SQP 

KKT 

LooQP 

BMP 

IBIVIP 

SPEPF 

QPF 

Semi-Infinite Programme. 

Penalty Function Problem. 

Non-Linear Programme. 

Multi-local Optimisation Subproblem. 

Quadratic Programme. 

Sequential Quadratic Program_ming. 

Karush Kuhn Tucker (ie. the first order optimality conditions). 

The problem of minimising the sum of a quadratic and the infinity 

norm of the violations of a finite number of linear constraints. 

Brownian Motion Process. 

Integrated Brownian Iviotion Process. 

( Ch. 5) Single Parameter Exact Penalty Function. 

(Ch. 5) Quadratic Penalty Function. 



Chapter 1 

INTRODUCTION AND 

OVERVIEW OF THE TOPIC. 

Optimisation problems occur in many branches of science, engineering, and eco­

nomics, as well as in other areas. The diversity of the various types of optimisation 

problems is extremely large, and so a unified approach is not attempted here. This 

thesis concentrates on a specific type of problem: non-linear semi-infinite program­

mmg. 

1.1 The Semi-Infinite Programming Problem. 

The specific Semi Infinite Programming problem (SIP) considered herein is of the 

following form: 

minf(x) 
xER" 

subject to g(x, t)::; 0 Vt E T, where T C RP. 

(1.1) 

(1.2) 

The semi-infinite programming problem can be viewed as a generalisation of the 

finite Non-Linear Programming problem (NLP): 

minf(x) subjectto ci(x):;O, Vi l, ... ,m. 
xER" 

The variable t corresponds to the index variable i, and the set T corresponds to 

the index set { 1, ... , m}. The T typically contains an infinite number of points. 

For example, T could be an interval such as [0, 1]. With this choice ofT the con-

straint (1.2) can be viewed as an infinite of ordinary constraints indexed by the 

variable t. It is from this infinite number of constraints that the 'infinite' half of 

1 



2 

the name 'semi-infinite' The 'semi' refers to the fact that x is finite dim en-

sional. Optimisation problems which involve minimising over an infinite dimensional 

set subject to an infinite number of constraints are known as Infinite Programming 

Problems. 

The SIP listed in (1.1) and (1.2) is by no means the most general form of semi­

infinite programming problem. A general SIP may involve several constraints of 

the form (1.2) as well as a finite number of auxillary constraints each of the form 

c( x) S 0. Such SIP problems are in principle no more difficult than the SIP (1.1,1.2). 

For convenience attention will be restricted to problems of the form (1.1,1.2). 

SIPs arise in many practical applications. One well known example in the lit­

erature is the air pollution problem [60, 42, 55]. Other authors [9, 77] report 

infinite programming problems arising in control system design, electronic circuit 

design, and the like. 

A linear SIP problem is of the form (1.1,1.2) except that f(x) and g(x, t) are 

affine functions of x. In g( x, t) is not required to be an affine function of t. 

problems have been investigated rather more than non-linear SIP problems. 

Good review papers on linear SIP include those by Hettich [51, 52] and the rather 

more theoretical one by Gustafson and Kortanek [42]. The texts by Glashoff and 

Gusta.fson [37] and by Krabs [60] are also to be recommended. The topic of this 

is non-linear, and non-convex SIP, and so the methods for linear SIP are 

only of passing interest, except where they may be adapted to solve non-linear SIP 

problems. 

Hereafter, the following restrictions will be made on the SIP (1.1,1.2). The 

objective function J( x), mapping Rn into R, and the constraint function g( x, t), 

mapping Rn x T into R, are both continuously differentiable in all argurn.ents. No 

assumptions concerning linearity or convexity are made for f or g. The set T is 

compact and connected. It is assumed that T is defined by a finite number of 

continuously differentiable constraints 

(1.3) 

As it will be necessary to find maximisers of g with respect to t, it is assumed that 

the constraints (1.3) satisfy an appropriate constraint qualification. Frequently Tis 

a Cartesian product of intervals. 

Unless specifically stated otherwise, the term local maximiser refers to a local 

maximiser of g(x, t) with respect to t, where x is fixed at some value which will 
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be clear from the context. Similarly, the term global maximiser refers to a global 

maximiser of g(x, t). 

1.2 Characterizing SIP solutions. 

Before discussing methods of solving SIPs, a workable definition of precisely what 

constitutes a solution is needed. As for finite Non-Linear Programmes (NLP), solu- · 

tions are characterised as points at which the pertinent Karush-Kuhn-Tucker (KKT) 

conditions hold. The first order necessary KKT conditions for the SIP are listed 

in (1.5) and in (1.6) in the following theorem. 

Theorem 1.1 Let x* be a·ny opti·mal point of the SIP, and let the following regularity 

ass1tmption hold at x*: 

3-u ERn such that g(x*, t) + 1tT\lxg(x*, t) < 0, Vt E T. (1.4) 

Then for some m" :::; n, there exists rn global maximisers T;* of g(x*, t), each with 

an associated Lagmnge multiplier ,\£, for which 

m* 

\lf(x*) + L ,\£'\lxg(a:*, Tt) = 0 (1.5) 
i=l 

where g(x*,Tt) = 0, and,\£'~ 0, Vi= 1, ... ,m*. (1.6) 

PROOF: By lemmas 2 and 3 of Gustafson [41]. For completeness, a proof based 

on the Lebesgue integral rather than the Riemann integral (as in [41]) is given here. 

If V.f* = 0, then m,* = 0, and the theorem_ is obvious. vVhenceforth assume 

\l.f* =1- 0. 

Let C(T) denote the space of real continuous functions on T. If L is a linear 

functional on C(T), and is continuous with respect to the infinity norm, then L may 

be written as 

L(h) = h h(t) df-l, where h(t) E C(T), 

and where J-l is a bounded measure on T. In particular if Lis a positive linear func­

tional, then f-l is a non-negative measure. Regularity assum.ption (1.4), and theorem 

1 on page 249 of Luenberger [61] imply that the first order necessary conditions for 

optimality are: 

\lf* + h Vxg(x*, t) df-l* = 0 (1.7) 
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and hg(x*,t)dtt*=O. (1.8) 

Here f.l* is a bounded non-negative measure. 

Select some fixed vector u which satisfies the regularity assumption (1.4). Equa­

tions (1. 7) and (1.8) imply 

-uT\lf*= hg(x*,t)+uT\lxg(x*,t)dtt*· (1.9) 

Clearly uT\lf* ~ 0, by the regularity assumption (1.4). In light of (1.4), the com­

pactness of T and the C1 continuity of g imply the integrand in (1.9) achieves its 

supremum, and it is negative. Hence, if uT\lf* = 0, the non-negativity of tt* implies 

that T is a set of tt* measure zero. Equation (1. 7) then implies Vf* = 0. As this 

possibility has already been dealt with, henceforth assume uT\lf* > 0. 

Let K denote the set of all vectors 'ljJ of the form 

where 1lT 'ljJ = -uT\lj*, 

where hg(x*, t) dp = 0, 

(1.10) 

(1.11) 

and where f.l is any (bounded) non-negative measure. Clearly K is a convex set, and 

-\lf* E JC. 

Define T0 = {t E T: g(x*, t) = 0}. As g(x*, t) :::; 0 for all t E T, (1.11) implies 

T - T0 is a set of fl m.easure zero. Hence, without loss of generality, the integrals 

in (1.7,1.8,1.10) and in (1.11) may be taken over T0 rather than T. The continuity 

of g, and the compactness ofT imply T0 is also compact. The compa.ctness of To 

implies uT\lxg( x*, t) achieves its supremum on T0 , which must be strictly negative 

by (1.4). Therefore the set 

{ 
* uT\lf* } 

9= -Vxg(x ,t) T ( * ) :tETo 
U \lxg X , i 

is also compact, as g is a C1 function. 

Now, because Vxg(x*, t) is continuous, any member of K may be approximated 

arbitrarily closely by convex combinations of elements of Q. Let co(Q) denote the 

convex hull of Q. The compactness of Q implies co(Q) is also compact (see, eg., (95]). 

Hence K ~ co(Q). 

Also co(Q) is a subset of the hyperplane 



5 

As 1{ is of dimension n - 1, and as - \lf"' E JC, Caratheodory's theorem implies 

f-l* may be chosen as a positive finite point measure which is non-zero at not more 

than n points in T. Denoting the finite set of points at which f-l* is non-zero by 

{ rt : i = 1, ... , m*}, and denoting the corresponding weights by { .\T : i = 1, ... , m*} 

yields the required result. • 

The regularity assumption (1.4) is not the only constraint qualification under 

which the first order KKT conditions can be derived. In particular, if there are 

a number of auxillary equality constraints, then a different constraint qualification 

than (1.4) must be used. 

The form the first order optimality conditions take is important in that only a 

finite number of points T are required. This admits numerous solution methods 

based on replacing the semi-infinite constraint by a finite set of ordinary constraints. 

This is achieved by replacing T with a finite subset ofT. 

Actually (1.5) and (1.6) are identical to the first order KKT conditions for the 

NLP: 

min f(x) subject to g(x, Tt) ~ 0 Vi= 1, ... , m*. 
xER"' 

Under rather stricter assumptions than (1.4) alone, the SIP is locally equivalent to 

an NLP. It can be shown that at any fixed point x 0 which satisfies these assumptions, 

each local maxirniser Ti of g(x0, t) gives rise to a continuous function Ti(x) on some 

neighbourhood No of xo. For all x E JVo, each Ti(x) is a local maximiser of g(x, t). 

Given the number of local maximisers of g( x0 ,.) is finite (there are, say, m0 of them), 

and given that perturbing x0 does not change any stationary point is of g(x0 , t) into 

a local maximiser at the perturbed value of x, then under these conditions the SIP 

is locally equivalent to: 

min f(x) subject to 
xERn 

Ci( X) g( X 1 Ti( X)) .::::; Q i = 11 ••• 1 mo. 

(1.12) 

(1.13) 

The condition that a stationary point ts of g( x 0 , t) can not be changed into a local 

maximiser by perturbing x can be stated more precisely as: 

::lc:, 8 > 0 such that Vx, 

llx- xoll < 5:::} every local maximiser t of g(x, .) satisfies !Its- til ::2: E. 

Sufficient conditions for a localmaximiser Ti of g( x 0 ,.) to give rise to a continuous 

function Ti ( x) for x near x 0 are given in the following theorem. 
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Theorem 1.2 Given: 

1. g is twice continuously differentiable. 

2. to is a local maximiser of g( x0 , • ) , and t 0 lies on j 0 of the bounding constraints 

of T 1 where j 0 :::; p. ·without loss of generality1 let these active constraints be 

{bi(t) S 0: i = 1, ... ,jo}. 

3. The constraint .normals {Vbi(t0 ) : i = 1, ... ,j0 } are linearly independent. 

4. Strict complementarity holds at t 0 . 

5. \7t~g(x0 , t 0 ) is negative definite on, the subspace A1, wher-e ;Vi is the subspace 

of RP orthogonal to span{Ybi(to): i = 1, ... ,jo}. 

Then on some open neighbourhood No of x0 , there e:tists a continuous function t( x ), 

with t(x0 ) = t 0 , such that t(x) is a local maximiser of g(x, .) lying on the bounding 

constraints {bi(t) = 0: i = 1, ... ,jo} for all :r E JVo. 

PROOF. The set of constraints (1.3) defining T has been assumed to satisfy a 

constraint qualification which ensures stationary points of g satisfy the first order 

Karush-Kuhn-Tucker (KKT) conditions: 

Jo 
Ytg(xo,to) + L:eiVbi(to) = 0, 

i=l 

bi(to) = 0 and ei 2:: 0 Vi= 1, ... , Jo· 

Here the ei are the Lagrange multipliers. The J acobia.n of this system of equations 

is continuous with respect to x. If it is also non-singular then the result follows 

immediately from the implicit function theorem. The Jacobian J(x 0 , t0 ) at x0 is 

To show J ( x 0 , t 0 ) is non-singular, consider 

The bottom j 0 rows imply t E M. Hence tT Be = 0, and so the top p rows imply 

tTYttg(xo,t0 )t = 0. However Yttg(x 0 ,t0 ) is negative definite on JVi, and sot= 0. 
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As B is of full rank, e = 0. As J(x 0 ,t0 ) is continuous in all arguments, there exists 

a continuous function t( x) satisfying the above requirements. dfe 

In light of this theorem, it can be shown ( eg. (97, 79]) that all functions in the 

NLP (1.12,1.13) are C 2
• The first and second derivatives of ci(x) being respectively 

and 

(1.14) 

If the second order sufficiency conditions do not hold for some Ti ( x) at x0 but the set 

of localrnaximisers {Ti(x)}~01 still contains the local maximisers of g(x, .) Vx E No, 
then the local equivalence to an NLP still holds. However, in general the NLP is now 

only C 1 (this follows from the results developed in chapter 2). If Vt~g is singular at 

x 0 , then its inverse, which appears in (1.14), is undefined. If strict complementarity 

does not hold for some Ti, then the rank of the last term in (1.14) can change, which 

may lead to a discontinuous change in the second derivative of Ci at x0 . 

If extra local maximisers appear out of the stationary points of g( x 0 , . ) , or if 

a local maximiser of g splits into several local maximisers at x0 , then a locally 

equivalent NLP can usually still be constructed in a similar fashion. The exceptions 

to this are quite unusual. In any case the analysis becomes more complex without 

any real gain. 

One could solve the SIP by constructing a locally equivalent NLP about each 

iterate. Applying one iteration of a standard NLP method to any such NLP would 

then yield a prospective step for the SIP. A more fruitful approach is to bypass 

the NLP altogether, and construct an approximating quadratic programme (QP) 

directly. This avoids the difficulties caused by the appearances of extra local max­

imisers. It forms the main thrust of chapter 2. 

1.3 Locally Convergent Methods 

For a finite NLP a locally convergent superlinear method is obtained by applying 

Newton's method to the first order KKT conditions. A similar approach to SIP 

problems can be taken [43, 54, 99], although the system of equations to which 

Newton's method must be applied is much larger: it consists of the first order KKT 
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conditions for the SIP together with the first order KKT conditions for each global 

maximiser Tt. This system is 

m* 

\lf(x) + LAi\lxg(x,Ti) = 0 
i=l 

g(x, Ti) = 0 Vi= 1, ... , m* 

Vtg(x,Ti)+ L eij'Vbj(Ti)=O \li=1, ... ,m* 
jEBT(i) 

bj(Ti) = 0 Vi= 1, ... ,m* and \lj E BT(i) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

where BT( i) is the set of index values of the bounding constraints (1.3) of T on 

which Tt lies. The eij variables are the Lagrange multipliers for the constraints 

bj(t) ::=::; 0 which are active at the corresponding global maximiser Tt- Strict com­

plementarity for the SIP at :r* and for the local maximisation problem at each 

7;* is assumed. Second order sufficiency conditions (including linearly independent 

active constraint normals) are assumed to hold for x*, and also for each global 

maximiser Tt. These conditions ensure that the Newton step for the system of 

equations (1.15,1.16,1.17,1.18) is well-defined for :r, _\, eij, and Tj sufficiently close 

to their optimal values. The special structure of the system permits considerable 

reduction in the computational effort required for each iteration over that needed if 

no structure were present [98]. 

An alternative approach to using Newton's method on (1.15,1.16,1.17,1.18) is to 

make use of the locally equivalent NLP (1.12,1.13) at x 0 = x*. Applying Newton's 

method to the first order KKT conditions of this NLP yields a locally convergent 

method. To obtain constraint values and gradients at each iterate, it is necessary 

to calculate exactly the local maximisers of g at each iterate. 

The Lagrangian for this NLP is 

m 

L = f(x) + LAici(x). (1.19) 
i=l 

Applying Newton's method to the system of equations Vx,>.L = 0 yields the following 

linear system of equations: 

( 
H B ) ( 8x ) = _ ( \lf- BT ,\ ) 
BT 0 {;).. -~ 
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Here l5x is the increment to the current iterate, 8).. is the corresponding increment 

to the Lagrange multiplier estimates, and the matrix H is the Hessian of the La­

grangian (1.19). 

Provided effort is spent in looking for all local maximisers at each iterate, and 

not merely those which are continuations Ti ( x) of the local maximisers Ti known 

from the previous iterate, then this method is far more tolerant of changes in the 

number of local maximisers than Newton's method applied directly to the first order 

KKT conditions (1.15,1.16,1.17,1.18) for the SIP. 

In the special case that the number of global maximisers is n, the step l5x is 

completely determined by the subsystem 

There is no need to find H, or to find the changes m the Lagrange multipliers 

to update x. However, the Lagrange multipliers are useful for detennining if a 

constraint should be dropped. This is the basis of the exchange methods for linear 

SIP problems. 

Other local superlinearly convergent methods have been proposed. For instance, 

van Honstede [55] gives a method which uses a QP with an affine (in x) semi-infinite 

constraint as a subproblem. 

These local methods are superlinearly convergent on problems with the requisite 

degree of continuity. Unfortunately they are only locally convergent in general. 

Because of the excellent asymptotic convergence properties of these methods, many 

global methods have been created by modifying these local methods. 

1.4 Discretization methods. 

The main theme of these methods is that Tis replaced by a finite subset (To say) of 

itself. The effect of this is to substitute a finite number of ordinary constraints for 

the semi-infinite constraint. vVith this modification the SIP is turned into a finite 

NLP, which can be solved by existing methods. Of course the solution to the NLP 

will not (usually) be a solution of the SIP. In general the semi-infinite constraint 

will be violated at some t in T - T0 • In practice a succession of NLPs are solved. 

The NLPs differ from one another in the choices of T0 . This sequence of subsets of 
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Tis chosen so as to force the violation of the semi-infinite constraint to zero. Under 

mild conditions this forces the sequence of NLP solutions to converge to a solution 

of the SIP. 

Methods adapted from linear SIP. 

Hu [56] proposes an algorithm which solves the SIP by solving a succession of finite 

Non Linear Programming (NLP) problems. The first problem in the sequence con­

tains no constraints. Each subsequent problem is formed from its predecessor by 

adding one constraint of the form 

g(x, to) :S 0, 

where t 0 is a point in T at which the semi-infinite constraint is violated at the 

solution to the preceding NLP. vVhen g is affine with respect to ::r this method is 

essentially a cutting plane method. One disadvantage is that some of the NLPs 

encountered may be unbounded. 

A second drawback is the risk of ill-conditioned NLPs or associated subproblems 

even when the SIP is vvell conditioned. This ma.y arise in the following way. Let To 

be a global maximiser of g at a solution to which the sequence of iterates { x(k)} 

generated by the algorithm is converging. It is very likely that several approxima­

tions to To will be made by the algorithm. Each of these approximations will give 

rise to a constraint, and each one of these constraints will appear in all successive 

NLP subproblems. These constraints, and their linearizations are likely to be very 

similar, possibly leading to ill-conditioned subproblems in some NLPs. 

Hettich [50], and Hettich and Gramlich [53] give discretization algorithms for 

linear SIP problems, and for convex quadratic SIP problems respectively. These 

algorithms are easily generalised to general non-linear SIP problen1.s, and will be 

described here in those terms. These algorithms solve a general non-linear SIP 

by solving a succession of NLP problems. The ith NLP in the sequence involves 

minimising the objective function subject tog being less than zero on a finite subset 

{Ti}, where Ti ~ T. Typically, each subset {Ti} is chosen as the intersections of a 

grid. In any case, T; ~ Ti+l is required for all positive i: this forces each NLP to 

mimic the SIP a.t least as well as its predecessor. 

As the discretizing grids become finer, the number of constraints in each NLP 

can become very large. To avoid excessive computation, the NLP problems are 
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not solved as they stand. ·Some of the constraints arising from the discretization are 

initially omitted from the NLP. The NLP is then solved with this reduced constraint 

set. The solution so obtained is then checked to see if it violates any constraint which 

was omitted. If all such constraints are satisfied, then the original NLP has been 

solved. If at least one omitted constraint has been violated, then at least one of 

the omitted constraints is placed back in the NLP constraint set, and the process is 

repeated. 

This appears to be an effective linearly convergent algorithm. It is unclear just 

how much effort is typically involved in solving each NLP with the full constraint 

set by solving a sequence of NLPs with partial constraint sets. The risk of ill­

conditioning from several similar constraints is still present, although it is less than 

for Hu's algorithm. 

Methods adapted from Convex SIP. 

The algorithm of Asic and Kovacevic-Vujcic [6] is of interest. It does not require a 

convex objective function, although g(x, t) must still be convex in x for all t. This 

algorithm is one of many which employs successively finer discretizations of T. A 

global Lipschitz constant for g(x, t) with respect tot is also employed. This Lipschitz 

constant is global in the sense that for each value of x, it bounds the change in g( x,.) 

between all pairs of points in T. This means that, for particular values of x, the 

actual value of the constant used may be far in excess of the minimum value the 

Lipschitz constant could take at that particular x. This can lead to a very significant 

loss of efficiency when finding the local and global maximisers. 

The algorithm requires the existence of a Slater point. This is needed because 

each iterate generated by the algorithm lies in feasible region's interior. Feasibility 

of each iterate is made possible by exploiting the knowledge of a global Lipschitz 

constant. To generate the iterates, a sequence of NLP problems are solved. The 

objective functions of each NLP and the SIP are the same. For the kth iteration, 

the NLP constraints are formed by considering a discrete subset TJk) of T, and then 

tightening the bound on g froin 0 to ry(k). That is: 

(1.20) 

is used. By a suitable choice of the discretizing subset TJk) at each iteration, the 

global Lipschitz constant ensures that the solution to each NLP is also a feasible 

point of the SIP. 



12 

For this approach to be effective, every feasible point of the SIP must be a cluster 

point of the subsets of the feasible region defined by the sequence of the tightened 

discretized semi-infinite constraints (1.20). In [6], the convexity of g with respect to 

x for each value oft is used to establish this. Most non-convex SIP problems will 

also satisfy this condition. 

Other Methods. 

Mine, Fukushima and Tanaka [65] describe an algorithm which uses second order 

information. The problem is discretized in a very simple n1.anner: the set T is 

replaced by the points on a regular grid. This grid is not altered throughout the 

solution process. In effect the semi-infinite constraint is replaced by a large number 

of ordinary constraints. The resultant NLP is solved by applying the Lagrange­

Newton algorithm in conjunction with a trust region. The €00 exact penalty function 

is employed as a merit function. The number of constraints included in each QP 

sub-problem is reduced by including only those ·which take a value not less than -E 

at the relevant iterate, where E is small and positive. This strategy may be ineffective 

at infeasible points: almost all of the NLP constraints may be included in the QP 

subproblem. Also, if the discretization grid is very fine, then the possibility of 

ill-conditioning from nearly identical constraints occurs. 

Panier and Tits [72] propose a sequential 'QP' method using adaptive discretiza­

tion of the constraint index set T. Their algorithm is described explicitly in terms of 

a one dimensional constraint index set. Their QP is comprised of linear approxima­

tions to the discretized semi-infinite constraint, together with a linear approximation 

to f. The QP does not include second order information about the objective or con­

straint functions. The quadratic term in the QP objective function is simply half 

the square of the proposed step's length. 

The QP is: 

subject to 

sT\lf -1[maxg(xo, t)]+ :::; v 
tETo 

and sT\lxg(xo, T) + g(xo, T)- [maxg(x0 , t)]+:::; v 'VT E TE, 
tETo 

where 1 is a positive parameter. The set T0 is an increasing sequence { ti}~0 of N + 1 

equally spaced test points, such that T = [t0, tN]· The set TE is a subset of To, and 



13 

contains all points which gave rise to constraints which were active at the previous 

QP's solution. It also contains all left local maximisers at which g(x0 , .) > -c:, 

where c: is small and positive. The term left local maximiser denotes a point ti for 

which g(x0 , ti-l)< g(xo, ti) provided i # 0, and also for which g(xo, ti+I) S g(x0 , ti) 

provided i # N. This strategy can reduce markedly the number of constraints 

in each NLP. It also reduces the propensity toward ill-conditioned NLP problems 

caused by several very similar constraints in the NLP. 

The discretization of T is adaptive in the sense that whenever the descent pre­

dicted by the QP is small, or a prescribed number of iterations is reached, the 

discretization is refined. This refinement consists of doubling the number of points 

in the discrete subset of T used. 

The algorithm. has two phases: the first seeks feasibility whilst ignoring any 

changes in the objective function values, and the second seeks optimality without 

relinquishing feasibility. This avoids the need for a merit function, however it means 

this algorithm is not capable of handling non-linear equality constraints. 

As no second order information is used the algorithm is only linearly convergent. 

Indeed, when well inside the interior of the feasible region, the set T€ is empty, and 

the search direction is one of steepest descent. 

The algorithm of Panier and Tits is a development of the algorithm of Gonzaga, 

Polak, and Trahan [39], which is in turn a development of the algorithm of Polak 

and Mayne [78]. Similar remarks can be made about these other two algorithms. 

1.5 Multi-Phase Methods. 

The methods listed in section 1.3 are local ones; they are guaranteed to converge to 

a stationary point only if the starting point is a sufficiently accurate approximation 

to that stationary point. In particular, knowledge of the number of global maximis­

ers active at the solution is vital. If p > 1 the positional information of each global 

maximiser on the constraints defining Tis also important, especially for the method 

based on (1.15,1.16,1.17,1.18). Unless a good approximation is known, these meth­

ods cannot be applied with any degree of certainty. On the other hand, methods 

such as those described in section 1.4 are globally convergent, but usually possess 

only a linear rate of convergence. Experimental results for linearly convergent al­

gorithms for SIP and NLP problems show that these methods may be intolerably 

slow in practice. Various ways of hybridizing these two types of methods have been 
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considered. Some of these are looked at in this section. 

Gustafson [41] proposed creating a global superlinearly convergent method by 

using a two phase approach. The first phase consists of a global method, such 

as those outlined in section 1.4. This provides an approximation to the solution. 

The second phase refines this approximation using a local superlinearly convergent 

method. 

At the end of the first phase, the algorithm must identify the number, and 

approximate position of each global maximiser, and possibly also the bounding 

constraints ofT which are active for each global maximiser. The local method is 

then applied. If it fails to converge, or converges to a point which is not stationary, 

then phase 1 must be repeated to obtain a better starting point for the local method. 

If a good initial estimate is needed for phase 2, then phase 1 may involve a 

considerable amount of work. There is no guarantee that the potential difficulties 

associated with linearly convergent methods will not be encountered in phase 1 

well before a phase 2 starting point of adequate accuracy is reached. Even if a 

suitable approximate solution is found in phase 1, determining the number of global 

maximisers active at the solution, and the pertinent active bounding constraints 

ofT for each such global maximiser is not completely straightforward - especially 

if p > 1. 

Polak and Tits [79] also propose an algorithm which combines a local and a 

global method. The local method is the Lagrange-Newton method applied to the 

locally equivalent NLP (1.12,1.13). The global method is that of Gonzaga, Polak, 

and Trahan [39]. In both of these methods approximations to the local maximisers 

of the same accuracy as the current iterate approximates the SIP solution are used. 

In contrast to Gustafson, the local method is tried first at each iterate. If the step 

chosen by the local method is unacceptable, or it does not exist, then one iteration of 

the global method is applied. The step generated using the local method is accepted 

if its length is less than J( ryi, where J( and '17 are constants satisfying J( > 0 and 

0 < r; < 1, and where i is the number of times the local step has been accepted in 

the past. 

This approach does make the Lagrange-Newton method globally convergent. 

However other difficulties with the Lagrange-Newton method remain. For instance, 

if the initial point is close to a local maximum of the SIP, then the Lagrange­

Newton step may be chosen at each iteration- resulting in convergence to that local 
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maximiser. This may be avoided by making ]( sufficiently small, but this increases 

the susceptibility of the algorithm to the deficiencies of the linearly convergent global 

method. 

A completely different approach to globalizing locally convergent algorithms is 

proposed by Gfrerer, Guddat, Wacker, and Zulehner in [33). Their algorithm is 

a modification of the continuation method for solving non-linear equations. It is 

described in terms of a finite NLP, but could easily be extended to a SIP problem. 

The SIP is replaced by a continuous family of SIP problems. This family 9e is 

indexed by a parameter(, which ranges over the interval [0, 1]. The SIP 90 is a SIP 

problem with a known solution. The SIP 91 is the original SIP problem. Briefly, 

an increasing sequence (in ~) of SIP problems 9e is solved. The first member of the 

sequence is Q0 and the last is the original SIP Q1 . The solution of each 9e is used as 

the initial point for the next SIP in the sequence. Each SIP is solved using a locally 

convergent algorithm. 

The next section discusses methods of making the second phase more robust. In 

some cases these methods are globally convergent, in which case the first phase is 

no longer necessary. 

1.6 Exact Penalty Function Methods. 

In unconstrained optimisation, the algorithm created by applying Newton's method 

to the first order KKT conditions is easily globalised by using, for example, a line 

search or a trust region. In the unconstrained case comparing the relative merits 

of the current iterate and its prospective successor is easy; one simply compares 

the two pertinent function values. Unfortunately, as in all constrained optimisation 

problems, in solving the SIP (1.1,1.2) there are two (often conflicting) aims: min­

imising the objective function, and satisfaction of the constraints. If globalisation 

of a local method for solving the SIP is to be achieved, some means of reconciling 

advance toward one aim at the expense of the other is needed. A common approach 

to this for both SIPs and NLPs has been to use an exact penalty function as a merit 

function [46, 97, 21]. For NLPs the £1 exact penalty function 

m 

i.lh(x) = f(x) + fll)ci(x)]+ (1.21) 
i=l 
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is the current favourite. Here [c]+ denotes the maximum of c and 0. For SIPs, the 

(apparently) corresponding penalty function is identical, where each ci( x) is a local 

maximum of g at x as given by (1.13). Clearly if <I> 1 is to be finite, the number 

of local maxima of g taking positive values must be finite for all x in the region of 

interest. 

In Charalambous (15] conditions for a local minimum of the SIP to be a local 

minimum of the L1 exact penalty function are given. Specifically, if the SIP is locally 

equivalent to a NLP at a solution, and if second order sufficiency conditions hold at 

that solution then 

(1.22) 

ensures the SIP solution under discussion is also a local minimum of the L1 exact 

penalty function. 

Another exact penalty function which appears in the NLP literature is the eoo ex­

act penalty function. Its equivalent for SIP problems is the Loo exact penalty func­

tion: 

<I>oo(x) = J(x) + pma.x[g(x,t)]+· 
tET 

(1.23) 

In contrast to the L1 exact penalty function, the Loo exact penalty function is always 

continuous. Tanaka. et a.l (94] give an example of a. SIP with a. discontinuous L1 exact 

penalty function. In case another example is of interest, here is one. Let n = p = 1, 

T = (-10, 10], f 0, p = 1, and 

25x2
- 1 

g( x t) = ' + t 2(1.- x 2
)- 8t4

• 
' 25x 2 + 1 4 

Then <I> 1 and <I> 00 are as pictured in figures 1a. and 1 b respectively. 

1.5 

1 

0.5 

0 

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 

Figure la. The L 1 penalty function. Figure 1 b. The L 00 penalty function. 
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The potential for discontinuities in the L1 exact penalty function to prevent 

convergence to a solution of the SIP is obvious. Such discontinuities can only occur 

at infeasible points, and are caused by a change in the number of local maxima 

taking positive values other than by the value of the local maximum changing sign. 

Such a change occurs for example when two local maxima combine into one (as in 

the above example) or when a local maximum changes into a stationary point. 

1.6.1 SOLVER-like Methods. 

Hettich and van Honstede [54] considered adapting the locally convergent SOLVER 

method of Wilson [100] for finite NLPs to SIP problems. They discuss locally con­

vergent methods for SIP problems. Watson [97, 99] considers a similar generalization 

together with the L 1 exact penalty function (1.21). The SOLVER-like method pro­

posed in [97, 99] exploits the local equivalence of the SIP to an NLP. The usual 

way this equivalence is obtained requires the assumption that g is twice continu­

ously differentiable. vVith this local equivalence, an exact penalty function based 

SOLVER-like method for SIP problems may be modelled closely on such methods 

for finite NLP problems such a.s those of Han, and of others [46, 47, 84, 48]. At each 

iterate the following sub-problem is solved to yield a search direction: 

(1.24) 

subject to ci(x0 ) + sTVci(xo) :::; 0 Vi= 1, ... , m. (1.25) 

where H is a positive definite n x n matrix. Once the search direction is selected, 

the penalty parameter fl is adjusted via (1.22) to ensure the search direction is one 

of descent for the exact penalty function. An Armijo style line search is then done 

to determine the next iterate. The criterion for acceptance being that the actual 

reduction in the penalty function is at least a given fraction of that predicted by the 

directional derivative of the penalty function along the search direction. 

The algorithm does not seek to minimise the exact penalty function as such: it 

merely uses it to adjudicate between the two ain1s of minimising f, and ensuring 

feasibility. 

If H is indefinite, then the solution of (1.24,1.25) may be a direction of ascent 

for the penalty function. This restricts the choice of H. Ideally the matrix H would 

be the Hessian of the Lagrangian (1.19) evaluated at x0 , with ,\ set at a suitable 

estimate ,\0 of the optimal Lagrange multiplier vector. For sufficiently accurate 
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estimates of a stationary point of the SIP, and of the associated Lagrange multiplier 

vector, solving (1.24,1.25) is, under mild conditions, equivalent to applying Newton's 

method to the system of equations 

where the sum is only over values of i pertaining to constraints which are active at 

the pertinent stationary point. Unfortunately such a choice of H may not be positive 

definite. ·watson [99] imposes positive definiteness on H by choosing H = '\t;xL+r1, 
for some suitable positive value of I· Initially 1 = 0 is always tried. If v;xL is not 

positive definite at the solution then second order convergence may be inhibited by 

the 1 I term .. 

The method of Coope and ·watson [21] is also a SQP method employing an 

L1 exact penalty function. The objective and constraint functions are taken to be 

twice continuously differentiable. As before, local equivalence to an NLP is obtained 

as described in section 1.2. The search direction s0 at the iterate x 0 is chosen as the 

solution of the IQP (1.24,1.25). 

vVatson's method requires that the m.atrix H to be positive definite, whereas the 

second order sufficient KKT conditions only guarantee that H is positive definite 

on the subspace orthogonal to the constraint normals {Vxg( x*, t) : t E f*}. 

If VxxL* is not positive definite then forcing positive definiteness in the manner 

described in [99] will generally result in a loss of superlinear convergence. This is 

circumvented by solving (1.24,1.25) as a series of Equality constrained Quadratic 

Programmes (EQP), each of the form 

(1.26) 

(1.27) 

where A is the set of indices of the constraints which feature in the EQP. Let M(A) 

denote the subspace span{Vci(x0 ) : i E A}, and let AE be the intersection of the 

class of sets A of all EQPs encountered in solving the IQP (1.24,1.25). The set of 

constraints indexed by AE can be taken as equality constraints, in which case H 

need only be positive definite on the subspace orthogonal to M ( AE). This can be 

imposed on H in the way described for Watson's algorithm [97]. The reason positive 

definiteness is only required on a subspace is that if H is replaced by H + O'CCT, 
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where the columns of C lie in the subspace M(AE), and where CJ ~ 0, then the 

solution to the IQP (1.24,1.25) remains unchanged. For sufficiently large CJ and a 

suitable choice of C, H CJC CT is positive definite. 

Near a solution at which second order sufficient KKT conditions hold for the 

SIP, the Hessian of the Lagrangian will be positive definite on [M(AE)]J_. Hence 

H = '\l';xL will be used, and the connection with Newton's method for the first order 

KKT conditions is retained. 

As the replacement of H by H +CJCCT is not done explicitly, the minimal value of 

the penalty parameter is no longer given by (1.22). It can be shown that, in the limit 

x-+ x*, (1.22) does give the minimal value of jl. However, far from the solution, a 

much higher value than that indicated by (1.22) may be required. Accordingly fl is 

first calculated using (1.22), and then repeatedly doubled until the solution of the 

IQP (1.24,1.25) is a direction of descent for the penalty function. 

Having chosen the search direction, and a suitable value of the penalty paran1eter, 

an Armijo type line search is performed, where the criterion for sufficient descent 

is that the ratio of the actual descent to the predicted descent exceeds p, where 

0 < p < ~· The predicted descent is calculated from the gradient of the penalty 

function along the search direction. Like ·watson's algorithm, this algorithm does 

not directly minimise the non-differentiable penalty function: it uses it only as a 

merit function in the line search. 

Both of these SOLVER-like methods assume that the IQP (1.24,1.25) generated 

at each iterate has a solution. It is quite possible that, far from a solution of the 

SIP, the IQP formed as indicated is infeasible. If this is so these two methods, in 

the above form, fail. They may be globalised in the way described by Polak and 

Tits, although some of the drawbacks involved in the Polak a.ncl Tits algorithm will 

still present. 

Conn and Gould [19] observe that the L1 exact penalty function (1.21) is more 

closely related to the £00 exact penalty function for an NLP than the £1 penalty 

function for an NLP. For each t E T, g(x, t) S 0 is a. constraint on x. In effect (1.21) 

divides the set of constraints {g( x, t) S 0 : t E T} up into a. collection of disjoint 

subsets. Each of these subsets is the region of attraction of a stationary point of 

g( x, t) with respect to the local search algorithm used in finding each local maximiser. 

The L 1 exact penalty function is the sum over this collection of subsets of the 

maximum constraint violation on each subset. 
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Pietrzykowski [76] proposed a direct generalisation of the L1 exact penalty func­

tion for a NLP, viz 

\[1 (X, fJ) = f-l j (X) + 1r [g (X, t)] + dt, 

where fJ is a positive scalar. Unfortunately, as pointed out in [19], simple examples 

can be constructed for which \[1 is not an exact penalty function. For instance, using 

n = p = 1, T = [-1, 1], and 

f(x)=-x, g(x,t)=t-x-1 

then 

W(x, p) = -/-lX- ~[xJ! 

and 1-l -+ 0 is needed if x = 0 is to be a stationary point of \[1. 

Conn and Gould use a modified form_ of \[1, specifically 

,T, f( ) fr[g(x, t)]+ dt 
'±' = /-l X + --:--:-=--=--=-=--::---,-_:_:_-'-:-:----

fr[sign(g(x, t))]+ dt 
(1.28) 

The second term in this equation is the average value of the constraint violations. 

The integral in its denominator is the Lebesgue measure of the part of T on -vvhich 

g(x, .) exceeds its bound 0. 

To avoid discontinuities in \[1 at infeasible points, Conn and Gould require that 

V x E Rn, no subset of T of strictly positive Lebesgue measure exists on which 

g ( x, t) = 0. If this is not true then the denominator of the second term of ( 1. 28) 

may be discontinuous. Second order sufficiency, and strict complementarity are also 

required for both the local minimiser of the SIP, and the global maximisers of the 

constraint function at that x value. The requirement that the number of global 

maximisers is finite at each iterate is not made by Conn and Gould. This is quite 

special: almost all other algorithms except those which discretize the semi-infinite 

constraint require this assumption. The discretization algorithms avoid the need for 

this assumption by simply solving each NLP subproblem outright. The solution of 

each NLP is treated as an approximation to that of the SIP; no descent of a penalty 

function for the SIP is required. 

1.6.2 Trust Region Methods. 

The second method proposed by ·watson [97] employs a trust region, with an L1 ex­

act penalty function. Using a suitable value of the penalty parameter, a local min­

imum of the exact penalty function is sought directly. The prospective step at Xo 
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is chosen as as the minimiser of the following L 1 QP approximation to the exact 

penalty function: 

(1.29) 

subject to llslloo ::; Ll, (1.30) 

where Ll defines the size of the trust region. If the prospective step results in a 

reduction of the exact penalty function, it is accepted. Otherwise, the value of Ll is 

reduced, and the L 1 QP is re-solved at the current iterate. Once an acceptable step 

has been found, Ll is decreased, left unaltered, or increased depending on the ratio 

of the actual decrease of the exact penalty function to that predicted by the L1 QP. 

Another iteration is then begun. 

Unlike the IQP (1.24,1.25) it 1s clear that the L 1 QP always has a solution. 

Furthermore, as no line search is employed, there is no need for the prospective step 

to be a direction of descent for the exact penalty function. Hence H may be chosen 

as the Hessian of the Lagrangian irrespective of whether or not it is positive definite. 

Tanaka, Fukushima and Ibaraki [94] also propose a trust region m.ethod. Unlike 

·watson [97], the Loo exact penalty function ( 1.2:3) is used. Both f and g are taken 

to be C 2 functions. At each :r the local equivalence of the SIP to an NLP is assumed. 

At each iterate x0 the prospective step s0 is chosen as the solution to the following 

LcoQP approximation to <1> 00 at Xo: 

(1.31) 

subject to llslloo ::; Ll (1.32) 

where Ll is the size of the trust region, and His the Hessian of the Lagrangian at x 0 . 

In practice the algorithm works only with local maximisers at which g ex­

ceeds -7], where 7] is positive. These local maximisers are henceforth referred to 

as prominent local maximisers. All other local maximisers are ignored. 

For the prospective step to be accepted it must result in a decrease of the penalty 

function. The size of the trust region is adjusted in the usual manner. Tanaka 

et al impose the additional requirement that each prominent local maximiser of 

g(x0 + s0 , t) must be identifiable as a continuation of some prominent local max­

imiser at x 0 , where the identification process is one-to-one. If some prominent local 

maximisers at x 0 + s0 can not be matched, then each such local maximiser is added 
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to the list of points in T from which the linear constraint approximations are formed. 

The Loo QP is then re-solved at the current iterate for a new prospective step. 

If a good reduction in the penalty function is obtained with some s0 , it would 

appear that rejecting s0 on these grounds, and recalculating it with an augmented 

set A is wasteful. Each such recalculation results in an extra global optimisation, so 

the extra computation may be considerable. However, if no reduction in the penalty 

function is obtained, then augmenting A requires little or no extra effort. 

The algo6thm of Tanaka et al [94] is a development of those by Mine, Fukushima, 

and Tanaka [65], and by Tanaka, Fukushima and Hasegawa [93]. 

Bell [11] gives an algorithm which replaces the SIP with the problem of min­

imising its L00 exact penalty function. Bell's algorithm is developed in a wider 

context: that of minimising a locally Lipschitz function using approximate function 

values, where the cost of calculating the function values increases with the accuracy 

required of these values. Because of this, the algorithm does not need exact values 

for the global maximisers at each iteration. Instead approximations to those max­

imisers are used; the accuracy required of these approximations is increased as the 

steps taken at each iteration become srnaller. A major advantage of this approach 

is that the algorithm can cope with other sources of uncertainty in the function 

values provided the uncertainty can be made arbitrarily small with enough effort. A 

Levenberg-Marquadt parameter is used to implement a trust region strategy. Cur­

vature information is included in the form of an approximation to the Hessian of 

the Lagrangian, and is updated using a quasi-Newton method. 

1. 7 Remarks. 

Semi-infinite programming is an extension of finite non-linear programming. The 

relationship between these two types of problems is close: this is reflected in the 

various methods of solving them. 

Under certain conditions, a SIP is locally equivalent to a NLP. This fact can 

be exploited directly to obtain local methods for SIP problems. Local methods for 

semi-infinite programming, such as the Lagrange-Newton method, have all the dis­

advantages of their NLP counterparts. In addition, they are susceptible to changes 

in the number of local maximisers. This is especially true of Newton's method when 

applied to the combined first order KKT conditions for the SIP, and for each global 
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maximiser of the constraint function. 

Various globally convergent algorithms for SIP have also been developed. These 

often involve repeatedly discretizing the semi-infinite constraint by replacing T with 

a succession of finite subsets of itself. Many of the discretization algorithms are 

generalisations of algorithms created for linear or convex SIP problems. Typically 

these algorithms are linearly convergent, and so risk all the usual practical conver­

gence problems of such methods. Linear convergence is not an inherent feature of 

discretization algorithms Bell's algorithm (for example) uses second order infor­

mation in choosing each step. 

Many multi-phase methods have been developed by hybridizing a locally con­

vergent superlinear method with a global linearly convergent one. The general idea 

being to use the global method to get close to the solution and then switch over to 

the local superlinear one to obtain a very accurate estimate of the solution. When 

successful, this avoids the deficiencies of both methods. The changeover from one 

method to the other is not entirely trivial, and if not clone correctly then the flaws of 

one or other method may affect the algorithm's performance. Also, there is no guar­

antee that the local method can be used effectively before the linearly convergent 

global method encounters difficulties. 

These snags can be avoided if the superlinearly convergent method used in the 

second phase is also globally convergent. 'When the first phase method strikes dif­

ficulties, the second phase method can be used safely from then on. There are still 

advantages in the two phase approach: for a good choice of algorithm for the first 

phase, the work required in each iteration of the first phase will be much less than 

that taken by an equivalent iteration of the second phase method. 

As with NLP problems, good theoretical properties are obtained by using a SQP 

method backed up by an exact penalty function. In contrast to the NLP case, 

the L 1 exact penalty function may possess discontinuities in the infeasible region 

even if the objective a.nd constraint functions are continuous everywhere. The 

exact penalty function avoids these discontinuities, and thus is a better choice for 

SIP problems of the form (1.1,1.2). In light of the current preference for L1 exact 

penalty functions for NLP problems, this would suggest a. mixed L 1L 00 exact penalty 

function would be a good choice for SIPs involving several semi-infinite constraints, 
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or auxillary finite constraints, or both. The constraint term of the mixed exact 

penalty function would consist of the sum of the maximum constraint violations of 

each semi-infinite constraint, plus the sum of the auxiliary constraints' violations. 

The use of an L1 QP together with a trust region guarantees that a prospective 

step can be generated at each iteration. The existence of a feasible region for the 

L1 QP is guaranteed. The trust region ensures unboundedness can not be a problem. 

Similar remarks apply to L00 QP subproblems. 

Even with discretization the L00 exact penalty function retains some of its ad­

vantages over its L1 counterpart. At highly infeasible points the L1 exact penalty 

function may require a very large number of constraints in the QP subproblem. 

With the Loo penalty function the constraints arising from many of the infeasible 

points which take values appreciably below the global maximum may be omitted. 

In conclusion it appears that a good method would possess two phases. The first 

would calculate an approximate solution using one, or more discretized versions of 

the SIP. The second phase would refine this approximation using an algorithm based 

on an L00 exact penalty function. This second phase algorithm ·would be along the 

lines of either Coope and Watson's algorithm or Tanaka et al's algorithm. 



Chapter 2 

THE THEORETICAL BASIS 

FOR THE ALGORITHM. 

In this chapter vanous theoretical properties of semi-infinite programmes are 

established, where the semi-infinite programmes are required to satisfy some mild 

assmnptions which make the SIP tractable. A quasi-Newton algorithm for SIP is 

described, and a convergence proof for this algorithm is presented. The work which 

appears in this chapter is an expansion of that presented in Price and Coope [85, 86]. 

A common approach to SIP which yields global convergence is the use of Se­

quential Quadratic Programming (SQP) techniques in conjunction with an exact 

penalty function [19, 21, 94, 98]. The methods given in [21, 94, 98] use an implicit 

function theorem on each semi-infinite constraint to establish convergence. Use of 

the implicit function theorem requires that the constraint function be C2 • The L1 

exact penalty function algorithm of Conn and Gould [19] is along somewhat differ­

ent lines, but makes use of similarly restrictive assumptions. The purpose of this 

chapter is to show that provided the exact penalty function is based on the infinity 

norm, a much weaker condition than that required for the implicit function theorem 

to hold is sufficient to ensure convergence for C1 problems. The algorithm presented 

can take second order information into account, yielding superlinear convergence on 

problems with the requisite degree of continuity. 

25 
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2.1 The penalty function problem. 

The approach taken is to replace the SIP with the rather more tractable problem of 

minimizing a non-differentiable penalty function ¢. This penalty function is chosen 

so that solutions of the SIP are also solutions of the Penalty Function Problem 

(PFP): 

min cjJ(x). 
xERn 

The exact penalty function used is: 

cP(fl, v; x) = f(x) + t-tB + ~vB2 where e =max [g(x, t)]+. 
tET 

The penalty parameters f-l and v are restricted to f-l > 0, and v ~ 0. Clearly B( x) is 

the infinity norm of the constraint violations, so cjJ is continuous Vx E Rn. 

The quadratic term in e has been included to reduce the risk that p will be set 

at a value far in excess of that required in theorem 2.2. If this does occur it n1ay 

have a detrimental effect on the algorithm's performance [20]. If the initial point 

used by the algorithm is highly infeasible, very high values of one or other penalty 

parameter may be needed if feasibility is eventually to be attained. For instance, 

let f ~- exp(x1 ) in the :~.~ 1 direction, with a constraint x1 :::; 0, and with the initial 

value x1 = 10. If v 0 is used, and if the sequence of iterates is to converge to 

a feasible point, then the minimum value p can (initially) take is over 10,000. On 

the other hand if v is set at an extrem_ely high value, when B becomes small, the 

quadratic term in e is much smaller than the linear term. The effect of a high v is 

therefore much less pronounced. 

The algorithm to be described uses only first derivatives: accordingly it is desir­

able that the algorithm be capable of solving C'1 problems. This precludes the use 

of second order optimality conditions in specifying solutions of an arbitrary problem 

of the form (1.1,1.2). Consequently stationary points of the SIP will be regarded as 

valid solution points. The first order optimality conditions, together with an appro­

priate regularity assumption, are given in inequality (1.4), and equations (1.5,1.6) 

respectively. 

A definition of what constitutes a solution of the PFP is needed. In accordance 

with the remarks in the previous paragraph, only first derivatives are used. 

Definition 2.1 For fixed values p0 a·nd v0 of f-l and v, a point x0 is a critical 

point of ¢(p0 , vo; x) iff at x0 the directional de·rivative of c/J(t-to, v0 ; x) with respect to 

x along every direction is non-negative. 
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The solution set of the PFP for p p0 , and v = v0 is defined as the set of critical 

points of ¢(Po, vo; x). 

If solving the PFP is to yield a solution of the SIP, it is highly desirable that the 

PFP's solution set be contained in (and ideally be equal to) the SIP's solution set. 

This can be achieved to a limited extent by a suitable choice of p, for any v. 

Theorem 2.2 Let x* be an optimal point of the SIP (1.1,1.2) at which the regularity 

assumption (inequality (1.4)) holds, and let >. * be the vecto1· of Lagrange multipliers 

as specified in (1.51 1.6). If fl satisfies 

p > IIX"Ih (2.1) 

then x* is a cTitical point of ¢(p, v; x). 

Conversely, if x* is both feasible, and a critical point of ¢(p, v; x) for some p > 01 

and v;:::: 01 the·n is a solution point of the SIP. 

PROOF. The first item follows from theorem 2.1 of [8], and from theorem (1.1). 

For the second item, if x* is a critical point of ¢ for some p, and v, then 

Vx near x*, ¢(p, v; x);:::: ¢(p, v; x") + o(llx- x*!l). 

Now ¢ _ f on the SIP's feasible region, and so x* is a solution of the SIP. eft 

This theorem implies the set of feasible critical points of the PFP are a subset 

of the set of stationary points of the SIP. The relationship between the two solution 

sets falls short of the ideal in two respects. 

Firstly, there may be critical points which are not feasible, and therefore not 

solutions to the SIP. This admits the possibility that the algorithm may fail to solve 

the SIP by (in essence) failing to find a feasible point. This is characteristic of any 

algorithm attempting to attain feasibility from an arbitrary initial point by seeking 

a local minimum of the constraint violations. If the algorithm fails for this reason a 

common response is to consider other initial points. 

Secondly, there may be solution points of the SIP which are not feasible critical 

points. This problem is circumvented by automatically adjusting p so that any SIP 

solution is a critical point provided it is sufficiently close to some iterate. 
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2.2 Existence of an approximating L00 QP. 

It has been shown in the previous section that the SIP may be replaced by the 

problem of locating feasible solutions of the PFP. The PFP is tackled as follows. At 

each iterate linear approximations to all global (and some local) maximal values of 

the constraint function are formed. From these a local approximation to ()( x) can be 

constructed. This, together with an approximation to the objective function, yields 

an approximation to </Y, and hence an Leo Quadratic Programme (hereafter L 00 QP) 

locally approximating the PFP. The solution of this L 00 QP yields a search direction 

along which the next iterate is sought, using an Armijo type line search. 

All global maximisers of g(x0 , t) are needed to obtain an adequate approximation 

to ()(x) for x near x0 . In order to ensure each iteration of the algorithm listed in 

section 2.3 is a finite computational process, the following assumption is Inade. 

Assumption 2.3 For each x ERn, the numbe7' of global maximizers of g(x, t) ove1' 

T is finite. -' 

This, together with the other usual assumptions, ensures the coiTVergence of the 

algorithm; use of an implicit function theorem is superfluous. Actually, it is sufficient 

that the number of global maximizers of g is finite for each x at ·which approximations 

to the global maximizers are calculated explicitly, and at each cluster point of the 

sequence of iterates. For convenience, assumption 2.3 is used. 

The existence of an approximating Leo QP is shown by examining the behaviour 

of the set of global maximizers f( x) of g( x, t) at points x near some point :rc, where Xc 

satisfies assumption 2.3. The first result states f( :r) is semi-continuous with respect 

to x. 

Proposition 2.4 Let C be a compact subset ofT, and let D(xc) be the set of global 

maximizers of g(xc, t) on C. If D(xc) is a subset of the interior of C relative to T 

(hereafter int( C)), then firstly 

where NE(D(xc)) = {t E T : ::ky E D(xc) satisfying lit -111 < t}, 

and secondly, each element of D(x) is a local maximizer of g(x, t) overT, fo7' all x 

sufficiently nea1' Xc· 
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PROOF. Use the topology on T induced by the standard topology on RP. Let 9c 

be the global maximal value of g(xc, t) on C. For all small positive E, as C-N€(D(xc)) 

is compact and non-empty, g(xc, t) achieves its supremum on C- N€(D(xc)), which 

must be strictly less than 9c· Define 

m( c:) = 9c- max g(xc, t). 
tEC-N€(\l(xc)) 

Now the continuity of Vxg with respect to all arguments, and the compactness ofT 

imply the set offunctions {g( x, t )}tET is equicontinuous with respect to x. Therefore 

Vc: > 0, ::lry(c:) > 0, such that Vx, and Vt E T, 

llx- Xcl! < ry(c:) :::?- lg(xc, t)- g(x, t)l < ~m(c:). 

Hence, for all these values of x, 

\It E C- N€(D(xc)), g(x, t) < 9c- ~m(c:), 

and VtED(xc), g(:c,t)>gc-~m(c:). 

Hence, D(x) C )\/€(D(xc)). Moreover, as g is continuous, and C compact, D(xc) is 

also compact. ·whence, for all small positive c:, N€(D(xc)) C int(C), and so D(x) is 

a subset of the local maximizers of g( x, t) over T. • 

For any Xo E Rn' let r ( Xo) = { 71' ... ' Tj} be the finite set of strict global maxi­

mizers of g(x0 , t). Proposition 2.4 implies each member of f(x 0 ) may be considered 

separately. Let 

Eo = ~ min { II Ti - Tk II : i, k E 1, ... , J, i =1- k}, 

and let Bi(Eo) = {t E T : !It- Till :S: Eo}, Vi= 1, ... ,J. 

The set of global maximizers of g(x, t) on the set Bi(Eo) is denoted by Si(x). By 

choosing C = T and x0 = Xc in proposition 2.4 it is clear that 

r(x) ~ uf=lSi(x) Vx sufficiently near Xo. 

This shows that only the global maximisers of g at x 0 need be considered when 

forming an approximation of 0( x) in a. sufficiently small neighbourhood of x0 . The 

behaviour off with respect to changes in X is examined by considering each Si along 

each ray of the form x(O') = x0 + O"·u, where 0' :2: 0, a.ndu is a. unit vector in Rn. 



30 

Definition 2.5 A function t(a) is an extension of the global maximizer Ti E f(xo) 

along x(a) = x0 + att) whe1'e a 2: OJ iff 

1. t(O) = Tj. 

2. ::lamax > 0 Sttch that t(a) E 3i(x(a)), \fa E [O,amax]· • 

From proposition 2.4, each Ti has at least one extension for each tt. It may have 

several, or even an infinite number of extensions. The extensions may be discon­

tinuous functions. Proposition 2.4 implies that, for all x near x0 , the extensions 

of f(x 0 ), evaluated at x, are local maximizers of g(x, t) overT, and contain f(x). 

The extensions in the direction 1t of the members of f(x 0 ) yield the following set of 

values of g along the ray x (a): 

{g(x(a), t(a)) : t(a) is an extension of some TiE f(x 0 )}. 

This set is finite; any two extensions of the same Ti take the global maximal value 

of g(x(a), t) over B;(co), for all sufficiently small positive a. For i = 1, ... ,j let 

t;(a) be an extension ofT;. Each men"lber of the set {g(x(a), ti(a))}i=l is locally 

Lipschitz with respect to a by the C 1 continuity of g, and the compactness of T. In 

order to form a set of linear approximations to {g(x(a), ti(a))}, the following result 

is needed. 

Proposition 2.6 Let t;(a) be any e:ctension of Ti E f(x0 ) alo·ng the my x(a) 

x0 + att) a 2: 0. Then 

PROOF. 

Also, 

g(x(a), ti(a)) 2: g(x(a), Ti), =? 

g(x(a), ti(a)) 2: g(xo, Ti) + attTVxg(xo, Ti) + o(a). 

g(x(a), ti(a)) = g(xo, t;(a)) + auTVxg(xo, ti(a)) + o(a) 

:::; g(xo, r;) + a1?Vxg(xo, t;(a)) + o(a). 

(2.2) 

Now, as Si(x0 ) is a singleton set, proposition 2.4 implies every extension of Ti is 

right continuous at a = 0. Hence 
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This, and inequality (2.2) yield the required result. '-

Proposition 2.6 implies that g( x0+s, 3i( x0 +s)) has a unique linear approximation 

of order o(lisll), for all s such that l!sll is small. 

Define 'ljJ to be a continuous piecewise quadratic approximation to ¢ near x0 , 

where 'ljJ is based on the finite subset Ao of T, as follows 

t/J(xo, Ao; p, v; s) f(xo) + sT\lf( x0) ~sT Hs + p(( s) + ~v(2 ( s ), 

where ((s) = max[g(xo, t) + sT\lxg(xo, t)]+, 
tEAo 

and where H is positive definite. Clearly 'ljJ is strictly convex in s. 

Let the base set Ao be { ti} !'=1• For each i l, ... , 1' define row i of the matrix 

Bas Bi = [Vxg(xo, ti)JT, and define element i of the vector b to be bi g(xo, ti)· 

Theoren1 2. 7 If f(;-c 0 ) ~ A 0 then1 fm' all s E Rn S1lch that II s II is small1 

(2.3) 

PROOF. For all s sufficiently small, each element of Bs + b arising from some 

member of Ao- f( x0 ) is less than every element of + b arising from some member 

of f(x 0 ); thus Ao- f(x 0 ) can be disregarded for small 8. 

The set of extensions of f( :r0 ), evaluated at x 0 + s, contains f( x 0 + 8) for s small, 

so proposition 2.6 implies 

'r/T E f(xo + s), E f(x 0 ) such that 

Hence 

B(xo + 8) = max[g(xo, to)+ sT\lxg(xo, to)]++ o(ilsll). 
tEAo 

Using a linear approximation to the objective function, the result follows. '-

The convergence proof requires that lisllco be subject to an upper bound, specif-

ically S'b 0. The LcoQP 

(2.4) 

approximates the PFP near x 0 . If f( x 0 ) ~ A0 , then x 0 is a critical point of ¢ iff 

8 = 0 is the global minimizer of ·tP( xo, Ao; tt, v; s ). 
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2.3 An L00-norm algorithm for SIP. 

The previous section examined the L 00 QP in detail. In this section the remainder 

of the algorithm is discussed, and the algorithm is presented. 

At each iterate x(k) the global (and other local) maximizers of the constraint 

function are found, and the approximating L 00 QP is constructed. The solution s(k) 

to the Loo QP at x(k) is used to form the line (or arc) search. The algorithm either 

searches along the line x(k) + as(k), or along the arc x(k) + as(k) + a 2c(k), where c(k) 

is a correction vector chosen to prevent the Maratos effect [63]. In either case a is 

chosen to be the first member of the sequence 1, f3, (3 2
, • . . to satisfy the sufficient 

descent criterion 

where 0 < p < ~, 0 < f3 < 1, and q(k) (a) is either the line or arc step as given above. 

The next iterate is then x(k) + q(k)(a(k)). For convenience the line search is treated 

hereafter as an arc search with c(k) = 0. 

The penalty parameters are adjusted in order to satisfy (2.1), and (hopefully) 

to force the sequence of constraint violations { O(k)} to zero. The first requirement 

is met by forming lower semi-continuous estimates >.;st of the optimal Lagrange 

multipliers at each iterate and adjusting the penalty parameters accordingly. Such 

estimates may be calculated from the L 00 QP's solution, or by other methods [34]. 

Algoritlun Sununary: 

1. Coarse approximations to all global maximizers, and as many local maximizers 

as practicable are found using a grid search or some other method, and then 

refined using a. Quasi-Newton method. Call this set of points A(k). 

2. The approximating L 00 QP is formed, and its solution s(k) is calculated. If O(k) 

exceeds some specified positive value, then the capping constraint (( s(k)) :S: 

((0) is imposed on the LcoQP. 

3. If x(k) + s(k) does not satisfy the sufficient descent condition, calculate c(k), and 

perform the arc search. 

4. Estimate the optimal Lagrange multipliers at the new iterate. If 0 is less than 

some positive parameter Bcrossoven and if ll :S: n:111>-:stll1, then ll is increased 
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to K2jJA.;stlh, where K2 > K1 > 1 are fixed parameters. Related research [20] 

suggests that K2 < 2 may be desirable. If 0 2:: Ocrossoven and p+v{}:::; K3JJA.;stlJ1, 

then Vis adjusted to give Jl + v{) = K411A:stlh, Where K4 > K3 > 1. 

5. Update H using a quasi-Newton scheme whilst ensuring, 

3 1 > 0, such that Yx E Rn {0}, Yk, 0 < xT H(k)x :::; /XT x, (2.6) 

for example Powell's modified BFGS update [80] could be used. 

6. If sufficient accuracy has not been attained, another iteration is begun. 

The vector c(k) is essentially that of [63], and is determined as follows. The 

multi-local optimization subalgorithm is applied to g( x(k) + s(k), t), yielding the set 

A~~b· Let Q(k) denote the set of elements t E A(k) satisfying 

Define tsoc( w) to be the closest member of Ai~~ to w, for each w E Q(k). If isoc( w) is 

uniquely defined for every w, if tsoc is a one to one mapping, and if Q(k) is non-empty, 

then c(k) is chosen as the vector of minimum length satisfying 

Otherwise c(k) = 0 is used. If the system (2.7) has no solution, or if JJc(k}IJ 2:: JJs(k)ll, 

then c(k) is reset to zero. 

The vector c(k) is used to avoid the Maratos effect, and thereby ensure superlinear 

convergence on problems with the required continuity. Mayne and Polak [63] show 

iff and g are C3 , if x* is a solution of the SIP at which strict complementarity, 

second order sufficiency conditions, and an implicit function theorem hold, and 

if the vectors { V x9( x*, t) : t E r( x*)} are linearly independent, then x(k) -+ x* 

implies x(k) -+ x* superlinearly. The vector c(k) is not required for convergence; the 

algorithm will converge for any choice of c(k) satisfying JJc(k)ll < JJs(k)ll, including 

c(k) 0. Hovvever, for problems which are sufficiently continuous, choosing c(k) as 

above ensures superlinear convergence will be obtained. 

Assurn.ption 2.8 

{a) At each point x0 at which the multi-local optimization subalgorithm is used it 

finds every point in r( Xo). 
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{b) Also each x 1 E Rn has a neighbouThood N( x 1 ) such that if x 0 E N( x 1 ) then the 

multi-local optimisation subalgoTithm finds some extension (evaluated at x 0) of 

each membeT ofr(x1 ). 4P 

This assumption is an idealization; in practice only approximations to the points 

referred to in assumption 2.8 will be available. Assumption 2.8a is needed to ensure 

the locally approximating L 00 QP at xo will be sufficiently accurate. 

Assumption 2.8b is needed to ensure the following scenario can not occur. With­

out assumption 2.8b, it is possible to have x 0 arbitrarily close to x1 and not detect 

any extension of some T E f( x1 ). This is possible because every extension of r, 
evaluated at x 0 , could be a local (non-global) maximiser of g(x0 , .). ·without any 

information about T appearing in the L 00 QP at x 0 , the search direction s0 could 

be one in which g( x, T) was increasing; effectively s0 would point directly into the 

semi-infinite constraint. The step accepted in the arc search would be very much 

shorter than s0 because ofT, leading to another point like x 0 , and so on. 

Actually assumptions 2.3 and 2.8 need only hold on the complement of some 

closed subset £ of the interior of the feasible region. For any :r E £, B( x) _ 0 on some 

neighbourhood of x. This renders assumption 2.3, and assumption 2.8a superfluous 

at x; after all, locally approximating 0 is not a difficult task! For assumption 2.8b, 

let Xc be any cluster point of the sequence of iterates generated by the algorithm. 

Then, for the case Xc E £' the extensions of r( X c) are irrelevant because e( X) = 0 

near X c. Otherwise, Xc lies in the complem.ent [c of £, in which case both parts of 

assumption 2.8 hold at Xc because [c is open. 

2.4 Convergence. 

In this section the convergence properties of the algorithm are examined. 

A requirement for convergence is that each arc search be a finite process. This is 

so if the descent condition (2.5) holds for all small positive a. If s(k) is zero, then c(k) 

is also zero, and (2.5) holds for all a. If s(k) is non-zero, then from assumption 2.8a 

and theorem 2. 7, the sufficient descent condition (2.5) is equivalent to 

where '1/J(x(k), A(k); s) = 'lj;(kl(s) has been used. Now, because '1/J is locally Lipschitz, 
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the c(k) term can be removed from the argument of'¢ to yield: 

The strict convexity of '¢ ensures (2.8) holds for all small positive a. 

Theorem 2. 9 Given: 

1. All itemtes genemted by the algorithm lie in a bounded region of Rn. 

2. Assumptions 2.3! 2.8! and the condition (2.6) hold. 

3. The pammeters f1 and v aTe only altered a finite number of times. 

The·n eveTy cluster point of the seqltence of iterates { x(k)} generated by the algorithm 

is a critical point of <f(ft, v; x) J where f1 and v a·re the final values of these parameters. 

PROOF. The proof is by contradiction. This is obtained by assuming some 

cluster point ( x~oo), say) of the sequence of iterates is not a critical point, and so 

deducing the existence of an iterate satisfying 

(2.9) 

As the sequence { <j;(k)} is monotonically decreasing, and </; is continuous, a contra­

diction results. The existence of an iterate satisfying (2.9) is shown by using the 

following (loosely outlined) argument. If x~oo) is not a critical point then any solu­

tion s~oo) of some approximating L 00 QP at x~oo) will be non-zero, and thus will be a 

direction of strict descent for </;. It is shown that the sequence of prospective steps 

{s(k)} converges to s~oo), and the sequence {a(k)} is bounded away from zero. Using 

continuity, arguments, (2.9) is then established. 

Let x~oo) be an arbitrary cluster point of {:r(k)}. Select a subsequence {x~k)} of 

{ x(k)}, generated after fl andv assume their final values, and where the subsequences 

{x~k)}, {Hik)}, and {s~k)} converge to x~oo), Hioo), and s~oo) respectively. Such a 

subsequence exists by item 1, requirement (2.6) and the bound on s in (2.4). 

First it is shown that s~oo) is a solution of a locally approximating L00 QP at the 

point doo). Let 1pik)(s) and </;~k) denote '¢(x~k),A(dk));s) and <f;(dk)) respectively. 

Also let A~k) denote A(x~k)). Define A~oo) as the set of all cluster points of sequences 

of the form {~i}~1 , where ~i E A~i)' for all i. Clearly A~oo) is compact. Also, for all 
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k sufficiently large, A~oo) contains approximations to every member of A~k). This 

follows from the definition of A~oo), and may be expressed in precise terms as: 

Vc > 0, :3K, Vk > K, max [ min lit- Tjjl < E. 
tEA~k) rEA~oo) 

(2.10) 

Let Sou be the set of global minimizers of ~(doo), A~oo); s ), and let S 00 be any 

element of Sou. Then 

Fixings, let { x~k)} be a subsequence of { dkl}, with each A~k) containing an approx­

imation t~k) to t(s), such that t~k) ---+ t(s) ask---+ oo. Then by (2.10) and (2.11), 

and also because A~k) contains an approximation to t(s), because A~oo) contains 

approximations to each element of A~k), and as 1/' is monotonically increasing in A 

under inclusion: 

and 

lim ol·(x(k) A(kJ. ~ ) < oi•(x(ooJ A(coJ. q ) 
k-+oo '1-' • ~ ' ~ ' ~co - '1-' ' * ' * ' ~co . 

Hence { s~k)} does not converge to s, and so s~oo) E Sou. 

It can be shown that ·z/;(doo), A~oo); s~oo)) (hereafter ~£ool(s~k))) is a cluster point 

of the sequence {~ik)(s~k))}. Now, 

1/J(x~k), A~k); s~k)) = (s~klf [vfik) + %Hikls~k)] 
+ ll m1f) [g(x~k), t) + (s~k))T\7xg(x~k), t)t 

tEA. 

+ ~IJ {max [g(x~k), t) + (s~k))T\7xg(x~k), t)] }
2 

tEASkJ + 

The convergence of the sequences { dk)}, { s~k)}, and { Hik)} imply the first two terms 

converge. The definition of A~oo) implies that 

Hence 'z/Jioo)(s~co)) is a cluster point of {~ik)(s~k))} as required. By replacing {x~k)} 

with a subsequence of itself if necessary, let {~ik\s~k))} converge to 'z/Jioo)(s~oo)). 

Now a~k) is chosen as the first member of the sequence 1, (3, (3 2, ... which satisfies 

the sufficient descent condition 

(2.12) 
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By assumption 2.8, and by the definition of A~=l, it follows that r(x~=>) ~ A~oo). 

Hence, because {x~k)} converges to x~00>, {~ik)(O)} converges to ~ioo)(O). So, denot­

ing terms which tend to zero as k---? oo by o(l), (2.12) is equivalent to 

by the convergence of {~ik)(s~=>)}, and {~;ik\0)} to ~!oo)(s~oo)), and ~ioo)(O). Now, 

as qik)(a) = as~k) + a2 c~k)' and as¢; is locally Lipschitz, (2.13) is equivalent to 

where the c~k) part of qlk) gives rise to the o(a) term. Now, because lldklll slis0>!1, 
by the convergence of {s~k)} to s~oo) and by the convergence of {x~k)} to x~oo), (2.14) 

is equivalent to 

Now f(x~oo)) ~ A~oc·l, and so applying equation (2.3) to the left hand side of (2.15) 

implies if a~k) satisfies 

then it also satisfies (2.12). If x~oo) is not a critical point, then for some u in Rn, the 

directional derivative of ¢ at x~eo) in the direction tl is strictly negative. This, and 

equation (2.3) imply 

·whence, by the convexity of·~', and from (2.16) { aik)} has a strictly positive lower 

bound (alower say). Once again from equation (2.13), ¢~k)-----* implies 

Thus as aik) 2 O'lower for a.ll k, and as n,. < 0, the existence of an iterate xik) 

satisfying equation (2.9) is clear. .,. 

2.5 Concluding Remarks. 

Under fairly mild assumptions convergence to a set of critical points of the PFP has 

been shown. Each such critical point, if feasible, is also a solution of the SIP. 
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In contrast to algorithms based on the exact L1 penalty function (21, 98], this 

algorithm does not depend upon the applicability of an implicit function theorem; 

assumption 2.3 is sufficient. Consequently, the minimum necessary degree of conti­

nuity of the semi-infinite constraint function is reduced from 0 2 to 0 1
• This widens 

the class of problems which may be solved by this type of algorithm. Superlinear 

convergence is obtainable on problems with the requisite degree of continuity. 

The L::;o penalty function, unlike its L1 counterpart in [21, 98], is continuous at 

all points in Rn. Hence one potential method of failure for algorithms based on the 

norm does not occur with the algorithm presented herein. 

The Leo exact penalty function permits greater flexibility in the choice of the 

sets A(k) at infeasible points than does the L1 exact penalty function. vVith the L1 

penalty function, the only points in A (k) at which g( x(k), . ) exceeds zero may be the 

local and global maximisers '.vhich take positive values, and these m_aximisers must 

feature in .A(k). In practice, a finite number of other points t E T may be included, 

but only if each such t appears in A(k) every time g(x(k), t) exceeds 0. In contrast, 

the L= penalty function, the active set .A(k) is only required to be a finite 

containing sufficient points to satisfy assumption 2.8. any finite subset of 

T may be added to A (k), at whim, without negating the algorithm's convergence 

properties. This allows points at which local maximisers are expected to appear to 

be included in the active set. Such points could be detected i11, for example, an arc 

search which rejects one or more points. These points may have been rejected due 

to the appearance of a (previously unforseen) global maxi miser. Including the point 

a.t which the new global ma.ximiser appears in the active set for the next iteration 

would usually enable the algorithm to skirt around that part of the semi-infinite 

constraint more efficiently. 



Chapter 3 

MULTI-LOCAL 

OPTIMISATION. 

3.1 Introduction. 

A major part of each iteration of the SIP algorithm is the determination of the 

global (and local) maximizers of the constraint function g(x, t). 

More precisely, the global maximizers, and a subset of the local maximizers of 

g(x0 , t) with respect tot over the set Tare sought, ·where x0 is fixed. In this chapter, 

the terms local maximizer, and global maximizer will refer to the local and global 

maximizers of g as defined in the previous sentence, and the term stationary point 

will refer to a stationary point of g(x0 , t) with respect to t on T. The number of 

global maximizers is finite by assumption 2.3, hovvever this is not necessarily true 

of the local maximizers. This does not present an insurmountable difficulty, as not 

all the local maximizers are required. Specifically, the set of local maximizers found 

by the Multi-local Optimisation Subalgorithm (MOS) at the SIP iterate x 0 must 

contain one extension (evaluated at x0 ) of every global maximizer of g( x1 , t) over 

T, provided x0 is sufficiently close to x1 . This requirement is formally given as 

assumption 2.8. 

As only first derivatives are available, it is possible that points which the MOS 

subroutine identifies as local maximisers are not actually local maximisers, but only 

stationary points. The inclusion of such points in the list of local maximisers does 

not significantly affect the main SIP algorithm. 

39 
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This problem is of a similar nature to the standard global optimisation problem 

of locating a global maximizer. The essential difference is that for any positive E, 

the MOS must ultimately find a global maximizer (if one exists) over each member 

of a finite set of open balls of radius c:, where each such set of balls forms an open 

cover of 

For convenience the term 'prominent local maximizer' will be used to refer to 

any local maximizer at which g( x0 ,.) takes a value close to the global maximal value 

of g(x0 , t) overT (hereafter g0 ). 

The two cases p = 1 and p > 1 are considered separately. This chapter is 

concerned only with the case when the dimension of T is greater than one. The 

multi-local optimisation problem in one dimension is discussed in chapter 4. In this 

chapter Tis assumed to be a Cartesian product of closed intervals. For q:mvenience 

T is taken as the unit hypercube. 

are many approaches to the global optimisation problem. A good of 

the subject is given by Torn a.nd Zilinskas [96]. Most global optimisation algorithms 

consist of two sections: the first being an exploration phase in which the basic shape 

of the objective function is found, usually by calculating gat a. number of test points 

in T. In the second section coarse estimate( s) of the local maximiser( s) are improved 

using a local search procedure. In practice these two phases may be divided into 

smaller parts. Also, the first phase need not be completed before the second is 

begun. 

Other methods include those which make use of a Lipschitz constant (66, 23]. 

These algorithms typically use the test points and the Lipschitz constant to construct 

a function which is an upper bound for g on T. Regions ofT in which the upper 

bound is lower than the highest known value of g can not contain a global maximiser, 

and future test points are not placed in such regions. For the multi-local optimisation 

problem, it is assumed that a Lipschitz constant L is not available. Even if such a 

constant were available, the dependence of g( x, t) on x would (in most cases) mean 

that either L was known as a function of x, or the same value of L would be used for 

all x. In the latter case L would be unnecessarily large for most values of x: when 

this is the case algorithms of the form sketched above are generally very inefficient. 

Such methods will not be referred to further. 

Several algorithms for global optimisation based on stochastic processes exist 

[68, 67, 96, 103]. These algorithms often use the stochastic process to model the 
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basic features of the objective function on a global scale. Typically g, or a part of g 

is treated as the sample path of the stochastic process. Using the stochastic process, 

the values taken by g at the test points yield information about the values g is likely 

to take at other points in T. This allows future test points to be chosen based on 

information generated by past test points. Although they are very efficient in the 

number of function evaluations, the ancillary computational costs of these algorithms 

tend to be high; therefore they are usually only of use when the objective function 

is expensive to compute. 

Probabilistic methods for global optimisation which do not model g with a 

stochastic process also exist. Rinnooy Kan, Tiiilnl.er, and Boender [89, 90, 88, 91] 

use a Bayesian approach. Va.rious unknowns are taken to be random variables, and 

are given a priori distributions. These unknowns are the number of strict local 

maximisers of g, and the Lebesgue measures of their regions of attraction. Here the 

regions of attra.ction are with respect to some unspecified local search algorithm. 

Specifically, for the number of local ma.ximisers, each positive integer is assumed 

to be equally probable. For a fixed number of local maximisers IAJ, the relative 

sizes of the regions of attraction are assumed to have a uniform distribution on the 

IAI-climensional unit simplex. 

The algorithm of Rinnooy Kan and Timmer [89, 90] calculates g a.t each of a set 

of randomly generated test points. To avoid unnecessary work, the lovvest 80 per 

cent of these test points are rejected. The rest are grouped into clusters. Rinnooy 

and Timmer give three different sets of criteria for forming the clusters. Only 

one, multi-level single linkage, will be sketched here. In multi-level single linkage, 

the clusters of test points are not formed explicitly. Rather each test point in a. 

cluster is linked upwards to some other test point in the same cluster a.t which g 

takes a greater value. There is a maximum limit on the length a link can have. 

For the highest test point in each cluster no such upward link is possible, and so 

these test points remain unlinked. A local search is performed for each unlinked 

point, yielding the local maximisers. The number of test points, the number of local 

maximisers, and the a priori distributions on the number and of the regions 

of attraction give the probability that a local maximiser has been missed. 

Unfortunately the algorithm of Rinnooy Kan et al is not directly applicable to 

the MOS subproblem. Rinnooy Kan et al require the function being maximised to 

be C 2 , whereas g is only guaranteed to be continuously differentiable. 
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3.2 Outline of the MOS Algorithm. 

The basic approach of the multi-dimensional MOS is as follows. Firstly, the topog­

raphy of g is explored by calculating the value g takes at each member of a set of test 

points. Using this information the test points are then grouped into clusters, where 

each cluster contains the test points in the 'region of attraction' of some (specific) 

local maximiser, and contains no other test points. A local search is then performed 

for each cluster. The initial point for each local search is chosen as the test point in 

the relevant cluster at which g takes the highest value. The term_ 'region of attrac­

tion' is used in a somewhat unconventional sense in this paragraph. It denotes a set 

of points in T for which a path of ascent exists from any such point to a specific local 

maximiser. These 'regions of attraction' are not unique, however they are required 

to be disjoint. 

The basic structure of the algorithm is very similar to that of Rinnooy Ka.n et 

al. The difference is that no a priori assumptions are made about the number or 

relative sizes of the 'regions of attraction.' The second, counterbalancing, difference 

is in the way the links are constructed. The method of Rinnooy Ka.n et al places 

equal faith in each link, irrespective of the length of the link, and of the difference in 

the values g takes at each end of the link. In the MOS algorithm, for each link these 

two values are used to assess the reliability of that link. From these assessments, 

stopping conditions may be formed. 

Each links reliability is assessed by modelling g by a. stochastic process a.long the 

line segment bet-ween the endpoints of the link. For convenience, the line segment 

between the endpoints of the link will be simply referred to as the link. The stochas­

tic process is a generalised Brownian motion process, and its probability distribution 

is completely determined by the length of the link, the average slope of g along the 

link, and by one other parameter (the variance parameter c) which contains in­

formation on how rapidly slope of g changes along the link. Using this generalised 

Brownian motion process, an estimate of the probability that g is strictly monotonic 

along the link is formed. This serves as an assessment of the link's reliability. 

The basic form of the algorithm is as follows: 

1. Until the required number of test points have been generated, perform each of 

these tasks in turn: 

(a) Generate two test points. 



43 

(b) Update the estimate c of c. 

2. For each test point y, search through the other test points to find the test 

point t which satisfies g(x, t) > g(x, y), and has the most reliable link from y 

to t. Record that y is linked upward tot. 

3. For each test point y which is not linked upward to a higher test point by a 

sufficiently reliable link, do a local search with y a.s the initial point. 

In the next section methods of generating test points are discussed. In section 4 

the details of the generalised Brownian motion process are examined, along with the 

method of assessing each link's reliability. 

3.3 Halton sequences. 

The sequence of test points {yi}g1 in T at which g is calculated in the first stage 

of the exploration phase 1nay be generated in many ways. Often the test points 

are taken as the intersections of a rectangular grid [50, 5:3], randomly generated 

[88, 89, 90, 91], or generated by a quasi-random sequence [70]. 

A grid, whilst covering the set T evenly, can be a very inefficient way of exploring 

g when g is nearly constant along some directions (and in particular those directions 

parallel to the axes). \Vhen g is of this form the global optimisation subproblem 

is effectively over the projection of T onto some subspace of RP. The projection 

of the grid onto this subspace may map many different grid points into very close 

proximity with one another. Each of these points then yields the same information 

about g, and so the efficiency of the grid is reduced markedly [92]. 

Randomly generated sets of points avoid this effect, however in low dimensions 

(:S: 6) they cover the space less uniformly than rectangular grids do [:3]. The unifor­

mity of the points {Yi} is especially important. The MOS must solve a succession 

of multi-local optimisation problems, where the objective function g (only) is differ­

ent for each problem. In the kth iteration of the SIP algorithm an approximation 

to f(x) is minimised, where linear approximations with respect to x of g(x, t) are 

constrained to be less than zero for all t in the finite set A (k) consisting of global 

maximizers, and other local maximizers of g( x(k), t) found by the MOS. The two 

aims of minimizing f, and of keeping g :::; 0 on T will almost always be in conflict 

with each other. If any large gaps exist in the pattern of test points used in each 
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iteration of the MOS it is quite possible that a global maximal value exceeding zero 

will appear in that gap, and remain undetected by the MOS. 

Another alternative to randomly generated points is to use a quasi-random se­

quence, such as the Halton sequences [45], or the LP7 sequences of Sobol [92]. These 

sequences cover T more uniformly than those generated randomly (see for example 

[70]). Here the non-uniformity of the sequence {yi} is measured by its discrepancy, 

which is defined as follows: 

1 N IJII 
DN = sup N ?= XJ(Y;)- -IT I , 

JE:J t=l 
(3.1) 

where :J is the class of subsets ofT which are Cartesian products of intervals along 

each of the edges of T, where XJ is the characteristic function of the set J, and 

where IJI is the Lebesgue measure of J in RP. 

The expected discrepancy of a random sequence of N points based on a uniform 

distribution is O(N-~ Jlog log(N)) with probability one, whereas the discrepancies 

for the Halton sequences, and the LPr sequences are both 0(1V-1 (log N)P). In 

contrast, the discrepancy of a j x j x ... x j grid in the p dimensional unit cube is at 

least j-1
. Using N = jP, this means the discrepancy of this grid is at least ?,!JV=l. 

This compares badly against randomly generated points and Halton sequences. The 

Halton and LP7 sequences are also less prone to the projection deficiency than 

rectangular grids; in particular no two different points from either type of sequence 

have any co-ordinate values the same. Halton sequences are particularly easy to 

define for any finite dimension, and extra points may be added to them without 

difficulty. For these reasons Halton sequences are used to effect the initial exploration 

of the objective function. 

Halton sequences are defined componentwise. First p pairwise coprime numbers 

1r1 , ... , 1r Pare chosen- frequently the smallest p primes are used. The ith component 

Yk(i) of the kth member of the sequence is generated by writing k in base 1ri as 

and then placing the digits a0 , ... , am in reverse order on the opposite side of the 

radix: 

Yk(i) = O.aoa1 ... am base 7rj. 
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This may be generalised slightly, and rewritten as 

Yk(i) (3.2) 

where [x] denotes the greatest integer not larger than x, and where 8i is a positive 

integer coprime with 7ri, and satisfying 8i < 1ri. Using 8i 1 for all i yields the usual 

form of the Halton sequence as above. 

From the definition it is clear that if a Halton sequence in p dimensions is pro­

jected onto a hyperplane perpendicular to some axis, then the projected sequence 

is also a Halton sequence. If T is a hyper-rectangle rather than a hyper-cube, then 

this may advantageous even if the regions of attraction of the local maximisers 

of g are approximately isotropic. If T is much shorter along some axes compared to 

others, then the exploration of g may, in essence, be a problem over some subspace 

of RP. Once again a grid with an equal number of layers of points along each axis 

may be very inefficient. The efficiency of the grid may be improved by reducing 

the number of layers along some of the axes, however with a general function it will 

be far from obvious along which axes (if any) these reductions can be made safely. 

vVith Halton sequences this sort of difficulty does not arise. 

Proposition 3.1 The Halton sequence genemted as pe1' (3.2) is dense in T. 

PROOF. 'i\Tithout loss of generality, take T to be the unit hypercube in this 

proof. Let 'H denote the set of test points generated by the Halton sequence, and 

let r E Use Be( r) to denote the open ball of radius c centred on r. There exists 

a hyper-rectangle 

Now, for each i, 

k Pi mod 1r~i vi 1, ... , p. (3.3) 

parameters 1r~; are mutually coprime, and so the existence of a k satisfying (3.3) 

is guaranteed by the Chinese remainder theorem. Thus 1t n Be ( r) is non-empty for 

all positive E, and all rET. Hence 'His dense in T. tfo 
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In practice only every second test point is chosen from the Halton sequence. This 

is a consequence of estimating the parameter c. This requires co-linear triples of test 

points which have the central point midway between the other two. With each test 

point generated using the Halton sequence, a second test point is generated to form 

an equi-spaced co-linear triple with a third, existing test point. 

In theory the Halton sequences are very uniform, as judged using the asymptotic 

discrepancy (3.1 ). However, as p is increased the number of test points required 

before (3.1) really becomes valid increases quickly. This imposes a practical upper 

limit on p of the order of 4 to 6 if reasonable computation times are required. 

3.4 The Stochastic Process. 

The stochastic process is used to model the behaviour of g along prospective links 

between test points. Specifically, under suitable assumptions it is shovvn that be­

tween any pair of test points t 0 , t 1 sufficiently close together, the component of \1 t9 

parallel to t1 - t0 evaluated along the line segment between t 0 and t 1 may be mod­

elled as a stochastic process based on a Brovvnian motion process (BiviP). Using this 

an (under)estimate of the probability that there exists a continuous path of ascent 

from t 0 to t 1 lying entirely in T is formed. This is done by estimating the probabil­

ity that the line segment between t 0 and t 1 is such a path based on the stochastic 

process model of \1 t9. It is shown that this estimate is a monotonically increasing 

function of a parameter known hereafter as the linkage parameter. It is not neces­

sary to assume that T is a hyper-rectangle in order to develop the stochastic process 

model. However, if T is not convex, then the line segment between two test points 

need not lie totally in T. In this case the stochastic model developed in this section 

is no longer directly applicable. 

Definition 3.2 Fo1' purposes herein} a Bmwnian lvfotion Process (BA1P) is taken 

to be a real function B(~; w, CJ) defined on the Cartesian product of the interval [0, £L 
and the pmbab£lity space (D, B, P). Here B is a CJ-algebra on DJ and P is a probability 

measure with 1'espect to B. The BldP has a root~ E [0,£] at which B(~;w,e) = m 

for all w E D. For each CJo E [0, CL B(~; w, CJo) is a Gaussian random variable on 

(D, B, P) with mean rn} and variance ciCJo - ~I· The non-negative constant c is 

referred to as the variance constant. For any CJ1 , CJ2 E [0, C] the covariance function 



of B is defined as follows: 

ifrh,a2;:::: e, 
ifal,a2:::; e, 
otherwise. 
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It is shown in [102] that any Gaussian stochastic process is completely determined 

(up to equivalence) by its mean and covariance functions. For a BMP as above, 

these are in turn determined by the three constants m, c, and e. 
It is useful to summarize the information on Ytg readily available to the MOS. 

1. V tg is continuous, but not necessarily differentiable. 

2. For any two points t 0 , t 1 at which g( x 0 ,.) has been calculated, the average 

value (t1 - t 0 )TYtg takes on the line segment between to and t 1 is known. 

3. At each known stationary point Ytg = 0. 

The stochastic process model is only used between pairs of points which are close 

neighbours. This term is defined as follows. 

Definition 3.3 Let ~v be the set of the ji1·st N test points used. Two test points 

t 0! t 1 are said to be close neighbours in the set of test points TN if and only if 

(3.4) 

The function Cmax(N) on the positive integers is reqztired to be positive! and mono­

tonically decreasing. It is also required to satisfy 

lim Cmax(N) = 0. e\ 
N-+oo 

The choice of the function Cmax(N) is a trade-off bet-ween reliability and efficiency. 

If €max is too large the algorithm may fail to distinguish between different peaks. 

If it is too small, then many unnecessary line searches may be performed. A good 

choice of emax will depend on how the test points are generated. 

Hence, froin this, and the known information about Ytg (or lack thereof) as 

listed above, the following assumption is made. 

Assum.ption 3.4 Let tl, to be close neighboztTS in TN! let e 
~ tl u = llt1-toll! ·len 

is independent of the values g takes at all points in ~v - { t 1 , t 0 }. e\ 

(3.5) 
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Similar simplifying assumptions occur in other works on global optimisation 

which use stochastic processes to model the objective function [89, 68]. Also it should 

be noted that no restriction is placed on the components of 'Vtg perpendicular to u, 

so test points slightly off the line joining t 0 and t 1 may take values wildly different 

from those values predicted by the BMP along the line segment between t0 and t1 . 

Now, as 'Vtg is only guaranteed to be continuous, and in the absence of other 

information on V t9, the following assumption is made. 

Assumption 3.5 FoT any paiT of close neighbouTs t0 , t 1 E TN 1 neitheT of which is 

a known stationaTy point1 and for all positive integers k: 

i E 0, ... , k- 1 (3.6) 

aTe indej?endent identically distTibuted mndom vaTiables wheTe u = ~ and 1 !!tl-tol! 1 

C = llt1- toll as before. "' 

For convenience, define h by 

- h = g(xo,tl)- g(xo, to) ::; 0. (3.7) 

Also, let Ao(w, O") be the stochastic process which is used to modeluT'Vtg(x0 , t 1 +em) 

on [0, C]. 

Theorem 3.6 Any stochastic p·rocess S'(w, a-) on [0, C] which satisfies assumption (3.5) 

is equivale·nt to the sum of a Brownian motion pmcess B(w, a-) Tooted at O" = 01 and 

a dependent mndom pTocess Do(w). All sample paths of Do are constant with respect 

toO". 

PROOF. The existence of a stochastic process satisfying assumption (3.5) is 

clear: one such process is a Brownian motion process rooted at 0. Let S'(w, O") be a 

stochastic process which satisfies assumption (3.5), and let 

B(w, a-)= S'(w, a-)- S'(w, 0). 

In effect S'(w, 0) is the random process D 0 • 

The compactness of T implies V t9 is uniformly continuous on T, and hence 

IIVtgll is bounded on T. Thus the random variables (3.6) have finite variances 

for all i and k. In the limit k ---+ oo the central limit theorem is applicable, and 
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B(a2 )- B(a1 ) is a normally distributed randmn variable with mean -~la2 - a 1 1, 

and variance equal to cla2 - a 1 1, where c 2: 0 is some constant. 

Let cov(a2 , a 1 ) be the covariance between uT'Vtg(x0 , to+a2u) and uT'Vtg(x0 , t 0 + 

a1u). Without loss of generality, assume a 2 2: a 1 2: 0. Clearly 

where B( a 2)-B( a1 ) and B( a 1 ) -B(O) are independent normally distributed random 

variables with variances cla2 - a 1 1, and cla1 - Ol respectively. Hence 

By theorem 2.1 in [102] any Gaussian process is completely determined by its 

mean and covariance functions. ·whence uT\!tg(;r0 , t 0 +au), a E [0,£] is modelled 

by the sum of the random variable S(LY', 0), and a Brownian Motion Process with its 

root at 0. "' 

Any stochastic process Sa= B +DB which usefully models 'Vtg, must satisfy the 

following concli tion: 

This is easily achieved by defining DB as 

h 1 e 
DB(w) = ---- r B(w, a) da, \:/wEn. e e J(J=o 

Because B is a BMP, it follows that DB is a Gaussian random variable. Up to 

equivalence, the process So is unique. This expression for So is not particularly 

useful. The dependence of DB and B makes working with them difficult. A more 

fruitful approach is to consider A+ D, where D(w) and A(w, a) are independent 

Gaussian random processes, and A is required to satisfy 

Because A and D are independent, it is easy to ensure that 

re 
Jo A+ D da = -h. 

A process of this type is constructed next. 
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Definition 3. 7 The process F(w, CJ) is chosen to be a Gaussian process on CJ E (0, £]. 

The mean ofF is zero. Its covariance function is defined as follows: 

1 ( 
COVF(a, b)= f Jo COVB(e;.)(a, b) de, \fa, bE (0, C]. (3.9) 

Here B( e;.) is a Brownian motion process with zero mean! variance constant CJ and 

rooted at e. By the Kolmogorov extension theorem {1 02}! this defines F(w, CJ) up to 

equivalence. -' 

The integral (3.9) can be viewed (loosely!) as smearing out a family of Brownian 

motion processes along [0, £]. The process F will be referred to as the Integrated 

Brownian Motion Process (IBMP). 

Proposition 3.8 The IBJI.1P F(w, CJ) as defined above is equivalent to the stochastic 

process: 

(:3.10) 

where B 0 and Be are two iruleperulent zem mean! unit variance Brownian motion 

processes rooted at 0. 

PROOF. Let a, bE (0, C], and assume for the moment that a ::::; b. Then 

1 1!'. COVF( a, b) = 0 COVE((;.)( a, b) de, 
{_ e=o 

where 

) { 
c.min(la- el, lb- el) if (a- e)(b- el 2 0 

COVB(e;.)( a, b = . 
0 otherwise. 

Hence 

COVF(a,b) = 1 [loa c(a- e) de+ 1b 0 de+ 1C c(e- b) de] 

c 
= 2C[a2 + gz- 2be + bz]. 

For a general a, and b, 

covF(a, b)= co [min(a2, b2) +min((£- a) 2, (C- b) 2)]. 
2c 

This is identical to the covariance function of 

The process (3.10), and the IBMP a.re both Gaussian, and possess identical means 

and covariance functions, and thus a.re equivalent processes (d. theorem 2.1 of 

[102]). • 
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Proposition 3.9 The stochastic process F(w, a) satisfies assumption (3.5) . . 

PROOF. Let at, a2, a3, a4 E [0, £], with a1 :::; a2 :::; a3 :::; a4. The independence 

of the random variables F(a4)- F(a3 ) and F(a2)- F(a1 ) follows immediately 

from the fact the the increments of both component Brownian motion processes are 

independent. 

Let a, b E [0, £], with a :::; b. The variances of the increments in the component 

Brownian motion processes over the interval [a, b] are respectively 

Hence the variance of F (b) - F (a) is c( b - a). This depends only on the length of 

the interval. Hence, provided a 4 - a3 = a 2 - a 1, F(w, a4)- F(v...•, a3) and F(w, a 2)­

F( w, a1 ) have identical variances. As the mean of F is zero, the result follows 

immediately. ~ 

·As yet the condition (3.8) remains unaddressed. It is shown next that the IBMP 

may be split into two independent Gaussian processes: the first process has all 

sample paths constants, and for the second the integral of every sample path from 

0 to e is zero. These two processes are referred to as the DC and AC parts of the 

IBMP respectively. 

Proposition 3.10 Let the IBiviP F(w, a) be defined on the probability space (0, B, P)) 

where P is a probability measure with respect to the a-algebra B on the set n. Then 

F(w, a)= A(w, a)+ D(w, a), 

where the sample paths D(w, .) of D ar'e constants Vw En) and 

fa!! A(w,a) da = 0 Vw En. 

PROOF. Using w 0 ( t) to denote an arbitrary integrable function, the operator 

T[wo(t)](s) =fa!! covF(s, t)w0 (t) dt (3.11) 

is clearly compact, and positive semi-definite. On noting F is Gaussian, Varberg's 

theorem (theorem 19.5 in [102]) yields 

00 

F(w, a)= L {i.: Zi(w)ei(a), 
i=O 
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where the Zi are independent Gaussian random variables with zero means, and 

unit variances. The Ai, and ei(t) are the eigenvalues and corresponding normalized 

eigenfunctions ofT. The eigenfunctions ofT form an orthonormal set with respect 

to the inner product 

<f,g> =foe f(s)g(s) ds. 

To prove F may be split into independent AC and DC parts it suffices to show that 

}e is an eigenfunction of T. Now 

re 1 
Jo COVF(s, t). Vf ds 

= ~e-% [foe [min(s2
, t 2

) + min((C- s) 2
, (C- t) 2

)] ds] 

c.e-~ = - 2 
2 

It may appear a little surprising that this integral is independent oft, however it is 

extremely· propitious. Using e0 (t) =If, it follows that 

(3.12) 

where foe ei(o-) drr = 0 ViE {1, 2, 3, ... }. -' 

The probability that the stochastic process model predicts that g is not strictly 

decreasing along the line segment from t 0 to t 1 is the probability that F is non­

negative at some point in [0, C]. It follovvs that this is equal to the probability that 

the maximum value Arnax of A(rr) is at least%, because the definition of h (3.7) fixes 

D(w) = -hC-1 , but does not affect A(w, rr). The next proposition gives an upper 

bound on this probability. 

Proposition 3.11 Given the IBMP F(w, rr) satisfies 

foe F( rr) drr = -h, (3.13) 

the p1'0bability that the maximal value Ama.x of A(w, rr) on the inteTval rr E [0, C] 

exceeds % is bounded above as follows: 
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PROOF. Rather than address P(Fmax ~ 0) directly, P(Amax ~ ~) is looked at. 

Proposition 3.10 implies Amax is independent of h. A Gaussian upper bound on 

P(Fmax ~ ~) which does not take into account (3.13) is constructed. It is shown 

that this bound is formed from convoluting two independent Gaussian quantities: 

P(D = 1) and an ·upper bound on P(Amax = ~ -1). 

The representation (3.10) of the IBMP is used, where for convenience, the two 

independent BMPs B0 and Be are defined collectively on the probability space 

(D.,B,P). Two upper bounds, J(w) and I<(w), on 

/ 

Fmax(w) = max F(w, a-) 
<TE[O,£] 

are constructed. These bounds are pointwise with respect tow (ie path-by-path). 

For the first bound, J ( w) is defined by 

Fmax(w) :::; fCC [max B0 (w, o-2
) + max Be(w, (C- o-) 2

)] = J(w) Vw E n. v 2e <TE[O,£] <TE[O,CJ 

An upper bound on P(J(w) ~ 1) as a function of 1 is now constructed. By the 

reflexion principle [102], for a BMP B( O") of zero mean, and rooted at O" = 0, 

P( max B(o-) ~ 1) = 2P(B(C) ~ 1) V1 ~ 0. 
<TE[O,CJ 

Hence, using * to denote convolution operator 

and letting U (!) denote the Heaviside step function, 

4 1 ~2 < e-2cC f 

-~ 

For the second bound K(w), the left and right halves of [0,£] are considered 

separately. Using 

L(w) = max B0 (w, o-2
) + max Be(w, (£- o-) 2

), 
<TE[O,fJ <TE[O,ej 

and 

R(w) = max B0 (w, o- 2
) + max Be(w, (£- a-) 2

), 
<TE[O,CJ <TE[O,fJ 
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it follows that 

Fmax(w):::; {£ max{L(w), R(w)} = K(w), 

which defines J{ ( w). Clearly 

P(K(w) = 1):::; P(L(w) = 1 and R(w):::; 1) + P(L(w):::; 1 and R(w) = 1) 

:::; P(L(w) = 1) + P(R(w) = 1). 

Now 

4 4 [ 1 2 4 2] < -.- e-CJ."t * e-CJ."t 
- 27r cC 

= ~{f;e-,:,,, 

with an identical estimate for P(R(w) = 1). Hence 

It is not necessarily the case that 

P ( F max ( W) = I) :S P ( J( ( W) = I), 

however 

P ( F max ( w) ;:: 1) :S P ( K ( w) ;:: 1) :S P ( J( ( w) ;:: 1) 

is always valid. A similar statement holds for J ( w). 

Consider the two bounds J(w) and K(w) separately. For K(w), 

K(w);:: Fmax(w) = D(w) + Amax(w) Vw En. 

Define H(w) as follows 

H(w) = K(w)- D(w) ;:: Amax(w) Vw En. (3.15) 

The probability distribution forD, and the upper bound P(I( = 1) for P(I( =!')in 

(3.14) are both Gaussian functions centred on 0, and hence their joint distribution 

is of the form 
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or equivalently, 

where n;1 , ••. , n;8 are constants. To show n;7 = 0, Restrict w to the subset of n on 

which Amax(w) = ry, where 'fl is non-negative, but otherwise arbitrary. A and D are 

independent, and so D may be chosen freely. Assume n; 7 -=f. 0. On fixing D =Do, 

an upper bound P(H = H0 ) on P(H = H0 ) is 

This implies that for any fixed H0 , 

However (3.15) implies the overestimate P(H 2: 'fl) of P(H 2: 'fl) exceeds P(Amax 2: "l) 

for all positive "l- a contradiction. So n;7 = 0, D and Hare independent, and have 

a joint distribution of the form 

Hence 

From (3.12), the variance of D is E£-. This, and the equation immediately above, 

yield 

- 8 11£4 1 2 24 P(H(w) = 1) = - -e-2' I1Cl 
y'2; lld ' 

and P(H(w) = 1) 2: P(Amax(w) =I) 

follows immediately from (3.15). 

By a similar reasoning using J ( w), 

4 /6 _l')'2_L 

P(Amax = 1) :S y"f;v Sde 2 see. 

Hence 

as required. • 
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The upper bound (3.16) on P(Amax;:::: ~) is a function of la2

c only. Using simple 

dimensional arguments it can be shown that P( Amax ;:::: ~) itself is also a function of 

la2
c only. Clearly P(Amax;:::: ~) is a function of h, .e, and c alone. Now by replacing 

A with 1A, where 1 > 0, it follows that 

,h h 
P( !Amax;:::: f)= P(Amax;:::: f), 

and also 

Hence h and c must appear only in the combination h:. To include .e, stretch A 

horizontally by replacing(} by/(}, where 1 > 0. This replaces e by ,e. In addition, 

replace h by 1h. This is needed to keep P(Amax ;:::: ~) unchanged. Finally, as 

the variance of the random variable A((j2 )- A((j1 ) (which equals ci(J2 - (}1 1) is 

unchanged by this scaling for any (}1, (}2 E [0, e], it follows that cis replaced by £. 
'Y 

Hence P(Amax;:::: ~)can contain h, e and c only in the combination la2

c. 

Clearly both P(Amax ;:::: %) and the upper bound (3.16) are monotonically de­

creasing functions of 
h2 

p = c £3c' (3.17) 

Hereafter p is referred to a.s the linkage parameter. 

3.4.1 Links and Clusters. 

Theoretically the MOS groups the test points into clusters, where every point in 

some cluster is (expected to) lie in the region of attraction of a specific stationary 

point of g( x 0 , . ) . Actually, it is not necessary to link a point y into a specific cluster 

- it is sufficient to observe that a link of the required reliability exists from y to 

some higher test point. Once this has been established y is, for the moment at least, 

of no further interest as a starting point for the local search procedure. 

There are two situations which need to be considered when making a link, re­

sulting in two different linking criteria.. The first is when neither end-point of the 

link is a known stationary point. In this case the linkage parameter is as described 

above. The second case is when at least one end-point is a. known stationary point. 

If the lower of the two end-points is a. known stationary point then no link is made. 

Otherwise only the upper end-point is a known stationary point. In this case the 

the results in proposition (3.11) are no longer applicable. Moreover, a.s the following 
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example shows, the linkage parameter (3.17) can not be applied meaningfully to 

this case. Consider g = -t2 , where t E [0, 1], and let the end-points of the link be 

0 and t. An elementary calculation shows that the linkage parameter r = t.c-1 . 

As t --t 0, the reliability of the link between t and 0 goes to zero. This difficulty 

is circumvented by automatically linking to a stationary point Ys any test point y 

which lies in a fixed neighbourhood of Ys, and for which g(xo,y) ~ g(xo,Ys)· 

The cases involving stationary points can arise only if some local searches are 

performed before the exploration phase is completed, and these stationary points 

are included in the list of test points. 

3.4.2 Esthnation of c. 

Even without explicit knowledge of c, the linkage parameter provides a means of 

ordering the links betvveen test points according to the perceived reliability of each 

link. This assumes that the same value of c is used for each link, irrespective of 

its orientation, or position. If c varies with the link's orientation or position, then 

an explicit estimate of it for each link is required if the links are to be ranked in 

order of their perceived reliabilities. Possession of an estimate c of c allows the 

linkage parameter to be calculated explicitly, thereby giving an absolute measure 

of perceived reliability to each link. From this a stopping rule for the MOS can 

be developed. The reliabilities of the solutions generated by the MOS for different 

iterations of the SIP algorithm can also be compared. 

The IBMP models uT\1 g along the line segment between two neighbouring test 

points. As the mean of the IBMP for any particular link is the average value of 

uTV g on that link, a third point on the link is needed to provide information about 

c. vVhen g is calculated at a test point t 0 generated by the Halton sequence, the 

nearest previous test point t 1 to t 0 is found. The value of g at a third point t 2 is 

calculated, where t 2 lies on the line through t 0 and t 1 . The point t 2 is chosen as the 

first member of { 2to- t 1 , ~ ( t 0 + t 1 )} to lie in T. The three points to, t1 , t2 are equally 

spaced. From now on assume it is the mid-point of the interval [to, t 2]. 

Proposition 3.12 Let t0 , t 1 and t 2 be three equally spaced co-linear test poi·nts, 

where t1 is the centrepoint, and where 11t2 -toll = 2£. Let the IBMP model of the 

diTect·ional de·rivative of g along [to, t 2] have va1·iance c, and let the random variable 

9e(tl) denote the value of g(t1 ) predicted by the IB.MP model of uT\lg on [t0 , t 2]. 
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Then the probability distribution of 9e ( t 1 ) is Gaussian, with 

g(t2) + g(to) 1 
mean = 

2 
, and variance = 6ce3

. 

PROOF. Knowledge of g(t0 ) and g(t2) excludes all sample paths of F except 

those which have their mean value on [0, 2R] equal to ic[g(t2) - g(to)]. Because 

{2£ 
Jo A(w,a) dO"= 0 Vw En, 

it follows that 

D( ) 
= g(t2) - g(to) 

w 2e · 

At each value of a in [0, 2e] the means of F and D are both zero. This implies the 

mean of A is also zero at each such value of a. Hence the independence of A and D 

implies that 

mean(ge) = g(to) +lac D(w) dO"=~ (g(t2) + g(io)). 

As D(w) is fixed by g(t0 ) and g(t2), the variance of 9e is entirely due to the AC 

part of F. The independence of A and D implies that the value at which D is fixed 

does not affect the variance of 9e· For simplicity, let g(to) = g(t2). 

The IBMP F(w, a) on a E [0, 2e] ha.s the representation 

The approach taken is to find the joint probability distribution of the two Gaussian 

random variables 

and then impose the condition g(t2) = g(to) to obtain the variance of 9e(t1 ). As Eo 

and Eu are independent they may be considered separately. 

Using E to denote expectation, the variance of G10 arising from E 0 is as follows: 

:eE [fe:o Eo( e) d~ .J:o Eo(l) a,] 
= ce 1 [ ( Eo(w,e) d~. ( E0 (w,12

) d1] P(dw) 
4 wen h=o ~=O 

= :e ~e:o J:o E [Eo(e)Eo(/2
)] d~ a, 
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c re 1e d3 
= 4f le=o •=0 min(e' 12) ae a,= 24" 

For the variance of G21 from Eo: 

Finally for the covariance between G10 and G21 from Eo 

Hence the covariance matrix for G10 and G21 is 

V=-d
3 

( :3 1 ) 
6 1 3 ' 

and G = [G10 , G21 ] has the joint probability density function 

Now g(t0 ) = g(t2 ), which implies G10 = -G21 (= 77 say), and r7 has the probability 

density function 

For each test point ti from the Halton sequence a co-linear triple tiL, iilvJ, tiR is 

formed as above, where the random variable 

has a Gaussian distribution with zero mean and variance c. Hence the best estimator 

c of cis 

(3.18) 

To calculate c, co-linear triples of equally spaced test points are needed. If a 

Halton sequence is used, then forming these triples means that only every second 

test point is generated using the Halton sequence. ·with a grid, estimating c would 

present no difficulty provided the grid had at least 3 points along each edge. 
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The Algorithm. 

1. Calculate g( x 0 , t) at N0 test points generated using the Halton sequence. If 

the estimate c of c is to be improved, then as each test point y is generated do 

the following: 

(a) Locate the nearest existing test point Yn to y. 

(b) If 2y ..:_ Yn E T then calculate g( xo,.) at 2y- Yn, otherwise calculate g( x0 , • ) 

at ~(y + Yn)· 

(c) Update c using this new co-linear triple of test points. 

2. For each test point, if an upward link exists for that point, then determine 

whether or not that link is still valid. If the link is invalid, then delete it. 

3. For each point not linked upward, find the nearest neighbours of that test 

point. Calculate the linkage parameter for each of the nearest neighbours of 

the test point. Of the nearest neighbours at which g takes a value greater than 

that at y, choose the one for which the linkage parameter is greatest. Link 

y upwards to that point. If no such nearest neighbour exists, then y is not 

linked upwards. 

4. Stopping criteria. If the maximum number of test points have been used, or 

if the average value of the linkage param_eter over the links is sufficiently high 

and a minimum number of test points have been used, then do the next item. 

Otherwise increase N0 and go to 1. 

5. For each unlinked point do a local search, using that point as the initial point. 

The problem of locating the nearest neighbours of a test point occurs- twice in 

the above algorithm. For a sequence of points such as the Halton sequence this 

problem is by no means trivial. An efficient solution to this problem when p is not 

too large (:::::; 5 or 6 say) has been given by Bentley et al. [12]. This algorithm is 

discussed in some detail in chapter 4. 

It is desirable that the local search procedure used to refine the estimates of the 

local maximisers be capable of superlinear convergence on problems which satisfy 

the pertinent conditions. As g is only guaranteed to be once continuously differ­

entiable, the obvious candidate is a quasi-Newton algorithm. For the purpose of 
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demonstrating convergence, it is assumed that the local search procedure satisfies 

the following assumption. 

Assumption 3.13 For all t 0 E T 1 if a local search is performed with to as the initial 

point1 generating the sequence of iterates t 1 1 t 2 , ••• 1 then for each n 2:: 01 there exists 

a path from tn to tn+l 1 lying entirely in T 1 such that g(xo, .) is strictly increasing 

along that path. 4t 

This assumption is needed to show that the MOS will always eventually find a 

finite subset ofT satisfying assumption 2.8. 

3.5 Convergence. 

The purpose of the MOS is to find a set of points S (or more accurately approxi­

mations thereto) which satisfies assumption 2.8, which is reproduced here for con-

vernence. 

At each point x 0 at which the global optimisation sub-algorithm is used, 

it finds every point in f(x 0 ). Also, each x 1 E Rn has a neighbourhood 

JV(x 1 ), such that if x0 E .N(x1 ), then the multi-local optimisation subal­

gorithm finds some extension (evaluated at x 0 ) of each member of f(x 1). 

The set f(x 0 ) of global maximizers of g(x0 , t) presents no difficulty- assumption 2.3 

implies that f(x 0 ) is finite, and all members of r(x0 ) are required for the solution 

set. The extensions of r(x1) for x0 near x1 present a more complex case. If x0 

is sufficiently near x 1 , then by proposition 2.4, the extensions of the members of 

r(x1), evaluated at x0 , lie in the interior of the union of a finite number of disjoint 

closed balls { Bi( e:1)}{=1 , each of radius E1 , where E1 > 0. Each such ball is centred 

on a member of f( x 1 ), and all of the distances between the centres of these balls 

are at least 4e:1 . The set of extensions of any T E f(x 1 ) is the full set of global 

maximizers of g( x0 , . ) over the closed ball centred on T. Also, by setting C = T 

in proposition 2.4, for x 0 sufficiently close to x 1 , any value g(x0 , .) takes at any 

extension (evaluated at x0 ) of any member of f( x1 ) is greater than the supremum 

of g(x0 ,.) on T- u{=1 Bi( E1). 

The problem of finding some extension of each member of r( x1 ), evaluated at x0 , 

is equivalent to finding a global maximiser (provided one exists) of g( x0 ,.) over each 

member of a set of open balls, where each open ball is of radius e:1 , and collectively 
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these balls form a finite covering of T. Unfortunately the precise value of c1 will 

not be known. However if this is true for some value 8k at the kth evaluation of g, 

and 8k -+ 0 as k -+ oo, then the required c1 will eventually be achieved. This will 

also ensure that for sufficiently large k, each member of f(x 0 ) will be adequately 

approximated. Under these conditions the algorithm will ultimately provide a se­

quence of finite sets of points which contain increasingly accurate approximations to 

a set of points which collectively are a solution set to the multi-local optimisation 

subproblem. 

This situation is no worse than that which occurs with a general global opti­

misation problem. For that type of problem, although the approxim_ate solution 

ultimately converges to the global maxin1.al value, on terminating after a finite time 

the possible existence of high narrow peaks in the objective function means the pos­

sibility that the calculated solution is completely wrong ahvays exists. To ensure 

any such peaks are detected, a global optimisation algorithm must satisfy the same 

conditions required of the MOS algorithm, as listed in the previous paragraph. 

Theorem 3.14 Given: 

1. The .sequence of test points is dense in T. 

2. The local search procedure WJed is one of strict ascent} as described in assump­

tion (3.13). 

Then} for any positive EJ in a finite number of steps the NIOS will find a finite set of 

points containin,g approximations to some finite set satisfying assumption 2.8} where 

the eiT01' in each approximation is at most c. 

PROOF. From assumption 2.:3 r( Xo) is finite. Proposition 2.4 implies that the 

set of extensions of f(x 1 ) evaluated at x 0 consist of lf(x1 )1 disjoint sets Si, each of 

which is a subset of some Bi( c1 ), where the relation between the Si's and Bi's is 

one to one. Again by proposition 2.4, each Si is closed, and is the full set of global 

maximizers of g(x0 , .) over Bi. Using 

the class C of sets {51, ... , S k, { rd, ... , { Tj}} are all closed and disjoint (assuming 

possible repetitions of members of the 5/s amongst the { ri} 's have been removed). 

Hence :leo > 0 such that the minimum distance between any two points in different 
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members of C is at least 5E0 apart. Let S E C. Define the 8 neighbourhood of S as 

follows: 

Ns(S) = {t E T: :ls E S such that lit- sll < 8}, 

and let No(S) denote the closure of Ns(S). For some sufficiently small positive 8 

and E, with 8 < E < Eo, 

_max g(xo, t) < g(xo, s) where s E S. 
tEN2e(S)-Na(S) 

Now g(x 0 , .) is Lipschitz on T, hence for some positive 8, where 8 < E, 

Vt E Ns(S), Vs E JV;;.(S)- Ne(S), g(xo, t) > g(xo, s ). 

As Ns( S) has a strictly positive Lebesgue measure in RP, for all sufficiently large 

N, TN n Ns( s) will be non-empty, and also y'P.€max(N) < E. 

Let tm(N) E TN n Ns(S) be a test point at which g(x0 , .) achieves its maximum 

on ~v n Ns(S). Then no upward link exists from tm(N) to any point in TN. Hence 

a local search is performed, with tm(N) as the initial point. Given the local search 

satisfies assumption (3.1:3), it will converge to a point in Ne(S) at which g(x0 , .) 

takes a value not less than g(xo,tm(N)). 

Because Tis dense in T, g(xo,tm(N))--+ g(x0 ,s) as N--+ oo, where s E S. 

Hence, for sufficiently large N, a terminal point of some local search will approximate 

arbitrarily well some mem.ber of 5'. As C is finite, it is clear that this result holds 

for all members of C when N is sufficiently large. .._ 

3.6 Other Remarks. 

The linking criterion based on the stochastic process is of a purely local character. 

It is based only on the perceived ignomnce of the algorithm's knowledge of g in 

regions between neighbouring test points. Accordingly its use does not imply any 

tacit assumptions concerning any a priori statistics about g as a whole. Also, in 

contrast to the algorithms of Rinnooy Kan et a.l. [89, 90], it does not require the test 

points to be drawn from any particular distribution. Randomly generated sets of 

points, rectangular, or polar grids, or other sequences of test points could equally 

well be used in place of a Halton sequence. 

The lack of dependence on the distribution of the test points permits some parts 

ofT to be explored more fully than others without great inconvenience. For example, 
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parts of T on which g takes its greatest values could (and perhaps should!) be 

explored more thoroughly than other parts of T. This could be achieved simply 

by placing more test points in such regions. If this results in a distribution of test 

points that is far from even, then the nearest neighbour subalgorithm of Bentley et 

al [12] will be less efficient. In this event, the loss of efficiency may be reduced in 

the manner described in Bentley et al. Another tactic is to increase the reliability 

required of the links between test points at which g takes its greater values. 

Alternatively, the algorithm may be used more than once. On the first run 

the local maximisers of g over T are sought. On each subsequent run the local 

maximisers of g on some convex subset Tsub ofT are sought, where Tsub is a region 

on which g takes its greater values. The lack of requirements on the structure of the 

sequence of test points means that any test points in Tsub generated in previous runs 

of the algorithm may be included with those used to explore Tsub without difficulty. 

A comrnon implementation of a grid based algorithm is along the following lines. 

The nearest neighbours of a test point y are usually taken to be other grid points 

which can be obtained by displacing y along each axis by at most the distance 

between adjacent layers of points along that axis. If the value g takes at a grid point 

y is not less than that taken by g at each nearest neighbour of y then a local search 

is performed with y as the initial point. If there are two adjacent local maximisers 

at which g takes similar values, then the spacing between adjacent layers of grid 

points would have to be less than half the spacing between the local maximisers if 

they are to be reliably resolved. The use of a linking process would im.prove the 

algorithms ability to resolve adjacent local maximisers, possibly at the expense of 

extra local searches elsewhere. 

One advantage of a rectangular grid is that the problem of finding the nearest 

neighbour to a test point becomes trivial. Halton sequences have much less structure 

than grids. This makes the problem of finding the nearest neighbours of a test point 

more substantial. A good algorithm for this has been developed by Bentley et 

al. [12], however this algorithm is exponential in p. This places an upper limit of 

about 4 to 6 on the number of dimensions of T if the algorithm is to be run in a 

reasonable length of time. This limitation is not peculiar to the Halton sequences: it 

also occurs for randomly generated sequences, and indeed for any sequence lacking 

sufficient structure to support a method for finding the nearest neighbours of a test 

point which is faster than that of Bentley et al. [12]. 



65 

The MOS algorithm closely resembles the algorithms of Rinnooy Kan and Tim­

mer [89, 90]. The latter are very efficient in the number of function evaluations 

required to obtain the global maximum. The statistic Rinnooy Kan et al [89, 90) 

use for their stopping condition is a function only of the number of test points used, 

and the number of local maximisers found. Accordingly, the number of test points 

used does not depend on p. In spite of this fact their algorithm is exponential in 

p. This is a consequence of using the nearest neighbour algorithm of Bentley et 

al. [12]. One could attempt to avoid this by, say, attempting links between all pairs 

of points, but then the work done is then proportional to the square of the number 

of test points. When the dimension of T is not too large, using the algorithm of 

Bentley et al is the lesser of tvvo evils. Similar remarks can be made about the MOS 

algorithm: the stopping conditions do not involve p explicitly, but the same nearest 

neighbour algorithm is used. 

In order to treat each dimension equally, rectangular grid-based algorithms are 

inherently exponential in p, whereas the MOS algorithm, and the algorithms of 

Rinnooy Kan et al are not. For a grid based algorithm the work required to find 

the nearest neighbours of a single test point can vary from being linear in p to 

exponential in p depending on how the set of nearest neighbours of a test point is 

defined. In contrast, for the MOS algorithm, and the algorithms of Rinnooy Kan et 

al, the nearest neighbour subproblem appears to be either exponential in p, or the 

computational effort required of the MOS algorithm is not linear in the number of 

test points generated. 
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Chapter 4 

IMPLEMENTATION OF THE 

ALGORITHM. 

The in1plen1entation of the algorithm is described in this chapter. The description 

is in three parts. They are: the main SIP algorithm, the algorithm for solving the 

multi-dim_ensionalmulti-local optimisation problem, and the algorithm for solving 

the one dimensional multi-loca.l optimisation problem. 

4.1 Implementation of the SIP algorithm. 

In this section a step-by-step description of the algorithm used to generate the 

numerical results is given. In this section the MOS algorithms are treated as 'black 

boxes' - calls to these algorithms are simply listed without qualification. The 

multi-dimensional, and one dimensional MOS algorithms are respectively detailed 

in sections 2 and 3 of this chapter. 

Before listing the SIP algorithm, some variables and parameters are described. 

The parameter Kminstep is the minimum length of the difference between consecutive 

iterates which is interpreted as a non-zero step; any step shorter than this immedi­

ately stops the algorithm. The parameter Kgradient is the maximum residual of the 

first order KKT conditions permissible at a point which is regarded as a solution of 

the SIP. Finally, Ktheta is the largest magnitude a constraint's residual is permitted 

to take when tha.t constraint is regarded as active, but not violated. 

Provision is made for existence of simple bounds on x. These bounds are 
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represented as follows: 

The subscripts denote the ith element of the appropriate vector. If Xi is not bounded 

above, then Ui is set to +oo. Similarly, if Xi is unbounded below, then li is set to 

-oo. 

In some runs of the algorithm, different values than those listed below have been 

used for some parameters. In particular, Ocrossover and Ocap were altered in some 

problems. The details of these changes are listed in chapter 5. 

The SIP Algoritlun. 

1. INITIALIZATION. 

f.l( 1) = 0.1, v( 1) = 1.0, k = 1, 

,6,. (1 ) = 2, f3 = 0.5, p = 0.33, 

Bcrossover = 1, Bcap = 1, 

K.1 = 1.2, K,2 = 1.5, K.3 = 1.2, K4 = 4, 

h:minstep = 1 0 -S , 

/\:gradient = 10-S, 

2. SET UP THE FIRST ITERATION. 

Using the appropriate MOS algorithm, find the global maximisers of the con­

straint function at the initial point and also find as many local maximisers as 

is practical; this yields the set A (l). Using this 8(1) is calculated. 

3. CALCULATE THE LAGRANGE MULTIPLIERS. 

Estimates of the optimal Lagrange multipliers are found by solving the ap­

proximating L00 QP without a trust region. That is by solving 

subject to the constraints: 
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( 2: 0, 

and also subject to the following simple bounds on s: 

where; is a large positive number. 

4. SOLVE THE L00 QP. 

The search direction s(k) is chosen as the solution to the L 00 QP 

( 4.1) 

subject to the constraints: 

(4.2) 

( 2: 0, (4.3) 

and also subject to the following simple bounds on s: 

Here the subscript i denotes the ith component of the relevant vector. If 

()(k) 2: Bcap then the following bound (referred to as the capping constraint) is 

included in the list of L00 QP constraints: 

( 4.5) 

5. WHEN THE CAPPING CONSTRAINT IS ACTIVE. 

If the capping constraint's Lagrange multiplier e indicates that the capping 

constraint is active, then the penalty param_eters are adjusted as described in 

step 11, except that quantity 11,\(k)lh is replaced by p(k) + v(k)(J(k) + 1e1. 
The algorithm then proceeds to step 4. 

6. STOPPING CONDITIONS. 

If the following two conditions are satisfied 

Vf(x(k))- 2.: ,X(k)Vxg(x(kl,t) 
tEr(x(k)) 

< Kgradient 

2 
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and (}(k) ::=.:; K:theta 

then go to step 12. For computational purposes, any element t0 of A(k) 1s 

regarded as a member of r(x(k)) if 

g( X(k), to) ;:::: (}(k) - K:theta· 

7. ATTEMPT THE PROPOSED STEP. 

Determine if the prospective new iterate x(k) + s(k) satisfies the sufficient de­

scent condition: 

If the capping constraint vvas active at the LcoQP's solution in step 4, then 

the extra condition 

(} ( x(k) + 8 (k)) ::=.:; (}(k) 

must also hold for :1Yl + s(k) to be accepted as the next iterate. If these 

conditions hold, then set x(k+l) = x(k) + s(k), and go to step 10. 

8. CALCULATE THE MARATOS EFFECT CORRECTION VECTOR. 

(a) Let Q(k) denote the subset of A(k) which gives rise to the constraints which 

are active at the solution of the Leo QP listed in step 4. Let A~~b denote 

the subset ofT selected by the multi-local optimization suba.lgorithm at 

the point x(k) + s(k). For each member w of Q(k), find the closest point in 

A~~b tow. Call this point tsoc(w). 

(b) If Q(k) is empty, or if two or more points in Q(k) have the same closest 

point in A~~b then set c(k) = 0, and go to step 9. 

(c) Solve the following QP for c(k): 

and such that: 
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9. PERFORM THE ARC SEARCH. 

Consider successive values of the sequence 1, (3, (3 2
, (33

, • •• as trial values of a. 

If c(k) 0 then omit the first member of the sequence, otherwise start with 

a = 1. Accept the first trial value of a which satisfies the following conditions. 

The condition for acceptance of x(k) + q(k)( a) as x(k+l) is that 

If the capping constraint was active at the L00 QP's solution in step 4, then 

the extra condition 

e (x(k) + q(k)(a)) ::; (}(k) 

must a.lso hold for x(k) + q(k)( a) to be accepted as the next iterate. 

After a satisfactory value of a has been found, set 

10. ALTER THE TRUST REGION SIZE. 

If the trust region is used, set 

( 4.6) 

otherwise use 6. (k+l) 6. (l). 
' 

11. UPDATE J-l, v AND H. 

If. o<kJ 0 h (k+ll 1 (k) l d t d' t th < crossover t en set v equa to v , anc up a e IL accor mg o e 

following rule: 

otherwise set IL(k+l) = J-l(k). 

If O(k) ?: Bcrossover then set J-l(k+l) equal to fl(k), and update v by the following 

rule: 

If p(k) + v(k)(}(k) :::; n;3JI.A(k)llll then 

adjust v(k+l) to satisfy p(k+l) + v(kH)o(k) = n;411.X(k)lh, 

otherwise set v(k+l) (k) v . 
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The matrix H(k) is updated using the BFGS update to yield H(k+l). If this 

update results in a loss of positive definiteness, then the update is not per­

formed. Actually the Choleski factors of the H matrices are updated and 

stored, rather than the matrices themselves. The algorithm used to update 

the Choleski factors is that listed in (35]. 

If either penalty parameter has been changed, recalculate <fy(k) with the new 

penalty parameter values. 

12. STOPPING CONDITIONS. 

If either the maximum number of iterations has been reached, or the maxi­

mum nun1.ber of MOS sub-algorithm calls has been reached, or the stopping 

conditions listed in step 6 have been satisfied, or 

II X(k+l) _ X(k) II < c· . 
• • 2 _ '"mmstep 

then halt. Othervvise increment k by 1, and go to step :3. 

The QP subproblems in steps 3, 4, and 8, were solved using the NAG subroutine 

E04NCF. E04NCF is a. two phase primal quadratic programming subroutine for 

convex quadratic programmes. 

The simple bounds on x are not incorporated into 0( x). They are treated as rigid 

constraints in the sense that violations of them are not permitted. Consequently the 

initial point must satisfy the simple bounds, but need not satisfy the semi-infinite 

constraint. The simple bounds are imposed on the QPs used to generate s(k), c(k), 

and the Lagrange multipliers. This ensures every iterate generated satisfies the 

simple bounds. Violations of the simple bounds arising from round-off errors are 

quashed by resetting each offending element of x(k) to its pertinent bounding value. 

If the trust region ( 4.6) is not used then the second order Lagrange multiplier 

estimates generated by solving each L00 QP in step 4 can be carried over into the 

following iteration, and used there. In this case step 3 is redundant, and is omitted. 

If the trust region ( 4.6) is used then this is no longer possible, and Lagrange multi­

plier estimates must be obtained elsewhere. To furnish these estimates, the L00 QP 

is solved twice at each iteration (in steps 3 and 4). First, the L 00 QP is solved with 
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the trust region absent, thereby yielding the Lagrange multiplier estimates. In prac­

tice large bounds were used when solving the L00 QPfor the Lagrange multiplier 

estimates - this avoids any potential problems with overflows when H is nearly 

singular. The L00 QP is then solved with the trust region in place, and yields the 

search direction s(k). 

4.2 The Multi-Dimensional MOS Sub-algorithm. 

In this section the algorithm used to find the global and local maximisers of g(x, .) 

when the dimension of T is greater than one is described. The general features of 

the algorithm are as follows. Firstly the algorithm explores the constraint function 

by calculating its values at a set of test points. Each of these test points is regarded 

as a potential starting point for the local search subroutine. To avoid excessive work 

the algorithm then attempts to find pairs of test points which lie in the region of 

attraction of the same local maximiser. This is clone by finding pairs of points for 

which a continuous path of ascent from the lower to the higher is deemed likely to 

exist. The likelihood of such a path existing between a pair of test points is estimated 

using the IBMP. If this likelihood is sufficiently great, the a path of ascent linking 

the two points is assumed to exist, otherwise it is assumed that no such path exists. 

·with such pairs it is not necessary to apply the local search algorithm to the lower 

point. The lower of the pair of points is said to be linked to the higher. This process 

reduces the number of local searches dramatically. 

After performing this linking process, some test points will not have been linked 

to any higher test point. For each test point ti not linked to a higher test point, one 

step of the local search procedure is performed with ti as the initial point, yielding 

the point t+. Without using any information gained in the step from ti to t+, one 

step of the local search procedure is performed with t+ as the initial point, yielding 

the point t++· The test point ti is linked to t+, and t+ is linked to t++· The 

algorithm then tries to make a link from t++ to any nearby higher test point. If this 

is not successful, then a full local search is done with t++ as the initial point. 

The test points are examined in pairs when forming the links. If every pair of 

test points is considered then the work performed is proportional to the square of 

the number of test points. V/hen the number of test points is large this is far too 

expensive. Fortunately, if two points are far apart then no link between them is 
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permitted. Therefore, when forming links from a test point it is only necessary to 

consider neighbouring test points. To this end T is divided up into cells. Here the 

fact that T is the Cartesian product of intervals is used explicitly. If the maximum 

link length (measured using the infinity norm) is Cmax, then each component interval 

[ai, .8£] of the Cartesian product yielding Tis divided up into subintervals of length 

2fmax· These subintervals are chosen so that the midpoint of one of them coincides 

with the midpoint of the original interval [ai, ,Bi]· The Cartesian products of these 

subintervals form the cells. These cells are referred to as the storage cells. The test 

points are 'stored' in these cells by means of a linked list, the first point in each cell 

being recorded separately. 

A second set of cells is also used. These are constructed in an otherwise identical 

manner to the set of storage cells, except for one detail: for each component interval 

[a;, ,6;] of the Cartesian product forming T, two subintervals have their endpoints 

equal to the midpoint of [a;, ,Bi]. This difference places the corners of each cell in 

either set of cells on the centrepoints of the cells in the other set of cells. 

To find the close neighbours of a test point t 0 , the selection cell C in which the 

test point lies is found. Every test point within Cmax of t 0 (in the infinity norm) will 

lie in one of the 2P storage cells ·which has a non-empty intersection with C. It is not 

necessary to record a list of points in each selection cell; these cells serve merely as 

a convenient way of choosing which storage cells should be searched. 

As the number of test points used increases, the cell structure is periodically 

updated. As described in Bentley et al. [12], the cell structure is changed if, and 

only if the number of test points N equals 2m .Nrecell, for some positive integer m. 

Here Nrecell is the smallest number of test points the MOS sub-algorithm is permitted 

to generate. This strategy ensures the average number of operations performed in 

placing points in cells is 0(1) per test point. It can be seen that the computational 

effort of placing each test point in the cell structure is independent of the total 

number of test points used. So the total cost of performing the first m updates of 

the cell structure is 0([2m + 2m-l + · · · + 1).Nrecen) = 0(2m+1 .Nrecen). The cost of 

placing every test point in the cell structure for the first time, which is not part of 

updating the cell structure, is also 0(2m .Nrecen). The sum of these costs, averaged 

over the number of test points, is clearly 0(1) per test point. 

Before listing the multi-local optimisation algorithm, some relevant parameters 

are described. The variable Nrecell is used to record the number at which the next 
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re-celling is to occur. Also, N denotes the current number of test points, and Nmax 

is the maximum number of test points excluding those generated in step 7. 

For a test point ti, the value the linkage parameter r takes for the most reliable 

upward link from ti is denoted by r(i). 

The maximum length a link is permitted to be is measured using the infinity 

norm, and is denoted by the parameter Rmax· If the length of a link is very short, 

that is at most 1\:shortlink.emax, then the lower of the two endpoints is automatically 

linked to the higher with linkage parameter value of Pmax· The parameter 1\:statpt is 

the closest two approximations to stationary points may be without being regarded 

as approximations to the same stationary point. The parameter n:unk is the minimum 

value p.c-1 may take for a link if that link is to be regarded as reliable. The value 

1\:meanlinkC is the minimum for the average of p( i) over all test points before the 

algorithm will stop generating more test points. 

An upper limit on each &0( i) was imposed, for the following reason. On a suffi­

ciently small scale any C 1 function is approximately linear. In such a case, h ""' £, 

for a link of length I! and change in g of h along that link. Hence, as r ""' h2£-3
, 

it follovvs that &J "' e-1
. Now some pairs of test points may be very close together, 

which could lead to extremely high values of the linkage parameter p( i) for links 

between such pairs of points. Also, the average value of p( i) over the links is used 

in the stopping conditions. The presence of extremely high values of p( i) for some 

links would render the average value of &0( i) meaningless as an indicator of the av­

erage reliability of the links. Hence a maximum value (hereafter Pmax) on p( i) was 

imposed for each link. 

The Multi-Din1ensional MOS sub-algorithm. 

1. INITIALIZATION. 

N = 0 Nrecell = 10z} Nmax = 2400 

Pmax = 400 

1\:shortlink = 0.01 1\:statpt = 0.001 

/\:link = 2.5 1\:meanlink = 6.25 

A=0. 
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2. FIND NEW POSITIONS OF KNOWN STATIONARY POINTS. 

For each stationary point t found by the previous multi-local optimisation, 

a local search is performed, with t as the initial point. Any such stationary 

points found by these local searches are placed in the set of stationary points 

A, but are not put in the list of test points. 

3. CONSTRUCT THE CELL STRUCTURE. 

Set 

.e _ 1 P ln( Nrecell) 
max - 2 Nreceuln ( 2) 

Set up the linked lists for the storage cells, and re-cell all existing test points. 

4. GENERATE THE TEST POINTS. 

(a) Generate a Halton pointy, calculate g(x, y), and set N = N + 1. 

(b) Place this point into the storage cell structure. 

(c) Find the search cell in which the test point y lies, and then find the 

storage cells which intersect that search cell. 

(d) Search through these storage cells for the closest (in the 2-norm) existing 

test point t to y. 

(e) If the point 2y - t lies in T, then choose it as the third point tthird· 

Otherwise, choose ~ (y + t). Put ithird into the cell structure, calculate 

g(x, tthird), and set N = N + 1. 

(f) Update the estimate c of the average covariance using the formula (3.18). 

(g) If N < Nrecell, then go to step 4(a). 

5. LINK THE TEST POINTS TOGETHER. 

For each test point ti in turn: 

(a) Find the selection cell C in which ti lies. 

(b) Find the storage cells which intersect the selection cell C. 

(c) Setp(i)=O. 

(d) For each test point t in each intersecting storage cell, do the following: 

i. If g(x, ti) > g(x, t), move on to the next t. 
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11. If 

and if either g( x, ti) < g( x, t) or ti has a smaller index value in the 

list of test points than t, then link ti upwards to t with a linkage 

parameter value Pmax and proceed on with the next ti. Otherwise go 

to step 5( d)iii. 

111. Calculate p for the link between ti and t. If p > p( i), then set 

r( i) = p, and link ti upwards to t. 

IV. If p(i) = Pmax move on to the next ti, otherwise move on to the next 

t. 

6. STOPPING CONDITIONS FOR THE EXPLORATION PHASE. 

1 N 
N L r ( i) 2: h:meanlink c 

i=l 

then proceed to the next step. Otherwise, set 

Nrecen = n1in { Nmax, 21Vrecen}, 

and go to step 3. 

7. ADD IN EXTRA TEST POINTS TO ESTABLISH LINKS. 

For each test point ti for which r( i) < Klink c do: 

(a) One iteration of the local search procedure is performed using ti as the 

initial point, and yielding the point t+. 

(b) t+ is placed in the cell structure, and ti is linked upwards to t+ by setting 

p( i) = S<Jmax· 

(c) Steps 7(a) and 7(b) are repeated with t+ in place of ti, yielding the new 

point t++' where t+ is linked upwards tot++ with linkage parameter value 

Pmax· 

A maximum number of 4000 extra test points were allowed to be generated in 

this step. On reaching this maximum, the algorithm immediately proceeds to 

step 8. 
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8. RE-LINK THE TEST POINTS. 

The process described in step 5 is used. 

9. Do LOCAL SEARCHES 

Each test point ti which is not linked upward to another point with a linkage 

parameter satisfying: 

is used as a starting point for the local search algorithm. Each such newly 

found stationary point t is added to the set of stationary points begun in 

step 2 unless the new stationary point is less than a distance of Kst.atpt from 

som_e point t0 already in A. In the latter case, only one of t and t0 is placed 

in the set A; whichever gives the larger value of g(x, .) is chosen. A maximum 

of 25 on the number of points in A was imposed. If n1.ore than 25 stationary 

points are found, then only the 25 at which g( x,.) takes the largest values are 

retained. 

Each local search in steps 2, 7 and 9 were performed by the NAG (mark 14) sub­

routine E04UCF, which is essentially NPSOL. In each case the maximum number of 

feasibility phase iterations, and the maximum number of optimality phase iterations 

were both set at 250. The default values of both of these were 50. All other param­

eters were left at their default values. On a few problems different parameter values 

were used: these changes are detailed with the problem descriptions in chapter 5. 

4.2.1 Choosing the tnaxinunn link length. 

The nearest neighbour structure of a Halton sequence is too complex to permit a 

direct analysis leading to a formula for the maximum length of a link as function 

of the number of test points generated using the Halton sequence. Instead, an 

approximate analysis is performed, yielding an expression for the maximum length 

of a link which proved to be reasonable in practice. 

In the implementation, the 'length' of the link was bounded using the infinity 

norm, not the 2-norm. 

Let T be the unit hypercube, and let N be the number of test points. In the 

limit N-+ oo, Cmax(N) -+ 0. Assume for the moment that the number of stationary 
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points in the constraint function is finite. As N -+ oo almost all test points will not 

be nearest neighbours of any stationary point, and will not be nearest neighbours 

of any point on the boundary ofT. Let to be such a test point. When fmax(N) is 

small, g is approximately linear over the set 

So= {t: lit- tollco :S fmax(N)}. 

Because 'Ytg( x 0 , t0 ) is non-zero, g( x 0 ,.) will exceed g( x 0 , t0 ) on approximately half 

of So. Assume any link from t 0 to any higher point within S0 is accepted as a 

valid upward link for t 0 . If the test points are randomly distributed in T, then the 

probability that t 0 is not linked upward is a.pproxim_ately 

Assuming this formula can be applied to each test point, and that the resulting 

probabilities are independent of each other, the probability that every point is linked 

upwards is 

where E(N) is small and positive. Choosing E(N) will fix emax(N). Taking logarithms: 

-E(N) ~ N ln ( 1- [ 1- 2P-l£~aJN)] N) 

~ -N (1- 2P-1 £inax(JV))N 

because fmax(N) -+ 0 as N -+ oo. Taking logarithms again, 

ln( E(N)) Rj ln(N) + N ln ( 1 - 2p-l fmax(N)) 

Rj ln(N) - N2p-l f~axCN). 

Using E(N) = N- 1 yields 

e .(N) = 1 p 4ln(N) 
max 2 J\T · 

In the implementation the slightly tighter bound 

was used. 

ln(N) 
Nln(2) 
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4.2.2 Choosing the prime and increment lists for the Halton 

sequence. 

A Halton sequence in p dimensions is determined by p coprime positive integers 

1!"1, ... , 1r p, and p increments 81, ... , 8p, where 0 < 8i < 1r i for each i in 1, ... , p. For 

any such choice of the 1r's and 8's the discrepancy (3.1) of the Halton sequence is 

asymptotically O(N-1 (logN)P), however some choices are better than others. 

Determining exactly which choice of parameter values is the 'best' is not an easy 

problem. It is compounded by the fact that there is no obvious definition of 'best.' 

The choices -vvere made in order to avoid obviously bad values for the primes and 

increments. For example, a bad choice would be 1r1 = 17, 1r2 = 19, 81 = 8, and 

82 = 9. In this case, the ratio of each increment to its associated prime is almost 

the same. Almost all of the first 100 points of the Halton sequence generated using 

these values lie in a narrow band along the main diagonal of the unit square. 

Various choices of the 1r 's and 8's were examined. The first 100 points for each 

choice were calculated, along with the covariances between each pair of components 

of the points in 'H100 . The distance of each Yn E 'H10o to the closest point in 'Hn-1 

was also calculated. Using this infonnation, for each p from 2 to 6, the following sets 

of values for the 1r's and 8's were chosen. For all these values of p, 1r1 , ••• , 11"6 were 

chosen as the first six primes, in increasing order. For all p, and for all i = 1, ... , 6, 

8i = 1 was used, apart from the following exceptions: if p = 5, then 83 = 2, and 

85 = 2 were used, and if p = 6 then 84 = 3 and 86 = 5 were used. 

4.3 The One Dimensional Multi-Local Optimisa­

tion Algorithm. 

This problem was solved in a relatively unsophisticated fashion. In essence, a 1-

dimensional grid search was performed, followed by local searches where necessary. 

Without loss of generality assmne the interval over which the local maximisers are 

sought is [0, 1]. An increasing sequence { t j }f=,0 of equally spaced test points is 

used. The lowest test point is 0, and the highest is 1. The constraint function is 

caln~latecl at each test point. Subintervals of [0, 1] which contain local maximisers 

are then determined, and a search is performed in each such subinterval. Specifically, 
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for each j E 1, ... , N - 1, if 

then a local search is performed in the interval [tj-1, tj+I] with tj as the initial point. 

The endpoints 0 and 1 are treated somewhat differently. If 

then a local search is performed on the interval [to, t1] with ~(to+ t1 ) as the initial 

point. Similarly, if 

then a search starting from ~(tN-I + tN) is clone on the interval [tN-ll tN]· All 

stationary points found by these searches are retained, up to a maximum number 

of 2.5. If more than 25 stationary points are found, then only the highest 25 are 

retained. 

For problem 4 of the ·watson series with n ~ 4, N = 100 was used. For all other 

problems with a one dimensional constraint index set, N = 40 was used. All local 

searches were performed using the NAG (mark 14) routine E04UCF. 
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Chapter 5 

NUMERICAL RESULTS. 

The algorithm was tested on the 14 test problems of ·watson and Coope [99, 21]. 

This set of problems (hereafter referred to as the ·watson series) consists of a variety 

of problems in 2 to 15 variables, where the constraint index set T is either 1 or 

2 dimensional. Many of these problems are one sided approximation problems, or 

have linear or convex objective functions. This set includes a problem which has 

an infinite number of global maximisers at its solution (thereby violating assump­

tion 2.3), and also a problem whose solution does not satisfy the first order KKT 

conditions. Three additional test problems involving higher dimensional constraint 

index sets were also solved. 

The problems in the Watson series, and the results generated by the algorithm 

presented herein, are given in detail in the following two sections. The problems 

are divided into two groups according to whether the constraint index set is one 

or two dimensional. These results are compared with those obtained by other au­

thors in section 5.4. Extended results for some problems, in the Watson series, and 

other problems which violate any of the assumptions required to show the algorithm 

converges are presented in section 3. 

No test problem with a constraint index set T having dimension greater than 

2 appears in the set by Watson. Accordingly, three additional test problems with 

3 :::; p :::; 6 have been created. The performance of the algorithm on these problems 

is given in section 5.5. The next two sections after that look at the advantages of a 

two phase algorithm, and the merits of using a penalty function with two penalty 

parameters. In the final section the overall performance of the algorithm is discussed. 

The superscript ~ denotes values taken by the various quantities in the final 
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iteration of the SIP algorithm; these values are only approximations to those taken 

at the SIP's solution which the final iterate approximates. All computations were 

performed on a VAX 3100 workstation in double precision arithmetic. This gives 

approximately 16 digits accuracy; the machine precision being 1.39E-17. 

5.1 One Dimensional Problems. 

The results for the problems in the Watson series with p = 1 are presented in 

this section. For consistency the number assigned to each problem is the same as 

that in [99]. This is why problem 14 appears out of order. Problems not in the 

Watson set are tagged using letters. For each of the following problems a capping 

constraint ( 4.5) at Bcap = 1 was used. The capping constraint was struck only on 

problem 6. Also, ()crossover = 1 was used. 

Problen1 2. 

.f(x) 

g( X, t) 

T 

x(o) 

1x2 + x2 + 1 ,.,, 
3•1 '2 2"-1 

[0, 1] 

(1, 2f 

This problem actually has more than one solution. Using the initial point (1, 2f 
the algorithm found a different solution to the one found from this starting point 

by the algorithms of ·watson, and Coope and vVatson. Specifically, it found 

x~ = ( -0.750000, 1.618034 f; using the initial point x(o) = (1, 2)T 

jU = 2.430534; ()U = 0; flU = 2.664; I) = 1; 

r~ = {O}; Au- ru = {1}. 

Using this starting point, the algorithm of Tanaka et al. found the same solution 

as the algorithm presented herein. By changing the starting point to the origin, 

Tanaka et al. were able to obtain the same solution as Coope and vVatson. The 

results for this starting point are as follows: 

x~ = ( -0.749999, -0.618034)T using the initial point x(o) = 0 



jH = 0.194466; eH = 0; flU = 0.9791; vH = 1 

rH = { 0}; AH - rH = { 1} 

No difficulties were experienced using either starting point. 

Problen1 3. 

f(x) 
g( X, t) 

T [0, 1) 

(1,1,1)T 

The solution found is: 

:rH = ( -0.213313,-1.361451,1.85354 7)T 

~~ = 5.334687; e~ = 0; ,} = 6.365; v~ = 1; 

r~ = {1}; A~- r~ = {o}. 

This problem is quite innocuous, and there were no difficulties in solving it. 

Problen1 4. 

f(x) t~i 
i=l z 

n 

g(x, t) tan(t)- L xdi-l 
i=l 

T [0, 1] 
x(o) 0 
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This problem can be viewed as a one sided approximation problem. That is, 

the polynomial which best (as measured using the L1 norm) approximates tan(t) on 

the interval [0, 1] is sought, subject to the condition that the polynomial is not less 

than tan( t) on [0, 1). Using n = 3, no difficulties were experienced in obtaining the 

following results: 

X~ = (0.089096, 0.423053, 1.045259)T 

f~ = 0.649042; 8~ = 1.1E- 11; 1-l~ = 1.871; v~ = 1 

r~ = {0.3333, 1 }; A~ - r~ = 0. 
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Problem 5. 

n 

f(x) 2:::: ex; 

i=l 

1 n 

g(x, t) - 2::: Xiti-1 
1+ i=l 

T [0, 1] 
x(o) - (1, o.5, of 

Using n = 3, the results obtained were: 

x" = (0.100661, -0.126884, -0.379721 )T 

f" = 4.3012; eu = l.OE 9; ftH = 4.187; v" = 1; 

r~ = {0.1061, 1 }; A~- rn = 0. 

No difficulties were experienced with this problem. 

Proble1n 6. 

T [0, 1] 

x(o) (1, 2? 

The algorithm needed more iterations and more multi-local optimisations to solve 

this problem than any other test problem in the Watson series, except the extended 

versions of problems 4 and 8. This is because the objective and constraint functions 

are so highly non-linear. Nevertheless the algorithm was easily capable of solving 

problem 6. The results a.re: 

x" (0. 719961, -1.450487)T 

J" 97.158852; au 1.9E - 12; flu = 32.92; v" = 605.2; 

r" = { o}; A" r" = 0. 
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Problem 14. 

f(x) c2ex1 ex2 

g(x,t) t exl+x2 

T [0, 1] 
x(O) (0.8, 0.9)T 

This problem does not appear in the original set given by Watson [99], but has been 

included later by Coope and Watson in [21]. It was designed so that the Hessian 

of the Lagrangian is indefinite at the solution. This presented no difficulty to the 

algorithm. The results are: 

Pro ble1u K. 

x" ( -0.095315, 0.095315 )T 

f~ ·:>.·:>ooo·, e" o·, ,.u o3 u - - ['. 1.4 : ; v = 1; 

r" { 1}; A" r" = 0. 

f(x) 
g( X, t) 

T 

x1 cos(t) + Xz sin(t)- 1 

[0,7r) 

(0.9, of 

The exact solution of this problem is: 

x* (0, If; j* -3; 

I'* {%}; and A*- I'* 0. 

Also ~t" > 2 is required for x* to be a local minimum of the penalty function. This 

problem is used in section 5. 7 to explore the effects of excessive penalty parameter 

values. The results are presented there. 
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5.2 Two Dimensional Problems. 

For each one dimensional problem, excluding problem 6, the capping constraint, and 

quadratic penalty term played, in essence, only a passive role. It was decided to 

reduce the values of Bcap and Bcrossover from 1 in order to increase their influence on 

the algorithms behaviour. The problems in this section were run with Bcap = 0.01 

and Bcrossover = 0.1. Results for the problems in this section with Bcap = Bcrossover = 1 

are listed in the appendix. 

Proble1n 7. 

f(x) 
g(x,t) 

T 

xi+ x; + x; 

x1(t1 + t~ + 1) + x2(t1t2- t;) + x3(t1t2 + t~ + t2) + 1 

[0, 1) X [0, 1) 

(2, -1, 1)T 

The algorithm found the following approximation to the solution: 

xu = ( -1.0, 0.110088E - 8, 0.222566E- 8)T 

jU = 1.0000; eu = 0; flU = 3.162; vU = 1 

No difficulties were experienced with this problem. 

Problern 8. 

x1 + 1xz + 1x3 + ~x4 + ~xs + ~xe J(x) 
g(x, t) 

T 

eti+t~ - ( x1 + x 2t 1 + x3t2 + x4ti + xst1t2 + xet~) 
[0, 1) X [0, 1) 

0 

The algorithm presented herein solved the problem for n 

difficulty, yielding the following solution: 

6 without great 

xU= (2.580157, -4.109277, -4.109277,4.247402,4.532649,4.247402f 
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JU = 2.4356; (;IU = 5.7E -10; !LU = 1.801; v« 17.97 

r« = {(o, ol, (o, 1l, (1, ol, (o.4ooo, o.4oool}; A"- r" = 0 

This problem was found to be harder than others in the series. This seems to 

be largely a consequence of the difficulty of finding the local and global maximis­

ers of the constraint function. These maximisers were calculated using the NAG 

subroutine E04UCF, which is essentially NPSOL. It was found the limits on the 

maximum number of iterations of 250 for the feasibility and optimality phases of 

NPSOL were not enough. These were both increased to 450, which proved to be 

sufficient. vVith these limits, no further difficulties were encoimtered in solving this 

problem. To illustrate some of the difficulties involved in finding these maximisers, 

a 3 dimensional plot of g( x«, t) is given in figure 2. The view is looking up the t1 = t2 

line, with the closest (and lowest) point being t 1 t 2 = 0. 

Figure 2. The 3D plot of g(x, t) at x =xU for problem 8, with n = 6. 



90 

A contour plot of g( xti, t.) is given in figure 3. From these plots it can be seen that 

the constraint function is very nearly fiat in the region 'between' (0, 1), (0.4, 0.4) and 

(1, 0). The local maximisers in this region tend to change markedly from iteration 

to iteration, and at some iterates are difficult to locate. 

0.9 

0.8 

0.7 

0.6 

0.5 

0.3 

0.1 

0.2 0.4 0.6 0.8 1 

Figure 3. The contour plot of g(x, t) at x =xU for problem 8, with n = 6. 

Problem 10. 

f(x) 

g(x,t) 

2xl + 4xz + X3 

3 

I:(l- xi)wi(tl, tz)- ~ 
i=l 

T [-1,4] X [-1,4] 

x(o) 0 
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where 
w1(t1, t2) 1 [ l+(t2-1)2] t; exp - tl for t 1 > 0, 

w2(t1, t2) 1 [ 8+(t2)
2

] t; exp - 4tl for t 1 > 0, 

w3(tl? t2) _1_ ex [ _1+(t2+1)
2

] 
tl-2 p tl -2 for t 1 > 2, 

w1,2,3(t1, t2) 0 elsewhere. 

This problem also has the following auxiliary constraints: 

0 ~Xi ~ 1 for i = 1, 2, 3. 

The results obtained are as follows: 

X~ = (0, 0, 0.275265)T 

p = o.2753; e~ = 4.296E - 7; fl~ = 12.1o; 1) = 1.0 

r~ = {(3.0349, -0.7537of}; A~- r~ = {(1.3596, o.9o6o)r}. 

The auxiliary constraints, and the linear objective function make this problem a 

very quick one for the algorithm to solve. 

Problen1 11. 

This problem is the same as problem 10, except that the auxiliary constraints are 

omitted. The results are: 

X~ = (1.541997, -2.1011440, 0.93450.5f 

J~ = -4.3861; e~ = s.so6E- 11; 11~ = 33.99; v~ = 1 

r~ = {(2.4610, -0.7327)r, (1.9467, -0.5487)r}; r~- A~= 0 

The absence of the auxiliary constraints exposes the algorithm more to the non­

linearity of the semi-infinite constraint. This problem was easily solved, although 

more iterations were required than for problem 10. 

Problem 12. 

T, g and x(o) are as for problem 10, and the auxiliary constraints are included. The 

results are: 

X~ = (0.0, 0.355430, 0.111916f 
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Jti = 1.9511; eu = 3.241E- 13; p,ti = 39. 75; vti = 1.0 

ru = {(3.0363, -o.s2o9)T}; Au- ru = {(1.2402, o.9431)T} 

This problem differs from problem 10 in that the objective function is quite non­

linear. The solution is not found as quickly, but no real difficulty is experienced. 

Problen1 13. 

This problem is the same as problem 12, except that the auxiliary constraints are 

omitted. The algorithm generated these results: 

xti = ( -0.065575,0.389132, 0.111357)T 

p = 1.9502; eu = 1.439E- 9; flu = 41.74; vti = 1.0 

ru = {(3.0435, -0.8092f}; Au- ru = {(1.2142, o.9503)T} 

This problem illustrates nicely the need for a capping constraint. Without such a 

constraint the iterates diverged toward infinity. This occurred because the Lagrange 

multipliers at each iterate were estimated using the L00 QP which approximates ¢ 

at the previous iterate. The cubic term in the objective function ensures that these 

estimates are ultimately always too low. The penalty parameters are never set 

to sufficiently large values to prevent the search directions being ones of increasing 

infeasibility. The sufficient descent criterion (2.5) is always satisfied as the reduction 

in the objective function is always larger than the increase in infeasibility. With the 

capping constraint in place no difficulties arose. 

5.3 Other Results. 

In this section results for the extended versions of problems 4, 5, and 8 are presented, 

along with results for problems 1 and 9. Som_e of these extended problems are 

extremely ill-conditioned, and are perhaps not the sort of problem for which a quasi­

Newton algorithm is really intended. Problems 1 and 9 do not satisfy all of the 

assumptions required to show convergence of the algorithm, and so can not be 

regarded as valid test problems for the algorithm. 
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Problem 4: Extended Results. 

Problem 4 was extended to higher dimensions simply by increasing n. This extended 

problem is an excellent test of an algorithms ability to cope with ill-conditioning. 

Solutions were generated for n = 4, 5, 6, and 8. In each case, except n = 8, the 

origin was used as the starting point. Following Coope and Watson, for n = 8 the 

starting point was chosen as the solution to the problem with n = 6, rounded to 

three decimal places, and with the seventh and eighth elements of the starting point 

set at zero. 

For the n = 6 case, and especially for the n = 8 case, in several iterations the 

lengths of the steps accepted were very much shorter than the steps predicted by the 

approximating LcoQP. The most serious offenders were two steps which occurred 

the n = 8 case: the length of each accepted step being a mere 5. 7 E 14 times the 

length of the proposed step. To rectify this a simple trust region was added, and the 

problem was re-solved for all values of n except n = 3. The algorithm was capable 

of achieving an accuracy of l.OE- 5 for each of the above values of n. Coope and 

vVatson also solve the problem ·with n = 8 to an accuracy of l.OE 8. The best 

tha.t the algorithm was able to achieve was an accuracy of l.OIE 7. It is 

perhaps useful to note at this point that Coope and \Vatson were using a Newton 

algorithm in 11 digit arithmetic (approximately), whereas double precision on the 

VAX 3100 is roughly equivalent to 16 digit arithmetic. 

As this problem is quite pernicious, the accuracies required of the solutions to 

the subproblems which define the search direction, and the Maratos effect correc­

tion, were tightened from the default values for NPSOL to a maximum residual of 

5.0E - 15 in the first order KKT conditions, and a maximum of l.OE - 12 in the 

violation of the constraints. For n 6, and n 8 the additional bound 

was imposed on the approximation H(k) to the Hessian at each iteration. With 

the algorithm using the trust region, this bound was not struck when solving the 

problem with n = 6, and was struck once with n = 8. 

Whilst this problem is an extremely useful test problem it is not one that is likely 

to arise in practice. The ill-conditioning is due to a poor choice of basis functions 

for the approximating polynomial, and could be avoided by a more sensible choice 

of basis functions. 

The results, with the trust region used for n = 4, 5, 6, and 8, are: 
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For n = 4: 

For n = 5: 

For n = 6: 

X~ = (0.0, 1.145724, -0.624160, 1.035843)T 

f~ = 0.623770; f)~ = 1.1E - 12; f.lH = 2. 768; z) = 1 

rH = {o, 0.499999, 1}; A~- r~ = 0 

X~ = (0.006662, 0.890764,0.600543, -0.934173, 0.9936llf 

f~ = 0.617404; f)~= 2.7 E- 9; f.l~ = 2.271; v~ = 1 

r~ = {0.155043, 0.644938,1 }; A~- r~ = 0 

X~= (0.0, 1.023268,-0.240684,1.221954,-1.388625, 0.941495)T 

f~ = 0.616085; fJH = 3.1E- 12; p~ = 4.121; v~ = 1 

rH = {o.o, 0.276392, o.723606, LO}; AH- r~ = 0 

The solution for this case was obtained in 65 iterations and 169 multi-local 

optimisation calls using the algorithm without the trust region. The accuracy 

achieved was 2.4E- 6. With the trust region the algorithm found the solution 

in 57 iterations, and 119 multi-local optimisation calls. The upper bound on 

IIH(k) II co was implemented for both of these runs. It was struck on neither. 

For n = 8: 
xH = (0, 1.002913, -0.053486,0.709800, 

-1.299410,2.499339,-2.205324, 0.903575)T 

jH = 0.615653 f)~ = 7.6E- 16 p~ = 2.244 v~ = 1 

r~ = {o.o, 0.172673,0.499999,0.827327, LO} A~- r~ = 0 

Without the trust region the problem was solved to an accuracy of 3.9E- 7 

in 119 iterations and 622 (!) multi-local optimisation calls. With the trust 

region, the algorithm took 84 iterations and 164 multi-local optimisation calls 

to reach a slightly higher accuracy. The upper bound on IIH(k) lloo was struck 

once on the run with the trust region. It was struck several times on the 

run without the trust region. vVhen the trust region was not used, in the 

final few iterations the algorithm generated prospective next iterates at which 

the estimated value of the penalty function exceeded the value at the current 

iterate, thereby indicating the search direction is potentially one of ascent. 
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Problem 5: Extended Results. 

n 

f(x) Lex; 
i=l 

1 n 

g(x, t) l:xi-1 
1 + t2 

i=l 

T [0, 1] 
x(o) (1, o.s, o)T 

This extended problem was solved for n = 8, 10, 12, and 15. In each case x e1 

(the first co-ordinate vector) was used as the initial point. The results for these 

values of n are summarised in table 5.4. No difficulties were experienced with this 

problem. 

Proble1n 8: Extended Results. 

Problem 8 was modified to yield problems in 10 and 15 variables. The 15 variable 

problem is listed here: 

f(x) X1 + Hx2 + X3) + ~X4 + ~xs + ~x6 Hx1 + Xto) + Hxs Xg) 

+ i(xn +XIs)+ l(x12 + Xr4) + ix13 

g(x,t) 

T 

t 2 +t2 
( 2 2 3 2 e 1 z - x1 + xzi1 + X3t2 + x4t1 + xst1 tz + x6t2 + x1t1 + xst1 tz 

+ Xgi1t~ + x10t~ + xut{ + x12tit2 + X13tit~ + x14t1t~ + X1sti) 

[0,1] X [0,1]. 

The 10 variable problem is obtained by omitting all terms containing any of the 

variables x 11 , ••. , x 15 from the 15 variable problem. 

The algorithm presented herein solved the problem for n = 10 using the solution 

for n = 6 as the starting point. It failed to find a solution for n = 10 using the 

solution for n 6 rounded to one decimal place as the starting point. A solution 

for n 15 was not attempted. 

As with the n = 6 case, NPSOL had difficulty in finding the local and global 

maximisers of the constraint function. For n = 10, in the later iterations NPSOL 

repeatedly halted prematurely, and on each such occasion returned one of these error 

messages: 

• The first derivatives of g(x, t) with respect to t do not tally with the finite 

difference estimates made by NPSOL. 
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• The current estimate of the maximiser of g does not satisfy the first order 

KKT conditions, and no improved point could be found during the final line 

search. 

• The maximum number of optimality phase iterations has been reached, and a 

solution has not been found. 

Using the n = 6 solution rounded to one decimal place as a starting point, the 

maximum iteration limits were increased to 850, 1850, and then 2850 in an attempt 

to prevent these error messages. As the maximum iteration limits were increased the 

third error message listed became much rarer, and the second rather more common. 

For n = 10, with the first six elements of the initial point were the the elements of 

x~=6 , and the last four elements were set at zero. Using this initial point, the results 

for n = 10 are: 

X~ (1, 1.262635, 1.260352, -2.706753, -3.359771, 

-2.701723,3.162400,3.2:35650,3.076614, 3.1596.52) 

1~ = 2.251282; e~ = 6.9E- s; f-L~ = 2.ooo; v~ = 1 

r~ = {(0.8309, o), (o, o.8304), (1, 1), (o, o), (0.5, o.5), (1, o), (o, 1)}; 

{(0.5467, 0.5437), (0.4951, 0.4474), (0.5133, 0.5411), 

(0.5412, 0.5059), (0.3420, 0.6554), 

(0.5243, 0.5785), (0.6250, 0.3333)} 

An interesting feature of this solution is the number of points in r~, and in A~. 

Coope and Watson list only the last five members of r~ as global maximisers, and 

do not mention any of the points in A~- r~. This highlights the difficulty NPSOL 

had in finding the local maximisers of g in all but the first few iterations. 

These last two problems of the ·watson series are ones which the algorithm is 

not designed to solve. For the first of these (problem 1), the KKT conditions do not 

hold at the solution. Problem 9 does not satisfy assumption 2.3; at the solution the 

constraint function has an infinite number of global maximisers. 
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Problem 1. 

f(x) *xi+ X~+ ~X1 X2 

g(x, t) - xi+ 2x1 x 2t sin(t) 

T [0,2); 

Neither the constraint qualification (1.4) the first order KKT conditions hold at the 

solution of this probkm. This makes it awkward for the algorithm to solve. Using the 

original values of the parameters n;1 and n; 2 (which govern the relative magnitudes of 

the penalty parameters and the infinity norm of the Lagrange multiplier estimates) 

the algorithm generated a sequence of iterates which converged to the solution. In 

spite of this, the gradient stopping condition was never satisfied. The condition on 

the step length eventually halted the algorithm; the length of the final being 

6.4E - 8. For this problem only, the maximum step length was increased from 

l.OE- 8 to l.OE- 7. The results for this are as follows: 

x~ ( -3.2452.590E- 7, 0.500000)T 

f~ = -0.250000; B~ 1.1E- 13; p~ 7. 712E + 6; v~ = 1; 

r~ {O}; A~ - r~ {2}. 

A second run was performed with increased values of the parameters K1, and n;2 • 

Using n;1 4.2 and n;2 = 4.5 (in of the original values of n;1 1.2 and n;2 = 1.5) 

ensured that ultin1.ately fl > 4.211>-"lloo· 'With these values of n;1 and n; 2 , the gradient 

stopping condition was satisfied. The results are: 

x~ ( -o.oooo12, o .. soooool 

f~ = -0.250006; eu 1.3E- 10; pH 24250; v" = 1; 

r" {O}; A"- ru = {2}. 

The exact solution is x* = (0, 0.5)T. Although the algorithm did not halt by sat­

isfying the gradient condition with the unadjusted parameters, it did arrive at an 

iterate considerably more accurate than that required to satisfy the gradient stop­

ping condition with the increased parameters. In many respects this represents a 

failure of the stopping conditions in particular, rather than of the algorithm as a 

whole. 



98 

Problen1 9. 

f(x) 
9( X, t) 

T 

-4xl- Hx4 + x6) 

x1 + xzt1 + x3t2 + x4ti + xst1t2 + x6t~- 3- (ti - tD2 

(-1, 1] X (-1, 1] 

At the solution the number of global maximisers is infinite, and assumption 2.3 is 

not satisfied. The set of global maximisers of 9 at the solution is 

(5.1) 

The constraint qualification (1.4) holds at the solution (for example, by choosing 

u = e1 ), thus so do the first order KKT conditions. At the solution, \lf is a linear 

combination of, for example, Yx9 evaluated at the four corners of T and at the 

origin. Unfortunately, except exactly at the solution, at least one of these points is 

not a local maximiser of 9. 

Coope and vVatson report that their algorithr11 made progress towards the solu­

tion, eventually stopping prematurely with the distance of the final iterate from the 

solution being approximately 0.002. In alternate iterations their algorithm found 

either approximations to the four corners ofT, or the origin. 

The algorithm of Tanaka et al. was successful on this problem. Unlike the other 

algorithms discussed in this chapter, at each iteration their algorithm matches up 

each local maximiser at the proposed next iterate with element of the set A (k) at 

the current iterate x(k). If this match-up is not successful then approximations to 

the positions each unmatched local maximiser would have had at the current iterate 

are calculated. The set A (k) is augmented with these approximations, and the 

proposed step is recalculated. This process was repeated until the matching process 

was successful. This strategy meant that their algorithm used approximations to 

a sufficiently large subset of f* that the behaviour of the semi-infinite constraint 

could be accurately reflected in the finite set of linearised constraints used in the 

generation of each search direction. 

The algorithm presented herein encountered difficulties similar to those found by 

the algorithm of Coope and ·watson. In the earlier iterations A(k) was alternately 

an approximation to the origin, or the four corners of T. In later iterations Xi, 

i = 2, ... , 6 became small, and 9 became very nearly fiat on the set (5.1). From the 

point of view of NPSOL's stopping conditions, each such point eventually became 
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regarded as a valid termination point for the local search. From then on each local 

search simply picked out a point on or near one of the lines joining the opposite 

corners ofT which was close to the starting point of the search. As the iteration 

number increased !A(k)l also increased until the maximum number of elements in A(k) 

(25 points) was reached. Increasing the maximum to 125 resulted IA(k)l 

eventually equalling 125. The sets A(k) grew to this size by a process of inclusion: 

in each multi-local optimisation each local maximum found in the previous multi­

local optimisation is used as a starting point for the local search. Hence, in the later 

iterations, each point in A(k) is included in the set of local maximisers found in the 

following multi-local optimisation call. Additional searches from other points add 

extra members to this set of local maximisers. Thus A(k) steadily grows in 

With the maximum size of A(k) set at 25 the results were as follows: 

xu (2.999, 1.493£ - 11, 145£- 12, -3.865£ 3, -9.797 E- 12,3.865£- 3f 

fu = -12.00; eu 2.9£- 10; Jl" = 18.18; z) = 68.92 

The algorithm vvas stopped on the 41st iteration after taking a step of length less 

than l.OE 10 of the length of the step predicted by the Loo QP. The error in the 

solution was about 0.006. 

5.4 Comparison of the Various Algorithms. 

The results are summarised in tables 5.1, 5.2, and 5.5. vVhere possible the results of 

vVatson [99], Coope and vVatson [21], and Tanaka, Fukushima, and Ibaraki [94] are 

also listed. Conn and Gould (19] solve those problems of the Watson series which 

have one dimensional T however detailed results are not given in their paper, 

and hence can not be listed here. Bell [11] presents results for problem 4 of the 

Watson series. A comparison with these results is given in table 5.3. 

In this chapter k and h denote the number of iterations, and the number of multi­

local optimisations required to reach a solution. The subscripts TY, CHI, TFI, B, 

and P respectively denote results obtained by vVatson [97], by Coope and Watson 

[21], by Tanaka, Fukushima, and Ibaraki [94], by Bell [11], and by the algorithm 

presented herein. The symbol <1? 1 denotes the magnitude of the most negative direc­

tional derivative of the L1 penalty function at . Here If* I is the number of global 

maximisers of g a.t the solution. It is not necessarily the number of global maximisers 
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I problem II n p if* I II kp hp 

1 2 1 1 17 21 8.2E-6 17 19 4.8E-7 

2 2 1 2 8 10 1.4E-8 5 11 2.7E-8 

2 1 2 7 8 4.9E-7 - - -

3 3 1 1 11 23 1.3E-6 9 12 5.5E-8 

4 3 1 2 10 11 1.9E-6 5 15 2.7E-7 

6 1 4 57 119 7.7E-6 8 27 7.7E-6 

8 1 5 84 164 l.OE-7 3 14 3AE-6 

5 3 1 2 8 14 6.2E-6 4 9 6.8E-7 

6 2 1 1 27 87 5.2E-6 16 19 1.3E-18 

7 3 2 1 9 14 7.0E-9 2 4 0.0 

8 6 2 4 34 40 4.1E-8 11 41 1.1E-7 

10 2 5 21 27 6.7E-7 12 56 3.4E-6 

15 2 ? - - - 10 57 3.8E-6 

9 6 2 00 41 192 - 2 6 0.0 

10 3 2 1 2 3 1.2E-6 2 3 8.1E-7 

11 3 2 2 10 18 9.8E-7 7 18 1.6E-14 

12 3 2 1 9 17 3.8E-6 3 5 3.0E-12 

13 3 2 1 11 22 7..5E-6 4 6 2.1E-15 

14 2 1 1 6 7 8.1E-6 5 8 3.4E-7 

Table 5.1: A compaTison of Tesults with those obtained by Tanaka et al. 
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problem n p If* I kp <I>~ kcw <I>~vv kw <I>~v 

1 2 1 1 17 8.2E-6 16 5.7E-6 16 1.1E-5 

2 2 1 2 8 1.4E-8 7 2.5E-10 7 3.4E-7 

2 1 2 
,., 

4.9E-7 I - - - -

3 3 1 1 11 1.3E-6 10 6.2E-12 14 6.7E-6 

4 3 1 2 10 1.9E-6 5 5.4E-8 5 5.3E-8 

6 1 4 57 7.7E-6 20 6.4E-6 25 5.9E-6 

8 1 5 84 l.OE-7 16 7.4E-6 14 9.6E-6 

5 3 1 2 8 6.2E-6 4 6.9E-6 5 7.5E-6 

6 2 1 1 27 5.2E-6 9 1.1E-8 8 5.3E-6 

7 3 2 1 9 7.0E-9 3 0.0 3 0.0 

8 6 2 4 34 4.1E-8 9 1.1E-8 19 7.5E-7 

9 6 2 00 41 - 18 4.8E-2 9 3.5E-3 

10 3 2 1 2 1.2E-6 3 2.8E-7 3 3.9E-9 

11 3 2 2 10 9.8E-7 12 2.2E-7 19 3.0E-8 

12 3 2 1 9 3.8E-6 4 1.7E-11 4 2.2E-10 

13 3 2 1 11 7.5E-6 4 3.5E-7 4 3.6E-7 

14 2 1 1 6 8.1E-6 5 8.2E-7 - -

Table 5.2: A compaTison of results with those obtai·ned by vVatson1 and those obtained 

by Coope and Watson. 
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found by any of the algorithms. Where results are not given, or have not been calcu­

lated, a '-' appears. The number of global optimisations required by the algorithm 

of Tanaka, Fukushima, and Ibaraki [94] has been calculated from the results pre­

sented in their paper by observing that the number of quadratic programmes solved 

by their algorithm is one less than the number of global optimisations performed. 

The only published results from the solution of SIP problems using a quasi­

Newton algorithm known to the author are those by Bell [11]. These comprise 

problem 4 of the Watson series with n = 3, ... , 6. The three algorithms with which 

almost all comparisons are made here are all Newton type algorithms. 

On all of the easier problems, (1, 2, 3, 4 with n = 3, 5, 10, 11, and 14) except 

number 7, the number of iterations taken was at most double that required by any 

of the Newton type algorithms. On these problems it also took less than twice the 

number multi-local optimisation calls that the algorithm of Tanaka et a.l. required. 

The results for problem 5 using the higher values of n show a similar ratio of the 

numbers of iterations taken by the two types of a.lgorithms. 

The more non-linear problems (6, 12, and 13) produced greater discrepancies, 

but the algorithm presented herein had no difficulty in solving them. 

The extended version of problem 4 was much more testing: the algorithm was 

able to solve it for the various values of n, however many more iterations and multi­

local optimisation calls were needed than for the Newton type algorithms. In partic­

ular, the algorithm of Coope and ·watson was able to achieve a higher accuracy on 

this problem (with n = 8) in lower precision arithmetic than the algorithm presented 

herein. The algorithm presented herein was able to locate all global maximisers, as 

were those of Tanaka et al. and of Coope and vVatson. For n = 6, and 8 Watson's 

algorithm missed 1, and 2 of the global maximisers respectively. 

Bell presents solutions to problem 4 for n = 3, 4, 5, and 6. A comparison with 

these is made in table 5.3. Bell's algorithm takes more iterations to reach a solution 

than the one presented herein. This is hardly surprising as Bell's algorithm starts by 

using quite coarse approximations to the global maximisers in the early iterations, 

and increases the accuracy required of these approximations as the solution process 

proceeds. 

The margin between the Newton type algorithms, and the one presented herein 

was greatest on problem 8. The algorithm presented herein coped quite well with 

the n = 6 case, requiring one less multi-local optimisation call than the algorithm of 
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Tanaka et al. although many more iterations were taken. Then= 10 case was very 

different: the local search procedure used in the MOS subalgorithm experienced 

much difficulty in accurately calculating the local maximisers of the constraint func­

tion. Convergence was obtainable, but only by using the n = 6 solution as a starting 

point. 

Generally, the algorithm herein found less accurate solutions than the other 

algorithms (excluding Bell's). This is to be expected, given the different natures of 

the various algorithms. 

The results for the algorithm by Tanaka et al. [94] were generated using a fixed 

value of the penalty parameter for each problem. Different values were used for dif­

ferent problems. This method of selecting the penalty parameter value presupposes 

some knowledge of the problem. The values for the penalty param_eter 1 chosen by 

Tanaka et al. were as follows: T = 1 was used on problem 3; 1 = 10 was used on 

problems 2, 4, 5, 7-10, and 14; T = 100 was used on problems 11-13; and 1 = 1000 

was used on problems 1 and 6. In contrast the other four algorithms discussed here 

all start each problem with the penalty pararneter( s) set equal to some fixed value, 

none of these initial values being greater than 1. These algorithms then adjust the 

penalty· parameters accordingly as they proceed. 

One ·would expect that a Newton type algorithm would be superior to the a.l­

gorithm presented herein. Moreover the margin of superiority of a Newton method 

over a quasi-Newton method should be greater for SIP problems than for NLP 

problems. The rationale for this being that the local and global maximisers are also 

found using a Newton, or quasi-Newton method respectively. The latter will usually 

find less accurate approximations, thereby introducing larger errors into the linear 

constraints appearing in the Loo QP. In light of this the algorithm presented herein 

fared well. 

5.5 Higher Dimensional Problems. 

Three problems involving constraint index sets of dimension greater than two were 

looked at. The first (problem S) was designed to be a non-trivial problem, but 

one which was not overly treacherous. The second (problem T) was chosen to 

be quite testing of the algorithms ability to keep track of local maximisers which 

merge into one another, and then split apart as the iteration number k is increased. 

Fortuitously, this problem is also a good test of an algorithms ability to cope with a 
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In I kB kp I 
3 29 10 

4 41 22 

5 81 32 

6 100 57 

Table 5.3: A comparison of results for the extended version of problem 4 with those 

obtained by Bell. 

2 

10 2 

12 2 

15 2 

7 

7 2.2~-6 4 

7 8.7E-6 4 

8 3.8E-8 4 1.3~-9 

2 

3 

3 

1.2E-6 

7.1~-7 

9.2~-8 

6.2~-8 

Table 5.4: A comparison of the 1'esults joT the extended form of problem 5 with those 

obtained by Tanaka et al. J and those obtained by Coope and HI atson. 
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I Problem II n p llf*l II k h I cpu time I 
s 4 3 1 24 60 64.05 

s 4 4 1 20 37 152.36 

s 4 5 1 21 36 331.59 

s 4 6 1 23 43 1081.71 

T 4 3 4 23 48 125.52 

T 4 4 4 20 39 456.29 

T 4 5 4 26 68 988.23 

T. 4 6 4 26 64 5855.90 

u 4 6 2 17 18 414.11 

Table 5.5: Results for the higher T dimensional problems. 

constraint function which has an almost flat region taking values close to the global 

maxinnun. The final problem was chosen to test an algorithms ability to exploit 

any lack of curvature of the constraint function along certain directions. 

On all runs performed on the higher dimensional problems the trust region ( 4.6) 

was used, and Bcap and Bcrossover were both set at 1. A summary of the results 

for these three problems is given in table 5.5. The symbol lf*l denotes the actual 

number of global maximisers active at the solution x*. The cpu time is in seconds, 

and includes input/output time. 

The results for problems S and T show a steady and large increase in compu­

tational time as p is increased. This is follo·ws from the increased effort needed to 

solve the multi-local optimisation subproblems as the dimension ofT increases. For 

each problem, the number of iterations is approximately constant, and the numbers 

of multi-local optimisation calls are all within a factor of 2 of each other. 

Problem U is special: the linearity of g with respect to the last four components of 

t means that the problem can be solved much more quickly than the other problems 

with p = 6. 

Problen1 S. 

Problem S for p = 6 is as follows: 
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g(x, t) 2(xi + x~ + x; + x;)- 6- 2p 

+ sin(t1- x1 - x4) + sin(t2- x2- x3) 

+ sin(t3 - x1) + sin(2t4 - x2) + sin(t5 - x3) + sin(2t6 - x4) 

T - [0, 1)P 

x(o) - (1,1,1,1)T 

When pis less than 6, all terms in g involving any ti with i > p are deleted. This 

problem was solved for p = 3, 4, 5, and 6. The results are as follows: 

For p = 3: 

For p = 4: 

For p = 5: 

For p = 6: 

xU= (0.894135, -1.290617,1.235788, -0.748821)T 

!" = -3.67 4298; au = 0; flu = 1.012; v" = 1.0 

ru = {(1.7161, 1.5160, 2.oooo)r}; Au- ru = 0 

xu = (0.948247, -1.361576,1.300981, -0.787553f 

fu = -4.087086; au = 2.689491E - 8; flu = 0.932; vu = 1.0 

ru = {(1.7315, 1.5102, 2.oooo, o.1046)r}; 

Au- ru = {(1.731.5, 1.5102, 2.0000, 2.oooo)T} 

x" = (0.9137.59, -1.391873,1.516069, -0.86844.5)T 

!" = -4.698634; au = 0; flu = 0. 733.5; v" = 1.0 

ru = { (1.6161, 1.6950, 2.oooo, 0.0895, 2.oooof}; 

Au- ru = {(1.6161, 1.69.50, 2.0000, 2.0000, 2.oooo)T} 

XU = (0.960921, -1.4.56291, 1..581476, -0.90.5873)T 

J" = -5.13.5086; au = 2.2.54294E- 10; flu = 1.013; vu = 1.0 

ru = { (1.62.58, 1.6960, 2.0000, o.O.S73, 2.0000, 0.3325)r} 

A"- ru = { (1.62.58, 1.6960, 2.oooo, 2.oooo, 2.oooo, 2.oooof 

- (1.6258, 1.6960, 2.oooo, 2.oooo, 2.oooo, 2.oooof 

= (1.62.58, 1.6960, 2.0000, 0.0573, 2.0000, 0.3:325)T 

= (1.6258, 1.6960, 2.0000, 0.0.573, 2.0000, 2.0000)T} 
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Problen1 T. 
4 

f(x) 2:: x7- Xi 

i=l 

4 4 1 
g(x,t) -t;x?+t;1+wi 

T - [-3,3]P 

X(O) ( -2.25, -2.5, -2.75, -3.0)T 

where 

j=l 

p 

w2 l:[tj- x2( -1)i]2 

j=l 
p 

W3 2::[tj-X3(-1)jdiv2]2 
j=l 

p 

w4 - L[tj- x4( -1)(j+I) div2]2 
j=l 

This problem was solved for values of p ranging from :3 to 6. Loosely speaking, 

for p = 3 the constraint function consists of the constant - 2:: xt plus the sum 

of four identically shaped humps each of maximum height 1. The peaks of the 

humps are centred on t = x1 (1,1,1)T, t = x2(-1,1,-1), t = x3(1,-1,-1)T, and 

t = x4 (-1,-1,1)T. At x = 0, g has a single peak of height 4 at t = 0. As x 

moves away frorn the origin the height of this peak decreases, and eventually the 

peak subdivides into two or more separate ones. For all sufficiently large llx II, g is 

non-positive on T. The infeasible region is symmetric under permutations of the 

elements of x. Roughly, the infeasible region is a roundish shape centred on the 

origin. The initial point lies on one side of the infeasible region, and the solution on 

the opposite side. 

For each value of p there are four global maximisers active at the solution x*. 

Lagrange multiplier estimates indicate that at most two of the four global maximisers 

are needed to satisfy the first order KKT conditions at x*. 

This problem was first solved for p = 3 and p = 4 using the algorithm in an 

unmodified form. From these results, it was observed that the constraint function 

was very nearly flat in between the global maximisers. In light of this the algorithm 

was then altered by using ~link = 0. The results generated by this modified algorithm 

are presented below. 
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For p = 3: 

X~ = (0.659449, 0.659446,0.659446,0.659441 )T 

J~ = -0.898308; e~ = o; t-t~ = 2.128; v~ = 1.0 

ru { (0.4502, 0.4502, 0.4502f, (0.4502, -0.4502, -0.4502)T, 

( -0.4502,0.4502, -0.4502f} 

A~ - f~ = { (0.0000, 0.0000, O.OOOO)T} 

In this problem the multi-local optimisation algorithm actually misses the 

global maximiser at ( -0.4502, -0.4502, 0.4502)T. The value taken by g(x~,.) 

at the origin is -0.00382. The closeness of this value to zero indicates that 

g(xU, t) is very nearly flat in the region 'between' the four global maximisers. 

This near flatness, and the fact that all the global maximisers lie in a small 

part ofT make them quite difficult to locate. 

The solution was found by the unmodified algorithm in 156.98 seconds, using 

21 iterations and 43 multi-local optimisation calls. The unmodified and mod­

ified algorithms found the same local and global maximisers at the solution. 

For p = 4: 

X~ = (0.659442, 0.659450,0.659448, 0.659443f 

jU = -0.898308; eu = 1.734531E- 6; flu= 2.317; vU = 1.0 

ru = {(0.4502,0.4502,0.4502,0.6594f, 

( -0.4502,-0.4502, 0.4.502, 0.6594f) 

(0.4502, -0.4502, -0.4502, 0.6594)T} 

Au- ru = { (o.oooo, o.oooo, o.oooo, 0.6594f} 

Once again one of the global maximisers has been missed by the algorithm. 

The unmodified algorithm found all four global maximisers. The unmodified 

algorithm solved the problem in 868.31 seconds, taking 21 iterations, and 36 

multi-local optimisation calls. 

For p = 5: 

X~ = (0.636215, 0.636215,0.636216,0.636215 f 

fu = -0.925782; eu = o.o; 1} = 2.232; vu = 1.0 



For p 6: 

ru - {(0.5420, 0.4941, 0.4941, 0.6362, o.5420f, 

( -0.5420,0.4941, -0.4941,0.6362, -0.5420?' 

( -0.5420,-0.4941,0.4941, 0.6362, -0.5420f' 

(0.5420, -0.4941,-0.4941,0.6362, 0.5420)T} 

A"- r~ = 0 

xH (0.617580, 0.617580,0.617579, 0.617580f 

jH = -0.944700; au= 0.0; pH 2.287; v~ = 1.0 

ru { ( -0.5410,-0.5410, o .. 5227, 0.6176, -0 .. 5410, -0.5410f, 

(0.5410, 0.5410, 0.5227, 0.6176, 0.5410, 0.5410f' 

( -0.5410,0.5410,-0.5227, 0.6176,-0.5410, 0.5410f' 

(0.5410, -0.5410,-0.5227,0.6176, 0.5410, -0.5410)T 

A"- r" = 0 

Problen1 U. 

f(x) 

g( X, i) 

T 
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The linearity of gin t3 , t4 , t 5 , and t 6 means that finding the maximisers of g overT 

can be reduced from a search over six dimensions to a search over two dimensions. 

This feature was put in the problem to make checking the answer found by the 

algorithm much easier. Any checking procedure must find the global maximum of 

g at x*, which can be extra-ordinarily difficult to do by hand. The algorithm made 

no allowance for the fact tha.t the number of dimensions over which the local, and 

global maximisers of g are sought can be reduced from six to two. 
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The results for p = 6 are 

X~ = (1.173288, 1.179673, 1.142275, 0.412150)T 

j~ = -3.483097; e~ = 2.374750E- ll; J-L~ = 1.462; v~ = 1.0 

f~ = {(1,1,1,1,1,1)T,(-0.8928,-1,1,1,1,1)T} 

r~- A~ = {(0.1420, o.3434, 1, 1, 1, 1)r, 

( -0.3124, -0.7556, 1, 1, 1, 1 )T, 

( -0.1988,-0.4808, 1, 1, 1, 1)T, 

( -0.0852, -0.2061, 1, 1, 1, 1 f' 

(0.7793,1,1,1,1,1)T, 

( -0.6657,-1, 1, 1, 1, 1f' 

(0.0284, 0.0687, 1, 1, 1, 1)T, 

(0.2556,0.6182,1,1,1,1)T, 

(0.3692,0.8929,1,1,1,1)T, 

( -0.4385,-1, 1, 1, 1, 1f' 

(0.5521, 1, 1, 1, 1, 1)T} 

This problem illustrates very nicely the advantages of using a multi-local opti­

misation algorithm based on a quasi-random set of points rather than a grid. The 

constraint function g( x,.) looks approximately like a sheet of corrugated roofing iron 

in the first two dimensions of t. The period of the oscillations being just over one 

tenth of the length of one edge of T. If these oscillations are to be detected using 

a grid, then there needs to be about 20 points along each axis - enough for one 

point on the peak of each corrugation, and one in each of the intervening troughs. 

If the points in the troughs are omitted then the algorithm may misinterpret the 

points lying on the peaks as a set of points on an almost fiat surface; most global 

maximisers could then easily be missed. A six dimensional grid with 20 points per 

side has 64 million points. If the algorithm takes 18 multi-local optimisation calls 

to solve the problem (as did the algorithm presented herein), then a total of 1,152 

million constraint function evaluations are required. The VAX 3100 takes about 5 

minutes and 50 seconds of cpu time to perform one 111illion evaluations of g. The 

time needed to solve the problem would be over 4~ days! 
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5.6 Using a NLP First Phase. 

The algorithm was modified to incorporate a first phase based on a discrete subset of 

T. This first phase was similar to that described by Hettich, and others [50, 53]: it 

approximates the SIP by a Non-Linear Programme (NLP), and solves this non-linear 

programme to find an estimate of the solution to the semi-infinite programme. In the 

second phase the SIP algorithm was used to refine the solution of the approximating 

NLP. 

The objective function of the NLP was identical to that of the SIP. The set of 

constraints of the NLP was 

{g(x,t) ~ 0: t E 'Hm}, 

where 1-tm is the set of the first m points of the Halton sequence. 

The algorithm used to solve the NLP was identical to that used to solve the SIP, 

except that A(k) = Hm was used at each iteration instead of choosing A(k) as the 

set of global (and other local) maximisers of g(:r(k),.). 

At each NLP iteration every NLP constraint arising from replacing T with 'Hm 

was included in the QP subproblem used to determine the search direction. Hettich 

and Gramlich (50, 53] give a more sophisticated strategy for handling the constraint 

set arising from the discretization of T; one which does not require all NLP con­

straints to be included in every subproblem. A sketch of their approach is given in 

chapter L Both approaches solve the same subproblem. 

Once the NLP is solved to the required accuracy, the SIP algorithm is applied 

with the NLP solution as the starting point. No alterations were made to the SIP 

algorithm. It did, however, use as starting values the first phase final values of the 

penalty parameters, and the also fina.l estimate of the Hessian calculated in solving 

the NLP. 

Problem S with p 4 was used to test this two phase algorithm. Results were 

generated for various accuracies required of the NLP solution, and also for various 

values of m, where m is the number of constraints in the NLP. These are listed in 

tables 5.6 and 5.7. 

In table 5.6, the parameter Tol represents the accuracy required of the NLP's 

solution. More precisely, Tol is both the maximum NLP constraint violation permit­

ted, and the maximum (2-norm) residual of the derivative of the NLP's Lagrangian 

allowed at an acceptable solution to the NLP. The row labelled Tol oo in table 5.6 
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Tol First Phase second phase combined 

kl hl time f~LP llx~LP- x~ II k2 h2 time cpu time 

00 0 0 0.00 +3.000 2.9775 20 37 152.36 152.36 

l.OE-1 24 43 20.80 -4.139 0.2875 9 13 30.29 51.09 

l.OE-2 26 45 21.72 -4.132 0.3645 10 14 32.59 54.31 

l.OE-5 28 47 22.54 -4.132 0.3641 10 14 32.02 54.56 

Table 5.6: Results for a two phase algorithm on problem S with p = 4. Here the 

number of constraints in the first phase has been fixed at 160, and the acC1tracy to 

which the NLP was solved has been varied. 

m, First Phase second phase combined 

kl hl time f~LP llx~LP- x~ll k2 h2 time cpu time 

50 19 2:3 6.46 -4.340 0.7170 13 17 4.5.11 51.57 

160 28 47 22.54 -4.132 0.3641 10 14 32.02 54.56 

500 21 30 51.89 -4.128 0.1080 10 15 34.50 86.39 

1600 21 25 17:3.58 -4.128 0.1080 11 14 33.12 206.70 

Table 5. 7: Results for a two phase algorithm on problem S with p = 4. Here the 

number of constraints in the NLP has been, vm'ied, and each NLP was solved to an 

accuracy of 1. OE-5. 



113 

contains the results obtained by applying the SIP algorithm proper without an NLP 

first phase. The rest of the legend for tables 5.6 and 5. 7 is as follows: k1 and k2 are 

respectively the number of iterations performed in solving the NLP, and the SIP; h1 

is the number times the set of NLP constraints is evaluated, and h2 is the number of 

n1Ulti-local optimisation calls made in solving the SIP; /JvLP is the value off at the 

solution of the NLP; and llx}np x~ll is the Euclidean distance between the NLP's 

and SIP's solutions. For the case when Tol = oo, x~LP x(o) and /JvLP = f(x(0)) 

have been used. The cpu times required to complete the first, and the second phases 

are listed in the two columns headed 'time.' The total time required to solve the 

problem is listed under the heading 'combined cpu time.' Unfortunately it was not 

possible to separate the input/output times from the cpu times. The input/output 

times are of the order of 4 to 10 seconds for the test runs listed here, with the in­

put/output tirne for each run being approximately proportional to k1 + k2 • In spite 

of this uncertainty in the times, they still provide useful information on the effects 

of using an NLP first phase. 

The results show that the use of a. first phase reduces the total time required 

to solve the problem. The results show that a relatively coarse discretization of 

the semi-infinite constraint performed better than a. finer discretization. As the 

discretization became finer the time taken to complete the first phase increased 

accordingly. Curiously, the time taken to complete the second phase was relatively 

independent of the discretization; the second phase times for m = 160, 500, and 

1600 being very similar. The m = 500 and m 1600 first phases found the same 

approximation, to four decimal places. The differences in their second phases can 

be attributed to the fact that the NLP runs had different final penalty parameter 

_values, and different final estimates of the Hessian, both of which were inherited 

by the second phase. The m 160 first phase found a. considerably accurate 

approximation, and yet the corresponding second phase was just as fast. 

Similarly, these results for m = 160 and varying values of Tol show that there 

is little to be gained by solving the NLP to great accuracy. Discretizing the semi­

infinite constraint introduces an error between the solution of the NLP ( xjnp ), and 

. There is little point in reducing the error in the calculated value of x~LP too 

much below llxrnP- ;r~ll. 
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5.7 Advantages of an Extra Penalty Parameter. 

The penalty function ¢ is a hybrid of the standard Single Parameter Exact non­

differentiable Penalty Function (SPEPF) and the classical Quadratic Penalty Func­

tion (QPF). These are respectively¢ with v = 0, and with J.l- 0. The characteristics 

of this hybridization are investigated by varying the threshold parameter Bcrossover· 

When () is above this threshold value, any adjustments to the penalty parameters 

are mady to v, below this threshold the adjustments are made to J.l· If ()crossover is 

very large, then the algorithms behaviour imitates that of an algorithm based on 

a single parameter exact penalty function. If () is very small, then the algorithm 

mimics a quadratic penalty function based algorithm. 

Problem 6 was chosen as the test problem on which to explore the effects of 

altering ()crossover because it is highly non-linear, and because the standard form 

of the algorithm (chapter 4, section 1) requires many iterations and multi-local 

optin1isations to solve it. Thus any changes in the algorithm's performance wrought 

by changing ()crossover should be clearly detectable. It was necessary to limit the 

maximum length of the proposed step: JjsJJoo :S 2 was used. vVithout this bound, 

very large steps were predicted, and attempted. When the programme attempted 

to evaluate ¢ at the proposed new iterate, the exponential terms in the constraint 

function caused an overflow to occur - thereby crashing the programme. The 

results are presented in table 5.8. The first and last rows of ta.ble 5.8 list the 

results obtained by using a single parameter exact penalty function (v = 0), and 

a quadratic penalty function (ft - 0) respectively. For these two rows the initial 

penalty parameter values were fl = 0.1 and v = 1.0 respectively. For all other 

rows, fl = 0.1 and v = 1.0 were the initial values, with ()crossover as listed. Two sets 

of results were generated: the first set was computed using the algorithm without 

a capping constraint, and the second set was calculated by the algorithm with a 

capping constraint set at Bcap = 1. 

The results show that without the capping constraint, the pure non-differentiable 

penalty function needed over twice as many iterations, and more than four times as 

many multi-local optimisation calls as the hybrid penalty function with ()crossover = 1. 

With ()crossover= 100, the algorithm did not alter v, in which case¢ was effectively the 

sum of the single parameter non-differentiable penalty function and a +~B2 term. 

Even this simple alteration produced a significant improvement in performance. 

Using lower values of ()crossover improved performance further. 
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The SPEPF performed so poorly without either a non-zero v or a capping con­

straint because many iterations are needed before a sufficiently large value of fl 

is obtained. With v = 0, and without a capping constraint, /l(k) can be at most 

""zfl(k-l), where 11,2 = 1.5 was used. This is a consequence of using the Lagrange mul­

tiplier estimates from the L00 QP, which means that II.A(k-l)lh is bounded above by 

fl(k-l). The updating scheme for the penalty parameters is designed to ensure that 

fl(k) is at most K,zii.A(k-l)jl 1 . So, if JJ(o) is small, many iterations may be needed before 

a reasonable value of fl is reached. If v > 0 then fl(k) :=:; K,z(!l(k-l) + v(k-l)((k-l)) and 

fl can grow faster than for the SPEPF. 

One might expect that the quadratic penalty function performance would be 

much worse than that of the hybrid penalty function, however the results do not 

bear this out. All calculations in all test runs were performed in double precision, 

which is approximately 16 digits. This is enough to cope with the ill-conditioning 

arising from the high value of v, whilst still achieving the required accuracy of 

about five digits. However the deficiencies of the quadratic penalty function are well 

known. 

vVith the capping constraint in place, the differences between the various penalty 

functions were not great. The result for Ocrossover = 100 appears to be something 

of an anomaly. For Ocrossover :=:; 10 the uncapped algorithm consistently performed 

better than the capped algorithm; the difference however was not large. 

To investigate the relative merits of the SPEPF and the hybrid penalty ftmc­

tion further the algorithm was modified to permit arbitrarily large increases in the 

penalty parameters. This was accomplished by solving the Leo QP subproblem with 

fl reset to a very large number: here l.OE8 was used. The Lagrange multiplier es­

timates calculated whilst solving this L00 QP were then used to update the penalty 

parameter values in accordance with the rules given in section 1 of chapter 4. The 

search direction was then calculated by re-solving the L00 QP with the new penalty 

parameter values. The relevant results are presented in table 5.9. In these, the 

SPEPF does better than the hybrid penalty function with Bcrossover = 1. An exami­

nation of the sequences of iterates generated shows that the hybrid penalty function 

with Bcrossover = 1 allows the sequence of iterates to penetrate deeper into the infea­

sible region than does the SPEPF. The deeper forays into the infeasible region take 

longer to correct. The presence or absence of a capping constraint had no effect on 

the numerical results here. 
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Allowing arbitrarily large increases in ;.t and v does not quite make the capping 

constraint irrelevant. The method used to estimate the Lagrange multipliers when 

unlimited increases are permitted ensures that the capping constraint will never be 

active at the solution of the L00 QP; the capping constraint itself becomes redundant. 

However, using the capping constraint also imposes the following extra requirement 

on the line search: 

if fJ(k) > 8cap then fJ(k+l) :5,; O(k) is required. 

This extra condition is still able to influence how the algorithm selects each iterate. 

Additionally, the possibility of allowing reductions in the penalty parameter val­

ues as well as unlimited increases was also looked at. To stop the algorithm from 

endlessly increasing and decreasing the penalty parameters it was necessary to as-

ft and v minimum values J.lmin and Vmin: initially J.lmin 0.1 and Vmin = 1.0 were 

used. Each time a penalty parameter was decreased, the corresponding minimum 

value was subsequently doubled. Without these minimum values, the possibility 

that the algorithm may fail by cycling is admitted. 

The necessary changes were implemented as follows. Firstly, ).(k) was calculated 

as described earlier for the case of arbitrarily large increases. Any consequent in­

creases in the penalty parameters were then made. Immediately following this, if 

e(k) :::; {)crossover then decreasing either or both of the penalty parameters was consid­

ered. If 

fl(k) >max (LSII.\(k)lh,flmin) 

then the following adjustments were m.ade, in this order: 

fl(k) max 
v(k) ~ v(k) + -----'------"'-

()crossover 

and ft(k) ~max (Lsp(k)lh,;.tmin). 

The first adjustment ensures ;.t + v() is decreased only on the part of the infeasible 

region where fJ < ()crossover· For many problems this is the part of the infeasible 

region which borders on the feasible region. If 

then v(k) was reset as follows: 

(k) (411.\(k)lll -~l(k) ) 
V ~ max {) , Vmin · 

crossover 
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()crossover Not Capped Capped 

kp hp fl" v" kp hp fl" v" 
SPEPF 42 130 977.1 0 21 40 334.0 0 

100 35 99 16970 1.0 16 25 431.0 1.0 

10 16 34 210.8 24.64 19 39 429.4 86.97 

1 16 31 46.49 234.5 17 34 75.13 86.97 

0.1 16 31 22.42 877.0 18 35 7.583 86.97 

0.01 17 32 11.79 877.0 20 38 7.341 1182 

l.OE-4 19 34 7.398 55760 21 39 7.381 78030 

l.OE-6 21 36 7.383 1.5E+7 24 42 7.383 5.2E+6 

QPF 22 42 0 l.OE+9 22 39 0 2.1E+6 

Table 5.8: Variations of the algorithms pe1jormance on problem 6 with respect to 

changes in () c1·ossove7·· H1hen () e:rceeds () aossovm v is altered) otherwise p is altered. 

The first and last rows are for a single pammeter exact non-differentiable penalty 

function (v = 0)) and for a quadmtic penalty function, (p 0) respectively. 

If () > ()crossover then the penalty parameters were not reduced. 

The results for this are presented in table 5.10. They show that allowing decreases 

in the penalty parameters led to improvements in the performance of the algorithm 

in most cases. Once again the SPEPF did better than the hybrid penalty function. 

The best result is that of the original algorithm, with ()cap = 1 and ()crossover = 
100. Other than this apparently rather anomalous result, the best results were 

obtained using the hybrid penalty function with only restricted increases in the 

penalty parameters permitted, and without a capping constraint. 

Problem K was used to investigate the effects of excessively high values of the 

penalty parameters. This problem contains a single convex constraint. The initial 

point lies near this constraint, and the solution lies on it. Between the initial point 

and the solution the gradient of the objective function points into the constraint. 

This problem tests an algorithm's ability to generate a sequence of iterates which 

efficiently skirts around the convex constraint to the solution. As the penalty param­

eters are increased, the constraint becomes more nearly impenetrable- forcing the 

algorithm to generate iterates which are either feasible, or only marginally infeasible. 
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Bcrossover Not Capped Capped 

kp hp pti vti kp hp Jlti vti 

SPEPF 21 40 334.4 0 21 40 334.4 0 

100 21 40 334.4 1.0 21 40 334.4 1.0 

1 28 66 1625 3.2E+7 28 66 1625 3.2E+7 

0.01 28 68 407.9 3.2E+7 28 68 407.9 3.2E+7 

Table 5.9: The hybTid PF, and the SPEPF with unlimited incTeases in the penalty 

pammeteTs peTmitted. 

Bcrossover Not Capped Capped 

kp hp pti vti kp hp Jlti vti 

SPEPF 19 34 6.490 0 19 36 7.006 0 

100 19 34 6.490 1.142 19 36 7.006 1.237 

1 24 37 6.781 4.000 26 41 6.711 10.57 

0.01 32 65 7.365 19.64 29 63 7.340 19.57 

Table 5.10: The hybTid PF, and the SPEPF with unlimited incTeases, and with 

dec1·eases in the penalty parameteTs peTmitted. 
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jJ v 1 kp hp 1 

3 0 8 15 

10 0 9 17 

30 0 16 43 

100 0 28 82 

300 0 35 124 

1000 0 44 139 

3 1 8 15 

3 10 8 15 

3 1E+2 9 17 

3 1E+3 22 60 

3 1E+4 20 

3 1E+5 38 10.5 

3 1E+6 40 152 

3 1E+7 .53 152 

Table 5.11: Results for problem J( with various values of the penalty parameters. 

Both penalty pa·rameters we·te fixed during each Tun. 

Results were generated for a variety of values of ft and v. These parameters were 

kept constant during each run of the algorithm. The results are listed in table 5.11 

in two groups. The first is for the single parameter exact penalty function: v = 0 is 

used for each of these runs. The second group is for the hybrid penalty function. In 

the latter group p, = 3 has been used, as this is K 2 ( =1.5) times the minimum value 

of f.1, needed to make the solution of problem K a local minimum of </J. 

The results show that the number of iterations and multi-local optimisation 

calls required to solve the problem rises with increasing values of either penalty 

parameter. The degradation in performance of the SPEPF algorithm brought 

about by increasing p by a factor 1 is roughly the same as the degradation in 

performance of the hybrid penalty function algorithm wrought by increasing v by a 

factor 12
• 
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5.8 Other Comments. 

A simple upper bound (of 2) on the infinity norm of the proposed step was used 

on all problems. On problem 6 it was needed to prevent an overflow occurring. On 

problem 4 (excepting n = 3) and on problems S, T, and U the more sophisticated 

trust region: 

was used. On problem 4 this lead to improved performances compared to those 

obtained when the simple bound was used. 

As stated in chapter 2, the ~vB2 penalty term was included to provide a mecha­

nism for reducing the risk that p would be set at an excessively high value. Problem 

K was designed specifically to test the effects of including the second penalty term. 

As expected (20], excessively high values of either penalty parameter impair the al­

gorithm's performance. These results also show that an excessively high value of v 

degrades the algorithm's performance less than a correspondingly high value of fL. 

Accordingly, the scheme used to update the penalty parameters should try to avoid 

selecting unnecessarily large values, particularly for p. Unfortunately such values 

may be unavoidable for a variety of reasons, notably: 

• Reductions in the penalty parameters are not permitted, and the initial values 

of the penalty parameters are excessive. 

• A highly infeasible iterate is encountered, and one or other penalty parameter 

must be large if near feasibility is to be subsequently attained. 

• The Lagrange multiplier estimates are highly inaccurate. 

The inclusion of the second penalty parameter does reduce the susceptibility to 

the last two causes listed. However if fl(o) is excessive, then the ~ vB2 term is of 

little use. In spite of the results, permitting only restricted increases of the penalty 

parameters could easily lead to excessive values on some problems, especially as a 

result of the second reason listed. Moreover, many iterations may be wasted before 

p and v are large enough to achieve feasibility. In addition, the restrictions on the 

increases in p and v are a. product of using the Lagrange multiplier estimates from 

the L00 QP's solution. If the Lagrange multiplier estimates are calculated in some 

other way (for example, first order estimates are used) then any restriction of the 
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form p(k) ::; K2p(k-l) becomes essentially ad hoc in nature. Hence permitting both 

increases and decreases is apparently advantageous. It should be noted that on 

some problems, permitting decreases in p and v may allow the algorithm to cycle 

until the minimum values of the penalty parameters become high enough to force 

convergence. In such cases the early iterations are likely to achieve little other than 

waste time. It appears there is no 'right' strategy: the best scheme depends on the 

nature of the problem being solved. It is reasonable to expect that, on average, 

allowing both increases and decreases would be the better strategy on more difficult 

problems. 

The results frmn problem. 6 indicate that the performances obtained using the 

various strategies are approximately within a factor of two of one another. 

The necessity of a capping constraint is closely linked to the method used to 

estimate the optima.! Lagrange multipliers. If the Lagrange multiplier estimates from 

the LcoQP are used, then the estimates are bounded in the 1-norm by p(k) + v(k)((k). 

In that case the capping constraint is needed to eliminate the possibility that B(k) --1 

oo as k --1 oo. \iVhen this occurs, at each iteration, the increases in the penalty terms 

are always offset by the reduction in the objective function. If first order estimates 

of the Lagrange multipliers are used, then each search direction will be one of non­

ascent for e, although the restriction that B(k+l l ::; B(k) may still be needed if e is 
positive and large. 

vVhat is a good choice for the the cappmg constraint value Bcap varies from 

problem to problem. If Bcap is too small then the sequence of iterates may be 

forced to follow closely a tightly curving constraint: a task that can require many 

iterations. In contrast, if Bcap is too large, then it is possible for the sequence of 

iterates to penetrate deeply into the infeasible region. This risks having to set one 

or other penalty parameter to a large value in order to regain near feasibility. More 

seriously, it is possible that 8( X) has strict local minimisers in the infeasible region. 

For sufficiently large ll and v, there will be corresponding infeasible localminimisers 

in ¢. Convergence to such a local minimiser is tantamount to failure of the algorithm. 

An appropriate value of Bcap may lessen the risk of an infeasible local minimiser of 

¢ 'trapping' the sequence of iterates. 

On problemS, with n = 4, the use of a NLP first phase reduced the time required 

to solve the problem by almost a factor of three. The best results were obtained 
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by using a coarse discretization of the semi-infinite constraint, and then calculating 

the solution of the resultant NLP to a low accuracy only. The accuracy of the 

approximation to the solution found by the first phase could be improved by either 

using a finer discretization of the semi-infinite constraint, or solving the resulting 

NLP to a higher accuracy, or both. However, the benefits of a more accurate initial 

value for the second phase were more than offset by the extra effort required to 

obtain it. 

Hettich and Gramlich [50, 53] give a more sophisticated algorithm for discretizing 

the semi-infinite constraint, and solving the NLP so obtained; the approach taken 

herein was simply to solve the NLP directly using a quasi-Newton algorithm. The 

results Hettich and Gramlich [50, 53] list indicate that their algorithm would be 

significantly faster than the first phase method used herein. It would appear that a 

good semi-infinite programming algorithm could be constructed using a first phase 

as described by, say, Hettich, follovved by the algorithm presented herein as a second 

phase. 



Chapter 6 

DISCUSSION AND 

CONCLUSION. 

In this chapter a discussion of the various aspects of the quasi-Newton algorithm 

and the multi-local optimisation subalgorithm is undertaken. The comments are 

grouped loosely into several sections. Finally·, a brief summary of what has been 

achieved is given. 

The Role of¢. 

In SQP methods there are two main ways of using ¢: either as a penalty function 

or as a merit function. The role of <P determines, to a great extent, the form of the 

QP which is solved to obtain the search direction. \Vith the standard SQP method, 

search direction is generated by approximating the original SIP problem; ¢ 

merely serves as a merit function. That is to say, in the line search <P is used to 

adjudicate between the two aims of reducing the objective function, and attaining 

and maintaining feasibility. After calculating the search direction, the penalty pa­

rameters are chosen so that the search direction is one of descent for ¢. In contrast, 

by generating each search direction using an L 00 QP which approximates ¢, it is the 

problem of minimising <P that is solved rather than the SIP. The penalty parameters 

are selected first, and are chosen so that the feasible minimiser( s) of <P which are 

found are also solutions to the SIP. 

The generation of each search direction using an QP has a significant ad-

vantage over the use of a QP. At each iteration it is guaranteed that the L00 QP 

123 
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has a unique global minimiser, even the linearizations of the constraints are 

inconsistent. When these linearizations are inconsistent, the resultant QP subprob­

lem for the standard SQP method is infeasible. In such cases, one could minimise 

the infeasibility of the linearizations of the constraint, and then, subject to keeping 

this infeasibility to a minimum, minimise the objective function of the original QP. 

If the infeasibility of the linearizations of the constraint is taken as the maximum 

violation of these linearizations, then this is equivalent to solving the L00 QP with f.1, 

large enough to force the maximum of the violations of the linearized constraints to 

its minimum value. 

In essence, if if; is used as a penalty function, the penalty parameters are selected 

first, and then a suitable search direction is chosen. In contrast, if if; is used as a 

merit function, the search direction is chosen first, and then suitable values for the 

penalty parameters are selected so that the chosen search direction is one of descent 

for the merit function. 

Choosing the Search Direction. 

At each iteration the search direction is chosen by solving the appropriate quadratic 

programme. Because if; serves as a penalty function rather than as a merit function, 

an L 00 QP is solved at each iteration. At each iteration the L:x:; QP must approximate 

the exact penalty function in the neighbourhood of the current iterate, but this 

does not completely determine the L00 QP. Specifically, there is still some choice in 

the matrix H, and the set A. Here the L 00 exact penalty function has a distinct 

advantage over the L1 exact penalty function in that the active set is only required 

to contain a sufficient num.ber of points to satisfy assumption 2.8. Any finite set of 

points satisfying assumption 2.8 may be augmented by any other set of finite points 

T, and still be acceptable as an active set A under assumption 2.8. This means an 

L 00 exact penalty function based method is much less likely to be adversely affected 

than an L1 based method if the multi-local optimisation subroutine returns two or 

more approximations to the same local maximiser. 

This property of the L00 exact penalty function also permits extra points in T 

to be included in the active set A. These extra points could include those at which 

prominent local maximisers are expected to appear, or points regarded as significant 

for some other reason. An example of this is the matching process of Tanaka et al., 

which is discussed later in this chapter. 
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Some other ways of choosing such extra points are as follows: For instance, such 

points could be prominent local rn.aximisers of g at a: values, which were proposed 

and rejected as iterates during the previous line search. Also, by extrapolating 

the change in position for each known local maximiser for the last two iterates (or 

proposed iterates), estimated positions of these local maximisers at the next iterate 

may be calculated. Finally, elements of Hm at which the increase in the constraint 

function value for the last two iterates (or proposed iterates) indicates the possible 

appearance of a prominent local maximiser could also be included in A. 

Inclusion of such points in A courts the risk of numerical instability in the QP 

arising from two or more very similar QP constraints. However, any extra points 

which give rise to near identical constraints in the QP are contributing little or no 

useful information, and should not be included in A. Accordingly, provided any 

extra points included in A are not too close to points already in A (or each other!), 

including them in A appears to convey little risk, and may lead to better search 

directions. Increasing the number of points in A will usually lead to increased 

solution times for the QP subproblems, however any such increases are likely to be 

insignificant in comparison with the solution times for the multi-local optimisation 

subproblem. Moreover, if the number of multi-local optimisations performed is 

reduced, then the inclusion of such points in A is almost certainly advantageous. 

The second order correction was included to ensure superlinear convergence can 

ultimately be attained on problems which are sufficiently continuous. The second 

order correction also proved to be useful at iterates far from the solution. Its in­

clusion a.llowed the curvature of the constraints along the search direction to be 

taken into account, in the process replacing the line search with an arc search. This 

permitted curved constraints to be followed more easily. 

Lagrange Multiplier Estin1ates. 

There are several methods of generating estimates of the optimal Lagrange multi­

pliers. They can either be obtained as a by-product of solving the QP subproblem 

for the search direction, or calculated directly. For the implementation of the algo­

rithm presented herein, the Lagrange multiplier estimates were taken directly from 

the L00 QP's solution. Obtaining Lagrange multiplier estimates in this fashion re­

quires no extra computational effort, but is not as robust as some methods. Gill and 
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Murray [34) describe a method in which both first and second order estimates are 

calculated: if these differ greatly, then the first order estimates are used, otherwise 

the second order estimates are used. The second order estimates could either be 

calculated by solving a QP problem expressly for that purpose, or simply taken as 

the Lagrange multipliers generated when solving the L00 QP for the search direction. 

In the latter case, if the trust region is active at the solution of the L 00 QP, then these 

estimates should be rejected, and the first order estimates used. Such an approach 

is more intensive computationally, but the high cost of the multi-local optimisations 

means that this is likely to be of little significance. 

When the Lagrange multiplier estimates are taken from the same Leo QP used to 

generate the search directions, these estimates will be affected by the use of a trust 

region if that trust region is active at the solution of the L 00 QP. This can change the 

updates to H, leading to a loss of superlinear convergence. There are two basic cases 

of note: First, if ( 0 at the solution of the L 00 QP (4.1,4.2,4.:3,4.4,4..5), then any 

active trust region bounds will alter the Lagrange multipliers corresponding to the 

semi-infinite constraint, with consequences as indicated in earlier this paragraph. 

Second, if ( > 0 at the solution (s, () of the L 00 QP, then the following equations 

hold: 

n 

\if+ Hs I: A;Yxg(x, ti) +I: 7];e; = 0, 
iEA i=l 

and fl + v( LA;. 
iEA 

(6.1) 

Here ei is the ith unit vector, and 7]; is the Lagrange multiplier associated with the 

bounds 011 the ith element of x. Specifically, if Xi lies 011 its lower bound, (respectively 

lies on its upper bound, or is unbounded) then 7]i non-positive (respectively non­

negative, or zero). Equation (6.1) shows that using the Lagrange multiplier estimates 

from the L00QP means that the penalty parameters will always be increased if either 

the trust region is too small to allow ( 0 at the LooQP's solution, or if the linear 

constraints approximating the semi-infinite constraint are inconsistent. This will 

happen even if the penalty parameters are already high enough to force convergence 

to a solution, without further alteration. Moreover, as the sum of the Lagrange 

multipliers is equal to fJ + v(, the Lagrange multipliers themselves will be wrong, 

leading to an incorrect update to the approximate Hessian H. 
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Updating the Penalty Paran1eters. 

The scheme by which the penalty parameters are updated is intimately linked with 

the method of calculating the Lagrange multiplier estimates. The use of Lagrange 

multiplier estimates from the L00 QP places an upper bound on the 1-norm of the 

Lagrange multipliers, and hence limits the rate of increase of the penalty parameters. 

Use of first order estimates, or of second order estimates generated from, say, a 

standard QP allows unlimited increases in p and 11. Using such estimates, any 

limits on the increases of the penalty parameters would be entirely arbitrary. The 

numerical results show that, in such cases, allowing decreases in p and 11 is definitely 

advantageous. 

The use of the hybrid penalty function gives an extra degree of freedom in choos­

ing the penalty parameters. The two penalty parameters penalize infeasibility dif­

ferently: when the infeasibility (} is small, p is the dominant penalty parameter, 

whereas when (} is large v is the more significant of the two. 

The results for problem K, and the work of Coope [20] show that excessively 

high values of the penalty parameters reduce the rate of convergence. Problem K's 

results also shovv that an ~'"'"'"'"'"" value of v is much less damaging. The presence 

of both penalty parameters means that an excessive value of p may be corrected 

by decreasing tt and making a corresponding increase in 11. Moreover, at highly 

infeasible iterates increasing 11 is more effective than increasing p: increasing only v 

at such iterates reduces the risk of generating an excessive value for p. 

Trust Regions and Line Searches. 

The quasi-Newton algorithm uses a line search to ensure sufficient descent is ob­

tained. A trust region is also present, although only in the rudimentary form of a 

bound on the infinity norm of the proposed step. Indeed, the convergence theorem 

requires that an upper bound of some description be imposed on the length of the 

proposed step. 

Quite apart from the convergence theoren1's requirements, using a trust region 

can be beneficial. For example, on problem 6, it prevented the algorithm 

from considering prospective iterates at which the constraint's function values were 

sufficiently large to cause overflow errors. 
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Using the somewhat more sophisticated implementation of a trust region (4.6) 

gave considerable improvements in the quasi-Newton algorithm's performance on 

the extended version of problem 4 for n = 6, and n = 8. This suggests that a 

sophisticated implementation of a trust region could be profitably employed in an 

algorithm for SIP. Indeed the results of the three Newton type algorithms show that 

the algorithm of Tanaka et al., which employs a trust region, is definitely competitive 

with those of Watson, and of Coope and Watson. These algorithms also differ in 

other respects such as the choice of penalty function, and so they do not yield a 

direct comparison of the relative merits of a line search and a trust region. 

The general features of the differences between line searches and trust regwns 

can be identified. For finite NLPs, one significant difference is that the trust region 

approach requires a QP to be solved to generate each prospective next iterate, 

whereas the line search approach only requires one QP to be solved each iteration. In 

semi-infinite programming, the cost of solving these QPs is unlikely to be significant 

in comparison to the cost of performing an equal number of multi-local optimisations. 

When using a trust region, the approximation to the Hessian of the Lagrangian 

can be updated each time a proposed iterate is generated, irrespective of whether 

or not the proposed iterate is accepted. In contrast, with line search algorithm.s, if 

the proposed iterate is rejected no updating occurs. In semi-infinite programming, 

evaluating the penalty function at each proposed iterate is very expensive, and so it is 

prudent to extract as much useful information as possible from these evaluations. On 

this point, trust region algorithms have a definite edge. Of course, at QP solutions 

·where the trust region is active, for the purpose of choosing the prospective step 

the trust region will have interfered with the second order information stored in the 

approximation of the Hessian. 

A trust region based algorithm does not permit a proposed step with a length 

greatly in excess of the length of the step accepted in the previous iteration. Most 

line search algorithms impose no such restriction. vVhen large increases in the step 

length are desired, a trust region approach will hamper this - perhaps requiring 

more multi-local optimisations in the process. Counterbalancing this is the possi­

bility that the proposed step is far too long. In such cases both types of algorithms 

will reject several proposed iterates before an acceptable point is found. If this new 
I 

iterate is little different from the previous one, then a line search algorithm may 

generate a very similar search direction, and reject a similar number of prospective 

iterates before a suitable point is found. This sort of behaviour may continue for 
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several iterations. In contrast, after the first such iteration, a trust region algorithm 

will choose prospective steps of a more suitable length, thus reducing the number of 

multi-local optimisations performed at each iteration. 

In short, the situation for semi-infinite programming is similar to that for finite 

NLPs when the constraint functions are extremely expensive to evaluate. Both line 

search and trust region based methods are capable of yielding excellent algorithms 

for semi-infinite programming. 

In the implementation of the arc search, the trial values of a were chosen in a 

relatively simplistic manner: namely 1, (3, (3 2
, .•. were tried in that order. For each 

trial value of a used a multi-local optimisation must be performed. If the number 

of trial values of a which are rejected is minimised, then, on difficult problems 

a significant increase in speed would be expected. Accordingly, any scheme for 

selecting trial a values which reduces the average number of trial a values rejected 

at every iteration will be very beneficial One obvious strategy is to construct an 

approximation to ¢( x + o:s) for o: values ranging over the interval [0, O:previous] using 

function and gradient information, where O:previous is the most recently rejected a 

value. The mini miser of this approximation to ¢( x + o:s) could then be the next 

trial a value, subject to it lying within some subinterval of [0, aprevious]· Such a line 

search would be of most use on difficult problems ~vhere short steps occur frequently. 

This avenue has not been explored at all in this thesis. 

Tanaka et al. 's Matching Process. 

One feature of Tanaka et al. 's algorithm that distinguishes it from the algorithms of 

Watson, of Coope and Watson, and the algorithm presented herein is that it matches 

up the prominent local maximisers over successive iterations. If new prominent local 

maximisers are observed at a proposed iterate, then this prospective new iterate is 

rejected, estimates of the positions of these new prominent local maximisers at the 

old iterate are calculated, and a new search direction from the old iterate is chosen 

with these new prominent local maximisers taken into account. Such a process 

involves adding extra points to A(k), and this can only be clone if the Loo exact 

penalty function is used. This process is extremely effective on problem 9: the 

algorithm of Tanaka et al. is the only one to achieve the required accuracy on this 

problem. Of course problem 9 does not satisfy assumption (2.3), which is used to 
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ensure that the semi-infinite programme in question is tractable. 

The method Tanaka et al. use to perform the matching process requires the use 

of second order derivatives of g - specifically Vitg, and v;t9· The quasi-Newton 
I 

algorithm is designed to work on C1 functions and so using these second derivatives 

is not an option. 

When close to a solution, a rather simpler matching process could be imple­

mented: this matching process would only need to use the distances between the 

local maximisers to pair them up. For example, such a matching process could be 

used whenever the step lengths are sufficiently short. 

The method used by the algorithm of Tanaka et al. to estimate the positions of 

the new global maximisers at the old iterate also uses second derivatives of g. In the 

absence of these quantities, the estimated positions of the new global maximisers 

at the old iterate could be taken as the positions of these maximisers at the newly 

proposed (and rejected) iterate. 

The convergence theorem shows that the matching of global maximisers over suc­

cessive iterations is necessary only for problems which the quasi-Nevvton algorithm, 

and indeed almost all other algorithms including those of Tanaka et al., of ·watson, 

and of Coope and ·watson, are not designed to solve. Nevertheless, matching can be 

a useful tactic when little progress is being made clue to unforseen local maximisers. 

In such circumstances, even rudimentary n1.atching and estimating processes will 

help predict the effects of these nascent local maximisers. In particular, the more 

progress is inhibited by such nascent local maximisers, the smaller the changes in 

the constraint function become. Hence, when use of a matching process is likely to 

be most advantageous, it will be easiest to perform, and yield the most accurate 

estimates of any nascent local maximisers. 

The Multi-Local Opti1nisation Subproble1n. 

There are a number of techniques for finding a local optimum of a continuously 

differentiable function, subject to a finite number of continuously differentiable con­

straints. The variety of problems in this class is sufficient that no one technique is 

superior to the others in all cases. The problem of finding the global and prominent 

local maximisers of a differentiable function subject only to simple bounds is much 

more difficult than that of simply finding a local maximiser, especially when the 
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number of dimensions is greater than one. It would be unwise to expect that there 

is one basic approach to the multi-local optimisation problem that is the best in all 

cases. The multi-local optimisation algorithm uses uses a Halton sequence to gen­

erate test points, rather than a rectangular grid. The sort of function for which the 

multi-local optimisation algorithm is intended is typically in two to four dimensions, 

is multi-modal, but does not possess a large number of prominent local maximisers, 

and may be either unimodal or nearly constant in some (but not all) dimensions. 

One of the reasons for choosing a Halton sequence to explore the topography 

of g was that the 'projection deficiency' of a rectangular grid was avoided. This 

deficiency occurs when g is nearly constant -vvith respect to t along some directions, 

and in particular those parallel to some axis of the grid. In such cases, a drastic loss 

of efficiency can occur. However, the Inethod of estimating the variance parameter 

c in the implementation used to generate the results implicitly assumes that g is 

isotropic. This assumption is in no way essential to the multi-local optimisation 

algorithm. Perhaps the easiest way of elimina.ting it is to regard g as being the 

result of a change of variables on a function which is approximately isotropic. One 

then has to estimate the metric under which g is an approximately isotropic function 

as well as c itself. 

The assumption that c was approximately independent of direction was made for 

the implementation of the algorithm for the sake of simplicity. Other 'simplifications' 

were made in the implementation of the algorithm. For instance, at each iteration 

the points in the Halton sequence were calculated anew. A more efficient approach 

would be to store them between iterations. Excluding the isotropy assumption for 

c, the simplifications made in implementing the multi-local optimisation algorithm 

did not change the actual algorithm in any way whatsoever. However, these simpli­

fications will have resulted in somewhat increased solution times. 

Halton sequences are really only of use up to about 4 to 6 dimensions at most 

- above that a very large number of test points must be generated before the 

uniformity theorem becomes valid, and calculating the nearest neighbours of a test 

point becomes very expensive. In contrast, rectangular grids are subject to similar 

limitations for different reasons. The nearest neighbour subproblem for a grid is 

easy to solve. However, the number of nearest neighbours of a test point may be 

exponential in p, depending on the precise definition of the term 'nearest neighbour.' 
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Also, if all dimensions are to be treated equally, the number of test points used by 

a grid is inherently exponential in p. 

In most cases, it is reasonable to expect that, for a SIP inn 'x' dimensions and 

p 't' dimensions, the number of global maximisers of the constraint function at the 

solution will be approximately n, at most. Rinnooy Kan et al. [89] show that, under 

certain assumptions, the number of function evaluations required to find the global 

maximisers of the constraint function is independent of p. In spite of this, the algo­

rithm of Rinnooy Kan et al. is still exponential in p this is a consequence of using 

the neighbour algorithm of Bentley et al. [12]. This exponential behaviour 

can easily be avoided if one is prepared to forfeit the property that the computational 

costs are proportional to the number of function evaluations. This poses an interest­

ing question: 'given that the expected nun1ber of global maximisers is independent 

of p, is there a viable 1nethod of exploring T for vvhich the costs are proportional to 

the number of function evaluations, yet are not inherently exponential in p?' 

Two simple modifications to the multi-local optimisation algorithm which would 

lead to improvements in performance are described in the following two paragraphs. 

Neither of these modifications was implemented. 

A simple method of reducing the cost of performing the multi-local optimisations 

1s to calculate the largest value of () for which the sufficient descent conditions 

are satisfied. Call this value 00 say. During each multi-local optimisation, as the 

constraint function value is calculated at each test point, it is checked against 80 • 

If it exceeds 80 , then the multi-local optimisation is halted immediately, and the 

proposed iterate is rejected. 

Halton sequences are not invariant with respect to the ordering of the co-ordinate 

vectors. Changing the order of the axes is equivalent to changing the order of the 

1ri's and Di 's. Because 7ri 1r j unless i = j, any two different orderings of the 1r/s 

and 8/s will yield two different sequences of test points. This fact can be useful 

in the final iterations when the constraint function remains approximately constant 

from one iteration to the next. By using a different ordering of the and Di's at 

each such iteration, a more thorough exploration of the semi-infinite constraint at 

the final iterate can be made. 
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Concluding Re1narks. 

A quasi-Newton algorithm for semi-infinite programming problems ha.s been con­

structed. The conditions under which the algorithm has been shown to converge 

correspond closely to those required for a quasi-Newton algorithm for finite non­

linear programmes. The extra conditions are assumptions 2.3 and 2.8, which re­

spectively make the problem tractable, and ensure the multi-local optimisation sub­

algorithm fulfills its intended purpose. These two extra assumptions are quite mild. 

These ~ssumptions are considerably weaker than those required for the algorithms 

of ·watson [97], Coope and Watson [21], and Tanaka, Fukushima, and Ibaraki [94]. 

In particular, it is not necessary that the implicit function theorem be applicable to 

the local maximisers of the constraint function. The assumptions required by the 

quasi-Newton algorithn1 to ensure convergence are weaker, and so the class of prob­

lems which can be solved by this algorithm is larger. Neither assumption 2.3, nor 

assumption 2.8 requires C2 continuity of either the objective or constraint function, 

and so the quasi-Ne~:vton algorithm is capable of solving C1 problems. On problems 

satisfying conditions similar to those required by the three Newton type algorithms, 

the quasi-Newton algorithm can be shown to exhibit superlinear convergence. 

The use of an LcXJ exact penalty function removes the possibility that disconti­

nuities may exist in the penalty function at infeasible points: a flaw from which the 

L1 exact penalty function suffers. The use of L::-oQP subproblems to generate search 

directions ensures that each QP subproblem can always be solved. Together these 

two facts yield a convergence result similar to that for an unconstrained optimisation 

problem. Specifically, at least one of the following occurs: 

• Convergence to a stationary point of the penalty function occurs. 

• The sequences of objective, and penalty function values are unbounded below. 

• The sequence of iterates diverges. 

• The penalty pa1·ameters are increased endlessly. 

Of course convergence to a stationary point of the penalty function does not guaran­

tee that the relevant limit point is feasible. Nor, given feasibility, does it guarantee 

that that point is a local minimum of the SIP, although it must be a stationary 

point of the SIP. However, this situation is identical to that for quasi-Newton algo­

rithms for finite NLPs. As the latter type of problem is a subclass of semi-infinite 
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programmes, the best that can possibly be achieved for SIPs is equivalence with the 

situation for NLPs. 

For simplicity, this thesis has concerned itself only with semi-infinite programmes 

with one semi-infinite constraint and no auxiliary constraints. The extension to 

several semi-infinite constraints and auxillary constraints is straightforward. In light 

of the current preference for the L1 exact penalty function for finite NLPs, the 

preferred measure of infeasibility would be the sum of the maximum constraint 

violations of the semi-infinite constraints, plus the sum of the violations of the 

auxiliary constraints. This would yield a hybrid L1 Loo exact penalty function. 

The quasi-Newton algorithm performed well on a wide variety of problem_s. In 

general it took more iterations and n1.ore multi-local optimisations to solve a problem 

than any of the three Newton type algorithms did. On the more ill-conditioned 

problems, the gap between the Newton type and the quasi-Newton algorithms was 

widest. This is similar to the situation for finite NLPs, and is to be expected. In 

fact, one would expect the difference between the two types of algorithms to be 

greater on semi-infinite programmes than on finite non-linear programmes. The 

reason for this being that the approximations to the local maximisers found by the 

quasi-Newton algorithm will, in general, be less accurate than those found using a 

Newton type algorithm; this extra source of error is not present in NLPs. 

Although the quasi-Newton algorithm requires more iterations and multi-local 

optimisations than the Newton type algorithms, this does not automatically imply 

that the quasi-Newton algorithm is slower. At each iteration the Newton type 

algorithms must calculate the Hessian of the Lagrangian, which can require a large 

number of evaluations of the objective and constraint functions' derivatives. The 

constraint terms in this Hessian are of the form given in equation (1.14), which are 

messier than those for finite constraints. If the Lagrangian's Hessian is expensive to 

calculate, then the quasi-Newton algorithm may be faster. Moreover, Newton type 

algorithms must be provided with not only the first, but also the second derivatives. 

Unless these can be provided by an automatic differentiation algorithm, this in itself 

is a. major disadvantage. 

The penalty function ¢ is a hybrid of an L 00 based quadratic penalty function, 

and the Loo exact penalty function. The extra penalty parameter allows for con­

siderably more flexibility in updating the penalty parameters, increasing the chance 
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that J-L could be kept to a reasonable value. Numerical results indicate that an ex­

cessive value for either penalty parameter reduces the rate of convergence. They 

also show that an excessive J-L value is less desirable than an excessive value for v. 

The use of a NLP first phase was shown to be ~dvantageous. The numerical 

results also showed that there was little point in solving the NLP to a high accuracy. 

The NLP first phase implementation was simplistic: in view of the work of Hettich 

and others, it is clear that considerable improvements can be made over what has 

been done here, and that such improvements are likely to lead to significantly shorter 

solution times. 

The results for the problems vvith constraint index sets of dimension greater 

than two shows that although the number of iterations and multi-local optimisations 

required to solve a problem may not increase with increasing p, the solution times 

increase rapidly with increasing p. On these problems the great majority of the 

work is in the nmlti-local optimisations. To obtain the best possible performance 

on these problerns, the number of multi-local optimisations should be minimised, 

and they should be done as efficiently as possible. The multi-local optimisation 

algorithm described herein was designed expressly to avoid the enormous number of 

test points required by a rectangular grid based algorithm when p exceeds two. As 

the results for the higher dimensional problems (and especially problem U) show, 

this approach can lead to significantly faster solution times. Nevertheless, much 

work remains to be clone in the area of multi-local optimisation sub-algorithms for 

SIPs with constraint index sets T of dimension greater than one. 

The results for the quasi-Newton algorithm on ·watson's series of problems were 

generated using the multi-local optimisation algorithm described herein. The quasi­

Newton algorithm would still be effective on these problems when used in conjunc­

tion with any of the multi-local optimisation routines used in the three Newton type 

algorithms, as well as many other multi-local optimisation algorithms. 

The theoretical and numerical results show that a quasi-Newton algorithm for 

semi-infinite programming is definitely viable. 
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Appendix: Other Results. 

In this appendix a summary of the results for problems 7, 8, and 10-13 of the 

Watson series is given. The results presented in this appendix 'Were generated using 

the quasi-Newton algorithm with Bcap = 1, and (}crossover= 1, rather than Bcap = 0.01 

and Bcrossover = 0.1, as was used for the results in chapter 5. 

I problem II n p If* I II kp hp 

7 3 2 1 12 19 

8 6 2 4 48 77 

10 3 2 1 11 19 

11 3 2 2 25 66 

12 3 2 1 20 34 

13 3 2 1 25 49 

<l>' p 

1.4E-6 

7.8E-7 

2.4E-10 

1.2E-6 

2.0E-7 

6.6E-7 
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