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Abstract

In the pre-genomic era, the relationships among species and their evolutionary histories

were often determined by examining the fossil records. In the genomic era, these relation-

ships are identified by analysing the genetic data, which also enables us to take a close-up

view of the differences between the individual samples. Nevertheless, these relationships

are often described by a tree-like structure or a network. In this thesis, we investigate

some of the models that are used to describe these relationships.

This thesis can be divided into two main parts. The first part focuses on investi-

gating the theoretical properties of several neutral tree models that are often considered

in phylogenetics and population genetics studies, such as the Yule–Harding model, the

proportional to distinguishable arrangements and the Kingman coalescent models.

In comparison to the first part, the other half of the thesis is more computationally

oriented: we focus on developing and implementing methods of calculating gene tree

probabilities of given species networks, and simulating genealogies within species networks.
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Chapter 1

Introduction

1.1 Phylogenetics, gene trees and species trees

In phylogenetic studies, trees are used to describe evolutionary histories. In particular, a

species tree, also known as a phylogeny , represents population divergences; a gene tree,

also known as a genealogy , indicates the times when genes started to differentiate within

populations.

Two primary goals of phylogenetic studies are to determine the historical relationships

among species or lineages within the same population, using phylogenies and genealo-

gies respectively. To reconstruct these trees from molecular data, there are three main

approaches:

� distance methods, such as Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) (Sokal and Michener, 1958), Neighbour–Joining (NJ) (Saitou and Nei,

1987), BIONJ (Gascuel, 1997) and Weighted Neighbour–Joining (Bruno et al., 2000);

� maximum parsimony approaches (Fitch, 1971; Sankoff, 1975; Sankoff and Rousseau,

1975);

� probabilistic approaches, such as maximum likelihood (ML) (Felsenstein, 1981),

PhyML (Guindon and Gascuel, 2003; Guindon et al., 2010), Quartet Puzzling (Strim-

mer and von Haeseler, 1996), Tree Puzzle (Schmidt et al., 2002), MrBayes (Huelsen-

beck and Ronquist, 2001), BEAST (Drummond et al., 2012).

This thesis focuses on the problems that are raised by considering the probabilistic

models, such as

� algorithms of reconstructing phylogenies from deoxyribonucleic acid (DNA) sequences,

� the statistical significance of determining whether a group of organisms share a

common ancestor,

� probabilistic models of gene trees and

� genealogy simulations.

1



1.2. BACKGROUND AND MOTIVATION

1.2 Background and motivation

1.2.1 Relationships between gene trees and species trees

This thesis treats the species trees from a population perspective. In other words, a

branch of the phylogeny is not seen as a single line, but as a population that contains

several individuals, which allows us to fit in multiple lineages. Thus, gene trees can be

easily shown within the phylogeny (see Figure 1.1). When two gene tree lineages merge

within a species tree branch, it is called a coalescent event. For convenience, this thesis

uses capital letters to denote species and the corresponding lower case letters to denote

the lineages sampled from these species (see Figure 1.1).

ρ

a b c d e

A B C D E

Figure 1.1: A gene tree (solid lines) within a species tree (dashed lines). The horizontal
dotted lines indicate speciation times. This is an example of lineage sorting: the lineage in
population A is more closely related to the lineage from population C than the one from
population B, even though the separation between populations A and B occurred more
recently than that between AB and C.

Even though speciation is driven by gene mutations, using a single gene tree to infer

the species tree is not ideal, as the actual species tree topology may differ from the gene

tree topology (see Figure 1.1). Common causes of the conflict between gene trees and

species trees include gene duplication (Guigo et al., 1996; Maddison, 1997), horizontal

gene transfer (Maddison, 1997), incomplete lineage sorting (Degnan and Salter, 2005),

and hybridization (Holland et al., 2008).

As sequencing techniques and tools are improving rapidly, more data are becoming

available, which may lead to better phylogenetic estimations. Chen and Li (2001) and

Rokas et al. (2003) claimed that concatenated data, which are made by connecting short

pieces of segmented data, lead to a strongly supported phylogenetic estimate, but Kubatko

and Degnan (2007) suggested otherwise. Because of the variable evolutionary rate across

DNA sites (Darlu and Lecointre, 2002; Leigh et al., 2008), using data from multiple loci to

infer phylogenetic histories appears to be more convincing than concatenating sequences,

2



CHAPTER 1. INTRODUCTION

which may result in observing more conflicts between the gene trees and species trees.

1.2.2 Incomplete lineage sorting

If speciation events occur close together in time (see Figure 1.1), it becomes more likely

that the lineages for two leaves in a gene tree, a and b, do not coalesce in the most recent

common ancestral population for species A and B. Such events are examples of incomplete

lineage sorting, which leads to the possibility of gene tree topologies differing from the

species trees. With the presence of incomplete lineage sorting, gene tree probabilities can

be calculated under the coalescent process (Degnan and Salter, 2005).

The coalescent process starts from the bottom of a species tree (representing the

present), and traces the gene history backwards in time. For example, Figure 1.1 shows

that one lineage is sampled from each population A, B, C, D and E. A solid circle indi-

cates the event when gene lineages coalesce. One particular coalescent process, known as

the Kingman coalescent process, assumes that only two lineages can coalesce at one time;

and the time that it takes for two lineages to coalesce is referred to as the coalescent time,

which is an exponential random variable with a rate of 1.

As the number of lineages increases, the numbers of possible coalescent events increases

rapidly, which results in a complex distribution of the coalescence time. In the 1980s,

several authors (Takahata and Nei, 1985; Tavaré, 1984; Watterson, 1984) derived the

formula that computes the probability of u lineages coalescing into v lineages within a

time interval t.

These results were extended further to compute the gene tree topology distribution

given any species tree (Degnan and Salter, 2005). However, the method introduced by

Degnan and Salter (2005) is time-consuming and is inadequate for trees with a large

number of taxa.

Wu (2012) used a recursive approach of ancestral configurations to improve the effi-

ciency of computing gene tree probabilities, which reduces the computation time for some

specific cases. These probabilistic models can be used as a basis for ML (Liu, 2008; Meng

and Kubatko, 2009; Wu, 2012) or Bayesian estimation (Heled and Drummond, 2010; Liu,

2008) of species relationships.

Previous studies have researched methods of constructing species trees from gene

trees with the presence of lineage sorting: the ‘minimise deep coalescent’ (Maddison and

Knowles, 2006; Than and Nakhleh, 2009), average ranks of coalescence times (Liu et al.,

2009), average coalescence times (Liu et al., 2009), and maximum tree (Liu et al., 2010).

In particular, the maximum tree, average ranks of coalescence times and average coales-

cence times trees are all consistent estimators of the species trees. These methods have

been developed with the assumption that incomplete lineage sorting is the only source of

gene tree conflict.

3



1.2. BACKGROUND AND MOTIVATION

1.2.3 Hybridization

Hybridization refers to interbreeding between species or genetically distinct populations.

Offspring that carry genes from both parental species then reproduce and form a new

species. For many closely related species, however, both lineage sorting and hybridization

are likely to occur, particularly for plants, such as New Zealand’s alpine Ranunculus

(Joly et al., 2009). Other examples include the avian genus Manacus (Brumfield and

Carling, 2010) and New Zealand alpine cicadas Maoricicada (Buckley et al., 2006). Recent

estimates indicate that hybridization events are common in nature: approximately 25%

of plants and 10% of animals hybridize (Mallet et al., 2007). Thus, for some organisms, it

may be crucial to consider scenarios in which hybridization may have occurred.

In the past, incongruent gene trees have often been used to detect hybridization events.

Simulation studies have been able to distinguish gene tree incongruence that arises from

lineage sorting versus hybridization (Joly et al., 2009; Sang and Zhong, 2000). Moreover,

some models can even estimate hybridization in the presence of incomplete lineage sorting

(Holland et al., 2008; Kubatko, 2009; Meng and Kubatko, 2009).

However, these approaches have been limited to cases in which there is only one lineage

sampled from a hybridized population. For example, the method of Meng and Kubatko

(2009) decomposes the network into two species trees (see Figure 1.2a), with some proba-

bility γ, which is the probability that the lineage goes to one of the parental populations.

Unfortunately, this model is not adequate for sampling multiple lineages from a single

population.

Kubatko (2009) allows more than one hybridization event in a network as long as the

hybridization events do not interact (i.e. are not nested) and there is only one population

descended from each hybridized population.

A B C

(a)

A B C

(b)

A B C D

(c)

Figure 1.2: Illustration of the hybrid speciation model proposed by Meng and Kubatko
(2009). Population B indicates the hybrid species. If only one lineage is sampled from B,
we can simplify the network into a tree with probability γ, which is the probability that
the lineage goes to one of its parental populations. This model is not feasible for (b) cases
sampling multiple lineages from a hybrid species or (c) networks in which the species split
after hybridization.

Moreover, hybridization events may happen between hybrid species as well, which

would cause more complex structures such as nested networks (this will be formally defined

as a level-k network in Chapter 2). There are many interesting and open problems in
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inferring and constructing nested networks, and these are often accomplished using rooted

triplets (van Iersel et al., 2008; Huynh et al., 2005), which are rooted binary trees with a

leaf set size of three.

Without knowing the exact probabilities of the genealogies, the package ms (Hudson,

2002) can simulate gene trees within a general species network. However, the input of ms is

difficult to automate when the network is sophisticated or is generated from other software.

Other simulation studies using species networks have either used a small number of network

topologies coded individually, as in phylonet (Than et al., 2008), or have assumed that

gene trees have evolved on species trees embedded within the species network (Holland

et al., 2008; Kubatko, 2009; Meng and Kubatko, 2009).

1.2.4 Clade probabilities

A species is commonly defined as a group of organisms that are all more closely related

to each other than they are to any organisms outside the group (Shaw, 1998). Thus,

genealogical shapes play a significant role in identifying species.

A monophyletic group refers to a fixed set of individuals for which the most recent

common ancestor does not have any other descendants. For example, Figure 1.1 shows

that the genes sampled from A and B are not monophyletic because their most recent

common ancestor has gene c as a descendant.

When gene trees are estimated from multiple lineages taken from two or more popu-

lations, there is an increased chance that the lineages within each population form mono-

phyletic groups compared to sampling multiple lineages from a single population. This

observation has led to the adoption of a null hypothesis that a set of lineages belongs to a

single population or taxonomic group, when asking whether a particular group of lineages

came from a taxonomically distinct population (Cummings et al., 2008; Rosenberg, 2007).

A monophyletic group is also known as a clade in rooted trees.

A B

(a) Populations A and B are
both monophyletic; this is also
known as reciprocal monophyly.

A B

(b) Population A is mono-
phyletic; B is paraphyletic with
respect to A.

A B

(c) Populations A and B are
both polyphyletic.

Figure 1.3: Demonstration of monophyletic, polyphyletic and paraphyletic groups.

For two groups of individuals, if both groups are monophyletic, this is called reciprocal

monophyly (see Figure 1.3a). Statistical tests for reciprocal monophyly between two sister

taxa can then be developed to test the null hypothesis that a set of lineages belongs to

a single population or taxonomic group (Hudson and Coyne, 2002; Rosenberg, 2003).
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1.2. BACKGROUND AND MOTIVATION

Alternatively, if group A is monophyletic but group B is not, then B is called paraphyletic

with respect to A (see Figure 1.3b). Otherwise, they are called polyphyletic.

Reciprocal monophyly is central to the genealogical species concept. According to this

concept, two groups come from different species if they form distinct monophyletic groups

(de Quieroz, 2007; Hudson and Coyne, 2002). Gene trees from lineages sampled from one

or more populations are typically estimated, and the monophyly (or lack of monophyly)

of these groups can be observed from the clades of the gene tree. Statistical tests for

whether observed levels of monophyly provide sufficient evidence to conclude that a group

is taxonomically distinct can be performed, given a probabilistic model for the clades on

a tree (Rosenberg, 2007).

In order to examine the significance of the taxonomic distinctiveness of several groups

of lineages statistically, it is more powerful to perform the hypothesis test only once,

instead of testing whether each group is monophyletic. Thus, methods for calculating the

joint probability of monophyletic groups are desirable.

1.2.5 Multiple merger coalescent models

Species trees describe ancestral relationships among species. Gene trees describe the ran-

dom ancestral relationships of alleles sampled within species. Gene trees and species trees

are often assumed to be bifurcating (Degnan and Salter, 2005; Hudson, 1990; Kingman,

1982). However, for organisms exhibiting sweepstakes reproduction, such as oysters and

other marine organisms (Árnason, 2004; Beckenbach, 1994; Eldon and Wakeley, 2006; El-

don, 2011; Hedgecock et al., 1982; Hedgecock, 1994; Sargsyan and Wakeley, 2008), the

Kingman coalescent may not be appropriate, as it allows only binary mergers of lineages.

Species trees may also fail to be bifurcating due to either polytomies or hybridization

events.

Thus, it is crucial to consider models that allow more than two lineages to coalesce

simultaneously in the gene trees, that is multiple merger coalescent models, also known as

Λ-coalescent models (Donnelly and Kurtz, 1999; Pitman, 1999; Sagitov, 1999). The recip-

rocal monophyletic concordance probabilities between multiple merger gene genealogies

and a species tree of two species are investigated by Eldon and Degnan (2012). However,

the probability of multiple merger gene trees becomes messy when the number of sampled

individuals increases. Thus, studies of multiple merger coalescence for many individuals

can only be undertaken by simulations. I have implemented a program which can simulate

such genealogies that is not available in other software to my knowledge.

1.2.6 Quartet puzzling

The ML approach (Felsenstein, 1981; Guindon and Gascuel, 2003; Guindon et al., 2010) is

generally considered to be a reliable way of estimating phylogenies from DNA sequences.

However, ML is not always feasible for large numbers of species because of the intensive

computation required. Methods that use ‘four-point subsets’ (Dress et al., 1986) reduce
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the complexity of the problem and have assisted numerous studies (Daubin and Ochman,

2004; Nieselt-Struwe and von Haeseler, 2001; Strimmer et al., 1997; Strimmer and von

Haeseler, 1996).

The four-point subtree is known as the quartet tree. Quartet puzzling (QP) (Strimmer

and von Haeseler, 1996) is an algorithm for inferring a tree on n taxa by using the quartet

trees derived from DNA sequences. It first computes the likelihood of all

(
n

4

)
quartets.

As there are three possible topologies for any four taxa, the quartet tree which returns

the greatest ML value is used (any ties are broken uniformly at random). At the puzzling

step, the order of inserting new leaf nodes is randomised. A seed tree is built from the first

four elements of the ordered leaf node sequence. From this point on, leaves are attached

sequentially by the following procedure. When a new leaf x is to be attached to the

existing tree T , quartet trees are built from the quartets formed from x and all subsets of

size three chosen from the existing leaf set. If the ML quartet tree of {i, j, k, x} is ij|kx,

then a weight of 1 is added to the edges on the path in T connecting the two leaves i and

j. This process is repeated for all such quartet trees, and x is then attached to the edge

which has the lowest weight. An example is given in Figure 1.4.

A

B
C

D

6

6

6

5

3

2

E
1

A

B
C D

E

F

Figure 1.4: Suppose leaf F is to be attached to the five-taxon tree on the left, and the ML
trees of {i, j, k, F} are: AB|CF , AC|EF , BC|DF , AC|DF , AB|DF , AD|EF , AB|EF ,
BC|EF , BD|EF and CE|DF . The external edge leading to E returns the minimal
weight, so F is attached to this edge, leading to the six-taxon tree shown shown on the
right.

Since the order of adding leaves is randomised, this can lead to variations in the

resulting tree topologies, and so a consensus tree of numerous replicates is used as the

output tree. The program Tree-puzzle (TP) (Schmidt et al., 2002) is a parallel version of

QP, which performs independent puzzling steps simultaneously.

The trees generated by either the QP or TP process depend on the biological sequences

we have for the taxa. To investigate how the TP process behaves on randomized quartets,

Vinh et al. (2011) performed a simulation study on a so-called random tree-puzzle (RTP)

process. This assumes that no prior molecular information is given. Therefore, for the

same quartet set, all three tree topologies are equally likely. The authors compare the

empirical probabilities of tree topologies against the theoretical probabilities from the

proportional to distinguishable arrangements (PDA) model and the Yule–Harding (YH)

model.

Table 1 from Vinh et al. (2011) reveals that the RTP’s empirical probabilities are

very close to the YH theoretical probabilities (indeed, there are two cases where these
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probabilities are identical). As it seems that the differences between the empirical and

theoretical probabilities decrease as the number of taxa increases, Vinh et al. (2011) suggest

that the RTP process converges to the YH process as n (the number of taxa) grows. The

authors provided further evidence for their conjecture by comparing some properties of

RTP trees with YH trees. A cherry in a binary tree is a pair of leaves that are adjacent

to the same vertex. Vinh et al. (2011) found that the mean and variance of the number

of cherries were similar for the RTP simulation and the theoretical values under the YH

process (McKenzie and Steel, 2000). Although Vinh et al. (2011) provided evidence to

suggest that the two distributions appear to become very similar as n grows, they did not

provide a formal statement or proof of their claim that the two distributions converge.

1.3 Overview

1.3.1 Thesis objectives

This thesis aims to solve the following problems:

1. verify whether or not the RTP process converges to the Yule process;

2. compute the probability of k ≥ 1 reciprocally monophyletic groups;

3. determine the correlation between two monophyletic groups;

4. compute gene tree probabilities of given species networks with the presence of in-

complete lineage sorting;

5. simulate bifurcating genealogies from a species network;

6. simulate multifurcating genealogies;

7. determine whether level-k networks are identifiable by genealogy frequency in some

cases.

1.3.2 Thesis structure

In answering the questions in the previous section, Chapter 2 starts by introducing some

of the basic concepts of graphs, probability theory and stochastic processes that one needs

in order to understand some of the mathematical expressions in this thesis.

Chapter 3 first formalises the conjecture that an RTP process leads to a YH distribution

as the number of taxa becomes large, and provides a result that shows that leaves are highly

likely to attach to pendant edges from some point, which suggests that the conjecture may

be true. However, Chapter 3 presents evidence that, while the two distributions are close,

RTP appears to converge to a different distribution than YH.

Chapter 4 formalises an identity between the Yule process and the coalescent process,

and introduces the Yule–Harding–Kingman (YHK) model. It then extends earlier work,

using the exchangeability property (EP) and the group elimination (GE) property of Yule

8
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trees, to derive exact formulas for computing the probabilities of clades in rooted trees.

The clade probabilities are then used to derive the probabilities of clans, which refers

to monophyletic groups in unrooted trees. In the same chapter, some of the proofs are

expanded in detail.

Since the PDA model also shares the EP and GE properties, clade probabilities are

investigated in the PDA model, and comparisons are made between the YHK process and

the PDA model, which will be discussed in Chapter 5.

Chapter 6 develops a novel coalescent model to calculate gene tree probabilities when

a complex species network has been given. This model will apply a similar idea to that of

Meng and Kubatko (2009) and Yu et al. (2012) to decompose a network into its equivalent

trees and to compute the gene tree probabilities based on the species trees (Degnan, 2010;

Degnan and Salter, 2005).

The algorithm for simulating gene trees from networks is investigated in Chapter 7.

Several coalescent processes will be used during simulation. Both gene trees and species

trees are unconstrained by a bifurcation assumption. This method supports both the

Kingman coalescent and the multiple merger coalescent in species networks.

Conclusions and future work will be discussed in Chapter 8.

1 2 4

3

6

5

7

8

Figure 1.5: Reading guide.

Thesis outcomes

An earlier paper suggested that the so-called random tree-puzzle process converges to the

Yule–Harding process with an increased number of leaves in a tree. In Chapter 3, Prof.

Mike Steel and I investigate this claim and find that the reasons behind this conjecture

might be true, but we presented evidence to suggest that the two processes are different.

The results have been submitted to and will be published in Mathematical Biosciences,

under the title of “Does Random Tree Puzzle produce Yule–Harding trees in the many-

taxon limit?” (Zhu and Steel, 2013).
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In Chapter 4, we use the EP and the GE properties of the Yule trees to derive exact

formulas for computing the probabilities of clades in rooted trees. We then used the clade

probabilities to derive the clan probabilities in the unrooted cases. These results were

published in Theoretical Population Biology volume 79 (page 220–227) under the title of

“Clades, clans and reciprocal monophyly under neutral evolutionary models” (Zhu et al.,

2011a), as a result of joint work with Prof Mike Steel and Dr James Degnan. This paper

was ranked in the 25 hottest articles in Theoretical Population Biology from April to June

2011.

The results in Chapter 4 were also presented at Phylomania (the University of Tasma-

nia theoretical phylogenetics meeting) 2011 and the 16th Annual New Zealand Phyloge-

netics Meeting 2012, along with some partial results of Chapter 5, which extends some of

the results in Chapter 4 to the PDA model. A manuscript is in preparation by Dr Taoyang

Wu, Dr Cuong Than and myself.

The algorithm described in Chapter 6 was supervised by Dr James Degnan. This

novel method of computing the gene tree probabilities of given species network was pre-

sented in the form of a poster (Zhu et al., 2011b) at the Institute for Pure and Applied

Mathematics Workshop III: Evolutionary Genomics Program, at the Allan Wilson Centre

annual meeting, at the New Zealand Statistical Association 2011 Conference, and at the

Phylogenetics: New data, New Phylogenetic Challenges Follow-up Meeting. The software

hybrid coal was developed to calculate the gene tree probabilities of given species net-

works and to enumerate the analytical probabilities for theoretical analysis. hybrid coal

is now available on Google Code (http://code.google.com/p/hybrid-coal/).

The software hybrid-Lambda is an implementation of the method described in Chap-

ter 7, which will help automate simulation studies of hybridization, allowing for a large

number of species network topologies and allowing gene trees to evolve directly within

the network. hybrid-Lambda is now available on Google Code (https://code.google.

com/p/hybrid-lambda/). A manuscript describing hybrid-Lambda is in preparation by

Dr James Degnan, Dr Bjarki Eldon, Dr Sharyn Goldstien and myself.
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Chapter 2

Preliminaries

2.1 Sets

Definition 1. In mathematics, a set is a collection of distinct objects. The cardinality

(or the size) of a set A is the number of elements in A, denoted as |A|. The empty set is

denoted as ∅, that is |∅| = 0.

For example, A = {human, chimpanzee, gorilla} is a set of primate names and |A| = 3.

Throughout this thesis, sets will be used in various cases, to refer to the collection of

vertices, edges of a graph or tree topologies and so on.

Suppose that there are two sets, A and B. The union and intersection of A and B are

A ∪ B = {ω : ω ∈ A or ω ∈ B} and A ∩ B = {ω : ω ∈ A and ω ∈ B} respectively. Sets

A and B are mutually exclusive if they have no element in common, that is, A ∩ B = ∅.
The complement of A is Ac = {ω : ω /∈ A}. If every element of A is also an element of B,

then A is a subset of B, denoted as A ⊂ B; if also A 6= B, then A is a proper subset of B,

denoted as A ( B.

In phylogenetics and population genetics, we use a taxon (plural, taxa) to denote a

group of organism(s) (de Quieroz and Gauthier, 1990). A monophyletic group (Rosenberg,

2003) is a subset of taxa for which the most recent common ancestor (MRCA) is not

ancestral to any other taxa, which is a crucial concept in species delimitation (de Quieroz,

2007). More details on this, and how to calculate the probabilities of clades in evolutionary

models, will be discussed in Chapter 4 and Chapter 5.

2.2 Graphs

2.2.1 Binary trees

Definition 2. A graph G is a collection of nodes (vertices) V and a collection of edges E

that connect the nodes in V , denoted as G = (V,E). G is a connected graph if all nodes

in V are connected.

A tree T = (V,E) is a connected graph with no cycles.
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A tree is rooted if there is a distinct interior node from which all the other nodes are

descended (for example, see Figure 2.1a); otherwise, it is an unrooted tree (Figure 2.1b).

A tree is binary if the degrees of the non-root interior nodes of the tree are, at most, three.

For rooted binary trees, the root has degree 2. A star tree has only one interior node that

is connected to all the other nodes.

If all the nodes are labelled, this tree is called a labelled tree (see Figure 2.4b); if only

the tip nodes are labelled, it is a semi-labelled tree (see Figures 2.1a).

Note that in this thesis, we use the word shape to refer the layout of an unlabelled

graph, and use topology for a labelled one.

Definition 3. An X-tree TX is a semi-labelled binary tree with the leaf set X, where

X = {1, 2, . . . , n}.

Note that some authors (Barthélemy and Guenoche, 1991; Semple and Steel, 2003)

define the X-tree differently; our definition of the X-tree is consistent with the phylogenetic

X-tree by Semple and Steel (2003).

1 42 3

(a) (((1,2),3),4)

1

2
3 4

5

6

(b) ((((1,2),3),4),5,6)

Figure 2.1: Example of a rooted tree (a) and an unrooted tree (b).

In phylogenetics and population genetics, the root of a tree refers to the MRCA of all

the descendants (Semple and Steel, 2003). A rooted phylogenetic tree is a graph with a

direction, which is often accompanied by a time scale, to reflect the historical relationships

among the taxa. The concept of a rooted binary tree is vital for this thesis. For example,

the Yule trees, the Kingman coalescent trees and the PDA trees in Chapters 4 and 5 are

all rooted trees. The species trees and gene trees or genealogies in Chapter 6 and Chapter

7 are all rooted trees, but are not necessarily binary.

Unlike a rooted tree, an unrooted tree does not need to assume any ancestry relation-

ship among taxa, but only considers how much they differ from each other. Therefore,

most of the software packages reconstruct phylogenies from DNA sequences (Felsenstein,

1981; Guindon and Gascuel, 2003; Strimmer and von Haeseler, 1996), build an unrooted

tree first, and then use the outgroup, which is a taxon (or taxa) that is (are) already known

to be less related to the other taxa, to determine the location of the root.

One of the biggest challenge in phylogenetics is that when the number of taxa increases,

the number of trees grows exponentially, which makes inference increasingly difficult. The
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number of rooted binary trees on n taxa (Felsenstein, 1978) can be computed by:

ϕ(n) =

n∏
k=2

(2k − 3) = (2n− 3)!!. (2.1)

A rooted binary tree of size n is effectively an unrooted binary tree of size n + 1, by

removing one pendant edge. Therefore, the number of unrooted binary trees of size n is

(2n− 5)!!.

2.2.2 Generating random trees

Here we will introduce three different ways of generating a rooted Xn-tree.

The YH model (Yule, 1925; Harding, 1971) is often used to illustrate the speciation

process in phylogenetics. One can construct an n-taxon Yule tree by starting from a

2-taxon unlabelled binary tree and then:

1. randomly choosing one of the tip nodes, and split it into two;

2. repeating step 1, until there are n tip nodes; and

3. labelling the tip nodes randomly from {1, 2, . . . , n}.

The Kingman coalescent model (Kingman, 1982) is often considered in population

genetics to trace the ancestry. One can build an n-taxon Kingman tree by starting from

a set of leaves L = {1, 2, . . . , n} and then:

1. randomly choosing two leaves l1 and l2 from L;

2. introducing a new leaf node l12 in L, which is the MRCA of l1 and l2, and then

connecting l1 to l12 and l2 to l12;

3. removing l1 and l2 from L;

4. repeating steps 1 to 3 until there is only one leaf node left in L.

There might exist multiple ways of generating a tree under the Yule model or the

Kingman model, which may result in the probability of one n-taxon tree being different

from the other trees.

The PDA model is also known as the ‘uniform model’. Unlike the other two models,

trees with n taxa are equally likely under this scheme. To construct an n-taxon PDA tree,

one needs to first choose the order in which to add the new leaves, then start adding nodes

to the 2-taxon labelled tree, by:

1. randomly attaching the new leaf to one of the edges or the root; and

2. repeating step 1 until all leaves are attached to the tree.
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Even though one can simply obtain an unrooted tree by removing the root of a rooted

tree, this is not how random unrooted trees are generated. Here, we will discuss how to

generate random Yule trees and PDA trees.

One can construct an unrooted n-taxon Yule tree by starting from a 3-taxon unlabelled

star tree and then following steps 1, 2 and 3 for constructing an n-taxon rooted Yule tree.

Similarly, for an unrooted n-taxon PDA tree, one needs to first choose the order in which to

add the new leaves and then start adding nodes to the 3-taxon labelled star tree following

steps 1 and 2 for constructing an n-taxon rooted PDA tree.

2.2.3 Polytomy

Genealogies are often assumed to be binary. However, such an assumption may not apply

for marine organisms, such as oysters (Beckenbach, 1994), in which a few individuals can

produce a massive number of offspring, which leads to a skewed distribution of the offspring

number (Eldon and Wakeley, 2006). In this case, one should consider multifurcating

genealogies which contains polytomy nodes.

Definition 4. A polytomy is a node in a rooted tree which has more than two immediate

descending branches. In an unrooted tree, a polytomy is a node that is connected to more

than three other nodes.

1 42 3

(a) ((1,2,3),4)

1 42 3

(b) (((1,2),3),4)

1 43 2

(c) (((1,3),2),4)

Figure 2.2: The tree ((1,2,3),4) which has a polytomy node summarises the ancestral
histories of the trees (((1,2),3),4) and (((1,3),2),4).

A polytomy is often found in a consensus tree , which reflects the common features

shared among a set of trees (Semple and Steel, 2003). For example, the trees in Figures

2.2b and 2.2c are distinct, but nodes 1, 2 and 3 are monophyletic in both trees. Thus, we

can use the tree shown by Figure 2.2a to summarise the ancestral histories of the other

two. This technique is used to describe phylogenies when there are conflicts among gene

trees (Felsenstein, 2004). This thesis will also consider phylogenies with polytomies in

Chapters 6 and 7.
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2.2.4 Compatibility

In a rooted X-tree, let A and B be the two subsets of X. Sets A and B are compatible if

they satisfy the compatibility condition:

A ∩B ∈ {A,B, ∅}. (2.2)

An edge of an unrooted X-tree divides the leaf set X into two non-empty sets, A and

Ac. We refer this partition as a split, denoted as A|Ac. A pair of splits A|Ac and B|Bc are

compatible if at least one of the sets A ∩B, A ∩Bc, Ac ∩B, or Ac ∩Bc is the empty set .

Throughout this thesis, a split of an unrooted X-tree T is equivalent to a split of X; we

use Σ(T ) to denote the collection of all the splits of T . Two trees T1 and T2 are compatible

if all of the splits in Σ(T1) are compatible with all the splits in Σ(T2); otherwise, they are

incompatible.

Unrooted genealogy samples of multiple species are often incompatible, particularly

when two of the speciation times are close. Mutations between the lineages may not

have occurred before the populations separated. Holland and Moulton (2003) suggested a

way of constructing a so-called consensus split network from the collection of all splits to

visualise the conflicting signals of phylogenies (Holland et al., 2004).

2.2.5 Networks

Huson et al. (2010) defines a phylogenetic network as any graph used to represent evolu-

tionary relationships (either abstractly or explicitly) among a set of taxa that labels some

of its nodes (usually the leaves).

In our setting, we consider rooted networks only, which are essentially rooted trees that

reflect reticulation events between two edges. For example, if we connect any two edges of

a tree, then this graph becomes a network. In the next a few chapters, we are interested in

hybridization networks (Huson et al., 2010), which describe the evolutionary history with

a mixture of speciation and recombination events. If hybridization events happen between

hybrid species, this will result in more complicated structures, such as the level-k network

, which has, at most, k biconnected reticulation nodes (Huson et al., 2010). In this thesis,

we will focus on investigating how these events reflect the probabilities of the genealogies.

2.3 Newick format

Newick formatted strings (Olsen, 1990) are commonly used by many software packages,

such as APE (Paradis et al., 2004), for inputting or outputting tree structures. In this

scheme, trees are represented in a parenthetic format which labels all the tip nodes, and

uses brackets to denote an internal node whose child nodes are separated by a comma. The

interior nodes are indicated by complete parentheses, which are not necessarily labelled.

For example, the tree in Figure 2.1a is written as (((1,2),3),4).
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D

1

B

1

1

C

2

1

A

3

Figure 2.3: Example of a rooted four-taxon binary tree and the associated Newick format
string (((D:1,B:1):1,C:2):1,A:3).

Following each node, one can use a colon and numbers to denote the distance between

this node and its parent node, which is also known as the branch length. For example, the

tree in Figure 2.3 is written as (((D:1,B:1):1,C:2):1,A:3). The branch lengths of a

Newick string usually indicate the waiting time for a mutation to occur, or the population

divergence time between species. In this thesis, it may also represent the population size

or some other quantity. For details, see Appendix D.3.2. If the branch lengths are not

specified, the Newick string represents only the topology of a tree.

Note that Newick strings of polytomies can be used to denote unrooted trees. For

example, the tree in Figure 2.1b is written as ((((1,2),3),4),5,6). In subsequent

chapters, it will be stressed when Newick strings are used to denote unrooted trees.

2.3.1 Extended Newick format

Species networks are represented using the extended Newick format (Cardona et al., 2008;

Huson et al., 2010). This method labels all the internal nodes, in addition to labelling

all the tip nodes. This scheme essentially uses an MUL-tree to represent a network (see

Figure 2.4b) and merges the multi-labelled nodes, which are known as hybrid nodes and are

marked with # for convenience. In the network string, the descendants of a hybrid node

are recorded before the hybrid node the first time the hybrid node appears. Otherwise,

it is written as a tip node. For example, the species network in Figure 2.4a is denoted

as ((((B:1.C:1)s 1:1)h 1#H1:1,A:3)s 2:1,(h 1#H1:1,D:3)s 3:1)r. More examples

of the extended Newick formatted strings can be found in Appendices C and D.

In the rest of the thesis, we will use Newick strings to represent trees and extended

Newick strings to represent networks. In particular, for the Newick strings and extended

Newick strings in Chapters 6 and 7, capital letters are used to denote species and the

corresponding lower case letters are used to denote the lineages sampled from these species.

2.4 Probabilities

The sample space Ω is the collection of all possible outcomes of a well-defined experi-

ment. For example, if a coin is tossed twice, then Ω = {(Head,Head), (Tail,Head),

(Head, Tail), (Tail, Tail)}. An event E is a subset of the sample space, with the
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A

r

DB C

s 2

h 1#H1

s 3

s 1

(a)

A

r

DB C

s 2

h 1#H1

s 3

h 1#H1

s 1

(b)

Figure 2.4: Example of a rooted four-taxon network with one hybrid node (a) and the
MUL-tree (b) which is expressed by the same extended Newick format string
((((B:1.C:1)s 1:1)h 1#H1:1,A:3)s 2:1,(h 1#H1:1,D:3)s 3:1)r .

probability denoted as P(E). For example, if E is the event that at least one tail appears

when a conin is tossed twice, then E = {(Tail,Head), (Head, Tail), (Tail, Tail)} and

P(E) =
3

4
.

Two events, E1 and E2, are independent of each other if and only if:

P(E1 ∩ E2) = P(E1) · P(E2). (2.3)

1 42 3

(a) T1

1 43 2

(b) T2

Figure 2.5: Rooted binary tree topologies on 4 taxa.

To relate the concept of probability to our scenario, we are is interested in finding the

probability of tree topologies. For the four-taxon trees, T1 and T2, in Figure 2.5, under

the PDA model:

P(T = T1) = P(T = T2) =
1

15
.

However, under the Yule model and the Kingman model, the probabilities are:

P(T = T1) =
1

18
and P(T = T2) =

1

9
.

The probabilities of tree topologies are the same under these two processes, for reasons

that will be discussed in detail in Chapter 4.

Note that we occasionally use P(T1) to denote P(T = T1) in this thesis.
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2.4.1 Conditional probabilities

In phylogenetic and population genetic analysis, we often consider scenarios that evolve

sequentially, such as the Yule process and the coalescent process. The outcome in the

previous step often affects the likelihood of the observation that follows immediately af-

terwards. For the events E1 and E2, with P(E1) > 0, we define the conditional probability

of the event E2 given E1 as:

P(E2|E1) =
P(E1 ∩ E2)

P(E1)
, (2.4)

which is effectively the portion of E2 in E1. Note that the events E2 and E1 do not have to

happen in a sequence. By rearranging Expression (2.4), we can denote the probability of

the interaction of the two events E1 and E2 as:

P(E1 ∩ E2) = P(E2|E1) · P(E1). (2.5)

By combining Equations (2.3) and (2.5), we can say that two events E1 and E2 are inde-

pendent if P(E2|E1) = P(E2).

2.4.2 Random variables

Definition 5. A random variable is a function that maps every element of the sample

space to a real number.

1. A random variable is discrete if the number of the real numbers that this random

variable can take, is finite or countably infinite. Examples include:

� A binomial random variable is the number of successes of an experiment that

has only two outcomes (success/fail) repeated independently n times. Each

time, the probability of success is p. A simple example is to toss a coin several

times; the number of heads is then a binomial random variable. In Chapter

3, we find that the edge weights in the RTP process are binomial random

variables. If we assume that mutations occur independently with small and

equal probabilities for a long DNA sequence, the number of mutations can be

approximated by a Poisson random variable.

� A Poisson random variable is the number of events occurring in a time interval

at some given rate λ. An example of a Poisson random variable in our case

would be the number of mutations occurring during a time period. Details will

be discussed in Chapter 7 for simulating the data of segregating sites.

2. A random variable is continuous if it take uncountab infinite values within an inter-

val.

� An exponential random variable describes the waiting time between two events.

For example, it can refer to the time between two speciation events; or in our
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case, the waiting time between two coalescent events between k > 1 lineages

(Chapters 6 and 7).

2.4.3 Probability distribution functions

Here, we define the probability distribution function as:

FX(x) = P(X ≤ x),

and the density function as follows:

� If the random variable X is a discrete random variable: fX(x) = P(X = x).

� If X is a continuous random variable: fX(x) =
d

dx
FX(x).

For random variables X1, X2, . . . , Xn, we define the joint distribution function as

FX1,X2,...,Xn(x1, x2, . . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

Proposition 1. Two random variables X1 and X2 are independent if and only if, for any

values of x1 and x2:

FX1(x1)FX2(x2) = FX1,X2(x1, x2).

The expected value (or mean) of a random variable is the average of all possible values,

and is denoted as E[X]. The variance, var(X), of a random variable X is a measure of

the spread of the random variable, derived by taking the expected value of the squared

difference between X and the mean: var(X) = E[(X − E[X])2].

2.4.4 Conditional expectation

The conditional expectation of a random variable conditional on an event, e.g.

E[X|Y = y], is a number depending only on y. The conditional expectation of a random

variable conditional on another random variable is not a number, but is also a random

variable. Thus, there exists expectation for this random variable, specifically E[E[X|Y ]] =

E[X].

2.4.5 Stochastic processes

A stochastic process refers to a sequence of random variables X1, X2, . . . , Xn, that is used

to describe the change in some random variable over time or space. The Yule model, the

PDA model and the Kingman coalescent model mentioned in the previous section are all

examples of discrete stochastic models.

2.4.6 Martingales

A martingale is a special case of a stochastic process, and is defined as follows:
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Definition 6. A sequence of random variables X1, X2, . . . , Xn is a martingale if:

1. E [|Xn|] <∞;

2. E[Xn|X1, . . . , Xn−1] = Xn−1.

Even though a martingale is a random process, with prior information, one can make

some predictions regarding the expected value of the next outcome in the sequence. This

idea is often used in betting strategies. In the next section, I will illustrate an example

of a martingale: the Polyá urn model, which will assist us in verifying whether the RTP

process is or is not the same as the Yule process in Chapter 3.

2.5 Polyá urn model

In practice, we often consider physical models and simulations to observe how random

processes behave in order to understand the underlying probabilistic model. Here, we

introduce the Polyá urn model, which simply is an urn with balls of different colours.

By picking and replacing balls with a certain strategy, one can observe how the relative

frequencies of the balls change.

Suppose there is an urn containing balls of k different colours. Randomly pick one ball

at a time, and place it and another b balls of the same colour into the urn. Let αi be the

initial frequency of balls with colour i, and let the initial total number of balls in the urn

be s0 =

k∑
i=1

αi. We will use Xi
n to denote the number of balls of colour i when another

n × b balls are placed in the urn. Thus the frequencies of balls is Xn = (X1
n, . . . , X

k
n),

and sn =

k∑
i

Xi
n denotes the total number of balls when this process is repeated at n

times. Let Zn be the relative frequencies of balls, i.e. Zn = (Z1
n, . . . , Z

k
n) and Zin =

1

sn
Xi
n.

Thus, Zn =
1

sn
Xn and

k∑
i=1

Zin = 1. When n → ∞, Zn is a Dirichlet distribution with

the parameter vector Z0, i.e. (
α1

s0
,
α2

s0
, . . . ,

αk
s0

) (Blackwell and MacQueen, 1973). In

particular, let a = α1 = α2 = · · · = αk. When a = b, lim
n→∞

Zn is uniformly distributed

over the vector space [0, 1]k. When a > b, Zn has a unique mode, and when a < b, Zn has

more than one mode.

Lemma 1. Zn is a martingale (Mahmoud, 2008).

Proof. For Zn to be a martingale, it needs to satisfy:

1. E[|Zn|] <∞;

2. E[Zn|Z0, . . . ,Zn−1] = Zn−1.
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1. As Zn = (Z1
n, . . . , Z

k
n) and Zin =

1

sn
Xi
n, since

k∑
i

Xi = sn and Xi are non-negative,

we have 0 ≤ Xi
n

sn
≤ 1, i.e. 0 < Zin < 1. Thus E[|Zn|] < 1 <∞.

2. Let Xn be the frequency of balls when n balls are placed in the urn. Thus Xn =

Xn−1 + Yn−1, where Yn−1 is a random unit vector of length k with probabilities of

the relative frequency of balls when an additional n× b balls are placed, i.e.:

Yn−1 =



(b, 0, . . . , 0) w.p. Z1
n−1;

(0, b, . . . , 0) w.p. Z2
n−1;

...

(0, 0, . . . , b) w.p. Zkn−1.

As Zn =
1

sn
Xn, Zn =

1

sn
(Xn−1 + Yn−1) and:

E[Zn|Zn0 , . . . ,Zn−1] =
1

sn
(E[Xn−1|Zn0 , . . . ,Zn−1] + E[Yn−1|Zn0 , . . . ,Zn−1]),

where:

E[Xn−1|Zn0 , . . . ,Zn−1] = E[sn−1Zn−1|Zn0 , . . . ,Zn−1]

= sn−1E[Zn−1|Zn0 , . . . ,Zn−1]

= sn−1Zn−1,

and E[Yn−1|Zn0 , . . . ,Zn−1] = bZn−1.

Therefore, E[Zn|Zn0 , . . . ,Zn−1] =
sn−1 + b

sn
Zn−1 = Zn−1.

Lemma 2. If Zn is a martingale. then E[Zn] is constant. In particular:

E[Zn] = E[Zn0 ] = (
α1

n0
,
α2

n0
, . . . ,

αk
n0

).

Proof. Since E[E[X|Y ]] = E[X], for E[Zn|Zn0 , . . . ,Zn−1] we have:

E[E[Zn|Zn0 , . . . ,Zn−1]] = E[Zn].

As Zn is a martingale, E[Zn|Zn0 , . . . ,Zn−1] = Zn−1. Thus E[Zn] = E[Zn−1] and:

E[Zn] = E[Zn0 ] = (
α1

n0
,
α2

n0
, . . . ,

αk
n0

).
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2.5.1 Extended Polyá urn model

Consider the following extended Polyá urn (EPU) model. At time t = 0, there are b blue

balls and r red balls in the urn, where b ≥ 0 and r ≥ 0. At each time step, one ball is

picked at random from the urn. If the ball is blue, an additional c blue balls and d red

balls are placed in the urn; if the ball is red, an additional e blue balls and f red balls

are placed in the urn. The variables c, d, e, f can also take negative values, in which case,

instead of placing new balls in the urn, the number of balls of the respective colour are

withdrawn. We use Xn to denote the number of blue balls at the nth step, and sn to

denote the total number of balls. The following generating matrix describes this process:

A =

[
c d

e f

]
.

This scheme also requires the following assumptions:

1. c+ d = e+ f = s ≥ 1 (Bagchi and Pal, 1985; Mahmoud, 2008).

2. At time t ≥ 1, 0 ≤ Xn ≤ sn (Bagchi and Pal, 1985).

3. The generator matrix has one real positive principal eigenvalue (Mahmoud, 2008;

McKenzie, 2000; McKenzie and Steel, 2000).

4. The components of the principal eigenvector are all strictly positive (Mahmoud,

2008; McKenzie, 2000; McKenzie and Steel, 2000).

5. All eigenvectors are linearly independent (McKenzie, 2000; McKenzie and Steel,

2000).

Bagchi and Pal (1985) show that, for sn = b+ r+ ns, the probabilities can be defined

as follows:

P(Xn+1 = Xn + c|Xn) =
Xn

sn
, P(Xn+1 = Xn + e|Xn) = 1− Xn

sn
. (2.6)

By combining these together, we have:

P(Xn+1 = k) = P(Xn+1 = k|Xn = k − c)P(Xn = k − c)+

P(Xn+1 = k|Xn = k − e)P(Xn = k − e). (2.7)

Let λ be the principal eigenvalue of the generating matrix A, and

[
v1

v2

]
be the

normalized eigenvector associated with λ. A classical result (Mahmoud, 2008; Smythe,

1996) shows that, when n → ∞,
sn
n

a.s.→ λ, and thus Xn/n
p→ λv1. Moreover, it has been

shown that
Xn − λv1n√

n

D→ N (0, σ2) (Mahmoud, 2008; Bagchi and Pal, 1985). The initial

conditions on b and r do not play any significant role in these convergences.
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2.5.2 An example of the EPU model

Here, we consider the following example: If a blue ball is picked, place this ball back in

the urn with one additional red ball. Otherwise, if a red ball is picked, remove this red

ball, but place another two blue balls in the urn. Thus, the generating matrix is:

A =

[
0 1

2 −1

]
.

We will ignore the initial number of the red balls, but we require the initial number of

blue balls to be an even number. We use Xn to denote the number of blue balls, where n

is the total number of balls, i.e. sn = n. Since the number of blue balls is always an even

number, when we apply Equation (2.6), we have:

P(Xn+1 = k|Xn = k) =
k

n
, P(Xn+1 = k + 2|Xn = k) = 1− k

n
.

Therefore, the state of Xn is {2, 4, 6, . . . }, and this Markov chain is as follows:

2

2/n

4

4/n

6

6/n

8

8/n

. . .

1− 2/n 1− 4/n 1− 6/n 1− 8/n

Therefore, in the limit, this chain goes to infinity when n grows large. Regardless of

the initial state, the limiting distribution of this chain is a null vector that takes the value

of 1 at infinity, and at all other states takes 0.

Moreover, using Equation (2.7), we have

P(Xn+1 = 2k) = P(Xn+1 = 2k|Xn = 2k)P(Xn = 2k)+

P(Xn+1 = 2k|Xn = 2k − 2)P(Xn = 2k − 2),

which leads to:

P(Xn+1 = 2k) =
2k

n
P(Xn = 2k) + (1− 2k − 2

n
)P(Xn = 2k − 2).

In Chapter 3, this example is related to the Yule process to show that the RTP process

is different from the Yule process.
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Chapter 3

The RTP process and the YH

process

Abstract

It has been suggested that an RTP process leads to a YH distribution, when the

number of taxa becomes large. In this study, we formalise this conjecture, and we prove

that the two tree distributions converge for two particular properties, which suggests that

the conjecture may be true. However, we present statistical evidence that, while the two

distributions are close, the RTP appears to converge on a different distribution than does

the YH.

3.1 Introduction

Although Vinh et al. (2011) provided evidence to suggest that the RTP and YH distribu-

tions appear to become very similar as n grows, they did not provide a formal statement

or proof of their claim that the two distributions converge. In this chapter, we investi-

gate the RTP process further using mathematical and statistical methods. Our results

demonstrate that certain properties near the ‘periphery’ of the tree (i.e. near the leaves)

converge under the two distributions; however, the ‘deep’ structure of the trees (how the

tree is broken up around its centroid) appears to retain a trace that distinguishes the two

models as the trees become large.

3.2 Formalised conjectures

Given two discrete probability distributions p and q on a finite set Y , the total variational

distance between p and q is defined as:

dVAR(p, q) = max
A⊆Y

|Pp(A)− Pq(A)| ,
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where Pp(A) =
∑
y∈A

p(y) and Pq(A) =
∑
y∈A

q(y) are the probabilities of event A under the

distributions p and q respectively. Thus dVAR(p, q) is the largest possible probability

difference of any event under the distributions p and q. A well-known elementary result

is that dVAR(p, q) =
1

2

∑
y∈Y
|p(y)− q(y)|, and thus the two distributions are the same if

dVAR(p, q) = 0.

A tree with the leaf set Xn = {1, 2, . . . , n} is called an Xn-tree. In the rest of this

chapter, all Xn-trees referred to are binary trees, where the interior nodes have degrees of

three. We use Tn to denote a labelled Xn-tree topology, and tn to denote an unlabelled

Xn-tree shape. Vinh et al. (2011) suggest that when the number of taxa (n) becomes large,

the RTP distribution converges to the YH distribution. In this chapter, we consider the

total variational distance between the two probability distributions on Xn-trees generated

by the RTP and the YH processes, and we formalise the conjecture from Vinh et al. (2011).

This formalisation states that the variational distance between the two tree distributions

converges to zero as the number of taxa grows. We first note that it makes no difference

to the truth of this conjecture whether the trees are labelled or unlabelled.

Lemma 3. Let T (n) and S(n) be the set of labelled and unlabelled Xn-trees respec-

tively. For Tn ∈ T (n) and tn ∈ S(n), let ∆n :=
∑

Tn∈T (n)

|PYH(Tn)− PRTP(Tn)| and let

δn :=
∑

tn∈S(n)

|PYH(tn)− PRTP(tn)|. Then ∆n = δn, and in particular, lim
n→∞

∆n = 0 ⇐⇒

lim
n→∞

δn = 0.

Proof. Let ν(tn) be the number of Xn-trees Tn that have the shape tn. Then, for

PYH(Tn) =
PYH(tn)

ν(tn)
and PRTP(Tn) =

PRTP(tn)

ν(tn)
, and we have:

∆n =
∑

Tn∈T (n)

|PYH(Tn)− PRTP(Tn)|

=
∑

tn∈S(n)

∑
Tn∈T (n)

Tn has shape tn

|PYH(Tn)− PRTP(Tn)|

=
∑

tn∈S(n)

ν(tn)

∣∣∣∣PYH(Tn)

ν(tn)
− PRTP(Tn)

ν(tn)

∣∣∣∣
=

∑
tn∈S(n)

|PYH(tn)− PRTP(tn)|

= δn.

Note that here we have applied the exchangeability property (Aldous, 1995) of the Yule

tree, which states that if two leaf labelled trees have the same shape, i.e. removing the leaf

labels leads to the same unlabelled tree, then these two trees are equally probable. Details

and applications of this property will be discussed further in Chapters 4 and 5.

Thus, we formalise the conjecture from Vinh et al. (2011) as follows:
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Conjecture (strong version):

With ∆n = δn defined as above, lim
n→∞

∆n = 0.

Note that, in the YH process, new leaves are only ever attached to pendant edges, and

each pendant edge is selected with equal probability. We say that such leaves are attached

to uniformly selected pendant edges. By contrast, the RTP process can attach new leaves to

any edge, although RTP has an increasingly strong preference to attach leaves to pendant

edges as the tree grows (Vinh et al., 2011). These authors also suggested that as the tree

grows, the number of cherries of an RTP tree follows the same limiting distribution as the

number of cherries of a YH tree, which is normally distributed. We summarise these two

claims as follows:

Conjecture (weak version)

1. Let Em be the event that all leaf attachments under the RTP process beyond the

first m leaves are to uniformly selected pendant edges. Then P(Em)→ 1 as m tends

to infinity.

2. The distribution of cherries converges to the same (asymptotic) normal distribution

as the YH model.

In this chapter, we prove the two parts of the weak conjecture, and present statistical

evidence that the strong conjecture is not true.

3.3 RTP is similar to YH when n is large

To verify Part 1 of the weak conjecture, we need to establish that the probability that a

new leaf attaches to a pendant edge converges to 1 sufficiently quickly as the number of

leaves increases. This requires that the pendant edges carry less weight than the interior

edges. In addition, when the new leaf is added, all pendant edges must be equally likely

to be chosen. Thus we must check the edge weight distribution during the puzzling step

of the RTP process.

3.3.1 Distribution of edge weights

Let EP
n denote the set of pendant edges of the current Xn-tree Tn and let EI

n be the set of

interior edges. For any edge e of Tn, we let W (e) denote the random variable edge weight

during the quartet puzzling step. Suppose that the edge e has k leaves of Tn on one side

and n− k leaves of Tn on the other side. The following result is established in Appendix

B.

Lemma 4. W (e) is a binomial random variable with the parameters
k(n− k)(n− 2)

2
for

the number of trials and
2

3
for the probability of success on each trial.

The parameter k takes the value 1 or n−1 for a pendant edge; for an interior edge, k lies

between 2 and n−2. Next, we show that for a fixed pendant edge and a fixed interior edge,
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the probability that the interior edge has lower weight converges to zero exponentially as

n increases. More precisely, for any e′′ ∈ EP
n and any e′ ∈ EI

n, we establish the following

result in Appendix B:

P
(
Wn(e′′) ≥Wn(e′)

)
≤ 2 exp(− 1

576
n). (3.1)

This result is for a fixed pair of pendant and interior edges, but it easily implies that the

probability that the smallest weight in the tree is on a pendant rather than an interior

edge converges quickly to 1 as n increases. This is formalised in the following inequality,

which is also proved in Appendix B:

P
(

min
e∈EP

n

{Wn(e′′)} ≤ min
e′∈EI

n

{Wn(e′)}
)
≥ 1− 2n2 exp(− 1

576
n). (3.2)

Thus a new leaf is almost certain to be added to a pendant edge. Moreover, as noted

above, each pendant edge has an equal probability of being attached to.

3.3.2 New leaves rarely attach to interior edges

Theorem 1. Suppose that Tm ∈ T (m), and let Em be the event that, under RTP, all

leaves beyond Tm are attached to selected pendant edges. Then, for the constants a, b > 0:

P(Em) ≥ 1− ae−bm.

Moreover, all pendant edges are attached with equal probabilities.

Proof. Let Bk be the event that the (k+ 1)-st leaf is not attached to any pendant edge of

Tk. Then we have 1− P(Em) = P

( ∞⋃
k=m

Bk

)
. By Boole’s inequality, we have

P

( ∞⋃
k=m

Bk

)
≤

∞∑
k=m

P (Bk). By Inequality (3.2), P (Bk) ≤ 2k2 exp(− 1

576
k). We now use

the following general inequality, the proof of which is given in Appendix B.

If Qm =
∞∑
k=m

k2 exp(−ck), where c ≥ 4 log k

k
and k > 1, then for m ≥ m0:

Qm ≤
exp(−cm0/2)

1− exp(−c/2)
. (3.3)

Thus

1− P(Em) ≤
∞∑
k=m

2k2 exp(− 1

576
k)

≤ 2

1− exp(− 1
576 ×

1
2)

exp(− 1

576
× 1

2
m).

Rearranging this inequality establishes the inequality in the theorem. The uniformity

27



3.3. RTP IS SIMILAR TO YH WHEN N IS LARGE

follows by Lemma 4.

3.3.3 The mean and variance of the number of cherries in the RTP tree

Table 3 in Vinh et al. (2011) reveals that the mean and variance of the number of cherries

on trees generated under the RTP process and under the YH process are similar. In order

to provide a formal proof that they converge to the same limiting distribution, we need to

recall the EPU model from Section 2.5.1.

The EPU model and attaching new edges only to pendant edges

We relate the Yule process to the EPU model as follows: Consider the set of cherry edges

to be a collection of blue balls, and the non-cherry edges to be a collection of red balls.

When a new edge is attached to a pendant edge, if it is attached to a cherry edge, the

number of cherry edges remains the same, but the number of non-cherry edges increases

by one. If a new edge is added to an non-cherry edge, then the non-cherry edge becomes

a cherry edge, and the new edge is also a cherry edge. Thus, the generating matrix is:

A =

[
0 1

2 −1

]
.

Notice that A has a row sum equal to 1 and one real positive eigenvalue λ, as required.

Let Cn be the number of cherries in a YH tree. Then, as n tends to infinity,

Zn := (Cn − n/3)/
√

2n/45 converges in distribution to a standard normal distribution

(i.e. Zn
D−→ N(0, 1)), by Corollary 3 of McKenzie and Steel (2000). We now show that the

same holds for the distribution of cherries in an RTP tree.

Theorem 2. Let C∗n be the number of cherries in an RTP tree and let Z∗n = (C∗n −
n/3)/

√
2n/45. Then Z∗n

D−→ N(0, 1).

Proof. We need to show that for any ε > 0, and for all sufficiently large values of n and

all positive real values of x:

|P(Z∗n < x)− P(Z < x)| ≤ ε, (3.4)

where Z is a standard normal random variable.

As before, let Em be the event that after m leaves have been attached to the starting

tree by RTP, all further additions are to pendant edges, and let Ecm be the complement of

Em. For n > m, by the law of total probability, we have:

P(Z∗n < x) = P(Z∗n < x|Em)P(Em) + P(Z∗n < x|Ecm)P(Ecm). (3.5)
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If we now subtract P(Z∗n < x|Em) from both sides of Equation (3.5), we obtain:

P(Z∗n < x)− P(Z∗n < x|Em)

= P(Z∗n < x|Em)(P(Em)− 1) + P(Z∗n < x|Ecm)P(Ecm).
(3.6)

By the triangle inequality |a+ b| ≤ |a|+ |b|, we have:

|P(Z∗n < x|Em)(P(Em)− 1) + P(Z∗n < x|Ecm)P(Ecm)|
≤ |P(Z∗n < x|Em)(P(Em)− 1)|+ |P(Z∗n < x|Ecm)P(Ecm)|.

(3.7)

Combining Equation (3.6) and Inequality (3.7) produces the following:

|P(Z∗n < x)− P(Z∗n < x|Em)|
≤ |P(Z∗n < x|Em)(P(Em)− 1)|+ |P(Z∗n < x|Ecm)P(Ecm)|,
≤ |P(Z∗n < x|Em)||(P(Em)− 1)|+ |P(Z∗n < x|Ecm)||P(Ecm)|.

(3.8)

Theorem 1 tells us that P(Em) ≥ 1− ae−bm, which tends to 1 as m grows for a, b > 0.

Now, since P(Ecm)→ 0 as m tends to infinity, we can select a sufficiently large value of m

that P(Ecm) ≤ ε/4 and P(Em) ≥ 1− ε/4. Thus, P(Em)− 1 ≥ −ε/4, and |P(Em)− 1| ≤ ε/4.

Since 0 ≤ P(Z∗n < x|Em), P(Z∗n < x|Ecm) ≤ 1, Inequality (3.8) gives:

|P(Z∗n < x)− P(Z∗n < x|Em)| ≤ ε/4 + ε/4 = ε/2, (3.9)

for all sufficiently large values of m, and all n ≥ m and x > 0.

Now we consider the sequence of Z∗n conditional on Em. By conditioning on this event,

all the new leaves are attached to uniformly selected pendant edges. Because the EPU

argument established that the convergence of the sequence Zn (the normalisation of the

number of cherries in a YH tree) does not depend on the initial number of cherries for any

ε > 0 and every m, there exists an integer n0 so that for all n ≥ n0 and all x > 0:

|P(Z∗n < x|Em)− P(Zn < x)| ≤ ε/2. (3.10)

Then, by the triangle inequality |a+ b| ≤ |a|+ |b|, if we add Inequalities (3.9) and (3.10),

we have:

|P(Z∗n < x)− P(Zn < x)| ≤ ε,

and since Zn converges in distribution to a standard normal distribution, this establishes

(3.4).

Theorem 2 shows that the number of cherries on the RTP trees has a limiting normal

distribution with the same asymptotic mean and variance as that for the YH distribution.

We have also shown that, from some point onward, new leaves will always be added

to pendant edges, which verifies the weak conjecture. While these two results may be

regarded as providing some weak evidence in favour of the strong conjecture, they do not
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constitute any formal justification of it. In the next section, we will provide an analysis

that suggests that the variational distance between the two distributions remains bounded

away from zero as n grows, and this makes these two process distinct in the limit.

3.4 Is RTP the same as YH?

Consider the following scenario where we perform the YH process on some starting tree

with more than three leaves, where v is one of the interior nodes. At a node v, the graph

is divided into three subtrees (see Figure 3.1). We let Li (i = 1, 2, 3) denote the leaf sets

of these subtrees and let li = |Li| (i = 1, 2, 3) denote the number of leaves in the sets. We

normalise the li values by the total number of leaves n. Clearly, the sequences li/n change

as new leaves are gradually added to the whole tree.

3.4.1 Polyá urns and the centroid of a tree

Adding new leaves on to the tree under the YH process ensures that each new leaf is

always added into one of the leaf sets Li, (i = 1, 2, 3). The probability that li increases by

1 is proportional to the number of leaves in the subtree relative to the number of leaves

in the full tree. This is similar to the Polyá urn problem (Karr, 1993) involving balls of

three different colours.

Suppose that one ball is picked randomly at each step, and replaced in the urn along

with another ball of the same colour. Let F in be the relative frequency of the ith colour

ball when n balls are present, and let Fn = (F 1
n , F

2
n , F

3
n). Fn converges (as n → ∞)

to a Dirichlet distribution (Kotz et al., 2000) with the parameter vector Fn0 , where n0

is the total initial number of balls. Different initial values in the urn produce different

distributions when n balls are present in the urn, and this difference in distribution does

not converge to zero as n grows. This result suggests that the YH process on different

initial X-trees may well lead to different distributions of the resulting trees. However,

if the final tree shape is the only information we are given, then it will be impossible

to identify the position of the original vertex v in the final tree with certainty. Thus

the frequencies Fn cannot be clearly measured from the final tree alone. However, we

can partly ameliorate this problem by considering a particular vertex that we can easily

identify in the final tree, namely its centroid (Jordan, 1869; Mitchell, 1978).

Definition 7. A vertex v of a tree T = (V,E) is a centroid if each component of the

disconnected graph T\v has, at most, (1/2)|V | vertices.

A well-known property of centroids states that a tree has either a single centroid or

two adjacent centroids; in the latter case, |V | is even (Kang and Ault, 1975). To keep the

problem simple, we only consider trees with a single centroid. However, because T is a

binary tree, |V | is always even, so this does not guarantee a unique centroid. Fortunately,

the following lemma shows that a binary tree with an odd number of leaves always has a

unique centroid.
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v

|L3||L2|

|L1|

Figure 3.1: The centroid of a tree.

Lemma 5. Let T be an unrooted binary Xn-tree. Then:

1. A vertex v of T is a centroid of T if and only if v satisfies l1, l2, l3 ≤
n

2
, where li is

the number of leaves in the three subtrees of T\v.

2. If n is odd, then T has a unique centroid.

Proof. (1) Suppose that v is an interior vertex of T . Consider the vertex sets V1, V2

and V3 of the connected components of T\v. Let li be the number of leaves in Vi.

Considering the rooted binary tree on Vi, we have:

|Vi| = 2li − 1. (3.11)

Also, since T is an unrooted binary tree, we have:

|V | = 2n− 2. (3.12)

Thus, |Vi| ≤
1

2
|V | if and only if 2li − 1 ≤ 1

2
(2n − 2) and this holds precisely when

li ≤ n/2. Thus, the condition for v to be a centroid (namely that |Vi| ≤
1

2
|V | for

i = 1, 2, 3) is precisely the same as that stated in the lemma.

(2) Suppose that v is a centroid of T . At v, we let Li (i = 1, 2, 3) denote the leaf

sets of the subtrees Ti and let li denote the size of these leaf sets, ordered so that

lj ≤ l3 ≤
|X|
2

, (j = 1, 2). Since n is odd, we have l3 <
n

2
.

Suppose another centroid d exists. We use L′i to denote the complement of Li. Then

there is a subtree H of T rooted at d, with the leaf set LH , where LH ⊇ G′, and

G′ ∈ {L′1, L′2, L′3}. Since lj ≤ l3 <
n

2
, where j ∈ {1, 2}, we then have |LH | ≥ |G′| >

n

2
. Therefore, d cannot be a centroid.

We now relate the centroid back to the Polyá urn problem. First, notice that tree

shapes only start to differentiate when there are more than five leaves. Therefore, in the
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l3 = 3l2 = 2

l1 = 2

l3 = 3l2 = 3

l1 = 1

Non-Caterpillar (NC) Caterpillar (C)

Figure 3.2: The two tree shapes for binary trees with seven leaves

following scenario, we perform the YH process for initial trees with seven leaves (we start

with trees with seven rather than six as we wish to restrict our attention to trees with

an odd number of leaves, and which therefore have a unique centroid). Suppose that a

tree X is either the non-caterpillar (NC) or the caterpillar (C) tree shown in Figure 3.2.

We will use X as the initial tree to construct some tree tn. At the centroid of tn when

n = 7, the sequences li/n are (2/7, 2/7, 3/7) and (1/7, 3/7, 3/7) for t7 = NC and t7 = C

respectively. Now, let us consider only the number of leaves l1 in the smallest subtree

of tn for all odd values of n ≥ 7 (henceforth, all values of n in this section are odd to

guarantee a unique centroid, and the limits as n tends to infinity are also over just the

odd values of n). We define the ratio between l1 and the number of leaves n to be πXn =
l1
n

.

For γ ∈ (0, 1), let ΠX be the limiting probability of the event πXn ≥ γ. In other words,

ΠX = lim
n→∞

P(πXn ≥ γ). To test the null hypothesis that ΠNC = ΠC , we investigate the

ratio πXn under the YH process starting with a tree with seven leaves with the shape

X ∈ {C,NC}. An additional 2000 leaves are attached to the starting trees of shape NC

and C under the YH process, with 1000 replicates in each case. Using the initial tree of

shape NC or C, we found that the probability that πXn is greater than γ = 0.19 does

not appear to converge for the two choices of X (NC or C) (see Figure 3.3). Figure 3.3

indicates the 95% confidence interval for the proportions of events for which πXn ≥ 0.19,

which suggests the following strict inequality:

ΠNC > ΠC . (3.13)

3.4.2 A modified RTP process

To provide evidence that the RTP and the YH processes are not exactly the same, we define

a new process RTP′, which is equivalent to the RTP process up to n = 7. From this point

onward, it proceeds according to the YH process. Therefore, the initial probabilities for

constructing Xn-trees from NC and C under the RTP′ process are different from those
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Figure 3.3: Empirical probabilities and the 95% confidence interval for the proportion
of events with πXn ≥ 0.19. The dashed line is for the initial tree of the non-caterpillar
seven-taxon tree; the solid line is for the caterpillar seven-taxon tree.

for the YH process. We use the probabilities of the starting tree NC and C under the

RTP process as the probabilities under the RTP′ process. Vinh et al. (2011) estimated by

simulation that the probabilities for the seven-taxon non-caterpillar tree is 0.4607 under

the RTP process and 0.4667 under the YH process, which gives us the following inequality:

PYH(t7 = NC)− PRTP′(t7 = NC) > 0. (3.14)

Theorem 3. If (3.13) holds, then:

lim
n→∞

dVAR(PRTP′(tn),PYH(tn)) 6= 0.

Proof. Let S(n) be the set of unlabelled Xn-trees and let:

δ′ :=
∑

tn∈S(n)

|PYH(tn)− PRTP′(tn)|. (3.15)

For a tree generated by YH or RTP′, consider the event Σn that πn ≥ γ, where πn = l1/n

is the proportion of leaves of the tree with n leaves that lie in the smallest subtree(s)

incident with the centroid. Then:

PYH(Σn) =
∑

X∈{NC,C}

PYH(Σn|t7 = X)PYH(t7 = X),
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and:

PRTP′(Σn) =
∑

X∈{NC,C}

PRTP′(Σn|t7 = X)PRTP′(t7 = X).

If we now subtract Equation (3.4.2) from Equation (3.4.2) and substitute P∗(t7 = C) in

1− P∗(t7 = NC), we have:

PYH(Σn)− PRTP′(Σn)

= (PYH(t7 = NC)− PRTP′(t7 = NC)) (ΠNC −ΠC).
(3.16)

Thus, if we apply Inequalities (3.14) and (3.13) in Equation (3.16), we obtain PYH(Σn)−
PRTP′(Σn) > 0. Consequently, δ′ > 0 in Equation (3.15), and so lim

n→∞
dVAR(PRTP′(tn),PYH(tn)) 6=

0, as claimed.

It is important to be clear about what we have established. We have not formally

shown that RTP does not converge to YH, nor even that RTP′ fails to converge to YH.

Rather, we have provided evidence that a certain property of RTP′ holds and, if so, this

implies (Theorem 3) that RTP′ does not converge to YH. Then, since RTP′ is a hybrid of

YH and RTP, this suggests that RTP does not converge to YH either.

3.5 Further discussion

In phylogenetic studies, trees are inferred from DNA sequences using various methods.

It is also pertinent to ask what sort of trees these methods would produce given entirely

random data. This is one of the motivations of the study by Vinh et al. (2011). In the

following discussion, we use an n by k matrix D to denote a sequence of k independent

characters on n taxa. Note that all the characters have the same state space S. The term

‘random data’ can refer to any one of the following three schemes:

(R1). State x is assigned to taxon i in character j by an independent identically distributed

(i.i.d.) process with the probability pj(x) for x ∈ S.

When the probabilities of state x are the same for all characters (i.e. if pj(x) = p(x) for

all j), we obtain a stronger notion as follows:

(R2). For every entry of the matrix D, Dij is assigned to state x with probability p(x).

If all states are equally likely (i.e. if p(x) = 1/|S|), we arrive at an even stronger notion

as follows:

(R3). For all entries of D, all states have equal probabilities.

Vinh et al. (2011) suggest that random data imply that quartet trees are equally likely

and are independent from each other, stating:

In our setting, we assume no phylogenetic information in the data. This is

equivalent to the assumption that each of the three topologies for a quartet is
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equally likely and that the tree topology for each quartet is independent of the

other quartets. . . . Hence, 3(n4) possible combinations of quartet trees will serve

as input to TP.

For any of the models (R1)–(R3), it is certainly true that random sequence data provide

equal support for all three possible topologies for any four taxa. However, this does not

necessarily imply that the inferred quartet trees are entirely independent. Rather than

pursue this question here, we will consider the behavour of TP under a model in which

quartet trees are i.i.d. and uniform, as in Vinh et al. (2011).

While the RTP process appears to converge close to the YH distribution, it is instruc-

tive to note that another tree reconstruction method, maximum parsimony (MP), when

applied to random data, appears to converge to a quite different distribution. Here we

discuss two interesting observations of MP tree on random data. Let B(n) be the set of

unrooted binary trees on the leaf set {1, 2, . . . n}.

Theorem 4. For data D generated under random model (R3) with two states:

1. Each tree T ∈ B(n) has an identical distribution for its parsimony score on D. In

particular, all trees in B(n) have the same expected parsimony score on D.

2. For each fixed n, there is a unique MP tree for D with the probability converging to

1 as k grows.

Proof. Let w(D,T ), T ∈ B(n), denote the parsimony score of T on random data D. By

Theorem 7.1 of Steel (1993), the number of ways to colour the leaves of a binary tree T with

n leaves using two colours, and so that the resulting colour scheme has a parsimony score

of k for T depends only on n and not otherwise on the tree T . Hence, for all T ∈ B(n),

the probability P(w(D,T ) = l) = f(l) is the same for all binary trees with a given number

of leaves. The second claim in Theorem 4.1 then follows, by summing over the products

of the scores and their probabilities.

Let Ek(T, T
′) be the event that T and T ′ have exactly the same parsimony score.

Notice that the difference in the parsimony score of T and T ′ on D is a sum of k i.i.d.

random variables under model (R3) (notice that each of these k random variables is the

difference of two dependent random variables – the score of the character on T and on T ′

– but these differences are independent across the characters). Thus, by the Central Limit

Theorem, the probability that the difference in scores is exactly 0 (i.e. P(Ek(T, T
′)) tends

to zero as k grows).

Let E be the event that the MP tree for D is unique and let Ec be the complement

of this event, namely that there are at least two trees which have the same parisimony

score for D. Note that Ec is a subset of the union of the events Ek(T, T
′) over all T, T ′

(distinct). Although these events are not independent, Boole’s inequality still gives us

that:

1− P(E) ≤ P(
⋃
T,T ′

Ek(T, T
′)) ≤

∑
T,T ′

P(Ek(T, T
′))→ 0.
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Thus P(E)→ 1 as k →∞, as required.

Note that Theorem 4 does not establish that the maximum parsimony tree for random

data generated under (R3) with two states is exactly the PDA distribution (or even

asymptotically the PDA distribution as the number k of independent characters tends to

infinity). However it suggests the distribution may at least be close to the PDA (and

possibly converge to it as k grows). Investigating this further would be an interesting

exercise for future work.
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Chapter 4

Clade and clan probabilities in the

YHK model

Abstract

In this chapter, we derive exact formulae for the probability of a clade and the joint

probabilities of k ≥ 2 clades for a random Yule/coalescent gene tree under the conditions

that the k clades are mutually exclusive, and are either exhaustive (all leaves of the gene

tree occur in one of the k clades) or form only a subset of the leaves of the gene tree.

In addition, we extend the results to unrooted trees by giving the probabilities of ‘clans’

(sets of leaves that are all on one side of a split (Wilkinson et al., 2007)), as well as the

joint probability of k > 1 clans, on Yule/coalescent trees which have been unrooted.

4.1 Introduction

The Yule model and the coalescent model are two neutral stochastic models for describing

macro-evolution and micro-evolution respectively. One can use these models to generate

random trees: a rooted Yule tree describes the speciation from the root of the tree; a coa-

lescent tree models lineages coalescing back in time from the present. Although, these two

models are quite different, they lead to exactly the same distributions of tree topologies.

4.2 The YHK process

Recall the algorithms for constructing a Yule tree and a Kingman coalescent tree in Chap-

ter 2. We show that the two processes produce an identical probability distribution for a

rooted binary tree.

Lemma 6. Let T (n) be the set of labelled rooted Xn-trees. We use PYH and PK to

denote the tree probabilities under the YH model and the Kingman model respectively. For

T ∈ T (n), we have:

PYH(T ) = PK(T ).

37



4.2. THE YHK PROCESS

Proof. Let s(τ) be the number of symmetric nodes of tree shape τ . For an interior vertex

v in τ , we use λv to denote the number of interior vertices of τ that are descendants of v.

Since τ is binary, λv is one less than the number of leaves that lie below v. According to

Semple and Steel (2003)’s theorem 2.5.2, we have:

PYH(τ) =
2n−1−s(τ)∏

v∈V̊ λv
, (4.1)

where V̊ is the set of interior vertices of τ .

We use ν(τ) to denote the number of Xn-trees T that have the shape τ . Recall the

algorithm for constructing a Yule tree, which implies that any X-tree is equally likely if

their unlabelled tree topologies are the same. In particular, step 3 of the algorithm implies

that, for n leaves, there are n!2−s(τ) ways to label the tip nodes of an unlabelled Yule tree

randomly, which has also been shown by Semple and Steel (2003)’s corollary 2.4.3.

Thus, we divide the probability of an unlabelled tree (Equation (4.1)) by the number

of trees that have the same shape τ , and then obtain the probability of a YH tree as:

PYH(T ) = PYH(τ)/ν(τ) =
2n−1

n!

∏
v∈V̊

1

λv
. (4.2)

This result was also derived by Brown (1994) (Equation (4)).

For the Kingman coalescent tree, two nodes are randomly picked from the set of the

remaining nodes at each time step. In total, there are the following number of coalescent

sequences:
n∏
i=2

(
i

2

)
=
n!(n− 1)!

2n−1
. (4.3)

However, many of these sequences results in the same tree topology. Suppose that aj is

the number of coalescent events prior to the jth coalescent event. In other words, suppose

that the interior vertices of a Kingman coalescent tree are labelled {1, 2, . . . , n − 1}. Let

aj be the number of interior vertices that are below node j. Then there are:

cT = (n− 1)!

n−1∏
j=1

1

1 + aj
(4.4)

sequences of coalescences producing the same tree topology (Degnan and Salter, 2005).

Thus if we divide the number of coalescent sequences that form the same Kingman

tree (Equation 4.4) by the total number of coalescent sequences among n leaves (Equation

(4.3)), we have the probability of tree T under the Kingman process:

PK(T ) = (n− 1)!

n−1∏
j=1

1

1 + aj
× 2n−1

n!(n− 1)!
. (4.5)

Since |V̊ | = n− 1, for v ∈ V̊ , labelling v by j, j ∈ {1, 2, . . . , n− 1}, we have aj + 1 = λv.
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By combining Equations (4.2) and (4.5), we have PYH(T ) = PK(T ), as required.

As we have been shown that the probability distributions under the YH and the King-

man processes are equivalent, from this point on, we generalise these two processes as the

YHK process. The probability measure under the YHK process is denoted as P (short for

PYHK) in this chapter.

We use Xn or X to denote a set of taxa of size n. TX or T is used to denote a labelled

rooted binary tree on X, i.e. X is the leaf set of T . Suppose that ρ is the root of T .

We will use T−ρ to denote the unrooted X-tree that is induced from T by deleting ρ. In

this chapter, we use TX or T to denote a randomly generated tree on X under the YHK

process.

4.3 Clade probabilities

Apart from the tree topologies, the Yule model and the Kingman model also produce the

same probabilities for monophyletic groups, also known as clades, which are defined as

follows:

1 2 3 654

(a) {1, 2, 3} is a clade.

1 2 3 654

(b) {1, 2, 3, 4} is not a clade.

Figure 4.1: An example of a clade. The MRCA of {1, 2, 3} only has {1, 2, 3} as its de-
scendants. The MRCA of {1, 2, 3, 4} is the root, which {5, 6} are also the descendants
of.

Definition 8. A clade of an X-tree T is a subset of X that corresponds to the set of leaves

that are descended from an internal vertex. Suppose that A is a clade of T . If A ( X,

then A is a proper clade of T . The root of T divides X into two sets, both of which are

known as maximal clades.

For example, as Figure 4.1a shows, tips 1, 2 and 3 share the same MRCA, of which

tips 1, 2 and 3 are the only descendants. Therefore, the set {1, 2, 3} is a clade. Moreover,

as the MRCA node of {1, 2, 3} is a child node of the root, this implies that the set {1, 2, 3}
is also a maximal clade.. On the other hand, in Figure 4.1b, the MRCA of tips 1, 2, 3 and

4 is the root, which has another two descendants, 5 and 6. Thus, the set {1, 2, 3, 4} is not

a clade.

In the rest of this section, unless stated otherwise, we use A, B and Ai to denote clades;

a, b and ai are the cardinality of clades A, B and Ai respectively.
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4.3.1 Properties of the YHK process

For an X-tree T , we use TX|X′ to denote the restricted subtree of T for X ′ ⊆ X. Here,

we introduce two properties of the YHK process. Suppose that T is a random X-tree

generated under the YHK process, we use TX|X′ to denote the restricted subtree of T for

X ′ ⊆ X . We have:

The exchangeability property (EP): If T ′ is obtained from T by permuting the

leaves, then

P(T = T ′) = P(T = T ).

The group elimination (GE) property: Let C(T ) denote the collection of clades of

the tree T . For any proper (and non-empty) subset A of X, and any rooted binary

phylogenetic tree T with the leaf set X −A:

P(TX|(X−A) = T |A ∈ C(T )) = P(T(X−A) = T ).

The EP property (Aldous, 1995) requires that the probability of a particular phylogenetic

tree depends only on its shape and not on how its leaves are labelled. This is also known

as ‘label-invariance’ in Steel and Penny (1993).

In the previous section, the EP property is used in the proof of Lemma 6 when deriving

the probabilities of labelled trees from the probabilities of unlabelled trees by dividing by

the number of labelled trees that have the same shape.

The GE property from Aldous (1995) states that, conditional on A forming a clade in

the tree, the tree structure on the remaining taxa is also described by the YHK process. In

turn, GE implies the following the Sampling Consistency (SC) property (Aldous (1995))

(SC):

For any rooted binary tree T with the leaf set A ⊆ X, we have:

P(TX|A = T ) = P(TA = T ).

Note that A is not necessarily a clade in this case. To derive the SC property from the

GE property, one can gradually remove the leaves that belong to A.

4.3.2 One clade

Lemma 7. Randomly choose one of the maximal clades of a YHK tree with n leaves. Let

U be a random variable that indicates the number of leaves in that clade. We have:

Pn(U = u) =


1

n− 1
, u ∈ {1, 2, . . . , n− 1};

0, otherwise.
,where n ≥ 2. (4.6)
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This result was derived by Slowinski (1990). For completeness, we give the proof of

Lemma 7 by induction in Appendix B.

Lemma 8. Let Er be the event that the maximal clades are of size (r, n− r) in a random

generated YHK tree T of n leaves, where r ≤ n

2
. Then we have:

P(Er) =


2

n− 1
, 1 ≤ r < n

2
;

1

n− 1
, r =

n

2
.

(4.7)

Proof. See Appendix B.

Lemma 9. Let AM be the event that A is a maximal clade of a randomly generated YHK

tree T with n leaves. Then:

P(AM ) =
2

n− 1

(
n

a

)−1

. (4.8)

Proof. The EP property implies that:

P(A is a clade in T |T that has k clades of size a) = k

(
n

a

)−1

. (4.9)

Let Ea denote the event that the maximal clades of T have size a and n−a. We now have

P(AM ) = P(AM |Ea)× P(Ea), where:

P(AM |Ea) =


2

(
n

a

)−1

, a =
n

2
;(

n

a

)−1

, otherwise.

(4.10)

Suppose that a ≤ n−a. By replacing r in Equation (4.7) with a, and combining Equations

(4.7) and (4.10), we show that P(AM ) =
2

n− 1

(
n

a

)−1

as required.

Lemma 10. Let Xn(a) be the number of proper clades of size a in a random YHK tree

TX . Then we have:

E[Xn(a)] =
2n

a(a+ 1)
, 1 ≤ a ≤ n− 1. (4.11)

Proof. See Appendix B.

For a set A ( X, let pn(A) be the probability that A is a proper clade of TX . From

the EP property it is clear that this probability depends only on a = |A| and n, i.e. the

elements of the sets X and A have no effect on the probability pn(A). Thus, we write

pn(a) for this probability. From Rosenberg (2003), we have the following lemma:

Lemma 11.

pn(a) =


2n

a(a+ 1)

(
n

a

)−1

, if 1 ≤ a ≤ n− 1;

0 , otherwise.
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The proof of this result from Rosenberg (2003) relies on a combinatorial identity to

sum a series. Here, we point out how Lemma 11 follows directly from Lemma 10.

Proof. This is similar to the proof of Lemma 9.

P(A is a clade in T ) =
∑
k≥0

P(A is a clade in T |T that has k clades of size a)P(Xn(a) = k).

From Equation (4.9), we have:

pn(a) =
∑
k≥0

k

(
n

a

)−1

P(Xn(a) = k)

=
∑
k≥0

(
n

a

)−1

[kP(Xn(a) = k)] =

(
n

a

)−1∑
k≥0

kP(Xn(a) = k),

where
∑
k≥0

kP(Xn(a) = k) = E[Xn(a)]. From Lemma 10, we then have:

pn(a) =
2n

a(a+ 1)

(
n

a

)−1

. (4.12)

From Lemma 10, it is clear that the expected number of clades with a given size a

decreases as a increases. However, the function pn in Equation (4.12) (the clade probability

of a given subset with size a) is ‘unimodal’, as the following corollary suggests.

Corollary 1. For n ≥ 3, we have pn(a+1) ≤ pn(a) for all a ≤ ∆(n), and pn(a+1) ≥ pn(a)

for a ≥ ∆(n), where ∆(n) is defined as:

∆(n) :=

√
n+

(n− 3

4

)2
+
n− 3

4
. (4.13)

Proof. For 1 ≤ a ≤ n− 2,

pn(a+ 1)

pn(a)
=

a(a+ 1)
(
n
a

)
(a+ 1)(a+ 2)

(
n
a+1

) =
a(a+ 1)

(a+ 2)(n− a)
, (4.14)

which is less than or equal to 1 if and only if

a(a+ 1) ≤ (a+ 2)(n− a) ⇐⇒ 2a2 − (n− 3)a− 2n ≤ 0.

Solving 2a2− (n− 3)a− 2n ≤ 0 for 1 ≤ a ≤ n− 2, we have pn(a+ 1) ≤ pn(a) if a ≤ ∆(n).

Similarly, one can show that pn(a+ 1) ≥ pn(a) for a ≥ ∆(n).
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Note that Equation (4.13) suggests that when n goes to infinity, ∆(n) ≈ n

2
, which

means the minimum of pn(a) is at a =
n

2
.

4.3.3 Pairs of clades

Let sets A and B be two clades of T . If the two sets are equal, or one is a strict subset of

the other, or the two sets are disjoint, then A and B satisfy the compatibility condition

(Equation 2.2).

For a pair A,B of disjoint subsets of X, let p̂n(A,B) be the probability that A and B

are sister clades of TX (i.e. A,B and A∪B are clades of TX). Again, by the EP property,

this probability depends only on a = |A|, b = |B| and n, and so we denote it as p̂n(a, b).

First, we conside the special case where A and B are maximal clades, in which case

n = a+ b. From Brown (1994)’s equation (6) (see also Rosenberg (2003)), the probability

of this event is the same as in Lemma 9 and can be given as follows:

Lemma 12. For 1 ≤ a ≤ n, we have:

p̂n(a, n− a) =
2

n− 1

(
n

a

)−1

.

Lemma 12 is the same as Lemma 9, because the maximal clades partition the leaf set

of a tree. For a fixed set of leaves; knowing the size of one maximal clade is equivalent to

knowing the sizes of both maximal clades.

Corollary 2. p̂n(a, n − a) > p̂n(a + 1, n − a − 1) for a <
n− 1

2
, and p̂n(a, n − a) ≤

p̂n(a+ 1, n− a− 1) for a ≥ n− 1

2
.

The proof of Corollary 2 follows by the unimodal property of the binomial coefficients:

p̂n(a+ 1, n− a− 1)

p̂n(a, n− a)
=

(
n
a

)(
n
a+1

) =
a+ 1

n− a
, (4.15)

which suggests that p̂n(a, n− a) is minimal if a = dn/2e.
We generalise Lemma 12 slightly as follows:

Lemma 13. Let k = a+ b ≤ n. Then we have:

p̂n(a, b) =
4a!b!(n− k)!

(n− 1)!k(k2 − 1)
.

Proof.

p̂n(A,B) = P(A ∪B ∈ C(TX)) · P
(
A ∈ C(TX|A∪B)|A ∪B ∈ C(TX)

)
.

Applying Lemma 11 to the first term, and property SC and Lemma 12 to the second term,

we have:

p̂n(A,B) =
2n

(a+ b)(a+ b+ 1)

(
n

a+ b

)−1

· 2

a+ b− 1

(
a+ b

a

)−1

,
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A

(a) Case 1

A

B

(b) Case 2

B

A

(c) Case 3

A B

(d) Case 4

A B

(e) Case 5

Figure 4.2: The five cases of compatible clade pairs in Theorem 5.

from which the result follows.

Now, for any two arbitrary subsets A,B of Xn = {1, . . . , n}, let pn(A,B) be the

probability that a YHK tree T on Xn has A and B as proper clades.

Theorem 5.

pn(A,B) =



pn(a) if A = B [case 1] ;

Rn(a, b), if A ( B [case 2] ;

Rn(b, a), if B ( A [case 3] ;

p̂n(a, n− a), if A ∩B = ∅, A ∪B = Xn [case 4] ;

rn(a, b), if A ∩B = ∅, A ∪B ( Xn [case 5] ;

0, otherwise [case 6] ;

where:

pn(a), and p̂n(a, n− a) are given by Lemmas 11 and 12,

Rn(a, b) :=
4n

a(a+ 1)(b+ 1)

(
n

b

)−1(b
a

)−1

,

rn(a, b) :=
4a!b!(n− a− b)!

(n− 1)!
Gn(a, b), and where

Gn(a, b) :=
n

ab(a+ 1)(b+ 1)
− a(a+ 1) + b(b+ 1) + ab

ab(a+ 1)(b+ 1)(a+ b+ 1)
+

1

(a+ b)((a+ b)2 − 1)
.

Proof. Cases 1 and 4 are given by Lemmas 11 and 12, respectively. For the second case

(A ( B), similar to the proof of Lemma 13, we have

pn(A,B) = P(B ∈ C(TX)) · P(A ∈ C(TX)|B ∈ C(TX)).
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Since A ( B, we can apply the SC property and Lemma 11 to deduce that the first term

in this product is
2b

a(a+ 1)

(
b

a

)−1

, while the second term is
2n

b(b+ 1)

(
n

b

)−1

, from which

the result follows. Case 3 follows by an analogous argument. For Case 5, consider the

following two pairs of events:

� E1 : A,B ∈ C(TX),

� E2 : A ∪B,B ∈ C(TX), and

� F1 : A ∈ C(TX|(X−B)),

� F2 : B ∈ C(TX).

P(E1) = P(E1 ∪ E2) + P(E1 ∩ E2)− P(E2). (4.16)

pn(A,B) = P(E1) = P(F1|F2) · P(F2)− P(E2) + p̂n(A,B). (4.17)

Now, by the GE property:

P(F1|F2) = P(A ∈ C(TX−B)) = pn−b(a), (4.18)

and:

P(E2) = P(A ∪B ∈ C(TX)) · P(B ∈ C(TX)|A ∪B ∈ C(TX)) = pn(a+ b) · pa+b(b). (4.19)

pn(A,B) = pn−b(a) · pn(b)− pn(a+ b) · pa+b(b) + p̂n(a, b).

Case 5 now follows from Lemmas 11 and 13. Case 6 follows from the compatibility condi-

tion (2.2) for clades.

4.3.4 Correlation between two clades

We now ask whether the events ‘A is a clade’ and ‘B is a clade’ are positively or negatively

correlated under the YHK process. Let XA (respectively XB) be the Bernoulli (0,1)

random variable that takes the value 1 if A (respectively B) is a clade of a YHK tree T
on Xn, and let ρn(A,B) denote the correlation coefficient of these two random variables,

which is given by:

ρn(A,B) =
pn(A,B)− pn(A)pn(B)√

pn(A)(1− pn(A))pn(B)(1− pn(B))
.

Corollary 3. For any two strict subsets A,B of X, the correlation ρn(A,B) is:

� strictly negative, if A,B are not compatible, and undefined if |A| = 1 or |B| = 1.

� strictly positive, otherwise.
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Proof. If A and B are not compatible, then pn(A,B) = 0, but both pn(A) and pn(B) are

greater than zero, and so ρn(A,B) < 0. If |A| = 1, then pn(A) = 1 and pn(A,B) = pn(B)

(regardless of whether A is a subset of B or is disjoint from B). Thus the numerator and

denominator of pn(A,B) are both zero. A similar argument holds if |B| = 1.

In the remaining cases, we consider the ratio pn(A,B)/(pn(A)pn(B)), and show that

it is strictly greater than one. For details, see Appendix B.

Figure 4.3 illustrates the correlation coefficient ρn(A,B) for n = 25 in Cases 2, 4 and

5 from Figure 4.2. Notice that the correlation is typically less in Cases 2 and 5 than in

Case 4.

Figure 4.3: Correlation of compatible clades A and B ρ′n(A,B) for n = 25, in Cases in
Cases 2, 4 and 5 under the YHK model, with a = |A| and b = |B|.

For a rooted YHK tree T , and a rooted phylogenetic tree Tk with leaf set {1, . . . , k}, let

p(a1, . . . , ak;Tk) be the probability that A1, A2, . . . , Ak are clades of T and that Tk is the

tree obtained from T by replacing each clade Ai by a single leaf labelled i, for i = 1, . . . , k.

Let I(Tk) denote the set of interior vertices of Tk.

Theorem 6. For k > 1, we have:

(i)

p(a1, . . . , ak;Tk) =
2k−1

∏k
i=1 ai!

n!

∏
v∈I(Tk)

(
1∑k

i=1 aiIv(Ai)− 1

)
, (4.20)

where Iv(Ai) is the indicator variable that takes the value of 1 if Ai lies below v in

Tk and 0 otherwise.

(ii)

p(a1, . . . , ak) =
∑

Tk∈RB(k)

p(a1, . . . , ak;Tk), (4.21)

where the summation is over all distinct rooted binary phylogenetic trees on the leaf

set {1, . . . , k}. RB(k) denotes the set of rooted binary trees with leaf set {1, 2, . . . , k}.
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A1 A2 A3 Ak

(a) Tn

1 2 3 k

(b) Tk

Figure 4.4: Disjoined sets Ais partition the leaf set X = {1, 2, . . . , n}. The sets Ai are
clades of Tn. Replace the MRCA of Ai by i and remove Ai. We then obtain the tree Tk
with the leaf set {1, 2, k}.

Proof. We prove the result by induction on k. For k = 2, Lemma 12 gives p(a1, a2;T2) =

p̂n(a1, a2) =
2

n− 1

(
n

a

)−1

, where n = a1 + a2, which agrees with the expression given in

part (i) with k = 2.

Now suppose that part (i) holds whenever k is less or equal to m ≥ 2. We will show

that it also holds when k = m+1. Suppose that we have a collection C = {A1, . . . , Am+1}
that partitions X and we also have a rooted binary phylogenetic tree Tm+1 on the leaf set

{1, . . . ,m+1}. Tm+1 then has a cherry (two leaves adjacent to the same vertex). Without

loss of generality (by re-ordering the sets if necessary), we may suppose that these two

leaves are m and m + 1. Consider the collection of m sets obtained from C by replacing

Am and Am+1 by their union, and let T ′ be the tree obtained from Tm+1 by deleting the

leaves m and m+1, along with their incident edges, and labelling the exposed vertex with

m. Notice that T ′ is a rooted binary phylogenetic tree that has the leaf set {1, . . . ,m}. By

the EP property and the GE property (via SC) properties we have, for a′m := am + am+1,

the following identity:

p(a1, . . . , am+1;Tm+1) = p(a1, . . . , a
′
m;T ′) · p̂a′m(am, am+1),

where p̂a′m(am, am+1) is the probability that a Yule tree on the leaf set Am∪Am+1 has Am

and Am+1 as sister (and thus maximal) clades. Applying the induction hypothesis for the

first term on the right-hand side of this equation, namely p(a1, . . . , a
′
m;T ′), then applying

Lemma 12 to the second term and collecting terms, leads to the expression in Part (i) for

k = m+ 1 and thereby justifies the induction step.

Part (ii) follows by observing that each tree T that has A1, . . . , Ak as clades has one

(and only one) associated tree Tk, and so these trees provide a partition of the event for

which the probability is given by p(a1, . . . , ak).
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As an illustration of Theorem 6, we have the following result for k = 3:

p(a1, a2, a3) =
4a1!a2!a3!

n!(n− 1)

[
3∑
i=1

1

n− ai − 1

]
,

where n = a1 +a2 +a3. This result is consistent with Brown (1994) Equation (7); similary,

we can show Equation (9) (Brown, 1994) for k = 4.

We note that, as well as being a generalisation of Lemma 12 to k > 2, Theorem 6(i)

also generalises the result of Equation (4.2), which computes the probability that a YHK

tree T has a given tree topology Tk. By setting a1 = a2 = · · · = ak = 1 in Theorem 6(i),

we have:
2n−1

k!

∏
v∈I(Tk)

(
1

nv − 1

)
,

where nv is the number of leaves of Tk below v (see Brown (1994) or Semple and Steel

(2003)).

4.3.5 Computing the probability of k clades recursively

Note that when using Equations (4.20) and (4.21) to compute the probability of k clades,

one needs to enumerate all the tree topologies for rooted binary trees with the leaf set

{1, 2, . . . , k}, which the results may seem messy, and this is also agreed by Brown (1994).

Rearraging Equation (4.21), we have:

p(a1, . . . , ak) =
2k−1

∏k
i=1 ai!

n!
gk(a1, a2, . . . , ak),

where gk(a1, a2, . . . , ak) =
∑

Tk∈RB(k)

∏
v∈I(Tk)

(
1∑k

i=1 aiIv(Ai)− 1

)
.

In this section, we will introduce a method to compute gk(a1, a2, . . . , ak) recursively.

We consider all the binary rooted trees with k leaves. The root of a tree Tk separates the

leaf set into two sets. First, we enumerate all possibe bipartitions of k leaves. Thus, all

possibilities for the maximal clades are consided. To do so, we first build two matrices P

and Pc, in which the pair in the jth rows are the bipartitions (non-empty) of an array of

ones with length k. The element Pji of the matrix P and the element Pc
ji of the matrix

Pc are defined in Algorithm 4.1.

Moreover, each interior node of Tk divides the subset of leaves, into another two sets.

Again, all possible bipartitions are consided, which enables us to apply Algorithm 4.1 at

each interior node.

Let a denote the set of clade sizes, i.e. a = {a1, a2, . . . , ak}, so that |a| = k. We denote

the jth pair of bipartitions (non-empty) of a as aj and acj , where aj = {ai : for all i ∈
{1, . . . , k} such that Pji = 1} and acj = {ai : for all i ∈ {1, . . . , k} such that Pc

ji = 1}.
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Algorithm 4.1 Recursive algorithm for constructing bipartition matrcies P and Pc.

1: for j in (1 to 2k−1 − 1) do
2: Convert j to its binary form, then

j =

k∑
i=1

Pji × 2i−1, and

2k−1 − j =
k∑
i=1

Pc
ji × 2i−1.

3: end for

Thus, we compute gk(a1, a2, . . . , ak) using the function f(a), which is defined as:

f(a) =


1, if k = 1,

m(a)
∑
j

f(aj)× f(acj), otherwise,

where m(a) =
1∑k

i=1 aj − 1
.

For example, for a = {a1, a2, a3, a4}, k = 4, we have:

P =



0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1


and Pc =



1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0


.

If j = 3, then a3 = (a3, a4) and ac3 = (a1, a2).

4.4 Clan probabilities

If we suppress the root ρ of a rooted binary X-tree T (see Figure 4.5a for example), we

obtain an unrooted binary X-tree, which is denoted as T−ρ (as shown in Figure 4.5b).

For an unrooted binary X-tree Y , following Wilkinson et al. (2007) and Lapointe et al.

(2010), we say that a subset A of X is a clan of Y if A|X − A is a split of Y . Note that

any clade of the rooted tree T becomes a clan of T−ρ. However, this latter tree also has

additional clans that do not correspond to clades of T . The precise relationship is given

as follows:

Lemma 14. Given a rooted binary X-tree, T , a set A is a clan of T−ρ if and only if

either A is a clade of T or X −A is a clade of T .

Now suppose the rooted phylogenetic tree T is generated under the YHK process.
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1 2 3 654

(a) T

1

2
3 4

5

6

(b) T−ρ

Figure 4.5: An example of a clan. {1, 2, 3, 4} is not a clade of rooted tree T . {1, 2, 3, 4} is
a clan of unrooted tree T−ρ.

We then obtain an induced probability for the unrooted tree T−ρ. Note that the same

unrooted tree can arise from different rootings. This probability distribution on unrooted

phylogenetic trees can also be described directly as a Yule-type process on unrooted trees

in which, at each stage, a leaf is selected uniformly at random and a new leaf (with a

random label) is attached to its incident edge (see Steel and Penny (1993)).

For a strict non-empty subset A of Xn, let qn(A) be the probability that A is a clan

of an unrooted YHK tree on the leaf set Xn. By the EP property, this depends only on

a = |A| and n so we will also write this probability as qn(a).

Lemma 15.

qn(a) = 2n

[
1

a(a+ 1)
+

1

b(b+ 1)
− 1

(n− 1)n

](
n

a

)−1

,

where a = |A|, b = n− a.

Proof. By Lemma 14, we have:

qn(A) = pn(A) + pn(X −A)− pn(A,X −A).

Applying Lemmas 11 and 12, and noting that pn(A,X − A) = p̂n(A,X − A), we obtain

the given equation.

Now consider two disjoint subsets A and B of X, and let qn(A,B) be the probability

that A and B are both clans of an unrooted YHK tree on the leaf set Xn. By the EP

property, this probability depends only on a = |A|, b = |B| and n, and so we will denote

it as qn(a, b).

Theorem 7. (i) If a+ b = n, then:

qn(a, b) = qa+b(A) =
2a!b!

(a+ b− 1)!

[
1

a(a+ 1)
+

1

b(b+ 1)
− 1

(a+ b)(a+ b− 1)

]
.
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ρ1 ρ2
A B

Figure 4.6: An illustration that A and B are clans of T−ρ. If the root of T is at position
ρ1, the clan probability follows by the clade probability that the sets A and B are maximal
clades. If the root of T is at position ρ2, then the probability that A and B are clans is
equal to the probability that A and X −B are clades of T , but B is not a clade of T .

(ii) If a+ b < n then:

qn(a, b) = rn(a, b)+Rn(a, n−b)+Rn(b, n−a)−p̂n(b, n−b)pn−b(a)−p̂n(a, n−a)pn−a(b),

where the first three quantities are given in Theorem 5 (Cases 2, 3 and 5), while the

last two terms are given by Lemmas 11 and 12.

Proof. Part (i) follows from Lemma 15, noting that n = a+ b.

For part (ii), Lemma 14 implies that A and B are clans of T−ρ precisely if one of the

following three events occur:

E1: A and B are clades of T ;

E2: A and X −B are clades of T , but B is not a clade of T ;

E3: B and X −A are clades of T , but A is not a clade of T .

Note that X − A and X − B cannot both be clades of T by the compatibility condition

(2.2), since (X − A) ∩ (X − B) 6= ∅ by the assumption that a + b < n, and since X − A
neither contains nor is contained in X −B.

Moreover, the three events E1, E2, E3 are mutually exclusive by virtue of the assumption

that A,B are disjoint and their union is a strict subset of X. Consider an unrooted tree

Y and the clans A and B of Y shown in Figure 4.6. The events E1, E2 and E3 can be

generalised into two cases: the root of T is inside one of the clans, or the root of T is

outside the clans A and B.

Suppose that the root of T is outside A and B. The probability of the event E1 is

rn(a, b). Otherwise, if the root of T is in B, then we have the event E2, which has the

probability Rn(a, n − b) − p̂n(b, n − b)pn−b(a), since the first term is the probability that

A and X − B are clades of T , and p̂n(b, n − b)pn−b(a) is the probability that A,X − B
and B are clades of T . Similarly, Rn(b, n − a) − p̂n(a, n − a)pn−a(b) is the probability of

the event E3. The result now follows by adding the probabilities of these three mutually

exclusive events.
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4.4.1 Extensions of the clan condition (I)

For a pair A,B of disjoint subsets of X, a weaker condition than requiring that A and

B are both clans of T −ρ is simply to require that at least one edge of this tree separates

A from B. Let Qn(A,B) be the probability of this event for an unrooted YHK tree on

the leaf set Xn. Then we have the following result, which follows from the SC property

applied in the unrooted setting:

Qn(A,B) = qa+b(A), (4.22)

where qa+b(A) is given by Theorem 7(i).

4.4.2 Extensions of the clan condition (II)

We now describe a second extension. Suppose that A1, A2, . . . , Ak partition X, and, as

usual, let ai = |Ai|. For an unrooted YHK tree T , let q(a1, . . . , ak) be the probability that

A1, A2, . . . , Ak are clans of T .

Theorem 8. Let n = a1 + a2 + a3. Then:

q(a1, a2, a3) =
4a1!a2!a3!

(n− 1)!

[
3∑
i=1

1

(n− ai)((n− ai)2 − 1)

]
. (4.23)

Proof. The event that A1, A2 and A3 (which partition X) are clans of T −ρ is the union

of three disjoint events Ejk over the three choices of {j, k} ∈ {{1, 2}, {1, 3}, {2, 3}}, where

Ejk is the event that the union of two of the sets – say Aj and Ak – must be a clade of T ,

and that this clade has the maximal clades Aj and Ak. The EP and GE conditions then

give:

q(a1, a2, a3) = P(E12) + P(E13) + P(E23) =
3∑
i=1

pn(n− ai) · p̂aj+ak(aj , ak),

where {ai, aj , ak} = {1, 2, 3} in the term on the right-hand side of this last equation. By

Lemmas 11 and 12, this gives:

q(a1, a2, a3) =

3∑
i=1

2n

(n− ai)(n− ai + 1)

(n− ai)!ai!
n!

· 2

(n− ai − 1)

aj !ak!

(n− ai)!
,

which simplifies to the expression given in Equation (4.23).

4.5 Further discussion

Most of the results in this chapter rely heavily on the application of the EP and the GE

properties of the YHK model. Besides the YHK model, the PDA and comb models also
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employ these properties. Aldous (1995) has suggested that these three models are the only

models which produces a probability distribution on rooted binary trees that satisfy both

the EP and GE properties. Under the PDA model, all tree topologies on the same taxon

set are equally likely. In the following chapter, we use similar approaches of to those used

to derive Lemmas 11 and 12 to show corresponding results under the PDA model. Under

the comb model (McKenzie, 2000), this only produces the caterpillar trees, which is not a

realistic model in practice, and we do not pursue it further.
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Chapter 5

Clade and clan probabilities in the

PDA model

Abstract

The Yule model and the PDA model are two neutral evolutionary models that are often

used in phylogenetic studies. These models provide different prior probability distributions

on tree topologies for Bayesian analysis of tree reconstruction. Many bio-mathematical

articles have investigated the properties of the Yule model and the PDA model, giving

comparisons between them. In this chapter, we extend the clade probability results under

the Yule model, and use an approach similar to the ones introduced by Zhu et al. (2011a)

to derive formulas for computing clade probabilities under the PDA model.

5.1 Introduction

The Yule model is the most famous and widely used evolutionary model for phylogenetic

studies (Blum et al., 2006; Pinelis, 2003). The Yule model is also known as the equal-rates

Markov model (Pinelis, 2003), which assumes that the speciation process develops with a

constant pure-birth rate. Under the Markov process, the probability of a given topology

differs among trees.

The Kingman coalescent model (Kingman, 1982) is often used in population genetics

studies, and uses a tree to trace the ancestral histories of individuals backwards in time.

Interestingly, the Yule process and the Kingman process produce the same probability

distributions on tree topologies, as well as the probabilities that sub-groups of the leaf set

form monophyletic groups, which are also known as clades. Zhu et al. (2011a) generalized

the two processes, calling it the YHK process, in which branch lengths are ignored.

In comparison, biologists consider a null model, namely the PDA model, which assumes

that all leaf labelled tree topologies on the same leaf set are equally likely. Therefore, the

PDA model is also called the uniform model and is considered to be the simplest stochastic

model for phylogenetic studies (Aldous, 2001). It is often used in Bayesian analysis (Li
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et al., 2000) and programs such as MrBayes (Huelsenbeck and Ronquist, 2001) for prior

probabilities on tree topologies.

It appears natural to consider both the Yule and the PDA models when conducting

phylogenetic studies. Numerous researchers have investigated and compared the Yule and

PDA processes in various scenarios. Both models can provide prior probabilities on tree

topologies when Bayesian approaches are taken (Li et al., 2000; Rannala and Yang, 1996).

McKenzie and Steel (2000) show the asymptotic probability distributions of cherries in

the phylogenetic trees; Steel (2012) discusses the root location in a random Yule tree or

PDA tree; and Blum et al. (2006) derives formule for the mean, variance and covariance of

the Sackin (Sackin, 1972) and Colless (Colless, 1982) indices in the limit for both the Yule

and PDA trees. These indices are implemented in the R package apTreeshape (Bortolussi

et al., 2006) for measuring the balance of phylogenetic trees.

To our knowledge, studies of clade probabilities under the PDA model are still insuffi-

cient. Many questions remain unanswered, such as how to calculate the probability that a

subset of leaves forms a clade, how to calculate the expected value of the number of clades

with a given size, and so on. We attempt to answer these questions in this chapter.

At the end of the previous chapter, we discussed that, besides the YHK model, the

PDA model also satisfies the EP property , the GE property and the SC property (Aldous,

1995). This enables us to produce most of the results for clade and clan probabilities

demonstrated by Zhu et al. (2011a) and in Chapter 4, under the PDA model instead of

the YHK model.

5.2 Notation

In this chapter, we continue using most of the notation from the previous chapter. We

use Xn or X to denote a set of taxa of size n. TX or T is used to denote a labelled and

rooted binary tree on X, where X is the leaf set of T . Y is used to denote a labelled and

unrooted binary tree on X.

The PDA model assumes that all the tree topologies on the same leaf set are equally

likely. Therefore, the PDA model is also known as the uniform model. Recall that the

number of rooted binary trees with n leaves, according to Equation (2.1) is:

ϕ(n) =
(2n− 2)!

2n−1(n− 1)!
. (5.1)

We use PPDA(E) to denote the probability of the event E under the PDA process. Thus,

the probability of a rooted X-tree T is:

PPDA(T ) =
1

ϕ(n)
. (5.2)

Since a rooted binary tree of size n is effectively an unrooted binary tree of size n+ 1

by removing one pendant edge, under the PDA model, the probability of an unrooted
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X-tree Y is 1/ϕ(n− 1).

We use the same definitions for a clade, a proper clade and a maximal clade as in the

previous chapter. Recall that a clade of an X-tree T is a subset of X that corresponds

to the set of leaves that are descended from an internal vertex. We use A, B and Ai to

denote clades, and a, b and ai to denote the cardinality of clades A, B and Ai respectively.

5.2.1 Properties of the PDA model

For an X-tree T , recall that TX|X′ is the restricted subtree of T for X ′ ⊆ X. Let TX or

T denote a randomly generated PDA tree on X. Recall the two properties of the YHK

process: the EP and the GE properties, which the PDA process also satisfies:

EP: If T ′ is obtained from T by permuting its leaves, then

PPDA(T = T ′) = PPDA(T = T ).

GE: Let C(T ) denote the collection of clades of a tree T . For any proper (non-empty)

subset A of X, and any rooted binary phylogenetic tree T with the leaf set X −A:

PPDA(TX|(X−A) = T |A ∈ C(T )) = PPDA(T(X−A) = T ).

We apply the EP and the GE properties to show most of the results in this chapter. For

completeness of the PDA model properties, we list the SC property as follows:

For any rooted binary tree T with leaf set A ⊆ X, we have

PPDA(TX|A = T ) = PPDA(TA = T ).

5.3 Clade probabilities

We first show a property of clade probabilities that is true for any clade under any prob-

ability measure on rooted binary trees. Let T (n) denote the set of rooted and labelled

binary trees on X, where |X| = n. For any rooted binary tree T ∈ T (n), and any set

A ⊆ X, we define the indicator function of a clade as:

IT (A) =

1 if A ∈ C(T ),

0 otherwise.
(5.3)

By this definition, the probability that A is a clade of a randomly generated tree T is the

expected value of IT (A):

P(A) = E[IT (A)] =
∑

T∈T (n)

IT (A)P(T = T ), (5.4)
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where P(T = T ) denotes the probability that a randomly generated tree T has the topology

T ∈ T (n).

Proposition 2. For any probability measure P on T (n), we have:∑
A∈C(T )

P(A) = 2n− 1. (5.5)

Proof. By Equation (5.4), we have:∑
A∈C(T )

P(A) =
∑

A∈C(T )

∑
T∈T (n)

IT (A)P(T = T ) =
∑

T∈T (n)

P(T = T )
∑

A∈C(T )

IT (A).

Note that
∑
A⊆X

IT (A) counts the number of clades of T , including all trivial clades. Each

clade of T is induced by a node of T . Since T is binary and rooted, we have∑
A∈C(T )

IT (A) = 2n− 1.

It is clear that
∑

T∈T (n)

P(T = T ) = 1. The proposition then follows.

Let Xn(a) be the number of proper clades of size a in a randomly generated tree T on

X and |X| = n. We have:

Xn(a) =
∑

A∈C(T )

|A|=a

IT (A). (5.6)

Proposition 3. Let a be a positive integer no greater than n. If the probability distribution

P(T ) on T (n) has the EP property, then:

E[Xn(a)] =

(
n

a

)
P(A), (5.7)

where P(A) is the probability that the subset A of X is a clade.

Proof. From Equations (5.4) and (5.6), we have:

E[Xn(a)] = E

 ∑
A∈C(T )

|A|=a

IT (A)

 =
∑

A∈C(T )

|A|=a

E[IT (A)] =
∑

A∈C(T )

|A|=a

P(A),

where the sums run over all a-subsets of X. As noted previously, if P(T ) has the EP

property, then P(A) is the same for every subset A of X that has a elements. Furthermore,

there are exactly

(
n

a

)
subsets of X of size a. The lemma now follows.

Note that according to Proposition 3, we can show that Lemma 10 follows from Lemma

11.
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5.3.1 Clade probability under the PDA model (I)

In this section, we derive the probability that a set A is a clade of a randomly generated

PDA tree. In order to distinguish this from the YHK model, we use p′n(A) to denote this

probability. Since the PDA trees have the EP property, this suggests that the probabilty

that A is a clade depends only on the size of a. Therefore, the probabilty that A is a clade

is a function of a is also written as p′n(a).

Similarly, let p̂′n(A,X − A) denote the probability that the mutually exclusive sets A

and X − A are the maximal clades of a PDA tree. Again, according to the EP property,

this probability only depends on the size of A. Thus it can be expressed as p̂′n(a, n− a).

Theorem 9. Under the PDA model, for a positive integer a ≤ n− 1 we have:

(i) p′n(a) =
ϕ(a)ϕ(n− a+ 1)

ϕ(n)
=

(
n− 1

a− 1

)(
2n− 2

2a− 2

)−1

.

(ii) p̂′n(a, n− a) =
ϕ(a)ϕ(n− a)

ϕ(n)
=

1

(2n− 2a− 1)

(
n− 1

a− 1

)(
2n− 2

2a− 2

)−1

.

Proof. To show Theorem 9(i), it is sufficient to show that there are ϕ(a)ϕ(n − a + 1)

PDA trees in the set T (A) = {T : T ∈ T (n), such that IT (A) = 1}. Without loss

of generality, we can assume that X = {1, 2, · · · , n} and A = {n − a + 1, · · · , n}. Let

X ′ := (X − A) ∪ {n− a+ 1}. Then each tree in T (A) can be generated by the following

two steps: Generate a random PDA tree TX′ on X ′, of which there are ϕ(n−a+1) equally

likely trees (Equation (2.1)). Replace the leaf labelled n−a+1 by a random PDA tree TA
on A, of which there are ϕ(a) trees. In addition, a different choice of tree in the first step

or in the second step will result in a different tree in T (A). Since there are ϕ(n − a + 1)

possible choices in the first step and ϕ(a) choices in the second step, we can conclude that

the number of trees in T (A) is ϕ(a)ϕ(n−a+1). Since the probability of each PDA tree in

T (n) is 1/ϕ(n), by substituting Equation (5.1) for simplicity, Theorem 9(i) then follows.

Similarly, for Theorem 9(ii), let T (A∗) be the subset of trees in T (X) that contain

both A and X − A as clades. We now have T (A∗) = {T : T ∈ T (n), such that IT (A) =

1, and IT (X − A) = 1}. A tree in T (A∗) is uniquely determined by a random PDA tree

TA on A, and a random PDA tree TX−A on X −A, with these as the two maximal clades.

This implies that the number of trees in T (A∗) is ϕ(a)ϕ(n− a). Hence we have:

p̂′n(a, n− a) =
ϕ(a)ϕ(n− a)

ϕ(n)
=

1

(2n− 2a− 1)
p′n(a)

=
1

(2n− 2a− 1)

(
n− 1

a− 1

)(
2n− 2

2a− 2

)−1

.

We now show that both p′n(a) and p̂′n(a, n− a) are unimodal.

Corollary 4. For 1 ≤ a ≤ n− 1, we have:

(i) p′n(a+ 1) ≥ p′n(a) when a ≥ n/2, and p′n(a+ 1) ≤ p′n(a) when a ≤ n/2.
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(ii) p̂′n(a + 1, n− a− 1) ≥ p̂′n(a, n− a) when a ≥ (n− 1)/2, and p̂′n(a + 1, n− a− 1) ≥
p̂′n(a, n− a) when a ≤ (n− 1)/2.

Proof. For a ≤ n− 1, we have:

p′n(a+ 1)

p′n(a)
=

(
n− 1

a

)(
2n− 2

2a

)−1(n− 1

a− 1

)−1(2n− 2

2a− 2

)
=

2a− 1

2n− 2a− 1
, (5.8)

which is greater than or equal to 1 when 2a − 1 ≥ 2n − 2a − 1 or, equivalently, when

a ≥ n/2. On the contrary, Equation (5.8) is less than 1 when a < n/2. Hence, Corollary

4(i) holds.

Similarly, to show Corollary 4(ii), we have:

p̂′n(a+ 1, n− a− 1)

p̂′n(a, n− a)
=

2n− 2a− 1

2n− 2a− 3

p′n(a+ 1)

p′n(a)
=

2a− 1

2n− 2a− 3
, (5.9)

which is greater than or equal to 1 when 2a − 1 ≥ 2n − 2a − 3 or, equivalently, when

a ≥ (n− 1)/2. On the contrary, Equation (5.9) is less than 1 when a < (n− 1)/2.

Remark: Note that the clade probabilities under the YHK process also show similar

results to Corollary 4:

� Corollary 1 suggests that the probability that a set A, where |A| = a, is a clade of

a random YHK tree takes a mimimum at a =
n

2
when n is large.

� Corollary 2 suggests that the probability that a pair of maximal clades takes a

minimum at a = dn/2e, which is the same as Corollary 4(ii).

Note that combining the results of Theorem 9(i) and Proposition 3 yields the following

corollary.

Corollary 5. Let Xn(a) be the number of proper clades of size a in a randomly generated

PDA tree, for 1 ≤ a ≤ n− 1. Then the expected value of Xn(a) is:

E[Xn(a)] =

(
n

a

)(
n− 1

a− 1

)(
2n− 2

2a− 2

)−1

. (5.10)

Recall that under the YHK model, E[Xn(a)] is a decreasing function of a. However,

under the PDA model, the above result implies that E[Xn(a)] is decreasing for a <
3n− 1

4

and increasing for a ≥ 3n− 1

4
. To show this, one can compare 1 with the ratio below:

E[Xn(a+ 1)]

E[Xn(a)]
=

(
n
a+1

)(
n
a+1

) p′n(a+ 1)

p′n(a)
.

According to Equation (5.8), we have:

E[Xn(a+ 1)]

E[Xn(a)]
=

(n− a)

(a+ 1)

(2a− 1)

(2n− 2a− 1)
,

59



5.3. CLADE PROBABILITIES

which is greater than or equal to 1 when (n − a)(2a − 1) ≥ (a + 1)(2n − 2a − 1) or,

equivalently, when a ≥ 3n− 1

4
.

5.3.2 A comparison between YHK and PDA

Corollary 6. For n > 3, there exists a number κ(n) in (2, n− 1) such that pn(a) > p′n(a)

for 2 ≤ a < κ(n), and pn(a) < p′n(a) for κ(n) < a ≤ n− 1.

Proof. Let gn(a) =
pn(a)

p′n(a)
. From Equations (4.14) and (5.8), we have:

gn(a+ 1)

gn(a)
=

a(a+ 1)(2n− 2a− 1)

(a+ 2)(2a− 1)(n− a)
,

which is less than 1 if a(a+ 1)(2n− 2a− 1) < (a+ 2)(2a− 1)(n−a) or, equivalently, when

a >
2n

n+ 3
. Hence gn(a) > gn(a+ 1) for 2n/(n+ 3) < a ≤ n− 2. Since 2n/(n+ 3) < 2, for

a ≥ 2, we have gn(a) > gn(a+ 1).

It is easy to see that, for n ≥ 3:

gn(2) =
2(2n− 3)

3(n− 1)
≥ 1

and:

gn(n− 1) =
2(2n− 3)

n(n− 1)
≤ 1.

This and the fact that gn(a) is strictly decreasing on [2, n− 1] implies the existence of the

number κ(n) in the theorem.

Figure 5.1: The ratio between the clade probabilities in a 25-taxon YHK tree and a 25-
taxon PDA tree. It appears that the clade probability under the YHK model is greater
than the PDA model when the clade sizes are between two and six for trees with 25 taxa.
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Corollary 7. For n > 3, there exists a number λ(n) in (1,
n+ 1

2
) such that pn(a, n−a) <

p′n(a, n− a) for 1 ≤ a ≤ λ(n), and pn(a, n− a) > p′n(a, n− a) for λ(n) < a ≤ (n+ 1)/2.

Proof. Let hn(a) =
p̂n(a, n− a)

p̂′n(a, n− a)
. From Equations (4.15) and (5.9), we have:

hn(a+ 1)

hn(a)
=

(a+ 1)(2n− 2a− 3)

(2a− 1)(n− a)
,

which is greater than or equal to 1 if (a+1)(2n−2a−3)−(n−a)(2a−1) = 3(n−2a−1) ≥ 0,

which holds for 1 ≤ a ≤ (n − 1)/2. Notie that both p̂n(a, n − a) and p̂′n(a, n − a) are

symmetrical and unimodal at a =
n− 1

2
. Thus,

hn(a+ 1)

hn(a)
≤ 1 if (n− 1)/2 ≤ a ≤ (n− 1).

Since hn(1) =
2(2n− 3)

n(n− 1)
≤ 1 and hn((n− 1)/2) ≥ 1, Corollary 7 follows.

Figure 5.2: The ratio between the maximal clade probabilities in a 25-taxon YHK tree
and a 25-taxon PDA tree. It appears that when one of the maximal clades has a size of
between 3 and 22, the maximal clade probability under the YHK model is greater than
the PDA model for trees with 25 taxa.

5.3.3 Clade probability under the PDA model (II)

Theorem 10. Let A1, . . . , Ak be k disjoint (non-empty) subsets of X, with |Ai| = ai and

m =

k∑
i=1

ai. We use p′(m,n)(A1, . . . , Ak) to denote the probability that a random PDA tree

TX has A1, . . . , Ak as clades. Since the EP property holds for random PDA trees, this

probability only depends on the clade sizes. Therefore, it can be expressed as:

p′(m,n)(a1, . . . , ak) =
ϕ(n−m+ k)

∏k
i=1 ϕ(ai)

ϕ(n)
. (5.11)
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Proof. Since each PDA tree, TX on X has a probability of 1/ϕ(n), it remains to compute

the number of trees that have A1, . . . , Ak as clades. Such a tree can be constructed in two

steps:

1. Build a tree on

(
X \

k⋃
i=1

Ai

)
∪ {x1, . . . , xk}, where x1, . . . , xk are leaves not in X

and serve as “placeholders” in the second step.

2. Replace each xi with a tree in TAi .

There are ϕ(n −m + k) different choices of tree in the first step, and there are
k∏
i=1

ϕ(ai)

different ways to replace x1, . . . , xk with trees from TA1 , . . . , TAk . The claim then follows.

Remark. Theorem 10 is more powerful than Theorem 6 for the YHK model. In the

above theorem, A1, . . . , Ak do not necessarily form a partition of X.

Corollary 8. If A1, . . . , Ak form a partition of X then the result of Theorem 10 leads to

the following:

p′n(a1, . . . , ak) =
ϕ(k)

∏k
i=1 ϕ(ai)

ϕ(n)
. (5.12)

Note that for k = 2, Corollary 8 generalises Theorem 9(ii).

5.3.4 Clade probability under the PDA model (III)

Theorem 11. Let A and B be two subsets of X with a = |A| and b = |B|. Then the

probability that A and B are clades of a random PDA tree is:

p′n(A,B) =



p′n(a) if A = B [Case 1] ;

R′n(a, b), if A ( B [Case 2] ;

R′n(b, a), if B ( A [Case 3] ;

r′n(a, b), if A ∩B = ∅, A ∪B ⊆ Xn [Case 4] ;

0, otherwise [Case 5] ;

where:

p′n(a) is given by Theorem 9 (i),

R′n(a, b) =
ϕ(a)ϕ(n− b+ 1)ϕ(b− a+ 1)

ϕ(n)
,

r′n(a, b) =
ϕ(a)ϕ(b)ϕ(n− a− b+ 2)

ϕ(n)
.

Case 1 is given by Theorem 9 (i). To show Cases 2 and 3, one can apply Theorem 9

(i) twice to obtain the probability that the subset A of B is a clade of TB, given that a

subset B of X is a clade of TX , and vice versa. Case 4 follows from Theorem 10 for k = 2.
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5.3.5 Correlation results under the PDA model (I)

The following technical lemma is useful in our study.

Lemma 16. Let m,n,m′ and n′ be positive numbers with (m−m′)(n−n′) ≥ 0. Then we

have:

ϕ(m′ + n′)ϕ(m+ n) ≥ ϕ(n′ +m)ϕ(m′ + n). (5.13)

In particular, if a ≤ b ≤ b′ ≤ a′ are positive numbers with a + a′ = b + b′, we then have

ϕ(a)ϕ(a′) ≥ ϕ(b)ϕ(b′).

Proof. To establish the first claim, we may assume that m ≥ m′ and n ≥ n′, as the proof

of the other case, m ≤ m′ and n ≤ n′, is similar. Noting that m ≥ m′ and n ≥ n′, we have

(2m+2n−3)(2m+2n−5) · · · (2m+2n′−1) ≥ (2m+2n′−3)(2m+2n′−5) · · · (2m′+2n′−1),

because each side of this equation has n− n′ factors, and, clearly, each factor on the left-

hand side is greater than or equal to the corresponding factor on the right-hand side. This

leads to:
ϕ(m+ n)

ϕ(n′ +m)
≥ ϕ(m′ + n)

ϕ(m′ + n′)
,

from which Equation (5.13) follows.

The second assertion follows from the first by considering m′ = n′ =
a

2
, m = b − a

2
and n = b′ − a

2
.

Let A and B be two compatible subsets of X, i.e. A,B ( X, with |A|, |B| ≥ 2.

Theorem 12. The events ‘A is a clade’ and ‘B is a clade’ are positively correlated under

the PDA process.

Proof. Recalling Corollary 3, let XA (respectively XB) be the Bernoulli (0,1) random

variable that take the value 1 if A (respectively B) is a clade of the X-tree, and let

ρ′n(A,B) denote the correlation coefficient between these two random variables, which is

given by:

ρ′n(A,B) =
p′n(A,B)− p′n(A)p′n(B)√

p′n(A)(1− p′n(A))p′n(B)(1− p′n(B))
.

To show that A and B are positively correlated is equivalent to showing that:

p′n(A,B) ≥ p′n(A)p′n(B). (5.14)

Consider the five cases listed in Theorem 11. For Case 1, it is easy to show that clades

A and B are positively correlated, as p′n(A,B) = p′n(A) = p′n(B), and 0 < p′n(A) ≤ 1.

Therefore, Equation (5.14) holds.

For Case 2 to 4, it suffices to show that:

ϕ(a)ϕ(b− a+ 1)

ϕ(b)

ϕ(b)ϕ(n− b+ 1)

ϕ(n)
≥ ϕ(b)ϕ(n− b+ 1)

ϕ(n)

ϕ(a)ϕ(n− a+ 1)

ϕ(n)
for Cases 2 and 3;
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and:

ϕ(a)ϕ(b)ϕ(n− a− b+ 2)

ϕ(n)
≥ ϕ(b)ϕ(n− b+ 1)

ϕ(n)

ϕ(a)ϕ(n− a+ 1)

ϕ(n)
for Case 4.

These are equivalent to ϕ(n)ϕ(b − a + 1) ≥ ϕ(b)ϕ(n − a + 1) for Case 2 and 3, and

ϕ(n−a− b+ 2) ≥ ϕ(n− b+ 1)ϕ(n−a+ 1) for Case 4, which certainly hold by Lemma 16.

Figure 5.3: Correlation of compatible clades A and B ρ′n(A,B) for n = 25, in Cases 2 and
4 under the PDA model, with a = |A| and b = |B|.

5.4 Extension to unrooted trees

If we suppress the root of a rooted binary phylogenetic tree T , we obtain an unrooted

phylogenetic tree, which we will denote as T−ρ. Let Y (n) be the set of unrooted trees

with the leaf set X, |X| = n. Then the distribution on T (n) induces the distribution on

Y (n) as:

P(Y = Y ) :=
∑

T∈T (n)

s.t.T−ρ=Y

P(T = T ).

In this section, we are interested in the distribution of the clade probabilities for an

unrooted tree that has been induced by the rooted tree under the PDA model. Note that

for a finite set with cardinality n, there are exactly ϕ(n− 1) unrooted trees in Y (n).

We say that a subset A of X is a clan of an unrooted tree Y ∈ Y (n) if and only if

A|(X −A) is a split of Y , which means that removing one (necessarily unique) edge in Y

decomposes Y into two rooted subtrees on A and X −A.

5.4.1 Clan probability under the PDA model (I)

Given a subset A of X, let q′n(A) be the probability that A is a clan of a random unrooted

PDA tree. By the EP property, this depends only on a = |A| and n = |X|, so we will
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write it as q′n(a).

Recall Lemma 14:

Given a rooted binary X-tree, T , a set A is a clan of T−ρ if and only if either

A is a clade of T or X −A is a clade of T .

This suggests the following lemma.

Lemma 17. For a proper subset A of X, we have:

q′n(A) = p′n(A) + p′n(X −A)− p̂′n(A,X −A).

As a corollary, we have the following results on p′n(a) and q′n(a).

Theorem 13. For 1 ≤ a < n, we have:

q′n(a) = p′n−1(a). (5.15)

Proof. Since we have:

q′n(a) =
ϕ(a)ϕ(n− a+ 1) + ϕ(n− a)ϕ(a+ 1)− ϕ(a)ϕ(n− a)

ϕ(n)

=
ϕ(a)ϕ(n− a) [2(n− a+ 1)− 3 + 2(a+ 1)− 3− 1]

ϕ(n)
,

we have q′n(a) =
ϕ(a)ϕ(n− a)

ϕ(n− 1)
= p′n−1(a) as required.

Thus by combining the results of Theorem 13 and Corollary 4, one can show that that

q′n(a) is ‘unimodal’

5.4.2 Clan probability under the PDA model (II)

Theorem 14. Let A1, . . . , Ak be k disjoint (non-empty) subsets of X, with ai = |Ai|,

|X| = n and m =
k∑
i=1

ai. Then the probability that a random unrooted PDA tree Y has

A1, . . . , Ak as clans is q′(m,n)(A1, . . . , Ak). By the EP property, we have:

q′(m,n)(a1, . . . , ak) =
ϕ(n−m+ k − 1)

∏k
i=1 ϕ(ai)

ϕ(n− 1)
.

Proof. Since each tree in Y has a probability of 1/ϕ(n − 1), it remains to compute the

number of trees that have A1, . . . , Ak as clans. Such a tree can be constructed in two

steps:

1. Build an unrooted tree on

(
X \

k⋃
i=1

Ai

)
∪ {x1, . . . , xk}, where x1, . . . , xk are not

leaves in X but serve as “placeholders” in the second step.

65



5.4. EXTENSION TO UNROOTED TREES

2. Replace each xi with a tree in TAi .

There are ϕ(n−m+k−1) different choices of tree in the first step, and there are

k∏
i=1

ϕ(ai)

different ways to replace x1, . . . , xk with trees in TA1 , . . . , TAk . The claim then follows.

Theorem 15. Let A and B be two compatible subsets of X. We use q′n(A,B) to denote

the probability that A and B are clans. From the EP property, we have:

q′n(A,B) =



p′n(a) if A = B [Case 1] ;

ϕ(b)ϕ(n− b)ϕ(a)ϕ(b− a)ϕ(n− b)
ϕ(n− 1)ϕ(b− 1)

, if A ( B [Case 2] ;

ϕ(a)ϕ(n− a)ϕ(b)ϕ(a− b)ϕ(n− a)

ϕ(n− 1)ϕ(a− 1)
, if B ( A [Case 3] ;

ϕ(a)ϕ(b)ϕ(n− a− b+ 1)

ϕ(n− 1)
, if A ∩B = ∅, A ∪B ⊆ Xn [Case 4] ;

0, otherwise [Case 5] ;

Cases 2 and 3 follow by applying Theorem 13 and then Theorem 9 (i) twice. The

second claim follows from Theorem 14.

5.4.3 Correlation results under the PDA model (II)

Let A and B be two compatible subsets of X, i.e. A,B ( X, with |A|, |B| ≥ 2.

Theorem 16. The events ‘A is a clan’ and ‘B is a clan’ are positively correlated under

the PDA process.

Proof. Similar to the proof of Theorem 12, which shows that two clans are positively

correlated, it is sufficient to show that: q′n(A,B) ≥ q′n(A)q′n(B). Recalling the first four

cases of Theorem 15, here, we discuss the cases where one set is contained in the other or

that the two sets are disjoint.

By symmetry, we can assume that A ⊆ B. To show that:

ϕ(b)ϕ(n− b)ϕ(a)ϕ(b− a)ϕ(n− b)
ϕ(n− 1)ϕ(b− 1)

≥ ϕ(b)ϕ(n− b)
ϕ(n− 1)

ϕ(a)ϕ(n− a)

ϕ(n− 1)
,

it is sufficient to show that ϕ(n− 1)ϕ(b− a) ≥ ϕ(b− 1)ϕ(n− a), which certainly holds by

Lemma 16.

If A ∩B = ∅, we show that:

ϕ(a)ϕ(b)ϕ(n− a− b+ 1)

ϕ(n− 1)
≥ ϕ(b)ϕ(n− b)

ϕ(n− 1)

ϕ(a)ϕ(n− a)

ϕ(n− 1)
,

which follows from Lemma 16.
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5.5 Further discussion

5.5.1 Size of a randomly selected internal node

One particular function in apTreeshape attracted our attention, namely cladesize, which

randomly samples one of the interior nodes of a Yule tree or a PDA tree, then returns

the number of descendants of the sampled interior node. Let K be a discrete random

variable denoting the size of a clade in a phylogenetic tree with n leaves. The manual

of apTreeshape (Bortolussi et al., 2009) suggest that according to the YHK model, the

probability that the number of descendants of an internal node of the tree equals a is:

PYHK(K = a) =
2n

(n− 1)a(a+ 1)
, (5.16)

for a = 2, 3, ..., n− 1, and PYHK(K = a) =
1

(n− 1)
for a = n. This can easily be shown by

using the result from Lemma 10. Since there are n − 1 interior nodes in a rooted binary

tree, a = n is equivalent to the trivial case of selecting the root, which has the probability

1/(n− 1). For a = 2, 3, ..., n− 1, let Xn(a) be the number of interior nodes for which the

number of descendants is a in an n-taxon tree. The expected value of Xn(a) under the

YHK model is given by Equation (4.11) as:

EYHK[Xn(a)] =
2n

a(a+ 1)
, 2 ≤ a ≤ n− 1,

which is also equal to (n− 1)×PYHK(K = a). We can now rearrange the equation below:

EYHK[Xn(a)] = (n− 1) · PYHK(K = a), (5.17)

Equation (5.16) then follows.

The manual of apTreeshape also suggests another formula that calculates the proba-

bility that the number of descendants of a random internal node of a PDA tree is equal

to a, when the number of leaves tends to infinity. Here, we show the exact probability for

any size of leaf set by using a similar approach to that used for deriving Equation (5.16):

by dividing Equation (5.10) by 1/(n − 1), we have the probability that the number of

descendants of a random internal node of a PDA tree is equal to a, because:

PPDA(K = a) =
1

(n− 1)

(
n

a

)(
n− 1

a− 1

)(
2n− 2

2a− 2

)−1

. (5.18)

5.5.2 Expected value of the Sackin index

The Sackin index (Sackin, 1972) is used for measuring the balance of a tree. It is defined

as the sum of the number of interior nodes (include the root node) di on the path of every

leaf node i to the root:

Sn =

n∑
i=1

di.
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For two binary trees with the same leaf set, the one which has the smaller Sackin index

is more balanced than the other. For example, for unlabelled four-taxon trees, there are

only two possible topologies: a completely imbalanced tree (Figure 5.4a) and a completely

balanced tree (Figure 5.4b). The Sackin indices of the completely imbalanced tree and

the completely balanced tree are 9 and 8 respectively.

(a) Four-taxon completely imbalanced
tree

(b) Four-taxon completely balanced tree

Figure 5.4: An imbalanced four-taxon tree and a balanced four-taxon tree.

Suppose that Ai is a clade of an X-tree T . Note that, the Sackin index can be also

defined as the sum of the non-trivial clade (non-leaf) sizes at all interior nodes of the tree:

Sn =
∑

1<|Ai|≤n

|Ai|, (5.19)

where Ai ∈ C(T ).

We now use this definition to show an alternative derivation for the expected Sackin

index under the YHK model (Blum et al., 2006; Kirkpatrick and Slatkin, 1993)

EYHK(Sn) = 2n
n∑
j=2

1

j
.

From Equation (5.19), we take the expected value of the Sackin index and then we can

obtain:

E(Sn) = E

 ∑
1<|Ai|≤n

|Ai|

 =
n−1∑
i=1

E(|Ai|) = (n− 1)E(|Ai|).

Let K be a discrete random variable denoting the size of a clade in a phylogenetic tree

with n leaves. We then have E(|Ai|) =
n∑
a=2

aP(K = a). Similar to Equation (5.17), we

have P(K = a) =
1

n− 1
E(Xn(a)). Therefore:

E(Sn) = (n− 1)

n∑
a=2

aP(K = a) = (n− 1)

n∑
a=2

a

n− 1
E(Xn(a)) =

n∑
a=2

a · E(Xn(a)). (5.20)

Note that for YHK trees, a · E(Xn(a)) = n if a = n. Therefore as required:
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EYHK(Sn) =
n−1∑
a=2

2n

a+ 1
+ n = 2n

n−1∑
a=1

1

a+ 1

= 2n

n∑
j=2

1

j
.

Similarly, by combining Equations (5.10) and (5.20), we show that the expected value

of the Sackin index under the PDA model is:

EPDA(Sn) =
n∑
a=2

a ·
(
n

a

)(
n− 1

a− 1

)(
2n− 2

2a− 2

)−1

.
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Chapter 6

Probabilities of gene trees of a

given species network

Abstract

This chapter introduces a novel method to calculate gene tree probabilities of a given

species network, which works by conditioning on coalescent events occurring below hy-

bridization nodes to remove hybridization events recursively from the network. This re-

sults in gene tree probabilities being linear combinations of the gene tree probabilities in

given species trees, weighted by the probabilities of events below hybridization nodes.

6.1 Introduction

We consider more generic species networks than those of Meng and Kubatko (2009),

Kubatko (2009) and Yu et al. (2011) (for example, see Figure 6.1), by allowing speciation

events to occur before or after hybridization events, and are flexible with the number of

hybridization events and the number of sampled lineages per species.

A B C D

a1 a2 b1 c1 c2 d1

Figure 6.1: Example of a binary gene tree with the topology (((a1,a2),c1),(b1,c2,d1))

in a network with the topology ((((B,C)s1)h1#H1,A)s2,(h1#H1,D)s3)r.

70



CHAPTER 6. PROBABILITIES OF GENE TREES OF A GIVEN SPECIES
NETWORK

Yu et al. (2011) computed the gene tree probabilities in a specific example: A pop-

ulation was separated into two groups in the past. Each of these subgroups was then

separated again, but two of these sub groups were merged instantly, and this was followed

again by a separation. This network allows speciation to occur after hybridization. Yu

et al. (2012) express a species network as its equivalent multi-labelled species tree, and the

gene tree probabilities are then computed using a modification of the method in Degnan

and Salter (2005).

6.2 Methodology

In order to correctly refer to the branches of a species network, we first introduce a

systematic way of labelling all the internal branches and nodes, namely the modified post-

order traversal method, followed by two operations of simplifying a complex rooted network

to simpler structures, and how to operate the simplification procedure recursively. As a

result, we compute gene tree probabilities of a given species network by taking the sum of

gene probabilities of given species trees.

6.2.1 Modified post-order traversal method

The post-order tree traversal method described by Felsenstein (2004) and Valiente (2002)

enumerates all the nodes of a rooted binary tree recursively. This method starts from

the bottom of the tree, and labels each node after visiting its descendants. Because of

the unique mapping between a node and its parental node, this method ensures that all

branches are uniquely labelled from bottom of the tree to the root in ascending order.

The modified post-order traversal generalises to a rooted network W, which can be

treated as a directed graph G = (V,E) and labels the intererior branches of G. This

method labels the internal branches of a tree in a manner consistent with the post-order

tree traversal method.

The new method guarantees that all branches are visited twice and are labelled while

exiting. The traversal process starts from the root, and travels to every child node. Unless

the child node is a tip node or has been labelled, the traversal process continues towards

to the bottom of the network. A branch is labelled if either the bottom of the network is

reached or all the descendant nodes have been visited.

This algorithm is feasible for all rooted networks (see Figures 6.2a and 6.2b) or trees.

It labels all interior edges of a directed graph G = (V,E) as follows.

For v ∈ V , let C(v) be the set of child nodes of node v. We use o1(v) and o2(v) to

denote the label on the branch from v to its parents. o2(v) is defined only if v is a hybrid

node. Suppose that I(v) is a indicator function that shows whether all the branches under

v have been labelled. During the traversal process,

I(v) =

FALSE all branches below v are labelled,

TRUE otherwise.
.
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6

A

r

DB C

s 2 2

h 1

s 3

4

1

s 1

3
5

(a) Level-1 network (W 1
IV)
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s 4
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7

s 3

5 s 2

h 1

2
4

s 1

1

(b) Level-2 network (W 2
IV)

Figure 6.2: Examples of using post-order traversal to label the branches of a level-1 and a
level-2 network. All internal branches are enumerated and marked in red. Note that the
branch lengths of the networks shown in (a) and (b) are not to scale.

All branches are labelled by the function f(v, oin) for all v ∈ V . We use oin to denote the

number that labelled the previous branch. The value returned by the function f(v, oin) is

the current label while exiting node v. To ensure that all branches are visited twice, the

traversal process starts from the root ρ, and calls f(ρ, 0). Initially, for all v ∈ V , let I(v)

be FALSE.

Algorithm 6.1 Recursive algorithm for modified post-order traversal.

1: if |C(v)| is 0 then
2: return oin
3: else
4: if I(v) is TRUE then
5: if o2(v) is nonempty then
6: return o2(v)← oin + 1
7: end if
8: else
9: for v′ ∈ C(v) do

10: oin ← f(v′, oin)
11: end for
12: I(v)← TRUE

13: return o1(v)← oin + 1
14: end if
15: end if

6.2.2 Decomposition operations

In this section, we propose two operations to simplify a complex phylogeny structure into

simpler structures with fewer hybridization events (Zhu et al., 2011b). Then the coalescent

model of (Degnan and Salter, 2005) is extended to obtain the distribution of gene trees
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in a given network. To demonstrate this procedure, we first consider simple cases of that

one individual is sampled from each population at the present. We first make several

restrictions and assumptions for the gene tree T and the network W in this section:

� The gene tree T and the network W are rooted.

� Gene tree T and network W have the same number of external edges (not necessary

for section 6.2.5).

� Gene tree T is binary.

� An interior node of W can only have at most two parent nodes; a hybrid node refers

to an internal node of W which has two parent nodes.

� We do not consider the case that a hybrid node is also a leaf node (not necessary

for section 6.2.5).

The network W is initially reduced to a set of simpler networks (SG(W )) in a single

step in the reduction process. Let P (T |W ) be the probability of gene tree T given a species

network W , by the Law of total probability, we have the following:

P (T |W ) =
∑

w∗∈SG(W )

P (T |W ∗ = w∗,W )P (W ∗ = w∗|W )

=
∑

w∗∈SG(W )

P (T |W ∗ = w∗)P (W ∗ = w∗|W ),
(6.1)

where W ∗ is a random variable that depends on W .

For any w∗ ∈ SG(W ), w* implies either a particular parental branch that some lineages

have followed at a hybrid node or some specific coalescences that have occurred beneath

a hybridization node.

Note that, prior to decomposing a network, we need to rank each node from the bottom

of the network to the top: Tip nodes have rank one; an interior node’s rank is one plus the

highest rank of its child nodes. This ensures that we perform the simplification operations

in a correct order — always operate on the node with lower rank first, since the coalescent

process starts from the bottom of a network, then gradually move towards to the root

node.

The key of simplifying a network is to remove the interior nodes of the network in a

specific order, along with the branches that are connected to the node. Here we define

several functions to assist us identifying which nodes should firstly be removed. Suppose

G = (V,E) is a directed graph. We index all the nodes in V ; for v ∈ V , let r(v) be the

rank of v, and p(v) be the number parent node of v. We use indicator function h(v) to

identify if a node v is a hybrid node:

h(v) =

1, if p(v) = 2;

0, otherwise.
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Let hd(v) and t(v) be the indicator function that take values

hd(v) =

1, if v is a descendant node of a hybrid node;

0 otherwise;

and

t(v) =

1, if v is a leaf node;

0 otherwise,

respectively.

Algorithm 6.2 Algorithm to choose the index of the node to be removed in order to
simplify a network.

1: index = |V | − 1; I = 1;
2: for I < |V | do
3: if (h(vI) + hd(vI)) ∗ (1− t(vI)) ≥ 1 and r(vI) < r(vindex) then
4: index = I;
5: end if
6: I = I + 1;
7: end for
8: if I = |V | − 1 then
9: return index = −1

10: else
11: return index
12: end if

Thus, we can apply Algorithm 6.2 to find which node should be removed from the

network: If the algorithm returns value -1, it means that W is already tree-like, and do

not need to be simplified; otherwise, it returns the index of the node that we need to

perform the following operations.

Decomposition operation 1

If the chosen node is an interior descendant node s of a hybrid node, then this implies

that s has a single parent node (otherwise s is a hybrid node), and child nodes of s are the

leaf nodes of W (since s has the lowest rank beside the tips). The first step of operation

1 is to remove s from W , along with all the edges that are connected to s.

Let set D denote all the leaf nodes descendant from s. We now enumerate all pos-

sible ways to partition D. For example, if D = {α1, α2, α3}, let D′ be one of the possi-

ble partitions of D. D′ could be {{α1}, {α2}, {α3}}, {{α1, α2}, {α3}}, {{α1}, {α2, α3}},
{{α1, α3}, {α2}} or {{α1, α2, α3}}. We treat every element of any D′ as a new leaf node.

In the second part of operation 1, we create a new graph w∗, by connecting the elements

of D′ to the parent node of s. Notice, if the element of D′ contains more than 1 leaf node,

this implies that by changing from graph W to w∗, we need to coalesce these leaves on
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the branch that connects s and its parent node.

To calculate the probability of these events, we let u = |D|, and v = |D′| and t be the

branch length from s to its parent node. Then the probability of u lineages coalesce into

v lineages within time t is (Degnan and Salter, 2005; Rosenberg, 2002; Saunders et al.,

1984; Tajima, 1983; Takahata and Nei, 1985):

puv(t) =
u∑
k=v

e−k(k−1)t/2 (2k − 1)(−1)k−v

v!(k − v)!(v + k − 1)
×
k−1∏
y=0

(v + y)(u− y)

(u+ y)
. (6.2)

Therefore, we have:

P (W ∗ = w∗|W ) =
w

c
puv(t)Iw∗(T ), for w∗ ∈ SG(W ), (6.3)

where c is the number of ways for u lineages coalesce into v lineages (see Equation (4.3)),

which is equal to

u∏
i=v

(
i

2

)
, and w is the number of repeated topologies with u lineages

coalescing into v lineages (see Equation (4.4)). This is equal to w = (u − v)!

u−v∏
j=1

1

1 + aj
,

where aj is the number of interior nodes that are below the coalesced nodes, and

Iw∗(T ) =

1, if the lineages in w∗ can lead to tree topology T ;

0, otherwise.

For instance, if the gene tree is (((a1, d1), c1), b1) and w∗ = W1 in Figure 6.3, then

Iw∗(T ) = 0.

Remark 1. Operation 1 removes an internal node of network W . Thefore, any reduced

network w∗, w∗ ∈ SG(W ), has one less interior node than network W .

Decomposition operation 2

Before applying operation 2 on a hybrid node h of W , we need to make sure that operation

1 have been applied to all the interior descendant from h. This implies that all the child

nodes of h are the leaf nodes of W . Let pL and pR be the two parent nodes of h. We use

H to denote the set of child nodes of h and CH to denote the collection of all the subsets

of H. The first step of operation 2, is to remove h from W , and all the edges connected

to h.

We then introduce two new nodes, hL and hR. For any L ∈ CH , we have a new graph

w∗, connect l ∈ L to hL, then connect hL to pL, and connect r ∈ H \L to hR, then connect

hR to pR. Let mL = |L|, mR = |H \L|, and m = |H|. The parameter γ is the probability

that one lineage is attached to pL. Thus, we obtain the set of simpler networks SG(W )

and the probabilities P (W ∗ = w∗|W ) for any w∗ ∈ SG(W ):

P (W ∗ = w∗|W ) = γmL(1− γ)mR , where mL +mR = m. (6.4)
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Remark 2. Operation 2 removes an internal node of network W . The newly added nodes

hL and hR are effectively external nodes: as all the nodes below hL and hR are leaf nodes,

we can treat hL and hR as leaf nodes, but sampling multiple lineages from each of them

(details see Section 6.2.5). Thefore, any reduced network w∗, w∗ ∈ SG(W ), has one less

interior node than network W .

6.2.3 Simplifying a network recursively

Apply operations 1 and 2 recursively on any networks in SG(W ) until all the simplified

network structures are tree-like. The problem of obtaining gene tree probabilities from

species trees has already been solved (Degnan and Salter, 2005). The approach outlined

in this chapter will therefore reduce the probability of a gene tree, given a species network,

to a linear combination of gene tree probabilities of given species trees.

Let AGT (W ) be an ordered list of directed graphs (trees or networks), and |AGT (W )|
is the number of elements in the list. Here we borrow the concepts of set operations “

⋃
”

and “\” for our use. Let AGT (W )
⋃
SG(W ) denote gradually appending the elements

of SG(W ) to the end of the list AGT (W ), then indexing the new elements of AGT (W )

from |AGT (W )|+ 1 to |AGT (W )|+ |SG(W )|. For an element G of |AGT (W )|, we define

operation AGT (W ) \ {G}, as removing the element G from AGT (W ), the index of any

element behind G is now one less. Then we apply Algorithm 6.3 to simplify a network W ,

and then compute the probability for gene tree T .

Algorithm 6.3 Recursive algorithm for simplify a network.

1: Initialize AGT (W ) = {W} and I = 1;
2: while I ≤ |AGT (W )| do
3: Apply Algorithm 6.2 to GI , GI ∈ AGT (W ) to choose the index of the node needs

to be removed;
4: if index is positive then
5: if p(vindex) is 1 then
6: Perform decomposition operation 1 on vindex, obtain SG(GI).
7: else
8: Perform decomposition operation 2 on vindex, obtain SG(GI).
9: end if

10: AGT (W )← AGT (W ) \ {GI}.
11: AGT (W )← AGT (W )

⋃
SG(GI).

12: else
13: I = I + 1;
14: end if
15: end while

During the decomposition process, different sequences of removing the hybrid nodes

may lead to the same sub-species trees W ′. For W ′ ∈ AGT (W ), we use C(W,W ′) to

denote the collection of ways to decompose W into W ′. Each sequence of decomposition
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corresponds to a unique weight ωc. Thus by simplifying Equation (6.1), we have:

P (T |W ) =
∑

W ′∈AGT (W )

P (T |W ∗ = W ′,W )
∑

c∈C(W,W ′)

ωc. (6.5)

Figure 6.3 demonstrates the decomposition of a species network on four taxa with two

hybridization nodes (Figure 6.2b). Notice that even though W1 and W14 have the same

topology, the branch lengths of these two trees differ. We consider them to be different

species trees. For different gene trees, according to coalescent events, AGT (W 2
IV) may

differ.

For example, if the gene tree is (((a1,d1),c1), b1), AGT (W 2
IV) = {W ′4,W ′5, . . . ,W ′12},

but when the gene tree is (((a1,b1),c1),d1), AGT (W 2
IV) = {W ′1,W ′2, . . . ,W ′12}.

Once a network has been decomposed into species trees, it is straight forward to

compute the probability of the gene tree given each species tree using the coalescent

history approach of Degnan and Salter (2005) and Degnan (2010) (if there is more than

one allele sampled per species), or using a recursive approach with ancestral configurations

(Wu, 2012).

Ancestral configurations list the lineages occurring in each ancestral population, and

this approach enumerates the possible ancestral configurations consistent with the number

of lineages in each ancestral population. The recursion is done by computing the prob-

ability of an ancestral configuration conditional on the configuration in more ancestral

populations.

6.2.4 Example

This section demonstrates an example of calculating gene tree probability of (((a,b),c),d)

in W 1
IV (details see Table 6.1).Since lineages of b and c can not coalesce in branch 1 of

W 1
IV, they both have to travel through population 1. At node h1 of W 1

IV, there are four

possibilities between b and c:

Scenario (1) lineages b and c both enter branch 2 of W 1
IV; no coalescent occurs in

branch 2; then b and c both enter branch 3.

Scenario (2) lineage b enter branch 2, then enter branch 3; lineage c enter branch 4,

then enter branch 5.

Scenario (3) lineage c enter branch 2, then enter branch 3; lineage b enter branch 4,

then enter branch 5.

Scenario (4) lineages b and c both enter branch 4 of W 1
IV; no coalescent occurs in

branch 4; then b and c both enter branch 5.

Let λ1 be the branch length of branch 1. For all four scenarios, there is no coalescent

event between lineages b and c within branch 1. Therefore, we calculate the probability of
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A DB C

W

A DB&C A DCB

A DB&C A DB&C

W ′1

A DB&C

W ′2

A DB&C

W ′3

A DCB A DCB

W ′4

A DCB

A DBC

A DCB

W ′5

A DCB

W ′6

A DBC

W ′7

A DBC

W ′8

A DCB A DB&C

A DB&C

W ′3

A DB&C

W ′2

A DCB

W ′11

A DCB

W ′10

A DCB

W ′12

A DBC

W ′9

Figure 6.3: Illastration of decomposing the network in Figure 6.2b. Snake shape and
straight line arrows represent the decomposition operation 1 and 2 respectively. The trees
with thicker branches are the final trees after decomposing the network.
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2 lineages entering and exiting a population with time λ1, which is p22(λ1). Suppose that

γ is the probability of a lineage travel to the left at the hybrid node (h1), then enter branch

2. Therefore, we consider lineages b and c independently, and calculate the probability for

each scenario as shown by Table 6.1.

Scenario (1) (2) (3) (4)

Probability of scenario (∗) γ2p22(λ1) γ(1− γ)p22(λ1) γ(1− γ)p22(λ1) (1− γ)2p22(λ1)

(3, 3, 6) p22(λ2)
1

3
p31(λ3) − − −

(((a,b),c),d) (3, 6, 6) p22(λ2)
1

3
p32(λ3)

1

3
p21(λ3)p22(λ5)

1

3
− −

(6, 6, 6) p22(λ2)p33(λ3)
1

18
p22(λ3)p22(λ5)

1

18
p22(λ3)p22(λ5)

1

18
p22(λ4)p33(λ5)

1

18

Table 6.1: Gene tree probability of (((a,b),c),d) given the species network W 1
IV shown in

Figure 6.2. The entries in each column are gene tree probabilities conditional on each
scenario. Each row is the probability of a specific sequence which indicates the branch
that the internal nodes of tree (((a,b),c),d) coalesce in. Thus, the gene tree probability
is equal to the sum of the weighted (by the probabilities of the scenarios) column sums
(conditional probabilities under each scenario).

The gene tree probabilities under scenarios 1, 2, 3 and 4 are consistent with comput-

ing the gene tree probability of (((a,b),c),d) in given species trees (((B,C):2,A):3,D):6,

((A,B):3,(C,D):5):6, ((A,C):3,(B,D):5):6 and (((B,C):4,D):5,A):6, where the numbers af-

ter colons denote the branch labels. These trees can be obtained by performing operation

1 on s1, and followed by performing operation 2 on h1. We can then calculate gene tree

probability by conditioning on species trees first, then weight these probabilities according

to the scenario probabilities.

Notice that, in Table 6.1, the row (3,3,6) has one probability entry, but rows (3,6,6) and

(6,6,6) have more than one. Degnan and Salter (2005) refers the sequences (3,3,6), (3,6,6)

and (6,6,6) as the coalescent histories, which indicate the species tree branches, of which

the internal nodes of gene tree coalesce in, in a specific order. If coalescent histories are

defined as the list of populations in which nodes of the gene tree occur, as in Degnan and

Salter (2005), then Table 6.1 suggests determining the probability of a coalescent history

by summing over probabilities of lineages taking different paths through the network at

hybridization nodes. The approach taken in the recursion, however, does not directly

enumerate coalescent histories on networks, but rather first reduces the network to trees,

and then enumerates coalescent histories on each of these trees.

6.2.5 Multiple lineages sampled from each population in the present

In the previous section, we have discussed how to compute gene tree probabilities for a

given network when only one lineage is sampled per species. In which case, coalescent

events would not happen in the external branches of the phylogeny structures. However,

one would sample more than one individual from each population in practice. Consider

the example shown in Figure 6.4(a): two samples have been take from each population

A, B and C. Lineages in populations A and C do not travel through the hybrid node.
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Therefore, the coalescent events in populations A and C can be treated as coalescent

events in internal branches. However, for the two lineages in the population B, we need

to consider the similar four scenarios mentioned in the previous example given that the

two lineages in the hybrid species do not coalesce, in additional to two cases that after the

two lineages in B have coalesced, the new lineage goes to the left or the right.

In this section, we introduce a technique to manipulate the species network in order to

compute the gene tree probabilities when multiple individuals are sampled from a species.

Suppose that L is the label of a descendant leaf node from a hybrid node in a directed

graph G = (V,E). When n individuals are sampled from L, we attach n leaf nodes to

graph G below the node “L”, namely from “L1” to “Ln”. Then the L node becomes a

internal node of G. This problem then becomes as to compute gene tree probabilities

when one individual is sampled from each (hybrid) species. Since these external branches

do not actually exist, we assign them length 0. For instance, we can rewrite the species

network (Figure 6.4(a)) string (((B:1)h 1#.5:1, A:2)s 1:1, (h 1#.5:1, C:2)s 2:1)r

as ((((B1:0, B2:0)B:1)h 1#.5:1, A:2)s 1:1, (h 1#.5:1, C:2)s 2:1)r, which is il-

lustrated by Figure 6.4(b), and then apply Algorithm 6.3 to simplify the network.

A B C

(a)

A
B1 B2

C

(b)

Figure 6.4: Illustration of manipulating the species network in order to compute the gene
tree probabilities of gene trees for a given species network when more than one lineages
are sampled from the descendant species of a hybrid species. (a) A three-taxon species
network with one hybrid node; B is the hybrid species; and two individuals are sampled
from each species. (b) Adding nodes “B1” and “B2” below node B. The three-taxon
network becomes a “four”-taxon network.

Theorem 17. The probabilities of gene trees given species networks are given by Equation

(6.1) and Algorithm 6.3 correspond to the correct probabilities.

Proof. Let ks and kh be the numbers of speciation nodes and hybridization nodes re-

spectively, and the total number of interior nodes is k = ks + kh. In a directed graph

G = (V,E), ks is always at least one (the root node is considered as a speciation node).

Therefore, for the trivial case k = 2, we need to consider the two cases of kh = 0 and

kh = 1. If kh = 0, then G is tree-like, and Algorithm 6.3 returns G. In this case, Equation

(6.1) returns the probability of the gene tree given the species tree, which can be computed

correctly (Degnan and Salter, 2005; Wu, 2012); this is true for all cases when k = ks.

If kh = 1 and ks = 1, G is simply a loop below the root node, and all leaf nodes

are connected to the hybrid node. Apply Algorithm 6.3, the hybrid node is removed by
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operation 2 in a single step, any w∗ ∈ SG(W ) is a tree, the probability computed by

Equations (6.1) and (6.4) is the correct probability.

Suppose that our method works for some k ≥ 2. In a network W with k + 1 total

internal nodes, apply Algorithm 6.3 to simplify W to SG(W ). If a hybrid descendant

internal node is removed by operation 1, any w∗ ∈ SG(W ) has at most k internal nodes,

and P (T |W ∗ = w∗) is correct. Thus the probability computed by Equations (6.1) and

(6.3) is the correct probability.

If a hybrid node is removed by operation 2, any w∗ ∈ SG(W ) has one less internal

node than W (see Remark 2). Thus, P (T |W ∗ = w∗) is valid for any w∗ ∈ SG(W ), and

the probability computed by Equations (6.1) and (6.4) is the correct probability.

6.3 hybrid coal

Applying the algorithm described in the previous section, we have developed the pro-

gram hybrid coal to calculate gene tree probabilities given species networks using C++.

Details and examples of hybrid coal can be found in Appendix C.

hybrid coal currently implements the coalescent history approach (Degnan and Salter,

2005), but the algorithm presented in this chapter could be used by calling STELLS (Wu,

2012) to compute the probabilities of gene trees of given species trees. The recursive

approach is implemented in the program STELLS is more efficient than the coalescent

history approach for moderate to larger trees (for instance, 12 or more taxa), while the

coalescent history approach implemented in COAL (Degnan and Salter, 2005) can be more

efficient for smaller trees.

Considering that the linear combination of species trees used to compute gene tree

probabilities involves species trees of various sizes, the speed of the algorithm could po-

tentially be optimised by using either the coalescent history approach or the ancestral

approach, depending on the species tree being used.

hybrid coal can also produce Maple script for deriving the theoretical probabilities

of gene trees of given species networks. In the next section, we will use this function and

discuss some problems in identifying networks.

6.4 Discussion and future work

6.4.1 Identifiability (I)

We also explore the possibilities of differentiating level-k species networks via the number

of distinct gene tree probabilities. This approach shows that it is theoretically possible to

determine whether a collection of gene trees comes from a species network rather than a

species tree, or from a level-2 network rather than a level-1 network.

An approach used by Allman et al. (2011) for determining whether the probabilities of

gene tree topologies can be used to identify species trees is to use the number of distinct
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gene tree probabilities. For example, for a four-taxon unbalanced species tree with one

individual sampled per species, there are seven distinct gene tree probabilities, while for

a four-taxon balanced species tree, there are only five distinct gene tree probabilities (see

Table 6.5).

Knowing the number of distinct gene tree probabilities therefore determines whether or

not the species tree is balanced. Although, in practice, determining the number of distinct

gene tree probabilities is difficult, since many probabilities will be close to 0 and therefore

some topologies may not be observed from the data, this is still a useful theoretical tool

for addressing identifiability issues and shows that there is information in the gene tree

probabilities about the network topology. We use the approach of counting distinct gene

tree probabilities on several species trees and level-k networks (see Tables 6.4 and 6.5).

Our results suggest that by sampling one individual per species, one can often deter-

mine whether or not a hybridization event occurred in the past because the number of

distinct gene tree probabilities tends to be larger than would occur if we were given a

species tree with no hybridization events. Sampling only one individual per species tends

to be insufficient for determining how many hybridization events have occurred, at least

for the three-, four-, five- and six-taxon examples that we tried.

6.4.2 Identifiability (II)

T 1
III ((a1,c1),b1); T 2

III (a1,(b1,c1)); T 3
III ((a1,b1),c1);

Table 6.2: The three gene trees on three species

Consider the network W 1
III (see Figure 6.5a) and the gene trees in Table 6.2. The

branch lengths and the hybridization parameters are denoted as λ′i and γ′j respectively.

The gene tree probabilities are:

P (T 1
III|W 1

III) =
1

3
γ′1 exp(−λ′2) +

1

3
(1− γ′1) exp(−λ′4),

P (T 2
III|W 1

III) = γ′1(1− 2

3
exp(−λ′2)) +

1

3
(1− γ′1) exp(−λ′4),

P (T 3
III|W 1

III) =
1

3
γ′1 exp(−λ′2) + (1− γ′1)(1− 2

3
exp(−λ′4)).

Now consider the network W 2
III (see Figure 6.5b). Let the branch lengths and hy-
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(a) Level-1 network (W 1
III)
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h 2
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4 s 2

h 1

1
3

B

(b) Level-2 network (W 2
III)

Figure 6.5: A level-1 network and a level-2 network of size three.

bridization parameters be denoted as λ′′i and γ′′i respectively. Let us assume the following:

λ′2 =− log((γ′1 exp(λ′′5)− γ′′1γ′′2 + γ′′1γ
′′
2 exp(λ′′5) + γ′′1 exp(−λ′′2 − λ′′5) exp(λ′′5) + γ′′2

− γ′′1 exp(λ′′5)− γ′′2 exp(λ′′5))/γ′1) + λ′′5,

λ′4 =− log((−1 + γ′′2 + γ′′1 − γ′′1γ′′2 + γ′1 exp(λ′′7)− γ′′1 exp(λ′′7)− γ′′2 exp(λ′′7)

+ γ′′1γ
′′
2 exp(λ′′7))/(−1 + γ′1)) + λ′′7.

We then have:

P (T 1
III|W 1

III) = P (T 1
III|W 2

III),

P (T 2
III|W 1

III) = P (T 2
III|W 2

III),

P (T 3
III|W 1

III) = P (T 3
III|W 2

III).

Similarly, for W 3
III and W 4

III, there exists expressions for γ′1 and branch lengths and

hybridization parameters which make the gene tree probabilities equal. Thus, sampling

one individual per taxon cannot identify species networks.

6.4.3 Identifiability (III)

T 1
IV (((a1,d1),c1),b1); T 2

IV ((a1,(c1,d1)),b1); T 3
IV (((a1,c1),d1),b1);

T 4
IV ((a1,c1),(b1,d1)); T 5

IV (((a1,c1),b1),d1); T 6
IV ((a1,d1),(b1,c1));

T 7
IV (a1,((b1,d1),c1)); T 8

IV (a1,(b1,(c1,d1))); T 9
IV (a1,((b1,c1),d1));

T 10
IV ((a1,(b1,c1)),d1); T 11

IV (((a1,d1),b1),c1); T 12
IV ((a1,(b1,d1)),c1);

T 13
IV (((a1,b1),d1),c1); T 14

IV ((a1,b1),(c1,d1)); T 15
IV (((a1,b1),c1),d1);

Table 6.3: The 15 gene trees on 4 species

Consider the level-1 network W 1
IV (Figure 6.2a). Branch lengths and the hybridiza-

tion parameters were denoted as λi and γi respectively. We have derived the theoretical
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probabilities for all 15 gene trees (see Table 6.3):

P (T 1
IV|W 1

IV) = P (T 11
IV |W 1

IV) = q1 = X1; (6.6)

P (T 2
IV|W 1

IV) = P (T 12
IV |W 1

IV) = q2 = X1 +X2; (6.7)

P (T 3
IV|W 1

IV) = P (T 13
IV |W 1

IV) = q3 = X1 +X3; (6.8)

P (T 4
IV|W 1

IV) = P (T 14
IV |W 1

IV) = q4 = 2X1 +X2 +X3 +X4; (6.9)

P (T 5
IV|W 1

IV) = P (T 15
IV |W 1

IV) = q5 = X1 +X3 +X5; (6.10)

P (T 7
IV|W 1

IV) = P (T 8
IV|W 1

IV) = q6 = X1 +X2 +X6; (6.11)

P (T 6
IV|W 1

IV) = q7 = 2X1 +X7; (6.12)

P (T 9
IV|W 1

IV) = q8 = X1 +X6 +X7 +X8; ; (6.13)

P (T 10
IV |W 1

IV) = q9 = X1 +X5 +X7 +X9, (6.14)

where:

X1 =a2 1

18
p22(λ1)p22(λ2)p33(λ3) + b2

1

18
p22(λ1)p22(λ4)p33(λ5) + c

1

9
p22(λ1)p22(λ3)p22(λ5);

X2 =b2
1

9
p22(λ1)p22(λ4)p32(λ5) + c

1

3
p22(λ1)p22(λ3)p21(λ5);

X3 =a2 1

9
p22(λ1)p22(λ2)p32(λ3) + c

1

3
p22(λ1)p21(λ3)p22(λ5);

X4 =cp22(λ1)p21(λ3)p21(λ5);

X5 =a2 1

3
p22(λ1)p22(λ2)p31(λ3);

X6 =b2
1

3
p22(λ1)p22(λ4)p31(λ5);

X7 =a
1

3
p21(λ1)p22(λ3) + b

1

3
p21(λ1)p22(λ5) + a2 1

3
p22(λ1)p21(λ2)p22(λ3)

+ a2 1

9
p22(λ1)p22(λ2)p32(λ3) + b2

1

3
p22(λ1)p22(λ4)p31(λ5) + b2

1

9
p22(λ1)p22(λ4)p32(λ5);

X8 =bp21(λ1)p21(λ5) + b2p22(λ1)p21(λ4)p21(λ5);

X9 =ap21(λ1)p21(λ3) + a2p22(λ1)p21(λ2)p21(λ3).

Here, a = γ, b = γ and c = γ(1− γ).

When branch lengths and hybridization parameters are non-zero, we make pair-wise

comparisons among equations (6.9) and (6.7), (6.9) and (6.8), (6.11) and (6.7), (6.10) and

(6.8), we have the following inequalities:

q4 > q2, q4 > q3, q5 > q3, and q6 > q2.

These inequalities also hold for network W 2
IV, as a result of being unable to differentiate

the networks when only one locus is considered. However, from these inequalities, and

Equations (6.6) to (6.14), we can determine that species B and C form a clade in the
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species networks, rather than other pairs of species.

The identifiability of the complex networks improves if we sample more individuals per

species. For example, for the level-1, level-2 and level-3 networks shown in Table 6.5, there

are nine different probability classes out of the 15 four-taxon gene tree topologies. How-

ever, we observe that when two individuals are sampled from one hybrid species and two

individuals are sampled from a non-hybrid species, or when we sample three individuals

from one hybrid species, the number of distinct gene tree probabilities is different between

the level-1 four-taxon network and the level-2 four-taxon network. However, there is still

a lack of information to separate level-3 networks from level-2 networks.

6.4.4 Future work

This research is still ongoing . hybrid coal is not yet the best implementation of the

algorithm we have described in the previous sections. Note that in Equation (6.5), since for

all values of w′ in AGT (W ) are independent from each other, this allows us to calculate the

values of P (T |W ′ = w′) separately. This enables the possibility of using parallel computing

to calculate the gene tree probabilities. In this case, hybrid coal can potentially be

written in CUDA and perform parallel computations on graphics cards.
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W 0
III W 1

III W 2
III W 3

III W 4
III

a1, b1, c1 2 3 3 3 3

a1, a2, b1, b2, c1, c2 81 123 123 123 123

a1, a2, b1, b2, b3, c1 76 104 104 104 104

Table 6.4: Number of distinguishable gene tree probabilities, given three-taxon species networks.

B ADC B ADC A DCB A DCB A DCB A DCB

W 01
IV W 02

IV W 1
IV W 2

IV W 3
IV W 4

IV

a1, b1, c1, d1 7 5 9 9 9 9

a1, b1, b2, c1, d1 31 20 52 52 52 52

a1, b1, b2, c1, d1, d2 122 94 264 269 269 269

a1, b1, b2, b3, c1, d1 106 63 259 318 318 318

Table 6.5: Number of distinguishable gene tree probabilities, given four-taxon species networks.
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Chapter 7

Simulating genealogies

Abstract

In phylogenetic and population genetic studies, the assumption of bifurcating trees may

not apply, particularly, for the cases where relationships among species are described by a

network rather than a tree or where the relationships within the a single population may

contain polytomy nodes. Simulation studies are interested in investigating the genealogies

of hybrid species or marine organisms where one individual may have a massive number

of offspring. One of the outputs of this thesis is developing the program hybrid-Lambda,

which can simulate bifurcating or multifurcating genealogies within a species tree or net-

work, under appropriate assumptions. This chapter reviews the methodology of the sim-

ulating procedure.

7.1 Introduction

Species trees are used to describe species relationships. Gene trees are used to describe

the mutation history of alleles. Frequently, these trees are assumed to be bifurcating, for

simulation studies (Degnan and Salter, 2005; Hudson, 1990). In these studies, gene trees

are simulated under a particular coalescent process called the Kingman coalescent, which

produces binary trees.

Let us consider the relationships among the species that are described by a network.

Under the probabilistic model of gene trees introduced in the previous chapter, one can use

the package ms (Hudson, 2002) to simulate genealogies within a general species network.

However the input of ms is very tedious when the network is sophisticated. Other than

ms, simulation packages are mostly designed for specific studies, for example phylonet

(Yu et al., 2011), which is not feasible for general simulation use. Therefore, simulating

gene trees from species network with a simple expression becomes one motivation for this

study.

For organisms where one individual can produce a large number of offspring, such as

oysters and other marine organisms (Sargsyan and Wakeley, 2008), the Kingman coalescent

is not appropriate, as it only allows one parent node to have two child nodes. Thus we
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consider models that allow more than two lineages to coalesce simultaneously, i.e. multiple

merger coalescent, also known as the Λ-coalescent (Eldon and Wakeley, 2006; Pitman,

1999).

However, the probability of a multiple merger gene tree becomes messy when either or

both of the number of populations and the number of sampled individuals per population

increase. Thus, studies of multiple merger coalescence for many individuals can only be

undertaken by simulations. The program simcoal (Excoffier et al., 2000) can simulate

multiple merger coalescent trees. However, simcoal assumes that coalescence occurs gen-

eration by generation, which is different from continuous time approximation. Therefore,

the program simcoal is not feasible for simulations under the Λ-coalescent.

The program hybrid-Lambda has been developed to simulate gene trees of a given

species network allowing multiple merger coalescence (see Figure 7.1). The simulation

procedure is explained in detail in this chapter.

A B C D

a1a2a3 b1 c1 c2 d1

species network

gene genealogies
multiple merger

binary mergers

multiple merger

Figure 7.1: Example of a multiple merger gene tree simulated in a network with the
topology ((((B,C)s1)h1#H1,A)s2,(h1#H1,D)s3)r.

7.2 Method

In this section, we will discuss gene tree simulation in species network under the coalescent

process. Apart from hybridization of two populations, we assume there is no migration

and recombination among the sequences. We will discuss both the Kingman coalescent

and the multiple merger coalescent in diploid species, in which each individual carries two

copies of the genome. Hence if the effective population size of i is Ni/2, there are Ni gene

copies.

For τi generations of species i, we assume that species i has a constant population size.

We rescale the time by the number of gene copies Ni to make it continuous, as
τi
Ni

.

Firstly, let us consider the simplest model, the Kingman coalescent model, which

suggests that the waiting time of two lineages to coalesce is an exponential random variable

with a rate of 1. Suppose there are n′ lineages entering a population (also known as the
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number of living lineages). There are

(
n′

2

)
ways to choose two lineages from n′. Therefore,

the time X in which n′ lineages coalesce to n′−1 lineages is an exponential random variable

with the rate

(
n′

2

)
, i.e. X ∼ Exp

((
n′

2

))
.

For the Λ-coalescent, if the coalescent parameter is between zero and one, the rate

parameter of k mergers between or among b lineages (λbk) is determined by Equation

(7.1) (Pitman, 1999; Eldon, 2011); if the coalescent parameter is between one and two,

then rate parameter is obtained from Equation (7.2) (Eldon and Wakeley, 2006):

λbk =

(
b

k

)
B(k − α, b− k + α)

B(2− α, α)
, (7.1)

where B(2− α, α) is a beta function.

λbk =

(
b

k

)
ψk(1− ψ)b−k. (7.2)

If the coalescent event is Λ-coalescent, we need to consider cases that two to n′ lineages

will coalesce simultaneously. We useX to denote the waiting time for the next Λ-coalescent

event. Here we introduce two approaches to simulate X.

1. Let X2, X3, . . . , Xn′ be the time that two, three, . . . , n′ lineages coalesce into one

respectively. Therefore, X = min{X2, X3, . . . , Xn′}.

2. Since eachXi is a exponential random variable with the rate of λn′i, for i = {2, . . . n′}.

Therefore, X ∼ Exp

(
n′∑
i=2

λn′i

)
.

These two methods are described by Algorithm 7.1a and Algorithm 7.1b respectively.

Both algorithms are easy to implement. However, the time complexity of Algorithm 7.1b

is worse in comparison. Thus we apply Algorithm 7.1a in practice. By considering the

Kingman coalescent, we establish Algorithm 7.2 to simulate more general cases of nc

lineages to coalesce in time l.

1: for i in (2 to n′) do
2: Propose li ∼ Exp (λn′i).
3: end for
4: For nc ∈ {2, 3, . . . , n′}, we have
lnc = min{l2, . . . , ln′}, and l ←
lnc

(a)

1: Propose l ∼ Exp

(
n′∑
i=2

λn′i

)
.

2: Propose nc = i, with probability
λn′i∑n′

i=2 λn′i
.

(b)

Algorithm 7.1: Propose the waiting time l of nc lineages to coalesce under the Λ-coalescent.
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Algorithm 7.2 Propose the waiting time l of nc lineages to coalesce.

1: if Λ-coalescent then
2: Apply Algorithm 7.1a.
3: else

4: l ∼ Exp

((
n′

2

))
, nc ← 2.

5: end if

7.3 Simulating coalescent time in coalescent units

Recall Equation (6.2), the probability of the coalescent events puv(t) within a time interval

t only depends on the numbers of lineages entering (u) and exiting (v) the population.

Therefore, the key to simulating the genealogy is to keep track the number of living lineages

in a population.

7.3.1 Simulating lineage coalescent events in a time interval

Let t0, t1 be the time at the two ends of one particular population, where t0 is more recent

than t1. Let Ln be the set of lineages entering this population from the present at t0, and

n = |Ln|. Let L′n be the set of living lineages within the population between time t0 and

t1, and n′ = |L′n|. We refer the absolute time of a lineage as the time from the bottom of a

lineage to the present, denoted as a. We use b to denote the branch length of a lineage, i.e.

the time difference between the two ends of a lineage. Let l0 be the remaining time from

the coalescent event to the time at the top of the population t1. We use the algorithm

described in Algorithm 7.3 to update the branch length of genealogy lineages within a

time interval.

t0

t1

w

u1 u2 unc

Figure 7.2: Lineages coalescing in an internal branch.

7.3.2 Simulating lineage coalescent events above the root

All lineages will eventually all coalesce above the root, which implies that the branch

lengths of lineages can extend to infinity above the root of the phylogeny. Thus, it is
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Algorithm 7.3 Algorithm for updating genealogy branch lengths within a time interval.

1: if n′ > 1 then
2: Apply Algorithm 7.2 to propose a new branch length l and the number of lineages

n′ to coalesce.
3: end if
4: initialize: n′ ← n, L′n ← Ln, l0 ← t1 − t0.
5: while n′ > 1, l0 > l do
6: for i in (1 to nc ) do
7: Choose u uniformly from L′n.
8: bu ← bu + l.
9: L′n ← L′n \ {u},

n′ ← n′ − 1.
10: end for
11: Introduce a new lineage w.
12: aw ← au + bu.
13: ∀i ∈ L′n, bi ← bi + l.
14: L′n ← L′n ∪ {w},

n′ ← n′ + 1.
15: Update l0, l0 ← l0 − l .
16: Apply Algorithm 7.2 to propose a new branch length l and the number of lineages

n′ to coalesce.
17: end while
18: ∀u ∈ L′n, bu ← t1 − au.

not necessary to consider the remaining time in a population (l0 in Algorithm 7.3). By

applying the similar approach mentioned in the previous section, we make the following

modifications to Algorithm 7.3 to update the branch lengths of the genealogy at the root

of the phylogeny:

1. Remove the initialisation of l0, l0 ← t1 − t0 at line 4.

2. Remove l0 > l of the while loop condition at line 5.

3. Remove line 15 and line 18.

t0

w

u1 u2 unc

Figure 7.3: Demonstration of lineages coalescing above the root.
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7.3.3 Simulating lineage coalescent events at a hybrid node

Since there are two populations at the hybrid node of the phylogeny, and the coalescent

events are independent between the two populations, we can apply Algorithm 7.3 in each

population. However, the genealogys’ branches need to be assigned randomly to the two

populations (see Figure 7.4).

t1

t2

t0

Figure 7.4: Lineages coalescing at a hybrid node.

Let Ln denote the set of lineages entering the hybrid node at t0, let γ be the proba-

bility of a lineage entering the left-hand population. Then, Ln is divided into LL and LR,

where LL and LR are the sets of lineages entering the left-hand and right-hand popula-

tions respectively. Let t1 and t2 be the times at the top of the left-hand and right-hand

populations respectively. We can then apply Algorithm 7.3 twice to update the genealogy

branch lengths. This procedure is described by Algorithm 7.4.

Algorithm 7.4 Algorithm to updating genealogy branch lengths at a hybrid node.

∀i ∈ Ln, propose δ ∼ Unif(0, 1)
if δ < γ then
i ∈ LL

else
i ∈ LR

end if
nL ← |LL|, and nR ← |LR|
Apply Algorithm 7.3 and initialise with n′ ← nL, L′n ← LL, l0 ← t1 − t0 at line 4.
Apply Algorithm 7.3 and initialise with n′ ← nR, L′n ← LR, l0 ← t2 − t0 at line 4.

7.4 Simulating coalescent time in number of generations

We use B to denote the genealogy branch lengths in term of the number of generations.

Let N be the number of gene copies in a population. To convert the branch lengths from

the coalescent time to the number of generations, we make the following modifications to

Algorithm 7.3:

1. At line 8, add Bu ← Bu + l ×N .
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2. At line 13, add Bi ← Bi + l ×N .

3. At line 18, before updating bi, add the following:

if ai > t0 then
Bi ← (t1 − ai)×N

else
Bi ← (t1 − ai − bi)×N +Bi

end if.

7.5 Segregating site data

In this chapter, we do not consider the possibility of sequence recombination. Mutation is

the only source of DNA sequence changes. Under the infinite site model, we assume that

mutations always occur on the new site; the number of mutations is a Poisson random

variable with the mean of
θ

2
t (Wakeley, 2008), where θ is the mutation rate per generation.

In this section, we will discuss how to simulate segregating site data from the simulated

genealogies.

7.5.1 Expected number of mutations

Let µ be the mutation rate per locus per generation. Therefore, for N gene copies, the

mutation rate per generation is 2Nµ. After we simulate the genealogy branch lengths t in

coalescent units, we convert it to the number of generations τ , which is equal to Nt. Let

M be the number of mutations. The expected value of M is now
θ

2
t. Since θ = 2Nµ and

t =
τ

N
, we have:

E(M) = µτ.

We first calculate the total branch lengths in a generation and simulate the number of

mutations. We then assign each mutation to the gene tree branch i with the probability

of
τi∑
τi

, and write it as a Newick formatted string (see the example in Figure 7.5).

1000

a1

0100

a2

1100

0010

a3

1110

0001

a4

1111

0 0

2

0

3

1

Figure 7.5: Simulated geneology (((a1:0,a2:0):2,a3:0):3,a4:1), where the branch
lengths indicate the number of mutations.
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7.5.2 Simulating segregating site data

Note that the number of segregating sites is the total number of mutations in the history

of a sample. This enables us to simulate segregating site data from the simulated number

of mutations.

At each node of the gene tree, we can use the numbers 1 and 0 to indicate whether

or not a particular sample is a descendant from this node. Therefore, for a gene tree of k

samples, node i can be expressed as a 0, 1 vector vi of length k. We build a matrix S of

k rows, whose columns are the 0, 1 vectors vi repeated Mi times, which is the number of

mutations on the edge that is connected to node i towards the root. Therefore, the rows

of the matrix S are the simulated segregating site data. An example of this procedure is

demonstrated in Figures 7.5 and 7.6.

a1 : 1 1 1 1 1 0

a2 : 1 1 1 1 1 0

a3 : 0 0 1 1 1 0

a4 : 0 0 0 0 0 1

Figure 7.6: Segregating site data associated with the simulated genealogy
(((a1:0,a2:0):2,a3:0):3,a4:1). Taxa a1 and a2 both have the same sequence 111110;
taxon a3 has the sequence 001110; and taxon a4 has the sequence 000001.

7.6 hybrid-Lambda

Applying the algorithm described in the previous section, we have developed the program

hybrid-Lambda to simulate genealogies of a given species tree or network, allowing multiple

merger coalescence.

hybrid-Lambda can sample multiple lineages from each species, then simulate lineage

coalescent time under a Markov process. New coalescent events are conditional on prior

coalescent events, as well as on population branch lengths. By default, the Kingman coa-

lescent is used. For the Λ-coalescent, the current version of hybrid-Lambda uses Algorithm

7.1a to propose the coalescent time.

The program input file is a character string that describes the relationships among

species. Standard Newick format (Olsen, 1990) is used for inputting species trees and

outputting gene trees, the interior nodes of which are not labelled. An extended Newick

formatted string (Cardona et al., 2008; Huson et al., 2010) labels all internal nodes, and

is used for inputting species networks. (See Figure 7.1).
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As the population branch specifies, hybrid-Lambda requires the input network (tree)

branch lengths to be in coalescent units. However, this is not essential. Coalescent units

can be converted through an alternative input file with numbers of generations as the

branch lengths, divided by the corresponding effective population sizes. By default, ef-

fective population sizes of all branches are assumed to be equal and unchanged. Users

can change this parameter using the command line or by using a(n) (extended) Newick

formatted string to specify population sizes on all branches though another input file.

According to the molecular clock, the simulation requires species structures to be

ultrametric, i.e. lengths of all paths from tip to root are equal. hybrid-Lambda checks the

distances in coalescent units between the root and all tip nodes, and prints out warning

messages if the ultrametric assumption is violated.

7.6.1 Features

hybrid-Lambda outputs simulated gene trees in three different files: one contains gene

trees with branch lengths in coalescent units; one converts branch lengths from coalescent

units to the number of generations; one uses the number of expected mutations as branch

lengths. Moreover, hybrid-Lambda has an option that allows segregating data from the

infinite site model to be simulated for each gene tree generated.

Besides outputting gene tree files, hybrid-Lambda also provides several functions for

analytical purposes:

� user-defined random seeds for simulation,

� a frequency table of gene tree topologies,

� a figure of the species network or tree (this function only works when LATEX or dot

is installed), and

� when gene trees are simulated from two populations, hybrid-Lambda can generate

a table of relative frequencies of the cases where gene trees are reciprocally mono-

phyletic and polyphyletic, as well as cases where each population is monophyletic or

paraphyletic.

A detailed description and examples can be found in Appendix D
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Gene tree topologies Probabilities Expected counts Actual counts

(((A,D),C),B) 0.00157014 157.014 143
((A,(C,D)),B) 0.0104929 1049.29 1019
(((A,C),D),B) 0.0104929 1049.29 1054
((A,C),(B,D)) 0.0577347 5773.47 5730
(((A,C),B),D) 0.0158282 1582.82 1571
((A,D),(B,C)) 0.0985005 9850.05 9704
(A,((B,D),C)) 0.0158282 1582.82 1597
(A,(B,(C,D))) 0.0158282 1582.82 1523
(A,((B,C),D)) 0.338803 33880.3 34028
((A,(B,C)),D) 0.338803 33880.3 33812
(((A,D),B),C) 0.00157014 157.014 157
((A,(B,D)),C) 0.0104929 1049.29 1071
(((A,B),D),C) 0.0104929 1049.29 1062
((A,B),(C,D)) 0.0577347 5773.47 5907
(((A,B),C),D) 0.0158282 1582.82 1622

Table 7.1: Expected and acutal counts of simulating 100,000 gene trees given the net-
work ‘((((B:1,C:1)s1:1)h1#.5:1,A:3)s2:1,(h1#.5:1,D:3)s3:1)r;’. The gene tree
probabilities were calculated by the program hybrid coal; the simulated gene trees and
frequency table were generated by hybrid-Lambda. A Chi-square test was conducted on
this data set, with the null hypothesis of the expected count and actual were from the
same distribution. The test statistics retured a p-value of 0.562, and we failed to reject
the H null at 0.05 level. This data set provided insufficient evidence to suggest that the
gene trees were simulated from an alternative distribution.
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Chapter 8

Concluding comments

To sum up, in this thesis, we studied several modern techniques and models that are

used in macro evolution and micro evolution, such as the YH and PDA models, the Tree-

Puzzle process, the Kingman and multiple merger coalescent models. We investigated the

properties of the evolutionary models in depth, particularly for the YHK model and the

PDA model.

In the PDA model, new leaf nodes are uniformly added to an edge of the existing

tree, whereas the Yule tree selects a pendant edge randomly and adds a new node to this

pendant edge. During the construction process, PDA, RTP and RTP′ can all attach new

leaves to interior edges. For the PDA process, this has probability of almost 1/2 (and much

less for RTP), as the number of leaves increases. In the case of RTP′, beyond seven leaves,

all further leaves are attached to a pendant edge, just as in the YH model. However, we

found evidence that the variational distance between YH and RTP′ appeared to remain

bounded away from zero even when n tends to infinity, which suggested that they are still

two distinct tree construction methods. Thus, we conjectured that the RTP process was

different from the YH process. Even so, we have verified that the RTP process would

eventually not add new leaves onto interior edges after some point, which would make the

RTP process become more like the YH process.

By comparing the YH model and the Kingman model, we found that these two dif-

ferent processes had the same probability distribution on tree topologies. Therefore, we

generalised these two models as the YHK model. We applied the three properties that

both YHK and PDA shared: the EP, GE and SC properties to derive the probabilities

that a set is a clade and that two compatible sets are clades in rooted trees. These clade

probabilities were extended to the cases of k > 2 compatible clades under both the YHK

and PDA models.

By using the clade probabilities in rooted trees, we derived the clan probabilities in

the unrooted trees. Under both the YHK and PDA models, we found that two clades

were compatible, they were positively correlated. However, the correlation appeared to be

weak. Similarly, two clans under the PDA model were also positively correlated. We also

related the clade probabilities to the balance of a rooted tree, and showed an alternative
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proof and a new expression for computing the expected value of the Sackin index under

the YHK model and the PDA model respectively

In this thesis, we also considered the scenarios that phylogenies and genealogies were

not binary trees, in which the speciation and coalescent process could not be modelled by

the YH process and the Kingman process respectively.

For closely related species, interbreeding is likely to occur, which makes it very difficult

to infer the phylogeny from genealogies, because of the incongruent gene tree shapes. In

this research, we focused on calculating the probabilities of gene trees for a given set of

taxa, with the presence of both lineage sorting and hybridization events. I developed a

program for this project that can decompose a species network into a sequence of networks,

according to the gene trees’ coalescent histories, and can then compute the gene tree prob-

ability, given the species network, as a linear combination of the gene tree probabilities,

given a set of species trees.

We are still working on the identification of networks from a set of gene trees and

their frequencies. Our prelimneary results have made us believe that using the different

number of gene tree probabilities can help us to identify certain types and numbers of

hybridization patterns.

Finally, I developed another program to simulate gene trees within a species network

or tree. This program is different from ‘ms’ and ‘simcoal’. It allows the user to simu-

late genealogies from the Kingman coalescent process or the Λ-coalescent process. This

program can undertake some simple analysis of the simulated gene tree topologies and

simulate a segregating data-set from the infinite site model.
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Appendix A

Symbols used

Chapter 2

P (E) probability of the event E
P (E1|E2) conditional probability of the event E1 given the event E2

A|Ac split of A and Ac

E [X] expected value of the random variable X
var(X) variance of the random variable X
fX(x) probability mass/density function of the random variable X
FX(x) probability distribution function of the random variable X

Chapter 3

Tn labelled and unrooted binary tree with n leaves
tn unlabelled and unrooted binary tree with n leaves
T (n) set of labelled and unrooted binary trees with n leaves
S(n) set of unlabelled and unrooted binary trees with n leaves
PYH(E) probability of the event E under the YH process
PRTP(E) probability of the event E under the RTP process
PRTP′(E) probability of the event E under the modified RTP process
Cn number of cherries in a YH tree
C∗n number of cherries in a RTP tree

Chapters 4 and 5

TX or T rooted tree on X
Tn rooted tree with n leaves
YX or Y unrooted tree on X
T−ρ unrooted tree induced from the rooted tree T
ϕ(n) number of rooted binary trees with n taxa
C(T ) collection of clades of all X-trees
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PYH(E) probability of event E under the YH process
PK(E) probability of event E under the Kingman process
PYHK(E) probability of event E under the YHK process
PPDA(E) probability of event E under the PDA model
pn(A) probability that a subset A of X, n = |X|, is a clade of a YHK tree
pn(A,B) probability that the subsets A and B of X, n = |X|, are clades of a

YHK tree
qn(A) probability that a subset A of X, n = |X|, is a clan of an unrooted YHK

tree
qn(A,B) probability that subsets A and B of X, n = |X|, are clans of an unrooted

YHK tree
p′n(A) probability that a subset A of X, n = |X|, is a clade of a PDA tree
p′n(A,B) probability that the subsets A and B of X, n = |X|, are clades of a PDA

tree
q′n(A) probability that a subset A of X, n = |X|, is a clan of an unrooted PDA

tree
q′n(A,B) probability that the subsets A and B of X, n = |X|, are clans of an

unrooted PDA tree

Chapter 6

T or T ′ gene tree
W species network
W ′ species tree
λi branch length in coalescent units
γj probability that a lineage at a hybrid node is from the first parent node

Chapter 7

τi branch length of branch i in number of generations
ti branch length of branch i in coalescent units
Ni/2 population size of branch i, assuming that the population size does not

change within a branch
Ni number of gene copies in branch i
µ constant mutation rate per locus per generation
θi mutation rate per generation of population i

108



Appendix B

Technical details

Justification of Lemma 4

Proof. At edge e, suppose that A and B partition Xn, where n− 1 ≥ k ≥ 1, |A| = k and

|B| = n − k. Let {a, b, c} be a subset of Xn of size three. Suppose that a new leaf x is

to be attached to e. Let q be a split of {x, a, b, c}, such that q = xc|ab, xa|bc, xb|ac with

equal probabilities. Suppose that a and b are always on one side of e. We consider the

following four cases: 

Case I c ∈ B and {a, b} ⊆ A;

Case II {a, b, c} ⊆ B;

Case III c ∈ A and {a, b} ⊆ B;

Case IV {a, b, c} ⊆ A.

We use QI, QII, QIII and QIV to denote the set of quartet trees on the leaf set {x, a, b, c}
in Cases I, II, III and IV respectively, and let Q be the entire set of quartet trees for the

leaf set {x, a, b, c}. Since the four cases are mutually exclusive, each Qi partitions Q,

i ∈ {I, II, III, IV}, and the size of each Qi is |QI| =

(
k

2

)
×
(
n− k

1

)
, |QII| =

(
n− k

3

)
,

|QIII| =
(
n− k

2

)
×
(
k

1

)
and |QIV| =

(
k

3

)
.

Let w(e) be a random variable for the weight that is added to e for a quartet tree from

{x, a, b, c}. Consider w(e) for each case {I, II, III, IV}. Then we have:

� Cases I and III: w(e) =


1, w.p.

2

3
;

0 w.p.
1

3
,

� Cases II and IV: w(e) = 0.

Let Wi(e), i ∈ {I, II, III, IV}, be the sum of all the weights added to the edge e. WI(e)

is a binomial random variable with the parameters

(
k

2

)(
n− k

1

)
and

2

3
; WIII(e) is a

binomial random variable with the parameters

(
n− k

2

)(
k

1

)
and

2

3
; WII = WIV = 0. Let
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Wn(e) be the sum of Wi(e), so that Wn(e) = WI(e) + WIII(e). Let n1 =

(
k

2

)(
n− k

1

)
,

and n2 =

(
n− k

2

)(
k

1

)
. Then we have:

n1 + n2 =
k(n− k)(n− 2)

2
,

and so Wn(e) consists of this many independent trials with a probability of success on

each trial of
2

3
. That is, Wn(e) is a binomial random variable with the parameters

k(n− k)(n− 2)

2
and

2

3
.

Justification of Inequality (3.1)

Let EP
n denote the set of pendant edges of the current Xn-tree Tn, and let EI

n be the set

of interior edges.

Lemma 18. For any e′′ ∈ EP
n and any e′ ∈ EI

n, the expected pendant edge total weight

Wn(e′′) and the expected interior edge total weight Wn(e′) satisfy the inequality:

E
[
Wn(e′)

]
− E

[
Wn(e′′)

]
≥ 1

3

[
n2 − 5n+ 6

]
> 0. (B.1)

Proof. Wn(e′′) and Wn(e′) are binomial random variables with the same probability of

success,
2

3
, but a different number of trials

(
n− 1

2

)
and

k(n− k)(n− 2)

2
, where k ∈

{2, . . . , n− 2}. Thus we have:

E[Wn(e′′)] =
2

3

(
n− 1

2

)
, E[Wn(e′)] =

2

3

k(n− k)(n− 2)

2
.

For a fixed n, E
[
Wn(e′)

]
− E

[
Wn(e′′)

]
is a function of k. Therefore, to find the

minimum difference between these two expected values, we need to find the value(s) of k

for which E
[
Wn(e′)

]
− E

[
Wn(e′′)

]
is minimal.

Let y = (n − 2)(n − k)k − (n2 − 3n + 2), then
dy

dk
= (n − 2)(n − 2k). When k =

n

2
,

dy

dk
= 0,

d2y

dk2
< 0. Thus, there is a maximum at k =

n

2
, and minimum values occur at

k = 2 or k = n− 2. Therefore, when k = 2 or k = n− 2:

1

3

[
n2 − 5n+ 6

]
≤ E

[
Wn(e′)

]
− E

[
Wn(e′′)

]
.

Moreover, it is easily shown that for n > 3,
1

3

[
n2 − 5n+ 6

]
> 0. Therefore

E
[
Wn(e′)

]
− E

[
Wn(e′′)

]
≥ 1

3

[
n2 − 5n+ 6

]
> 0.
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Theorem 18. For any e′′ ∈ EP
n and any e′ ∈ EI

n, we have:

P
(
Wn(e′′) ≥Wn(e′)

)
≤ 2 exp(− 1

576
n).

Proof. Let W ′′n = Wn(e′′)− E
[
Wn(e′′)

]
,

W ′n = Wn(e′) − E
[
Wn(e′)

]
, and β = E

[
Wn(e′)

]
− E

[
Wn(e′′)

]
. By Lemma 18, for n ≥ 4,

β ≥ 2dn2, where d =
1

48
.

Now, we have:

P
(
Wn(e′′) ≥Wn(e′)

)
=P
(
W ′′n −W ′n ≥ β

)
≤P
(
W ′′n ≥

β

2
or −W ′n ≥

β

2

)
≤P
(
W ′′n ≥

β

2

)
+ P

(
−W ′n ≥

β

2

)
≤P
(
W ′′n ≥ dn2

)
+ P

(
−W ′n ≥ dn2

)
.

We now apply Hoeffding’s inequality to the two terms on the right. Suppose that

{Yi, i = 1, 2, 3, ..., N} are independent Bernoulli random variables, and let Y =
N∑
i=1

Yi. By

Hoeffding’s inequality (Hoeffding, 1963), we have:

P (Y − E(Y ) ≥ t) ≤ exp
(
−2t2/N

)
,

P (−(Y − E(Y )) ≥ t) ≤ exp
(
−2t2/N

)
.

Taking Y = W ′n (and W ′′n ), t = dn2 , and N =
k(n− k)(n− 2)

2
in the previous string of

inequalities, gives:

P
(
Wn(e′′) ≥Wn(e′)

)
≤ 2 exp(− 1

576 kn(1− k
n)(1− 2

n)
n),

≤ 2 exp(− 1

576
n).

Justification of Inequality (3.2)

Proof. We will use Theorem 18 to establish Inequality (3.2). For e′′ ∈ EP
n and e′ ∈ EI

n, let

D be the event that min
e′′∈EP

n

{Wn(e′′)} < min
e′∈EI

n

{Wn(e′)}.
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Consider the complement of the event D,

Dc =

(
min
e∈EP

n

{Wn(e′′)} < min
e′∈EI

n

{Wn(e′)}
)c
,

such that: Wn(e′) < min
e′′∈EP

n

{Wn(e′′)}, Wn(e′) ≤ Wn(e′′), for all e′′ ∈ EP
n . Let Ae′′,e′ be the

event that Wn(e′′) > Wn(e′). Then we have Dc ⊆
⋃

(e′′,e′)∈P×I

Ae′′,e′ , and so

P (Dc) ≤ P

 ⋃
(e′′,e′)∈P×I

Ae′′,e′

 .

According to Boole’s inequality, we have:

P

 ⋃
(e′′,e′)∈P×I

Ae′′,e′

 ≤ ∑
(e′′,e′)∈P×I

P(Ae′′,e′). (B.2)

Now, the number of pendant edge is n, i.e. |P | = n, and the number of interior edges is

n − 3, i.e. |I| = n − 3. Thus, |P × I| = n(n − 3), and so, by Theorem 18, P(Ae′′,e′) =

P
(
Wn(e′′) ≥Wn(e′)

)
≤ 2 exp(− 1

576
n). Thus we have:

∑
(e′′,e′)∈P×I

P(Ae′′,e′) ≤ n(n− 3)2 exp(− 1

576
n) ≤ 2n2 exp(− 1

576
n). (B.3)

Therefore:

P
(

min
e′′∈EP

n

{Wn(e′′)} ≤ min
e′∈EI

n

{Wn(e′)}
)
≥ 1− 2n2 exp(− 1

576
n).

Justification of Inequality (3.3)

Proof. Since
k2 exp(−ck)

exp(−ck/2)
= k2 exp(−ck/2), and k2 exp(−ck/2) ≤ 1 for c ≥ 4 log k

k
and

k > 1, we have:

k2 exp(−ck) ≤ exp(− c
2
k).

Thus

∞∑
k=m

k2 exp(−ck) ≤
∞∑
k=m

exp(− c
2
k), where c ≥ 4 log k

k
and k > 1. Since

∞∑
k=m

exp(− c
2
k)

is the sum of a geometric series:

∞∑
k=m

exp(− c
2
k) =

exp(−cm/2)

1− exp(−c/2)
.
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For m ≥ m0, exp(−cm/2) ≤ exp(−cm0/2). Therefore,
∞∑
k=m

k2 exp(−ck) ≤ exp(−cm0/2)

1− exp(−c/2)
.

Justification of Lemma 7

Proof. We use induction to show Lemma 7.

For the trivial case n = 2, the maximal clades of T2 are the leaves, which have size 1, i.e.

1 ≤ u ≤ 1, u = 1, which leads the probability in Equation (4.6) to be equal to 1.

Suppose that for n ≤ k, Pn(U = u) =


1

n− 1
, u ∈ {1, 2, . . . , n− 1},

0, otherwise.
is true.

For u = 1, since Pk(U = 1) =
1

k − 1
, Pk+1(U = 1) = Pk(U = 1)

k − 1

k
=

1

k
.

For 1 < u ≤ n− 1:

Pk+1(U = u) = Pk(U = u)
k − u
k

+ Pk(U = u− 1)
u− 1

k

=
1

k
.

Justification of Lemma 8

Proof. Let U be a discrete uniform random variable on 1 to n− 1, that is:

P(U = i) =


1

n− 1
, i ∈ {1, 2, . . . , n− 1};

0, otherwise.

Let V be a random variable, such that V = min{U, n− U}. For j ∈ {1, . . . , n
2
}:

P(V = j) = P(U = j or n− U = j)

= P(U = j) + P(U = n− j)− P(U = n− U = j)

= P(U = j) + P(U = n− j)− P(U = j =
n

2
)

=
1

n− 1
+

1

n− 1
−

0, n is odd,
1

n− 1
, n is even,

=


2

n− 1
, 1 ≤ j < n

2
;

1

n− 1
, j =

n

2
.
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Justification of Lemma 10

Proof. Xn(a) is the number of proper clades of size a in a random YHK tree. Let Z1 and

Z2 be random variables such that: Z1(a) =

1, a = r,

0, otherwise
; and Z2(a) =

1, a = n− r,

0, otherwise.

We now have Xn(a) = Xr(a)+Xn−r(a)+Z1(a)+Z2(a). We can combine Z1(a) and Z2(a)

as Xn(a) = Xr(a) +Xn−r(a) + Z(a), where

Z(a) =


1, a = r or a = n− r;

2, a = r =
n

2
;

0, otherwise.

Let Er be the event that the maximal clades are of size r, n − r, where r ≤ n

2
. By

probability theory, we have:

E[ω] =
∑
α

E[ω|Eα]P[Eα].

Let ω = Xn(a), and let Eα be the event Er. We have:

E[Xn(a)] =

bn
2
c∑

r≥1

E[Xn(a)|Er]P[Er],

and:

E[Xn(a)] = E[Xr(a) +Xn−r(a) + Z(a)].

By the linearity of the expected value, the expected values of the sum of random variables

is the sum of the expected value of these random variables:

E[Xn(a)|Er] = E[(Xr(a) +Xn−r(a) + Z(a))|Er]

= E[Xr(a)|Er] + E[Xn−r(a)|Er] + E[Z(a)|Er],

where E[Z(a)|Er] =


1, a = r or a = n− r;

2, a = r =
n

2
;

0, otherwise.

When n = 1, the Yule tree Tn is just a single point and there are no strict clades other

than the root. Therefore, X1(a) is always 0 and the expected value is zero.

When n = 2, the strict clade size can only be one, since 1 ≤ a ≤ 2 − 1. There exist

two maximal clades of size one. Previously, we found X1(1) = 0, and E[X1(1)] = 0, so

E[X2(1)] = 2.

When n = 3, there is a maximal clade of size one, and the other has size two. There

is only one possible topology for an unlabelled T3, so E[X3(1)] = 3, and E[X3(2)] = 1.
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Suppose that when n = k − 1, we have:

E[Xn(a)] =


2(k − 1)

a(a+ 1)
, 1 ≤ a ≤ k − 1;

0, a > k − 1.

For n = k, since 1 ≤ r ≤ n− r ≤ n− 1, we have:

E[Xr(a)] =


2(r)

a(a+ 1)
, 1 ≤ a ≤ r − 1,

0, a > r − 1

;

and:

E[Xn−r(a)] =


2(n− r)
a(a+ 1)

, 1 ≤ a ≤ n− r − 1,

0, a > n− r − 1.

When a <
n

2
and n is odd, we have:

E[Xn(a)] =
2

n− 1

n−1
2∑

r=1

E[Xn−r(a)] +

n−1
2∑

r=a+1

E[Xr(a)] + 1


=

2

n− 1

2n(n−1
2 )− 2

∑n−1
2

r=1 r

a(a+ 1)
+

2
∑n−1

2
r=a+1 r

a(a+ 1)
+ 1


=

2n

a(a+ 1)
.

When a <
n

2
, and n is even, we have:

E[Xn(a)] =
2

n− 1

n
2
−1∑
r=1

E[Xn−r(a)] +

n
2
−1∑

r=a+1

E[Xr(a)] + 1

+
1

n− 1

[
2(n− n

2 )

a(a+ 1)
+

2n2
a(a+ 1)

]
=

2n

a(a+ 1)
.
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When a =
n

2
and n is even, we have:

E[Xn(a)] =
2

n− 1

n
2
−1∑
r=1

E[Xn−r(a)]

+
1

n− 1
× 2

=
2

n− 1

n
2
−1∑
r=1

E[Xn−r(a)] + 1


=

2n
n
2 (n2 + 1)

=
2n

a(a+ 1)
.

When a >
n

2
and n is even or odd, we have:

E[Xn(a)] =
2

n− 1

bn2 c∑
r=1

E[Xn−r(a)] + 0 + 1


=

2

n− 1

[
n−a−1∑
r=1

E[Xn−r(a)] + 0 + 0 + 1

]

=
2n

a(a+ 1)
.

Further justification of Corollary 3

Proof.

Case 1. It is clear that pn(A,B) = pn(A) = pn(B) = p, and for 0 < p < 1, we have

p > p2. Thus ρn(A,B) > 1.

Cases 2 and 3:

pn(A,B)

pn(A)pn(B)
=

4n
a(a+1)(b+1)

(
n
b

)−1(b
a

)−1

2n×2n
(a(a+1)b(b+1)

(
n
a

)−1(n
b

)−1 =
bn(n− 1) · · · (n− a+ 1)

nb(b− 1) · · · (b− a+ 1)
,

where,
n− 1

b− 1
> 1, · · · , n− a+ 1

b− a+ 1
> 1. Thus ρn(A,B) > 1.
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Case 4:

pn(A,B)

pn(A)pn(B)
=

2
n−1

(
n
a

)−1

2n
a(a+1)

(
n
a

)−1 2n
(n−a)(n−a+1)

(
n

n−a
)−1

=
1

n− 1

(
n

a

)(
2n× n

(n− a)(n− a+ 1)a(a+ 1)

)−1

=
n(n− 1)(n− 2) · · · (n− a+ 1)(a+ 1)a(n− a)(n− a+ 1)

[a(a− 1)!]× 2n× n× (n− 1)

=

(
n− 2

a− 1

)
(a+ 1)(n− a+ 1)

2n

For a ≥ 2 and n− a ≥ 2, we have n ≥ 4. Thus

(
n− 2

a− 1

)
≥ 2.

Since (a + 1)(n − a + 1) = an − a2 + a + n − a + 1 = (an − a2 + 1) + n > n, this

implies that
(a+ 1)(n− a+ 1)

n
> 1, and thus ρn(A,B) > 1.

Case 5:

pn(A,B)

pn(A)pn(B)
=

4n
(
n−b
a

)−1(n
b

)−1 n(a+b)(a+b+1)(a+b−1)−(a+b−1)(a+b)[a(a+1)+b(b+1)+ab]+ab(a+1)(b+1)
(a+b)(a+b+1)(a+b−1)ab(a+1)(b+1)

2n×2n
ab(a+1)(b+1)

(
n
a

)−1(n
b

)−1

=
1

n

(
n− b
a

)−1(n
a

)
n(a+ b)(a+ b+ 1)(a+ b− 1) +G(a, b)

(a+ b)(a+ b+ 1)(a+ b− 1)

=
n(n− 1) · · · (n− a+ 1)a!

(n− b)(n− b− 1) · · · (n− b− a+ 1)a!

n(a+ b)(a+ b+ 1)(a+ b− 1) +G(a, b)

n(a+ b)(a+ b+ 1)(a+ b− 1)

=
n(n− 1) · · · (n− a+ 1)

(n− b)(n− b− 1) · · · (n− b− a+ 1)

n(a+ b)(a+ b+ 1)(a+ b− 1) +G(a, b)

n(a+ b)(a+ b+ 1)(a+ b− 1)
.

where G(a, b) = −(a+ b− 1)(a+ b)[a(a+ 1) + b(b+ 1) + ab] + ab(a+ 1)(b+ 1)

For a ≥ 2, b ≥ 2 and n ≥ (a+ b+ 1), ρn(A,B) > 1.
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Appendix C

hybrid coal user manual

C.1 Introduction

In phylogenetic studies, trees are used for describing evolutionary histories. In particu-
lar, a species tree presents population divergences, and a gene tree indicates the times
when genes started to differentiate within populations. Even though speciation is driven
by gene mutations, using a single gene tree to infer the species tree is not ideal. Often,
the inconsistency among gene trees and species trees makes describing the relationships
between and among species very difficult. Common causes of the conflict include gene
duplication, horizontal gene transfer, incomplete lineage sorting, and hybridization (Hol-
land et al., 2008; Meng and Kubatko, 2009). If speciation events occur close together, it is
likely that some gene copies remain the same after species divergence. This inconsistency
between gene trees and species trees is referred as incomplete lineage sorting.

Hybridization refers to interbreeding between species. Offspring who carry genes from
both parental species then reproduce and form a new species. For closely related species,
however, both lineage sorting and hybridization are likely to occur, e.g. an avian genus
Manacus (Brumfield and Carling, 2010) or the New Zealand alpine cicadas (Buckley et al.,
2006). Here, I present research on the probabilistic modelling of coalescence with lineage
sorting in hybridized species. In these models, the relationships among species are rep-
resented by a network rather than a tree, while relationships at the gene level are still
represented by trees.

hybrid coal has been developed to calculate the gene tree probabilities within a
species network.

C.2 Download and installation

hybrid coal can be downloaded from https://code.google.com/p/hybrid-coal/. Ex-
tract the source code by executing the following command:

tar -xf hybrid coal-VERSION.tar.gz.

It is fairly standard to compile hybrid-Lambda on UNIX-like systems. In the directory
hybrid coal-VERSION, execute the following command:

$./bootstrap

$make

Note: The command make doxygen-run will generate HTML documentation of the
source code.
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C.3 Notation

C.3.1 Coalescent parameters

Under the coalescent process, the waiting time for lineages to coalesce is an exponential
random variable. The Kingman coalescent process only allows two lineages to coalesce at

a time. Thus, the mean waiting time for b lineages to coalesce into b− 1 lineages is

(
b

2

)
per unit of time.

C.3.2 Input/output formats

The input file for hybrid coal is a character string that describes the relationships among
species. Standard Newick format (Olsen, 1990) is used for inputting species trees and
outputting gene trees, e.g.:

((A : tA, B : tB) : tAB, C : tC), (C.1)

where ti denotes the branch length from i to its parent node in coalescent units.

Extended Newick formatted strings (Cardona et al., 2008; Huson et al., 2010) label all
internal nodes, and are used for inputting species networks. In the network string, the
descendants of a hybrid node are recorded before the hybrid node the first time the hybrid
node occurs; otherwise, it is written as a tip node. For example:

(((B : tB)h#γ : ts1h , A : tA)s1 : ts1, (h#γ : ts2h , C : tC)s2 : ts2)r, (C.2)

where # identifies the hybrid node.

At a hybrid node, lineages travel to either parent node with given probabilities. The
parameter γ denotes the probability of that the lineage goes to the first parent node.
Since the hybrid node has two parent nodes, the branch length needs to be specific, i.e. tji
denotes the branch length from i to j in coalescent units.
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C.4. COMMANDS:

C.3.3 Method

The coalescent model of Degnan and Salter (2005) is extended to obtain the distribution
of gene trees (T ) in a given network (W ). The network W is initially reduced to a set
of simpler networks (SG(W )) in a single step of the reduction process. By standard
probability theory, we have the following:

P (T |W ) =
∑

w∗∈SG(W )

P (T |W ∗ = w∗)P (W ∗ = w∗|W )

When each network w∗ is obtained from W by removing an edge or a node, we will
apply the recursion to reduce the networks on W ∗ until all the simpler network structures
are tree-like. The problem of obtaining gene tree probabilities from species trees has
already been solved by Degnan and Salter (2005). The approach we have outlined will
therefore reduce the probability of a gene tree, given a species network, into a linear
combination of gene tree probabilities, given species trees.

C.4 Commands:

C.4.1 Generating a list of all gene tree topologies in a taxa set

hybrid coal -sp INPUT1 -gtopo

hybrid coal -sp INPUT1 -gtopoF OUTPUT

INPUT1 is a Newick formatted string (see Section C.3.2), which does not have to be a
binary tree. For example, to generate a gene tree topology for the taxon set {A,B,C}:

hybrid coal -sp '(A,B,C)r;'-gtopo.

The default setting will save the gene tree topologies to the file GENE topo. The file name
can be specified via the option -gtopoF.

(A,C),B);

(A,(B,C));

((A,B),C);

To generate gene tree topologies for multiple lineages for the same species, e.g. for the
taxon set {A,B,C} with two lineages of species A, use the command:

hybrid coal -sp '(A 1,A 2,B,C)r;' -gtopoF A2BC.

(((A_1,C),B),A_2);

((A_1,(B,C)),A_2);

(((A_1,B),C),A_2);

((A_1,B),(A_2,C));

(((A_1,B),A_2),C);

((A_1,C),(A_2,B));

(A_1,((A_2,C),B));

(A_1,(A_2,(B,C)));

(A_1,((A_2,B),C));

((A_1,(A_2,B)),C);

(((A_1,C),A_2),B);
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((A_1,(A_2,C)),B);

(((A_1,A_2),C),B);

((A_1,A_2),(B,C));

(((A_1,A_2),B),C);

C.4.2 Calculating gene tree probabilities of a given species network

hybrid coal -sp INPUT1 [-gt INPUT2] [-out OUTPUT]

INPUT1 is a(n) (extended) Newick formatted string (see Section C.3.2), which can be
entered through the command line or a text file.

The flags -gt and INPUT2 are optional. INPUT2 is a Newick formatted string of a
gene tree topology, which can be entered through the command line or from a text file,
where users can specify several gene trees. If gene trees are not specified, hybrid coal

will generate all possible gene tree topologies and then compute the probabilities. For
example:

hybrid coal -sp '((A:1,B:1):1,C:2)r;'.

will print the following message:

1 ((A,C),B) 0.122626

2 (A,(B,C)) 0.122626

3 ((A,B),C) 0.754747

Total 1

Species Input: ((A:1,B:1):1,C:2)r;

Species structure: ((A:1,B:1):1,C:2)r;

Total probability: 1

Gene tree probabilities produced in file: out_coal.

The gene tree probabilities are saved in the file out coal by default. Users can specify
the filename via the option -out.

C.4.3 Generating Maple script for the gene tree probabilities

hybrid coal can also generate Maple script to calculate the gene tree probabilities. The
option -symb enables users to calculate the symbolic probabilities of the gene trees for
analytic work. By default, the Maple script is saved in the file maple prob.mw. Users can
specify the filename via the option -mapleF.

hybrid coal -sp INPUT1 [-gt INPUT2] -maple [-symb].

hybrid coal -sp INPUT1 [-gt INPUT2] -mapleF OUTPUT.

C.4.4 Generating coalescent histories for the gene tree probabilities

hybrid coal can also generate extensive LATEX code for users to study the coalescent
history of a gene tree within a network.

hybrid coal -sp INPUT1 [-gt INPUT2] -latex.

hybrid coal -sp INPUT1 [-gt INPUT2] -latexF OUTPUT.
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C.5. SUMMARY OF COMMAND LINE OPTIONS

C.4.5 Commands for other features:

Plot

hybrid coal -sp INPUT -dotF OUTPUT [-branch].

hybrid coal uses the program dot to generate figures. The option [-branch] will label
the branch lengths in the figure, e.g.:

hybrid coal -sp trees/7 tax sp nt1 para -dot -branch.

6

s_6

0.1

s_1

0.4

7

0.1

s_2

1.1

2

0.5

s_3

3.3

3

1.6

h_2

2

4

4.9

s_4

1.41

s_5

0.3

r

0.1 1.21

5

8.31

1

7.2

If the option -dot is used instead of -dotF OUTPUT, the figure will be saved in the file
figure.pdf by default.

Alternatively, by replacing -dotF with plotF, hybrid coal can generate LATEX code
for plotting a network/tree. If -plot is used instead of -plotF OUTPUT, LATEX code will
be saved in the file texfigure.tex by default.

C.5 Summary of command line options

-h or -help Help. List the following content.
-sp INPUT Input the species network/tree string through the

command line or from a file. Branch lengths of the
INPUT are in coalescent units.

-gt INPUT Input the gene tree string through the command line
or from a file.

-latex / -latexF Generate the coalescent history of a gene tree within
a species network.

-maple/ -mapleF Generate a Maple executable script file to calculate
the gene tree probabilities of given species networks.
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-symb Enable the Maple script to calculate the symbolic gene
tree probabilities.

-gtopo / -gtopoF Generate the gene tree topologies of a given set of
taxa.

-plot/-dot [option] Use LATEX(-plot) or Dot (-dot) to draw the input
(defined by -sp) network/tree.

-plotF/-dotF FILE Generated figure will be saved in FILE.
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hybrid-Lambda user manual

D.1 Introduction

hybrid-Lambda is a software package that can simulate gene trees within a rooted species
network or a rooted species tree under the coalescent process. The main feature of this
program is that users can choose to use the standard Kingman coalescent process, which
produces bifurcating genealogies, or two other Λ-coalescent processes, which produce mul-
tifurcating genealogies. The other feature is that hybrid-Lambda uses extended Newick
formatted strings to make it easier to represent hybridization events between species.

A B C D

a1a2a3 b1 c1 c2 d1

species network

gene genealogies
multiple merger

binary mergers

multiple merger

D.2 Download and installation

hybrid-Lambda can be downloaded from https://code.google.com/p/hybrid-lambda/.
Extract the source code by executing the following command:

tar -xf hybrid-Lambda-VERSION.tar.gz.

It is fairly standard to compile hybrid-Lambda on UNIX-like systems. In the directory
hybrid-Lambda-VERSION, execute the following command:

$./bootstrap

$make

Note: The command make doxygen-run will generate HTML documentation of the
source code.
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D.3 Notation

D.3.1 Coalescent parameters

Under the coalescent process, the waiting time for lineages to coalesce is an exponential
random variable. The Kingman coalescent process allows only two lineages to coalesce at
a time. Thus the mean of the waiting time for b lineages to coalesce into b − 1 lineages

is

(
b

2

)
per unit of time. However, for the Λ-coalescent, if the coalescent parameter ψ

is between 0 and 1 (Eldon and Wakeley, 2006), the rate λbk at which k out of b active
ancestral lineages merge is:

λbk =

(
b

k

)
ψk(1− ψ)b−k, ψ ∈ (0, 1). (D.1)

If the coalescent parameter α is between 1 and 2, the rate is:

λbk =

(
b

k

)
B(k − α, b− k + α)

B(2− α, α)
, α ∈ (1, 2), (D.2)

where B(·, ·) is the beta function (Schweinsberg, 2003).

D.3.2 Input/output formats

The input file for hybrid-Lambda is a character string that describes the relationships
among species. Standard Newick format (Olsen, 1990) is used for inputting species trees
and outputting gene trees, e.g.:

((A : tA, B : tB) : tAB, C : tC), (D.3)

where ti denotes the branch length from i to its parent node. hybrid-Lambda uses the
values of ti to assign parameters for different inputs. In Expression (D.3), the interior
nodes are not labelled. However, this is not essential. hybrid-Lambda can also recognise
input Newick string whose nodes are all labelled.

Extended Newick formatted strings (Cardona et al., 2008; Huson et al., 2010) label all
internal nodes, and are used for inputting species networks. In the network string, the
descendants of a hybrid node are recorded before the hybrid node the first time the hybrid
node appears, otherwise is written as a tip node. For example,

(((B : tB)h#γ : ts1h , A : tA)s1 : ts1, (h#γ : ts2h , C : tC)s2 : ts2)r, (D.4)

where # identifies the hybrid node.
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At a hybrid node, lineages travel to either parent nodes with given probabilities. The
parameter γ denotes the probability of that the lineage goes to the first parent node.
Since the hybrid node has two parent nodes, the branch length needs to be specific, i.e. tji
denotes the branch length from i to j.

Normally, standard Newick formatted and extended Newick formatted strings do not
include branch lengths at the root node. However, in this program, this is required, as
the input strings assign population size or the coalescent parameter at the root. Thus,
Expressions (D.3) and (D.4) are associated with Expressions (D.5) and (D.6) respectively:

((A : tA, B : tB) : tAB, C : tC) : troot, (D.5)

(((B : tB)h#γ : ts1h , A : tA)s1 : ts1, (h#γ : ts2h , C : tC)s2 : ts2)r : tr. (D.6)

D.4 Commands for simulation:

D.4.1 Simulating gene trees

hybrid-Lambda -spcu INPUT [-num N] [-seed SEED] [-gF OUTPUT-FILE].

INPUT is a(n) (extended) Newick formatted string (see Section D.3.2), which can be
entered through the command line or from a text file. If the input is followed by the flag
-spcu, its branch lengths must be in coalescent units. The value N following the flag -num

is the number of gene trees simulated. Users can specify a random seed for simulation
by declaring it after -seed. By default, the branch lengths of the output trees are in
coalescent units. They are saved in the file GENE TREE coal unit. The flag -gF enables
the users to name the output files. For example:

hybrid-Lambda -spcu ’((1:1,2:1):1,3:2);’ -num 3 -seed 2 -gF example1 -log

will print the following message:

Default Kingman coalescent on all branches

Random Seed 2 used

Produced gene tree files:

example1_coal_unit

3 trees simulated.

The following gene trees are saved in the file example1 coal unit:
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(1_1:2.98119,(3_1:2.55301,2_1:2.55301):0.428181);

(3_1:6.66739,(2_1:1.06869,1_1:1.06869):5.5987);

(3_1:2.38966,(2_1:1.0722,1_1:1.0722):1.31746);

D.4.2 Gene tree output options and user-defined mutation rate

hybrid-Lambda -spcu INPUT [-gF OUTPUT-FILE] [-mu MU] [option]

By default, the mutation rate µ = 0.00005 is used. The flag -mu makes it possible
for users to define a constant mutation rate. Moreover, the options in [ ] enable more
manipulations of the output gene trees. These options include:

-sim mut unit Convert the simulated gene tree branch lengths to mu-
tation units.

-sim num gener Convert the simulated gene tree branch lengths to
number of generations.

-sim num mut Simulate the number of mutations on each branch of
the simulated gene trees.

-sim Si num Generate the file out table, which includes the num-
ber of segregating sites and the total branch length of
the gene tree in coalescent units.

For example, suppose the input network string in the file 4 tax sp nt1 para is

((((B:1,C:1)s1:1)h1#.5:1,A:3)s2:1,(h1#.5:1,D:3)s3:1)r.

hybrid-Lambda -spcu trees/4 tax sp nt1 para -gF example2 -num 2 -mu 0.00003

-sim mut unit -sim num mut

will generate the following files:

$ cat example2_coal_unit

((B_1:1.9099,C_1:1.9099):2.82957,(A_1:4.05317,D_1:4.05317):0.686292);

((D_1:3.77974,(C_1:1.2291,B_1:1.2291):2.55064):0.369812,A_1:4.14956);

$ cat example2_mut_unit

((B_1:0.57297,C_1:0.57297):0.848871,(A_1:1.21595,D_1:1.21595):0.205888);

((D_1:1.13392,(C_1:0.36873,B_1:0.36873):0.765192):0.110944,A_1:1.24487);

$ cat example2_num_mut

((B_1:1,C_1:1):2,(A_1:1,D_1:1):0);

((D_1:0,(C_1:1,B_1:1):0):0,A_1:3); .

D.4.3 User-defined population sizes

hybrid-Lambda -spcu INPUT-1 -pop INPUT-2

By the default setting, the population sizes for each species are assumed to be equal and
unchanged at any time, which is 10,000. This can be reassigned to other constant values
followed by -pop. As a result, the branch lengths of the gene trees in number of generations
will change. This can be observed though the option -sim num gener. For example, to
simulate gene trees within a species network/tree with a population size of 25,000, we use
the following:

hybrid-Lambda -spcu INPUT -num N -pop 25000 -sim num gener.
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This command will also produce gene trees for which the branch lengths are in number of
generations, saved in the file GENE TREE num gener.
Note: The population size refers to the number of gene copies, not the number of indi-
viduals.

Instead of inputting a species network with branch lengths in coalescent units, input
strings can have branch lengths representing the number of generations. Moreover, in the
following example, we demonstrate that if the population sizes are assumed to vary, the
input strings in Expression (D.5) can specify the population sizes on all branches and the
root.

hybrid-Lambda -spng ’(A:50000,B:50000)r;’ -pop ’(A:50000,B:50000)r:40000;’.

D.4.4 Simulating multiple samples per species

hybrid-Lambda -spcu INPUT -S n1 n2 ...

hybrid-Lambda sorts the taxa names in a particular order. At each character of a taxon
name, it sorts:

� numerics in ascending order,

� letters in alphabetical order,

� numerics then letters,

� upper-case letters then lower-case letters.

To sample multiple individuals, the order of the sample sizes needs to follow the order of
the taxa names.

For example:

hybrid-Lambda -spcu ’((((A:1.1,B:1.1):2.1,a:2.2):1.1,13D:.2):.3,4:.3);’

-S 2 4 3 6 5 .

The order of the taxon names is 13D, 4, A, B and a. Thus, the program will sample 2
individuals in taxon 13D, four samples from taxon 4, three samples from taxon A, six
samples from taxon B and five samples from taxon a.

D.4.5 Simulating gene trees with multiple merger coalescents

hybrid-Lambda -spcu INPUT-1 -mm INPUT-2

The Kingman coalescent is assumed by default. To use the Λ-coalescent, the coalescent
parameter needs to be specified after -mm. For details, see Equation (D.1) and (D.2).
Moreover, similar to assigning particular population sizes on branches (see the examples
in Section D.4.3), coalescent parameters can be specified as well. In this case, to assume
the Kingman coalescent within some population, the multiple merger parameter needs to
be set to 2. For example:

hybrid-Lambda -spcu ’(A:1,B:1)r;’ -mm ’(A:1.9,B:.2)r:2;’ -S 3 4.
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D.4.6 Commands for other features:

Plot

hybrid-Lambda -spcu INPUT -dotF OUTPUT [-branch]

hybrid-Lambda uses the program dot to generate figures. The option [-branch] will
label the branch lengths in the figure, e.g.:

hybrid-Lambda -spcu trees/7 tax sp nt1 para -dot -branch
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If the option -dot is used instead of -dotF OUTPUT, the figure will be saved in the file
figure.pdf by default.

Alternatively, by replacing -dotF with plotF, hybrid-Lambda can generate LATEX code
for plotting a network or tree. If -plot is used instead of -plotF OUTPUT, the LATEX code
will be saved in the file texfigure.tex by default.

Analysing the frequencies of gene trees

hybrid-Lambda can generate a topology frequency table for the simulated gene trees by:

hybrid-Lambda -spcu INPUT -num N -fF OUTPUT .

hybrid-Lambda -gt INPUT -fF OUTPUT

reads trees in the file INPUT, and generates a topology frequency table in the file OUTPUT.
If the option -f is used instead of -fF OUTPUT, the analysed frequency table will be saved
in the file freq out by default.
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Simulating and analysing the monophyly topology of the gene trees

hybrid-Lambda -spcu INPUT-1 -S n1 n2 -mono [-mm INPUT-2]

Recent studies on the shape of genealogies between two species investigated the proba-
bilities of monophyletic taxa (Eldon and Degnan, 2012; Rosenberg, 2003). The option
-mm generates a frequency table of the gene trees whose taxa are monophyletic in one
population, both populations, or are paraphyletic and polyphyletic. For example:

hybrid-Lambda -spcu ’(A:5,B:5)r;’ -mono -num 100 -mm .1 -S 4 4 -log

will print the following message:

A mono B mono Recip mono A para B para Polyphyly

0.02 0.01 0 0.02 0.01 0.97

Random Seed 1342238826 used

Produced gene tree files:

GENE_TREE_coal_unit

100 trees simulated.

D.5 Summary of command line options

-h or -help Help. List the following content.
-spcu INPUT Input the species network/tree string through the

command line or from a file. Branch lengths of the
INPUT are in coalescent units.

-spng INPUT Input the species network/tree string through the
command line or from a file. Branch lengths of the
INPUT are in number of generations.

-pop INPUT Population sizes are defined by a single numerical con-
stant, or a string which specifies the population size
on each branch. The string can be inputted through
the command line or from a file. By default, the pop-
ulation size 10,000 is used.

-mm INPUT Multiple merger parameters are defined by a single
numerical constant, or a string which specifies the pa-
rameter on each branch. The string can be inputted
through the command line or from a file. By default,
the Kingman coalescent is used.

-S n1 n2 ... Specify the number of samples for each taxon.
-num N The number of gene trees to be simulated.
-seed SEED User defined random SEED.
-mu MU User defined constant mutation rate µ. By default, a

mutation rate of 0.00005 is used.
-gF FILE [option] Specify the filename for the simulated gene trees.

-sim_mut_unit Convert the simulated gene tree branch lengths to mu-
tation units.

-sim_num_gener Convert the simulated gene tree branch lengths to
number of generations.

-sim_num_mut Simulate the number of mutations on each branch of
the simulated gene trees.
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-f Generate a topology frequency table for a set of input
trees or simulated gene trees. The frequency table is
saved in the file freq out by default.

-fF FILE The topology frequency table will be saved in FILE.
-gt FILE Specify the file to analyse tree topology frequencies.
-tmrca [FILE] Return the TMRCA of the gene trees. TMRCA file is

saved in “tmrcaFILE” by default, user can define the
TMRCA file name by option FILE.

-log [FILE] Enable the log function. Log file is saved in “LOG”
by default, user can define the log file name by option
FILE.

-mono Generate a frequency table of monophyletic, para-
phyletic and polyphyletic trees.

-plot/-dot [option] Use LATEX(-plot) or Dot (-dot) to draw the input
(defined by -spcu) network (tree).

-branch Branch lengths will be labelled in the figure.
-plotF/-dotF FILE The generated figure will be saved in FILE.
-plotF/-dotF FILE The generated figure will be saved in FILE.
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