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Abstract: 

In this work, a differential biofiltration reactor was used to explore the potential of metabolic 

uncouplers to improve pollutant (toluene) degradation rates. Metabolic uncouplers were reported 

to reduce the cell mass in activated sludge systems, but are untested in biofilters and the current 

work is the first to report the impact of different metabolic uncouplers in a biofilter. Initially soil 

was used as a biofilter bed and later experiments were conducted in pure cultures in a biofilm 

reactor. 

A simple diffusion system was developed to generate the desired concentration of toluene to the 

system. Gas chromatography and a carbon dioxide analyzer were connected online to the reactor 

which improved the precision of the data collected and also the robustness of the measurements.   

Preliminary experiments including effect of substrate concentration, different nutrients and 

temperature were done to optimize the conditions before starting the metabolic uncoupler 

screening studies in soil. Based on the results, inlet toluene concentration between 180 ppm and 

250 ppm was used throughout the studies. Also it was found that the toluene degraders were 

nitrogen limited. Temperature studies showed that the elimination capacity (EC) increased with 

increasing temperature, from 34 ± 1.4 g.m
-3

.h
-1

 to 49.8 ± 2.6 g.m
-3

.h
-1

 for temperatures of 20 to 

45
 o
C, respectively.  

Nine potential metabolic uncouplers were screened in batch serum bottles.  The nine uncouplers 

tested were dinitrophenol (dNP), p-nitrophenol (pNP), benzoic acid (BA), carbonylcyanide p-

trifluoromethoxy phenylhydrazone (FCCP), carbonylcyanide m-chloromethoxy phenylhydrazone 

(CCCP), pentachlorophenol (PCP), malonic acid (MA), m-chlorophenol (mCP) and 2, 4, 6-

trichlorophenol (TCP). Other than dNP and pNP (nitrogen containing uncouplers), seven other 

uncouplers were further tested in the differential biofilter reactor. Only PCP and TCP increased 

the toluene degradation rate significantly. PCP increased the toluene degradation rate by 35% at 

140 µM, whereas 4051 µM TCP increased the rate by 18%. Though FCCP behaved as a classical 

uncoupler when compared with others, the EC increase was not significant.  

Five toluene degraders were isolated from soil subjected to toluene and were identified using 16s 

rDNA/18s rDNA analysis. Out of five, two potential toluene degraders, Stenotrophomonas 
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maltophilia and Pseudomonas putida were used to develop a biofilm reactor. PCP, TCP and 

CCCP were tested in the biofilm reactors and found that PCP increased the surface elimination 

capacity (SEC) by 85% at 140 µM in S. maltophilia biofilm reactor and CCCP increased the 

SEC by 27% at 1 µM in P. putida biofilm reactor. Finally a simple model was developed to 

calculate the energy uncoupling coefficient for non-growth systems like ours to quantitatively 

represent the uncoupling mechanism. 
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Chapter 1: Introduction 

1.1 Biofiltration overview 

Biological control of air pollution has many operational and cost advantages over the 

conventional physico-chemical methods in most of the chemical industries
1
.  

Biofiltration  have been used for almost 100 years for waste treatment especially in 

treating highly concentrated effluents (Metcalf and Eddy, 2003). It is an air pollution 

control technology (APCT) frequently used for treating odour and volatile organic 

compounds (VOC’s) from waste air streams. It is a cost-effective approach to volatile 

organic compound (e.g. toluene) removal for large air flows (> 1000 m3h-1 and mostly 

low concentrations < 1000 ppm) (Devinny et al., 1999). In biofiltration, polluted air is 

blown
2
 through a porous media, typically a mixture of compost, soil or wood chips that 

supports a population of microbes. Under optimum conditions, these microorganisms 

convert the absorbed biodegradable contaminants mostly into carbon dioxide salt and 

water (Deshusses and Johnson, 2000). Moreover, in biofiltration the microbial biomass is 

static/immobilized to the bedding material and the treated fluid is mobile/flows through 

the filter (Girard et al., 2009). The biological degradation process in a biofiltration can be 

written as follows,                                           

                                     Microbes 

Organic Pollutant + O2                                  CO2 + Salt + H2O + Heat + Biomass            (1.1) 

 

A suitable packing material should provide minimal pressure drop, minimal tendency for 

compaction, neutral pH (however, varies among different microbes), good water holding 

capacity, pore volume greater than 80%, particle diameter of greater than 4 mm and total 

organic matter content of more than 55% (mostly) (Oh and Choi, 2000). The parameters 

which are used to express the performance of the biofilters are pollutant loading capacity 

(L), elimination capacity (EC) and removal efficiency (RE). These are expressed in Eq. 

(1.2), (1.3) and (1.4) (Kennes and Veiga, 2001)3, 

                                                        
1
 Petrochemical industry, paint industry, pharmaceutical industry, wastewater treatment, meat processing 

etc., 

2
 Diffuses through in case of landfills and waste ponds. 

3
 Nomenclature is defined at the end. 
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 (g.m-3.h-1)                                                (1.2) 

 (g.m
-3

.h
-1

)                                       (1.3) 

 (%)                 (1.4) 

1.2 History of biofiltration 

Biofiltration is considered as one of the less energy utilizing technologies in treating air 

pollutants. Though it has been employed widely in odour treatment and VOC removal for 

the past 100 years in industrial scale, it has been naturally occurring in soil for millions of 

years. Germans were the first to get a patent for this technology during 1941 (Leson and 

Winer, 1991). Between the years 1960 and 1990, there was a huge development in the 

field of biofiltration. In 1963, biofilter was used effectively for treating odour from waste 

water treatment plants in California (Pomeroy, 1982). During 1977, the first soil biofilter 

was designed for organic waste gas removal in Germany (Bohn and Bohn, 1986). During 

1987, it was discovered that odour removal through biofiltration was due to 

biodegradation and not by sorption. It was also found that the removal efficiency (RE) of 

soil bed biofilter filled with different media (Carlson and Leiser, 1966). Most of the 

biofiltration research was carried out in European countries until late 80’s. In the past 

three decades, many biofilters were installed in and huge number of research articles 

pertaining to biofiltration were published in journals and conference proceedings (Lee et 

al., 2002; Leson and Winer, 1991; Oh and Choi, 2000). Fig. 1.1 compares the different 

APCT technologies available so far in treating the industrial air pollutants. 
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Figure 1.1: Comparison of different APCTs (Devinny et al., 1999). J.S. Copyright 2012 

Reproduced with permission of TAYLOR & FRANCIS GROUP LLC-BOOKS in the 

format Journal via Copyright Clearance Center (Order detail ID: 62054904). 

1.3 Biofiltration operating parameters 

Biofiltration is a simple process, depends on many factors which are considered to be 

most critical in its operation. They include temperature, pH, pressure drop, moisture 

content, bed porosity, packing materials, air flow rate, nutrient requirement, oxygen 

requirement, inlet pollutant concentration, maintenance, residence time, microorganisms 

and acclimation time. These are all the most important physical, chemical and biological 

parameters influencing the biofiltration process and are described in detail in the 

following sections. Fig. 1.2 shows the operation of a typical biofilter used to treat a 

polluted air stream at an industrial scale. 
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Figure 1.2: Schematic view of a conventional below ground open biofiltration system 

(Devinny et al., 1999). J.S. Copyright 2012 Reproduced with permission of TAYLOR 

& FRANCIS GROUP LLC-BOOKS in the format Journal via Copyright Clearance 

Center (Order detail ID: 62054904). 

1.3.1 Temperature 

Biofilters are normally operated at ambient temperature. Most researchers have 

reported no significant changes in the pollutant degradation rate with temperatures 

between 20 and 30 oC (Diks and Ottengraf, 1991). However, cooling is mostly needed 

to avoid microbial death above 40 
o
C (Leson and Winer, 1991) unless the microbes 

are thermophilic in nature. There are a few reports which suggests that changing the 

operating temperature would increase the removal efficiency considerably
4
 (Sorial et 

al., 1994). The biodegradation reaction which takes place in a biofiltration system is 

exothermic, due to the consequence of the microbial activity. This also accounts for 

the change in the bed temperature (Delhomenie and Heitz, 2005). Moreover, it was 

proved that the quantity of energy released by the biological reaction can reach 

                                                        
4
 A temperature change from 11

o
 C to 15.5

o
 C increased the RE from 92% to 100%. 
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maximum of 50 kcal.h-1, which means that the temperature gradients within the filter 

bed of the order of 2 to 4 
o
C and even may reach 10 

o
C sometimes for higher VOC 

inlet concentrations (Hwang et al., 2002). A study on toluene degradation rates at 

different operating temperatures showed that maximum toluene degradation rates 

were obtained at  between 30 and 35 
o
C (Park et al., 2002). This optimum temperature 

was also recommended for the removal of benzene, toluene, ethylbenzene and xylene 

(BTEX) (Lee et al., 2002). 

1.3.2 pH 

Similar to temperature, pH is an important parameter to monitor and maintain in 

biofiltration. Beyond the optimum range of pH microbial activity is severely affected 

in biofiltration as most of the microbes in biofilters are neutrophilic in nature 

(Delhomenie and Heitz, 2005). The by-products of microbial degradation in a biofilter 

are mostly organic acids (e.g. acetic acid). Oxidation of halogenated organics and 

reduced sulphur compounds (e.g. H2S) may produce inorganic acid by-products. 

Moreover, pollutants that have heteroatoms are also converted into acid products, 

which tend to reduce pH (Christen et al., 2002). Accumulation of these acids may 

reduce the pH of the bed media below the active pH range
5
 for the microbial 

degradation. A drop in pH may also lead to excess carbon dioxide and intermediate 

production (Ottengraf and Vandenoever, 1983). In order to overcome this problem, 

buffering materials like calcium carbonate, limestone etc., are usually added to the 

bed (e.g. biofilters treating ammonia vapour). However, biofilters using acidophilic 

bacteria for degrading hydrogen sulphide may tolerate a lower pH (van Groenestijin 

and Hesselink, 1994). A study carried out on pH during BTEX degradation showed 

that maximum degradation was observed at pH between 7.5 and 8.0. However, for 

alkyl-benzene degradation, it was reported between 3.5 and 7.0 (Lee et al., 2002). 

1.3.3 Pressure drop 

Large pressure drop across the biofilter can result in air channelling in the bed. This 

will also increase the blower power requirement. Increase in the moisture and 

decrease in the bed pore size may also lead to an increase in pressure drop. 

                                                        
5
 pH between 6 and 9. 
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Accumulation of biomass may also contribute to the increase in pressure drop (Farmer 

et al., 1995).  Overall biofilters dimensions also influence the pressure drop in 

biofilter bed. Usually, the biofilter bed volume ranges between 10 and 3000 m
3
 

(Delhomenie and Heitz, 2005). For a typical biofilter the pressure drop ranges 

between 1 and 10 hPa. Several methods have been developed to prevent filter bed 

clogging and thereby pressure drop due to excess biomass accumulation. These 

methods are in general helpful in nutrient control and the introduction of biomass 

predators (e.g. protozoa) in the biofilter bed on top of pressure drop control strategy 

(Delhoménie et al., 2003; Woertz et al., 2002). 

1.3.4 Moisture content 

Microbial activity is hugely dependent on the amount of moisture present in the 

biofilter bed. Moreover, reduced moisture content may also lead to cracking of 

biofilter bed (Kampbell et al., 1987). Biofilter researchers have already found the 

highest performance for treating BTEX in a typical biofilter at moisture content 

between 47-60% dry weight for compost (Ottengraf, 1987) and between 60-70% dry 

weight for peat (Beerli and Rotman, 1989) . Furthermore, humidity of the pollutant 

stream entering the biofilter should also be monitored periodically to prevent drying 

out of the bed (Wang and Govind, 1997). Usually around 95% relative humidity is 

maintained for the pollutant stream entering the biofilter and to achieve this. The 

pollutant stream can be prehumidified before entering the biofilter. Sometimes water 

can be sprayed on to the biofilter bed periodically in addition to the prehumidification. 

It was determined that, in a biofilter treating high concentration of pollutants, 

evaporation and stripping can cause water losses up to 70 g of water per day per kg 

filter bed (Delhomenie and Heitz, 2005). Though water is produced in biofiltration 

due to oxidation reaction, it is not sufficient enough to maintain the moisture content 

(e.g. in toluene oxidation only 4 mole of water is produced per mole of toluene and 9 

moles of oxygen).  
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1.3.5 Bed porosity 

In order to maintain an even flow rate of the pollutant gas and to decrease the pressure 

drop in a biofilter, adequate bed porosity is most essential
6
. A typical biofilter which 

uses soil as its bed medium should have the bed air filled porosity in the range of 35 

to 40% (Leson and Winer, 1991). This is because majority of the porosity is 

associated with large interparticle pores in the soil and that is preferably air filled to 

minimize pressure drop. Generally the biofilter bed is mixed with packing materials in 

order to increase its porosity and to decrease the compaction (Bohn, 1992). 

1.3.6 Packing materials 

Choosing suitable packing materials for biofiltration operation is very important for 

the effective operation of a biofilters. Factors which need to be considered before 

selecting a good packing material include a) type of packing material b) packing 

porosity c) packing moisture capacity d) packing nutrient content and e) sorption 

characteristics of the packing surfaces. In addition, adsorption characteristics of the 

packing material and the target chemical should also be studied before selecting a 

proper packing material in biofiltration. Natural packing materials like soil, compost 

or peat are often used as packing material in biofiltration as they are inexpensive (Oh 

and Choi, 2000). However, these types of packing materials tend to settle and 

compact which in turn result in increased pressure drop and channelling. In order to 

improve degradation of hydrophobic VOCs which don’t partition well into the 

aqueous phase and recalcitrant compounds with microorganisms, Granulated 

Activated Carbon (GAC) has been used as a packing material in compost biofilters. 

Mixtures of GAV and compost are reported to be effective for treating certain VOCs 

(Aizpuru et al., 2003). Inert materials such as ceramic or glass can able to maintain a 

rigid structure with large pores which minimize pressure drop build ups in a biofilter 

(Aizpuru et al., 2005). 

 

 

                                                        
6
 Bed porosity also impacts the residence time and surface area available for mass transfer. 
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1.3.7 Air flow-rate 

One of the major advantages of using a biofilter is, it can handle higher inlet gas flow 

rates in the range of 100 to 100,000 m
3
.hr

-1
 when compared with other air pollution 

control technologies. When the flow rates are too high, the residence time becomes 

shorter which would lead to an incomplete biodegradation. Furthermore, if the flow 

rate is more, the water in the biofilter bed would get stripped by the flow which tends 

to desiccate the biofilter. A typical biofilter requires an airflow rate of 0.01 cfm per 

square foot of surface area (Leson and Winer, 1991). 

1.3.8 Nutrient requirement 

Aerobic microorganisms present in the biofilter media require nutrients such as 

nitrogen, phosphorus, potassium, sulphur and trace elements in addition to oxygen 

and carbon for their growth. Though the biofilter media7 have the residual nutrients, 

extra nutrients are needed for the long-term performance of biofilters (Yang et al., 

2002). Since nitrogen is the second most important element in the biomass next to 

carbon, addition of nitrogen to the biofilter media can increase the performance of a 

biofilter significantly (Morales et al., 1998). A study of a compost biofilter treating 

toluene proved that its performance strongly depended on the nitrogen supply and 

suggested that a stoichiometric mass ratio
8
 of 3.8 assuming that bacteria contained 

13% of their mass as nitrogen and 50% as carbon (Delhomenie et al., 2001). 

However, there are few microorganisms which can fix nitrogen from the atmosphere 

(e.g. green sulphur bacteria) (Chu and Alvarez-Cohen, 1998). 

1.3.9 Oxygen requirement 

Biofilters are driven by aerobic oxidation and hence require oxygen which is normally 

supplied with the pollutant stream. A minimum of 100 moles of oxygen per each mole 

of oxidizable gas should be supplied to those aerobic biofilters (Williams and Miller, 

1992). This is because increase in the oxygen concentration will dilute the inlet 

pollutant stream and thereby increasing the biodegradability. In usual practise a 

                                                        
7
 Soil, compost, peat, wood bark etc., 

8
 reactive carbon/reactive nitrogen 
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supply of additional oxygen to the biofilter is provided using an air feed blower to the 

upstream of prehumidification.  

1.3.10 Inlet pollutant concentration 

Biofilters perform best when treating a pollutant concentration less than 1000 ppm. 

Higher inlet pollutant concentrations will lead to substrate inhibition which will 

inhibit the microbial activity. Moreover, higher inlet concentration will also lead to an 

insufficient oxygen availability (Ottengraf, 1987). Seed and Corsi (1994) found that 

30 ppm of toluene had a removal efficiency of 99% but when the inlet concentration 

was doubled, the efficiency decreased to 82%. Moreover, studies suggest that at lower 

pollutant (toluene) concentration, the elimination capacity was observed to be lower 

when compared to a higher pollutant concentration, in a differential biofiltration 

reactor using compost as a bed media (Beuger and Gostomski, 2009). 

1.3.11 Maintenance 

Maintenance of a biofiltration system is required periodically and especially during 

the initiation process. Moreover, periodic sampling of the biofilter bed for the 

percentage of moisture and nutrient content is recommended (Leson and Winer, 

1991). Extreme weather can also affect the performance of a biofilter. During heavy 

rainfall and snow, the biofilter should be monitored for excess water or snow more 

than twice a day in order to make sure there are no adverse gas flows. Addition of 

wood bark layer on the biofilter surface may prevent the compaction caused due to 

heavy rain. 

1.3.12 Empty bed residence time (EBRT) 

Both air flow rate and EBRT are parameters that have significant impact on 

biodegradation performance of a biofilter (Elmrini et al., 2004). Either an increase in 

the biofilter bed volume or decrease in pollutant gas flow-rate will increase the EBRT 

and thereby increasing the biodegradability. Increasing the EBRT will produce higher 

removal efficiencies. In order to improve the biofiltration performance, the EBRT 

should always be greater than the time needed for diffusion processes in case of low 

operating flow rates. Most of the research reports suggest that longer EBRT give rise 
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to better VOC removal efficiencies (Christen et al., 2002; Delhoménie et al., 2002; 

Martin Jr et al., 2002; Yoon and Park, 2002). However, to attain longer EBRT, larger 

filter bed volumes are required. EBRT value also depends on other operating 

parameters such as pollutant concentration, biodegradability level and the available 

bed volumes (Delhomenie and Heitz, 2005).  

1.3.13 Microorganisms and acclimation time 

Bed media used in most of the biofilters are natural packing materials like soil, peat, 

compost etc. They are the major source of microbial population. A major advantage in 

biofiltration is that the viability of the microorganisms is maintained for a longer 

period than any other treatment processes, although the system is not in function for a 

longer period. This is because of using natural materials as the filter bed. However, if 

an inert packing material is used in a biofilter then it needs a microbial exposure
9
 

before a biofilm develops, as microorganisms are considered as the catalysts for 

pollutant degradation in biofilters. Choice of microbes is usually done as per the 

composition of the pollutant.  A single microbial population is enough to degrade 

certain pollutants and for certain group of pollutants, even a consortium of 

microorganisms is used (Nanda et al., 2012). An acclimation time required by the 

microorganism for handling a new substrate environment can take a few days to a few 

weeks in general (Li and Liu, 2006; Torkian et al., 2003). This lag phase can be 

shortened by introducing an inoculum
10

 to the bed media. A typical biofilter usually 

contains 10
6
 to 10

10
 cfu of bacteria and actinomycetes per gram of bed and fungi in 

the range of 10
3
 to 10

6
 cfu per gram of bed (Ottengraf, 1987). The degrading species 

present in a biofilter is usually between 1 and 15% of the total microbial population 

(Delhomenie et al., 2001; Pedersen et al., 1997). So far much of the biofiltration 

research has been focussed on bacteria; however, fungi have also been exploited 

(García‐Peña et al., 2001; Spigno et al., 2003). Compost has been reported to use 

bacteria belonging to group Proteobacteria, Actinobacteria, Bacteroidetes and 

Firmicutes (Chung, 2007). Although restricted information is available on the 

microbial communities involved in biofiltration, new technologies such as denaturing 

                                                        
9
 activated sludge is usually added to the inert packing material used in biofilters. 

10
 varies with the type of pollutant to be degraded in a biofilter. 
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gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis 

(TGGE) and single strand confirmation polymorphism (SSCP) have allowed for a 

better understanding of microbial population dynamics in open and closed biofilter 

systems (Chung, 2007; Xie et al., 2009). Table 1.1 shows the list of microorganisms 

which were reported to degrade different VOCs. 

Table 1.1: Identified VOC degrading microbes (Delhomenie and Heitz, 2005) 

S. No Pollutant Microbes 

1. Benzene Pseudomonas sp., 

Alcaligenes xylosoxidans, 

Cladosporium 

sphaeraspermum, 

Exophiala lecanii-corni, 

Phanerochaete 

chrysosporium 

2. Styrene C. sphaeraspermum, 

Exophiala lecanii-corni 

Tsukamurella, 

Pseudomonas, 

Sphingomonas, 

Xanthomonas Exophiala 

jeanselmei 

3. Toluene Acetinobacter sp., 

Pseudomonas putida, 

Pseudomonas 

pseudoalcaligenes, 

Exophiala lecanii-corni, 

Scedosporium 

apiospermum, 

Corynebacterium jeikeium, 

C. nitrilophilus, Turicella 

oritidis, Pseudomonas 

mendocina, 

Sphingobacterium 

thalphophilum, 

Micrococcus lutens, 

Cladophalophoria sp. 

4. Trichloroethane Pseudomonas putida 

5.  Xylene Pseudomonas 

pseudoalcaligenes 
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1.4 Few VOCs treated through biofiltration 

Control of volatile organic compound (VOC) emissions into the atmosphere from 

industrial facilities has become more critical following the amendment of 1990 Clean 

Air Act in United States (Aizpuru et al., 2001). Toluene, benzene, ethylbenzene and 

xylene are few examples of VOCs commonly used as solvents in the manufacture of 

paints, cosmetics, gasoline and adhesives. Though other air pollution control 

technologies like adsorption and incineration can be effective in treating the VOCs, 

they can generate unwanted by-products and may not be suitable for handling high 

flow pollutant stream with low concentrations of contaminants.  The reliability of 

biofiltration for the treatment of VOCs has been proven in a very large number of 

reports as it is more suitable to treat low concentration and high volume of VOCs in a 

cost effective approach (Mpanias and Baltzis, 1998; Zilli et al., 1993). Moreover, 

biofilters are good at handling pollutants which are poorly soluble in water due to the 

higher superficial area available for mass transfer. 

1.5 Few non-VOCs treated through biofiltration 

Biofiltration is also used widely in treating complex odorous waste air containing 

hydrogen sulphide. The removal efficiencies for H2S degradation is generally higher 

than that of VOC degradation although the concentrations of individual VOC species 

are lower (Iranpour et al., 2005). Biofilters tend to be used for applications with lower 

H2S loadings due to the concerns of inhibition of H2S removal and packing 

deterioration by sulphuric acid production over the long term. However, there are few 

successful reports for biofilters been operated at low pH and high H2S concentrations 

(Nicolai and Janni, 2000; Yang and Allen, 1994). Ammonia is another highly odorous 

pollutant usually treated through biofilters in most of the food processing and 

petrochemical refining industries. Many researchers indicated that biofiltration 

technology is particularly effective in treating large air streams with low ammonia 

concentration (Baquerizo et al., 2005).  Biofiltration is also a promising option for the 

control of methane emissions to atmosphere contained in biogas (Nikiema et al., 

2007). 
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1.6 Choice of model pollutant in biofiltration research 

Selecting a model pollutant for a biofiltration research is always important. Among 

the volatile organic compounds, toluene is one of the well-studied compounds in both 

laboratory-scale biofilters and industrial-scale biofilters. Moreover, toluene is one of 

the widely used solvents in the production of paints, gums, resins and rubber. It is also 

used widely as a reagent in the production of drugs, dyes and perfumes. In addition, 

toluene is highly volatile and is poorly soluble
11

 in water. Furthermore, the American 

Conference of Government Industrial Hygienists has set the following threshold limit 

values (TLVs) for the concentration of this compound in air: a) the time weighed 

average (TWA) is 0.375 g.m-3, b) the short time exposure level is 0.560 g.m-3 and c) 

the olfactory threshold value is 8.8 × 10-3 g.m-3 (Guelfo et al., 1987). Based on these 

reasons toluene has been used as a model pollutant in the current biofiltration 

research.  

In addition to toluene, VOCs such as benzene, xylene and styrene may also be used as 

a model pollutant as few recent reports suggest that these pollutants are effectively 

degraded using biofiltration. Removal efficiencies higher than 68% were reported for 

xylene degradation in a typical lab scale biofilter at a pollutant loading rates lesser 

than 60 g.m-3.h-1 (Rene et al., 2009a). Studies carried out in a compost biofilter for 

treating xylene vapour has showed an EC of 73 g.m-3.h-1 with a removal efficiency of 

91% (Torkian et al., 2003). Removal efficiencies higher than 90% were achieved for 

inlet benzene loading rates lesser than 40 g.m
-3

.h
-1

 in a laboratory scale biofiltration 

set up with compost as the filter bed (Rene et al., 2009b). Under steady state 

conditions, average removal efficiency of 84% at loading rates between 60 and 120 

g.m-3.h-1 was achieved for styrene in a compost biofilter. However, maximum EC of 

81 g.m-3.h-1 was obtained at a styrene loading rate of 120 g.m-3.h-1 (Bina et al., 2004). 

1.7 Research objectives  

Although biofiltration is a simple and environmental friendly technology, several 

challenges need to be overcome. Specifically, the degradation rate is low in traditional 

biofilters (in other words lower EC) contributing to the large size of a biofilter. Table 

                                                        
11

 Henry’s law coefficient of 0.26 and water solubility ranges 515-627 g.m
-3

. 
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1.2 compares the footprints of widely used APCTs, which clearly shows that there is a 

need to design a smaller footprint biofilter for handling higher volumetric flow rate 

with a higher pollutant degradation rate. This is one of the objectives of the current 

research work. The second objective is to explore the possible employability of the 

metabolic uncouplers in biofilters for increasing the pollutant degradation rate of the 

microbes present in the biofilter medium. Metabolic uncouplers were reported to 

decrease the yield in growth systems like activated sludge treatment and in non-

growth systems like biofilters it is expected to increase the maintenance by making 

energy generation less efficient thereby increasing the substrate uptake rate. This will 

be a novel study in the field of biofiltration. Chapter 2 will discuss in detail about the 

metabolic uncouplers. 

Table 1.2: Comparison of the size of different APCTs (Devinny et al., 1999; 

Menasveta et al., 2001; Theodore, 2008).  

S. No Common APCT Average 

footprint (m2) 

1. Open Biofilter 3000 

2. Closed Biofilter (similar to 

gas phase bioreactor) 

8.0 

3. Adsorber (activated 

carbon) 

30 

4. Cyclone 1.5 

5. Electrostatic precipitator 1.5 

6. Absorber 1.1 

7. Catalytic Oxidizer 0.3 

8. Incinerator 0.2 

 

In order to fulfil the 2 main objectives mentioned above, the following specific sub 

objectives were included in this research work: 

• Increase the robustness in measuring the inlet and outlet concentration of 

toluene by connecting a gas chromatography system and a carbon dioxide 

analyser online to the existing biofiltration reactor (with soil as the bed media) 

system developed by Beuger 2009. 

• Investigate the effect of different metabolic uncouplers on the specific 

degradation rate of toluene in a biofiltration reactor (with soil as the bed 

medium) system. 
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• Determine the long term impact of uncouplers on EC and their stability. 

• Isolate toluene degraders from soil and develop a biofilm reactor to carry out 

pure culture experiments. 

• Investigate the effect of selected metabolic uncouplers (from soil studies) on 

the specific degradation rate of toluene in the pure culture biofilm reactor.  

1.8 Nomenclature 

Cg, in inlet concentration of the pollutant gas g.m-3 

Cg, out outlet concentration of the pollutant gas g.m
-3 

Q volumetric flow rate of the pollutant gas   m
3
.h

-1
 

V biofilter bed volume    m
3 
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Chapter 2: Metabolic Uncouplers  

2.1 Introduction 

Metabolic uncouplers are powerful chemicals, which can influence energy production in 

cells by uncoupling electron transport from oxidative phosphorylation reactions and 

thereby making ATP production less efficient from a substrate oxidation perspective. 

They were originally used to elucidate energy production in mitochondria (Brand et al., 

2010) and more recently to reduce biomass yield in waste water treatment and disrupt 

biofilm formation (Hassani et al., 2011; Lou et al., 2007; Low and Chase, 1998).  The 

term “metabolic uncoupler” comes from their ability to carry protons across cellular 

membranes in the protonated form, dissociate and move back across the membrane in a 

cyclical fashion.   This transport of protons diminishes the protomotive force required for 

ATP production. Application of metabolic uncouplers in environmental research is 

rapidly increasing each year. However, more research was done in growth systems like 

activated sludge processes but least in trickle bed and non-growth systems like 

biofiltration. This chapter will explore in detail about the mechanism of chemical 

uncoupling and its application in activated sludge to decrease the biomass yield.  In 

addition, the possibilities of employing potential metabolic uncouplers in biofilters will 

also be explored.  

2.2 Metabolic Uncoupling in Microorganisms 

Cells gain energy by breaking down molecules through catabolic pathways. During cell 

proliferation, this energy is used by the cells’ anabolic pathways to create new cell mass. 

Cells are capable of regulating their metabolic reactions and the biosynthesis of their 

enzymes to achieve maximum efficiency and economy (Lehninger, 1975) and, under 

rapidly growing conditions, the biomass yield is directly proportional to the ATP 

produced (Brock and Madigan, 1991). This assumption of a coupling between anabolism 

and catabolism is contradicted by the observation that resting cell suspensions can utilize 

energy sources in the complete absence of growth and by the fact that the correlation 

between ATP and biomass formation is often very poor (Russell and Cook, 1995).  

Some of these variations in growth efficiency or yield can be explained by maintenance 

energy (Russell and Cook, 1995). Though energy produced through catabolism can be 

used for growth, microbes utilize a portion of that energy to “maintain” the cells through 
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the requirement of protein turn-over, maintaining concentration gradients and hence 

termed as maintenance energy (Buchanan and Fulmer, 1928). The other endogenous 

processes which are considered to have significant effects on yield in activated sludge 

treatment are programmed cell death (PCD), microbial starvation, viral infection and 

predation. However, the current state of knowledge about some of these processes is very 

limited (Hao et al., 2010).  

When the microbes are grown in the presence of metabolic uncouplers, energy 

uncoupling can be induced as the ATP synthesis is less efficient, thus requiring more 

substrate oxidation per ATP molecule produced, which effectively increases the 

maintenance coefficient. This uncoupling occurs in such a manner that the catabolism of 

the substrate can continue unaffected, while the anabolism is restricted due to lack of 

ATP (Diks and Ottengraf, 1991; Holubar et al., 1999; Kirchner et al., 1991; Liu and Tay, 

2001; Low et al., 2000). The metabolic uncoupler interference is assumed to make less 

energy available for biomass yield in the case of growth systems like activated sludge, but 

not disrupt waste degradation (Yang et al., 2003). Since maintenance is a function that 

detracts from growth, the contribution of maintenance energy is more pronounced when 

there is low or nil growth. In other words, if the energy needed to maintain the cell 

increases, there will be less energy available for anabolism and hence less biomass yield 

(Liu and Tay, 2001; Low and Chase, 1998; Low et al., 2000). Studies using dinitrophenol 

as a metabolic uncoupler in glucose-limited culture of K. aerogenes showed an increase 

in the maintenance energy in both nitrogen- and carbon-limited aerobic chemostat 

cultures (Neijssel, 1977). Thus the typical nature of metabolic uncouplers makes them 

potentially useful in controlling excess microbial growth in growth systems like activated 

sludge treatment.  

A wide group of natural compounds are known to be metabolic uncouplers of oxidative 

phosphorylation inside the cell which include compounds like ammonia, oxidants, 

detergents, heavy metals, organic solvents, fatty acids (Wojtczak and Schönfeld, 1993) 

(Skulachev, 1991), animal defensins (Lehrer et al., 1991) and plant thionins (Bohlmann 

and Apel, 1991). Though the uncoupling mechanism can occur naturally in all 

microorganisms during various biochemical syntheses, it is also possible to induce an 

uncoupling reaction with the help of synthetic chemical uncouplers.  
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2.3 Weak Acidic Metabolic Uncouplers 

Most of the synthetic metabolic uncouplers are lipophilic weak acids which possess 

protonophoric activity (Zubay, 1998). Their key molecular feature is being able to pass 

across the membrane in a charged state by delocalising the charge across the molecule, 

usually involving a benzene ring structure.  They are able to transport the protons across 

the membrane much faster than the proton pumps of the respiratory chain, with SF 6847 

(Tyrphostin 9) uncoupling at a ratio of 1 molecule per 20 respiratory chains (Lewis et al., 

1994). Weak acids like phenols, benzimidazoles, salicylic acids, cumarines, and aromatic 

amines etc., are known to induce uncoupling (Hanstein, 1976) (Terada, 1981).  

According to the chemiosmotic theory, energy for ATP production in the form of the 

chemical potential of H
+
 across a H

+
 impermeable membrane is supplied by redox 

reactions. ATP is produced from ADP and Pi (inorganic phosphate) when H
+
 enters the 

cell via H+-ATPase. Using 2,4-dinitrophenol as an example (Fig 2.1), the anionic form of 

the weak acid metabolic uncoupler can trap the H+ ions in the low pH environment of the 

external membrane-water interface and becomes a neutral compound. This neutral 

compound traverses the membrane to the cell interior and releases the H
+
 ion due to the 

higher pH environment. Then the anionic form of the metabolic uncoupler returns to the 

original interface where it again traps an H+ ion. This uncoupler cycle continues and 

decreases the H+ gradient across the membrane which results in uncoupling (Terada, 

1981, 1986) . The net effect of uncoupling is to shunt protons through the membrane and 

not through the F0F1 (coupling factors) ATPase. A similar uncoupling mechanism is 

followed by most of the common metabolic uncouplers (Fig 2.1). 
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Figure 2.1: The mechanism for the 2,4-dinitrophenol uncoupling reaction. The net flux of 

H
+
 ions due to uncoupling is from the lower pH exterior to higher pH interior. The net 

flux of DNP via membrane diffusion and protonation/deprotonation reactions is in the 

counter clockwise direction. 

2.4 Common Metabolic Uncouplers 

Among a large group of metabolic uncouplers reported in the literature, carbonylcyanide 

p-trifluoromethoxy-phenylhydrazone (FCCP), carbonylcyanide m-chloromethoxy-

phenylhydrazone (CCCP), tetrachlorosalicylanilide (TSA), pentachlorophenol (PCP) and 

2, 4-dinitropenol (DNP) are the most widely used metabolic uncouplers in research (Fig. 

2.2).   
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Figure 2.2: Protonophoric order of commonly used metabolic uncouplers 

FCCP>CCCP>TSA>PCP>DNP (Lewis et al., 1994). The ionisable H
+
 is noted by a black 

box on each metabolic uncoupler. 

2.5 Effect of pH and pKa in uncoupling 

The knowledge of pKa or effective pH range of a metabolic uncoupler is considered 

essential for their selection (Hiraishi and Kawagishi, 2002; Salmond et al., 1984). In 

addition, knowledge about the internal pH, external pH and bulk pH of the cell is very 

important in understanding the protonophoric activity of the metabolic uncoupler inside 

and outside of a cell. Though both pH and pKa influence the uncoupling process, they are 

not the only parameters involved in the uncoupling mechanism. Solvation free energies of 

the anions and heterodimer formation during the protonophoric transport are also 

contributing to the uncoupling mechanism. However, less work has been done on 

understanding the intrinsic activity of the metabolic uncoupling process inside the cell 

(Spycher et al., 2005).  

Bacteria and archaea adapted to an acidic environment maintain a cytoplasmic pH higher 

than that of the exterior, whereas the reverse is true for those growing in a high pH 

environment. To maintain cytoplasmic pH at the more neutral value, cells accept a 

substantial energy loss through inversion of ∆Ψ (electrical potential) in extreme acidic 

environment and expenditure of ∆Ψ in extreme basic environments. Over the range of 

microbes studied, it was found that the crossover point where cytoplasmic pH equals 

external pH lies between pH 7–8. However, not all species can actually grow at this 

external pH. The external pH that supports growth and the transmembrane pH difference 
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available for energy generation (∆pH) vary in breadth but, in general, microorganisms can 

grow in wide ranges of environmental pH from pH 0 to above pH 13 (Nordstrom and 

Alpers, 1999; Nordstrom et al., 2000).  

It was found that at pH 8.5 and higher concentrations of CCCP and FCCP, the uncoupling 

mechanism across the membrane failed compared to the uncoupling at pH 7 in marine 

bacteria (MacLeod et al., 1988). The difference in the metabolic activities at varying pH 

values was attributed to the pKa values of 6.1 for CCCP and 5.7 for FCCP. Moreover, this 

failure was attributed to the increase in the pH difference between the external pH and the 

intracellular pH following the addition of the metabolic uncoupler (MacLeod et al., 1988). 

Therefore, as the pH was increased above the pKa of the protonophore, the amount of the 

protonated form able to enter the membrane became too low to maintain this cycle 

(McLaughlin and Dilger, 1980; Mitchell, 1966), which could have been the reason behind 

the failure of proton shuttling mechanism in case of CCCP and FCCP. Hence maintaining 

the external pH below the pKa of metabolic uncoupler and the internal pH above the pKa 

of metabolic uncoupler appears to be necessary for proton movement in and out of the 

membrane. However, more research is needed to prove this hypothesis.  

In another study, the effects of chlorophenol and nitrophenol on activated sludge treatment 

were investigated (Yang et al., 2003). They showed that the metabolic uncouplers with 

lower pKa values were more effective in uncoupling energy metabolism, thereby 

favouring sludge reduction. The uncoupler m-chlorophenol with a pKa of 8.8 yielded 87% 

sludge reduction whereas p-chlorophenol with a pKa of 9.2 yielded only 58% sludge 

reduction. Similarly, o-nitrophenol with a pKa of 7.17 yielded 86% sludge reduction when 

compared to m-nitrophenol with a pKa of 8.28 which yielded only 65% sludge reduction. 

One possible explanation for these results is that the lower pKa resulted in a weaker 

protomotive force resulting in a reduced biomass yield. Moreover, lower pKa values 

favour deprotonation of the phenolic hydroxyl group in chlorophenolic and nitrophenolic 

uncouplers inside the cell, thereby supporting the uncoupling cycle. At a weaker 

protomotive force, less sludge will be produced as there will be less ATP generation. 

Moreover, at a critical concentration of uncoupler for which the protomotive force is so 

low, there will be no ATP generation and hence no biomass yield (Yang et al., 2003). 

However, the bulk solution pH was not reported in this study, which might have clarified 

the uncoupling pattern. Although the theory seems to explain the results well, more testing 
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must be completed to definitively state uncouplers with a pKa lower than the internal pH 

of the cell are more effective uncouplers.  

Compounds like trinitrophenol, a very acidic phenol, can also induce uncoupling but its 

activities is weaker than those of protonophoric metabolic uncouplers due to its low pKa 

(Hanstein and Hatefi, 1974) (Hanstein and Kiehl, 1981). Hence, the pKa of chemical 

uncouplers, the bulk solution pH and internal pH of different microbial cells should aid 

decisions of which chemical uncoupler may be best to pursue in research. Table 2.1 

summarises the pKa values of a range of metabolic uncouplers used in activated sludge 

treatment. 

Table 2.1: The pKa values of a range of metabolic uncouplers.  

Metabolic Uncoupler pKa Reference 

benzoic acid 4.20 (Kwan and Voelker, 2003) 

carbonylcyanide m-chloromethoxy-

phenylhydrazone 
6.09 (Bona et al., 1993) 

carbonylcyanide p-trifluoromethoxy-

phenylhydrazone 
6.10 (Bona et al., 1993) 

2,4-dinitrophenol  4.09 (Zhang et al., 2010) 

m-chlorophenol 8.80 (Yang et al., 2003) 

malonic acid 2.83 (Liu et al., 2010) 

p-nitrophenol 7.15 (Zhang et al., 2010) 

pentachlorophenol 4.70 (Kocherginsky, 2009) 

2,4,6-trichlorophenol 7.50 (Poole and Cook, 2000) 

3,3’,4’,5-tetrachlorosalicyanilide  7.60 (McLaughlin and Dilger, 1980) 

trinitrophenol 0.40 (Hanstein and Hatefi, 1974) 
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2.6 Studies of different Metabolic Uncouplers in Growth System(s) 

Yield of excess biomass during certain biological treatment requires costly disposal. 

Especially, in activated sludge processes the treatment of excess sludge may account for 

up to 65-70% of the total plant operation cost (Yang et al., 2003). Hence, reducing 

biomass yield is important in activated sludge processes or where unwanted biofilm 

formation can occur and the potential of uncouplers in these applications has been 

explored  (Low and Chase, 1998; Okey and Stensel, 1993). These studies have been based 

on the idea that energy in cells used for maintenance takes precedence over growth. With 

metabolic uncouplers present, more energy is required for the maintenance of the cell and 

so less growth will occur. In the last decade, around twelve metabolic uncouplers have 

been tested in waste water treatment systems and shown to have an impact on the biomass 

yield (Hiraishi and Kawagishi, 2002; McLaughlin and Dilger, 1980; Ray and Peters, 2008; 

Wei et al., 2003; Yang et al., 2003; Zheng et al., 2008). 

Yang et al. (2003) tested the effect of four metabolic uncouplers (p-chlorophenol, m-

chlorophenol, m-nitrophenol and o-nitrophenol) in reducing biomass yield from an 

activated sludge process and reported that the biomass yield was reduced when increasing 

the metabolic uncoupler concentration from 0 to 0.15 mM. They concluded that among the 

four metabolic uncouplers tested, m-chlorophenol was the most effective, reducing the 

biomass yield by 87% at a concentration of 0.15 mM. It was reported that biomass yield 

was reduced by 49% when paranitrophenol (pNP) was added to the culture. However, 

when considering both the sludge reduction and COD removal efficiency, m-chlorophenol 

was the most effective metabolic uncoupler in this system.  Paranitrophenol was also 

tested in a pure culture of Pseudomonas putida, in a chemostat, and it was found that pNP 

at 0.72 mM reduced the biomass yield by 62% with a simultaneous increase in the specific 

substrate uptake rate (Low and Chase, 1998). These studies again conclude that in 

presence of metabolic uncouplers, maintenance energy increases and for that reason the 

substrate uptake rate also increases. 

TSA has been tested in a number of activated sludge systems. Growth yield was reduced 

by 78% with TSA at 2.3 µM with no significant effect on substrate removal efficiency 

(MacLeod et al., 1988). A similar study carried out by Aragon et al. (2009) to understand 

the effect of TSA and 2, 4-dinitrophenol (2,4-DNP) in reducing the excess biomass yield 
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in activated sludge reported that TSA reduced the biomass yield by 30% at 2.3 µM 

concentration but 2,4-DNP had no effect. Another study with TSA in an activated sludge 

system revealed that the excess biomass yield was reduced by 80% per day at a TSA dose 

of 1% (Hassani et al., 2011). Ye and Li (2005) reported that 0.43 mM of TSA decreased 

the biomass yield by 56% in an activated sludge process without affecting the substrate 

utilization rate. 

The effect of 2, 4, 6-trichlorophenol (TCP) and malonic acid (MA) was investigated in an 

activated sludge system to reduce the sludge generation in a sequencing batch reactor 

(SBR) for treating organic waste water.  TCP, at a concentration of 0.01 mM, reduced the 

sludge generation by 47% without influencing the chemical oxygen demand (COD) 

removal efficiency and sludge settleability. Whereas MA at a concentration of 0.05 mM, 

reduced the sludge generation by 30%. However it slightly affected the COD removal and 

seriously deteriorated the sludge settleability (Verduyn et al., 1992). Another study using 

2,4,6 TCP as an uncoupler in activated sludge reported that TCP at a concentration of 1.2 

mM reduced the sludge yield by 67% without affecting the sludge settleability (Tao et al., 

2010). The feasibility of TCP as metabolic uncoupler to reduce sludge generation in the 

sequencing batch reactor for 90 days for the treatment of municipal wastewater showed 

that with 10 µM TCP, 47% sludge reduction was achieved. The group also reported that 

the COD removal efficiency and sludge settleability were not affected at 10 µM TCP 

(Zheng et al., 2008). 

Studies were carried out using benzoic acid, CCCP and FCCP separately in a non-

activated sludge system to understand their effect on biomass yield. Benzoic acid at a 

concentration of 10 mM altered the metabolic fluxes in yeasts and thus decreased the 

biomass yield. However, the percentage of reduction was not shown, nor the reasoning 

why this concentration was used in this study (Verduyn et al., 1992). Similarly, CCCP and 

FCCP at a concentration of 10 µM reduced the biomass yield in E. coli  by 37% for FCCP 

and 22% for CCCP (MacLeod et al., 1988). 

2,4- DNP was tested in an activated sludge treatment and showed a 21% decrease in the 

biomass yield with 93% COD removal at a concentration of 0.03 mM (Chen et al., 2008). 

Both 2, 4-DNP and pentachlorophenol (PCP) were used as model metabolic uncouplers to 

study the impact of chemical stress on microbiological metabolism (Ray and Peters, 
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2008). It was found that DNP, between 0.26 mM and 0.76 mM, and PCP, at 0.056 mM 

and 0.14 mM, caused decreases in biomass growth yield, but did not inhibit the substrate 

utilization rate. Table 2.2 summarizes the effective concentration of some of the metabolic 

uncouplers tested so far in growth systems. 

Table 2.2: A list of common metabolic uncouplers and their effective concentration in 

growth systems and impact on yield. 

Metabolic Uncoupler 

Effective conc. 

Reported 

(µM) 

Decrease in 

growth yield 

(%) 

Application Reference 

carbonylcyanide m-

chloromethoxy-

phenylhydrazone 

0.01 37 

metabolic 

flux reduction 

in yeast 

(Slonczewski 

et al., 2009) 

carbonylcyanide p-

trifluoromethoxy-

phenylhydrazone 

0.01 22 

metabolic 

flux reduction 

in yeast 

(Slonczewski 

et al., 2009) 

2,4-dinitrophenol 760 21 
Activated 

sludge 

(Chen et al., 

2008) 

m-chlorophenol 160 87 
Activated 

sludge 

(Wang et al., 

2010) 

malonic acid 50 30 
Activated 

sludge 

(Büscher et 

al., 2009) 

p-nitrophenol 860 62 
Activated 

sludge 

(Yang et al., 

2003) 

pentachlorophenol  140 80 
Activated 

sludge 

(Nicolaou et 

al., 2010) 
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2,4,6-trichlorophenol 10 67 
Activated 

sludge 

(Zheng et al., 

2008) 

3,3’,4’,5-

tetrachlorosalicyanilide 
2.28 80 

Activated 

sludge 

(Saini and 

Wood, 2008) 

 

Though different metabolic uncouplers are effective in controlling the excess biomass 

yield in growth systems, their fate and residual toxicity following their application has not 

been explored. This raises a question about the usage of such toxic chemicals in growth 

systems which can affect the environment due to their uncontrolled release. In a recent 

study, the fate and residual toxicity of one of the metabolic uncouplers, TCP was tested in 

an activated sludge system treating municipal waste water. The study reported that 

residual TCP in the effluent ranged between 2 µM and 5 µM when the TCP in the feed 

was 10 µM. The study also concluded that although the concentration of the trace TCP 

was too low to affect the ecosystem, the long term accumulation of TCP may be an issue 

(Qiao et al., 2011). Similarly, the legal limit for DNP in surface water is 0.4 µM (Metcalf 

and Eddy, 2003) but the effective concentration of DNP reported (Chen et al., 2008; 

Zhang et al., 2010) in various activated sludge processes is well above this limit. 

Similarly, the international legal limit of chlorophenols in surface water is 0.003 nM 

(Girard et al., 2009), but the effective concentration of chlorophenols (PCP, TCP etc.,) 

reported in different activated sludge processes is higher than the stipulated level. So, 

although the addition of chemical uncouplers to activated sludge reactors is effective in 

reducing the excess biomass yield, questions still exist about the practical use of 

uncouplers in activated sludge and other systems discharging uncoupler-contaminated 

water to the environment. A more accurate ecological risk assessment methodology may 

provide some insight into the true benefits of  uncouplers in activated sludge (Connell, 

1999).  

2.7 Metabolic Uncouplers in fixed film processes 

Traditional fixed film, packed bed reactors for waste air and water treatment (trickle beds) 

require the control of biomass accumulation (Aly Hassan and Sorial, 2011; Pintar et al., 

1997). Metabolic uncouplers could represent another tool in controlling biomass build-up, 
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however no reports on their use in this type of reactor system are available.   Based on the 

studies conducted in activated sludge treatment, uncouplers should also be effective in 

controlling the excess biomass growth in trickle bed reactors or any fixed film processes 

to treat gaseous or aqueous pollutants. However, research is needed to prove this 

hypothesis.  

Application of metabolic uncouplers in fixed film membrane bioreactors to prevent 

biofouling has been successful in recent years. FCCP and CCCP are used widely in 

reducing the membrane biofouling in membrane bioreactors (Xu and Liu, 2010). Another 

study investigated the effects of 2, 4-dinitrophenol on reduction of biofouling in 

a membrane bioreactor employed in waste water treatment. Nearly 65% biofouling 

inhibition was observed at 0.05 mM concentration of 2, 4-dinitrophenol. In addition, the 

2,4-dinitrophenol had enhanced the biofilm detachment from nylon membrane in the 

membrane bioreactor (Xu and Liu, 2011). However, further research is needed in this field 

with other potential metabolic uncouplers previously tested in activated sludge processes. 

 

2.8 Metabolic Uncouplers in non-growth system 

Metabolic uncouplers show promise for sludge reduction but to our knowledge, no work 

has been performed on the effect of metabolic uncouplers in non-growth systems like 

biofiltration. These systems are driven mainly by maintenance energy, so the addition of 

the uncoupler should increase the substrate degradation rate.  Moreover, in the case of an 

air treatment biofilter, the water released is minimal and the uncoupler could be recycled, 

as compared to activated sludge treatment, where it lost to the environment. However in 

biofilters, research will need to be done to understand how the microorganisms’ 

maintenance metabolism will respond to the stress of the uncouplers both in short term 

and long term applications.  
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Chapter 3: Differential Biofiltration Reactor 

3.1 Introduction 

A differential biofilter reactor with water content control developed by Beuger and 

Gostomski (2009) has been modified in order to enable online monitoring of inlet and 

outlet toluene and carbon dioxide concentration (Beuger and Gostomski, 2009). 

Furthermore, the diffusion system used in the earlier research has also been modified in 

the current research. These modifications are intended to improve the research reactor for 

data collection and stability. This chapter will discuss in detail the experimental set-up of 

the existing differential biofilter reactor and various modifications carried out to it to 

improve the robustness of the reactor used in this current research. 

3.2 Differential reactor 

A differential reactor is normally used in catalytic studies for determining the rate of the 

reaction as a function of either concentration or partial pressure. The basic criterion for a 

reactor being differential is that the conversion of the reactants in the bed is extremely 

low as is the change in temperature and reactant concentration through the bed. As a 

result, the reactant concentration through the reactor is essentially constant and 

approximately equal to the inlet concentration (Fogler, 2004). A differential reactor is 

normally considered to be gradientless one and the reaction rate is considered spatially 

uniform within the bed (Anderson, 1976). Due to the low conversion achieved in the 

reactor, the heat release per unit volume will be small so that the reactor operates 

essentially in an isothermal manner. Though differential reactors gives good kinetic data, 

even small analytical errors usually lead to inaccurate rates (Tajbl et al., 1966). 

Differential reactors include batch reactor, continuous stirred tank reactors and plug flow 

reactors. In recent years, the concept of differential reactors has been employed in 

biofiltration because it is easy to control contaminant concentration and parameters like 

temperature, water content, nutrients etc., in a differential reactor, which is most 

important in biofiltration (Carberry, 1964)(Moser, 1988). Moreover, for employing 

metabolic uncouplers in a biofiltration system, a differential biofilter reactor would be 

best choice in terms of controlled addition and removal since most of metabolic 

uncouplers are not eco-friendly. In addition, the ability to control water content through 

the membrane in a differential biofiltration reactor makes it more suitable for uncoupler 
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studies. Based on these reasons, a differential biofilter reactor is used in the current 

research. 

3.3 Matric potential 

Water present in soil, compost and other porous media is mainly retained by the matric 

forces in pores.  Matric potential is a measure of water availability to microorganisms 

which is fundamental in biofiltration. Hence knowledge about matric potential is most 

important in controlling the water content of a biofilter media (Papendick and Campbell, 

1981). Matric potential is usually given by the following relationship (Eq. 3.1), 

                                      � =	 ���� ln 
�    (J.m-3)                                                         (3.1) 

Generally, the matric potential is created by the effect of capillary forces of pores and 

particle surfaces adsorbing water. At a saturation point, matric potential becomes zero as 

all the pores are filled with liquid water. When suction or a gravitational force is applied 

to the saturated porous medium, water drains from the medium until equilibrium between 

matric potential and gravity is established at lower water content (Bohn and Bohn, 1999). 

3.4 Configuration of the differential biofilter reactor 

The differential biofilter reactor configuration is in contrast to an integral laboratory 

biofilter where most of the parameters change along the length of the reactor. The reactor 

converts the traditional plug flow biofilter into a CSTR by employing the internal recycle 

(Beuger and Gostomski, 2009) (Badilla et al., 2011). Soil (Park house Garden Supplies-

Appendix D) is used as a biofilter bed media in this reactor for the current research 

purpose. Moreover, this reactor is also configured to control the water content through a 

hydrophilic membrane connecting the biofilter to a water reservoir under vacuum. This 

helps to set and maintain the matric potential of the biofilter. Furthermore, this 

configuration allows an easy method to introduce a metabolic uncoupler into the 

biofilter. In addition, the internal gas reservoir in this version gives good mixing, 

eliminating interparticle concentration, avoids temperature gradients and even eliminates 

bypass in the biofilter bed.  

The water chamber is placed under vacuum by lowering the external water reservoir 

below the water chamber. The vacuum is formed because the free surface of external 
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reservoir is lower than the membrane and air cannot pass through the pores of the 

membrane. This technique is predominantly used in soil physics to measure and 

manipulate the water content of the soil. The most important criteria to be noted here is, 

since the hydrophilic membrane stops convective air flow, the gas reservoir is not under 

vacuum. Other than the slight pressure increase due to gas flow, the gas reservoir is 

operated at atmospheric pressure. The magnitude of the vacuum applied to the water side 

of the membrane can be varied by changing the height between the external water 

reservoir and the membrane. Because of the hydraulic link across the membrane, the 

vacuum controls the matric potential in the soil and thus the physical amount of water in 

the soil at equilibrium. This arrangement allows equilibrium of matric potential and the 

dissolved nutrients or metabolic uncouplers between the water chamber and the water in 

the soil. If the matric potential in the soil rises due to condensation or oxidative water 

production, excess water drains away from the soil into the water chamber. The same 

applies to the dissolved components, with movement between the soil and the water 

chamber driven by the concentration gradients. Fig. 3.1 shows configuration of the 

typical differential biofilter reactor used in the current research which was initially 

developed by Beuger and Gostomski (2009). 

 

Figure 3.1: A cut section of differential biofilter reactor with water content control 
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3.5 Development of water retention apparatus 

The water retention in soil affects the diffusion of gases and nutrients in and out of the 

soil and hence affecting the biological activity. The mobility of microorganisms within 

the soil may also be affected by the water potential of the soil matrix, hence affecting the 

ability of microbes to reach and degrade compounds. It is therefore important to be able 

to control the matric potential of a biofilter to eliminate the influence it can have on the 

system. A measure of ability of the bed material to hold water can be described by the 

water retention curve. The matric potential can be set by using a hanging column of 

water under the soil sample. The water in the soil sample reaches equilibrium with the 

water in the reservoir below. The height between the soil and the top of the reservoir 

gives a specific matric potential (Kirkham, 2005). It can be calculated from Eq.3.2, 

 

�

��	��
��
��� = 	���������
����

                                                                          (3.2) 

 

Among various empirical relationships used to estimate the relationship between water 

content and matric potential, the widely used one is Van Genuchten’s model (Tuller and 

Or, 2005) which is shown in eq.3.3, 

 

Ɵ =	 ���������
= �  

 !(#$%)'(
�

(dimensionless)                                                             (3.3) 

 

where, ) = 1 −  
, 

 

In the current research, Zap Cap filters (Fig. 3.2) was used to measure the water retention 

of the soil which is used in the differential biofilter reactor. The experiment was 

conducted at varying matric potentials. Zap Cap filters consisted of a 0.2 µm pore size 

hydrophilic cellulose filter, and hence could be used to hold the hanging water column.  
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Figure 3.2: Zap Cap filter (Sigma-Aldrich, 2012) 

 

The Zap Cap filter was modified for use in for the water retention experiment. A small 

hole was drilled down the membrane where the suction tube is connected, by removing 

the cellulose membrane. A new cellulose membrane was cut to fit over the space and 

glued onto the Zap Cap. This allowed the air bubble to move out of chamber during 

suction. PVC clear single hose tube of 50 mm diameter was used to connect the bottom 

end of the Zap Cap filter with the water reservoir. At first, the tube was held above the 

Zap Cap and filled with 0.01 M CaCl2 and the filter was tapped lightly to remove the air 

bubbles from the chamber. When all the air bubbles were removed, the attached tube was 

lowered into the beaker (containing 0.01 M CaCl2), ensuring no air bubbles were present 

in it. The Zap Cap was then placed in a clamp on a stand and the height was adjusted so 

that the difference in height between the liquid level and the filter gave the required 

tension. The soil (mentioned earlier) is sieved using mesh no.6 (3.6 mm opening) sieve 

before being used in the experiment. A layer of 4 mm thick and 100 mm diameter (~ 8.65 

g wet weight) was placed on top of the cellulose membrane. The matric potential was 

applied between -5 and -20 cm H2O. The whole experiment was carried out in room 

temperature. 

After equilibrating the soil for 7 days, the soil was removed and its water content was 

determined by oven drying at 105 °C for 24 hours. Fig. 3.3 shows the experimental setup 

of Zap Cap filter used to carry out the water retention experiment. 
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Figure 3.3: Photo of Zap Cap filter used to determine the water retention curve 

The relationship between matric potential and gravimetric water content was determined 

for the experimental soil (Fig. 3.4 and 3.5). It was observed that there was a rapid 

decrease in the water content when the matric potential was decreased from -5 cm H2O to 

-20 cm H2O. Large matric potential changes (> -20 cm H2O) were not investigated based 

on the earlier work carried out in studying the water retention curve for compost (Beuger 

and Gostomski, 2009) . Comparing the shapes of the curves in Fig. 3.4 and 3.5, it is clear 

that the garden soil used in the current research has the texture similar to silt loam. 

However, the shape of curves in Fig. 3.4 were not 100% comparable with the typical 

water retention curve shown in Fig. 3.5, and hence it was concluded that soils of different 

texture have a very different soil-water retention curves and absolute values are difficult 

to compare. 

 

Figure 3.4:  Typical soil water characteristic curves for soils of different texture (Tuller 

and Or, 2005).  
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Figure 3.5: Water retention curve (wetting curve) for soil used in current study. The red 

solid line is the Van Genuchten model fit. The bulk density used is 0.64 g.cm
-3

 

The parameters used to fit the Van Genuchten model in Fig. 3.5 is shown in the Table 

3.1. Excel Solver
TM

 and least square methods were used to determine the parameters on 

all 3 data points. 

Table 3.1: Fitted parameters of the Van Genuchten model 

Parameter Value 

α (cm
-1

) 0.049 

n (dimensionless) 1.344 

θs (cm3.cm-3) 0.496 

θr (cm
3
.cm

-3
) -0.513 

 

3.6 Diffusion system 

Generating a dilute concentration of volatile contaminant gas (e.g. toluene) in biofiltration 

research is one of the most critical steps. Therefore, it is desirable to have a highly precise 

dilute gas generation technique to minimize potential analytical errors. Several techniques 

are currently available for the preparation of dilute contaminant gas stream from pure 

contaminant liquid and they are generally classified as static and dynamic methods 

(Gautrois and Koppmann, 1999; Helmig et al., 2003; Possanzini et al., 2000; Rhoderick, 

2008; Tumbiolo et al., 2005). Static methods are based on the introduction of known 

amounts of individual components in the form of gas or liquid into a vessel of known 

volume, whereas dynamic methods are based on a continuous flow of components into a 

chamber or a tube wherein the mixing occurs (Namiesnik, 1984). Though the static 

0

5

10

15

20

25

0.0 0.1 0.2 0.3 0.4 0.5

M
a

tr
ic

 P
o

te
n

ti
a

l (
-c

m
)

Volumetric Water Content (m3/m3)



Chapter 3: Differential Biofiltration Reactor 

45 

 

methods have the advantage of ease of operation, for handling larger volume of volatile 

organic compounds it lacks reliability mainly due to the reaction of constituents on the 

container walls, especially at dilute concentration levels (Rhoderick and Miller, 1993). 

For these compounds, the diffusion technique, which is one of the widely used dynamic 

methods, provides more reliable dilute concentrations. By selecting a suitable diffusion 

system a low concentration of volatile organic compound with a wide concentration range 

is attainable. Especially, the capillary diffusion based method has often been used for the 

production of dilute volatile and semi-volatile organic compounds (Gautrois and 

Koppmann, 1999; Helmig et al., 2003; Possanzini et al., 2000). 

Diffusion methods are based on the principle of dilution of the vapour of a liquid 

diffusing from a container through a capillary or directly from a capillary into a space 

through which a stream of diluting gas is passed. The theoretical background of diffusion 

methods was first reported by Altshuller and Cohen (1960). The driving force in the 

diffusion method is the concentration gradient up the tube. The reservoir which contains 

the liquid contaminant acts as a source governed by the temperature at which it is 

maintained. This temperature defines the vapour pressure above the contaminant liquid. It 

was also reported that an optimal internal diameter of a diffusion tube  ranges between 0.2 

and 2 cm for an effective diffusion (Altshuller and Cohen, 1960). 

The diffusion coefficient depends on pressure and temperature of the diffusion system 

and can be expressed by the following relationship (eq.3.4) (Namiesnik, 1984), 

- = -./0	 1
�
./02

,  
3  (m2.s-1)                            (3.4) 

The value of the constant n is usually assumed to be 2.00 but sometimes 1.75. 

Maintaining constant diffusion conditions, i.e., geometric dimensions of a diffusion 

system, temperature, pressure and flow rate of the diluting gas, a gaseous mixture 

containing a constant concentration of the diffusing component is obtained (Namiesnik, 

1984). 

The change in temperature will change the vapour pressure of toluene and by using 

Antoine’s equation, vapour pressure of the toluene can be calculated (eq. 3.5). 

ln 45 = 6 −	 7
�!8      (mm Hg)                             (3.5) 
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Table 3.2 shows the values of constants A, B and C for toluene which are gathered from 

different literature.  

Table 3.2: Antoine coefficients for toluene at different temperature ranges 

Temperature (K) A B C Reference 

273.0-323.0 4.14 1377.58 -50.51 (Pitzer and Scott, 1943) 

273.1-297.9 4.24 1426.45 -45.96 (Besley and Bottomley, 1974) 

303.0-343.0 4.08 1346.38 -53.51 (Gaw and Swinton, 1968) 

308.5-384.7 4.08 1343.94 -53.77 (McGarry, 1983) 

420.0-580.0 4.54 1738.12 0.39 (Ambrose et al., 1975) 

 

The output rate of toluene vapour can be controlled by the length and diameter of the 

diffusion flask (eq. 3.6) as well as the temperature and pressure of the diffusion system 

(eq. 3.4). In addition, the concentration of toluene vapour generated from the diffusion 

system can be controlled by varying the air flow rate (eq. 3.7). 

9: = 	;	<�		= × ?�	 3
3�@A

 (cm
3
.s

-1
)                (3.6) 

B:CD =	 E�FG × 10I (ppm)                 (3.7) 

The design of the custom made glass diffusion flask (V = 10 mL) used in the current 

research is shown in Fig. 3.6a and the diffusion system reported earlier by Beuger and 

Gostomski (2009) is shown in Fig. 3.6b. Pure HPLC grade toluene was filled into the 

diffusion flask. Two different lengths (50 mm and 90 mm) for diffusion section of the 

flasks were used in the study; however the diameter of the diffusion section of the flask 

was kept constant at 3.5 mm. The diffusion flask was kept inside a 1000 mL reagent 

bottle (Fig.3.6a) and the bottle was sealed with a rubber stopper. This system is partly 

submerged (up to the neck of the reagent bottle) and clamped inside a temperature 

controlled water bath (GD100, Grant Instruments, Cambridge, England). The whole water 

bath was insulated using polyethylene foam (thickness 15 mm), leaving a little free space 
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at the top for allowing 1/8
’’
 stainless steel tubing to pass inside and outside of the reagent 

bottle through the rubber stopper. Carbon dioxide free, dry air was passed continuously 

into the top of the reagent bottle at constant flow rate (25 mL.min
-1

). The flow rate was 

maintained by a mass flow controller connected to a readout unit (M100B & Type 247D 

readout, MKS Instruments, Andover, MA, USA). The outlet toluene vapour stream was 

used to feed the differential biofiltration reactor.  

                               

                                      (a)      

      

                                

(b) 

Figure 3.6: Schematic diagram of the custom made diffusion flask and diffusion system 

(a) current study (b) reported earlier by Beuger and Gostomski (2009). 
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The temperature range in which the diffusion system was operated ranged between 5 and 

50 
o 

C. The difference between the calculated and experimental concentration of toluene 

generated by this diffusion system is shown in Table 3.3. It can be seen from the table 

that the experimental values are in close agreements with their respective theoretical 

predictions. Two major disadvantages in using the earlier reported system (Fig. 3.6b) a) 

induced turbulence and b) chances of water getting into the diffusion system (fully 

submerged system and thereby diluting the concentration of toluene), were eliminated by 

using the current diffusion setup (Fig. 3.6a). 

Table 3.3: Difference between experimental and calculated toluene concentration 

generated by the diffusion system at different temperatures and diffusion tube lengths. 

Diffusion 

flask 

inner 

diameter 

(mm) 

Diffusion 

tube 

length 

(mm) 

T 

(K) 

Fg 

(ml/min) 

Cdiff 

theoretical 

(ppm) 

Cdiff 

experimental 

(ppm) 

Factor  

(experimental/ 

theoretical) 

3.5 50 278 25 42.17 46.6 ± 0.45 1.1 

3.5 50 283 25 58.95 61.92 ± 0.42 1.05 

3.5 50 293 25 110.96 109.4 ± 1.63 0.98 

3.5 50 298 25 149.70 145.6 ± 1.64 0.97 

3.5 50 303 25 199.97 190.55 ± 1.04 0.95 

3.5 50 308 25 264.70 246.97 ± 1.28 0.93 

3.5 50 313 25 347.52 320.10 ± 1.86 0.92 

3.5 50 318 25 452.92 407.40 ± 1.56 0.9 

3.5 50 323 25 586.51 518.74 ± 2.63 0.88 

3.5 90 303 25 111.09 97.8 ± 1.82 0.88 

3.5 90 308 25 147.06 131.5 ± 1.10 0.89 

3.5 90 313 25 193.07 180.1 ± 0.30 0.93 

 

3.7 Experimental set-up 

Four differential reactors are used in the current research. All the four reactors are based 

on a similar design reported by Beuger and Gostomski (2009) although the specific 

assembly is slightly different. These reactors are mainly constructed out of glass and 

operated continuously. The bottom water reservoir is made with a 50 mm long glass 

piece of OD 100 mm and thickness 5 mm. It is clamped between two stainless plates of 

diameter 180 mm and thickness 12 mm. The glass reservoir is sealed between the two 
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stainless plates by Viton O-rings of ID 91 mm and cross section 2.35 mm (Dotmar 

Engineering Plastics Ltd, Christchurch, New Zealand). The top of the plate holds an 80 

mm diameter stainless steel perforated disk and on top of it a membrane (Mixed cellulose 

ester, pore size 0.45 µm, diameter 90 mm, Micro Analytix Private Ltd, Auckland, New 

Zealand) is placed. The Viton O-ring is kept at the top of the membrane to prevent leaks 

and glass-on-glass grinding. A large piece of glass (similar to the water reservoir) is 

clamped between the bottom plate and a top head stainless plate. Again a Viton O-ring is 

used in the top plate groove to give good sealing and to prevent leak. Three ports; and a 

1/8’’ liquid port, and a thermo-well, made out of 1/4’’ tubing were welded in. All three 

ports are all fitted with 1/8’’ stainless steel Swagelok fittings (Swagelok, Solon, OH, 

USA). Water reservoir bottom plate has two pieces of 1/8
’’ 

stainless steel tubing welded 

in. One is used for removal of air bubbles under the membrane and the other one for 

connection to the water reservoir. The top part of this tube is connected to a small piece 

of 1/8’’ Viton tubing with a Y-connector. The Y-connector has two pieces of Viton 

tubing, which are in contact with the bottom of the membrane support to be able to 

remove all entrapped air underneath. Four threaded stainless steel rods are used to 

assemble the reactor. The whole set up is fastened by tightening the nuts on the threaded 

rods. The reactor is designed in such a way; the head plate can be removed any time 

without disturbing the seal on the membrane. Fig. 3.7 shows the assembly of the 

experimental differential biofilter reactor. 

 

Figure 3.7: Differential biofilter reactor assembly 
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3.8 Process description 

Fig. 3.8 shows the process flow diagram of the complete experimental set-up. The 

following sub sections will discuss about the operation of individual components shown 

in the process flow diagram. All stainless steel tubing used in this whole set up are 1/8th 

inch ID and are connected using Swagelok fittings.  

H
u
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F

Figure 3.8: Experimental process flow diagram 

3.8.1 Generation of toluene vapour 

A dry air bottle (BOC, New Zealand) supplies air at a regulated pressure of 200 kPa to the 

mass flow controller. Using mass flow controller, the flow rate of the dry air passing can 

be fixed. The inlet flow rate is maintained at 25 mL min
-1

 throughout the studies. In 

addition, the size of the diffusion flask used in the diffusion system is also fixed (either 

the longer one or shorter one). The water bath temperature is the only variable parameter 

which can be changed to generate a desired concentration of toluene vapour for the 

experimentation. The toluene laden vapour flow past a manual inlet sample port and a 

Biofilter 
bed 
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water manometer before it reaches the reactor. The manual inlet sample port is made of 

1/8’’ septum injector nut (Valco Instrument Co., Houston, TX, USA) attached to a 

Swagelok 1/4’’ female branch tee to 1/8’’ female NPT (SS-400-3TTF) and Swagelok 

bored through male connector (SS-200-1-2BT). The septum is GC septa (Blue 3/8’’, 

Alltech Associates Ltd., Deerfield, IL). The water manometer is used to measure the inlet 

pressure and also helps to observe any blockage in the entire flow path (from diffusion 

system to Gas Chromatography outlet). Fig.3.9 shows all the four water baths with 

temperature controllers which also show a glimpse of the partly submerged diffusion 

system and mass flow controller attached to a readout unit. 

 

Figure 3.9: Four water baths containing submerged diffusion system controlled by 

temperature controllers. 

3.8.2 Humidification 

The toluene laden air passes through a shell-in-tube humidifier (Perma Pure LLC, Toms 

River, NJ, USA) before it enters the reactor.  The humidifier can handle an air flow rate 

up to 10 L min
-1

. Water is supplied to the humidifier by a siphon method. A 50 ml glass 

burette with deionized water is placed approximately 30 cm above the humidifier and 

connected to the water inlet of the humidifier with Viton tubing. A short piece of the 

Viton tubing is connected to the water outlet of the humidifier and capped off. As the 

water in the humidifier is evaporated into the inlet stream, the water is replaced from the 
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burette. The water vapour is transferred between the liquid water and flowing gas stream 

inside the humidifier. This process is driven by the partial pressure of the water vapour on 

opposing sides of the Nafion membrane in the humidifier. No extra heating of the 

humidifier is required as the air achieves 100% relative humidity at the box temperature 

which is shared by the reactor. Fig.3.10 shows the schematic diagram of the humidifier 

used in current research. 

 

Figure 3.10: Schematic representation of Perma Pure Humidifier. 

3.8.3 Reactor 

Assembling and loading of the reactor is very important before the operation of the 

reactor. An improper assembling and loading may lead to leaking, breakage, biotic issues 

etc., In order to avoid contamination in the reactor before the addition of soil, all the 

reactor parts including the O-rings are soaked in 1% Virkon solution (antimicrobial 

solution) overnight. Following the soaking, they are autoclaved for 30 min at 121 
o
C prior 

to assembly. The reactor is assembled inside a laminar flow chamber to minimise 

contamination. Firstly, the bottom plates are fitted with threaded rods so that it can stand 

on legs. Inside the groove of the bottom plate, a Viton O-ring is placed to form a seal 

between the glass tubing and the metal plate. The support ring is lined up on the top of the 

glass so that the threaded rods can be put in place. The Y-piece is made to sit below the 

perforated membrane support disc. The nuts on the threaded rods are tightened to seal the 

water reservoir. The membrane is wetted out in deionised water and placed on top of the 

perforated support disc. In order to prevent contamination in both external and internal 

water reservoir, the water in the external reservoir is autoclaved at 121 
o
C for 45 min. The 

external reservoir is placed below the internal reservoir in order to prevent pressure build 

up under the membrane. The air in the internal reservoir is removed using 20 mL plastic 

syringe which leads to the filling up the vacuum of the internal reservoir with water. 

Unless there is any leak, the whole reservoir can be filled in less than 5 min. Any air that 

is trapped underneath the membrane can be removed by slightly tilting the reactor in the 
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direction of the air bubble. Once all the air bubbles are removed, the syringe used to suck 

the air from internal reservoir will fill up with water which is an indication of no further 

air inside the internal reservoir. 

8.65 g of sieved soil (no.6 mesh) is loaded on the membrane using a stainless steel ring 

and slightly padded in order to get good contact between the soil and the membrane. The 

metal ring is removed and the glass gas reservoir is placed on top of the Viton O-ring in 

the metal plate placed above the membrane. The reactor is closed by fitting the top plate 

with Viton O-ring on the other end of the gas glass reservoir. Finally the whole reactor set 

up is made gas tight by screwing the nuts hand tight. A simple leak test can be done by 

closing either the inlet port or outlet port of the reactor and blowing air through one of the 

open ports.   

Following the assembling and loading, the reactor, humidifier and the external water 

reservoir bottle (500 mL) are kept inside a wooden bench top box (560mm x 360mm x 

300 mm) insulated with polyethylene foam (thickness 15 mm). The temperature inside the 

box is controlled by a temperature controller (LTR-5, LAE Electronics, Italy) using 60W 

incandescent bulb as a heating source. A cooling load is applied to the system by a 

refrigeration unit (Tropicool-XC3000A, 12V DC, Thermoelectric Refrigeration Ltd., New 

Zealand) when the room temperature approaches the reactor temperature. Tension is 

applied onto the soil by placing the external water reservoir below the membrane as 

explained in Section 3.5. The reservoir bottle is closed by a rubber stopper. Through a tee 

outside the wooden bench top box, the inlet sample line enters both the reactor inlet port 

and also the gas chromatography (GC) system (discussed in the following section). The 

outlet port of the reactor is connected with a tee. One end of the tee is connected to the top 

of the reservoir bottle and the other end is connected to the GC System (discussed in the 

following section) through a manual sample outlet port (similar to the manual sample inlet 

port). The outlet line is heat traced at 40 
o
C and insulated in order to prevent condensation. 

Using a split, a part of the outlet flow is connected to a water trap using a Tygon tube 

before it is dipped into a 100 mL measuring cylinder with water. This measuring cylinder 

with water is used to regulate the outlet pressure when the outlet sample is analysed by the 

GC. Whenever, the outlet sample is not analysed by GC, it will bubble through the 

measuring cylinder and whenever it is analysed by GC, there is no flow through the 

measuring cylinder set up. The water level in the measuring cylinder is always maintained 



Chapter 3: Differential Biofiltration Reactor 

54 

 

at a fixed height in order to maintain the pressure and flow of the reactor outlet constant. 

Fig. 3.11 shows the experimental setup of one of the four reactors used in the current 

research. 

 

Figure 3.11: Experimental set-up of one of the four reactors. 

Fig. 3.12(a) and 3.12(b) compares the performance of one of the four reactors without soil 

which was assembled with and without autoclaving. It is clearly evident that despite of 

initial toluene losses in both the experiments due to the interaction of toluene vapour with 

water in the internal reservoir prior to equilibrium, the performance of the autoclaved 

reactor is proved to be good as the toluene loss is negligible. This clearly shows that the 

reactor which was assembled without autoclaving should have allowed the contaminants to 

grow, which should have used toluene as a sole carbon source for their growth and 

survival.  
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(a) 

 

(b) 

Figure 3.12: (a) Performance of one of the four reactors which was assembled without 

autoclaving (b) Performance of one of the four reactors which was assembled following 

autoclaving. Blue line is inlet concentration and red line is outlet concentration. Error bars 

are the standard deviations. 

3.8.4 Online sample analysis 

Continuous real time monitoring of inlet and outlet toluene concentration is achieved by 

connecting a gas chromatography (GC) system (SRI-8610C, SRI Instruments, CA, USA) 

online to the reactors (Appendix A). Integration of an online sample monitoring system 

with the reactor setup increased the precision and robustness of the measurement. The GC 
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has ten sample inlet ports at the back in which eight are used for connecting the inlet and 

outlet lines of all four reactors. The GC uses a flame ionization detector, capillary column 

(1.5 mL) and 5 ml sample loop for detection and analysis of the sample. The initial flame 

ignition is done manually through a flame ignition switch present at the side panel of the 

GC. This step is followed whenever the GC is restarted. Helium is used as a carrier gas (5 

psi and 10 mL min-1), air (5 psi and 250 mL min-1) and hydrogen (20 psi and 25 mL min-1) 

for flame ignition. The temperature of column oven is maintained at 180 oC. Air for the 

GC is supplied from a compressor and hence it is filtered through oil and vapour removal 

filter (F64, Norgren Martonair Ltd, Staffordshire, England) before entering the GC. The 

air pressure is regulated at 30 psi by an in-built regulator in the filter.  

In case of the compressor failure, air to GC is supplied from the dry air bottle (which 

supplies air to the diffusion system). This is done by an automatic pilot valve which is 

connected to the regulator of the filter. The other two gases are supplied to GC through 

individual gas bottles. The GC is programmed in such a way it can analyse the inlet 

concentration followed by outlet concentration of each reactor (out of 4) in every 8th hour 

in a 24 hours period. Hence three sets of inlet and outlet concentrations are measured in 

different times of the day for all four reactors. Each analysis is programmed for 1 hour and 

during that period the sample is injected 4 times at equal intervals following a first 20 min 

of flush with the sample to be tested. The 20 min flush time and 1 hr sample analysis time 

are calculated following series of trial and error. The GC is connected to a computer 

through USB cable and controlled by PeaksimpleTM software. Manual sample inlet and 

outlet ports are provided for all reactors as a backup, if the online sampling system is 

stopped for any reasons like GC maintenance, power failure, shut down period etc., Fig. 

3.13 shows the online SRI GC in operation and Fig. 3.14a & 3.14b compares the inlet 

toluene concentration of one of the reactors when measured offline and online. It is clearly 

evident from Fig. 3.14a and Fig. 3.14b, the robustness of the measurement increased in 

online analysis when compared to offline. Standard deviation for inlet sample analysis 

decreased by 65% for online sampling when compared to the offline sampling. Similarly, 

for outlet sample analysis it decreased by 79% for online sampling when compared with 

the offline sampling. The major cause for this is assumed to be the human error associated 

with the offline measurement. 
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Figure 3.13: SRI-8610C connected online to reactor system 
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           (b) 

Figure 3.14: (a) Offline measurement of inlet and outlet toluene concentration in one of 

the four reactors (b) Online measurement of inlet and outlet toluene concentration in one 

of the four reactors. Closed blue diamonds (    ) are inlet concentrations and closed red 

squares are outlet concentrations (           ). Error bars are the standard deviations. 

3.8.5 Online carbon dioxide analysis 

Carbon dioxide is one of the by-products of toluene degradation and it is measured from 

the outlet sample of all the four reactors. A carbon dioxide probe (GMP343, Vaisala Inc, 

CO, USA) works on the principle of infra-red (IR) absorption. It is connected to the outlet 

sample loop purge port of the GC (Fig. 3.15), so that whenever the GC is analysing the 

toluene concentration in the inlet and outlet of each reactors, the carbon dioxide probe also 

measures the concentration of carbon dioxide in the inlet and outlet stream of each 

reactors. In addition, the outlet samples are at 100% relative humidity as they are above 30 

oC and hence the possibilities of condensation inside the carbon dioxide analyser can be 

avoided. The probe is connected to computer through a readout unit (MI70, Vaisala Inc, 

CO, USA) and the measured carbon dioxide concentration is monitored and recorded 

online using MI70 link software. The probe also measures the sample temperature which 

is also monitored and recorded online using MI70 link software. Fig. 3.15 shows the 
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online operation of carbon dioxide probe and readout connected to the outlet sample port 

of GC. 

 

Figure 3.15: Carbon dioxide probe connected online with the outlet of GC and read out 

records the measured carbon dioxide. 

Fig. 3.16 shows the online carbon dioxide measurement from the inlet and outlet sample 

of one of the four reactors1. It is observed from the figure that the inlet concentration of 

carbon dioxide is zero which consistent with the supplier specification for the dry air.  

 

Figure 3.16: Online carbon dioxide analysis in the inlet and outlet streams of one of the 

four reactors.  

                                                        
1
 GC was programmed to measure inlet first and then outlet for 60 minutes each. 
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3.9 Conclusions 

Introduction of new simple diffusion system (which is designed in the current research) 

improved the generation of toluene vapour which helped to generate the desired inlet 

toluene concentration for the biofiltration reactor system.  The new diffusion system 

generated a near theoretical concentration of toluene vapour when compared to the old 

one (maximum experimental to theoretical ratio of 1.1 @ 5 
o
C and minimum of 0.88 @ 

50 
o
C). Online sample analysis through GC improved the precision of the data collected 

and enhanced the robustness of the process. Overall, the quality of the experiment and 

data collection was improved due to the modifications carried out to the existing 

biofiltration system. 

3.10 Nomenclature 

       At  diffusion tube cross sectional area    m2 

       aw  water activity       dimensionless 

       Cdif concentration at the exit of the diffusion flask  ppm 

       D  diffusion coefficient at pressure P and temperature T m
2
 s

-1
 

       D298 diffusion coefficient at 298 K and 1 atm   m2 s-1 

       Fg  gas flow rate       m
3
 s

-1
 

       L  length of the diffusion flask     m 

       m  constant       dimensionless 

       mdry mass of dry soil      kg 

       mwet mass of wet soil      kg 

       n  temperature coefficient (in diffusion equation)  dimensionless 

       n  empirical shape factor (matric potential equation)  dimensionless 

       pv  vapour pressure of toluene     mm Hg 

       P  pressure in the diffusion system    mm Hg 

       qd  diffusion rate       m
3
 s

-1
 

       R  Universal gas constant      J mol-1 K-1 
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       T  Temperature        K 

       VW volume of water in soil     m
3
 

       α  empirical shape factor      dimensionless 

       Ɵ  normalized water content at matric head h   dimensionless 

       θ  water content       m3 m-3 

       θr  residual water content      m
3
 m

-3
 

       θs  saturated water content     m
3
 m

-3
 

       ψm  matric potential      J m
-3
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Chapter 4: Effect of Substrate Concentration, Nutrients and Temperature 

on Removal 

4.1 Introduction 

Biofiltration involves a combination of different chemical and biological processes: 

absorption, diffusion, adsorption and degradation of the gaseous contaminant and 

desorption of the degradation products (Vergara-Fernández et al., 2007). Biofilter 

performance can be directly influenced by various operational parameters such as the 

filter bed characteristics, nutrient supply, contaminant concentrations, temperature and 

gas flow rates (Jorio et al., 2000a). Understanding the extent of impact of these 

parameters in a biofilter is very important both in industrial scale and lab scale biofilters. 

The differential biofiltration reactor system described in Chapter 3 can be effectively 

utilized in investigating the effect of these operational parameters on the pollutant 

(toluene) degradation rate. This chapter will discuss the studies with the lab scale 

differential biofiltration reactor to understand the impact of substrate/pollutant (toluene) 

concentration, nutrients and temperature on the removal rate. 

4.2 Pollutant/Substrate concentration 

The inlet pollutant concentration and the flow rate quantify the amount of pollutant to be 

degraded in a biofilter. Biofiltration is highly efficient for dilute (concentrations < 1000 

ppm), easily biodegradable pollutant gases (e.g. benzene, toluene etc.). Conversely, 

biofiltration is less proficient in the treatment of highly concentrated emissions of 

moderately or poorly biodegradable pollutant gases (e.g. dimethyl sulphide, 

dichloroethane, etc.) (Kennes and Veiga, 2001; Kumar et al., 2008). There are a few 

reports on the effect of inlet pollutant concentration on the mass transfer rate which 

suggest that an increase in the inlet pollutant concentration improves the mass transfer 

rate of the pollutant to the water/biofilm (Jorio et al., 2000b; Wang et al., 2006). 

However, high concentrations of some recalcitrant pollutant gases may inhibit1 the 

metabolic activity of the microbial consortium present in the biofilter bed (Madigan et 

al., 2009). Moreover, a high inlet concentration (below the inhibition level) in the air 

                                                        
1
 e.g. a EC of 35 g.m

-3
.h

-1
 was observed for high concentrations of alpha-pinene 
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stream increases the biomass production if nutrients are added, which potentially 

restricts air flow and creates channelling in the filter bed (du Plessis et al., 1998; Sorial 

et al., 1998). Knowledge about the effect of pollutant concentration is essential in 

describing the effect of that pollutant on the biodegradation rate. The biodegradation rate 

in a biofilm is usually described using a modified form of Monod’s growth equation (Eq. 

4.1) (Doran, 1995). When substrate inhibition affects the growth rate, Andrew’s 

substrate inhibition equation (Andrews, 1968) is one option that can be used to model 

the growth rate (Eq. 4.2). However, for non-growth systems susceptible for substrate 

inhibition like biofilter, the growth rate (µ) and the maximum growth rate (µmax) in Eq. 

4.2 can be replaced with EC and ECmax (Eq. 4.3). The Eq. 4.3 does not have mass 

transfer as an explicit term.  Hence, substrate concentration can influence EC directly in 

the traditional way through the Ks term or indirectly through a higher mass transfer rate 

causing more biofilm to be engaged in the biofilter bed. 

 

                                                                                                 (4.1) 

                                                                                                                             (4.2) 

                                                                                                                        (4.3) 

 

The substrate concentration is usually much higher than the KS and Ki value for the  

majority of the biofilter operation and hence the biodegradation reaction is often zero 

order over a large range of substrate concentrations  (Ottengraf and Vandenoever, 1983).  

4.3 Nutrients 

The bed material in a biofilter is typically soil, peat, bark, compost or other materials that 

contain a large variety of indigenous microorganisms (Alahari and Apte, 2004; Madigan 

et al., 2009). In addition to providing a physical support for the microorganisms, these 

materials also provide some amount of minor and trace nutrients. The presence of 

sufficient nutrients in the biofiltration medium is required for the maintenance of 
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microbial activity and the consequent degradation of pollutants. However, the 

continuous supply of supplemental nutrients may also lead to undesirable problems such 

as biomass overgrowth with eventual clogging (Delhoménie and Heitz, 2005).  

Microorganisms present in the biofilter bed use the carbon present in the pollutant (e.g. 

VOCs) as a carbon source for cell material, as carbon is the most important building 

block in any cell (Kennes and Veiga, 2001). Biofilters which treat non-carbon containing 

pollutants (e.g. NH3, H2S etc.,) are mostly autotrophs and hence occasionally need to be 

supplemented with additional carbon sources. After carbon, nitrogen is the most 

essential nutrient for microbial growth. It makes up about 15% of the dry cell mass and 

is a major constituent of nucleic acids and proteins. The bulk of available nitrogen in 

nature is in inorganic form, with most microorganisms able to use ammonia, and some 

can also use nitrate. A large fraction of the nitrogen2 used by microorganisms is recycled 

after organisms die and lyse (Madigan et al., 2009).  

The effect of nitrogen concentration and its chemical form on biofilter performance has 

been often reported (Delhomenie et al., 2001; Song and Kinney, 2005). An increase in 

removal efficiency by 59% is reported in a biofilter treating hexane after the addition of 

potassium nitrate to the biofilter bed (Morgenroth et al., 1996). There are also reports on 

the application of gaseous ammonia as a nitrogen source to the biofilter bed increasing 

the EC by 10 times (Kibazohi et al., 2004; Morales et al., 1998).  

Next to nitrogen, phosphorus, sulphur and potassium are considered essential for many 

intracellular processes in a microorganism (ATP production, disulphate bond formation, 

maintenance of cellular pH, etc.) (Alahari and Apte, 2004; du Plessis et al., 1998; Sorial 

et al., 1998). Addition of phosphorus increased the VOC removal rate by 70% in a 

compost biofilter (Morgenroth et al., 1996). However, there are no reports that sulphur 

or potassium addition increased the performance of a biofilter (Beuger and Gostomski, 

2009). However, it is necessary to maintain a threshold concentration for all these 

macronutrients in a biofilter in order to maintain the normal microbial metabolism 

(Prado et al., 2002). In addition to the macronutrients, cells require micronutrients like 

vitamins, magnesium, iron, calcium, copper, zinc and molybdenum in the form of trace 

elements for maintaining various metabolic pathways. For this reason, micronutrients are 
                                                        
2
 Least amount is lost through volatilization 
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often added along with macronutrients to biofilters in trace levels (Delhoménie and 

Heitz, 2005). 

Though both macro- and micronutrients are required in biofilter media for adequate 

biofilter performance, there is no consensus on the optimal concentration required for 

each of these nutrients. Routine top up of these nutrients is often needed to maintain 

good biofilter performance during a long run or higher inlet loads (Cherry and 

Thompson, 1997; Gribbins and Loehr, 1998; Morgenroth et al., 1996). Conversely, there 

are also few biofilters reported to be used for extended time without nutrient addition 

(Cárdenas‐González et al., 1999; Devinny et al., 1999; Weckhuysen et al., 1993). 

Therefore, the concentration, frequency and type of nutrients needed for treating 

different gaseous pollutants with various biofilter bed media remains highly empirical.  

4.4 Temperature 

Maintaining an optimum temperature in biofiltration is very crucial as the 

microorganisms involved in the biodegradation reaction can show maximum activity 

only over certain temperature ranges. The pollutant degradation rate usually increases 

with a rise in biofilter bed temperature until an optimum is reached. On the other hand, 

for the majority of gases, the  solubility of the gas in the aqueous phase decreases, which 

in turn makes the contaminant less readily available for microbes (Yoon and Park, 2002). 

Since the biodegradation taking place in a biofilter is an exothermic process, it will add 

heat to the biofilter bed, which will also contribute to the overall temperature in the 

biofiltration process. The temperature of the biofilter bed increases when the cells are 

most active, which usually happens in a temperature range of 30-40 oC for toluene 

degraders (Kiared et al., 1997). There are a few reports which recommend 40 oC as the 

optimum operating temperature for biofilters (Leson and Winer, 1991; Ottengraf and 

Vandenoever, 1983). However, based on the type of microorganisms involved in 

degrading the particular pollutant, their optimum temperature range will change for 

attaining maximum degradation rate. 

Hence, the major objective of this chapter is to understand the effects of toluene 

(substrate) concentration, different nutrients and temperature on the toluene degradation 

rate. These studies will help further to select a threshold toluene concentration and 

working temperature to attain high EC. Moreover, it will also help to understand about 
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the limiting nutrients, so that the use of chemicals containing those limiting nutrient can 

be avoided.   

4.5 Experimental setup and methods 

Experiments for studying the effect of substrate concentration and the effect of nutrient 

addition used the setup of Reactor 1 whereas, experiments for studying the effect of 

temperature used the setup of Reactor 2 as described in section 3.7. 

4.5.1 Substrate concentration studies 

Reactor 1 was operated for 4 months at 30 oC (optimum temperature for most microbes). 

Inlet concentrations were varied until a steady EC was observed at each concentration. 

Toluene inlet concentration was varied between 46.6 ± 0.5 ppm and 649.6 ± 4.2 ppm by 

varying the water bath temperature (as described in section 3.8.1) between 5 oC and 55 
oC for this study. A separate cooler was connected to the water bath in order to work 

below the room temperature for generating lower inlet toluene concentrations. The 

experiment was repeated in three cycles with first two cycles at increasing order of 

concentrations and the last cycle at mixed order of concentrations. The matric potential 

of the soil was kept constant at -10 cm H2O for the whole experiment.  

        The following assumptions were made for fitting the data in Eq. 4.3, 

1. Since the reactor used in the study was a differential reactor, there were no 

concentration gradients in the gas phase and in the interparticle space between 

the soil particles.  

2. The biomass concentration and composition were constant. 

3. There was no accumulation of toluene in the soil or in water phase, as the system 

is at steady state. 

4. All environmental parameters are constant over all the steady states except for 

residual toluene concentration. 

4.5.2 Nutrient addition 

The external lower water reservoir which was connected hydraulically with the internal 

upper reservoir (the one below the membrane) was used for the addition of different 
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nutrient solutions (Table 4.1) to the reactor bed (soil). All the nutrient solutions3 were 

autoclaved at 121 oC for 45 minutes before being used in the experiment. PBS washes 

were performed before swapping the nutrient solutions in the reactor. 

Table 4.1: Different nutrients4 added to the differential biofilter to determine the impact 

on elimination capacity. 

Nutrient Concentration (g.L-1) Duration (days) 

Nitrogen Source 

      a)   NaNO3 

 

4.00 

 

5 

Phosphate Source 

a) KH2PO4 

b) NaH2PO4.H2O 

 

0.24 

 

43 

1.44 43 

Sulphate, Magnesium, 

Ferrous Sources 

a) MgSO4.7H2O 

b) FeSO4.7H2O 

 

 

0.2 

 

 

7 

0.0008 7 

Calcium Source 

      a) CaCl2.2H2O 

 

1.42 

 

56 

Tap water  NA 15 

 

4.5.3 Temperature studies 

The temperature of the insulated box containing the differential reactor was controlled 

between 20 oC and 50 oC. Temperatures near ambient and lower were obtained by 

                                                        
3
 Except tap water and calcium chloride all other nutrient solutions were prepared in 1X PBS (buffered at pH: 

7.0) in order to eliminate the pH effect on microbial degradation. 

4
 Due to time factor, nutrient study experiments were conducted with on salt for each nutrient. 
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adding a cooling load through a refrigeration unit (Tropicool-XC3000A, 12V DC, 

Thermoelectric Refrigeration Ltd., New Zealand) attached to the insulated box and a 

temperature controller (LTR-5, LAE Electronics, Italy) turning a 60W light bulb off and 

on. For studies conducted above the ambient temperature, the refrigeration unit was 

eliminated. The experiment was carried out by changing the differential reactor 

temperature in 5 oC intervals until a steady EC was observed. 

4.6 Results and discussion 

4.6.1 Substrate concentration effect 

The effect of residual (outlet) toluene concentration on EC was studied by manipulating 

the inlet toluene concentrations to change the load. The experiments were conducted 

with an assumption that there would be no change in biomass in the soil layer unless 

nutrients were added. Before these experiments were started, the reactor (R1) was 

operated for 120 days, and any excess nutrients to stimulate growth were assumed to be 

exhausted. Three cycles of repeat experiments were conducted and the EC reached a 

maximum before substrate inhibition dominated (Cmax) and above Cmax it started to drop 

(Fig. 4.1-4.3).  
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Figure 4.1: The relationship between the outlet (residual) toluene concentration on the 

EC. The numbers represent the order in which the curve was generated. This sample set 

is for cycle 1 experiment was obtained between day 120 and 188. Error bars are the 

standard deviations. 
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Figure 4.2: The relationship between the outlet (or residual) concentration on the EC. 

The numbers represent the order in which the curve was generated. This sample set is 

for cycle 2 experiment was obtained between day 189 and 222. Error bars are the 

standard deviations. 

 Figure 4.3: The relationship between the outlet (or residual) concentration on the EC. 

The numbers represent the order in which the curve was generated. This sample set is 

for cycle 3 experiment was obtained between day 223 and 245. Error bars are the 

standard deviations. 
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The first cycle results are shown in Fig. 4.1 with nine data points. The numbers 

corresponds to the order in which the experiment was done. The differential biofilter 

reactor was operated for nearly 4 months at a toluene residual concentration of 160 ppm 

and generated a lower steady EC of 38 g.m-3.h-1 until the start of this cycle (data not 

shown) when compared to the point 1. It is evident from the EC at point 1 that, the 

decrease in the toluene residual concentration decreased the substrate inhibition and only 

mass transfer limitation influenced EC. A similar trend was observed at point 2 as the 

toluene residual concentration (26.1 ppm) is further lowered at this point when 

compared to point 1. Following point 2, the toluene residual concentration was increased 

sequentially from point 3 through to point 6 (120-369 ppm). However, an increase in EC 

was observed only at points 3 and 4. At points 5 and 6, the EC started to decrease 

despite a higher residual toluene concentration. This response can either be attributed to 

substrate inhibition or oxygen limitation. However based on few earlier reports, oxygen 

limitation in a biofilter is unlikely to influence the EC at these loads (Deshusses et al., 

1996; Shareefdeen et al., 1993) and hence the current response can be attributed to 

substrate inhibition. Therefore, it is clear that at point 4 maximum EC was measured and 

above which substrate inhibition started to dominate the EC more than the mass transfer 

limitation. Following point 6, the toluene residual concentration was decreased and a 

lower EC was observed. This trend was also observed at point 8, where the toluene 

residual concentration was lowest (11.1 ppm) in the whole cycle. Following point 8, the 

toluene residual concentration was increased (22.5 ppm) at point 9 and the EC also 

increased. Studies between points 7 and 9 confirmed once again that, substrate inhibition 

did not dominate the mass transfer limitation below Cmax and EC also responded 

accordingly. 

Following the first cycle of experiments, in order to understand further about the 

response of toluene degraders in the biofilter media (which was already subjected to 

varying substrate concentrations in cycle 1), a new cycle 2 (Fig. 4.2) was started with 

point 10 after day 188 at a residual toluene concentration of 11.3 ppm. The whole 

experiment was conducted with an increasing order of residual toluene concentration at 

a constant reactor temperature (30 oC). However at point 15, the experiment was 

conducted at a reactor temperature of 35 oC in order to have a one point comparison of 

EC at nearly the same toluene residual concentration but at different reactor temperature.  
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From point 10 to 14, the increase in residual toluene concentration increased the EC. At 

point 15, EC was higher than at point 16 though both the points are at nearly same 

residual toluene concentration. This is most likely because, at point 15 the 

biodegradation activity was increased due to an increase in the reactor temperature 

(35 oC) which was later decreased to 30 oC for points 16-20. From point 16 to point 18, 

EC increased with increased residual toluene concentration and at point 19, it reached 

the maximum value and hence the residual toluene concentration at that point was the 

maximum measured concentration (Cmax) above which substrate inhibition started to 

influence EC. After point 19, EC started to drop and it further dropped at point 20 and 

this effect can be attributed to the dominance of substrate inhibition over mass transfer 

limitation. 

Though cycle two followed a similar pattern to cycle one (mass transfer limitation 

dominated below Cmax and substrate inhibition dominated after Cmax), the curve 

generated from cycle two was at a lower EC compared with cycle one at similar residual 

toluene concentrations. Furthermore, the Cmax also doubled in cycle 2 when compared to 

cycle 1. This difference could be possibly attributed to that less of the most active and 

efficient toluene degraders originally present in the biofilter media were still present in 

the biofilm. Moreover, it was believed that the other toluene degraders (sub population 

left following cycle 1) which were more resistant to toluene with lower specific 

degradation might have played a role in toluene degradation in cycle 2. The other 

possibility is nutrients could have leaked from those damaged, non-toluene tolerant cells 

or most effective toluene degraders into the environment. Probably less active toluene 

degraders (which survived the substrate inhibition in cycle 1) scavenged these nutrients 

and a small amount of growth occurred in the cycle 2 experimentation phase. However, 

this scavenging mechanism is not easy to validate until the initial and final biomass for 

each type of toluene degrader were measured in a natural biofilter medium, which is 

difficult to do in the diverse microbial consortium. 

The second cycle raised a question about the repeatability of these studies (in which 

active toluene degraders are lost) in order to further explore the substrate effect on group 

of toluene degraders present in soil. Cycle three (Fig. 4.3) was conducted to further 

validate the hypothesis proposed from cycle two experiments. However, this time the 

experiment was conducted in random order of residual toluene concentration from 
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points 21 – 24 and increasing order of residual concentration from points 24 to 27 rather 

than an increasing or decreasing order like before (cycle one and two).  

The soil which was subjected to cycle one and two was used again in this cycle. The EC 

observed at point 21 of cycle three was lower than the EC observed at point 20 of cycle 

two, which was consistent (in terms of loss in the microbial activity following high 

toluene load at the end of earlier cycle)with other two cycles as the residual toluene 

concentration at point 20 is higher than point 21. Points 22 and 23 with lower residual 

toluene concentration responded in similar pattern (lower EC) like in cycle 1 and 2. In 

addition points 24 and 25 with higher residual toluene concentration than point 21 also 

responded in similar pattern (higher EC) like in cycle 1 and 2.  At point 26, the residual 

toluene concentration attained the maximum measured concentration (Cmax) above 

which substrate inhibition started to influence EC more than the mass transfer limitation. 

 Similar to cycle one and two, a further increase in the residual toluene concentration 

after Cmax decreased the EC. Hence, it can be concluded that the mass transfer limitation 

dominated before Cmax and substrate inhibition dominated after Cmax. This response was 

observed consistently in all three cycles.  However, the curve generated from cycle three 

showed a further reduction in the EC at a nearly similar residual toluene concentration 

when compared with cycle two and further with cycle one. Overall by comparing the 

three curves generated by three cycles of experiments, EC dropped consistently (Fig. 

4.1-4.3). The explanation provided for similar response in cycle two can also be 

applicable for cycle three for understanding this pattern. However, since the substrate 

inhibition started to dominate after Cmax, it was hard to understand whether the whole 

biofilm was completely utilized (nil mass transfer limitation) at Cmax. These experiments 

further implies that there were probably multiple toluene degraders involved in toluene 

degradation present in the biofilter bed (soil) which was used for all three cycles. Also 

each toluene degrader has its own Cmax and also differing specific toluene degradation 

rate.  

Another possible explanation for the reduced EC value between the cycles may be 

attributed to the depletion in nutrients with respect to the time. However, all the 

experiments were started after observing a steady EC for at least 2 weeks. Hence the loss 

of nutrients during the course of the experiments might not be significant.  
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The last possible explanation for the reduced EC may be the reduced oxygen level due 

to the thick biofilm formation, possibly due to the polysaccharide production by the 

microbes on the soil and hence the formation of anaerobic zones reducing the 

biodegradation efficiency. This may happen because of clogging of biofilter bed by 

excess biomass. However, additional experiments need to be done to understand the 

reason behind reduced biodegradation rate between the cycles. The experimental values 

for each cycle were fit to Eq. 4.3 (Table 4.2, Fig. 4.4). 

Overall from the three cycles, it was found that the biodegradation efficiency was 

diminished between the cycles following the substrate inhibition in each cycle. Hence it 

can be concluded that running any experiments in a fresh soil at Cmax of cycle 1 or in the 

flat region as shown in the Fig 4.4 is advisable to achieve maximum biodegradation. It 

was evident from the figure that variation of EC versus the residual toluene 

concentration showed an increase in EC with increasing residual toluene concentration 

to a certain value called Cmax. Also it can be hypothesised that below Cmax, mass transfer 

limitation dominated the substrate inhibition and vice versa after Cmax. At Cmax, entire 

active toluene degraders are assumed to be involved in the biodegradation kinetics. As 

the residual toluene concentration was increased above Cmax, the EC started to decrease 

and this response can be referred as a substrate inhibition regime. Hence these 

parameters will further help to model a real biofilter in order to achieve optimal 

performance.  

Table 4.2: Parameters used to fit modified Andrew’s substrate inhibition model. 

Parameter Cycle 1 Cycle 2 Cycle 3 

ECmax 238.8 g.m-3.h-1 145.5 g.m-3.h-1 113.9 g.m-3.h-1 

KS 0.2 g.m-3 

(53 ppm) 

0.3 g.m-3 

(79 ppm) 

0.3 g.m-3 

(79 ppm) 

Ki 0.6 g.m-3 

(158 ppm) 

0.2 g.m-3 

(53 ppm) 

0.2 g.m-3 

(53 ppm) 

Cmax 0.9 g.m-3 

(245 ppm) 

1.1 g.m-3 

(285 ppm) 

1.7 g.m-3 

(466 ppm) 
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Figure 4.4: Fitting the substrate inhibition model (Eq. 4.3) for all three cycles. Cycle 

one is the blue closed diamonds (    ), Cycle two is the closed green triangles (    ) and 

Cycle three is the closed red squares (    ). Error bars are the standard deviations. 

 

4.6.2 Nutrient effect 

Before starting the nutrient studies in the differential biofilter reactor, the reactor was 

operated for 7 days as an acclimation period for toluene degraders present in the biofilter 

media (soil). Moreover, the reactor was started with tap water5 initially. A steady EC 

was observed after the 7th day with tap water. In the current study, tap water was 

considered as a control and the corresponding EC was considered as control EC. In 

order to avoid possible contamination in the liquid phase, all the nutrient solutions 

                                                        
5
 Potable water supplied by Christchurch city council for houses and workplaces. 
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(including tap water) used in this experiment were autoclaved before introducing into 

the reactor. In addition, other than the tap water and calcium chloride, all other nutrients 

were buffered and the pH was adjusted between 6.8 and 7.2 prior to introducing them 

into the reactor. Fig. 4.5 shows the effect of different nutrient additions on the EC of the 

differential biofilter reactor. 

 

Figure 4.5: Elimination capacity, closed green triangles (  ), and residual toluene 

concentration, closed red squares (  ) for nutrient addition studies at different time 

intervals. Error bars are the standard deviations. 

Following the steady state EC (31.9 ± 0.8 g.m-3.h-1) with tap water, at day 16, 0.01 M 

calcium chloride (Houba et al., 2000) was added after removing the tap water which 

slightly increased the EC. The steady state EC observed following the addition of 

calcium chloride was 35.9 ± 1 g.m-3.h-1. Since this marginal increase in EC was not 

considered significant (Acuña et al., 2002; Beuger and Gostomski, 2009; Jorio et al., 

2000a; Morgenroth et al., 1996; Weckhuysen et al., 1993), the toluene degraders present 

in the soil were not calcium-limited. After achieving steady state EC at day 29, 
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phosphate buffered saline (PBS) was added by removing the calcium chloride from the 

reactor. Similar to calcium chloride, it slightly increased the EC but not significantly. 

However, this slight increase was observed after 10 days (day 39) of PBS addition. The 

steady state EC after PBS addition was observed as 41.5 ± 2.7 g.m-3.h-1. Since this 

marginal increase in EC was not considered significant, it was considered that similar to 

calcium chloride, PBS had nearly nil influence on EC. Following this experiment, it was 

decided to prepare all experimental solutions in PBS and also the pH of all test solutions 

were adjusted to 7.0 before loading into the reactor. Moreover, PBS washes were 

performed whenever a new test solution was loaded and removed6 from the reactor. This 

was done to eliminate the pH effect on the microbial degradation.  

 

After the day 66, PBS was replaced by 0.05 M sodium nitrate which increased the EC 

11 fold after 12 days. The steady state EC observed following the addition of sodium 

nitrate was 145 ± 0.9 g.m-3.h -1. This response when compared with other tested nutrients 

proved that nitrogen was the substrate limiting the growth of toluene degraders present 

in the biofilter bed. Biomass increase in the soil was observed through visual inspection 

(white layer of microbial growth was seen on the soil surface). Nitrogen limitation was 

observed in other related research work conducted in different biofilters for treating 

different volatile organic compounds (VOCs) (Acuña et al., 2002; Beuger and 

Gostomski, 2009; Jorio et al., 2000a; Morgenroth et al., 1996; Weckhuysen et al., 1993).  

 

After achieving a new steady state EC, the sodium nitrate solution was replaced with 

PBS water to get a new control EC value on day 69.  No significant change in the EC 

was observed following this change. This response clearly proved that EC increase 

during the addition of sodium nitrate was only due to biomass growth. On 74th day, PBS 

was replaced with magnesium sulphate and ferrous sulphate solution and no further 

change in EC was observed. This proved that the toluene degraders are neither Mg/Fe 

nor sulphate limited. It was also clear from these studies that the current experimental 

setup gave an easy and controlled environment for nutrient addition and removal in 

addition to control the water content of the biofilter bed. Since all the nutrient solutions 

were autoclaved before use and both the internal and external water reservoirs were 

                                                        
6
 The pH of tested solutions upon removal from the reactor ranged between 6.5-6.8. 
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sealed, the possibilities of microbial growth in the nutrient solution was minimised. 

Hence it was relatively easy to study the nutrient effect in the current experimental 

setup. The data from Fig. 4.5 is summarized in Fig. 4.6. 

 

Figure 4.6: Overall results of nutrient effect on the EC of soil in the differential biofilter 

reactor. Error bars are the standard deviations. 

4.6.3 Temperature effect 

The operating temperature of the differential biofilter reactor was increased stepwise 

from 20 oC to 50 oC during the experiment. Increasing the temperature of the reactor 

increased the EC to a maximum of 49.8 ± 2.6 g.m-3.h-1 at 45 oC (Fig. 4.7). However, the 

EC started to drop steeply above 45 oC. The average residual toluene concentration at 

this point was observed as 240±3 ppm. In addition it was also observed that the increase 

in EC was gradual between 20 oC and 45 oC but after that EC started to drop steeply. 

However, a similar study reported that maximum specific toluene degradation rate was 

observed at 30 oC in a biofilter (Lee et al., 2002). Hence from the current study it can be 

concluded that a highest intensity of the metabolic microbial activity in soil was seen at 
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45 o C which was 18% lower than the optimal temperature reported earlier by Beuger 

and Gostomski (2009) in compost.  Moreover in soil, it was also possible that the group 

of toluene degraders present had a wide range of overlapping optimal temperatures.  

 

Figure 4.7: Effect of temperature on elimination capacity. Error bars are the standard 

deviations. 

It was also observed from all the experiments which were discussed in this chapter that 

the initial (before the start of individual experiments) steady state EC value ranged 

between 30 and 100 g.m-3.h-1 (data not shown) between the runs (though soil from same 

source was used). A possible reason for this response is the difference in the packing 

density and biofilm loading which might have contributed to the variation in 

biodegradation.   

4.7 Conclusions 

The differential biofilter reactor used in the studies showed a high degree of flexibility 

in manipulating environmental parameters, such as substrate concentration, nutrients 

and operating temperature while controlling water content. From the substrate 

concentration studies, it was demonstrated that below Cmax, mass transfer limitation 

influenced the EC and above Cmax, substrate inhibition was the dominant influence. At 
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Cmax, entire active toluene degraders are assumed to be involved in the biodegradation 

kinetics. As the residual toluene concentration was increased above Cmax, the EC 

started to decrease and this response can be referred as a substrate inhibition regime. 

Furthermore, it was understood that conducting similar repeat substrate concentration 

studies in the same biofilter media (soil) will lose active toluene degraders. This is due 

to substrate inhibition during earlier experimentation cycles. Studies carried out using 

different nutrients clearly proved that the toluene degraders present in the soil were 

nitrogen limited. This was evident from the 5 fold increase in the EC under the 

influence of nitrogen source but the other nutrients did not show a significant increase 

in EC. Temperature studies showed that the EC of differential biofilter reactor 

increased with increasing temperature, from 34 ± 1.4 g.m-3.h-1 to 49.8 ± 2.6 g.m-3.h-1 

for temperatures of 20 to 45 oC, respectively. This increase in EC was due to an 

increase in the activity of the toluene degraders present in the biofilter bed. 

4.8 Nomenclature 

EC elimination capacity     g.m-3.h-1 

        ECmax maximum elimination capacity    g.m-3.h-1 

        S substrate concentration    g.m-3 

        Ki inhibition constant     g.m-3 

           Ks toluene half saturation constant   g.m-3 

        Cmax maximum measured substrate concentration  g.m-3 

 µ specific growth rate     hr-1 

 µmax maximum specific growth rate   hr-1 
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Chapter 5: Metabolic Uncoupler Screening Studies 

5.1 Introduction 

One of the biggest challenges in a traditional biofilter is to overcome the low volumetric 

degradation rate, which often makes the footprint excessive (Devinny et al., 1999). The 

volumetric degradation rate or elimination capacity (EC) is directly influenced by the 

specific biodegradation rate of the microorganism involved in degrading the pollutants. 

Application of metabolic uncouplers in biofiltration could improve the biodegradation 

rate of microorganisms, which in turn could increase the EC. The addition of metabolic 

uncouplers to the growth system decreases the biomass growth (Hiraishi and Kawagishi, 

2002; Low et al., 2000; Torkian et al., 2003) whereas in energy-excess, non-growth 

systems like biofiltration, it is expected to increase the specific substrate uptake rate 

since the substrate requirement for maintenance energy should increase, which in turn 

should increase the EC. This chapter will discuss the screening studies investigating 

seven potential metabolic uncouplers (at different concentrations) on the specific 

biodegradation rate of air-borne toluene in both serum bottles and a differential biofilter 

reactor with soil as the bed medium. 

5.2 Experimental setup and methods 

The experiments for studying the effect of metabolic uncouplers in batch mode used 

serum bottles and a Varian-3800 gas chromatography system (Agilent Technologies, 

USA). Experiments to study the effect of seven potential metabolic uncouplers in 

continuous mode used the differential biofilter reactors (R2, R3 and R4) setup with 

online toluene and carbon dioxide monitoring system as described in Chapter 3. A 

phosphate buffered saline (PBS) solution (Uquillas et al., 2011) was used to prepare the 

required concentration of metabolic uncouplers used in both batch and continuous 

screening studies. The solution pH was adjusted to 7.0 and then autoclaved. Since most 

of these metabolic uncouplers were slow to dissolve in water at room temperature, 

autoclaving the solution at 121
 o

C helped to dissolve the metabolic uncouplers and as 

well in preparing an abiotic solution for the screening experiments. 
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5.2.1 Screening of metabolic uncouplers in batch mode 

Nine metabolic uncouplers (Table 5.1) were chosen for the initial short-term screening 

tests their ability to increase the toluene degradation rate by soil microorganisms. 

Approximately 8.65 g wet weight of soil (Park House Garden Supplies, Christchurch, 

New Zealand) was placed on a Whatman filter paper (500 mm dia., Grade 1) in a funnel 

over a flask. A 0.01 M calcium chloride1 solution was then used to make up 100 mL of 

metabolic uncoupler solutions at the concentration reported in the literature for activated 

sludge studies. However, based on earlier experiments, the concentration of 

dinitrophenol, carbonylcyanide m-chloromethoxy-phenylhydrazone (CCCP) and 

carbonylcyanide p-trifluoromethoxy-phenylhydrazone (FCCP) were decreased to 10% of 

the literature values for this screening study. The metabolic uncoupler solution was 

poured over the soil and then the soil sample was squeezed to remove any excess 

solution. The wet soil2 treated with metabolic uncoupler was then transferred into a 125 

mL serum bottle. Approximately 0.5 µL of HPLC (High Performance Liquid 

Chromatography) grade toluene was then injected into the serum bottle to generate 

approximately 700 ppm of toluene vapour in the head space sealed with a bung and a 

cap. Four control serum bottles were also used in this study with no soil, abiotic soil, soil 

without any metabolic uncoupler and soil with 2 mL of toluene degraders (mixed 

culture).  The toluene degraders used in the control study were previously isolated from 

soil using similar method described in section 6.2.1 and mixed together to form the 

mixed culture. Each condition was tested in duplicate. All the serum bottles were 

incubated at 30 
o
C for 60 hours (Fig. 5.1). Periodically, toluene samples from the serum 

bottles were analysed by gas chromatography system to observe the degradation. 

 

 

                                                        
1
 Used in-order to maintain hardness/compactness of the soil. 

2
 20% (wet weight)water content was measured in the wet soil. 
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Figure 5.1: Batch mode, serum bottle experimental set-up (inside a 30 
o
C incubator). 

       Table 5.1: Metabolic uncouplers3 used in batch mode serum bottle tests. 

Metabolic 

Uncoupler 

Effective conc. 

reported (µM) 

Concentration 

tested (µM) 

Solubility4 

(mM) 

pKa 

benzoic acid (BA) 10000 10000 23.8 4.20 

carbonylcyanide m-
chloromethoxy-

phenylhydrazone 

(CCCP) 

10 1 NA 6.09 

carbonylcyanide p-

trifluoromethoxy-

phenylhydrazone 

(FCCP) 

10 1 NA 6.10 

2,4-dinitrophenol 

(DNP) 

760 76 7.6 4.09 

m-chlorophenol 

(mCP) 

160 160 22.6 8.80 

malonic acid (MA) 96 96 701.5 2.83 

p-nitrophenol (pNP) 860 860 107.8 7.15 

Pentachlorophenol 
(PCP) 

142 142 0.15 4.70 

2,4,6-trichlorophenol 
(TCP) 

4051 4051 4.05 7.50 

 

 

 

                                                        
3
 References for effective concentration and pKa are discussed in Table 2.2. 

4
 Yalkowsky, S.H., He, Y., 2003. Handbook of aqueous solubility data. CRC. 
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5.2.2 Screening of metabolic uncouplers in continuous mode 

Following the batch screening studies, seven metabolic uncouplers5 were used for 

further screening studies in the continuous differential biofilter reactors (Table 5.2). 

Based on the earlier studies carried out on nutrient limitation (section 4.6.2), preference 

was given to the non-nitrogen containing metabolic uncouplers for testing in continuous 

mode. Initially, all the biofilter reactors ran without metabolic uncouplers until a steady 

toluene degradation rate was observed following the introduction of soil inside the 

reactors. Following each metabolic uncoupler concentration tested, fresh PBS was used 

to remove the residual metabolic uncoupler in the soil until a steady toluene degradation 

rate was observed. The average inlet toluene concentration used in all three biofilter 

reactors was approximately 180 ppm. Each metabolic uncoupler experiment was carried 

out for more than 30 days at all uncoupler concentrations following the initial steady 

state EC (before the addition of metabolic uncoupler) in each of the three differential 

biofilter reactors. Following experimentation, the tested liquid samples (PCP and TCP) 

were sent for analysis at Hill Laboratories, New Zealand for PCP and TCP analysis. 

Table 5.2: Metabolic uncouplers used in continuous mode screening test. 

Metabolic Uncoupler Concentrations tested (µM) 

benzoic acid (BA) 5000, 10000 and 15000  

pentachlorophenol (PCP) 70 and 140  

2,4,6 trichlorophenol (TCP) 4051  

malonic acid (MA) 25, 50 and 100  

carbonylcyanide p-chloromethoxy 

phenylhydrazone (CCCP) 

0.01, 0.001 and 0.002  

carbonyl cyanide p-trifluoromethoxy-

phenylhydrazone (FCCP) 

0.01  

m-chlorophenol (mCP) 16, 160 and 1600  

 

                                                        
5
 Residual metabolic uncouplers were removed through multiple PBS washes at the end of each experiments. 
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5.3 Results and discussion 

5.3.1 Batch mode screening test 

The effect of nine metabolic uncouplers on toluene degradation in serum bottle tests is 

shown in Fig. 5.2. It was observed that in 60 hr period, pentachlorophenol, benzoic 

acid, p-nitrophenol, 2, 4, 6 trichlorophenol and m-chlorophenol increased the toluene 

degradation rate by 40% compared to the control soil with toluene degraders and 200% 

compared to the control soil without toluene degraders. CCCP had a better toluene 

degradation rate when compared with the control soil without toluene degraders. The 

addition of the uncouplers 2,4 dinitrophenol, malonic acid and FCCP decreased the 

toluene degradation rate when compared with the control soil with and without toluene 

degraders. On the basis of batch screening test results, pentachlorophenol, benzoic acid, 

2, 4, 6 trichlorophenol, m-chlorophenol and CCCP were selected for further screening 

studies in a continuous biofilter reactor system. Later, it was decided to test both 

malonic acid and FCCP also in the continuous biofilter reactor system to understand 

their degradation dynamics.  

It was possible that the soils in the short-term serum bottle tests were not growth 

limited during the 60 hr test period as there may have been residual nutrients in the soil 

which the microbe might have utilized. A similar response (higher EC) was also 

observed in the continuous biofiltration reactor during initial acclimation time (data not 

shown). Hence the toluene degradation might have been mostly due to growth (plus 

uncoupling) and not due to maintenance requirements enhanced by uncouplers. Hence 

seven out of nine metabolic uncouplers were selected for further screening studies in 

continuous biofilter reactor system. However, p-nitrophenol and 2, 4 dinitrophenol 

were not selected for further studies in the continuous biofilter reactor system as both of 

them contained nitrogen and previous work (section 4.6.2) demonstrated the toluene 

degraders in the soil were nitrogen limited after the acclimation period.  
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Figure 5.2: Effect of different metabolic uncouplers on toluene degradation rate in 

batch serum bottle tests with soil. Individual error bars are the standard deviation 

between the duplicates. 

5.3.2 Continuous mode screening test  

Following the batch mode screening experiments and identifying the limiting nutrient 

(section 4.6.2), seven potential (non-nitrogen containing) metabolic uncouplers were 

selected for further screening studies in continuous mode. In this investigation, different 

concentrations (Table 5.2) of the seven metabolic uncouplers were tested and the effect 

of individual uncoupler on the EC is discussed in detail in the following sections. 

5.3.2.1 Effect of benzoic acid (BA) 

Reactor 3 was used for this study and was run initially for 22 days with fresh soil and 

PBS which generated a steady state EC of 38.9 g.m
-3

.h
-1

 (Fig. 5.3a). 
 
Following the 
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steady state response, PBS was replaced with 5000 µM benzoic acid buffered at pH 7 

on the 22
nd

 day. Following steady state EC, it was observed that addition of 5000 µM 

benzoic acid decreased the EC by 10.8% with reference to the initial EC. On 25
th

 day, 

5000 µM benzoic acid solution was replaced with a 15,000 µM benzoic acid solution in 

order to understand the effect of a higher benzoic acid concentration. However, the EC 

dropped significantly (9.7 g.m-3.h-1) following the addition of 15,000 µM benzoic acid. 

Following this response, the 15,000 µM benzoic acid solution was removed from the 

reactor on 28
th

 day through multiple PBS washes.  Despite the PBS washes, the EC 

recovered to 36% of the initial EC (Fig. 5.3a). This response was not consistent with an 

uncoupler response as per the chemiosmotic theory. The experiment was repeated with 

a fresh soil and PBS. After a steady state EC of 99 g.m
-3

.h
-1

,
 
a 10,000 µM benzoic acid 

solution was added to the reactor replacing PBS. However, a similar trend compared to 

the earlier experiment was observed. The EC decreased by 60% when compared to the 

initial EC and after the PBS wash, it recovered only by 10% (Fig. 5.3b).  

The benzoic acid concentration reported to be effective in influencing the metabolic 

fluxes of yeast was 10,000 µM (Verduyn et al., 1992). However, the concentrations 

tested in the non-growth differential biofiltration system ranged between 5000 µM and 

15000 µM. But none of the concentrations tested in the system increased the EC 

consistent with a metabolic uncoupler rather it decreased the EC. This suggested that 

benzoic acid might have killed the toluene degraders which are mostly bacteria. Hence 

the response of benzoic acid in a eukaryotic growth system is dissimilar to a prokaryotic 

non-growth system. However, reducing the concentration of benzoic acid further below 

may lead to the possible degradation of benzoic acid by toluene degraders (Muthukumar 

et al., 2009; Wright, 1993). Hence, experiments at lower benzoic acid concentrations 

were not performed in the current study. Therefore, benzoic acid was considered ill-

suited as a potential metabolic uncoupler for enhancing the toluene degradation rate in 

non-growth biofilter reactor system. The response of benzoic acid was found different 

in batch and continuous systems. This is because in batch mode benzoic acid was added 

in non-steady state condition (steady state in continuous mode), which means that 

though the soil contained toluene degraders; it might also contain non-toluene degraders 

which might have degraded the benzene. 
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        (a) 

 

                                                                    (b) 

Figure 5.3: Effect of benzoic acid on toluene degradation rate in a differential biofilter 

reactor with soil. Closed blue diamonds (     ) are inlet toluene concentrations, closed red 

squares (     ) are outlet toluene concentrations and closed green triangles (     ) are EC. 

a) Cycle 1 experiment with 5000 µM and 15,000 µM benzoic acid b) Cycle 2 

experiment with 10,000 µM benzoic acid. Error bars are the standard deviation between 

the multiple sample injections in GC. (Note: Different soil was used in Cycle 1 and 2). 
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5.3.2.2 Effect of pentachlorophenol (PCP) 

Reactor 2 was used for this study and was run initially for 29 days with fresh soil and 

PBS, which generated an initial steady state EC of 71.4 g.m
-3

.h
-1

 (Fig 5.4).
  

PBS was 

replaced with a 70 µM PCP solution on the 29
th

 day. The PCP a slowly increased the 

EC and a steady EC of 84 g.m
-3

.h
-1 

was observed after the 33
rd

 day. Following this, a 

140 µM PCP solution replaced the 70 µM PCP solution on the 34th day. It was observed 

that 140 µM PCP increased the EC by 35% when compared with the initial EC. A 

steady EC of 110 g.m
-3

.h
-1

 was observed after 50 days (Fig. 5.4). Due to the solubility 

limit of PCP (which is ~150 µM) studies at higher concentrations were not performed. 

Since PCP was not easily degradable by the soil microbes (Mikesell and Boyd, 1988) 

and that the system was nitrogen-limited, it was concluded that the increase in EC was 

not directly associated with growth on PCP. A PBS wash to remove the PCP from the 

reactor produced an EC of 109 g.m-3.h-1 and it did not drop back to the initial EC value. 

This response was not as expected for uncoupling, as the ATP production efficiency 

should have returned to the initial level, thereby dropping the EC to its original level.   

At least two possibilities existed to explain these results in addition to some level of 

metabolic uncoupling:  

i)     the PCP killed microorganisms not associated with toluene degradation thereby 

freeing up nitrogen for the toluene degraders to grow, thus permanently increasing 

the EC;  

ii) the PCP was not completely removed by the wash step due its hydrophobic 

property leaving it entrained in the lipid layer of the biomass and adsorbed to the 

soil;  

Following the 140 µM PCP studies, the liquid was sent for PCP analysis (including the 

PBS washes). The results showed that only 18.4% of PCP did not end up in the 

removed liquid and subsequent PBS washes (Appendix C). This 18% loss of PCP may 

be attributed to the PBS wash not removing all PCP from the system. It also confirms 

that PCP was not significantly degraded by the toluene degraders.  If uncoupling was 

happening, it is expected to be reversible with a return to the initial EC upon removal 

(Brand et al., 2010; Lou et al., 2007). These results imply that growth by the toluene 

degraders on nitrogen released by other organism probably increased the EC and PCP 
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did not uncouple the metabolism. However, additional experiments analysing the PCP 

fraction in the soil and with pure cultures of toluene degraders (biofilm) will help 

further clarify this response. 

 

Figure 5.4: Effect of pentachlorophenol on toluene degradation rate in a differential 

biofilter reactor with soil. Closed blue diamonds (     ) are inlet toluene concentrations, 

closed red squares (     ) are outlet toluene concentrations and closed green triangles (     ) 

are EC. Error bars are the standard deviation between the multiple sample injections in 

GC. 

5.3.2.3 Effect of 2, 4, 6 trichlorophenol (TCP)  

Reactor 3 was used for this study and was run initially for 13 days until it reached a 

steady EC of 73 g.m-3.h-1 (Fig. 5.5). Based on the earlier experiment done with PCP, it 

was decided to use a higher concentration (4051 µM) of the similar but more soluble 

TCP to observe the EC change. At 4051 µM of TCP (which is its solubility limit), the 

EC increased by 18% when compared with the initial EC. However, similar to PCP, 

after removing the TCP from the reactor and washing with PBS, the EC did not return 

to the initial EC and dropped only by 2% when compared with the maximum EC 

generated by 4051 µM TCP (Fig. 5.5). The possible explanations for this response are 
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the same as those for PCP. Similar to PCP studies, TCP was also sent for analysis (after 

multiple PBS washes). The results showed that 68% of the TCP was missing from the 

liquid (Appendix C). This particular result raised a question about the possibilities of 

TCP degradation (either by toluene degraders or by any other microbe present in the 

soil or in combination of both), as the increased solubility should have aided its removal 

by washing.  In addition, growth on nitrogen released by non-toluene degraders is still a 

possibility for the increased EC.   Similar to PCP, it was decided to test TCP in a pure 

culture of toluene degrader (biofilm) in our differential biofilter reactor system in order 

to further understand the potential uncoupling mechanism of TCP clearly. 

 

Figure 5.5: Effect of 2, 4, 6-trichlorophenol on toluene degradation rate in differential 

biofilter reactor with soil. Closed blue diamonds (     ) are inlet toluene concentrations, 

closed red squares (     ) are outlet toluene concentrations and closed green triangles (     ) 

are EC. Error bars are the standard deviation between the multiple sample injections in 

GC. 

5.3.2.4 Effect of malonic acid (MA) 

Reactor 2 was used for this study. It was run for nearly 35 days with fresh soil and PBS 

to get a steady state EC of 109 g.m-3.h-1 (Fig 5.6).  Three different concentrations of 
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malonic acid were tested in this system with increasing concentration. Increasing 

concentrations of malonic acid decreased the EC.  Initial addition of 25 µM malonic 

acid buffered at pH 7 on 36
th

 day decreased the EC by 5.8%. Following the steady state 

EC, 25 µM malonic acid was replaced by 50 µM malonic acid on 40
th

 day which nearly 

had zero influence on EC and hence on 46
th

 day, 50 µM malonic acid was replaced with 

100 µM malonic acid. The EC was decreased by another 11% (Fig. 5.6). The response 

of malonic acid was similar to the response of benzoic acid. Hence, the possible 

explanations for this response are the same as those for benzoic acid. Similar to benzoic 

acid studies, lower concentrations of malonic acid were not studied in the system, due 

to the potential malonic acid degradation (Ariya et al., 2002). Hence malonic acid was 

considered not suitable as a metabolic uncoupler in enhancing the toluene 

biodegradation from this system. 

 

Figure 5.6: Effect of malonic acid on toluene degradation rate in differential biofilter 

reactor with soil. Closed blue diamonds (     ) are inlet toluene concentrations, closed 

red squares       (     ) are outlet toluene concentrations and closed green triangles (     ) 

are EC. Error bars are the standard deviation between the multiple sample injections in 

GC. 
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5.3.2.5 Effect of carbonylcyanide p-chloromethoxy phenylhydrazone 

(CCCP)  

Reactor 4 was used for this study. Two cycles of experiments were done with three 

different concentrations of CCCP. Following a steady state EC (31 g.m-3.h-1) with soil 

and PBS after 17 days, a 0.01 µM CCCP solution was added to the system replacing 

PBS and the EC was reduced by 87%. In order to avoid the complete loss of active 

toluene degraders, before attaining a steady EC, the 0.01 µM CCCP solution was 

washed from the system on the 19
th

 day.  A series of PBS washes was performed and it 

was observed that following every PBS wash, the EC increased. However, increase in 

the EC was not linear with each PBS wash. The maximum EC observed following series 

of PBS wash was 50 g.m
-3

.h
-1

. After this, further PBS washes did not influence the EC 

(Fig. 5.7a). A possible speculative reason for this response may be due to the slow 

diffusion rate of this compound into soil when compared with other metabolic 

uncouplers which took multiple washes to remove it from soil. However, the diffusion 

rate of CCCP is unknown. In addition it was observed that reason for the sharp decrease 

in EC following the addition of CCCP may be that the concentration used in the study 

was intolerable to the active toluene degraders present in the soil.  The experiment was 

repeated with a fresh soil but at a lower CCCP concentration (0.001 µM).  The CCCP 

addition dropped the EC by 15%. On the 25
th

 day, 0.001 µM CCCP was replaced with a 

0.002 µM CCCP solution. Following this change, the EC further dropped by 16% with 

reference to the earlier one. However, series of PBS washes to remove the 0.002 µM 

CCCP increased the EC closer to initial EC (Fig. 5.7b). The explanation provided for the 

similar response in cycle 1 can be again valid for this cycle. But, PBS washes did not 

increase the EC above the initial EC in cycle two when compared with cycle one. There 

are two possible speculative explanations for this response of CCCP a) the concentration 

of CCCP used was inhibiting/killing the toluene degraders and other microbes in soil. 

When it was removed the slow release of nitrogen had allowed the toluene degraders to 

bounce back to a higher level than original b) the concentration were inhibitorier (near 

Cmax) than killing concentration. Hence CCCP was considered not suitable for similar 

studies like ours. However, conducting similar experiments in pure culture of toluene 

degrader (biofilm) in our differential biofilter reactor system will further help to 

understand the potential uncoupling mechanism of CCCP as the issue of diffusion rate 

would be nullified in biofilm studies to an extent.  
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 Figure 5.7: Effect of carbonylcyanide p-chloromethoxy phenylhydrazone on toluene 

degradation rate in a differential biofilter reactor with soil. Closed blue diamonds (     ) 

are inlet toluene concentrations, closed red squares (     ) are outlet toluene 

concentrations and closed green triangles (     ) are EC. a) Cycle 1 experiment with 0.01 

µM carbonylcyanide p-chloromethoxy phenylhydrazone b) Cycle 2 experiment with 

0.001 and 0.002 µM carbonylcyanide p-chloromethoxy phenylhydrazone. Error bars are 

the standard deviation between the multiple sample injections in GC. 

(a) 

(b) 
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5.3.2.6 Effect of carbonylcyanide p-trifluoromethoxy-phenylhydrazone 

(FCCP)  

Reactor 4 was used for this study. Since FCCP belongs to the same family as CCCP, it 

was decided to test FCCP only at one concentration to understand its effect on the EC. 

Following the steady state EC of 25 g.m-3.h-1 after 13 days, 0.01 µM FCCP was added to 

the system by replacing the PBS. The EC increased to 30 g.m
-3

.h
-1  

which was 20% 

higher than the initial EC. Following the removal of FCCP and subsequent PBS washes, 

the EC dropped to 27 g.m
-3

.h
-1 

(Fig. 5.8). Experiments at higher FCCP concentrations 

were not performed due to solubility limits. A further lower concentration of FCCP was 

not tested in the system under the assumption that a lower concentration either would 

little influence on the EC. When comparing the response of CCCP with FCCP, they 

behaved differently though both belong to the same family of compounds and have 

similar pKa values. In particular when compared to CCCP, FCCP behaved as a classic 

uncoupler in increasing the EC. But to be a 100% classic uncoupler, the response is 

expected to be reversible with a return to the initial EC upon removal, which was not the 

case here. Conversely, the diffusion rate of FCCP in soil is unknown. Based on the 

results from CCCP and FCCP studies, the diffusion rate of FCCP may be assumed 

higher than that of CCCP in soil which can be further correlated to their different 

response. Though FCCP did not increase the EC significantly in our soil differential 

biofiltration system, conducting similar experiments in pure culture of toluene degrader 

(biofilm) in our differential biofilter reactor system will further help to understand the 

uncoupling mechanism of FCCP clearly. 
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Figure 5.8: Effect of carbonyl cyanide p-trifluoromethoxy-phenylhydrazone on toluene 

degradation rate in a differential biofilter reactor with soil. Closed blue diamonds (     ) 

are inlet toluene concentrations, closed red squares (     ) are outlet toluene 

concentrations and closed green triangles (        ) are EC. Error bars are the standard 

deviation between the multiple sample injections in GC. 

5.3.2.7 Effect of m-chlorophenol (mCP) 

Reactor 4 was used for this experiment. Initially it was thought that mCP would be 

similar to PCP and TCP and hence the experiment was started at a higher concentration 

of 1600 µM after the initial steady EC value of 24 g.m
-3

.h
-1 

on the 9
th

 day.  But the 

addition of mCP dropped the EC by 73%. However, this drop in EC was not similar to 

CCCP as the decreased EC remained constant in the current case. Hence it was decided 

to wash with PBS after removing the mCP and to use the same soil to test the lower 

concentrations of mCP in order to understand its influence on EC. After the removal of 

mCP and series of PBS washes, the EC recovered to 37% of the initial EC. Following 

this, experiments were conducted at lower mCP concentrations (16 µM and 160 µM). 

None of the concentrations increased the EC value above the initial EC and not even 

above the earlier EC. Moreover, a series of PBS wash following the removal of 160 µM 
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mCP did not show any significant change in the EC (Fig. 5.9). It is clear from this 

experiment that the initial concentration tested was toxic to the active toluene degraders 

and further reduced concentration tested was slightly inhibitory to the toluene degraders 

present in the soil. Hence it was concluded that mCP was not a potential metabolic 

uncoupler for enhancing the toluene degradation.  

 

Figure 5.9: Effect of m-chlorophenol on toluene degradation rate in differential biofilter 

reactor with soil. Closed blue diamonds (     ) are inlet toluene concentrations, closed red 

squares (     ) are outlet toluene concentrations and closed green triangles (         ) are EC. 

Error bars are the standard deviation between the multiple sample injections in GC. 

5.3.2.8 Overall summary 

The overall effect of all seven metabolic uncouplers used in the current study is 

summarised and compared in a graphical representation in Fig. 5.10.  It is clearly evident 

that the initial steady EC were ranged between 40 and 105 g.m-3.h-1 for the soil samples 

tested. In theory, the toluene degradation rate was expected to rise in presence of a 

metabolic uncoupler due to less efficient ATP production and when the metabolic 

uncoupler was removed decrease to the initial EC value. However none of the metabolic 

uncouplers used in this study followed this pattern. Though PCP, TCP and FCCP 

increased the EC, none of these responded reversibly following PBS washes. However, 

compared to PCP and TCP, the FCCP approached a classical uncoupler response by 
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showing signs of reversibility following PBS washes. But it did not increase the EC 

significantly like PCP and TCP. Benzoic acid, malonic acid and m-chlorophenol inhibited 

the biodegradation activity of the toluene degraders at all the concentrations tested. 

Though CCCP and FCCP have similar physiochemical properties their responses were 

totally opposite. It was also observed from the results that, on top of uncoupling, PCP, 

TCP and FCCP might have killed the non toluene degraders in the soil whereas other 

metabolic uncouplers tested might have killed the potential toluene degraders at the 

concentration tested. However, this hypothesis is hard to prove in mixed culture systems 

like soil. A possible explanation for the difference in the response of metabolic 

uncouplers in batch mode and continuous mode is the batch mode experiments were 

conducted at unsteady state conditions. Hence by testing all seven metabolic uncouplers 

in a pure culture system similar to the current study will further help to understand their 

uncoupling mechanism clearly. 

 

  

Figure 5.10: Overall results showing the effect of seven metabolic uncouplers on toluene 

EC in a continuous biofilter reactor with soil. Error bars are standard deviations. Bars 

under each metabolic uncoupler represent the order in which the experiments are carried 

out. 
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Another observation made from these experiments is, though same source of soil was 

used, a huge variability in the initial steady state EC was observed. A possible reason for 

this response is the difference in the packing density and biofilm loading which might 

have contributed to the variation in biodegradation. An additional observation made from 

the responses of seven metabolic uncouplers was, their different pKa values showed 

nearly nil influence on the biodegradation. Especially the pKa of CCCP and FCCP are 

same, however their responses were observed different. This clearly shows that the role of 

pKa was not significant. Though all the metabolic uncoupler solutions were buffered at 

pH 7 and used in the experiment, the pKa of these chemicals were expected to play a role 

in uncoupling mechanism (Hiraishi and Kawagishi, 2002). But it was clear from the 

results that none responded according to theory. Especially by comparing the pKa values 

of two uncouplers PCP (pKa: 4.7) and TCP (pKa: 7.5), which increased the EC 

significantly, it is very clear that pKa value did not influence the biodegradation. 

However, without knowing the internal pH and local external pH of the toluene degraders, 

it is hard to conclude the pKa effect on biodegradation and uncoupling mechanism in 

experimental systems like ours. 

5.4 Conclusions 

It was observed from the initial screening studies in serum bottle that in a 60 hr period, 

pentachlorophenol, benzoic acid, p-nitrophenol, 2, 4, 6 trichlorophenol and m-

chlorophenol increased the toluene degradation rate by 40% compared to the control soil 

with toluene degraders and 200% compared to the control soil without toluene degraders. 

The rest of the uncouplers did not work as efficient as those one reported above. Hence 

the batch mode serum bottle studies helped to select the potential uncouplers in a short 

time for the further screening studies in continuous mode. From the screening studies 

conducted in continuous reactor, it was observed that the increase was less than 50%. 

Moreover, only PCP and TCP increased the EC significantly when compared with FCCP. 

None of these three metabolic uncouplers behaved reversibly as a classical uncoupler 

though FCCP showed closer signs of reversibility following PBS washes. In addition the 

metabolic uncoupler solutions (PCP and TCP) assayed following the experimentation 

showed decreased concentration when compared with the initial concentration tested. 

This may be either due to the lower solubility of these chemical which might have caused 

some residual amount of these metabolic uncouplers to stay in the soil even after multiple 
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PBS washes. Other metabolic uncouplers tested did not increase the EC and were 

inhibited the EC. However among these, the response of CCCP was totally different when 

compared to other 6 uncouplers tested. The EC increased for CCCP tested soil following 

PBS washes which was higher than the initial EC. Other than the possibilities of lower 

diffusivity of CCCP (which is not known), the reason for this response is unclear. Overall 

the response of metabolic uncouplers in growth mode (batch) and maintenance mode 

(continuous) was clearly distinguished. Since, the major intention of the current research 

is to increase the maintenance requirement of the toluene degraders in continuous mode 

and thereby to increase the specific substrate degradation rate,  conducting similar studies 

in pure cultures of toluene degraders in pure culture biofilm reactors will help further to 

understand the exact biology of the effect of all these metabolic uncouplers.  
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Chapter 6: Isolation, Characterization and Preservation of Toluene 

Degraders from Soil 

6.1 Introduction 

The biodegradation effectiveness of a biofilter hugely depends on the microbial 

population present in the biofilter bed (Jeong et al., 2006). Bacteria and fungi are the 

most dominant groups of microorganisms contributing to the biodegradation of organic 

pollutants in a biofilter. However, bacteria are more advantageous than fungi due to their 

rapid growth rate and degradation rate (Adebusoye et al., 2007; Okamoto et al., 2003; 

Wang et al., 2008). The biodegradation mechanisms taking place in a biofilter are 

normally aerobic and are considered energetically favourable (Leson and Winer, 1991). 

Hence it is essential to understand the biodegradation capacity of different microbial 

species present in natural environments like soil, water, etc., In addition, it is also 

important to find an organism which can adapt to the non-natural system which uses the 

pollutant as the sole energy source. Moreover, to develop a pure biofilm reactor for 

treating particular gaseous pollutants (e.g. toluene), these studies are prerequisite. This 

chapter will discuss the isolation of toluene degraders from soil and will also discuss the 

primary and secondary characterization of different isolated toluene degraders along with 

the methods used in preserving the isolated strains.  

6.2 Experimental methods 

6.2.1 Isolation of toluene degraders 

Reactor 3 was setup with 8.65 g (wet weight) of soil as described earlier in chapter 3. 

An inlet toluene concentration of 180 ppm (average) was maintained in the reactor. At 

steady state an outlet concentration of 132 ppm (average), a steady EC of 40 g.m
-3

.h
-1 

was observed after 30 days. Following this, the reactor was dismantled in a sterile 

environment and the soil was removed. A 1 g sample of this soil was used for a serial 

dilution. A standard serial dilution procedure (MacLowry et al., 1970) was followed and 

a 1 ml sample from 10
-5

 dilution was used to inoculate the agar plates using the spread 

plate method (Buck and Cleverdon, 1960). A control agar plate without any sample was 

also used in the experiment. A minimal salt medium (Shen et al., 1998) with 1.5% agar 

was used to prepare all the agar plates. Toluene was used as a sole carbon and energy 
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source for growth with the MS medium. Plates were incubated at 30 oC in a 5 litre glass 

desiccators containing a 100 mL beaker with 1% liquid toluene in Vacuum Pump Oil 

(vpo)
1
 (Evans et al., 1991) with an approximate head space toluene concentration of 430 

ppm. The plates were observed every day for growth and a fresh 1% liquid toluene in 

vpo was replaced daily.  

6.2.2 Identification of the toluene degraders 

Isolated toluene degraders were individually subjected to Gram staining technique 

(Hucker and Conn, 1923) as a primary identification step and were observed both in 

phase contrast and scanning electron microscopy. As a secondary identification 

technique, all the isolated toluene degraders were individually sub-cultured in Luria 

Bertani (LB) agar  plates  (Clermont et al., 2000) and then the over-night cultures were 

sent to Eco Gene Ltd (Auckland, New Zealand) for 16s rDNA and 18s rDNA analysis.  

6.2.2 Preservation of the toluene degraders 

Following the secondary identification of the isolated toluene degraders, they were sub-

cultured in duplicates. One set of grown plates were stored in -4 
o
C for short term 

preservation and the other set of grown plates
2
 were used to prepare 100 mL liquid 

cultures in LB media. 5 mL of the overnight culture was added to a 5 mL of 40% 

glycerol in a 15 mL sterile screw cap centrifuge tube and stored in both -20 
o
C and -

80 oC deep freezers for long term preservation.  

6.3 Results and discussion 

6.3.1 Isolation 

Colonies were observed in plates 1, 4 and 5 after 8 days whereas in plates 2 and 3 

colonies were seen after 13 days. This difference can be attributed to the different 

toluene degrading metabolisms involved in different species, growth rates, induction 

pathways and possibly the initial concentration in the serial dilution. In addition the 

response of microorganisms in a synthetic medium is always different when compared 

                                                        
1
 Densities of toluene and vpo are nearly same (0.86 g.cm

-3
 for toluene and 0.85 g.cm

-3
 for vpo) 

2
 Single colony was picked for inoculation. 
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to a natural media like soil, compost etc. (Pirbazari et al., 1990). However, the control 

plate displayed no growth and hence the contamination issue was eliminated though it is 

not most important in the current scenario. Figure 6.1 shows the colonies in five agar 

plates along with the control agar plate subjected to toluene as a sole carbon and energy 

source. Based on visual identification, a total of six different colonies were picked and 

sub-cultured (purified) further in LB agar plates. The streak plate technique was adopted 

and the experiment was repeated to obtain pure individual isolates of the toluene 

degraders.  

    

Figure 6.1: Growth of isolated toluene degraders on MS agar plates (A-E) along with 

control in desiccator equilibrated with toluene-vpo mixture containing 1% toluene. The 

plates were photographed after 2 weeks of incubation.  

6.3.2 Primary identification 

Four out of the five isolated toluene degraders were found to be rod shaped organisms in 

which three were Gram negative and one was Gram positive.  The fifth isolate was found 
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to be a fungus based on the morphology. The shapes (morphology) of all five isolates 

were further studied through scanning electron microscopy (SEM) (Appendix E) and 

compared to the results obtained from phase contrast microscopy following the Gram 

staining experiment. Figure 6.2 compares both the phase contrast and SEM results of 5 

toluene degrading strains which were subjected to primary identification technique. The 

phase contrast images clearly shows whether the isolated organism is gram positive or 

negative and the SEM images clearly shows the size & shape of the isolated organisms. 

         

          (AP)     (AS)   

         

         (BP)     (BS) 

         

         (CP)     (CS) 

  3 µm 

10 µm 

  3 µm 
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         (DP)     (DS) 

         

         (EP)     (ES) 

Figure 6.2: AP-EP are the phase microscopy images (100X) of five different toluene 

degraders subjected to gram staining. AS-ES are the corresponding SEM images. (AS: 

500X; BS to ES: 1000X) of those five isolates. 

6.3.3 Secondary identification 

Following the primary identification, the five isolates were subjected to taxonomical 

identification through amplification and sequencing of the 18s rDNA for the fungus and 

16s rDNA for the four bacterial isolates. The sequences were compared with the database 

of known 18s rDNA and 16s rDNA sequences through blast search for identification 

(Fig. 6.3) (Appendix B).  

  2 µm 

  2 µm 
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Figure 6.3: Five different toluene degrader strains identified using 18s rDNA and 16s 

rDNA sequencing studies by Eco Gene Ltd (Auckland, NZ). 

Out of these five identified toluene degraders, three were already reported in literature 

and the other two were not reported elsewhere as potential toluene degraders. However, 

only Pseudomonas putida was studied extensively and reported to follow the toluene 

degradation (TOD) catabolic pathway to degrade toluene (Del Castillo and Ramos, 2007; 

Lee et al., 1995; Marqués and Ramos, 2006) and the pathways used by the other isolated 

strains to degrade toluene are unknown. In the TOD pathway, toluene is first oxidized to 

cis-toluene dihydrodiol through the action of toluene dioxygenase (TDO). Cis–toluene 

dihydrodiol is dehydrogenated to form 3-methyl catechol which is cleaved at the ortho 

position and then converted in three steps to form acetaldehyde and pyruvate before 

entering the tri-carboxylic acid (TCA) cycle (Fig. 6.4). Table 6.1 summarises the 

maximum toluene biodegradation percentage reported for the three potential toluene 

degraders isolated along with the other two isolated (non-reported) ones. 
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Figure 6.4: TOD pathway followed by Pseudomonas putida during toluene degradation 

(Reardon et al., 2000). 

      Table 6.1: Reported maximum toluene degradation for the isolated strains 

Toluene degrader Maximum toluene 

biodegradation percentage 

reported (%) (RE) 

Reference 

Stenotrophomonas 

maltophilia 

83 (Lee et al., 2002) 

Pseudomonas putida 95 (Men and Cheng, 2011) 

Aspergillus versicolor  97 (Prenafeta‐Boldú et al., 2012) 

Ochrobactrum tritici Unknown - 

Pseudomonas 

citronellolis 

Unknown - 

 



Chapter 6: Isolation, Characterization and Preservation of Toluene Degraders from Soil 

113 

 

The strains Ochrobactrum tritici and Pseudomonas citronellolis are the first to be 

isolated from New Zealand soil and hence both the strains were deposited in the NZ 

culture collection maintained by International Collection of Microorganisms from Plants 

(ICMP), New Zealand. ICMP accession number of 19448 and 19447 were given to these 

two strains Ochrobactrum tritici and Pseudomonas citronellolis. Later as per the request
3
 

from ICMP the other three isolated toluene degraders Stenotrophomonas maltophilia, 

Pseudomonas putida and Aspergillus versicolor were also deposited in ICMP with 

accession numbers 19446, 19449 and 19445. In addition to the deposition, all the five 

isolates were preserved in -4 
o
C for short term application and in -20 

o
C, -80

 o
C deep 

freezers for long term application. 

6.4 Conclusions 

Though toluene degraders are commonly found in soil and many people have already 

isolated and characterized them from soil, most of them are outside New Zealand. Since 

there are lots of time consuming procedures in purchasing pure cultures from microbial 

culture collections in and outside New Zealand, instead of purchasing the pure cultures, 

they were isolated from soil. The soil used was exposed to the outlet concentration of 

132 ppm of toluene for nearly 30 days in the biofiltration reactor. Primary identification 

of the isolated toluene degraders through Gram staining and SEM analysis gave an 

insight into the morphology of the isolated species. Secondary identification using 16s 

rDNA and 18s rDNA amplification and sequencing studies helped to identify the 

taxonomy of five potential toluene degrading stains. Only Pseudomonas putida, 

Stenotrophomonas maltophilia and Aspergillus versicolor were reported as a toluene 

degrader in the literature and the other two isolates Ochrobactrum tritici and 

Pseudomonas citronellolis are novel toluene degraders. In addition, these newly reported 

toluene degraders were deposited in NZ culture collections maintained by ICMP, NZ. 

Following secondary identifications all the five toluene degraders were preserved under -

4 
o
C, -20

 o
C

 
and -80 

o
C for future experimentation to develop a pure biofilm reactor for 

toluene degradation. 

 

                                                        
3
 Our research group is the first to report these strains as potential toluene degraders in New Zealand. 
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Chapter 7: Development of Biofilm Reactor for Metabolic Uncoupler 

Studies 

7.1 Introduction 

The major advantage of the current differential biofiltration reactor is its simple and 

effective configuration.  Unlike most biofilm reactors, which operate with saturated 

biofilms (Ergas and McGrath, 1997; Kumar et al., 2008a; Kumar et al., 2008b; Kumar et 

al., 2009), this reactor system is suitable to examine unsaturated biofilms with less mass 

transfer resistance between the pollutant stream, biofilm, as the contaminant can transfer 

directly from the gas phase to the biofilm, with only water and dissolved species 

(uncouplers, etc.) exchanging across the membrane.  Moreover, in regards to practical 

operation, excess biomass can be more easily controlled with direct access to the biofilm 

for physical or chemical treatment. Furthermore, addition and removal of metabolic 

uncouplers in the current reactor system is very easy through external and internal 

reservoirs while still maintaining constant water content. 

Applications of pure cultures in biofiltration have not been well explored due to the 

practical difficulties in maintaining the aseptic environment throughout the operation. So 

far, only a few studies have reported the successful use of metabolic uncouplers in pure 

cultures (Low and Chase, 1998; Neijssel, 1977; Saini and Wood, 2008; Verduyn et al., 

1992). However, these reports are based on growth systems and not in non-growth 

systems like biofiltration. Moreover, they were used only to control the excess biomass 

growth and not in increasing the biodegradation rate. Conducting metabolic uncoupler 

studies with a biofilm (pure culture) will further elucidate their impact on the specific 

substrate degradation rate. Moreover, it is preferable to use the pure cultures as a biofilm 

instead of soil or compost for testing the metabolic uncouplers in the differential 

biofiltration reactor because of the ease in calculating the change in the maintenance 

energy.  

7.2 Biofilms 

The term biofilm can simply and broadly be defined as communities of microorganisms 

that are attached to a surface (Geesey et al., 1977). Biofilms can either be a single microbe 

or multiple microbial species and can form on a variety of surfaces through extracellular 
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polymeric substances (EPS). Approximately 97% of the biofilm matrix contains water, 

which is bound to the capsules of microbial cells (Singh et al., 2006). Water binding 

capacity and mobility of the biofilm limits the diffusion process occurring inside the 

biofilm. In addition to EPS, absorbed nutrients, proteins, cell lysis products, particulate 

material and detritus from the immediate surrounding environment can also be present in a 

biofilm (Hans-Cur, 1995). Biofilms can be broadly classified into two types: saturated 

biofilms and unsaturated biofilms. A saturated biofilm is in an environment that has only 

liquid and solid phase. Whereas, the unsaturated biofilm has an extra phase in the form of 

gas, which is normally the main phase (Holden, 2001). Usually the mass transport in a 

biofilm is influenced by the biofilm structure, which again depends on the local 

availability of substrates. Solute transport in a biofilm is driven by convective transport 

within pores and water channels and also through diffusion in the denser aggregates. Thus 

the biofilm matrix shows a high degree of microheterogeneity due to the numerous 

microenvironments that co-exist within it (Horn and Morgenroth, 2006).  

7.2.1 Biofilms in gas phase bioreactors 

The potential of biofilm communities for air pollution control technologies (APCTs) was 

realized during 1980’s. However, it is only during the past few decades that biofilm 

reactors have become a focus of interest for researchers in the field of air pollution control 

(Paul et al., 2005).  The major biofilm reactors are categorized according to the principle 

they employ, such as the up-flow sludge blanket (USB), biofilm fluidised bed (BFB), 

expanded granular sludge blanket (EGSB), biofilm airlift suspension (BAS) and internal 

circulation (IC) methods (Nicolella et al., 2000). Biofilters and biotrickling filters are the 

most important among APCTs using membrane bioreactors with biofilms for treating 

waste gases. ECs of up to 397 g.m-3.h-1 have been reported for a toluene biodegradation in 

biofilters using this technology (Jacobs et al., 2003).  

This chapter will discuss in detail the development of a biofilm reactor using the selected 

toluene degraders isolated from soil (section 6.3.1). In addition, it will also discuss 

extended metabolic uncoupler studies in the biofilm reactor using selected uncouplers from 

the soil screening studies (section 5.3.2) to understand their influence on the substrate 

degradation rate. Moreover, the energy uncoupling coefficients in the presence of all tested 

metabolic uncouplers are estimated. 
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7.3 Experimental methods 

7.3.1 Selection of toluene degraders 

Out of the five isolated and identified toluene degraders (section 6.3.3), two isolates 

Pseudomonas putida and Stenotrophomonas maltophilia were used as pure biofilms in the 

differential biofiltration reactor system. The reason behind the selection of these two 

isolates was based on the reported higher toluene degradation rates of these two bacterial 

species (Lee et al., 2002; Men and Cheng, 2011). Though another isolate Aspergillus 

versicolor was reported to have higher toluene degradation rate (Prenafeta‐Boldú et al., 

2012) than the selected two isolates, it was not selected as handling a fungus in our reactor 

system was considered harder than handling a bacteria due to the risk of membrane 

clogging in the short term. This is because of the size of fungus and also due to the 

possibilities of utilizing fungus spores as a host by certain bacterial species (Cruz and Ishii, 

2011) which may lead to contamination issues. The other two isolates Ochrobactrum tritici 

and Pseudomonas citronellolis were not selected as there was no literature reporting the 

toluene degradation rates of these two isolates.  

The selected two isolates were subjected to growth kinetics study in the presence and 

absence of toluene. Luria Bertani (LB) medium (Sigma Aldrich, USA) (Appendix B) was 

used as a growth medium for studies carried out in the absence of toluene. Whereas, 

minimal salt (MS) medium was used (Sigma Aldrich, USA) (section 6.2.1) with toluene 

(90 ppm) as the sole carbon source. A UV/Vis spectrophotometer (Shimadzu 1500, Kyoto, 

Japan) was used for optical density (OD) measurements at 600 nm.    

7.3.2 Selection of metabolic uncouplers 

Based on the screening studies conducted in soil (section 5.3.2), three potential metabolic 

uncouplers were selected for further studies in the biofilm reactor: pentachlorophenol 

(PCP), 2,4,6-trichlorophenol (TCP) and carbonylcyanide m-chloromethoxy-

phenylhydrazone (CCCP). However, though carbonylcyanide p-trifluoromethoxy-

phenylhydrazone (FCCP) responded as a metabolic uncoupler in the soil studies, it was not 

selected for further studies with the biofilms due to its insignificant influence on the EC. 

All three uncouplers were buffered with PBS (pH: 7.0) and autoclaved before using in the 
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reactor. Table 7.1 shows the concentrations of the three selected metabolic uncouplers 

tested in the biofilm reactor. 

Table 7.1: Metabolic uncouplers tested in the biofilm reactor. 

Metabolic Uncoupler Concentration(s) tested (µM) 

pentachlorophenol (PCP) 140 (maximum solubility) 

2,4,6 trichlorophenol (TCP) 4.05x10
3
 (maximum solubility) 

carbonylcyanide p-chloromethoxy 

phenylhydrazone (CCCP) 

0.001  

 

7.3.3 Biofilm reactor loading 

Reactors 1, 3 and 4 were used for the biofilm experiments. The procedure for setting up the 

reactors was similar to the method described in Ch. 3. However instead of soil, a biofilm 

was added to the membrane. Late logarithmic phase cultures1 of Pseudomonas putida and 

Stenotrophomonas maltophilia were used for forming the respective biofilms.  During 

initial experiments, 20 mL of the culture was used and later it was increased to 50 mL to 

increase the biofilm density. In addition during initial studies with 20 mL cultures, a 

nitrogen source (0.05 M sodium nitrate) was added in the liquid reservoir of the reactor to 

enhance further growth on the membrane, which was later not used for 50 mL cultures. 

The nitrogen source was replaced by a phosphate buffered saline (PBS) solution during the 

later studies. By placing the cells directly onto the membrane (0.0043 m2 working surface 

area), the lag phase and biofilm establishment phases were shortened. The excess growth 

medium was drained away by the applying a negative matric potential. The wet cell weight 

(WCW) and dry cell weight (DCW) of the inoculum were measured using standard 

procedures (Doran, 1995). In addition the weight of the fresh membrane was also 

measured before adding the biofilm to it (which was used later in calculating the 

WCB/DCW of the biofilm post-experiment). The complete loading procedure was 

performed in a sterile environment to avoid contamination issues in the biofilm 

                                                        
1
 Grown under non-toluene environment in LB shake flasks (100 rpm) overnight at 30 

o
C. 
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development. Inlet toluene concentration of 180 ppm, 225 ppm and 250 ppm was used for 

reactors 4, 3 and 1 respectively throughout the experimentation.  

7.3.4 Surface elimination capacity (SEC) 

In order to estimate the toluene removal rates in a biofilm reactor, EC was replaced by the 

surface elimination capacity (SEC) which normalised the degradation by the total biofilm 

area rather than the biofilm volume. The SEC was calculated from Eq.7.1. 

   ��� =	
��	
���
�	��

��
  (g.m

-2
.h

-1
)                                                                        (7.1) 

7.3.5 Scanning electron microscopy (SEM) and confocal microscopy studies 

After each metabolic uncoupler study with a biofilm ended, the biofilm was removed 

carefully along with the membrane and a portion of it was subjected to SEM and confocal 

analysis. A Leica S440 (Wetzlar, Germany) SEM and a Leica TCS SP5 confocal 

microscope (Wetzlar, Germany) (Appendix E) were used to observe the samples at 

standard magnifications. Polaron 5000 sputter coater was used as conducting carbon paint 

in SEM analysis (Richards and Turner, 1984). The fluorescent dye acridine orange (120 

µM) was used to stain the sample used for confocal analysis (Møller et al., 1996). 

7.4 Results and discussion 

7.4.1 Growth kinetics studies 

Growth curves of Pseudomonas putida and Stenotrophomonas maltophilia grown in the 

LB medium (without toluene) were generated (Fig. 7.1). A maximum specific growth rate 

of 0.073 h-1 with a doubling time of 9.47 h was observed for P. putida and for S. 

maltophilia a maximum specific growth rate of 0.074 h
-1

 with a doubling time of 9.41 h 

was observed. This study was conducted to identify the late growth phase of each of these 

2 isolates in order to load them in the biofilm reactor. Though the doubling time of S. 

maltophilia is comparable with the literature value of 8 h doubling time (Emerson and 

Moyer, 1997), the observed doubling time for P. putida was well higher than the reported 

literature value of 2 h doubling time (Kurbatov et al., 2005). This may be because of 

different P. putida sub-strain used in the current study. 
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Initial attempts to prepare bioreactor inoculums from the isolates with toluene as the sole 

carbon/energy source failed. No growth was observed even after 15 days in the flasks 

which were inoculated with these two species. Hence 1 mL of LB medium was added to 

both the flasks on 15th day which stimulated the growth of these two species. However, no 

optical density (OD) measurements were carried out for this experiment and only the 

visual inspection of the turbidity was done. It was decided to stop the experiment and the 

cultures were stored at -4 
o
C until they were used in the biofilm reactor.  

For the initial experiments with metabolic uncouplers in the biofilm reactor, the isolates 

which were grown and maintained under a non-toluene environment were used by 

supplementing with a nitrogen source (0.05 M sodium nitrate) in the liquid reservoir of the 

biofilm reactor. However, in later stages only those isolates grown under a toluene 

environment in MS media were used without supplementing with nitrogen source.              

 

Figure 7.1: Optical density with time of the toluene degraders P. putida (  ) and S. 

maltophilia (   ) on LB medium.  

7.4.2 Studies on 2, 4, 6-trichlorophenol (TCP) 

The reactor was started with an initial dry cell weight (DCW) of 18.2 ± 0.1 mg.m
-2

 of P. 

putida with 1X PBS. After 2 days, a nitrogen source (0.05 M sodium nitrate in PBS) was 

added to the system by replacing the PBS which increased the SEC (Fig. 7.2a). However, 
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this increase was related to the growth of P. putida in presence of the nitrogen source. After 

15 days, the nitrogen source was removed from the reactor and replaced with 1X PBS (0.05 

M PBS) (Appendix B). After a steady SEC of 0.20 g.m
-2

.h
-1

on day 18, TCP (in PBS at pH 

7.0) at a concentration of 4051 µM replaced the PBS. The SEC started to drop steeply and 

when the SEC was 0.08 g.m
-2

.h
-1

, the TCP solution was removed from the system and two 

PBS washes were performed. However, the SEC did not improve and stayed at 0.07 g.m-2.h 

(Fig. 7.2a). TCP at 4051 µM had a negative, irreversible effect on the toluene SEC for P. 

putida. This response is inconsistent with the simple metabolic uncoupling model (Ch. 2.2). 

By comparing this response with the TCP response in the soil studies (Fig. 5.5), two 

possible hypothesis can be made;  

1. The increase in the soil EC by 18% following the addition of 4051 µM of TCP in 

soil studies compared to the permanent decrease in SEC in this experiment was 

because toluene degraders other than P. putida might have played a dominant role 

in toluene degradation in soil studies.  

2. P. putida does not respond the same to TCP in pure culture as it does in a mixed 

culture (Der Yang and Humphrey, 2004). 

3. The TCP concentration experienced by the cells might have been different in pure 

culture due to partitioning differences (soil sorption, etc.) leading to cell lysis. 

In addition, there may be some unknown mechanism such as programmed cell death 

(PCD) (Kroemer et al., 1995) microbial starvation etc., which might have contributed to 

the different response for TCP in soil and pure biofilm studies. However, based on the P. 

putida biofilm studies, it is clear than TCP is not a potential uncoupler for P. putida. 

Following this study, the biofilm was removed and the DCW was measured and found to 

be 33.7 mg.m-2. This increase in the biomass was accounted for the growth stimulated 

initially with nitrogen source.   

The experiment was repeated with a fresh biofilm of S. maltophilia with initial DCW of 

13.9 mg.m-2. However, this time no nitrogen source was supplied to the system as the 

inoculum used in the study was grown with toluene and moreover 50 mL of culture was 

used this time for generating the biofilm when compared with 20 mL culture which was 

used in the earlier study. After 11 days, a steady SEC of 0.12 g.m
-2

.h
-1

 was observed (Fig. 

7.2b) and following this 4051 µM TCP was added to the reactor by replacing the PBS. A 

similar response when compared to the earlier studies in P. putida was observed. SEC 
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dropped steadily and reached a new steady state value of 0.08 g.m-2.h-1. PBS replaced the 

TCP on the 28
th

 day. However, no recovery in SEC was observed. The hypothesis which 

was explained earlier for the similar response of TCP in P. putida is valid for S. 

maltophilia also.  

Hence based on these similar results, TCP was not considered further as a potential 

metabolic uncoupler for studies in either P. putida or S. maltophilia. Following this study, 

the S. maltophilia biofilm was removed and the DCW was measured and found to be 49.2 

mg.m
-2

. This 350% increase in the biomass may be due to the secretion of stress induced 

extra polysaccharides (EPS) on the biofilm. However, without running a suitable control 

biofilm reactor in parallel with the biofilm reactor with TCP, this hypothesis cannot be 

validated. Moreover, no further study was conducted to prove this as TCP was not found to 

be a potential uncoupler. Another interesting observation made from these results is, 

though P. putida is found in most environmental samples grown up on toluene, they may 

not be the dominant degraders but just the easy growers on artificial media (Pirbazari et al., 

1990).Table 7.2 summarizes the initial and final DCW measured for P. putida and S. 

maltophilia biofilms subjected to TCP.    
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    (b) 

Figure 7.2: Effect of TCP on toluene degradation rate in biofilm reactor. Closed blue 

diamonds (     ) are inlet toluene concentrations, closed red squares (     ) are outlet toluene 

concentrations and closed green triangles (     ) are EC. (a) Biofilm of Pseudomonas putida 

(b) Biofilm of Stenotrophomonas maltophilia. Error bars are standard deviations. 

Table 7.2: Comparison of initial and final DCW under TCP influence for two pure culture 

biofilms. 

Metabolic 

Uncoupler 

Biofilm Inoculum 

Volume 

(mL) 

Supplemental 

nitrogen 

addition 

Initial 

DCW 

(mg.m
-2

) 

Final DCW 

(mg.m-2) 

 

TCP 

P. putida 20 Yes 18.2 33.7 

S. 

maltophilia 

50 No 13.9 49.2 
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7.4.3 Studies on carbonylcyanide p-chloromethoxy phenylhydrazone 

(CCCP) 

The reactor was started with an initial DCW of 18.9 mg.m
-2

 of P. putida with 1X PBS. 

Addition of nitrogen source increased the SEC and after 8 days when a significant SEC 

was reached (0.16 g.m-2.h-1), the nitrogen source was removed from the reactor and PBS 

was replaced (Fig. 7.3). Once a steady SEC of 0.16 g.m-2.h-1 was observed, PBS was 

replaced with 0.001 µM CCCP. Following the addition of CCCP, the SEC increased 19% 

to a steady value of 0.19 g.m
-2

.h
-1

. On the 16
th

 day, CCCP was replaced with PBS and the 

SEC started to drop slowly and reached a steady SEC of 0.07 g.m
-2

.h
-1

 after 17 days.  This 

decrease in SEC was found to be 56% lower than that of the initial SEC.  

Though the response of CCCP in the current biofilm study with a reversible increase in 

SEC follows the simple uncoupler model, the reason for large drop in the SEC (below the 

initial SEC) following the removal of the CCCP is unclear. A possible explanation for this 

response is the active biofilm which was subjected to a stress following the addition of 

CCCP might have lost its stress induced activity following the removal of CCCP and 

hence the SEC might have decreased. 

The overall response of CCCP in P. putida biofilm was completely opposite to CCCP 

studies in soil (Fig. 5.7). In soil studies, CCCP addition decreased the EC and the 

subsequent PBS wash improved the EC beyond the initial EC.  However in the current 

biofilm study the response was totally opposite (Fig. 7.3). This suggests the possibilities of 

the earlier hypothesis (Ch 5.4) of lower diffusivity value of CCCP as a factor of influence 

in soil studies is true, because the thickness of soil (4000 µm) was larger than that of the 

biofilm (130 µm).  

Following this study, the biofilm was removed and the DCW was measured and found to 

be 30.7 mg.m-2. This 62% increase in the biomass was accounted for by the initial growth 

stimulated by nitrogen source on top of possible secretion of stress induced 

polysaccharides by the biofilm. Though CCCP showed some interesting results when 

compared to TCP, experiments to measure the loss of CCCP during the experiment were 

not done as no proper CCCP assay has been reported. A CCCP assay following the 

experiment might have given an idea about its influence on P. putida in enhancing the 

SEC in addition to the metabolic uncoupling. However, drop in the SEC following the 
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removal of CCCP indicated that the increase in SEC after the addition of CCCP was not 

due to the growth.  

 

Figure 7.3: Effect of CCCP on toluene degradation rate in a P. putida biofilm reactor. 

Closed blue diamonds (     ) are inlet toluene concentrations, closed red squares (     ) are 

outlet toluene concentrations and closed green triangles (   ) are SEC (Cycle 1 

experiment). Error bars are standard deviations. 

The experiment was replicated with P. putida at a higher initial DCW of 70.3 mg.m
-2

 of 

with 1X PBS. However, this time no nitrogen source was supplied to the system, as the 

inoculum used in the study was grown under a toluene environment. After a steady SEC 

of 0.15  g.m
-2

.h
-1

 (Fig. 7.4), PBS was replaced with 0.001 µM CCCP on the 15
th

 day. 

Following the addition of CCCP, the SEC dropped steeply. Though this response was not 

the same in regards to the initial dynamics as before, 10 days after CCCP addition, a 

steady higher SEC of 0.19  g.m
-2

.h
-1

 was observed. This increase in SEC was 27% higher 

than that of the initial SEC.  

Multiple PBS washes lowered the SEC but it remained above its initial value.  The SEC 

did not collapse after the PBS wash like in Fig. 7.3. Following this study, the biofilm was 
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removed and the DCW was measured and it increased by 67% to 117.3 mg.m
-2

. The same 

explanation provided for the increase in biomass for the earlier experiment is valid for this 

repeat experiment as well. Though the results of this repeat experiment are not exactly the 

same with the previous one, in both experiments CCCP increased the steady state SEC and 

after PBS washes the SEC dropped. These similar responses indicate that CCCP has 

uncoupler potential, but further experiments are required, especially to determine if the 

inoculation history (growth on toluene or complex carbon/energy) explains the response 

post-PBS wash. 

 

Figure 7.4: Effect of CCCP on toluene degradation rate in a P. putida biofilm reactor. 

Closed blue diamonds (     ) are inlet toluene concentrations, closed red squares (     ) are 

outlet toluene concentrations and closed green triangles (   ) are SEC (Cycle 2 experiment). 

Error bars are standard deviations. 

The biofilms used in these two experiments were observed under SEM and confocal 

microscopy to further understand the structure of the biofilms and to observe the possible 

production of stress induced EPS (due to CCCP addition). A fresh membrane (Mixed 

Cellulose Ester, A045A090C, Advantec MFS, USA) was used as a control for SEM 

analysis (Fig. 7.5a) and a membrane with fresh P. putida was used as a control for confocal 
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analysis (Fig. 7.6a and 7.6b). SEM results showed that the biofilm surface was rough with 

air interfaces/cavities (Fig. 7.5b and 7.5c).  Earlier biofilm work also reported similar 

biofilm surface characteristics and claimed that rougher the interface, the larger is the area 

exposed for gas phase. In addition it was reported that more cavities enhanced substrate and 

oxygen transfer through the biofilm (Holden et al., 1997; Studer and Rudolf von Rohr, 

2008). In addition to biofilm structure analysis in SEM, the biofilm thickness was also 

measured and found that the thickness varied between 100 µm and 160 µm (average). This 

variation was due to the difference in the volume of culture used between the cycles (20 mL 

for earlier with final SEC of 0.07 g.m-2.h-1 and 50 mL for later with final SEC of 0.17 g.m-

2.h-1). This thickness matched the reported biofilm thickness of 71 to 239 µm by Vayenas et 

al. (2002) and 100 µm by England et al. (2005).  

Confocal microscopy showed clearly the growth of P. putida when compared with the 

control biofilm (where cell density is nearly zero) (Fig. 7.6c and 7.6d). In addition it also 

showed the clumps of secreted EPS on top of growth. These analyses proved the hypothesis 

of the increase in the DCW was not only due to growth but also due to the production of 

stress induced EPS.  Conducting EPS studies will help to understand further about this 

stress induced EPS in detail. 

   

 

 

 

 

      (a)                                             (b)                                             (c) 

10 µm 
30 µm 18 µm 
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Figure 7.5: SEM pictures of biofilm subjected to CCCP studies (a) Control membrane (b) 

Top surface of the biofilm of P. putida (Cycle 1) (c) Top surface of the biofilm of P. putida 

(Cycle 2) (d) Side of the biofilm of P. putida (Cycle 1) (e) Side of the biofilm of P. putida 

(Cycle 2). 

 

 

Figure 7.6: Confocal pictures (500X magnification) of biofilm subjected to CCCP studies 

(a) Control-Fresh biofilm of P. putida  (18.9 mg.m
-2

 DCW) (Cycle 1) (b) Control-Fresh 

biofilm of P. putida (70.3 mg.m
-2

 DCW) (Cycle 2) (c) P. putida biofilm subjected to CCCP 

(30.7 mg.m-2 DCW) (Cycle 1) (d) P. putida biofilm subjected to CCCP (117.3 mg.m-2 

DCW) (Cycle 2). 

 

                        (d)                                                                 (e) 

                  (a)                                                                          (b) 

                (c)                                                                          (d) 
EPS Clumps 
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The influence of CCCP on a S. maltophilia biofilm, was tested in the biofilm reactor. The 

reactor was started with an initial DCW of 7.2 mg.m
-2

 of S. maltophilia with PBS. A 

nitrogen source was added to increase the SEC and after 10 days a significant SEC was 

reached (0.15 g.m
-2

.h
-1

), the nitrogen source was removed from the reactor and replaced 

with PBS (Fig. 7.7). The switch to PBS did not influence the SEC and the steady state SEC 

remained at 0.15 g.m-2.h-1. On 13th day of the run, PBS was replaced with 0.001 µM CCCP, 

which had no effect on the EC. After 10 days, CCCP was removed and PBS was replaced, 

and the SEC did not change. A slight drop in SEC was observed following the removal of 

CCCP which later came back to the earlier SEC value (Fig. 7.7). Explanation for this nil 

response of CCCP for S. maltophilia include the concentration tested might not be high 

enough for S. maltophilia to initiate uncoupling mechanism.  

Following this study, the biofilm was removed and the DCW was measured and found to be 

24.7 mg.m
-2

. This increase in the biomass was attributed to growth stimulated initially with 

the nitrogen source in addition to secreted EPS. However, no further SEM or confocal 

studies were done as 0.001 µM CCCP was not a potential uncoupler for S. maltophilia. 

Based on soil studies (section 5.3.2.5), CCCP concentrations higher than 0.001 µM were not 

conducted but arguably higher concentrations might worth testing on S. maltophilia.  Table 

7.3 summarizes the initial and final DCW measured for P. putida and S. maltophilia 

biofilms subjected to CCCP. 
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Figure 7.7: Effect of CCCP on toluene degradation rate in S. maltophilia biofilm reactor. 

Closed blue diamonds (     ) are inlet toluene concentrations, closed red squares (     ) are 

outlet toluene concentrations and closed green triangles (     ) are EC. Error bars are standard 

deviations.  

  Table 7.3: Comparison of initial and final DCW under CCCP influence 

Metabolic 

Uncoupler 

Biofilm Inoculum 

Volume 

(mL) 

Supplemental 

nitrogen 

addition 

Initial 

DCW 

(mg.m-2) 

Final DCW 

(mg.m
-2

) 

 

CCCP 

P. putida 

(Cycle 1) 

20 Yes 18.9 30.7 

P. putida 

(Cycle 2) 

50 No 70.3 117.3 

S. maltophilia 20 Yes 7.2 24.7 
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7.4.4 Studies on pentachlorophenol (PCP) 

The reactor was started with an initial DCW of 18.2 mg.m
-2

 of P. putida with 1X PBS. 

After 7 days, a nitrogen source (0.05 M sodium nitrate) was added to the system by 

replacing the PBS which increased the SEC. After 18 days, the nitrogen source was 

removed from the reactor and replaced with 1X PBS. After a steady SEC of 0.20 g.m-2.h-1 

was achieved, PCP at a concentration of 140 µM was added to the system by replacing the 

PBS. The SEC started to drop steeply and reached a steady SEC of 0.09 g.m
-2

.h
-1

 after 47 

days. When compared with the initial steady state SEC, this new SEC was 55% lower. 

Following this, PCP was removed from the system and PBS was replaced. However, the 

SEC did not improve and stayed constant (Fig. 7.8) indicating PCP was not a viable 

uncoupler for P. putida at this concentration. By comparing this response with the PCP 

response in the soil studies (Fig. 5.4), two possible explanations were proposed.  

1. The increase in EC by 35% following the addition of 140 µM in soil studies was 

because toluene degraders that could be uncoupled by PCP played a key role in 

toluene degradation in soil studies.  

2. It is very clear from the PCP biofilm studies that in presence of PCP the SEC 

dropped but at the same PCP concentration in the soil studies, EC increased. 

Therefore, PCP might have killed the other toluene degraders/non-toluene degraders 

and the nitrogen released by the dead cells was utilised by those other active toluene 

degraders which tolerated the PCP in the soil to grow.  

Following this study, the biofilm was removed and the DCW was 50.1 mg.m-2. This 

increase in the biomass was accounted for by the growth stimulated initially with 

nitrogen source on top of possible secretion of EPS. 
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Figure 7.8: Effect of PCP on toluene degradation rate in P. putida biofilm reactor. Closed 

blue diamonds (     ) are inlet toluene concentrations, closed red squares (     ) are outlet 

toluene concentrations and closed green triangles (     ) are EC. Error bars are standard 

deviations. 

The influence of PCP on S. maltophilia was tested in the biofilm reactor. The reactor had an 

initial DCW of 5.4 mg.m-2 of S. maltophilia with 1X PBS. Addition of the nitrogen source 

increased the SEC and after 10 days when a significant SEC was reached (0.16 g.m-2.h-1), 

the nitrogen source was removed from the reactor and PBS was replaced (Fig. 7.9). A 

steady SEC of 0.13 g.m
-2

.h
-1

 was observed after 29 days. Following this, a 140 µM PCP 

solution was added to the reactor replacing the PBS. The SEC dropped initially following 

the addition of PCP and it reached a maximum steady SEC of 0.24 g.m-2.h-1. When 

compared with the earlier steady state SEC, this new SEC was 85% higher. Following this, 

PCP was removed and PBS wash was performed which dropped the SEC back to the initial 

steady state SEC. This response was a classical uncoupler response. This response of PCP 

was similar with its response in soil studies. PCP behaved in a similar fashion by increasing 

the removal rate in both soil studies and in biofilm studies. However, the PBS wash in soil 
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studies did not reverse the PCP uncoupler effect in soil (Fig. 5.4), but it did in the S. 

maltophilia biofilm study (Fig. 7.9).   

To test the response, 140 µM PCP was again added to the system which responded in a 

similar fashion and increased the SEC. However this time the steady state SEC was 17% 

lower than before.  PBS washes after removing the PCP from the reactor did not return the 

SEC to the initial steady state SEC.  

Overall by comparing the effect of PCP in soil and two pure culture biofilms, there are 

three possible explanations for the behaviour of PCP in soil,  

1) PCP addition might have killed the non-toluene degraders in the soil and the toluene 

degraders might have grown in addition to the metabolic uncoupling by PCP and 

generated a higher EC.  

2) Removal of PCP might not have reduced the active metabolic activity of the toluene 

degraders and hence EC did not come back to the initial steady state EC.   

3) Removal of PCP might have reduced the activity of the toluene degrader which was 

active in presence of PCP and the other non-active toluene degraders might have 

contributed to the EC after the removal of PCP.  

However, all three hypothesis needs to be validated in soil. Based on the PCP assay at the 

end of the PCP studies in soil it was clear that PCP did not induce any growth of active 

toluene degraders in soil as the PCP loss was only 18% (Tab. 5.3). Similarly in biofilm 

studies, the PCP loss was observed as 7%.  No solid explanation can be provided for this 

slight PCP loss in the biofilm study. However, running the experiment for more months 

(say 6 months) will help clarify this issue. Based on two cycles of PCP experiments in S. 

maltophilia and one cycle of PCP experiment in P. putida biofilm, it is clearly evident that 

S. maltophilia generated higher SEC and hence it can be concluded that the organism 

actively involved in toluene degradation in soil screening studies may be S. maltophilia and 

not P. putida. In addition, compared to soil and biofilm studies, the effect of PCP was 

found positive in both cases and hence it can be concluded that PCP can be a potential 

metabolic uncoupler for toluene degradation.  



Chapter 7: Development of Biofilm Reactor for Metabolic Uncoupler Studies 

135 

 

 

Figure 7.9: Effect of PCP on toluene degradation rate in S. maltophilia biofilm reactor 

(Cycle 1). Closed blue diamonds (     ) are inlet toluene concentrations, closed red squares    

(     ) are outlet toluene concentrations and closed green triangles (     ) are EC. Error bars 

are standard deviations. 

Following this study, the biofilm was removed and the DCW was measured and found to 

be 30.8 mg.m-2. This 470% increase in the biomass was attributed to nitrogen-induced 

growth on top of possible secretion of EPS. In order to study the biofilm further, the 

biofilm was subjected to SEM and confocal analysis. SEM results (Fig. 7.10) matched the 

observations made earlier with biofilm subjected to CCCP and hence the explanations 

provided earlier support the current observations also. However, the air interface observed 

(through SEM at similar magnification) in the biofilm subjected to PCP analysis was at 

least 2 to 3 times larger than that of the biofilm subjected to CCCP (Figs. 7.5b, 7.5c Vs Fig. 

7.10b). This might have caused the higher SEC observed in the biofilm subjected to PCP 

(0.24 g.m
-2

.h
-1

 vs. 0.19 g.m
-2

.h
-1

). As described earlier, the larger the air interface cavity, 

the larger the mass transfer rate. The biofilm thickness was also analysed and was 70-95 

µM (average) which was thinner than the biofilms subjected to CCCP. Table 7.4 
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summarizes the initial and final DCW measured for P. putida and S. maltophilia biofilms 

subjected to PCP. 

 

Figure 7.10: SEM pictures of S. maltophilia biofilm subjected to PCP studies (a) Control 

membrane (b) Top surface of the biofilm (c) Side of the biofilm. 

Table 7.4: Comparison of initial and final DCW under PCP influence 

Metabolic 

Uncoupler 

Biofilm Inoculum 

volume 

(mL) 

Supplemental 

nitrogen 

addition 

Initial 

DCW 

(mg.m
-2

) 

Final DCW 

(mg.m
-2

) 

 

PCP 

P. putida 20 Yes 18.2 50.1 

S. 

maltophilia 

20 Yes 5.4 30.8 

                  (a)                                                                          (b) 

                 (c)                                            

95 µm 

10 µm 50 µm 
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Studies carried out with the S. maltophilia biofilm subjected to confocal microscopy showed 

clearly an increase in cell density (biomass and EPS) when compared with the control 

biofilm (Fig. 7.11a and 7.11b). Similar to our earlier studies, these analyses again proved 

our hypothesis of increase in the DCW was not only due to growth but also due to the 

production of stress-induced EPS. 

 

 

Figure 7.11: Confocal microscopy (500X magnification) of S. maltophilia biofilm subjected 

to PCP studies (a) Control/fresh biofilm of S. maltophilia (5.4 mg.m-2 DCW) (b) S. 

maltophilia biofilm subjected to PCCP (30.8 mg.m
-2

 DCW). 

7.4.5 Overall interpretation  

Overall by comparing the effects of TCP, CCCP and PCP on the biofilms of P. putida and 

S. maltophilia (Tab. 7.5), it is very evident that CCCP had the largest positive influence on 

the SEC in P. putida and PCP in S. maltophilia. As the effects of TCP on both these two 

biofilms did not support metabolic uncoupling, it was not selected as a best uncoupler. By 

comparing the percentage increase in SECs among CCCP and PCP, it is also very evident 

that PCP showed a higher percentage increase of 85% when compared with CCCP. Hence 

PCP was selected as the best uncoupler among the three tested uncouplers.  

In order to test PCP again for its consistency, a new experiment was started with higher 

initial S. maltophilia DCW of 0.3 g with 1X PBS. However, this time no nitrogen source 

was supplied to the system, as the species used in the study was grown with toluene and 50 

mL of culture was used for generating the biofilm when compared to 20 mL in the earlier 

studies. In addition to the regular inlet and outlet toluene measurements through online GC, 

this time carbon dioxide was also measured continuously with an online carbon dioxide 

                  (a)                                                                       (b) 
EPS Clumps 
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monitoring system. After a steady SEC of 0.12  g.m
-2

.h
-1

, PBS was replaced with 140 µM 

PCP on the 16
th

 day (Fig. 7.12). Similar to the earlier PCP responses, this time the SEC 

started to increase gradually and reached a steady value of 0.15 g.m
-2

.h
-1

. It was also 

observed that the SEC rise was only 25% when compared to the earlier 85% increase. The 

reason behind this decreased effect was unknown and further experiments are required to 

understand this. The carbon dioxide values were also increased with the SEC. However, as 

reported earlier (section 3.8.6), the measured carbon dioxide did not equal the theoretical 

carbon dioxide to be produced during the toluene degradation with ~50% missing. A 

possible explanation for the missing carbon is the formation of polysaccharides by the 

biofilm. However, separate research needs to be conducted to investigate the missing 

carbon and also to validate this hypothesis. The steady SEC observed in the current 

experiment remained constant for more than 45 days (Fig. 7.12), which clearly showed that 

PCP influence was active for longer than a month.  

 

Figure 7.12: Effect of PCP on toluene degradation rate in S. maltophilia biofilm reactor 

(Cycle 2). Closed blue diamonds (     ) are inlet toluene concentrations, closed red squares    

(     ) are outlet toluene concentrations, violet crosses (X) are carbon dioxide concentrations 

and closed green triangles (     ) are SEC. Error bars are standard deviations.  
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Table 7.5: Summary of steady effects of TCP, CCCP and PCP on P. putida and S. 

maltophilia biofilms. 

Metabolic 

Uncoupler 

Biofilm Pre-exposure SEC 

(g.m-2.h-1) 

Post-exposure SEC 

(g.m-2.h-1) 

TCP a) P. putida 

 

b) S. maltophilia 

 

0.20  

 

0.12  

 

0.08  

 

0.08  

CCCP a) P. putida 

 

 

b) S. maltophilia 

0.16 (Cycle 1) 

0.15 (Cycle 2) 

0.15 

0.19 (Cycle 1) 

0.19  (Cycle 2) 

0.15 

 

PCP a) P. putida 

 

b) S. maltophilia 

0.20  

 

0.13 (Cycle 1) 

0.12  (Cycle 2) 

 

0.09  

 

0.24  (Cycle 1) 

0.15 (Cycle 2) 

 

7.4.6 Modelling the SEC in presence of uncouplers 

Experimental results showed that in presence of PCP, the SEC of S. maltophilia biofilm 

increased and in presence of CCCP, the SEC of P. putida increased.  In addition both PCP 

and CCCP did not induce growth and hence the increase in the SEC was possibly due to 

the energy uncoupling mechanism. Developing a simple model (without a time factor) to 

calculate and understand the degree of uncoupling in a non-growth systems will help 

further to describe the uncoupling mechanism quantitatively.  

Generally, the degree of energy uncoupling in presence of an uncoupler in a growth system 

can be expressed by the energy uncoupling coefficient (Liu et al., 1998): 

E� = 	
���������������

�������
                  (7.2) 
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For our non-growth biofilter system, Eq. 7.2 can be modified in terms of SEC and can be 

rewritten as, 

E� = 	
�������������������

���������
                                                                              (7.3)   

Positive Eu value will represent uncoupling and the negative Eu value will represent no 

uncoupling or the inhibition by the uncoupler. Eq. 7.3 is only applicable if no growth is 

associated in the uncoupling mechanism. When the uncoupler had nil effect on the system 

then Eu is zero.  

Table 7.6 shows the calculated Eu values for TCP, CCCP and PCP tested on both P. putida 

and S. maltophilia. It is very clearly evident from the Eu values from Table 7.6 that 

consistent metabolic uncoupling response was observed in P. putida under the influence of 

0.001 µM CCCP and in S. maltophilia under the influence of 140 µM PCP. However, 

based on the highest Eu found for PCP in S. maltophilia, it is understood that PCP is the 

best uncoupler among the three tested. These quantitative results will easily help to 

understand the difference between uncoupling and inhibition among different metabolic 

uncouplers at desired concentrations in various microbial biofilms used in non-growth 

systems.  

Table 7.6: Calculated energy uncoupling coefficient 

Metabolic uncoupler Concentration 

tested (µM) 

Biofilm tested Eu 

TCP 4051 a) P. putida 

 

b) S. maltophilia 

-0.60 

-0.33 

CCCP 0.001 a) P. putida 

 
b) S. maltophilia 

+0.19 and +0.27 

0 

PCP 140 a) P. putida 

 
b) S. maltophilia 

-0.55 

+0.85, +0.54 and 

+0.25 
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Overall, by comparing the effects of TCP, CCCP and PCP in soil and biofilm studies, it is 

evident that the response of mixed culture in the soil was totally different with the pure 

culture in the biofilm. In addition, the increase in the biomass was clearly observed in 

biofilm a study which was suspected in soil studies but unable to be measured due to the 

complexities involved. Though the addition of nitrogen triggered the growth of biomass, 

the biomass increase observed in biofilm studies which were not subjected to nitrogen 

addition (Figs. 7.2b, 7.4, 7.12) might be due to the formation of EPS. Two major possible 

disadvantages in long run due to the formation of these extra polysaccharides and/or stress 

induced EPS is the increase in the thickness of biofilm without any increase in activity but 

only increase in mass transfer resistance and increased pressure drop (in real biofilters). 

Hence it is very clear that conducting metabolic uncoupler screening studies in a pure 

culture biofilm system will help to understand the metabolic uncoupling concept better than 

a mixed culture system (like soil). The earlier uncoupler study carried out in pure culture 

growth systems by Low and Chase et al. (1998) and by Neijssel et al. (1977) also well 

supports this statement. 

7.5 Conclusions 

The biofilm reactor was used to study S. maltophilia and P. putida in the presence of three 

metabolic uncouplers TCP, CCCP and PCP at the concentrations reported effective in the 

soil screening studies. Results showed that PCP increased the SEC by maximum of 85% 

in S. maltophilia biofilm and CCCP increased the SEC by maximum of 27% in P. putida 

biofilm. However, TCP did not increase the SEC either in S. maltophilia or P. putida 

biofilms. The CCCP and PCP exposed biofilms were further studied by SEM and confocal 

analysis. SEM analysis showed that the biofilm subjected to PCP had larger and wider air 

interface cavities when compared with the biofilm subjected to CCCP. This implies the 

possibility of higher mass transfer in biofilms exposed to PCP than the CCCP influenced 

biofilm. In addition to biofilm surface analysis, SEM was also used to observe the 

thickness of the biofilms. Confocal results clearly showed that on top of growth, stress 

induced EPS formation contributed to the increased DCW at the end of each uncoupler 

studies. In order to understand the long term effectiveness of uncoupling, a separate 

biofilm study using S. maltophilia and the best uncoupler PCP was carried out and found 

that the SEC remained constant even after 70 days. Finally a simple model was developed 
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to calculate the energy uncoupling coefficient for non-growth systems like ours to 

quantitatively represent the uncoupling mechanism. 

7.6 Nomenclature 

    Am  Area of the membrane  covered by the biofilm  m
2
 

 Cin  Inlet concentration      g.m-3 

 Cout  Outlet concentration      g.m
-3 

 Eu  Energy uncoupling coefficient    No unit  

Q  Gas flow rate       m3.h-1 

 SEC  Surface elimination capacity     g.m
-2

.h
-1

 

 (SECmax)c Maximum observed surface elimination capacity  g.m
-2

.h
-1 

 (SECmax)u Maximum observed surface elimination capacity  g.m-2.h-1 

   
in the presence of the uncoupler 

 (Ymax)c  Maximum observed yield     g.g
-1

 

 (Ymax)u  Maximum observed yield in presence of uncoupler  g.g
-1 
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Chapter 8: Recommendations and Future Work 

8.1 Summary 

In this work, a differential biofiltration reactor was used to explore the potential of 

metabolic uncouplers to improve pollutant (toluene) degradation rates. Metabolic 

uncouplers were reported to reduce the cell yield in activated sludge systems, but were 

untested in biofilters. The current work is the first to report the impact of different 

metabolic uncouplers in a biofilter. Initially soil was used as a biofilter bed and later 

experiments were conducted in pure cultures in a biofilm reactor. 

Generating a desired concentration of toluene for our differential biofiltration reactor was 

considered prerequisite before conducting any experiment and hence a simple diffusion 

system was developed to generate the desired concentration of toluene to the system 

(section 3.6). In addition, inclusion of mass flow controllers in the system helped to prevent 

the flow rate fluctuations (±3 mL.min
-1

 in simple rotameter set-up) and facilitated in 

generating the desired toluene concentration nearly matching the theoretical calculations 

(Tab. 3.3). Inclusion of online gas chromatography and a carbon dioxide analyzer improved 

the precision and quality of the data collected. However, the amount of carbon dioxide 

measured did not match the calculated value which indicated that toluene carbon was being 

converted to something other than carbon dioxide. Only one fourth of the predicted 

theoretical carbon dioxide was measured in the outlet stream of the reactor at an average 

inlet toluene concentration of 200 ppm.     

Preliminary experiments (section 4.6.1 to 4.6.3) including the effect of substrate 

concentration, different nutrients and temperature were done to optimize the conditions 

before starting the metabolic uncoupler screening studies in soil. Based on the results, inlet 

toluene concentrations between 180 ppm and 250 ppm at a constant flow rate of 25 

mL.min-1 were used throughout the studies. Moreover, it was found that substrate inhibition 

dominated above the toluene concentrations above approximately 200 ppm (outlet 

concentration). In addition, the results showed that the soil subjected to higher toluene 

concentration decreased the EC between 5% and 29% in repeat experiments. This may be 

due to substrate inhibition or due to the loss of active toluene degraders. The Nutrient 

studies showed that the toluene degraders present in the soil were nitrogen limited. Other 

macronutrients tested like phosphate, sulphate, magnesium, calcium and iron did not 
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increase the toluene degradation rate. Temperature studies showed that the EC increased 

with increasing temperature, from 34 ± 1.4 g.m
-3

.h
-1

 to 49.8 ± 2.6 g.m
-3

.h
-1

 for temperatures 

of 20 to 45
 o

C, respectively. However above 45 
o
C the majority of the toluene degraders 

which were active upto 45 
o
C were greatly inhibited and hence the EC dropped. 

Based on published work in activated sludge treatment, nine potential metabolic uncouplers 

were selected for initial screening studies in batch serum bottles with toluene as the sole 

carbon source (section 5.2.1). The nine uncouplers tested were dinitrophenol (dNP), p-

nitrophenol (pNP), benzoic acid, carbonylcyanide p-trifluoromethoxy phenylhydrazone 

(FCCP), carbonylcyanide m-chloromethoxy phenylhydrazone (CCCP), pentachlorophenol 

(PCP), malonic acid, m-chlorophenol and 2, 4, 6-trichlorophenol. Other than dNP and pNP 

(nitrogen containing uncouplers), seven uncouplers were selected for further testing in the 

differential biofilter reactor though the initial serum bottle screening studies were not 100% 

conclusive. Results showed that only PCP and TCP increased the toluene degradation rate 

significantly. PCP increased the toluene degradation rate by 35% at 140 µM, whereas 4051 

µM TCP increased the rate by 18%. PCP and TCP assays were conducted following the 

screening studies with only 18% PCP and 68% TCP lost. Though FCCP behaved as a 

classical uncoupler when compared with others, the EC increase was not significant. 

Results also showed that possible lower diffusivity of CCCP in soil made it incompatible 

for soil studies. Other uncouplers decreased the EC in soil (A detailed summary is shown in 

Fig. 5.10). Hence PCP, TCP and CCCP were selected for further studies in a pure culture 

(toluene degraders) biofilm reactor system.  

Five toluene degraders were isolated from soil subjected to toluene and were identified 

using 16s rDNA/18s rDNA analysis (section 6.3.3). The five isolates were 

Stenotrophomonas maltophilia, Pseudomonas putida, Aspergillus versicolor, 

Ochrobactrum tritici and Pseudomonas citronellolis. The five isolates were deposited in the 

New Zealand culture collection maintained by ICMP and this project was the first to report 

these five isolates as toluene degraders in New Zealand. Moreover, this is the first report in 

New Zealand for the two isolates Ochrobactrum tritici and Pseudomonas citronellolis in 

the ICMP culture collections.   

Out of five isolates, two toluene degraders, Stenotrophomonas maltophilia and 

Pseudomonas putida were used to inoculate the reactor to create a biofilm (section 7.3.1). 
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PCP, TCP and CCCP were tested in the biofilm reactors and found that 140 µM PCP 

increased the surface elimination capacity (SEC) by 85% at in S. maltophilia and 0.001 µM 

CCCP increased the SEC by 27% at in P. putida. Further SEM analysis of the biofilm 

subjected to PCP and CCCP showed larger air interface cavities in the PCP exposed 

biofilms when compared with the biofilms subjected to CCCP. This implies the 

possibilities of that higher mass transfer in PCP tested biofilm than that of CCCP 

influenced biofilm. In addition to biofilm surface analysis, SEM was also used to observe 

the thickness of the biofilms and found a range of thickness varying between 100-160 µm 

in P. putida and 70-95 µm for S. maltophilia. Confocal results clearly showed that on top of 

growth, stress induced proteins which contributed to the increased DCW at the end of each 

uncoupler studies. In order to understand the long term effectiveness of uncoupling, another 

biofilm study using S. maltophilia and the best uncoupler PCP at 140 µM was carried out 

and the SEC increased by 36% and remained stable for 45 days. Finally a simple modeling 

study (without a time factor) was also performed to determine the energy uncoupling 

coefficient for the metabolic uncouplers used in biofilm reactor. This model equation 

helped us to represent the uncoupling mechanism quantitatively. Overall, it was found that 

the effects of TCP, CCCP and PCP in soil and biofilm studies were totally different. This 

difference is due to the presence of mixed culture in soil when compared to the pure culture 

in biofilm reactor. Though the increase in the biomass was evident (visibly) in soil studies, 

it was not quantified due to the complexities involved in quantifying the biomass increase 

in mixed culture systems like soil. However, the increase in the biomass was clearly 

observed in biofilm studies. Though the addition of nitrogen might have triggered the 

growth of biomass, the biomass increase observed in biofilm studies which were not 

subjected to nitrogen addition might be due to the possible formation of extra 

polysaccharides and/or stress induced protein. One of the major possible disadvantages in 

handling these extra polysaccharides and/or stress induced protein is the increase in mass 

transfer resistance due to the increase in the thickness of biofilm without any increase in 

activity. This mass transfer limitation can be measured by using the change in the pressure 

between the inlet flow rate and outlet flow rate (using an inert gas) in the reactor.  However, 

this issue can be more easily handled in a pure culture biofilm studies than in soil studies. 

Hence it is very clear that conducting metabolic uncoupler screening studies in a pure 

culture biofilm system is more valid than mixed culture systems like soil. Moreover, similar 

studies conducted earlier by few researchers in pure culture growth systems also supports 
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this statement (Low et al., 2000; Neijssel, 1977). Though these metabolic uncouplers have 

been widely used in activated sludge, their residual toxicity was not studied well yet. 

However, using these metabolic uncouplers in closed systems like the one in the current 

research, the issues associated with environmental release can be avoided. Hence in terms 

of environmental issues concerned, using metabolic uncouplers in a closed system with lots 

of precautions is better than using them in open systems. 

The major overall outcome of the current research is, metabolic uncouplers can be used 

effectively in biofiltration to increase the pollutant degradation rate. However, screening 

experiments have to be done for different types of pollutants to choose an appropriate 

metabolic uncoupler and appropriate pure culture. 

8.2 Online carbon dioxide analysis 

8.2.1 Recommendations 

The inclusion of online carbon dioxide monitoring system helped to highlight the issue of 

other toluene degradation products. However, it was observed that at an average inlet 

toluene concentration of 200 ppm, the system generated approximately 50% theoretical 

concentration of carbon dioxide and found missing the remaining 50%. Hence it was hard 

to close the close carbon balance in the current research. This may be due to the possible 

utilization of carbon source for the production of polysaccharides by the toluene degraders 

present in the biofilter bed. Other possible carbon end points include soluble microbial 

metabolites, internal storage polymers and volatile substances like carbon monoxide. 

Measuring and understanding about all these missing carbon compounds further in a mixed 

culture systems like soil is hard due to the complexities involved in measuring the biomass. 

Hence it is recommended to study the missing carbon in pure culture biofilm system in 

order to avoid the complex biomass and/or other products estimation procedures.  

8.2.2 Future work 

The fate of the transformed pollutants is poorly understood in biofiltration. A fraction of 

carbon entering the system remains unaccounted for (Li and Moe, 2005). The biofilms in 

oxidative microbial processes in the waste treatment industry degrade waste organic 

compounds to carbon dioxide, biomass and other metabolites. A major portion is released 
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as carbon dioxide but carbon balance closure in these system remains debatable. An 

assumption in biofiltration that does not involve continuous/periodic nutrient addition is 

that at steady state there is no net biomass growth and the organism are in maintenance 

mode. However the carbon dioxide recovery is never 100 % and a fraction of carbon is 

either accumulating or exiting the system in some form. Some studies have attempted to 

close the carbon balance, yet most report 10% - 50% of the carbon as missing (Deshusses, 

1997; Furer and Deshusses, 2000; Grove et al., 2009; Hassan and Sorial, 2009; Song and 

Kinney, 2000; Weber and Hartmans, 1996). With the alarming issue of global warming and 

industrial emissions, accounting of carbon from these biological systems will be 

paramount.  Hence understanding the carbon flux and closure of carbon balance is very 

important to accurately predict and model a biofilters performance in the future. Hence, in 

addition to the online carbon dioxide analyser, in-corporation of an online mass 

spectrometer and a liquid total organic/inorganic carbon (TO/IC) analyser to the existing 

system will help to track and trace the missing carbon. This is the proposed research idea to 

investigate in the near future. 

8.3 Metabolic uncouplers 

8.3.1 Recommendations 

The metabolic uncouplers used in the soil studies were selected based on their earlier 

reports on activated sludge treatment, as no other reports have yet shown their application 

in non-growth systems like ours. Hence, the concentration reported earlier was taken as a 

base for conducting the screening studies. Since the concentration reported was for a 

growth system, using the same concentration might not be a appropriate in non-growth 

systems where the  system is in maintenance mode. So testing the metabolic uncouplers in 

lower concentrations with reference to the earlier reported concentration will further help to 

understand uncoupling pattern and there by the substrate degradation rate in non-growth 

systems. In addition, conducting similar screening studies in pure culture biofilm reactors at 

varied metabolic uncoupler concentrations will also help to understand their effect on 

individual species of toluene degraders. Since the pKa of the uncoupler and internal pH of 

the cell are important criteria in the uncoupling mechanism, while selecting the pure 

cultures of toluene degraders for metabolic uncoupler studies, a pre-understanding about 

these two important parameters would be handy. However the effect of pKa was not clearly 
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seen during the experimentation of different uncouplers in both soil and pure culture 

biofilm in the current study. The other important aspect with respect to the metabolic 

uncoupler is its solubility limit. Most of the uncouplers tested were heat solubilised to 

shorten to solubilisation time in room temperature. During heat solubilisation (especially at 

121 
o
C), the possibilities of losing the activity of metabolic uncoupler cannot be completely 

ruled out. Though this concept was not proved, selecting metabolic uncouplers with high 

solubility range in water may prevent the possibilities of loss in the uncoupling activity. 

Moreover, it will also help to work with metabolic uncouplers in different concentration 

ranges. 

8.3.2 Future work 

FCCP behaved as a classical uncoupler when compared to others in soil studies. However, 

it was not considered for further studies in biofilm reactor based on the fact that it didn’t 

improve the EC significantly in soil studies. Hence testing this metabolic uncoupler at 

different concentrations in soil may help further to understand about this potential 

uncoupler. This future work is currently under progress. Another work with respect to the 

long term stability studies of pentachlorophenol in both soil and biofilm reactor needs to be 

done which will help to understand its metabolic activity with respect to time. This work is 

also currently under progress. In addition to those seven metabolic uncouplers tested in soil 

studies, other reported potential uncouplers like tetrachlorosalicylanilide (TSA), 

dinitrophenol (DNP), 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF 6847) and 

p-nitrophenol (pNP) (Lewis et al., 1994) may also be tested despite that they all are 

nitrogen containing compound. However, most of the toluene degraders are nitrogen 

limited which is a major pitfall in testing these compounds. One of the short term future 

goals is to develop an easy assay procedure for each of these metabolic uncouplers which 

are prerequisite to test the uncoupler before and after the analysis.  

From both soil and biofilm studies, it was found that after the removal of metabolic 

uncouplers from the reactor, the EC/SEC did not drop back to the initial steady state value. 

This response is contradictory to the theoretical concept of metabolic uncoupling. Hence a 

separate research is needed to identify the issues behind this contradictory response of 

metabolic uncouplers.  
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Finally, the possibilities of employing these metabolic uncouplers in trickle bed reactor 

systems with controlled environment similar to our current system to regulate the microbial 

growth without hindering the substrate degradation rate is the long term future plan.    

8.4 Microbiology 

8.4.1 Recommendations 

The two toluene isolates used in the biofilm reactor studies were Pseudomonas putida and 

Stenotrophomonas maltophilia. It was observed that the pure cultures of both these 

organisms which were grown in toluene environment showed shorter acclimation time in 

the biofilm reactor rather than those grown in non-toluene environment (section 7.4.1). In 

addition, introduction of higher initial biomass in the biofilm reactor improved the 

acclimation time of these organisms in the biofilm reactor. Hence addition of nitrogen to 

the biofilm reactor can be avoided by this way.  

Maintaining a sterile environment is very hard while using pure culture for experiment like 

the current one. Though the reactor and tubings were sterilized and the preparation of 

biofilm was carried out in a sterile environment, one cannot rule out the possibilities of 

contamination in the biofilm which was subjected for toluene degradation. The chances of 

population collapse are huge in systems like the current one and hence conducting these 

kinds of experiments in a complete sterile environment may reduce this huge problem. At 

least introducing a 0.2 µm filter in the inlet side and outlet side of the reactor may decrease 

the population collapse to some extent. 

In terms of isolation cost, it is cheaper to isolate the toluene degraders from the natural 

sources like soil. However, cost involved in identifying the isolated strain is huge 

(especially 16srRNA sequencing). Hence instead of isolation and screening, the appropriate 

microorganism may be procured from microbial culture collection centers. Procurement 

cost is always lower than the earlier cost. 

8.4.2 Future work 

Out of five toluene degraders isolated from soil subjected to toluene, only two were tested 

in the biofilm reactor. The other three isolates Aspergillus versicolor, Ochrobactrum tritici 

and Pseudomonas citronellolis could also be tested in the biofilm reactor with the selected 
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metabolic uncouplers to understand their uncoupling mechanisms. Online biofilm thickness 

monitoring device will be incorporated with the biofilm reactor to measure the biofilm 

thickness continuously. Other than the five isolated toluene degraders, other reported 

potential toluene degraders like Burkholderia vietnamiensis G4 (Kumar et al., 2008), 

Acinetobacter calcoaceticus (Chalmers et al., 1991), Acinetobacter Radioresistens (Abdel-

El-Haleem, 2004), Ralstonia pickettii (Tao et al., 2004) and Burkholderia cepacia (Mars et 

al., 1996) could be tested in the biofilm reactor. In addition confocal microscopy will be 

used in very effective manner to observe and study the stress induced metabolites on the 

surface of the biofilm using appropriate staining procedures. Finally, preliminary studies 

like substrate effect, temperature effect and nutrient effect will be studied in each biofilm 

reactors in similar way they were studied in soil. These studies will help to optimize the 

process parameters for the biofilm reactors. 

8.5 General future work 

An important issue with traditional biofilter is its huge size (3000 m2 per m3 of pollutants 

treated in an hour) (Theodore, 2008). Use of membrane reactors could solve this size issue 

to a great extent. Membrane reactors have been previously studied for biological gas 

treatment. As reviewed by Kumar et al (2008) the major advantages of membrane reactors 

over traditional packed beds are oxygen supply is received equally by the whole membrane 

resulting in more degradation and less clogging, higher inlet loading rate with greater 

elimination capacity, smaller foot-print and lower maintenance cost. A smaller foot print, 

plug flow biofiltration reactor needs to be developed from the existing differential 

biofiltration reactor system with biofilm on the gas side of the membrane. This reactor will 

be similar to a shell and tube heat exchanger. The biofilm will be developed in the gas-side 

of the membrane inside the tube side rather than shell side (Fig. 8.1). It will also eliminate 

the membrane mass transfer resistance, as the contaminant will transfer directly from the gas 

phase to the biofilm, with only water and dissolved species exchanging across the 

membrane. In regards to practical operation, excess biomass will be more easily controlled 

with direct access to the biofilm for physical or chemical treatment. This will allow both 

non-growth and growth systems to be easily tested in the same apparatus. However, with the 

biofilm directly exposed to the contaminated gas, the build-up of recalcitrant compounds 

such as dust or fats/oils or the displacement of the preferred microbial community by 
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contaminants or predators is more likely compared to traditional membrane reactors. 

However, standard biofilters and trickle beds are subject to the same problems.  

Preliminary design calculations have given satisfactory results which will help us to develop 

a plug flow reactor efficiently for treating higher volumes of pollutants per unit volume of 

reactor. This novel work will pave the way for developing a cost effective biofilter reactor 

occupying less area and involving less manpower in treating higher volume of pollutants 

and higher specific productivity. Moreover, this reactor will also help to introduce the 

metabolic uncouplers in a controlled way/environment similar to the existing differential 

biofilter reactor system. This idea is one of the future ideas for our current research group, 

and hence it has to be first proved in a lab scale before scaling it up. 

 

 

Figure 8.1 – A comparison of the biofilm location in a membrane reactor (a) – saturated 

biofilm on the water-side; (b) – traditional shell and tube configuration of a membrane 

bioreactor; (c) – an unsaturated biofilm on the gas-side of the membrane. 

Additional work could include testing different substrates (pollutants) in the biofiltration   

reactor set-up. In particular methane gas is a possible replacement to toluene for similar 

studies as it is a greenhouse gas and posing a great threat to the increased global warming. 
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Similar to toluene degraders, methane degrading organisms (Chu and Alvarez-Cohen, 1998; 

Lontoh and Semrau, 1998) may be used in our biofilm reactor in presence and absence of 

metabolic uncouplers to study the degradation rate. 

Finally a modelling study to understand and calculate the maintenance energy during the 

action of metabolic uncouplers in a pure culture biofilm reactor needs to be done. This study 

is one of the ways to quantitatively explain the metabolic uncoupling in pure biofilm under 

non-growth conditions. 
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A.1 GC calibration 

Continuous real time monitoring of inlet and outlet toluene concentration is achieved by 

connecting a gas chromatography (GC) system (SRI-8610C, SRI Instruments, CA, USA) 

online to the reactors. GC uses a flame ionization detector, capillary column (1.5 mL) and 5 

ml sample loop for detection and analysis of the sample. Helium is used as a carrier gas (5 

psi and 10 mL min
-1

), air (5 psi and 250 mL min
-1

) and hydrogen (20 psi and 25 mL min
-1

) 

for flame ignition. The temperature of column oven is maintained at 180 
o
C. Air for the GC 

is supplied from a compressor and hence it is filtered through oil and vapour removal filter 

(F64, Norgren Martonair Ltd, Staffordshire, England) before entering the GC. The air 

pressure is regulated at 30 psi by an in-built regulator in the filter.  

A calibration curve was generated using a known volume of liquid toluene in a known 

volume of air in a Tedlar bag. Table A.1 shows the different concentrations of toluene used 

in the calibration experiment and Fig. A.1 shows the generated calibration curve. This 

calibration curve was used to correct all toluene concentrations throughout the experiments. 

Table A.1: GC calibration curve data 

Concentration 

(ppm) 

Liquid toluene (µL) Air (mL) Average peak area 

233.04 1 1000 3985.60±90.49 

116.52 1 2000 2221.84±294.91 

77.68 1 3000 1516.79±109.98 

58.26 1 4000 1040.64±126.51 

46.61 1 5000 630.89±114.68 
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Figure A.1: GC calibration curve. The equation is based on a linear fit through the origin. 

Error bars are the standard deviations. 

A.2 Humidifier 

The water consumption rate of humidifier was monitored over time in order to check and 

confirm the 100% relative humidity of air. To calculate the theoretical water consumption 

rate, modified Clausius Clayperon equation was used (Eq. A.1). 

ln �� = 53.67957 −

���.�
�

�
− 4.8451. ��	�               (A.1) 

Theoretical water consumption rate (Eq. A.2) can be calculated with gas flow rate and from 

equations A.1 and A.2. 

� =
�.��

�
=	

� 

!�
              (A.2) 

"#�$%&'()#� = �. *+. (              (A.3) 

Water consumption rate was monitored continuously for 7 days and found that water was 

missing at an average rate of 0.93 mL/day at a consumption rate of 1.8 mL/day. A possible 

explanation for this response is liquid water might have slowly diffused through the Nafion 

membrane and formed a film of water inside the tube. The built up water might have slowly 

been dragged by the air flow into the reactor. However, the excess water will drain through 
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the membrane and the volume of excess water is too small and hence its influence in the 

results will have negligible influence any way. 

A.3 Reactor leak testing 

After assembling the reactors and before the start of experiments, leak testing was conducted 

to ensure the set-up is leak free. All possible sources of leaks were sprayed with soap 

solution. Any appearances of bubble were indicated as a leak. Any detected leaks were fixed 

before the experiments were initiated.  

A.4 Online carbon dioxide analysis 

The inclusion of online carbon dioxide monitoring system helped to highlight the issue of 

other toluene degradation products. However, during initial phase of experiments (soil 

studies), the data generated by the online carbon dioxide analyzer was not reliable due to two 

important issues: 1) Inlet toluene analysis of all the 4 reactors greatly affected the carbon 

dioxide measurement, as each inlet was measured three times a day for 1 hr per cycle totaling 

3 hr in a 24 hr period and hence 12 hr for all 4 reactors. One disturbance at every 8 hours for 

an individual reactor greatly influenced the carbon dioxide measurement. After resetting the 

online GC program to measure inlet toluene once a day, the carbon dioxide measurements 

improved but not completely reliable. Hence, the inlet toluene analysis was totally removed 

from the online GC program and was measured only periodically through manual step 

change option in GC. This improvement solved the problem in the online carbon dioxide 

measurement to a great extent and hence it was used effectively during the final PCP studies 

in the biofilm reactor. 2) Variation in the temperature of the sample coming out from GC 

affected the online carbon dioxide analysis. This was because; the inlet of the online carbon 

dioxide analyzer was connected to the outlet of the GC by half meter 1/8
th
 inch Tygon tubing. 

Since this tube was not insulated and not heat traced, condensation was observed in the tube 

which caused carbon dioxide fluctuations. This issue was solved by shortening the Tygon 

tube length, insulating the tube and by placing the insulated carbon dioxide probe above the 

hot surface of GC.  This kept the gas sample at an average of 45 
o
C as it passed through the 

CO2 sensor. 
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A.5 Experimental flow diagram 
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A.6 Nomenclature 

     c  concentration of water in gas phase    g. m
-3 

      eS  saturation vapour pressure     mbar 

      Fg  gas flow rate       m
3
.h

-1 

      MW molecular weight of water     g.mol
-1

 

      n  moles of water       - 

      R  gas constant       J.K
-1

.mol
-1

 

      T  temperature       K 

       t  time        h 

       V  volume of gas       m
3
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B.1 Growth medium 

For the initial isolation of toluene degraders from soil, minimal salt media (MS medium) 

with 1.5% agar was used (Tab. B.1). The composition of the medium was based on the 

hydrocarbon degradation minimal salt medium (Shen et al., 1998). A standard serial dilution 

procedure (MacLowry et al., 1970) was followed and a 1 ml sample from 10
-5

 dilution was 

used to inoculate the agar plates using the spread plate method (Buck and Cleverdon, 1960). 

Approximately 430 ppm of toluene in the head space of the dessicator was maintained, 

where the agar plates were incubated. 

      Table B.1: Composition of MS medium adapted from Shen et al. (1998) 

       

 

 

 

 

 

 

 

       

        

 

 

 

 

      (pH adjusted to 7.0 before adding the agar) 

 

 

Chemical Concentration (g. L
-1

) 

NaNO3 4 

NaH2PO4 2.6 

K2HPO4 1.2 

FeSO4.7H2O 0.0035 

MgSO4.7H2O 0.4 

CaCl2.2H2O 0.02 

Agar 15 
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Luria Bertani (LB) agar medium (Clermont et al., 2000) (Tab. B.2) was used to subculture 

the toluene degraders grown in the MS agar plates. LB broth was used to grow the S. 

maltophilia and P. putida for preparing using in the biofilm reactor. However, later MS 

broth was also used in growing these two toluene degraders in order to compare the 

acclimation time of toluene degraders in the biofilm reactor. PBS composition used in the 

experiment is shown in Tab. B.3. 

 

Table B.2: Composition of LB medium adapted from Clermont et al. (2000) 

 

 

 

 

 

 

 

 

 

 

 

       (pH adjusted to 7.0 before adding the agar) 

 

Table B.3: Composition of 1X PBS adapted from Clermont et al. (2000) 

 

Chemical Concentration (g. L
-1

) 

Sodium chloride 8 

Potassium chloride 0.2 

Disodium hydrogen 

phosphate 

1.44 

Potassium dihydrogen 

phosphate 

0.24 

 

 

B.2 Serum bottle studies 

MS medium along with appropriate concentration of metabolic uncoupler was used in the 

serum bottle batch screening experiments. Approximately 0.5 µL of HPLC (High 

Performance Liquid Chromatography) grade liquid toluene was injected in to the serum 

bottle to generate approximately 700 ppm of toluene vapour in the head space sealed with a 

bung and a cap. 

Chemical Concentration (g. L
-1

) 

Tryptone 10 

Yeast Extract 5 

Sodium Chloride 10 
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B.3 Toluene degrader identification 

Following the primary identification, the five isolates were subjected to taxonomical 

identification through amplification and sequencing of the 18s rDNA for the fungus and 16s 

rDNA for the four bacterial isolates. The sequences were compared with the database of 

known 18s rDNA and 16s rDNA sequences through blast search for identification. The gene 

sequences of all the five identified toluene degraders are shown below.  

18s rDNA sequence of Aspergillus versicolor 

TGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCA

TTACTGAGTGCGGGCTGCCTCCGGGCGCCCAACCTCCCACCCGTGAATACCTAAC

ACTGTTGCTTCGGCGGGGAACCCCCTCGGGGGCGAGCCGCCGGGGACTACTGAA

CTTCATGCCTGAGAGTGATGCAGTCTGAGTCTGAATATAAAATCAGTCAAAACTT

TCAACAATGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAACTGCGAT

AAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGC

GCCCCCTGGCATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCATCAAG

CCCGGCTTGTGTGTTGGGTCGTCGTCCCCCCCGGGGGACGGGCCCGAAAGGCAG

CGGCGGCACCGTGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCGACTA

GGGCCGGCCGGGCGCCAGCCGACGTCTCCAACCATTTTTCTTCAGGTTGACCTCG

GATCAGGTAGGGATACCCGCTGAACTTAAGCATATCA 

16s rDNA sequence of Stenotrophomonas maltophilia 

TAACACATGCAAGTCGAACGGCAGCACAGAGGAGCTTGCTCCTTGGGTGGCGAG

TGGCGGACGGGTGAGGAATACATCGGAATCTACTCTGTCGTGGGGGATAACGTA

GGGAAACTTACGCTAATACCGCATACGACCTACGGGTGAAAGCAGGGGATCTTC

GGACCTTGCGCGATTGAATGAGCCGATGTCGGATTAGCTAGTTGGCGGGGTAAA

GGCCCACCAAGGCGACGATCCGTAGCTGGTCTGAGAGGATGATCAGCCACACTG

GAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGAC

AATGGGCGCAAGCCTGATCCAGCCATACCGCGTGGGTGAAGAAGGCCTTCGGGT

TGTAAAGCCCTTTTGTTGGGAAAGAAATCCAGCTGGCTAATACCCGGTTGGGATG

ACGGTACCCAAAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATA

CGAAGGGTGCAAGCGTTACTCGGAATTACTGGGCGTAAAGCGTGCGTAGGTGGT

CGTTTAAGTCCGTTGTGAAAGCCCTGGGCTCAACCTGGGAACTGCAGTGGATACT

GGGCGACTAGAGTGTGGTAGAGGGTAGCGGAATTCCTGGTGTAGCAGTGAAATG

CGTAGAGATCAGGAGGAACATCCATGGCGAAGGCAGCTACCTGGACCAACACTG

ACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCC

ACGCCCTAAACGATGCGAACTGGATGTTGGGTGCAATTTGGCACGCAGTATCGA

AGCTAACGCGTTAAGTTCGCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCA

AAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGC
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AACGCGAAGAACCTTACCTGGCCTTGACATGTCGAGAACTTTCCAGAGATGGAT

TGGTGCCTTCGGGAACTCGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTC

GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTGCCAG

CACGTAATGGTGGGAACTCTAAGGAGACCGCCGGTGACAAACCGGAGGAAGGT

GGGGATGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGTACTAC

AATGGTAGGGACAGAGGGCTGCAAGCCGGCGACGGTAAGCCAATCCCAGAAAC

CCTATCTCAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCT

AGTAATCGCAGATCAGCATTGCTGCGGTGAATACGTTCCCGGGCCTTGTACACAC

CGCCCGTCACACCATGGGAGTTTGTTGCACCAGAAGCAGGTAGCTTAACCTTCG

GGAGGGCGCTTGCCACGGTGTGGCCGATGACTGGGGTGAAGTCGTA 

16s rDNA sequence of Pseudomonas citronellolis 

TAACACATGCAAGTCGAGCGGATGAAGGGAGCTTGCTYCCKGATTCAGCGGCGG

ACGGGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGACAACGTTCCGAAA

GGAGCGCTAATACCGCATACGTCCTACGGGAGAAAGTGGGGGATCTTCGGACCT

CACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTAGGTGGGGTAATGGCTCA

CCTAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTG

AGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGG

CGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAA

GCACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTGACGTTA

CCAACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGG

GTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTTGGTA

AGATGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCATAACTGCCTG

ACTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAG

ATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACT

GAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCC

GTAAACGATGTCGACTAGCCGTTGGGATCCTTGAGATCTTAGTGGCGCAGCTAAC

GCGATAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT

TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGA

AGAACCTTACCTGGCCTTGACATGTCCGGAATCCTGCAGAGATGCGGGAGTGCC

TTCGGGAATCGGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGAT

GTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTTA

TGGTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATG

ACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGTGCTACAATGGTC

GGTACAGAGGGTTGCCAAGCCGCGAGGTGGAGCTAATCCCAGAAAACCGATCGT

AGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATC

GTGAATCAGAATGTCACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTC

ACACCATGGGAGTGGGTTGCTCCAGAAGTAGCTAGTCTAACCGCAAGGGGGACG

GTTACCACGGAGTGATTCATGACTGGGGTGAAGTCGTA 

 



Appendix B 

166 

 

16s rDNA sequence of Ochrobactrum tritici 

TAACACATGCAAGTCGAGCGCCCCGCAAGGGGAGCGGCAGACGGGTGAGTAAC

GCGTGGGAACGTACCTTTTGCTACGGAATAACTCAGGGAAACTTGTGCTAATACC

GTATGTGCCCGAAAGGGGAAAGATTTATCGGCAAAGGATCGGCCCGCGTTGGAT

TAGCTAGTTGGTGAGGTAAAGGCTCACCAAGGCGACGATCCATAGCTGGTCTGA

GAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGC

AGCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTG

AGTGATGAAGGCCCTAGGGTTGTAAAGCTCTTTCACCGGTGAAGATAATGACGG

TAACCGGAGAAGAAGCCCCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAA

GGGGGCTAGCGTTGTTCGGATTTACTGGGCGTAAAGCGCACGTAGGCGGACTTTT

AAGTCAGGGGTGAAATCCCGGGGCTCAACCCCGGAACTGCCTTTGATACTGGAA

GTCTTGAGTATGGTAGAGGTGAGTGGAATTCCGAGTGTAGAGGTGAAATTCGTA

GATATTCGGAGGAACACCAGTGGCGAAGGCGGCTCACTGGACCATTACTGACGC

TGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC

CGTAAACGATGAATGTTAGCCGTTGGGGAGTTTACTCTTCGGTGGCGCAGCTAAC

GCATTAAACATTCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAAT

TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGC

AGAACCTTACCAGCCCTTGACATACCGGTCGCGGACACAGAGATGTGTCTTTCA

GTTTGGCTGGACCGGATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAG

ATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCCTTAGTTGCCAGCATTT

AGTTGGGCACTCTAAGGGGACTGCCGGTGATAAGCCGAGAGGAAGGTGGGGAT

GACGTCAAGTCCTCATGGCCCTTACGGGCTGGGCTACACACGTGCTACAATGGT

GGTGACAGTGGGCAGCGAGCACGCGAGTGTGAGCTAATCTCCAAAAGCCATCTC

AGTTCGGATTGCACTCTGCAACTCGAGTGCATGAAGTTGGAATCGCTAGTAATCG

CGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTC

ACACCATGGGAGTTGGTTTTACCCGAAGGCGCTGTGCTAACCGCAAGGAGGCAG

GCGACCACGGTAGGGTCAGCGACTGGGGTGAAGTCGTAACA 

16s rDNA sequence of Pseudomonas putida 

TAACACATGCAAGTCGAGCGGATGAAGTAAGCTTGCTTAYGGATTCAGCGGCGG

ACGGGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGATAACGTTTCGAAA

GGAGCGCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGGACCTTCGGGCCT

TGCGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGAGGTAATGGCTCAC

CAAGGCTACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGA

GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGC

GAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAG

CACTTTAAGTTGGGAGGAAGGGCAGTAAGCTAATATCTTGCTGTTTTGACGTTAC

CGACAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGG

TGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTTGTTAA

GTTGGATGTGAAAGCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTGGCAAG
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CTAGAGTATGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGA

TATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTG

AGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCG

TAAACGATGTCAACTAGCCGTTGGGAGCCTTGAGCTCTTAGTGGCGCAGCTAAC

GCATTAAGTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT

TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGA

AGAACCTTACCAGGCCTTGACATGCAGAGAACTTTCCAGAGATGGATTGGTGCC

TTCGGGAACTCTGACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGAT

GTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTTA

TGGTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATG

ACGTCAAGTCATCATGGCCCTTACGGCCTGGGCTACACACGTGCTACAATGGTCG

GTACAGAGGGTTGCCAAGCCGCGAGGTGGAGCTAATCCCACAAAACCGATCGTA

GTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCG

CGAATCAGAATGTCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTC

ACACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTCTAACCTTCGGGAGGACG

GTTACCACGGTGTGATTCATGACTGGGGTGAAGTCGTA 
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Appendix C 

C.1 Pentacholorophenol (PCP) & 2, 4, 6 trichlorophenol (TCP) analysis 

Following soil studies, the tested liquid samples (PCP and TCP) were sent for analysis at Hill 

Laboratories, New Zealand. The results showed that only 18.4% of PCP did not end up in the 

removed liquid whereas 68.4% of the TCP was missing from the liquid. Similar analysis was 

performed only for PCP following the biofilm studies (S. maltophilia). The results showed 

that only 7% PCP was missing from the liquid sample. Table C.1 shows the results of these 

analyses in detail. 

Table C.1: Results of PCP & TCP analysis in the liquid sample (Source: The Hill 

Laboratories, NZ) 

Metabolic 

Uncoupler 

Biofilter bed Quantity 

tested in 

differential 

biofiltration 

reactor (g) 

Quantity reported 

from the liquid 

sample by “The 

Hill Laboratories, 

NZ” (g) 

% change 

PCP Soil 0.038 0.031 18.4% 

TCP Soil 0.79 0.25 68.4% 

PCP Biofilm 

(S. maltophilia) 

0.038 0.0353 7.1% 
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Appendix D 

D.1 Soil characteristics 

Soil Analysis Value 

Total Organic Carbon        g/100g dry wt              8.43 ± 1.01* 

Total Inorganic Carbon      g/100g dry wt                              1.52(one measurement) 

Organic matter                           % 18.1 

Total Nitrogen                            % 0.91 

C/N Ratio                                      11.5 

Moisture content (dry basis)      %                                   30 

Ammonium –N                        mg/kg 6 

Nitrate –N                                mg/kg 416 

Mineral N (sum)                      mg/kg 421 
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Appendix E 

E.1 SEM protocol  

The samples were immersed in liquid nitrogen and freeze dried. The freeze dried samples 

were then mounted on a stub with double sticky tape, sputter coated with carbon paint in a 

sputter coater (SCD 050, Balzers, Liechtenstein) and examined under a scanning electron 

microscope (Wetzlar, Germany).  

E.2 Confocal protocol 

The samples were stained with acridine orange (0.01% in 0.1 M phosphate buffer, pH 7). 

Stained sample was placed on a curved glass slide and examined with a Leica model TCS SP5 

confocal microscope (Wetzlar, Germany) equipped with an Ar/Kr laser. Samples were exited 

by an Argon laser beam at 488 nm and emitted light was selected by filters detecting cell wall 

at 530-565 nm. Digital images were processed and analyzed with Leica application suite. 


