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Abstract 

This thesis describes the photochemical reactions of tetranitromethane 

with aromatic compounds. These reactions are known to occur by initial 

formation of a triad consisting of an aromatic radical cation, trinitromethanide 

ion and nitrogen dioxide and the subsequent reactions which occur involve the 

recombination of these species of the triad. 

This thesis is in three major parts. In the first (Chapter 2) the photo­

chemical reactions of tetranitromethane with 1 ,4,6,7-tetramethylnaphthalene 

(56), 2,6-dimethylnaphthalene (57) and 1 ,3-dimethylnaphthalene (58) are 

described. In all cases the initial recombination step involves the aromatic 

radical cation and trinitromethanide ion and the reactions of these three 

naphthalene derivatives further documents the importance of the energy of the 

delocalized carbon radical formed in the first recombination step. A number 

of hydroxy/trinitromethyl adducts (84), (98), (1 02)-(1 04), (114), (115) and 

nitro/trinitromethyl adducts (75), (94)-(97), (99)-(1 01 ), (11 0)-(113), (122) were 

isolated as part of this study. 

In the second part of this thesis (Chapter 3) the analogous reactions of 

1 ,2,3-trimethylbenzene (137), 1 ,2,4,5-tetramethylbenzene (134), pentamethyl­

benzene (135) and hexamethylbenzene (136) are described. In the 

photolysis of 1 ,2,3-trimethylbenzene ( 137) with tetranitromethane a variety of 

nitronic esters (159)-(162) are formed in addition to "double" adducts (139), 

{157), (158) which arise by subsequent addition of nitrogen dioxide to initially 

formed hydroxy/trinitromethyl adducts {176), (177) and nitro/trinitromethyl 

adducts (152), (175), and the more usual"single" nitro/trinitromethyl adducts 

(151)-(156). In the reactions of 1 ,2,4,5-tetramethylbenzene (134), penta­

methylbenzene (135) and hexamethylbenzene (136) evidence was obtained 

which pointed to increasing instability of initially formed adducts. In particular 

for pentamethylbenzene (135), nitro/trinitromethyl adducts (244), (245} were 
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formed at -20, -50 and -78° in dichloromethane but rearranged rapidly in 

solution. For hexamethylbenzene (136) direct evidence of the formation of 

nitro/trinitromethyl adducts could not be obtained because of the insolubility of 

the substrate, hexamethylbenzene (136), in the photolysis solvents. However 

rearrangement products (279)-(282), (287), {288), analogous to those from 

pentamethylbenzene ( 135), were obtained from the photolysis of 

hexamethylbenzene (136) with tetranitromethane. 

The final part of this thesis (Chapter 4) describes the photolysis of 2,3-

dimethylanisole (307) with tetranitromethane. The purpose of this section of 

the work was to explore the effect of replacing one of the flanking methyl 

groups in 1 ,2,3-trimethylbenzene (137) with a methoxy group. In the event 

"singlen hydroxy/trinitromethyl adducts (316), (317) and nitro/trinitromethyl 

adducts (314), (315) were formed but nitronic esters and "double" adducts, 

characteristic of the reactions of 1 ,2,3-trimethylbenzene (137), were notably 

absent from among the products. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Aromatic Nitration via the Nitronium lon 

In 1903 Euler1 first proposed that the nitronium ion, N02+, might be 

the actual nitrating agent under certain conditions of nitration. Substantial 

work by Ingold and co-workers2-7 over a considerable number of years 

confirmed that "The active product for nitration is the nitronium ion, N02+ ".5 

They studied the kinetics of nitration reactions involving various aromatics 

with nitric acid using solvents such as sulphuric acid, nitric acid, nitro­

methane, acetic acid and water. 

The mechanism that Hughes eta/. 5 proposed is illustrated in Scheme 

1.1. It involved acid catalysed conversion of nitric acid into the nitric acidium 

ion, H2N03+ (1 ), followed by dissociation to form the nitronium ion, N02+ (2). 

The nitronium ion then underwent direct electrophilic attack by the aromatic 

substrate (3), followed by the loss of a proton into the solvent (4). 

fast 
(1) 

slow 
+ (2) 

N02+ 
slow + /H 

(3) ArH + Ar'-...... 
N02 

+ /H fast 
H+ (4) Ar'-...... ArN02 + 

N02 

Scheme 1.1 
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The rate determining step in Scheme 1.1 can be either reaction (2) or 

reaction (3), depending on the concentration and reactivity of the aromatic 

substrate. Evidence for reaction via the nitronium ion came partly from a 

zeroth-order kinetic form for nitration in organic solvents5 and partly from 

cryoscopic6 and spectroscopic? studies on equilibria involving the nitronium 

ion in strongly acidic media. 

1.2 Electron Transfer in Aromatic Nitration 

In 1945 KennerS proposed an electron transfer mechanism for the 

nitration of benzene. He suggested that the initial interaction of the 

nitronium ion with benzene could lead to electron transfer resulting in the 

formation of a benzene radical cation and nitrogen dioxide (•N02) (1}, as 

seen in Scheme 1.2. Subsequently, loss of a proton from the intermediate 

benzene radical cation would help "restore the aromatic condition" (2). In 

the mechanism shown in Scheme 1.2, Kenner used brackets to indicate that 

the reactants remained "within the sphere of each other's action". 

0 Q HS04 - 0 9 .. 
• 

N02+ H 

·No2 

·No2 N02 

+ H2S04 

(1} (2) 

Scheme 1.2 

2 



Ingold and co-workers9 commented on Kenner's proposal stating that 

although dimerization products due to radical~radical coupling were not seen, 

this did not automatically imply that the reactants had to be held "within a 

sphere of each other's action~~. They also commented that the •No2 should 

be within the "sphere of actionn of the bisulphate ion and hence react with it 

as was the case with introduced •No2. 

In a series of electrophilic aromatic nitration reactions involving stable 

nitronium salts, Olahio observed a low substrate (intermolecular) selectivity, 

but at the same time high positional (intramolecular) selectivity. He 

suggested that the highest energy transition state was an-complex (1), 

formed by overlap of the highest lying occupied aromatic 1t orbital containing 

an electron pair with the empty orbital of the electrophile. It was this 1t· 

complex which determined the observed intermolecular selectivity. The 

intramolecular selectivity was due to subsequent formation of the Wheland 

intermediate (2), as the two-electron, three~centre bond of then-complex was 

opened (See Scheme 1.3). 

"outer complex" 

Scheme 1.3 

1t complex (1) 

1l 

N02 

H 
Wheland 

Intermediate (2) 
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In 1977 Perrin11 proposed an alternative mechanism to Olah, 

suggesting that encounter~limited electron transfer from the aromatic 

compound to the nitronium ion occurred to form a radical cation and •No2 

(1 ). This was followed by radical-pair collapse to the Wheland intermediate 

(2), as represented in Scheme 1.4. 

ArH + 
encounter controlled 

electron transfer 
ArH·+ + 

(1) 

ArN0
2 

..,..._ ______ _ 

Scheme 1.4 

Wheland 
Intermediate (2) 

Perrin provided evidence for his mechanism with an electrochemical 

experiment using a controlled anode potential to oxidise a mixture of 

naphthalene (1) and •No2. He assumed that only the naphthalene would 

react to form the naphthalene radical cation (naph•+), since the applied 

potential was incapable of oxidising •No2. The radicals would then react to 

form the Wheland intermediate and products. He obtained a product 

mixture containing 1 ~nitronaphthalene (2) and 2-nitronaphthalene (3) in a 

ratio of 9.2±1, which was within experimental error of the ratio of 1 0.9±1 that 

he had observed in the nitration of naphthalene with HN03JH 2S04 , in 

CHsCN with urea added (See summary in Scheme 1.5). 

4 



00 ro N02 

N02 

(1) (2) (3) 

•+;. (a) naph N02 generated 
9.2 1 

electrochemically 

(b) N02 + via HNOiH2S04 
10.9 1 

in CH3CN/urea 

Scheme 1.5 

Perrin interpreted the intramolecular selectivity and positional 

reactivity in terms of the spin density of the radical cation and Wheland 

intermediate stability because the attacking species was •No2 and not N02+. 

Eberson et aJ.12 found major problems with the design and 

interpretation of Perrin's 11 electrochemical experiment. Repeating Perrin's 11 

experiment Eberson eta!. 12 found that direct nitration of naphthalene by 

•No2 accounted for 50-60% of the nitronaphthalenes formed. They also 

found that the reaction was acid catalysed and that acid was formed at the 

anode during the reaction, either from trace amounts of water, or due to the 

formation of dimers and higher oligomers, or via proton loss from the 

Wheland intermediate upon product formation. The nitronium ion may also 

have formed from •No2 at the high potentials used in the experiment. 

Consequently, Eberson and Radner13 generated the naphthalene 

radical cation as its hexafluorophosphate salt and reacted this with •No2. 

They obtained a ratio of 1-nitronaphthalene (2) to 2-nitronaphthalene (3) of 
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""40, clearly different from the ratio of 9.2 which Perrin obtained. Therefore, 

Eberson and Radner14 concluded that the naph•+rN02 reaction could not be 

the elementary step in the sequence of reactions shown in Scheme 1.4. 

Eberson and Radner14 compared the isomer distribution from their 

electrochemical experiment with two other nitration procedures - nitration of 

naphthalene by •No2 in dichloromethane and nitration of naphthalene by 

N02+, using HN03/acetic anhydride, as seen in Table 1.1. 

Table 1.1 Ratio of 1-nitronaphthalene (2) to 2-nitronaphthalene (3) formed 

via various nitration mechanisms. 

Reaction 

·+ • 
Naph + N02 

• 
Naph + N02 

+ Naph + N02 

Ratio 
(1-N02 naph : 2-N02 naph) 

40 

25 

11 

Later, Johnston et aJ.15 studied the nitration reaction of naphthalene 

using 15N CIDNP (Chemically Induced Dynamic Nuclear Polarisation) 

techniques. For reactions involving electron transfer this technique gives 

enhanced absorption of the normal n.m.r. signal.16 Johnston et af.15 found 

only a slight enhancement in the nitration of naphthalene and hence 

suggested that only a small percentage of the naphthalene reacts via the 

electron transfer pathway described by Perrin11 (Scheme 1.4). 

6 



1.3 Charge-Transfer Complexes 

In 1949 Benesi and Hildebrand 17 discovered that iodine dissolved in 

various aromatic hydrocarbons absorbed intensely in the region 280-400 nm, 

as seen in Fig. 1.1. They assumed that the intense absorption peaks were 

I =CCI. 

8000 2 •C.H.CF1 

3 • C. H. 
4 • C.H,(CH,), 
5 •(C.J-l.},O 

.;J 5000 ....... 
t:: !:l C1) 

C1) .... ..... 
1200 ~ u 

~ 2000 5 
C1) 
0 

u 1000 ~ = 0 0 
800 

.... ...... 800 ....... ...., 
(,) u = = ..... 

600 '.:l ...., 
M 

~ 500 r:x:1 

400 

200 200 

0 

280 350 450 550 
Wave length, m,u. 

Fig. 1.1 Absorption of iodine in various solvents. 

characteristic of an iodine-aromatic hydrocarbon complex, as neither the 

iodine nor the aromatic hydrocarbon absorbed in this region. Mulliken18 

suggested that 11th is absorption ... may be due to an intermolecular charge­

transfer process during light absorption~~. 

Molecules capable of giving up an electron are electron rich and are 

called electron donors (D). Molecules which can accept an electron are 

electrophilic and are called electron acceptors (A). Electron donor ability is 
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related to ionisation potentials, whereas electron acceptor ability is related to 

electron affinity and reduction potentials.19 Mulliken20 called the electron 

donor-electron acceptor interactions "donor-acceptor complexes". The 

donor and acceptor exist together as a weakly bound complex, as illustrated 

in Scheme 1.6.19 

D + A [D,A] 

Donor-Acceptor Complex 

Scheme 1.6 

The donor-acceptor complex absorbs light energy corresponding to 

the absorption band, which causes the transfer of an electron from the donor 

to the acceptor, to form a radical ion pair called a charge-transfer (CT) 

complex (See Scheme 1.7). 

[D,A] 

Charge-Transfer Complex 

Scheme 1.7 

1.4 Tetracyanoethylene Charge-Transfer Complexes 

Masnovi et aJ.21 ,22 studied a series of anthracene (An) donors with 

tetracyanoethylene (TCNE) as the acceptor. They found that the charge­

transfer absorption bands were exceptionally well resolved from those of the 

components, as seen in Fig. 1.2. Note that TCNE only absorbs at 

wavelengths s375 nm. 

8 
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I I : I \ 
1: l I \ 
a: i I' \ 

' I• : \ 1: l I \ 
• t• : ................ -...._, \ 
\1' : I ,"' '-.. 

' I ~ • _, ' 

\• \ ·' , ... -····· ·-·· ··- ' 
.,, • /.. """' .. ""' 4 •••••••• ·~. ••• ... ... ' 

~.,- ... ··· ......... ', 
. '.. ...... --------- .. 

600 
WAVELENGTH (nm) 

Fig. 1.2 Electronic absorption spectra of (a) various substituted anthracenes 

and (b) substituted anthracenes with TCNE in dichloromethane. 

Transient picosecond absorption techniques23 were used to study the 

electron donor-acceptor (EDA) complex of the anthracene with TCNE. 

Irradiating the EDA complex at a wavelength >500 nm effectively ensured 

that neither the uncomplexed donor nor the uncomplexed acceptor was 

excited.21 ,22 Fig. 1.3(a) shows the difference absorption spectra after 

excitation of a solution of 9-cyanoanthracene (CNA) I TCNE EDA complex. 

Spectra from the electrochemical oxidation of CNA and the electrochemical 

reduction of TCNE are shown in Fig. 1.3(b) and (c) respectively. It was 

concluded22 that Fig. 1.3(a) was a combination of Fig. 1.3(b) and (c), hence 

the EDA complex consisted of CNA radical cations and TCNE radical anions. 

9 
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Fig. 1.3 (a) Picosecond absorption spectrum for the CNA/TCNE EDA 

complex after excitation, (b) and (c) Electronic absorption spectra 

of the CNA radical cation and the TCNE radical anion, respectively, 

generated electrochemically. 

Similar results were observed for other anthracene donors thus 

verifying the formation of a charge-transfer complex consisting of a radical 

ion pair as summarised in Scheme 1.8. 

An + TCNE [An,TCNE] 

Donor- Acceptor Complex 

[An,TCNE] 
hvcr ·+ ·-[An ,TCNE ] 

Charge-Transfer Complex 

Scheme 1.8 
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The charge-transfer complex was found22 to undergo rapid back 

electron transfer to regenerate the original EDA complex without the 

formation of stable photoproducts, as illustrated in Scheme 1.9. 

•+ ·-[An ,TCNE ] 
-60 ps 

[An,TCNEJ 

Scheme 1.9 

Tetranitromethane (TNM) was therefore chosen by Masnovi et aJ.24 as 

a different acceptor because it was known25 to be chemically photoactive 

and form EDA complexes. 

1.5 Electron Donor-Acceptor Complexes with TNM 

Masnovi et af.24 studied a series of 9-substituted anthracenes with 

TNM in the presence of dichloromethane. Immediately upon mixing a 

colourless solution of TNM with the substituted anthracene in dichloro-

methane, a brown colour resulted due to the EDA complex, as represented in 

Scheme 1.1 0. The charge-transfer absorption spectra were 

An + C(N02)4 

Scheme 1.10 

[An,C(N02)4] 

EDA Complex 

characteristically featureless, with a broad tail extending to ""700 nm, as 

shown in Fig. 1.4. 
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Fig. 1.4 (a) Charge-transfer absorption spectra of the EDA complexes of 

various 9-substituted anthracenes with TNM in dichloromethane, 

(b) The absorption spectra of the pure anthracene derivative and 

pure TNM alone in dichloromethane. 

Irradiation at wavelengths >500 nm would selectively excite only the 

EDA complex and neither the uncomplexed anthracene donor nor the TNM 

acceptor. Masnovi et af.24 irradiated the EDA complex at 532 nm and using 

transient picosecond absorption techniques obtained various difference 

absorption spectra, as observed in Fig. 1.5(a). The absorption bands in Fig. 

1.5(a) were assigned to the anthracene radical cations, after comparison with 

spectra of the radical cations independently generated using electrochemical 

anodic oxidation [See Fig. 1.5{b)]. 
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Fig. 1.5 Picosecond absorption spectra of various anthracene/TNM EDA 

complexes {a) after excitation, compared with (b) the absorption 

spectra of the corresponding radical cation generated by anodic 

oxidation. 

Masnovi et af.24 found that the radical cations of the anthracene 

derivatives had substantially longer lifetimes when generated from TNM 

complexes compared with those generated from TCNE complexes. They 

also found high yields of photoproducts. This indicated to them that the 

TNM acceptor radical anion is short lived. 

Using pulse radiolysis, Rabani et af.26 showed that electron capture 

by TNM leads to the formation of the trinitromethanide anion, (02N)sC-, and 

nitrogen dioxide radical, •No2, as outlined in Scheme 1.11. In order to 
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C(N0 2)4 + e + 

Scheme 1.11 

observe the (02N)sC- absorption, Amax 350 nm,27 a donor was needed 

which did not obscure the spectral region below 450 nm, as was the case 

with the anthracene donors. Hence hexamethylbenzene and hexaethyl­

benzene, which absorb at wavelengths lower than 300 nm, were chosen as 

donors.28 

Absorption spectra produced by time resolved picosecond 

spectroscopy were characterized by two absorption bands [Fig. 1.6(a)]. 

When compared with the absorption spectra generated by electrochemical 

oxidation of hexamethylbenzene, the absorption band centred near 500 nm 

was assigned to the hexamethylbenzene radical cation [Fig.1.6(b)]. The 

second absorption band at- 350 nm was assigned to (02N)sC·, after 

comparison with the absorption spectra generated by electrochemical 

reduction of TNM, also seen in Fig. 1.6(b). 
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Fig. 1.6 (a) Difference absorption spectra obtained after irradiation of 

hexamethylbenzene and TNM in dichloromethane, 

(b) Absorption spectra of hexamethylbenzene radical cation and 

trinitromethanide anion generated electrochemically. 

Masnovi et af.2B concluded that the tetranitromethane radical anion, 

formed by irradiation of the EDA complex, is short lived and rapidly 

dissociates upon electron capture to (02N)sC~ and •No2, as depicted in 

Scheme 1.12. 

C(N0~4 + e 

Scheme 1.12 

The presence of •No2 could not be confirmed directly in any of the 

transient absorption spectra due to its weak, broad absorption {250 nm to 
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greater than 800 nm29) being obscured by the more intense absorptions of 

the radical cation donor and (02N)sC~. The presence of •No2 was 

assumed, however, since stable photoadducts were isolated and identified 

(See Section 1.6). 

Using the rates of back-electron transfer and chemical evolution of 

(02N} 3c-, Masnovi et af.2B reasoned an upper limit of"" 3 ps for the half~life 

of the tetranitromethane radical anion in the charge-transfer complex, 

assuming that the fragmentation, depicted in Scheme 1.12, was responsible 

for the general photoreactivity of the EDA complexes of TNM (See summary 

in Scheme 1.13). 

[An,C(N02)4] 
hvcr •+ ·-[An ,(02N)4C ] 

Electron Donor-Acceptor Complex Charge-Transfer Complex 

<3 ps 
•+ -. [An ,(0 2NhC , N02] 

Solvent Caged Species 

Scheme 1.13 

The solvent caged species was consequently termed a triad. so Triad 

formation irreversibly destroys the charge-transfer complex and hence 

prevents any back electron transfer to reform the EDA complex, as was seen 

with TCNE. Furthermore, the species in the triad combine to produce 

photoproducts. 
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1.6 Photoproducts Formed in the Photolysis of Anthracene 

Derivatives with TN M 

In sharp contrast to the photolysis of TCNE with various anthracene 

derivatives, where no products were formed, Masnovi et aJ.24 found that 

products formed in the photolysis of various anthracene derivatives with 

TNM. They isolated two major products (4) and (5) and characterised them 

using X-ray crystallography. The products were derived by addition of 

(02N)3C- and •No2 to the 9,1 a-positions of the 9-substituted anthracene 

radical cation. 

(4) X=Ph 
(5) X=Br 

The two structures indicated that the attachment of (02N)3C- was 

regiospecific with the (02 N) sC· group adding at the unsubstituted 1 0-position 

of the 9-substituted anthracene. Also of interest was the overall anti-addition 

of the (02N)sC- and •No2 fragments of the triad. 

1.7 Mechanism for the Formation of Photoproducts (4) 

and {5) 

In the picosecond absorption spectra of the EDA complex of various 

9-substituted anthracenes with TNM, Masnovi et af.24 observed that an 
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absorption band formed near 550 nm as the radical cations decayed. This 

was particularly clear for 9-nitroanthracene, as observed in Fig. 1.7. 
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Fig. 1.7 Time resolved picosecond absorption spectra following excitation of 

the EDA complex of 9-nitroanthracene with TNM. 

Masnovi et af.24 proposed that the absorption band was due to the 9-

substituted-1 0-trinitromethyl-1 0-hydranthryl radical (6), after comparison with 

the previously reported31 9-cyano-1 0-hydranthryl radical, generated by pulse 

radiolysis of 9-cyanoanthracene in ethanol. Masnovi et aJ.24 proposed that 

the 9-substituted-1 0-trinitromethyl-1 0-hydranthryl radical (6) arose by attack 

of (02N)3C- on the 9-substituted anthracene derivatives radical cation, as 

seen in Scheme 1 .14. 
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X X 

(6) 

Scheme 1.14 

Addition of (02 N) sC- at the 1 0-position to produce (6), irrespective of 

the electron donating/withdrawing group, was consistent with formation of the 

most stable radical (6).32 

The final step to form photoproducts (4) and (5) was the coupling of 

the radical (6) with •No2, as outlined in Scheme 1.15. 

X 

(6) 

Scheme 1.15 

(4) X=Ph 
(5) X=Br 

Single crystal X-ray studies24 showed that the trinitromethyl group 

occupied a pseudo-axial position and that the •No2 was added 

stereoselectively, from the sterically less hindered face opposite the bulky 
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trinitromethyl group, resulting in an overall anti-addition of the TNM 

fragments. 

1.8 Competitive Reactions of Trinitromethanide lon and 

Nitrogen Dioxide with Aromatic Radical Cations 

As discussed previously in Section 1.5, Masnovi eta/. 28 showed that a 

charge-transfer (CT) complex was formed upon irradiation of the EDA 

complex between an aromatic compound (ArH) and TNM. Within 3 ps this 

led to a triad consisting of ArH•+, (02N)3C- and •No2, as summarised in 

Scheme 1.16. 

[An,C(N02)4] 

EDAComplex 

[An •+ ,(02N)4C .... ] 

CT Complex 

Scheme 1.16 

<3 ps 
[An ·+,(02N)sC-,.N02] 

Triad 

The formation of adducts raised the question as to which of the 

components in the triad would react with ArH•+ in the first chemical step of 

the reaction. Would the reaction occur (a) with (02N)sC- attack on ArH•+ or 

(b) with •No2 attack on ArH•+, as depicted in Scheme 1.17? 

ArH•+ + 

ArH•+ + 

Scheme 1.17 

• Ar(H)C(N0 2) 3 

+ Ar(H)N02 

(a) 

(b) 
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Eberson et af.33 attempted to solve this problem by removing one 

reactant of the triad as soon as it formed and observing the chemical 

changes. By adding trifluoroacetic acid (TFA), it would be possible to 

protonate (02 N)sC- forming the less nucleophilic nitroform, as illustrated in 

Scheme 1.18. 

hvcr ArH·+ + + 

Scheme 1.18 

By monitoring the reaction using EPA spectroscopy they found that 

without TFA present it was not possible to detect the ArH•+. However, with 

TFA present a rapid build up of the ArH•+ signal usually occurred. 

The results of the study are shown in Table 1.2, which contains the 

aromatic substrates listed approximately in order of decreasing 

Eo (ArH•+fArH). The substrates range from very reactive radical cations, like 

naphthalene and 1-methylnaphthalene, to radical cations which have high 

stability like tris(4-bromophenyl)amine. 

Without TFA present, only the least reactive radical cations [9, 1 0-di­

phenylanthracene, perylene and tris(4-bromophenyl)amine] gave a radical 

cation EPA signal visible above the noise level. However with TFA present, 

radical cation EPA signals were observed for all but the most reactive 

substrates (naphthalene and 1-methylnaphthalene). Similar results were 

obtained in acetonitrile using methanesulphonic acid, but only for the less 

reactive radical cations. 

Eberson et af.33 suggested that when TFA is present (02N)3C- is 

protonated rapidly and the radical cation is observed because it is much less 

reactive toward •No2. They therefore interpreted the results as showing that 

the radical cation (ArH•+) is much more reactive towards (02N)sC- than 
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Table 1.2 EPR spectral intensities after irradiation of ArH/TNM solutions in 

dichloromethane with and without TFA present. a 

ArH 

Naphthalene 
1-Methylnaphthalene 
1 ,4-Dimethylnaphthalene 
1,2-Dimethylnaphthalene 
1,8-Dimethylnaphthalene 
1 ,4,6,7-Tetramethylnaphthalene 
1 ,4,5,8-Tetramethylnaphthalene 
1 ,3,5,8-Tetramethylnaphthalene 
1 ,4-Dimethoxybenzene 
9-Phenylanthracene 
9,1 0-Diphenylanthracene 
Perylene 
Tris{4-bromophenyl}amine 
9,1 0-Dimethylanthracene 

EPR spectral intensityb 

With With C(N0~4 Ratio 
C(N02)4 and TFAc 

<2 <2d (<2) 1 
<2 <2 (<2) 1 
<2 10(<1.5) >5 
<2.5 54 (<2) >22 
<2 16 (4) >8 
<0.7 52 (4) >74 
<1.8 100 (5) >55 
<2 44 (2.6) >22 
<2 540 (<2) >270 
<1.8 100 {8) >56 
2.6 300 (6.5) 115 
8 230 {25) 106 
19 181 (3.2) 9.5 

<1 600 (4.6) >600 

a Irradiation time 6 min (during which1 00 spectra were accumulated), 

A->435 nm, [ArH] = 20-40 mmol L -1, [C(N0~4] = 0.8 molL ·1, 

[TFA] = 0.4 molL ·1, T = -60°. b <indicates intensity corresponding 

to noise level. c The number within the parentheses refers to a 

identical check experiment with only TFA (0.4 mol L"1) added. d At 

[TFA] = 1 molL -1, the naphthalene radical cation concentration was 

above noise level (intensity~ 3.5). 
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•No2. This indicated that the first chemical step which occurs, leading to the 

formation of adducts, is the reaction between ArH•+ and (02 N)3C~ to give a 

carbon radical, which then reacts with •No2 to give adducts, as summarized 

in Scheme 1.19. 

• 
Ar(H)C(N0~3 

ad ducts 

Scheme 1.19 

1.9 Photochemical Nitration of Naphthalene by TNM 

Sankararaman and Kochi34 studied the photochemical reaction 

between naphthalene and TNM in acetonitrile. Using g.l.c. detection, they 

found that only two products were formed, 1 ~nitronaphthalene (2) and 2~nitro­

naphthalene (3), in a ratio of 1-/2~nitronaphthalene of 7.4. The thermal 

(2) (3) 

reaction between naphthalene and N-nitropyridinium tetrafluoroborate, i.e. 

N02+, in acetonitrile gave a ratio of 1~/2~nitronaphthalene of 9.8 and hence 

they concluded that both the electrophilic (thermal) reaction with N02+ and 

the charge-transfer (photochemical) reaction between ArH•+ and •No2 were 

indistinguishable. 
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Earlier work by Eberson and Radner, 13 however, showed that reaction 

between ArH•+ and •No2 gave an isomer ratio of z 40 and hence this led 

Eberson and Radner35 to study further the reaction between naphthalene 

and TNM in order to try and identify any possible discrepancies. They 

detected adducts in the photochemical reaction between naphthalene and 

TNM, using dichloromethane as solvent, and later36 one adduct was isolated 

and a single crystal X-ray analysis revealed the structure of one of the major 

adducts as cis-1-nitroA-trinitromethyl-1 ,4-dihydronaphthalene (7). 

(7) 

Eberson et af.37 then undertook an intensive product study using both 

dichioromethane and acetonitrile as solvents to assess if the solvent had any 

effect on the products formed in the reaction, which Sankararaman et af.30 

previously postulated during photochemical reactions between various 

substituted anisoles and TNM. Masnovi and Kochi32 earlier found that the 

products formed in the photochemical reactions between anthracene 

derivatives and TNM were thermally unstable and so Eberson eta/. 37 

performed the reactions between naphthalene and TNM at both +20 and 

-20°. 

In the event, adduct formation was found to be predominant in the 

photolysis of the naphthalene/TNM charge-transfer complex. Adducts (8), 

(9) and (10) were identified by their n.m.r. spectral properties. A number of 

other adducts were detected in the n.m.r. spectra of the crude reaction 

mixture but not isolated or identified. An overview of the product yields from 
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(8) (9) (10} 

the photochemical reactions between naphthalene and TNM for both 

solvents and at different temperatures are given in Table 1.3. 

Table 1.3 Overview of product yields from the photolysis of naphthalene 

(1.0 molL ~1) and TNM (2.0 mol L~1 ). 

Yield(%) 

Solvent Temp t Conversion Total Nitronaphthalene 
(0) (h) (%) (7) (8) (9) (10) Adducts (2) (3) 

CH2CI2 -20 24 "'90 26.8 16.8 17.7 12.7 86.5 13.5 :S:0.58 

20 24 100 24.0 20.4 17.1 :S:2a 95.6 4.4 :S:0.58 

CH3CN -20 28.5 82 27.3 16.7 16.7 11.5 88.8 10.3 0.9 

20 28.2 100 21.1 22.7 19.8 :S:2a 87.4 10.6 2.0 

a Limit of detection 

The results showed that there was no significant difference in the 

observed adduct yields at either temperature or between the two different 

solvents. The dichloromethane results at ~20° gave a ratio of 1 ~/2~nitro~ 

naphthalene of at least 227. This was consistent with the formation of nitro~ 

naphthalene substantially by coupling of the naphthalene radical cation and 

•No2 as previously determined by Eberson and Radner.13 

Eberson et af.37 found that pure adduct (7) placed in acetonitrile 

underwent a spontaneous decomposition into 1-nitronaphthalene (2), with a 

haiHife of ~ 43 h. They also found that by injecting pure adduct (7) into a 
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g.l.c. at 100° they obtained 1-nitronaphthalene (2), as represented in Scheme 

1.20. 

g.l.c. 

at 100° 

(7) 

Scheme 1.20 

N02 

(2)- 100% 

It was therefore clear that the conclusions Sankararaman and Kochi34 

made with respect to the photochemical reaction between naphthalene and 

TNM were invalid, since their analysis of the thermally unstable products was 

based upon inappropriate g.l.c. detection. 

1.1 0 Mechanistic Description of the Formation of the 

Principal Ad ducts {7)-(1 0) from Photolysis of 

Naphthalene with TNM. 

Adducts (7)-(9) were envisaged as being formed by attack of (02N)sC­

at C1 of the naphthalene radical cation to give the delocalized carbon radical 

(11 ), as outlined in Scheme 1.21. Attack of •No2 at C4 could occur cis or 

trans to the trinitromethyl group to give adducts (7) and (8) respectively, while 

attack of •No2 at C2 gives the 1-trinitromethyl-2-nitro adduct (9). The trans­

stereochemistry of adduct (9) was assumed to be due to the presence of the 

bulky trinitromethyl group shielding the syn-face of the delocalized carbon 

radical (11) from attack by the incoming •No2. 
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27 

C(N02b 

4 

(11) 

j
. 
N02 

at C2 

(9) 

Scheme 1.21 

·No2 

atC4 

(7) and (8) 

Adduct (1 0) also arises via initial attack of (02N)sC- at C1 of the 

naphthalene radical cation, to give the delocalized radical (11). However, 

4 

(11) 

Scheme 1.22 

•oNO 

atC2 

~~iJa 
~nONO 

(12) 

1 hydrolysis 

{10) 



subsequent •No2 attack at C2 with C~O bond formation would give the 

trinitromethyl/nitrite adduct (12). Hydrolysis of the nitrite adduct (12), either 

in the acidic reaction conditions or during workup, would yield the 

hydroxy/trinitromethyl adduct (10) (See Scheme 1.22). 

1.11 Photochemical Nitration of 1 ,4-Dimethylnaphthalene 

byTNM 

Sankararaman et af34 studied the photochemical reaction of 1 ,4~di­

methylnaphthalene with TNM in both dichloromethane and acetonitrile. 

They characterised two epimeric 1 ,4-adducts, (13) and (14), and were able to 

confirm the absolute stereochemistry of the major adduct (13) as anti by 

X-ray crystallography. 

Two further products were identified as the side-chain nitro derivative 

(15) and 1 ,4-dimethyl-2~nitronaphthalene (16), with the latter being a minor 

product. 

(13) (14) 

Me 

Me Me 

(15) (16) 
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The product composition was found to be temperature dependent, 

with adduct formation dominant at lower temperatures and the side-chain 

nitro compound (15) dominating at higher temperatures. When a mixture of 

the syn- and anti- adducts were placed into acetonitrile at room temperature, 

they converted slowly into the side-chain nitro derivative (15}. The various 

products in the photonitration between 1 ,4-dimethylnaphthalene and TNM 

were proposed to arise via a competitive process between (a) adduct 

formation and (b) ring nitration, as illustrated in Scheme 1.23. 

{a) 

Me 

+ C(NO:z)4 

Me 

Scheme 1.23 

{13) and {14) 

Me 

Me 

(16) 

A more detailed study of the 1 ,4-dimethylnaphthalene/TNM/ IN 

reaction was carried out by Eberson et aJ.38 They also found that adduct 

formation dominated at lower temperatures, reaching 90% in dichloro­

methane at -50°. However, in acetonitrile a new epimeric pair of adducts 

was observed and identified as 1 ,4-hydroxy/trinitromethyl adducts (17) and 

(18). 
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(17) and (18) 

The product yields from the photonitration of 1 ,4-dimethylnaphthalene 

and TNM, in both dichloromethane and acetonitrile and at different 

temperatures are shown in Table 1.4. 

Table 1 .4 Overview of product yields from the photolysis of 1 A-dimethyl­

naphthalene (1.0 mol L-1) and TNM (2.0 mol L-1). 

Yield(%) 

Solvent Temp t Conversion 

n (h) (%) (13) (14) (15) (16) (17) 

CH 2CI2 -50 5.25 74 81 9 7 
-20 5.25 81 73.3 7.7 15.4 
20 5.25 100 29.5 3.8 64.9 

CH 3CN -20 6.25 60.8 71.5 17.0 6.8 3.3 
20 6.25 97.7 33.7 9.1 43.0 14.1 trace 

(18) 

1.4 

To understand more fully the observed results, Eberson et af.38 

studied the thermal rearrangement of adduct (13) in both acetonitrile and 

dichloromethane. In acetonitrile, adduct (13) epimerized to give adduct (14), 

which then underwent further rearrangement to give adducts (17) and (18). 

Also during the course of the rearrangements the side-chain nitro compound 

(15) steadily increased. Using dichloromethane, they found that adduct (13) 
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rearranged to form both adduct (14) and the side-chain nitro compound (15). 

The rearrangement of adduct (13) to adduct (14) in dichloromethane was 

~ 1.4x1 02 times slower compared with using acetonitrile. 

Eberson et af.38 therefore proposed that the rearrangement of adduct 

(13) to adduct (14) was polar, with the trinitromethyl group as the leaving 

group and leading to the intermediate nitrocyclohexadienyl cation/trinitro­

methanide ion pair (19), as outlined in Scheme 1.24. 

0 

(13) (19) (14) 

Scheme 1.24 

Loss of nitroform from the intermediate nitrocyclohexadienyl cation/ 

trinitromethanide ion pair (19), by abstraction of an acidic proton from the 

methyl group by (02N)sC-, would lead to the formation of the side-chain nitro 

compound (15), as illustrated in Scheme 1.25. 

The formation of adducts ( 17) and ( 18) was proposed to proceed via a 

trinitromethylcyclohexadienyl radical (20), formed by loss of •No2 from 

adduct (14) (See Scheme 1.26). Subsequently, addition of •No2 to the 

trinitromethylcyclohexadienyl radical (20) with C-0 bond formation, followed 

by hydrolysis of the resulting nitrites (17a) and (18a), would yield adducts 

(17) and (18). 

The observation that the 2-nitro compound (16) only appeared in the 

later stages of the acetonitrile reaction, at which time photolysis mixtures 

were always acidic, led Eberson et af.3B to perform an acid catalysed 
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(13) and (14) 

(14) 

(17) and (18) 

Me (02N)3C-

(19) 

Me 

(15) 

Scheme 1.25 

hydrolysis 

Scheme 1.26 

- HC(N02)3 

Me 

(20) 

homolysis 1 
of C-N02 

bond 

Me 

Me ONO 

(17a) and (18a) 
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rearrangement of adduct (13) using methanesulfonic acid in acetonitrile. 

Adduct (13) was found to rearrange to give the side-chain nitro compound 

(15), 1 ,4-dimethylnaphthalene and the 2-nitro compound (16). This led them 

to propose that the 2-nitro compound (16) was formed via the trinitromethyl­

cyclohexadienyl radical (20) in an acid-promoted process involving •No2 

coupling at C2, followed by loss of nitroform, as shown in Scheme 1.27. 

Me 

- HC(N02)3 

Me Me 

(20) (16) 

Scheme 1.27 

1.12 Solvent and Salt Effects on the Photochemical Nitration 

of Aromatic Compounds by TNM 

1. 12. 1 Solvent Effects in the Reactions of the Trinitromethanide Jon. 

Masnovi et aJ.39,40 observed that solvent polarity played an important 

but selective role during the photochemical nitration of various aromatic 

donors with TNM. While studying a series of time resolved absorption 

spectra involving substituted anthracene donors and TNM, formed via laser­

flash photolytic techniques, they found that different results were obtained 

when using dichloromethane and acetonitrile. In the non-polar dichloro­

methane, the radical cation lifetime was too short to be observed on the 

microsecond time scale, whereas in the polar acetonitrile the radical cation 

was readily observed. 
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Rate measurements indicated that the decay of the substituted 

anthracene radical cation in acetonitrile was consistently slower than in 

dichloromethane by at least two orders of magnitude. 39 Similar results were 

obtained by Sankararaman et af.30 while studying various substituted 

anisoles, except differences up to three orders of magnitude were observed. 

This "solvent effect'' was causing (02 N) 3C- to react with the radical cation 

102-1 os times faster in dichloromethane than in acetonitrile. 

More recent work by Wang eta/., 41 with 9-substituted anthracene 

radical cations, found inconsistencies in some of the results obtained by 

Masnovi et af.40 They found that the reaction of (02N)3C- with the radical 

cation was less than 10 times faster in dichloromethane than in acetonitrile, 41 

the expected difference due to the change in solvent polarity. 

1.12.2 Solvent Effects on Product Formation. 

While studying the reactions of various monosubstituted anisoles with 

TNM, Sankararaman et af.30 found that the products formed were highly 

dependent on the solvent polarity. In dichloromethane the principal product 

was derived by addition of a single trinitromethyl group onto the aromatic 

ring, with minor amounts of aromatic nitro compounds formed. In 

acetonitrile however, nitration was predominant, with only minor amounts of 

trinitromethyl aromatics sometimes formed. 

It was therefore concluded that a change in solvent polarity, from non­

polar dichloromethane to polar acetonitrile, caused a change in the 

mechanism of reactions within the triad from (a) ion-pair collapse to (b) 

radical-pair collapse respectively, as depicted in Scheme 1.28. 

In the reactions of 1 ,4-dimethylnaphthalene, Eberson eta/. 38 found 

that adducts which had arisen by addition of (02N)3C- and •No2 to the 

radical cation had a greater tendency to decompose in acetonitrile at +20° to 

give nitro compounds than in dichloromethane. The rate of rearrangement 
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(a) lon~Pair Collapse : 

{non polar solvent, CH2CI2) 

(b) Radicai~Pair Collapse: 

(polar solvent, CH3CN) 

• 
Ar(H)C(N02) 3 

Scheme 1.28 

ArC(NO 2)3 + HN02 

of adduct ( 13) into the side-chain nitro compound ( 15) was at least 1 00 times 

faster in acetonitrile than in dichloromethane (See Scheme 1.29). 

Me 

(13) (15) 

Scheme 1.29 

Butts eta/. 42 re-examined the photochemical reactions of 4-methyl­

anisole with TNM, initially studied by Sankararaman et aJ.30 and discussed 

earlier in Part 1 .12.2 of this Section. They too found42 that at +20° in 

dichloromethane the major product of the reaction was the 4-methyl-2-

trinitromethylanisole (21}, whereas in acetonitrile the major product was 4-

methyl-2~nitroanisole (22). 

However in dichloromethane Butts eta/. 42 also observed the 
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OMe OMe 

Me Me 

(21) (22) 

formation of four unstable isomeric adducts (23)-(26), which decomposed as 

the reaction proceeded. In acetonitrile only the epimeric adducts (25) and 

(26) were seen at low temperatures (-20 and -50°). 

Me 

(23) and {24) 

OMe 

Me 

(25) and (26) 

It was proposed that the products were formed by two competing 

mechanisms. In Scheme 1.30, attack of (02N)3C- at the 2-position of the 4-

methylanisole radical cation would give the delocalized radical (27). Attack 

of •No2 at C5 would yield adducts (23} and (24). Alternatively, •No2 could 

attack ipso to the methoxy group at C1, to give the diene (28). Loss of 

nitrous acid from either the sterically compressed diene (28) or adducts (23) 

and (24) would give rise to the 4-methyl-2-trinitromethylanisole (21). 

Alternatively, attack of (02N)sC- ipso to the methoxy group would give 

the delocalised carbon radical (29) (See Scheme 1.31). Attack of •No2 at 

C2 in the carbon radical (29) would give the diene {30). Loss of nitroform 

from diene (30) would yield 4-methyl-2-nitroanisole (22). A possible allylic 

rearrangement of diene (30), with migration of the trinitromethyl group to C5, 
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(27) (23) and {24) 

j ·No, 
at C1 

j- HNO, 

MeO X OMe 

¢fC(N0,)3 HN02 qC(NO :>), 

Me Me 

(28) (21) 

X= N02 orONO 

Scheme 1.30 

OMe l•+ 

¢ ·No2 0 2N 

atC2 

Me Me Me 

(29) (30) 

/ -HC(N0,)3 j 

OMe OMe 

\\ C(N02)s 

o2NL¢ 02N 

Me Me 

(25) and {26) {22) 

Scheme 1.31 



would form adducts (25) and (26). 

This type of allylic migration of (02N)3C- has been observed in the 

rearrangement of 4,8-dimethyl- r-1-nitro- t-4-trinitromethyl-1 ,4-dihydro­

naphthalene (31) into 4,8-dimethyl-r-1-nitro- t-2-trinitromethyl-1 ,4-dihydro­

naphthalene (32),43 as represented in Scheme 1.32. 

Me H 

(31) 

Scheme 1.32 

Me H 

(32) 

Me 

Butts et al. 42 suggested that the "solvent effect 11 is simply the 

consequence of the lower reactivity of (02 N)sC- towards the radical cation, 

due to solvation in the more polar acetonitrile. This would lead to a change 

in the regiochemistry of attack of (02N)3C-, with attack ipso to the methoxy 

group being favoured due to the high positive charge at that position in the 

ring.42 This leads to the reaction pathways, represented in Scheme 1.31, 

dominating and hence a change in the reaction products observed. 

1.12.3 Salt Effects on Product Formation. 

During the course of studying the photochemical reactions of 4-

methylanisole with TNM, Sankararaman eta/. 30 examined the effect of 

added salts on the products formed. They added a non-common ion salt, 

Bu4N+CJ04- (0.2 molL -1 ), and a common ion salt, Bu4N+C(N02)3-

(0.01 mol L-1 ), to reactions in both dichloromethane and acetonitrile. Their 

results are summarised in Table 1.5. 
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Table 1.5 Overview of product yields from the photolysis of 4-methylanisole 

(0.06-0.6 mol L -1) and TNM (0.66-2.2 mol L -1) with and without 

added salts. 

Solvent 

CH3CN 

Added Salt 

Bu 4N+clo4-
Bu 4N+ C(N02) 3-

Bu4N+clo4-
Bu 4N+C(N02) 3-

Products (%) 

OMe OMe qC(NO,), qNo2 

Me Me 

(21) (22) 

g5 5 
100a 

76 24 

5 gsa 

1008 

10 goa 

a Including minor amounts of 4-methyl-2-nitrophenol, the rearrangement 

product of 4-methyl-4-nitroanisole (24 ), and 2,6-dinitro-4-methylphenol. 

In dichloromethane the results showed that addition of the non-

common ion salt, Bu4N+CI04-, at the concentration employed, efficiently 

diverted the course of the reaction from predominant trinitromethylation to 

predominant nitration. Adding the common ion salt, Bu4N+C(N02)3-, at low 

concentrations (0.01 mol L -1), had less effect on the products formed. In 

acetonitrile the added salts had only a minor effect on the products formed. 

Sankararaman et af.30 proposed that the "salt effects" were due to the 

competition between ion-pair and radical-pair collapse as previously 

discussed earlier in Part 1.12.2 of this Section and outlined in Scheme 1.28. 
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During a later study of the 4-methylanisole system, Butts eta/. 42 noted 

that there was a large difference between the concentrations of the two salts 

[0.2 molL -1 for Bu4N+CI04- compared with 0.01 molL -1 for 

Bu4N+C(N02)s-). They re-interpreted the observed "salt effects" as being 

due to the consequence of the increased polarity of the solvent system due 

to the added salt and not the type of salt used. Butts eta/. 42 suggested that 

the increase in solvent polarity with added salt would lead to an "acetonitrile­

liken solvent environment for the attack of (02N)sC- on the radical cation of 4-

methylanisole. With an "acetonitrile-like" solvent the reaction pathways 

represented in Scheme 1.31 (Part 1.12.2 of this Section) would now be 

favoured and hence nitration products would dominate. However with low 

concentrations of added salt, as in the case of Bu4N+C(N02)3- (0.01 mol 

L -1 ), the polarity of the solvent would only be marginally affected. This 

would lead to a less marked effect on the products formed, as was observed 

(See Table 1.5). 

1.12.4 The Use of 1,1,1,3,3,3-Hexaf/uoro-2-propanol (HFP) as the Solvent. 

Eberson et af.44 studied a wide range of aromatic radical cations 

(ArH•+) generated in HFP. They found that the aromatic radical cations 

were extremely persistent, even at room temperature, with half-lives often 

exceeding those found in trifluoroacetic acid (TFA) by greater than 100 times. 

Subsequently Eberson et af.45 studied the photochemical behaviour of 

various aromatic compounds with TNM using HFP as solvent. They 

demonstrated that readily reacting radical cations can persist at room 

temperature in HFP in the presence of (02N)sC-. 

Photolysis of 1 ,4-dimethylnaphthalene with TNM in HFP was observed 

to give a broad unresolved EPR signal at +5°, whereas in dichloromethane at 

-60°, there was no observable signaL A preparative photolysis experiment 

between 1 ,4-dimethylnaphthalene and TNM in HFP at +20° resulted in the 
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quantitative formation of 1 ,4-dimethyl-2-nitronaphthalene (16), whereas 

previous studies 38 in dichloromethane at +20° had given rise to the epimeric 

adducts (13) and (14) and the side chain nitro product (15) (See summary in 

Scheme 1.33). 

Me 

o¢ hVcT 

Me 

(16) (13) and (14) (15) 

<0.5% 47% 47% 

HFP 100% 

Scheme 1.33 

It was evident that, in HFP, the usual first chemical reaction step 

involving attack of (02N)sC- on the 1 ,4-dimethylnaphthalene radical cation 

was eliminated, leaving only the slower radical coupling between ArH•+ and 

•No2 to occur. 

The photochemical reaction of 1-methoxynaphthalene with TNM in 

HFP at +22° gave an EPR spectrum belonging to the radical cation of the 

4,4'-conriected dehydrodimer (33). A preparative photolysis experiment in 

HFP at +20°, between 1-methoxynaphthalene and TNM, gave the 

dehydrodimer (33) and 1-methoxy-4-nitronaphthalene (34) as products, as 

summarized in Scheme 1.34. 

Once again it was clear that all the products derived from an initial 

reaction between (02N)sC- and the 1-methoxynaphthalene radical cation 

were eliminated in HFP, since neither adducts (35) and (36) nor 1-methoxy-
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OMe 

OMe OMe OMe OMe 

00 hvcr ~'No", ~~;:,,o¢ C(N02)4 

NOz H ~N H C~O~ 

OMe 

(33) (34) (35) (36) (37) 

CH2CI 2 38% 7% 11% 41% 

HFP 72% 28% 

Scheme 1.34 

4-trinitromethylnaphthalene (37), observed in an earlier study,46 were seen. 

Eberson et af.45 found that the reactivity of (02N)3C- is strongly 

suppressed in HFP. The radical cation therefore undergoes dehydrodimer 

formation and/or radical coupling with •No2 to give the normal product{s) of 

the ArH•+rNo2 reaction. 
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CHAPTER TWO 

PHOTO NITRATION OF 1 ,4,6, 7-TETRAMETHYLNAPHTHALENE, 

2,6-DIMETHYLNAPHTHALENE AND 1 ,3-DIMETHYLNAPHTHALENE 

2.1 Introduction 

As described in Chapter 1 , the photochemical addition of TNM to 

aromatic compounds (ArH) has been shown1 to occur by recombination of a 

triad consisting of ArH•+, (02N)sC- and •No2. The first chemical step 

leading to adduct formation is the reaction between ArH•+ and (02N)3C- to 

give a carbon-centred radical. The carbon radical subsequently reacts with 

•No2 to give adducts, as illustrated in Scheme 2.1. The first bond formation, 

• Ar(H)C(NO 2)s 

adducts 

Scheme 2.1 

involving reaction of (02N)3C- with ArH•+ is crucial in determining the 

structures of the adducts formed.2 

In the photochemical reaction between naphthalene and TNM, 3 it was 

found that the initial bond formation between the naphthalene radical cation 

and (02N)3C- occurred exclusively at C1 on the naphthalene radical cation to 

give the 1-phenylallylic radical (38), as seen in Scheme 2.2. No adducts 

were observed arising from initial bond formation at the alternative 2-position 

of the naphthalene radical cation, which would involve formation of the less 

stable benzylic radical (39), also seen in Scheme 2.2. Subsequent coupling 
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C(N02)3 

(38) (39) 

Scheme 2.2 

of •No2 with the 1-phenylallylic radical (38) gave either nitro/trinitromethyl 

adducts or hydroxy/trinitromethyl adducts, the latter being formed on 

hydrolysis of the labile nitrito/trinitromethyl adducts (See Chapter 1, Section 

1.10 for mechanistic descriptions). 

Photolysis studies on the 1 ,4-dimethylnaphthalene/TNM system4 

found that adduct formation resulted from addition of (02N)3C- only at C1 on 

the 1 ,4-dimethylnaphthalene radical cation (See Chapter 1, Section 1 .11 for 

further details). The possible initial modes of attack of (02N)3C- on the 1,4-

dimethylnaphthalene radical cation are depicted in Scheme 2.3. Clearly, 

Me.., C(N02)3 
"' ~ 

Me 

(40) 

Me 

Me 

(42) 

(02N)sc­

at C1 

Me 

(02N)~ 
atC6 

Scheme 2.3 

(43) 

Me 

(41) 

Me 

Me 
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attack of (02N)sC- at C1 on the 1 ,4-dimethylnaphthalene radical cation, to 

give the phenylallylic radical (40), is the energetically favoured pathway, this 

being stabilized by the 4-methyl group. Formation of the phenylallylic radical 

(41), arising via attack of (02N)3C- at C5 on the 1 ,4-dimethylnaphthalene 

radical cation, would be less favoured due to the steric interaction between 

the peri-methyl and trinitromethyl groups. Similarly the tertiary benzylic 

radical (42), arising via attack of (02N)3C- at C2 on the 1 A-dimethyl­

naphthalene radical cation, would be destabilized by steric interactions 

between the bulky trinitromethyl group and a j3-methyl group. Alternatively, 

attack of (02N)sC- at C6 on the 1 ,4-dimethylnaphthalene radical cation 

would give the less stable secondary benzylic radical (43). 

In the photolysis of the charge-transfer complex of TNM with 2,3-

dimethylnaphthalene,5 in both dichloromethane and acetonitrile at +20°, 

adducts were found to arise via initial attack of (02N)3C- at both C1 and C5 

on the 2,3-dimethylnaphthalene radical cation, in a ratio of c. 1 :4 for C1 :C5. 

Clearly, attack of (02N)sC- at C1 and C5 on the 2,3-dimethylnaphthalene 

radical cation, forming the phenylallylic radicals (44) and (45), respectively, is 

favoured over attack at C2 and C6 forming the secondary benzylic radicals 

at Cl 

(44} 

(46) 

(O,N)a~ 
atC6 

Scheme 2.4 

Me 

Me 

(45} 
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(46) and (47), respectively (See summary in Scheme 2.4). The secondary 

benzylic radical (46), formed by attack of (02N)sC~ at C2 on the 2,3-di­

methylnaphthalene radical cation, would be further destabilized due to steric 

interactions arising between the bulky trinitromethanide group and both the 

ipso and f3-methyl groups. For the phenylallylic radical (44), arising via 

attack of (02N)sC· at C1 on the 2,3-dimethylnaphthalene radical cation, the 

enhanced stability due to the 2~methyl group is overshadowed by the steric 

interaction between the bulky trinitromethyl group and the j3-methyl group. It 

therefore appears that the phenylallylic radical (45), arising from attack of 

(02N)sC· at C5 on the 2,3-dimethylnaphthalene radical cation, is the most 

stable delocalized carbon radical. 

In the photochemical reaction between 1 ~methylnaphthalene and 

TNM,6 adduct formation was found to occur predominantly by attack of 

(02N)sC~ at C4 of the 1-methylnaphthalene radical cation (65% from a total 

of 69% in dichloromethane at +20°). The remainder of adducts arose via 

attack of (02 N) sc~ at C5 on the 1 ~methylnaphthalene radical cation. The 

possible phenylallylic radicals are outlined in Scheme 2.5. It appears that 

Me Me Me 

oor (OzN)3c- 7 2 (OzN)sc-

at C4 6 3 at C5 

5 4 
C(NOz)s 

(48) ~N),C (02N)~ (49) 

atC1 atC8 
Me C(N02)s (OzN)sC 

(50) (Si) 

Scheme 2.5 
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attack of (02N)3C- at C4 on the 1-methylnaphthalene radical cation leads to 

the most stable phenylallylic radical (48). This radical (48) has enhanced 

stability due to the 1-methyl group compared with phenylallylic radical (49), 

formed via attack of (02 N) sC- at C5 on the 1-methylnaphthalene radical 

cation. Attack on the 1-methylnaphthalene radical cation by (02N)sC- either 

ipso to the methyl group at C1 or peri to the methyl group at C8, yielding 

phenylallylic radicals (50) and (51), appears to be disfavoured due to the 

resulting steric interactions between the bulky trinitromethyl and methyl 

groups. Of the possible benzylic radicals shown in Scheme 2.6, only attack 

at C2 of the 1-methylnaphthalene radical cation by (02N)3C- would yield a 

(54) (55) 

Scheme 2.6 

tertiary benzylic radical (52). This would however be destabilized due to the 

presence of the f3-methyl interaction with the trinitromethyl group. Attack of 

(02N)3C- on the 1-methylnaphthalene radical cation at C3, C6 and C7 would 

lead to the less stable secondary benzylic radicals (53), (54) and (55), 

respectively. 

The studies discussed in this Chapter aimed to gain further 

understanding into the regiochemistry of the photochemical reactions 
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between aromatic compounds and TNM. In light of the studies discussed 

above, it appears probable that the relative energies of the various 

delocalized carbon radicals determine the reaction pathways followed. The 

energy of the delocalized carbon radical, formed by initial attack of (02 N) sC­

on the aromatic radical cation, will be affected in two ways. Firstly, due to 

steric interactions between the bulky trinitromethyl group and the remainder 

of the molecule and secondly, by the extent of delocalization of (and 

stabilization by substitutents on) the discrete carbon-centred radical. To 

gain further insight into this mechanistic problem, the photolysis reactions of 

1 ,4,6,7-tetramethylnaphthalene (56), 2,6-dimethylnaphthalene (57) and 1,3-

dimethylnaphthalene (58) were studied in detail. 

Me Me 

Me 

Me Me 

Me 

(56) (57) (58) 

Attack of (02N)sC- in the photolysis of 1 ,4,6,7-tetramethylnaphthalene 

with TNM was expected to occur predominantly at C1 on the 1 ,4,6,7-tetra­

methylnaphthalene radical cation. The potential radicals, represented in 

Scheme 2.7, fall into two distinct types, those of the phenylallylic type (59) 

and (60), and those of the benzylic type (61) and (62). While the 

phenylallylic radical (59), arising via attack of (02N)sC- at C1 on the 1 ,4,6,7-

tetramethylnaphthalene radical cation, may be subject to steric compression 

arising from the ipso attachment of the trinitromethyl group it would have 

enhanced stability due to the presence of the 4-methyl group. The 

phenylallylic radical (60), arising from (02N)sC- attack at C5 on the 1 ,4,6,7-

tetramethylnaphthalene radical cation, would also be stabilised by the methyl 

group at C6 but steric interactions between the bulky trinitromethyl group and 
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(02N)aC" 

at C1 

Me 

(59) 

(61) 

Me 

Me 

Me 

~2N)ac­
at C2 

C(N02h 

Scheme 2.7 

Me 

Me 

{60) 

Me 

Me 

(62) 

· both the f3 and peri-methyl groups would destabilize it. The tertiary benzylic 

radical (61 ), formed after C2 attack on the 1 ,4,6,7-tetramethylnaphthalene 

radical cation by (02N)sC-, would be destabilized due to the presence of the 

/3-methyl interaction with the trinitromethyl group. Attack of (02N)sC- at C6 

of the 1 ,4,6,7-tetramethylnaphthalene radical cation not only produces the 

secondary benzylic radical (62) but also contains an unfavourable {3-methyl 

interaction with the trinitromethyl group and steric compression arising from 

the ipso-methyl attachment. Clearly, the favourable reaction pathway is via 

initial attack of (02N) sC- at C1, similar to 1 ,4-dimethylnaphthalene. 4 It was 

therefore expected that unstable adducts similar to those formed from 1 ,4-di­

methylnaphthalene, would arise and that rearrangement studies of these 

1 ,4,6,7-tetramethylnaphthalene {56) derived adducts might shed further light 

on the mechanism of product formation. 

In the photolysis of 2,6-dimethylnaphthalene (57) with TNM it was 

expected that the phenylallylic radicals (63) and (64) would be favoured over 

the less stable secondary benzylic radicals (65) and (66), formed via initial 

attack of (02N)sC- on the 2,6-dimethylnaphthalene radical cation, at C2 and 
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Me 

(65) 

Scheme 2.8 

(64) 

~Me 

~·••H 
Me C(N0 2)s 

(66) 

C3, respectively (See Scheme 2.8). The benzylic radicals would be 

destabilized due to the steric effects between the trinitromethyl group and the 

presence of an ipso-methyl group in the benzylic radical (65) and a {3-methyi 

group in the benzylic radical (66). While attack of (02N)sC· at C1 on the 

2,6-dimethylnaphthalene radical cation would lead to enhanced stability due 

to the methyl group at C2, the {3-methyl interaction with the trinitromethyl 

group would be expected to destabilize the phenylallylic radical (63). 

Phenylallylic radical (64), formed after C4 attack on the 2,6-dimethyl­

naphthalene radical cation by (02N)sC·, has neither added stability due to 

suitably positioned methyl groups nor has it any unfavourable steric 

interactions with the bulky trinitromethyl group. Hence it appears that attack 

of (02N)3C- on the 2,6-dimethylnaphthalene radical cation would probably 

occur predominantly at C4, but that some attack might also occur at C1. 

Photolysis of the 1 ,3-dimethylnaphthalene/TNM system could 

generate many possible reaction pathways, resulting in either phenylallylic or 

benzylic radicals. The possible benzylic radicals (67)-(70) are summarized 

in Scheme 2.9. Attack of (02N)sC· at C2 on the 1 ,3-dimethylnaphthalene 
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(67) 
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Me l•+ ro 7 (02N)sC" 
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(68) 

(02Nh~ 
ate? Me 

(02N)sCtn 
Hum • 0 
~ Me 

(70} 

Scheme 2.9 

radical cation would give rise to a tertial)i benzylic radical (67}, however this 

would be destabilized due to the presence of two /3-methyl interactions with 

the bulky trinitromethyl group. Reaction at C3, C6 or C7 on the 1 ,3-di­

methylnaphthalene radical cation by (02N)sC- would produce secondary 

benzylic radicals, (68), (69) and (70), respectively. Benzylic radical (68) 

would be destabilized by the presence of the ipso-attachment of the trinitro­

methyl group. However, the benzylic radicals (69) and (70), formed via 

attack of (02 N) sC- in the non-methylated ring of the 1 ,3-dimethylnaphthalene 

radical cation, have no unfavourable steric interactions. 

Scheme 2.1 0 depicts the possible phenylallylic radicals (71 }-(7 4). 

The ipso attack of (02N)sC- on the 1 ,3-dimethylnaphthalene radical cation at 

C1 produces the phenylallylic radical (71 ), which has no added stability from 

the methyl groups. However the stability of the phenylallylic radical (72}, 

formed via C4 attack of (02 N) sC· on the 1 ,3-dimethylnaphthalene radical 

cation, is enhanced by the presence of the two methyl groups. Radical (72} 

does, however, contain an unfavourable /3-methyl interaction with the 

trinitromethyl group. Attack of (02 N) sC· at CS on the 1 ,3-dimethyl-
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(71) 

Me 

(73) 
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at C1 

Me 

Me 

(72) 

Me 

(74) 

Scheme 2.10 

naphthalene radical cation leads to the phenylallylic radical (73), which is 

neither stabilized by the methyl groups nor destabilized by steric effects due 

to the bulky trinitromethyl group. Attack at C8 on the 1 ,3-dimethyl­

naphthalene radical cation by (02N)3C-, however, leads to an unfavourable 

peri-methyl interaction with the trinitromethyl group in the resulting 

phenylallylic radical (74). It therefore appears that many possible options 

would be open for (02N)sC- attack on the 1 ,3-dimethylnaphthalene radical 

cation, but that attack at C5 might be favoured. 

55 



2.2 The Photolysis of 1 ,4,6,7-Tetramethylnaphthalene (56) 

General procedure tor the photonitration of 1,4,6,7-tetramethy/naphtha/ene 

(56) with TNM. 

A solution of 1 ,4,6,7-tetramethylnaphthalene (56) (500 mg, 0.34 mol 

L-1) and TNM (0.68 mol L-1) in dichloromethane (at +20 or -20°) or 

acetonitrile (at +20°) was irradiated with filtered light (Acut-ott<435 nm) and 

small samples were withdrawn for analysis at suitable intervals. The work­

up procedure, involving evaporation of solvent, TNM and trifluoroacetic acid 

(if present), was conducted at ~0°. The crude product mixtures were stored 

at -20° and were analysed by 1 H n.m.r. spectroscopy as soon as possible 

(For complete experimental details see Chapter 5, Section 5.2.1 ). 

2.3 The Photochemistry of 1 .4,6,7-Tetramethylnaphthalene 

(56) in Dichloromethane 

2.3. 1 Photochemistry in dichloromethane at -20° and identification of 

adducts. 

A solution of 1 ,4,6,7-tetramethylnaphthalene (56) (0.34 mol L-1) and 

TNM (0.68 mol L-1) in dichloromethane was irradiated at -20° until the 

strongly red colour of the charge-transfer band was bleached. The 

composition of the reaction mixture was monitored by withdrawing samples 

for 1 H n.m.r. spectral analysis. After work-up, the final solution (after 2 h, 

conversion"" 1 00%) was shown to contain a mixture of adducts (75)-(77) 

(total 63%), aromatic compounds (78)-(81) (total36%}, and other unidentified 

aromatic compounds (total1%). 
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Me 

Me Me Me 

C(N02)3 C(N02)3 Me 

(75) (76) (77) 

Me Me 

Me Me 

Me Me 

(78) {79) 

Me Me 

Me N02 Me 

Me Me 

Me CH2N02 

{80) (81) 

The major adduct (75) was isolated by crystallization from dichloro­

methane/pentane and its structure determined by single crystal X-ray 

analysis. A perspective drawing of 1 ,4,6,7 -tetramethyl-r-1-nitro- t-4-trinitro­

methyl-1 ,4-dihydronaphthalene (75), C1sH 15N40a, m.p. ago (dec.) is 

presented in Fig. 2.1, and corresponding atomic coordinates are given in 

Table 5.1 (See Chapter 5, Section 5.5). In the solid state, the alicyclic ring 

of adduct (75) is close to planar [torsional angles: C(2)-C(3)-C(4)-C(4a) 

1.7(7) 0
; C(3)-C(2)-C(1 )-C(8a) -6.3(7) 0

]. The orientations of the methyl and 

trinitromethyl substituents at C(4) relative to the plane of the aromatic ring 

reflect the difference in the size of the two substituents [torsional angles: 

C(5)-C(4a)-C(4)-C(10) 52.8(6) 0
; C(5)-C(4a)-C(4)-C(13) -70.7(6) 0

], the more 
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Fig. 2.1 Perspective drawing of adduct (75). Double bond shown in black. 

similarly sized substituents at C(1) being more evenly displaced from that 

plane [torsional angles: C(8)-C(8a)-C(1 )-C(9) 56.0(6)0
; C(8)-C(8a)-C(1 )-N(I) 

-62.7(6) 0
]. The plane of the nitro group at C(1) is nearly eclipsed with the 

C(1 )-C(9) bond [torsional angle: C(9)-C(1 )-N(1 )-0(12) -13.8(6}0
]. The 

spectroscopic data for adduct (75} were in accord with the established 

structure. In particular the Me-C(4)-C(N02)3 resonance appeared at o 48.9, 

while the Me-C(I}-N02 resonance appeared at o 86.7. These assignments 

were confirmed by long range reverse detected heteronuclear correlation 

spectra (HMBC). The coupling constant JH2,H3 10.5 Hz indicated the 1 A­

substitution and was consistent with the molecule having the same 

conformation in the solid state and in solution. 

The structure of the epimeric 1-nitro-4-trinitromethyl adduct (76), 

which could not be isolated, was assigned on the basis of its 1 H n.m.r. 

spectra on comparison with the spectral features of adduct (75), the 
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structure of which has been determined by single crystal X-ray analysis. In 

particular, the coupling constant JH2,H3 10.4 Hz indicated the 1 A­

substitution, as illustrated in Fig. 2.2. The two sets of spectroscopic data are 

Me 

Me 

1-Me 

H2 

H3 

4-Me 

Me N02 
$ 
~ H Me 

J J=10.5 Hz 

... H Me 
~ 
~ 

Me C(N02)3 

(75) 

2.07 

6.22 

6.64 

2.19 

1-Me 

H2 

H3 

4-Me 

(76) 

1.99 

6.45 

6.62 

2.08 

Fig. 2.2 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

and coupling constants for adducts (75) and (76). 

closely similar and consistent with their assignments as epimers. 

The structure of the remaining nitro/trinitromethyl adduct (77), which 

also could not be isolated, was assigned from a comparison of its 1 H n.m.r. 

spectrum with that for cis-2,3-dimethyl-1-nitro-4-trinitromethyl-1 ,4-dihydro­

naphthalene (82),5 as summarized in Fig. 2.3. In particular, the 1 H n.m.r. 

signals due to the CHN02 (() 5.91) and CHC{N02)3 (() 5.89) appeared as 

broad singlets, consistent with their location flanking the 2,3-dimethyl 

structural feature. 
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H1 

2-Me, 3-Me 

H4 

(82) 

5.80 

2.00, 2.07 

5.60 

H1 

2-Me, 3-Me 

H4 

(77) 

5.91 

1.97, 2.15 

5.89 

Fig. 2.3 Comparison of the characteristic "1 H n.m.r. resonances (in ppm) for 

adducts (82) and (77). 

2.3.2 Reaction in dichloromethane at +20° and the identification of some of 

the nitro aromatic compounds. 

Reaction of 1 ,4,6,7-tetramethylnaphthalene (56) I TNM in dichloro­

methane at +20°, as above, for 2 h gave a product which was shown by 1 H 

n.m.r. spectra to be a mixture of adducts (75)-(77) (total17%), aromatic 

compounds (78)-(81) (total 83%), and a trace of other unidentified aromatic 

compounds. Chromatography of this mixture on a silica gel Chromatotron 

plate gave the following in elution order. 

The first compound eluted, 4,6,7-trimethyl-1-(2',2',2'-trinitroethyl)­

naphthalene (78), was obtained only in low yield but gave a satisfactory 

parent molecular ion in the mass spectrum, indicating the molecular formula 

C1sH1sNs06. Nuclear Overhauser enhancement (N.O.e.) experiments 

confirmed the assignments of the chemical shifts for the protons. In 

60 



particular, the site of substitution of the trinitromethyl group was indicated by 

irradiation at 8 4.84 (CH2) which gave enhancements at 8 7.16 (H2) and 8 

7.44 (H8), as shown in Fig. 2.4. An HMBC experiment confirmed the 

Me 

Me 

Fig. 2.4 Enhancements(%) from a selected n.O.e. experiment for the side­

chain trinitromethyl aromatic compound (78). 

assignment of the 13C n.m.r. spectra, except for the methyl groups at C6 and 

at C7, which had closely similar 13C n.m.r. resonances. Furthermore, the 

presence of very strong infrared absorptions at 1605 and 1590 cm-1 provided 

evidence for the -C(N02)3 substituent. 

The second compound eluted, 2,3,5,8-tetramethyl-1-nitro­

naphthalene (79), was again isolated only in low yield but gave a satisfactory 

parent molecular ion in the mass spectrum, indicating the molecular formula 

C14H1sN02. Again, the connectivity in the structure was established by the 

complete assignment of the 1 Hand 13C NMR spectra via a combination of 

n.O.e. and HMBC experiments. In particular, the site of substitution of the 

nitro group was indicated by irradiation at 8 2.31 (2-Me) which led to 

enhancement at 8 2.50 (3-Me), irradiation at 8 7.88 (H4) led to 

enhancements at 8 2.50 (3-Me) and at 8 2.64 (5-Me), and irradiation at 8 7.20 

(H6 and H7) led to enhancements at 8 2.64 (5-Me) and at 8 2.53 (8-Me), as 

represented in Fig. 2.5. The characteristic infrared absorption at 1531 cm-1 

for a -N02 substituent provided further evidence for product (79). 
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1.0% 

Fig. 2.5 Enhancements(%) from selected n.O.e. experiments for the 

1-nitro aromatic compound (79). 

The third compound eluted, 1 ,4,6,7-tetramethyl-2-nitronaphthalene 

(80), was identified from its 1 Hand 13C n.m.r. spectra which again allowed 

the complete connectivity in the structure to be determined. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, the position of the N02 group was indicated by 

irradiation at 8 2.77 (1-Me) which led to enhancement at 8 7.93 (H8), and 

irradiation at 8 7.57 (H3) which led to enhancement at 8 2.66 (4-Me), as seen 

in Fig. 2.6. The mass spectrum gave a satisfactory parent molecular ion 

Me 

Me 

6.5% 
~ 

H Me 

Fig. 2.6 Enhancements (%)from selected n.O.e. experiments for the 

2-nitro aromatic compound (80). 
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indicating the molecular formula C14H 1sN02 and further evidence for the 

-N02 substituent was seen with the characteristic infrared absorption at 1586 

cm-1. 

The final compound eluted, 4,6, 7 -trimethyl-1-nitromethylnaphthalene 

(81), appeared to be unstable on a silica gel Chromatotron plate and could 

be isolated only in admixture with other materials. The structure of 

compound (81) was assigned from a comparison of its 1 H n.m.r. spectrum 

with that for 4-methyl-1-nitromethyl-naphthalene (83), 4 as outlined in Fig. 2.7. 

1-CH2 

H2,H3 

4-Me 

Me 

(83) 

5.89 

7.37, 7.50 

2.74 

Me 

Me 

1-CH2 

H2,H3 

4-Me 

Me 

(81) 

5.85 

7.25, 7.38 

2.69 

Fig. 2.7 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

and coupling constants for the side-chain nitro derivatives (83) and 

(81). 

In particular, the characteristic 1 H n.m.r. resonance at o 5.85 for the CH2N02 

function provided evidence for product (81 ). 

On monitoring both the +20 and -20° reactions in dichloromethane 

with time, it appeared that the major primary products of the photochemical 

reaction of the 1 ,4,6,7-tetramethylnaphthalene (56) I TNM charge-transfer 
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complex were the nitro/trinitromethyl adducts (75)-(77). Table 2.1 gives an 

overview of product yields in dichloromethane. At -20° adducts (75) and 

(76) decreased with time and there was a corresponding increase in the side­

chain nitro derivative (81). With an increase in temperature to +20° there 

was a decrease in adducts (75)-(77) and a corresponding increase in the 

aromatic compounds (78)-(81 ), especially noticeable in the case of the 

2-nitro aromatic compound (80). 

Me Me 

Me Me 

(75) (76) 

Me 

Me 

Me 

(78) 

Me 

Me N02 

Me 

Me 

(80) 

Me 

Me 

C(N02)3 (02N)3C 

Me 

Me 

Me 

(79) 

Me 

Me 

Me 

(77) 

CH2N02 

(81) 

Me 

Me 
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Table 2.1 OveNiew of product yields from the photolysis of 1 ,4,6, 7 -tetramethylnaphthalene (56) (0.34 mol L -1) and 

TNM (0.68 mol L -1} in dichloromethane. 

Yield(%) 

Conversion Total Unknown Total 

t (h) (%) (75) (76) {77) ad ducts (78) (79) (80) {81) aromatics aromatics 

At +20° 

0.25 16 31.0 3.9 2.0 36.9 2.2 2.3 22.5 28.8 7.3 63.1 

0.5 47 34.6 5.8 1.9 42.3 1.7 3.3 21.1 22.7 8.9 57.1 

1 86 44.8 3.2 2.7 50.7 1.7 3.8 17.0 20.8 6.0 49.3 

2 100 11.3 2.9 2.4 16.6 8.4 5.8 38.2 30.5 0.5 83.4 

At -20° 

0.25 13 69.6 5.6 3.9 79.1 1.1 2.1 3.3 10.9 3.5 20.9 

0.5 26 60.7 5.4 2.9 69.0 1.9 2.6 4.1 20.4 2.0 31.0 

1 58 54.7 4.8 3.1 62.6 3.0 3.2 4.2 25.6 1.4 37.4 

2 100 57.7 1.9 3.2 62.8 2.1 4.0 3.3 26.8 1.0 37.2 

0) 
01 



2.4 Rearrangement of 1 ,4,6,7-Tetramethyl-r-1-nitro-t-4-

trinitromethyl-1 ,4-dihydronaphthalene (75) on Silica Gel 

The nitro/trinitromethyl adduct (75) was adsorbed onto a silica gel 

Chromatotron plate, which was then eluted using first pentane and then 

pentane/ether mixtures. The first material eluted was unreacted nitro/trinitro­

methyl adduct (75), identified from its spectroscopic characteristics. 

Subsequently, three closely related adducts (84)-(86) were eluted. 

Me ... OH 
~ H ~ Me ~ Me Me 

s C(N02h N02 

Me Me Me 
Me Me Me 

(84) (85) (86) 

The second compound eluted, 1 ,4,6,7-tetramethyl-2-trinitromethyl-

1 ,2-dihydronaphthalen-1-ol (84), was isolated only in low yield and failed to 

give a molecular ion in the mass spectrum under a variety of operating 

conditions. However, the substituents present in the structure and its 

connectivity were established from n.O.e. and HMBC experiments, which 

allowed the complete assignment of the 1 Hand 13C n.m.r. spectra. In 

particular, irradiation at 8 4.38 (H2) gave enhancements at 8 1.69 (1-Me) and 

at 8 5.63 (H3), while irradiation at 8 5.63 (H3) gave enhancements at 8 2.11 

(4-Me) and at 8 4.38 (H2), as depicted in Fig. 2.8. Furthermore, the 

locations of the hydroxy and trinitromethyl functions were defined by the 

chemical shifts for the 1-Me (1 H n.m.r. 8 1.69) and C1 (13C n.m.r. 8 72.8), 

and H2 (1 H n.m.r. 8 4.38) and C2 (13C n.m.r. 8 49.3), respectively, as 

presented in Fig. 2.12 (see below). A broad singlet resonance in the 1 H 

n.m.r. spectra at 8 2.45 was observed corresponding to the -OH function. 
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Me 

Me H 

Me ) 

~.1% 

Fig. 2.8 Enhancements(%) from selected n.O.e. experiments for 

compound (84). 

Confirmation of the presence of the two functional groups was provided by 

the characteristic infrared absorptions observed at 3590 cm-1 ( -OH) and at 

1620 and 1593 cm-1 [-C(N02)3]. The stereochemistry of this compound (84) 

remains uncertain, but arguments will be presented below which suggest that 

it has the r-1-hydroxy- c-2-trinitromethyl stereochemistry. 

The third compound eluted, 1 ,4,6, 7 -tetramethyl-2-nitro-1 ,2-dihydro­

naphthalen-1-ol (85}, was again isolated only in low yield and also failed to 

give a parent molecular ion in the mass spectrum under a variety of 

operating conditions. As for the 1-hydroxy-2-trinitromethyl compound (84), 

above, the substituents present and the connectivity in the 1-hydroxy-2-nitro 

compound (85) were established from n.O.e. and HMBC experiments which 

allowed the complete assignment of the 1 Hand 13C n.m.r. spectra. In 

particular, irradiation at o 4.99 (H2) gave enhancements at o 1.52 (1-Me) and 

at o 5.88 (H3), while irradiation at o 5.88 (H3) gave enhancements at o 2.14 

(4-Me) and at o 4.99 (H2), as seen in Fig. 2.9. Furthermore, the location of 

the hydroxy function ipso to the 1-methyl group was indicated by the 1 H 

n.m.r. chemical shift for the 1-Me ( o 1.52) and the 13C n.m.r chemical shift for 

C1 ( o 72.3), while the nitro function located at C2 was indicated by the 1 H 
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3.6% 

Fig. 2.9 Enhancements(%) from selected n.O.e. experiments for 

compound (85). 

n.m.r. chemical shift for H2 (o 4.99) and the 13C n.m.r. chemical shift for C2 

(o 89.7), as observed in Fig. 2.12 (see below). The 1 H n.m.r. spectra of 

adduct (85) contained a singlet resonance at o 2.94 corresponding to the 

-OH function. Further evidence for the two functional groups was provided 

by the characteristic infrared absorptions at 1548 em -1, corresponding to the 

-N0 2 function, and a broad absorption at 3378 cm-1 corresponding to the 

-OH function. The stereochemistry of this compound (85) is uncertain, but it 

seems likely that it has the r-1-hydroxy- c-2-nitro stereochemistry (see below). 

The structure of the final compound eluted was determined by single 

crystal X-ray analysis. A perspective drawing of 1 ,4,6,7-tetramethyl-1 ,2-di­

hydronaphthalene-r-1, c-2-diol (86), C14H 1a02, m.p. 98-98.5° is presented in 

Fig. 2.1 0, and corresponding atomic coordinates are given in Table 5.2 (See 

Chapter 5, Section 5.5). In the solid state the alicyclic ring of diol (86) exists 

in a conformation in which the unsaturated systems are twisted from 

coplanarity [torsional angle: C(3)-C(4)-C(4a)-C(8a) -16.3(2) 0
] and the 

conformation of the remainder of that ring is defined by torsional angles: 

C(4)-C(3)-C(2)-C(1) 37.8(2) 0
; C(4a)-C(8a)-C(1 )-C(2) 35.9(2) 0

• In that 

conformation the C(2)-0(2) bond is staggered with respect to the vicinal 
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0 C(11l 

C(7J Cl12l 
Cl8l 

Fig. 2.1 0 Perspective drawing of compound (86). Double bond shown in 

black. 

C(1 )-0(1) and C(1 )-C(9) bonds [torsional angles: 0(2)-C(2)-C(1 )-0(1) 

-58.9(1 )0
; 0(2)-C(2)-C(1 )-C(9) 60.9(2) 0

], and the peri interactions involving 

the methyl groups on the alicyclic ring are somewhat relieved [torsional 

angles: C(1 O)-C(4)-C(4a)-C(5) -15.1 (2) 0
; C(9)-C(1 )-C(8a)-C(8) -27.3(2) 0

]. It 

is clear that dial (86) exists in a markedly different conformation in solution 

from that observed in the solid state. In the solid state the torsional angle 

H(3)-C(3)-C(2)-H(2) 99.2(1 )0 would be consistent with a vicinal H-H coupling 

constant close to zero. In solution the observed coupling constant JH3,H2 

5.9 Hz would appear more consistent with an alternative twisting of the 

alicyclic ring in which the C(2)-0(2) and C(1 )-C(9) bonds would have 

orientations close to perpendicular to the mean plane of the molecule, 

leading to a H(3)-C(3)-C(2)-H(2) torsional angle close to 30°. In this 

conformation the peri interaction between the C 1-methyl group and the 

adjacent aromatic ring would be minimized. The probable origin of this 

conformational difference in dial (86) in the solid state lies in the hydrogen 

bond between 0(1) and H(2') in a second molecule (Fig. 2.11 ). The 
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z 

Fig. 2.11 Perspective drawing showing the hydrogen bond between 0(1) 

and H(2') in the solid state for compound (86). 

0( 1 )/0(2') distance is 2. 713 A, and the 0( 1 )-H(2')-0(2') angle is 167.2°, 

consistent with a strong hydrogen bond. The remaining spectroscopic data 

for adduct (86) were in accord with the established structure. In particular, 

the Me-C(1)-0H 13C n.m.r. resonance appeared at o 73.05 while the 

Me-C(2)-0H i3C n.m.r. resonance appeared at o 71.1, as outlined in Fig. 

2.12. 

In solution the vicinal coupling constants JH3,H2 are closely similar for 

compounds (84) (5.9 Hz), (85) (6.3 Hz), and (86) (5.9 Hz), as shown in Fig. 

2.12. It is clear therefore that the H3-C3-C2-H2 torsional angles for these 

compounds are similar in solution with the C2-X bond (X= C(N02)3, N02, 

and OH, respectively) perpendicular to the mean plane of the molecule in 

each case. Given the similar ratio of n.O.e. enhancements to H8 and H2 on 

irradiation of the 1-methyl signal in the i H n.m.r. spectra for compounds (84), 

(85) and (86) (see Fig. 2.13), it appears that the three compounds have the 
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H2 
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1-0H 

C1 
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4.99 
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2.14 

2.94 
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89.7 

115.5 

140.3 
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1-Me 
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H3 
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C1 

C2 

C3 

C4 

1.38 

3.84 

5.93 

2.08 

73.05 

71.7 

123.5 

129.7 

Fig. 2.12 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

coupling constants for adducts (84), (85) and (86). 

same stereochemistry with the 1-methyi/H8 distance being greater than the 

1-methyi/H2 distance. Given that diol (86) has been shown by single crystal 

X-ray analysis to have the r-1-c-2-diol stereochemistry, the same 
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Me Me Me 

Me Me Me 

(84) (85) (86) 

Fig. 2.13 N.O.e. enhancements(%) to H8 and H2 on irradiation of the 

1-methyl signal for compounds (84), (85) and (86). 

stereochemistry, r-hydroxy- c-2-X, is assigned tentatively to compounds (84) 

and (85). 

The mode of formation of the three 1 ,4,6,7-tetramethyl-c-2-X-1 ,2-

dihydronapthalen-r-1-ols (84), (85) and (86) (X= C(N02)3, N02, and OH, 

respectively), on adsorption of the nitro/trinitromethyl adduct (75) onto silica 

gel Chromatotron plate, remains uncertain. However, at a superficial level it 

appears that 1 ,3-migration of a trinitromethyl group, to form (84), occurs 

under these conditions. In conclusion, these results imply that 

chromatography of such adducts on silica gel may not give a simple 

chromatographic outcome. 

2.5 The Photochemistry of 1 ,4,6,7-Tetramethylnaphthalene 

(56) in Acetonitrile 

Reaction of 1 ,4,6,7-tetramethylnaphthalene (56) (0.34 mol L-1) I TNM 

(0.68 mol L-1) in acetonitrile at +20°, as above, for 2 h gave a product which 

was shown by 1 H n.m.r. spectra to be a mixture of adduct (77) (1 %), 

aromatic compounds (78)-(81) (total 92%), and further unidentified aromatic 

compounds (total?%). Table 2.2 gives an overview of product yields in 
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Me CH2C(N02)3 N02 Me 

Me Me Me 

Me Me Me 
(02N)3C Me Me Me 

(77) (78) (79) 

Me Me 

Me N02 Me 

Me Me 

Me CH2N02 

(80) (81) 

acetonitrile. After 0.5 h (conversion 33%) the yield of adducts was 

somewhat higher (total15%), but compounds (79) and (80) (total 78%) were 

still predominant among the products detected by 1 H n.m.r. spectroscopy. 

On comparison of the +20° acetonitrile reaction with the +20° 

dichloromethane reaction (see Table 2.1, Section 2.3), it can be seen that the 

adducts were more labile in acetonitrile, with only adduct (77) present after 

2 h in acetonitrile. Adducts (84) and (85), which were not observed in 

dichloromethane, were observed in acetonitrile, but only during the first hour 

of the reaction. It was also of interest to note the increase in the relative 

yields of the ring nitro aromatic compounds (79) and (80), and the decrease 

in the side~chain nitro aromatic (81), in dichloromethane versus acetonitrile. 

Unfortunately, comparisons with the ~20° dichloromethane reaction were not 

possible due to the low solubility of 1 ,4,6,7~tetramethylnaphthalene (56) in 

the more polar acetonitrile at ~20°. 
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Table 2.2 Overview of product yields from the photolysis of 1 ,4,6,7-tetramethylnaphthalene (56) (0.34 mol L-1) 

and TNM (0.68 mol L-1) in acetonitrile, at +20°. 

Yield(%) 

Conversion Total Unknown Total 

t(h) (%) (75) (76) (77) (84) (85) adducts (78) (79) (80) (81) aromatics aromatics 

0.5 33 6.7 2.2 4.8 0.6 0.5 14.8 0.6 28.9 48.8 2.8 4.1 85.2 

1 68 3.3 1.0 3.4 0.6 0.2 8.5 0.9 33.6 51.7 2.7 2.6 91.5 

2 100 1.3 1.3 1.3 33.0 52.9 4.2 7.3 98.7 
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2.6 The Photochemistry of 1.4.6,7-Tetramethylnaphthalene 

(56) in Dichloromethane Containing Trifluoroacetic Acid 

(TFA) 

Reaction of 1 ,4,6,7-tetramethylnaphthalene (56) (0.34 mol L-1 ), TNM 

(0.68 mol L-1 ), and TFA (0.68 mol L-1) in dichloromethane at +20°, as above, 

for 2 h (conversion""' 69%) gave a product which was shown by 1 H n.m.r. 

spectra to be a mixture (see Table 2.3) of 2,3,5,8-tetramethyl-1-nitro-

Table 2.3 Overview of product yields from the photolysis of 1 ,4,6,7 -tetra­

methylnaphthalene (56) (0.34 mol L-1) and TNM (0.68 mol L-1) in 

dichloromethane containing trifluoroacetic acid (0.68 mol L -1 ), at 

+20°. 

Yield(%) 

Conversion Unidentified 

t (h) (%) (79} (80) (81) material 

0.5 16 28.8 44.4 10.0 16.8 

1 33 29.5 48.0 8.5 14.0 

2 69 32.1 48.2 5.9 13.8 

naphthalene (79) (32%), 1 ,4,6,7-tetramethyl-2-nitronaphthalene (80) (48%), 

4,6,7-trimethyl-1-nitromethylnaphthalene (81) (6%) and some unidentified 

material (14%). Notably, neither nitro/trinitromethyl adducts (75)-(77) nor 

4,6,7-trimethyl-1-(2',2\2'-trinitromethyl)-naphthalene (78) were detected in 

this reaction mixture, indicating that the TFA effectively protonated the 

nucleophilic (02N)3C-. Formation of the nitro aromatic compounds (79)-(81) 

were seen as the products of the remaining •No2 with the radical cation of 

1 ,4,6,7-tetramethylnaphthalene (56}. 
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Me Me 

Me Me 

Me Me 

Me Me 

(79) (80) (81) 

2.7 Rearrangement of 1 ,4,6,7-Tetramethyl-r-1-nitro-t-4-

trinitromethyl-1 ,4-dihydronaphthalene (75) in 

(D)Chloroform 

A solution of the nitro/trinitromethyl adduct (75) in (D)chloroform was 

stored at +20° in the dark and its 1 H n.m.r. spectrum monitored at 

appropriate time intervals. Table 2.4 summarises the changes in the 

composition which occurred during the rearrangement of adduct (75). The 

Me 

Me Me Me 

Me Me Me 

C(N02)3 C(N02)3 (02N)3C Me 

(75) (76) (77) 

Me CH2C(N02)3 Me 

Me Me Me 

Me 
1111 N02 

Me Me 

Me CH2N02 

(87) (78) (81) 
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Table 2.4 Rearrangement of 1 ,4,6,7 -tetramethyl-r-1-nitro- t-4-trinitromethyl-

1 ,4-dihydronaphthalene (75) in (D)chloroform, at +20°. 

Composition (%l 

Total Unknown Total 

t (h) (75) (76) (77) (87) ad ducts (78) (81) aromatics aromatics 

0 100 100 

1 96.5 3.5 100 

4 90.0 8.9 0.5 99.4 0.6 0.6 

8 84.2 12.7 2.0 98.9 1.1 1.1 

24 75.6 14.0 6.7 96.3 0.4 3.1 0.2 3.7 

48 52.6 10.0 13.3 79.7 11.5 7.3 1.5 20.3 

120 6.7 1.2 0.5 17.4 26.4 51.5 14.9 7.2 73.6 

168 0.7 10.4 11.1 65.0 12.9 11.0 88.9 

216 0.4 3.9 4.3 72.7 7.5 13.6 95.7 

major products after 12 days were identified from their 1 H n.m.r. spectra as 

4,6,7 -trimethyl-1-(2',2' ,2'-trinitroethyl)-naphthalene (78) (73%) and 4,6,7 -tri­

methyl-1-nitro-methylnaphthalene (81) (7%). In the early stages of the 

rearrangement, epimerization of adduct (75) occurred to give 1 ,4,6,7-tetra­

methyl-r-1-nitro- c-4-trinitromethyl-1 ,4-dihydronaphthalene (76), equilibrium 

apparently being attained some time between 8 hand 24 h [(75):(76) ratio 

c. 5:1]. After some 4 h, the concentration of a third adduct increased, 

reaching a maximum level (17%) after 5 days. This adduct was tentatively 

identified as 1 ,4,6, 7 -tetramethyl-t-2-nitro- r-1-trinitromethyl-1 ,2-dihydro­

naphthalene (87) on the basis of a comparison of its 1 H n.m.r. spectrum with 

that for trans-4-methyl-2-nitro-1-trinitromethyl-1 ,2-dihydronaphthalene (88), 

the structure of which was determined by single crystal X-ray analysis, 6 as 

outlined in Fig. 2.14. Given the closely similar coupling constant JH2,H3, for 
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H1 

H2 

H3 

4-Me 

(88) 

5.73 

5.63 

5.85 

2.20 

1-Me 

H2 

H3 

4-Me 

(87) 

2.08 

5.61 

5.72 

2.09 

Fig. 2.14 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

and coupling constants for adducts (88) and (87). 

the two adducts (88) and (87), it is assumed that the two compounds have 

the same 1 ,2-stereochemistry. Furthermore, in this structure the bulky 1-tri­

nitromethyl group would be expected to adopt a conformation such that the 

C1-C(N02)3 bond was nearly perpendicular to the plane of the aromatic ring. 

Given the magnitude of the coupling constant JH2,H3 6.1 Hz, it appears that 

the C2-N02 bond was close to anti-coplanar with the C1-C(N02)3 bond, and 

that adduct (87) therefore had the t-2-nitro- r-1-trinitromethyl configuration. 
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2.8 The Rearrangement of 1 ,4,6,7-Tetramethyl-r-1-nitro-t-4-

trinitromethyl-1 ,4-dihydronaphthalene (75) in Acetonitrile 

A quantitative study of the rearrangement of the nitro/trinitromethyl 

adduct (75} in acetonitrile was limited by the low solubility of adduct (75) in 

that solvent. However, epimerization of adduct (75) to give the r-1-nitro-c-4-

trinitromethyl adduct (76) was clearly a rapid reaction with the concurrent 

formation of the rearrangement product 4,6, 7 -trimethyl-1-nitromethyl­

naphthalene (81). These observations parallel closely the analogous 

rearrangement of 1 ,4-dimethyl- r-1-nitro- t-4-trinitromethylnaphthalene (13) 

reported by Eberson et a/.4 (See Chapter 1, Section 1.11 ). In the early 

Me 

Me Me Me 

Me Me Me 
C(N02b C(N02)s (02N)sC Me 

(75) (76) (77) 

CH2C(N02)s 

Me Me Me 
C(N02h N0 2 

Me Me Me 

Me Me Me 

(84) (85) (78) 

N02 Me Me Me 

Me Me N02 Me 

Me Me Me 

Me Me CH 2N02 

(79) (80) (81) 
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stages of the rearrangement (1-5 min.) two further adducts were present, 

1 ,4,6, 7 -tetramethyl-c-2-trinitromethyl-1 ,2-dihydronaphthalen- r-1-ol (84) and 

1 ,4,6,7-tetramethyl-c-2-nitro-1 ,2-dihydronaphthalen-r-1-ol (85). A further 

adduct, cis-2,3,5,8-tetramethyl-1-nitro-4-trinitromethyl-1 ,4-dihydro­

naphthalene (77), was present at low levels (maximum 3%) at reaction times 

between 3 min. and 2 h. During the course of the rearrangement (over 4 h) 

the concentration of adducts (75), (76), (84) and (85) decreased steadily with 

the formation of increasing amounts of the nitro aromatic compounds giving 

finally 4,6, 7 -trimethyl-1-(2' ,2' ,2'-trinitroethyl)-naphthalene (78) ( 1% ), 2,3,5 ,8-

tetramethyl-1-nitronaphthalene (79) (14%), 1 ,4,6,7-tetramethyl-2-nitro­

naphthalene (80) (52%), 4,6,7-trimethyl-1-nitromethylnaphthalene (81) (27%) 

and unidentified aromatic products (total 6%). 

2.9 Overview of the Photonitration of 1 ,4,6,7-Tetramethyl­

naphthalene (56) 

In the photolysis of the 1 ,4,6,7-tetramethylnaphthalene (56) I TNM 

charge-transfer complex it appears that the nitro/trinitromethyl adducts (75)­

(77) were the major primary products. For the reaction in dichloromethane 

Me Me 

Me Me 

(75) (76) 

Me 

Me 
C(N02)3 (02N) 3C 

Me 

Me 

(77) 

at -20° (see Table 2.1, Section 2.3) adduct formation dominates and of the 

total adducts identified (63%), the majority (60% out of 63%) were formed by 
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attack of (02N)sC- at C1 of the 1 ,4,6,7-tetramethylnaphthalene radical 

cation, the remainder (3%) arose by attack of (02N)sC- at C5 on that radical 

cation (See Fig. 2.15). 

Me 

Me 

Me 
1M~ 

63% 

Fig. 2.15 Adducts (%) identified corresponding to attack of (02 N)sC- on the 

1 ,4,6,7-tetramethylnaphthalene radical cation. 

It therefore appears that the first chemical step leading to adduct 

formation disfavours the formation of the benzylic radicals (61) and (62), 

Me Me 

Me 

Me 

Me Me 

(61) (62) 

formed via attack of (02N)sC- at C2 or C6, respectively, on the radical cation 

of 1 ,4,6,7-tetramethylnaphthalene. Instead the favoured pathway is via 

formation of the phenylallylic radical (59), but also with some of the 

phenylallylic radical (60). These radicals were formed by attack of the 

(02N)sC- at C1 and C5, respectively, on the 1 ,4,6,7-tetramethylnaphthalene 

radical cation. 
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Me 

Me 

Me 

Me 

(59) (60) 

Although the identification of adduct (77) is somewhat uncertain, it is 

interesting that this adduct was formed by (02N)3C- attack at C5, the ring 

position hindered by the vicinal and peri-methyl substituents. Steric 

interactions were predicted to favour attack of (02N)sC- at C1 over C5, with 

attack of (02N)3C- at C1 only having to overcome the ipso interaction with 

the methyl group. 

Attack of (02 N) sc- on the 1 ,4,6,7 -tetramethylnaphthalene radical 

cation was indeed found to give mainly the delocalized carbon radical (59) 

but also some of the isomeric radical (60), as illustrated in Scheme 2.11. 

The final adduct-forming steps involved coupling of the delocalized carbon 

Me 

Me 

XJQ' Me 
.N02 

Me 
(02NhC" 

I at C1 atC4 
Me 2 Me 

1 " 
Me C(N02h Me~ C(N02h 

J(O,NbC" (59) (75} and (76) 

at C5 

Me 

Me 

·No2 
Me 

atC4 
Me 

Me 02N 

(60) (77) 

Scheme 2.11 
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radicals with •No2. Coupling with C-N bond formation occurred with the 

phenylallylic radical (59) at C4 to give the epimeric nitro/trinitromethyl 

adducts (75) and (76), and with the phenylallylic radical (60) at C4 to give the 

cis-1-nitro-4-trinitromethyl adduct (77). 

Reactions in dichloromethane and acetonitrile at +20° (see Tables 2.1 

and 2.2, Sections 2.3 and 2.5, respectively) were characterized by low 

adduct yields and clear indications of adduct instability were observed, 

especially in acetonitrile. Subsequently, it was found that many of the 

observed products were formed by rearrangement of adduct (75). 

The rearrangement study of adduct (75) in (D)chloroform (see Table 

2.4, Section 2.7) proved to be invaluable in understanding many of the 

observed results. In the early stages of the rearrangement it was clear that 

epimerization occurred to give adduct (76), presumably via the intermediate 

nitrocyclohexadienyl cation/trinitromethanide ion pair (89), as summarized in 

Scheme 2.12. This was accompanied by formation of the side-chain nitro 

Me Me Me 

Me Me Me 

(75) (76) 

Scheme 2.12 

compound (81). Initially, loss of nitroform from the intermediate nitrocyclo­

hexadienyl cation/trinitromethanide ion pair (89), would occur by abstraction 

of an acidic proton from the methyl group by (02N)3C-, as shown in Scheme 

2.13. This would be followed by homolytic cleavage of the C-NO 2 bond in 

diene (90). Subsequent coupling of •No2 with the resulting radical (91) 

would lead to the formation of the side-chain nitro compound (81 ). This 
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Me Me NO, Me:ci}' Me Me 
-HC(N02h 0 I 

Me Me Me 

Me (02N)3c- CH2 

(75) and (76) (89) (90) 

homolysis! 
of C-N02 

bond 

Me Me 

Me 
*N02 

Me 

Me Me 

CH2N02 .CH2 

(81) (91) 

Scheme 2.13 

behaviour mirrors closely the rearrangement of 1 ,4-dimethyl-r-1-nitro- t-4-

trinitromethyl-1 ,4-dihydronaphthalene (13)4 (See Chapter 1, Section 1.11). 

Early in the rearrangement a further adduct, 1 ,4,6,7-tetramethyl-t-2-nitro-r-1-

trinitromethyl-1 ,2-dihydronaphthalene (87), was detected. Adduct (87) was 

seen as arising by homolytic cleavage of the C-N02 bond in either adduct 

(75) or adduct (76), with recombination of the radical species occurring on 

the less hindered face of the delocalized carbon radical (59) at C2, anti to the 

bulky trinitromethyl group, as depicted in Scheme 2.14. The detection, at 

Me 

Me 

Me 
C(N0 2)a 

(75) or (76) (59) (87) 

Scheme 2.14 
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. low levels, of cis-2,3,5,8-tetramethyl-1-nitro-4-trinitromethyl-1 ,4-dihydro­

naphthalene (77) was a clear indication that one or more of the adducts 

present in the rearrangement mixture was capable of reverting to some 

equivalent of the triad [ArH•+ (02N)sC- •N02] in the original photochemical 

reaction. In the latter stages of the rearrangement the amount of adduct 

(77) remained at a low level, but adduct {87) clearly reacted further under the 

prevailing reaction conditions. Indeed, adduct (87) was seen as the 

precursor of the major final product, the side-chain trinitromethyl aromatic 

(78). A possible mechanism for this transformation is given in Scheme 2.15. 

Loss of nitrous acid from adduct (87) would yield the trinitromethyl diene (92), 

which might be expected to rearrange via the ion pair (93) to give the side­

chain trinitromethyl compound (78). 

+CH2 

Me Me 

Me Me 

Me 

(87) (92) 
(02NhC-

(93) 

j 
CH2C(N02h 

Me 

Me 
Me 

(78) 

Scheme 2.15 

The rearrangement of adduct {75) in acetonitrile at +20° (see Section 

2.8) gave rise predominantly to the nitro aromatic compounds (79)-(81) (total 
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93%), while the remainder of the products (7%) were unidentified aromatics. 

Based on a comparison of the relative yields of aromatic products from the 

photochemical reaction in acetonitrile (see Table 2.2, Section 2.5) and the 

products of the rearrangement of the nitro/trinitromethyl adduct (75) in 

acetonitrile (see Section 2.8), it appears that most of the nitro aromatics (79) 

and (80) may arise by direct coupling of •No2 with the radical cation of 

1 ,4,6,7-tetramethylnaphthalene. Comparison of the photochemical reactions 

in acetonitrile (see Table 2.2, Section 2.5) and in dichloromethane containing 

TFA (see Table 2.3, Section 2.6) showed that the relative yields of aromatic 

products (79) and (80) were very similar. In the presence of TFA (02N)sC­

was protonated leaving only the radical coupling reaction. Therefore the 

photolysis reaction in dichloromethane containing TFA provided further 

evidence for direct coupling of •No2 with the radical cation of 1 ,4,6,7-tetra­

methylnaphthalene to form products (79) and (80). 

In conclusion, it appears that the phenylallylic type radicals were 

favoured over the benzylic type radicals and that steric effects further 

directed the attack of (02N)sC- towards less hindered ring positions. 

2.10 The Photolysis of 2,6-Dimethylnaphthalene (57) 

General procedure for the photonitration of 2,6-dimethy/naphtha/ene (57) 

with TNM. 

A solution of 2,6-dimethylnaphthalene (57) (500 mg, 0.4 mol L -1) and 

TNM (0.8 mol L -1) in dichloromethane or acetonitrile was irradiated at +20 or 

-20° with filtered light (Acut-ott<435 nm) and small samples were withdrawn 

for analysis at suitable intervals. The work-up procedure, involving 

evaporation of solvent and TNM, was conducted at ~0°. The crude product 

mixtures were stored at -20° and were analysed by 1 H n.m.r. spectroscopy 
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as soon as possible (For complete experimental details see Chapter 5, 

Section 5.2.2). 

2.11 The Photochemistry of 2,6-Dimethylnaphthalene (57) in 

Dichloromethane 

2. 11. 1 Photochemistry in dichloromethane at +20° and identification of 

adducts. 

A solution of 2,6-dimethylnaphthalene (57) (0.4 mol L-1) and TNM (0.8 

mol L-1) in dichloromethane was irradiated at +20° until the deep red/brown 

colour of the charge-transfer band was bleached. The composition of the 

reaction mixture was monitored by withdrawing samples for 1 H n.m.r. 

spectral analysis. After work-up, the final solution (after 2 h, conversion 

= 95%) was shown to contain a mixture of adducts (94)-(1 04) (total 77%), 

aromatic compounds ( 1 05)-( 1 07) (total 19%), and other unidentified 

compounds (total 4%). The adducts were separated partially by h.p.l.c. on a 

cyanopropyl column using hexane/dichloromethane mixtures as the eluting 

solvents. In the following discussion the identification of the adducts will be 

Me Me 

Me Me Me 
(02N)sC 

(94) (95) (96) 

Me Me Me 

Me Me Me 
(02N)sC 02N 

(97) (98) (99) 
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(105) 

Me 

Me 

(103) 
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H /G._ 
02N N02 

(101) 

Me 

(107) 

N02 

described for groups of compounds, rather than in the order of elution given 

in the Experimental section (See Chapter 5, Section 5.2.2). 

Adducts (94) and (1 01). 

Adduct (94) was only isolated in admixture with adduct (95), the 

structure of which was determined by single crystal X-ray analysis. Adduct 

(94), identified as trans-3, 7 -dimethyl-2-nitro-1-trinitromethyl-1 ,2-dihydro­

naphthalene, was unstable in solution and underwent thermal cycloaddition 

of a nitro group of the trinitromethyl group with the C3/C4 alkene function to 

give the nitro cycloadduct (1 01 ), the structure of which was determined by 

single crystal X-ray analysis. The structure of adduct (94) was therefore 

assigned on the basis of (i) a comparison of its 1 H n.m.r. spectrum with the 

spectral features for trans-4-methyl-2-nitro-1-trinitromethyl-1 ,2-dihydro-
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naphthalene (88), the structure of which was determined by single crystal X­

ray analysis, 6 as seen in Fig. 2.16; and (ii) the cycloaddition reaction to give 

the nitro cycloadduct (101), as discussed below and in Section 2.13. The 

H1 

H2 

H3 

4-Me 

(88) 

5.73 

5.63 

5.85 

2.70 

H1 

H2 

3-Me 

H4 

H~1.5Hz 

Me 

(94) 

5.67 

5.41 

2.05 

6.53 

Fig. 2.16 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

and coupling constants for adducts (88) and (94). 

characteristic 1 H n.m.r. signals due to the CHC(N02)3 (8 5.67) appeared as a 

broad singlet and the CH N02 (8 5.41) appeared as a doublet ( JH2,H1 1.4 Hz). 

The vicinal coupling constant JH2,H1 1 .4 Hz suggests that the dihedral angle 

between H2 and H1 is""' 70°. This implies that the bonds to the trinitro­

methyl and nitro groups must be close to perpendicular to the plane of the 

ring. If the trinitromethyl and nitro groups were to lie in the plane of the ring 

the expected coupling constant would be much larger as the angle between 

H1 and H2 would be "" 180° and by the Karplus equation this would 

correspond to JH2,H1 12 Hz. 

89 



The structure of the nitro cycloadduct (1 01) was determined by single 

crystal X-ray analysis. A perspective drawing of the nitro cycloadduct (1 01 ), 

C13H12N40s, m.p. 169° (dec.) is presented in Fig. 2.17, and the 

0(32) 

Fig. 2.17 Perspective drawing of the nitro cycloadduct (1 01 ). 

corresponding atomic coordinates are given in Table 5.5 (See Chapter 5, 

Section 5.5). In the formation of the heterocyclic cage structure it is clear 

that the nitrogen atom N(1) of the planar nitro group involved in the 

cycloaddition reaction assumes a trigonal pyramidal geometry in the nitro 

cycloadduct (101), accounting for some of the changes observed in the bond 

lengths of the nitro cycloadduct (101). Some of the bond lengths of interest 

are shown in Table 2.5. In particular, there is a substantial lengthening of 

the N(1}-0(11) and N(1)-0(12) bonds (which is the nitro group involved in the 

cycloaddition}, increasing from the typical nitro N-0 bond length of= 1.214(3} 

to""' 1.409(2) A. Similarly, the C(11)-N(1) bond length is shortened in 
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Table 2.5 Selected bond lengths of the nitro cycloadduct (101). 

Bonds Bond Lengths (A) Bonds Bond Lengths (A) 

N(1 )-0(11) 1.403(2) N(4)-0(42) 1.211 (3) 

N(1)-0(12) 1.414(2) C(11 )-N(1) 1.485(3) 

N(2)-0(21) 1.209(3) C(11 )-N(2) 1.520(3) 

N(2)-0(22) 1.216(3) C(11 )-N(3) 1.534(3) 

N(3)-0(31) 1.209(3) C(3)-N(4) 1.505(3) 

N(3)-0(32) 1.212(3) C(1 )-0(11) 1.470(3) 

N(4)-0(41) 1.217(3) C(2)-0(12) 1.466(3) 

comparison with the normal C-N02 bond length. For example the 

C(11 )-N(1) bond length was 1.485(3) A whereas the typical C-N02 bond 

length can be compared to C(11 )-N(2) 1.520(3) A, C(11 )-N(3) 1.534(3) A and 

C(3)-N(4) 1.505(3) A. The shortening of this bond points to an increased 

bond order due to some donation of the N(1) lone pair towards the carbon 

C(11) in an attempt to stabilise the electron withdrawing effect of the two nitro 

groups on C(11) involving N(2) and N(3). The bond lengths from the 

C(1 )-0(11) and C(2)-0(12) of 1.470(3) A and 1.466(3) A, respectively, are 

typical for a C-0 bond. Similar results have been observed for analogous 

heterocyclic cage structures formed via photolyses of substituted 

naphthalene and benzene compounds with TNM.5-10 

In the context of confirming the structure of the nitro/trinitromethyl 

adduct (94), the C(4)-C(11) bond in the nitro cycloadduct (1 01) was close to 

anti to the C(3)-N(4) bond, pointing to a trans-2-nitro-1-trinitromethyl stereo­

chemistry for adduct (94) [torsional angle: N(4)-C(3)-C(4)-C(11) -173.0(2) 0
]. 

The spectroscopic data for the nitro cycloadduct (1 01) were consistent 

with the established structure. The characteristic 1 Hand 13C n.m.r. data are 

presented in Fig. 2.18. N.O.e. experiments confirmed the assignments of 
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the chemical shifts for the protons. In particular, irradiation at o 2.07 (2-Me) 

gave enhancements at o 5.19 (H1) and at o 5.64 (H3), while irradiation at 

o 5.64 (H3) gave enhancements at o 2.07 (2-Me) and at o 5.17 (H4), as 

shown in Fig. 2.18. Furthermore, the nitro function was indicated by the 13C 

chemical shift for C3 ( o 84.1) and the cyclized trinitromethyl function by the 

13C n.m.r. chemical shift for C4 (o 46.2). These assignments were 

confirmed by an HMBC experiment. The observed coupling constant JH3,H4 

4.0 Hz was consistent with the existence of the molecule in the same 

confirmation in the solid state and in solution. 

H1 

2-Me 

H3 

H4 

Me 

2.8% 

(1 01) 

5.19, s 

2.07, s 

5.64, d, J=4.0 Hz 

5.17, d, J=4.0 Hz 

C1 

C2 

C3 

C4 

1.1% 

85.7 

86.3 

84.1 

46.2 

Fig. 2.18 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements (%) from selected n.O.e. experiments for the nitro 

cycloadduct (1 01 ). 
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Adducts (1 02) and (1 04). 

The trans-3, 7 -d imethyl-1-tri n itromethyl-1 ,2 -dihydron ap hthalen-2 -ol 

(102), obtained from h.p.l.c., always contained significant amounts of the 

hydroxy cycloadduct (104), the structure of which was determined by single 

crystal X-ray analysis. Presumably this was due to cycloaddition of the 

hydroxy/trinitromethyl adduct (1 02) in the h.p.l.c. solvents after separation 

and prior to their removal under reduced pressure. The structure of adduct 

(1 02) was assigned on the basis of (i) a comparison of its 1 H n.m.r. spectra 

with the spectroscopic data for adduct (94), as seen in Fig. 2.19; and (ii) the 

cycloaddition reaction to give the hydroxy cycloadduct (1 04), as discussed 

below and in Section 2.14. In particular, the 1 H n.m.r. signals due to adduct 

(102) were all shifted upfield relative to adduct (94), due to the presence of 

the -OH function. 

Me 

H1 

H2 

3-Me 

H4 

(94) 

5.67 

5.41 

2.05 

6.53 

Me 

H1 

H2 

3-Me 

H4 

(102) 

4.58 

4.78 

1.91 

6.23 

Fig. 2.19 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

for adducts (94) and (1 02). 
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The structure of the hydroxy cycloadduct (104), C1sH1sNs0?, m.p. 183-

1840, was determined by single crystal X-ray analysis. A perspective 

drawing of the hydroxy cycloadduct (1 04) is presented in Fig. 2.20, and 

Fig. 2.20 Perspective drawing of the hydroxy cycloadduct (1 04). 

corresponding atomic coordinates are given in Table 5.6 (See Chapter 5, 

Section 5.5). The structure is closely similar to that of the nitro cycloadduct 

(1 01 ), including even the conformations of the geminal nitro groups. Similar 

to the nitro cycloadduct (1 01 ), the bond length of the C(11 )-N(1) bond 

[1.477(7) A] is significantly shorter than the C(11 )-N(2) [1.526(7) A] and the 

C(11 )-N(3) [1.543(7) A] bond lengths, reflecting the structure of the 

heterocyclic cage. The C(4)-C(11) bond in the hydroxy cycloadduct (1 04) is 

close to anti to the C(3)-0(4) bond [torsional angle: 0(4)-C(3)-C(4)-C(11) 

-169.0(4)0
], thus indicating the trans-2-hydroxy-1-trinitromethyl structure for 

the hydroxy/trinitromethyl adduct (102). 
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The spectroscopic data for the hydroxy cycloadduct (1 04) were in 

accord with the established structure. An infrared absorption was observed 

at 3415 cm-1, which is characteristic for an -OH function. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at 8 1.75 (2-Me) gave enhancements at 

8 4.75 (H3) and at 8 4.93 (H1), as presented in Fig. 2.21. The characteristic 

1 Hand 13C n.m.r. data are also presented in Fig. 2.21. In particular, 13C 

n.m.r. resonances for the hydroxy function attached to C3 appeared at 

8 70.6, while the cyclized trinitromethyl function attached to C4 appeared at 

8 48.8. These assignments were confirmed by an HMBC experiment. 

H1 

2-Me 

H3 

H4 

Me 

4.93, s 

1.75, s 

4.75, d, JHs,oH=3.9 Hz 

4.73, s 

(104) 

C1 

C2 

C3 

C4 

84.7 

87.7 

70.6 

48.8 

Fig. 2.21 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements(%) from a selected n.O.e. experiment for the 

hydroxy cycloadduct (104). 
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Adducts (95), (97), (98), and (1 03). 

The structure of adduct (95) was determined by single crystal X-ray 

analysis. A perspective drawing of the trans-2,6-dimethyl-1-nitro-4-trinitro­

methyl-1 ,4-dihydronaphthalene (95), C13H 12N40a, m.p. 104° (dec.), is 

presented in Fig. 2.22, and the corresponding atomic coordinates are 

Fig. 2.22 Perspective drawing of adduct (95). Double bond shown in black. 

presented in Table 5.3 (See Chapter 5, Section 5.5). In the solid state the 

alicyclic ring exists in a somewhat distorted boat conformation [torsional 

angles: C(2)-C( 1 )-C(8a)-C( 4a) 21 . 7(3) 0
, C(3) -C(4 )-C(4a) -C(8a) -15.6(3) 0

]. 

This indicates that the trinitromethyl group adopts an orientation such that the 

C(4)-C(11) bond is close to perpendicular to the plane of the aromatic ring 

[torsional angle: C(5)-C(4a)-C(4)-C(11) -75.5(2) 0
]. The trans orientation of 

the nitro group is indicated by the C(1 )-N(1) bond orientation [torsional angle: 

N(1 )-C(1 )-C(8a)-C(8) -38.3(2) 0
]. 

96 



The spectroscopic data for adduct (95) were in accord with the 

established structure. In particular, the CH-C(N02)3 resonance appeared at 

8 45.4, while the CH-N02 resonance appeared at 8 87.0. These 

assignments were confirmed by an HMBC experiment (See summary in Fig. 

2.23). N.O.e. experiments confirmed the assignments of the chemical shifts 

Me 

(95) 

H1 6.13, br s 

2-Me 1.97, d, J=1.5 Hz 

H3 6.29, dq, J=3.0 Hz, J'=1.5 Hz 

H4 5.35, br s 

C1 

C2 

C3 

C4 

1.1% 

87.0 

138.1 

119.2 

45.4 

Fig. 2.23 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for adduct 

(95). 

for the protons. Specifically, irradiation at 8 1.97 (2-Me) gave enhancements 

at 8 6.13 (H 1) and at 8 6.29 (H3), while irradiation at 8 6.29 (H3) gave 

enhancements at 8 1.97 (2-Me) and at 8 5.35 (H4), as observed in Fig. 2.23. 

The 1 H n.m.r. coupling constants for adduct (95) were as expected for the 

established structure and consistent with the existence of the molecule in the 

same conformation in the solid state and in solution, also seen in Fig. 2.23. 
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The structure of the epimeric adduct (97) was also determined by single 

crystal X-ray analysis. A perspective drawing of the cis-2,6-dimethyl-1-nitro-

4-trinitromethyl-1,4-dihydronaphthalene (97), C13H12N40a, m.p. 134-136°, is 

presented in Fig. 2.24, and the corresponding atomic coordinates are 

Fig. 2.24 Perspective drawing of adduct (97). Double bond shown in black. 

presented Table 5.4 (See Chapter 5, Section 5.5). In the solid state the ring 

conformation of adduct (97} is closely similar to its epimer (95}, with the 

alicyclic ring also in a somewhat distorted boat conformation [torsional 

angles: C(2)-C( 1 )-C(8a)-C(4a) 14.0( 4) 0
, C(3)-C(4 )-C(4a)-C(8a) -17 .0(4 )0

]. 

Once again, the trinitromethyl group clearly adopts an orientation such that 

the C(4)-C(1) bond is close to perpendicular to the plane of the aromatic ring 

[torsional angle: C(5)-C(4a)-C(4)-C(11) -76.8°]. However, the orientation of 

the C(1 )-N(1) bond differs significantly due to the cis-stereochemistry 

[torsional angle: N(1 )-C(1 )-C(8a)-C(8) 73.1 (3)0
]. 
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The spectroscopic data for adduct (97) were in accord with the 

established structure. The 1 Hand 13C n.m.r. data were confirmed by n.O.e. 

and HMBC experiments, and from comparison with the spectroscopic data 

for its epimer (95). A summary of some of the characteristic data is outlined 

in Fig. 2.25, and is consistent with their assignment as epimers. 

Me 

H1 

2-Me 

H3 

H4 

C1 

C2 

C3 

C4 

(95) 

6.13 

1.97 

6.29 

5.35 

87.0 

138.1 

119.2 

45.2 

H1 

2-Me 

H3 

H4 

C1 

C2 

C3 

C4 

(97) 

5.78 

2.08 

6.47 

5.30 

85.3 

137.2 

121.4 

44.9 

Fig. 2.25 Comparison of the characteristic 1 Hand 13C n.m.r. resonances 

(in ppm) and coupling constants for adducts (95) and (97). 

It is interesting to note that the elution order on h.p.l.c. of compounds 

(95) and (97) is consistent with the pattern observed in earlier studies of 

substituted naphthalenes where, r-1-nitro- t-4-trinitromethyl-1 ,4-dihydro-

THE LIBFIAA'f 
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naphthalenes were eluted ahead of their corresponding r-1-nitro-c-4-trinitro­

methyl epimers. 5,6,9 

Adduct (98) could not be induced to give crystals of adequate quality for 

single crystal X-ray analysis and hence its identification as cis-2,6-dimethyl-

4-trinitromethyl-1 ,4-dihydronaphthalen-1-ol (98) was based on a comparison 

of its 1 H n.m.r. spectroscopic data with the stereochemically related nitro 

adduct (97), the structure of which was determined by single crystal X-ray 

analysis, as illustrated in Fig. 2.26. The chemical shifts of the aromatic 

Me 

H1 

2-Me 

H3 

H4 

H5 

(97) 

5.78 

2.08 

6.47 

5.30 

6.97 

H1 

2-Me 

H3 

H4 

H5 

(98) 

4.79 

2.02 

6.02 

5.16 

6.95 

Fig. 2.26 Comparison of the characteristic 1 H n.m.r. resonances {in ppm) 

and coupling constants for adducts {97) and (98). 

protons H5 [{97), a 6.97; (98), a 6.95], upfield of the normal range for 

aromatic protons, are characteristic of compounds with an aromatic proton 

peri to a 4-trinitromethyl function. Given the closely similar coupling 

constant JH3,H4 for the two adducts (97) and (98), as seen in Fig. 2.26, it is 
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assumed that the two compounds have the same 1 ,4-stereochemistry and 

that the difference between the two compounds lies only in the nature of the 

C1-substituent. An infrared absorption was observed at 3416 cm-1 for the 

hydroxy adduct (98), indicating the presence of an -OH function. In the nitro 

adduct (97) the 1 H n.m.r. signal for H1 appears at o 5.78, but in the hydroxy 

adduct (98) H1 is located upfield at o 4.79, consistent with the difference in 

the substituent at C1. 

Crystals of adduct (1 03) were of inadequate quality for single crystal X­

ray analysis and therefore its identification as trans-2,6-dimethyl-4-trinitro­

methyl-1 ,4-dihydronaphthalen-1-ol ( 1 03} was based on a comparison of its 

1 H n.m.r. spectroscopic data with its epimer (98). The close similarity 

between the spectroscopic data for compounds (98) and (1 03) is depicted in 

Fig. 2.27, and was consistent with their assignment as epimers. 

Me 

H1 

2-Me 

H3 

H4 

H5 

(98) 

4.79 

2.02 

6.02 

5.16 

6.95 

H1 

2-Me 

H3 

H4 

H5 

(1 03) 

4.96 

2.04 

6.00 

5.19 

7.02 

Fig. 2.27 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

and coupling constants for adducts (98) and (103). 
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Furthermore, the presence of the ~OH function was indicated by an infrared 

absorption at 3452 cm~1 in adduct (103). 

The relatively early elution of the cis-1-hydroxy-4-trinitromethyl 

compound (98} is of interest in the context of the more usual elution order 

(see above) for analogous 1-nitro-4-trinitromethyl adducts. This unusual 

elution order for the 1-hydroxy-4-trinitromethyl ad ducts is ascribed to the 

inherently more hindered environment of the hydroxy group in the cis-1 -

hydroxy-4-trinitromethyl compound (98) compared with that of the trans-1-

hydroxy-4-trinitromethyl epimer (1 03). Given the apparent conformational 

control exerted by the trinitromethyl group in the 1-nitro-4-trinitromethyl 

adducts (95) and (97), it is reasonable to assume that the conformation of the 

cis-1-hydroxy-4-trinitromethyl adduct would be similar to that found for the 

cis-1-nitro-4-trinitromethyl adduct (97) (see Fig. 2.24) except for the obvious 

replacement of the nitro by a hydroxy group. In such a conformation, the 

hydroxy group in the cis-1-hydroxy-4-trinitromethyl epimer (98) would be 

significantly more hindered than that for the trans-1-hydroxy-4-trinitromethyl 

epimer (1 03), which would resemble the trans-1-nitro-4-trinitromethyl adduct 

(95) (see Fig. 2.22) in conformation. The hydroxy group in the trans-1-

hydroxy-4-trinitromethyl adduct (1 03) would therefore be more exposed for 

adsorption to a chromatographic substrate leading to a longer retention time 

on h.p.l.c. 

Adducts (96), (99), and (1 00). 

Adduct (96} gave crystals of inadequate quality for single crystal X-ray 

analysis and its identification as trans-3, 7 -dimethyl-1-nitro-4-trinitromethyl-

1 ,4-dihydronaphthalene (96) was based pn its spectroscopic data. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. Specifically, irradiation at B 2.11 (3-Me) gave enhancements at 

B 5.33 (H4) and at B 6.29 (H2), while irradiation at B 6.29 (H2) gave 

102 



enhancements at <5 2.11 (3-Me) and at <5 6.18 (H1 ), as represented in Fig. 

2.28. HMBC experiments allowed the complete assignment of the 13C 

H1 

H2 

3-Me 

H4 

Me 

6.18, m 

6.29, m 

2.11, m 

5.33, br s 

H 

H~.6% 

(96} 

C1 

C2 

C3 

C4 

0.7% 

83.6 

128.7 

132.1 

49.5 

Fig. 2.28 Characteristic 1 H and 13C n.m.r. resonances (in ppm) and n.O.e. 

enhancements (%)for adduct (96). 

n.m.r. spectra. In particular, the locations of the nitro and the trinitromethyl 

functions were defined by the chemical shifts for C1 (<5 83.6) and C4 (<5 49.5), 

respectively. The trans-1-nitro-4-trinitromethyl stereochemistry was 

assigned to adduct (96) on the basis of its elution earlier than its cis-1-nitro-4-

trinitromethyl stereoisomer (99), and the known h.p.l.c. elution order for such 

pairs of stereoisomers as seen earlier for adducts (95) and (97) and in 

previous examples. 5,6,9 

Adduct (99) was isolated in low yield and then only as an impure oil. 

The identification of cis-3, 7 -dimethyl-1-nitro-4-trinitromethyl-1 ,4-dihydro­

naphthalene (99) was based on comparison of its 1 H n.m.r. spectra with its 
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epimeric adduct (96). The two sets of spectroscopic data for adducts (96) 

and (99) were closely similar and consistent with their assignment as 

epimers, as illustrated in Fig. 2.29. The signal assigned to H5 appeared as 

Me 

H1 

H2 

3-Me 

H4 

H5 

(96) 

6.18 

6.29 

2.11 

5.33 

Me 

H 

7.21-7.22 

Me 

H1 

H2 

3-Me 

H4 

H5 

(99) 

Me 

H 

5.82 

6.48 

2.10 

5.40 

7.07 

Fig. 2.29 Comparison of the characteristic ; H n.m.r. resonances (in ppm) 

for adducts (96) and (99}. 

a doublet (JH5,H6 7.9 Hz) at o 7.07, pointing to the presence of the 

trinitromethyl group at C4 on the 3,7-dimethylnaphthalene skeleton. 

Furthermore, a change in coupling constant was observed between adduct 

(99) and the similar cis-1-nitro-4-trinitromethyl adduct (97), lacking the 3-

methyl-4-trinitromethyl interaction (See Fig. 2.30). The increase in coupling 

constant, from JHs,H4 4.9 Hz for adduct (97) to JH; ,H2 6.3 Hz for adduct {99), 

is presumably due to conformational changes in adduct (99) induced by 

steric interactions between the 4-trinitromethyl group and the adjacent 

3-methyl group. These changes would be expected to lead to a more 
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Me Me 

(97) (99) 

Fig. 2.30 Comparison of a characteristic coupling constant for adducts (97) 

and (99). 

extreme boat conformation in adduct (99), leading to some reduction in the 

H 1-C 1-C2-H2 torsional angle and hence a somewhat larger coupling 

constant. 

The nitro cycloadduct (1 00) was isolated in small quantities and then 

only in admixture with its structural isomeric nitro cycloadduct (101), the 

structure of which was determined by single crystal X-ray analysis. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. Specifically, irradiation at o 1.94 (3-Me) gave enhancements at 

8 5.29 (H4) and at o 5.66 (H2), while irradiation at o 5.64 (H2)/(H1) gave 

enhancements at o 1.94 (3-Me) and at o 7.07 (H8), as depicted in Fig. 2.31. 

13C n.m.r. data were confirmed by an HMBC experiment, also seen 

Fig. 2.31. In particular, the nitro function attached to C3 appeared at o 87.1, 

while the cyclized trinitromethyl function attached to C4 appeared at o 48.1. 

The stereochemistry of the nitro cycloadduct (1 00) was assigned on 

comparison with the related nitro cycloadduct (108),5 as observed in 

Fig. 2.32. The coupling constants, JH1 ,H2 and JH2,H4. between the two nitro 

cycloadducts (109) and (100) agreed very closely, implying that the 

conformations of the two adducts were closely similar. 
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H1 

H2 

3-Me 

H4 

5.62 

5.66 

1.94 

5.29 

{100) 

C1 

C2 

C3 

C4 

82.3 

79.1 

87.1 

48.1 

Fig. 2.31 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for adduct 

(100). 

Me 

Me 

(108) (1 00) 

Fig. 2.32 Comparison of the characteristic coupling constants for nitro 

cycloadducts (108) and (100). 
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2. 11.2 Photochemistry in dichloromethane at -20° and identification of some 

of the nitro aromatic products. 

A solution of 2,6-dimethylnaphthalene (57) (0.4 mol L-1) and TNM (0.8 

mol L-1) in dichloromethane was irradiated at -20° for 3 hand gave a product 

which was shown by 1H n.m.r. to be a mixture of adducts (total15%), 

aromatic compounds (1 05)-(1 07) (total 65%), and a mixture of other 

unidentified nitroaromatic products (total20%). Chromatography of this 

mixture on a silica gel Chromatotron plate gave pure samples of the 

compounds (1 05)-(1 07). 

The first compound eluted was identified as 3, 7 -dimethyl-1-trinitro­

methylnaphthalene (1 05). The trinitromethyl aromatic (1 05) gave a 

satisfactory parent molecular ion in the mass spectrum, indicating the 

molecular formula C1sH11Ns06. N.O.e. experiments confirmed the 

assignments of the chemical shifts for the protons. In particular, irradiation 

at 8 2.47 (7-Me) gave enhancements at 8 7.02 (H8) and at 8 7.42 (H6), 

irradiation at 8 7.80 (H5) gave enhancements at 8 7.42 (H6) and at 8 7.93 

(H4), and irradiation at 8 2.54 (3-Me) gave enhancements at 8 7.36 (H2) and 

at 8 7.93 (H4), as observed in Fig. 2.33. Furthermore, the presence of very 

strong infrared absorptions at 1617, 1593 and 1576 cm·1 provided evidence 

Fig. 2.33 Enhancements(%) from selected n.O.e. experiments for the 

trinitromethyl aromatic (105). 
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for the ~C(N02)3 substituent. 

The second compound eluted was identified as 2,6~dimethyl~1-nitro­

naphthalene (1 06) and the structure was confirmed by comparing its melting 

point and n.m.r. data with literature data.11,12 

The final compound eluted was identified as 3,7~dimethyl~1-nitro­

naphthalene (1 07) and the structure was confirmed by comparing its melting 

point and n.m.r. data with literature data.11,13 

On monitoring the +20 and -20° reactions in dichloromethane with time, 

it was noted that the adduct yields increased with time and temperature. 

Table 2.6 gives an overview of product yields from the photochemical 

reaction between 2,6-dimethylnaphthalene (57) and TNM. At -20° the total 

adduct yield was 15% and this increased to 79% at +20°. Correspondingly, 

the yields of the aromatic compounds increased at low temperatures, 

particularly 2,6-dimethyl-1-nitronaphthalene (106). The absence (or near 

absence) of the nitro and hydroxy cycloadducts (1 00), (1 01) and (1 04) was 

noted early on in the -20° reaction. However, in the +20° reaction the 

cycloadducts were observed to increase with time and this provides further 

support for the observations discussed below involving the thermal nitro/ 

alkene cycloaddition reactions which occurred via their precursor 1 ,2-adducts 

(See Sections 2.13 and 2.14). 

2.12 The Photochemistry of 2,6-Dimethylnaphthalene (57) in 

Acetonitrile 

A solution of 2,6-dimethylnaphthalene (57) (0.4 mol L-1) and TNM (0.8 

mol L -1) in acetonitrile was irradiated at +20° for 3 h to give a mixture of 

adducts (total46%) and aromatic compounds (total 54%). The composition 

of the reaction mixture was monitored with time and an overview of product 
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Table 2.6 Overview of product yields from the photolysis of 2,6-dimethylnaphthalene (57) (0.4 mol L-1) 

and TNM (0.8 mol L-1) in dichloromethane. 

Yield% 

Conversion Unknown Total Unknown 

t (h) (%) (94) (95) (96) (97) (98) {99) (100) {101) (102) (103) {104) ad ducts adducts (105) {106) (107) aromatics 

At +20° 

1 75 9.9 10.2 8.7 12.5 3.5 1.6 0.4 0.4 5.3 2.4 0.5 1.1 56.5 1.8 16.4 3.3 22.0 

2 95 14.5 13.6 11.1 16.0 4.6 3.1 1.2 1.1 6.9 3.7 1.1 1.7 78.6 trace 16.0 2.8 2.6 

At -20° 

1 30 1.2 2.2 0.9 2.1 0.9 0.6 - - 1.0 0.7 0.1 0.2 9.9 3.8 41.8 6.1 38.4 

2 71 1.5 3.1 1.6 2.9 1.2 1.0 0.1 - 1.3 0.7 0.1 0.4 13.9 3.1 63.3 8.6 11.1 

3 100 1.8 3.3 1.9 3.2 1.1 1.0 0.3 - 1.3 0.7 - 0.5 15.1 2.4 54.7 7.9 19.9 

...... 
0 co 



yields is shown in Table 2.7. Comparison of the +20° acetonitrile reaction 

with the +20° dichloromethane reaction (see Table 2.6, Section 2.11) showed 

a decrease in yield across all of the adducts in acetonitrile, with a 

corresponding increase in all of the aromatic compounds. Similar to both of 

Me Me 
(02NhC (0 2N)3C 

(94) (95) 

Me 

Me Me 
(02N)sC 

(97) (98) 

Me 
-
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(105) (106) 
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,,, H 
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02N N02 
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Table 2.7 Overview of product yields from the photolysis of 2,6-dimethylnaphthalene (57} (0.4 mol L-1) 

and TNM (0.8 mol L -1) in acetonitrile, at +20°. 

Yield% 

Conversion Unknown Total Unknown 

t (h) (%) (94) (95) (96} (97) (98) (99) (100} (101} (102) (103) (104) adducts adducts (105) (106) (107) aromatics 

0.5 19 2.0 2.8 1.4 3.6 1.0 0.4 - - 1.6 0.6 0.2 0.8 14.4 1.0 51.8 9.0 23.8 

1 50 4.4 6.1 2.6 7.8 1.6 1.0 0.2 - 3.1 1.6 0.7 1.1 30.2 4.1 41.0 9.0 15.7 

2 74 6.8 8.8 3.6 10.0 2.3 1.6 0.3 0.4 3.6 2.2 1.4 1.1 42.1 2.7 45.4 9.8 

3 84 6.9 9.3 4.5 12.0 1.5 1.9 0.7 0.8 3.5 1.3 2.0 1.9 46.3 3.6 42.0 8.1 

..... ..... ..... 



the dichloromethane reactions, the 1-nitro aromatic compound (1 06) was the 

major product formed in acetonitrile (42%). Once again the yields of 

cycloadducts (100), (101) and {104) were observed to increase with time and 

in the latter half of the reaction, formation of the precursor adducts (94) and 

(1 02) slowed, presumably due to the cycloaddition reactions taking place. 

Due to the limited solubility of 2,6-dimethylnaphthalene in the more polar 

acetonitrile, even at +20°, reactions were not possible at -20°. 

2.13 Thermal Cycloaddition of trans-3,7-Dimethyl-2-nitro-1-

trinitromethyl-1 ,2-dihydronaphthalene (94) to give the 

Nitro Cycloadduct (1 01) 

The isolation of trans-3,7-dimethyl-2-nitro-1-trinitromethyl-1 ,2-dihydro­

naphthalene (94), albeit in a mixture containing c. 71% trans-2,6-dimethyl-1-

nitro-4-trinitromethyl-1 ,4-dihydronaphthalene (95), afforded the opportunity to 

study its cycloaddition reaction. A mixture of adducts (94) and (95) in 

(D)chloroform was stored at +22°, in the dark, and the 1 H n.m.r. spectra 

monitored at appropriate time intervals. Under these conditions adduct (95) 

was unchanged during the period of observation, but the precursor adduct 

(94) was slowly transformed into the nitro cycloadduct (1 01 ), as represented 

Cycloaddition 

Me Me 

(94) (101) 

Scheme 2.16 
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in Scheme 2.16 and Fig. 2.34. The half-life for the cycloaddition of adduct 

{94) into the nitro cycloadduct {101) was c. 96 h. This observation 

established that the cycloaddition was thermal rather than photochemical in 

character. Similar thermal rearrangements of adducts have been observed 

in a variety of substituted naphthalenes. 5-9 

80 

60 
Adducts (%) 

40 

20 

adduct (94) 

cycloadduct (1 01} 

0~--~--~--r---~--r---r-~ 

0 100 200 300 
Time (h) 

Fig. 2.34 Kinetics of cycloaddition of adduct (94) to nitro cycloadduct (101) 

in (D)chloroform, at +22°. 

2.14 Thermal Cycloaddition of trans-3,7-Dimethyl-1-trinitro­

methyl-1 ,2-dihydronaphthalen-2-ol (1 02) to give the 

Hydroxy Cycloadduct (1 04} 

The isolation of a mixture of trans-3, 7 -dimethyl-1-trinitromethyl-1 ,2-di­

hydronaphthalen-2-ol (1 02) (80%} and the hydroxy cycloadduct (1 04) (20%), 

afforded the opportunity to study the precursor's cycloaddition reaction. A 

mixture of adduct (1 02) and the cycloadduct (1 04) in (D)chloroform was 

stored at +22°, in the dark, and the 1 H n.m.r. spectra monitored at 
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appropriate time intervals. The precursor adduct (1 02) was completely 

transformed into the hydroxy cycloadduct (104} after 170 h, as summarized 

in Scheme 2.17 and Fig. 2.35. The half-life for the cycloaddition of adduct 

Me 

(102) 

100 

80 

60 
Adducts (%) 

40 

20 

0 
0 20 

H 

Cycloaddition 

Me 

(104} 

Scheme 2.17 

adduct (102) 

cycloadduct (104) 

40 60 80 

Time (h) 
100 

Fig. 2.35 Kinetics of cycloaddition of adduct (1 02) to hydroxy cycloadduct 

(1 04) in (D)chloroform at, +22°. 

(102) into the hydroxy cycloadduct (104) was c. 13 h. The estimation of the 

half-life for this cycloaddition was complicated by precipitation of the hydroxy 

cycloadduct (1 04) during the period of observation. Once again this 
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observation established that the cycloaddition was thermal rather than 

photochemical in character. 

2.15 Overview of the Photonitration of 2,6-Dimethyl­

naphthalene (57) 

The photochemical reaction of 2,6-dimethylnaphthene (57) with TNM 

led to a large number of adducts (94)-(1 04). For the reaction in dichloro­

methane at +20°, identified ad ducts accounted for 77% of the reaction 

Me Me 

Me Me Me 
(02N)sC (02N)sC 

{94) {95) (96) 

Me Me Me 

Me Me Me 
(02N)sC 02N 

{97) {98) (99) 

H 

Me Me ,,, H 
-

H p, H 

02N N02 
(1 00) (1 01) 

H 

Me 

Me Me Me ,,, H 

H p, 
0 2N N02 

(1 02) (1 03) {1 04) 
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mixture. There was a clear preference (c. 4:1) for (02N)sC· attack at C4 of 

the 2,6-dimethylnaphthalene radical cation, compared with reaction at C1, as 

illustrated in Fig. 2.36. 

Me 
4 

t 
62% 

Fig. 2.36 Products(%) identified corresponding to attack of (02N)3C- on 

the 2,6-dimethylnaphthalene radical cation. 

As in the case of 1 ,4,6,7-tetramethylnaphthalene, it appears that no 

adducts were formed via benzylic radicals (65) and (66), which arose after 

Me 

(65) (66) 

attack of (02N) 3c- at C2 and C3, respectively, on the radical cation of 2,6-di­

methylnaphthalene. The favoured pathway (c. 4:1) was via formation of the 

phenylallylic radical (64), on attack of (02N)sC· at C4 on the radical cation of 

2,6-dimethylnaphthalene. The phenylallylic radical (63), which arose via 

attack of (02N)3C- on the 2,6-dimethylnaphthalene radical cation at C1, was 
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(64) (63) 

also formed and led to the formation of adducts (96), (99) and (1 00), as seen 

in Scheme 2.18. After the phenylallylic radical (63) was formed, radical 

coupling with •No 2 occurred either at C4, to give the epimeric 3, 7 ~dimethyl-1-

nitro-4-trinitromethyl adducts (96) and (99), or at C2. Radical coupling of 

4 
(63) 

j·No2 

at C2 

Me 

ro(02N)sC H 
Me 
"' NO 2 cycloaddition 

Me Me 

(109) 

Scheme 2.18 

02N H 

(96) and (99) 

-
H 

(100) 

Me 

•No2 at C2 on radical (63) ipso to the adjacent methyl group would be 

expected to occur anti to the extremely bulky trinitromethyl group, to yield the 

trans-2,6-dimethyl-2-nitro-1-trinitromethyl adduct (1 09). Cycloaddition of 

adduct ( 1 09) could then occur to give the nitro cycloadduct ( 1 00). 

The favoured pathway in the formation of adducts was via (02N)sC-
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attack at C4 in the 2,6-dimethylnaphthalene radical cation. Radical coupling 

of •No2 with the delocalized carbon radical (64) at C4 with C-N bond 

formation would yield the epimeric 2,6-dimethyl-1-nitro-4-trinitromethyl 

adducts (95) and (97), as depicted in Scheme 2.19. Alternatively, coupling 

Me 

4 

(64) 

at C4 
Me 

j(i) •oNO at C4 

(ii) hydrolysis 

HO H 

Me 

(98) and (103) 

Scheme 2.19 

Me 

(02NbC 

(95) and (97) 

of •No2 at C4 could occur with C-0 bond formation and would give the 

epimeric nitrito/trinitromethyl adducts, which would be expected to hydrolyse 

rapidly to the epimeric 2,6-dimethyl-1-hydroxy-4-trinitromethyl adducts (98) 

and (103) under the prevailing acidic conditions of the reaction and workup 

procedure, also seen in Scheme 2.19. Similar radical coupling of •No2 at 

C2 in the delocalized carbon radical (64) would occur trans to the bulky 

trinitromethyl group at C1, giving the trans-2,6-dimethyl-2-nitro-1-trinitro­

methyl adduct (94) by C-N bond formation and the trans-2,6-dimethyl-2-

hydroxy-1-trinitromethyl adduct ( 1 02) by C-0 bond formation followed by 

hydrolysis, as shown in Scheme 2.20. Formation of the nitro and hydroxy 

cycloadducts (1 01) and (1 04), respectively, then occurred via thermal 
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Me 

4 
Me *N0

2 

atC2 

(64) 

j(i) *ONO at C2 

(ii) hydrolysis 

(102) 

(94) (1 01) 

(104) 

Scheme 2.20 

alkene/nitro cycloaddition of their respective precursor adducts (94) and 

(102), as demonstrated in Sections 2.13 and 2.14 and in Scheme 2.20. 

The precise mode of formation of 3,7 -dimethyl-1-trinitromethyl­

naphthalene (1 05} from the phenylallylic radical (64) is uncertain. However, 

one possibility is the loss of nitrous acid from either the epimeric 1 A-nitro/ 

trinitromethyl adducts (95) and (97), or the postulated intermediate epimeric 

X H 

Me Me 
-HN02 

Me Me 

C(N02h 

X=N02 (95) and (97) (105} 
=ONO (98a) and (103a) 

Scheme 2.21 
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1 ,4-nitrito/trinitromethyl adducts (98a} and (103a), in competition with 

hydrolysis to give the 1 ,4-hydroxy/trinitromethyl adducts (98) and ( 1 03), as 

summarized in Scheme 2.21. 

Reactions at -20° in dichloromethane and at +20° in acetonitrile led to 

an increase in nitro aromatics, particularly 2,6-dimethyl-1-nitronaphthalene 

(1 06). In connection with the formation of the 1-nitro aromatic (1 06) it is 

notable that C1 is the centre with the highest calculated unpaired electron 

spin density (+0.43) in the 2,6-dimethylnaphthalene radical cation, 14 and it 

appears likely that much of the 2,6-dimethyl-1-nitronaphthalene (1 06) was 

formed by direct coupling of the radical cation with •No2. 

In conclusion, it appears most probable that in the reaction between the 

2,6-dimethylnaphthalene radical cation and (02N)sC-, the secondary 

benzylic radicals (65) and (66) were unfavourable. It appears likely that the 

steric hindrance to (02N)3C- attack at C1, due to interaction with the vicinal 

2-methyl group, was a contributing factor in the observed regioselectivity, 

and that this led to the non-stabilized phenylallylic radical (64) being favoured 

over the methyl stabilized phenylallylic radical (65). 

2.16 The Photolysis of 1 ,3-Dimethylnaphthalene (58) 

General procedure for the photonitration of 1,3-dimethy/naphtha/ene (58) 

with TNM. 

A solution of 1 ,3-dimethylnaphthalene (58) (500 mg, 0.4 mol L -1) and 

TNM {0.8 mol L -1) in dichloromethane (at +20, 0, or -20°) or acetonitrile (at 

+20 or -20°) was irradiated with filtered light (A.cut-otf<435 nm) and small 

samples were withdrawn for analysis at suitable intervals. The work-up 

procedure, involving evaporation of solvent and TNM, was conducted at ~0°. 

The crude product mixtures were stored at -20° and were analysed by 1 H 
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n.m.r. spectroscopy as soon as possible (For complete experimental details 

see Chapter 5, Section 5.2.3). 

2.17 The Photochemistry of 1 ,3-Dimethylnaphthalene (58) in 

Dichloromethane 

2. 17. 1 Photochemistry in dichloromethane at +20 o and identification of 

adducts. 

A solution of 1 ,3-dimethylnaphthalene (0.4 mol L-1) and TNM (0.8 mol 

L-1) in dichloromethane was irradiated at +20° until the deep red colour of the 

charge transfer band was bleached. The composition of the reaction 

mixture was monitored by withdrawing samples for 1 H n.m.r. spectral 

analysis. After work-up, the final solution (after 2h, conversion ""' 1 00%) was 

shown to contain a mixture of adducts (11 0)-(116) (total 43%), aromatic 

compounds (117)-(119) (total 50%), and other unidentified adducts (total 

7%). The adducts were separated partially by h.p.l.c. on a cyanopropyl 

column using hexane/dichloromethane mixtures as the eluting solvents. 

Me Me 

02Ninn 
Me 

H Me 
C(N02)s C(N02)s 

(11 0) (111) 

HO, H Me 
H ~ 
~ 

(02N)sC ~ 

Me Me 
C(N02)s 

(113) (114) 

121 



(117) 

Me 

~' Me 
H C 

I\ 
0 2N NOz 

(115) (116) 

Me 

tnNOz 
Me 

C(N0 2)3 

QbMe ~Me 
C(N02)a 

(118) (119) 

N0 2 

The first adduct eluted was isolated only as an impure oil and was 

identified as trans-5, 7 -dimethyl-2-nitro-1-trinitromethyl-1 ,2-dihydro­

naphthalene (11 0) on the basis of its spectroscopic data and its slow (half-life 

178 h) conversion into the nitro cycloadduct (122) (see below and Section 

2.18). N.O.e. experiments confirmed the assignment of the chemical shifts 

for the protons. In particular, irradiation at o 5.98 (H3) gave enhancements 

at o 5.66 (H2} and at o 7.04 {H4}, while irradiation at o 6.81 (H8) gave 

enhancements at o 2.29 (7-Me) and at o 5.70 (H1), as summarized in Fig. 

2.37. The similarities of the characteristic coupling constants and 

Fig. 2.37 Enhancements(%} from selected n.O.e. experiments for adduct 

(11 0). 
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resonances in the 1 H n.m.r. spectra between the analogous trans-6,7-di­

methyl-2-nitro-1-trinitromethyl-1 ,2-dihydronaphthalene (120)5 and adduct 

(11 0) are represented in Fig. 2.38. Given the closely similar coupling 

H1 

H2 

H3 

H4 

(120) 

5.73 

5.65 

5.95 

6.78 

Me 

Me 

H1 

H2 

H3 

H4 

(110) 

5.70 

5.66 

5.98 

7.04 

Me 

Fig. 2.38 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

and coupling constants for adducts (120) and (11 0). 

constants, JH1 ,H2, JH2,H3 and JHs,H4. between the two adducts (121) and 

(11 0), it was assumed that the two compounds had the same trans-1 ,2-

stereochemistry. An HMBC experiment confirmed the assignment of the 

13C n.m.r. resonances. In particular, the CH-C(N02)3 resonance appeared 

at() 43.8, while the CH-N02 resonance appeared at() 76.1. Subsequently, 

the structural and stereochemical assignment to adduct (11 0) was confirmed 

by the X-ray crystal structure determination for the related nitro cycloadduct 

(122), reported below. 

The structure of the second adduct eluted from the h.p.l.c. column was 

determined by single crystal X-ray analysis. A perspective drawing of trans-
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6,8~dimethyl~ 1 ~nitro-4~trinitromethyl-1 ,4~dihydronaphthalene ( 111), 

C13H12N40a, m.p. 114.5~115.5° is presented in Fig. 2.39, and the 

Fig. 2.39 Perspective drawing of adduct (111). Double bond shown in 

black. 

corresponding atomic coordinates are given in Table 5.7 (See Chapter 5, 

Section 5.5). In the solid state, the alicyclic ring exists in a slightly distorted 

boat conformation as indicated by the torsional angles: C(3}-C(4)-C(4a)­

C(8a) 17.5(3)0
; C(2)-C(1)-C(8a)-C(4a) -10.3(4) 0

• Similar to the analogous 

adducts (95) and (97), formed in the photolysis of 2,6-dimethylnaphthalene 

(56} and TNM, the trinitromethyl group adopts an orientation such that the 

C(4)-C(9) bond is close to perpendicular to the plane of the aromatic ring 

[torsional angle: C(5}-C(4a)-C{4)-C(9) 74.9(3t]. The spectroscopic data for 

adduct (111) were consistent with the established structure and the 

characteristic 1 Hand 13C n.m.r. data are presented in Fig. 2.40. N.O.e. 
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H1 

H2 

H3 

H4 

6.20, br s 

6.57, m 

6.56, m 

5.39, br s 

{111) 

4.8% 

C1 

C2 

C3 

C4 

82.4 

124.5 

131.1 

44.7 

Fig. 2.40 Characteristic 1 Hand 13C n.m.r. resonances {in ppm) and 

enhancements(%) from selected n.O.e. experiments for adduct 

(111 ). 

experiments confirmed the assignment of the chemical shifts for the protons. 

In particular, irradiation at o 5.39 (H4) gave enhancements at o 6.56 (H3) and 

at o 6.98 (H5), while irradiation at 8 6.20 (H1) gave enhancements at o 2.23 

(8-Me) and at o 6.57 (H2), also seen in Fig. 2.40. Furthermore, the nitro 

function was indicated by the 13C n.m.r. chemical shift for C1 (8 82.4} and the 

trinitromethyl function by the 13C n.m.r. chemical shift for C4 (o 44.7). These 

assignments were confirmed by an HMBC experiment. 

The structure of the third adduct eluted from the h.p.l.c. column was 

also determined by single crystal X-ray analysis. A perspective drawing of 

the nitro cycloadduct (112), C13H12N40a, m.p. 179.5-180.5° is presented in 
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Fig. 2.41 Perspective drawing of the nitro cycloadduct (112). 

Fig. 2.41, and corresponding atomic coordinates are given in Table 5.8 (See 

Chapter 5, Section 5.5). In the nitro cycloadduct (112), N(3) is clearly 

trigonal pyramidal and bond length differences [C(9)-N(1) 1.546(6) A, 

C(9)-N(2) 1.538(6) A, C(9)-N(3) 1.482(6) A] are similar to those observed for 

the analogous heterocyclic cage structures in ad ducts (1 01) and (1 04), 

formed via thermal rearrangement of adducts (94) and (1 02), respectively, 

from the photolysis of 2,6-dimethylnaphthalene (57) I TNM. The 

spectroscopic data for the nitro cycloadduct {112) were in accord with the 

established structure. N.O.e. experiments confirmed the assignment of the 

chemical shifts for the protons. Specifically, irradiation at S 1.90 (3-Me) gave 

enhancements at S 5.23 (H2) and at S 5.32 (H4), while irradiation at S 5.23 

(H2) gave enhancements at S 1.90 (3-Me) and at S 2.02 (1-Me), as outlined 

in Fig. 2.42. The characteristic 1 Hand 13C n.m.r. data are also presented in 
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3-Me 
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4.9% 

(112) 

2.02, s 

5.23, d, J=2.5 Hz 

1.90, s 

5.32, d, J=2.5 Hz 

C1 

C2 

C3 

C4 

0.4% 

88.0 

84.4 

88.6 

48.6 

Fig. 2.42 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for adduct 

(112). 

Fig. 2.42. In particular, 13C n.m.r. resonances for the nitro function attached 

to C3 appeared at 8 88.6, while the cyclized trinitromethyl function attached 

to C4 appeared at 8 48.6. These assignments were confirmed by an HMBC 

experiment. 

The fourth adduct eluted from the h.p.l.c. column was identified as the 

epimer of the trans-1-nitro-4-trinitromethyl adduct ( 111) by single crystal 

X-ray analysis. A perspective drawing of cis-6,8-dimethyl-1-nitro-4-trinitro­

methyl-1 ,4-dihydronaphthalene (113), C1sH 12N40s, m.p. 129° (dec.) is 

presented in Fig. 2.43, and corresponding atomic coordinates are given in 

Table 5.9 (See Chapter 5, Section 5.5). As with the structure of its epimer 
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Fig. 2.43 Perspective drawing of adduct (113). Double bond shown in 

black. 

( 111), the alicyclic ring of the cis-1-nitro-4-trinitromethyl adduct ( 113) exists in 

a boat conformation [torsional angles: C(2)-C( 1 )-C(8a)-C( 4a) -14.1 (5)0
; 

C(3)-C(4)-C(4a)-C(8a) 14.0(5)0
] with the C(4)-C(9) bond close to 

perpendicular to the plane of the aromatic ring [torsional angle: 

128 

C(5)-C(4a)-C(4)-C(9) 75.6(4) 0
]. The spectroscopic data for the 

nitro/trinitromethyl adduct (113) were consistent with its established structure. 

The 1 Hand 13C n.m.r. data were confirmed by n.O.e. and HMBC 

experiments, and from a comparison with the spectroscopic data for its 

epimer (111 ). Some of their characteristic n.m.r. data are summarized in 

Fig. 2.44, and are consistent with their assignment as epimers. 

Adduct (114) was isolated towards the end of the h.p.l.c. chromatogram 

in low yield and then only as an impure oil. The structural assignment for 

trans-6,8-dimethyl-2-trinitromethyl-1 ,2-dihydronaphthalen-1-ol ( 114) is based 
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Fig. 2.44 Comparison of the characteristic 1 Hand 13C n.m.r. resonances 

(in ppm) for adducts (111) and (113). 

on comparison of its 1 H n.m.r. spectra with that for trans-4,8-dimethyl-2-tri­

nitromethyl-1 ,2 -dihydronaphthalen-1-ol ( 121 ) . 2 N. 0 .e. experiments 

confirmed the assignments of the chemical shifts for the protons. 

Specifically, irradiation at() 5.20 (H1) gave enhancements at() 2.34 (8-Me) 

and at() 4.46 (H2), while irradiation at o 5.77 (H3) gave enhancements at 

() 4.46 (H2) and at() 6.85 (H4), as observed in Fig. 2.45. Similarities 

between the 1 H n.m.r. spectra of adducts (121) and (114) are presented in 

Fig. 2.46. The minor differences in the chemical shift which were observed 

129 



1.9% 1.3% 

Qne 
H ~ 

E ~2~1 
2.5% ~ 

H 

2.0~H 

Fig. 2.45 Enhancements(%) from selected n.O.e. experiments for adduct 

(114). 

result from effects arising from the 4-Me group in adduct (121), and the 6-Me 

group in adduct (114). Given the closely similar coupling constant JH2,H3, it 

is assumed that the two compounds have the same trans-1 ,2-stereo­

chemistry. The observation that trans-1-hydroxy-2-trinitromethyl adduct 

H1 

H2 

H3 

8-Me 
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5.24 

4.44 

5.61 

2.40 
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8-Me 
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Fig. 2.46 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

and coupling constants for adducts (121) and (114). 
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( 114) failed to undergo intramolecular cycloaddition on storage of a 

(D)chloroform solution at +22° for 350 h is consistent with its structural 

assignment. Although t-1-trinitromethyl-1 ,2-dihydronaphthalen-r-1-ols 

undergo intramolecular cycloaddition readily, t-2-trinitromethyl-1 ,2-

dihydronaphthalen- r-1-ols appear to be inert.2 

The final adduct eluted from the h.p.l.c. column was identified as the 

hydroxy cycloadduct (115), but could not be induced to give crystals of 

adequate quality for single crystal X-ray analysis. Its identification was 
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Fig. 2.47 Comparison of the characteristic 1 Hand 13C n.m.r. resonances 

(in ppm) and coupling constants for adducts (112) and (115). 
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based on a comparison of its spectroscopic data with the stereochemically 

related nitro adduct (112), the structure of which was determined by single 

crystal X-ray analysis (see above), as seen in Fig. 2.47. Given the closely 

similar coupling constant JH2,H4 for the two adducts (112) and (115), as seen 

in Fig. 2.47, it is assumed that the two compounds have the same stereo­

chemistry and that the difference between the two compounds lies only in the 

nature of the C3-substituent. An infrared absorption was observed at 

3565 cm-1, indicating the presence of an -OH function. All of the; H n.m.r. 

signals, whose assignments were confirmed by n.O.e. experiments, were 

shifted upfield in the hydroxy cycloadduct (115), relative to the nitro 

cycloadduct (112), consistent with the difference in the substituent at C3. An 

HMBC experiment confirmed the assignment of the 13C n.m.r. resonances. 

In particular, the locations of the hydroxy and cyclized trinitromethyl functions 

were defined by the chemical shifts for C3 (8 71.1) and C4 (8 52.85), 
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Fig. 2.48 Comparison of the characteristic; H n.m.r. resonances (in ppm) 

for adducts (88) and (116). 
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respectively. 

Finally, although the precursor of the nitro cycloadduct (112) could not 

be isolated by h.p.l.c., trans-2,4-dimethyl-2-nitro-1-trinitromethyl-1 ,2-dihydro­

naphthalene (116) was detected in the 1 H n.m.r. spectra of product mixtures 

as a transient intermediate in the formation of the nitro cycloadduct (112). 

Furthermore, comparison of the 1 H n.m.r. spectra of adduct (116) with the 

related trans-4-methyl-2-nitro-1-trinitromethyl-1,2-dihydro-naphthalene (88), 

the structure of which was determined by single crystal X-ray analysis, 6 

showed that the two sets of spectroscopic data were similar (See summary in 

Fig. 2.48). 

2. 17.2 Photochemistry in dichloromethane at -20° and identification of 

aromatic substitution products ( 117)-( 119). 

A solution of 1,3-dimethylnaphthalene (0.4 mol L-1) and TNM (0.8 mol 

L-1) in dichloromethane was irradiated at -20° for 2 hand gave a product 

which was shown by 1 H n.m.r. to be a mixture of adducts (total 9%) and 

aromatic compounds (117)-(119) (total 91 %). Chromatography of this 

mixture on a silica gel Chromatotron plate gave pure samples of the 

compounds (117)-(119). 

The first compound eluted was identified as 6,8-dimethyl-2-trinitro­

methylnaphthalene (117). The trinitromethyl aromatic (117) gave a 

satisfactory parent molecular ion in the mass spectrum, indicating the 

molecular formula C1sH11NsOe. N.O.e. experiments confirmed the 

assignments of the chemical shifts for the protons. In particular, irradiation 

at 8 2.68 (8-Me) gave enhancements at 8 7.34 (H7) and at 8 8.26 (H1), 

irradiation at 8 2.53 (6-Me) gave enhancements at 8 7.34 (H7) and at 8 7.56 

(H5), and irradiation at 8 7.92 (H4) gave enhancements at 8 7.50 (H3) and at 

8 7.56 (H5), as depicted in Fig. 2.49. Furthermore, strong infrared 

absorptions at 1602 and 1587 cm-1 provided evidence for the -C(N02)3 
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7.0% 

Fig. 2.49 Enhancements(%) from selected n.O.e. experiments for the 

trinitromethyl aromatic (117). 

substituent 

The second compound eluted was identified as 5,7-dimethyl-1-trinitro­

methylnaphthalene (118). Once again a satisfactory parent molecular ion 

was obtained in the mass spectrum, indicating the molecular formula 

C1sH 11 N306, for the trinitromethyl aromatic (118). N.O.e. experiments 

confirmed the assignments of the chemical shifts for the protons. 

Specifically, irradiation at 8 6.92 (H8) gave an enhancement at 8 2.44 (7-Me), 

irradiation at 8 7.31 (H6) gave enhancements at 8 2.44 (7-Me) and at 8 2.73 

Fig. 2.50 Enhancements(%) from selected n.O.e. experiments for the 

trinitromethyl aromatic (118). 
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(5-Me), and irradiation at 8 8.37 (H4) gave enhancements at 8 2.73 (5-Me) 

and at 8 7.55 (H3), as shown in Fig. 2.50. The presence of the -C(N02)3 

substituent was supported by the presence of strong infrared absorptions at 

1621 and 1590 cm-1. 

The final compound eluted was identified as 2,4-dimethyl-1-nitro­

naphthalene (119) and the structure was confirmed by comparing its melting 

point and n.m.r. data with literature data.11 

On monitoring the photochemical reaction between 1 ,3-dimethyl­

naphthalene (58) and TNM at +20, 0 and -20° in dichloromethane, there was 

a marked change in the relative yields of the adducts and aromatics. An 

Me 

C(N02h 

(110) 

(117) 

Me 

Me 

C(N02h 

(113) 

Me 

c 
/ \ 

Me 

02N N02 

(115) 

Me 
C(N02h 

(111) 

Qb~ 
C(N02h 

(118) 

Me 

Me 

(114) 

Me 

~•No, ~Me 
H" C(N02h 

{116} 

o9Me 
N02 

(119) 
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Table 2.8 Overview of product yields from the photolysis of 1 ,3-dimethylnaphthalene (58) (0.4 mol L -1) 
and TNM (0.8 mol L-1) in dichloromethane. 

Yield% 

Conversion Adducts (110, Adducts (112, Unknown Total Total 

t (h) (%) (110) (111) (113) (114} 111,113, 114) (112) (115) (116) 115, 116) adducts adducts (117) (118) (119) aromatics 

At+20° 

1 80 8.6 7:6 11.7 1.6 29.5 1.8 1.6 5.9 9.3 6.9 45.7 2.7 3.4 48.2 54.3 

1.5 98 9.3 8.1 12.0 1.6 31.0 2.4 1.8 5.9 10.1 6.7 47.8 2.3 6.6 43.3 52.2 

2 100 10.1 8.5 10.5 1.4 30.5 4.5 1.8 5.6 11.9 7.3 49.7 2.5 9.9 37.9 50.3 

At0° 

1 71 2.7 2.4 2.1 0.3 7.5 0.6 0.3 2.2 3.1 2.7 13.3 1.9 1.9 82.9 86.7 

1.5 90 3.0 2.5 2.4 0.3 8.2 1.3 0.2 2.6 4.1 3.0 15.3 1.6 2.2 80.9 84.7 

2 100 4.2 3.7 3.2 0.4 11.5 1.3 0.3 3.5 5.1 1.7 18.3 2.0 2.9 76.8 81.7 

At -20° 

1 42 1.4 0.6 0.1 - 2.1 trace 0.1 2.5 2.6 1.7 6.4 1.4 1.6 90.6 93.6 

1.5 68 1.2 1.1 1.4 - 3.7 0.3 0.2 2.6 3.1 1.5 8.0 0.8 0.9 90.0 91.7 

2 74 1.0 1.3 1.5 - 3.8 0.5 0.2 2.8 3.5 1.7 9.0 1.0 1.0 89.0 91.0 
_.. 
(1.) 
0) 



overview of product yields in dichloromethane is given in Table 2.8. At +20° 

the adduct : aromatic ratio was c. 1:1, at oo it was c. 1 :4, but at -20° the ratio 

was c. 1:10. Clearly the major change occurred with the nitro aromatic 

compound (119), which markedly increased in yield at lower reaction 

temperatures. There was a more consistent change across all of the 

adducts at lower reaction temperatures. The cycloaddition reaction of 

adduct (116) into the nitro cycloadduct (112) could be seen occurring as the 

yield of the nitro cycloadduct (112) increased with time at successive points 

in the time scans. 

2.18 Thermal Cycloaddition of trans-5,7-Dimethyl-2-nitro-1-

trinitromethyl-1 ,2-dihydronaphthalene {11 0) to give the 

Nitro Cycloadduct (122) 

A solution of the impure nitro/trinitromethyl adduct (110) in (D)chloro­

form was stored at +22°, in the dark, and the 1 H n.m.r. spectra of the solution 

monitored at appropriate time intervals. While the impurities were stable 

under these conditions, the nitro/trinitromethyl adduct (11 0) was slowly 

converted into the nitro cycloadduct (122), as summarized in Scheme 2.22. 

After 33 days the reaction was essentially complete, as shown in Fig. 2.51. 

Me H Me 

cycloaddition 

Me Me 

(11 0) (122) 

Scheme 2.22 
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adduct (11 0) 
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0 200 400 
Time (h) 

600 800 

Fig. 2.51 Kinetics of cycloaddition of adduct (110) to nitro cycloadduct (122) 

in (D)chloroform, at +22°. 
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The half-life for the cycloaddition of adduct (110) into the nitro cycloadduct 

(122) was c. 178 h. The nitro cycloadduct (122) was isolated by removal of 

the solvent under reduced pressure and crystallization from dichloromethane/ 

hexane, and its structure determined by single crystal X-ray analysis. A 

perspective drawing of the nitro cycloadduct (122), C13H12N40s, m.p. 195° 

(dec.), is presented in Fig. 2.52, and corresponding atomic coordinates are 

given in Table 5.10 (See Chapter 5, Section 5.5). The structure of nitro 

cycloadduct (122) was essentially identical with that determined above for 

nitro cycloadduct (112), except for the positions of attachment of the two 

methyl groups in the two structures. As for the nitro cycloadduct ( 112), the 

nitrogen atom N(3) in the heterocyclic cage structure of the nitro cycloadduct 

(122) is trigonal pyramidal and the pattern of the bond lengths is similar 

[ C(9)-N(1) 1.520(3) A, C(9)-N(2) 1.553(3) A, C(9)-N(3) 1.503(3) A). The 

spectroscopic data for nitro cycloadduct (122) were in accord with the 

established structure. N.O.e. experiments confirmed the assignments of the 



Fig. 2.52 Perspective drawing of the nitro cycloadduct (122). 

chemical shifts for the protons. Specifically, irradiation at o 2.36 (8-Me) gave 

enhancements at o 5.96 (H1) and at o 7.01 (H7), while irradiation at o 5.70 

(H3) gave enhancements at o 5.16 (H4) and at o 5.91 (H2), as represented in 

Fig. 2.53. The characteristic 1 Hand 13C n.m.r. data is also presented in 

Fig. 2.53. In particular, the nitro function was indicated by the 13C n.m.r. 

chemical shift for C3 ( o 78.8) and the cyclized trinitromethyl function by the 

13C n.m.r. chemical shift for C4 (o 45.4). These assignments were 

confirmed by an HMBC experiment. 
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H1 

H2 

H3 

H4 

5.96 

5.91 

5.70 

5.16 

(122) 

C1 

C2 

C3 

C4 

77.2 

75.9 

78.8 

45.4 

Fig. 2.53 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements {%) from selected n.O.e. experiments for the 

nitro cycloadduct (122}. 

2.19 The Photochemistry of 1 ,3-Dimethylnaphthalene (58) in 

Acetonitrile 

Photolyses of solutions of 1 ,3-dimethylnaphthalene (58} (0.4 mol L -1) 

and TNM (0.8 mol L-1) in acetonitrile were carried out at +20 and -20° as for 

reactions in dichloromethane, above. The results of these reactions, 

monitored with time, are summarized in Table 2.9. There was a less marked 

change in the relative yields of the adducts and aromatics as the temperature 

was lowered in acetonitrile, compared with dichloromethane (See Table 2.8, 
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Table 2.9 Overview of product yields from the photolysis of 1 ,3-dimethylnaphthalene (58) (0.4 mol L -1) 

and TNM {0.8 mol L-1) in acetonitrile. 

Yield% 

Conversion Adducts (11 0, Adducts (112, Unknown Total Total 

t (h) (%) (110) (111) (113) (114) 111,113, 114) (112) (115) (116) 115, 116) adducts adducts (117) (118) (119) aromatics 

At +20° 

1.5 89 3.2 3.5 3.3 0.9 10.9 0.6 0.2 3.7 4.5 3.7 19.1 3.7 4.1 73.1 80.9 

2 100 2.8 3.2 2.4 0.5 8.9 1.0 0.2 2.7 3.9 3.2 16.0 3.3 4.5 76.2 84.0 

At -20° 

1 57 1.4 1.7 1.5 - 4.6 - 0.1 3.0 3.1 1.9 9.6 1.9 1.4 87.1 90.4 

2 89 1.3 1.5 1.6 - 4.4 - 0.1 3.2 3.3 2.5 10.2 1.1 0.7 88.0 89.8 

-1. 

..j::.. 
-1. 



Section 2.17). In acetonitrile at +20° the adduct : aromatic ratio was c. 1 :5, 

whereas at -20° the ratio was c. 1 :9. Once again the product which changed 

the most upon changing temperatures was the nitro aromatic (119). The 

reactions at -20° in both dichloromethane and acetonitrile produced very 

similar results, whereas the +20° acetonitrile reaction was more similar to the 

oo dichloromethane reaction than the +20° dichloromethane reaction. 

Me 

Me 
C(N02h 
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Me 

Me 
C(N02b 

(113) 

H''' Me 
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02N N02 
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2.20 The Photochemistry of 1 ,3-Dimethylnaphthalene (58) in 

Dichloromethane Containing Trifluoroacetic Acid (TFA) 

A solution of 1 ,3-dimethylnaphthalene (58) (0.4 mol L -1) and TNM (0.8 

mol L-1) in dichloromethane containing TFA (0.8 mol L-1) was irradiated at 

+20° for 30 min. to give a mixture of unreacted 1 ,3-dimethylnaphthalene 

(42% conversion), 2,4-dimethyl-1-nitronaphthalene (119) (34%), 2,2',4,4'­

tetramethyl-1, 1'-binaphthyl (123) (54%), and unidentified aromatics (total 

12%). Chromatography of this mixture on a silica gel Chromatotron plate 

gave pure samples of 1 ,3-dimethylnaphthalene (58) and compounds (119) 

and (123). 

Me 

Me 

(119) 

Me 

Me 

(123) 

Me 

Me 

The first compound eluted was identified as unreacted 1 ,3-dimethyl­

naphthalene (58). 

The second compound eluted was identified as 2,2',4,4'-tetramethyl-

1, 1'-binaphthyl (123) and the structure was confirmed by comparison of its 

melting point and n.m.r. data with literature data.15 

The final compound eluted had already been identified as the known 11 

2,4-dimethyl-1-nitronaphthalene (119) (see above). 
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2.21 Overview of the Photo nitration of 1 ,3-Dimethyl­

naphthalene {58) 

In terms of the products which were identified for the reaction at +20° in 

dichloromethane (see Table 2.8, Section 2.17), there was a clear preference 

(c. 4:1} for (02N)3C· attack on the unsubstituted ring in the radical cation of 

1 ,3-dimethylnaphthalene, as represented in Fig. 2.54. The major point of 

Me 

5 4 

39% 12% 

Fig. 2.54 Products (%) identified corresponding to attack of (02N)sC· on 

the 1 ,3-dimethylnaphthalene radical cation. 

attack of (02 N) sC· on the 1 ,3-dimethylnaphthalene radical cation was at C5 

(total 39%) and this led to the formation of the phenylallylic radical (73). The 

formation of adduct (114) and 6,8-dimethyl-2-trinitromethylnaphthalene (117) 

(total 4%} was particularly interesting, since these apparently formed by initial 

attack of (02 N) sc- at C7 on the radical cation of 1,3-dimethylnaphthalene. 

This would result in formation of the less stable secondary benzylic radical 

(70). Lowering the temperature, in either dichloromethane or acetonitrile, 

showed that adduct (114) and the trinitromethyl aromatic (117) decreased in 

yield (See Tables 2.8 and 2.9, Sections 2.17 and 2.19, respectively). Indeed 

adduct (114) was not detected at -20° in either solvent, supporting the view 

that the secondary benzylic radical (70) was indeed less stable than the 
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Me Me 

Me Me 

(73) (70) 

phenylallylic radical (73). Notably, neither adducts nor 6,8-dimethyl-1-tri­

nitromethylnaphthalene were detected which might result from (02N)3C­

attack at C8. This outcome was clearly a reflection of the steric hindrance to 

attack by (02N)sC- at C8 exerted by the peri 1-methyl substituent. 

The modes of formation of the products arising from attack of (02N)aC­

on the unsubstituted ring of the radical cation of 1 ,3-dimethylnaphthalene are 

given in Schemes 2.23 and 2.24. In Scheme 2.23 attack of (02N)sC- at C5 

would give the delocalized phenylallylic radical (73). Subsequently, radical 

Me 1•+ 

ro 7 (02NhC 

6 at C5 
5 4 Me 

Me Me 

Me 

(73) (110) 

j
·No2 

atC4 

0 2N H Me 

~Me 
H C(N0 2)s 

(111) and (113) 

Scheme 2.23 
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coupling with •No2 at C2 in (73) would occur anti to the bulky trinitromethyl 

group to give the nitro/trinitromethyl adduct (110), while coupling with •No2 

146 

at C4 would be expected to be non-stereospecific and give the epimeric 

nitro/trinitromethyl ad ducts (111) and (113). Alternatively, attack of (02 N) 3c­
at C7 of the radical cation of 1 ,3-dimethylnaphthalene would give the 

benzylic radical (70), as represented in Scheme 2.24. Radical coupling with 

Me Me 

(02N)sc· 

at C7 
Me 

5 4 

(70) 

l"ONO 
at C1 

HO_. H Me ONO Me 
H ~ H ~ ~ 

~ ~ 
~ 

hydrolysis "" (02N)sC (02N)sC 

Me Me 

(114) (124) 

1- HN02 

Me 

(02N)sC 

Me 

(117) 

Scheme 2.24 

•No2 at C1 with C-0 bond formation would yield the nitrito/trinitromethyl 

adduct (124), which would be expected to be hydrolysed to give the hydroxy/ 



trinitromethyl adduct (114), either under the prevailing acidic reaction 

conditions or during the work-up procedures. The precise mode of formation 

of 6,8-dimethyl-2-trinitromethylnaphthalene (117) from the benzylic radical 

(70) is uncertain, but one possibility is the loss of nitrous acid from the 

postulated intermediate, nitrito/trinitromethyl adduct (124), in competition with 

hydrolysis to give the hydroxy/trinitromethyl adduct (114), also seen in 

Scheme 2.24. 

Similarly, the precise mode of formation of 5,7-dimethyl-1-trinitromethyl­

naphthalene (118) from the phenylallylic radical (73) is uncertain, but one 

possibility is the loss of nitrous acid from the 1 ,4-nitro/trinitromethyl adducts 

(111) and (113), as outlined in Scheme 2.25. 

Me 

Me Me 

(111) and (113) 

Scheme 2.25 

In spite of the enhanced stability on the phenylallylic radical (72) due to 

the position of the two methyl groups, attack of (02N)sC- at C4 was limited 

by the steric interaction between the trinitromethyl group and the methyl 

group at the adjacent C3 position. The mode of formation of adducts arising 

from (02N)3C- attack at C4 is given in Scheme 2.26. The delocalized 

carbon radical (72), formed initially, undergoes radical coupling with •No2 

apparently exclusively at C2 with both C-N and C-0 bond formation to give 

adducts (116) and (125), respectively, the latter after hydrolysis of the 

corresponding nitrito/trinitromethyl adduct. While the nitro/trinitromethyl 
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Me 

C(N02)s 

j 
(i} •oNO at C2 

(H) hydrolysis 

Me 

(125) 

Scheme 2.26 

Me 

(116) 

1 cycloaddition 

Me 

adduct (116) was detected among the reaction products, it was not isolated 

but yielded the nitro cycloadduct (112), the product of nitro/alkene cyclo­

addition. Correspondingly, the hydroxy/trinitromethyl precursor (125) of the 

hydroxy cycloadduct (115} was never apparent in the 1 H n.m.r. spectra of the 

product mixtures. This is consistent with the earlier observations in the 2,6-

dimethylnaphthalene (57) I TNM reactions and others5 that the hydroxy/tri­

nitromethyl adducts such as compound (125) undergo cycloaddition more 

rapidly than the corresponding nitro/trinitromethyl adducts, such as 

compound (116). For example, the half-lives in the 2,6-dimethylnaphthalene 

(57) I TNM reactions for the hydroxy and nitro cycloadduct precursors were 

13 hand 96 h, respectively (See Sections 2.13 and 2.14). No products were 

detected which could have been derived by coupling of •No 2 at C1 in the 

delocalized phenylallylic radical (72), but in this context it must be 

emphasized that of the total adduct yield (50%), some 7% remains 
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unidentified. 

In the photolysis at +20° of 1 ,3-dimethylnaphthalene (58) I TNM in 

dichloromethane containing TFA the formation of adducts and the trinitro­

methyl aromatic derivatives (117) and (118) was suppressed by the 

protonation of (02 N) sc- in the triad of 1 ,3-dimethylnaphthalene radical 

cation, (02N)sC- and •No2. In the absence of (02N)sC-, the 1 ,3-dimethyl­

naphthalene radical cation undergoes radical coupling with •No2 to give the 

2,4-dimethyl-1-nitronaphthalene (119), or with itself to give the dehydrodimer 

(123). The formation of the dehydrodimer (123) in photolyses in the 

presence of TFA parallels dehydrodimer (126) formation in a similar reaction 

of 1-methoxynaphthalene.16 Furthermore, it is notable that C4 is the centre 

Me 

Me 

(123) 

Me 

Me 

OMe 

OMe 

(126) 

with the highest calculated unpaired electron spin density ( +0.48) in the 1 ,3-

dimethylnaphthalene radical cation .14 

Reactions at lower temperatures in dichloromethane and acetonitrile 

led to an increase in the 1-nitro aromatic ( 119) and it therefore appears likely 

that much of the 2,4-dimethyl-1-nitronaphthalene (119) was formed by direct 

coupling of •No2 with the radical cation. 

In conclusion, it appears likely that steric interactions play a major role 

in the regiochemistry of attack of (02N)sC- on the 1 ,3-dimethylnaphthalene 
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radical cation. Without unfavourable methyl interactions, it appears that 

even secondary benzylic radicals may form on the pathway to adducts. 

Clearly however, the phenylallylic radicals, (72) and (73), are more stable 

than the benzylic radical (70), with the majority of attack of (02N)3C- via 

these intermediates. Stabilization of the phenylallylic radical (72) by the 

methyl substituents at C1 and C3 appears to offset some of the steric 

interactions between the bulky trinitromethyl group and the f3-methyl group at 

C3. 
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CHAPTER THREE 

PHOTONITRATION OF 1 ,2,3-TRIMETHYLBENZENE, 

1 ,2,4,5-TETRAMETHYLBENZENE, PENTAMETHYLBENZENE 

AND HEXAMETHYLBENZENE 

3.1 Introduction 

The photochemical addition of TNM to naphthalene and various 

methylated naphthalenes leads predominantly to adducts, which arise via 

nitro/trinitromethyl or nitrito/trinitromethyl addition across 1 ,2~ or 1 ,4~ bonds 

of the aromatic substrate.1-8 However, in contrast to this, Masnovi et aJ.9 

reported that the photochemical reactions of 1 ,3,5-trimethylbenzene, 

1,2,4,5-tetramethylbenzene, pentamethylbenzene, or hexamethylbenzene 

with TNM yield only products of •No2 or (02N)sC- side-chain and nuclear 

substitution, with no indication of the formation of adducts. 

Subsequently, Eberson et af.1 o, 11 investigated the photochemical 

reaction between benzene and TNM. They found that photolysis of 

benzene and TNM at +20° in dichloromethane, after 48 h, produced a 

reaction mixture which contained adducts (54%), trinitromethyl substitution 

products (26%), nitro substitution products (8%), and various phenolic 

products (12%). 

In determining the structure of the adducts formed, the first bond 

formation involving reaction of (02N)sC- with the aromatic radical cation is 

crucial. a It was also shown that the relative energies of the various 

delocalized carbon radicals are important in understanding the regie­

chemistry of the photochemical reactions between aromatic compounds 

and TNM. The relative energies are affected both by steric interactions 
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between the trinitromethyl group and the remainder of the molecule, and by 

the extent of stabilization of the discrete carbon radical by any substituents 

present. 

In the photochemical reaction between 1 ,2,3,4-tetramethylbenzene 

and TNM,12,13 adduct formation occurred predominantly by attack of 

(02N)sC- at CS of the 1 ,2,3,4-tetramethylbenzene radical cation (37% from 

a total of 44% in dichloromethane at -50°). The remainder of ad ducts arose 

via attack of (02N)sC- at C1 of the 1 ,2,3,4-tetramethylbenzene radical 

cation. The possible delocalized carbon radicals are outlined in Scheme 

3.1. Each of the three possible delocalized carbon radicals (127)-(129) 

Me Me 1•+ Me 

Me 
(02N)sc· MebMe (02N)sC' 

Me Me 

atC1 6 0 4 atC5 
Me Me Me 

5 

(127) 
1(02N)sC' 

(128) 

atC2 

Me 

Me 

(129) 

Scheme 3.1 

would be stabilized by two methyl groups, hence steric interactions would 

determine the regiochemistry of attack of (02N)sC- on the 1 ,2,3,4-tetra­

methylbenzene radical cation. Attack at C2 by (02N)sC- on the 1 ,2,3,4-

tetramethylbenzene radical cation to give radical (129) would be 

disfavoured due to the two {3-methyl interactions with the bulky trinitromethyl 
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group and the steric compression arising from the ipso-methyl group. 

Radical (127), arising via attack of (02N)3C· at C1 of the 1 ,2,3,4-tetramethyl-

benzene radical cation, would also contain some steric compression arising 

from the ipso-attachment of the bulky trinitromethyl group, but would only 

contain a single ,8-methyl interaction. It therefore appears that radical 

(128), arising from attack of (02N)3C- at the unsubstituted C5 position on 

the 1 ,2,3,4-tetramethylbenzene radical cation, would be the most stable 

delocalized carbon radical with only a single ,8-methyl interaction. 

Photolysis studies on the 1 ,2,3,5-tetramethylbenzene/TNM system 14 

found that adduct formation resulted mainly from addition of (02N)3C- at C5 

on the 1 ,2,3,5-tetramethylbenzene radical cation (13% of adducts from a 

total of 15% in dichloromethane at +20°). The remainder of adducts arose 

via attack of (02N)3C- at C1 on the 1 ,2,3,5-tetramethylbenzene radical 

cation. The possible initial modes of attack of (02N)3C- on the 1 ,2,3,5-

tetramethylbenzene radical cation are depicted in Scheme 3.2. Carbon 

radicals (130) and (131), which formed via attack of (02N)3C- at C1 and C5 

Me Me 1•+ Me 

Me 
(O.,N)aC" Me*Me (02N)sc-

Me Me 

ruc1 6 ~ 4 atC5 

. 5 
Me Me 

(02N~v ~N)3C" 
(130) atC2 C4 (131) 

C(N02}3 Me 

Me Me Me Me 

Me Me 

(132) (133) 

Scheme 3.2 
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· on the 1 ,2,3,5-tetramethylbenzene radical cation, respectively, would each 

be stabilized by a single methyl group. Both radicals (130) and (131} 

would be destabilized by steric compression arising from the ipso-methyl 

interaction with the bulky trinitromethyl group, but radical (130) would be 

further destabilized due to the f3-methyl interaction with the trinitromethyl 

group. Attack on the 1 ,2,3,5-tetramethylbenzene radical cation by 

(02N)sC- at C2 and C4 would lead to the formation of radicals (132) and 

(133), respectively. These radicals would be expected to be less stable 

than radicals (130) and (131) due to the presence in each case .of two 

f3-methyl interactions with the bulky trinitromethyl group, even though they 

would both be stabilized by three methyl groups. Additionally, radical (132) 

would be further destabilized due to the presence of an ipso-methyl 

interaction with the trinitromethyl group. It therefore appears that radical 

(131) would be the most stable delocalized carbon radical. 

The studies discussed in this Chapter aimed to gain further evidence 

for adduct formation in the photochemical reactions between polymethyl­

substituted benzene derivatives and TNM, and to examine the regie­

chemistry of attack of (02N)sC- on the respective aromatic radical cations. 

In light of the adducts identified in the photochemical reactions between 

TNM and 1 ,2,3,4-tetramethylbenzene12,13 and 1 ,2,3,5-tetramethyl­

benzene, 14 the photolysis reactions of 1 ,2,4,5-tetramethylbenzene ( 134), 

pentamethylbenzene (135) and hexamethylbenzene (136) were re­

examined carefully in anticipation that adducts might also be observed. 

Me 

~nMe 
Me Me 

Me Me Me Me 

Me Me Me Me 

Me Me 

(134) (135) (136) 
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The photochemical reaction of 1 ,2,3-trimethylbenzene (137) was also 

studied in detail, after preliminary work by Young in his B.Sc. Honours Ill 

research project15 had identified products (138) and (139) by single crystal 

X-ray analysis. 

Me Me Me 

Me~Me Me Me Me Me 

C(N02)3 

(137) (138) (139) 

Attack of (02N)sC- in the photolysis of 1 ,2,3-trimethylbenzene (137) 

with TNM was expected to occur predominantly at the unsubstituted ring 

position at C5 of the 1 ,2,3-trimethylbenzene radical cation. The potential 

radicals are represented in Scheme 3.3. The delocalized carbon radical 

(140) would form via initial attack of (02N)sC- at C5 on the 1 ,2,3-trimethyl­

benzene radical cation. This radical was expected to be the most likely 

Me Me l•+ Me 

Me Me 
(02NiaC" Me:6Me (02NbC-

Me Me 

atC5 4 0 6 atC4 Hn111 

5 (02NbC 

(140} 
(02Niv 

atC1 
~NbC" 

C2 (141} 

Me Me,. C(N02h 
~ 

Me Me "' Me 

(142) (143) 

Scheme 3.3 
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carbon radical to form as steric interactions between the trinitromethyl group 

and the remainder of the molecule would be minimal, even though 

stabilization of the radical system would be afforded by only one methyl 

group. Attack of (02N)sC· at C4 on the radical cation of 1 ,2,3-trimethyl­

benzene would give the delocalized radical (141), which is stabilized by 

two methyl groups, but its energy would be raised by the interaction 

between the trinitromethyl group and the neighbouring j3-methyl group. 

Radicals (142) and (143) would be formed via (02N)sC- attack on the 1 ,2,3-

trimethylbenzene radical cation at C1 and C2, respectively. The energies 

of the delocalized carbon radicals (142) and (143) would be expected to be 

greater than that of carbon radical (140), as (142) and (143) would be 

subject to both steric compression arising from the ipso-attachment of the 

trinitromethyl group and interaction between the bulky trinitromethyl group 

and the j3-methyl group(s). 

Photolysis of the 1 ,2,4,5-tetramethylbenzene (134) I TNM system 

could generate two possible delocalized carbon radicals, (144) and (145), 

as summarized in Scheme 3.4. Both (144) and (145) would be stabilized 

Me 

Me 

(144) 

(02N)sC 

.., C(NO 2)3 at C1 
~ 
Me 

(145) 

Scheme 3.4 

by two methyl groups and hence steric interactions would determine the 

radical of lower relative energy. Attack of (02N)sC- at C1 on the 1 ,2,4,5-

tetramethylbenzene radical cation would lead to the delocalized radical 

(144). This would be destabilized by the steric interaction between the 
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bulky trinitromethyl group and the ipso- and f3-methyl groups. Radical 

(144) would, however, be expected to be more stable than radical (145), 

formed via attack of (02N)sC- at C3 on the radical cation of 1 ,2,4,5-tetra­

methylbenzene, due to radical (145) being destabilized by two [3-methyl/ 

trinitromethyl steric interactions. 

In the photolysis of pentamethylbenzene (135) with TNM, it was 

expected that the delocalized radical (146), formed via initial attack of 

(02N)sC- at C1 on the pentamethylbenzene radical cation, would be 

favoured over radicals (147)-(149) which would form after initial-attack of 

(02N)sC- at C6, C2 and C3, respectively, on the pentamethylbenzene 

radical cation (See Scheme 3.5). From the results of photolysis studies on 

Me 
l •+ 

Me 6 
~ _ Me~Me Me C(N02)s (02N)sC 

5 
0 {02N)sC-

at C1 2 at C6 
Me Me4 3 Me Me Me 

Me Me Me 
(02N)sC-/ ~(02N)sc-

(146) at cy "{ cs (147) 

Me Me Me 

.., C{N02)s 
Me ~ Me ... Me Me ~ 

Me Me~ C(N0 2)s 

{148) {149) 

Scheme 3.5 

1 ,2,3,4- and 1 ,2,3,5-tetramethylbenzene with TNM, 12-14 it appears that the 

f3-methyl steric interactions with the trinitromethyl group are more 

destabilizing than the ipso-methyl steric interactions with the trinitromethyl 

group and dominate any enhanced stability conferred by suitably 
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positioned methyl groups. Therefore, radical (146) which would only 

contain one {3-methyl/trinitromethyl steric interaction would be expected to 

be favoured over radicals (147)-(149), each of which would contain two 

{3-methyl/trinitromethyl steric interactions. 

In the photochemical reaction between hexamethylbenzene (136) 

and TNM, the delocalized radical (150) would be expected to be highly 

unstable due to severe hindrance by the two {3-methyl/trinitromethyl 

interactions and the steric compression resulting from the ipso-methyl 

interaction with the bulky trinitromethyl group, as illustrated in Scheme 3.6. 

Me l. + Me,.. C(N02)s 
~ 

Me Me Me ~ Me 
(02N)sc· 

Me Me Me Me 

Me Me 

(150) 

Scheme 3.6 

3.2 The Photolysis of 1 ,2,3-Trimethylbenzene (137) 

General procedure for the photonitration of 1 ,2,3-trimethy/benzene ( 137) 

with TNM. 

A solution of 1 ,2,3-trimethylbenzene (137) (500 mg, 0.52 mol L-i) 

and TNM (1.04 mol L-i) in dichloromethane or acetonitrile (at +20, -20 or 

-50°) was irradiated with filtered light (A.cut-oft<435 nm) and small samples 

were withdrawn for analysis at suitable intervals. The work-up procedure, 

involving evaporation of solvent and TNM, was conducted at ::::;oo. The 

crude product mixtures were stored at -20 or -78° and were analysed by iH 
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n.m.r. spectroscopy as soon as possible (For complete experimental details 

see Chapter 5, Section 5.3.1 ). 

3.3 The Photochemistry of 1 ,2,3-Trimethylbenzene 

(137) in Dichloromethane 

Photochemistry in dichloromethane at +20° and identification of adducts. 

A solution of 1 ,2,3-trimethylbenzene (137) (0.52 mol L-1) .and TNM 

(1.04 mol L-1) in dichloromethane was irradiated at +20° until the yellow 

colour of the charge-transfer band was bleached. The composition of the 

reaction mixture was monitored by withdrawing samples for 1 H n.m.r. 

spectral analysis. After work-up, the final solution (after 8 h) was shown to 

contain a mixture of "single 11 adducts (151)-(156) (total 30%), "double 11 

adducts (137) and (157)-(162) (total 26%), nitro dienones (163) and (164) 

(total 1 %), aromatic compounds (138) and (165)-(169) (total 42%), and 

other unidentified adducts (total 1 %). Here the term 11Single 11 adducts refers 

to those products formed by a single addition of the elements of TNM to 

1 ,2,3-trimethylbenzene (137), while the term "double 11 adducts refers to 

Me Me 

Me Me Me ,,Me ,, 
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products derived by some form of extramolecular addition to initially formed 

11Single" adducts. The components of the mixture were partially separated 

by h.p.l.c. on a cyanopropyl column, cooled to 0°, using hexane/dichloro­

methane mixtures as the eluting solvents. In the following discussion, 

adduct identification will be described for groups of compounds, rather than 

in the order of elution which is given in the Experimental section (See 

Chapter 5, Section 5.3.1 ). 

11Single" adducts (151) and (155). 

Adduct (151) was identified as an impure oil and decomposed to give 

the known 15 3,4,5-trimethyl-1-trinitromethylbenzene ( 138) when 

crystallization was attempted . The identification of adduct (151) as 1 ,5,6-

trimethyl+6-nitro-r-3-trinitromethy!cyclohexa -1 ,4-diene ( 151) was based on: 

(i) a comparison of its 1H and 13C n.m.r. spectroscopic data with those for 

1 ,3,5,6-tetramethyH-6-nitro-r-3-trinitromethylcyclohexa-1 ,4-diene (170), the 

structure of which was determined by single crystal X -ray analysis, 14 as 

seen in Fig. 3.1; and (ii) its conversion into 3,4,5-trimethyl-1-trinitromethyl­

benzene (138) on treatment with 2,6-di-tert-butyl-4-methylpyridine in 

dichloromethane, as discussed in Section 3.6. The 13C n.m.r. spectra were 

confirmed by short range reverse detected heteronuclear correlation 

spectra (HMQC) and HMBC experiments. In particular, the location of the 

trinitromethyl function was defined by the chemical shift for C3 (3 43.2). 

Furthermore, the presence of very strong infrared absorptions at 1613, 1586 

and 1550 cm-1 provided evidence for the -C(N02)3 and -N02 substituents. 

The trans-6-nitro-3-trinitromethyl stereochemistry was assigned to adduct 

( 151) because it eluted from the cyanopropyl h.p.l.c. column with the 

dichloromethane/hexane solvent system earlier than its cis-6-nitro-3-trinitro­

methyl stereoisomer (155). The h.p.l.c. elution order for such pairs of 

stereoisomers is known, with trans-1 ,4-nitro/trinitromethyl adducts eluting 
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Me 

1-Me, 5-Me 

H2,H4 

3-Me 

6-Me 

C1, C5 

C2,C4 

C3 

C6 

(170) 

C(N02) 3 

1.79 

5.94 

1.79 

1.79 

137.0 

124.1 

47.6 

90.9 

Me 

1-Me, 5-Me 

H2,H4 

H3 

6-Me 

C1, C5 

C2,C4 

C3 

C6 

(151) 

·1.82 

5.82 

4.74 

1.77 

140.9 

117.2 

43.2 

not observed 

Fig. 3.1 Comparison of the characteristic 1H and 13C n.m.r. resonances (in 

ppm) for adducts (170) and (151). 

ahead of their cis-1 ,4-isomers.5-7 

Adduct (155) gave crystals of inadequate quality for single crystal 

X-ray analysis and its identification as 1 ,5,6-trimethyl-c-6-nitro-r-3-trinitro­

methylcyclohexa-1 ,4-diene {155) was based on its spectroscopic data, and 

its conversion into 3,4,5-trimethyl-1-trinitromethylbenzene (138) on 

treatment with 2,6-dHert-butyl-4-methylpyridine in dichloromethane, as 

discussed in Section 3.6. N.O.e. experiments confirmed the assignments 

of the chemical shifts for the protons. Specifically, irradiation at 8 5.75 (H2, 
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1-Me, 5-Me 

H2, H4 

H3 

6-Me 

1.83 

5.75 

4.61 

1.77 

(155} 

C1, C5 

C2,C4 

C3 

C6 

139.7 

116.8 

42.0 

90.0 

Fig. 3.2 Characteristic 1H and 13C n.m.r. resonances (in ppm) and 

enhancements(%) from a selected n.O.e. experiment for adduct 

(155). 

H4) gave enhancements at 8 1.83 (1-Me, 5-Me) and at 8 4.61 (H3), as 

shown in Fig. 3.2. HMQC and HMBC experiments allowed the complete 

assignment of the 13C n.m.r. spectra, also seen in Fig. 3.2. In particular, the 

nitro function attached to C6 appeared at 8 90.0, while the trinitromethyl 

function attached to C3 appeared at 8 42.0. The closely similar 

spectroscopic data for compounds (151) and (155) are presented in 

Fig. 3.3, and were consistent with their assignment as epimers. 
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140.9 

117.2 

43.2 

not observed 

1-Me, 5-Me 

H2, H4 
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6-Me 
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(155} 

1.83 

5.75 

4.61 

1.77 

139.7 

116.8 

42.0 

90.0 

Fig. 3.3 Comparison of the characteristic 1H and 13C n.m.r. resonances (in 

ppm) and coupling constants for adducts (151) and (155). 

Single adducts (154) and (156). 

Adduct (154) was isolated only as an oil containing an impurity 

(c. 5%) and was identified as 1 ,2,3-trimethyl-r-3-nitro-t-6-trinitromethyl­

cyclohexa-1,4-diene (154) on the basis of its spectroscopic data, and its 

conversion into 2,3,4-trimethyl-1-trinitromethylbenzene (165) on treatment 

with 2,6-di-tett-butyl-4-methylpyridine in dichloromethane, as discussed in 

Section 3.6. N.O.e. experiments confirmed the assignments of the 
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chemical shifts for the protons. Specifically, irradiation at o 4.89 (H6) gave 

enhancements at o 1.81 (1-Me) and at o 6.24 (H5), while irradiation at 

o 6.21 (H4) gave an enhancement at o 1.74 (3-Me), as observed in Fig. 3.4. 

HMQC and HMBC experiments confirmed the assignments of the 13C n.m.r. 

resonances, also illustrated in Fig. 3.4. In particular, the CH-C(N02)3 

resonance appeared at o 47.6, while the CMe-N02 resonance appeared at 

o 88.8. The trans-3-nitro-6-trinitromethyl stereochemistry was assigned to 

adduct (154) because it eluted earlier than its cis-3-nitro-6-trinitromethyl 

stereoisomer (156}, and the h.p.l.c. elution order for such pairs of stereo­

isomers is known from previous examples.5-7 

1-Me 

2-Me 

3-Me 

H4 

H5 

H6 

1.81 

1.75 

1.74 

6.21 

6.24 
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(154) 

C1 
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C3 

C4 

C5 

C6 

123.2 

135.4 

88.8 

121.7 

135.5 

47.6 

Fig. 3.4 ·Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for adduct 

(154). 
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Adduct (156) was identified as 1 ,2,3~trimethyl-r-3-nitro-c-6-trinitro­

methylcyclohexa-1 ,4-diene (156), but could not be induced to give crystals 

of adequate quality for single crystal X-ray analysis. Its identification was 

based on its spectroscopic data, and its conversion into 2,3,4~trimethyl-1-tri­

nitromethylbenzene (165) on treatment with 2,6-di-tert-butyl-4-methyl­

pyridine in dichloromethane, as discussed in Section 3.6. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at <5 4.79 (H6) gave enhancements at 

o 1.81 (1-Me) and at() 6.24 (H5), while irradiation at b 6.30 (H4) gave 

enhancement at <5 1.77 (3-Me}, as seen in Fig. 3.5. Furthermore, the nitro 

1-Me 

2-Me 

3-Me 

H4 

H5 

H6 

1.81 

1.89 

1.77 

6.30 

6.24 

4.79 

(156) 

C1 

C2 

C3 

C4 

C5 

C6 

124.1 

134.8 

86.7 

134.9 

122.3 

47.0 

Fig. 3.5 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for adduct 

(156). 
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function was indicated by the 13C n.m.r. chemical shift for C3 (8 86.7) and 

the trinitromethyl function by the 13C n.m.r. chemical shift for C6 (8 47.0), 

also shown in Fig. 3.5. These assignments were confirmed by HMQC and 

HMBC experiments. Comparison of the characteristic spectroscopic data 

for adducts (156) and (154) is depicted in Fig. 3.6. The closely similar data 

are consistent with their assignment as epimers. 
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Fig. 3.6 Comparison of the characteristic 1H and 13C n.m.r. resonances (in 

ppm) and coupling constants for adducts (154) and (156). 
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"Single" adduct (152) and its cycloaddition product (153). 

Adduct (152) was isolated only in admixture with adducts (151) and 

(154), above, and traces of its related nitro cycloadduct (153). The identity 

of adduct (152) as 1 ,2,3-trimethyl-r-5-nitro-t-6-trinitromethylcyclohexa-1 ,3-

diene (152} was assigned on the basis of its spectroscopic data, and its 

conversion into the nitro cycloadduct (153) (See below and Section 3.7). 

N.O.e. experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at o 5.11 (H4) gave enhancements at 

o 1.78 (3-Me) and at o 5.36 (H5), while irradiation at o 5.60 (H6) gave 

enhancements at o 1.90 (1-Me) and at o 5.36 (H5), as represented in Fig. 

3.7. 

Fig. 3.7 Enhancements(%) from selected n.O.e. experiments for adduct 

(152). 

The structure of the nitro cycloadduct (153} was determined by single 

crystal X-ray analysis. A perspective drawing of the nitro cycloadduct 

(153), C1oH12N40a, m.p. 163° (dec.) is presented in Fig. 3.8, and 

corresponding atomic coordinates are given in Table 5.11 (See Chapter 5, 

Section 5.5). In (153), N(3) is clearly trigonal pyramidal and bond length 

differences [C(7)-N(1) 1.532{4) A, C(7)-N(2) 1.553(4) A, C(7)-N(3) 1.490(4) 

A] are similar to those observed earlier for analogous heterocyclic cage 

structures. Specifically, (153) is similar to cycloadducts (1 01) and (1 04) 
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Fig. 3.8 Perspective drawing of nitro cycloadduct (153). 

[formed in the photolysis of 2,6-dimethylnaphthalene (57) I TNM], structures 

(112), (115) and (122) [formed in the photolysis of 1 ,3-dimethylnaphthalene 

{58} I TNM], and other examples.4-7, 12 The spectroscopic data for the nitro 

cycloadduct (153) were in accord with the established structure. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at o 4.60 (H6) gave enhancements at 

o 1.80 (1-Me) and at o 5.51 (H5), while irradiation at o 5.27 (H4) gave 

enhancements at o 1.67 (3-Me) and at o 5.51 (H5), as outlined in Fig. 3.9. 

The characteristic 1H and 13C n.m.r. data are also seen in Fig. 3.9. 

Specifically, 13C n.m.r. resonances for the nitro function attached to C5 

appeared at o 79. 7, while the cyclized trinitromethyl function attached to C6 

appeared at o 45.2. These assignments were confirmed by HMQC and 

HMBC experiments. The stereochemistry of the r-5-nitro-t-6-trinitromethyl 

system in adduct (152) is established by the observed torsional angle in 

171 
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1.75 
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C1 
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C3 
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C5 

C6 

128.5 

140.1 

87.4 

81.4 

79.7 

45.2 

Fig. 3.9 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for nitro 

cycloadduct (153). 

nitro cycloadduct (153), C(7)-C(2)-C(1)-N(4) -169.3(2) 0
• The heterocyclic 

structure in nitro cycloadduct (153) is clearly formed by thermal 

cycloaddition of a nitro group of the trinitromethyl group with the C3-C4 

alkene system in the nitro/trinitromethyl precursor (152). 

"Double" adducts, trinitro!trinitromethyl adducts ( 157) and ( 158). 

The structure of trinitro/trinitromethyl adduct (157) was determined by 

single crystal X-ray analysis. A perspective drawing of 1 ,2,3-trimethyl-r-3, 

c-4,c-6-trinitro-t-5-trinitromethylcyclohex-1-ene (157), C10H12N5012, m.p. 

73° (dec.), is presented in Fig. 3.10, and corresponding atomic coordinates 
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Fig. 3.10 Perspective drawing of 11double" adduct (157). Double bond 

shown in black. 

are given in Table 5.12 (See Chapter 5, Section 5.5). In the solid state the 

alicyclic ring of the trinitro/trinitromethyl compound (157) exists in close to a 

upure" boat conformation [torsional angles: C(1)-C(2)-C(3)-C(4) -43.1 (4) 0
; 

C(2)-C(1 )-C(6)-C(5) 34.4(4) 0
; C(3)-C(4)-C(5)-C(6) -21.8(4) 0

], with the nitro 

groups at C(3) and C(6) in the flagpole orientations. The planes of these 

nitro groups are essentially parallel to each other [torsional angles: 

C(4)-C(3)-N(1 )-0(12) -2.3(4)0
; C(5)-C(6)-N(3)-0(31) 31.0(4) 0

]. The 

remaining stereochemistry of the trinitro/trinitromethyl adduct (157) is 

defined by the torsional angles: C(10)-C(5)-C(6)-N(3) -126.0(3)0
; 

C(1 O)-C(5)-C(4)-N(2) 82.8(3) 0
; N(1 )-C(3)-C(4)-N(2) 62.8(3) 0

• The 

spectroscopic data for the trinitro/trinitromethyl adduct (157) were in accord 

with the established structure. N.O.e. experiments confirmed the 

assignments of the chemical shifts for the protons. Specifically, irradiation 
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C1 
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130.2 

87.8 
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Fig. 3.11 Characteristic 1 H and 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for "double" 

adduct (157). 

at 8 2.19 (1-Me and 3-Me) gave enhancements at 8 2.03 (2-Me), at 8 5.01 

(H6) and at 8 5.10 (H4), while irradiation at 8 6.62 (H5) gave enhancements 

at 8 5.01 (H6) and at 8 5.10 (H4), as presented in Fig. 3.11. Notable among 

these data was the chemical shift observed for H5 (8 6.62), remarkably 

deshielded for a proton ipso to a trinitromethyl group. Consideration of the 

established X-ray structure for the trinitro/trinitromethyl adduct (157) 

revealed the origin of this marked deshielding, H5 being "sandwiched~~ 

between oxygen atoms, 0(12), 0(21), 0(31) and 0(61), of four proximate 
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nitro functions. HMQC and HMBC experiments confirmed the assignments 

of the 13C n.m.r. resonances (See summary in Fig. 3.11). In particular, the 

locations of the nitro functions were defined by the chemical shifts for C3 

(8 87.8), C4 (8 82.7) and C6 (8 85.5), while the trinitromethyl function was 

defined by the chemical shift for C5 (8 42.7). 

The second trinitro/trinitromethyl adduct (158) could not be induced 

to crystallize and was identified as 1 ,2,3-trimethyl-r-3, t-4, t-6-trinitro-c-5-tri­

nitromethylcyclohex-1-ene ( 158}, the epimer of the trinitro/trinitromethyl 

adduct (157) at C3, on the basis of its 1 Hand 13C n.m.r. spectra. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at 8 1.74 (3-Me) gave enhancement at 

8 1.93 (2-Me), irradiation at 8 5.92 (H4) gave enhancements at 8 1.74 

(3-Me) and at 8 4.88 (H5), and irradiation at 8 5.81 (H6) gave 

enhancements at 8 1.96 (1-Me) and at 8 4.88 (H5), as observed in Fig. 3.12. 

0.5% 

Fig. 3.12 Enhancements (%) from selected n.O.e. experiments for "double" 

adduct(158). 

The assignment of the 13C n.m.r. resonances were confirmed by HMQC 

and HMBC experiments, which pointed to the presence of nitro groups at 

C3 (8 81.1), at C4 (8 78.6) and at C6 (8 84.1), in addition to a trinitromethyl 

group at C5 (8 46.7), as illustrated in Fig. 3.13. The spectroscopic data 

175 



1-Me 

2-Me 

3-Me 

H4 

H5 

H6 

1.96 

1.93 

1.74 

5.92 

4.88 

5.81 

(158) 

C1 

C2 

C3 

C4 

C5 

C6 

124.1 

132.9 

81.1 

78.6 

46.7 

84.1 

Fig. 3.13 Characteristic 1H and 13C n.m.r. resonances (in ppm) and 

coupling constants for "double" adduct (158). 

which were the most informative about the stereochemistry of adduct (158) 

were the combination of a W-coupling between H4 and H6 (JH4,H6 3.9 Hz), 

the coupling constants JH4,H5 4.9 Hz and JHs,H6 1.0 Hz (see Fig. 3.13), and 

the absence of a significant n.O.e. of H4 (o 5.92) on irradiation of the 3-Me 

resonance at o 1.74. These data pointed to a structure for trinitro/trinitro­

methyl adduct (158) in which the alicyclic ring existed in a flattened skew 

boat (C1 and C2, sp2), with the substituents at C3 and C4 eclipsed. In this 

conformation the C5-C(N02)3 bond was close to anti-coplanar with the 

C4-N02 and C6-N02 bonds. 
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11Double" adduct, hydroxyldinitroltrinitromethyl adduct (139). 

Adduct (139) was identified as the known 15 2,3,4-trimethyl-c-2,c-5-

dinitro-t-6-trinitromethylcyclohex-3-en-r-1-ol (139), previously identified by 

single crystal X-ray analysis. 

11Doub/e" adducts, nitronic esters (159)-(162). 

The structure of the nitronic ester (161) was determined by single 

crystal X-ray analysis. A perspective drawing of the trinitro nitronic ester 

(161), C1oH12N40a, m.p. 131-132.5°, is presented in Fig. 3.14, and 

corresponding atomic coordinates are given in Table 5.13 (See Chapter 5, 

Section 5.5). In the solid state, the plane of the N(2)-nitro group is close to 

eclipsed with the N(1 )-C(7) bond [torsional angle: N(1 )-C(7)-N(2)-0(21) 

-20.7(6) 0
]. The spectroscopic data for adduct (161) were in accord with the 

Fig. 3.14 Perspective drawing of 11doublen adduct (161 }. Double bonds 

shown in black. 
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established structure. The trinitro nitronic ester (161) was highly insoluble 

in (D)chloroform and hence the 1H and 13C n.m.r. spectra were run in 

(Ds)acetonitrile and the characteristic data are illustrated in Fig. 3.15. 

N.O.e. experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at 8 1.88 (3~Me) gave enhancement at 

8 5.40 (H4), while irradiation at 8 2.22 (1 ~Me and 2~Me} gave enhancement 

at 8 5.34 (H6), also seen in Fig. 3.15. Furthermore, the nitro functions were 

indicated by the 13C n.m.r. chemical shifts for C4 (8 78.9} and C6 (8 83.3), 

while the cyclized dinitromethyl function was indicated by the 13C n.m.r 

chemical shift for C5 (o 38.7). These assignments were confirmed by 

HMQC and HMBC experiments. 

1-Me 

2-Me 

3-Me 

H4 

H5 

H6 

2.22 

2.22 

1.88 

5.40 

5.29 

5.34 

(161) 

C1 

C2 

C3 

C4 

C5 

C6 

127.6 

133.5 

84.0 

78.9 

38.7 

83.3 

Fig. 3.15 Characteristic 1 H and 13C n.m.r. resonances (in ppm) and 

enhancements (%} from selected n.O.e. experiments for "double" 

adduct (161). 
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The structure of the nitronic ester (162) was also determined by 

single crystal X-ray analysis. A perspective drawing of the hydroxy dinitro 

nitronic ester (162), C1oH13N307, m.p. 129°, is presented in Fig. 3.16, and 

corresponding atomic coordinates are given in Table 5.14 (See Chapter 5, 

Section 5.5). The hydroxy dinitro nitronic ester (162) is closely similar to 

the trinitro nitronic ester (161) with the most significant difference being in 

the orientation of the plane of the N(3)-nitro group, which presumably 

reflects the replacement of the C(1 )-N02 in the trinitro nitronic ester (161) by 

the C(1)-0H in the hydroxy dinitro nitronic ester (162). Similar to "double" 

adduct (161) the plane of the N(2)-nitro group is close to eclipsed with the 

N(1)-C(7) bond [torsional angle: N(1)-C(7)-N(2)-0(21) -24.4(2) 0
]. The 

spectroscopic data for (162) were in accord with the established structure. 

N.O.e. experiments confirmed the assignments of the chemical shifts for the 

0132) 

Fig. 3.16 Perspective drawing of "double" adduct (162). Double bonds 

shown in black. 
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protons. Specifically, irradiation at 8 1.63 (3-Me) gave enhancements at 

8 1.90 (2-Me) and at 8 4.30 (H4), irradiation at 8 4.80 (H5) gave 

enhancements at o 4.30 (H4) and at o 4.91 (H6), and irradiation at 8 2.01 

(1-Me) gave enhancement at o 4.91 (H6), as seen in Fig. 3.16. The 

characteristic 1 H and 13C n.m.r. data are also presented in Fig. 3.16. In 

particular, 13C n.m.r resonances for the hydroxy function attached to C4 

appeared at o 66.3, the nitro function attached to C6 appeared at 8 82.4, 

and the cyclized dinitromethyl function attached to C5 appeared at 8 40.1. 

These assignments were confirmed by HMQC and HMBC experiments. 

1-Me 

2-Me 

3-Me 

H4 

H5 

H6 

2.01 

1.90 

1.63 

4.30 

4.80 

4.91 

(162) 

C1 

C2 

C3 

C4 

C5 

C6 

126.3 

131.5 

85.4 

66.3 

40.1 

82.4 

Fig. 3.17 Characteristic 1H and 13C n.m.r. resonances (in ppm) and 

enhancements (%) from selected n.O.e. experiments for 11 double 11 

adduct (162). 
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The nitronic ester (160) gave a crystal of barely acceptable quality for 

attempted structure determination by single crystal X-ray analysis. The 

structure of the trinitro nitronic ester (160) was indicated by the preliminary 

results of a single crystal X-ray analysis [See Chapter 5, Section 5.5 (a) for 

the crystal data for a poor quality crystal of trinitro nitronic ester (160)]. Due 

to apparent disorder in the crystal involving solvent molecules, it was not 

possible to refine the data to a satisfactory A-factor, but the important 

features of the structure were secured. A perspective drawing of the trinitro 

nitronic ester (160) is presented in Fig. 3.18. The spectroscopic data for the 

trinitro nitronic ester (160) were in accord with the established structure. 

N.O.e. experiments confirmed the assignments of the chemical shifts for the 

protons. Specifically, irradiation at o 5.16 (H4) gave enhancement at o 1.92 

(3-Me), while irradiation at o 5.52 (H6) gave enhancements at o 2.03 (1-Me) 

Fig. 3.18 Perspective drawing of 11double 11 adduct (160). Double bonds 

shown in black. 
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0.5% 

Fig. 3.19 Enhancements (%)from selected n.O.e. experiments for "double" 

adduct (160). 

and at o 5.12 (H5), as depicted in Fig. 3.19. In the perspective drawing 

shown in Fig. 3.18, the anti-orientation of H(5)-C(5)-C(6)-H(6) was reflected 

in the coupling constant (JH4,H5 11.7 Hz), and the gauche relationship of 

H(4) and H(5) in the coupling constant (JHs,H6 3.5 Hz), as shown in Fig. 

3.20. Also summarized in Fig. 3.20 are the characteristic 13C n.m.r. 

H4 

H5 

H6 

5.16 

5.12 

5.52 

(160) 

C4 

C5 

C6 

44.9 

80.7 

84.2 

Fig. 3.20 Characteristic 1H and 13C n.m.r. resonances (in ppm) and 

coupling constants for "double" adduct (160). 
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resonances, which were confirmed by an HMQC experiment. In particular, 

the locations of the nitro functions were defined by the chemical shifts for C5 

(8 80.7) and C6 (8 84.2), while the cyclized dinitromethyl function was 

defined by the chemical shift for C4 (8 44.9). 

The "double" adduct (159) was isolated only as an oil, but was 

identified as the hydroxy dinitro nitronic ester (159) based on a comparison 

of its spectroscopic data with the stereochemically related trinitro nitronic 

ester (160). N.O.e. experiments confirmed the assignments of the chemical 

shifts for the protons. Specifically, irradiation at 8 4.31 (H4) gave 

enhancement at 8 1.85 (3-Me), while irradiation at 8 5.23 (H6) gave 

enhancements at 8 1.93 (1-Me} and at 8 4.40 (H5), as represented in Fig. 

3.21. Comparisons of the characteristic 1 Hand 13C n.m.r. data are 

Fig. 3.21 Enhancements(%) from selected n.O.e. experiments for 11double" 

adduct (159). 

summarised in Fig. 3.22. In particular, the crucial coupling constants, 

JH4,H5 10.3 Hz, JH5,H6 4.4 Hz, are closely similar to those for the trinitro 

nitronic ester (160). The general upfield shift of all resonances in the 1 H 

n.m.r. spectrum of the hydroxy dinitro nitronic ester (159), relative to those 

for the trinitro nitronic ester (160), are as expected for the replacement of the 

5-N02 [in (160)] by the 5-0H [in (159)]. The 13C n.m.r. resonances were 

confirmed by HMQC and HMBC experiments. In particular, the locations of 
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1-Me 

2-Me 

3-Me 

H4 

H5 

H6 

C4 

C5 

C6 

(160) 

2.03 

1.91 

1.92 

5.16 

5.12 

5.52 

44.9 

80.7 

84.2 

1-Me 

2-Me 

3-Me 

H4 

H5 

H6 

C4 

C5 

C6 

(159) 

1.93 

1.87 

1.85 

4.31 

4.40 

5.23 

48.6 

67.8 

88.8 

Fig. 3.22 Comparison of the characteristic 1 H and 13C n.m.r. resonances 

(in ppm) and coupling constants for ndouble" adducts (160) and 

(159). 

the hydroxy, nitro and cyclized dinitromethyl functions were defined by the 

chemical shifts for C5 (8 67.8), C6 (8 88.8) and C4 (8 48.6), respectively. 

Furthermore, a strong infrared absorption at 3511 cm-1 provided evidence 

for the -OH substituent. 
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Aromatic products. 

The ring-substituted trinitromethyl aromatic compound (138) was 

isolated by chromatography on a silica gel Chromatotron plate after being 

eluted in the first fraction from h.p.l.c. Compound (138) was identified as 

the known i 5 3,4,5-trimethyl-1-trinitromethylbenzene ( 138), previously 

identified by single crystal X-ray analysis. 

The isomeric ring-substituted trinitromethyl aromatic compound ( 165) 

was also isolated by chromatography on a silica gel Chromatotron plate 

after being eluted in the first fraction from h.p.l.c., and was identified as 

2,3,4-trimethyl-1-trinitromethylbenzene ( 165). The trinitromethyl aromatic 

compound (165) could be isolated only in admixture with the isomeric 

trinitromethyl compound (138), above, but its structure was established from 

a consideration of its spectroscopic data and comparison with similar data 

for its isomer (138). N.O.e. experiments confirmed the assignments of the 

chemical shifts for the protons. In particular, irradiation at 3 2.04 (2-Me) 

gave enhancement at o 2.26 (3-Me), while irradiation at o 7.19 (H5) gave 

enhancements at 3 2.40 (4-Me) and at 3 6.99 (H6), as represented in Fig. 

3.23. Furthermore, the trinitromethyl function was indicated by the 13C 

n.m.r. resonance for C1 (3 119.8), which was closely similar to the isomeric 

Fig. 3.23 Enhancements(%) from selected n.O.e. experiments for the 

trinitromethyl aromatic (165). 
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trinitromethyl compound (138), in which the trinitromethyl function was 

indicated by the 13C n.m.r. resonance for C1 (8 119.0), as represented in 

Fig. 3.24. These assignments were confirmed by HMQC and HMBC 

experiments. Additionally, compound (165) was formed from the base 

catalysed decomposition of "single" adducts (154) and (156) after reaction 

with 2,6~di-tert-butyl-4-methylpyridine in dichloromethane (See Section 

3.6). 

Me 

Me 

(138) (165) 

Fig. 3.24 Comparison of the characteristic 13C n.m.r. resonances (in ppm) 

for the ring-substituted trinitromethyl aromatic compounds (138) 

and (165). 

The isomeric side-chain trinitromethyl aromatic compound (166) 

could be isolated only in low yield from the h.p.l.c. separation. The 

structure of the unsymmetrical 2,3-dimethyl-1-(2' ,2' ,2'-trinitroethyl)-benzene 

(166) rests on an accurately measured mass spectrum which gave the 

molecular formula C1oH11 N306, and the 1 H n.m.r. spectrum which revealed 

two methyl signals at 8 2.29 and 8 2.33, and a signal due to the 

CH2-C(N02)3 at 8 5.52, as seen in Fig. 3.25. 
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5 

Fig. 3.25 Characteristic 1H n.m.r. resonances (in ppm) for the side-chain 

trinitromethyl aromatic compound (166). 

The isomeric side-chain trinitromethyl aromatic compound (167) was 

isolated in low yield in admixture with its isomer (166), above, from the 

h.p.l.c. separation. As expected for the structure of the symmetrical 2,6-di­

methyl-1-(2',2',2'-trinitroethyl)-benzene (167), the 'H n.m.r. resonances due 

to the two methyl groups appeared at 8 2.41, while the 1 H n.m.r. resonance 

due to the CH2-C(N02)3 appeared at 8 5.57, closely similar to the isomeric 

compound (166), as observed in Fig. 3.26. 

8 2.29 and 

82.yMe 

Me 

(166) 

CH2C(N02) 3 

~85.52 

85.57\ 

CH2C(N02) 3 

Me 

(167) 

Me 

~2.41 

Fig. 3.26 Comparison of the characteristic 1H n.m.r. resonances (in ppm) 

for the side-chain trinitromethyl compounds ( 166) and ( 167). 
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Compound (168) was isolated by chromatography on a silica gel 

Chromatotron plate after being eluted in the first h.p.l.c. fraction. The 

structure of 2,3,4-trimethyl-1-nitrobenzene (168) was confirmed by 

comparison of its 1 H n.m.r. data with literature data.16 

The isomeric nitrobenzene (169) was also isolated by chromato­

graphy on a silica gel Chromatotron plate after being_ eluted in the first 

h.p.l.c. fraction. The structure of 3,4,5-trimethyl-1-nitrobenzene (169) was 

also confirmed by comparison of its 1H n.m.r. data with literature data.16 

While the nitro phenol (171) was present in the early stages of the 

photolysis reaction, it was absent at the end of the reaction. However, 

Me 

Me Me 

OH 

(171) 

compound (171) was isolated by chromatography on a silica gel 

Chromatotron plate after being eluted in the first h.p.l.c. fraction. The 

structure of 4,5,6-trimethyl-2-nitrophenol (171) was confirmed by 

comparison of its 1 H n.m.r. data with literature data.17 

Nitro ketones (163), (164) and (172). 

Compound (163) was isolated via h.p.l.c., but only in admixture with 

the nitro/trinitromethyl adduct {156). The identification of 2,3,4-trimethyl-4-

nitrocyclohexa-2,5-dien-1-one (163) was confirmed by comparing its 1 H 

n.m.r. data with literature data.18 Furthermore, the nitro dienone (163) was 

unstable in (D)chloroform solution and rearranged to give the known17 

4,5,6-trimethyl-2-nitrophenol (171), above (See Section 3.8). 
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The isomeric nitro ketone (164) was isolated as an oil via h.p.l.c. and 

its identification as 3,4,5-trimethyl-4-nitrocyclohexa-2,5-dien-1-one ( 164) 

was confirmed by comparison of its 1 H n.m.r. data with literature data.19 

The hydroxy trinitro ketone (172) was not present in the product 

mixture prior to h.p.l.c. separation, but did appear in low yield among the 

materials eluted from the cyanopropyl h.p.l.c. column. The structure of the 

hydroxy trinitro ketone (172) was determined by single crystal X-ray 

analysis. A perspective drawing of t-6-hydroxy-4,5,6-trimethyl-2,r-4, t-5-

trinitrocyclohex-2-enone (172), CgH11NsOa, m.p. 121-123°, is presented in 

Fig. 3.27, and corresponding atomic coordinates are given in Table 5.15 

(See Chapter 5, Section 5.5). In the solid state, the alicyclic ring of the 

hydroxy trinitro ketone (172) exists in a flattened [C(1) sp2] skew boat form 

[torsional angles: C(3)-C(2)-C(1 )-C(6) 26.9(2); C(2)-C(3)-C(4)-C(5) -8.1 (2) 0
]. 

0(6) 

0(31) 

0(32) 

Fig. 3.27 Perspective drawing of the hydroxy trinitro ketone (172). Double 

bonds shown in black. 
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The orientations of the planes of the three nitro groups relative to their 

surroundings are indicated by the following torsional angles: 

0(12)-N(1 )-C(2)-C(3) 19.7(2); 0(22)-N(2)-C(4)-C(7) -31.0(2); 

0(32)-N(3)-C(5)-C(8) -4.4(2) 0
• The substituents around the C(4)-C(5) bond 

are imperfectly staggered [torsional angles: C(7)-C(4)-C(5)-C(8) 86.1 (2); 

N(2)-C(4)-C(5)-N(3) -148.5(1 )0
}, and the C(6)-0(6) bond is close to eclipsed 

with the C(1 )-0(1) bond which, coupled with a 0(1 ) ........ 0(6) distance of 

2.697 A, is probably indicative of intramolecular hydrogen bonding in the 

solid state. The spectroscopic data for compound (172) were in accord 

with the established structure. Due to the limited solubility of the hydroxy 

H3 

4-Me 

5-Me 

6-Me 

7.70 

1.91 

1.84 

1.54 

(172) 

C1 

C2 

C3 

C4 

C5 

C6 

188.4 

147.0 

137.5 

90.3 

99.7 

79.2 

Fig. 3.28 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for the 

hydroxy trinitro ketone (172). 
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trinitro ketone (172) in (D)chloroform, 1H and 13C n.m.r. spectra were run in 

(Ds)acetonitrile. N.O.e. experiments confirmed the assignments of the 

chemical shifts for the protons. Specifically, irradiation at o 1.91 (4-Me) 

gave enhancement at o 7.70 (H3), while irradiation at o 1.S4 (6-Me) gave 

enhancement at o 1.84 (S-Me), as outlined in Fig. 3.28. Also presented in 

Fig. 3.28 are the characteristic 1H and 13C n.m.r. data. In particular, the 

hydroxy function was indicated by the 13C n.m.r. chemical shift for C6 

(o 79.2), the three nitro functions by the 13C n.m.r. chemical shifts for C2 

(o 147.0), C4 (o 90.3) and CS (o 99.7), and the ketone function by the 13C 

n.m.r. chemical shift for C1 (o 188.4). These assignments were confirmed 

by HMQC and HMBC experiments. 

The composition of the photochemical reaction between 1 ,2,3-tri­

methylbenzene (137) and TNM was monitored with time at +20, -20 and 

-soc in dichloromethane. An overview of product yields in dichloromethane 

is presented in Table 3.1. Notable at lower reaction temperatures was the 

partial (-20c) or complete (-soc) suppression of the formation of "double" 

adducts (139) and (1S7)-(162), and the prevention of the thermal intra­

molecular cycloaddition of the nitro/trinitromethyl adduct (1S2) to give the 

nitro cycloadduct (1S3). The yields (at 1 h reaction time) of the ring-

Me Me 

Me Me Me Me ,,Me ,, 

., ., 
H C(N02h 

(151) (152) (153) 

Me Me,.. N02 Me M/;le Me -:;. Me Me e ~ uuN02 

Huu §' 

(02NhC ., (02N)sC ., 
H C(N02h 

(154) (155) (156) 
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Table 3.1 Overview of product yields from the photolysis of 1 ,2,3-trimethylbenzene (137) (0.52 mol L-1) and TNM (1.04 mol L-1) in 

dichloromethane. 

Yield(%) 

t (h) (151) (154) (155) (156) (152) (153) (157) (139) (158) (159) (160) (161) (162) (163) (164) (171) ( 138) ( 165) ( 166) ( 167} (168) (169) 

At +20° 

1 7.3 3.8 9.3 1.9 5.7 1.7 0.3 3.2 1.0 2.7 1.1 4.5 3.6 1.1 0.3 0.5 31.4 10.2 2.8 2.8 3.3 0.5 

4 9.0 5.3 10.0 3.1 4.4 3.2 1.5 4.2 2.7 3.6 1.5 6.7 4.1 0.5 0.6 0.1 23.6 9.5 1.0 0.9 2.4 0.7 

8 7.9 3.9 9.7 3.4 2.6 2.8 2.6 3.7 3.1 3.7 1.4 6.6 4.4 trace 0.6 - 26.8 10.8 0.5 0.3 3.2 0.7 

At -20° 

3.4 4.2 4.8 3.4 4.4 - - - - - - - 1.3 2.1 0.3 2.8 40.7 4.6 4.7 4.8 3.0 0.9 

4 3.1 3.3 3.8 4.2 5.1 - - - - trace - - 1.5 2.0 0.8 0.7 45.8 13.4 1.8 2.1 2.4 1.0 

8 3.4 4.6 4.3 4.5 5.4 - - - - 0.7 - - 1.8 2.0 1.0 0.5 40.8 17.0 0.8 0.9 3.0 1.1 

At -50° 

1 2.8 2.0 4.7 4.2 3.5 - - - - - - - - 2.2 2.0 2.9 48.8 2.5 6.1 5.7 2.8 0.8 

4 5.1 4.6 5.8 7.3 6.4 - - - - - - - - 2.8 4.2 1.9 31.3 12.0 3.2 3.0 3.2 0.9 

8 4.9 4.4 6.7 7.6 6.5 - - - - - - - - 2.7 9.1 1.0 28.2 12.0 1.9 2.5 3.0 0.9 

-L 

c.o 
"' 



substituted trinitromethyl aromatic compounds (138) and (165) increased at 

lower reaction temperatures (total 42% at +2ao, total 51% at -sao). 

Correspondingly, the yields of the side-chain trinitromethyl aromatic 

compounds (166) and (167) rose at lower reaction temperatures (total 6% 

at +2ao, total12% at -sao). The two dienones {163) and (164), and 

rearrangement product (171), were present in higher yields at lower 

reaction temperatures (total 2% at +2ao, total 7% at -5a0
). 

3.4 The Photochemistry of 1 ,2,3-Trim ethyl benzene 

{137) in Dichloromethane Containing Trifluoro­

acetic Acid (TFA) 

Photochemistry in dichloromethane containing TFA at +20° and the 

identification of the aromatic compounds (173) and (174). 

A solution of 1 ,2,3-trimethylbenzene (137} (a.52 mol L-1) and TNM 

(1.a4 mol L-1) in dichloromethane containing TFA (1.a4 mol L-1) was 

irradiated at +2ao for 8 h. The products formed after 8 h were 3,4,5-tri­

methyl-1-trinitromethylbenzene (138) (62%), 2,3,4-trimethyl-1-trinitromethyl-

(138) (165) 

{173) (174) 
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benzene (165) (11 %), 3,4,5-trimethylbenzoic acid (173) (5%), 2,3,4-tri­

methylbenzoic acid (174) (2%), and some unidentified material (20%). 

The carboxylic acid (173) was isolated by h.p.l.c. and its identification 

as 3,4,5-trimethylbenzoic acid (173) was confirmed by comparing its 1 H 

n.m.r. data with literature data.20 

Similarly, the isomeric carboxylic acid (174) was also isolated by 

h.p.l.c. and its identification as 2,3,4-trimethylbenzoic acid (174) was also 

confirmed by comparing its 1 H n.m.r. data with literature data.21 

A similar reaction to the above, but with trifluoroacetic acid (2.08 mol 

L·1) gave a mixture of 3,4,5-trimethyl-1-trinitromethylbenzene (138) (20%), 

2,3,4-trimethyl-1-trinitromethylbenzene (165) (11 %), 3,4,5-trimethylbenzoic 

acid (173) (1 0%), 2,3,4-trimethylbenzoic acid (174) (5%), 2,3,4-trimethyl-1-

nitrobenzene (168) (11%), 3,4,5-trimethyl-1-nitrobenzene (169) (9%) and 

some unidentified material (34%). An overview of the yields of products in 

dichloromethane containing trifluoroacetic acid is given in Table 3.2. 

Me Me 

Me Me Me Me 

(168) (169) 

3.5 The Photochemistry of 1 ,2,3-Trimethylbenzene 

(137) in Acetonitrile 

Photolyses of solutions of 1 ,2,3-trimethylbenzene (137) (0.52 mol 

L-1) and TNM (1.04 mol L-1) in acetonitrile were carried out at +20, -20 and 

-50° as for reactions in dichloromethane, above. The results of these 
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Table 3.2 Ovetview of product yields from the photolysis reaction of 

1 ,2,3-trimethylbenzene (137) (0.52 mol L-1) and TNM (1.04 mol 

L -1) in dichloromethane containing trifluoroacetic acid, at +20°. 

Yield(%) 

Unknown 

t (h) (138) (165) (173) (174) (168) (169) aromatics 

Trifluoroacetic acid (1.04 mol L-1) 

1 71.4 14.3 14.3 

4 63.9 12.0 1.9 trace 22.2 

8 62.2 10.5 5.0 2.1 20.2 

Trifluoroacetic acid (2.08 mol L -1) 

1 50.0 13.2 7.9 2.6 26.3 

4 28.4 9.7 5.8 5.0 9.1 6.8 35.2 

8 20.1 11.3 9.8 4.8 11.2 8.8 34.0 

reactions, monitored with time, are summarized in Table 3.3. Interestingly, 

in acetonitrile "double" adducts (139), (157), (158) and (160) were not seen 

at any temperature. As was observed when the solvent was dichloro­

methane (see Table 3.1, Section 3.3), at lower reaction temperatures there 

was complete suppression of the formation of "double" adducts (161) and 

(162) and the absence of the nitro cycloadduct (153), formed via the thermal 

intramolecular cycloaddition of the nitro/trinitromethyl adduct (152). Also 

notable was the formation of the carboxylic acids (173) and (174) at +20°. 

In contrast to reactions in dichloromethane (see Table 3.1, Section 3.3), 

where the yields (at 1 h reaction time) of the ring-substituted trinitromethyl 

aromatic compounds (138) and (165) increased at lower reaction 

temperature, in acetonitrile compounds (138) and (165) decreased 

markedly at lower reaction temperatures (total 66% at +20°, total 14% at 
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Table 3.3 Overview of product yields from the photolysis of 1 ,2,3-trimethy!benzene (137) (0.52 mol L-1) and TNM (1.04 mol L-1) in acetonitrile. 

Yield(%) 

t (h) (151) (154) (155) (156) (152) (153) (157) (139) (158) (159) (160) (161) (162) (163) (164) (171) (138) (165) (166} (167) (168) (169) (173) 

At +20" 

1 4.8 1.8 5.2 1.0 2.3 0.8 - - - 0.8 - 2.7 2.2 1.4 0.2 0.5 57.5 8.5 1.8 1.6 3.7 1.5 

4 6.1 1.9 5.6 1.7 1.2 1.1 - - - 0.7 - 4.1 2.3 1.1 2.1 - 55.1 5.7 0.7 0.7 5.8 1.9 0.6 

8 4.0 1.5 3.2 1.5 1.0 2.6 - - - 1.0 - 5.7 2.4 0.4 1.4 8.9 53.8 6.0 0.6 0.6 2.8 0.9 0.2 

At-20° 

3.2 2.1 5.4 2.7 2.9 - - - - trace - - 1.2 2.6 0.8 3.7 48.0 1.8 4.7 4.5 4.6 2.2 

4 3.1 1.3 4.8 2.3 2.3 - - - - 0.4 - - 1.3 2.2 1.8 3.3 54.1 7.1 1.6 1.5 4.2 2.0 

8 2.3 1.6 3.1 2.1 2.0 - - - - 0.2 - - 0.7 2.1 1.7 1.4 62.8 11.6 0.9 0.9 3.6 1.8 

At -50" 

1 2.8 2.0 5.3 5.9 2.2 - - - - - - - - 2.6 9.5 7.2 12.3 2.0 14.7 14.1 10.7 3.3 

4 3.4 2.8 5.6 7.4 3.7 - - - - - - - - 5.3 7.7 7.6 19.5 6.0 5.6 5.3 9.7 4.3 

8 3.6 4.4 5.9 6.2 5.6 - - - - 0.6 - - - 4.9 0.7 7.5 26.4 9.6 2.8 2.8 9.7 4.4 

(174) 

0.2 

...... 
<0 

'"""' 



-50°}. However, similar to reactions in dichloromethane, the yields of the 

side-chain trinitromethyl aromatic compounds (166) and (167) rose 

appreciably in acetonitrile (total 3% at +20°, total29% at -50°). At lower 

reaction temperatures in acetonitrile a similar trend to reactions in dichloro­

methane was seen, with higher yields of the two dienones (163) and (164), 

and the rearrangement product ( 171) (total 2% at +20°, total 19% at -50°). 

The yields of the nitro aromatic compounds (168} and (169) only became 

appreciable at lower reaction temperatures in acetonitrile (14% at -50°), 

whereas in dichloromethane they remained constant (total 4% at all 

temperatures). 

Me Me 

Me Me Me 

(02N)sC 

(151) (152) (153) 

Me Me, N0 2 Me 

M/;l" Me ~ Me Me 
e ~ uuNOz 

Hum ,-7 
(0 2N)sC !:> (02N)sC <f 

H C(N02h 

(154) (155) (156) 

Me Me Me 

Me Me Me 
OzNIIm 

(157) (139) (158) 

Me Me 
Me 

0 Me 0 Me 
- +/ - +/ 
O-N~ 

mJN02 
O-N~ 

mJNOz c i2 c 
I 

H H 
H I H 

02N OH 02N N02 

(159) (160) 
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Me Me 

{161) (162) 

Me 

M·:q~ ~\):Me Me ~ 

~ 0 
Me*6 ~ 

OH 

0 

(163) (164) (171) 

Me Me Me*Me ~:OM• 
(02N)sC 

C(N02h 

(138) (165) (166) 

MeE~z), 
Me 

~:0Me 
02N 

(167) (168) {169) 

C02H 

(173) (174) 



3.6 Base Catalysed Decomposition of Nitro/Trinitro­

methyl Ad ducts (151 ), (154)-(156) with 2,6-Di-tert­

butyl-4-methylpyridine in Dichloromethane 

A solution of each of the adducts (151} and (154)-(156) in dichloro­

methane was reacted with 2,6-di-tert-butyl-4-methylpyridine for 1 h, at +20°, 

in the dark. After removal of the solvent under reduced pressure, the 

residue was analysed by 1 H n.m.r. spectroscopy. The base catalysed 

decomposition reactions with adducts (151) and (155) gave 3,4,5-trimethyl-

1-trinitromethylbenzene (138), while adducts (154) and (156) gave 2,3,4-tri­

methyl-1-trinitromethylbenzene (165), as seen in Scheme 3.7. 

Me 

Me Me Me 
base 

-HN0 2 

C(N0~3 

( 151 ) and ( 155) (138) 

Me Me 

Me Me 
base 

-HN02 
(02NhC 

(154) and (156) 
(165) 

Scheme 3.7 
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3.7 Thermal Cycloaddition of 1 ,2,3-Trimethyl-r-5-nitro-

t-6-trinitromethylcyclohexa-1 ,3-diene (152) to give 

the Nitro Cycloadduct (153) 

A solution of a mixture (c. 4:1 :4:2) of the nitro/trinitromethyl adduct 

(152), nitro cycloadduct (153) and the nitro/trinitromethyl adducts (151) and 

(154), respectively, in (D)chloroform was stored at +22°, in the dark, and the 

Me Me 

Me Me 
cycloaddition 

'''''H 

(152) (153) 

Scheme 3.8 

100 

80 

60 
adduct (152) Adducts {%) • cycloadduct(153) 

40 

20 

0 
0 20 40 60 80 

Time (h) 

Fig. 3.29 Kinetics of cycloaddition of adduct (152) to nitro cycloadduct 

(153) in (D)chloroform, at +22°. 
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1 H n.m.r. spectra of the solution monitored at appropriate time intervals. 

Under these conditions, adducts ( 151) and ( 154) were unchanged during 

the period of observation, but the precursor adduct (152) was slowly 

transformed into the nitro cycloadduct (153), as depicted in Scheme 3.8 and 

Fig. 3.29. The half-life for the cycloaddition of adduct (152) into the nitro 

cycloadduct (153) was c. 19.5 h. 

3.8 Rearrangement of 2.3,4-Trimethyl-4-nitrocyclo­

hexa-2,5-dien-1-one (163) in (D)Chloroform 

A solution of a mixture (c. 4:1) of the nitro dienone (163) and the 

nitro/trinitromethyl adduct (156) in (D)chloroform was stored at +22°, in the 

dark, and the 1 H n.m.r. spectra monitored at appropriate time intervals. 

Under these conditions, adduct (156) was inert during the period of 

observation, but the nitro dienone (163) was transformed into 4,5,6-tri­

methyl-2-nitrophenol (171), as summarized in Scheme 3.9 and Fig. 3.30. 

The half-life for the rearrangement of the nitro dienone (163) into the 

nitrophenol (171) was c. 6 h. 

Me Me 

Me Me Me -
0 OH 

(163) (171) 

Scheme 3.9 
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Fig. 3.30 Kinetics of rearrangement of nitro dienone (163) to nitrophenol 

(171) in (D)chloroform, at +22°. 

3.9 Overview of the Photonitration of 1 ,2,3-Trimethyl­

benzene {137) 

3.9. 1 The reactivity of (02N)3C- with the radical cation of 1 ,2,3-trimethy/­

benzene. 

In the photolysis of the charge-transfer complex of 1 ,2,3-trimethyl­

benzene (137) and TNM, the radical cation of 1 ,2,3-trimethylbenzene is 

highly reactive towards (02N)3C-. This can be clearly seen in the photo­

chemical reaction between 1 ,2,3-trimethylbenzene (137) (0.52 mol L-1) and 

TNM (1.04 mol L-1) in dichloromethane in the presence of TFA (1.04 mol 

L-1). In this reaction the trinitromethyl aromatic compounds (138) and (165) 

were formed in high yield (total c. 86% after 1 h; see Table 3.3, Section 3.5) 

indicating that ionic coupling of (02N)3C- with the radical cation of 1 ,2,3-tri­

methylbenzene was more than competitive with protonation of the trinitro-
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Me 

Me 

Me 

Me 

C(N0 2) 3 

(138) 

Me 

Me 

(168) 

Me 

Me Me 

(165) 

Me 

Me Me 

(169) 

methyl anion. Even at a higher TFA concentration (2.08 mol L-1) trinitro­

methyl aromatic products (138) and (165) predominated (total 63% after 

1 h) over the nitro aromatic compounds (168) and (169) (total 11 %), which 

were products of the slower radical coupling of the radical cation with •No2. 

The preparative results above are consistent with the absence of detectable 

EPR signals on irradiation at A->435 nm of 1 ,2,3-trimethylbenzene in di-

chloromethane solution in the presence of (i) TNM, (ii) TNM and TFA, and 

(iii) TFA.22 

3. 9.2 The general pattern of products formed on photolysis of the charge­

transfer complex of TNM with 1,2,3-trimethylbenzene (137}. 

In the photochemical reaction of 1 ,2,3-trimethylbenzene (137) with 

TNM it was found that the initial bond formation between (02N)sC- and the 

aromatic radical cation occurred at both of the unoccupied ring positions, 

C4 and C5. For the reaction in dichloromethane at +20° (see Table 3.1, 
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l•+ 
Me 

1 

5 

\ 
65% 

Fig. 3.31 Products (%) identified corresponding to attack of (02N)3C· on 

the 1 ,2,3-trimethylbenzene radical cation. 

Section 3.3), there was clear preference (c. 2:1) for (02N)3C- attack at C5 of 

the 1 ,2,3-trimethylbenzene radical cation, compared with reaction at C4, as 

represented in Fig. 3.31. It therefore appears that the first chemical step 

leading to adduct formation disfavours the formation of the delocalized 

radicals (142) and (143), formed via attack of (02N)3C- at C1 and C2, 

respectively, on the radical cation of 1 ,2,3-trimethylbenzene. The favoured 

pathway (c. 2:1) is via formation of radical (140), on attack of (02N)3C- at C5 

Me 

Me 

(142) (143) 

Me Me 

Me Me 

(140) (141) 
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on the radical cation of 1 ,2,3-trimethylbenzene. The remaining adducts 

arose via radical (141), formed on attack of (02N)sC- at C4 on the 1 ,2,3-tri­

methylbenzene radical cation. 

The complete details of yields of reaction products in dichloro­

methane and acetonitrile solution at +20, -20, and -50° are given in Tables 

3.1 and 3.3 (See Sections 3.3 and 3.5, respectively). A summary of these 

reactions in terms of "product type" is given in Table 3.4. Here the term 

"single" adducts refers to those products formed by a single addition of the 

elements of TNM to 1 ,2,3-trimethylbenzene (137), while the term "double" 

adducts refers to products derived by some form of extramolecular addition 

to initially formed "single" adducts. The details of these processes will be 

discussed below [See Sections 3.9.3 (b), and 3.9.4 (b) and (c)]. 

Table 3.4 shows clearly that the incidence of the formation of 

"double" adducts is markedly temperature dependent in both dichloro­

methane and acetonitrile, implying a thermal addition process subsequent 

to the initial photochemical addition of the elements of TNM to 1 ,2,3-tri­

methylbenzene (137) to form "single" adducts. These thermal additions 

appear to be initiated by attack, with C-N bond formation, of the somewhat 

electrophilic •No2 on the nitro/trinitromethylcyclohexa-1 ,3-dienes ( 152) and 

(175) and on the hydroxy/trinitromethylcyclohexa-1,3-dienes (176) and 

(177). The observation that the "double" adducts formed at lower reaction 

temperatures are those derived from the hydroxy/trinitromethylcyclohexa-

Me 

(152) X=N02 

(176) X=OH 

Me 

H 

Me 

(175) X=N02 
(177) X=OH 
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Table 3.4 Yields of product types from the photolysis of 1 ,2,3-trimethyl­

benzene (137) (0.52 mol L-1) and TNM (1.04 mol L-1). 

Yield(%) 

"Single" "Doublen Total Dienones Identified 

t(h) ad ducts adducts adducts etc a aromatics 

Dichloromethane at +20° 

1 29.7 16.4 47.1 1.9 51.0 

4 35.0 24.5 60.7 1.2 38.1 

8 30.3 25.5 57.1 0.6 39.3 

Dichloromethane at -20° 

1 20.2 1.3 36.1 5.2 58.7 

4 19.5 1.5 33.0 3.5 63.0 

8 22.2 2.5 32.9 3.5 63.6 

Dichloromethane at -50° 

1 17.2 26.1 7.1 66.8 

4 29.2 37.5 8.9 53.6 

8 30.1 38.7 12.8 48.5 

Acetonitrile at +20° 

1 15.9 5.7 23.3 2.1 74.6 

4 17.6 7.1 26.4 3.2 70.4 

8 15.1 10.0 26.6 2.0 71.4 

Acetonitrile at -20° 

1 16.3 1.2 27.1 7.1 65.8 

4 13.8 1.7 22.2 7.3 70.5 

8 11.1 0.9 13.2 5.2 81.6 

Acetonitrile at -50° 

1 18.2 23.6 19.3 57.1 

4 22.9 29.0 20.6 50.4 

8 25.7 0.6 31.2 13.1 55.7 

alncluding 4,5,6-trimethyl-2-nitrophenol (171). 
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{163) 

Aromatics 
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C(N0 2)s 

(138) 

(167) 

(173) 

~vM· 
0 

(164) 

(165) 

(168) 

(174) 

Me*Me Me 
OH 

(171) 
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(169) 

1 ,3-dienes (176) and (177) is consistent with this conclusion. Here the 

electron availability in the diene system might be expected to be higher 

than in the corresponding nitro/trinitromethylcyclohexa-1 ,3-dienes (152) 

and (175). 
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3.9.3 Some consequences of initial (02N)sC- attack at C4 of the radical 

cation of 1,2,3-trimethylbenzene. 

(a) The formation of "sing/ell adducts (152), (154) and (156), and nitro 

cyc/oadduct ( 153). 

Attack of (02N)3C- at C4 of the radical cation of 1 ,2,3-trimethyl­

benzene would give the de localized carbon radical ( 141), as illustrated in 

Scheme 3.10. Subsequent coupling of this carbon radical (141) with •No2 

at C4 would yield the epimeric 1 ,2,3-trimethyl-3-nitro-6-trinitromethylcyclo­

hexa-1 ,4-dienes (154) and (156), which appear to be relatively stable 

species. Alternatively, in the radical coupling of •No2 at C6 in the 

delocalized carbon radical (141), only the trans isomer (152) is formed 

because of the extensive shielding of the syn-face of the system by the 

bulky trinitromethyl group, itself forced from the plane of the carbon ring 

system by steric interaction with the adjacent methyl group. 

The 5-nitro-6-trinitromethylcyclohexa-1 ,3-diene (152) underwent 

(141) (154) and (156) 

j·No2 

atCS 

Me Me 

,,,, 
'H 

(152} (153) 

Scheme 3.10 
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cycloaddition of a nitro group of the trinitromethyl function with the 

3,4-alkene system to give the nitro cycloadduct (153), as demonstrated in 

Section 3.7 and also seen in Scheme 3.1 0. This intramolecular cycle­

addition is clearly in competition with the formation of the nitronic ester 

(160), the formation of which is initiated by attack of •No2 at C4, as 

discussed below in Section 3.9.3 (b). 

Me 

(160) 

No products were detected which could be definitively associated 

with radical coupling of •No2 at C2 in the delocalized radical (141 ), but it 

seems possible that the 2,3,4-trimethyl-1-trinitromethylbenzene (165), 

isolated from reactions even at -50°, is formed by photochemical 

decomposition of the highly sterically compressed adduct (178), as 

observed in Scheme 3.11 . 

Me Me Me 
Me Me 

·No2 
Me ~:&Me -HN02 0 

atC2 

6 (02N)3C (02N}sC 

(141) (178) (165) 

Scheme 3.11 
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(b) The formation of nitronic esters (159) and (160). 

No direct evidence has been obtained on the mode of formation of 

the nitronic ester (160) from the 5-nitro-6-trinitromethylcyclohexa-1 ,3-diene 

(152). However, its formation is closely analogous to the quantitative 

formation of nitronic ester (179) on the thermal reaction of the hydroxy/tri­

nitromethyl alkene (180) with •No2 in dichloromethane solution, in the 

Me 

Me H 

(179) (180) 

absence of light.23 Attack of •No2 on the alkene system would give carbon 

radical (181) which interacts with the proximate trinitromethyl group leading 

to cyclization and loss of a molecule of •No2 from the former trinitromethyl 

group, yielding the nitro nitronic ester (179), as shown in Scheme 3.12. 

Similarly, in the formation of the nitronic ester (160) attack of •No2 at C4 of 

the methylated buta-1 ,3-diene system of the 5-nitro-6-trinitromethyl adduct 

(152) would give the delocalized carbon radical (182), as depicted in 

(180) (181) 

Scheme 3.12 

cyclization 
H 

-~ 

(179) 
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I 
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(152) (182) (160) 

Scheme 3.13 

Scheme 3.13. Cyclization and Joss of a molecule of •No2 from this radical 

(182) would yield the trinitro nitronic ester (160). 

Although the 5-hydroxy-6-trinitromethylcyclohexa-1 ,3-diene ( 176) 

was not detected, the hydroxy dinitro nitronic ester (159) is likely to have 

been formed via (183) by the analogous reaction pathway given in Scheme 

3.14. The attack by •No2 cis to the hydroxy group is presumably aided by 

hydrogen bonding.24 Therefore, •No2 might be expected to show higher 

reactivity towards the buta-1 ,3-diene system in the hydroxy precursor (176), 

compared with that of the nitro precursor (152). This would account for the 

observation that the hydroxy dinitro nitronic ester (159) is formed even at 

low reaction temperatures in both dichloromethane and acetonitrile (See 

Tables 3.1 and 3.3, Sections 3.3 and 3.5, respectively). 

Me Me Me 
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s Me 
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3.9.4 Some consequences of initial (02N)sC· attack at C5 of the radical 

cation of 1 ,2,3-trimethy/benzene. 

(a) The formation of "single 11 adducts (151} and (155}. 

Attack of (02N}3C- at C5 in the radical cation of 1 ,2,3-trimethyl­

benzene would give the delocalized carbon radical (140}, as depicted in 

Scheme 3.15. Subsequent coupling of carbon radical (140} with •No2 at 

Me l•+ 
Me~o 1 Me (02N)sc- Me ;,:sv 1 

atC5 

5 

(140) 

Scheme 3.15 

·No2 

atC4 
Mev~ 

H~ C(NOz)s 

(151) and (155) 

1- HNO, 

~*~ 
C(N02)s 

(138) 

C4 would yield the epimeric 2,3,4-trimethyl-3-nitro-6-trinitromethylcyclo­

hexa-1 ,4-dienes ( 151) and ( 155), which were found to be relatively labile, 

decomposing to give the 3,4,5-trimethyl-1-trinitromethylbenzene ( 138) on 

attempted crystallization. 

Similar radical coupling of •No2 at C2 in the delocalized carbon 

radical {140) would occur trans to the bulky trinitromethyl group at C1, to 

give adduct (175) by C-N bond formation and adduct (177) by C-0 bond 
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atC2 H 

(140) 

j (i) •oNO at C2 

(ii) hydrolysis 

Me 

(177) 

Scheme 3.16 

Me 
Me 

(175) 

formation followed by hydrolysis, as shown in Scheme 3.16. However, 

neither adduct (175) nor adduct (177) were isolated from the photolysis 

reactions. As discussed below in Sections 3.9.4 (b) and {c), these adducts 

were seen as intermediates in the formation of "double" adducts {157), 

(139) and {158), and the two nitronic esters (161) and (162). 

(b) The formation of 11doub/e" adducts (157) and {158), and trinitro nitronic 

ester (161 ). 

Reaction of 1 ,2,3-trimethyl-6-nitro-5-trinitromethylcyclohexa-1 ,3-

diene (175) with •No2 at C4 would give the delocalized carbon radical 

(184), the stereochemistry of which is determined by the entry of the •No2 

molecule anti to the bulky trinitromethyl group, as represented in Scheme 

3.17. Further coupling of this carbon radical with •No2 at either terminus of 

the allylic system gives the epimeric trinitro/trinitromethyl adducts {157) and 
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Me 

Me 

IIIIN02 
~ H 

H~ C(N02b 

(157) and (158) 

(158). Alternately, cyclization involving the trinitromethyl group can occur 

with loss of •No2 to give the trinitro nitronic ester (161 ), also seen in 

Scheme 3.17. 

(c) The formation of 11double 11 adduct (139) and hydroxy dinitro nitronic 

ester (162). 

The modes of formation of "double" adduct (139) and hydroxy dinitro 

nitronic ester (162) are closely analogous to those for the trinitro/trinitro­

methyl adducts (157) and (158), and the trinitro nitronic ester (161 ). As 

represented in Scheme 3.18, addition of •No2 at C4 in the hydroxy/trinitro­

methyl adduct (177) would give the delocalized carbon radical (185), the 

stereochemistry of this addition being determined as for delocalized radical 

(184), above. Subsequent attack of •No2 at C1 in allylic radical (185) 
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Me 

Me 

HQuu uuN02 
H ~ 

.$' H 
H C(N02)g 

(185) ! cyclization 

-·No2 

Me 
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Scheme 3.18 

·No2 02Nmu 

atC1 

Me 

Me 

IIIIN02 
~ H 
~ 

H C(NOvs 

(139) 

occurs vicinal and syn to the hydroxyl group in the system, to give the 

"double" adduct (139). The alternative pathway for further reaction of allylic 

radical (185) results from cyclization involving the trinitromethyl group and 

loss of •No2 from that functional group to give the hydroxy dinitro nitronic 

ester (162) (See Scheme 3.18). 

3.9.5 The formation of aromatic compounds and dienones. 

(a) The formation of the side-chain trinitromethyl compounds (166) and 

(167). 

The yields of the side-chain trinitromethyl compounds (166) and 

(167) increased at lower reaction temperatures in both dichloromethane 

and acetonitrile (See Tables 3.1 and 3.3, Sections 3.3 and 3.5, 

respectively). This suggests that they are probably derived by photo­

chemically promoted decomposition of nitro/trinitromethyl adducts. A 
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QMe 

H-:.,~~r 
(02NbC 

(154) and (156) 

H2CPMe Me 
-HN02 ~ 

H # 
(02N)3C 

(186) 

Scheme 3.19 

(187) 

1 

(166) 

possible mechanism for the formation of compound (166) is summarized in 

Scheme 3.19. Loss of nitrous acid from adducts (154) or (156) would yield 

the trinitromethyl diene (186), which might rearrange via the ion pair (187) 

to give the side-chain trinitromethyl aromatic (166). 

A similar mechanism could occur in the formation of compound (167). 

Initial loss of nitrous acid from adduct (175), the proposed precursor to 

"double" adducts (157) and (158) and the nitronic ester {161) [see Section 

3.9.4 (b)], would yield the trinitromethyl diene (188), as outlined in Scheme 

3.20. Subsequently, diene (188) could rearrange via the ion pair (189) to 

give the side-chain trinitromethyl aromatic (167). 

(b) The formation of the nitro aromatic compounds ( 168) and ( 169). 

While the yields of the nitro compounds (168) and (169) in dichloro­

methane remained almost invariant of temperature (see Table 3.1, Section 

3.3), in acetonitrile they increased as the temperature was lowered {see 
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Table 3.3, Section 3.5). This suggests that at least some of the nitro 

compounds are derived from decomposition of nitro/trinitromethyl adducts. 

Possible mechanisms for the formation of compounds ( 168) and ( 169) are 

presented in Scheme 3.21, and involve loss of nitroform from the proposed 

highly sterically hindered adducts (190) and (191 ), respectively. 

(c) The formation of dienones (163) and (164), nitro phenol (171) and 

hydroxy trinitro ketone (172). 

The mode of formation of nitro dienones (163) and (164) is most 

likely to be via their corresponding phenols (192) and (193), as illustrated in 

Scheme 3.22. Reaction of •No2 with the labile phenolic hydrogen in 

phenols (192) and (193) leads to loss of nitrous acid and the generation of 

the phenoxy radicals (194) and (195), respectively. Radical coupling 

between •No2 and the phenoxy radicals (194) and (195) then occurs to 

give the 4wnitrocyclohexa-2,5-dienones ( 163) and ( 164), respectively. The 

mechanisms proposed above are analogous to that proposed by Brunton et 

af.25 for reactions of 2,6-disubstituted-4-methyl phenols (196) and (197) 

Me Me Me 

~L6x~ ~L6x: o,u~ 
"N02 ·No2 Me ~ 

-HN02 ~ 0 OH 

(192) (194) (163) 

Me Me 

~v~ ~*Me "N02 ~*Me ·No2 

-HN02 

OH o· 0 

(193) (195) {164) 

Scheme 3.22 
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Me 

R 

(196) R=Me 

(197) R=But 

R 

OH 

Scheme 3.23 

R 

(198) R=Me 

(199) R=But 

R 

with •No2 to give the 4-nitrocyclohexa-2,5-dienones (198) and (199), 

respectively, as observed in Scheme 3.23. 

The rearrangement of dienone (163) in (D)chloroform was shown to 

yield the nitro phenol (171) (See Section 3.8). This rearrangement was 

envisaged as occurring via homolysis of the C4-N02 bond to form the 

Me 
~:~Me~==~ 

Ua 
(163) (200) 

Scheme 3.24 

{201) 

1-

Me*Me Me 
OH 

(171) 
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0 

(202) 'R1=H, R2=H 
(203) R1=Me, R2=H 
(204) R1=Me, R2=Me 

OH 

(205) R1=H, R2=H 
(206) R1=Me, R2=H 
(207) R1=Me, R2=Me 

Scheme 3.25 

solvent caged species (200), as depicted in Scheme 3.24. Subsequently, 

a 1 ,3-nitro group migration occurs to form the dienone (201 ), which then 

undergoes enolization to yield the nitro phenol (171 ). The mechanism 

proposed above is analogous to that proposed by Barnes and Myhre26 in 

the rearrangement of substituted 4-nitrocyclohexa-2,5-dienones (202)-(204) 

to give the corresponding 2-nitro phenols (205)-(207), as seen in Scheme 

3.25. 

A possible mechanism for the formation of the hydroxy trinitro ketone 

(172) is shown in Schemes 3.26 and 3.27. Initially, reaction of •No2 with 

the nitro phenol (171) leads to loss of nitrous acid and the formation of the 

phenoxy radical (208), as summarized in Scheme 3.26. Radical coupling 

Me Me Me 

~*~ Me*:. ·No2 o,~~ ·No2 Me ~ 6 
-HN02 ~ 0 OH 2 

N02 N02 N02 

(171) (208) (209) 

Scheme 3.26 
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between the phenoxy radical and •No2 then occurs to give the 2,4-dinitro­

cyclohexa-2,5-dienone (209), in a similar manner to that proposed above in 

the formation of nitro dienones (163) and (164) (See Scheme 3.22). 

Subsequently, homolysis of the C4-N02 bond would form the solvent caged 

species (210), as represented in Scheme 3.27. A 1 ,3-nitro group migration 

Me Me Me 
0

~Me ~*~ M~e Me ~ 6 ONo• 0 e 4::;::v 2. ONO 

~ 0 ~ 0 o· 2 6 
N02 N02 N02 

(209) (210) (211) 

1 hydrolysis 

Me 

'¢( ·No2 "N02 
Me 

Me OH 

at C4 atC3 
0 6 

N02 

(172) (213) (212) 

Scheme 3.27 

could then occur with C-0 bond formation to form the 2-nitrito-6-nitro 

dienone (211), which then could undergo hydrolysis to form the 2-hydroxy-

6-nitro dienone (212). Subsequent 3,4-addition of •No2 to dienone (212) 

would yield the hydroxy dinitro ketone (172). This was envisaged as 

occurring via the delocalized radical (213), which might be expected to 

undergo radical coupling with •No2 preferentially at the less hindered C4 

position. The mechanism proposed in Scheme 3.27 is analogous to that 

reported by Coombes et af.27 for the formation of 2,6-di-terl-butyl-c-6-

hydroxy-4-methyl-r-4,c-5-dinitrocyclohexa-2-enone (214) from 2,6-di-terl-
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Me 11111 OH 

(214) (215) 

butyl-4-methyl-4-nitrocyclohexa-2,5-dienone (215). 

(d) The formation of carboxylic acids (173) and (174). 

While the formation of the carboxylic acids (173) and (174) remains 

uncertain, it appears likely that they arise via the trinitromethyl aromatic 

compounds (138) and (165), respectively, as discussed by Eberson and 

Radner.28 

Me Me 

Me Me Me Me 

(173) (174) 

Me Me 

Me Me Me 

(165) 

In conclusion, it appears likely that reaction of (02N)sC- at the methyl 

substituted positions C1 and C2 of the 1 ,2,3-trimethylbenzene radical cation 
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are disfavoured due to the steric interactions between the bulky trinitro­

methyl group and the {3- and ipso-methyl interactions. With the majority of 

attack of (02N)sC- occurring at C5, the least sterically hindered position on 

the 1 ,2,3-trimethylbenzene radical cation, it would appear that delocalized 

carbon radical (140) is more stable than delocalized radical (141), formed 

after attack of (02N)sC- on the 1 ,2,3-trimethylbenzene radical cation at C4. 

3.10 The Photolysis of 1 ,2,4,5-Tetramethylbenzene 

(134) 

General procedure for the photonitration of 1 ,2,4,5-tetramethy/benzene 

(134) with TNM. 

A solution of 1 ,2,4,5-tetramethylbenzene (134) (500 mg, 0.47 mol 

L-1) and TNM (0.94 mol L-1) in dichloromethane (at +20, -20 or -50°) or 

acetonitrile (at +20 or -20°) was irradiated with filtered light (Acut-ott<435 

nm) and small samples were withdrawn for analysis at suitable intervals. 

The work-up procedure, involving evaporation of solvent and TNM, was 

conducted at :::;oo. The crude product mixtures were stored at -78° and 

were analysed by 1 H n.m.r. spectroscopy as soon as possible (For 

complete experimental details see Chapter 5, Section 5.3.2). 

3.11 The Photochemistry of 1 ,2.4.5-Tetramethyl-

benzene (134) in Dichloromethane 

Photochemistry in dichloromethane at -50° and the identification of adducts 

(216) and {217) and aromatic compound (225). 

A solution of 1 ,2,4,5-tetramethylbenzene (134) (0.47 mol L-1) and 
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TNM (0.94 mol L-1) in dichloromethane was irradiated at -50° until the 

orange colour of the charge-transfer band was bleached. The composition 

of the reaction mixture was monitored by withdrawing samples for 1 H n.m.r. 

spectral analysis. After work-up, the final solution (after 4 h, conversion 

71%) contained the epimeric 1 ,3,4,6-tetramethyl-3-nitro-6-trinitromethyl­

cyclohexa-1 ,4-dienes {216) (46%) and (217) (7%), aromatic compounds 

(218)-(225) (total 41 %) and unidentified aromatic compounds (total 6%). 

Me liT Me 

Me~Me 

Me~Me 
Me 

(218) 

(223) 

(216) (217) 

MenCH,C(NO,)s 

Me Me 

(219) 

Me)O(Me 

Me 0 CH,NO, 

(221) 

Me)O(Me 

Me 0 CH,ONO, 

(224) 

Me:Q:Me 

MeoMe 

N02 

(220) 

Men Me 

Me 0 CHO 

(222) 

Men Me 0 
Me CH20NO 

(225) 

The adducts (216) and (217) were separated partially by h.p.l.c. on a 

cyanopropyl column, cooled to oo, using hexane/dichloromethane mixtures 

as the eluting solvents. The first material eluted was a mixture of aromatic 

compounds, the separation and identification of which is given below. 

The major adduct (216} was isolated as an unstable oil and was 
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identified as 1 ,3,4,6-tetramethyl-r-3-nitro-t-6-trinitromethylcyclohexa-1 ,4-

diene (216) on the basis of its spectroscopic data and a comparison of its 

characteristic 1H and 13C n.m.r. resonances with the spectral features for 

1 ,3,5,6-tetramethyl-t-6-nitro-r-3-trinitromethylcyclohexa-1 ,4-diene (170), the 

structure of which was determined by single crystal X-ray analysis.14 

N.O.e. experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at 6 5.82 (H2) gave enhancements at 

6 1. 7 4 (3-Me) and at 6 1.87 ( 1-Me), while irradiation at 6 6.20 (H5) gave 

enhancements at() 1.80 (4-Me) and at 6 1.96 (6-Me), as outlined in Fig. 

1-Me 

H2 

3-Me 

4-Me 

H5 

6-Me 

1.87 

5.82 

1.74 

1.80 

6.20 

1.96 

(216) 

C1 

C2 

C3 

C4 

C5 

C6 

134.1 

130.2 

88.3 

136.2 

126.0 

51.2 

Fig. 3.32 Characteristic 1 Hand 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for adduct 

(216). 
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3-Me 
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1.79 

1.79 

5.94 

1.79 

90.9 

137.0 

124.1 

47.6 

3-Me 

4-Me 

H5 

6-Me 

C3 

C4 

C5 

C6 

(216) 

1.74 

1.80 

6.20 

1.96 

88.3 

136.2 

126.0 

51.2 

Fig. 3.33 Comparison of the characteristic 1 Hand 13C n.m.r. resonances 

(in ppm) for adducts (170) and (216). 

3.32. The assignment of the 13C n.m.r. resonances, also shown in 

Fig. 3.32, was confirmed by HMQC and HMBC experiments. Specifically, 

the nitro function was indicated by the 13C n.m.r. chemical shift for C3 

(<5 88.3) and the trinitromethyl function by the 13C n.m.r. chemical shift for C6 

(<5 51.2). Furthermore, comparisons of the characteristic 1H and 13C n.m.r. 

resonances between the closely related adducts (170) and (216} are 

illustrated in Fig. 3.32, further supporting the identification of adduct (216). 

The trans-3-nitro-6-trinitromethyl stereochemistry was assigned to adduct 

(216) because it eluted from the cyanopropyl h.p.l.c. column with the 
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dichloromethane/hexane solvent system earlier than its cis-3-nitro-6-trinitro­

methyl stereoisomer {217). The h.p.l.c. elution order for such pairs of 

stereoisomers is known, with trans-1 ,4-nitro/trinitromethyl adducts eluting 

ahead of their cis-1 A-isomers. 5-7 

The minor adduct (217) was obtained only in admixture containing 

c. 5% of adduct (216). The identification of adduct (217) as 1 ,3,4,6-tetra­

methyl-r-3-nitro-c-6-trinitromethylcyclohexa-1 ,4-diene (217) was based on a 

comparison of its spectroscopic data with (216), its epimer. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

1-Me 

H2 

3-Me 

4-Me 

H5 

6-Me 

1.87 

5.98 

1.74 

1.94 

6.28 
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C4 

C5 

C6 

134.4 
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50.6 

Fig. 3.34 Characteristic 1H and 13C n.m.r. resonances (in ppm) and 

enhancements (%) from selected n.O.e. experiments for adduct 

(217). 
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protons. In particular, irradiation at 8 1.87 (1-Me) gave an enhancement at 

8 5.98 (H2), irradiation at 8 1.74 (3-Me) gave enhancements at 8 1.94 

1-Me 
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3-Me 

4-Me 

H5 

6-Me 

C1 

C2 
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Fig. 3.35 Comparison of the characteristic 1H and 13C n.m.r. resonances 

(in ppm) for adducts (216) and (217). 
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(4~Me) and at 8 5.98 (H2), irradiation at 8 1.94 (4-Me) gave an enhancement 

at 8 6.28 (H5), and irradiation at 8 1.85 (6-Me) gave an enhancement at 

8 6.28 (H5), as seen in Fig. 3.34. The characteristic 1H and 13C n.m.r. data 

are also presented in Fig. 3.34. In particular, 13C n.m.r. resonances for the 

nitro function attached to C3 appeared at 8 85.4, while the trinitromethyl 

function attached to C6 appeared at 8 50.6. These assignments were 

confirmed by HMQC and HMBC experiments and comparison with data for 

the epimeric adduct (216). A comparison of the characteristic spectro­

scopic data for adducts (216) and (217) is summarized in Fig. 3.35, and was 

consistent with their assignment as epimers. 

Compound (225) could not be isolated from the h.p.l.c. column. 

However, the presence of the known9 2,4,5-trimethylbenzyl nitrite (225) in 

the reaction mixture was inferred from the 1 H n.m.r. signal due to the 

-CH2-0NO group. Specifically, the -CH2-0NO resonance appeared as a 

broad singlet at 8 5.64. 

The composition of the photochemical reaction between 1 ,2,4,5-tetra~ 

methylbenzene (134) and TNM was monitored with time at +20, -20, and 

-soo in dichloromethane. An overview of product yields in dichloromethane 

is presented in Table 3.5. The most notable feature was the increase in the 

yields of the epimeric adducts (216) and (217) at lower reaction 

temperatures. After 4 h, at +20°, the total adduct yield was 7%. This 

increased to 53% at -50°. Correspondingly, yields of the side-chain 

trinitromethyl compound (21 9), ring nitro compound {220), benzaldehyde 

(222) and side-chain nitrate compound (224) all decreased at lower 

reaction temperatures (total 69% at +20°, tota121% at -50°). 
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Table 3.5 Overview of product yields from the photolysis of 1 ,2,4,5-tetramethylbenzene (134) (0.47 mol L-1) 

and TNM (0.94 mol L-1) in dichloromethane. 

Yield(%) 

Conversion Unknown 

t{h) {%) {216) (217) {218) (219) {220) (221) {222) {223) {224} {225) aromatics 

At+20° 

1 42 11.8 3.5 1.2 26.1 9.9 10.8 13.0 0.8 14.7 3.0 5.2 

2 69 9.8 3.5 0.8 24.5 9.4 12.7 6.6 0.5 24.0 2.9 5.3 

4 87 4.8 2.1 0.5 27.4 5.4 15.4 5.3 0.5 30.7 2.7 5.2 

At -20° 

4 87 24.0 4.4 1.0 9.5 1.8 27.7 1.5 1.0 19.5 4.0 5.6 

At -50° 

2 46 50.3 7.9 2.2 6.3 0.6 13.0 1.2 0.8 9.3 1.3 7.1 

4 71 46.1 7.1 1.1 6.0 0.9 17.7 0.6 1.2 13.0 2.8 5.9 

1\) 
w 
1\) 
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3.12 The Photochemistry of 1 ,2,4,5-Tetramethyl-

benzene {134) in 1,1, 1 ,3,3,3-Hexafluoro­

propan-2-ol {HFP) 

Photochemistry in HFP at +20° and the identification of the aromatic 

products (218)-(224) and (226). 

Photolysis of the charge-transfer complex of 1 ,2,4,5-tetramethyl­

benzene (134) (0.47 mol L-1) I TNM (0.94 mol L-1) in HFP at +20° for 20 h 

(conversion 87%) gave a product which was shown by 1 H n.m.r. spectral 

analysis to be a mixture of the aromatic compounds (218)-(224) and (226) 

(total 86%) and further unidentified aromatic compounds (total 14%). 
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Chromatography of this mixture on a silica gel Chromatotron plate gave the 

following in elution order. 

The first compound eluted was identified as 2,2',3,4',5,5',6-hepta­

methyldiphenylmethane (218) and the structure was confirmed by 

comparison with literature data.29 

The second compound eluted was identified as 2,4,5-trimethyl-1-

(2',2',2'-trinitromethyl)-benzene (219). The side-chain trinitromethyl 

aromatic (219) gave a satisfactory parent molecular ion in the mass 

spectrum, indicating the molecular formula C11 H1sNs05. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at o 2.18 (5-Me) gave an enhancement at 

o 6.82 (H6), irradiation at o 4.38 (CH2) gave enhancements at o 2.17 (2-Me) 
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Fig. 3.36 Enhancements(%) from selected n.O.e. experiments for the side­

chain trinitromethyl aromatic (219). 

and at 8 6.82 (H6), and irradiation at 8 7.00 (H3) gave enhancements at 

8 2.17 (2-Me) and at 8 2.21 (4-Me), as shown in Fig. 3.36. Furthermore, the 

presence of very strong infrared absorptions at 1605 and 1578 cm-1 

provided evidence for the -C(N02)3 substituent. 

The third compound eluted was identified as 2,3,5,6-tetramethyl-1-

nitrobenzene (220) and the structure was confirmed by comparing its 

melting point and spectroscopic data with literature data.21 

The fourth compound eluted was identified as 2,4,5-trimethylphenyl­

nitromethane (221) and the structure was confirmed by comparing its 

spectroscopic data with literature data.9 

The fifth compound eluted was identified as 2,2',3,4',5,5',6-hepta­

methyl-4-nitrodiphenylmethane (226). Compound (226) gave a 

satisfactory parent molecular ion in the mass spectrum, indicating the 

molecular formula C2oH2sN02. N.O.e. experiments confirmed the 

assignments of the chemical shifts for the protons. Specifically, irradiation 

at 8 2.08 (5'-Me) gave an enhancement at 8 6.20 (H6'), irradiation at 8 3.88 

(CH2) gave enhancements at 8 2.11 (2-Me), 8 2.36 (2'-Me) and at 8 6.20 

(H6'), and irradiation at 8 6.99 (H3') gave enhancements at 8 2.19 (4'-Me) 
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Fig. 3.37 Enhancements(%) from selected n.O.e. experiments for 

compound (226). 

and at o 2.36 (2'-Me), as presented in Fig. 3.37. Furthermore, the presence 

of a very strong infrared absorption at 1524 cm-1 provided evidence for the 

-N02 substituent. 

The sixth compound eluted was identified as 2,4,5-trimethyl­

benzaldehyde (222) and the structure was confirmed by comparing its 

spectroscopic data with literature data9. 

The final compound eluted was identified as 2,4,5-trimethylbenzyl 

alcohol (223) and the structure was confirmed by comparing its spectro­

scopic data with an authentic sample. 

Compound (224) could not be isolated from the silica gel 

Chromatotron plate. However, the presence of the known9 2,4,5-trimethyl­

benzyl nitrate (224) in the reaction mixture was inferred from the 1 H n.m.r. 

signal due to the -CH2-0N02 function. Specifically, the -CH2-0N02 

resonance appeared as a singlet at o 5.39. 

On monitoring the photolysis of the charge-transfer complex of TNM 

with 1 ,2,4,5-tetramethylbenzene (134) in HFP at +20° with time, it was noted 
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that adducts (216) and (217) were absent (See Table 3.6). Comparison of 

the +20° HFP reaction with the +20° dichloromethane reaction (see Table 

3.5, Section 3.11) showed that the reaction in HFP was slow. After 4 h, the 

conversion in dichloromethane was 87%, while in HFP conversion was 

21% and only reached 87% after 20 h. The major product of reaction in 

HFP was 2,3,5,6-tetramethylnitrobenzene (220) (c. 60%). The limited yield 

of the side-chain trinitromethyl derivative (219) was also notable. 

Formation of the nitro dimer (226), which was not observed in the +20° 

dichloromethane reaction, increased between 4 hand 20 h (3% at 4 h, 8% 

at 20 h), with a corresponding decrease in the dimer (218) (9% at 4 h, 3% 

at 20 h). 
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Table 3.6 Overview of product yields from the photolysis of 1 ,2,4,5-tetra­

methylbenzene (134) (0.47 mol L-1) and TNM (0.94 mol L-1) in 

1,1, 1 ,3,3,3-hexafluoropropan-2-ol, at +20°. 

Yield {%1 

Conversion Unknown 

t(h) (%) (218) {219) {220) (221) (222) (223) (224) {226) aromatics 

0.5 3 4.5 0.8 60.0 1.7 8.8 10.2 3.2 trace 

1 7 5.2 1.6 57.0 2.2 4.6 9.5 4.5 1.5 

2 13 7.3 2.0 62.4 2.5 3.1 5.8 4.8 3.1 

4 21 8.5 4.0 61.5 3.0 1.4 6.1 3.9 2.8 

20 87 2.5 8.8 53.3 6.8 2.0 1.5 3.0 7.8 

3.13 The Photochemistry of 1 ,2,4,5-Tetramethyl­

benzene (134) in Acetonitrile 

10.8 

13.9 

9.0 

8.8 

14.3 

Photochemistry in acetonitrile at +20° and the identification of the N-nitroso 

acetamide (227). 

Photolysis of the charge-transfer complex of 1 ,2,4,5-tetramethyl­

benzene (134) (0.47 mol L-1) I TNM (0.94 mol L-1) in acetonitrile at +20° for 

4 h (conversion 52%) gave a product which was shown by 1H n.m.r. 

spectral analysis (see Table 3.7, below) to be a mixture of the epimeric 

nitro/trinitromethyl adducts (216} and (217) (trace amounts), aromatic 

compounds (218)-(224) and (226) (total 86%), the N-nitroso acetamide 

(227) (9%) and further unidentified aromatic compounds (total 5%). 

Chromatography of this mixture on a silica gel Chromatotron plate gave a 

small amount of compound (227) in a fraction eluted immediately before the 

aldehyde (222). 
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(220) 
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(217) 

, C(N02)3 
~ 
Me 

(221) 

(224) 

Me~Me 

MeMcH,-N-coMe 
I 

NO 

(227) 

Compound (227) was identified as N-(2,4,5-trimethylbenzyi)-N­

nitroso acetamide (227) by comparing its spectroscopic data with the 

related N-nitroso-N-(pentamethylbenzyl)-acetamide (228), which was 

identified in the corresponding photochemical reaction involving hexa­

methylbenzene (136), TNM and acetonitrile at +20° (See later in Section 

3.30). The N-nitroso acetamide (227) gave a satisfactory parent molecular 

ion in the mass spectrum, indicating the molecular formula C12H15N202. 

N.O.e. experiments confirmed the assignments of the chemical shifts for the 
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Fig. 3.38 Enhancements(%) from selected n.O.e. experiments for the 

N-nitroso acetamide (227). 

protons. In particular, irradiation at 8 2.13 (5'-Me) gave an enhancement at 

8 6.50 (H6'), irradiation at 8 4.86 (CH2) gave enhancements at 8 2.31 

(2'-Me) and at 8 6.50 (H6'), and irradiation at 8 6.90 (H3') gave 

enhancements at 8 2.16 (4'-Me) and at 8 2.31 (2'-Me), as seen in Fig. 3.38. 

HMQC and HMBC experiments confirmed the assignments of the 13C n.m.r. 

resonances and the characteristic 1 H and 13C n.m.r. and infrared 

absorptions for the closely related compounds (228) and (227) are 

compared in Fig. 3.39. Specifically, 13C n.m.r. resonances for the amide 

carbonyl carbon appeared at 8 17 4.6, the CHs-CO function appeared at 

8 22.8, and the CH2 function appeared at 8 39.5. Furthermore, the 

presence of a strong carbonyl stretching frequency at 1726 cm-1 was 

observed, reflecting the effect of the electron-withdrawing substituent in the 

N-nitroso-disubstituted amide functionality.so Finally, a structure such as 

(227) would be expected to readily lose NO, a fragment of mass 30 in the 

mass spectrum, as was observed. 

Photolyses of solutions of 1 ,2,4,5-tetramethylbenzene (134) and TNM 

in acetonitrile were carried out at +20 and -20°. The results of these 

reactions, monitored with time, are summarized in Table 3.7. Similar to 
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Me 

Me 

Me 

Me 

CH -N-COMe 
2 I 

Me NO 

CHa-CO 

CH2 

(228) 

2.73 

4.99 

20.3 

39.7 

174.5 

Vmax 1719, 1504, 1121 

Me 'TAr Me 

MeMCH -N-COMe 
2 I 

CHa-CO 

CH2 

(227) 

NO 

2.85 

4.86 

22.8 

39.5 

174.6 

Vmax1726, 1499,1128 

Fig. 3.39 Comparison of the characteristic 1 H and 13C n.m.r. resonances 

(in ppm) and infrared absorptions (in cm-1) for compounds (228) 

and (227). 

reactions in dichloromethane (see Table 3.5, Section 3.11 ), the yields of 

adducts (216) and (217) increased at lower reaction temperature in 

acetonitrile (trace amounts at +20°, total 15% at -20°). However, the yields 

of adducts (216) and (217) were lower in acetonitrile than in dichloro­

methane (trace amounts at +20° and total 15% at -20° in acetonitrile c.f. 

total 7% at +20° and total 28% at -20° in dichloromethane). Interestingly, 

the yield of the side-chain nitro compound (221) also decreased at lower 

reaction temperature (after 4 h, 48% at +20°, 19% at -20°). There was also 
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Table 3.7 Overview of product yields from the photolysis of 1 ,2,4,5-tetramethylbenzene (134) (0.47 molL -1) and 

TNM (0.94 mol L -1) in acetonitrile. 

Yield(%) 

Conversion Unknown 

t (h) (%) (216) (217} (218) (219} {220} ~221} (222} (223) (224) (226) (227} aromatics 

At+20° 

2 30 trace trace 3.8 5.5 2.0 44.6 1.6 4.2 22.8 1.0 9.6 4.9 

4 52 trace trace 1.7 4.5 2.9 47.5 1.9 2.5 23.5 1.1 9.4 5.0 

At -20° 

2 31 10.5 4.7 4.0 21.7 1.5 15.5 4.6 4.8 23.8 - 1.6 7.3 

4 49 9.6 4.9 2.4 6.2 3.9 19.0 3.2 1.8 25.1 - 4.2 19.7 

1\) 
~ 
1\) 



{216) {217) 

MenCH,C(NO,), 

Me Me 

Me¥~ 
Me Me 

~nMe 
Me 0 CH2 NO, 

N02 

{219) {220) {221) 

Men~ 

Me 0 CHO 

Men Me 

Me 0 CH20H 

Men Me 

Me 0 CH,ONO, 

(222) (223) (224) 

Me¥Me Me~Me 
Men~ Me Me Me Me 

Me 0 CH2 -N-C0Me ~Me ~Me I 
NO 

Me Me (227) 

Me Me 

(218) (226) 

a reduced yield of the N-nitroso acetamide (227) not observed in reactions 

in dichloromethane or HFP at lower reaction temperature (after 4 h, 9% at 

+20°, 4% at -20°). Unfortunately, comparisons with the -soo dichloro­

methane reaction were not possible due to the limited solubility of 1 ,2,4,5-

tetramethylbenzene (134) in the more polar acetonitrile at -50°. 
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3.14 The Photochemistry of 1 ,2,4,5-Tetramethyl-

benzene (134) in Dichloromethane Containing 

Trifluoroacetic Acid (TFA) 

Photolysis of the charge-transfer complex of 1 ,2,4,5-tetramethyl­

benzene (134) (0.47 mol L-1) I TNM (0.94 mol L-1) in dichloromethane 

containing TFA (0.71 mol L-1) at +20° for 4 h (conversion 38%) gave a 

product which was shown by 1 H n.m.r. spectral analysis (see Table 3.8) to 

be a mixture of the aromatic compounds (218)-(222), (224) and (226) (total 

80%), and unidentified aromatic products (20%). 

Notable among these products is the formation of the trinitromethyl 

derivative (219), initially (30 min.) 22% yield, but declining during the 

reaction to a yield of 8% after 4 h. It was also of interest to note that the 

+20° reaction in dichloromethane with TFA was slower than the 

corresponding reaction without added acid [after 4 h, 38% conversion with 

TFA, 87% conversion without added acid (See Table 3.5, Section 3.11 )]. 

Table 3.8 Overview of product yields from the photolysis of 1 ,2,4,5-tetra­

methylbenzene (134) (0.47 mol L-1) and TNM (0.94 mol L-1) in 

dichloromethane containing trifluoroacetic acid (0. 71 mol L -1), 

at +20° 

Yield(%) 

Conversion Unknown 

t (h) (%) (218) (219) (220) (221) (222) (224) (226) aromatics 

0.5 9 31.0 22.3 4.3 6.0 5.8 17.0 0.4 13.2 

1 16 32.7 18.5 4.0 7.4 3.2 20.0 0.9 13.3 

2 22 31.9 12.8 4.5 9.2 4.5 21.9 1.6 13.6 

4 38 22.2 8.1 7.6 9.7 7.4 22.1 2.7 20.2 
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(220) 

(224) 
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ArMe 
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Me 

(226) 

(221) 

3.15 Rearrangement of 1 ,3,4,6-Tetramethyl-r-3-nitro­

t-6-trinitromethylcyclohexa-1 ,4-diene (216) in 

Acetonitrile 

Rearrangement of adduct (216) in acetonitrile at +20° and identification of 

adducts (231) and (232). 

A solution of adduct (216) in acetonitrile was stored in the dark at 

+20°. Aliquots were removed at appropriate time intervals and the solvent 

was removed under reduced pressure at :::;;oa. The composition of the 

residues were determined by 1 H n.m.r. spectral analysis. Within 5 min. 

adduct (216) underwent epimerization to give adduct (217), and also nitro-
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nitrite rearrangement to give the epimeric trinitromethyl/nitrite adducts (229) 

and (230). During the work-up procedure the trinitromethyl/nitrite adducts 

(229) and (230) were hydrolysed to give the corresponding hydroxy/trinitro­

methyl adducts (231) and (232), as identified below. Subsequently (over 

c. 2 h) the mixture of (216), (217), (229) and (230) was converted into a 

mixture of 2,4,5-trimethyl-1-(2',2',2'-trinitroethyl)-benzene (219) (15%), 

2,3,5,6-tetramethylnitrobenzene (220) (19%), 2,4,5-trimethylphenylnitro­

methane (221) (16%}, 2,4,5-trimethylbenzyl alcohol (223) (24%), 2,4,5-tri­

methylbenzyl nitrate (224) (3%), and unidentified aromatic products (total 

23%). 

(219) 

(216) 

(229) X=ONO 

(231) X=N02 

(223) 

(220) 

(217) 

MX):e~ Me 

X C(N02b 
Me " Me 

(230) X=ONO 

(232} X::::N02 

(224) 

(221) 
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The major hydroxy/trinitromethyl adduct (231) was identified as 

1 ,2,4,5-tetramethyl-t-4-trinitromethylcyclohexa-2,5-dien-r-1-ol (231) based 

on comparison of its 1 H n.m.r. spectroscopic data with that for the stereo­

chemically related major nitro adduct (216}, as depicted in Fig. 3.40. In 

particular, the 1 H n.m.r. signals due to adduct (231) were all shifted upfield 

relative to adduct (216), due to the presence of the -OH function. 

3-Me 

4-Me 

H5 

6-Me 

1-Me 

H2 

~ C(N02) 3 
6~ 

5 Me 

(216) 

1.74 

1.80 

6.20 

1.96 

1.87 

5.82 

(231) 

1-Me 1.42 

2-Me 1.78 

H3 5.88 

4-Me 1.75 

5-Me 1.92 

H6 5.54 

Fig. 3.40 Comparison of the characteristic 1 H resonances (in ppm) for 

adducts (216) and (231 ). 

The epimeric hydroxy/trinitromethyl adduct (232) was identified as 

1 ,2,4,5-tetramethyl-c-4-trinitromethylcyclohexa-2,5-dien-r-1-ol (232} based 

on comparison of its 1H n.m.r. spectroscopic data with its epimer (231). 

The closely similar spectroscopic data for compounds (231) and (232) are 
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summarized in Fig. 3.41, and were consistent with their assignment as 

epimers. 

(231) (232} 

1-Me 1.42 1-Me 1.32 

2-Me 1.78 2-Me 1.76 

H3 5.88 H3 5.84 

4-Me 1.75 4-Me 1.69 

5-Me 1.92 5-Me 1.90 

H6 5.54 H6 5.53 

Fig. 3.41 Comparison of the characteristic 1 H resonances (in ppm) for 

ad ducts (231) and (232). 

3.16 Rearrangement of 1 ,3,4,6-Tetramethyl-r-3-nitro­

t-6-trinitromethylcyclohexa-1 ,4-diene (216) in 

(D)Chloroform 

A solution of adduct (216) in (D)chloroform was stored in the dark at 

+20° and its 1 H n.m.r. spectrum monitored at appropriate time intervals. 

Adduct (216) epimerized only slowly. Equilibrium with its epimer (217) was 

established only after 90 h. The hydroxy/trinitromethyl adducts (231) and 

(232) were not observed in this rearrangement. The epimeric adducts 
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(216) and (217) were slowly converted (25 days) into a mixture of 2,4,5-

trimethyl-1-(2' ,2' ,2'-trinitroethyl)-benzene (219) (52%), 2,3,5,6-tetramethyl­

nitrobenzene (220} (1 %), 2,4,5-trimethylphenylnitromethane (221) (18%), 

2,4,5-trimethylbenzaldehyde (222} (6%), 2,4,5-trimethylbenzyl nitrate (224) 

(1 0%), 2,4,5-trimethylbenzyl nitrite (225} (trace) and some unidentified 

aromatic compounds (13%). 
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3.17 Reactions of 1 ,2,4,5-Tetramethylbenzene (134) 

with Nitrogen Dioxide in Dichloromethane 

A solution of 1 ,2,4,5-tetramethylbenzene (134) (0.47 mol L-1) in 

dichloromethane saturated with •No2 was irradiated with filtered light 

(Acut-off <435 nm) at +20°. A similar mixture was stored in the dark at +20°. 

Aliquots were removed at appropriate time intervals and the excess •No2 

and solvent were removed under reduced pressure at s;oo. The product 

compositions were determined by 1 H n.m.r. spectral analysis and are given 

in Table 3.9. After reaction for 4 h the two product compositions were 

Table 3.9 Overview of product yields from the reaction of 1 ,2,4,5-tetra­

methylbenzene (134) (0.47 mol L-1) in dichloromethane 

saturated with •No2, at +20°. 

Yield(%) 

Conversion Unknown 

t (h) (%) (218) (221) (222) (223) (224) aromatics 

In the dark 

0.5 16 1.0 21.8 4.9 2.6 67.6 2.1 

1 24 1 .1 23.0 4.3 2.5 67.0 2.1 

2 32 1.0 21.6 7.5 1.7 66.1 2.1 

4 60 1.1 22.7 5.6 1.2 67.6 1.8 

Irradiation with filtered light (Acut-ott<435 nm) 

0.5 18 1.0 22.2 5.3 3.3 67.0 1.2 

1 28 1.3 22.8 3.3 2.6 69.2 0.8 

2 45 0.9 20.7 5.8 1.2 69.7 1.7 

4 68 0.7 19.9 7.0 0.5 69.5 2.4 
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similar, viz. 2,4,5-trimethylbenzyl nitrate (224) (c. 70%}, 2,4,5-trimethyl­

phenylnitromethane (221) (c. 20%), with small amounts of aromatic 

compounds (218), (222) and {223} (total 8%), and unidentified aromatic 

compounds (total2%). These results are comparable with those reported 

by Bosch and Kochi,31 except that they also observed a low yield of the 

nuclear nitration product (220). 

3.18 Reactions of 1 ,2,4,5-Tetramethylbenzene (134) 

with Nitrogen Dioxide in 1,1, 1 ,3,3,3-Hexafluoro­

propan-2-ol (HFP) 

Reaction in HFP at +20° and the identification of the aromatic compounds 

(233) and (234). 

A solution of 1,2,4,5-tetramethylbenzene {134) (0.47 mol L-1) in HFP 

saturated with •No2 was irradiated with filtered light (Acut-off<435 nm) at 

+20°. A similar mixture was stored in the dark at +20°. After 0.5 h, at which 
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time the 1 ,2,4,5-tetramethylbenzene {134) in both reactions was consumed, 

the excess •No2 and solvent were removed under reduced pressure at :::;;oo. 

The product compositions, determined by 1 H n.m.r. spectral analysis, were 

similar, viz. 2,3,5,6-tetramethylnitrobenzene {220) (c. 71 %), 2,4,5-trimethyl­

benzoic acid {233) (18%), 2,3,5,6-tetramethyl-1 ,4-dinitrobenzene (234) 

(4%), with small amounts of aromatic compounds {221) and (222), and 

unidentified aromatic compounds (c. 6%). 

~IQ(Me 

Me~ Me 

N02 

(220) 

Me~Me 

~McozH 
(233) 

(221) 

Me TAr" Me 

~McHo 

Me*N0
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Me 

Me Me 

N02 

(234) 

(222) 

Chromatography of the "dark" reaction mixture on a silica gel 

Chromatotron plate gave compound (233) in a fraction eluted immediately 

after the aldehyde (222). The structure of 2,4,5-trimethylbenzoic acid (233) 

was confirmed by comparison of its spectroscopic data with an authentic 

sample. 

Compound (234) was not isolated from the silica gel Chromatotron 

plate. However, the presence of 2,3,5,6-trimethyl-1 ,4-dinitrobenzene (234) 

in the reaction mixture was inferred by comparing its 1 H n.m.r. signal with 

an authentic sample. Specifically, the methyl resonance appeared as a 

singlet at 3 2.32. 
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3.19 Overview of the Photonitration of 1 ,2,4.5-Tetra­

methyl benzene (134) 

In the photolysis of the 1 ,2,4,5-tetramethylbenzene (134) I TNM 

charge-transfer complex adduct formation was observed exclusively by 

attack of (02N)3c- at C1 on the radical cation of 1 ,2,4,5-tetramethylbenzene 

(See Fig. 3.42). No adducts were observed arising from the alternative 

Fig. 3.42 Adducts identified correspond only to attack of (02N)sC- at C1 of 

the 1 ,2,4,5-tetramethylbenzene radical cation. 

attack of (02N)3c- at C3 on the 1 ,2,4,5-tetramethylbenzene radical cation, 

presumably due to the instability of the delocalized carbon radical (145) 

which would be required to form. 

Me 

Me 

(145) 

Attack of (02N)3c- on the 1 ,2,4,5-tetramethylbenzene radical cation 

at C1 would lead to the formation of the delocalized carbon radical (144), as 

shown in Scheme 3.25. Subsequently, radical coupling with •No2 at C4 
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Me5 1Me Me 
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Me -;. 
Me 

(144} (216} and (217) 

Scheme 3.25 

would give the epimeric 1 ,3,4,6-tetramethyl-3-nitro-6-trinitromethyl adducts 

(216) and (217). 

The yields of adducts (216) and {217) were found to be temperature 

dependent and increased at lower reaction temperatures in both dichloro­

methane and acetonitrile {See Tables 3.5 and 3.7, Sections 3.11 and 3.13, 

respectively). The pattern of adduct yields found for photolyses in dichloro­

methane or acetonitrile solution is understandable in the light of the 

rearrangement of the nitro/trinitromethyl adduct (216) in acetonitrile and 

(D)chloroform at +20°. The rearrangement of nitro/trinitromethyl adduct 

(216) was complete in 2 h in acetonitrile but considerably slower in 

(D)chloroform (half-life c. 72 h). The rearrangement of adduct {216) to 

aromatic products proceeded via initial equilibration to its epimer (217), and 

in the rearrangement in acetonitrile also via nitrates (229) and (230). 

(229) and (230) 

These rearrangements were seen as being analogous to the 

rearrangement of the 1 ,4-nitro/trinitromethyl adduct (75) of 1 ,4,6, 7 -tetra­

methylnaphthalene (56) (see Chapter 2, Sections 2.7-2.9} and the 
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rearrangement of the 1 ,4-nitro/trinitromethyl adduct (13)2 of 1 A-dimethyl­

naphthalene (see Chapter 1, Section 1.11 ). 

In the early stages of the rearrangement, epimerization occurred to 

give adduct (217), presumably via the intermediate nitrocyclohexadienyl 

cation/trinitromethanide ion pair (235), as observed in Scheme 3.26. 

(216) (235) 

Scheme 3.26 

Me 

(217) 

uuC(N0 2)s 

Me 

The nitro-nitrite rearrangement would probably occur in a radical 

mechanism involving loss of •No2 from the nitro/trinitromethyl adducts (216) 

and (217), to form the radical pair (236), as seen in Scheme 3.27. 

(216) and (217) 

Me 
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Me Me 
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Subsequent recombination of •No2, via C-0 bond formation, would form the 

nitrito/trinitromethyl adducts (229) and (230). Hydrolysis of the nitrito/tri­

nitromethyl adducts would then give rise to the labile hydroxy/trinitromethyl 

adducts (231) and (232). Similar to the nitro/trinitromethyl adducts (216) 

and (217), the nitrito/trinitromethyl adducts (229) and (230) and the 

hydroxy/trinitromethyl adducts (231) and (232) could undergo epimization 

via the intermediate nitrocyclohexadienyl cation/trinitromethanide ion pair 

(235). 

The intermediate nitrocyclohexadienyl cation/trinitromethanide ion 

pair (235) affords a possible route to the aromatic side-chain compounds 

(221 )-(225), all proceeding via the 2,4,5-trimethylbenzyl radical (238), as 

illustrated in Scheme 3.28. Initially, loss of nitroform from the intermediate 

nitrocyclohexadienyl cation/trinitromethanide ion pair (235) would occur by 

abstraction of an acidic proton from the methyl group by (02N)3C-, forming 

the diene (237). This would be followed by homolytic cleavage of the C-X 

bond in diene (237) to give radical (238). Subsequent coupling of •No2 

M~e Me 

X C(N02):::;;;3 =====~ 
Me ... 

Me 

(216) and (217) X=N02 

{229) and (230) X=ONO 
(231) and (232) X=OH 

Me 

X 

Me 

(235) 

Scheme 3.28 

(237) 

!homolysis 

of C-X 

bond 

(238) 
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with the resulting 2,4,5-trimethylbenzyl radical (238) with C-N bond 

formation would lead to the formation of the side-chain nitro compound 

(221 ), as seen in Scheme 3.29. Alternatively, coupling of •No2 could occur 

with C~O bond formation and would give the side-chain nitrite (225). The 

side-chain nitrite (225) can then undergo either hydrolysis to yield the side­

chain alcohol (223} or oxidation to yield the side-chain nitrate (224). The 

oxidation of the nitrite (225) to produce the nitrate (224) was shown to be a 

rapid reaction.31 Formation of the benzaldehyde (222) could arise either 

by oxidation of the nitrite (225}, as was observed by Masnovi et af.,9 or by 

oxidation of the alcohol {223). 

·oNO Me)Q(Me Me)Q(Me o hydrolysis o 
Me CH20NO Me CH20H 

• 
(238) 

(225) ~ 

I 
oxidation 

oxidation 

(223) 

I oxidation 

Me"tYMe 
Me~CHO 

(221) (224) (222) 

Scheme 3.29 

The formation of the side-chain trinitromethyl aromatic (219} could 

occur via loss of nitrous acid from the nitro/trinitromethyl adducts (216) and 

(217) to form the trinitromethyl diene (239), as depicted in Scheme 3.30. 

Subsequent rearrangement via the ion pair (240) would give the side-chain 

trinitromethyl compound (219). 

A possible mode of formation for dimer (218) is shown in Scheme 
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3.31 and follows the oxidative dimerization proposed by Eberson et aJ.32 

The radical cation of 1 ,2,4,5-tetramethylbenzene can undergo a-deproton­

ation to yield the 2,4,5-trimethylbenzyl radical (238). Subsequently, loss of 

an electron from radical (238) would produce the 2,4,5-trimethylbenzyl 

cation (241 ). Cation (241) can then couple with 1 ,2,4,5-tetramethyl­

benzene (134), and after loss of a proton, would form dimer (218). The 

formation of dimer (218) affords a pathway to the formation of the nitro dimer 

(226) by radical coupling of •No2 with the dimer radical cation, as seen in 

Scheme 3.32. 

Me Me l•+ Me Me 

Me Me Me Me 

CH2 
·No2 

Me -H+ Me 

Me Me 

Me Me 

(218) (226) 

Scheme 3.32 

It has been shown33,34 that when charge-transfer complexes of 

aromatic molecules with TNM undergo photolyses in the presence of TFA, 

(02N)sC-, one component of the triad [ArH•+ (02N)sC- ·N02], is converted 

into the less nucleophilic nitroform. This results in the predominant 

recombination process ArH•+ I ·No2 being observed. The photolysis of the 

charge-transfer complex of 1 ,2,4,5-tetramethylbenzene (134) in dichloro­

methane containing TFA (0.71 mol L-1) at +20° proceeded more slowly than 
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the reaction without added acid (see Tables 3.5 and 3.6, Sections 3.11 and 

3.13, respectively) and gave aromatic compounds (218)-(222), (224} and 

(226). Interestingly, 2,4,5-trimethyl-1-(2' ,2' ,2'-trinitroethyl)-benzene (219) 

(219) 

Me~Me 

MeMcHo 

(222) 

MeiUMe 

Me~Me 

Me~Me 
Me 

(218) 

(220} (221) 

Me~Me 

MeMcH,oNo, 

(224) 

Me*N0

2 

Me 

Me Me 

ArMe 
Me~ 

Me 

(226) 

was still formed in reasonable yield, even though adducts (216) and (217) 

were not detected. Since compounds (218) and (226) must be derived 

from the 2,4,5-trimethylbenzyl cation (241) (see Schemes 3.31 and 3.32, 

:~Me 
!~~~Me 

Me C(N02h 

(216) and {217) (241) 
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above), it appears reasonable to assume that nitroform can react as a 

nucleophile with carbocation (241) with its higher charge density at a single 

carbon, compared to the situation in the 1 ,2,4,5-tetramethylbenzene radical 

cation. 

HFP was found strongly to stabilize radical cations,35-40 partly by 

rendering any nucleophilic species present exceedingly unreactive.39 It 

was therefore anticipated that HFP would inhibit the attack of (02N)3C- on 

the 1 ,2,4,5-tetramethylbenzene radical cation, favouring the ArH•+ f•No2 

coupling process instead. The experiments involving photolysis of the 

charge-transfer complex of TNM with 1 ,2,4,5-tetramethylbenzene (134) in 

HFP at +20° was slow. While neither adducts (216) nor (217) were seen, a 

small amount (4% after 4 h) of the side-chain trinitromethyl derivative (219) 

was observed. The major product was 2,3,5,6-tetramethylnitrobenzene 

(220) (c. 60%) (See Table 3.6, Section 3.12). Reaction of 1 ,2,4,5-tetra-

Me Me 

Me Me 

(219) (220) 

Me Me 

Me Me 

(233) (234) 

methylbenzene (134} with a saturated solution of •No2 in HFP, either on 

irradiation with filtered light (A.cut-ott<435 nm) or in the dark at +20°, was 
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complete in <0.5 h. The major product was 2,3,5,6-tetramethylnitro­

benzene (220) (c. 74%) with 2,3,5,6-tetramethyl-1 ,4-dinitrobenzene (234) 

(4%) as a minor product (See Section 3.18). The trimethylbenzoic acid 

(223) was also formed in both the "light" and "darkn reactions of 1 ,2,4,5-

tetramethylbenzene (134) with •No2 in HFP (18% in both reactions). 

This result is in marked contrast to the outcome of the analogous 

reactions of 1 ,2,4,5-tetramethylbenzene (134) with a saturated solution of 

•No2 in dichloromethane at +20°, either on irradiation with filtered light 

(Acut-oft<435 nm) or in the dark. Here the significant products were 2,4,5-

trimethylbenzyl nitrate (224) (c. 70%) and 2,4,5-trimethylphenylnitro­

methane (221) (c. 20%) (See Table 3.9, Section 3.17). It appears that both 

(221) (224) 

the nlight" and "dark" reaction conditions in the reactions of 1 ,2,4,5-tetra­

methylbenzene (134) with •No2 in dichloromethane resulted in thermal 

nitration. The product compositions were generally. in agreement with 

product ratios for thermal nitration of 1 ,2,4,5-tetramethylbenzene (134) with 

•No2 in dichloromethane in the dark reported by Bosch and Kochi.31 

In contrast, the formation of ring-substituted nitration products (222) 

and (234) in the reactions of 1 ,2,4,5-tetramethylbenzene (134) with •No2 in 

HFP was consistent with the reaction sequence of nitrosation, by NO+, 

followed by oxidation of the nitrosoarene to the nitroarene, as represented 

in Scheme 3.33. Nitrosation of 1 ,2,4,5-tetramethylbenzene (134) would 

lead to the formation of the nitrosoarene (242). Subsequent oxidation of 

(242) would give compound (220), while further nitrosation of (242) would 
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Men Me Me~Me Me~Me No+ oxidation 

Me 0 Me Me 0 Me -W 
Me Me 

NO N02 

(134) (242) (220} 

j No• 
- H+ 

NO 

Me~Me Me*Me 

Me 0 Me 

oxidation 

Me Me 

NO N02 

(243) (234) 

Scheme 3.33 

produce the 1 ,4-dinitroso compound (243). Oxidation of (243} would result 

in the formation of the 1 ,4-dinitro compound (234). The formation of the 

carboxylic acid (233) in the reactions of 1 ,2,4,5-tetramethylbenzene {134) 

with •No2 in HFP was seen as arising via the oxidation of the aldehyde 

(223), present in trace amounts in the reaction. 

What then is the role of HFP in promoting the nitrosation of 1 ,2,4,5-

tetramethylbenzene (134}? Bosch and Kochi31 proposed the following 

equilibrium arising via the interaction between the 11head-to-tail" coupled 

form of •No2 and an aromatic molecule (See Scheme 3.34). Given that 

HFP renders any nucleophilic species present very unreactive,39 it appears 

likely that the effect of HFP in promoting aromatic nitrosation arises because 

ArH 

Scheme 3.34 
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it disturbs the equilibrium in Scheme 3.34. Therefore, the [ArH, NO+] 

species would be formed as the nitrate counter-ion would be deactivated by 

interaction with the solvent. Hence, in the reaction of 1 ,2,4,5-tetramethyl­

benzene (134) in the presence of excess •No2 in HFP it appears likely that 

nitrosation occurred. 

The photolysis of the charge-transfer complex of 1 ,2,4,5-tetramethyl­

benzene (134) with TNM in HFP resulted in extensive ring nitration. 

Hence, HFP appears to markedly reduce the nucleophilic reactivity of 

(02N)3C- and to promote nitrosation of ArH by •No2, as outlined above 

(Scheme 3.34). 

It remains unclear how the N-nitroso acetamide (227) formed. 

However, in a later reaction study of hexamethylbenzene (136) in 

acetonitrile saturated with of •No2 at +20° in the dark, the analogous 

N-nitroso acetamide (228) formed (See Section 3.33). Hence, it appears 

that neither TNM nor irradiation is necessary for the formation of compound 

(227). 

Me~Me 

MeMCH -N-COMe 
2 I 

NO 

(227) 

Me 

Me 

Me 

Me 

(228) 

Me 

CH -N-COMe 
2 I 

NO 

In conclusion, in the reaction between the 1 ,2,4,5-tetramethyl­

benzene radical cation and (02N)3C- it appears that radical (145) was 

unfavourable. It is likely that steric hindrance to (02N)3C- attack at C3, due 

to interaction with the j3-methyl groups at C2 and C4, resulted in the more 

stable carbon radical (144) being formed. 
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3.20 The Photolysis of Pentamethylbenzene (135) 

General procedure for the photonitration of pentamethy/benzene (135) with 

TNM. 

A solution of pentamethylbenzene (135) (500 mg, 0.42 mol L-1) and 

TNM (0.84 mol L -1) in dichloromethane (at +20, -20, -50 or -78°) or 

acetonitrile (at +20 or -20°) was irradiated with filtered light (Acut-ott<435 

nm) and small samples were withdrawn for analysis at suitable intervals. 

The work-up procedure, involving evaporation of solvent and TNM, was 

conducted at :::;oo. The crude product mixtures were stored at -78° and 

were analysed by 1 H n.m.r. spectroscopy as soon as possible (For 

complete experimental details see Chapter 5, Section 5.3.3). 

3.21 The Photochemistry of Pentamethylbenzene (135) 

in Dichloromethane 

3.21. 1 Photochemistry in dichloromethane at -78° and the identification of 

adducts (244) and (245). 

A solution of pentamethylbenzene (135) (0.42 mol L-1) and TNM 

(0.84 mol L-1) in dichloromethane was irradiated at -78° until the orange/ 

brown colour of the charge-transfer band was bleached. The composition 

of the reaction mixture was monitored by withdrawing samples for 1 H n.m.r. 

spectral analysis. After work-up, the final solution (after 3 h, conversion 

76%) contained the epimeric 1 ,2,3,4,6-pentamethyl-3-nitro-6-trinitromethyl­

cyclohexa-1 ,4-dienes (244) (15%) and (245) (1 %), aromatic compounds 

(246)-(260) (total 79%) and unidentified aromatic compounds (total 5%). 

The adduct (244) was partially separated by h.p.l.c. on a cyanopropyl 

column, cooled to oo, using hexane/dichloromethane mixtures as the 
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eluting solvents. The first material eluted was a mixture of aromatic 

compounds, whose separation and identification is given below. 

The major adduct (244) was isolated as unstable oil and was 

identified as 1 ,2,3,4,6-pentamethyl-r-3-nitro-t-6-trinitromethylcyclohexa-1 ,4-

diene (244) on the basis of its spectroscopic data and comparison of its 

characteristic 1 H n.m.r. resonances with the spectral features for 1 ,3,4,6-

tetramethyl-r-3-nitro-t-6-trinitromethylcyclohexa-1 ,4-diene (216). N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at 8 1.74 (1-Me, 3-Me and 4-Me) gave 

enhancements at 8 1.97 (6-Me) and at 8 6.21 (HS), while irradiation at 

8 1.97 (6-Me) gave enhancements at o 1.69 (2-Me), o 1.74 (1-Me) and 

8 6.21 (HS), as represented in Fig. 3.43. The characteristic 1 H n.m.r. 

resonances for the closely related adducts (216) and (244) are compared in 

Fig. 3.44 and further support the identification of adduct (244). 

Furthermore, the presence of very strong infrared absorptions at 1616, 

Fig. 3.43 Enhancements (%) from selected n.O.e. experiments for adduct 

(244). 
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Me 

(216) (244) 

1-Me 1.87 1-Me 1.74 

H2 5.82 2-Me 1.69 

3-Me 1.74 3-Me 1.74 

4-Me 1.80 4-Me 1.74 

H5 6.20 H5 6.21 

6-Me 1.96 6-Me 1.97 

Fig. 3.44 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

for adducts (216) and (244). 

1596, 1576 and 1550 cm-1 provided evidence for the -C(N02)3 and -N02 

substituents. The assignment of adduct (244) as the trans-isomer was 

made by comparing its 1 H n.m.r. data and the chemical shift of the olefinic 

proton (the only signal clearly identifiable in the reaction mixture) for the cis­

isomer (245), with the 1 H n.m.r. data for the epimeric adducts {216) and 

(217) derived from 1 ,2,4,5-tetramethylbenzene (134), as illustrated in 

Fig. 3.45. Specifically, the characteristic H5 resonance appeared upfield in 

each of the major trans-isomers, (244) and (216), relative to their minor cis­

epimers, (245) and (217). 

The minor adduct (245) could not be isolated from the h.p.l.c. column. 

However, identification of adduct (245) as 1,2,3,4,6-pentamethyl-r-3-nitro-c-

6-trinitromethylcyclohexa-1 ,4-diene (245) was based on the chemical shift 
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Fig. 3.45 Comparison of the characteristic 1 H n.m.r. resonances (in ppm) 

for adducts (244), (245), {216) and (217). 

of its olefinic proton (the only signal clearly identifiable in the reaction 

mixture), as seen in Fig. 3.45 above. Specifically, the 1 H n.m.r. resonance 

for H5 appeared as a quartet at 8 6.33. 

3.21.2 Photochemistry in dichloromethane at +20° and the identification of 

the aromatic products (246)-(260). 

Photolysis of the charge-transfer complex of pentamethylbenzene 

( 135) (0.42 mol L -1) I TNM (0.84 mol L -1) in dichloromethane at +20° for 3 h 

(conversion 89%) gave a product which was shown by 1 H n.m.r. spectral 

analysis to be a mixture of the aromatic compounds (246)-(260) (total 98%) 



and unidentified aromatic compounds (total 2%). Chromatography of this 

mixture on a silica gel Chromatotron plate gave the following in elution 

order. 

The first compound eluted was identified as 2,3,4,6-tetramethyl-1-

(2',2',2'-trinitroethyl)-benzene (246). The side-chain trinitromethyl aromatic 

(246) gave a satisfactory parent molecular ion in the mass spectrum, 

indicating the molecular formula C12H1sNs05. N.O.e. experiments 

confirmed the assignments of the chemical shifts for the protons. In 

particular, irradiation at o 4.74 (CH2) gave enhancements at o 2.10 (2-Me) 

and at o 2.16 (6-Me), while irradiation at 8 6.88 (H5) gave enhancements at 

o 2.16 (6-Me) and at o 2.25 (4-Me), as depicted in Fig. 3.46. Furthermore, 

Fig. 3.46 Enhancements (%)from selected n.O.e. experiments for 

compound (246). 

the presence of very strong infrared absorptions at 1616, 1601 and 1580 

cm-1 provided evidence for the -C(N02)3 substituent. 

The second compound eluted was identified as 2,3,4,5-tetramethyl-1-

(2' ,2' ,2'-trinitroethyl)-benzene (24 7). The isomeric side-chain trinitromethyl 

aromatic (247) also gave a satisfactory parent molecular ion in the mass 

spectrum, indicating the molecular formula C12H1sNs05. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 
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Me 

Fig. 3.47 Enhancements(%) from selected n.O.e. experiments for 

compound (247). 

protons. Specifically, irradiation at 8 2.09 (2-Me) gave enhancement at 

8 4.45 (CH2), while irradiation at 8 6.74 (H6) gave enhancements at 8 2.23 

(5-Me) and at 8 4.45 (CH2), as shown in Fig. 3.47. Furthermore, the 

presence of very strong infrared absorptions at 1609 and 1576 cm-1 

provided evidence for the -C(N02)3 substituent. 

The third compound eluted was identified as 2,2',3,3',4,4',5,6,6'­

nona-methyldiphenylmethane (248) and the structure was confirmed by 

comparing its spectroscopic data with literature data.41 

The fourth compound eluted was identified as 2,2',3,3',4,4',5,5',6-

nonamethyldiphenylmethane (249), the isomer of compound (248) above, 

and the structure was also confirmed by comparing its spectroscopic data 

with literature data.41 

The fifth compound eluted was identified as 2,3,4,5,6-pentamethyl­

nitrobenzene (250) and the structure was confirmed by comparing its 

spectroscopic data with literature data. 42 

The sixth compound eluted was identified as 2,3,4,6-tetramethyl­

phenylnitromethane (251 ). The side-chain nitro aromatic (251) gave a 

satisfactory parent molecular ion in the mass spectrum, indicating the 

molecular formula C11H1sN02. N.O.e. experiments confirmed the 
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Fig. 3.48 Enhancements(%) from selected n.O.e. experiments for 

compound (251). 

assignments of the chemical shifts for the protons. In particular, irradiation 

at o 5.61 (CH2) gave enhancements at o 2.30 (2-Me) and at o 2.35 (6-Me), 

while irradiation at o 6.95 (H5) gave enhancements at o 2.28 (4-Me) and at 

o 2.35 (6-Me), as summarized in Fig. 3.48. Furthermore, the presence of a 

very strong infrared absorption at 1541 cm-1 provided evidence for the 

-N02 substituent. 

The seventh compound eluted was identified as 2,3,4,5-tetramethyl­

phenylnitromethane (252), the isomer of compound (251) above, and the 

structure was confirmed by comparing its spectroscopic data with literature 

data.9 

The eighth compound eluted was identified as 2,3,4,5-tetramethyl­

benzaldehyde (253) and the structure was confirmed by comparing its 

spectroscopic data with literature data.43 

The ninth compound eluted was identified as 2,3,4,5,6-pentamethyl­

benzoic acid (254) and the structure was confirmed by comparing its 

spectroscopic data with an authentic sample. 

The tenth compound eluted was identified as 2,3,4,5-tetramethyl­

benzyl alcohol (255) and the structure was confirmed by comparing its 

spectroscopic data with literature data.43 
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The final compound eluted could only be isolated in admixture with 

its isomer (255) and was identified as 2,3,4,6-tetramethylbenzyl alcohol 

(256). N.O.e. experiments confirmed the assignments of the chemical shifts 

for the protons. In particular, irradiation at o 4.76 (CH2) gave 

enhancements at o 2.39 (2-Me) and at o 2.41 (6-Me), while irradiation at 

o 6.92 (H5) gave enhancements at o 2.31 (4-Me) and at o 2.41 (6-Me), as 

Fig. 3.49 Enhancements (%)from selected n.O.e. experiments for 

compound (256). 

Me Me 

Me Me Me 

Me Me 

(255) (256) 

4.64 4.76 

64.5 59.6 

Me 

Fig. 3.50 Comparison of the characteristic 1 Hand 13C n.m.r. resonances 

(in ppm) for compounds (255) and (256). 
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represented in Fig. 3.49. Furthermore, the characteristic 1 H and 13C n.m .r. 

resonances for the CH20H function were closely similar to the isomeric 

side-chain alcohol (255) above, as outlined in Fig. 3.50. Specifically, the 

1 H n.m.r. resonance for the CH2 function appeared at() 4.76, while the 13C 

n.m.r. resonance for the CH2 function appeared at() 59.6. 

The labile isomeric benzyl nitrates (257) and (258), and benzyl 

nitrites (259) and (260), were apparently hydrolysed on the silica gel 

Chromatotron plate and augmented the yields of the isomeric benzyl 

alcohols (255) and (256). 

The known43 2,3,4,6-tetramethylbenzyl nitrate (257) was identified in 

the reaction mixture from its characteristic 1 H n.m.r. resonance due to the 

CH20N02 function. Specifically, the CH20N02 resonance appeared as a 

singlet at () 5.56. 

Similarly, the known43 isomeric 2,3,4,5-tetramethylbenzyl nitrate 

(258) was also identified in the reaction mixture from its characteristic 1 H 

n.m.r. resonance due to the CH20N02 function. In particular, the 

CH20N02 resonance appeared as a singlet at() 5.42. 

The presence of 2,3,4,6-tetramethylbenzyl nitrite (259) in the reaction 

mixture was determined from its characteristic 1 H n.m.r. resonance due to 

the CH20NO function on comparison with trends seen for the known9 side­

chain compounds (261 )-(263) from hexamethylbenzene and the related 

2,3,4,5-tetramethylbenzyl side-chain compounds (252), (258) and (260), as 

observed in Fig. 3.51. Specifically, the CH20NO resonance appeared as 

a broad singlet at() 5.73. 

The presence of 2,3,4,5-tetramethylbenzyl nitrite (260) in the reaction 

mixture was determined from its characteristic 1 H n.m.r. resonance due to 

the CH20NO function on comparison with trends seen for the known9 side­

chain compounds (261 )-(263) from hexamethylbenzene and the related 

2,3,4,6-tetramethylbenzyl side-chain compounds (251 ), (257) and (259), as 
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Melfl'(Me 

Me~CH2X 
Me 

X=N02 (261) 5.67, s (251) 5.61, s (252) 5.43, s 

X=ON02 (262) 5.63, s (257) 5.56, s (258} 5.42, s 

X=ONO (263) 5.76, br s (259} 5.73, br s (260) 5.65, br s 

Fig. 3.51 Comparison of the characteristic 1 H n.m.r. resonances for the 

related compounds (261}, (251) and (252}; (262), (257} and 

(258); and (263), (259} and (260). 

seen in Fig. 3.51. In particular, the CH20NO resonance appeared as a 

broad singlet at 8 5.65. 

Monitoring the +20, -20, -50 and -78° reactions in dichloromethane 

with time showed that the adduct yield was highly temperature dependent. 

Table 3.10 gives an overview of product yields from the photochemical 

reaction between pentamethylbenzene (135) and TNM. At +20° adducts 

were not detected. However, at lower reaction temperatures adducts were 

observed and reached a maximum yield after 1 hat -78° (total 48%}. Even 

at -78°, the adducts decomposed during the reaction (total 48% after 1 h, 

total 16% after 3 h). At lower reaction temperatures the side-chain trinitro­

methyl compounds (246} and (247}, side-chain nitro (252} and the side­

chain nitrate (258) all decreased in yield (after 3h, total 84% at +20°, total 

42% at -78°). In contrast, dimer (249), side-chain nitro (251}, side-chain 

nitrate (257) and the side-chain nitrites (259) and (260} all increased in 
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Table 3.10 Overview of product yields from the photolysis of pentamethylbenzene (135) (0.42 mol L-1) and TNM 

(0.84 mol L -1) in dichloromethane. 

Yield(%) 

Conversion Total Total 

t (h) (%) (244) (245) adducts (246) (247) (248} (249} (251) (252) (253) (255) (256) (257) (258) (259} (260} aromaticsa 

At +20° 

0.5 30 - - - 23.5 5.2 trace 1.9 1.0 39.9 - 0.7 0.3 5.0 20.4 0.1 0.3 100 

1 49 - - - 17.3 3.7 trace 1.0 0.9 52.0 0.2 0.4 0.5 4.7 16.9 0.5 0.6 100 

2 78 - - - 11.9 3.6 0.1 1.1 1.9 40.3 0.6 0.1 0.1 6.3 28.9 0.7 2.0 100 

3 89 - - - 9.7 3.5 0.1 0.5 1.9 40.7 1.1 0.3 0.2 6.5 29.9 0.9 2.8 100 

At -20° 

0.5 56 8.4 - 8.4 10.4 2.4 - 1.7 1.3 22.9 - 0.4 trace 8.9 40.9 - - 91.6 

1 78 - - - 9.4 3.7 - 3.6 2.3 36.1 0.1 1.1 trace 8.6 29.6 0.4 3.6 100 

2 96 - - - 9.0 3.1 - 0.5 3.1 47.3 0.2 0.4 0.2 7.5 24.5 0.6 2.3 100 

3 99 - - - 8.8 3.2 - 0.1 2.7 45.7 0.2 0.3 0.2 7.6 27.3 0.6 1.6 100 

a The yields of compounds (250) and (254) could not be assessed individually from the 1 H n.m.r. spectra because of 

overlapping signals, but these are included within the column "Total aromatics". 
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Table 3.10 cont. 

Yield(%) 

Conversion Total Total 

t (h) (%) (244) (245) adducts (246) (247) (248) (249) (251) (252) (253) (255) (256) (257) {258) (259) (260) aromatics8 

At -50° 

0.5 26 25.2 1.4 26.6 6.7 1.1 - 9.4 6.0 14.9 0.4 0.4 0.4 12.9 14.5 0.7 0.5 73.4 

1 41 33.0 2.2 35.2 8.4 1.3 0.3 3.9 8.0 14.7 0.2 0.2 0.2 8.4 11.2 2.2 1.9 64.8 

2 69 2.1 - 2.1 9.2 4.5 0.2 11.3 10.8 23.6 0.6 0.2 0.1 6.7 15.2 4.9 6.3 97.9 

3 79 - - - 7.7 3.4 0.1 7.4 10.0 25.6 0.6 0.3 0.1 8.3 21.1 3.9 8.7 100 

At -78° 

0.5 36 31.8 1.8 33.6 6.1 1.6 0.3 14.6 4.3 9.5 - 0.3 trace 14.6 8.7 0.5 1.2 66.4 

1 48 46.2 2.1 48.3 5.1 1.6 0.3 7.0 5.3 8.9 trace 0.1 0.1 10.8 7.1 1.0 1.9 51.7 

2 64 37.2 2.2 39.4 6.0 1.9 0.4 4.3 6.1 13.5 trace 0.1 0.1 11.6 8.4 1.8 2.3 60.6 

3 76 14.9 0.8 15.7 6.2 3.2 0.4 8.3 6.6 18.5 0.2 trace 0.4 12.4 13.7 2.5 6.9 84.3 

a The yields of compounds {250) and (254) could not be assessed individually from the 1 H n.m.r. spectra because of 

overlapping signals, but these are included within the column 1'Total aromatics~~. 
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yield at lower reaction temperatures (after 3 h, total13% at +20°, total 37% 

3.22 The Photochemistry of Pentamethylbenzene (135) 

in Acetonitrile 

Photolyses of solutions of pentamethylbenzene (135) (0.42 mol L -1) 

and TNM (0.84 mol L-1) in acetonitrile were carried out at +20 and -20° as 

for reactions in dichloromethane, above. The results of these reactions, 

monitored with time, are summarized in Table 3.11. Interestingly, neither 

adducts (244) nor (245) were observed in photolysis reactions in 

acetonitrile. However, only adduct (244) was observed in the 

corresponding reactions in dichloromethane and then only at -20° after 

0.5 h (8%) (See Table 3.1 0, Section 3.21}. Unfortunately, comparisons 

with the -50 and -78° dichloromethane reactions were not possible due to 

the limited solubility of pentamethylbenzene (135) in the more polar 

acetonitrile at -50 and -78°. Similar to reactions in dichloromethane, the 

yields in acetonitrile of the side-chain trinitromethyl (247) and the side-chain 

nitrate (252} both decreased at lower reaction temperature (after 2 h, total 

82% at +20°, total 58% at -20°}. Also similar to the reactions in dichloro­

methane, dimer (249), the side-chain nitro (251) and the side-chain nitrates 

(257) and (258) increased in yield in acetonitrile at lower reaction 

temperature (after 2 h, total 9% at +20°, total 29% at -20°). Also notable in 
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Table 3.11 Overview of product yields from the photolysis of pentamethylbenzene (135) (0.42 mol L-1) 

and TNM (0.84 mol L-1) in acetonitrile. 

Yield(%) 

Conversion Total 

t (h) (%) (246) (247) (248) (249) (251) (252) (253) (255) (256) (257) (258) aromatics 

At +20° 

0.5 28 3.1 1.3 - 6.3 2.9 75.6 - 1.6 0.7 3.4 1.1 100 

1 54 2.7 1.1 - 2.8 3.1 78.7 0.1 1.2 0.4 3.3 1.3 100 

2 69 2.2 1.0 trace 1.4 3.1 81.4 0.1 0.9 0.5 3.1 1.7 100 

3 83 1.9 1.3 0.1 1.0 2.8 68.7 0.2 0.8 0.4 2.8 13.2 100 

At -20° 

1 21 5.0 1.5 - 14.8 3.7 46.9 - 0.7 1.2 7.0 10.4 100 

2 36 2.8 0.4 0.1 6.1 6.1 58.0 - 0.4 0.8 8.0 9.1 100 

3 45 2.4 0.2 0.1 3.4 7.2 67.4 0.3 0.2 0.3 7.9 5.0 100 

1\J 
00 
0 



acetonitrile was the absence of the side-chain nitrites (259) and (260) which 

were observed in reactions in dichloromethane. 

3.23 The Photochemistry of Pentamethylbenzene (135) 

in 1,1, 1 ,3,3,3-Hexafluoropropan-2-ol (HFP) 

The photolysis of the charge-transfer complex of pentamethyl­

benzene (135) (0.42 mol L-1) and TNM (0.84 molL -1) in HFP at +20° was a 

slow process, resulting in only a low conversion (c. 17%) after 3 h. After 

24 h (conversion 98%) the product was shown to consist of a mixture of 

predominantly 2,3,4,5,6-pentamethylnitrobenzene (250) (68%), 2,3,4,5-

tetramethyl-1-(2',2',2'-trinitroethyl)-benzene (247) (8%), 2,3,4,5-tetramethyl­

phenylnitromethane (252) (11 %), minor amounts of compounds (246), 

(249), (251), (253), (255) and (256) (total 8%) and unidentified aromatic 

compounds (total 5%). 

Me 
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MeiQ(CHO 
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Me 

(253) (255) 

Me "!A( Me 

Me~CH20H 
Me 

(256) 

3.24 The Photochemistry of Pentamethylbenzene (135) 

in Dichloromethane Containing Trifluoroacetic 

Acid (TFA) 

The photolysis of the charge-transfer complex of pentamethyl­

benzene (135) (0.42 mol L-1) I TNM (0.84 mol L-1) in dichloromethane 

containing TFA (0.71 mol L-1) at +20° for 3 h (conversion 26%) gave a 

product which was shown by 1 H n.m.r. spectral analysis (see Table 3.12) to 

be a mixture of the 2',2',2'-trinitroethyl compounds (246) (20%) and (247) 

(5%), nonamethyldiphenylmethanes (248) (9%) and (249) (31 %), 2,3,4,5-

tetramethylphenylnitromethane (252) (18%), minor amounts of compounds 

(251), (253), (255)-(258) (total 7%) and unidentified aromatic compounds 

(total 1 0%). 

While neither adduct (244) nor (245) were observed in the photolysis 

reaction in dichloromethane containing TFA, it was notable that there were 

significant amounts of the side-chain trinitromethyl compounds (246) and 

(247), reaching a maximum yield of 32% after 0.5 h. Similar to the reaction 

in dichloromethane without added acid (see Table 3.10, Section 3.21), 

compounds (246) and (247) decreased in yield as the reaction proceeded 

(total 32% after 0.5 h, total 24% after 3 h). The yield of dimers (248) and 

(249) in dichloromethane containing TFA greatly increased relative to a 

similar reaction without acid present (after 3 h, 40% with TFA, 1% without 

added acid). Correspondingly, there was a large decrease in the side-
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Table 3.12 Overview of product yields from the photolysis of pentamethylbenzene (135) (0.42 mol L-1) 

and TNM (0.84 mol L-1) in dichloromethane containing trifluoroacetic acid (0.71 mol L-1), at +20°. 

Yield(%) 

Conversion Total 

t (h) (%) {246) {247} {248} {249) {251} {252) {253} {255} {256} {257} {258} aromatics 

0.5 7 26.0 6.2 5.1 24.3 0.7 21.8 - 0.5 0.5 0.6 1.4 100 

1 11 24.0 5.7 8.0 28.4 0.6 21.6 - 0.7 0.8 0.7 1.2 100 

2 17 20.9 5.0 10.2 30.0 0.6 19.0 0.6 0.8 1.2 0.9 1.8 100 

3 26 19.6 4.7 8.9 31.4 0.6 18.3 1.4 1.0 1.1 1.2 1.7 100 

1\) 
co 
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chain nitrates (257) and (258) in dichloromethane containing TFA when 

compared with the reaction without added acid (after 3 h, total 3% with TFA, 

total 36% without added acid). Interestingly, the +20° reaction in dichloro­

methane with TFA was slower than the corresponding reaction without 

added acid (after 3 h, 26% conversion with TFA, 89% conversion without 

TFA). 
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3.25 Reactions of Pentamethylbenzene (135) with 

Nitrogen Dioxide in Dichloromethane 

A solution of pentamethylbenzene (135) (0.42 mol L-1) in dichloro­

methane saturated with •No2 was stored in the dark at +20°. A similar 

solution was irradiated with filtered light (Acut-ott<435 nm), also at +20°. 

Aliquots were removed at appropriate time intervals. After work-up, under 

reduced pressure at ~oo, the product compositions were determined by 1 H 

n.m.r. spectral analysis (See Table 3.13). The two product compositions 

were similar after reaction for 3 h, viz. 2,3,4,5-tetramethylphenylnitro­

methane (252) (c. 35%), the benzyl nitrates (257) (c. 13%) and (258) 

(c. 43%), small amounts of compounds (248), (249), (251), (253), (255) and 

(256) (total c. 7%), and unidentified aromatic compounds (total c. 2%). 

These results were comparable with those reported by Bosch and Kochi,31 

except that they also observed a low yield of the nuclear nitration product 

(250). 
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~~Me Me Me Me Me 
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Table 3.13 Overview of product yields from the reaction of pentamethylbenzene (135) (0.42 mol L-1) in 

dichloromethane saturated with nitrogen dioxide, at +20°. 

Yield(%) 

Conversion Total 

t (h) (%) (248) __ (g_49L ___ (?§1) (25~) (253) {2§§) (256L_____(?§?)_ _____ (2§?) aromatics 

In the dark 

0.5 

1 

2 

3 

31 

42 

47 

53 

trace 

0.1 

1.1 

1.2 

0.8 

0.9 

2.2 

2.6 

2.0 

2.2 

Irradiation with filtered light (Acut-ott<435 nm) 

0.5 38 - 1.0 1.9 

1 51 . 0.9 2.1 

2 68 trace 0.7 1.7 

3 76 0.1 0.6 1.9 

33.9 

34.6 

36.5 

38.6 

27.3 

28.4 

31.4 

31.9 

1.5 

1.6 

2.2 

2.3 

1.5 

1.6 

1.7 

2.0 

0.3 

0.4 

0.8 

1.2 

0.6 

0.7 

0.4 

0.7 

0.1 

0.2 

0.4 

0.6 

0.2 

0.3 

0.2 

0.3 

14.4 

13.7 

13.7 

13.6 

14.3 

14.2 

13.7 

13.0 

44.5 

43.9 

41.3 

39.1 

50.0 

50.3 

48.3 

47.5 

100 

100 

100 

100 

100 

100 

100 

100 
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3.26 Rearrangement of 1 ,2,3,4,6-Pentamethyl-r-3-

nitro-t-6-trinitromethylcyclohexa-1 ,4-diene (244) 

in (D2)-Dichloromethane 

A solution of adduct (244) in (D2)dichloromethane was stored in the 

dark at +22° and its 1 H n.m.r. spectrum monitored at appropriate time 

intervals. The rearrangement of the adduct (244) was rapid (c. 26% after 

2 min.), including the establishment of equilibrium between the epimeric 

adducts (244) and (245) during that period. The rearrangement was 

complete in 1 h (see Fig. 3.52) and gave 2,3,4,6-tetramethyl-1-(2' ,2' ,2'­

trinitroethyl)-benzene (246) (11 %), 2,3,4,5-tetramethylphenylnitromethane 

(252) (48%), 2,3,4,5-tetramethylbenzyl nitrate (258) (9%), 2,3,4,5-tetra­

methylbenzyl nitrite (260) (26%) and unidentified aromatics (total 6%). 
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Fig. 3.52 Kinetics of the rearrangement of nitro/trinitromethyl adduct (244) 

in (D2)dichloromethane, at +22°. 

3.27 Overview of the Photonitration of Pentamethyl­

benzene (135) 

Similar to the photolysis reaction of 1 ,2,4,5-tetramethylbenzene (134) 

in TNM (see Section 3.19), the photochemical reaction of pentamethyl­

benzene (135) with TNM led to adduct formation apparently exclusively by 

Me 

Fig. 3.53 Adducts identified corresponded only to attack of (02N)3C- at C1 

of the pentamethylbenzene radical cation. 
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attack of (02N)3C- at C1 on the pentamethylbenzene radical cation, as 

observed in Fig. 3.53. No adducts were observed arising via alternative 

attack of (02N)3C- at either C2 or C3 or C6 on the radical cation of penta­

methylbenzene. This was probably due to the instability of the delocalized 

carbon radicals (148), (149) and (147), respectively. However, the 

Me Me Me Me 

... C(N02b 
Me '1- Me ... Me Me ~ 

Me Me~ C(N02b 
Me 

Me 

(148) (149) (147) 

absence of adducts containing the trinitromethyl function at either C2 or C3 

or C6 could also be due to the resulting adducts being highly unstable due 

to severe steric hindrance from the two j3-methyl interactions with the 

trinitromethyl group. If formed, such adducts might decompose rapidly to 

further products. 

The nitro/trinitromethyl adducts (244) and (245) formed in the 

photolysis of the charge-transfer complex of pentamethylbenzene (135) and 

TNM arose by initial attack of (02N)3C- ipso to one of the flanking methyl 

groups at C1 in the pentamethylbenzene radical cation to give the 

delocalized carbon radical (146), as outlined in Scheme 3.35. Radical 

coupling of the delocalized carbon radical (146) with •No2 at C4 with C-N 

(146) (244) and (245) 

Scheme 3.35 
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bond formation would then give the nitro/trinitromethyl adducts (244) and 

(245). Adducts (244) and (245) were notably unstable, being undetectable 

in photolysis reactions in dichloromethane solution of the charge-transfer 

complex of pentamethylbenzene (135) and TNM at +20°, transiently 

detectable at -20°, and still clearly labile during photolyses even at -50 or 

-78°. These observations indicated that the pentamethyl adducts (244) and 

(245) were much more labile than the tetramethyl adducts (216) and (217) 

seen in the 1 ,2,4,5-tetramethylbenzene (134) series (See Section 3.11 ). 

The nitro/trinitromethyl adduct (244) rearranged rapidly in (D2)di­

chloromethane at +22° to give 2,3,4,6-tetramethyl-1-(2' ,2' ,2'-trinitroethyl)­

benzene (246), 2,3,4,5-tetramethylphenylnitromethane (252), 2,3,4,5-tetra­

methylbenzyl nitrate (258) and 2,3,4,5-tetramethylbenzyl nitrite (260). 

These were all products isolated from the photolysis reactions of the 

charge-transfer complex of pentamethylbenzene (135) and TNM. It 

appears likely that on dissolution in (D2)dichloromethane the trans-adduct 

(244) epimerized to give an equilibrium mixture with the cis-adduct (245) 

within 2 min. Subsequently, this equilibrium mixture of adducts (244) and 

(245) rearranged to yield the products, above. The epimerization of (244) 

in (D2)dichloromethane was much more rapid than a similar epimerization 

seen for nitro/trinitromethyl adducts (216) and (217) in the 1 ,2,4,5-tetra­

methylbenzene (134) series (See Sections 3.15 and 3.16). A possible 

mechanism for this rearrangement is presented in Scheme 3.36 and 

Me Me 

(244) (264) 

Scheme 3.36 

Me 

Me 

(245) 

Me 
'u'C(N02)3 

Me 
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presumably involves the intermediate nitrocyclohexadienyl cation/trinitro­

methanide ion pair (264). 

What are the implications of this marked lability of nitro/trinitromethyl 

ad ducts (244) and (245) for the mode of formation of the non-adduct 

products from the photolysis of the charge-transfer complex of pentamethyl­

benzene (135) and TNM? This question is addressed by inspecting the 

yields in the photolysis reactions at -50 and -78° in dichloromethane, after 

1 h and 3 h, of adducts (244) and (245) and the non-adduct products (246), 

(252), (258) and (260) (See Table 3.1 0, Section 3.21 ). These non-adduct 

products appear to have formed largely, if not exclusively, by rearrange­

ment of nitro/trinitromethyl adducts (244) and (245). 

The intermediate nitrocyclohexadienyl cation/trinitromethanide ion 

pair (264) affords a possible route to the aromatic side-chain compounds 

(252), (253), (255), (258) and (260), all proceeding via the 2,4,5-trimethyl­

benzyl radical (266), as illustrated in Scheme 3.37. Initially, loss of 

(244) and (245) (264) 

Scheme 3.37 

(265) 

!homolysis 

of C-N02 
bond 

• Me"QCH, 

Me~Me 
Me 

(266) 
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nitroform from the intermediate nitrocyclohexadienyl cation/trinitro­

methanide ion pair (264) would occur by abstraction of an acidic proton 

from the methyl group by (02N)3C-, forming diene (265). This would be 

followed by homolytic cleavage of the C-N02 bond in diene (265) to give 

radical (266). Subsequent coupling of •No2 with the resulting 2,3,4,5-tetra­

methylbenzyl radical (266} with C-N bond formation would lead to the 

formation of the side-chain nitro compound (252), as seen in Scheme 3.38 . 

• 
Me!UCH, 

Me~ Me 
Me 

(266) 

1·No2 
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Me¥CH2N02 

Me Me 
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Me¥CH20NO Me¥CH20H o hydrolysis o 
Me Me Me Me 

Me Me 

(260) ~ (255) 

1 

oxidation 

oxidation 1 oxidation 

Me¥CH,ONO, 

Me Me 

Me¥CHO 

Me Me 

Me Me 

(258) (253) 

Scheme 3.38 

Alternatively, coupling of •No2 could occur with C-0 bond formation and 

would give the side-chain nitrite (260). The side-chain nitrite (260) can 

then undergo either hydrolysis to yield the side-chain alcohol (255) or 

oxidation to yield the side-chain nitrate (258). The oxidation of the nitrite 

(260} to produce the nitrate (258) was shown to be a rapid reaction.31 

Formation of the benzaldehyde (253) could arise either by oxidation of the 

nitrite (260} or by oxidation of the alcohol (255). 
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(244) and (245) (267) 

Scheme 3.39 

(268) 

j 
Me~Me 

Me~CH2C(N02la 
Me 

(246) 

The formation of the side-chain trinitromethyl aromatic (246) could 

occur via loss of nitrous acid from the nitro/trinitromethyl adducts (244) and 

(245) to form the trinitromethyl diene (267), as depicted in Scheme 3.39. 

Subsequent rearrangement via the ion pair (268) would give the side-chain 

trinitromethyl compound (246). 

Possible modes of formation for dimers (248) and (249) are shown in 

Scheme 3.40 and follow the oxidative dimerization proposed by Eberson 

et a/. 32 The radical cation of pentamethylbenzene can undergo 

a-deprotonation to yield the 2,3,4,5-tetramethylbenzyl radical (266). 

Subsequently, loss of an electron from radical (266) would produce the 

2,3,4,5-trimethylbenzyl cation (269). Cation (269) can then couple with 

pentamethylbenzene (135) and, after loss of a proton, would form dimer 

(249). Alternately, loss of a proton at 2-Me would produce the 2,3,4,6-tetra­

methylbenzyl radical (270). Loss of an electron from radical (270) gives the 

2,3,4,6-tetramethylbenzyl cation (271) which, after coupling with penta-
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methylbenzene (135) and subsequent loss of a proton, would form dimer 

(248). 

Since the 2,3,4,5-tetramethylbenzyl derivatives (246), (252), (258) 

and (260) appear to be formed by rearrangement of adducts (244) and 

(245) during the photolysis of the charge-transfer complex of pentamethyl­

benzene (135) and TNM, how do the 2,3,4,6-tetramethylbenzyl derivatives 

(24 7), (251), (257) and (259) form? Analogous rearrangements of the 

1 ,2,3,4,6-pentamethyl-3-nitro-6-trinitromethylcyclohexa-1 ,4-dienes (272) 

and (273) is an attractive postulate. The steric compression in the region of 
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Me 

(272) and (273) 

the trinitromethyl group would certainly be expected to render the nitro/tri­

nitromethyl adducts (172) and (173) highly susceptible to rearrangement, 

which would be initiated by cleavage of the C-C(N02)3 bond. 

Adducts (272) and (273) would be formed via initial attack of 

(02N)3C· at C2 on the pentamethylbenzene radical cation, as shown in 

Scheme 3.41. Subsequent radical coupling of •No2 at C4 on the resulting 

6 l·+ 5 
Me~Me (O N) c- Me 4 ,.~... Me "NO 

0 1 2 3 ~ 6 2 

4 at C2 3 ~-- • ~ C(N0 2)3 at C4 
Me 3 2 Me Me 2 ' 1 ~Me 

~2MN ~Me 
~ ~ C(N02b 

Me ~ 
Me 

Me Me Me 
(148) (272) and (273) 

Scheme 3.41 

delocalized carbon radical (148} with C-N bond formation would give 

adducts (272) and (273). Similarly to adducts (244) and (245), the 

proposed adducts (272) and (273) could undergo epimerization via the 

intermediate nitrocyclohexadienyl cation/trinitromethyl ion pair (274). 

However, subsequent loss of nitroform from the ion pair (274) appeared to 

be favoured, leading to the side-chain compounds (251), (256), (257} and 

(259) being formed, as summarized in Schemes 3.42 and 3.43. Initially, 

loss of nitroform from the intermediate nitrocyclohexadienyl cation/trinitro­

methanide ion pair (274) would occur by abstraction of an acidic proton 
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from the methyl group by (02N)3c-, forming diene (275). This would be 

followed by homolytic cleavage of the C-N02 bond in diene (275) to give 

radical (270), as represented in Scheme 3.42. Subsequent coupling of 

•No2 with the resulting 2,3,4,6-tetramethylbenzyl radical (270) with C-N 

bond formation would lead to the formation of the side-chain nitro 

compound (251), as seen in Scheme 3.43. Alternately, coupling of •No2 

could occur with C-0 bond formation to give the side-chain nitrite (259). 

The side-chain nitrite (259) can then undergo either hydrolysis to yield the 

side-chain alcohol (256) or oxidation to yield the side-chain nitrate (257). 

The oxidation of the nitrite (259) to produce the nitrate (257) was shown to 

be a rapid reaction. 31 

The side-chain trinitromethyl aromatic (247) could be formed via loss 

of nitrous acid from the nitro/trinitromethyl adducts (272) and (273) to form 

the trinitromethyl diene (276), as depicted in Scheme 3.44. Subsequent 

rearrangement via the ion pair (277) would give the side-chain trinitro-
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methyl compound (247). 

The photolysis of the charge-transfer complex of pentamethyl­

benzene (135) and TNM either in HFP or in dichloromethane containing 

TFA (0.71 mol L·1) was slow. Both reactions resulted in low conversion of 

substrate into products after the normal reaction time of 3 h (17% in HFP, 

26% in TFA) (See Sections 3.23 and 3.24, respectively). Under these 

reaction conditions, the reaction of (02N)3C· with the radical cation of 

pentamethylbenzene would be expected to be at least partially suppressed 

by the solvent, HFP,35-40 or by protonation by TFA.33 

The formation of a significant yield of 2,3,4,5,6-pentamethylnitro­

benzene (250) (68%) was notable in the photolysis reaction in HFP. This 

was analogous to the formation of 2,3,5,6-tetramethylnitrobenzene (220) on 

photolysis of the charge-transfer complex of 1 ,2,4,5-tetramethylbenzene 

(134) and TNM in HFP (See Section 3.12). The formation of compound 

(250) was seen as occurring via HFP-promoted nitrosation of pentamethyl­

benzene (135), as presented in Scheme 3.45 and discussed earlier in 

Section 3.19. Subsequent oxidation of the nitroso compound (278) would 

lead to formation of the ring nitro compound (250). 

NO 

~:¢:~ ~¥~ No+ ~*Me oxidation 
- H+ 

Me Me Me Me Me. Me 

Me Me Me 

(135) (278) (250) 

Scheme 3.45 

The reactions either in the dark or on irradiation with filtered light 

(A-cut-ott<435 nm) of pentamethylbenzene (135) with excess •No2 in 

dichloromethane at +20° gave essentially the same product composition. 
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The significant products were 2,3,4,5-tetramethylphenylnitromethane (252) 

(c. 35%) and two isomeric benzyl nitrates (257) and (258) (total c. 56%) 

(See Table 3.13, Section 3.25). It appears that both the "light" and "dark" 

(252) 

Me!A(Me 

Me~CH,ONO, 
Me 

(257) 

Me~CH20N02 

Me~ Me 

Me 

(258) 

conditions in the reactions of pentamethylbenzene (135) with •No2 in 

dichloromethane resulted in thermal nitration. The product compositions 

were generally in agreement with product ratios for thermal nitration of 

pentamethylbenzene (135) with •No2 in dichloromethane in the dark 

reported by Bosch and Kochi.31 

In conclusion, in the photolysis of pentamethylbenzene (135) and 

TNM, radical (146) appeared to be the most stable delocalized carbon 

radical. Direct evidence for the attachment of the trinitromethyl function at 

C2 could not be obtained. However, the 2,3,4,6-tetramethylbenzyl 

compounds and the trinitromethyl compound (247) were probably formed 

via rearrangement of unstable adducts containing the trinitromethyl function 

at C2. These adducts would have formed via the less stable delocalized 

carbon radical (148). No products were seen as arising from either radical 

(147) or radical (149), presumably due to their instability. 
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3.28 The Photolysis of Hexamethylbenzene (136) 

General procedure for the photonitration of hexamethylbenzene (136) with 

TNM. 

A solution of hexamethylbenzene (136) (500 mg, 0.39 mol L-1) and 

TNM (0.78 mol L-1) in dichloromethane (at +20 or -20°) or acetonitrile (at 

+20°) was irradiated with filtered light (Acut-ott<435 nm) and small samples 

were withdrawn for analysis at suitable intervals. The work-up procedure, 

involving evaporation of solvent and TNM, was conducted at :::;oo. The 

crude product mixtures were stored at -78° and were analysed by 1 H n.m.r. 

spectroscopy as soon as possible (For complete experimental details see 

Chapter 5, Section 5.3.4). 

3.29 The Photochemistry of Hexamethylbenzene (136) 

in Dichloromethane 

3.29.1 Photochemistry in dichloromethane at -78° and the identification of 

aromatic products (279)-(287). 

A solution of hexamethylbenzene (136) (0.39 mol L-1) and TNM (0.78 

mol L -1) in dichloromethane was irradiated at -20° until the blood red colour 

of the charge-transfer band was bleached. The composition of the reaction 

mixture was monitored by withdrawing samples for 1 H n.m.r. spectral 

analysis. After work-up, the final solution (after 3 h) contained pentamethyl­

(2',2',2'-trinitroethyl)-benzene (279) (1 0%), pentamethylbenzyl nitrite (280) 

(6%), pentamethylbenzyl nitrate (281) (42%), pentamethylphenylnitro­

methane (282) (40%), and small amounts of compounds (283)-(287). The 

components of this mixture were separated by h.p.l.c. on a cyanopropyl 

column using hexane/dichloromethane mixtures as the eluting solvents. 
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The first compound eluted was identified as pentamethyl-(2',2',2'-tri­

nitroethyl)-benzene (279) and the structure was confirmed by comparing its 

spectroscopic data with literature data. 9 

The second compound eluted was identified as pentamethylbenzyl 

nitrite (280) and the structure was confirmed by comparing its spectroscopic 

data with literature data.9 

The third compound eluted was identified as pentamethylbenzyl 

nitrate (281) and the structure was confirmed by comparing its spectro­

scopic data with literature data.9 
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The fourth compound eluted was identified as pentamethylphenyl­

nitromethane (282) and the structure was confirmed by comparing its 

spectroscopic data with literature data.44 

The fifth compound eluted was identified as di-(pentamethylbenzyl) 

ether (283) and the structure was confirmed by comparing its spectroscopic 

data with literature data.45 

The sixth compound eluted was identified as 3,4,5,6-tetramethyl-2-

nitromethylbenzyl nitrate (284). Compound (284) gave a satisfactory 

parent molecular ion in the mass spectrum, indicating the molecular formula 

C12H15N20s. N.O.e. experiments confirmed the assignments of the 

chemical shifts for the protons. In particular, irradiation at o 2.36 (6-Me) 

gave an enhancement at o 5.70 (CH20N02), while irradiation at o 5.72 

(CH2N02) gave an enhancement at o 2.34 (3-Me), as observed in Fig. 3.54. 

Me 

Fig. 3.54 Enhancements (%)from selected n.O.e. experiments for 

compound (284). 

The assignment of the characteristic 1 H and 13C n.m.r. resonances for the 

-CH2X functions (X=ON02 and N02) were based on comparison with the 

known9,44 monosubstituted compounds (281) and (282), as presented in 

Fig. 3.55. HMQC and HMBC experiments confirmed the assignment of the 

13C n.m.r. resonances. Specifically, the 13C n.m.r. resonance due to the 

CH20N02 function appeared at o 70.1, while the 13C n.m.r. resonance due 
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Me*CH20N~2 

Me Me 

Me 

Me*CH2N02 

Me Me 

Me Me 

(281) (282) 

5.63, s 

5.67, s 

71.5 

74.8 

CH20N02 

Me*CH2N02 

Me Me 

Me 

(284) 

5.70, s 

5.72, s 

70.1 

74.1 

Fig. 3.55 Comparison of the characteristic 1 H and 13C n.m.r. resonances 

(in ppm) for compounds (281), (282) and (284). 

to CH2N02 function appeared at 8 74.1. Furthermore, the presence of very 

strong infrared absorptions at 1628, 1279 and 858 cm·1 provided evidence 

for the -ON02 function, while the absorption at 1541 cm·1 provided 

evidence for the -N02 function. 

The seventh compound eluted was identified as 1 ,2-bis(nitromethyl)-

3,4,5,6-tetramethylbenzene (285) and the structure was confirmed by 

comparing its spectroscopic data with literature data.9 

The eighth compound eluted was identified as 3,4,5,6-tetramethyl-2-

nitromethylbenzyl alcohol (286). Compound (286) gave a satisfactory 

parent molecular ion in the mass spectrum, indicating the molecular formula 

C12H17NOs. N.O.e. experiments confirmed the assignments of the 

chemical shifts for the protons. Specifically, irradiation at 8 5.80 (CH2N02) 

gave enhancements at 8 2.30 (3-Me) and at 8 4.84 (CH20H), while 
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Fig. 3.56 Enhancements(%) from selected n.O.e. experiments for 

compound (286). 

irradiation at o 2.39 (6-Me) gave an enhancement at o 4.84 (CH20H), as 

illustrated in Fig. 3.56. The assignments of the characteristic 1 H and 13C 

n.m.r. resonances for the -CH2X functions (X=OH and N02) were based on 

comparison with the known9,44 monosubstituted compounds (287) and 

Me*CH
2

0HMe 

Me Me 
Me 

(287) 

4.78, s 

60.0 

Me 

Me*CH2N02 

Me Me 

Me 

(282) 

5.67, s 

74.8 

CH20H 

Me*CH2N02 

Me Me 

Me 

(286) 

4.84, s 

5.80, s 

59.8 

74.5 

Fig. 3.57 Comparison of the characteristic 1H and 13C n.m.r. resonances 

(in ppm) for compounds (287), (282) and (286). 
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(282), respectively, as presented in Fig. 3.57. HMQC and HMBC 

experiments confirmed the assignment of the 13C n.m.r. resonances. In 

particular, the 13C n.m.r. resonance due to the CH20H function appeared at 

8 59.8, while the 13C n.m.r. resonance due to CH2N02 function appeared at 

8 74.5. Furthermore, the presence of a broad infrared absorption at 3383 

cm-1 provided evidence for the -OH function, while a very strong absorption 

at 1551 cm-1 provided evidence for the -N02 function. 

The final compound eluted from the h.p.l.c. column was identified as 

pentamethylbenzyl alcohol (287) and the structure was confirmed by 

comparing its spectroscopic data with literature data. 9 

3.29.2 Photochemistry in dich/oromethane at +20° and the identification of 

pentamethylbenzaldehyde (288). 

Photolysis of the charge-transfer complex of hexamethylbenzene 

(136) (0.39 mol L-1) and TNM (0.78 mol L-1) in dichloromethane at +20°, for 

5 h gave a product which was shown by 1 H n.m.r. spectral analysis to be a 

mixture of the aromatic compounds (279)-(288). Chromatography of this 

mixture on a silica gel Chromatotron plate gave a small amount of 

compound (288) in a fraction eluted immediately after the di-(pentamethyl­

benzyl) ether (283). 

Compound (288) was identified as pentamethylbenzaldehyde (288) 

and the structure was confirmed by comparing its spectroscopic data with 

literature data.42 

The change in composition of the photochemical reaction between 

hexamethylbenzene (136) and TNM was monitored with time at +20 and 

-20° in dichloromethane. An overview of product yields in dichloromethane 

is presented in Table 3.14. Most notable was the absence of any adducts 

in dichloromethane either at +20 or -20°, unlike all of the other substrates 

studied and discussed earlier in this thesis. However, the side-chain 
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trinitromethyl compound (279) was formed, reaching a maximum yield of 

19% after 1 h at +20°. At lower temperature, the yields of the side-chain 

trinitromethyl (279) and the side-chain nitrite (280) decreased (after 5 h, 

~~~~2b 
Me Me 

~~N~ 
Me Me 

~~N~, 
Me Me 

Me Me Me 

(279) (280) (281) 

Me 

Me Me 

Me~o~ 
Me Me CH20N02 

CH2 ~~CH,NO, I 
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Me Me 
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Me Me 
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CH2N02 CH20H 

~~CH,NO, ~~CH,NO, 
Me Me Me Me 

Me Me 

(285) (286) 

Me~H~ 
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~*Me 
Me Me Me Me 

Me Me 
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Table 3.14 Overview of product yields from the reaction of hexamethylbenzene (136) (0.39 mol L-1) and TNM 

(0.78 mol L-1) in dichloromethane. 

Yield(%) 

t (h) (279) (280) (281) (282) (283) (284) (285) (286) (287) (288) 

At +20° 

1 18.6 3.3 33.4 32.0 - - trace - - trace 

3 17.1 9.7 34.3 32.7 - 0.4 0.9 - - 0.8 

5 15.7 8.1 31.3 32.1 trace 1.6 2.5 trace trace 1.9 

At -20° a 

1 12.6 1.4 25.0 51.7 - trace 0.1 - - -

3 12.4 4.5 25.0 56.4 - 0.2 0.8 - - -

5 10.4 5.7 37.0 44.5 trace 0.4 0.9 - - -

8 9.8 5.9 41.8 39.6 0.2 0.8 1.5 trace trace -

a Some substrate remained undissolved throughout the reaction. 

Total 

aromatics 

12.7 

4.1 

6.8 

9.2 

0.7 

1.1 

0.4 

w 
0 
--.J 



total 24% at +20°, total16% at -20°). In contrast, the side-chain nitro 

compound (282) increased in yield at the lower reaction temperature (after 

5 h, 32% at +20°, 45% at -20°). Aldehyde (288), which was present at +20° 

(7% after 5 h), was not observed at -20°. 

3.30 The Photochemistry of Hexamethylbenzene (136) 

in Acetonitrile 

Photochemistry in acetonitrile at +20° and the identification of aromatic 

products (228), (289) and (290). 

A solution of hexamethylbenzene (136) (0.39 mol L-1) and TNM (0.78 

mol L-1) in acetonitrile was irradiated at +20° for 8 h and gave a mixture of 

pentamethyl-(2' ,2' ,2'-trinitroethyl)-benzene (279) (9% ), pentamethylbenzyl 

Me*CH2C(~~2b 

Me Me 

Me 
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Me*CH2NO~ 
Me Q Me 
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Me*Me Me 
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Me 
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Me 
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CH20N02 

Me*CH2N02 

Me Me 
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CH2N02 CH20H 
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Me Me Me Me Me Me 

Me Me Me 

(285) (286) (287) 

~0 H 
I 

~*M~Me 
Me Me 

~~C~Me 
Me Me 

~*~OMe 
Me Me 

Me Me Me 

(228) (289) (290) 

nitrate (281) (21 %), pentamethylphenylnitromethane (282) (40%), 1 ,2-bis­

(nitromethyl)-3,4,5,6-tetramethylbenzene (285) (1 0%), and small amounts 

of compounds (228), (280), (283), (284), (286), (287), (289) and (290). This 

mixture was separated into its components by h.p.l.c. and gave the 

additional compounds (228), (289) and (290) in elution order. 

Compound (228) was identified as N-nitroso-N-(pentamethylbenzyl)­

acetamide (228) on the basis of a comparison of its spectroscopic data with 

the known46 parent compound N-(pentamethylbenzyl)-acetamide (290), 

below. Compound (228) gave a satisfactory parent molecular ion in the 

mass spectrum, indicating the molecular formula C14H20N20 2. The mass 

spectrum also included an M+-NO fragment. N.O.e. experiments confirmed 

the assignments of the chemical shifts for the protons. In particular, 

irradiation at o 2.73 (1-Me) gave an enhancement at 2.17 (2'-Me and 

6'-Me), while irradiation at o 4.99 (CH2) gave an enhancement at o 2.17 

(2'-Me and 6'-Me), as depicted in Fig. 3.58. HMQC and HMBC 

experiments confirmed the assignments of the 13C n.m.r. resonances and a 

comparison of the characteristic 1 H and 13C n.m.r. data and infrared 
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Fig. 3.58 Enhancements (%)from selected n.O.e. experiments for 

compound (228). 
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Fig. 3.59 Comparison of the characteristic 1H and 13C n.m.r. resonances 

(in ppm) and infrared absorptions (in cm*1) for compounds (290) 

and (228). 
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absorptions between compounds (290) and (228) is given in Fig. 3.59. 

Specifically, 13C n.m.r. resonances for the amide carbonyl carbon 

appeared at o 174.5, the CH3-CO function appeared at o 20.3, and the CH2 

function appeared at o 39.7. Furthermore, the presence of the N-nitroso­

disubstituted amide functionality followed from its infrared spectrum, which 

lacked the absorptions at 3304 and 1643 cm-1 found for the N-mono­

substituted amide (290), but exhibited a very strong absorption at 1719 

cm-1. Such a shift from 1643 to 1719 cm-1 is characteristic for the carbonyl 

stretching frequency on the introduction of an electron-withdrawing 

substituent into a N-monosubstituted amide.30 

Compound (289) was identified as pentamethylbenzyl acetate (289) 

and the structure was confirmed by comparing its spectroscopic data with 

literature data.47 

Compound (290) was identified as N-(pentamethylbenzyl)-acetamide 

(290) and the structure was also confirmed by comparing its spectroscopic 

data with literature data.46 

The change in composition of the photolysis reaction of hexamethyl­

benzene (136) I TNM in acetonitrile was monitored with time and an 

overview of product yields is shown in Table 3.15. Reactions were only 

possible at +20° due to the limited solubility of hexamethylbenzene (136) in 

the more polar acetonitrile. Formation of the related acetamides (228) and 

(290), and the acetate (289) was one notable difference from the 

corresponding reaction in dichloromethane (see Table 3.14, Section 3.29). 

While the yield of N-(pentamethylbenzyl)-acetamide (290) remained at 

c. 4% throughout the reaction, the N-nitroso acetamide (228) increased in 

yield (trace after 1 h, 3% after 8h). The yields of the side-chain trinitro­

methyl (279) and the side-chain nitrite (280) were both lower in acetonitrile 

than in dichloromethane (after 5 h, total 9% in acetonitrile, total 24% in 

dichloromethane). In acetonitrile, the yields of the side-chain nitrite (281) 
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Table 3.15 Overview of product yields from the photolysis of hexamethylbenzene (136) (0.39 mol L-1) 

and TNM (0.78 mol L-1) in acetonitrile, at +20°.a 

Yield(%) 

t (h) (279) (280) (281) (282) (283) (284) (285) (286) (287) (228) ___ (289) (290) 

1 9.1 trace 30.6 52.9 0.4 0.8 0.8 0.5 - trace - 3.8 

3 6.5 0.4 28.1 51.4 0.3 1.0 3.4 0.2 - 0.5 trace 4.0 

5 8.6 0.1 28.0 47.0 0.7 1.8 4.0 0.9 - 0.9 0.1 3.3 

8 8.7 1.0 20.9 40.4 0.5 3.0 10.4 0.7 trace 2.7 0.4 4.0 

a Some substrate remained undissolved until a reaction time of 7 h. 

Unknown 

aromatics 

1.1 

4.2 

4.6 

7.4 

VJ _.. 
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and the side-chain nitro (282) decreased as the reaction proceeded (total 

84% after 1 h, total 61% after 8 h), with a corresponding increase in the 

yields of the disubstituted side-chain compounds (284) and (285) (total 2% 
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after 1 h, total 13% after 8 h). In acetonitrile the yield of the side-chain nitro 

(282) decreased slowly in the first 5 h (53% after 1 h, 47% after 5 h), while 

in dichloromethane it remained at c. 32% throughout the reaction. 

3.31 The Photochemistry of Hexamethylbenzene (136) 

in 1,1, 1 ,3,3,3-Hexafluoropropan-2-ol (HFP) 

The photolysis of the charge-transfer complex of hexamethylbenzene 

(136) (0.39 mol L-1) and TNM (0.78 mol L-1) in HFP at +20°, as above, was 

a slow process. The product compositions were determined by 1 H n.m.r. 

spectral analysis and are given in Table 3.16. After 24 h the product 

consisted of a mixture of predominantly 2,3,4,5,6-pentamethyl-1-(2',2',2'-tri­

nitroethyl)-benzene (279) (67%), and 2,3,4,5,6-pentamethylphenylnitro­

methane (282) (11 %), with minor amounts of compounds (283) (3%) and 

Table 3.16 Overview of product yields from the photolysis of hexamethyl­

benzene (136) (0.39 mol L-1) and TNM (0.78 mol L-1) in 

1,1, 1 ,3,3,3-hexafluoropropan-2-ol, at +20°.a 

Yield(%) 

Unidentified 

t (h) (279) (281) (282) (283) (287) aromatics 

1 47.6 11.4 21.6 8.7 10.7 

3 49.9 7.9 20.6 8.3 13.3 

5 51.8 6.2 19.8 7.5 14.7 

8 55.9 5.5 19.7 trace 5.9 13.0 

24 67.0 11.4 2.7 4.8 14.1 

a Some substrate remained undissolved for the first 1 h of the reaction. 
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2,3,4,5,6-pentamethylbenzyl alcohol (287) (5%), and unidentified aromatic 

compounds (total 14%). 

3.32 Reactions of Hexamethylbenzene (136) with 

Nitrogen Dioxide in Dichloromethane 

A solution of hexamethylbenzene (136) (0.39 mol L -1) in dichloro-

methane saturated with •No2 was stored in the dark at +20°. A similar 
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Table 3.17 Overview of product yields from the reaction of hexamethylbenzene (136) (0.39 mol L-1) in 

dichloromethane saturated with nitrogen dioxide, at +20°. 

Yield(%) 

Unidentified 

t (h) (280) (281) (282) (283) . ____ (?EJ4) (285} (2~ (287) (288) aromatics 

In the dark 

1 3.9 53.9 41.0 - - 0.1 - 0.6 0.3 0.2 

3 4.9 53.3 40.2 trace trace 0.1 - 0.6 0.6 0.3 

5 6.2 51.3 40.3 0.1 0.1 0.1 - 0.9 0.6 0.4 

8 6.7 50.0 40.4 0.1 0.1 0.1 - 1.6 0.6 0.4 

Irradiation with filtered light (Acut-ott<435 nm) 

1 2.9 57.8 38.0 trace trace 0.1 - 0.4 0.6 0.2 

3 3.1 58.1 36.2 0.2 0.1 0.2 - 0.8 0.8 0.5 

5 3.3 57.9 35.0 0.5 0.2 0.3 - 0.8 1.6 0.4 

8 3.4 56.4 35.3 0.4 0.5 1.0 trace trace 2.0 1.0 

U) ...... 
Q) 



solution was irradiated with filtered light (Acut-ott<435 nm) also at +20°. At 

appropriate time intervals, aliquots were removed and after work-up, under 

reduced pressure at :s;oo, the product compositions were determined by 1 H 

n.m.r. spectral analysis (See Table 3.17). After reaction for 8 h, the two 

product compositions were similar, viz. 2,3,4,5,6-pentamethylbenzyl nitrate 

(281) (c. 53%), 2,3,4,5,6-pentamethylphenylnitromethane (282) (c. 38%) 

and a small amount of 2,3,4,5,6-pentamethylbenzyl nitrite (280) (c. 6%). 

These results were comparable with those reported by Bosch and Kochi,31 

except they observed a higher yield of the side-chain nitro (282) than the 

side-chain nitrite (281). 

3.33 Reactions of Hexamethylbenzene (136) with 

Nitrogen Dioxide in Acetonitrile 

A solution of hexamethylbenzene (136) (0.39 mol L-1) in acetonitrile 

saturated with •No2 was stored in the dark at +20°. A similar solution was 

irradiated with filtered light (Acut-ott<435 nm) also at +20°. Reaction was 
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complete in 1 h, and after work-up the product composition was determined 

by 1 H n.m.r. spectral analysis. The products formed for the two reactions 

were shown to be similar, viz. 2,3,4,5,6-pentamethylbenzyl nitrate (281) 

(c. 16%), 2,3,4,5,6-pentamethylphenylnitromethane (282) (63%), 1 ,2-bis­

(nitromethyl)-3,4,5,6-tetramethylbenzene (285) (c. 1 0%), and N-nitroso 

acetamide (228) (c. 3%). 

3.34 Overview of the Photonitration of Hexamethyl­

benzene (136) 

The study of the photolysis of the charge-transfer complex of hexa­

methylbenzene (136) and TNM was hampered considerably by the low 

solubility of hexamethylbenzene (136), particularly below ambient 

temperature. Consequently, no serious attempt could be made at detecting 

labile adducts in the reaction mixtures. The reactions which were possible 

in dichloromethane or acetonitrile produced substantial amounts of penta­

methylbenzyl nitrate (281) and pentamethylphenylnitromethane (282), with 

lesser amounts of pentamethyl-(2',2',2'-trinitroethyl)-benzene (279) (See 

Tables 3.14 and 3.15, Sections 3.29 and 3.30, respectively). In HFP, 

however, the major product of a slow reaction was pentamethyl-(2',2',2'­

trinitroethyl)-benzene (279) (67% after 24 h) (See Table 3.16, Section 

3.31). 

As was discussed for the photochemical reactions of the charge­

transfer complex of pentamethylbenzene (135) with TNM (see Section 

3.27), the reactions of hexamethylbenzene (136) may also have proceeded 

via labile nitro/trinitromethyl adducts. Attack of (02N)3C- on the hexa­

methylbenzene radical cation would lead to the formation of the sterically 

compressed carbon radical (150}, as seen in Scheme 3.46. Subsequent 
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{150) 

Scheme 3.46 

"N02 

atC4 

{291) and {292) 

coupling of •No2 at C4 on radical (150) with C-N bond formation would lead 

to the formation of adducts (291) and (292). 

A progressive increase in lability of the nitro/trinitromethyl adducts 

with increasing methyl substitution was evident in the tetramethyl adducts 

(216) and (217) (see Sections 3.15 and 3.16), and the pentamethyl ad ducts 

(244) and (245) (see Section 3.26). If this extends to adducts from hexa­

methylbenzene (136), then the adducts formed would be extremely 

unstable and could afford possible pathways to the observed products 

(279)-(282) and (284)-(288), as illustrated in Schemes 3.47-3.50. 

Rapid epimerization via the nitrocyclohexadienyl cation/trinitro­

methanide ion pair (293) would be expected to occur. Subsequent loss of 

nitroform from the ion pair (293) appeared to be favoured, however, leading 

to the side-chain compounds (280)-(282), (287) and (288) being formed, as 

summarized in Schemes 3.47 and 3.48. Initially, loss of nitroform from the 

intermediate nitrocyclohexadienyl cation/trinitromethanide ion pair (293) 

would occur by abstraction of an acidic proton from the methyl group by 

(02N)sC-, forming diene (294). This would be followed by homolytic 

cleavage of the C-N02 bond in diene (294) to give radical (295), as 

represented in Scheme 3.47. Subsequent coupling of •No2 with the 

resulting pentamethylbenzyl radical (295) with C-N bond formation would 

lead to the formation of the side-chain nitro compound (282), as seen in 
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Me 
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Scheme 3.48. Alternately, coupling of •No2 could occur with C-0 bond 

formation to give the side-chain nitrite (280). The side-chain nitrite (280) 

can then undergo either hydrolysis to yield the side-chain alcohol (287), as 

was observed by Masnovi et a/. 9, or oxidation to yield the side-chain nitrate 

(281). Formation of the benzaldehyde (288) could arise by oxidation of 

either the nitrite (280) or the alcohol (287). 

The side-chain trinitromethyl aromatic (279) could form via loss of 

nitrous acid from the nitro/trinitromethyl adducts (291) and (292) to form the 

trinitromethyl diene (296), as depicted in Scheme 3.49. Subsequent 

rearrangement via the ion pair (297) would give the side-chain trinitro­

methyl compound (279). 

Unfortunately, this hypothesis cannot be tested directly because of 

poor solubility of hexamethylbenzene (136). It may be significant, however, 
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that the trinitromethyl compound (279) was formed in high yield in the 

photolysis reaction in HFP in contrast to the reactions in dichloromethane or 

acetonitrile (See Table 3.16, Section 3.31). 

During the photochemical reaction of hexamethylbenzene (136) and 

TNM in acetonitrile, the yield of pentamethylphenylnitromethane (282) 

decreased as the reaction proceeded (53% after 1 h, 40% after 8 h) (See 

Table 3.15, Section 3.30). In dichloromethane at +20°, compound (282) 

remained at c. 32% (See Table 3.14, Section 3.29). At -20° in dichloro­

methane, the yield of compound (282) was almost identical to the +20° 

reaction in acetonitrile and decreased as the reaction proceeded (52% after 

1 h, 40% after 8 h). Correspondingly, the yields of the disubstituted 

products (284)-(286) increased throughout each of the reactions (In 

acetonitrile, 2% after 1 h, 14% after 8 h; in dichloromethane both 

temperatures were similar, trace after 1 h, c. 3% after 8 h). It therefore 

l•+ 
~~6H, 

CH2N02 

~~0~ ~~CH,NO, 0 -W 
·No2 

Me Me Me Me Me Me 

Me Me Me 

(282) (298) (285) 

j·oNO 

CH2N02 CH2N02 CH2N02 

Me~CH20N02 Me~CH20NO Me~CH,OH 0 oxidation 0 hydrolysis 
Me Me Me Me Me Me 

Me Me Me 

(284) (299) (286) 

Scheme 3.50 
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appears likely that the pentamethylphenylnitromethane (282) gives rise to 

the disubstituted products (284)-(286). A possible mechanism for their 

formation is outlined in Scheme 3.50. Deprotonation of the pentamethyl­

phenylnitromethane radical cation could yield radical (298). Coupling of 

radical (298) with •No2 could occur by either C-N bond formation to give the 

bis-nitromethyl compound (285), or by C-0 bond formation to yield the 

nitromethylbenzyl nitrite (299). Subsequent oxidation of compound (299) 

would give the nitromethylbenzyl nitrate (284), while hydrolysis of (299) 

would result in formation of the nitromethylbenzyl alcohol (286). 

The reactions in the dark and on irradiation with filtered light 

(Acut-ott<435 nm) of hexamethylbenzene (136) with excess •No2 in 

dichloromethane at +20° both gave essentially the same product 

composition. The significant products were pentamethylbenzyl nitrate 

(281) (c. 54%) and pentamethylphenylnitromethane (282) (c. 38%) (See 

Table 3.17, Section 3.32). Both the "light" and "dark" conditions in the 

presence of hexamethylbenzene (136) with •No2 in dichloromethane 

appear to have resulted in thermal nitration. The products were generally 

in agreement with those formed in the thermal nitration of hexamethyl­

benzene (136) with •No2 in dichloromethane in the dark reported by Bosch 

and Kochi.31 

Me Me 

Me Me 

Me Me 

(281) (282) 

As in dichloromethane, the reactions of hexamethylbenzene (136) 

with excess •No2 in acetonitrile at +20° gave essentially the same product 
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composition both in the dark and on irradiation with filtered light 

(Acut-ott<435 nm). In addition to pentamethylbenzyl nitrate (281) (c. 16%) 

and the mono- and bis-nitromethyl compounds (282) (c. 63%) and (285) 

(c. 10%), the N-nitroso acetamide (228) (c. 3%) formed (See Section 3.33). 

While it remains unclear how compound (228) formed, it is clear that neither 

TNM nor irradiation is necessary for the formation of the N-nitroso 

acetamide (228). 

CH2N02 

Me*CH2N02 

Me Me 

Me 

(285) 

NO 
I 

Me*HbN ~OMe 
Me Me 

Me 

(228) 

In conclusion, the photochemical reaction of the charge-transfer 

complex of hexamethylbenzene (136) and TNM gave no direct evidence for 

adduct formation. However, following trends in lability of the nitro/trinitro­

methyl adducts formed from 1 ,2,4,5-tetramethylbenzene (134) and penta­

methylbenzene (135) (see Sections 3.15 and 3.16, and 3.26, respectively), 

it appears likely that most of the observed products in hexamethylbenzene 

(136) arose via the highly sterically hindered delocalized carbon radical 

(150). 
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CHAPTER FOUR 

PHOTONITRATION OF 2,3-DIMETHYLANISOLE 

4.1 Introduction 

Photochemical reactions with TNM and involving naphthalene, 1,2 a 

series of methylsubstituted naphthalenes,3-7 benzene8,9 and a series of 

methylsubstituted benzenes10-12 showed that the initial point of attack of 

(02N)3c- on the aromatic radical cation is crucial in determining the 

structures of the adducts formed.? While studying the regiochemistry of the 

photolysis reactions between aromatic compounds and TNM, the 

importance of the relative energies of the various delocalized carbon 

radicals was demonstrated.? These relative energies can be moderated by 

steric effects between the attaching (02N)sC- and methyl substituents on f3 

or peri ring positions.13 The extent of stabilization of the discrete carbon 

radical by any substituents present will also effect the relative energies of 

the radicals.? 

In the above photochemical reactions, there were high yields of 

adducts.1-12 In contrast, the photolysis of charge-transfer complexes of 

substituted anisoles and TNM in dichloromethane gave high yields (60-

95%) of products of apparent aromatic substitution, the trinitromethyl­

anisoles, while in acetonitrile they gave predominantly nitro substitution 

products.14, 15 Although ad ducts were detected, only a small proportion of 

the nitro or trinitromethyl substitution products could be accounted for by 

addition-elimination mechanisms.15 

Butts et af.13 studied the photochemical reaction between 1-methoxy­

naphthalene and TNM. The products identified in this study formed 

exclusively by reaction in the substituted ring. The possible delocalized 
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carbon radicals in the substituted ring are illustrated in Scheme 4.1. Attack 

of (02N)3C- on the 1-methoxynaphthalene radical cation ipso to the 

methoxy group at C1 would give the phenylallylic radical (300), while attack 

at C4 would lead to the phenylallylic radical (301 ). Radical (301) would 

have enhanced stability over radical (300) due to stabilization by the 

methoxy group at C1. The less stable benzylic radicals (302) and (303) 

would be formed via attack of (02N)3C- at C2 and C3, respectively, on the 

1-methoxynaphthalene radical cation. Of radicals (302) and (303), the 

tertiary benzylic radical (302) would have enhanced stability due to the 

methoxy group at C1. The major adduct (35) contained the trinitromethyl 

OMe OMe 

(35) (36) 
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group at C4, the expected favoured position, while the minor adduct (36) 

contained the trinitromethyl group at C3, the predicted least favoured 

position. Adduct (36) formation was rationalized as arising via attack of 

(02N)3C- at C1 on the 1-methoxynaphthalene radical cation, with a 

subsequent 1 ,3-allylic rearrangement of the resulting adduct (304), as seen 

in Scheme 4.2, not via an initial attack of (02N)3C- at C3. Similar allylic 

4 

(300) 

·No2 

at C4 

OMe 

(304) (36) 

Scheme 4.2 

migration of (02N)sC- was observed in the rearrangement of 4,8-dimethyl-r-

1-nitro-t-4-trinitromethyl-1 ,4-dihydronaphthalene (31) into 4,8-dimethyl-r-1-

nitro-t-2-trinitromethyl-1 ,4-dihydronaphthalene (32),7 as represented in 

Scheme 1.32 (See Chapter 1, Section 1.12.2). 

Me 

C(N0 2)s 

Me H 

(31) (32) 

Sankararaman et af.15 reported the photochemical reactions of 

4-methylanisole with TNM in dichloromethane and acetonitrile in the 

presence and absence of added salts. Reactions in dichloromethane 
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without added salts gave high yields of 4-methyl-2-trinitromethylanisole 

(21). However, the addition of salts (either 'common ion' or 'non-common 

ion') to reactions in dichloromethane gave substantial yields of 4-methyl-2-

OMe OMe 

Me Me 

(21) (22) 

nitroanisole (22). In acetonitrile, with or without added salts, the major 

product was 4-methyl-2-nitroanisole (22) (See Chapter 1, Section 1.12.3). 

Butts et af.16 studied the reactions of 4-methylanisole and TNM 

further and identified four unstable isomeric adducts, (23)-(26). The 

Me 

(23) and (24) 

OMe 

Me 

(25) and (26) 

possible delocalized carbon radicals are shown in Scheme 4.3. Attack of 

(02N)sC- at C1 on the 4-methylanisole radical cation would give the 

delocalized carbon radical (29), the stability of which would be enhanced 

by the position of the methyl group at C4. The delocalized radical (27), 

arising via attack of (02N)sc- at C2 on the 4-methylanisole radical cation, 

would have enhanced stability due to the position of the methoxy group at 

C1. Attack of (02N)sC· on the 4-methylanisole radical cation at C4, forming 

radical (306), would also be enhanced due to the position of the methoxy 
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Scheme 4.3 

group at C1, but might be hindered due to steric compression arising from 

interaction between the 4-methyl group and the bulky trinitromethyl group. 

Delocalized radical (305) would be expected to be the least favoured 

radical due to the known reluctance of (02N)3C- to attack a radical cation 

vicinal to a methyl group.6 The epimeric adducts (23) and (24) were 

proposed to arise from •No2 coupling with the delocalized carbon radical 

(27) at C5, as represented in Scheme 4.4. Alternatively, •No2 could attack 

ipso to the methoxy group at C1, to give the diene (28). Loss of nitrous acid 

from either the sterically compressed diene (28) or adducts (23) and (24) 

would give rise to the 4-methyl-2-trinitromethylanisole (21). In contrast, the 

epimeric adducts (25) and (26) were seen as arising via radical (29), not via 

the least favoured delocalized carbon radical (305), as illustrated in 

Scheme 4.5. A subsequent 1 ,3-allylic rearrangement of diene (30), with 

migration of the trinitromethyl group to C5 would form adducts (25) and (26). 

Alternately, loss of nitroform from diene (30) would yield 4-methyl-2-nitro­

anisole (22). These allylic rearrangements were similar to those seen in 
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the 1 ,5-dimethylnaphthalene series? and the 1-methoxynaphthalene 

series, 13 and discussed earlier in this Section and in Chapter 1 (See 

Section 1.12.1 ). 

The proposed reaction pathways responsible for formation of the 

labile adducts (23)-(26) 16 also accounted for the observed selective 

formation of the trinitromethyl and nitro aromatic compounds (21) and (22), 

respectively, which Sankararaman et af.15 observed earlier. In non-polar 

dichloromethane, the reaction pathways represented in Scheme 4.4 

dominated. In either acetonitrile (with or without added salts) or in dichloro­

methane with added salts, the solvent polarity was higher than in dichloro­

methane alone and therefore the reaction pathways in Scheme 4.5 were 

dominant. It was suggested16 that the dominance of the pathways in 

Scheme 4.5 was due to lowering the reactivity of (02N)3C- towards the 

radical cation by solvation in the more polar medium. 

The study discussed in this Chapter sought to provide further 

evidence for adduct formation between TNM and methyl-substituted 

anisoles and to elucidate the mechanism of formation of any observed 

adducts. In light of the research discussed above, reactions involving 

2,3-dimethylanisole (307) were studied in detail in anticipation that similar 

allylic rearrangements might occur after attack ipso to the methoxy group. 

OMe Or: Me 

Me 

(307) 

In the photolysis of 2,3-dimethylanisole (307) with TNM, four of the six 

possible delocalized carbon radicals would be destabilized by the 

presence of an unfavourable fi-methyl/trinitromethyl interaction, as 
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summarized in Scheme 4.6. Radicals (308) and (309), formed via attack of 

(02N)3C- at C1 and C4, respectively, on the 2,3-dimethylanisole radical 

cation, both contain stabilization from suitably positioned groups [the 

2-methyl group for radical (308), the 1-methoxy and 3-methyl groups for 

radical (309)]. Radicals (310) and (311), formed after (02N)3C- attack on 

the 2,3-dimethylanisole radical cation at C2 and C3, respectively, would be 

further destabilized relative to radicals (308) and (309), because of steric 

compression arising from the ipso attack of (02N)3C- at the 2- and 3-methyl 

positions, respectively. Radical (31 0) would gain some enhanced stability 

due to the 1-methoxy and 3-methyl groups, while radical (311) would be 

less stable with enhanced stability only provided by the 2-methyl group. 

The remaining possible delocalized carbon radicals (312) and (313) would 

be formed by attack of (02N)3C- at C5 and C6, respectively, on the radical 

cation of 2,3-dimethylanisole (See Scheme 4.7). Radical (312) would gain 

enhanced stability due to the 2-methyl group, while radical (313) would 

have its stability enhanced by the 1-methoxy and 3-methyl groups. Hence, 
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it appears that attack of (02N)3C- on the 2,3-dimethylanisole radical cation 

would probably occur via attack at either C5 or C6. 

4.2 The Photolysis of 2,3-Dimethylanisole (307) 

General procedure for the photonitration of 2,3-dimethy/aniso/e (307) with 

TNM. 

A solution of 2,3-dimethylanisole (307) (500 mg, 0.46 mol L-1) and 

TNM (0.92 mol L-1) in either dichloromethane or acetonitrile (at +20 or 

-20°), or in 1,1, 1 ,3,3,3-hexafluoropropan-2-ol (HFP) (at +20°), was 

irradiated with filtered light (Acut-off<435 nm) and small samples were 

withdrawn for analysis at suitable intervals. The work-up procedure, 

involving evaporation of solvent and TNM was conducted at ~oo. The 

crude product mixtures were stored at -20° and were analysed by 1 H n.m.r. 

spectroscopy as soon as possible (For complete experimental details see 

Chapter 5, Section 5.4). 
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4.3 The Photochemistry of 2,3-Dimethylanisole (307) in 

Dichloromethane 

Photochemistry in dichloromethane at +20° and the identification of 

products (314)-(324). 

A solution of 2,3-dimethylanisole (307) (0.46 mol L-1) and TNM (0.92 

mol L-1) in dichloromethane was irradiated at +20° until the orange/brown 

colour of the charge-transfer band was bleached. The composition of the 

mixture was monitored by withdrawing samples for 1 H n.m.r. spectral 

analysis. After work-up, the final solution (after 8 h, conversion c. 1 00%) 

was shown to contain the nitro/trinitromethyl adducts (314) (15%) and (315) 

(9%), hydroxy/trinitromethyl adducts (316) (3%) and (317) (1 %), and 

aromatic compounds (318) (1 0%), (319) (1 %), (320) (7%), (321) (42%), 

(322) (5%), (323) (1 %), and hydroxy dinitro compound (324) (1 %). These 

OMe OMe OMe 

Lt Me aWe ~ 

11 N02 ~ ~ N02 uQH 

(02N)sC (02N)sC (02N)sC 
' Me ' Me H H 
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OMe OMe OMe 
Me ;&We ¢=We ~ OH 

(02N)sC ~ (O,NhC 0 We Me ~ 
H 
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(317) (318) (319) 

OMe OMe OH 

¢=We 
Me 

¢=Me 
Me 

02N*Me 
Me 

C(N02)s N02 N02 
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(323) (324) 

products were separated partially by h.p.l.c. on a cyanopropyl column, 

cooled to oo, using hexane/dichloromethane mixtures as eluting solvents. 

In the following discussion, product identification will be described for 

groups of compounds, rather than in the order of elution which is given in 

the Experimental section (See Chapter 5, Section 5.4. 1). 

The epimeric nitro!trinitromethyl adducts (314) and (315), the epimeric 

hydroxy/trinitromethyl adducts (316) and (317), and the hydroxy dinitro 

compound (324). 

Adduct (314) was isolated as an oil containing an impurity (c. 5%). 

The identification of adduct (314) as 1-methoxy-5,6-dimethyl-t-6-nitro-r-3-tri­

nitromethylcyclohexa-1 ,4-diene (314) was based on its spectroscopic data. 

N.O.e. experiments confirmed the assignments of the chemical shifts for the 

protons. Specifically, irradiation at 8 3.64 (OMe) gave an enhancement at 

8 5.03 (H2), while irradiation at 8 5.77 (H4) gave enhancements at 8 1.80 

(5-Me) and at 8 4.91 (H3), as outlined in Fig. 4.1. HMQC and HMBC 

experiments allowed the complete assignment of the 13C n.m.r. spectra, 

also given in Fig. 4.1. In particular, the trinitromethyl function attached to 

C3 appeared at 8 43.6, while the nitro function attached to C6 appeared at 

8 89.1. Furthermore, the presence of very strong infrared absorptions at 

1599 and 1558 cm-1 provided evidence for the -C(N02)3 and -N02 

substituents. The trans-6-nitro-3-trinitromethyl stereochemistry was 

assigned to adduct (314) because it eluted from the cyanopropyl h.p.l.c. 

column with the dichloromethane/hexane solvent system earlier than its 
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(314) 

OCHa 3.64 OCH3 55.9 

C1 158.3 

H2 5.03 C2 88.5 

H3 4.91 C3 43.6 

H4 5.77 C4 117.3 

5-Me 1.80 C5 140.5 

6-Me 1.82 C6 89.1 

Fig. 4.1 Characteristic 1 H and 13C n.m.r. resonances (in ppm) and 

enhancements(%) from selected n.O.e. experiments for adduct 

(314). 

cis-6-nitro-3-trinitromethyl stereoisomer (315). The h.p.l.c. elution order for 

such pairs of stereoisomers is known, with trans-1 ,4-nitro/trinitromethyl 

adducts eluting ahead of their cis-1 ,4-isomers.4-7 

Adduct (315) was also isolated as an oil containing an impurity 

(c. 5%). The identification of adduct (315) as 1-methoxy-5,6-dimethyl-c-6-

nitro-r-3-trinitromethylcyclohexa-1 ,4-diene (315) was based on comparison 

of its spectroscopic data with 1-methoxy-6-methyl-c-6-nitro-r-3-trinitro­

methylcyclohexa-1 ,4-diene (325), the structure of which was determined by 
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Fig. 4.2 Enhancements(%) from selected n.O.e. experiments for adduct 

(315). 

OCHa 

H2 

H3 

H4 

.6-Me 

OCHg 

C1 

C2 

C3 

C4 

C6 

(325) 

3.71 

5.03 

4.86 

5.99 

1.85 

55.8 

157.1 

89.5 

42.6 

121.8 

85.5 

OCHa 

H2 

H3 

H4 

6-Me 

OCHg 

C1 

C2 

C3 

C4 

C6 

(315) 

3.63 

4.97 

4.81 

5.68 

1.85 

55.9 

157.7 

88.5 

42.6 

117.2 

88.5 

Fig. 4.3 Comparison of the characteristic 1H and 13C n.m.r. resonances (in 

ppm) for adducts (325) and (315). 
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single crystal X-ray analysis, 17 as illustrated in Fig. 4.3. N.O.e. experiments 

confirmed the assignments of the chemical shifts for the protons. In 

particular, irradiation at 8 4.97 (H2) gave enhancements at 8 3.63 (OMe) 

and at 8 4.81 (H3), while irradiation at 8 5.68 (H4) gave enhancements at 

(314) (315) 

OCH3 3.64 OCH3 3.63 

H2 5.03 H2 4.97 

H3 4.91 H3 4.81 

H4 5.77 H4 5.68 

5-Me 1.80 5-Me 1.82 

6-Me 1.82 6-Me 1.85 

OCH3 55.9 OCH3 55.9 

C1 158.3 C1 157.7 

C2 88.5 C2 88.5 

C3 43.6 C3 42.6 

C4 117.3 C4 117.2 

C5 140.5 C5 139.3 

C6 89.1 C6 88.5 

Fig. 4.4 Comparison of the characteristic 1 H and 13C n.m.r. resonances (in 

ppm) for adducts (314) and (315). 
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o 1.82 {5-Me) and at o 4.81 {H3), as presented in Fig. 4.2. The 13C n.m.r. 

resonances were confirmed by HMQC and HMBC experiments (See 

Fig. 4.3). Specifically, the CH-C(N02)s resonance appeared at o 42.6, 

while the CMe-N02 resonance appeared at o 88.5. The closely similar 

spectroscopic data for compounds (314) and {315) are depicted in Fig. 4.4, 

and were consistent with their assignment as epimers. 

Adduct (316) was isolated only in admixture with c. 5% of the 

hydroxy/trinitromethyl adduct (317). The identification of adduct {316) as 

2-methoxy-1 ,6-dimethyl-t-4-trinitromethylcyclohexa-2,5-dien-r-1-ol (316) 

was based on comparison of its spectroscopic data with the trans-1 ,4-nitro/ 

trinitromethyl adduct {314), as summarized in Fig. 4.6. N.O.e. experiments 

confirmed the assignments of the chemical shifts for the protons. 

Specifically, irradiation at o 1.95 {6-Me) gave enhancements at o 1.45 

(1-Me) and at o 5.45 (H5), while irradiation at o 4.71 (H3, H4) gave 

enhancements at o 3.66 (OMe) and at o 5.45 (H5), as shown in Fig. 4.5. 

The 1 H n.m.r. signals due to adduct (316) were shifted upfield relative to 

adduct (314), because of the presence of the -OH function (See Fig. 4.6) 

HMQC and HMBC experiments confirmed the assignments of the 13C n.m.r. 

resonances. In particular, the location of the hydroxy function was defined 

0.9% 

Fig. 4.5 Enhancements(%) from selected n.O.e. experiments for adduct 

(316). 
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by the chemical shift for C1 (3 68.6), while the trinitromethyl function was 

defined by the chemical shift for C4 (3 43.9), as represented in Fig. 4.6. 

Furthermore, the presence of an infrared absorption at 3460 cm-1 provided 

evidence for the -OH substituent. 

(314) (316) 

6-Me 1.82 1-Me 1.45 

OCHa 3.64 OCHa 3.66 

H2 5.03 H3 4.71 

H3 4.91 H4 4.71 

H4 5.77 H5 5.45 

5-Me 1.80 6-Me 1.95 

C6 89.1 C1 68.6 

OCHs 55.9 OCHs 55.4 

C1 158.3 C2 163.6 

C2 88.5 C3 84.6 

C3 43.6 C4 43.9 

C4 117.3 C5 112.2 

C5 140.5 C6 147.2 

Fig. 4.6 Comparison of the characteristic 1 H and 13C n.m.r. resonances (in 

ppm) for adducts (314) and (316). 
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Adduct (317) was isolated only as a minor component (c. 15%) in 

admixture with the hydroxy/trinitromethyl adduct (316). The identification of 

adduct (317) as 2-methoxy-1 ,6-dimethyl-c-4-trinitromethylcyclohexa-2,5-

dien-r-1-ol (317) was based on comparison of its spectroscopic data with its 

epimer (316). N.O.e. experiments confirmed the assignments of the 

chemical shifts for the protons. In particular, irradiation at() 1.94 (6-Me) 

gave an enhancement at() 5.40 (H5), while irradiation at <3 3.63 (OMe) gave 

an enhancement at() 4.66 (H3), as outlined in Fig. 4.7. The 13C n.m.r. 

Fig. 4.7 Enhancements(%) from selected n.O.e. experiments for adduct 

(317). 

chemical shifts were confirmed by an HMQC experiment (See Fig. 4.8). 

Specifically, the trinitromethyl function was indicated by the 13C n.m.r. 

chemical shift for C4 (<3 42.8). The closely similar spectroscopic data for 

compounds (316) and (317) are depicted in Fig. 4.8, and were consistent 

with their assignment as epimers. 

The hydroxy dinitro compound (324) was isolated only in low yield as 

an oil. Compound (324) was identified as 2-(4'-hydroxy-3'-methoxy-4',5'­

dimethylcyclohexa-2',5'-dienylidene)-1, 1-dinitroethene (324) on the basis 

of its spectroscopic data. Compound (324) gave a satisfactory parent 

molecular ion in the mass spectrum, indicating the molecular formula 
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1-Me 

OCH3 

H3 

H4 

H5 

6-Me 

OCH3 

C3 

C4 

C5 

(316) 

1.45 

3.66 

4.71 

4.71 

5.45 

1.95 

55.4 

84.6 

43.9 

112.2 

1-Me 

OCH3 

H3 

H4 

H5 

6-Me 

OCH3 

C3 

C4 

C5 

(317) 

1.45 

3.63 

4.66 

4.61 

5.40 

1.94 

55.4 

85.2 

42.8 

112.7 

Fig. 4.8 Comparison of the characteristic 1H and 13C n.m.r. resonances (in 

ppm) for adducts (316} and (317). 

C10H12N205. N.O.e. experiments confirmed the assignments of the 

chemical shifts for the protons. Specifically, irradiation at 8 2.16 (5'-Me) 

gave enhancements at 8 1.55 (4'-Me) and at 8 6.38 (H6'), while irradiation 

at 8 3.94 (OMe) gave an enhancement at 8 6.44 (H2'), as illustrated in 

Fig. 4.9. The assignment of the 13C n.m.r. resonances were confirmed by 

HMQC and HMBC experiments. In particular, the dinitromethyl function 

attached to C2 appeared at 8 146.6, while the hydroxy function attached to 
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346 

(324) 

C2 146.6 

H2' 6.44 C2' 89.9 

OCH3 3.94 C3' 175.8 

4'-Me 1.55 C4' 70.9 

5'-Me 2.16 C5' 158.5 

H6' 6.38 C6' 114.9 

OH 2.43 OCH3 56.9 

Fig. 4.9 Characteristic 1 H and 13C n.m.r.1 a bd m o o p M n p l}for SM st gr}{P}{DB}{£ 

enhancements(%) from selected n.O.e. experiments for adduct 

{324). 

C4' appeared at o 70.9, also seen in Fig. 4.9. Furthermore, the presence of 

very strong infrared absorptions were observed at 1657 and 1541 cm-1 

providing evidence for the -C=C(N02)2 substituent, while a broad infrared 

absorption at 3427 cm-1 provided evidence for the -OH substituent. The 

ultraviolet absorption with A-max 386 nm (c 32400) was also consistent with 

the assigned structure. 



The aromatic products (318)-(323). 

Compound (318) was identified as 5,6-dimethyl-3-trinitromethyl­

anisole (318) on the basis of its spectroscopic data. The trinitromethyl 

aromatic (318) gave a satisfactory parent molecular ion in the mass 

spectrum, indicating the molecular formula CwH11 NsOy. N.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at 8 2.34 (5-Me) gave an enhancement at 

8 6.96 (H4), while irradiation at 8 3.84 (OMe) gave an enhancement at 

8 6.87 (H2), as observed in Fig. 4.1 0. Furthermore, the presence of very 

strong infrared absorptions at 1614 and 1587 cm-1 provided evidence for 

the -C(N02)3 substituent. 

Me 

4 
5 Me 

H05.3% 
Fig. 4.10 Enhancements (%)from selected n.O.e. experiments for 

compound (318). 

The isomeric trinitromethyl anisole (320) was identified as 2,3-di­

methyl-4-trinitromethylanisole (320) by comparison of its spectroscopic data 

with its isomer (318). Although no parent ion was visible in the mass 

spectrum of compound (320), a M+-N02 fragment was observed. The 

ready loss of •No2 from this 4-trinitromethyl anisole was typical of such 

structures.18 HMBC and n.O.e. experiments confirmed the· assignments of 

the chemical shifts for the protons. Specifically, irradiation at 8 2.02 (3-Me) 
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Fig. 4.11 Enhancements(%) from selected n.O.e. experiments for 

compound (320). 

gave an enhancement at 8 2.21 (2-Me), while irradiation at 8 6.83 (H6) gave 

enhancements at 8 3.91 (OMe) and at 8 7.11 (H5), as illustrated in Fig. 4.11. 

Furthermore, the trinitromethyl function was indicated by the 13C n.m.r. 

resonance for C4 (8 113.7), which was closely similar to the isomeric 

trinitromethyl compound (318), in which the trinitromethyl function was 

indicated by the 13C n.m.r. resonance for C3 (8 119.6), as seen in Fig. 4.12. 

(318) (320) 

Fig. 4.12 Comparison of the characteristic 13C n.m.r. resonances (in ppm) 

for the trinitromethyl aromatic compounds (318) and (320). 

In addition, the presence of very strong infrared absorptions at 1622 and 

1580 cm-1 provided evidence for the -C(N02)3 substituent. 
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Compound (319) was identified as 4-methoxy-2,3-dimethylbenzo­

nitrile N-oxide (319) on the basis of its spectroscopic data. The nitrile oxide 

(319) gave a satisfactory parent molecular ion in the mass spectrum, 

indicating the molecular formula C10H11 N02. HMBC and n.O.e. 

experiments confirmed the assignments of the chemical shifts for the 

protons. In particular, irradiation at 8 6.65 (H5) gave enhancements at 

8 3.80 (OMe) and at 8 6.92 (H6), as seen in Fig. 4.13. Furthermore, the 

presence of a very strong infrared absorption at 2280 cm-1 provided 

evidence for the -CNO substituent, while the infrared absorption at 1263 

cm-1 provided evidence for the -CNO substituent. 

Me 

Fig. 4.13 Enhancements(%) from selected n.O.e. experiments for 

compound (319). 

Compound (321) was identified as 2,3-dimethyl-4-nitroanisole (321) 

and the structure was confirmed by comparing its spectroscopic data with 

literature data.19 

Compound (322) was identified as 5,6-dimethyl-2,4-dinitrophenol 

(322) and the structure was confirmed by comparing its spectroscopic data 

with literature data.20 

Compound (323) was identified as 3-methoxy-4,5-dimethylbenzoic 

acid (323) on the basis of its spectroscopic data. The methoxy benzoic 

acid (323) gave a satisfactory parent molecular ion in the mass spectrum, 
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indicating the molecular formula C10H1203. N.O.e. experiments confirmed 

the assignments of the chemical shifts for the protons. Specifically, 

. irradiation at() 2.33 (5-Me) gave enhancements at() 2.21 (4-Me) and at 

() 7.56 (H6), while irradiation at() 3.88 (OMe) gave an enhancement at 

() 7.42 (H2), as depicted in Fig. 4.14. Furthermore, the presence of infrared 

absorptions at 3421 and 1684 cm-1 provided evidence for the -C02H 

substituent. 

Fig. 4.14 Enhancements(%) from selected n.O.e. experiments for 

compound (323). 

The composition of the photochemical reaction between 2,3-di­

methylanisole (307) and TNM was monitored with time at +20 and -20° in 

dichloromethane. An overview of product yield in dichloromethane is 

summarized in Table 4.1. At +20° the total adduct yield decreased as the 

reaction proceeded (total 40% at 1 h, total 29% at 8 h) with a corresponding 

increase in the total aromatic yield (total 60% at 1 h, total 71% at 8 h). 

However, at -20° the total adduct yield remained constant (c. 23%). At both 

+20 and -20° the yield of adduct (314) increased throughout the reaction (at 

+20°, 13% after 1 h, 15% after8 h; at -20°,10% after 1 h, 14% after8 h), 

while the other identified adducts (315)-(317) all decreased in yield (at 

+20°, total24% after 1 h, total14% after 8 h; at -20°, total12% after 1 h, total 
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Table 4.1 Overview of product yields from the photolysis of 2,3-dimethylanisole (307) (0.46 mol L-1) 

and TNM (0.92 mol L-1) in dichloromethane. 

Yield(%) 

Total Total 

t (h) (314) (315) (316) (317) adductsa (318) (319) (320) (321) (322) (323) (324) aromatics b 

at +20° 

1 12.7 14.2 7.1 2.8 39.6 14.6 0.9 11.7 21.1 6.6 - 1.1 60.4 

2 13.8 12.5 5.2 2.3 34.5 8.8 0.4 8.4 33.7 6.8 - 2.0 65.5 

4 14.0 10.8 4.1 1.8 31.0 9.7 0.4 7.0 39.5 5.7 trace 1.3 69.0 

8 15.1 8.8 3.4 1.4 29.0 9.6 1.4 6.9 41.7 5.1 0.6 0.7 71.0 

at -20° 

1 9.7 7.0 3.1 1.9 23.6 21.4 5.2 15.7 21.3 5.0 - - 76.4 

2 11.6 7.3 2.7 1.2 24.6 18.5 3.2 13.5 26.7 5.1 - 0.2 75.4 

4 11.2 5.8 2.9 1.2 22.4 20.3 3.0 13.2 28.8 4.3 trace 0.5 77.6 

8 13.7 5.5 1.5 0.7 22.7 19.5 1.2 10.5 33.8 2.4 0.4 0.4 77.3 

a Including unidentified adducts. b Including unidentified aromatics. 
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8% after 8 h). At lower reaction temperature, the yield of the trinitromethyl 

aromatics (318) and (320) increased (after 8 h, total17% at +20°, total 30% 

at -20°). As the reaction proceeded at both +20 and -20° the yield of the 

major product 2,3-dimethyl-4-nitroanisole (321) increased. However, the 

increase was less marked at -20° (from 21% after 1 h to 34% after 8 h) c.f. at 

+20° (from 21% after 1 h to 42% after 8 h). Reaction at -20° also showed 

that the carboxylic acid (323) and the hydroxy dinitro compound (324) were 

not present at the early stages of the reaction but formed as the reaction 

proceeded. 
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4.4 The Photochemistry of 2,3-Dimethylanisole (307) in 

Acetonitrile 

Photolyses of solutions of 2,3-dimethylanisole (307) (0.46 mol L -1) 

and TNM (0.92 mol L-1) in acetonitrile were carried out at +20 and -20° as 

described for reactions in dichloromethane, above. The composition of 

these reactions, monitored with time, are shown in Table 4.2. The absence 

of adducts (316) and (317) and the hydroxy dinitro compound (324) was 

most notable in the reactions in acetonitrile. These three compounds, 

(316), (317) and (324), were all seen in reactions in dichloromethane (See 

Table 4.1, Section 4.3). In acetonitrile, the adduct yield was almost 

constant at +20° (total c. 27%), but at -20° it increased with time (total 18% 

after 1 h, total 28% after 8 h). This was in contrast to reactions in dichloro­

methane where adduct yield decreased at +20° and was constant at -20°. 

At lower reaction temperature in acetonitrile, aromatic compounds (320) 

and (323) were absent. As was observed in dichloromethane, 2,3-di­

methyl-4-nitroanisole (321) was the major product in acetonitrile. The yield 

of compound (321) increased at -20° as the reaction proceeded (35% after 

1 h, 52% after 8 h), while at +20° it remained constant (c. 53%). 

4.5 The Photochemistry of 2,3-Dimethylanisole (307) in 

1,1, 1 ,3,3,3-Hexafluoropropan-2-ol (HFP) 

Photolysis of the charge-transfer complex of 2,3-dimethylanisole 

(307) (0.46 mol L-1) and TNM (0.92 mol L-1) in HFP at +20° for 24 h 

resulted in complete conversion into nitro/trinitromethyl adducts (314) (1%) 

and (315) (2%), hydroxy/trinitromethyl adducts (316) (0.3%) and (317) 

(trace), aromatic compounds (318) (19%), (320) (4%), (321) (61 %), (322) 
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Table 4.2 Overview of product yields from the photolysis of 2,3-dimethylanisole (307) (0.46 mol L-1) and 

TNM (0.92 mol L -1) in acetonitrile. 

Yield(%) 

Total Total 

t (h) (314) (315) adducts8 (318) (319) (320) (321) (322) (323) aromaticsb 

at +20° 

1 22.8 4.4 27.2 1.7 0.4 0.4 53.1 9.1 - 72.8 

2 21.6 4.3 25.9 2.6 1.0 0.4 53.0 7.7 - 74.1 

4 20.9 4.9 25.8 2.4 1.7 0.4 53.1 6.6 1.4 74.2 

8 24.1 5.7 29.8 2.6 1.5 0.4 53.8 3.3 1.0 70.2 

at -20° 

1 15.2 2.8 18.0 8.1 17.5 - 34.6 6.0 - 82.0 

2 20.1 3.3 23.4 4.4 9.4 - 46.5 6.0 - 76.6 

4 22.6 3.8 26.4 7.0 4.6 - 48.5 5.7 - 73.6 

8 24.1 4.0 28.1 6.9 2.2 - 52.4 2.9 - 71.9 

a Including unidentified adducts. b Including unidentified aromatics. 
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(0.3%) and unidentified aromatic compounds (total 12%). The reaction 

was monitored with time and the results are shown in Table 4.3. Reaction 

in HFP led to a decrease in the yield of adduct (314) with time (15% after 

1 h, 1% after 8 h). This was in contrast to reactions in both dichloro­

methane and acetonitrile where the yield of adduct (314) increased as the 

reactions proceeded (See Tables 4.1 and 4.2, Sections 4.3 and 4.4, 

respectively). While the adducts (314)-(317) identified in dichloromethane 

were all present, the carboxylic acid (323) and the hydroxy dinitro 

compound (324) were absent. In HFP the conversion of 2,3-dimethyl-
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Table 4.3 OveNiew of product yields from the photolysis of 2,3-dimethylanisole (307) (0.46 mol L-1) and 

TNM (0.92 mol L -1) in 1,1, 1 ,3,3,3:-hexafluoropropan-2-ol at +20°. 

Yield(%) 

Total 

t (h) (314) (315) (316) (317} adductsa {318} (319} (320) (321) (322) 

1 14.9 4.2 1.3 0.6 21.0 10.7 8.2 5.0 38.4 3.1 

2 14.3 5.0 1.6 0.8 21.7 13.7 1.6 4.4 41.9 3.0 

4 10.6 4.0 2.3 1.1 18.0 25.8 0.8 4.4 40.2 1.2 

8 7.8 4.0 3.1 1.6 16.5 23.3 0.4 4.1 47.0 0.5 

24 1.0 2.2 0.3 trace 3.5 19.2 - 4.0 60.8 0.3 

a Including unidentified adducts. b Including unidentified aromatics. 

Total 

aromaticsb 

79.0 

78.3 

82.0 

83.5 

96.5 

U) 
(Jl 
(j) 



anisole (307) into products after a reaction time of 8 h was lower (c. 30%) 

compared with essentially complete conversion in dichloromethane at +20°. 

4.6 The Photochemistry of 2,3-Dimethylanisole {307) in 

Dichloromethane Containing Trifluoroacetic Acid 

Photolysis of the charge-transfer complex of 2,3-dimethylanisole 

(307) (0.46 mol L-1) and TNM (0.92 mol L-1) in dichloromethane containing 

TFA (0.71 mol L-1) at +20°, as above, for 8 h resulted in a low conversion 

(c. 20%) into a mixture which consisted of nitro/trinitromethyl adducts (314) 

(3%) and (315) (0.5%), aromatic compounds (318) (42%), (319) (7%), (320) 

(8%), (321) (23%), (322) (2%) and unidentified aromatic compounds (total 

15%). The absence of adducts (316) and (317) and the aromatic 

compounds (323) and (324) was notable in the reaction in dichloromethane 

with TFA. These products were observed in the corresponding reaction in 

Table 4.4 Overview of product yields from the photolysis of 2,3-dimethyl­

anisole (307) (0.46 mol L-1) and TNM (0.92 mol L-1) in dichloro­

methane containing trifluoroacetic acid (0.71 mol L-1). 

Yield% 

Total Total 

t (h) (314) (315) adductsa (318) (319) (320) (321) (322) aromaticsb 

1 3.3 0.9 4.2 41.6 8.1 5.3 11.0 95.8 

2 3.3 0.9 4.2 47.1 6.0 8.8 15.3 95.8 

4 4.3 1 .1 5.4 45.9 6.0 4.4 17.4 trace 94.6 

8 3.0 0.5 3.5 41.7 6.7 8.0 23.3 1.6 96.5 

a Including unidentified adducts. b Including unidentified aromatics. 
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(314) 

OMe 
Me 
~ 
' OH 

(317) 

~Me 
~Me 

C(N02b 

(320) 

(323) 

(315) 

(318) 

~~ 
~Me 

(321) 

(324) 

(316) 

~~ 
~Me 

CNO 

(319) 

(322) 

the absence of TFA (See Table 4.1, Section 4.3). The major product of 

reaction with TFA present was the 5,6-dimethyl-3-trinitromethylanisole (318) 

(42% after 8 h). Adduct formation was lower with TFA present (after 8 h, 

3.5% with TFA present, 29% without TFA present). 
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4.7 Overview of the Photonitration of 2,3-Dimethyl­

anisole {307) 

In the photolysis of 2,3-dimethylanisole (307) with TNM in dichloro­

methane, the identified adducts (314)-(317) all contained the trinitromethyl 

function at the sterically least hindered position. However, the isolation of 

compounds (321) and (322) indicated that the attack of (02N)sC- at C1 on 

(314) and (315) X=N02 
(316) and (317) X=OH 

OMe 

(321) 

Me 

Me 

OH 

Me 

Me 

(322) 

the 2,3-dimethylanisole radical cation did occur (See Schemes 4.9 and 

4.13, 4.14, respectively). Indeed, it appears probable that the formation of 

adducts (314)-(317) also occurred via initial attack of (02N)sC- at C1 on the 

radical cation of 2,3-dimethylanisole and proceeded via allylic rearrange­

ments of highly labile adducts (326)-(329) (See Scheme 4.8). These allylic 

rearrangements were similar to those seen in the 1 ,5-dimethylnaphthalene 

series9 and the 1-methoxynaphthalene series.13 

Attack of (02N)sC- at C1 of the radical cation of 2,3-dimethylanisole 

would give the delocalized carbon radical (308), as represented in Scheme 

4.8. Coupling of this carbon radical (308) with •No2 at C2 with C-N bond 

formation would give the 1 ,2-nitro/trinitromethyl adducts (326) and (327). 

Subsequent 1 ,3-allylic rearrangement of adducts (326) and (327) would 

yield the 1 ,4-nitro/trinitromethyl adducts (314) and (315). Alternatively, 

coupling of •No2 at C2 could occur with C-0 bond formation and would give 

nitrito/trinitromethyl adducts, which would be expected to hydrolyse rapidly 
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koH 
(02N)sC~, 

H' Me 

(316) and (317) 

4 

(308) 

"N02 

at C2 

J 
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~ Me 

MectO.. C(N02)3 
~ Me 

I N02 

0 
Me 

(326) and (327) 

J-

nOMe ~o, 
(02N)sC 

' Me 

Mecto.. C(N0 2)s 

I OH 

0 
Me H 

(328) and (329) (314) and (315) 

Scheme 4.8 

to the epimeric 1 ,2-hydroxy/trinitromethyl adducts (328) and (329). 

Subsequent 1 ,3-allylic rearrangement of adducts (328) and (329) would 

yield the 1 ,4-hydroxy/trinitromethyl adducts (316) and (317). 

The proposed mechanism for formation of 2,3-dimethyl-4-nitroanisole 

(321) involves radical coupling of •No2 with the delocalized carbon radical 

(308) at C4 with C-N bond formation, as outlined in Scheme 4.9. The 

resulting sterically hindered epimeric adducts (330) and (331) would then 

be expected to lose nitroform and form compound (321 ). 

MQ(,), OMe 

·No 2 
" Me *Me I I 

- HC(N02)s 

atC4 
Me Me Me 

4 
H N02 N02 

(308) {330) and (331) (321) 

Scheme 4.9 
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The hydroxy dinitro compound (324) was not observed when the 

hydroxy/trinitromethyl adducts (316) and (317) were absent (See Tables 4.2 

and 4.4, Sections 4.4 and 4.6, respectively). Hence, compound (324) 

probably arises during the photolysis reaction by loss of nitrous acid from 

one or both of the hydroxy/trinitromethyl ad ducts (316) and (317), as 

observed in Scheme 4.1 0. 

OH -HN02 OH 

Me Me 

(316) and (317) (324) 

Scheme 4.10 

The 3-trinitromethyl aromatic (318) was proposed to form via loss of 

nitrous acid from the epimeric nitro/trinitromethyl adducts (314) and (315), 

as presented in Scheme 4.11. While the mechanism of formation of the 

carboxylic acid (323) remains uncertain, it appears likely that it arises via 

compound (318) as discussed by Eberson and Radner,21 and also seen in 

Scheme 4.11 . 

LMe 
-HN02 Nl 

(0 2N)3C Me 
LMe 

H0 2CNlMe 
{314) and {315) {318) {323) 

Scheme 4.11 

361 



Formation of the 4-trinitromethyl aromatic (320) was seen as arising 

via an initial attack of (02N)sC- at C4 on the radical cation of 2,3-dimethyl­

anisole, as outlined in Scheme 4.12. Subsequent attack of •No2 at C1 on 

radical (309), with either C-N or C-0 bond formation, would give rise to 

adducts (332)-(335). Loss of nitrous acid from these adducts would yield 

compound (320). 

Me 

~ Me 
H~ C(N02)s 

{309) 

Scheme 4.12 

'N0 2 

at C1 

MXMe 
¥Me 
H C(N02)s 

{332) and {333) X=N0 2 

(334) and {335) X=ONO 

j- HN02 

rA>~ 
~Me 

C(N02)s 

{320) 

The dinitro phenol (322) was proposed to form via the delocalized 

carbon radical (308), produced after (02N)sC- attack at C1 on the 2,3-di­

methylanisole radical cation, as illustrated in Scheme 4.13. Subsequent 

attack of •No2 at C4 in radical (308) would give the nitro/trinitromethyl 

ad ducts (330) and (331 ). Loss of the elements of Me-C(N02)3 from 

adducts (330) and (331) would result in the formation of dienone (336). 

Dienones such as this have been found22 to rearrange to nitro phenols 

[See Chapter 3, Section 3.9.5(c)]. This rearrangement was envisaged as 

362 



Mgds -:. Me 
• Me-C(N02)a ¢c~ I I atC4 

Me Me Me 
4 

H N02 H N02 

{308) (330) and (331) (336) 

Scheme 4.13 

occurring via homolysis of the C4-N02 bond in dienone (336) to form the 

solvent caged species (337), as seen in Scheme 4.14. Subsequently, a 

1,3-nitro group migration could occur to form the diene (388), which would 

0 o· 0 gMe ©:Me ~J( 02N e 

Me Me Me 

H N02 "N0 2 

(336) (337) (338) 

! -
OH OH 

~N*Me "N0 2 02Nt6I:M• 
·H+ 

Me Me 

N0 2 

(322) (339) 

Scheme 4.14 

then undergo enolization to yield the nitro phenol (339). Finally, this nitro 

phenol (339) could react with •No2 and, following subsequent Joss of a 

proton, would form the dinitrophenol (322), also depicted in Scheme 4.14. 
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Conducting the photolysis of the charge-transfer complex of 2,3-di­

methylanisole (307) and TNM either in HFP or in dichloromethane 

containing TFA (0.71 mol L-1) was expected to slow the reaction of 

(02N)sC- with the 2,3-dimethylanisole radical cation, either by protonation 

by TFA23 or by suppression of the nucleophilic activity of (02N)sC- through 

solvation in the HFP solvent.24-29 This would allow competition from the 

•No2 I radical cation coupling process. While the conversion into products 

was somewhat slowed, product formation involving attack of (02N)sC- on 

the 2,3-dimethylanisole radical cation remained significant (See Tables 4.3 

and 4.4, Sections 4.5 and 4.6, respectively). 

In conclusion, it appears likely that most of the observed products in 

the photochemical reactions between 2,3-dimethylanisole (307) and TNM 

arose via the sterically hindered delocalized carbon radical (308). While 

there was no direct evidence for adduct formation involving the trinitro­

methyl function at C1 , the isolation of aromatic products (321) and (322) 

suggested that the majority of product formation proceeded via initial attack 

of (02N)sC- on the 2,3-dimethylanisole radical cation at C1 and subsequent 

rearrangement of the labile adducts (326)-(329). 
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CHAPTER FIVE 

EXPERIMENTAL AND APPENDIX 

5.1 Apparatus, Materials and Instrumentation 

Melting points were determined on a microscope slide and remain 

uncorrected. Infrared spectra were recorded on either a Perkin-Elmer 1600 

Series or a Shimadzu 8001 PC Series Fourier-transform i.r. spectrometer. 

1 Hand 13C n.m.r. spectra were recorded on either a Varian XL-300 or Unity 

300 spectrometer with SiMe4 (TMS) as an internal standard. All chemical 

shifts are expressed as parts per million (ppm) downfield from TMS and are 

singlets unless stated. Difference nuclear Overhauser enhancement 

(n.O.e.) experiments were performed on non-gassed solutions in an 

arrayed experiment, with the decoupler offset 1 0000 Hz for the control 

experiment and then low power cycled over multiplet peaks corresponding 

to the proton(s) being irradiated in the experiment.1 An acquisition time 

(AT) of one second was used , with delay (D2) of two seconds. The 

reported percentage enhancements represent the increase in intensity of a 

particular resonance (independent of the power level used for irradiation or 

the degree of solvation obtained). All n.O.e. and two-dimensional 

correlation experiments (HMBC, HMQC) were performed using narrowed 

spectral windows. Mass spectrometry was carried out on a Kratos MS-80 

instrument. 

Preparative scale chromatography was routinely carried out using a 

Chromatotron (a preparative scale, centrifugally accelerated , radial, thin 

layer chromatograph, Model 7924, Harrison Research Inc.) equipped with 

rotors using silica gel PF-254 (with CaS04.1/2H20). H.p.l.c. separations 

were carried out on a Varian 5000 liquid chromatograph equipped with an 
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Alltech cyanopropyl column, and by using a Varian UV-50 ultraviolet 

spectrometric detector and hexane/dichloromethane as solvent mixtures. 

Tetranitromethane was purchased from Aldrich or synthesised using 

the procedure described by Poe and Liang in Organic Synthesis Collective, 

volume 3, pg 803-805. 1 ,2,3-Trimethylbenzene, 1 ,2,4,5-tetramethyl­

benzene, hexamethylbenzene and 2,3-dimethylanisole were purchased 

from Aldrich, 1 ,3-dimethylnaphthalene from Janssen Chemicals, 2,6-di­

methylnaphthalene from L Light & Co., 1 ,4,6,7-tetramethylnaphthalene 

from Wiley Organics and pentamethylbenzene from Tokyo Kasei Kogyo. 

Dichloromethane (A.A.) and acetonitrile (HiPerSolv) were from BDH, and 

1 , 1,1 ,3,3,3-hexafluoropropan-2-ol from Sigma. 

WARNING. While no incident was experienced in working with 

tetranitromethane, it should be noted that its mixtures with 

hydrocarbons are detonative within certain concentration 

limits and that due care should be taken in handling mixtures 

of tetranitromethane and organic compounds.2 

The photonitration apparatus used for -20, -50 and -78° reactions 

was set up as illustrated in Fig. 5.1. For reactions at +20 and oo the same 

system was employed, except water was used instead of ethanol and ice 

was used instead of dry ice. 
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Fig. 5.1 Apparatus used for -20, -50 and -78° photonitrations. 



5.2 Experimental Relating to Chapter Two 

5.2.1 GENERAL PROCEDURE FOR THE PHOTONITRATION OF 1 ,4,6,7-

TETRAMETHYLNAPHTHALENE (56) WITH TETRANITROMETHANE. 

A solution of 1 ,4,6,7-tetramethylnaphthalene (56) (500 mg, 0.34 

mol L -1) and tetranitromethane (0.68 mol L-1) in dichloromethane (at +20 or 

-20°) or acetonitrile (at +20°) was irradiated with filtered light (Acut-ott<435 

nm). Aliquots were withdrawn from the reaction mixture at appropriate time 

intervals, the volatile material removed under reduced pressure at ::::;oo, and 

the product composition determined by 1 H n.m.r. spectral analysis (Tables 

2.1-2.3). 

5.2.1.1 Photonitration of 1 .4.6.7-Tetramethylnaphthalene (56) in 

Dichloromethane 

Photochemistry in dichloromethane at -20° and the identification of 1,4,6,7-

tetramethy/-r-1-nitro-t -4-trinitromethy/-1 ,4-dihydronaphtha/ene (75) and 

adducts (76) and (77). 

Reaction of 1 ,4,6,7-tetramethylnaphthalene (56) I tetranitromethane 

in dichloromethane at -20°, as above, for 2 h gave a product which was 

shown by 1 H n.m.r. spectral analysis (Table 2.1) to be a mixture of 1 ,4,6,7-

tetramethyl- r-1-nitro-t-4-trinitromethyl-1 ,4-dihydronaphthalene (75) (58%), 

its epimer (76) (2%), an adduct tentatively identified as 2,3,5,8-tetramethyl­

r-1-nitro-c-4-trinitromethyl-1 ,4-dihydronaphthalene (77) (3%), 4,6, 7 -tri­

methyl-2',2',2'-trinitroethylnaphthalene (78) (2%), 2,3,5,8-tetramethyl-1-

nitronaphthalene (79) (4%), 1 ,4,6,7-tetramethyl-2-nitronaphthalene (80) 

(3%), 4,6,7-trimethyl-1-nitromethylnaphthalene (81) (27%), and unidentified 

aromatic products (total 1 %). Crystallization of the product mixture from 
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dichloromethane/pentane gave the major product: 

1 ,4,6, 7-Tetramethy/-r-1-nitro-t-4-trinitromethy/-1,4-dihydro­

naphtha/ene (75), m.p. ago (dec.) (X-ray crystal structure determined, see 

Section 5.5). Vmax (KBr) 1613, 1588, 1544 cm-1. 1H n.m.r. (CDCis) () 2.07, 

s, 1-Me; 2.19, s, 4-Me; 2.26, s, 6-Me; 2.27, s, 7-Me; 6.22, d, JH2,H3 10.5 Hz, 

H2; 6.64, d, JH3,H2 10.5 Hz, H3; 7.12, br s, HS; 7.28, br s, H8. N.O.e. 

experiments gave the following results: irradiation at () 2.07 gave 

enhancements at() 6.22 (4.7%) and at() 7.28 (8.6%); irradiation at() 2.19 

gave enhancements at() 6.64 (5.7%) and at() 7.12 (9.3%); irradiation at 

o 6.22 gave enhancements at() 2.07 (0.4%) and at o 6.64 (7.2%); 

irradiation at () 6.64 gave enhancements at () 2.19 (0.4%) and at () 6.22 

(7.5%); irradiation at() 7.12 gave enhancements at() 2.19 (0.7%) and at 

() 2.26 (0.7%); irradiation at() 7.28 gave enhancements at() 2.07 (0.6%) 

and at() 2.27 (0.6%). 13C n.m.r. (CDCI3) () 19.6, 19.9, 6-Me, 7-Me; 26.2, 

26.8, 1-Me, 4-Me; 48.9, C4; 86.7, C1; 127.05, C8; 127.7, C3; 128.2, C4a; 

128.3, C5; 131.3, C8a; 131.6, C2; 139.25, 139.65, C6, C7; resonance for 

C(N02)3 not observed. The above assignments were confirmed by long 

range reverse detected heteronuclear correlation spectra (HMBC). 

The minor adducts (76) and (77) were not isolated but were 

characterized by their 1 H n.m.r. (CDCis) spectra: 1 ,4,6,7-Tetramethyl-r-1-

nitro-c-4-trinitromethyl-1 ,4-dihydronaphthalene (76) - o 1.99, s, 1-Me; 2.08, 

s, 4-Me; 2.18 and 2.35, both s, 6-Me, 7-Me; 6.45, d, JH2,H3 10.4 Hz, H2; 

6.62, d, JHs H2 10.4 Hz, H3; 7.06, s, HS; 7.72, s, H8. cis-2,3,5,8-Tetra-, 

methyl-1-nitro-4-trinitromethyl-1 ,4-dihydronaphthalene (77) - o 1.97 and 

2.15, both br s, 2-Me, 3-Me; 2.28 and 2.32, both s, 5-Me, 8-Me; 5.89, br s, 

H4; 5.91, br s, H1; 7.20 and 7.49, both s, H6, H7. 

The aromatic compounds (78), (79), (80) and (81) were isolated by 

chromatography on a silica gel Chromatotron plate of the product mixture 

formed in the photolysis of 1 ,4,6,7-tetramethylnaphthalene (56) I tetranitro-
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methane in dichloromethane at +20° (see below). 

Photochemistry in dichloromethane at +20° and the identification of some of 

the nitro aromatic products. 

Reaction of 1 ,4,6,7-tetramethylnaphthalene (56) I tetranitromethane 

in dichloromethane at +20°, as above, for 2 h gave a product which was 

shown by 1 H n.m.r. spectral analysis (Table 2.1) to be a mixture of adducts 

(total 17%), 4,6, 7 -trimethyl-1-(2' ,2' ,2'-trinitroethyl)-naphthalene (78) (8%}, 

2,3,5,8-tetramethyl-1-nitronaphthalene (79) (6%), 1 ,4,6,7-tetramethyl-2-

nitronaphthalene (80} (38%}, and 4,6,7-trimethyl-1-nitromethylnaphthalene 

(81) (31%). Chromatography of this mixture on a silica gel Chromatotron 

plate gave in elution order: 

4,6, 7-Trimethy/-1-(2',2',2'-trinitroethy/)-naphtha/ene (78}, m.p. 

131-133° (Insufficient for elemental analysis. Found: M+· 333.0961. 

C1sH1sNs06 requires 333.0962). Vmax (KBr) 1605, 1590 cm-1. 1 H n.m.r. 

(CDCis) 8 2.43, s, 7-Me; 2.45, s, 6-Me; 2.65, s, 4-Me; 4.84, s, CH2; 7.16, m, 

H2, H3; 7.44, s, H8; 7.78, s, H5. N.O.e. experiments gave the following 

results: irradiation at 8 2.65 gave enhancements at 8 7.16 (5.9%) and at 

8 7.78 (8.2%); irradiation at 8 4.84 gave enhancements at 8 7.16 (6.5%) 

and at 8 7.44 (14.1 %); irradiation at 8 7.16 gave enhancements at 8 2.65 

(0.8%) and at 8 4.84 (1.0%); irradiation at 8 7.44 gave enhancements at 

8 2.43 (1.1 %) and at 8 4.84 (3.4%); irradiation at 8 7.78 gave 

enhancements at 8 2.45 (0.8%) and at 8 2.65 (1.4%). 13C n.m.r. (CDCI3) 

8 19.0, 4-Me; 20.3, 20.5, 6-Me, 7-Me; 35.7, CH2; 119.85, C1; 121.45, C8; 

125.2, C3; 125.4, C5; 127.5, C2; 130.9, C4a; 131.9, C8a; 136.0, C6; 136.2, 

C4; 136.9, C7; resonance for C(N02)3 not observed. The above 

assignments were confirmed by long range reverse detected heteronuclear 

correlation spectra (HMBC). 

2,3,5,8-Tetramethy/-1-nitronaphtha/ene (79}, m.p. 155.5-156.5° 
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(Insufficient for elemental analysis. Found: M+· 229.11 03. C14H15N02 

requires 229.11 03). Vmax (KBr) 1531 cm-1. 1 H n.m.r. (CDC Is) o 2.31, s, 

2-Me; 2.50, s, 3-Me; 2.53, s, 8-Me; 2.64, s, 5-Me; 7.20, m, H6, H7; 7.88, s, 

H4. N.O.e. experiments gave the following results: irradiation at o 2.31 

gave an enhancement at o 2.50 (0.2%); irradiation at o 2.64 gave 

enhancements at o 7.19 (1 .7%) and at o 7.88 (6. 1 %); irradiation at o 7.20 

gave enhancements at o 2.53 (0.7%) and at o 2.64 (0.5%); irradiation at 

o 7.88 gave enhancements at o 2.50 (0.7%) and at o 2.64 (1 .0%). 13C 

n.m.r. (CDCis) o 14.7, 2-Me; 18.9, 5-Me; 19.9, 8-Me; 20.9, 3-Me; 121.95, 

C8a; 126.6, C4; 127.15, C6; 127.2, C2; 128.9, C8; 130.2, C7; 132.20, C5; 

132.23, C4a; 134.3, C3; 148.35, C1. The above assignments were 

confirmed by long range reverse detected heteronuclear correlation spectra 

(HMBC). 

1,4,6,7-Tetramethy/-2-nitronaphtha/ene (80), m.p. 100-101 a (Found: 

C, 73.5; H, 6.8; N, 6.0%. C14H15N02 requires C, 73.3; H, 6.6; N, 6.1 %). 

Vmax (KBr) 1586 cm-1. 1 H n.m.r. (CDCis) o 2.49, s, 6-Me and 7-Me; 2.66, s, 

4-Me; 2.77, s, 1-Me; 7.57, s, H3; 7.76, s, H5; 7.93, s, H8. N.O.e. 

experiments gave the following results: irradiation at o 2.49 gave 

enhancements at o 7.76 (4. 1 %) and at o 7.93 (4.0%); irradiation at o 2.66 

gave enhancements at o 7.57 (5.0%) and at o 7.76 (6.4%); irradiation at 

8 2.77 gave an enhancement at o 7.93 (6.5%); irradiation at o 7.57 gave an 

enhancement at o 2.66 (0.5%); irradiation at o 7.93 gave enhancements at 

82.49 (1.1%) and at 82.77 (2.0%). 13C n.m.r. (CDCI3) o 14.2, 1-Me; 19.1, 

4-Me; 20.3, 6-Me and 7-Me; 119.6, C3; 124.4, C8; 125.9, C5; 127.0, C1; 

131.0, C8a; 132.5, C4a; 133.1, C4; 136.95, C6; 138.2, C7; 146.6, C2. The 

above assignments were confirmed by long range reverse detected 

heteronuclear correlation spectra (HMBC). 

4,6, 7-Trimethyl-1-nitromethylnaphthalene (81), was unstable on 

silica gel and was obtained only in admixture with other materials. 1 H 

373 



n.m.r. (CDCI3) 8 2.47 and 2.49, both s, 6-Me, 7-Me; 2.69, s, 4-Me; 5.85, s, 

CH2; 7.25 and 7.38, both d, JH,H 7.2 Hz, H2, H3; 7.72 and 7.80, both s, H5, 

H8. 

5.2.1.2 Rearrangement of 1 ,4,6,7-Tetramethyl-r-1-nitro-t-4-trinitromethyl-

1.4-dihydronaphthalene (75) on Silica Gel 

The adduct (75) (30 mg) was adsorbed onto a silica gel 

Chromatotron plate and then eluted with first pentane and then pentane/ 

ether mixtures. The identified materials eluted were in elution order: 

Recovered adduct (75) (7 mg), identical with authentic material, 

above. 

1 ,4,6, 7-Tetramethyl-2-trinitromethyl-1 ,2-dihydronaphthalen-1-ol (84) 

(3.3 mg), m.p. 102° (dec.) (Insufficient for elemental analysis; Found: M+• 

351.10611. C1sH17N307 requires 351.10665). Vmax (KBr) 3590, 1620, 

1593 cm-1. 1H n.m.r. (CDCI3) 81.69, s, 1-Me; 2.11, d, J4-Me,H31.5 Hz, 

4-Me; 2.26, s, 6-Me; 2.29, s, 7-Me; 2.45, br s, OH; 4.38, d, JH2 H3 5.9 Hz, H2; 
' 

5.63, dq, JH3,H2 5.9 Hz, JH3,4-Me 1.5 Hz, H3; 7.03, s, H5; 7.25, s, H8. N.O.e. 

experiments gave the following results: irradiation at 8 1.69 gave 

enhancements at 8 4.38 (12.8%) and at 8 7.25 (4.7%); irradiation at 8 2.11 

gave enhancements at 8 5.63 (6.4%) and at 8 7.03 (9.5%); irradiation at 

8 4.38 gave enhancements at 8 1.69 (1.2%) and at 8 5.63 (4.6%); 

irradiation at 8 5.63 gave enhancements at 8 2.11 (1.1 %) and at 8 4.38 

(4.3%); irradiation at 8 7.03 gave enhancements at 8 2.11 (1.7%) and at 

8 2.26 (1.2%); irradiation at 8 7.25 gave enhancements at 8 1.69 (0.4%) and 

at 8 2.29 (1.2%). 13C n.m.r. (CDCI3) 8 19.6, 6-Me; 19.9, 7-Me; 20.0, 4-Me; 

34.45, 1-Me; 49.3, C2; 72.8, C1; 112.65, C3; 124.7, C8; 125.6, C5; 128.0, 

C4a; 136.1, C7; 136.3, C8a; 138.6, C6; 140.6, C4; resonance for C(N02)3 

not observed. The above assignments were confirmed by long range 
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reverse detected heteronuclear correlation spectra (HMBC). 

1 ,4,6, 7-Tetramethyl-2-nitro-1 ,2-dihydronaphthalen-1-ol (85) (2.3 mg), 

m.p. 54° (dec.) (Insufficient for elemental analysis; Found: parent ion not 

visible, M+·-H20 229.11054. C14H1sN02 requires 229.11 028). Vmax (KBr) 

3378, 1548 cm-1. 1H n.m.r. (CDCI3) o 1.52, s, 1-Me; 2.14, br s, 4-Me; 2.28, 

s, 6-Me; 2.30, s, 7-Me; 2.94, s, OH; 4.99, d, JH2,H3 6.3 Hz, H2; 5.88, dq, 

JH3,H2 6.3 Hz, JH3,4-Me 1.4 Hz, H3; 7.09, s, H5; 7.41, s, H8. N.O.e. 

experiments gave the following results: irradiation at o 1 .52 gave 

enhancements at o 4.99 (9.0%) and at o 7.41 (4.0%); irradiation at o 2.14 

gave enhancements at o 5.88 (5.4%) and at o 7.09 (8.0%); irradiation at 

o 4.99 gave enhancements at o 1.52 (0.9%) and at o 5.88 (3.7%); 

irradiation at o 5.88 gave enhancements at o 2.14 (0.7%) and at o 4.99 

(3.6%); irradiation at o 7.09 gave enhancements at o 2.14 (1.2%) and at 

o 2.28 {0.9%); irradiation at o 7.41 gave enhancements at o 1.52 (0.5%) and 

at o 2.30 (0.9%). 13C n.m.r. (CDCI3) o 19.5, 4-Me; 19.55, 6-Me; 19.8, 7-Me; 

28.7, 1-Me; 72.3, C1; 89.7, C2; 115.5, C3; 124.7, C8; 126.1, C5; 128.8, C4a; 

135.9, C7; 138.1, C8a; 138.3, C6; 140.3, C4. The above assignments were 

confirmed by long range reverse detected heteronuclear correlation spectra 

(HMBC). 

1,4,6, 7-Tetramethyl-1,2-dihydronaphthalene-r-1,c-2-diol (86) 

(6.7 mg), m.p. 98-98.5° (X-ray crystal structure determined, see Section 

5.5). Vmax (KBr) 3291 cm-1. 1H n.m.r. (CDCI3) o 1.38, s, 1-Me; 2.08, d, 

J4-Me, H3 1.5 Hz, 4-Me; 2.26, s, 6-Me; 2.29, s, 7-Me; 3.84, d, JH2,H3 5.9 Hz, 

H2; 5.93, dq, JH3,H2 5.9 Hz, JH3, 4-Me 1.5 Hz, H3; 7.04, s, H5; 7.49, s, H8. 

N.O.e. experiments gave the following results: irradiation at o 1.38 gave 

enhancements at o 3.84 {6.3%) and at o 7.49 (3.8%); irradiation at o 2.08 

gave enhancements at o 5.93 (5.2%) and at o 7.04 (8.9%); irradiation at 

o 3.84 gave enhancements at o 1.38 (0.9%) and at o 5.93 (4.0%); 

irradiation at o 5.93 gave enhancements at o 2.08 (0.9%) and at o 3.84 
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(2.6%); irradiation at o 7.04 gave enhancements at o 2.08 (1.2%) and at 

o 2.26 (0.9%); irradiation at o 7.49 gave enhancements at o 1.38 (0.5%) and 

at o 2.29 (0.9%). 13C n.m.r. (CDCb) o 19.3, 4~Me; 19.55, 6~Me; 19.7, 7-Me; 

26.4, 1-Me; 71.7, C2; 73.05, C1; 123.5, C3; 125.3, C5; 126.8, C8; 129.7, C4; 

135.3, C7; 135.4, C4a; 137.2, C6; 139.0, C8a. The above assignments 

were confirmed by long range reverse detected heteronuclear correlation 

spectra (HMBC). 

5.2.1.3 Photonitration of 1.4.6.7-Tetramethylnaphthalene (56) in Dichloro­

methane Containing Trifluoroacetic Acid 

Reaction of 1 ,4,6,7-tetramethylnaphthalene (56) (0.34 mol L-1) and 

tetranitromethane (0.68 mol L-1) in dichloromethane containing trifluoro­

acetic acid (0.68 mol L-1) at +20°, as above, for 2 h gave a product which 

was shown by 1H n.m.r. spectral analysis (Table 2.3) to be a mixture of 

2,3,5,8-tetramethyl-1-nitronaphthalene (79) (32%), 1 ,4,6,7 -tetramethyl-2-

nitronaphthalene (80) ( 48%) and 4,6, 7 -trimethyl-1-nitromethylnaphthalene 

(81) (6%). 

5.2.1.4 Rearrangement of 1.4.6.7-Tetramethyl-r-1-nitro-t-4-trinitromethyl-

1 ,4-dihydronaphthalene (75) in (D)Chloroform 

A solution of the adduct (75) (20 mg) in (D)chloroform (0.6 mL) was 

stored at +20° in the dark and the 1 H n.m.r. spectrum monitored at 

appropriate time intervals (Table 2.4). The major products of the 

rearrangement after 12 days were identified from comparison of their 1 H 

n.m.r. spectra as 4,6,7 -trimethyl-1-(2\2',2'-trinitroethyl)-naphthalene (78) 

(73%) and 4,6,7-trimethyl-1-nitromethylnaphthalene (81) (7%). In the early 

stages of the rearrangement it was clear that epimerization of adduct (75) 
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was occurring to give 1 ,4,6, 7 -tetramethyl-r-1-nitro-c-4-trinitromethyl-1 ,4-

dihydronaphthalene (76), equilibrium being approached after 8 h [(75):(76) 

ratio c. 5:1 ]. Subsequently two further ad ducts were formed tentatively 

identified from their 1 H n.m.r. spectra as 2,3,5,8-tetramethyl-r-1-nitro-c-4-

trinitromethyl-1 ,4-dihydronaphthalene (77) (after 5 days), above, and 

1 ,4,6,7-tetramethyl-t-2-nitro-r-1-trinitromethyl-1 ,2-dihydronaphthalene (87) 

(after 4 h): 1 H n.m.r. (CDC Is) o 2.08, s, 1-Me; 2.09, d, J4-Me, H3 1.3 Hz, 

4-Me; 2.33 and 2.35, both s, 6-Me, 7-Me; 5.61, d, JH2 H3 6.1 Hz, H2; 5.72, 
' 

dq, JH3,H2 6.1 Hz, JH3,4-Me 1.3 Hz, H3; 7.13 and 7.21, both s, H5, H8. 

5.2.1.5 Rearrangement of 1.4.6.7-Tetramethyl-r-1-nitro-t-4-trinitromethyl-

1.4-dihydronaphthalene (75) in Acetonitrile 

A quantitative study of the progess of this reaction was not possible 

because of the limited solubility of the adduct (75) in acetonitrile. Initially a 

slurry of the adduct (75) (11 0 mg) in acetonitrile (11 ml) was stirred at +20° 

in the dark and aliquots of the solution were removed at appropriate time 

intervals. The solvent was removed rapidly (<30 s) from each sample 

under reduced pressure at ::::;oa, and the composition of the residue 

determined from 1 H n.m.r. spectra. The reaction of adduct (75) in 

acetonitrile was rapid, being essentially complete in 4 h [c.f. 9 days in 

(D)chloroform] and gave predominantly different products. In acetonitrile 

after 4 h the rearrangment of (75) yielded mainly the nitro aromatic 

compounds 2,3,5,8-tetramethyl-1-nitronaphthalene (79) (14%), 1 ,4,6,7-

tetramethyl-2-nitronaphthalene (80) (52%) and 4,6,7 -trimethyl-1-nitro­

methylnaphthalene (81) (27%), these compounds being identified by 

comparison with the 1 H n.m.r. spectra of authentic samples; the 4,6,7-

trimethyl-1-(2',2',2'-trinitroethyl)-naphthalene (78) (1 %) was only a minor 

product in this rearrangement, with unidentified aromatic products (total 6%) 
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accounting for the remainder of the rearrangement products. Apart from 

rapid (after 1 min.) epimerization of adduct (75) to give (76), adducts (84), 

(85), and two unidentified ad ducts could be detected in the 1 H n.m.r. 

spectrum at that time, and 2,3,5,8-tetramethyl-r-1-nitro-o-4-trinitromethyl-1 ,4-

dihydronaphthalene (77) was detectable at reaction times between 3 min. 

and 2 h, reaching a maximum level (3%) after 40 min. 

5.2.2 GENERAL PROCEDURE FOR THE PHOTONITRATION OF 2,6-DI­

METHYLNAPHTHALENE (57) WITH TETRANITROMETHANE. 

A solution of 2,6-dimethylnaphthalene (57) (500 mg, 0.4 mol L-1) and 

tetranitromethane (0.8 mol L -1) in dichloromethane or acetonitrile was 

irradiated at +20 or -20° with filtered light (Acut-on<435 nm). Aliquots were 

withdrawn from the reaction mixture at appropriate time intervals, the 

volatile material removed under reduced pressure at :::;;oo, and the product 

composition determined by 1H n.m.r. spectral analysis (Tables 2.6 and 2.7). 

5.2.2.1 Photonitration of 2.6-Dimethylnaphthalene (57) in 

Dichloromethane 

Photochemistry in dichloromethane at +20° and the identification of the 

adducts (94)-(104). 

Reaction of 2,6-dimethylnaphthalene (57) I tetranitromethane in 

dichloromethane at +20°, as above, for 2 h gave a product which was 

shown by 1 H n.m.r. spectral analysis (Table 2.6) to be a mixture of adducts 

(total 79%), 2,6-dimethyl-1-nitronaphthalene (1 06) (16%) and other minor 

nitro aromatic compounds (total 3%). The adducts were partially separated 

by h.p.l.c. and gave in elution order: 

378 



trans-3, 7 -Dimethyl-2-nitro-1-trinitromethyl-1 ,2-dihydronaphthalene 

(94) , isolated only in admixture with adduct (95) below. 1 H n.m.r. (CDCis) 

o 2.05, d, JMe,H4 1.5 Hz, 3-Me; 2.32, s, 7-Me; 5.41, d, JH2,H1 1.4 Hz, H2; 

5.67, br s, H1; 6.53, d, JH4,Me 1.5 Hz, H4; 6.95, br s, H8; 7.05, d, JHs,H6 7.8 

Hz, H5; 7.21, br d, JH6,H5 7.8 Hz, H6. The structure and stereochemistry of 

this adduct is confirmed by its coversion into the nitro cycloadduct, the 

structure of which is determined below by X-ray crystallography. 

trans-2, 6-Dimethy/-1-nitro-4-trinitromethy/-1 ,4-dihydronaphtha/ene 

(95), m.p. 104° (dec.) (X-ray crystal structure determined, see Section 5.5). 

Vmax (KBr) 1620, 1592, 1568 cm-1. 1 H n.m.r. (CD Cis) o 1.97, d, JMe,H3 1.5 

Hz, 2-Me; 2.36, s, 6-Me; 5.35, br s, H4; 6.13, br s, H1; 6.29, dq, JH3,H4 3.0 

Hz, JHs,Me 1.5 Hz, H3; 7.11, brs, H5; 7.30-7.31, m, H7, H8. N.O.e. 

experiments gave the following results: irradiation at 8 1.97 gave 

enhancements at 8 6.13 (3.4%) and at o 6.29 (4.5%}; irradiation at o 5.35 

gave enhancements at 8 6.29 (5.1 %) and at 8 7.11 (3.7%); irradiation at 

8 6.29 gave enhancements at 8 1.97 (1.1 %) and at 8 5.35 (3.4%). 13 C 

n.m.r. (CDCis) 8 20.1, 2-Me; 21.2, 6-Me; 45.4, C4; 87.0, C1; 119.2, C3; 

124.2, C4a; 126.9, C8; 128.4, C5; 129.1, C8a; 131.5, C7; 138.1, C2; 140.9, 

C6; resonance for C(N02)3 not observed. The above assignments were 

confirmed by long range reverse detected heteronuclear correlation spectra 

(HMBC). 

trans-3, 7 -Dimethyl-1-nitro-4-trinitromethyl-1 ,4-dihydronaphthalene 

(96) , m.p. 185° (dec.) (crystals of inadequate quality for single crystal X-ray 

analysis; insufficient for elemental analysis; parent ion not visible in mass 

spectrum). vmax (KBr) 1620, 1590 cm-1. 1 H n.m.r. (CDC Is) 8 2.11, m, 3-Me; 

2.37, s, 7-Me; 5.33, brs, H4; 6.18, m, H1; 6.29, m, H2; 7.21-7.22, m, H5, H6, 

H8. N.O.e. experiments gave the following results: irradiation at 8 2.11 

gave enhancements at 8 5.33 (4.1%) and at 8 6.29 (5.1%); irradiation at 

8 5.33 gave enhancements at 8 2.11 (0.7%) and at 8 7.21 (1.6%); 
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irradiation at 6 6.29 gave enhancements at 6 2.11 (0.7%) and at 6 6.18 

(1.6%). 13C n.m.r. (CDCis) 6 21.2, 7-Me; 23.8, 3-Me; 49.5, C4; 83.6, C1; 

122.4, C4a; 126.6, C6; 128.7, C2; 129.1, C5; 131.0, C8; 131.2, C8a; 132.1, 

C3; 141.0, C7; resonance for C(N02)3 not observed. The above 

assignments were confirmed by long range reverse detected heteronuclear 

correlation spectra (HMBC). 

cis-2, 6-Dimethyl-1-nitro-4-trinitromethy/-1 ,4-dihydronaphtha/ene (97), 

m.p. 134-136° (X-ray crystal structure determined, see Section 5.5). Vmax 

(KBr) 1647, 1599, 1578, 1554 cm-1. 1H n.m.r. (CDCis) 6 2.08, br s, 2-Me; 

2.37, s, 6-Me; 5.30, br s, H4; 5.78, d, JH1,H4 2.4 Hz, H1; 6.47, dq, JH3,H4 4.9 

Hz, JHs, Me 1.5 Hz, H3; 6.97, br s, H5; 7.34, br d, JH7,H8 7.8 Hz, H7; 7.70, d, 

JH8,H7 7.8 Hz, H8. N.O.e. experiments gave the following results: 

irradiation at 6 2.08 gave enhancements at 6 5.78 (4.3%) and at 6 6.47 

(5.5%); irradiation at 6 5.30 gave enhancements at 6 6.47 (3.7%) and at 

6 6.97 (3.4%); irradiation at 6 5.78 gave enhancements at 6 2.08 (0.7%) 

and at 6 7.70 (3.1%); irradiation at 6 6.47 gave enhancements at 6 2.08 

(0.6%) and at 6 5.30 (2.9%). 13C n.m.r. (CDCis) 6 21.4, 6-Me; 22.5, 2-Me; 

44.9, C4; 85.3, C1; 121.4, C3; 126.2, C8a; 127.4, C4a; 128.0, C7; 131.0, C5; 

131.5, C8; 137.2, C2; 141.2, C6; resonance for C(N02)3 not observed. The 

above assignments were confirmed by long range reverse detected 

heteronuclear correlation spectra (HMBC). 

cis-2,6-Dimethyl-4-trinitromethyl-1 ,4-dihydronaphthalen-1-o! (98), 

m.p. 108-11 oo (crystals of inadequate quality for single crystal X-ray 

analysis; insufficient for elemental analysis; parent ion not visible in mass 

spectrum). Vmax (KBr) 3416, 1618, 1598 cm-1. 1H n.m.r. (CDCis) 6 2.02, br 

s, 2-Me; 2.34, s, 6-Me; 4.79, br d, JH1 ,OH 9.7 Hz, H1; 5.16, br s, H4; 6.02, dq, 

JH3,H4 4.4 Hz, JHs,Me 1.5 Hz, H3; 6.95, br s, H5; 7.29, br d, JH7,H8 7.8 Hz, 

H7; 7.48, d, JH8,H7 7.8 Hz, H8. 

cis-3, 7 -Dimethyl-1-nitro-4-trinitromethyl-1 ,4-dihydronaphthalene (99), 
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an impure oil isolated only in small quantity. 1 H n.m.r. (CDCI3) o 2.1 0, s, 

3-Me; 2.43, s, 7-Me; 5.40, br s, H4; 5.82, d, JHi,H2 6.3 Hz, H1; 6.48, dq, 

JH2,Hi 6.3 Hz, JH2,Me 1.5 Hz, H2; 7.07, d, JH5,H6 7.9 Hz, H5; 7.24, br d, 

JH6,H5 7.9 Hz, H6; 7.46, br s, H8. 

Nitro Cycloadduct (1 00), isolated only in small quantity and in 

admixture with the major nitro cycloadduct (101). iH n.m.r. (CDCI3) o 1.94, 

s, 3-Me; 2.33, s, 7-Me; 5.29, d, JH4,H2 2.4 Hz, H4; 5.62, d, JH1,H2 6.3 Hz, H1; 

5.66, dd, JH2,Hi 6.3 Hz, JH2,H4 2.4 Hz, H2; 7.07, br s, H8; 7.17, br d, JH6,H5 

7.8 Hz, H6; 7.25, d, JH5,H6 7.8 Hz, H5. N.O.e. experiments gave the 

following results: irradiation at o 1.94 gave enhancements at o 5.29 (5.6%) 

and at o 5.66 (2.1 %); irradiation at o 2.33 gave enhancements at o 7.07 

(3.8%) and at o 7.25 (2.5%); irradiation at o 5.64 gave enhancements at 

o 1.94 (1.3%) and at o 7.07 (3.9%). 13C n.m.r. (CDCI3) o 21.3, 7-Me; 23.5, 

3-Me; 48.1, C4; 79.1, C2; 82.3, C1; 87.1, C3; 127.9, C8a; 128.5, C8; 131.41, 

131.44, C5, C6; 133.3, C4a; 141.0, C7; resonance for C(NOz)3 not 

observed. The above assignments were confirmed by long range reverse 

detected heteronuclear correlation spectra (HMBC). 

Nitro Cycloadduct (1 01 ), m.p. 169° (dec.) (X-ray crystal structure 

determined, see Section 5.5}. Vmax (KBr) 1588, 1556 em -1. 1 H n.m.r. 

(CDCI3) o 2.07, s, 2-Me; 2.33, s, 6-Me; 5.17, d, JH4,H3 4.0 Hz, H4; 5.19, s, 

H1; 5.64, d, JH3,H4 4.0 Hz, H3; 7.06, br s, H5; 7.19, br d, JH7,H8 7.8 Hz, H7; 

7.22, d, JH8,H7 7.8 Hz, H8. N.O.e. experiments gave the following results: 

irradiation at o 2.07 gave enhancements at o 5.19 (5.4%) and at o 5.64 

(3.8%); irradiation at o 2.33 gave enhancements at o 7.06 (4.0%) and at 

o 7.19 (1.9%), irradiation at o 5.18 gave enhancements at o 2.07 (1.6%), at 

o 5.64 (5.3%), at o 7.06 (4.6%), and at o 7.22 (2.6%); irradiation at o 5.64 

gave enhancements at o 2.07 (1.1 %) and at o 5.17 (2.8%). i3C n.m.r. 

(CDCI3) o 19.3, 2-Me; 21.3, 6-Me; 46.2, C4; 84.1, C3; 85.7, C1; 86.3, C2; 

125.9, C8a; 127.9, C8; 131.61, C5; 131.64, C7; 132.5, C4a; 141.6, C6; 
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resonance for C(N02)2 not observed. The above assignments were 

confirmed by long range reverse detected heteronuclear correlation spectra 

(HMBC). 

trans-3,7 -Dimethyl-1-trinitromethyl-1 ,2-dihydronaphthalen-2-ol (1 02), 

an oil isolated only in admixture with the hydroxy cycloadduct (1 04), below. 

1 H n.m.r. (CDCis) o 1.91, d, JMe,H4 1.5 Hz, 3-Me; 2.31, s, 7-Me; 4.58, br s, 

H1; 4.78, br s, H2; 6.23, d, JH4 Me 1.5 Hz, H4; 6.94, br s, H8; 7.02, d, JHs H6 
' ' 

7.8 Hz, H5; 7.19, br d, JH6,H5 7.8 Hz, H6. 

trans-2,6-Dimethyl-4-trinitromethyl-1 ,4-dihydronaphthalen-1-ol (1 03), 

m.p. 75° (dec.), isolated in small quantity with crystals of inadequate quality 

for single crystal X-ray analysis, parent ion not visible in mass spectrum. 

Vmax (KBr) 3452, 1599 cm-1. 1H n.m.r. (CDCis) o 2.04, m, 2-Me; 2.34, s, 

6-Me; 4.96, br s, H1; 5.19, br s, H4; 6.00, dq, JH3,H4 4.9 Hz, JHs,Me 1.0 Hz, 

H3; 7.02, br s, H5; 7.30, br d, JH7 HB 7.8 Hz, H7; 7.68, d, JHs H7 7.8 Hz, H8. 
' ' 

Hydroxy cyc/oadduct (104), m.p. 183-184° (X-ray crystal structure 

determined, see Section 5.5). Vmax (KBr) 3415, 1618, 1580 cm-1. 1 H 

n.m.r. (CDCis) o 1.75, s, 2-Me; 2.38, s, 6-Me; 4.73, s, H4; 4.75, d, JH3,0H 3.9 

Hz, H3; 4.93, s, H1; 7.18, br s, H5; 7.21-7.26, m, H7, H8. N.O.e. 

experiments gave the following results: irradiation at o 1.75 gave 

enhancements at o 4.75 (2.3%) and at o 4.93 (6.7%); irradiation at o 2.38 

gave enhancements at o 7.18 (3.7%) and at o 7.21 (2.7%); irradiation at 

o 4.93 gave enhancements at o 1.75 (0.9%) and at o 7.23 (2.9%). 13C 

n.m.r. (CDCis) o 16.9, 2-Me; 21.4, 6-Me; 48.8, C4; 70.6, C3; 84.7, C1; 87.7, 

C2; 127.9, C8; 128.5, C8a; 130.6, C5; 132.2, C4a; 132.7, C7; 141.2, C6; 

resonance for C(N02)2 not observed. The above assignments were 

confirmed by long range reverse detected heteronuclear correlation spectra 

(HMBC). 
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Photochemistry in dich!oromethane at -20° and the identification of some of 

the aromatic products (1 05)-(1 07). 

Reaction of 2,6-dimethylnaphthalene (57) I tetranitromethane in 

dichloromethane at -20°, as above, for 3 h gave a product which was shown 

by 1 H n.m.r. spectra to be a mixture (Table 2.6) of adducts (total15%), 3,7-

dimethyl-1-trinitromethylnaphthalene (1 05) (2%), 2,6-dimethyl-1-nitro­

naphthalene (106) (55%), 3,7-dimethyl-1-nitronaphthalene (107) (8%),and 

other unidentified nitro aromatic compounds (20%). Chromatography of 

this mixture on a silica gel Chromatotron plate gave, in order of elution: 

3,7-Dimethy/-1-trinitromethy/naphthalene (105), m.p. 108° (dec.) 

(Insufficient for elemental analysis, Found: M+· 305.0652. C13H11 N305 

requires 305.0648). Vmax (KBr) 1617, 1593, and 1576 cm-1. 1H n.m.r. 

(CDCI3) o 2.47, s, 7-Me; 2.54, s, 3-Me; 7.02, br s, H8; 7.36, d, JH2,H4 1.5 Hz, 

H2; 7.42, dd, JH6,H5 8.3 Hz, JH6,H8 1.5 Hz, H6; 7.80, d, JH5,H6 8.3 Hz, H5; 

7.93, br s, H4. N.O.e. experiments gave the following results: irradiation at 

o 2.47 gave enhancements at o 7.02 (4.7%) and at o 7.42 (4.0%); 

irradiation at o 2.54 gave enhancements at o 7.36 (4.8%) and at o 7.93 

(2.4%); irradiation at o 7.02 gave an enhancement at o 2.47 (0.5%); 

irradiation at o 7.39 gave enhancements at o 2.47 (0.5%), at o 2.54 (0.5%) 

and at o 7.80 (5.3%); irradiation at o 7.80 gave enhancements at o 7.42 

(5.9%) and at o 7.93 (3.3%); irradiation at o 7.93 gave enhancements at 

o 2.54 (0.5%) and at o 7.80 (2.5%). 

2,6-Dimethyl-1-nitronaphthalene (106), m.p. 66.5-6]0 (Lit.3 67-67.5°). 

Vmax (KBr) 1612, 1518 cm-1. 1H n.m.r. (COCI3) o 2.47, s, 2-Me; 2.50, s, 

6-Me; 7.29, d, JH3,H4 8.3 Hz, H3; 7.41, dd, JH7,H8 8.8 Hz, JH7,H5 2.0 Hz, H7; 

7.61, br s, H5; 7.61, d, JH8,H7 8.8 Hz, H8; 7.76, d, JH4,H3 8.3 Hz, H4. N.O.e. 

experiments gave the following results: irradiation at o 7.29 gave 

enhancements at o 7.76 (5.4%) and at o 2.47 (0.7%); irradiation at o 7.41 

gave enhancements at o 7.61 (4.6%) and at o 2.50 (0.5%); irradiation at 
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8 7.61 gave enhancements at 8 7.76 (1.8%), at 8 7.41 (7.9%), and at 8 2.50 

(0.8%); irradiation at 8 7.76 gave enhancements at 8 7.61 (1.5%) and at 

8 7.29 (7.0%). 

3,7~Dimethyl-1-nitronaphthalene (1 07), m.p. 80-81 o (Lit.3 83-84°). 

Vmax (KBr) 1615, 1518 cm·1. 1 H n.m.r. (CDCI3) 8 2.55, s, 3-Me; 2.56, s, 

7~Me; 7.41, dd, JH6,H5 8.3 Hz, JH6,H8 1.4 Hz, H6; 7.75, d, JH5,H6 8.3 Hz, H5; 

7.84, br s, H4; 8.05, d, JHa,He 1.4 Hz, H8; 8.29, d, JH4,H2 1.0 Hz, H2. N.O.e. 

experiments gave the following results: irradiation at 8 7.41 gave 

enhancements at 8 7.75 (3.9%) and at 8 2.56 (0.2%); irradiation at 8 7.75 

gave enhancements at 8 7.84 (1.6%) and at 8 7.41 (5.1 %); irradiation at 

8 7.84 gave enhancements at 8 7.75 (1.5%), and at 8 2.55 (0.1 %); 

irradiation at 8 8.05 gave an enhancement at 8 2.56 (0.1%); irradiation at 

8 8.29 gave an enhancement at 8 2.55 (0.2%). 

5.2.2.2 Thermal Cycloaddition of trans-3, 7 -Dimethyl-2-nitro~ 1-trinitro­

methyl-1,2-dihydronaphthalene (94) in (D)Chloroform 

A solution of a mixture of the nitro trinitromethyl adduct [(94); 29%] 

and trans-2,6-dimethyl-1-nitro-4-trinitromethyl-1 ,4-dihydronaphthalene 

[(95); 71 %] in (D)chloroform was stored at +22° in the dark and the 1 H n.m.r. 

spectrum monitored at appropriate time intervals. The nitro trinitromethyl 

adduct (94) was slowly transformed (half~life 96 h) into the nitro cycloadduct 

( 1 01). The trans-2, 6-dimethyl-1-nitro-4-trin itromethyl-1 ,4-dihydro­

naphthalene (95) was unchanged during the duration of the experiment. 

The nitro cycloadduct (1 01 ), isolated by h.p.l.c., was identical with an 

authentic sample, see above. 
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5.2.2.3 Thermal Cycloaddition of trans-3.7-Dimethyl-1-trinitromethyl-1 .2-

dihydronaphthalen-2-ol (1 02) in (D)Chloroform 

A solution of a mixture of the hydroxy trinitromethyl adduct [(1 02); 

80%] and the hydroxy cycloadduct [(1 04); 20%] in (D)chloroform was stored 

at +22° in the dark and the 1 H n.m.r. spectrum monitored at appropriate time 

intervals. The hydroxy trinitromethyladduct (1 02) was transformed into the 

hydroxy cycloadduct (1 04) with a half-life estimated to be c. 13 h, the 

measurements being complicated by the precipitation of the hydroxy cycle­

adduct (1 04) during the period of the observations. After 170 h the 1 H 

n.m.r. spectrum obtained was essentially that of the pure hydroxy cycle­

adduct (1 04), above. 

5.2.3 GENERAL PROCEDURE FOR THE PHOTONITRATION OF 1,3-01-

METHYLNAPHTHALENE (58) WITH TETRANITROMETHANE. 

A solution of 1 ,3-dimethylnaphthalene (58) (500 mg, 0.4 mol L-1) and 

tetranitromethane (0.8 mol L-1) in dichloromethane (at +20, 0, or -20°) or 

acetonitrile ( +20 or -20°) was irradiated with filtered light (Acut-ott<435 nm). 

Aliquots were withdrawn from the reaction mixture at appropriate time 

intervals, the volatile material removed under reduced pressure at :s;oo, and 

the product composition determined by 1 H n.m.r. spectral analysis (Tables 

2.8 and 2.9). 
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5.2.3.1 Photonitration of 1 .3-Dimethylnaphthalene (58) in 

Dichloromethane 

Photochemistry in dichloromethane at +20° and the identification of adducts 

(11 0)-(116). 

Reaction of 1 ,3-dimethylnaphthalene (58) I tetranitromethane in 

dichloromethane at +20°, as above, for 2 h gave a product which was 

shown by 1H n.m.r. spectral analysis (Table 2.8) to be a mixture of trans-5,7-

dimethyl-2-nitro-1-trinitromethyl-1 ,2-dihydronaphthalene (11 0) (1 0%), trans-

6,8-dimethyl-1-nitro-4-trinitromethyl-1 ,4-dihydronaphthalene (111) (8.5%), 

the nitro cycloadduct (112) (4.5%), cis-6,8-dimethyl-1-nitro-4-trinitromethyl-

1 ,4-dihydronaphthalene (113) (10.5%), and three further adducts (114) 

(1 %), (115) (2%) and (116) (6%) which were identified tentatively from their 

1 H n.m.r. spectra, 6,8-dimethyl-2-trinitromethylnaphthalene (117) (2.5%), 

5,7-dimethyl-1-trinitromethylnaphthalene (118) (10%), and 2,4-dimethyl-1-

nitronaphthalene (119) (38%). The adducts were partially separated by 

h.p.l.c. and gave the following in elution order: 

trans-5,7 -Dimethyl-2-nitro-1-trinitromethyl-1 ,2-dihydronaphthalene 

(11 0) as an impure oil. 1 H n.m.r. (CDCls) o 2.29, s, 7-Me; 2.34, s, 5-Me; 

5.66, dd, JH2,H3 6.8 Hz, JH2,H1 1.0 Hz, H2; 5.70, br s, H1; 5.98, ddd, JH3,H4 

9.8 Hz, JH3,H2 6.8 Hz, JH3,H1 1.0 Hz, H3; 6.81, br s, H8; 7.04, d, JH4,H3 9.8 

Hz, H4; 7.08, br s, H6. N.O.e. experiments gave the following results: 

irradiation at o 2.29 gave enhancements at 8 6.81 (3.5%) and at 8 7.08 

(3.7%); irradiation at 8 2.34 gave enhancements at 8 7.04 (8.0%) and at 

o 7.08 (5.3%); irradiation at 8 5.66 gave enhancements at 8 5.98 (5.7%) 

and at 8 6.81 (4.7%); irradiation at 8 5.98 gave enhancements at 8 5.66 

(5.4%) and at o 7.04 (5.6%); irradiation at o 6.81 gave enhancements at 

o 2.29 (0.6%) and at o 5.70 (4.5%). 13C n.m.r. (CDCis) o 18.8, 5-Me; 21.2, 

7-Me; 43.8, C1; 76.1, C2; 114.9, C3; 120.1, C8a; 127.7, C4a; 128.4, C8; 
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131.6, C4; 134.3, C6; 136.0, C5; 140.5, C7; resonance for C(N02)3 not 

observed. The above assignments were confirmed by long range reverse 

detected heteronuclear correlation spectra (HMBC). The structure of the 

nitro trinitromethyl adduct (11 0) was further confirmed by its thermal 

cycloaddition in (D)chloroform to give the nitro cycloadduct (122), the 

structure of which is established below. 

trans-6,8-Dimethy/-1-nitro-4-trinitromethy/-1 ,4-dihydronaphtha/ene 

(111 ), m.p. 114.5-115.5° (X-ray crystal structure determined, see Section 

5.5). Vmax (KBr) 1615, 1594, 1576, 1558 cm-1. i H n.m.r. (CDCis) 8 2.23, s, 

8-Me; 2.34, s, 6-Me; 5.39, br s, H4; 6.20, br s, H1; 6.56, m, H3: 6.57, m, H2; 

6.98, s, H5; 7.17, s, H7. N.O.e. experiments gave the following results: 

irradiation at 8 2.23 gave enhancements at 8 6.20 (7.2%) and at 8 7.17 

(6.6%); irradiation at 8 2.34 gave enhancements at 8 6.98 (5.3%) and at 

8 7.17 (5.0%); irradiation at 8 5.39 gave enhancements at 8 6.56 (3.0%) 

and at 8 6.98 (4.8%); irradiation at 8 6.20 gave enhancements at 8 2.23 

(1.5%) and at 8 6.57 (2.8%); irradiation at 8 6.98 gave enhancements at 

8 2.34 (1.4%) and at 8 5.39 (4.7%). i3C n.m.r. (CDCis) 8 19.2, 8-Me; 21.15, 

6-Me; 44.7, C4; 82.4, C1; 124.5, C2; 125.2, C4a; 125.55, C8a; 126.3, C5; 

131.1, C3; 133.7, C7; 138.9, C8; 140.7, C6; resonance for C(N02)s not 

observed. The above assignments were confirmed by long range reverse 

detected heteronuclear correlation spectra (HMBC). 

Nitro cycloadduct (112), m.p. 179.5-180.5° (X-ray crystal structure 

determined, see Section 5.5). Vmax (KBr) 1595, 1552 cm-1. 1H n.m.r. 

(CDCis) 8 1.90, s, 3-Me; 2.02, s, 1-Me; 5.23, d, JH2,H4 2.5 Hz, H2; 5.32, d, 

JH4,H2 2.5 Hz, H4; 7.31-7.41, m, H5-H8. N.O.e. experiments gave the 

following results: irradiation at 8 1.90 gave enhancements at 8 5.23 (3.9%) 

and at 8 5.32 (4.9%); irradiation at 8 2.02 gave enhancements at 8 5.23 

(7.5%) and at 8 7.35 (3.8%); irradiation at 8 5.23 gave enhancements at 

8 1.90 (0.4%) and at 8 2.02 (0.5%); irradiation at 8 5.32 gave 
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enhancements at 8 1.90 (0.4%) and at 8 7.37 (1.1 %). 13C n.m.r. (CDCI3) 

8 20.7, 1-Me; 23.2, 3-Me; 48.6, C4; 84.4, C2; 88.0, C1; 88.6, C3; 129.3, C4a; 

136.9, C8a; 124.05, 130.2, 130.5, 131.7, C5, C6, C7, C8; resonance for 

C(N02)3 not observed. The above assignments were confirmed by long 

range reverse detected heteronuclear correlation spectra (HMBC). 

cis-6,8-Dimethy/-1-nitro-4-trinitromethy/-1 ,4-dihydronaphtha/ene 

(113), m.p. 129.0° (dec.) (X-ray crystal structure determined, see Section 

5.5). Vmax (KBr) 1616, 1601, 1572, 1547 cm-1. 1H n.m.r. (CDCis) 8 2.32, s, 

8-Me; 2.35, s, 6-Me; 5.34, br s, H4; 6.01, dd, JH1 ,H2 5.9 Hz, JH1 ,H4 2.7 Hz, 

H1; 6.62, ddd, JH3,H2 10.2 Hz, JH3,H4 4.8 Hz, JH3,H1 1.0 Hz, H3; 6.85, ddd, 

JH2,H3 10.2 Hz, JH2,H1 5.9 Hz, JH2,H4 1.0 Hz, H2; 6.90, s, H5; 7.23, s, H7. 

N.O.e. experiments gave the following results: irradiation at 8 2.33 gave 

enhancements at 8 6.01 (7.2%), at 8 6.90 (4.8%) and at 8 7.23 (8.7%); 

irradiation at 8 5.34 gave enhancements at 8 6.62 (4.7%) and at 8 6.90 

(4.5%); irradiation at 8 6.01 gave enhancements at 8 2.32 (1.8%) and at 

8 6.85 (4.6%); irradiation at 8 6.62 gave enhancements at 8 5.34 (4.4%) 

and at 8 6.85 (7.8%); irradiation at 8 7.23 gave enhancements at 8 2.32 

(1.2%) and at 8 2.35 (0.9%). 13C n.m.r. (CDCI3) 8 19.4, 8-Me; 21.2, 6-Me; 

45.0, C4; 79.1, C1; 124.6, C8a; 125.7, C2; 126.8, C5; 127.1, C4a; 130.4, C3; 

133.6, C7; 140.7, C8; 141.2, C6; resonance for C(N02)3 not observed. The 

above assignments were confirmed by long range reverse detected 

heteronuclear correlation spectra (HMBC). 

trans-6,8-Dimethyl-2-trinitromethyl-1 ,2-dihydronaphthalen-1-ol (114), 

isolated only in low yield as an impure oil. 1H n.m.r. (CDCis) 8 2.31, s, 

6-Me; 2.34, s, 8-Me; 4.46, d, JH2,H3 5.9 Hz, H2; 5.20, br s, H1; 5.77, ddd, 

JH3,H4 9.8 Hz, JH3,H2 5.9 Hz, JH3,H1 2.0 Hz, H3; 6.85, dd, JH4,H3 9.8 Hz, 

JH4,H2 1.5 Hz, H4; 6.85, s, H5; 7.02, s, H7. N.O.e. experiments gave the 

following results: irradiation at 8 4.46 gave enhancements at 8 5.20 (1.7%) 

and at 8 5.77 (1.9%); irradiation at 8 5.20 gave enhancements at 8 2.34 
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(1.3%) and at 8 4.46 (1.9%); irradiation at 8 5.77 gave enhancements at 

8 4.46 (2.5%) and at 8 6.85 (2.0%); irradiation at 8 6.85 gave 

enhancements at 8 2.31 (0.8%) and at 8 5.77 (3.6%); irradiation at 8 7.02 

gave enhancements at 8 2.31 (0.8%) and at 8 2.34 (0.8%). 

Hydroxy cycloadduct (115), m.p. 151-153° (insufficient for elemental 

analysis; parent ion not visible in mass spectrum; crystals were obtained 

by crystallization but were of inadequate quality for single crystal X-ray 

analysis). Vmax (KBr) 3565, 1603 cm-1. 1 H n.m.r. (CDCis) 8 1.54, s, 3-Me; 

1.92, s, 1-Me; 4.38, d, JH2,H4 3.0 Hz, H2; 4.82, d, JH4,H2 3.0 Hz, H4; 7.40-

7.49, m, H5, H6, H7, H8. N.O.e. experiments gave the following results: 

irradiation at 8 1.54 gave enhancements at 8 4.38 (4.7%) and at 8 4.82 

(5.7%); irradiation at 8 1.92 gave enhancements at 8 4.38 (7.9%) and at 

8 7.43 (3.4%); irradiation at 8 4.38 gave enhancements at 8 1.54 (0.4%) 

and at 8 1.92 (0.6%); irradiation at 8 4.82 gave enhancements at 8 1.54 

(0.6%) and at 8 7.46 (2.4%). 13C n.m.r. (CDCis) 8 21.1, 1-Me; 24.1, 3-Me; 

52.85, C4; 71.1, C3; 87.1, C1; 87.85, C2; 123.9, C6; 129.7, C5; 130.0, C7; 

131.1, C4a; 132.2, C8; 137.5, C8a; resonance for C(N02)s not observed. 

The above assignments were confirmed by long range reverse detected 

heteronuclear correlation spectra (HMBC). 

Finally, although trans-2,4-dimethyl-2-nitro-1-trinitromethyl-1 ,2-di­

hydronaphthalene (116) could not be isolated, it was detected through its 

1 H n.m.r. spectrum in product mixtures. 1 H n.m.r. (CDCis) 8 2.07, d, 

J4-Me,H3 1.4 Hz, 4-Me; 2.09, s, 2-Me; 5.55, s, H1; 6.14, d, JH3,4-Me 1.4 Hz, 

H3; the remainder of the spectrum was obscured by other signals of the 

reaction mixture. 

Photochemistry in dichloromethane at -20°and the identification of the 

aromatic products (117)-(119). 

Reaction of 1 ,3-dimethylnaphthalene (58) I tetranitromethane in 
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dichloromethane at -20°, as above, for 2 h gave a product which was shown 

by 1 H n.m.r. spectral analysis (Table 2.8) to be a mixture of adducts (11 0) 

(1 %), (111) (1.3%), (112) (0.5%), (113) (1.5%), (115) (0.2%) and (116) (3%) 

together with the aromatic compounds 6,8-dimethyl-2-trinitromethyl­

naphthalene (117) (1%), 5,7-dimethyl-1-trinitromethylnaphthalene (118) 

(1 %), and 2,4-dimethyl-1-nitronaphthalene (119) (89%). Chromatography 

of this mixture on a silica gel Chromatotron plate gave in elution order: 

6,8-Dimethy/-2-trinitromethy/naphtha/ene (117), m.p. 73-74.5° 

(Insufficient for elemental analysis. Found: M+• 305.06478. C13H11 N305 

requires 305.06478). Vmax (KBr) 1602, 1587 cm-1. 1H n.m.r. (CDCI3) 

8 2.53, s, 6-Me; 2.68, s, 8-Me; 7.34, br s, H7; 7.50, dd, JH3,H4 8.8 Hz, JH3,H1 

1.9 Hz, H3; 7.56, br s, H5; 7 .92, d, JH4,H3 8.8 Hz, H4; 8.26, d, JH1 ,H3 1.9 Hz, 

H1. N.O.e. experiments gave the following results: irradiation at 8 2.53 

gave enhancements at 8 7.34 (3.5%) and at 8 7.56 (3.9%); irradiation at 

8 2.68 gave enhancements at 8 7.34 (4.5%) and at 8 8.26 (8.4%); 

irradiation at 8 7.34 gave enhancements at 8 2.53 (0.3%) and at 8 2.68 

(0.6%); irradiation at 8 7.53 gave enhancements at 8 2.53 (0.5%) and at 

8 7.92 (9.5%); irradiation at 8 7.92 gave enhancements at 8 7.50 (7.0%) 

and at 8 7.56 (3.2%); irradiation at 8 8.26 gave an enhancement at 8 2.68 

(1.0%). 

5,7-Dimethy/-1-trinitromethy/naphtha/ene (118), m.p. 99.0° (dec.) 

(Insufficient for elemental analysis. Found: M+• 305.06478. C13H11 N305 

requires 305.06478). Vmax (KBr) 1621, 1590 cm-1. 1 H n.m.r. (CDCI3) 

8 2.44, s, 7-Me; 2.73, s, 5-Me; 6.92, br s, H8; 7.31, br s, H6; 7.55, dd, JH3 H2 
J 

7.0 Hz, JH3,H4 6.5 Hz, H3; 7.55, dd, JH2,H3 7.0 Hz, JH2,H4 1.8 Hz, H2; 8.37, 

dd, JH4,H3 6.5 Hz, JH4,H2 1.8 Hz, H4. N.O.e. experiments gave the 

following results: irradiation at 8 2.44 gave enhancements at 8 6.92 (4.8%) 

and at 8 7.31 (3.4%); irradiation at 8 2.73 gave enhancements at 8 7.31 

(4.6%) and at 8 8.37 (7.8%); irradiation at 8 6.92 gave an enhancement at 
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o 2.44 (0.6%); irradiation at o 7.31 gave enhancements at o 2.44 (0.5%) 

and at o 2.73 (0.7%); irradiation at o 7.55 gave an enhancement at o 8.37 

(4.0%); irradiation at o 8.37 gave enhancements at o 7.55 (2.9%) and at 

0 2.73 (1.4%). 

2,4-Dimethyl-1-nitronaphthalene (119), m.p. 84-85° (Lit.3 83-83.5°). 

Vmax (KBr) 1513 cm-1. 1 H n.m.r. (CDCb) o 2.47, s, 2-Me; 2.70, s, 4-Me; 

7.21, s, H3; 7.59, m, H6, H7; 7.74, m, H8; 8.00, m, H5. N.O.e. experiments 

gave the following results: irradiation at o 2.47 gave an enhancement at 

o 7.21 (2.8%); irradiation at o 2.70 gave enhancements at o 8.00 (5.1 %) 

and at o 7.21 (4.0%); irradiation at o 7.21 gave enhancements at o 2.47 

(0.8%) and at o 2.70 (0.7%); irradiation at o 7.74 gave an enhancement at 

o 7.59 (1.5%); irradiation at o 8.00 gave enhancements at o 7.59 (4.2%) 

and at o 2.70 (1.1 %). 

5.2.3.2 Thermal Cycloaddition of trans-5.7-Dimethyl-2-nitro-1-trinitro­

methyl-1 .2-dihydronaphthalene (11 0) in (D)Chloroform 

A solution of the nitro trinitromethyl adduct (11 0) in (D)chloroform was 

stored at +22° in the dark and the 1 H n.m.r. spectrum monitored at 

appropriate time intervals. The nitro trinitromethyl adduct (11 0) was slowly 

transformed (half-life 178 h) into the nitro cycloadduct (122). Removal of 

the solvent under reduced pressure after 33 days and crystallization of the 

residue from dichloromethane/hexane gave: 

Nitro cycloadduct (122), m.p. 195° (dec.) (X-ray crystal structure 

determined, see Section 5.5). Vmax (KBr) 1600, 1560 cm-1. 1 H n.m.r. 

(CDCI3) o 2.28, s, 6-Me; 2.36, s, 8-Me; 5.16, dd, JH4,H3 4.1 Hz, JH4,H2 2.4 

Hz, H4; 5.70, dd, JH3,H4 4.1 Hz, JH3,H2 2.0 Hz, H3; 5.91, ddd, JH2,H1 6.1 Hz, 

JH2,H4 2.4 Hz, JH2,H3 2.0 Hz, H2; 5.96, d, JH1 ,H2 6.1 Hz, H1; 6.91, s, H5; 

7.01, s, H7. N.O.e. experiments gave the following results: irradiation at 
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o 2.28 gave enhancements at o 6.91 (3.4%) and at o 7.01 (3.3%); 

irradiation at o 2.36 gave enhancements at o 5.96 (5.0%) and at o 7.01 

(4.0%); irradiation at o 5.16 gave enhancements at o 5.70 (4.1 %) and at 

o 6.91 (3.7%); irradiation at o 5.70 gave enhancements at o 5.16 (2.4%) 

and at o 5.91 (2.5%); irradiation at o 6.91 gave enhancements at o 2.28 

(0.8%) and at o 5.16 (4.1 %); irradiation at o 7.01 gave enhancements at 

o 2.28 (0.4%) and at o 2.36 (0.3%). 13C n.m.r. (CDCI3) o 17.9, 8-Me; 21.15, 

6-Me; 45.4, C4; 75.9, C2; 77.2, C1; 78.8, C3; 127.1, C4a; 128.9, C8; 129.8, 

C5; 133.6, C7; 136.5, C8a; 141.1, C6; resonance for C(N02)3 not observed. 

The above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). 

5.2.3.3 Photonitration of 1 .3-Dimethylnaphthalene (58) in Dichloro­

methane Containing Trifluoroacetic Acid 

Photochemistry in dichloromethane containing trifluoroacetic acid at +20° 

and identification of the tetramethylbinaphthyl ( 123). 

Reaction of 1 ,3-dimethylnaphthalene (58) I tetranitromethane in 

dichloromethane at +20°, as above, for 30 min. except for the addition of 

trifluoroacetic acid (0.8 mol L -1) gave a product which was shown by 1 H 

n.m.r. spectral analysis to be a mixture of unreacted 1 ,3-dimethyl­

naphthalene (58) (42% conversion), 2,4-dimethyl-1-nitronaphthalene (119) 

(34%), 2,2',4,4'-tetramethyl-1, 1'-binaphthyl (123) (54%), and unidentified 

aromatics (total 12%). Chromatography of this mixture on a silica gel 

Chromatotron plate gave the binaphthyl (123) in a fraction eluted 

immediately before 2,4-dimethyl-1-nitronaphthalene (119). 

2,2',4,4'-tetramethyl-1,1'-binaphthyl (123), m.p. 176-17JD (Lit.4171.5-

1730). 1 H n.m.r. (CDC13) o 1.99, s, 2-Me, 2'-Me; 2.77, br s , 4-Me, 4'-Me; 

7.08, dd, JH8,H7 = JHs',H7' = 8.3 Hz, JH8,H6 = JHs',H6' = 1.0 Hz, H8/H8'; 7.19, 
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ddd, JH7 H8 = JH7' H8' = 8.3 Hz, JH7 H6 = JHT H6' = 6.8 Hz, JH7 H5 = JH7' H5' = 
, J ' ' , ' 

1.0 Hz, H7/H7'; 7.35, s, H3/H3'; 7.41, ddd, JH6,H5 = JH6',H5' = 8.3 Hz, JH6,H7 

= JH6',H7' = 6.8 Hz, JH6,H8 = JH6',H8' = 1.5 Hz, H6/H6'; 8.03, d, JH5,H6 = 

JHs',H6' = 8.3 Hz, H5/H5'. N.O.e. experiments gave the following results: 

irradiation at 8 1.99 gave enhancements at 8 7.08 (1.9%) and at 8 7.35 

(7.2%); irradiation at 8 2.77 gave enhancements at 8 7.35 (8.2%) and at 

8 8.03 (1 0.6%); irradiation at 8 7.08 gave enhancements at 8 1.99 (0.4%) 

and at 8 7.19 (6.6%); irradiation at 8 7.19 gave enhancements at 8 7.08 

(14.3%) and at 8 7.41 (8.5%); irradiation at 8 7.39 gave enhancements at 

8 1.99 (1.3%), at 8 2.77 (1.2%), at 8 7.19 (5.9%) and at 8 8.03 (6.9%); 

irradiation at 8 8.03 gave enhancements at 8 2.77 (1.7%) and at 8 7.41 

(6.0%). 13C n.m.r. (CDC13) 8 19.4, 4-Me, 4'-Me; 20.0, 2-Me, 2'-Me; 124.1, 

C5, C5'; 124.6, C6, C6'; 125.7, C7, C?'; 126.3, C8, C8'; 129.6, C3, C3'; 

131.3, C4a, C4a'; 133.0, C8a, C8a'; 133.4, C4, C4'; 133.5, C2, C2'; 134.0, 

C1, C1'. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

5.3 Experimental Relating to Chapter Three 

5.3.1 GENERAL PROCEDURE FOR THE PHOTONITRATION OF 1 ,2,3-

TRIMETHYLBENZENE (137) WITH TETRANITROMETHANE. 

A solution of 1 ,2,3-trimethylbenzene (137) (500 mg, 0.52 mol L-1) 

and tetranitromethane (1.04 mol L-1) in dichloromethane or acetonitrile was 

irradiated at +20, -20 or -50° with filtered light (Acut-ott<435 nm). Aliquots 

were withdrawn from the reaction mixture at appropriate time intervals, the 

volatile material removed under reduced pressure at ::;;oo, and the product 

composition determined by 1 H n.m.r. spectral analysis (Tables 3.1 and 3.2). 
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5~3.1.1 Photonitration of 1.2.3-Trimethylbenzene (137) in Dichloromethane 

Photochemistry in dichloromethane at +20° and the identification of the 

products (138), (139), (151)-(169), (171) and(172). 

Reaction of 1 ,2,3-trimethylbenzene (137) I tetranitromethane in 

dichloromethane at +20°, as above, for 8 h gave a product which was 

shown by 1 H n.m. r. spectral analysis (Table 3.1) to be a mixture of adducts 

(139) and (151 )-(162) (total 56%), nitro dienones (163) and (164) (total 1 %), 

3,4,5-trimethyl-1-trinitromethylbenzene (138) (27%), 2,3,4-trimethyl-1-tri­

nitromethylbenzene (165) (11%), minor amounts of the 2',2',2'-trinitroethyl 

compounds (166) and (167) (total 1 %), 2,3,4-trimethyl-1-nitrobenzene (168) 

(3%), 3,4,5-trimethyl-1-nitrobenzene (169) (1 %). The mixture was partially 

separated into its components by h.p.l.c. and gave the following in elution 

order: 

The first material eluted was a mixture of the aromatic compounds · 

(138), (165), (168), (169) and 4,5,6-trimethyl-2-nitrophenol (171 ), which was 

separated into its components by chromatography on a silica gel 

Chromatotron plate (see below). 

1 ,5,6-Trimethyl-t-6-nitro-r-3-trinitromethylcyclohexa-1 ,4-diene (151 ), 

as an impure oil [Decomposed to give 3,4,5-trimethyl-1-trinitromethyl­

benzene (138) on attempted crystallization]. Vmax (liquid film) 1613, 1586, 

1550 cm-1. 1H n.m.r. (CDCI3) 81.77, s, 6-Me; 1.82, brs, 1-Me, 5-Me; 4.74, 

br s, H3; 5.82, d, JH2,H3 = JH4,H3 3.4 Hz, H2, H4. 13C n.m.r. (CDCis) 8 18.5, 

1-Me, 5-Me; 22.5, 6-Me; 43.2, C3; 117.2, C2, C4; 140.9, C1, CS; resonances 

for C(N02)3 and C3 not observed in a weak spectrum. The above 

assignments were confirmed by reverse detected heteronuclear correlation 

spectra (HMQC, HMBC). 

1 ,2,3-Trimethyl-r-5-nitro-t-6-trinitromethylcyclohexa-1 ,3-diene (152), 

isolated only in admixture with adducts (151) and (154), and traces of nitro 
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cycloadduct (153). 1 H n.m.r. (CDCis) 8 1.78, br s, 3-Me; 1.82, br s, 2-Me; 

1.90, br s, 1-Me; 5.11, br s, H4; 5.36, d, JHs H6 6.8 Hz, H5; 5.60, d, JH6 HS 6.8 
J J 

Hz, H6. N.O.e. experiments gave the following results: irradiation at 8 1.78 

gave an enhancement at 8 5.11 (5.0%); irradiation at 8 1.90 gave an 

enhancement at 8 5.60 (5.3%); irradiation at 8 5.11 gave enhancements at 

8 1.78 (0.5%) and at 8 5.36 (2.5%); irradiation at 8 5.36 gave 

enhancements at 8 5.11 (1.3%) and at 8 5.60 (2.6%); irradiation at 8 5.60 

gave enhancements at 8 1.90 (0.3%) and at 8 5.36 (4.8%). The structure of 

the nitro trinitromethyl adduct (152) was further confirmed by its thermal 

cycloaddition in (D)chloroform to give the nitro cycloadduct (153), the 

structure of which is established below. 

1 ,2,3-Trimethyl-r-3-nitro-t-6-trinitromethylcyclohexa-1 ,4-diene (154), 

isolated as an oil containing an impurity (c. 5%). Vmax (liquid film) 1615, 

1603, 1575, 1551 cm-1. 1H n.m.r. (CDCis) 8 1.74, s, 3-Me; 1.75, q, 

J2-Me,1-Me 1.0 Hz, 2-Me; 1.81, q, J1-Me,2-Me 1.0 Hz, 1-Me; 4.89, br s, H6; 

6.21, d, JH4,H5 10.3 Hz, H4; 6.24, dd, JHS,H4 10.3 Hz, JHs,H6 2.9 Hz, H5. 

N.O.e. experiments gave the following results: irradiation at 81.74 gave an 

enhancement at 8 6.21 (2.0%); irradiation at 8 1.81 gave an enhancement 

at 8 4.89 (2.9%); irradiation at 8 4.89 gave enhancements at 8 1.81 (0.9%) 

and at 8 6.24 (3.9%); irradiation at 8 6.21 gave an enhancement at 8 1.74 

(0.4%); irradiation at 8 6.24 gave an enhancement at 8 4.89 (5.4%). 13C 

n.m.r. (CDCis) 8 15.3, 2-Me; 17.2, 1-Me; 25.4, 3-Me; 47.6, C6; 88.8, C3; 

121.7, C4; 123.2, C1; 135.4, C2; 135.5, C5; the resonance for C(N02)s was 

not observed. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

2 ,3-Dimethyl-1-(2' ,2' ,2'-trinitroethyl)-benzene ( 166), isolated as an oil 

(Insufficient for elemental analysis. Found: M +• 269.06463. C10H11 Ns06 

requires 269.06479). 1 H n.m.r. (CDCis) 8 2.29 and 2.33, both s, 2-Me, 

3-Me; 5.52, s, CH2; 7.13-7.24, m, H4, H5, H6. 
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2,6-Dimethyl-1-(2' ,2' ,2'-trinitroethyl)-benzene (167), isolated only in 

admixture with its isomer (166). 1H n.m.r. (CDCis) (by subtraction) 6 2.41, 

s, 2-Me and 6-Me; 5.57, s, CH2; 7.06-7.37, m, H4, H5, H6. 

1 ,5,6-Trimethyl-c-6-nitro-r-3-trinitromethylcyclohexa-1 ,4-diene ( 155), 

m.p. 45° (dec.) (Insufficient for elemental analysis; parent ion not visible in 

the mass spectrum under a variety of experimental conditions). Vmax (liquid 

film) 1595, 1544 cm-1. 1 H n.m.r. (CDCI3) 6 1.77, s, 6-Me; 1.83, br s, 1-Me, 

5-Me; 4.61, br s, H3; 5.75, d, JH2,H3 = JH4,H3 2.4 Hz, H2, H4. N.O.e. 

experiments gave the following results: irradiation at 6 4.61 gave an 

enhancement at o 5.75 (1.6%); irradiation at 6 5.75 gave enhancements at 

6 1.83 (0.9%) and at 6 4.61 (3.8%). 13C n.m.r. (CDCis) 6 18.4, 1-Me, 5-Me; 

21.9, 6-Me; 42.0, C3; 90.0, C6; 116.8, C2, C4; 139.7, C1, C5; the resonance 

for C(N02)3 was not observed. The above assignments were confirmed by 

reverse detected heteronuclear correlation spectra (HMQC, HMBC). 

1 ,2,3-Trimethyl-r-3-nitro-c-6-trinitromethylcyclohexa-1 ,4-diene ( 156), 

m.p. 72° (dec.) (Insufficient for elemental analysis; parent ion not visible in 

mass spectrum under a variety of experimental conditions). Vmax (KBr) 

1604, 1575, 1546 cm-1. 1 H n.m.r. (CDC Is) 6 1.77, s, 3-Me; 1.81, q, 

J1-Me,2-Me 1.0 Hz, 1-Me; 1.89, q, J2-Me,1-Me 1.0 Hz, 2-Me; 4.79,brs, H6; 

6.24, dd, JH5,H4 1 0.3 Hz, JH5,H6 3.9 Hz, H5; 6.30, dd, JH4,H5 10.3 Hz, JH4,H6 

1.0 Hz, H4. N.O.e. experiments gave the following results: irradiation at 

6 1.77 gave an enhancement at 6 6.30 (3.9%); irradiation at o 1.81 gave an 

enhancement at o 4.79 (3.4%); irradiation at 6 4.79 gave enhancements at 

6 1.81 (0.4%) and at o 6.24 (1.1 %); irradiation at o 6.24 gave an 

enhancement at 6 4.79 (1.8%); irradiation at 6 6.30 gave an enhancement 

at 61.77 (0.6%). 13C n.m.r. (CDCis) 616.2, 2-Me; 17.6, 1-Me; 25.6, 3-Me; 

47.0, C6; 86.7, C3; 122.3, C5; 124.1, C1; 134.8, C2; 134.9, C4; the 

resonance for C(N02)3 was not observed. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 
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HMBC). 

2,3,4-Trimethyl-4-nitrocyclohexa-2,5-dien-1-one (163),5 isolated only 

in admixture with adduct (156). 1H n.m.r. (CDCI3) 8 1.88, s, 4-Me; 1.95, br 

s, 2-Me, 3-Me; 6.41, d, JH6,H5 9.8 Hz, H6; 6.81, d, JH5,H6 9.8 Hz, H5. A 

n.O.e. experiment gave the following result: irradiation at 8 1.88 gave an 

enhancement at 8 6.81 (3.2%). The nitro dienone (163) was unstable in 

(D)chloroform solution and rearranged (half life c. 6 h) to give 4,5,6-tri­

methyl-2-nitrophenol (171) (See below). 

Nitro cycloadduct (153), m.p. 163° (dec.) (X-ray crystal structure 

determined, see Section 5.5). Vmax (KBr) 1590, 1556 cm-1. 1H n.m.r. 

(CDCI3) 8 1.67, s, 3-Me; 1.75, q, J2-Me,1-Me 1.4 Hz, 2-Me; 1.80, q, J1-Me,2-Me 

1.4 Hz, 1-Me; 4.60, dd, JH6,H5 4.4 Hz, JH6,H4 2.5 Hz, H6; 5.27, dd, JH4,H6 2.5 

Hz, JH4,H5 2.0 Hz, H4; 5.51, dd, JH5,H6 4.4 Hz, JHs,H4 2.0 Hz, H5. N.O.e. 

experiments gave the following results: irradiation at 8 1.67 gave an 

enhancement at 8 5.27 (7.1 %); irradiation at 8 1.80 gave an enhancement 

at 8 4.60 (3.2%); irradiation at 8 4.60 gave enhancements at 8 1.80 (0.2%) 

and at 8 5.51 (10.4%); irradiation at 8 5.27 gave enhancements at 8 1.67 

(0.5%) and at 8 5.51 (2.0%); irradiation at 8 5.51 gave enhancements at 

8 4.60 (2.3%) and at 8 5.27 (1.0%). 13C n.m.r. (CDCI3) 8 14.1, 2-Me; 20.0, 

1-Me; 21.7, 3-Me; 45.2, C6; 79.7, C5; 81.4, C4; 87.4, C3; 128.5, C1; 140.1, 

C2. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

3,4,5-Trimethyl-4-nitrocyclohexa-2,5-dien-1-one (164),6 isolated as 

an oil. Vmax (liquid film) 1677, 1638, 1598, 1551 cm-1. 1H n.m.r. (CDCI3) 

8 1.88, s, 4-Me; 1.99, d, J3-Me,H2 = Js-Me, H6 1.5 Hz, 3-Me, 5-Me; 6.23, br s, 

H2, H6. 

1 ,2,3-Trimethyl-r-3,c-4,c-6-trinitro-t-5-trinitromethylcyclohex-1-ene 

(157), m.p. 73° (dec.) (X-ray crystal structure determined, see Section 5.5). 

Vmax (KBr) 1605, 1566, 1529 cm-1. 1 H n.m.r. (CDCI3) 8 2.03, br s, 2-Me; 
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2.185, br s, 1-Me; 2.19, s, 3-Me; 5.01, d, JHa,Hs 6.8 Hz, H6; 5.1 0, br s, H4; 

6.62, br d, JHs,Ha 6.8 Hz, H5. N.O.e. experiments gave the following 

results: irradiation at 8 2.03 gave an enhancement at 8 2.19 (0.5%); 

irradiation at 8 2.19 gave enhancements at 8 2.03 (2.9%), at 8 5.01 (1 0.8%), 

and at 8 5.10 (5.9%); irradiation at 8 5.01 gave enhancements at 8 2.19 

(0.5%) and at 8 6.62 (3.2%); irradiation at 8 5.10 gave an enhancement at 

8 2.19 (0.3%); irradiation at 8 6.62 gave enhancements at 8 5.01 (0.9%) 

and at 8 5.10 (0.6%). 13C n.m.r. (CDCis) 8 15.6, 2-Me; 23.0, 1-Me; 24.3, 

3-Me; 42.7, C5; 82.7, C4; 85.5, C6; 87.8, C3; 130.2, C2; 132.5, C1; the 

resonance for C(N02)3 was not observed. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 

HMBC). 

t -6-Hydroxy-4,5, 6-trimethyl-2,r -4, t -5-trinitrocyc/ohex-2-enone ( 172), 

m.p. 121-123° (X-ray crystal structure determined, see Section 5.5). Vmax 

(KBr) 3423, 1740, 1560, 1541 cm-1. 1H n.m.r. (CDCis) 81.52, s, 6-Me; 

1.85, s, 5-Me; 1.88, s, 4-Me; 3.97, br s, OH; 7.44, s, H3. N.O.e 

experiments gave the following results: irradiation at 8 1.52 gave an 

enhancement at 8 1.85 (0.8%); irradiation at 8 7.44 gave an enhancement 

at 8 1.88 (0.3%). 1 H n.m.r. (CD3CN) 8 1.54, s, 6-Me; 1.84, s, 5-Me; 1.91, s, 

4-Me; 4.92, br s, OH; 7.70, s, H3. N.O.e. experiments gave the following 

results: irradiation at 8 1.54 gave an enhancement at 8 1.84 (0.8%); 

irradiation at 8 1.84 gave an enhancement at 8 1.54 (1.2%); irradiation at 

8 1.91 gave an enhancement at 8 7.70 (7.4%); irradiation at 8 7.70 gave an 

enhancement at 8 1.91 (0.2%). 13C n.m.r. (CDsCN) 8 15.9, 5-Me; 23.5, 

6-Me; 23.6, 4-Me; 79.2, C6; 90.3, C4; 99.7, CS; 137.5, C3; 147.0, C2; 188.4, 

C1. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

2,3,4-Trimethyl-c-2, c-5-dinitro- t-6-trinitromethylcyclohex-3-en-r-1-ol 

(139), m.p. 65° (dec.) [Lit.? 65° (dec.)]. Vmax (KBr) 3502, 1610, 1571, 1545 
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cm-1. 1 H n.m.r. (CDCis) o 1.94, s, 2-Me; 1.97. br s, 4-Me; 2.05, br s, 3-Me; 

3.86, d, JoH,H1 12.7 Hz, 1-0H; 4.09, dd, JH1,0H 12.7 Hz, JH1,H6 10.8 Hz, H1; 

4.99, dd, JH6,H1 10.8 Hz, JH6,H5 6.3 Hz, H6; 5.25, d, JH5,H6 6.3 Hz, H5. 

N.O.e. experiments gave the following results: irradiation at o 1.97 gave an 

enhancement at o 5.25 (4.2%); irradiation at o 4.09 gave enhancements at 

o 1.94 (0.8%} and at o 5.25 {1.1 %); irradiation at o 5.25 gave an 

enhancement at o 1.97 (0.5%). 13C n.m.r. (CDCis) o 16.6, 3-Me; 18.7, 

4-Me; 22.2, 2-Me; 45.4, C6; 71.4, C1; 87.8, C5; 88.4, C2; 127.0, C4; 134.9, 

C3; the resonance for C(N02)s was not observed. The above assignments 

were confirmed by reverse detected heteronuclear correlation spectra 

(HMQC, HMBC). 

1 ,2,3-Trimethyl-r-3, t-4, t-6-trinitro-c-5-trinitromethylcyclohex-1-ene 

(158), isolated only as an oil (Insufficient for elemental analysis, parent ion 

not visible in mass spectrum under a variety of experimental conditions). 

Vmax (liquid film) 1647, 1570 cm-1. 1H n.m.r. (CDCis) o 1.74, s, 3-Me; 1.93, 

br s, 2-Me; 1.96, br s, 1-Me; 4.88, dd, JH5,H4 4.9 Hz, JH5,H6 1.0 Hz, H5; 5.81, 

dd, JH6,H4 3.9 Hz, JH6,H5 1.0 Hz, H6; 5.92, dd, JH4,H5 4.9 Hz, JH4,H6 3.9 Hz, 

H4. N.O.e. experiments gave the following results: irradiation at o 1.74 

gave an enhancement at o 1.93 (1.2%); irradiation at o 1.93 gave an 

enhancement at o 1.74 (1.3%); irradiation at o 1.96 gave an enhancement 

at o 5.81 (3.3%); irradiation at o 4.88 gave enhancements at o 5.81 (1.3%) 

and at o 5.92 (3.6%); irradiation at o 5.81 gave enhancements at o 1.96 

(0.7%) and at o 4.88 (0.9%); irradiation at o 5.92 gave enhancements at 

o 1.74 (0.5%) and at o 4.88 (1.6%). 13C n.m.r. (CDCis) o 14.5, 2-Me; 17.7, 

1-Me; 24.7, 3-Me; 46.7, C5; 78.6, C4; 81.1, C3; 84.1, C6; 124.1, C1; 132.9, 

C2; the resonance for C(N02)3 was not observed. The above assignments 

were confirmed by reverse detected heteronuclear correlation spectra 

(HMQC, HMBC). 

Hydroxy dinitro nitronic ester (159), isolated only as an oil 
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(Insufficient for elemental analysis, parent ion not visible in mass spectrum 

·under a variety of experimental conditions). Vmax (liquid film) 3511, 1637, 

1560 cm~1. 1 H n.m.r. (CDCis) () 1.85, s, 3-Me; 1.87, br s, 2-Me; 1.93, br s, 

1-Me; 3.92, br, OH; 4.31, d, JH4,H5 10.3 Hz, H4; 4.40, dd, JH5,H4 10.3 Hz, 

JH5,H6 4.4 Hz, H5; 5.23, d, JH6,H5 4.4 Hz, H6. N.O.e. experiments gave the 

following results: irradiation at() 1.85 gave an enhancement at() 4.31 

(5.8%); irradiation at() 1.93 gave an enhancement at() 5.23 (3.2%); 

irradiation at() 4.31 gave an enhancement at() 1.85 (0.7%); irradiation at 

6 4.40 gave an enhancement at 6 5.23 (5.8%); irradiation at() 5.23 gave 

enhancements at() 1.93 (0.8%) and at() 4.40 (3.5%). 13C n.m.r. (CDCI3) 

6 14.1, 2-Me; 18.3, 1-Me; 24.8, 3-Me; 48.6, C4; 67.8, C5; 85.3, C3; 88.8, C6; 

124.8, C1; 132.8, C2; the resonance for =C-N02 was not observed. The 

above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). 

Trinitro nitronic ester (160), m.p. 12r (dec.) (Preliminary X-ray crystal 

structure reported in Section 5.5). Vmax (KBr) 1639, 1564, 1512 cm-1. 1H 

n.m.r. (CDCis) () 1.91, br s, 2-Me; 1.92, s, 3-Me; 2.03, br s, 1-Me; 5.12, dd, 

JH5,H4 11 .7 Hz, JH5,H6 3.5 Hz, H5; 5.16, d, JH4,H5 11.7 Hz, H4; 5.52, d, 

JH6,H5 3.5 Hz, H6. N.O.e. experiments gave the following results: 

irradiation at o 1.92 gave an enhancement at o 5.16 (5.3%); irradiation at 

() 2.03 gave an enhancement at() 5.52 (4.4%); irradiation at() 5.12 gave an 

enhancement at () 5.52 (3.1%); irradiation at () 5.16 gave an enhancement 

at o 1.92 (0.5%); irradiation at o 5.52 gave enhancements at o 2.03 (0.5%) 

and at() 5.12 (2.4%). 13C n.m.r. (CDCis) () 15.2, 2-Me; 18.3, 1-Me; 25.0, 

3-Me; 44.9, C4; 80.7, C5; 84.2, C6; these assignments were confirmed by 

short range reverse detected heteronuclear correlation spectra (HMQC), but 

the remainder of the resonances were not detected in a weak spectrum. 

Trinitro nitronic ester(161), m.p. 131-132.5° (X-ray crystal structure 

determined, see Section 5.5). Vmax (KBr) 1608, 1565, 1525 cm~1. 1H 

400 



n.m.r. (CDCI3) 8 1.83, s, 3-Me; 2.01, br s, 2-Me; 2.09, br s, 1-Me; 5.04, br s, 

H6; 5.08 d, JH4,H5 3.4 Hz, H4; 5.42, dd, JH5,H4 3.4 Hz, JH5,H6 1.4 Hz, H5. 

1H n.m.r. (CD3CN) 81.88, s, 3-Me; 2.22, br s, 1-Me, 2-Me; 5.29, dd, JH5,H4 

4.0 Hz, JH5,H6 1.4 Hz, H5; 5.34, br s, H6; 5.40, d, JH4,H5 4.0 Hz, H4. N.O.e. 

experiments gave the following results: (in CDCI3) irradiation at 8 1.83 

gave an enhancement at 8 5.08 (5.9%}. (in CD3CN) irradiation at 8 1.88 

gave an enhancement at 8 5.40 (8.9%); irradiation at 8 2.22 gave an 

enhancement at 8 5.34 (3.4%); irradiation at 8 5.34 gave an enhancement 

at 8 2.22 (0.4%), irradiation at 8 5.40 gave an enhancement at 8 1.88 

(0.3%). 13C n.m.r. (CD3CN) 814.1, 2-Me; 19.3, 1-Me; 21.3, 3-Me; 38.7, C5; 

78.9, C4; 83.3, C6; 84.0, C3; 127.6, C1; 133.5, C2. The above assignments 

were confirmed by reverse detected heteronuclear correlation spectra 

(HMQC, HMBC). 

Hydroxy dinitro nitronic ester (162), m.p. 129° (X-ray crystal structure 

determined, see Section 5.5). Vmax (KBr) 3463, 1604, 1556, 1295 cm-1. 

1 H n.m.r. (CDCI3) 8 1.63, s, 3-Me; 1.90, br s, 2-Me; 2.01, br s, 1-Me; 4.30, d, 

JH4,H5 3.9 Hz, H4; 4.80, dd, JHs,H4 3.9 Hz, JH5,H6 2.4 Hz, H5; 4.91, br s, H6. 

N.O.e. experiments gave the following results: irradiation at 8 1.63 gave 

enhancements at 8 1.90 (2.3%) and at 8 4.30 (2.6%); irradiation at 8 1.90 

gave an enhancement at 8 1.63 (1.0%); irradiation at 8 2.01 gave an 

enhancement at .S 4.91 (4.8%); irradiation at 8 4.30 gave enhancements at 

8 1.63 (1.1 %) and at 8 4.80 (3.2%); irradiation at 8 4.80 gave 

enhancements at .S 4.30 (3.0%) and at 8 4.91 (3.1%); irradiation at 8 4.91 

gave an enhancement at 8 2.01 (1.1%). 13C n.m.r. (CDCI3) 8 13.9. 2-Me; 

19.5, 1-Me; 19.7, 3-Me; 40.1, C5; 66.3, C4; 82.4, C6; 85.4, C3; 126.3, C1; 

131.5, C2. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

Chromatography on a silica! gel Chromatotron plate of the mixture of 

compounds (138), (165), (168) and (169), first eluted from the h.p.l.c. 
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column, gave the following compounds in elution order: 

3,4,5-Trimethyl-1-trinitromethylbenzene (138), m.p. 91° (dec.) [Lit.? 

91 o (dec.)]. Vmax (KBr) 1617, 1585 em -1. 1 H n.m.r. (CDCI3) o 2.27, s, 

4-Me; 2.36, s, 3-Me, 5-Me; 7.20, s, H2, H6. 13C n.m.r. (CDCI3) o 15.9, 4-Me; 

20.8, 3-Me, 5-Me; 119.0, C1; 128.1, C2, C6; 138.1, C3, C5; 143.2, C4; the 

resonance for C(N02)3 was not observed. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 

HMBC). 

2,3,4-Trimethyl-1-trinitromethylbenzene (165), obtained only in 

admixture with 3,4,5-trimethyl-1-trinitromethylbenzene (138). 1 H n.m.r. 

(CDCI3) o 2.04, s, 2-Me; 2.26, s, 3-Me; 2.40, s, 4-Me; 6.99, d, JH6,H5 8.3 Hz, 

H6; 7.19, d, JHs,H6 8.3 Hz, H5. N.O.e. experiments gave the following 

results: irradiation at o 2.04 gave an enhancement at o 2.26 (0.8%); 

irradiation at o 2.26 gave an enhancement at o 2.04 (0.5%); irradiation at 

o 2.40 gave an enhancement at o 7.19 (2.7%); irradiation at o 6.99 gave an 

enhancement at o 7.19 (5.3%); irradiation at o 7.19 gave enhancements at 

o 2.40 (0.4%) and at o 6.99 (4.9%). 13C n.m.r. (CDCI3) o 16.0, 3-Me; 18.5, 

2-Me; 21.4, 4-Me; 119.8, C1; 126.8, C6; 128.2, C5; 138.0, C2; 138.7, C3; 

143.7, C4; the resonance for C(N02)3 was not observed. The above 

assignments were confirmed by reverse detected heteronuclear correlation 

spectra (HMQC, HMBC). 

4,5,6-Trimethyl-2-nitrophenol (171),8 isolated as an oil (c. 95% pure). 

Vmax (liquid film) 3442, 1612, 1593, 1537 cm-1. 1H n.m.r. (CDCI3) o 2.25, s, 

6-Me; 2.26, s, 5-Me; 2.27, s, 4-Me; 7.75, s, H3; 10.98, s, OH. 13C n.m.r. 

(CDCI3) o 12.1, 6-Me; 17.0, 5-Me; 20.1, 4-Me; 121.9, C3; 126.8, C6; 128.5, 

C4; 131.0, C1; 147.0, C5; 152.0, C2. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 

HMBC). 

2,3,4-Trimethylnitrobenzene (168),9 isolated as an oil (c. 95% pure) 
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(Found: M+• 165.07890. CgH11 N02 requires 165.07898). Vmax (liquid 

film) 1518 cm-1. 1 H n.m.r. (CDCI3) () 2.26, s, 3-Me; 2.35, s, 4-Me; 2.39, s, 

2-Me; 7.09, d, JH5,H6 8.4 Hz, H5; 7.51, d, JH6,H5 8.4 Hz, H6. N.O.e. 

experiments gave the following results: irradiation at () 2.35 gave an 

enhancement at() 7.09 (2.0%); irradiation at() 7.09 gave enhancements at 

6 2.35 (0.2%) and() 7.51 (5.3%); irradiation at() 7.51 gave an 

enhancement at() 7.09 (2.4%). 13C n.m.r. (CDCI3) () 15.8, 2-Me; 16.0, 

3-Me; 21.2, 4-Me; 121.1, C6; 127.6, C5; 130.4, C2; 137.6, C3; 141.5, C4; 

149.4, C1. 

3,4,5-Trimethylnitrobenzene (169),9 isolated as an oil (c. 90% pure) 

(Found: M+• 165.07886. CgH11 N02 requires 165.07898). Vmax (liquid 

film) 1517 cm-1. 1 H n.m.r. (CDCI3) () 2.26, s, 4-Me; 2.37, s, 3-Me, 5-Me; 

7.87, s, H2, H6. 

5.3.1.2 Photonitration of 1 .2.3-Trimethylbenzene (137) in Dichloromethane 

Containing Trifluoroacetic Acid 

Reaction of 1 ,2,3-trimethylbenzene (137) I tetranitromethane in 

dichloromethane at +20°, as above, for 8 h except for the addition of 

trifluoroacetic acid (1.04 mol L -1) gave 3,4,5-trimethyl-1-trinitromethyl­

benzene (138) (62%), 2,3,4-trimethyl-1-trinitromethylbenzene (165) 

(1 0.5%), 3,4,5-trimethylbenzoic acid (172) (5%), 2,3,4-trimethylbenzoic acid 

(173) (2%), and unidentified material (20%). The carboxylic acids (172) 

and (173) were isolated by h.p.l.c. and were identified by comparison with 

literature data.1 o, 11 A similar reaction to the above, but with trifluoroacetic 

acid (2.08 mol L-1) gave a mixture of 3,4,5-trimethyl-1-trinitromethylbenzene 

(138) (20%), 2,3,4-trimethyl-1-trinitromethylbenzene (165) (11.5%), 3,4,5-

trimethylbenzoic acid ( 172) ( 1 0%), 2,3 ,4-trimethylbenzoic acid ( 173) ( 4.5%), 

2,3,4-trimethylnitro-benzene (168) (11 %), 3,4,5-trimethylnitrobenzene (169) 
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(9%), and unidentified material (34%). Full time/yield data are given in 

Table 3.3. 

5.3.1.3 Reaction of Nitro Trinitromethyl Adducts (151) and (154)-{156) with 

2,6-Di-tert-butyl-4-methylpyridine in Dichloromethane 

A solution of each of the adducts (151) and (154)-(156) in dichloro­

methane was treated with 2,6-di-tert-butyl-4-methylpyridine (1.1 molar ratio) 

for 1 h at +20° in the dark. Removal of the solvent under reduced pressure 

gave a residue, the 1 H n.m.r. spectrum of which was determined. Adducts 

(151) and (155) gave 3,4,5-trimethyl-1-trinitromethylbenzene (138), while 

adducts (154) and (156) gave 2,3,4-trimethyl-1-trinitromethylbenzene (165). 

5.3.1.4 Thermal Cycloaddition of 1 ,2,3-Trimethyl-r-5-nitro-t-6-trinitromethyl­

cyclohexa-1 ,3-diene {152) in (D)Chloroform 

A solution of a mixture (c. 4:1 :4:2) of the trinitromethyl diene (152), 

nitro cycloadduct (153), and the 1 ,2,3-trimethyl-3-nitro-6-trinitromethylcyclo­

hexa-1 ,4-dienes (151) and (154), respectively in (D)chloroform was stored 

at +22° in the dark and the 1 H n.m.r. spectrum monitored at appropriate time 

intervals. The adducts (151) and (154) were inert under these reaction 

conditions for the time-scale of the reaction of compound (152), but the 

trinitromethyl diene (152) was transformed (half-life 19.5 h) into the nitro 

cycloadduct (153). 
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S.3.1.S Rearrangement of 2,3.4-Trimethyl-4-nitrocyclohexa-2.S-dien-1-one 

(163) in (D)Chloroform 

A solution of a mixture (c. 4:1) of the nitro dienone (163) and 1 ,2,3-

trimethyl-r-3-nitro-c-6-trinitromethylcyclohexa-1 ,4-diene (1S6) in (D}chloro­

form was stored at +22° in the dark and the 1 H n.m.r. spectrum monitored at 

appropriate time intervals. The adduct (1S6) was inert under these reaction 

conditions but the nitro dienone (163) was transformed (half-life 6 h) into 

4,5,6-trimethyl-2-nitrophenol (171 ). 

S.3.2 GENERAL PROCEDURE FOR THE PHOTONITRATION OF 1,2,4,5-

TETRAMETHYLBENZENE {134) WITH TETRANITROMETHANE. 

A solution of 1 ,2,4,5-tetramethylbenzene (134) (5aa mg, a.47 mol 

L-1) and tetranitromethane (a.94 mol L-1) in dichloromethane (at +2a, -2a or 

-sao), acetonitrile (+2a or -2a 0
), or 1,1, 1 ,3,3,3-hexafluoropropan-2-ol (+20°) 

was irradiated with filtered light (Acut-ott<435 nm). Aliquots were withdrawn 

from the reaction mixture at appropriate time intervals, the volatile material 

removed under reduced pressure at :::;oo, and the product composition 

determined by 1 H n.m.r. spectral analysis (Tables 3.5-3.9). 

5.3.2.1 Photonitration of 1 ,2,4,5-Tetramethylbenzene (134) in 

Dichloromethane 

Photochemistry of 1,2,4,5-tetramethy/benzene (134) in dichloromethane at 

-sao and the identification of adducts (216) and (217) and compound (22S). 

Reaction of 1 ,2,4,5-tetramethylbenzene (134) I tetranitromethane in 

dichloromethane at -sao, as above, for 4 h gave a product which was shown 
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by 1 H n.m.r. spectral analysis (Table 3.5) to be a mixture of adduct (216) 

( 46%), adduct (217) (7%), aromatic compounds (218)-(225) (total 41%), 

and unidentified aromatic products (6%). The mixture was partially 

separated into its components by h.p.l.c. and gave the following in elution 

order: 

The first material eluted was a mixture of aromatic compounds. 

1 ,3,4, 6-Tetramethyl-r-3-nitro-t-6-trinitromethylcyclohexa-1 ,4-diene 

(216), as an unstable oil (elemental analysis not possible because of 

instability; parent ion not visible in mass spectrum). Vmax (liquid film) 

1599, 1583, 1549 cm-1. 1H n.m.r. (CDCI3) o 1.74, s, 3-Me; 1.80, d, J4-Me,H5 

1.5 Hz, 4-Me; 1.87, d, J1-Me,H2 1.5 Hz, 1-Me; 1.96, s, 6-Me; 5.82, q, JH2, 1-Me 

1.5 Hz, H2; 6.20, q, JH5,4-Me 1.5 Hz, H5. N.O.e. experiments gave the 

following results: irradiation at o 1.74 gave an enhancement at o 5.82 

(4.0%); irradiation at o 1.80 gave an enhancement at o 6.20 (4.4%); 

irradiation at o 1.87 gave an enhancement at o 5.82 (4.9%); irradiation at 

o 1.96 gave an enhancement at o 6.20 (4.1 %); irradiation at o 5.82 gave 

enhancements at o 1.74 (0.3%) and at o 1.87 (0.7%); irradiation at o 6.20 

gave enhancements at o 1.80 (0.7%) and at o 1.96 (0.2%). 13C n.m.r. 

(CDCI3) o 18.3, 4-Me; 19.1, 1-Me; 23.3, 3-Me, 6-Me; 51.2, C6; 88.3, C3; 

126.0, C5; 130.2, C2; 134.1, C1; 136.2, C4; resonance for C(N02)3 not 

observed. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

1 ,3,4,6-Tetramethyl-r-3-nitro-c-6-trinitromethylcyclohexa-1 ,4-diene 

(217), as an oil in admixture with adduct (216) (c. 5%). 1 H n.m.r. (CDCI3) 

o 1.74, s, 3-Me; 1.85, s, 6-Me; 1.87, d, J1-Me H2 1.5 Hz, 1-Me; 1.94, d, 
' 

J4-Me,H5 1.5 Hz, 4-Me; 5.98, q, JH2,1-Me 1.5 Hz, H2; 6.28, q, JH5,4-Me 1.5 Hz, 

H5. N.O.e. experiments gave the following results: irradiation at o 1.74 

gave enhancements at o 1.94 (0.5%) and at o 5.98 (5.2%); irradiation at 

o 1.85 gave an enhancement at o 6.28 (3.6%); irradiation at o 1.87 gave an 
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enhancement at 8 5.98 (3.9%); irradiation at 8 1.94 gave an enhancement 

at 8 6.28 (3.2%); irradiation at 8 5.98 gave enhancements at 8 1.74 (0.6%) 

and at o 1.87 (0.9%); irradiation at o 6.28 gave an enhancement at 8 1.94 

(1.3%). 13C n.m.r. (CDCI3) 8 18.7, 4-Me; 18.9, 23.7, 1-Me, 6-Me; 25.6, 

3-Me; 50.6, C6; 85.4, C3; 126.4, C5; 130.3, C2; 134.4, C1; 136.3, C4; 

resonance for C(N02)3 not observed. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 

HMBC), and comparison with data for the epimeric adduct (216). 

2,4,5-Trimethylbenzyl nitrite (225) was not eluted by h.p.l.c. on the 

cyanopropyl column, being presumably decomposed to the 2,4,5-trimethyl­

benzaldehyde (222) or hydrolysed to 2,4,5-trimethylbenzyl alcohol (223). 

The presence of the known 2,4,5-trimethylbenzyl nitrite (225) in the crude 

reaction mixture was inferred from the ; H n.m.r. signal due to the 

-CH2-0N02 group at 8 5.64. i 2 

5.3.2.2 Photonitration of 1 ~2.4~5-Tetramethylbenzene (134) in 1 I 1 I 1131313.­

Hexafluoropropan-2-ol (HFP) 

Photochemistry in HFP at +20° and identification of the aromatic products 

(218)-(224) and (226). 

A solution of 1 ,2,4,5-tetramethylbenzene (134) (250 mg, 0.47 mol 

L-1) and tetranitromethane (0.94 mol L-i) in HFP at +20° was irradiated 

with filtered light (Acut-ott<435 nm) for 20 h. After workup the product 

composition was determined by 1 H n.m.r. spectral analysis (Table 3.6) and 

shown to be a mixture of the aromatic compounds (218)-(224) and (226). 

Chromatography of the crude product on a silica gel Chromatotron plate 

allowed the separation of aromatic compounds (218)-(223) and (226), 

compound (224) not being eluted from the plate, in elution order: 

2 ,2' ,3 ,4' ,5,5', 6-Heptamethyldiphenylmethane (218), m.p. 139° (dec.) 
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(Found: M+• 266.2034. C2oH26 requires 266.20345). 1 H n.m.r. (CDCI3) 

o 2.04, s, 5'-Me; 2.06, s, 2-Me, 6-Me; 2.18, s, 4'-Me; 2.27, s, 3-Me, 5-Me; 

2.36, s, 2'-Me; 3.87, s, CH2; 6.28, s, H6'; 6.94, s, H4; 6.97, s, H3'; identical 

with an authentic sample.13 N.O.e. experiments gave the following results: 

irradiation at 8 2.04 gave an enhancement at 8 6.28 (7.2%); irradiation at 

8 2.06 gave enhancements at 8 2.27 (1.1 %) and at 8 3.87 (6.4%); 

irradiation at 8 2.18 gave an enhancement at 8 6.97 (5.0%); irradiation at 

8 2.27 gave enhancements at 8 2.06 (1.4%) and at 8 6.94 (9.0%); 

Irradiation at 8 2.36 gave enhancements at 8 3.87 (3.4%) and at 8 6.97 

(5.5%); irradiation at 8 3.87 gave enhancements at 8 2.06 (2.6%) and at 

o 2.36 (2.9%); irradiation at 8 6.28 gave an enhancement at 8 2.04 (1.0%); 

irradiation at 8 6.94 gave an enhancement at 8 2.27 {1.7%); irradiation at 

o 6.97 gave enhancements at 8 2.18 (1.0%) and at o 2.36 (1.2%). 13C 

n.m.r. (CDCis) 8 15.7, 2-Me, 6-Me; 19.1, 19.2, 2'-Me, 4'-Me; 19.3, 5'-Me; 

20.6, 3-Me, 5-Me; 32.7, CH2; 127.9, C6; 129.8, C4; 131.2, C3'; 133.2, 133.5, 

C2, C3, C5, C5', C6; 133.8, C4'; 135.3, C2'; 136.7, C1. The above 

assignments were confirmed by reverse detected heteronuclear correlation 

spectra (HMQC, HMBC). 

2,4,5-Trimethy/-1-(2',2',2'-trinitroethy/)-benzene (219), m .p. 70-73° 

(Found: M+• 283.0804. C11 H1sNs06 requires 283.0804). Vmax (KBr) 

1605,1578 cm-1. 1H n.m.r. (CDCI3) 82.17, s, 2-Me; 2.18, s, 5-Me; 2.21, s, 

4-Me; 4.38, br s, CH2; 6.82, s, H6; 7.00, s, H3. N.O.e. experiments gave the 

following results: irradiation at 8 2.17 gave enhancements at 8 4.38 (1.3%) 

and at 8 7.00 (4.1%); irradiation at 8 2.18 gave an enhancement at 8 6.82 

(3.9%); irradiation at 8 2.21 gave an enhancement at 8 7.00 (3.8%); 

irradiation at 8 4.38 gave enhancements at 8 2.17 (1.6%) and at 8 6.82 

(4.0%); irradiation at 8 6.82 gave enhancements at 8 2.18 (0.6%) and at 

8 4.38 (0.6%); irradiation at 8 7.00 gave enhancements at 8 2.17 (0.6%) 

and at 8 2.21 (0.2%). 13C n.m.r. (CDCI3) 8 18.6, 5-Me; 19.2, 4-Me; 19.4, 
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2-Me; 36.3, CH2; 122.4, C1 or C2; 130.4, C6; 132.7, C3; 135.4, C2 or C1, 

and C4 or C5; 138.3, C5 or C4; resonance for C(N02)3 not observed. The 

above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). 

2,3,5,6-Tetramethylnitrobenzene (220), m.p. 109-114°, identical with 

an authentic sample.11 Vmax (KBr) 1520 cm-1. 1H n.m.r. (CDCI3) 8 2.12, s, 

2-Me, 6-Me; 2.25, s, 3-Me, 5-Me; 7.04, s, H4. N.O.e. experiments gave the 

following results: irradiation at 8 2.25 gave an enhancement at 8 7.04 

(4.4%); irradiation at 8 7.04 gave an enhancement at 8 2.25 (0.3%). 

2,4,5-Trimethylphenylnitromethane (221),12 isolated as an oil 

(Found: M+• 179.0944. C10H13N02 requires 179.0946). Vmax (liquid film) 

1543, 1369 cm-1. 1 H n.m.r. (CDCI3) 8 2.23, s, 4-Me, 5-Me; 2.31, s, 2-Me; 

5.41, s, CH2; 7.02, s, H3; 7.10, s, H6. N.O.e. experiments gave the 

following results: irradiation at 8 2.23 gave enhancements at 8 7.02 (2.3%) 

and at 8 7.10 (2.7%); irradiation at 8 2.31 gave enhancements at 8 5.41 

(0.8%) and at 8 7.02 (2.5%); irradiation at 8 5.41 gave enhancements at 

8 2.31 (0.5%) and at 8 7.10 (3.6%); irradiation at 8 7.02 gave 

enhancements at 8 2.23 (0.2%) and at 8 2.31 (0.5%); irradiation at 8 7.10 

gave enhancements at 8 5.41 (0.7%). 

2,2',3,4',5,5'6-Heptamethy/-4-nitrodiphenylmethane (226), m.p. 157° 

(dec.) (Insufficient for elemental analysis. Found: M+• 311.1885. 

C2oH2sN02 requires 311.1885). Vmax (KBr) 1524 cm-1. 1 H n.m.r. (CDCI3) 

8 2.08, s, 5'-Me; 2.11, s, 2-Me, 6-Me; 2.19, s, 3-Me, 4'~e, 5-Me; 2.36, s, 

2'-Me; 3.88, s, CH2; 6.20, s, H6'; 6.99, s, H3'. N.O.e. experiments gave the 

following results: irradiation at 8 2.08 gave an enhancement at 8 6.20 

(6.5%); irradiation at 8 2.11 gave an enhancement at 8 3.88 (4.1 %); 

irradiation at 8 2.19 gave an enhancement at 8 6.99 (5.0%); irradiation at 

8 2.36 gave enhancements at 8 3.88 (2.1 %) and at 8 6.99 (5.9%); 

irradiation at 8 3.88 gave enhancements at 8 2.11 (2.6%), at 8 2.36 (2.5%), 
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and at o 6.20 (1.7%); irradiation at o 6.20 gave an enhancement at o 2.08 

(1.2%); irradiation at o 6.99 gave enhancements at o 2.19 (0.4%) and at 

o 2.36 (1.2%). 13C n.m.r. (CDCis) o 15.0, 3-Me or 4'-Me; 16.2, 2-Me; 19.1, 

2'-Me and 4'-Me or 3-Me; 19.3, 5'-Me; 33.1, CH2; 127.5, C6'; 131.4, C3'; 

133.2, 133.9, C1', C2'; 135.1, C2; 138.9, C1; signals due to C3, C4, C4' and 

C5' could not be assigned. The above assignments were confirmed by 

reverse detected heteronuclear correlation spectra (HMQC, HMBC). 

2,4,5-Trimethylbenzaldehyde (222),12 isolated as an oil (Found: M+• 

148.0886. C10H1 20 requires 148.0888. Fragmentation pattern identical 

with an authentic sample). Vmax (liquid film) 2754, 1697 cm-1. 1H n.m.r. 

(CDCis) o 2.29, s, 4-Me, 5-Me; 2.60, s, 2-Me; 7.03, s, H3; 7.55, s, H6; 10.19, 

s, CHO. N.O.e. experiments gave the following results: irradiation at 

o 2.29 gave enhancements at o 7.03 (2.3%) and at o 7.55 (2.3%); 

irradaiation at o 2.60 gave enhancements at o 7.03 (2.3%) and at o 10.19 

(1.7%); irradiation at o 7.03 gave enhancements at o 2.29 (0.1 %) and at 

o 2.60 (0.3%); irradiation at o 7.55 gave enhancements at o 2.29 (0.2%) 

and at o 10.19 (2.0%); irradiation at o 10.19 gave enhancements at o 2.60 

(0.2%) and at o 7.55 (1.4%). 

2,4,5-Trimethylbenzyl alcohol (223), isolated as an oil (Found: M+• 

150.1040. C1oH140 requires 150.1045. Fragmentation pattern identical 

with an authentic sample). Vmax (liquid film} 3379 cm-1. 1 H n.m.r. (CDCis) 

o 2.22, s, 4-Me, 5-Me; 2.28, s, 2-Me; 4.61, s, CH2; 6.95, s, H3; 7.08, s, H6. 

N.O.e. experiments gave the following results: irradiation at o 2.22 gave 

enhancements at o 6.95 (2.5%) and at o 7.08 (2.3%); irradiation at o 2.28 

gave enhancements at o 4.61 (0.6%) and at o 6.95 (2.2%); irradiation at 

o 4.61 gave enhancements at o 2.28 (0.3%) and at o 7.08 (2.1 %); 

irradiation at o 6.95 gave enhancements at o 2.22 (0.4%) and at o 2.28 

(0.4%); irradiation at o 7.08 gave enhancements at o 2.22 (0.1 %) and at 

0 4.61 (0.4%). 
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2,4,5-Trimethylbenzyl nitrate (224) was not eluted from the silica gel 

Chromatotron plate, being presumably hydrolysed to the corresponding 

2,4,5-trimethylbenzyl alcohol (223). The presence of the known 2,4,5-tri­

methylbenzyl nitrate (224) in the crude reaction mixture was inferred from 

the 1 H n.m. r. signal due to the -CH2-0N02 group at 8 5.39.12 

5.3.2.3 Photonitration of 1.2.4.5-Tetramethylbenzene (134) in Acetonitrile 

Photochemistry in acetonitrile at +20° and the identification of the N -nitroso 

acetamide (227). 

Reaction of 1 ,2,4,5-tetramethylbenzene (134) I tetranitromethane in 

acetonitrile at +20°, as above, for 4 h gave a product which was shown by 

1 H n.m.r. spectral analysis (Table 3.7) to be a mixture of aromatic 

compounds (218)-(224) and (226) (total 86%), the dioxadiazole (227) (9%) 

and unidentified aromatic products (5%). Chromatography of the reaction 

mixture on a silica gel Chromatotron plate gave the N-nitroso acetamide 

(227) in a fraction eluted immediately before 2,4,5-trimethylbenzaldehyde 

(222): 

N-(2,4,5-trimethy/benzy~-N-nitroso acetamide (227), isolated as an 

oil (Insufficient for elemental analysis. Found: M+• 220.12105. 

C12H15N202 requires 220.1212. M+-NQ 190.1227. C12H15NO requires 

190.1232). Vmax (liquid film) 1726, 1499, 1128 em -1. 1 H n.m.r. (CDC Is) 

8 2.13, s, 5'-Me; 2.16, s, 4'-Me; 2.31, s, 2'-Me; 2.85, s, 1-Me; 4.86, s, CH2; 

6.50, s, H6'; 6.90, s, H3'. N.O.e. experiments gave the following results: 

irradiation at 8 2.13 gave an enhancement at 8 6.50 (4.2%); irradiation at 

8 2.16 gave an enhancement at 8 6.90 (3.5%); irradiation at 8 2.31 gave 

enhancements at 8 4.86 (1.3%) and at 8 6.90 (3.7%); irradiation at 8 4.86 

gave enhancements at 8 2.31 (1.2%) and at 8 6.50 (2.7%); irradiation at 

8 6.50 gave enhancements at 8 2.13 (0.9%) and at 8 4.86 (0.5%); 

411 



irradiation at o 6.90 gave enhancements at o 2.16 (0.6%) and at o 2.31 

(0.8%). 13C n.m.r. (CDCI3) o 18.7, 2'-Me; 19.2, 19.3, 4'-Me, 5'-Me; 22.8, 

1-Me; 39.5, CH2; 127.9, C6'; 129.4, C2'; 131.8, C3'; 133.0, C1'; 134.1, C4'; 

135.8, C5'; 174.6, C2. The above assignments were confirmed by reverse 

detected heteronuclear correlation spectra (HMQC, HMBC). 

5.3.2.4 Photonitration of 1 .2.4.5-Tetramethylbenzene (134) in Dichloro­

methane Containing Trifluoroacetic Acid 

Reaction of 1 ,2,4,5-tetramethylbenzene (134) I tetranitromethane in 

dichloromethane containing trifluoroacetic acid (0.71 mol L-1) at +20°, as 

above, for 4 h gave a product which was shown by 1 H n.m.r. spectral 

analysis (Table 3.8) to be a mixture of aromatic compounds (218)-(222), 

(224) and (226) (total 80%), and unidentified aromatic products (20%). 

5.3.2.5 Rearrangement of 1 .3.4.6-Tetramethyl-r-3-nitro-t-6-trinitromethyl­

cyclohexa-1 .4-diene (216) in Acetonitrile 

A solution of the adduct (216) (11 mg) in acetonitrile (11 ml) was 

stored in the dark at +20°. Aliquots were withdrawn from the reaction 

mixture at appropriate time intervals, the solvent removed under reduced 

pressure at ::::;oo, and the composition of each residue determined by 1 H 

n.m.r. spectral analysis. Within the first 5 min. adduct (216) underwent 

epimerization to give adduct (217), and also nitro-nitrite rearrangement to 

give the epimeric trinitromethyl nitrites (229) and (230), equilibrium 

(8:9:22a:23a ~ 3:1 :4:1) between these species being reached after a 

reaction time of 3-5 min. During the workup procedure the trinitromethyl 

nitrites (229) and (230) were converted into the corresponding 1 ,2,4,5-

tetramethyl- t-4-trinitromethylcyclohexa-2,5-dien-r-1-ol (231), 1 H n.m. r. 
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(CDCis) () 1.42, s, 1-Me; 1.75, s, 4-Me; 1.78, d, J2-Me,HS 1.5 Hz, 2-Me; 1.92, 

d, Js-Me,H6 1.5 Hz, 5-Me; 5.54, q, JH6,5-Me 1.5 Hz, H6; 5.88, q, JH3,2-Me 1.5 

Hz, H3; and 1 ,2,4,5-tetramethyl-c-4-trinitromethylcyclohexa-2,5-dien-r-1-ol 

(232), 1 H n.m.r. (CDCis) o 1.32, s, 1-Me; 1.69, s, 4-Me; 1.76, br s, 2-Me; 

1.90, br s, 5-Me; 5.53, q, JH6,5-Me 1.5 Hz, H6; 5.84, q, JH3,2-Me 1.5 Hz, H3. 

Subsequently over c. 2 h this equilibrium mixture of adducts (216), (217), 

(229) and (230) was converted into a mixture of 2,4,5-trimethyl-1-(2',2',2'­

trinitroethyl)-benzene (219) (15%), 2,3,5,6-tetramethylnitrobenzene (220} 

(19%), 2,4,5-trimethylphenylnitromethane (221) (13%), 2,4,5-trimethyl­

benzyl alcohol (223) (24%), 2,4,5-trimethylbenzyl nitrate (224) (3%), and 

unidentified aromatic products {total 23%). 

5.3.2.6 Rearrangement of 1 ,3.4.6-Tetramethyl-r-3-nitro-t-6-trinitromethyl­

cyclohexa-1.4-diene (216) in (D)Chloroform 

A solution of the adduct (216) in (D)chloroform was stored in the dark 

at +20°, and the 1H n.m.r. spectrum of the solution was monitored at 

appropriate time intervals. In comparison with the rearrangement of adduct 

(216) in acetonitrile, above, the transformations of adduct (216) in 

(D)chloroform occurred sluggishly, equilibrium with the epimeric adduct 

(217) (8:9 ~ 6:1) being established only after c. 90 h, and the formation of 

products from the adduct mixture being complete after> 14 days. In 

contrast to the rearrangement in acetonitrile, the hydroxy/trinitromethyl 

adducts (231) and (232) were not detected in the rearrangement in 

(D)chloroform. The products present after 25 days were 1-(2',2',2'-trinitro­

ethyl}-2,4,5-trimethylbenzene (219) (52%), 2,3,5,6-tetramethyl-1-nitro­

benzene (220) (1 %) 2,4,5-trimethylphenylnitromethane (221) (18%), 2,4,5-

trimethylbenzaldehyde (222) (6%), 2,4,5-trimethylbenzyl nitrate (224) 

(1 0%), 2,4,5-trimethylbenzyl nitrite (225) (trace) and unidentified aromatic 
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compounds (total 13%). 

5.3.2.7 Nitration of 1 .2.4.5-Tetramethylbenzene (134} with Nitrogen 

Dioxide in Dichloromethane 

A solution of 1 ,2,4,5-tetramethylbenzene (134) (0.47 mol L-1) in 

dichloromethane saturated with nitrogen dioxide was stored at +20° in the 

dark. Aliquots were removed at appropriate time intervals, the excess 

nitrogen dioxide and solvent were removed under reduced pressure at :::;oo, 

and the product composition determined by 1 H n.m.r. spectral analysis 

(Table 3.9). After 4 h the products formed were shown to be predominantly 

2,4,5-trimethylbenzyl nitrate (224) (68%), and 2,4,5-trimethylphenylnitro­

methane (221) (23%), with small amounts of aromatic compounds (218), 

(222) and (223) and unidentified aromatic compounds. 

5.3.2.8 Photonitration of 1 .2.4.5-Tetramethylbenzene {134) with Nitrogen 

Dioxide in Dichloromethane 

A solution of 1 ,2,4,5-tetramethylbenzene (134) (0.47 mol L-1) in 

dichloromethane saturated with nitrogen dioxide was irradiated with filtered 

light (A-cut-ott<435 nm) at +20°. Aliquots were removed at appropriate time 

intervals, the excess nitrogen dioxide and solvent were removed under 

reduced pressure at :::;oo, and the product composition determined by 1 H 

n.m.r. spectral analysis (Table 3.9). After 4 h the products formed were 

shown to be similar to those of the "dark" reaction, above, i.e. predominantly 

2,4,5-trimethylbenzyl nitrate (224) (70%), and 2,4,5-trimethylphenylnitro­

methane (221) (20%), with small amounts of aromatic compounds (218), 

(222) and (223) and unidentified aromatic compounds. 
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5.3.2.9 Nitration of 1.2.4.5-Tetramethylbenzene (134) with Nitrogen 

Dioxide in 1,1, 1 ,3,3.3-Hexafluoropropan-2-ol (HFP) 

A solution of 1 ,2,4,5-tetramethylbenzene (134) (0.47 mol L-1) in HFP 

saturated with nitrogen dioxide was stored at +20° in the dark. Aliquots 

were removed at appropriate time intervals, the excess nitrogen dioxide 

and solvent were removed under reduced pressure at ::;;oo, and the product 

composition determined by 1 H n.m.r. spectral analysis. Complete reaction 

of 1 ,2,4,5-tetramethylbenzene (134) had occurred after <0.5 h and the 

products formed were shown to be predominantly 2,3,5,6-tetramethylnitro­

benzene (220) (72%), 2,4,5-trimethylbenzoic acid (233) (18%), 2,3,5,6-

tetramethyl-1 ,4-dinitrobenzene (234) (4%), with small amounts of aromatic 

compounds (221) (1 %) and (222) (trace) and unidentified aromatic 

compounds (total 5%). 

Chromatography of the reaction mixture on a silica gel Chromatotron 

plate gave the carboxylic acid (233) in a fraction eluted immediately after 

2,4,5-trimethylbenzaldehyde (222): 

2,4,5-Trimethylbenzoic acid (233), m.p. 148-149°, (Found: M+• 

164.0838. C1 oH1202 requires 164.0837 Fragmentation pattern identical 

with an authentic sample). Vmax (KBr) 2966, 2928, 1690 cm-1. 1 H n.m.r. 

(CDCI3) o 2.25, s, 5-Me; 2.26, s, 4-Me; 2.58, s, 2-Me; 7.02, s, H3; 7.85, s, H6. 

N.O.e. experiments gave the following results: irradiation at o 2.25 gave an 

enhancement at o 7.85 (7.7%); irradiation at o 2.26 gave an enhancement 

at o 7.02 (5.8%); irradiation at o 2.58 gave an enhancement at o 7.02 

(7.0%); irradiation at o 7.02 gave enhancements at o 2.26 (0.5%) and at 

o 2.58 (1.7%); irradiation at o 7.85 gave an enhancement at o 2.25 (1.4%). 

13C n.m.r. (CDCI3) o 19.0, 5-Me; 19.7, 4-Me; 21.6, 2-Me; 125.5, C1; 132.7, 

C6; 133.3, C3; 134.0, C5; 138.8, C2; 142.4, C4; 173.7, C02H. The above 

assignments were confirmed by reverse detected heteronuclear correlation 
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spectra (HMQC, HMBC). 

2,3,5,6-Tetramethyl-1 ,4-dinitrobenzene (234) was not eluted from the 

silica gel Chromatotron plate. However, the presence of 2,3,5,6-tetra­

methyl-1 ,4-dinitrobenzene (234) in the crude mixture was inferred by 

comparing the 1 H n.m.r. signal due to the methyl groups, 8 2.32, with an 

authentic sample. 

5.3.2.1 0 Photonitration of 1 .2.4.5-Tetramethylbenzene (134) with Nitrogen 

Dioxide in 1,1, 1 ,3,3,3-Hexafluoropropan-2-ol (HFP) 

A solution of 1 ,2,4,5-tetramethylbenzene (134) (0.47 mol L-1) in HFP 

saturated with nitrogen dioxide was irradiated with filtered light (A.cut-off<435 

nm) at +20°. Aliquots were removed at appropriate time intervals, the 

excess nitrogen dioxide and solvent were removed under reduced pressure 

at ~oo, and the product composition determined by 1 H n.m.r. spectral 

analysis. Complete reaction of 1 ,2,4,5-tetramethylbenzene (134) had 

occurred after <0.5 hand the products formed were shown to be similar to 

those of the "dark" reaction, above, i.e. predominantly 2,3,5,6-tetramethyl­

nitrobenzene (220) (70%), 2,4,5-trimethylbenzoic acid (233) (18%), 2,3,5,6-

tetramethyl-1 ,4-dinitrobenzene (234) (4%), with small amounts of aromatic 

compounds (221) (1 %) and (222) (trace), and unidentified aromatic 

compounds (total 7%). 
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5.3.3 GENERAL PROCEDURE FOR THE PHOTONITRATION OF PENTA­

METHYLBENZENE (135) WITH TETRANITROMETHANE. 

A solution of pentamethylbenzene (135) (500 mg, 0.42 mol L-1) and 

tetranitromethane (0.84 mol L-1) in dichloromethane (at +20, -20, -50, or 

-78°) or acetonitrile (at +20 or -20°) was irradiated with filtered light 

(A.cut-on<435 nm). Aliquots were withdrawn from the reaction mixture at 

appropriate time intervals, the volatile material removed under reduced 

pressure at ~0°, and the product composition determined by 1 H n.m.r. 

spectral analysis (Tables 3.10 and 3.11). 

5.3.3.1 Photonitration of Pentamethylbenzene (135) in Dichloromethane 

Photochemistry in dichloromethane at -78° and the identification of adducts 

(244) and (245). 

Reaction of pentamethylbenzene (135) I tetranitromethane in 

dichloromethane at -78°, as above, for 3 h gave a product which was shown 

by 1 H n.m.r. spectral analysis (Table 3.1 0) to be a mixture of adduct (244) 

(15%), adduct (245) (1 %), aromatic compounds (246)-(260) (total 79%), 

and unidentified aromatic products (5%). H.p.l.c. allowed the separation of 

the unstable adduct (244), but adduct (245) was not isolated by this means 

and its identification is only tentative. 

1 ,2,3,4,6-Pentamethyl-r-3-nitro-t-6-trinitromethylcyclohexa-1 ,4-diene 

(244), isolated as an impure (c. 95%) oil. Vmax (liquid film) 1616, 1596, 

1576, 1550 cm-1. 1H n.m.r. (CDCI3) o 1.69, q, J2-Me,1-Me 1.5 Hz, 2-Me; 

1.74, br s, 1-Me, 3-Me and 4-Me; 1.97, s, 6-Me; 6.21, q, JHs,4-Me 1.5 Hz, H5. 

N.O.e. experiments gave the following results: irradiation at o 1.69 gave an 

enhancement at o 1.97 (0.4%); irradiation at o 1.74 gave enhancements at 

o 1.97 (0.9%), and at o 6.21 (6.7%); irradiation at o 1.97 gave 
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enhancements at 8 1.69 (0.8%), at 8 1.74 {0.6%), and at 8 6.21 (4.2%); 

irradiation at 8 6.21 gave enhancements at 8 1.74 (0.6%) and at 8 1.97 

(0.7%). 13C n.m.r. not obtainable because of the instability of adduct (244) 

in solution. 

1 ,2,3,4,6-Pentamethyl-r-3-nitro-c-6-trinitromethylcyclohexa-1 ,4-diene 

(245), only seen as a minor component in complex mixtures. 1 H n.m.r. 

(CDCis) 8 6.33, q, JHs,4-Me 1.5 Hz, H5; the remainder of the spectrum was 

obscured by signals due to other compounds. 

Photochemistry in dichloromethane at +20° and the identification of 

aromatic products (246}-(260). 

Reaction of pentamethylbenzene (135) I tetranitromethane in 

dichloromethane at +20°, as above, for 3 h gave a product which was 

shown by 1 H n.m.r. spectral analysis (Table 3.1 0) to be a mixture of 

aromatic compounds (246)-(260) (in Table 3.1 0, the yields of compounds 

(250) and (254) could not be assessed individually from 1 H n.m.r. spectra 

because of signal coincidences). Chromatography on a silica gel 

Chromatotron plate allowed the separation of compounds (246)-(256) in the 

order of elution below, the benzyl nitrates (257) and (258) and benzyl 

nitrites (259) and (260) being presumably hydrolysed to give the related 

benzyl alcohols (256) and (255), respectively. 

2,3,4, 6-Tetramethy/-1-(2',2',2'-trinitroethy/)-benzene (246) as an oil, 

which could not be induced to crystallize (Insufficient for elemental analysis. 

Found: M+• 297.0959. C12H1sNs06 requires 297.0961). Vmax (liquid film) 

1616, 1601, 1580 cm-1. 1H n.m.r. (CDCI3) 8 2.10, s, 2-Me; 2.14, s, 3-Me; 

2.16, s, 6-Me; 2.25, s, 4-Me; 4.74, br s, CH2; 6.88, s, H5. N.O.e. 

experiments gave the following results: irradiation at 8 2.1 0 gave an 

enhancement at 8 4.74 (1 .9%); irradiation at 8 2.16 gave enhancements at 

8 4.74 (1.5%) and at 8 6.88 (3.8%); irradiation at 8 2.25 gave an 
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enhancement at() 6.88 (3.8%); irradiation at() 4.74 gave enhancements at 

() 2.10 (1.9%) and at () 2.16 (1.5%); irradiation at() 6.88 gave 

enhancements at() 2.16 (0.6%) and at() 2.25 (0.6%). 13C n.m.r. (CDCI3) 

() 16.1, 3-Me; 16.7, 2-Me; 20.1, 6-Me; 20.7, 4-Me; 34.8, CH2; 123.5, C1; 

130.6, C5; 134.2, C3; 135.1, C6; 136.9, C2; 137.8, C4; resonance for 

C(N02)3 not observed. The above assignments were confirmed by 

reverse detected heteronuclear correlation spectra (HMQC, HMBC). 

2,3,4,5-Tetramethy/-1-(2',2',2'-trinitroethy/)-benzene (247) as an oil, 

which could not be induced to crystallize (Insufficient for elemental analysis. 

Found: M+• 297.0960. C12H1sN305 requires 297.0961 ). Vmax (liquid film) 

1609, 1576 cm-1. 1 H n.m.r. (CDCI3) () 2.09, s, 2-Me; 2.19 and 2.20, both s, 

3-Me, 4-Me; 2.23, s, 5-Me; 4.45, br s, CH2; 6.74, s, H6. N.O.e. experiments 

gave the following results: irradiation at () 2.09 gave an enhancement at 

() 4.45 (1.8%); irradiation at() 2.23 gave an enhancement at() 6.74 (4.2%); 

irradiation at() 4.45 gave enhancements at() 2.09 (1.6%) and at() 6.74 

(5.4%); irradiation at() 6.74 gave enhancements at() 2.23 (0.6%) and at 

() 4.45 (0.7%). 13C n.m.r. (CDCI3) () 16.1, 2-Me; 16.2 and 16.7, 3-Me, 4-Me; 

20.7, 5-Me; 37.2, CH2; 121.9, C1; 128.6, C6; 134.2, C2; 134.8, C5; 136.6, 

C3; 136.9, C4; resonance for C(N02)3 not observed. The above 

assignments were confirmed by reverse detected heteronuclear correlation 

spectra (HMQC, HMBC). 

2,3,4,5,6,2',3' ,4' ,6'-Nonamethyldiphenylmethane (248), 14 (Found: 

M+· 294.2349. C22H3o requires 294.23475). 1 H n.m.r. (CDCI3) () 2.00, s, 

2'-Me; 2.04, s, 6'-Me; 2.07, s, 2-Me, 6-Me; 2.13, s, 3'-Me; 2.19, s, 3-Me, 

5-Me; 2.23, s, 4-Me, 4'-Me; 4.12, s, CH2; 6.77, s, H5'. N.O.e. experiments 

gave the following results: irradiation at () 2.00 gave enhancements at 

() 2.13 (1.3%) and at () 4.12 (1.9%); irradiation at() 2.04 gave 

enhancements at() 4.12 (1.9%) and at() 6.77 (5.7%); irradiation at() 2.07 

gave enhancements at () 2.19 (1.0%) and at () 4.12 (3.2%); irradiation at 
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o 2.13 gave an enhancement at o 2.00 (1.8%); irradiation at o 2.19 gave an 

enhancement at o 2.07 (1.5%); irradiation at o 2.23 gave an enhancement 

at o 6.77 (5.2%); irradiation at o 4.12 gave enhancements at o 2.00 (2.1%), 

o 2.04 (1.7%) and at o 2.07 (1.9%); irradiation at o 6.77 gave 

enhancements at o 2.04 (1.3%) and at o 2.23 (0.7%). 13C n.m.r. (CDCis) 

o 16.0, 3'-Me; 16.6, 2'-Me; 16.9, 3-Me, 5-Me; 17.0, 4-Me; 17.2, 2-Me, 6-Me; 

20.6, 4'-Me; 21.0, 6'-Me; 33.3, CH2; 130.1, C5'; 132.3, C3, C4, C5; 132.4, 

C2, C6; 132.8, C3'; 133.3, C4'; 133.5, C6'; 135.2, C2'; 136.2, C1, C1'. The 

above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). 

2,3,4,5,6,2',3',4',5'-Nonamethyldiphenylmethane (249),14 m.p. 148° 

(sublimed) (Found: M+• 294.2350. C22Hso requires 294.23475). 1 H n.m.r. 

(CDCis) o 2.08, s, 5'-Me; 2.09, s, 2-Me, 6-Me; 2.16, 2.26, 2.28, all s, 3'-Me, 

4-Me, 4'-Me; 2.24, s, 3-Me, 5-Me; 2.34, s, 2'-Me; 3.92, br s, CH2; 6.25, s, 

H6'. N.O.e. experiments gave the following results: irradiation at o 2.08 

gave an enhancement at o 6.25 (9.5%); irradiation at o 2.09 gave 

enhancements at o 2.24 (1.8%), o 3.92 (4.4%) and at o 6.25 (7.9%); 

irradiation at o 2.24 gave an enhancement at o 2.09 (1.5%); irradiation at 

o 2.34 gave an enhancement at o 3.92 (2.9%); irradiation at o 3.92 gave 

enhancements at o 2.09 (2.8%), o 2.34 (3.8%) and at o 6.25 (2.1 %); 

irradiation at o 6.25 gave enhancements at o 2.08 (1.1 %), o 2.09 (0.3%) and 

at o 3.92 (0.6%). 13C n.m.r. (CDCis) o 15.4, 2'-Me; 16.0, 16.4, 16.9, 3'-Me, 

4-Me, 4'-Me; 16.8, 2-Me, 3-Me, 5-Me, 6-Me; 20.8, 5'-Me; 34.4, CH2; 125.9, 

C6'; 131.8, C1'; 132.2, C3, C5; 132.7, 133.3, C4, C4 .. C5'; 133.0, C2, C6; 

134.0, C1; 134.6, C3'; 134.9, C2'. The above assignments were confirmed 

by reverse detected heteronuclear correlation spectra (HMQC, HMBC). 

2,3,4,5,6-Pentamethylnitrobenzene (250), 15 (Found: M+• 193.1102. 

C11H1sN02 requires 193.1103). Vmax (KBr) 1524 cm·1. 1H n.m.r. (CDCis) 

o 2.15, 2.22, both s, 2-Me, 3-Me, 5-Me, 6-Me; 2.24, s, 4-Me. 
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2,3,4,6-Tetramethy/phenylnitromethane (251 ), as an oil which could 

not be induced to crystallize (Insufficient for elemental analysis. Found: 

M+• 193.1102. C11 H1sN02 requires 193.11 03). Vmax (liquid film) 1541 

cm-1. 1 H n.m.r. (CDCI3) 8 2.19, s, 3-Me; 2.28, s, 4-Me; 2.30, s, 2-Me; 2.35, 

s, 6-Me; 5.61, s, CH2; 6.95, s, H5. N.O.e. experiments gave the following 

results: irradiation at 8 2.28 gave an enhancement at 8 6.95 (2.9%); 

irradiation at 8 2.30 gave an enhancement at 8 5.61 (1.4%); irradiation at 

8 2.35 gave enhancements at 8 5.61 (1.3%) and at 8 6.95 (2.7%); 

irradiation at 8 5.61 gave enhancements at 8 2.30 (1.2%) and at 8 2.35 

(0.8%}; irradiation at 8 6.95 gave enhancements at 8 2.28 (0.4%) and at 

8 2.35 (0.4%). 13C n.m.r. (CDCI3) 8 16.0, 3-Me; 16.2, 2-Me; 19.8, 6-Me; 

20.9, 4-Me; 74.4, CH2; 124.8, C1; 130.0, C5; 133.6, C3; 135.5, C6; 137.2, 

C2; 138.6, C4. The above assignments were confirmed by reverse 

detected heteronuclear correlation spectra (HMQC, HMBC). 

2,3 ,4,5-Tetramethylphenylnitromethane (252}, 12 (Found: M+· 

193.11025. C11 H1sN02 requires 193.11 03). Vmax (KBr) 1549 cm-1. 1 H 

n.m.r. (CDCis) 8 2.20, s, 4-Me; 2.22, s, 3-Me; 2.24, s, 2-Me; 2.27, s, 5-Me; 

5.43, s, CH2; 6.98, s, H5. N.O.e. experiments gave the following results: 

irradiation at 8 2.24 gave an enhancement at 8 5.43 (1.2%); irradiation at 

8 2.27 gave an enhancement at 8 6.98 (3.0%); irradiation at 8 5.43 gave 

enhancements at 8 2.24 (1.0%) and at 8 6.98 (4.2%); irradiation at 8 6.98 

gave enhancements at 8 2.27 (0.4%) and at 8 5.43 (0.8%). 13C n.m.r. 

(CDCis) 8 15.9, 2-Me; 16.3, 3-Me, 4-Me; 20.5, 5-Me; 78.5, CH2; 125.4, C1; 

130.6, C6; 133.9, C2; 134.2, C5; 136.2, C3. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 

HMBC). 

2,3,4,5-Tetramethylbenzaldehyde (253), 16 (Found: M+• 162.1041. 

C11H140 requires 162.1045). Vmax (KBr) 1693, 1383 cm-1. 1H n.m.r. 

(CDCis) 8 2.24, s, 3-Me; 2.26, s, 4-Me; 2.33, s, 5-Me; 2.57, s, 2-Me; 7.45, s, 
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H6; 1 0.24, s, CHO. N.O.e. experiments gave the following results: 

irradiation at o 2.24 gave an enhancement at o 2.57 (0.8%); irradiation at 

o 2.33 gave an enhancement at o 7.45 (2.5%); irradiation at o 2.57 gave 

enhancements at o 2.24 (1.0%) and at o 10.24 (2. t%); irradiation at o 7.45 

gave enhancements at o 2.33 (0.4%) and at o 10.24 (1.9%); irradiation at 

o 10.24 gave enhancements at o 2.57 (0.5%) and at o 7.45 (1.9%). 13C 

n.m.r. (CDCis) o 14.6, 2-Me; 15.6, 3-Me; 16.8, 4-Me; 20.5, 5-Me; 130.6, C6; 

131.8, C1; 134.0, C5; 136.4, 136.6, C2, C3; 141.9, C4; 193.1, CHO. The 

above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). 

2,3,4,5,6-Pentamethylbenzoic acid (254), as an oil containing an 

impurity (c. 5%), identical with an authentic sample, (Found: M+• 192.1151. 

C12H1502 requires 192.1150). Vmax (liquid film) 1697, 1383, 1279 cm-1. 

1 H n.m.r. (CDCI3) o 2.21, 2.29, both s, 2-Me, 3-Me, 5-Me, 6-Me; 2.24, s, 

4-Me. 

2,3,4,5-Tetramethylbenzyl alcohol (255), 16 (Found: M+• 164.1199. 

C11H150 requires 164.1201). Vmax (KBr) 3373, 3298 cm-1. 1H n.m.r. 

(CDCis) o 2.20, s, 4-Me; 2.22, s, 3-Me; 2.27, s, 2-Me, 5-Me; 4.64, s, CH2; 

6.98, s, H6. N.O.e. experiments gave the following results: irradiation at 

o 2.27 gave enhancements at o 4.64 (1.0%) and at o 6.98 (2.2%); 

irradiation at o 4.64 gave enhancements at o 2.27 (0.3%) and at o 6.98 

(2.6%); irradiation at o 6.98 gave enhancements at o 2.27 (0.3%) and at 

o 4.64 (0.7%). 13C n.m.r. (CDCI3) o 15.3, 2-Me; 16.1, 3-Me, 4-Me; 20.6, 

5-Me; 64.5, CH2; 127.5, C6; 132.3, C2; 133.6, C5; 134.8, C4; 135.5, C1; 

135.7, C3. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

2,3,4,6-Tetramethylbenzyl alcohol (256), isolated only in admixture 

with 2;3,4,5-tetramethylbenzyl alcohol (255). 1 H n.m.r. (CDCI3) o 2.23, s, 

3-Me; 2.31, s, 4-Me; 2.39, s, 2-Me; 2.41, s, 6-Me; 4.76, s, CH2; 6.92, s, H5. 
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N.O.e. experiments gave the following results: irradiation at 8 2.31 gave an 

enhancement at 8 6.92 (2.9%); irradiation at o 2.39 gave an enhancement 

at o 4.76 (1.7%); irradiation at 8 2.41 gave enhancements at 8 4.76 (1.7%) 

and at 8 6.92 (2.8%); irradiation at 8 4.76 gave enhancements at 8 2.39 

(1.4%) and at 8 2.41 (1.0%); irradiation at 8 6.92 gave enhancements at 

o 2.31 (0.6%) and at 8 2.41 (0.4%). 13C n.m.r. (CDCI3) 8 15.7, 2-Me and 

3-Me; 19.4, 6-Me; 20.7, 4-Me; 59.6, CH2; 129.6, C5; 133.2, C3; 133.9, C6; 

134.2, C 1; 136.0, 136.3, C2, C4. The above assignments were confirmed 

by reverse detected heteronuclear correlation spectra (HMQC, HMBC). 

The labile benzyl nitrates (257) and (258) and benzyl nitrites (259) 

and (260) were identified from the 1 H n.m.r. (CDCI3) signal assigned to the 

CH2-0-X function in each case, where X= N02 or NO, respectively: (257) 

(8 5.5616, s), (258) (o 5.4216, s), (259) [8 5.73, br s (c.f. ref. 12)], (260) 

[8 5.65, br s (c.f. ref. 12)]. 

5.3.3.2 Photonitration of Pentamethylbenzene (135) in 1,1. 1 .3.3.3-Hexa­

fluoropropan-2-ol (HFP) 

Reaction of pentamethylbenzene (135) I tetranitromethane in HFP at 

+20°, as above, for 24 h gave a product which was shown by 1 H n.m.r. 

spectral analysis to be a mixture of predominantly 2,3,4,5,6-pentamethyl­

nitrobenzene (250) (68%), 2,3,4,5-tetramethyl-1-(2' ,2' ,2'-trinitroethyl)­

benzene (247) (8%), 2,3,4,5-tetramethylphenylnitromethane (252) (11 %), 

minor amounts of compounds (246), (249), (251), (253), (255) and (256) 

(total 8%) and unidentified aromatics (total 5%). The reaction was slow, 

only a low conversion (c. 17%) occurring in 3 h. 
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5.3.3.3 Photonitration of Pentamethylbenzene (135) in Dichloromethane 

Containing Trifluoroacetic Acid 

Reaction of pentamethylbenzene (135) I tetranitromethane in 

dichloromethane containing trifluoroacetic acid (0.71 mol L-1) at +20°, as 

above, for 3 h resulted in a low conversion (c. 26%) into the 2',2',2'-trinitro­

ethyl compounds (246) (20%) and (247) (5%), nonamethyldiphenyl­

methanes (248) (9%) and (249) (31 %), 2,3,4,5-tetramethylphenylnitro­

methane (252) (18%), and minor amounts of compounds (251 ), (253), 

(255)-(258) (total 7%) and unidentified aromatic compounds (total 1 0%) 

(Table 3.12). 

5.3.3.4 Nitration of Pentamethylbenzene (135) with Nitrogen Dioxide in 

Dichloromethane 

A solution of pentamethylbenzene (135) (0.42 mol L-1) in dichloro­

methane saturated with nitrogen dioxide was stored at +20° in the dark. 

Aliquots were removed at appropriate time intervals, the excess nitrogen 

dioxide and solvent were removed under reduced pressure at :s;oo, and the 

product composition determined by 1 H n.m.r. spectral analysis (Table 3.13). 

After 3 h the products formed were shown to be predominantly 2,3,4,5-tetra­

methylphenylnitromethane (252) (39%), the benzyl nitrates (257) (14%) and 

(258) (39%) and small amounts of aromatic compounds (248), (249), (251 ), 

(253), (255) and (256) (total 7%), and unidentified aromatic compounds 

(total 1 %). 
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5.3.3.5 Photonitration of Pentamethylbenzene {135) with Nitrogen Dioxide 

in Dichloromethane 

A solution of pentamethylbenzene (135) (0.42 mol L-1) in dichloro­

methane saturated with nitrogen dioxide was irradiated with filtered light 

(Acut-oft<435 nm) at +20°. Aliquots were removed at appropriate time 

intervals, the excess nitrogen dioxide and solvent were removed under 

reduced pressure at s0°, and the product composition determined by 1H 

n.m.r. spectral analysis (Table 3.13). After 3 h the products formed were 

shown to be similar to those of the "dark" reaction, above, i.e. predominantly 

2,3,4,5-tetramethylphenylnitromethane (252) (32%), the benzyl nitrates 

(257) (13%) and (258} (48%) and small amounts of aromatic compounds 

(248), (249), (251), (253), (255) and (256) (total 6%), and unidentified 

aromatic compounds (total 2%). 

5.3.3.6 Rearrangement of 1 ,2,3,4,6-Pentamethyl-r-3-nitro-t-6-trinitro­

methyl-cyclohexa-1 .4-diene (244) in (D2)-dichloromethane 

A solution of adduct (244) in (D2)-dichloromethane was stored at 

+22° and its 1 H n.m.r. spectrum monitored at appropriate time intervals. 

After 2 min. significant rearrangement (26%) of the adduct mixture had 

occurred, and the rearrangement was complete after 1 h (Fig. 3.52). At that 

time the major rearrangement products were 2,3,4,6-tetramethyl-1-(2' ,2' ,2'­

trinitroethyl)-benzene (246) (11 %), 2,3,4,5-tetramethylphenylnitromethane 

(252) (48%), 2,3,4,5-tetramethylbenzyl nitrate (258) (9%), 2,3,4,5-tetra­

methylbenzyl nitrite (260) (26%). 
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5.3.4 GENERAL PROCEDURE FOR THE PHOTONITRATION OF HEXA­

METHYLBENZENE (136) WITH TETRANITROMETHANE. 

A solution of hexamethylbenzene (136) (500 mg, 0.39 mol L-1) and 

tetranitromethane (0.78 mol L-1) in dichloromethane (at +20 or -20°) or 

acetonitrile (at +20°) was irradiated with filtered light (A.cut-ott<435 nm). 

Aliquots were withdrawn from the reaction mixture at appropriate time 

intervals, the volatile material removed under reduced pressure at :::;oo, and 

the product composition determined by 1 H n.m.r. spectral analysis (Tables 

3.14 and 3.15). 

5.3.4.1 Photonitration of Hexamethylbenzene (136) in Dichloromethane 

Photochemistry in dichloromethane at -20° and the identification of aromatic 

products (279)-(287). 

Reaction of hexamethylbenzene (136) I tetranitromethane in 

dichloromethane at -20°, as above, for 8 h gave a product which was shown 

by 1H n.m.r. spectral analysis (Table 3.14) to be a mixture of pentamethyl­

(2',2',2'-trinitroethylbenzene (279) (1 0%), pentamethylbenzyl nitrite (280) 

(6%), pentamethylbenzyl nitrate (281) (42%), pentamethylphenylnitro­

methane (282) (40%), and small amounts of compounds (283)-(287). The 

components of this mixture were separated by h.p.l.c. to give in elution 

order: 

Pentamethyl-(2' ,2' ,2'-trinitroethyl)-benzene (279), 12 (Found: M+• 

311.1116. C13H17N305 requires 311.1117). Vmax (KBr) 1603,1578 cm-1. 

1 H n.m.r. (CDCI3) o 2.12, s, 2-Me, 6-Me; 2.20, s, 3-Me, 5-Me; 2.24, s, 4-Me; 

4.82, br s, CH2. N.O.e. experiments gave the following results: irradiation 

at 8 2.12 gave an enhancement at 8 4.82 (3.6%); irradiation at o 4.82 gave 

an enhancement at 8 2.12 (2.1%). 13C n.m.r. (CDCI3) 8 17.0, 3-Me, 4-Me, 
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5-Me; 17.1, 2-Me, 6-Me; 35.1, CH2; 123.1, C1; 133.8, 133.9, C2, C3; 136.6, 

C4; resonance for C(N02)3 not observed. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 

HMBC). 

Pentamethylbenzyl nitrite (280), 12 Vmax (liquid film) 1639, 1593 

cm-1. 1H n.m.r. (CDCis) a 2.23, s, 3-Me, 5-Me; 2.26, s, 4-Me; 2.27, s, 2-Me, 

6-Me; 5.78, br s, CH2. N.O.e. experiments gave the following results: 

irradiation at a 2.27 gave an enhancement at a 5.78 (2.5%); irradiation at 

a 5.78 gave an enhancement at a 2.27 (1.2%). 

Pentamethylbenzyl nitrate (281),12 (Found: M+• 223.1207. 

C12H17NOs requires 223.1208). Vmax (KBr) 1624, 1611 cm-1. 1H n.m.r. 

(CDCis) o 2.23, s, 3-Me, 5-Me; 2.26, s, 4-Me; 2.31, s, 2-Me, 6-Me; 5.63, s, 

CH2. N.O.e. experiments gave the following results: irradiation at a 2.31 

gave an enhancement at o 5.63 (3.4%); irradiation at a 5.63 gave an 

enhancement at a 2.31 (1.8%). 13C n.m.r. (CDCis) a 16.5, 2-Me, 6-Me; 

16.7, 3-Me, 5-Me; 17.2, 4-Me; 71.5, CH2; 124.8, C1; 133.2, C3, C5; 134.5, 

C2, C6; 137.3, C4. The above assignments were confirmed by reverse 

detected heteronuclear correlation spectra (HMQC, HMBC). 

Pentamethylphenylnitromethane (282), 17 (Found: M+• 207.1257. 

C12H17N02 requires 207.1259). Vmax (KBr) 1549 cm-1. 1 H n.m.r. (CD Cis) 

a 2.25, s, 3-Me, 5-Me; 2.27, s, 4-Me; 2.31, s, 2-Me, 6-Me; 5.67, s, CH2. 

N.O.e. experiments gave the following results: irradiation at a 2.31 gave an 

enhancement at a 5.67 (2.8%); irradiation at a 5.67 gave an enhancement 

at a 2.31 (1.3%). 13C n.m.r. (CDCis) a 16.6, 2-Me, 6-Me; 16.8, 3-Me, 5-Me; 

17.2, 4-Me; 74.8, CH2; 124.6, C1; 133.2, C3, C5; 134.1, C2, C6; 137.3, C4. 

The above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). 

Di-(pentamethylbenzyl) ether (283), 18 m.p. 168° (dec.) (Insufficient 

for elemental analysis. Found: M+• 338.2603. C24H340 requires 
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338.261 0). Vmax (KBr) 1088, 1042 cm-1. 1 H n.m.r. (CDCI3) o 2.19, s, 3-Me, 

5-Me; 2.21, s, 4-Me; 2.32, s, 2-Me, 6-Me; 4.64, s, CH2. N.O.e. experiments 

gave the following results: irradiation at o 2.19 gave an enhancement at 

o 2.32 (2.1 %); irradiation at o 2.32 gave enhancements at o 2.19 (2.0%) 

and at o 4.64 (5.2%); irradiation at o 4.64 gave an enhancement at o 2.32 

(3.7%). 13C n.m.r. (CDCI3) o 16.2, 2-Me, 6-Me; 16.6, 3-Me, 5-Me; 16.9, 

4-Me; 67.4, CH2; 131.6, C1; 132.3, C3, C5; 133.4, C2, C6; 134.7, C4. The 

above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). 

3,4,5,6-Tetramethy/-2-nitromethy/benzy/ nitrate (284), m.p. 79-82° 

(Insufficient for elemental analysis. Found: M+• 268.10545. C12H15N20s 

requires 268.1059). Vmax (KBr) 1628, 1541, 1279,858 cm-1. 1H n.m.r. 

(CDCI3) o 2.29, s, 4-Me, 5-Me; 2.34, s, 3-Me; 2.36, s, 6-Me; 5.70, s, 

CH20N02; 5.72, s, CH2N02. N.O.e. experiments gave the following 

results: irradiation at o 2.34 gave an enhancement at o 5.72 (1.8%); 

irradiation at o 2.36 gave an enhancement at o 5.70 (2.0%); irradiation at 

o 5.70 gave an enhancement at o 2.36 (1.9%); irradiation at o 5.72 gave an 

enhancement at o 2.34 (2.3%). 13C n.m.r. (CDCI3) o 16.6, 4-Me or 5-Me; 

16.7, 6-Me; 17.2, 3-Me; 17.3, 5-Me or4-Me; 70.1, CH20N02; 74.1, 

CH2N02; 126.4, C2; 127.2, C1; 135.4, C3; 135.8, C6; 138.4, 138.6, C4, C5. 

The above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). 

1 ,2-Bis(nitromethyl)-3,4,5,6-tetramethylbenzene (285), 12 (Found: 

M+• 252.1103. C12H15N204 requires 252.111 0). Vmax (KBr) 1541 cm-1. 

1 H n.m.r. (CDCI3) o 2.29, s, 4-Me, 5-Me; 2.37, s, 3-Me, 6-Me; 5.82, s, CH2. 

N.O.e. experiments gave the following results: irradiation at o 2.37 gave an 

enhancement at o 5.82 (1.9%); irradiation at o 5.82 gave an enhancement 

at o 2.37 (2.4%). 13C n.m.r. (CDCI3) o 16.7, 3-Me, 6-Me; 17.3, 4-Me, 5-Me; 

74.3, CH2; 126.6, C1, C2; 135.7, C3, C6; 138.7, C4, C5. The above 
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assignments were confirmed by reverse detected heteronuclear correlation 

spectra (HMQC, HMBC). 

3,4,5,6-Tetramethyl-2-nitromethylbenzyl alcohol (286), as an oil 

which could not be induced to crystallize (Insufficient for elemental analysis. 

Found: M+• 223.1203. C12H17NOs requires 223.1208). Vmax (liquid film) 

3383, 1551 cm·1. 1 H n.m.r. (CDCis) o 2.27 and 2.28, both s, 4-Me, 5-Me; 

2.30, s, 3-Me; 2.39, s, 6-Me; 4.84, s, CH20H; 5.80, s, CH2N02. N.O.e. 

experiments gave the following results: irradiation at o 2.30 gave an 

enhancement at o 5.80 (1.6%); irradiation at o 2.39 gave an enhancement 

at o 4.84 (1.5%); irradiation at o 4.84 gave enhancements at o 2.39 (1.5%) 

and at o 5.80 (2.8%); irradiation at o 5.80 gave enhancements at o 2.30 

(1.1%) and ato4.84 (2.5%). 13C n.m.r. (CDCis) o 16.3, 6-Me; 16.4, 17.0, 

17.2, 3-Me, 4-Me, 5-Me; 59.8, CH20H; 74.5, CH2N02; 125.4, C2; 134.0, 

C6; 134.9, C3; 135.8, C1; 136.3, C4; 138.3, C5. The above assignments 

were confirmed by reverse detected heteronuclear correlation spectra 

(HMQC, HMBC). 

Pentamethylbenzyl alcohol (287),12 (Found: M+• 178.1359. 

C12H1sO requires 178.1358). Vmax (KBr) 3285 cm-1. 1H n.m.r. (CDCis) 

o 2.22, s, 3-Me, 5-Me; 2.24, s, 4-Me; 2.35, s, 2-Me, 6-Me; 4.78, s, CH2. 

N.O.e. experiments gave the following results: irradiation at o 2.35 gave an 

enhancement at o 4.78 (3.0%); irradiation at o 4.78 gave an enhancement 

at o 2.35 (1.5%). 13C n.m.r. (CDCI3) o 16.1, 2-Me, 6-Me; 16.6, 3-Me, 5-Me; 

16.9, 4-Me, 60.0, CH2; 132.7, C3, C5; 132.9, 133.9, C1, C2, C6; 135.0, C4. 

The above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). This compound was isolated in higher 

yield than that present in the mixture prior to h.p.l.c. separation, and may be 

formed by hydrolysis of either/both of the benzyl esters (280) and (281) 

during chromatography. 
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Photochemistry in dichloromethane at +20° and identification of penta­

methylbenzaldehyde (288}. 

Reaction of hexamethylbenzene (136) I tetranitromethane in 

dichloromethane at +20°, as above, for 5 h gave a product which was 

shown by 1H n.m.r. spectral analysis (Table 3.14) to be a mixture of 

compounds (279) (16%), (280) (8%), (281) (31%), (282) (32%), and small 

amounts of compounds (283)-(288). Chromatography of the reaction 

mixture on a silica gel Chromatotron plate gave pentamethylbenzaldehyde 

(288) in a fraction eluted immediately after the di-(pentamethylbenzyl) ether 

(283): 

Pentamethylbenzaldehyde (288),15 (Found: M+• 176.1198. 

C12H160 requires 176.1201). Vmax (CHCis) 2928,2855, 1684 cm-1. 1H 

n.m.r. (CDCis) 8 2.24, s, 3-Me, 5-Me; 2.29, s, 4-Me; 2.42, s, 2-Me, 6-Me; 

10.63, s, CHO. N.O.e. experiments gave the following results: irradiation 

at 8 2.42 gave an enhancement at 8 10.63 {3.1%). 13C n.m.r. (CDCI3) 8 

16.1, 2-Me, 3-Me, 5-Me, 6-Me; 17.6, 4-Me, 131.3, C1; 131.7, C3, C5; 132.5, 

C2, C6; 138.3, C4; 196.5, CHO. The above assignments were confirmed 

by reverse detected heteronuclear correlation spectra (HMQC, HMBC). 

5.3.4.2 Photonitration of Hexamethylbenzene (136) in Acetonitrile 

Photochemistry in acetonitrile at +20° and the identification of aromatic 

products (228), (289) and (290). 

Reaction of hexamethylbenzene (136) I tetranitromethane in 

acetonitrile at +20°, as above, for 8 h gave a product which was shown by 

1H n.m.r. spectral analysis (Table 3.15) to be a mixture of compounds (279) 

(9%), (281) (21%), (282) (40%), (285) (10%), and small amounts of 

compounds (228), (280), (283), (284), (286), (287), 289), (289) and (290). 

The components of this mixture were separated by h.p.l.c. to give the 
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additional compounds (228), (289) and (290) in elution order: 

N-Nitroso-N-(pentamethylbenzyl)-acetamide (228), as an oil which 

could not be induced to crystallize (Insufficient for elemental analysis. 

Found: M+ 248.1526. C14H2oN202 requires 248.1525. M+•-NQ 

218.1534. c14H2oNO requires 218.1545). Vmax (liquid film) 1719, 1504, 

1121 cm-1. 1H n.m.r. (CDCI3) o2.17, s, 2'-Me, 6'-Me, 2.20, s,3'-Me, 5'-Me; 

2.21, s, 4'-Me; 2.73, s, 1-Me; 4.99, s, CH2. N.O.e. experiments gave the 

following results: irradiation at o 2.17 gave enhancements at o 2.73 (0.7%) 

and at o 4.99 (3.9%); irradiation at o 2.73 gave an enhancement at o 2.17 

(0.3%); irradiation at o 4.99 gave an enhancement at o 2.17 (2.3%). 13C 

n.m.r. (CDCI3) o 16.7, 2'-Me, 4'-Me, 6'-Me; 16.9, 3'-Me, 5'-Me; 20.3, 1-Me; 

39.7, CH2; 128.3, C2', C6'; 132.9, C1', C3', C5'; 134.8, C4'; 174.5, C2. The 

above assignments were confirmed by reverse detected heteronuclear 

correlation spectra (HMQC, HMBC). 

Pentamethylbenzyl acetate (289), identical with an authentic 

sample, 19 (Found: M+• 220.1469. c14H2o02 requires 220.1463). Vmax 

(KBr) 1732, 1240 cm-1. 1 H n.m.r. (CDCI3) o 2.06, s, 1-Me; 2.24, s, 3'-Me, 

5'-Me; 2.25, s, 4'-Me; 2.29, s, 2'-Me, 6'-Me; 5.25, s, CH2. N.O.e. 

experiments gave the following results: irradiation at o 2.29 gave an 

enhancement at o 5.25 (3.5%); irradiation at o 5.25 gave an enhancement 

at o 2.29 (1.6%). 13C n.m.r. (CDCI3) o 16.3, 2'-Me, 6'-Me; 16.7, 3'-Me, 

5'-Me; 17.1, 4'-Me, 21.0, 1-Me; 62.2, CH2; 129.2, C1'; 132.9, C3', C5'; 

133.8, C2', C6'; 136.0, C4', 171.4, C2. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 

HMBC). 

N-(Pentamethylbenzyl)-acetamide(290),20 (Found: M+• 219.1624. 

C14H21 NO requires 219.1623). Vmax (KBr) 3304, 1643, 1537, 1385 cm-1. 

1 H n.m.r. (CDCI3) o 2.00, s, 1-Me; 2.24, s, 3'-Me, 4'-Me, 5'-Me; 2.27, s, 

2'-Me, 6'-Me; 4.46, d, Jmethylene,NH 4.4 Hz, CH2; 6.03, br s, N-H. N.O.e. 
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experiments gave the following results: irradiation at 8 2.00 gave an 

enhancement at 8 6.03 (2.7%); irradiation at 8 2.37 gave enhancements at 

8 4.46 (4.3%) and at 8 6.03 (1.0%); irradiation at 8 4.46 gave 

enhancements at 8 2.27 (2.4%) and at 8 6.03 (2.1 %); irradiation at 8 6.03 

gave enhancements at 8 2.00 (1.2%}, at 8 2.27 (0.3%) and at 8 4.46 (1.1 %). 

13C n.m.r. (CDCI3) 8 16.3, 2'-Me, 6'-Me; 16.7, 3'-Me, 5'-Me; 16.9, 4'-Me; 

22.4, 1-Me; 39.6, CH2; 130.4, C1'; 132.9, 133.0, C2', C3', C5', C6'; 135.0, 

C4'; 170.8, C2. The above assignments were confirmed by reverse 

detected heteronuclear correlation spectra (HMQC, HMBC). 

5.3.4.3 Photonitration of Hexamethylbenzene (136) in 1,1, 1 .3.3.3-Hexa­

fluoropropan-2-ol (HFP) 

A solution of hexamethylbenzene {136) (250 mg, 0.39 mol L-1) and 

tetranitromethane (0.78 mol L-1) in HFP at +20° was irradiated with filtered 

light (Acut-ott<435 nm) for 24 h. After workup the product composition was 

determined by 1 H n.m.r. spectral analysis (Table 3.16) and shown to be 

substantially a mixture of 2,3,4,5,6-pentamethyl-1-(2',2',2'-trinitroethyl)­

benzene (279) (67%) and 2,3,4,5,6-pentamethylphenylnitromethane (282} 

(11 %), with small amounts of the dibenzyl ether (283) (3%), 2,3,4,5,6-penta­

methylbenzyl alcohol (287) (5%) and unidentified aromatic compounds 

(total 14%). 

5.3.4.4 Nitration of Hexamethylbenzene (136) with Nitrogen Dioxide in 

Dichloromethane 

A solution of hexamethylbenzene (136) (0.39 mol L-1) in dichloro­

methane saturated with nitrogen dioxide was stored at +20° in the dark. 

Aliquots were removed at appropriate time intervals, the excess nitrogen 
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dioxide and solvent were removed under reduced pressure at :::;oo, and the 

product composition determined by 1H n.m.r. spectral analysis (Table 3.17). 

After 8 h the products formed were shown to be predominantly 2,3,4,5,6-

pentamethylbenzyl nitrate (281) (50%) and 2,3,4,5,6-pentamethylphenyl­

nitromethane (282) (40%) and a small amount of 2,3,4,5,6-pentamethyl­

benzyl nitrite (280) (7%). 

5.3.4.5 Photonitration of Hexamethylbenzene (136) with Nitrogen Dioxide 

in Dichloromethane 

A solution of hexamethylbenzene (136) (0.39 mol L-1) in dichloro­

methane saturated with nitrogen dioxide was irradiated with filtered light 

(A-cut-ott<435 nm) for 8 hat +20°. Aliquots were removed at appropriate 

time intervals, the excess nitrogen dioxide and solvent were removed under 

reduced pressure at :::;oo, and the product composition determined by 1 H 

n.m.r. spectral analysis (Table 3.17). After 8 h the products formed were 

shown to be similar to those of the "darku reaction, i.e. predominantly 

2,3,4,5,6-pentamethylbenzyl nitrate (281) (56%) and 2,3,4,5,6-pentamethyl­

phenylnitromethane (282) (35%) and a small amount of 2,3,4,5,6-penta­

methylbenzyl nitrite (280) (4%). 

5.3.4.6 Nitration of Hexamethylbenzene (136) with Nitrogen Dioxide in 

Acetonitrile 

A solution of hexamethylbenzene (136) (0.39 mol L-1) in acetonitrile 

saturated with nitrogen dioxide was stored at +20° in the dark. After 1 h 

complete reaction of hexamethylbenzene (136) had occurred, the excess 

nitrogen dioxide and solvent were removed under reduced pressure at :::;oo, 

and the product composition determined by 1 H n.m.r. spectral analysis. 
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The products formed were shown to be predominantly 2,3,4,5,6-penta­

methylbenzyl nitrate (281) (19%), 2,3,4,5,6-pentamethylphenylnitromethane 

(282) (63%), 1 ,2-bis(nitromethyl)-3,4,5,6-tetramethylbenzene (285) (9%) 

and the N-nitroso acetamide {228) (4%). 

5.3.4.7 Photonitration of Hexamethylbenzene (136) with Nitrogen Dioxide 

in Acetonitrile 

A solution of hexamethylbenzene (136) (0.39 mol L-1) in acetonitrile 

saturated with nitrogen dioxide was irradiated with filtered light P-cut-ott<435 

nm) at +20°. After 1 h complete reaction of hexamethylbenzene ( 136) had 

occurred, the excess nitrogen dioxide and solvent were removed under 

reduced pressure at $;0°, and the product composition determined by 1 H 

n.m.r. spectral analysis. The products formed were shown to be 

predominantly 2,3,4,5,6-pentamethylbenzyl nitrate (281) (13%), 2,3,4,5,6-

pentamethylphenylnitromethane (282) (63%), 1 ,2-bis(nitromethyl)-3,4,5,6-

tetramethylbenzene (285) (11%) and the N-nitroso acetamide (228) (2%). 

5.4 Experimental Relating to Chapter Four 

GENERAL PROCEDURE FOR THE PHOTONITRATION OF 2,3-DIMETHYL­

ANISOLE (307) WITH TETRANITROMETHANE. 

A solution of 2,3-dimethylanisole (307) (500 mg, 0.46 mol L-1) and 

tetranitromethane (0.92 mol L-1) in dichloromethane or acetonitrile (at +20 

or -20°) or 1,1, 1 ,3,3,3-hexafluoropropan-2-ol (at +20°) was irradiated with 

filtered light (A-cut-ott<435 nm). Aliquots were withdrawn from the reaction 

434 



mixture at appropriate time intervals, the volatile material removed under 

reduced pressure at :::;oo, and the product composition determined by 1 H 

n.m.r. spectral analysis (Tables 4.1-4.3). 

5.4.1 Photonitration of 2.3-Dimethylanisole (307) in Dichloromethane 

Photochemistry of 2,3-dimethy/aniso/e (307) in dichloromethane at +20° 

and the identification of products (314)-(324). 

Reaction of 2,3-dimethylanisole (307) I tetranitromethane in dichloro­

methane at +20°, as above, for 8 h resulted in essentially complete 

conversion into a product which was shown by 1H n.m.r. spectral analysis 

(Table 4.1) to be a mixture of nitro/trinitromethyl adducts (314) (15%) and 

(315) (9%), hydroxy/trinitromethyl adducts (316) {3%) and (317) {1%), and 

aromatic compounds (318) (10%), (319) (1%), (320) {7%), (321) (42%), 

(322) (5%), (323) (1 %) and hydroxy dinitro compound (324) (1 %). H.p.l.c. 

allowed the partial separation of these products in the elution order given 

below. 

5,6-Dimethy/-3-trinitromethy/aniso/e (318), m.p. 94° (dec.) 

(Insufficient for elemental analysis. Found: M+• 285.0593. C1 oH11 Ns07 

requires 285.0597). Vmax (KBr) 1614, 1587 em -1. 1H n.m.r. (CDCis) 

8 2.22, s, 6-Me; 2.34, s, 5-Me; 3.84, s, OMe; 6.87, d, JH2 H4 2.5 Hz, H2; 6.96, 
' 

d, JH4,H2 2.5 Hz, H4. N.O.e. experiments gave the following results: 

irradiation at 8 2.34 gave an enhancement at 8 6.96 (5.3%); irradiation at 

8 3.84 gave an enhancement at 8 6.87 (9.7%); irradiation at 8 6.87 gave an 

enhancement at 8 3.84 (1.4%); irradiation at 8 6.96 gave an enhancement 

at 8 2.34 (0.7%}. 13 C n.m.r. (CDCJ3) 8 12.2, 6-Me; 20.4, 5-Me; 55.9, OMe; 

108.1, C2; 119.6, C3; 123.5, C4; 133.4, C5; 139.2, C6; 157.9, C1; a 

resonance for C(N02)3 was not observed. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 
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HMBC). 

4~Methoxy~2,3~dimethylbenzonitri/e N~oxide (319), m.p. 112° 

(sublim.) (Insufficient for elemental analysis. Found: M+• 177.0790. 

C10H11N02 requires 177.0790). Vmax (KBr) 2280, 1263 cm-1. 1H n.m.r. 

(CDCis) & 2.15, s, 3~Me; 2.24, s, 2~Me; 3.80, s, OMe; 6.65, d, JHs,H6 8.8 Hz, 

H5; 6.92, d, JH6,H5 8.8 Hz, H6. N.O.e. experiments gave the following 

results: irradiation at & 3.80 gave an enhancement at & 6.65 (5.4%); 

irradiation at o 6.65 gave enhancements at o 3.80 (0.9%) and at & 6.92 

(10.2%); irradiation at o 6.92 gave an enhancement at & 6.65 (5.5%). 13C 

n.m.r. (CDCis) o 12.3, 3-Me; 15.2, 2~Me; 55.7, OMe; 108.3, C5; 122.8, C6; 

124.9, C1; 126.3, C3; 132.3, C2; 155.3, C4; a resonance for C(N02)3 was 

not observed. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

2,3-Dimethyl-4~trinitromethylaniso/e (320), m.p. 58~59° (Insufficient 

for elemental analysis. Found: No parent ion visible, M+·-N02 239.0664. 

C;oH;;N20s requires 239.0668). Vmax (KBr) 1622, 1580 cm-1. iH n.m.r. 

{CDCis) & 2.02, s, 3-Me; 2.21, s, 2-Me; 3.91, s, OMe; 6.83, d, JH6,H5 8.8 Hz, 

H6; 7.11, d, JH5,H6 8.8 Hz, H5. N.O.e. experiments gave the following 

results: irradiation at & 2.02 gave an enhancement at & 2.21 (1.5%); 

irradiation at o 2.21 gave an enhancement at & 2.02 (1.1 %); irradiation at 

& 3.91 gave an enhancement at & 6.83 (7.1%); irradiation at o 6.83 gave 

enhancements at & 3.91 (1.5%) and at & 7.11 (11.3%); irradiation at & 7.11 

gave an enhancement at & 6.83 (5.3%). 13C n.m.r. (CDCJ3) & 12.0, 2-Me; 

18.2, 3-Me; 55.8, OMe; 107.7, C6; 113.7, C4; 128.7, C2; 129.0, C5; 139.5, 

C3; 161.5, C1; a resonance for C(N02)3 was not observed. The above 

assignments were confirmed by reverse detected heteronuclear correlation 

spectra (HMQC, HMBC). 

2,3-Dimethyl~4-nitroanisole (321), m.p. 71-72° (Lit.21 m.p. 70-73°), 

(Found: M+• 181.0741. CgH;;NOs requires 181.0739). Vmax (KBr) 1583, 
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1516 cm-1. 1H n.m.r. (CDCia) o 2.21, 2.45, both s, 2-Me, 3-Me; 3.90, s, 

OMe; 6.75, d, JH6 HS 9.0 Hz, H6; 7.80, d, JHs H6 9.0 Hz, H5. N.O.e. 
' ' 

experiments gave the following results: irradiation at o 2.21 gave an 

enhancement at o 2.45 (0.8%); irradiation at o 2.45 gave an enhancement 

at o 2.21 (1.0%); irradiation at o 3.90 gave an enhancement at o 6.75 

(5.9%); irradiation at o 6.75 gave enhancements at o 3.90 (1.2%) and at 

o 7.80 (5.0%); irradiation at o 7.80 gave an enhancement at o 6.75 (2.5%). 

5,6-Dimethyl-2,4-dinitrophenol (322}, m.p. 84-85.5° (Ut.22 m.p. 86.5-

870), (Found: M+• 212.0432. CsHsN20s requires 212.0433). Vmax (KBr) 

3209, 1614, 1591, 1549, 1522, 1354 cm-1. 1H n.m.r. (CDCia) o 2.37, 2.54, 

both s, 5-Me, 6-Me; 8.61, s, H3; 11.32, br s, OH. N.O.e. experiments gave 

no enhancements on irradiation of the proton signals. 

3-Methoxy-4,5-dimethylbenzoic acid (323), m.p. 153-154° 

(Insufficient for elemental analysis. Found: M+• 180.0782. C10H1203 

requires 180.0786). Vmax (KBr) 3421, 1684 cm-1. 1 H n.m.r. (CDCia) o 2.21, 

s, 4-Me; 2.33, s, 5-Me; 3.88, s, OMe; 7.42, br s, H2; 7.56, br s, H6. N.O.e. 

experiments gave the following results: irradiation at o 2.21 gave an 

enhancement at o 2.33 (1.1 %); irradiation at o 2.33 gave enhancements at 

o 2.21 (0.9%) and at o 7.56 (7.5%); irradiation at o 3.88 gave an 

enhancement at o 7.42 (10.8%); irradiation at o 7.42 gave an 

enhancement at o 3.88 (1.4%); irradiation at o 7.56 gave an enhancement 

at o 2.33 (1.1 %). 

1 -Methoxy-5, 6-d imethyl- t-6-n itro-r-3-trinitromethylcyclohexa -1 ,4-

diene (314), as an oil containing an impurity (c. 5%). Vmax (liquid film) 

1599, 1558 cm-1. 1 H n.m.r. (CDCia) o 1.80, dd, Js-Me,H4 1.5 Hz, Js-Me, H3 

1.4 Hz, 5-Me; 1.82, s, 6-Me; 3.64, s, OMe; 4.91, br s, H3; 5.03, dd, JH2 H3 3.9 
' 

Hz, JH2,H4 1.5 Hz, H2; 5.77, ddq, JH4,H3 3.4 Hz, JH4,H2 1.5 Hz, JH4,5-Me 1.5 

Hz, H4; the spin-spin coupling patterns above were confirmed by double 

irradiation experiments. N.O.e. experiments gave the following results: 
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irradiation at o 1.80 gave an enhancement at o 5.77 (4.6%); irradiation at 

o 3.64 gave an enhancement at o 5.03 (9.3%); irradiation at o 4.91 gave an 

enhancement at o 5.77 (2.1 %); irradiation at o 5.03 gave an enhancement 

at o 3.64 (1.3%); irradiation at o 5.77 gave enhancements at o 1.80 (1.1 %) 

and at o 4.91 (2.7%). 13C n.m.r. (CDCis) o 18.0, 5~Me; 21.9, 6-Me; 43.6, 

C3; 55.9, OMe; 88.5, C2; 89.1, C6; 117 .3, C4; 140.5, C5; 158.3, C1; a 

resonance for C(N02)s was not observed. The above assignments were 

confirmed by reverse detected heteronuclear correlation spectra (HMQC, 

HMBC). 

1-Methoxy-5, 6-dimethyl-c-6-nitro-r-3-trin itromethylcyclohexa-1 ,4-

diene (315), as an oil containing an impurity (c. 5%). Vmax (liquid film) 

1601, 1556 cm-1. 1 H n.m.r. (CDCis) o 1.82, dd, J5-Me,H4 1.4 Hz, J5-Me,H3 

1.4 Hz, 5-Me; 1.85, s, 6-Me; 3.63, s, OMe; 4.81, br s, H3; 4.97, dd, JH2,H3 3.4 

Hz, JH2,H4 2.0 Hz, H2; 5.68, ddq, JH4,H3 2.9 Hz, JH4,H2 2.0 Hz, JH4,5-Me 1.4 

Hz, H4; the spin-spin coupling patterns above were confirmed by double 

irradiation experiments. N.O.e. experiments gave the following results: 

irradiation at o 1.82 gave an enhancement at o 5.68 (4.2%); irradiation at 

o 3.63 gave an enhancement at o 4.97 (9.5%); irradiation at o 4.81 gave 

enhancements at o 4.97 (2.3%) and at o 5.68 (1.7%); irradiation at o 4.97 

gave enhancements at o 3.63 (1.4%) and at o 4.81 (2.5%); irradiation at 

85.68 gave enhancements at 84.81 (2.2%) and at o 1.82 (0.9%). 13C 

n.m.r. (CDCis) o 18.0, 5-Me; 21.4, 6-Me; 42.6, C3; 55.9, OMe; 88.5, C2, C6; 

117.2, C4; 139.3, C5; 157.7, C1; a resonanceforC(N02)3 was not 

observed. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

2-Methoxy-1 ,6-dimethyl+4-trinitromethylcyclohexa-2,5-dien-r-1-ol 

(316), isolated only in admixture with hydroxy/trinitromethyl adduct (317) 

(c. 15%) below. Vmax (liquid film} 3460, 1597, 1576 cm-1. 1H n.m.r. 

(CDCis} o 1.45, s, 1-Me; 1.95, d, J6-Me,H5 1.5 Hz, 6-Me; 3.66, s, OMe; 4.71, 
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d, JH4,H5 2.9 Hz, H4; 4.71, s, H3; 5.45, dq, JH5,H4 2.9 Hz, JHs,6-Me 1.5 Hz, 

H5; the spin-spin coupling patterns above were confirmed by double 

irradiation experiments. N.O.e. experiments gave the following results: 

irradiation at o 1.45 gave an enhancement at o 1.95 (1.3%); irradiation at 

o 1.95 gave enhancements at o 1.45 (0.9%) and at o 5.45 (4.5%); 

irradiation at o 3.66 gave an enhancement at o 4.71 (5.7%); irradiation at 

o 4.71 gave enhancements at o 3.66 (1.2%} and at o 5.45 (2.4%); 

irradiation at o 5.45 gave enhancements at o 1.95 (0.7%) and at o 4.71 

(1.3%). 13C n.m.r. {CDCI3) o 17.5, 6-Me; 26.9, 1-Me; 43.9, C4; 55.4, OMe; 

68.6, C1; 84.6, C3; 112.2, C5; 147.2, C6; 163.6, C2; a resonance for 

C(N02)3 was not observed. The above assignments were confirmed by 

reverse detected heteronuclear correlation spectra (HMQC, HMBC). 

2-Methoxy-1 ,6-dimethyl-c-4-trinitromethylcyclohexa-2,5-dien-r-1-ol 

(317), isolated only as the minor component in admixture with 

hydroxy/trinitromethyl adduct (316) above. 1 H n.m.r. (CDCI3) o 1.45, 1-Me; 

1.94, dd, Je-Me,H5 1.5 Hz, Je-Me,H4 1.5 Hz, 6-Me; 3.63, s, OMe; 4.61, ddq, 

JH4,H5 3.0 Hz, JH4,H3 2.5 Hz, JH4,6-Me 1.5 Hz, H4; 4.66, dd, JH3,H4 2.5 Hz, 

JH3,H5 2.0 Hz, H3; 5.40, ddq, JH5,H4 3.0 Hz, JHs,H3 2.5 Hz, JH5,6-Me 1.5 Hz, 

H5; the spin-spin coupling patterns above were confirmed by double 

irradiation experiments. N.O.e. experiments gave the following results: 

irradiation at o 1.94 gave an enhancement at o 5.40 (3.9%); irradiation at 

o 3.63 gave an enhancement at o 4.66 (2.5%); irradiation at o 4.61 gave an 

enhancement at o 3.63 (0.6%). 13C n.m.r. (CDCis) o 17.7, 6-Me; 24.4, 

1-Me; 42.8, C4; 55.4, OMe; 85.2, C3; 112.7, C5; the above assignments 

were confirmed by short range reverse detected heteronuclear correlation 

spectra (HMQC}; resonances for C1, C2, C6 and C(N02)3 were not 

observed for a sample in which adduct (317) was the minor component. 

2-( 4 1-Hydroxy-3'-methoxy-4', 5'-dimethy/cyc/ohexa-2', 5' -dienylidene )-

1, 1-dinitroethene (324), as an oil (Insufficient for elemental analysis. 
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Found: M+• 256.0693. C10H12N206 requires 256.0695). Vmax (liquid film) 

3427, 1657, 1541 cm-1. A-max (ethanol) 386 nm (E 32 400), 342 nm (sh, 

£ 23 600). 1 H n.m.r. (CDCb) o 1.55, s, 4'-Me; 2.16, d, Js'-Me,H6' 1.0 Hz, 

5'-Me; 2.43, br s, 4'-0H; 3.94, s, OMe; 6.38, dq, JH6',H2' 1.5 Hz, JH6',5'-Me 1.0 

Hz, H6'; 6.44, d, JH2',H6' 1.5 Hz, H2'; the spin-spin coupling patterns above 

were confirmed by double irradiation experiments. N.O.e. experiments 

gave the following results: irradiation at o 1 .55 gave an enhancement at 

o 2.16 (1.5%); irradiation at o 2.16 gave enhancements at o 1.55 (0.8%) 

and at o 6.38 (5.8%); irradiation at o 3.94 gave an enhancement at o 6.44 

(1 0.4%); irradiation at o 6.38 gave an enhancement at o 2.16 (0.8%); 

irradiation at o 6.44 gave an enhancement at o 3.94 (1.0%). 13C n.m.r. 

(CDCls) o 18.6, 5'-Me; 27.2, 4'-Me; 56.9, OMe; 70.9, C4'; 89.9, C2'; 114.9, 

C6'; 146.6, C2; 158.5, C5'; 175.8, C3'; a resonance for C(N02)2 was not 

observed. The above assignments were confirmed by reverse detected 

heteronuclear correlation spectra (HMQC, HMBC). 

5.4.2 Photonitration of 2~3-Dimethylanisole {307) in 1 I 1 I 1 131313-Hexafluoro­

propan-2-ol (HFP) 

Reaction of 2,3-dimethylanisole (307) I tetranitromethane in HFP at 

+20°, as above, for 24 h gave a product which was shown by 1 H n.m.r. 

spectral analysis (Table 4.3) to be a mixture of nitro/trinitromethyl adducts 

(314) (1 %) and (315) (2%), hydroxy/trinitromethyl adducts (316) (0.3%) and 

(317) (trace), and aromatic compounds (318) (19%), (320) (4%), (321) 

(61 %), (322) (0.3%), and unidentified aromatic compounds (total 12%). 

After a reaction time of 8 h the conversion of 2,3-dimethylanisole (307) into 

products was c. 30%, in contrast to essentially complete conversion in 

dichloromethane at +20°. 
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5.4.3 Photonitration of 2.3-Dimethylanisole (307) in Dichloromethane 

Containing Trifluoroacetic Acid 

Reaction of 2,3-dimethylanisole (307) I tetranitromethane in dichloro­

methane containing trifluoroacetic acid (0.71 mol L-1) at +20°, as above, for 

8 h resulted in c. 20% conversion into a mixture of nitro/trinitromethyl 

adducts (314) (3%) and (315) (0.5%), aromatic compounds (318) (42%), 

(319) (7%), (320) (8%), (321) (23%), (322) (2%), and unidentified aromatic 

compounds (total15%) (Table 4.4). 

5.5 Appendix : Crystallography 

Crystal data, established from precession photographs and 

measured accurately, by means of a Siemens R3m/V four-circle 

diffractometer (molybdenum X-radiation, A-(Mo Ka) 0.71069 A, or copper 

X-radiation, A-(Cu Ka) 1.54180 A, from a crystal monochromator) are given 

below. The space group was, in each case, determined unambiguously as 

a result of the structure analyses reported below, but initially indicated by 

conditions limiting possible reflections. co-Scans were used to collect 

reflection intensities out to a maximum Bragg angle e, given below. The 

cell parameters were determined by least-squares refinements for which 

the setting angles of 20-25 accurately centred high-angle reflections were 

used. 
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(a) Crystal Data 

1 ,4, 6, 7-Tetramethy/-r-1-nitro-t-4-trinitromethy/-1 ,4-dihydro­

naphthalene (75).-C15H1sN40a, M 380.32, monoclinic, space group 

P21/c, a 16.054(3), b 9.085(1), c11.909(2) A, f3 107.69(2)0
, V 1654.8(5) 

A3, De 1.527 g cm-3, Z 4, )l(Cu Ka) 10.84 cm-1. The crystal was colourless 

and of approximate dimensions 0.56 by 0.30 by 0.21 mm. Data were 

collected at 130 K out to a maximum Bragg angle e 26.75°. Number of 

independent reflections measured 1938, 1424 with I> 2cr(/); 91 0.1531, 

92 0.0000; absorption corrections were not applied; R(obs) factor 0.080, 

WR(all data) 0.215. 

1 ,4, 6, 7-Tetramethy/-1 ,2-dihydronaphtha/ene-r-1 ,c-2-dio/ (86) .­

C14H1a02, M 218.28, triclinic, space group P 1, a 5.264(1), b 8.505(2), 

c 13.864(3) A, a 1 04.08(3), f3 1 00.04(3), r 94.96(3) 0
, v 587.4(2) As, 

De 1.234 g cm-3, Z 2, )l(Mo Ka) 0.81 cm-1. The crystal was colourless and 

of approximate dimensions 0.70 by 0.27 by 0.25 mm. Data were collected 

at 130 K out to a maximum Bragg angle 8 27.5°. Number of independent 

reflections measured 2667,1798 with I > 2cr(~; 91 0.0757, 92 0.0000; 

absorption corrections were not applied; R(obs) factor 0.043, wR(all data) 

0.114. 

trans-2,6-Dimethy/-1-nitro-4-trinitromethy/-1,4-dihydronaphtha/ene 

(95).-C13H12N40a, M 352.27, triclinic, space group P 1, a 9.621 (2), 

b 9.708(2), c 9.720(2) A, a 1 01.03(3), f3 117.60(3), r 1 05.00(3) 0
, 

V 723.9(3) A3, De 1.616 g cm·3, Z 2, !l(Mo Ka) 1.37 cm-1. The crystal was 

colourless and of approximate dimensions 0.52 by 0.40 by 0.16 mm. Data 

were collected at 130 K out to a maximum Bragg angle e 22.5°. Number of 

independent reflections measured 2346, 2016 with I > 2cr(/); 91 0.0480, 
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92 0.5841; absorption corrections were not applied; R(obs) factor 0.037, 

WR(all data) 0.099. 

cis-2, 6-Dimethyl-1-nitro-4-trinitromethyl-1 ,4-dihydronaphthalene 

(97).--C13H12N40s, M 352.27, triclinic, space group P 1, a 6.580(1), 

b 7.700(2), c 15.225(3) A, a 80.44(3), f3 89.95(3), r 75.96(3) 0
, v 737.3(3) 

A3, De 1.587 g cm-3, Z 2, !l(Mo Ka) 1.34 cm-1. The crystal was colourless 

and of approximate dimensions 0.55 by 0.50 by 0.42 mm. Data were 

collected at 130 K out to a maximum Bragg angle e 22.88°. Number of 

independent reflections measured 1931, 1542 with I > 2cr(~; 91 0.0578, 

92 0.7244; absorption corrections were not applied; R(obs) factor 0.045, 

WR(all data) 0.118. 

Nitro Cycloadduct (1 01 ).-C13H12N40s, M 352.27, monoclinic, 

space group P 21/c, a 15.234(3), b 11.663(2), c 8.531 (2) A, f3 1 05.23(3) 0
; 

V 1462.5(5) A3, De 1.600 g cm-3, Z 4, J..L(Mo Ka) 1.35 cm-1. The crystal was 

colourless and of approximate dimensions 0.80 by 0.44 by 0.38 mm. Data 

were collected at 132 K out to a maximum Bragg angle e 22.5°. Number of 

independent reflections measured 2532, 1895 with I > 2cr(~; 91 0.0571, 

92 0.2816; absorption corrections were not applied; R(obs) factor 0.0425, 

WR(all data) 0.1 08. 

Hydroxy Cycloadduct (1 04).-C13H13N307, M 323.26, orthorhombic, 

space group Pbca, a 15.028(3), b 10.71 0(2), c 16.779(3) A, V 2700.6(9) A3, 

De 1.590 g cm-3, Z 8, J..L(Mo Ka) 1.32 cm-1. The crystal was colourless and 

of approximate dimensions 0.42 by 0.40 by 0.10 mm. Data were collected 

at 130 K out to a maximum Bragg angle e 22.5°. Number of independent 

reflections measured 2372, 1060 with I > 2cr(~; 91 0.0498, 92 0.0000; 
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absorption corrections were not applied; R(obs) factor 0.073, wR(all data) 

0.166. 

trans-6, 8-Dimethy/-1-nitro-4-trinitromethy/-1 ,4-dihydronaphtha/ene 

(111).-C1sH12N40a, M 352.27, triclinic, space group P 1, a 9.423(2), 

b 9.830(2), c 10.039(2) A, a 101.61(3), f3 112.01(3), r 112.23(3)0
, 

V 731.5(3) A3, De 1.599 g cm-3, Z 2, J.t(Cu Ka) 11.76 cm·1. The crystal 

was colourless and of approximate dimensions 0.67 by 0.58 by 0.39 mm. 

Data were collected at 120 K out to a maximum Bragg angle e 26.75°. 

Number of independent reflections measured 1639, 1526 with I > 2cr(~; 

91 0.0582, 92 0.01788; absorption corrections were not applied; R(obs} 

factor 0.041, wR(all data) 0.1 08. 

Nitro cyc/oadduct (112).-C13H12N40a, M 352.27, monoclinic, 

space group P 21/c, a 7.594(2), b 23.672(5), c 8.179(2) A, f3 1 04.63(3) 0
, 

V 1422.6(6) A3, De 1.645 g cm-3, Z 4, J.t(Cu Ka) 12.09 cm-1. The crystal 

was colourless and of approximate dimensions 0.80 by 0.37 by 0.28 mm. 

Data were collected at 120 K out to a maximum Bragg angle e 26.75°. 

Number of independent reflections measured 1677, 1410 with I > 2cr(~; 

91 0.0706, 92 2.4846; absorption corrections were not applied; R(obs) factor 

0.060, WR(all data) 0.161. 

cis-6, 8-Dimethy/-1-nitro-4-trinitromethy/-1,4-dih ydronaphtha/ene 

(113).-C1sH12N40a, M 352.27, monoclinic, space group P 21/c, 

a 7.881(2), b 17.684(4), c 10.973(2) A, f3 102.29(3)0
, V 1494.2(6) A3, 

De 1.566 g cm-3, Z 4, J.t(Cu Ka) 11.51 cm-1. The crystal was colourless and 

of approximate dimensions 0.52 by 0.50 by 0.22 mm. Data were collected 

at 130 K out to a maxiumum Bragg angle e 26.75°. Number of 

independent reflections measured 1762, 1537 with I > 2cr(~; 91 0.0989, 
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92 2.2498; absorption corrections were not applied; R(obs) factor 0.059, 

WR(all data) 0.171. 

Nitro cycloadduct (122).-C13H12N40a, M 352.27, orthorhombic, 

space group Pbca, a 7.361 (2), b 16.023(4), c 24.491 (6) A, V 2889(1) A3, 

De 1.620 g cm-3, Z 8, J.t(Mo Ka) 1.4 cm-1. The crystal was colourless and of 

approximate dimensions 0.49 by 0.24 by 0.13 mm. Data were collected at 

120 K out to a maximum Bragg angle 8 24.99°. Number of independent 

reflections measured 2533, 1022 with I > 2cr(~; 91 0.0080, 92 0.0000; 

absorption corrections were not applied; R(obs) factor 0.035, wR(all data) 

0.045. 

Nitro cycloadduct (153).-C1oH12N40a, M 316.24, monoclinic, 

space group P 21/c, a 1 0.440(2), b 6.812(4), c 18.844(4) A, f3 1 01.17(1 ) 0
, 

V1314.7(9) A3, De 1.598 g cm-3, Z 4, ,u(Mo Ka) 1.40 cm-1. The crystal 

was colourless and of approximate dimensions 0.90 by 0.25 by 0.17 mm. 

Data were collected at 130 K out to a maximum Bragg angle e 25°. 

Number of independent reflections measured 2316, 1598 with I > 2cr(~; 

91 0.0700, 92 0.0000; absorption corrections were not applied; R(obs) factor 

0.045, WR(all data) 0.149. 

1 ,2,3-Trimethy/-r-3,c-4,c-6-trinitro-t-5-trinitromethy/cyclohex-1-ene 

(157).-C1QH12N6012, M 408.26, monoclinic, space group P 21/n, 

a 10.187(2), b 13.904(4), c 12.348(3) A, f3 110.84(3) 0
, v 1634.5(7) A3, 

De 1.659 g cm-3, Z 4, ,u(Mo Ka) 1.54 cm-1. The crystal was colourless and 

of approximate dimensions 1.02 by 0.21 by 0.16 mm. Data were collected 

at 173 K out to a maximum Bragg angle e 24.66°. Number of independent 

reflections measured 2122, 1222 with I > 2cr(~; 91 0.0396, 92 0.0000; 
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absorption corrections were not applied; R(obs) factor 0.036, wR(all data) 

0.077. 

Crystal data for a poor-quality crystal of trinitro nitronic ester (160), 

C10H12N40a. X-solvate, a 8.119{3), b 9.623(2), c 1 0.903(2) A, a 73.501 (9), 

f3 74.40(1), r 68.46{2) 0
, v 746.6(3) As. 

Trinitro nitronic ester ( 161) .-C10H12N40a, M 316.24, orthorhombic, 

space group, Pbca, a 6.480(7), b 14.840(9), c 26.79(2) A, V 2576(4) A3, 

De 1.631 g cm-3, Z 8, ,u(Mo Ka) 1.43 cm-1. The crystal was colourless and 

of approximate dimensions 0.40 by 0.1 0 by 0.06 mm. Data were collected 

at 130 K out to a maximum Bragg angle 0 22.49°. Number of independent 

reflections measured 1671, 837 with I > 2cr(~; g1 0.0405, g2 0.0000; 

absorption corrections were not applied; R(obs) factor 0.047, wR(all data) 

0.097. 

Hydroxy dinitro nitronic ester (162).-C1oH1sNs07, M 287.23, 

monoclinic, space group P 21/c, a 10.004(2), b 8.287(3), c 14.671 (3) A, 

f3 96.93(1 )0
, V 1207.4(6) A3, De 1.580 g cm·3, Z 4, ,u(Mo Ka) 1.36 cm·1. 

The crystal was colourless and of approximate dimensions 0.97 by 0.91 by 

0.15 mm. Data were collected at 130 K out to a maximum Bragg angle 

0 27.5°. Number of independent reflections measured 2769, 2064 with 

I > 2cr(~; g1 0.0735, g2 0.0000; absorption corrections were not applied; 

R(obs) factor 0.037, WR(all data) 0.124. 

t -6-Hydroxy-4, 5, 6-trimethyl-2, r-4, t -5-trinitrocyc/ohex-2-enone ( 172) .­

CgH11 NsOa, M 289.21, monoclinic, space group P 21/n, a 6.943(4), 

b20.410(3), c8.281(1) A, f3 101.23(3)0
, V 1151.0(7) As, De 1.669 g cm·3, 

Z 4, ,u(Mo Ka) 1.49 cm-1. The crystal was colourless and of approximate 
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dimensions 0.62 by 0.30 by 0.19 mm. Data were collected at 173 K out to a 

maximum Bragg angle e 25.0°. Number of independent reflections 

measured 2031, 1307 with I > 2cr(~; 91 0.0285, 92 0.0000; absorption 

corrections were not applied; R(obs) factor 0.030, WR(all data) 0.059. 

(b) Structure Determination 

The structures were solved by direct methods and difference-Fourier 

synthesis. Full-matrix least-squares refinements (SHELXL-93)23 were 

employed. This program is based on intensities and uses all data. The 

observed threshold I > 2cr(~ was used only for calculating R(obs). shown 

here as a comparison for the refinements based on F. Reflection weights 

1/[cr2(F0 2) + (91 P)2 + g2Pj, where P = [F0 2 + 2Fc2]f3, were used. 

All non-hydrogen atoms were assigned anisotropic thermal 

parameters. Methyl hydrogen atoms were included as rigid groups 

pivoting about their carbon atoms. Final Fourier syntheses show no 

significant residual electron density, and there were no abnormal 

discrepancies between observed and calculated structure factors. 
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Table 5.1 Fractional coordinates for atoms in 1 ,4,6,7-tetramethyl-r-1-nitro-t-

4-trinitromethyl-1 ,4-dihydronaphthalene (75). 

Atom 104Xfa 104Yfb 104Zfc 1o3u a 

0(11) 8284(2) -2933(4) 7746(4) 39(1) 

0(12} 8173(2} -3931 (4) 9339(4) 47(1) 

0(21} 5031 (2} 1311(4) 7376(4) 42(1) 

0(22} 6213(2} 1368(4) 8861(4) 37(1) 

0(31} 5481 (2) 1473(4) 5087(3) 37(1) 

0(32} 5266(2) 3598(4) 5790(3} 39(1) 

0(41} 7058(2) 4215(4) 6828(4) 40(1) 

0(42} 6485(3) 4178(4) 8259(4) 43(1) 

N(1) 7981 (3) -2992(4) 8570(5) 32(1) 

N(2} 5794(3) 1563(4) 7817(4) 32(1) 

N(3) 5635(2} 2404(5) 5847(4) 30(1) 

N(4) 6668(3) 3647(4) 7439(5) 33(1) 

C(1) 7309(3) -1766(5) 8635(5) 27(1) 

C(2) 6692(3) -1693(5) 7409(5) 29(1) 

C(3) 6568(3) -541 (5) 6741(5) 29(1) 

C(4) 7050(3) 915(5) 7040(5) 27(1) 

C(4a) 7749(3) 843(5) 8265(4) 25(1) 

C(5) 8330(3) 2012(5) 8644(5) 29(1) 

C(6} 8982(3) 2005(5) 9714(5) 30(1) 

C(7) 9054(3} 778(5) 1 0455(5) 30(1) 

C(8) 8502(3) -382(5) 1 0064(5) 29(1) 

C(8a) 7859(3) -377(5) 8975(5) 27(1) 

C(9) 6856(3} -2222(5) 9520(5) 35(1) 

C(1 0} 7487(3) 1253(5} 6091 (5) 33(1) 

C(11) 9583(3) 3296(5) 1 0062(5) 36(1) 
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Table 5.1 cont. 

Atom 

C(12) 

C(13) 

104X!a 

9738(3) 

6334(3) 

104Yfb 

723(6) 

2084(5) 

11648(5) 

7045(5) 

1o3u a 

38(1) 

27(1) 

a The equivalent isotropic temperature factor, U (in A2), in Tables 1-15 is 

defined as one-third of orthogonalized Uijtensor. 
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Table 5.2 Fractional coordinates for atoms in 1 ,4,6,7-tetramethyl-1 ,2-

dihydronaphthalene-r-1 ,c-2-diol (86). 

Atom 104Xfa 104Yfb 104Zfc 1o3u 

0(1) 7039(2) 3863(1) 9217(1) 24(1) 

0(2) 1790(2) 4518(1) 8787(1) 24(1) 

C(1) 4928(3) 2554(2) 8740(1) 17(1) 

C(2) 2717(3) 3209(2) 8141(1) 17(1) 

C(3) 3575(3) 3764(2) 7288(1) 20(1) 

C(4) 5143(3) 2968(2) 6745(1) 18(1) 

C(4a) 6150(3) 1535(2) 7024(1) 17(1) 

C(5) 7365(3) 445(2) 6386(1) 19(1) 

C(6) 8487(3) -839(2) 6665(1) 20(1) 

C(7) 8347(3) -1076(2) 7624(1) 21 (1) 

C(8) 7101 (3) -1 0(2) 8254(1) 20(1) 

C(8a) 6014(3) 1292(2) 7986(1) 16(1) 

C(9) 3669(3) 1894(2) 9559(1) 22(1) 

C(1 0) 5998(3) 351 0(2) 5881(1) 24(1) 

C(11) 9956(3) -1892(2) 5976(1) 27(1) 

C(12) 9574(3) -2426(2) 7979(1) 29(1) 
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Table 5.3 Fractional coordinates for atoms in trans-2,6-dimethyl-1-nitro-4-

trinitromethyl-1 ,4-dihydronaphthalene (95). 

Atom 104Xfa 104Yfb 104Zfc 103U 

0(11) 6045(2) 4669(2) 2415(2) 29(1) 

0(12) 4521 (2) 3290(2) -202(2) 33(1) 

0(21) 8793(2) 11 09(2) 469(2) 25(1) 

0(22) 8845(2) -537(2) 1702(2) 29(1) 

0(31) 11569(2) 1432(2) 5695(2) 29(1) 

0(32) 12247(2) 298(2) 4097(2) 33(1) 

0(41) 12140(2) 2307(2) 1635(2) 30(1) 

0(42) 13761 (2) 3369(2) 4326(2) 26(1) 

N(1) 5776(2) 3732(2) 1194(2) 21 (1) 

N(2) 9404(2) 700(2) 1646(2) 20(1) 

N(3) 11647(2) 1153(3) 4475(2) 22(1) 

N(4) 12404(2) 2586(2) 3017(2) 19(1) 

C(1) 7097(3) 3051 (2) 1422(2) 19(1) 

C(2) 7291 (3) 2295(2) 2674(2) 19(1) 

C(3) 8818(3) 2402(2) 3802(2) 19(1) 

C(4) 1 0436(2) 3197(2) 3895(2) 16(1) 

C(4a) 1 0307(2) 4321 (2) 2999(2) 15(1) 

C(5) 11785(2) 5447(2) 3360(2) 18(1) 

C(6) 11727(3) 6512(2) 2587(2) 19(1) 

C(7) 10130(3) 6463(2) 1477(2) 21 (1) 

C(8) 8657(3) 5375(2) 1130(2) 20(1) 

C(8a) 8717(2) 4283(2) 1867(2) 17(1) 

C(9) 5602(3) 1369(3) 2537(3) 27(1) 

C(1 0) 13339(3) 7662(2) 2926(3) 24(1) 

C(11) 1 0948(2) 1951 (2) 3254(2) 17(1) 
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Table 5.4 Fractional coordinates for atoms in cis-2,6-dimethyl-1-nitro-4-

trinitromethyl-1 ,4-dihydronaphthalene (97). 

Atom 104X!a 104Y!b 104Zfc 1o3u 

0(11) 4501 (4) 291 0(3) 1646(2) 31 (1) 

0(12) 6416(4) 1439(3) 2806(2) 31 (1) 

0(21) 828(3) 6534(3) 1279(2) 35(1) 

0(22) 1940(4) 5417(3) 2645(2) 33(1) 

0(31) 21 00(4) 1 0422(3) 744(2) 35(1) 

0(32) -833(4) 1 0178(3) 1342(2) 36(1) 

0(41) 1516(3) 1 0628(3) 2897(2) 30(1) 

0(42) 427(4) 8241 (3) 3432(2) 34(1) 

N(1) 5884(4) 2746(3) 2208(2) 21 (1) 

N(2) 1557(4) 6616(3) 1998(2) 23(1) 

N(3) 1 066(4) 9779(3) 1306(2) 25(1) 

N(4) 1280(4) 911 0(3) 2889(2) 22(1) 

C(1) 7095(5) 4228(4) 2162(2) 17(1) 

C(2) 6570(4) 5525(4) 1303(2) 16(1) 

C(3) 5479(4) 7222(4) 1282(2) 17(1) 

C(4) 4626(4) 8009(4) 2087(2) 16(1) 

C(4a) 5662(4) 6864(4) 2958(2) 16(1) 

C(5) 5619(4) 7638(4) 3724(2) 17(1) 

C(6) 6594(4) 6665(4) 4523(2) 18(1) 

C(7) 7656(5) 4867(4) 4542(2) 21 (1) 

C(8) 7788(4) 4098(4) 3789(2) 20(1) 

C(8a) 6793(4) 5072(4) 2988(2) 16(1) 

C(9) 7457(5) 4820(5) 486(2) 26(1) 

C(1 0) 6578(5) 7558(4) 5325(2) 28(1) 

C(11) 2220(5) 8330(4) 2076(2) 18(1) 
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Table 5.5 Fractional coordinates for atoms in nitro cycloadduct (1 01 ). 

Atom 1o4x;a 104Y!b 104Z!c 1o3u 

0(11) 7633(1) 1813(1) 7944(2) 23(1) 

0(12) 6166(1) 1463(1) 6932(2) 19(1) 

0(21) 8477(1) 1 082(2) 5588(2) 41 (1) 

0(22) 8175(1) -713(2) 5051 (2) 45(1) 

0(31) 6482(2) 794(2) 3348(2) 50(1) 

0(32) 5783(1) -486(1) 4401 (2) 32(1) 

0(41) 6540(1) -912(2) 1 0724(2) 36(1) 

0(42) 6203(2) -2226(2) 8900(3) 54(1) 

N(1) 6998(1) 1505(2) 6492(2) 21 (1) 

N(2) 8015(1) 231 (2) 5512(2) 29(1) 

N(3) 6400(1) 174(2) 4441 (2) 27(1) 

N(4) 6349(1) -1237(2) 9320(3) 29(1) 

C(1) 7376(2) 1219(2) 9277(3) 20(1) 

C(2) 6372(1) 870(2) 8501 (3) 18(1) 

C(3) 6301 (2) -384(2) 7977(3) 18(1) 

C(4) 7108(1) -646(2) 7257(3) 18(1) 

C(4a) 7951(1) -653(2) 8669(3) 18(1) 

C(5) 8571 (2) -1540(2) 8994(3) 22(1) 

C(6) 9285(2) -1533(2) 1 0397(3) 26(1) 

C(7) 9248(2) -633(2) 11480(3) 28(1) 

C(8) 8723(2) 254(2) 11177(3) 26(1) 

C(8a) 8033(2) 250(2) 9772(3) 20(1) 

C(9) 5677(2) 1294(2) 9331 (3) 24(1) 

C(1 0) 9970(2) -2488(2) 1 0749(3) 35(1) 

C(11) 7139(2) 302(2) 6044(3) 21 (1) 
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Table 5.6 Fractional coordinates for atoms in hydroxy cycloadduct (1 04). 

Atom 104X!a 104Y!b 104Z/c 1o3u 

0(11) 878(2) 3994(3) 1734(2) 17(1) 

0(12) 47(2) 3338(4) 2740(2) 18(1) 

0(21) -36(3) 3502(4) 352(2) 25(1) 

0(22) -348(3) 1524(4) 277(3) 29(1) 

0(31) -1633(3) 2846(4) 1612(3) 27(1) 

0(32) -1265(3) 995(4) 2008(3) 28(1) 

0(4) 1359(3) 532(4) 2903(2) 22(1) 

N(1) 13(3) 3568(5) 1904(3) 18(1) 

N(2) -172(3) 2487(6) 639(3) 20(1) 

N(3) -1101(3) 2014(5) 1739(3) 19(1) 

C(1) 1503(3) 3266(6) 2232(3) 17(1) 

C(2) 890(4) 2679(6) 2869(4) 17(1) 

C(3) 661 (4) 1333(6) 2680(3) 18(2) 

C(4) 500(4) 1275(6) 1775(3) 14(1) 

C(4a) 1411(4) 1406(5) 1388(3) 13(1) 

C(5) 1729(4) 594(6) 823(3) 17(2) 

C(6) 2601 (4) 686(6) 554(3) 20(2) 

C(7) 3139(4) 1601 (6) 885(3) 19(2) 

C(8) 2817(4) 2449(6) 1439(4) 17(1) 

C(8a) 1945(4) 2351 (5) 1687(3) 14(1) 

C(9) 1166(4) 2908(6) 3721 (3) 24(1) 

C(10) 2951(4) -221(6) -59(4) 31 (2) 

C(11) -123(4) 2325(5) 1542(3) 13(1) 



Table 5.7 Fractional coordinates for atoms in trans-6,8-dimethyl-1-nitro-4-

trinitromethyl-1 ,4-dihydronaphthalene (111 ). 

Atom 104X!a 104Y!b 104Z!c 1o3u 

0(11) 5679(3) 7006(3) 11590(2) 33(1) 

0(12) 7770(3) 9265(2) 12039(2) 26(1) 

0(21) 8187(3) 451 0(2) 8640(2) 22(1) 

0(22) 6270(3) 3462(2) 6157(2) 24(1) 

0(31) 8052(3) 4760(2) 4694(2) 26(1) 

0(32) 7138(3) 6461 (2) 5025(2) 26(1) 

0(41) 11 068(3) 5570(2) 8285(2) 26(1) 

0(42) 11330(3) 7383(2) 7319(2) 22(1) 

N(1) 6934(4) 7805(3) 11469(3) 20(1) 

N(2) 7627(3) 4515(3) 7341 (3) 17(1) 

N(3) 7875(3) 5737(3) 5484(3) 18(1) 

N(4) 1 0536(3) 6337(3) 7659(2) 17(1) 

C(1) 7429(4) 6889(3) 1 0453(3) 16(1) 

C(2) 6256(4) 6648(3) 8829(3) 18(1) 

C(3) 6809(4) 6960(3) 7845(3) 16(1) 

C(4) 8678(4) 7480(3) 8218(3) 15(1) 

C(4a) 9961 (4) 8109(3) 9964(3) 12(1) 

C(5) 11750(4) 9019(3) 1 0505(3) 14(1) 

C(6) 13006(4) 9576(3) 12063(3) 16(1) 

C(7) 12399(4) 9208(3) 13075(3) 19(1) 

C(8) 1 0619(4) 8328(3) 12595(3) 16(1) 

C(8a) 9373(4) 7791 (3) 11013(3) 15(1) 

C(9) 8687(4) 6056(3) 7231 (3) 14(1) 

C(1 0) 14937(4) 10481(4) 12598(3) 23(1) 

C(11) 101 02(4) 7976(4) 13790(3) 24(1) 
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Table 5.8 Fractional coordinates for atoms in nitro cycloadduct (112). 

Atom 104X!a 104Y!b 104Z/c 103U 

0(11) 3277(5) 3385(2) 590(4) 24(1) 

0(12) 4378(5) 4225(2) 1267(4) 24(1) 

0(21) -1 088(5) 3649(2) 147(4) 27(1) 

0(22) 232(5) 4393(2) -546(4) 29(1) 

0(31) 3426(4) 4538(1) 4144(4) 18(1) 

0(32) 417(4) 4587(1) 3554(4) 18(1) 

0(41) 1 04(5) 2697(1) 5221(4) 22(1) 

0(42) 731 (4) 3360(1) 71 08(4) 23(1) 

N(1) 3284(5) 3848(2) 1231(5) 16(1) 

N(2) 1 03(6) 4007(2) 392(5) 20(1) 

N(3) 1891(5) 4527(2) 2761 (5) 16(1) 

N(4) 366(5) 3196(2) 5641 (5) 18(1) 

C(1) 1437(6) 3449(2) 3114(6) 15(1) 

C(2) 158(6) 3634(2) 4246(6) 15(1) 

C(3) 885(6) 4198(2) 4980(6) 16(1) 

C(4) 2988(6) 4235(2) 5577(6) 16(1) 

C(4a) 3938(6) 3672(2) 5650(6) 14(1) 

C(5) 5497(6) 3526(2) 6853(6) 15(1) 

C(6) 6368(6) 3019(2) 6738(6) 17(1) 

C(7) 5676(6) 2655(2) 5424(6) 18(1) 

C(8) 4093(6) 2790(2) 4219(6) 14(1) 

C(8a) 3243(6) 3296(2) 4323(6) 15(1) 

C(9) 1656(6) 3953(2) 2008(6) 13(1) 

C(1 0) -1908(6) 3642(2) 3442(6) 19(1) 

C(11) 3633(7) 461 0(2) 71 04(6) 20(1) 



Table 5.9 Fractional coordinates for atoms in cis-6,8-dimethyl-1-nitro-4-

trinitromethyl-1 ,4-dihydronaphthalene ( 113). 

Atom 104Xfa 104Yfb 104Zfc 1o8u 

0(11) 9690(4) 6970(2) 5414(3) 41 (1) 

0(12) 8461(4) 7587(2) 3786(3) 31 (1) 

0(21) 5674(4) 6660(2) 2554(3) 39(1) 

0(22) 5838(4) 5550(2) 341 0(3) 33(1) 

0(31) 2508(4) 5052(2) 2745(3) 36(1) 

0(32) 2234(4) 5369(2) 4608(3) 34(1) 

0(41) 1434(5) 6666(2) 1299(3) 60(1) 

0(42) 553(4) 6560(2) 2464(3) 30(1) 

N(1) 8494(4) 7334(2) 4816(3) 18(1) 

N(2) 5103(4) 6134(2) 3066(3) 23(1) 

N(3) 2644(4) 5486(2) 3616(3) 23(1) 

N(4) 2011 (5) 6531 (2) 2272(3) 24(1) 

C(1) 7006(5) 7520(2) 5475(3) 15(1) 

C(2) 6442(5) 6797(2) 5997(3) 17(1) 

C(3) 4909(5) 6496(2) 5589(3) 16(1) 

C(4) 3572(5) 6813(2) 4523(3) 15(1) 

C(4a) 3954(5) 7628(2) 4200(3) 13(1) 

C(5) 2602(5) 8063(2) 3538(3) 14(1) 

C(6) 2825(5) 8826(2) 3300(3) 16(1) 

C(7) 4451 (5) 9142(2) 3766(4) 18(1) 

C(8) 5819(5) 8734(2) 4448(3) 16(1) 

C(8a) 5577(5) 7955(2) 4662(3) 13(1) 

C(9) 3366(5) 6276(2) 3397(4) 16(1) 

C(1 0) 1327(5) 9297(2) 2620(4) 24(1) 

C(11) 7515(5) 9126(2) 4963(4) 24(1) 

457 



458 

Table 5.10 Fractional coordinates for atoms in nitro cycloadduct (122). 

Atom 104XJa 104Yfb 104Zfc 1o8u 

0(11) 5953(1) -3899(3) 5791 (1) 25(1) 

0(12) 5945(1) -4349(3) 6671(1) 24(1) 

0(21) 7025(1) 180(3) 5778(1) 25(1) 

0(22) 7490(1) -1697(3) 6400(1) 27(1) 

0(31) 5268(1) -1278(3) 7167(1) 17(1) 

0(32) 6111(1) 1 014(3) 6966(1) 17(1) 

0(41) 4577(1) 2416(3) 5397(1) 27(1) 

0(42) 4242(1) 3640(3) 6177(1) 27(1) 

N(1) 5973(2) -3375(4) 6268(1) 19(1) 

N(2) 6937(1) -902(4) 6151(1) 18(1) 

N(3) 6065(1) -921(4) 6939(1) 17(1) 

N(4) 4672(1) 2646(4) 5891(1) 20(1) 

C(1) 5392(2) -361 (4) 5979(1) 12(1) 

C(2) 5383(2) 1638(4) 6158(1) 14(1) 

C(3) 5302(2) 1635(4) 6782(1) 15(1) 

C(4) 4691 (2) 176(4) 6994(1) 16(1) 

C(4a) 4132(2) -651(4) 6566(1) 13(1) 

C(5) 3296(2) -1 098(4) 7758(1) 14(1) 

C(6) 2885(2) -2023(4) 6244(1) 19(1) 

C(7) 3253(2) -2518(4) 5754(1) 16(1) 

C(8) 4086(2) -2018(4) 5670(1) 16(1) 

C(8a) 4511 (2) -1103(4) 6069(1) 11 (1) 

C(9) 6032(2) -1327(4) 6338(1) 11 (1) 

C(1 0) 2851 (2) -648(4) 7186(1) 24(1) 

C(11) 2784(2) -3514(4) 5310(1) 25(1) 
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Table 5.11 Fractional coordinates for atoms in nitro cycloadduct (153). 

Atom 104X!a 104Yfb 104Zfc 103U 

0(11) 7001 (2) 5670(3) 2565(1) 29(1) 

0(12) 5547(2) 3401 (4) 2579(1) 34(1) 

0(21) 8471 (2) 2574(4) 3664(1) 30(1) 

0(22) 7680(2) -246(4) 4258(1) 28(1) 

0(31) 8634(2) 4229(3) 1635(1) 14(1) 

0(32) 9656(2) 1687(3) 2240(1) 16(1) 

0(41) 6435(2) -2612(3) 1063(1) 24(1) 

0(42) 8117(2) -1938(3) 582(1) 28(1) 

N(1) 6627(2) 3995(4) 2522(1) 19(1) 

N(2) 7949(2) 1465(4) 3187(1) 19(1) 

N(3) 8817(2) 3301(4) 2315(1) 15(1) 

N(4) 7472(2) -1708(4) 1059(1) 19(1) 

C(1) 8022(3) -509(4) 1699(1) 14(1) 

C(2) 6926(3) 839(4) 1866(1) 14(1) 

C(3) 6285(3) 1781(4) 1143(2) 14(1) 

C(4) 7082(3) 2520(4) 734(1) 13(1) 

C(5) 8532(3) 2654(4) 1076(1) 15(1) 

C(6) 9078(3) 845(4) 1540(1) 14(1) 

C(7) 7577(3) 2357(4) 2415(1) 15(1) 

C(8) 4820(3) 1624(5) 947(2) 20(1) 

C(9) 6646(3) 3352(5) -12(2) 18(1) 

C(1 0) 9434(3) 3271 (5) 576(2) 19(1) 



Table 5.12 Fractional coordinates for atoms in 1 ,2,3-trimethyl-r-3,c-4,c-6-

trinitro-t-5-trinitromethylcyclohex-1-ene (157). 

Atom 1o4x;a 104Y!b 104Z!c 103U 

0(11) -126(3) 6513(2} 4394(2) 69(1) 

0(12} 1820(2) 6430(2) 4112(2) 39(1) 

0(21) 2819(3) 5671 (2) 2383(2) 45(1) 

0(22) 858(3) 4958(2) 1463(2) 51 (1) 

0(31) 3353(2} 8137(2) 4177(2) 37(1) 

0(32) 1557(3) 8802(2} 4412(2) 55(1) 

0(41) 3864(3) 6865(2) 487(2) 62(1) 

0(42) 1720(2) 6336(2) -1 06(2) 38(1) 

0(51) 1135(3) 8199(2) -995(2) 55(1) 

0(52} 83(2) 8639(2) 162(2) 38(1) 

0(61) 4391 (2) 8216(2) 2178(2) 40(1) 

0(62} 3185(2) 9242(2) 859(2) 44(1) 

N(1) 553(3} 6516(2) 3775(2) 35(1) 

N(2) 1542(3} 5670(2) 1894(2) 32(1) 

N(3) 2141(3) 8415(2) 3827(2} 31 (1) 

N(4) 2653(3) 6903(2) 396(2} 35(1) 

N(5) 1 004(3) 8231 (2) -52(2) 30(1) 

N(6} 3369(3) 8472(2) 1361(3) 32(1) 

C(1) -270(3) 8376(2} 2306(3) 26(1) 

C(2) -1018(3) 7582(2) 2268(3) 27(1) 

C(3) -284(3) 6604(2) 2455(3} 25(1) 

C(4) 715(3} 6607(2) 1762(3) 22(1) 

C(5) 1761(3) 7456(2) 1998(3} 20(1) 

C(6) 1268(3) 8330(2} 2513(2} 22(1) 

C(7) -897(3) 9375(2) 2164(3} 43(1) 
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Table 5.12 cont. 

Atom 

C(8) 

C(9) 

C(1 0) 

104X!a 

-2557(3) 

-1273(2) 

2146(3) 

104Y!b 

7605(2) 

5753(2) 

7749(2) 

104Z!c 

2060(3) 

2180(3) 

947(3) 

41 (1) 

39(1) 

23(1) 
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Table 5.13 Fractional coordinates for atoms in trinitro nitronic ester (161). 

Atom 104X!a 104Yfb 104Zfc 1o8u 

0(11) 907(5) 2191(2) 1869(1) 17(1) 

0(12) 3552(5) 2811(2) 2237(1) 22(1) 

0(21) 3347(5) 4544(2) 2415(1) 28(1) 

0(22) 1881 (5) 5262(2) 1798(1) 25(1) 

0(31) -809(6) 5284(2) 638(1) 34(1) 

0(32) -2463(5) 4089(2) 403(1) 28(1) 

0(41) -4483(5) 2572(2) 1 023(1) 31 (1) 

0(42) -4778(4) 3929(2) 1330(1) 24(1) 

N(1) 1998(6) 2987(3) 1991(1) 18(1) 

N(2) 2254(6) 4571 (3) 2042(1) 21 (1) 

N(3) -1103(6) 4471 (3) 641 (1) 22(1) 

N(4) -3874(6) 3194(3) 1286(1) 21 (1) 

C(1) -1939(7) 3092(3) 1593(2) 15(1) 

C(2) -515(7) 6877(3) 1506(2) 14(1) 

C(3) 341 (7) 3894(3) 964(2) 16(1) 

C(4) 715(7) 2991 (3) 732(2) 16(1) 

C(5) 281 (7) 2233(3) 977(2) 14(1) 

C(6) -774(7) 2222(3) 1482(2) 15(1) 

C(7) 1234(7) 3765(3) 1854(2) 13(1) 

C(8) 1794(6) 3052(3) 237(2) 19(1) 

C(9) 904(8) 1308(3) 779(2) 24(1) 

C(1 0) -1949(8) 1376(3) 1626(2) 24(1) 



Table 5.14 Fractional coordinates for atoms in hydroxy dinitro nitronic ester 

(162). 

Atom 104Xfa 104Yfb 104Zfc 1o3u 

0(1) 7433(1) 6909(1) 6835(1) 16(1) 

0(11) 8456(1) 1 0482(1) 8190(1) 16(1) 

0(12) 1 0236(1) 11051 (1) 9151(1) 20(1) 

0(21) 12072(1) 8818(2) 9498(1) 30(1) 

0(22) 11163(1) 6437(2) 9514(1) 25(1) 

0(31) 8611(1) 3959(1) 7786(1) 24(1) 

0(32) 6625(1) 4137(2) 8212(1) 25(1) 

N(1) 9612(2) 9924(2) 8740(1) 15(1) 

N(2) 11138(2) 7883(2) 9301 (1) 18(1) 

N(3) 7760(2) 4640(2) 8181(1) 17(1) 

C(1) 8312(2) 7997(2) 7353(1) 13(1) 

C(2) 9146(2) 7140(2) 8156(1) 13(1) 

C(3) 8183(2) 6204(2) 8704(1) 14(1) 

C(4) 6999(2) 7164(2) 8927(1) 14(1) 

C(5) 6707(2) 8606(2) 8532(1) 14(1) 

C(6) 7472(2) 9253(2) 7777(1) 13(1) 

C(7) 9908(2) 8387(2) 8744(1) 14(1) 

C(8) 6248(2) 6491 (2) 9678(1) 20(1) 

C(9) 5626(2) 9690(2) 8816(1) 21 (1) 

C(1 0) 6619(2) 1 0227(2) 7050(1) 18(1) 
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Table 5.15 Fractional coordinates for atoms in t-6-hydroxy-4,5,6-trimethyl-

2,r-4,t-5-trinitrocyclohex-2-enone (172). 

Atom 104Xfa 104Y!b 104Zfc 1o8u 

0(1) 4824(2) 1 08(1) 1672(2) 24(1) 

0(6) 6662(2) -1 052(1) 1573(2) 21 (1) 

0(11) 1 033(2) 559(1) 1 030(2) 33(1) 

0(12) -457(2) 314(1) 3017(2) 28(1) 

0(21) 230(2) -1946(1) 1995(2) 28(1) 

0(22) 151 (2) -2528(1) 41 05(2) 33(1) 

0(31) 6157(2) -637(1) 4880(2) 24(1) 

0(32) 7650(2) -1569(1) 5223(2) 32(1) 

N(1) 798(2) 216(1) 2196(2) 20(1) 

N(2) 1368(2) -2026(1) 3302(2) 20(1) 

N(3) 6303(2) -1220(1) 4572(2) 20(1) 

C(1) 3966(3) -373(1) 1995(2) 16(1) 

C(2) 2082(3) -359(1) 2588(2) 14(1) 

C(3) 1505(3) -842(1) 3438(2) 16(1) 

C(4) 2711 (3) -1441 (1) 3974(2) 16(1) 

C(5) 4640(3) -1511(1) 3245(2) 16(1) 

C(6) 4678(2) -1065(1) 1725(2) 16(1) 

C(7) 3066(3) -1492(1) 5847(2) 21 (1) 

C(8) 5193(3) -2214(1) 2945(2) 21 (1) 

C(9) 3371 (3) -1324(1) 146(2) 19(1) 
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