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Abstract 

This thesis comprises a study of various types of signal processing techniques, applied 
to the tasks of extracting information from speech, cough, and dolphin sounds. 

Established approaches to analysing speech sounds for the purposes of low data 
rate speech encoding, and more generally to determine the characteristics of the speech 
signal, are reviewed. Two new speech processing techniques, shift-and-add and CLEAN 
(which have previously been applied in the field of astronomical image processing), are 
developed and described in detail. Shjft-and-add is shown to produce a representation 
of the long-term "average" characteristics of the speech signal. Under certain simpli
fying assumptions, this can be equated to the average glottal excitation. The iterative 
deconvolution technique called CLEAN is employed to deconvolve the shift-and-add 
signal from the speech signal. Because the resulting "CLEAN" signal has relatively 
few non-zero samples, it can be directly encoded at a low data rate. The performance 
of a low data rate speech encoding scheme that takes advantage of this attribute of 
CLEAN is examined in detail. Comparison with the multi-pulse LP C approach to 
speech coding shows that the new method provides similar levels of performance at 
medium data rates of about 16kbitfs. 

The changes that occur in the character of a person's cough sounds when that 
person is afflicted with asthma are outlined. The development and implementation of a 
micro-computer-based cough sound analysis system, designed to facilitate the ongoing 
study of these sounds, is described. The system performs spectrographic analysis on 
the cough sounds. A graphical user interface allows the sound waveforms and spectra to 
be displayed and examined in detail. Preliminary results are presented, which indicate 
that the spectral content of cough sounds are changed by asthma. 

An automated digital approach to studying the characteristics of Hector's dol
phin vocalisations is described. This scheme characterises the sounds by extracting 
descriptive parameters from their time and frequency domain envelopes. The set of 
parameters so obtained from a sample of click sequences collected from free-ranging 
dolphins is analysed by principal component analysis. Results are presented which in
dicate that Hector's dolphins produce only a small number of different vocal sounds. In 
addition to the statistical analysis, several of the clicks, which are assumed to be used 
for echo-location, are analysed in terms of their range-velocity ambiguity functions. 
The results suggest that Hector's dolphins can distinguish targets separated in range 
by about 2cm, but are unable to separate targets that differ only in their velocity. 
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Preface 

Much of modern engineering science is concerned with the processing and analysis of 
data obtained from quantitative observations of phenomena. The advent of the digital 
computer has led to an explosion in the complexity and quantity of the information pro
cessing that is now feasible. As computers become increasingly powerful, miniaturised 
and reduced in cost, it is realistic to think of applying them to problems that were 
previously considered too computationally complicated or insufficiently cost effective. 
This thesis details the development and implementation of algorithms for harnessing 
the computational power of the computer to the task of extracting useful types of in
formation from various types of sounds, namely speech and coughs of humans, and 
dolphin vocalisations. 

Professor R.H.T. Bates' research group here at the Department of Electrical and 
Electronic Engineering of the University of Canterbury has, for the last two decades, 
been active in applying computer-based information processing techniques to a wide 
range of engineering and scientific topics (Bates, 1987). Research has ranged from 
various inverse problems (notably those related to computed tomography and ultra
sonic imaging), through image restoration studies both fundamental (phase retrieval 
and blind deconvolution) and applied (to photography, astronomy, microscopy and 
generalisations of holography), to applied electromagnetics, various biomedical prob
lems, the application of computers to human-machine interaction and the extraction of 
information from speech. 

The speech group began in the late 1970s, growing out of rese arch into computer
controlled aids for musicians (Tucker et ai., 1977) and methods of extracting pitch in
formation from speech and music sounds (Tucker and Bates, 1978; Brieseman, 1984). 
That research led to investigations into micro-computer based speech aids for disabled 
people, aiming especially for real-time operation with the use of digital signal processor 
(DSP) integrated circuits (Turner, 1986). Current research includes the development 
of micro-computer based tools for speech therapists, techniques of low data rate speech 
encoding and the development of algorithms for reliable word and speaker recognition 
(Bates et ai., 1987). As well as employing standard speech analysis techniques, this 
research has benefited from the novel (to speech processing) techniques introduced by 
Professor Bates from his wide experience in other areas of information processing. 

I entered the world of information processing in 1986 and since then have been 
fortunate to have had the opportunity to work on three separate projects, each of 
which involves a different facet of information processing. The first, and major, part 
of my research has been in the area of speech analysis. I began by working on the 
implementation of a new speech analysis technique called shift-and-add (SAA). This 
was developed in Professor Bates' astronomical imaging group, and is a species of 
blind deconvolution (Bates, 1982). SAA, originally applied to speech signals by Nigel 
Brieseman (a PhD. student at the time), is a technique whereby an estimate of the 
average (glottal) excitation of a speaker can be extracted in a simple fashion from a 
speech signal (Brieseman et al., 1987). 
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The aim of my research was to employ the SAA technique in such a way that the 
naturalness of speech produced by low data rate encoding schemes could be improved. I 
began by investigating several methods of removing the effect of the SAA signal (which 
is assumed to approximately represent the average glottal excitation, see Chapter 4) 
from the speech signal in order to improve the performance of techniques such as linear 
predictive coding (LPC). LPC modelling is predicated upon the assumption that the 
speech signal can be represented by a convolution between a random, gaussian, excita
tion signal and an all-pole filter (Itakura and Saito, 1968). Because this assumption is 
violated by (voiced especially) speech signals, difficulties are sometimes experienced in 
extracting reliable LPC parameters from speech signals. Parameter estimation can be 
improved by removing "zeros" from the speech spectrum, and this is what I initially 
aimed to accomplish. 

At the suggestion of Professor Bates and the continued insistence of Dr. Richard 
Fright (then a postdoctoral fellow in the Department) I implemented the subtractive 
deconvolution technique called "CLEAN", another import from (radio-) astronomical 
imaging. At first the results did not seem encouraging, since the result of a CLEAN 
deconvolution is a signal containing many "spikes" (which can nevertheless be a con
sistent outcome of the deconvolution of one continuous signal from another). However, 
it soon became clear that the number of non-zero samples that were adequate to rep
resent the signal (as far as listening to the reconstructed speech was concerned) was 
relatively small, and that speech signals could be encoded at low data rates merely 
by appropriately combining the SAA signal and the non-zero CLEAN pulses (Thorpe 
and Bates, 19XX). Much of the work that I have undertaken in the speech processing 
field involves the development of techniques to improve the quality of the reconstructed 
speech whilst restricting the number of non-zero pulses (and hence the data rate). 

There are many different methods of encoding speech at low data rates, with 
each technique offering its own data rate/ quality / complexity tradeoffs. SAA/ CLEAN is 
a low-complexity coder that falls somewhat in between the high-quality, medium-high 
data rate waveform coders and the low data rate vocoders. It is akin to the multi-pulse 
LPC (MP-LPC) technique (Atal and Remde, 1982) in its use of a sparse pulse sequence 
to help represent the speech signal. However, whereas MP-LPC employs a LPC filter 
as an estimate of the short-term spectral content of the signal, SAA/CLEAN uses the 
SAA signal as an estimate of the long-term "average" component of the speech signal. 
Because of this, the CLEAN pulses must represent more of the short-term structure of 
the speech signal than is the case in MP-LPC. 

The second research area that I became involved in arose in late 1987 when 
Dr. Les Toop, a senior Lecturer iIi Community Health at the Christchurch School of 
Medicine, approached Professor Bates for advice on analysing the sounds of coughs pro
duced by children who might have asthma. Dr. Toop had spent some time at Edinburgh 
University researching the occurrence of cough and asthma, and was keen to investigate 
the differences between the various types of coughs. Since asthmatic and non-asthmatic 
coughs "sounded different", it seemed reasonable that some computer-based analysis 
techniques could be devised that would characterise the differences. After preliminary 
spectral analyses (performed on the EEE Departmental VAX computer) indicated that 
there were differences between asthmatic and non-asthmatic cough sounds (Toop et 
at., 1989a), we decided to embark on a clinical trial to compare the analyses with 
standard asthma diagnostic tests. To this end, I spent my Thursdays for the next 
18 months developing a micro-computer based cough sound collection/ display / analysis 
system (Thorpe et ai., 19XXa). This work afforded me much experience in the art 
of computer programming, especially in regard to its real-time, multi-tasking, user
interfacing and data analysis and management aspects. 
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The third part of my research has been to do with the sounds emitted by 
Hector's dolphin, a small dolphin native to New Zealand. I was introduced to this 
topic by Stephen Dawson, a PhD. student in the Zoology Department of the University 
of Canterbury, who had spent several years studying the dolphins in their natural 
habitat (which is, needless to say, far more pleasant than that afforded to electrical 
engineering students!). As part of his study, Steve had recorded many hours of their 
vocalisations and was interested in applying computer-based analysis techniques to try 
and characterise the sounds. Together with Drs. Richard Fright, Kathy Garden and 
Peter Gough, I looked at various ways in which the "clicks" could be characterised and 
identified. It soon became clear that there was no obvious single descriptor that would 
characterise them. 

Zoologists are very interested in examining the structure of sounds produced 
by animals, and comparing the repertoire of an animal with its behavioural patterns 
in order to understand them more thoroughly. Up until recently, the only techniques 
available to analyse the sounds were spectrographic analysis or subjective listening. 
Statistical techniques were often employed, with variables being estimated visually 
from the spectrograms. Several recent studies have, however, employed digital signal 
processing techniques to quantitatively extract features from the sounds (cf. Clark, 
1982). 

Together with Steve Dawson and Richard Fright, I developed a variety of pro
cedures for extracting different types of features that we thought could be relevant to 
characterise the clicks. By comparing these features with the behavioural information 
that Steve had recorded with the sounds, we hoped to discover if any types of sounds 
were employed in particular circumstances (Dawson and Thorpe, 1990). By means of 
a high-level signal processing language on our VAX computer we were able to quan
titatively extract descriptive features from over 400 examples of the sounds (Thorpe 
and Dawson, 19XX), a task that would have been virtually impossible if Steve had em
ployed the traditional technique of estimating variables from the spectrograms by hand 
and eye. During the course of this project, I gained much experience in the techniques 
and pitfalls (!) of attempting to classify groups of data according to (automatically 
obtained) estimates of their characteristic features. 

In an attempt to extract further information from the clicks, and after much 
encouragement from Professor Bates (who worked in the radar field up until a quarter 
of a century ago), I implemented a program to calculate the ambiguity surface of a 
dolphin's sonar pulse (Thorpe et ai., 19XXb). The ambiguity surface provides an 
indication of the intrinsic range and velocity resolving capabilities of the echo-location 
signal, and hence of the dolphin who is employing that signal. 

The chapters of this thesis are summarised in the following paragraphs, which 
also identify my original research contributions. 

Chapter 1 summarises signal processing concepts and techniques. The math
ematical basis on which signals ~e represen~ed is introduced. The Fourier and Z" 

transforms are defined and some of their properties which pertain to signal proc~ssing 
are developed. Some techniques employed in signal processing, such as spectral esti
mation, deconvolution and sampling are discussed, followed by a brief introduction.t.o 
the types of sounds encou:rltered in the biological world. 

In Chapter 2 an introduction to speech sounds aridtlie models employed in 
their analysis is presented. The phonetic and linguistic approaches to speech analysis 
are described in order to shed some light on various problems encountered in the de
velopment of speech analysis, synthesis and recognition algorithms. The physiology of 
the speech production and perception mechanisms is discussed, as are several models 
of these processes. 
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Chapter 3 is a review of established methods of speech analysis. Techniques 
covered include pitch estimation, voiced/unvoiced decision, various forms of spectral 
analysis and linear prediction of speech. An overview of various methods of low data 
rate speech encoding, glottal pulse shape estimation, speech and speaker recognition, 
and other applications of speech analysis technology is also presented. 

The new technique of shift-and-add (SAA) is described in Chapter 4. A brief 
introduction to the astronomical origins of this algorithm is followed by an in depth 
examination of its application to speech signals. Apart from the introduction, the basic 
speech SAA algorithm, and the iterative refinement scheme described in §4.3.3, all the 
material presented in this chapter relates to my original research. 

Chapter 5 presents the original research that I have done in the area oflow data 
rate speech encoding. I discuss the "CLEAN" method of subtractive deconvolution, 
both in its original astronomical setting and as I have applied it to speech signals. 
The features of CLEAN which lead to a method of low data rate speech encoding are 
explained, as are some ofthe practical aspects of encoding speech at low data rates while 
retaining adequate speech quality. Results are presented and the method is compared 
in detail with the multi-pulse LPC approach to speech encoding. 

Chapter 6 contains a description of the mi~ro-computer based cough sound 
analysis system that I developed. As with the speech sounds, a brief introduction is 
provided to the physiology of coughs and the mechanism of sound production. Details 
of the implementation of the analysis system are presented together with an exposition 
of the analysis techniques employed and preliminary results obtained thereby. Apart 
from the introductory sections, all the material presented in this chapter is the result 
of my original research. 

Chapter 7 describes the analysis techniques employed to characterise and study 
the sounds recorded from Rector's dolphins. The chapter includes descriptions of both 
the feature analysis and measurement scheme, and the statistical techniques employed 
to analyse the structure of the resulting data set. An analysis of the echo-location 
capability of the sounds is also presented. All the material in this chapter, apart from 
the background" s~ction and the zoological aspects of the work (which includes some of 
the statistical analyses and their interpretations), relates to my original research. 

Chapter 8 offers specific conclusions on each of the three areas studied as well as 
some more general conclusions about analysing and characterising signals. Suggestions 
for further research in each area are also made. 

Publications and conference presentations prepared during the course of my 
research are listed below. 
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Chapter 1 

Preliminaries 

Many activities entail the observation and measurement of phenomena, followed by 
suitable processing of the measured data to extract useful information about the iden
tity, behaviour and/or origins of the phenomena. For example, our senses can be 
considered as devices which measure patterns of light, sound, temperature or pressure, 
or the presence of certain chemicals in the air or in our food. Our brain then pro
cesses the measurements and thereby infers useful knowledge about the world around 
us. Scientific endeavour provides another example. It can be considered as the process 
of proposing a theory to account for some phenomenon of interest, followed by exper
iments in which observations and measurements of the phenomenon are made. The 
theory can then be refined or altered on the basis of analyses of the measured data. 

In all activities of the kind implied above, accurate measurement of the desired 
phenomena is vital if useful information is to be obtained. Much effort in engineering 
science is devoted to the art of either measuring physical phenomena, or deducing their 
characteristics by indirect means because the phenomena themselves are physically 
inaccessible or otherwise not amenable to direct measurement. For example, attributes 
of the heavenly bodies can only be inferred by measuring, at a distance, the radiation 
that they emit. Analysis of this radiation can then provide (for example) estimates 
of the chemical composition of the heavenly bodies. Often a phenomenon is most 
conveniently measured by an indirect process. For example, changes in temperature 
are usually "measured" by recording the expansion or contraction effects that they have 
on a substance such as mercury. 

When phenomena are observed indirectly or at a distance, a great deal of pro
cessing is often required, both to extract the required data from the measurements 
actually made and to compensate for adverse effects of particular conditions under 
which the observations are carried out (cf. Bates and McDonnell, 1986; Davey, 1989). 
For instance, the surfaces of a large satellite telecommunication antenna must be main
tained at their specified shape to a high degree of accuracy if the performance of the 
antenna is not to suffer (Morris, 1985). Direct measurement of the surface shape is 
often inconvenient because of the large size of such an antenna, but by measuring the 
antenna's radiation pattern in an appropriate way (e.g. by making use of suitable instru
mentation in a communications satellite), and by the application of suitable processing 
methods, the shape of the antenna's surface can be deduced (Gardenier et al., 1986). 

Whenever one observes a phenomenon quantitatively, the measurements are 
corrupted to some extent, either by unavoidable inaccuracies and distortions intro
duced by the measurement process, or by interference from unwanted phenomena. In 
the example of antenna measurement mentioned above, corruption occurs because of 
inadequacies in the measurement apparatus, distortion introduced by the passage of 
the radiation through the atmosphere, and possible unwanted contributions to the 



2 CHAPTER 1 PRELIMINARIES 

measurements from other sources of electromagnetic radiation. 

Sometimes the corruption is systematic and can be counteracted by operating 
on the data with the inverse of the corruption. Other types of corruption are stochastic 
and cannot be undone, although their effects can on occasion be minimised by, for 
instance, appropriate averaging techniques. 

Mter suitable measurements of a phenomenon have been made, they must 
be analysed in order to extract· the useful information inherent within them. The 
usefulness of any particular item of information embedded in a measurement depends 
upon the reason for which the measurement is performed. In addition, the amount of 
information conveyed by a particular measurement varies according to its novelty (cr. 
§1.1.5). For example, a cat may be interested in knowing about other animals near by 
and about certain other events occurring in its vicinity. By continually subconsciously 
analysing its "measurements" of the sounds that surround it while it naps, it can 
deduce the behaviour of sound-producing animals and events. However, only changes 
in the character of the sounds (such as those caused by sudden noises) provide new 
information for the cat. Each time a change occurs in the surrounding sounds, the 
cat must process the new information and ascertain its implications. In addition, the 
particular sounds that the cat is more interested in, such as the sound of the fridge door 
0I>ening, or that of a bird scratching in the garden, are intermingled with the sounds 
from other (less interesting) sources. 

The purpose of an analysis system is to extract desired types of information 
from measurements, discarding that which appears extraneous, and then to make some 
judgement of or response to the information thereby gained. The process of extracting 
information from a set of measurements entails the identification of patterns in the 
measured data. Practitioners of virtually all professions and sophisticated endeavours 
attempt to master the art of reliably identifying patterns hidden within sets of mea
surements. For instance, economists attempt to identify patterns in economic data that 
may help them develop and refine models of the economy. Another example is that of a 
grader in an orchard, who classifies fruit according to particular patterns in the shape 
and colouring of the fruit. 

The cat, the economist, and the orchardist also illustrate the two types of 
analysis techniques which may be employed to extract information from measurements. 
Firstly, a theory or model of the phenomenon may be constructed and refined by 
analysis of observations of the phenomenon. A model allows the underlying mechanisms 
of the phenomenon to be understood. Furthermore, the model describes the relationship 
between the measured data and the desired information. Therefore, (and secondly) 
the model can be employed as a basis on which analysis of the measurements can be 
performed. By structuring the model in terms of certain specific types of information 
(e.g. information about the behaviour or identity of the phenomenon), the analysis 
extracts only those particular kinds of information from the measured data. This 
type of analysis can be used to remove redundant information (Le. information that is 
irrelevant to the model) from the measured data. The analysis can also be structured 
so that a decision about each set of measurements can be made, based on a particular 
type of information embedded in the measured data. For example, the fruit grader 
mentioned above has a model of what acceptable and unacceptable fruit looks like. 
The acceptability of a particular fruit is inferred by analysing observations of the fruit 
in terms of the model. 

The analysis techniques described in later chapters of this thesis are concerned 
with extracting information from measurements of certain sounds. In each case, a dif
ferent type of information is required and so different analysis techniques are employed. 
Chapters 2 through 5 are concerned with techniques which attempt to reduce the re-
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dundancy in speech sounds by extracting only the information essential to the speech 
message itself. To this end, the sounds are analysed according to models of how humans 
produce and perceive speech. Chapter 6 introduces a method of analysing cough sounds 
which is designed to ascertain the presence or otherwise of asthma in the person cough
ing. The sounds are analysed in such a way that reveals patterns in the sound that 
may be caused by the asthmatic condition. Finally, Chapter 7 describes the analysis 
techniques employed to determine the repertoire of sounds used by Hector's dolphins, 
which are native to New Zealand. The efficacy of the sounds for echo-location is also 
assessed. In the analysis of vocal repertoire, the information in the sounds is classified 
according to a set of characteristic features. The analysis aims to identify the features 
which are most important for characterising the differences between different classes of 
sounds. The analysis of echo-location efficacy proceeds by, first, assuming a certain 
model of how the dolphins process the sounds and, then, describing the information in 
the sounds in terms of that modeL 

The remainder of this chapter lays the groundwork for the above-mentioned 
analysis techniques. Some basic concepts in the measurement and analysis of phenom
ena are presented in §1.1. §1.2 summarises the mathematical concepts aIld techniques 
employed in the analyses, while §1.3 outlines some of the more practical aspects of 
applying the mathematical techniques to the analysis of measured data. Finally, §1.4 
briefly introduces some of the characteristics of sounds, describes those which are bio
logical in origin, and introduces the speech sounds that are used in the speech analysis 
techniques described in later chapters of this thesis. 

1.1 Introduction to signals and systems 

In this section, some of the concepts underlying signal analysis techniques are intro
duced. The discussion in §1.1.2 and §1.1.3 introduces the concepts of signals and 
systems, respectively, and describes how they are used to mathematically represent 
phenomena and measurements of phenomena. §1.1.4 introduces the concept of noise, 
which is important because it is present in all measurement situations (to a greater 
or lesser extent). Finally, the concept of information is defined in §1.1.5. Detailed 
explanation of the topics treated in this section can be found in many Electrical En
gineering textbooks, such as those by Stremler (1982) Oppenheim and Willsky (1983), 
Haykin (1983), and Rorabaugh (1986). 

1.1.1 Mathematical nomenclature 

Before discussing mathematical modelling of phenomena, it is appropriate to introduce 
certain notation and terminology. Complex numbers have long been employed as a tool 
by mathematicians and scientists to represent quantities (such as that cannot 
exist in reality (Kreyszig, 1979). A complex number can be thought of as representing a 
point on the complex plane, which has real and imaginary axes. If the real and imaginary 
coordinates of a complex number c are a and ib, respectively, where i then c 
is written as 

c = a + ib. (1.1) 

The real and imaginary parts of a complex quantity are also denoted by the notation: 

a = n{c} 
b = I{c}. 

An alternative representation is the polar form 

(1.2) 

(1.3) 
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where r represents the magnitude of c, e is the transcendental number and () is the 
phase of c. A phase angle of 0 indicates that the number is positive real, and an angle 
of 180 degrees indicates that it is negative and real. 

A vector is to be thought of as a point in a multi-dimensional (> 1) space. In 
this thesis, a typical n-dimensional vector, say x, is written as 

(1.4) 

where Zi is the ith component (i.e. the amplitude along the ith axis) and n is the number 
of dimensions. 

It is sometimes convenient to group many individual measurements of a par
ticular phenomenon into a set. The set of N objects, each denoted by ai, is written 
as 

{ai, i 1,2, ... ,N}, (1.5) 

where aj is called the ith element of the set. The notation {at} is employed to refer to 
the whole set as a single entity. 

A mathematical function describes the relationship between two variables, e.g. 

y I( z), (1.6) 

where 1(·) defines the relationship between the independent variable Z and the depen
dent variable y. In general, both z and y may be complex-valued (usually shortened to 
complex) vectors. 

1.1. 2 Signals 

The measurement of a physical phenomenon results in a set of measurement data, 
which in engineering science is often termed a signal. When discussing signals, the 
measurement process is often ignored and the signal is said to be the phenomenon itself 
(Oppenheim and Willsky, 1983, Chapter 1). In cases where a particular phenomenon 
cannot be measured directly (perhaps because it is only a small feature of some other 
observable phenomenon), it is sometimes convenient to represent that phenomenon by 
a "hidden" signal when investigating models explaining the phenomenon.For example, 
in the analysis of sound waves passing through the vocal tract (§2.3.1), it is convenient 
to consider the behaviour of signals representing the sound waves at various points 
within the vocal tract, even though these signals cannot be directly measured at those 
points. 

Signals characterise physical phenomena, with information about the phenom
ena contained in patterns of temporal or spatial variations in the signals (Oppenheim 
and Will sky, 1983, pp9-11). For example, sounds consist of temporal variations in 
acoustic pressure, with the identity of any sound determined by a particular pattern 
of pressure variation. In order to analyse and process signals, it is necessary to rep
resent them as functions of one or more independent variables. For instance, sound 
can be represented as a function of time, with the acoustic pressure at any instant t 
represented by some appropriate notation, say set). Other independent variables are 
invoked in the representation of other signals (for example spatial coordinates for the 
representation of spatially varying phenomena), but in all of the examples included in 
this thesis, I employ signals which are functions of time. 

Signals may be continuous functions, as in the example of sound mentioned 
above (Fig.1.1), or discrete functions, defined only at discrete values of the independent 
variable. Discrete signals may arise from inherently discrete phenomena, such as the 
weights of each cow in a herd (Fig.1.2), or from successive samples of a continuous 
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Figure 1.1. Example of a continuous (speech) signal. The vertical axis of the graph represents the 

acoustic pressure of the sound. Time is represented by the horizontal axis. The signal represents the 

word "when" spoken by a male speaker. 

700 

600 

500 

Weight 400 

(kg) 300 

200 

100 

1 

1 2 3 

1 

I I 
4 5 6 7 8 9 10 11 

Cow number 

Figure 1.2. Example of a discrete signal, which represents the weights of each of a number of cows. 

The numbers along the horizontal axis represent the identity of individual cows, while the height of 

the vertical line at each number indicates the weight of that cow. 

process, such as the temperature of a chemical reaction at discrete (say, one second) 
intervals. Continuous signals must necessarily be sampled if the signals are to be 
subjected to digital signal processing. The precautions which must be observed to 
ensure that a sampled signal is a faithful representation of the original continuous signal 
are detailed in §1.2.5.5. A typical discrete signal is represented mathematically in this 
thesis by the notation f[n], where n is an integer which refers to the nth occurrence (or 
sample) of the phenomenon, for which f[n] is the sampled value. For sampled signals, n 
refers to the instant at which the nth sample is recorded. Samples are usually recorded 
at regular intervals, with the nth instant occurring at t nT, where T is the sampling 
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interval (see §1.2.5.5). 
In order to mathematically analyse the behaviour of real-world signals, they are 

often modelled by simple mathematical functions that behave similarly to the signal. 
The degree of realism required in the analysis determines how accurately the mathemat
ical function must approximate the real-world signal. For example, the oscillation of a 
pendulum can be adequately represented for many purposes by a sinusoidal function, 
i.e. 

x(t) = ASin(21rt), 
T 

(1.7) 

where x( t) is the (horizontal) displacement of the pendulum at any instant t, A is 
the maximum displacement, and T is the time taken for the pendulum to complete one 
swing back and forth. The properties of sinusoidal functions are well understood, and so 
mathematical manipulations of them can reveal much information about the behaviour 
of a pendulum. For a more detailed description of the behaviour of a pendulum, further 
terms can be added to (1. 7) to account for deviations from the simple sinusoidal function 
(cf. Halliday and Resnick, 1966, p358). 

The sinusoidal function occurring in (1.7) is possibly one of the most use
ful for modelling real-world signals, both because sinusoids are so easy to operate on 
mathematically, and because signals of this type often arise in real-world situations 
(Oppenheim and Willsky, 1983, §2.3). It is often useful to re-express a sinusoidal signal 
as a complex exponential, e.g. 

z(t) = Aei(21rft+4» , (1.8) 

where A is the peak amplitude ofthe signal, f = lIT is the frequency (i.e. the periodicity 
of the oscillation) and ¢ is the initial phase (defined at t = 0). z( t) is complex, as 
opposed to real-world signals, which are real. However, a complex representation of a 
signal can facilitate mathematical analysis (such as that presented in §1.2). The "real" 
signal x(t) is usually associated with the real part of z(t), i.e. 

:e(t) = 'R.{z(t)}. (1.9) 

A sinusoid is an example of a periodic signal, which has the same value at any 
pair of times separated by the period T, i.e. 

set) set + T). (1.10) 

The modelling of a complicated signal as a superposition of many different sinusoidal 
functions is discussed in §1.2. Such a signal remains periodic at a fundamental fre
quency ifthe frequencies of all the component sinusoids are multiples of the fundamen
tal frequency. The bandwidth of a signal is defined as the range of frequencies that 
its component sinusoids span (see §1.2.5.4 for a more quantitative definition of signal 
bandwidth). 

The factors which define the behaviour of a signal, such as its amplitude A 
(1.8) or period T (1.10) are here called the defining characteristics of that signal. A 
signal may be classed as steady-state if its defining characteristics are invariant over all 
time, or transient when these characteristics change with time (Kreyszig, 1979, p39). 
Periodic signals are termed steady-state because, even though the actual value of the 
signal changes with time, it changes in exac,tly the same way in each period. Hence, if 
one knows the values of the signal for one period, the behaviour of the signal is known 
for all time. 

Real-world signals are never perfectly steady-state, because they are necessarily 
of finite duration. However, segments of a signal, within which its defining character
istics are (for practical purposes) invariant, may be modelled as being steady-state to 
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Figure 1.3. Transient signal in an electrical circuit. a: RLC circuit, b: current waveform which results 

when the switch in a is suddenly closed. 

facilitate analysis. The transitions between steady-state segments can then be modelled 
as transients. A segment of a signal can be extracted by windowing, which involves 
multiplying the signal by.a function that is zero for all times except those within the 
desired window (see §1.3.1.1). 

Transients occur when a signal suddenly changes its behaviour. A simple ideal 
transient is the unit step u(t) defined by 

u(t) = 1, t 2:: 0 
0, t < 0, 

which models a sudden switching on or off of a signal. The exponential function 

s(t) = ecxt 

(1.11) 

(1.12) 

for which a is real, models a gradually increasing or decreasing phenomenon, with lal 
indicating the rate of change. The exponential decay/growth function described by 
s(t) in (1.12) is often more realistic than the sudden step introduced in (1.11) because 
real-world phenomena inevitably take finite times to respond to disturbances. Another 
ideal transient is the unit impulse: 

6(t) 
6(t) i: 6(t)dt 

00, t = OJ 
0, t :f. 0; 

1 
(1.13) 

which models a spike or short pulse. Such ideal transients and steady-state functions 
can often be combined in various ways to mathematically model many kinds of simple 
real-world signals. For example, Fig.1.3b shows the signal generated when a voltage 
is suddenly applied to the electrical circuit shown in Fig.1.3a. The current can be 
approximated by 

(1.14) 

'where u(t) represents the switching on of the voltage, Wo = l/vLC is the frequency 
of oscillation, and R, L, and C are the values of the resistor, inductor, and capacitor 

respectively. 

1.1.3 Systems 

A system is thought of in this thesis as any process which transforms an input signal 
into an output signal. Invoking the terminology utilised previously in this chapter, a 
system is a mechanism from which a phenomenon arises. For instance, a "hi fi" is a 
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system that can produce the complicated sound patterns that weknow as music (albeit 
from some pre-recorded source). Systems that are commonly subjected to analysis 
techniques of the kind described in this thesis always have an input signal, because it 
is the input which disturbs the system, hence producing the output signal (Oppenheim 
and Willsky, 1983, §2.5). There may be multiple input and output signals, the forms of 
which can be very different. For example, an engine may be considered to be a system 
forw-hich the input signal is the position of the throttle, and the output signal is the 
speed of rotation of the drive shaft. 

The behaviour of a system is described by the system transformation function 
L{.} between the input signal x(t) and the output signal y(t): 

y(t) L{x(t)}. (1.15) 

The function L{.} is most generally represented as a differential equation. However, di
rect solution of differential equations is often difficult, in which case various simplifying 
assumptions about the behaviour of the system are required in order to make the math
ematical analysis manageable (Rorabaugh, 1986, §3.2). Such assumptions can lead to 
more tractable representations of the system function, in terms of an impulse response 
(described in the next few paragraphs) or transfer function (described in § 1.2.5.1), for 
instance. 

A system is said to be invertible if distinct inputs lead to distinct outputs 
(Oppenheim and Willsky, 1983, p39). This property allows the input signal to be 
deduced from observations of the output signal when the form of L{.} is known. A 
causal system is one in which the output signal at any time only depends on present and 
past values of the input signal (Oppenheim and Willsky, 1983, p40). Both invertibility 
and causality are satisfied by a linear system, which also satisfies the superposition 
property (Oppenheim and Willsky, 1983, p43): 

(1.16) 

where a and b are arbitrary scaling constants. A system is said to be time-invariant 
when the only effect of delaying the application of an input signal is to delay the output 
signal identically (Oppenheim and Willsky, 1983, p42), i.e. 

(1.17) 

where td is the delay time. 
System analysis is simplified by the assumption of linearity because, once the 

response of the system is calculated for simple signals (such as the impulse, sinusoid and 
step functions described in §1.1.2), it can be immediately generalised to other signals 
by the principle of superposition. Time-invariance ensures that the calculated response 
of the system remains the same when the signals are applied at different times. Any 
systems of this kind is conveniently analysed in terms of its impulse response, which is 
the output signal produced by a single impulse (§1.1.2) applied to the input. Because 
of the linear and time-invariant nature of the system, its response to an arbitrary 
signal can be derived by considering the input signal to consist of many weighted and 
time-shifted impulses (Fig.1.4a): 

x(t) f: x(t')6(t t')dt'. (1.18) 

The output of the system y(t) is then the superposition of many copies of its impulse 
response, each one shifted by t' and weighted by the amplitude of the input signal x(t') 
at that instant (Fig.1.4c): 

y(t) f: x(t')h(t - t')dt', (1.19) 
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Figure 1.4. Block diagram of a system, illustrating the process of convolution between an input signal 

and the impulse response of the system. al The input signal, with some of the multitude of impulses 

which it can be represented by. h: The system impulse response "signal". Cl Some of the copies of 

the impulse response that have been weighted by the input signal "impulses". dl The complete output 

signal. 

which is termed the convolution integral (Oppenheim and Will sky, 1983, p90), and is 
conveniently represented by the shorthand notation 

y(t) :c(t) 0 h(t) (1.20) 

where 0 is termed the convolution operator. This important relationship is employed 
extensively throughout this thesis. Note that convolution is commutative so that 
:c(t) 0 h(t) h(t) 0 :c(t). For linear, time-invariant systems, the quantity h(t), which 
completely characterises the system transformation function L{.}, is called the impulse 
response of the system (Oppenheim and Willsky, 1983, p90). Fig.1.4 illustrates the 
process of convolution between an input signal and the impulse response of a system. 

Real-world systems are generally linear for only certain operating conditions. 
For example, an amplifier may be non-linear for very large input signals, causing "dis
tortion" to the output signal. However, virtually all types of system can be adequately 
modelled as linear over restricted ranges of input signals. Systems that are not time
invariant, such as the human vocal tract, can often be modelled as time-invariant during 
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short intervals (§2.3.1.4). Care must then be taken to ensure that the duration of each 
such interval is consistent with the actual physical process (e.g. for a vocal tract model, 
short enough that the vocal tract configuration does not change significantly). Notice 
that the concept of time-invariance for a system is similar to that of steady-state for a 
signal (see §1.1.2). 

1.1.4 Noise 

Noise is the term given to any unwanted signals that disturb the transmission and 
processing of desired signals. Noise is present in any system, and arises from occur
rences such as spontaneous random events in electrical circuits, random distortions in 
transmission media and unwanted interference from other signals (Haykin, 1983, §5.10). 

Since noise is by nature random (stochastic), it is impossible to predict its 
exact value at any instant. It is possible, however, to define its properties, and from 
these derive ways to minimise its influence on the desired signal. The expected value, 
or mean of a random signal is the average of all the particular values that can occur. 
The variance is a measure of how much the values are expected to vary from the 
mean. Another useful descriptor of a random signal is the probability density function 
(pdf), which specifies the probability,p(x)dx say, of occurrence of signal values having 
amplitudes between x and x +dx (Kreyszig, 1979, §23.7). For example, a random signal 
with a uniform pdf exhibits any value (within a specified range) with equal probability. 
A random process with a Gaussian, or normal, pdf is more likely to produce values 
near to its mean than values further away. The pdf of a Gaussian random process is 
defined to be (Kreyszig, 1979, §23.10) 

1 -1 (!!=1!:.)2 p(x) = --eT (J' • 

u..j2;i-
(1.21) 

u 2 is the variance of the Gaussian process, and Il is its mean (§1.3.3). When the defining 
characteristics of a random signal are time-invariant, the signal is termed statistically 
stationary. Conversely, a random signal is termed non-stationary when its defining 
characteristics vary with time. Further background on the mathematics of stochastic 
processes and signals can be found in the text by Papoulis (1984). 

Noise is said to be white when it contains equal power at all frequencies. This 
is of course physically impossible (because the power would then be infinite), but it is 
a useful model since the effective bandwidth of a signal or system is often less than 
the bandwidth of the noise (Haykin, 1983, p279). Signals and systems are conveniently 
modelled as noise-free, with the effects of noise accommodated by the addition of a 
noise signal at some appropriate point in the system. 

The level of noise in a signal is specified by the signal-to-noise ratio (SNR), 
which is conveniently specified in terms of decibels (dB) (10 times the logarithm to 
base 10 of the signal-to-noise power ratio). This means that the total SNR of a system 
constructed from smaller systems can be calculated by adding together the SNRs (in 
dB) of each component subsystem. 

1.1.5 Information 

Information is related to knowledge, and, especially in regard to the representation 
of information by a signal, to knowledge that is not already available to the entity 
processing the signal (whether that entity be a machine or a human). Intuitively, the 
amount of information in a signal must depend in some way on the unpredictability of 
the signal because if future values of a signal are already known then they obviously 
convey no new information (CherfY, 1978, p170). 
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For discrete signals, information is defined by the probability of occurrence of 
each possible event, or signal value. For an event with probability of occurrence PI, the 
amount of information Ii conveyed by its OcCUrrence is defined as (Shannon, 1948) 

II -log2 Pi bits. (1.22) 

A signal must assume some value, and so if there are N possible values, the definition 
of probability (Woodward, 1953, §1.1) requires that 

(1.23) 

The entropy H of a signal is defined as the average amount of information that is 
conveyed by each event (Shannon, 1948). So, 

N 

H - LPllog2Pi, (1.24) 
i=1 

which reveals that the maximum amount of information is conveyed by a signal for 
which each event is equally likely. 

When an event Xj occurs as part of a sequence {Xj} of related events, 
the information imparted by its occurrence depends on the conditional probability 
P(Xj\1tj) that the particular event Xj occurs, given the history 1tj of previous events 
{Xj-b Xj-2,"" Xj-N}, where N is the order of the process that generates the events 
(Hamming, 1980, §5.2). The entropy of such a signal is given by (Hamming, 1980, 
§6.10) 

LP(Xj, 1tj)log2 [P(Xjl1tj)] (1.25) 

where P(Xj,1tj) is the probability of the particular sequence {Xj,Xj-b' .. ,Xj-N} 
and the summation is taken over all possible sequences. Note that the entropy of a 
sequence reduces to (1.24) if P(Xjl1tj) = P(Xj) (i.e. each event is independent). 

The entropy is defined in terms of discrete events because the theory of infor
mation was spurred largely by the development of digital (telegraph) communications 
(Hartley, 1928; Shannon, 1948). It can also be applied to continuous signals by sam
pling the signal appropriately (§1.2.5.5). The number of possible events, or sample 
values (and hence the probability of each), is enumerated by considering the limit to 
which each event can be reliably detected, given the SNR ofthe signal (Shannon, 1948). 
Using this approach, the information capacity C of a channel over which signals can be 
transmitted is defined, for a channel with a bandwidth B and mean-square SNR S / N, 
to be 

C Blog2(1+ !) bits/sec (1.26) 

which is the Hartley-Shannon theorem (Shannon, 1948,1949). It specifies an upper 
limit on the amount of information that can be conveyed by the channel. 

1.2 Signal Representation and transformation 

This section introduces the mathematical techniques which are used to transform and 
analyse signals. 

In §1.2.1 I briefly discuss the time and frequency domains, which are commonly 
invoked when describing different features of a signal. In §1.2.2 I present the Fourier 
transform and some of its properties. The discrete Fourier transform is described 
in §1.2.3 and the z-transform in §1.2.4. §1.2.5 discusses some of the implications that 
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Fourier theory has for the analysis of signals in the time and frequency domains. Finally, 
§1.2.6 introduces the use of the Hilbert transform for representing signals. 

All of the material in this section is presented in university Electrical Engineer
ing courses. Further background can therefore be found in many textbooks, such as 
those by Oppenheim and Willsky (1983), Haykin (1983), Bracewell (1986), and Bates 
and McDonnell (1986). 

1.2.1 The time and frequency domains 

The concept of representing a signal as a function of an independent variable, such as 
time, is introduced in §1.1. When analysing a signal, or the response of a linear system 
to a signal, it is sometimes useful (in order to avoid the occurrence of complicated 
integral expressions like (1.19)), to transform the signal into another domain, where 
it becomes a function of some other variable and the integral is replaced by a simpler 
operation. In addition, certain characteristics of the signal may be more apparent in a 
different representation (Bracewell, 1986). 

A particularly useful way to represent the characteristics of a signal is to trans
form it into the frequency domain. The concept of frequency arises from the study of 
periodic signals, typified by sinusoidal oscillations. The frequency of a periodic signal is 
defined as its repetition rate, and the frequency domain representation of a sinusoidal 
signal is a single component situated at the frequency equal to its repetition rate. The 
spectrum of a signal is the distribution of frequency components from which the signal 
is constructed. 

1.2.2 The Fourier transform 

The concept that a periodic signal can be described by a harmonic series was first 
employed by the ancients in their efforts to predict the occurrence of astronomical 
events (Neugebauer, 1957). More recently, Euler, Bernoulli and others described the 
motion of vibrating strings as a superposition of "normal modes", each of which was 
a sinusoidal oscillation with wavelength equal to an integer divisor of the string length 
(Oppenheim and Willsky, 1983, pp162-165). Later, Fourier found that any periodic 
signal could be represented by a series of harmonically related sinusoids (since termed 
the trigonometric Fourier series, Oppenheim and Willsky, 1983, §4.0). Such a Fourier 
series expansion of a signal s( t) is defined by 

00 

s(t) = L Snei27rnfot (1.27) 
n=O 

where fa is the fundamental frequency of the signal, and Sn is the (complex) amplitude 
of the nth harmonic, which has a frequency of nfo and a phase at time t = 0 of <Pn. 
The coefficients Sn are defined by 

1 JT
/
2 

Sn == s(t)e-i27rnfotdt 
T -T/2 

(1.28) 

where T is the period of the signal (Le. fa = liT). The Sn collectively constitute the 
line spectrum of the periodic signal s(t) (Oppenheim and Will sky, 1983, §4.2). 

The concept ofrepresenting a signal by sinusoidal components can be extended 
to aperiodic signals through the use of the Fourier transform. This can be simplistically 
derived from the Fourier series by defining the "period" T of an aperiodic signal as 
approaching infinity. In this formulation, the fundamental frequency tends towards 
zero and the individual frequency components of the signal become infinitesimally close 
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s(t) IS(I)I 

f 

s(t) IS(I) 1 

f 

f 

Figure 1.5. Fourier transform pairs. In each case the time domain signal is on the left and its Fourier 

transform on the right. a: Single frequency sinusoid. b: Rectangular pulse. c: Sinusoidal pulse. 

together. The Fourier transform representation of an aperiodic signal is then defined 
by 

(1.29) 

and the inverse Fourier transform by 

(1.30) 

where S(f) and s(t) are termed a Fourier transform pair (Bates and McDonnell, 1986, 
§6). In this thesis, the notation 

S(f) 
s(t) 

F{s(t)} 
F-l{S(f)} (1.31) 

is used to indicate that S(f) and s(t) are related by the Fourier transform (Le. they 
are a Fourier transform pair). Fig.1.5 shows some examples of Fourier transform pairs. 

It is often convenient to treat f as a complex variable (Bates and McDonnell, 
1986, §13). With this convention, n{J} corresponds to frequency as introduced in 
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§1.2.1, while X{f} corresponds to the amount of exponential decay (XU} < 0), or 
growth (X{f} > 0). §1.2.5.2 discusses some of the insights into a system's behaviour 
that can be obtained by examining its response in the complex Fourier domain. 

The Power spectrum, defined by 

S(I) = IS(lW S(I)8*(I), (1.32) 

where S*(I) represents the complex conjugate of S(I), is a real, non-negative, quantity 
which indicates the relative intensities of different spectral components of the signal 
(Bracewell, 1986, pp115-116). The power spectrum, rather than the Fourier transform 
itself, is commonly employed as a measure of the spectral content of a signal, because 
the relative amplitudes of the spectral components are unaffected by their phases. 
However, it is necessary to know the phases if the form of the time domain signal is 
to be recovered from the spectrum (Bates and McDonnell, 1986). The inverse_Fol!!ie~_ 
transform of the power spectrum is the autocorrelation function of the signal (§1.2.5.1). 

1.2.3 The discrete and the fast Fourier transforms 

When processing signals it is usually convenient to utilise the power and flexibility 
of digital computers. These can only operate on discrete numbers, and so a discrete 
version of the Fourier transform is necessary to perform Fourier processing in practice. 
It is shown in §1.2.5.5 how a discrete version of a continuous signal can be defined. 

The discrete Fourier transform (DFT) of a discrete signal s[n] comprising N 
samples is defined by the relations (Bates and McDonnell, 1986, §12) 

and 

N-l 

S[k] = L s[n]e-i~nk 

s[n] 

n=O 

1 N-l 

- L S[k]ei~nk. 
N k=O 

where the index k identifies the N samples of the Fourier representation of s[nJ. 

(1.33) 

(1.34) 

The DFT is in effect a trigonometric Fourier series with only N terms. This is 
a consequence of s[n] and S[k] being sampled, and arises because 

(1.35) 

Fig.1.6 illustrates this "periodicity" of the DFT, in that the spectral coefficients repeat 
after N terms (Fig.1.6). Some of the consequences of this periodicity are dealt with in 
§1.2.5.5. 

The DFT, as expressed by (1.34), requires about N2 (denoted by O(N2)) mul
tiplications to implement in a simple-minded fashion. Howev:er, an elegant algorithm 
which takes advantage of the common factors in the DFT summation (1.34), called 
the fast Fourier transform (FFT), enables the DFT to be evaluated with O(NlogN) 
multiplications (Brigham, 1974). A small drawback of the FFT is that it must be 
performed on a sequence with an easily factorable length. Most algorithms require 
that the length be a power of 2, although "mixed-radix" FFT algorithms are available 
which can operate on sequences of arbitrary length (they are, however, computationally 
slower, Burrus and Parks, 1985). 
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1.2.4 The z-transform 

The z-transform is a discrete transform relationship defined by 

+00 
H(z) = E h[n]z-n (1.36) 

n=-oo 

where H(z) is termed the z-transform of the sequence h[n] and z is a complex variable 
(Oppenheim and Willsky, 1983, Chapter 10). The variable z is related to the Fourier 
variable f by 

(1.37) 

where T is the interval between successive samples. Together with (1.34), this relation
ship indicates that the unit circle in the z-domain corresponds to the real axis in the 
complex Fourier domain. 

1.2.5 Implications of the Fourier transform 

In this section, some of the properties of the Fourier transform and how they pertain 
to signal processing are discussed. §1.2.5.1 introduces the convolution theorem, which 
can be invoked to reduce the complexity of expressions describing the response of a 
system to an input signal. §1.2.5.2 describes how a signal or system response function 
can be described by a factored polynomial. The utility of this representation for mod
elling systems is also discussed. In §1.2.5.3 I introduce the concept of inconsistency 
of convolution. Finally, §1.2.5.4 and §1.2.5.5 discuss various practical implications of 
Fourier-theoretic aspects of time durations and frequency bandwidths (of continuous 
and sampled signals respectively). 

1.2.5.1 The convolution theorem 

In the time domain, the response of a linear, time-invariant system to an input signal 
is described by the integral expression (1.19). However, in the frequency domain, the 
response is given simply by the multiplication 

Y(J) = S(J).H(J) (1.38) 

where Y(J), S(J) and H(J) are the Fourier transforms of y(t), s(t) and h(t) respectively. 
H (J) is termed the transfer fp,nction of the system. 

The relationship (1.38) illustrates the convolution theorem, which states that a 
convolution between two signals in one domain is equivalent to a multiplication between 
those signals in the transformed domain (Bates and McDonnell, 1986, §7). Thus, if 
S(J) = F{s(t)} and H(J) = F{h(t)}, 

S(J).H(J) = F{s(t) 0 h(t)}. (1.39) 

A consequence of the convolution theorem is that the power spectrum IS(J)12, 

defined by (1.32), is the Fourier transform of the autocorrelation function: 

IS(J)1 2 = F{s(t) 0 s*(-t)}, (1.40) 

which is called the Weiner-Khinchine or autocorrelation theorem. 
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1.2.5.2 Poles and zeros 

The transform (z or Fourier) of a signal can be expressed as a ratio of polynomials of 
the form (taking the case ofthe z-transform) 

00 

II (z - (jm) 
H(z) = .:.::m:,=::::.O __ _ (1.41) 

II (z - Qk) 

k=O 

where the Qk and (jm are termed the poles and zeros of H(z) respectively (Oppenheim 
and Willsky, 1983, §9.4). The positions of the poles and zeros characterise the signal 
or system response. In the analysis of system response functions, the pole-zero rep
resentation is useful because it intuitively conveys information about the resonant or 
anti-resonant characteristics of the system. A resonance occurs at a frequency at which 
the input signal tends to be reinforced, while an anti-resonance is said to occur at a 
frequency at which the input signal is reduced. A resonance introduces a peak into the 
system transfer function, while an anti-resonance introduces a dip. A pole represents 
a resonance, with its frequency indicated by its phase (z domain) or real part (Fourier 
domain) and its damping indicated by its distance from the unit circle (z-domain) or 
real axis (Fourier domain). Furthermore, the system is stable if all the poles are inside 
the unit circle (z-domain) or in the lower half plane (Fourier domain) (Oppenheim and 
Willsky, 1983, §1O.7). In the Fourier domain, the zeros always occur on the real axis 
or in conjugate pairs. 

Any system function can be factorised in several ways, although the number of 
factors required to represent the system can be minimised by choosing a representation 
that matches the characteristics of the system. The general formulation (1.41) is termed 
a pole-zero model. An all-pole model is often used to represent a system that consists 
of several resonances. The all-pole system transfer function can be written as 

H(z) 
1 

(1.42) 

where P is termed the order of the system and the {ak} are the coefficients of the 
polynomial that characterises H(z). An all-pole model is also termed an auto-regressive 
(AR) or predictor model (Kay and Marple, 1981; Gutowski et al., 1978). This is because 
the output of such a system can be predicted from previous outputs. By applying a 
signal z[n] to a system characterised by the H(z) of (1.42), an output 

p 

y[n] = z[n] + L aky[n - k] (1.43) 
k=l 

is produced. An all-pole model of this form is often employed in the analysis of speech 
signals (§3.2.1). 

An all-zero (often termed amoving average or MA) model is represented by 
the system function 

p 

H(z) = 1- L bmz-m (1.44) 
m=O 

where the bm are the samples of the impulse response of H(z). The number of coef
ficients required to represent a system's transfer function as an all-zero model is thus 
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proportional to the duration of its impulse response. By contrast, an all-pole model 
can characterise a system having an impulse response of infinite duration with only a 
few coefficients (see §3.2.1). 

The use of models such as those described above to represent a system is dis
cussed more fully in §1.3.1. 

1.2.5.3 The General inconsistency of convolution 

As implied in §1.2.5.2, a signal can be uniquely specified by the zeros of its Fourier 
transform. Furthermore, only a finite number of zeros are required to represent a 
discrete signal of finite duration (Bates and McDonnell, 1986, §13). A convolution 
between two signals, >.[n] and -y[n], of finite duration, is then given by the signal z[n] 
that is characterised by the set of zeros Z, for which 

(1.45) 

where A and r are the sets of zeros of >.[n] and -y[n] respectively and U denotes the set 
union operator (Bates and McDonnell, 1986, §14). 

A consequence of (1.45) is that, given an arbitrary signal :e[n] offinite duration, 
which is characterised by a set of zeros X, it is almost never possible to construct a 
signal y[n] such that :t:[n] 0 y[n] is exactly equal to z[n]. Unless :t:[n] is constrained so 
that X is a subset of Z, z[n] and :t:[n] 8 y[n] are said to be inconsistent (Bates and 
McDonnell, 1986, §14). On the other hand, there are an infinite number of signals y[n] 
and w[n] for which 

z[n] = :e[n] 8 y[n] + w[n] (1.46) 

is true, regardless of the form of :e[n]. The signal w[n] can be thought of as the signal 
which must be added to :t:[n] 8 y[n] to move the latter's zeros just enough that they 
coincide with the .zeros of z[n]. 

1.2.5.4 The bandwidth and time-duration of a signal 

IT a signal s(t) has a Fourier transform S(J) which is zero for If I > W, it is said to 
be band-limited to W, or to possess a bandwidth of W. In addition, a signal that is 
non-zero only throughout an interval of duration T (e.g. s(t) = 0 for -T /2 < t < T /2) 
is said to be time-limited. Examination of the Fourier integral (1.29) shows that a 
signal cannot be both time-limited and of finite bandwidth. However, a little thought 
about the behaviour of signals and the limitations of systems indicates that neither the 
bandwidth nor the duration of a real-world signal can be effectively infinite. For exam
ple, the sounds made by a person speaking must obviously be time-limited. They must 
also be band-limited because sound waves of very high frequencies cannot propagate 
through air. This seeming paradox is resolved by remembering that the mathematical 
representation of a signal is only an idealised model of the real world. Although the 
mathematical representation of a time-limited signal has infinite bandwidth, the differ
ence between that and a (real) band-limited signal is too small to make any difference 
in the real world, as Slepian (1976) makes clear, illustrating his argument with an ex
ample which has inspired the one used here. Thus the effective bandwidth of a signal is 
the range of frequencies outside which exist only components of the signal that can be 
neglected without causing any measurable changes to the signal. Likewise, the effective 
duration is defined as the interval outside which only an insignificant amount of the 
signal exists. 

The question of what the bandwidth ofa time-limited signal actually is was first 
considered in the days oflong distance telegraphy (Nyquist, 1924). Later, Gabor(194~) 
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and Shannon (1949) considered the related question of how much information a channel 
of a certain bandwidth can carry in a limited time. Shannon expressed this by saying 
that the "dimension" of a signal of effective duration T and effective bandwidth W 
is 2WT (also see §1.2.5.5), while Gabor derived an "elementary signal" for which the 
product of bandwidth t::..f and time-duration t::..t is equal to 1/2. This type of analysis 
also led to the quantitative measure of information stated in §1.1.5 and the sampling 
theorem discussed in § 1.2.5.5. 

Because the Fourier transform is defined by an integral for all time, it reveals 
nothing about the positions in time of various components of the signal. This is more 
than adequate when analysing a steady-state signal (such as the impulse response of a 
linear, time-invariant system), but it is very inconvenient when the spectral content of 
the signal varies with time. For example, everyone is familiar with music, and how the 
frequencies (tones) of the musical notes seem to change with time. This question of a 
"time-varying frequency" is related to the issues discussed in the previous two para
graphs, and can be resolved in a similar way (cf. Gabor, 1946). A time-varying signal 
can be considered to be time-invariant for short intervals, and hence can be considered 
as the concatenation of many short segments, each of which is effectively time-limited. 
The short-term spectrum is defined as the Fourier transform of a particular segment 
of signal, and the time-varying spectrum as the (2-dimensional) function obtained by 
concatenating the short-term spectra for successive segments of signal (§3.3.1). An 
alternative way of representing the time-varying spectral nature of a signal is by means 
of its instantaneous frequency (cf. Cook and Bernfield, 1967). This is discussed further 
in the section on the Hilbert transform (§1.2.6). 

1.2.5.5 The sampling theorem 

When processing signals by computer, the real continuous signal must be represented 
by a finite number of discrete-valued samples, which must be sufficiently close together 
that they adequately represent the continuous signal. This sampling rate depends upon 
the band width of the signal. 

The sampling theorem (Shannon, 1949) states that a signal set), of bandwidth 
W, is uniquely specified by its samples at senT), where n is any integer, and T = 1/2W 
or less (the reciprocal ofT, termed the sampling rate, or Nyquist rate, is often employed 
in discussions of sampling, Oppenheim and Willsky, 1983, §8.1). The sampling theorem 
can be derived by considering the samples senT) to be a Fourier series expansion of 
the band-limited spectrum S(t) of set). A consequence of this is that the spectrum 
of a sampled signal is periodic, with a fundamental period 2/T (see Fig. 1.6). If the 
(unsampled) signal has non-zero components offrequency greater than 2/T, the process 
of sampling forces the energy in these components to lie in the frequency range of 
o to 2/T, because only these frequencies exist in the sampled signal (see (1.34) in 
§1.2.3). This "frequency folding" is termed aliasing, and implies that the sampled 
signal does not accurately represent the continuous signal. When real-world signals are 
to be sampled, such frequency components must be removed by low-pass filtering the 
signal with an anti-aliasing filter. This must in practice have a cutoff frequency of less 
than half the sampling rate, in order to provide sufficient attenuation to render higher 
frequencies insignificant. 

A continuous signal can be recovered from its samples by low-pass filtering 
the sampled signal with a cutoff frequency equal to half the sampling rate. An ideal 
low-pass filter is represented by 

H(t) { 
0 for If I > W 
1 for If I < W 

(1.47) 
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Figure 1.6. An illustration of the sampling process. a: Continuous signal and its spectrum. hI 

Sampling function. CI Sampled signal. The "spikes" of the sampling function are separated by T = 1/ f. 
where f. is the sampling frequency. 

where W is the cutoff frequency, and the inverse Fourier transform of this is given by 

. () sin(21r W t) smc t = --'-----'-
21rWt 

(1.48) 

which is termed the sinc interpolation function. sinc(t) is unity for t 0, and zero 
for every t n/2W (Le. at each of the other sampling instants). Hence when it is 
convolved onto a sampled signal, it effectively interpolates between each sample and 
produces a replica of the original continuous signal. 

1.2.6 Analytic signals and the Hilbert transform 

The Fourier transform of a real signal (1.29) contains both positive and negative fre
quencies. As already implied in §1.1.2 (in the paragraph containing (1.8), it is some
times convenient to employ a (complex) representation of a signal that contains only 
positive frequencies. Such a representation is the analytic signal (Gabor, 1946), which 
has a spectrum \.f! (f) defined by 

\.f!(f) { 
0 ,/<0 
2S(I) ,/ 2 0, 

(1.49) 
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where S(f) F{s(t)} and "p(t) = F-l{~(f)} is the analytic representation of set). In 
the time domain, "p(t) is defined by 

"p(t) = set) + iO"(t) 

where O"(t), which is the Hilbert transform of the real signal set), is defined by 

1100 s(r) O"(t) = - --dr. 
11" -00 r t 

The inverse Hilbert transform, giving set) in terms of O"(t), is 

1100 O"(r) set) = -- --dr. 
11" -00 r t 

(1.50) 

(1.51) 

(1.52) 

It is sometimes convenient to express "p(t) in polar form. It is then appropriate 
to think of "p( t) as a vector rotating (with time) around the origin of the complex plane, 
such that its projection onto the real axis at any instant corresponds to the amplitude 
of set) at that instant. This is expressed as 

(1.53) 

where 
(1.54) 

is termed the envelope or modulation signal, and fi(t) the carrier. fi(t), which is also 
tenned the instantaneous frequency (Haykin, 1983, p279), is the time derivative of the 
phase of "p(t). The instantaneous frequency is related to the real signal set) and its 
Hilbert transfonn O"(t) by 

~ {tan-1 (O"(t))} . 
dt sCt) 

(1.55) 

The instantaneous frequency can be employed instead of the short-term spec
trum (§1.2.5.4) to characterise the spectral content of a time-varying signal (e.g. as tra
ditionally employed in the analysis of frequency modulated signals, cf. Haykin, 1983, 
Chapter 4). However, it is sometimes more difficult to interpret, since it can attain 
unbounded positive or negative values (e.g. if there is a phase discontinuity in the 
signal). 

1.3 Signal processing techniques 

In this section I describe some of the techniques that are used to extract information 
from signals. The techniques are discussed with reference to their application to speech 
and other sounds. However, similar techniques are also employed in applications as 
diverse as astronomy (Bates and McDonnell, 1986) and geology (cf. Wood and Treitel, 
1975). 

In §1.3.1 I discuss some of the practical details of estimating the spectral content 
of a signal. §1.3.2 introduces a few of the techniques by which a signal can be separated 
into components, each corresponding to the contribution of a particular part of the 
phenomenon from whence the signal arose. The statistical analysis techniques that 
are employed in later chapters are introduced in §1.3.3, while §1.3.4 presents several 
aspects of the practical details of implementing signal processing tech,niques. 
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1.3.1 Spectral estimation 

As §1.2 describes, the spectrum of a signal characterises its structure by indicating 
the relative importance of each of the sinusoidal components that make up the signal. 
The power spectrum (§1.2.2) specifies the power in each frequency component of the 
signal. For example, power spectral analysis of the electricity mains supply indicates 
the presence and severity of harmonics in the electricity system (cf. Arrillaga et al., 
1985). 

In the remainder of this thesis I use the term spectrum to refer to both the 
power spectrum and the (Fourier or z) transform of a signal. Only if the meaning is 
not clear from the context do I explicitly state which type of spectrum is implied. In 
most cases, the context is evident from the mathematical notation (as introduced in 
§1.2.2). 

The power spectrum of a signal can be simply obtained by applying (1.29) and 
(1.32) to the signal. In practice, however, the spectrum obtained in this way is often 
distorted due to the effects of noise and signal truncation. Various techniques have been 
developed for generating accurate and reliable estimates of the "true" spectral content 
of noise-corrupted signals of finite durations (Blackman and Tukey, 1958; Kay iand 
Marple, 1981; Roberts and Mullis, 1987). §1.3.1.1 discusses the techniques pertaining 
to finite signal duration while §1.3.1.2 describes some methods of reducing the effects 
of noise on the spectral estimate. 

1.3.1.1 On the use of windows 

In many instances, spectral estimation can only be performed on a (relatively) short 
segment of the total signal. This may be because the signal is truncated, either due 
to measurement considerations (e.g. signals representing economic data can only be 
measured up to the present time) or computational factors (such as the amount of 
available memory setting a limit on the duration of the signal which is to be analysed). 
Segmentation is also necessary when one wishes to compute the short-term spectrum 
(§1.2.5.4) of a signal or invoke the technique called segment averaging (described in 
§1.3.1.2 below). Truncating a signal in any of these ways introduces a bias into the 
calculated spectrum. This section describes the origin of the bias and the means by 
which it can be reduced. Note that such considerations do not apply to signals that 
are naturally time-limited, implying that their spectra can be computed for their entire 
durations (as is the case for the sonar clicks which are analysed in Chapter 7). However, 
"leakage" may still occur if the signal contains spectral components with periods that 
are not exact integer fractions of the analysis duration (as described in the paragraphs 
that follow). 

Fourier analysis of a finite duration analysis segment of a signal reduces to con
structing a Fourier series with fundamental period equal to the duration of the segment 
(§1.2.2). If the signal contains spectral components that are not exact harmonics of 
this fundamental, they are not accurately represented in the Fourier series. Instead, 
the energy in such components leaks into the other spectral components (Harris, 1978). 
Leakage can be understood by noting that multiplying a signal set) by a window wet) 
(which is what extracting a segment amounts to) is equivalent to convolving the signal's 
spectrum S(f) with the Fourier transform of the window W(f). Hence the estimated 
power spectrum S(f) is given by 

S(f) F{s(t)w(t - An 
IS(f) 0 W(!) 12 

(1.56) 

where A is the instant at which the window is applied to set) (Blackman and Tukey, 
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1958). If the window wet) is a simple rectangular window, 

wet) 1, 
0, 

0< t < Tn 
otherwise 

(1.57) 

where Tn is the duration of the window, then its equivalent spectral smoothing window 
is (Blackman and Tukey, 1958, p95) 

W(f) = sin(21!'JTn/2) 
21!'J 

Tn sinc(f), 

which exhibits large side-lobes at frequencies that do not satisfy 

f 

(1.58) 

(1.59) 

where k is an integer. These side-lobes are the source of the leakage identified in the 
first two sentences in this paragraph. Note that the above reasoning is valid whether 
the continuous or discrete Fourier transform is employed (Blackman and Tukey, 1958). 

Several window functions have been proposed that have lower sidelobes than 
the rectangular window discussed above (Harris, 1978). Particularly simple windows 
are described by the trigonometric series 

wet) 
J 

" (.27rt) ao + ~ajcos JT j=1 n 
0< t < Tn (1.60) 

o otherwise 

where the coefficients aj are chosen to minimise the side-lobe level (Harris, 1978). 
Note that the integer J is rarely taken to be greater than 4. Table 1.1 lists values of 
the coefficients characterising several common windows, together with their maximum 
side-lobe levels with respect to the main lobe. The side-lobe level indicates to what 
extent the energy from non-harmonic (as described in the previous paragraph) spectral 
components spreads across the computed spectrum. Windows that have lower side-lobe 
levels necessarily have a wider main lobe (see the discussion in the next paragraph),. 
which means that the spectral resolution is somewhat reduced when they are employed. 
However, this drawback is far outweighed by the advantages of limiting leakage to only 
a few spectral coefficients around each non-harmonic frequency component. 

The resolution af with which spectral features can be ascertained is limited 
to (cr. § 1.2.5.4) 

(1.61) 

where Tn is the duration of the signal which is to be analysed. The use of a non
rectangular window effectively reduces the duration Tn by tapering the signal values 
near the ends of the segment. The reduction in resolution can also be appreciated by 
recalling (1.56), which states that windowing is equivalent to smoothing the spectral 
coefficients. 

The windows described by (1.60) can also be applied in the frequency domain 
with equivalent effect. A DFT of a rectangular-windowed signal can be windowed by 
convolving with a spectral smoothing window consisting of only 2J + 1 terms: 

W[f] J [. • ] a' J J 
ao5[f] + L 2 5[f - -] + 5[f + -. J • 

j=1 2 Tn Tn 
(1.62) 
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Window side-lobe Coefficients I 
name attenuation (dB) ao al a2 a3 I 
Rectangular 13 1 0 0 0 I 
Hanning 31 0.5 -0.5 0 0 

I 

Hamming 43 0.54 -0.46 0 0 • 

• Blackman 58 0.42 -0.50 0.08 0 
3-term Blackman-Harris 67 0.42323 -0.49755 0.07922 0 I 

I 4-term Blackman-Harris 92 0.35875 -0.48829 0.14128 -0.01168 I 

Table 1.1. Table of common spectral weighting windows, showing their coefficient values (according 

to (1.60» and resulting side-lobe suppression level (after Harris, 1978). Note that the signs of the 

coefficients alternate if the window is constructed in the interval 0 < t < Tn, but are all positive if the 

window occupies the interval -Tn /2 < t < Tn /2. 

Such a smoothing calculation is a feasible alternative to time domain multiplication in 
two types of situation. One occurs when a Hanning window is employed. (1.62) can 
then be implemented by means of additions only, because the coefficients are divisions 
by two or four, which can be digitally implemented as simple binary shifts. The other 
situation in which spectral smoothing is appropriate is when the spectral smoothing 
technique described in §1.3.1.2 is employed to reduce the effect of noise on the spectrum. 

1.3.1.2 Reducing the effect of noise 

If the signal is corrupted by noise, the spectral coefficients obtained by Fourier trans
forming the signal are also corrupted by noise. In addition, the variance of each coeffi
cient fails to decrease as the analysis duration is increased (cf. Oppenheim and Schafer, 
1975, §11.3; Schwartz and Shaw, 1975, Chapter 4). Several methods for reducing the 
variance of each spectral component have been proposed (cf. Blackman and Tukey, 
1958). 

Perhaps the most obvious way of reducing the noise in the spectral estimate is 
to calculate the power spectra of many short segments of the signal and then average 
them (Schwartz and Shaw, 1975, Chapter 4). When the noise on each spectral estimate 
is independent, the average spectrum tends to be closer to the true spectrum than the 
individual spectral estimates are (Fig.1.7). Using this technique, the spectrum 3[f] of 
a signal s[n] is estimated by 

_ 1 M 
3[f]::= M I: [.r{s[n]w 8 [n nm ]}]2, 

m=l 

(1.63) 

where ws[n] is a signal window that, when located at the instant nm , delineates the 
mth of M segments. The choice of window is subject to the considerationsdiscuss~d 
in §1.3.1.1. 

Another way of reducing the variance of the spectral estimate is to compute the 
spectrum for a longer segment of the signal and then smooth several adjacent spectral 
coefficients together (Schwartz and Shaw, 1975). If the noise on adjacent coefficients 
is independent, the smoothed spectrum is a better estimate of the "true" spectrum 
(Fig.1.8). Smoothing of the spectrum can be expressed as a convolution 

L 

3[f] = I: W[f - m]IS[fW, (1.64) 
m=-L 
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(a) 

O.5kIlz 

(b) 

3 av (J) 

J..,..L _____ --"-___ ! 

O.5kHz 

(c) 

Figure 1.7. Spectral estimation by averaging the power spectra of several short segments. a: Part 

of the original signal. h: The spectral estimates of three 256ms long segments of the signal shown in 

a. Each segment was multiplied by a 3-term Blackman-Harris window before performing the FFT. 

Adjacent segments were overlapped, with a separation of 64ms between each one. c: The final spectral 

estimate computed by averaging all (28) short-term spectra. 

where S[I] = .:F{s(n]} and W[m] is the smoothing window of extent 2L + 1 samples 
(see (1.62) in §1.3.1.1). Application of the the autocorrelation and convolution theo
rems (§1.2.5.1) to (1.64) indicates that smoothing adjacent power-spectral coefficients 
is equivalent to multiplying the autocorrelation of the signal with a window. 3[1] is 
then given by 

(1.65) 

where 
00 

R(k] L s[n]s[n k] (1.66) 
n=-CX) 

is the autocorrelation of s[n] and walk] is the lag window (Blackman and Tukey, 1958). 
The presence of walk] ensures that only those values of R[k] for small Ikl are used to 
calculate 3[1]. This is necessary because, for signals s[n] of finite extent, only a few 
samples of s[n] appear in the summation (1.66) when Ikl is an appreciable fraction of 
the signal's extent. Hence the averaging, implicit in (1.66), is less effective for larger 



1.3 SIGNAL PROCESSING TECHNIQUES 

(a) 

-----I 
500Hz 

~----------~-----I 
500Hz 

(b) 

25 

Figure 1.8. Spectral estimation by windowing the autocorrelation. The original signal is the same 

as in Fig.1.7a. a: The power spectrum computed from the entire autocorrelation of the signal (which 

is 2 s in duration). b: The smoothed spectrum obtained by applying a 25.6ms duration, 3-term, 

Blackma.n-Harris window (see Table 1.1). 

values of Ikl, resulting in higher levels of noise on those components of R[k] (Schwartz 
and Shaw, 1975, §4.3). 

The spectral smoothing and segment averaging methods are equivalent when 
the durations ofwa[k] and ws[n] are the same and wa[k} is the autocorrelation ofws[n]. 
This can be demonstrated by comparing the expected values of the two expressions, 
(1.63) and (1.65) respectively, for E[f]. The mathematical details of this comparison 
can be found in several texts, such as the one by Blackman and Tukey (1958, pp92-95). 

As mentioned in §1.3.1.1, the spectral resolution is inversely proportional to 
the duration of the signal which is being analysed. When the spectral smoothing or 
segment averaging techniques described above are invoked, the effective duration (for 
the purposes of determining the spectral resolution) is less than the total duration of 
the signal. Hence the use of these techniques reduces the maximum attainable spectral 
resolution. For the segment averaging technique, the effective duration is equal to the 
duration of wa[n] , while for the spectral smoothing technique, it is equal to the duration 
of walk]. Techniques for improving the resolution of a spectral estimate, by taking 
advantage of any available a priori information concerning the signal, are described in 
§1.3.1.4. 

1.3.1.3 Practical considerations for Fourier methods 

Whether the spectral smoothing is performed by means of (1.64) or (1.65) depends on 
computational considerations. Before the FFT algorithm was available, it was usual 
to employ (1.65), calculating only those values of R[k] embraced by the window walk] 
(Blackman and Tukey, 1958). 

With the advent of the FFT (Brigham, 1974; Burrus and Parks, 1985), it is 
more efficient to compute S[f] directly from s[n] and then employ (1.64) to estimate 
the power spectrum (Bingham et al., 1967; Yuen, 1979, Chapter 5). Because of the 



26 CHAPTER 1 PRELIMINARIES 

implicit autocorrelation that occurs when the power spectrum is obtained by means of 
(1.63) or (1.64), it is important that the signal s[n] be zero-extended to at least twice 
its duration before computing the FFT (Yuen, 1979, p98). Zero-extension (often called 
zero-packing in image processing contexts) is a technique of concatenating a number of 
zero-valued samples on to the ends of the signal. It effectively increases the resolution 
of the resulting Fourier transform by interpolating between the spectral coefficients 
that would have been obtained if no zeros were added. Zero-extending is necessary so 
that the autocorrelation (which is twice the extent of the signal) does not "alias" and 
so introduce errors into the spectral coefficients. 

1.3.1.4 Parametric methods 

The resolution limit (1.61) is inappropriate ifthe duration ofthe signal that is available 
for analysis is shorter than that required for the desired resolution. This may, for 
instance, occur when the signal is truncated (as described in the first paragraph of 
§1.3.1.1). The resolution may also be insufficient when a signal must be segmented 
in order to compute the "time-varying spectrum" (see §1.2.5.4). Remember that the 
time-varying spectrum makes best sense for a signal that can be naturally and usefully 
divided into many short segments. The spectrum for each segment is computed, and 
the ensemble of "short-term spectra" then serves to describe the variation of the signal 
with time. Methods of constructing a time-varying spectrum from such a signal are 
described further in §3.3.1. 

One way to obtain higher resolution of spectral features than what is implied 
by the signal's duration, is to assume a priori that the signal fits a certain model, 
with only the parameters of the model to be found. For example, a certain signal 
might be assumed to contain several sinusoidal components of arbitrary amplitude, 
frequency and phase, together with white noise. Such an assumption implies that a 
minimum error optimisation scheme is able to estimate the parameters of the sinusoidal 
components with much greater precision than if no assumptions were made about 
the signal (Kay and Marple, 1981). However, if the signal contains components that 
are not accounted for in the model, incorrect estimates are unavoidably produced. 
Speech sounds are often modelled by a finite number of (complex) poles (§3.2). Each 
pole characterises the frequency and bandwidth of one of the resonances of the speech 
production mechanism (§2.3.1). Such a model appears to satisfactorily account for 
the important characteristics of most speech signals (§2.3.1.3). The techniques used 
to estimate the model parameters from the speech waveform are described in detail in 
§3.2.2. 

1.3.2 Deconvolution techniques 

Some signals are usefully modelled as a convolution between two (or more) components 
(§1.1.3). For example, a signal that has been (linearly) distorted by some recording 
apparatus can be expressed as the convolution of a true signal and a blurring signal, 
where the latter is the impulse response of the recording apparatus (Bates and Mc
Donnell, 1986; Davey, 1989). If the true signal is represented by yet) and the blurring 
signal by h(t) then the recorded signal ret) is given by 

ret) yet) 8 h(t) (1.67) 

in the time domain, and 

R(J) Y(J).H(J) (1.68) 
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in the frequency domain, where (as usual) the functions identified by uppercase and 
lowercase letters are Fourier transform pairs. The process of separating the two com
ponents of the recorded signal is called deconvolution or inverse filtering (Bates and 
McDonnell, 1986, Chapter ill). 

Rearrangement of (1.68) results in 

Y(f) = R(f) 
H(f) 

(1.69) 

for the case when H(f) is known. Unfortunately, IH(f)1 may be small or zero for certain 
frequencies, which causes errors in the estimate of Y(f). This difficulty is especially 
acute when either R(f) is corrupted with noise or H(f) is only an estimate, and hence 
subject to error. A better procedure for estimating Y(f) is called Wiener filtering 
(Wiener, 1949), in which (1.69) is replaced by (Bates et al., 1982b) 

R(f)H*(f) 
Y(f) = IH(f)12 + ~(f)' (1. 70) 

where ~(f) is chosen to equal the estimated noise-to-signal ratio. In many cases ~(f) 
is set to a constant, due to practical difficulties in estimating the frequency dependence 
of the noise (Bates et al., 1982b). Note that (1.70) reduces to (1.69) if there is no noise. 

Deconvolution can also be performed in the time domain (Bates et al., 1982c). 
One method of doing this is described at length in Chapter 5 of this thesis. Time 
domain deconvolution is useful in situations where IH(f)1 contains zeros (Hogbom, 
1974) or when H(f) is time variant (Bates et al., 1982c). 

IT neither Y(f) nor H(f) is known then (1.70) call1lOt be applied. The pro
cess of separating the two components, when neither is known a priori, is called blind 
deconvolution (Stockham et al., 1975; Lane and Bates, 1987). Blind deconvolution tech
niques can only be applied to signals having two components with properties different 
enough that they can be separated. The particular technique that is appropriate for 
any particular signal depends on the way in which the components differ. One useful 
approach, which is actually equivalent to the original instance of blind deconvolution 
(Stockham et al., 1975), involves considering the signal to be comprised of many seg
ments, each of which is a convolution of a component that is the same for all segments 
and one that varies appreciably between segments. The segments can then be suitably 
averaged to isolate the invariant component. The averaging can be performed in the 
time domain, as exemplified by the shift-and-add technique described in Chapter 4, or 
in the frequency domain, as described by Stockham et al. (1975). 

A second approach, called homomorphic deconvolution, can be us.ed to separate 
two signals when one has a smooth spectrum while the other has a spectrum contain
ing harmonic components (Oppenheim and Schafer, 1968). The use of homomorphic 
deconvolution in speech processing is described in §3.3.2. 

1.3.3 Statistical analysis techniques 

Measured data are almost always subject to some random fluctuation (§1.1.4). In 
addition, many interesting signals are "stochastic" in nature. For example, the signal 
that describes the variation of temperature from day to day contains patterns relating 
to seasonal weather changes, but these may be partially obscured due to the random 
and unpredictable fluctuations inherent in the weather. The random variation inherent 
in both of these situations can be modelled by a r~ndom signal, which is conveniently 
characterised with the aid of descriptive statistics (Kreyszig, 1970). Such statistics 
enable particular characteristics of the signal's behaviour to be predicted (although 
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they do not allow its value at any particular time to be predicted, as exemplified by 
the difficulties facing weather forecasters!). For example, the mean, or ezpected value 
describes the average of all the signal values. For a signal comprising N measurements 
{zd, the mean (denoted by :il or (:Z:)i) is defined by (Kreyszig, 1970, §3.2) 

1 N 
:il = N ?::Z:i. 

1=1 

(1.71) 

The variance (1'2, which characterises the spread of signal values from their mean value, 
is defined by (Kreyszig, 1970) 

N 

I:(:Z:i - :il)2 
;=1 

N-1 
(1. 72) 

For a continuous signal, having a pdf (§1.1.4) p(:z:), the mean and variance are given by 
(Woodward, 1953) 

:il i: :z:p(z)d:z: (1. 73) 

and 

(1.74) 

respectively. The standard deviation, which is the square root of the variance, is often 
more useful than the variance as a descriptor of signal variation, because it has the 
same dimensionality as the signal itself. 

The mean and variance can be misleading descriptors of a random process, 
because they are strongly affected by the shape of the pdf (Kreyszig, 1970, Chapter 6). 
IT the pdf is asymmetrical, other descriptors are sometimes more illuminating. The 
median is defined as the value that occurs half way through an ordered list of the signal 
values (for a discrete signal). For a continuous signal with pdf p(:z:), the median is a 
root of the equation 

1 
2' (1. 75) 

The mode is the signal value that occurs most frequently (equivalently, a maxima of 
p(:z:». 

The statistical descriptors introduced in the previous two paragraphs are often 
obtained from a subset or statistical sample of the entire set of signal values. The 
descriptors obtained from several subsets are themselves subject to statistical variation, 
because each subset contains different signal values (Snedecor and Cochran, 1980, §5.1). 
In order to determine if one set of measurements or signal values belongs to the same 
stochastic process as another set, the statistical descriptors of each set are subjected to 
hypothesis tests. A hypothesis test is an assessment of whether the differences between 
two sets of measurements are significant (Kreyszig, 1970, Chapter 11). Various types of 
tests are employed, depending upon the particular pdf possessed by the signal. Details 
on these can be found in textbooks such as the one by Kreyszig (1970). 

Hypothesis testing is employed extensively in many areas of scientific endeav
our. Measurements are obtained under differing experimental conditions, and are sta
tistically analysed in order to determine whether the conditions significantly affect 
the phenomenon being observed (Snedecor and Cochran, 1980, Chapter 5). Hypothesis 
testing is also the basis for the techniques, used in the communication and echo-location 
fields, for detecting signals that are corrupted with noise (Woodward, 1953). 
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ill many situations, several different quantities may be measured that together 
characterise a particular phenomenon. For example, the weather conditions in a par
ticular locality could be characterised by recording, at a certain time each day, a set 
of measurements. Each set, which can be represented as a feature vector in multi
dimensional space, may consist of the temperature, air pressure, rainfall and humidity. 
ill order to analyse the variation of such a signal, multi-variate statistical techniques are 
required (Cooley and Lohnes, 1971). Some of these techniques are descriptive, in the 
sense that they attempt to describe the distribution of measurement vectors within the 
multi-dimensional feature space. One such technique is factor analysis, which attempts 
to reduce the dimensionality of the feature space by appropriately combining features 
that are highly correlated with each other (Cooley and Lohnes, 1971). Reducing the 
dimensionality also means that the distribution can be more easily visualised (Tukey, 
1983). 

Multi-variate hypothesis testing techniques are also available. They can be 
invoked to assess whether the measurement vectors can be separated into different 
classes or clusters (Krishnaiah and Kanal, 1982). Techniques of this type are employed 
for speech recognition (§3.6.1), vector quantisation of speech signals (§3.5.1.2), and the 
analysis of the distribution of measurement data in the biological and social sciences 
(cf. Chapter 7). 

1.3.4 The "mechanics" of signal processing 

Because of the power and speed of digital computers, they are employed in nearly all 
practical applications of signal processing techniques. Several aspects of the "mechan
ics" of processing signals on computers deserve mention here. A block diagram of the 
steps involved in the processing of signals is shown in Fig.1.9. 

Signals appear in many forms (for example sound pressure waveforms, temper
ature variations or visual images), but in order to process them with a computer, they 
must be transformed into sets of discrete numbers. Usually, the physical phenomena are 
first transformed into electrical signals. The devices which perform this transformation 
are termed transducers, which for sound waveforms are commonly called microphones. 
Because of the great variety of sounds that occur, many types of microphones are avail
able, each suited to a particular range of sound intensities and frequencies. Hence the 
microphone employed for a particular application should be chosen so that its specified 
performance matches the characteristics of the sounds that are expected. 

A signal that is a continuous function (of time) must be sampled before it 
can be digitally processed. The mathematical aspects of sampling are considered in 
§1.2.5.5. The Nyquist rate specifies the minimum rate that the signal can be sampled 
at to preserve all the information in the signal. However, practical anti-aliasing filters 
(§1.2.5.5) do not perfectly attenuate frequency components that are only slightly above 
the filter's cutoff frequency, and so it is sometimes advantageous to sample at greater 
than the Nyquist rate. 

Sampled signals are stored in the computer as arrays of (binary) numbers. The 
accuracy of the digital representation depends on the number of binary digits (bits) that 
are employed for each number. For most signals, 16 bits are more than adequate, and 
most commercially available analogue-to-digital converters produce at least 12 bits. ill 
practical situations, when the amount of storage is required to be minimised, 8 bits are 
often employed (§3.5.1). The amount of computer storage that is required for sampled 
signals depends upon the sampling rate as well as the number of bits used for each 
sample. For example, signals that are sampled at a rate of 20kHz, with 16 bits (2 
bytes) allocated for each sample, occupy 40kBytes of storage per second. At this rate, 



30 

Phenomenon 

I 
Transducer 

[ 

Filtering 

Signal conditioning 

I 
Sampling 

I 
Digi tisation 

I 

Analogue 

I 

I 

I 

I 

I 

I 
I 

I 

I 

I 

I 
I 
I 

~ 

CHAPTER 1 PRELIMINARIES 

Signal processing 

and analysis 

Output 

• reconstructed signal 
• Control signal 
• Information about 

phenomenon 

Digital 

Storage 

Figure 1.9. Diagram of the steps involved in processing a real-wodd signal on a digital computer. 

a hard disk on a personal computer of 40MBytes storage capacity (typical with present 
technology) is able to store signals having a total duration of about 15 minutes. 

The speed with which the available computational facilities can process the 
signals is an important consideration in signal processing engineering. This is especially 
pertinent in real-time applications, where the processing must be completed in the 
same or less amount of time than the duration of the signal. Special purpose "digital 
signal processing" (DSP) computers are used for some real-time applications such as 
speech encoding or recognition (cf. Allen, 1975; Burrus and Parks, 1985; Watson et al., 
1988). DSPs often have limited programming features, and so for the development of 
processing algorithms, or the analysis of complicated signal models, the use of large 
computers and high-level languages is necessary. 

Signal processing algorithms can be programmed in any language that allows 
mathematical operations to be performed on numbers. Much of the programming of 
the algorithms presented in this thesis was performed in the FORTRAN (Kaufman, 
1978) and MODULA-2 languages (Wirth, 1983). For the preliminary development of 
the algorithms, a specialised signal processing computer language was used. This lan
guage, called "SIGPRO e", was developed by Brieseman et al. (1989) for the purpose 
of facilitating their speech processing research. It allows signals to be manipulated 
and processed at a high level of abstraction. In addition, its interactive nature allows 
operations to be performed by simple commands, with their effects being immedi
ately assessable from a graphical representation of the signal on a computer terminal. 
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SIGPROC also provides a framework within which more specialised signal processing 
operations (such as those described in succeeding chapters) can be easily incorporated. 

1.4 Introduction to sounds 

In this section I give a brief introduction to acoustics, in §1.4.1. I then introduce, in 
§1.4.2, the types of biological sounds that are the subject ofthe remainder of this thesis. 
§1.4.3 describes the speech utterances that are employed in the chapters concerned 
with speech processing techniques. The procedures by which these speech sounds were 
recorded is described in §1.4.4. 

1.4.1 Acoustics 

This thesis is concerned with techniques for the measurement and analysis of certain 
types of (biological) sounds (§1.4.2). Sound is a physical phenomenon consisting of 
vibrational waves in a medium. These are generally known as acoustic waves, and the 
science of studying them is known as acoustics. For the purposes of this thesis, I only 
consider vibrations that are relevant to the particular biological context (i.e. sounds 
in air that are necessary for speech communication, vibrations in air and body tissue 
generated by coughs, and sounds in water produced by dolphins). 

A sound is generated by some energy source which disturbs a medium (e.g. the 
vibration of a guitar string when it is plucked, or the turbulence caused by a strong 
wind rushing past a building). Hence the nature of the sound in the medium is related 
to the nature of the disturbance. The disturbance produces waves of compression and 
rarefaction which travel through the medium. The speed at which the waves travel is 
determined by the acoustic properties of the medium (and is about 330m/s in air and 
1500m/s in water, Kinsler et al., 1982, §5.6,15.2). Hence, when a sound wave meets a 
boundary between media of different acoustic properties, part of it is reflected and part 
refracted (Kinsler et al., 1982, Chapter 6). This means that the nature of the sound is 
modified by its passage through the media. 

More details about sounds, their mathematical representation, and the proper
ties of acoustic vibrations in general, can be found in any textbook on acoustics, such 
as those by Kinsler et al. (1982) or Morse and Ingard (1968). 

1.4.2 Biological sounds 

As mentioned in the previous section, sounds are induced in a medium when something 
causes a disturbance to the medium. In the context of the biological world, sounds are 
produced when part of an animal moves. Sounds can be classified as intentional and 
non-intentional, depending on whether or not the primary intention of the movement 
is to generate a sound. For example, when an animal walks around, eats, breathes 
or performs any bodily function, non-intentional sounds are produced (which mayor 
may not be useful as far as that animal is concerned, but may be decidedly useful to 
a second animal preying on the first). Conversely, an animal may produce intentional 
sounds (perhaps for the purpose of communicating with other animals) by causing parts 
of its body to vibrate. For example, many animals can generate sounds by laryngeal 
vibrations as they breathe. 

Intentional sounds are usually produced for communicative purposes between 
animals (Richards, 1985). For instance, animals may make sounds to keep in touch with 
their young, or to attract mates. In humans, this communication by sounds is highly 
developed and is the phenomenon we know as speech. The analysis of speech sounds, 
which is a major concern of this thesis, is the subject of Chapters 2 through 5. Certain 
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animals, typified by some species of bats and aquatic mammals, employ sounds to 
orient themselves in their environments. These mammals are typically able to navigate 
and locate objects with remarkable precision merely by echo-location. An analysis of 
the echo-location capabilities of the sounds emitted by Hector's dolphin is presented 
in Chapter 7. 

Non-intentional sounds contain information about the activities that produce 
them. When an activity is obscured in some way (e.g. because it is hidden by an opaque 
(to light) barrier), the sound may be the only indicator of the presence or characteris
tics of that activity. This ability of sounds to "reveal the hidden" is utilised by certain 
animals who hunt other animals by sound rather than by sight. It is also useful in 
medical diagnosis, because many important organs of the anatomy, although hidden 
inside the body, produce sounds which can be heard outside the body. Such a sound 
often changes its character if the bodily organ producing it has some pathological con
dition. Thus, by listening to sounds produced by various parts of a body, especially the 
heart, lungs and stomach, a trained practitioner may be able to diagnose a pathological 
condition of an internal organ. The lungs and airways emit sounds which change in well 
understood ways for pathological conditions such as pneumonia and asthma. Chapter 6 
describes the sounds produced as a person coughs, and reports my investigations into 
the changes that occur in the sounds when the person is afflicted with asthma. 

1.4.3 Speech material for signal processing 

It is convenient to introduce here the speech material used to test the algorithms 
introduced in Chapters 3, 4 and 5. Several different utterances were employed (an 
utterance is a particular phrase spoken by a particular person in a specified manner). 
The utterances are listed in Table 1.2. Each utterance is identified by a code so that 
it can be referred to when required. The code identifies the person (first two letters), 
the person's sex (third letter), the phrase, and the manner in which it was spoken (last 
letter). Thus the code "AM-RAIN1" identifies an utterance of the "Rain" phrase (see 
Table 1.3) spoken by the (male) speaker A. The suffix "1" indicates that this is the 
first example of several similar utterances. 

1.4.4 Procedure for recording speech sounds 

Some of the utterances described in §1.4.3 were recorded in an anechoic chamber, 
while others were recorded in a large laboratory, in which (quiet) background noise 
was present. Table 1.2 indicates the particular recording location for each utterance. 
All utterances were recorded onto chrome-dioxide tape by an AIWA F990 cassette
tape recorder. Dolby-C was used to reduce the recording noise and an AIWA CM-
53 microphone was employed as transducer. All recordings were later digitised at a 
sampling rate of 10kHz by a 12 bit LPAll-k A/D converter. A KEMO VBF /8 low
pass filter, having a 3dB cutoff frequency of 4.5kHz and an attenuation that increased 
at 48dB / octave above this frequency, was used to avoid aliasing the signals as they 
were digitised. 

The frequency response of the microphone is flat (to within 3dB) between 50Hz 
and 13kHz. Likewise, the tape recorder has a flat transfer function between 20Hz and 
18kHz. The phase response of the tape recorder was found to be linear, to within 100

, 

between 100Hz and 5kHz. The phase response of the recording apparatus is important 
for some of the processing techniques described in later chapters. This is because the 
shape of a waveform depends critically on the phases of its spectral components. § 1.4.4.1 
describes the technique employed to determine the phase response of the recording 
apparatus. 
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Speaker ID Sex Phrase Manner or Duration Anechoic I 
example number (s) Chamber? 

A M RAIN 1,2 4.6 Y 
A ~~ 1 8.3 Y 
B 1 7.1 Y 
C F WAL 1 7.6 Y 
K • F WAL 1 6.4 Y 
T F RAIN 1 5.3 Y 
T F WAL 1 7 Y 
W M BRIT 1 14 Y 
W M WAL 1 7.8 Y 
W M RAIN 1,2,3 5 Y 
W M RAIN T - Tense 5.3 Y 
W M RAIN R - Relaxed 5.8 Y 
W M VOWEL (phoneme~specific ) 2 N 
W mNASAL (phoneme-specific) 1.7 N 
W M TESTA 2.8 N 
W M TESTB 3.5 N 

Table 1.2. List of utterances employed in the speech processing sections of this thesis. The phrases 

are identified in Table 1.3. 

I Label I Phrase Source 

RAIN When sunlight strikes raindrops in the air, they Fairbanks, 1940 
act like a prism, and form a rainbow. 

WAL 'The time has come', the walrus said, 'to talk of Carroll, 1898 
many things: Of shoes, and ships, and sealing 
wax, of cabbages, and kings.' 

VOWEL Why were you away a year, Roy. 

NASAL Nanny may know my meaning. Huggins and 

TESTA The little blankets lay around on the floor. Nickerson (1985) 

TESTB The trouble with swimming is that you can 
drown. 

BRIT Stitching London together, from one bank of the 
Thames to the other, are thirty two bridges. 
Twenty for road traffic, ten for rail, and two 
for pedestrians only. Without these bridges, 
Britains capital could not function. 

• 

Table 1.3. The phrases corresponding to the utterances listed in Table 1.2. 
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1.4.4.1 Phase response of recording apparatus 

The phase response of the recording apparatus was estimated with the use of a HEW

LETT-PACKARD 3561A Dynamic Signal Analyser. This machine invokes FFT pro
cessing to perform spectral analysis of signals. In addition, pre-defined signals can be 
generated so that the transfer function of a system can be determined (in the manner 
described in §1.3.2). 

In order to determine the frequency response ofthe tape recorder, pulses having 
a flat spectral magnitude across the analysis frequency range are generated by the signal 
analyser. These pulses are recorded on a Chromium Dioxide tape, using the Dolby 
C method of noise reduction. In addition, they are simultaneously analysed by the 
signal analyser in order to determine their spectral content. The recorded pulses are 
subsequently replayed and their spectral content is also computed. The phase response 
of the tape recording and play-back process is obtained by subtracting the spectral 
phase of the original pulses from that of the recorded pulses. The magnitude of the 
transfer function is likewise obtained by dividing the spectral magnitudes of the two 
signals. Note that a Wiener constant is not necessary because the spectral magnitude 
of each of the original pulses is almost, flat across the entire range of frequencies that 
are analysed. 

To reduce the effects of noise on the spectral estimates, fifty pulses were syn
chronouslyaveraged. Each pulse was aligned by means of a trigger, set to 0.25 times 
the maximum input amplitude. The analyser sets a window about each pulse such that 
the instant at which the signal first exceeds the trigger is centred. This means that the 
fifty pulses constructively reinforce, while noise, such as any mains "hum", is cancelled 
out. Note that the duration of the analysis window varied according to the required 
analysis bandwidth. The actual duration for each case is mentioned in the results pre
sented in the next paragraph. The average pulse is multiplied by a Hamming window 
before,its spectrum is computed. 

Fig.L10 shows the phase and magnitude components respectively of the tape 
recorder's transfer function when computed over a range of 0-5kHz. In this case the 
length ofthe analysis window was 120rns. The phase curve has a linear slope because of 
the unavoidable slight difference in the triggering instant for the original and recorded 
pulses. However, as indicated by the straight line drawn on the curve, the phase is 
linear to within 100 0ver the frequency range 0-5kHz. In order to examine the phase 
response more closely at low frequencies, the analysis was repeated with a window 
length of 600ms, resulting in a frequency resolution of 3.75Hz between 0-1kHz. The 
associated phase response is shown in Fig.Lll, which indicates that the phase is linear, 
within 5°, between 200 and 1000Hz. At 100Hz, the phase is only 20° different from 
that at 400Hz. 

The phase and magnitude components of the transfer function over the fre
quency range 0-25kHz are shown in Fig.1.12 (in this case the analysis window length 
was 24rns). The magnitude of the transfer function is flat to within 6dB (which is 
equivalent to 3dB in terms of signal power) up to a frequency of 18kHz. However, 
the phase is significantly non-linear over the entire range. Because the only acoustic 
energy utilised was that for frequencies less than 5kHz, the non-linear phase for higher 
frequencies is of no importance. 

The accuracy with which the recorder preserves the shape of the waveform for 
a typical segment of voiced speech is illustrated in Fig.L13. A speech utterance was 
recorded on the tape and simultaneously digitised directly onto the computer. The 
recorded version was subsequently replayed and also digitised. Figs.1.13a and 1.13b 
show the directly digitised and recorded versions respectively. The average power in 
the error between these two signals is of the order of 30dB less than the average power 
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Figure 1.10. Transfer function of tape recorder, computed over a frequency range of 0-5kHz by a 

HEWLETT-PACKARD 3561A Dynamic Signal Analyser. a: Phase, and h: magnitude, of transfer function. 
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Figure 1.12. Transfer function of tape recorder, computed over a frequency range of a-25kHz. a: 

Phase, and b; magnitude, of transfer function. 
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Figure 1.13. illustration of effect of tape recorder on the waveform of a typical speech signal. a; 

Directly digitised version of speech signal. b; Recorded version of the same speech signal as in a. The 

signal represents part of the word "Hello", and is digitised at a sampling rate of 10kHz. 
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Chapter 2 

Speech sounds 

This chapter introduces speech sounds, from the points of view of their use in human 
communication, the way in which they are produced, and how they are modelled to 
facilitate analysis. Mter touching on the uses that speech has as a means of human 
communication (§2.1.1), I discuss some of the motivations for undertaking research into 
speech analysis techniques. In §2.1.3 through §2.1.4 I outline the basis of the linguistic 
and phonological approach to analysing speech sounds, and discuss the implications 
for technological speech analysis that arise from such a study. Section 2.2 contains a 
review of the human speech production and perception mechanism, while §2.3 is an 
introduction to some models of speech sounds which provide the bases for the analysis 
techniques discussed in subsequent chapters. 

2.1 Introduction to speech sounds 

2.1.1 Speech and communication 

The primary purpose of speech is to serve as a means of communication between people. 
Therefore, as an introduction to speech signals, I briefly discuss the issues raised by 
the term communication and how they apply to speech. 

Communication involves the exchange of information between individuals who 
are able to process that information. These individuals, who in general might include 
species of automatic systems, must be connected by some channel through which the 
information can travel. In almost all cases, the information must be transformed from 
its internal representation, by means of which each individual or system stores it, into 
a form suitable for transmission along the channel. For meaningful communication 
to occur, the individuals involved in the communication must agree on protocols for 
representing the information in the channel and for how it is to be transformed between 
their internal representations and the channel representation. 

In the context of communication between people, the information to be ex
changed consists of thoughts, ideas, emotions, instructions, etc (Cherry, 1978). The 
communication channel is a medium through which can travel some signal correspond
ing to one of our senses (since it is our senses which enable us to receive information 
from outside our bodies). For most communication purposes, channels consist essen
tially of sounds (to accord with our sense of hearing) or images (corresponding to our 
sense of sight). Note that although, strictly speaking, the channelis actually the air or 
space (and any intervening technological apparatus) through which the signal (sound 
or image) travels, it is convenient here to consider the sounds or images to be the 
channel. The mechanisms by which sounds actually travel between people is described 
in Chapter 1. Information is represented in sound form by means of speech, music, 
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or other codes (such as Morse code), and in image form by means of pictures, body
language, symbols, or written representations of sounds (such as writing). Obviously, 
the people who are attempting to communicate must "speak the same language" before 
their efforts can be successful. 

Speech is one of the most important methods of communication between hu
mans. In addition it is employed by all known human communities as a basic form of 
communication. Its importance arises from several factors. Firstly, speech communica
tion is applicable to a wide variety of messages, ranging from subtle emotions to precise 
instructions. Secondly, the information in speech is encoded in terms of a well defined 
language. Language is a term which is often taken to be synonomous with speech, but 
in a more general sense, it can be defined as any means of expressing or understanding 
thoughts, ideas or emotions (Skinner and Shelton, 1978, p 8). Correspondingly, other 
communication forms (such as art or music) can be said to be languages, although 
usually of more amorphous kinds. Spoken language has widely accepted rules which 
specify its structure and how it is to be used and interpreted, so that the scope for 
errors (misunderstandings) occurring during the communication process can be min
imised. Of course the rules vary enough from place to place and time to time that 
misunderstandings do occur easily enough, as Molinger (1975, Chapters 11 to 13) em
phasises when discussing the dynamics of language variation. The role that language 
has in encoding the information in speech is discussed more fully in §2.1.3. 

Another aspect of language is that it has a profound effect on how we think, so 
that we organise our ideas to conform to the structure of language, and our thoughts 
often proceed in terms of an internal speech. There is still debate about the relation
ships between thought, language and speech (Cutting and Kavanagh, 1975; Molinger, 
1975, Chapter 8), but whatever their relationships, it is enough to say here that they 
are intimately entwined. This means that the information which we may wish to com
municate by some other method (such as by Morse code or smoke symbols) is very 
often already encoded in terms of speech, and hence these other methods are often just 
ways of encoding speech in another medium. 

A further indication of the imp ortance of speech as a means of communication is 
that it can be directly transcribed into its symbolic representation, writing, by means 
of which speech sounds can be permanently recorded. Any person who knows the 
transformation (i.e. who can read) can then reconstruct the original words, and hence 
the ideas that they represent. Of course, some of the information inherent in spoken 
language, such as the speaker's voice characteristics, or how the words were spoken, 
cannot be represented in the written form of the language, except by means of extra 
instructions, and even then only approximately (such as "Look at this one!", he gasped 
excitedly. ). 

2.1.2 Technological extensions to speech communications and moti-
vations for speech analysis 

As emphasised in the previous section, the role of speech as a means of communication 
is important to humans. By means of appropriate technology, its applicability can be 
extended beyond its most basic form of two individual (or groups of) people talking to 
each other. Various forms of technology can enable us to use speech to communicate 
over long distances, or to many people at once, or to help us remember things for long 
periods of time. We could even communicate with machines using speech rather than 
by turning knobs and pressing buttons. 

The first extension is that mentioned previously of writing down a symbolic 
representation of the speech sounds (using simple technology such as paper and pencil). 
This extension is extremely well developed (in the major languages), so much so that 
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in many cases the speech sounds are never actually spoken, but are transcribed directly 
from the thoughts of the writer (the thoughts generally being in terms of a language) 
into written words, and then directly into thoughts by the person who reads the words. 
Writing can be stored for a very long time or transported to someone at a distant 
location (who must of course still know how to read the same language). It can also be 
duplicated many times without loss of information (by means of a technology such as 
printing) and thus the information can be widely disseminated. 

More recent technological advances (such as radio, telephone and sound record
ing) have enabled the speech sounds themselves to be stored, duplicated and trans
mitted great distances, without being first transformed into their written form. The 
popularity of the devices performing these tasks is an9ther testimony to the impor
tance of speech as a means of communication between people. In fact, the demands on 
both speech storage systems and telephone networks is such that new technologies are 
constantly being devised in order to improve their performance. In the case of speech 
storage systems, people want to store more speech, and gain access to any part of it 
more quickly, than the "old" technology of tape-recorders is capable of. In the case 
of telephone networks, people make more and more telephone calls each succeeding 
year, and wish to do so with greater flexibility (using portable phones for instance). To 
realise the desired improvements, techniques are needed to compress speech signals for 
storage or transmission, in such a way that close replicas of the original sounds can be 
reconstructed later. This is the basic motivation for developing the speech coding algo
rithms which are discussed in Chapters 3,4 and 5 of this thesis (cf. Atal and Rabiner, 
1986jAndrews, 1984). 

The development of computers has led people to enquire whether they can be 
made to "understand" human speech, and/or "speak to us". The two main areas where 
this may be (and, in fact, already is to some degree) useful are, firstly, controlling and 
communicating with machines (including computers), and secondly, transcribing speech 
sounds into their written equivalent and vice versa (Fant, 1985; Atal alii Rabiner, 1986; 
Immendorfer, 1986; Andrews, 1984). 

Speech recognition is currently a very active field ofresearch (Atal and Rabiner, 
1986; Jakatdar and Mulla, 1986) and although the actual recognition algorithms are 
outside the scope of this thesis, most of the speech analysis techniques that I discuss 
in later chapters can be invoked during the feature extraction stages of the recogni
tion process. Likewise, in the text-to-speech or machine output process, the initial 
translation from text to a representation of the speech sounds is in the realm of expert 
systems (cf. Fant, 1985). However, the synthesis of the speech sounds is based on the 
same techniques which I discuss in succeeding chapters. 

The production and perception of speech by humans are processes which are 
still not fully understood. One of the ways in which our knowledge of these processes 
can be increased is by means of signal processing techniques (cf. Boves, 1984). The 
speech production process can be modelled (§2.3) and the speech signal analysed in 
such a way that the contributions of various parts of the speech production mechanism 
can be isolated and studied in detail (Fant, 1973). Furthermore, the effect that various 
pathological conditions have on the speech signal can be identified. This use of speech 
analysis for diagnostic purposes is another area wherein there is currently much research 
(Kasuya et al., 1986; Childers et al., 1986). 

2.1.3 Information carried by speech sounds 

The information in the speech signal consists of the linguistic message, together with 
para-linguistic information such as whether the message is a question or statement, and 
non-linguistic information, which includes the speaker's emotional state and identity 
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(Laver, 1980). In any analysis of the speech signal, the information can be considered 
as being encoded at various levels, ranging from the physical structure of the acoustic 
signal to the actual ideas and emotions imparted by the signal. 

In §2.1.3.1 through §2.1.3.3 I examine the various intermediate levels at which 
the information can be considered as being encoded. The discussion is limited to those 
aspects having an impact on speech analysis systems. The linguistic and psychological 
implications, which are outside the scope ofthis thesis, are very extensive and have been 
elucidated in depth by many people (cf. Wickelgren, 1976; Molinger, 1975; J akobson, 
1978; Lieberman and Blumstein, 1988; Skinner and Shelton, 1978). For each of the 
"levels" described, I discuss how the information is encoded, and how the level relates 
to the "higher" and "lower" levels. 

2.1.3.1 The acoustic, or phonetic level 

At the physical level, speech consists of a time-varying acoustic signal, with a spectral 
content ranging from about 50Hz to 10kHz. The information is carried by the manner 
in which the spectral content of the signal changes with time. However, the structure of 
the signal is very complicated, and it is useful to describe it in terms of various features, 
called phonetic features because they relate to the actual sound. The information can 
then be described by the way that the features change, although a problem arises in the 
choice of features, since some features of the sound carry little linguistic information, but 
may appear to alter the signal markedly. The choice of features to describe the signal 
must therefore be guided by knowledge of their linguistic significance, as is emphasised 
by Jakobson's (1978) Lecture 1 and Fant's (1973) Chapter 1 . 

The relative importance of various phonetic features for describing speech 
sounds has been established by many investigations (cf. de Saussure, 1959; Jakob
son et al., 1961; Fant, 1973; Boves, 1984). The most important features for linguistic 
purposes are the spectral content of the signal (§2.3.1.3), type of excitation (§2.3.1.1) 
and the timing between various events. Other features such as the pitch frequency 
(§2.3.1.1) and loudness are of less importance for the linguistic message (at least in 
English). 

Non-linguistic information includes the emotional states of speakers, and the 
various types of information that serve to identify individual speakers (Laver, 1980). 
For example, the pitch frequency (see §2.2.1) can indicate the sex or age of the speaker. 
The emotional state of the speaker is largely indicated by changes in the prosodic 
structure of their speech (Williams and Stavens, 1972). Other types of non-linguistic 
information include the accents of speakers, which indicate their cultural origins, and 
may also indicate the social context in which they are talking. Non-linguistic informa
tion is encoded in the long-term average of the phonetic features, and in the specific 
"peculiarities" of the ways that the phonetic features are varied (see §2.1.4.1; Boves, 
1984; Laver, 1980). 

Together with the loudness of a sound, the pitch frequency can give an indica
tion of the emotional content of the message being communicated, as well as carrying 
information about the type of message (e.g. whether it is a question or an insult). This 
is termed para-linguistic information, and also includes information about the overall 
structure of the linguistic message, such as where sentences begin and end (Lieberman 
and Blumstein, 1988, pp198-203). Para-linguistic information is essential as an aid to 
understanding the linguistic information implied by speech sounds. Its usefulness is 
clearly demonstrated in situations where we can hear the sounds of someone talking in 
the distance, and although we cannot understand the words, we can often guess what 
they might be talking about. 
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Linguistic information is encoded in the way that the phonetic features, espe
cially the spectral content and excitation type, change with time (Peterson, 1952; see 
also §2.1.4.2). However, there is not a one-to-one relationship between the features and 
the linguistic meaning. A particular set of phonetic features may have different linguis
tic meanings depending on the surrounding context (such as which words precede or 
follow it, or even the social context in which they are spoken). Furthermore, there is a 
great deal of variability in the exact way that words are pronounced, both by different 
speakers, and by the same speaker at different times (Fant, 1973, pI9). 

2.1.3.2 The phonemic and linguistic levels 

To overcome the problems (outlined in the previous section) of associating acoustic 
and linguistic features, the concept of a phoneme has been developed (see the most 
illuminating discussion by Jakobson, 1978). A phoneme is defined as a member of a 
set of sound units from which all words and sentences in a particular language can 
be constructed, by concatenating various phonemes. Each phoneme is associated with 
various acoustic features but, as implied in the previous section, these vary according 
to the specific context in which they occur. 

Phonemes may be said to be the blocks from which words and sentences are 
built. However, each language has a unique set of phonemes (Jakobson, 1978, Lec
ture 2). This is because phonemes are defined from a linguistic view-point, in that 
different phonemes are different only in that their use alters the meaning of a word 
in that language. Hence, some particular sounds may be heard as clearly different 
phonemes to a speaker of one language, yet they may merely be variations of the same 
phoneme, in some cases indistinguishable from each other, to a speaker of another 
language. The different acoustic forms of a particular phoneme, which may occur in 
different contexts, are termed allophones. 

The implication of the above definition of a phoneme is that the simplistic as
sociation of a phoneme with a particular set of acoustic features is inadequate. The 
particular acoustic features that distinguish a phoneme from other phonemes in a lan
guage may change dramatically according to factors such as the phoneme's position in 
a word or the social context in which the speaker is talking. This is further exacerbated 
in more informal contexts where people may abbreviate or even skip certain phonemes 
in a word. The important point is that every phoneme has some different acoustic 
features in each particular context (Jakobson et ai., 1961, p4). Human listeners can 
use their knowledge of contexts to help them decode speech sounds into phonemes, and 
thence into words. 

Notwithstanding the above statements about the variability between different 
occurrences of a phoneme, some phonemes, especially the vowels (§2.1.4.2), have well 
defined acoustic features which are reasonably invariant (for a particular speaker) in 
different linguistic contexts (cf. Fant, 1973; and chapters 8 and 10 of Lieberman and 
Blumstein, 1988). These features relate to the spectral shape of the sound, and es
pecially to the positions and amplitudes of the various formants, or spectral peaks 
(see §2.3.1.3). The consonant phonemes are more variable, in that while their acoustic 
manifestations vary according to which phonemes precede and follow them, a human 
listener perceives the same "sound" for each combination. A description of the various 
types of phonemes and their acoustic representation is presented later, in §2.1.4. 

Any particular phoneme has no meaning in itself, other than to be different 
from other phonemes and hence to act as a distinguishing feature between different 
words (Jakobson, 1978, Lecture 4). That the phonemes have no intrinsic meaning is 
demonstrated by considering pairs of words that differ only by one phoneme, such as 
hat, hot or cat, cot, but differ widely in their linguistic meaning. When the speech 
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signal is considered as a sequence of phonemes, the information is encoded in how 
the sequence is ordered. Particular sequences of phonemes correspond to words and 
sentences. This is termed the linguistic level, and the information can be understood 
as a series of words. Like the transformation from sound to phoneme, a particular 
sequence of phonemes may not uniquely determine a particular linguistic meaning. 
However, the linguistic content is almost always sufficient to resolve the ambiguities. 

Words themselves only contain information because they are symbols which 
signify some idea or object (Wickelgren, 1976). This is the level at which the meaning, 
implicit in the lower levels, is made explicit. However, the transformation between a 
word and the conceptual idea that the word signifies is again subject to ambiguities, 
which can usually be resolved by recourse to the surrounding context (and which in 
certain instances can give rise to humorous puns). 

2.1.3.3 Implications for speech analysis schemes 

The discussion in §2.1.3 of how information is encoded emphasises that the information 
content of a speech signal is only really unambiguously understood when it is decoded at 
the conceptual level. Only at this level is the entire context in which the communication 
is occurring (consisting of the particular language, the linguistic context and the social 
context) known. 

The problems involved with describing phonemes in terms of unique acoustic 
features impose the major constraints on any system of speech analysis where the aim 
is to extract the phonemes and/or words from the sounds. Without access to higher
level information concerning the linguistic and social contexts, such a system cannot 
successfully match the acoustic sounds to a unique set of phonemes or words. 

When compressing speech signals for storage or transmission, we are concerned 
with retaining the information in the signal which pertains to the particular application, 
but we are happy to dispose of any extraneous information. The linguistic information 
must obviously be retained, and this involves preserving those features of the speech 
sound which distinguish between phonemes. Particular attention must be paid to those 
phonemes in a language which differ only slightly in their acoustic manifestations. It is 
also relevant to note here that, since different languages tend to have different sets of 
phonemes, a speech compression system designed for one language may perform better 
or worse when it is applied to speech of another language. 

For compression systems which are designed to produce natural sounding speech, 
the acoustic features which carry the non-linguistic and para-linguistic information 
must also be preserved. This includes those features which identify the voice character
istics of the speaker, and features such as pitch and loudness which also convey some 
information about the message. The problem is to preserve the "natural soundingness" 
of the speech, while still achieving whatever level of compression is desired (Laver, 
1980)~ 

The success of any scheme designed to generate intelligible and/or natural 
sounding speech at a particular level of compression can only be evaluated subjec
tively by human listeners. Thus it is useless to assess a speech compression scheme 
by comparing the input and output signals on a simple acoustic level (§3.5.3). The 
information in the signal retained by the system can only be assessed by the response 
of human listeners to the output sounds. This is effectively a re-iteration of the asser
tion made earlier in this section, that the information in a speech signal can only be 
understood in its full context. 
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2.1.4 Descriptions of various types of speech sounds 

Having introduced the concept of a sound unit, or phoneme, in §2.1.3.2, it is now useful 
to briefly discuss the different types of phonemes, both the ways in which they are 
produced, and the various acoustic features that identify them. 

2.1.4.1 Speech quality 

One factor which is easily overlooked in a description of different speech sounds is that 
phonemes can only be described as relative to each other in a particular context. For 
example, each person has a different "voice quality", and so the actual acoustic rep
resentation of a phoneme differs according to the person who utters it (Laver, 1980). 
However, the relative differences between phonemes, whether measmed in articulatory 
or acoustic terms, are likely to be similar for different people (Fant, 1973). In addition, 
people who speak with different accents may have quite different ways of producing a 
certain sound, but human listeners are still able to identify the similarities and differ
ences between phonemes uttered by such different people. For instance, Fig.2.1 shows 
the vowels of both New Zealand and North American speakers graphed with reference 
to their first two formant frequencies. Despite the major differences in the positions of 
the formants of each vowel (cf. Hawkins, 1973; Maclagan, 1982), North Americans and 
New Zealanders are still able to understand each other most of the time. This ability 
is due to the contextual redundancy inherent in speech (§2.1.3), whereby a person can 
determine the identity of phonemes and words even though they are "mis-pronounced". 

The types offeatures which give voices distinctive qualities arise from peculiari
ties in types oflaryngeal vibration (cr. Laver, 1980, Chapter 3; Boves, 1984, Chapter 5) 
or because of variations in the ways in which people configme their vocal tracts to 
produce particular sounds (Laver, 1980, Chapter 2). The long term characteristics of 
a person's voice are called "articulatory settings" (Laver, 1980, p12) which is a term 
used to describe the "average" sound, or 'the common, rather than the distinguishing 
components' of sequences of phonemes (Laver, 1980, p13; Lieberman and Blumstein, 
1988, pp152-154). Styles of pronunciation are also characterised by peculiarities in the 
prosodic structme of people's speech (e.g. pitch or tempo variations). 

Peculiarities in laryngeal vibration are also affected by any pathological dys
function of the larynx, and hence this aspect of speech quality, when it can be usefully 
described and quantified, can also be useful for diagnostic purposes (see §3.6.4.1). 

2.1.4.2 Phonetic and Phonemic classification 

Different phonemes can be classified according to the ways in which they are articulated, 
their acoustic manifestations, or how they are perceived by human listeners (Edwards 
and Shriberg, 1983, p12). The classifications are necessarily based on the differences 
between phonemes, since as noted in §2.1.4.1 phonemes uttered by different people are 
different in an "absolute" sense, but "relative" to each other are similar for each person 
(Lieberman and Blumstein, 1988, p179). As stressed in §2.1.3.2, the features must be 
considered in the context of an overall linguistic framework. I describe the various 
phonemes in terms of how they are pronounced by New Zealanders, which is different 
than that of other English-speaking countries (Hawkins, 1973,1976) 

A set of phonemes for a particular language contains the basic "building blocks" 
of the language. However, in order to study the varieties of pronunciation between dif
ferent groups of people, a more detailed description of the phonetic differences between 
sounds is required. The phonetic alphabet is a collection of symbols, each of which 
identifies a particular speech sound. Hence a phonetic transcription of a speech ut
terance provides a detailed description of how it was pronounced (Cherry, 1978, p80). 
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In any particular language, several phonetically different sounds may correspond to a 
single phoneme (§2.1.3.2). Each phoneme in a particular language is denoted by an 
appropriate phonetic symbol. In order to distinguish phonemic signs from phonetic 
signs, phonemic signs are enclosed by slanting lines (e.g. In!), while phonetic signs are 
enclosed by square brackets (e.g. [n]) (Ladefogad, 1982, Chapter 2). A phonemic tran
scription of an utterance is necessarily less detailed than a phonetic transcription, as it 
retains only the bare linguistic structure of the utterance (Ladefogad, 1982, pp23-24), 
without the details of an individual's pronunciation of it. 

A description of sounds in terms of their articulation is useful for speech
language therapists who wish to help people overcome language disabilities. However, 
linguists who attempt to describe the phonetics of a language are often more interested 
in how sounds are distinguished, and so adopt an auditory approach. The acoustic 
classification of speech sounds involves analysing sounds by means of technological ap
paratus, so as to be able to extract features characteristic of the sounds. An acoustic 
description is only really meaningful as an aid to one of the other two classification 
schemes, because of the difficulty in finding separate acoustic segments that directly 
relate to phonemic elements (see the discussion in §2.1.3.1, and also page 162 of Lieber
man and Blumstein, 1988). I follow the articulatory classification here, since this is 
the more traditional approach (Lieberman and Blumstein, 1988, p163). In addition, I 
give a brief description of the acoustic features that typify each type of sound. Further 
details of the acoustic characteristics of each type of articulatory feature are presented 
by Fant (1968, pp236-252). 

In the articulatory classification scheme, the major distinctions between differ
ent sounds are the amount of obstruction in the vocal tract and the type of excitation 
used to produce the sound. Generally, the primary division is between vowels and 
consonants, because vowels are produced with a relatively open vocal tract and con
sonants with more obstruction (Edwards and Shriberg, 1983, p13). Each consonant 
is further characterised by the position where the obstruction occurs, the maImer in 
which the obstruction is effected (e.g. complete or partial obstruction of the airflow) 
and whether voicing is present (Table 2.1). Vowels are traditionally classified according 
to tongue height, tongue position, and lip rounding (Ladefogad, 1982). From an acous
tic point of view, each vowel can be uniquely represented by two formant frequencies, 
although there is some debate about how the second formant is best defined to effect 
this characterisation (cf. Bladon, 1983). 

Vowels are always voiced, and are articulated with a relatively open vocal tract 
shape (Lieberman and Blumstein, 1988, pp171-182). Furthermore, vowels such as 
Iii, 101 and lal (or Iii, lui and lal for Britbh and North American English -
see the discussion on different accents in §2.1.4.1) are each very different, both in the 
vocal tract shape which produces them, and in their particular formant frequencies 
(Stevens, 1989; Perkell and Cohen, 1989). If the vowels are represented by a graph 
of the first formant frequency versus the second formant frequency (Fig.2.1) then the 
above vowels are found to be at the corners of the resulting "vowel space". Even though 
different speakers utter these phonemes with different (absolute) formant frequencies, 
the (relative) differences between each phoneme are similar (Lieberman and Blumstein, 
1988, p178). It seems that, when listening to a different speaker, a person uses these 
phonemes as reference points to "tune in" to the particular way in which the speaker 
talks, because of the distinctive nature of these phonemes. All the other phonemes then 
fit into the framework in a similar place for each speaker (Lieberman and Blumstein, 
1988, pp176-182). The phonetic characteristics of different vowels are the frequencies 
of the formants, especially the first two. The frequencies involved are between about 
200Hz and 3500Hz. 
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Manner Place of articulation (obstruction) 
of V/UV Bilabial Labio- Dental Alveolar Palatal Velar Glottal 

articulation dental 

stop V b d g 
hib Qid gig 

UV p t k 
pet .tot key 

fricative V v a z 3 
yery then £00 a£ure 

UV f e s f h 
fat thin ~at sham had 

affricate V d:3 
june 

UV tf 
chin 

nasal V m n IJ 
map nip sing 

liquid V 1 r 

lull run 
glide V w j w 

why yet why 

Table 2.1. Diagram of the consonant sounds of English, classified according to their place' and manner 

of articulation (after Edwards and Shriberg, 1983). 

Dipthongs are vowels in which the articulatory configuration is not constant, 
but varies throughout the one syllable. Dipthongs are represented by the two phonetic 
symbols that are closest to the start and end positions of the dip thong. For example, 
in the word "my", the I ail dip thong exhibits a smooth transition between the I al and 
Iii sounds (Ladefogad, 1982, pp76-78). 

Consonants are more diverse than vowels, in that they may be voiced or un
voiced, and may be caused by different types of obstruction (Table 2.1). In addition, 
they are extremely variable in both their acoustic manifestations and their forms of ar
ticulation, depending upon the surrounding sounds. This has traditionally been termed 
"co-articulation", where the sounds of adjacent phonemes overlap (cf. Lieberman and 
Blumstein, 1988, p145). 

The "stop" consonants are produced by completely obstructing the vocal tract 
momentarily, with the position of the obstruction altering the characteristic of the 
sound produced upon re-opening the tract. Stops may be voiced or unvoiced, the dif
ference being whether the larynx begins vibrating as soon as the obstruction opens, or 
after. Each of these sounds exhibits a short silence period, followed by a short burst 
of sound. The identity of voiced stops is determined by the "transitions" that the for
mants describe from the onset of voicing to their steady-state values (cf. Chistovich, 
1968; Harrington, 1988). This is illustrated in Fig.2.2, which shows the formant tran
sitions that characterise the phonemes I g/, I d/, and Ib I. The second formant drops 
from its initial frequency in the phoneme Ig/, rises slightly for the phoneme Id/, and 
rises somewhat more for the phoneme Ibl (Lieberman and Blumstein, 1988, p144). 
Unvoiced stops are similarly identified, although the later onset of voicing means that 
the frequency content of the burst of unvoiced sound is also significant (Stevens, 1985; 
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Figure 2.1. Plot of the first versus the second formant frequencies for the vowels of a: New Zealand 

English (after Maelagan, 1982), and b: North American English (after Ladefogad, 1982, p179). 

Harrington, 1988). 

"Fricative" consonants are produced by severely constricting the vocal tract so 
that air turbulence is produced. The way in which the constriction is formed influences 
the sound of the turbulence. Acoustically, the fricatives produce a wide bandwidth 
"noise-like" signal which, due to the effects of co-articulation, is affected by the formants 
of adjacent vowels (e.g. note the difference in the lsI phoneme in the two syllables I suI 
and lsi/). Fricatives can also be produced with simultaneous voicing, in which case 
the "noisy" sound is superimposed on the voiced sound (e.g. Izl sounds). The nature 
of a fricative sound is determined by the distribution of energy in the higher frequency 
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Figure 2.2. Spectrograms showing the formant transitions for the phoneme\! /g/, /d/ I and /b/. The 

phonemes 'were spoken in the words a: "get" I b: "debt". and c: "betll , 

parts of the spectrum (Behrens and Blumstein, 1988). Voiced fricatives exhibit an 
additional lower frequency voiced component. The energy in fricative sounds can extend 
to frequencies well above'5kHz (Hughes and Halle, 1956). 

"Nasal" consonants are produced by blocking the airway through the mouth and 
opening the velum so that the sound travels through the nasal passages. The mouth acts 
as a closed resonator and so affects the sound quality according to where the blockage 
occurs. Note that other sounds can also be produced with an open velum. This occurs 
especially with vowels that occur immediately before or after a nasal consonant, and is 
also a characteristic of some types of accents. Nasal sounds are characterised by nulls 
in their spectra, caused by acoustic energy lost in the closed resonator formed by the 
shut mouth (cf. Stevens, 1985). 

The final class of consonants is the "glide" or semi-vowel, for which the vocal 
tract is not open enough for the sound to be termed a vowel. However, for purposes 
of acoustic analysis, semi-vowels can be treated in the same way as vowels, with the 
formant frequencies determining their identity. 

2.1.4.3 Implications for speech analysis schemes 

All the acoustic features of speech sounds are contained in the band of frequencies 
below 10kHz. Furthermore, most features, apart from some of the identifying features 
of stops and fricatives, are distinguished by frequency components below 4kHz. Thus, 
provided that the signal frequency components below 4kHz are faithfully maintained, 
virtually all the phonetic information in the speech signal is retained. In telephone 
systems, speech signals are band-limited to between 300 and 3400Hz with only a small 
amount of noticeable degradation. 

Systems that analyse speech for compression or recognition purposes do not 
store the entire spectrum. They extract features which describe speech sounds, and so 
the ability of the features to adequately describe the information in the speech signal 
must be considered. In addition, the robustness of the feature extraction scheme is 
an important aspect, since speech signals exhibit stochastic variations, and they are 
almost always corrupted with significant amounts of noise (from other sound sources 
in the environment). 

Analysis procedures for compressing and reconstructing speech must preserve 
those features that serve to distinguish between different phonemes (§2.1.3.3). These 
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include the frequencies and amplitudes of the first two formants (the other formants 
have much less perceptual importance), the type of sound excitation, and information 
related to the occurrence and timing of stops. H the aim is to produce natural sounding 
speech, retaining some of the characteristics of the speaker's voice, then features such 
as the peculiarities in the glottal excitation (cf. Holmes, 1973) and the higher order 
formants must also be preserved 

For speech recognition purposes, analysis of the speech signal must be capable 
of separating out those components of the signal which relate to the characteristics 
of the speaker's voice from those that describe the linguistic information. This task is 
made easier for a recognition system if it is restricted to recognising words from a single 
speaker only. For recognising words or phonemes from different speakers, the system 
must be able to account for the differences in pronunciation between different speakers. 
For example, it might derive the "vowel space" of each particular speaker (Fig.2.1), and 
recognise the vowels on the basis of their relative position in that space. For recognising 
phonemes (especially consonants), the system must have stored within it all relevant 
information concerning how any phoneme's features change when associated with other 
phonemes. 

2.2 Speech and Hearing 

Speech consists of a coded sequence of sound patterns. It is produced (in humans) by 
the common activity of talking, and received by means of hearing. 

Talking comprises the neurological processes of transforming thoughts into ner
vous impulses (to control the vocal apparatus) together with the physiological and 
mechanical processes of sound production itself. The first step in the act of talking 
consists of formulating a linguistic (consisting of words and sentences) message which 
expresses the thoughts and ideas that the speaker (the person who is talking) wishes to 
communicate. This is a cognitive process, and for further details, readers are referred 
to any textbook on psycholinguistics (cf. Carterette and Friedman, 1976). In §2.2.1 I 
discuss the physiology and mechanics of how sounds, and especially speech sounds, are 
produced. 

Hearing is integral to the speech communication process, both because talking 
would be pointless without it and because of the feedback role it plays in the speech 
production process (cf. van Riper and Irwin, 1958, Chapter 6). Hearing consists of the 
mechanical processes of transforming the sound patterns into nerve impulses, followed 
by the cognitive process of decoding the linguistic message. In §2.2.2 I briefly outline 
the physiology and function of the ear, and discuss some of the characteristics of sound 
aild speech perception by humans. 

2.2.1 Speech production physiology 

Humans produce speech by means of the so-called vocal apparatus, shown in crOss
section in Fig.2.3. This consists of parts of the anatomy that have a primarily life
supporting role, but that have been adapted to facilitate speech production (Lieberman, 
1975). It is convenient to partition the vocal apparatus into three anatomically-based 
parts: sub-laryngeal, laryngeal and supra-laryngeal (Fig.2.3). 

The vocal apparatus is controlled by the brain via the nervous system. Various 
parts of the brain have been identified as contributing to speech production processes. 
However, in what follows I simply assume that the nervous system exists and is able 
to control the vocal apparatus in the ways described. A thorough introduction to 
the neurophysiology of speech production is given by Hardcastle (1976, Chapter 1). 
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Figure 2.3. Cross-sectional view of the vocal apparatus (alter Flanagan, 1972). 
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An important characteristic of this control system is that it is a, closed loop system, 
with feedback coming both via the sensory nerves in the muscl~s themselves and from 
actually hearing the sound as it is uttered (SkiIUler and Shelton, 1978j Hardcastle, 1976, 
pp13-32). Impairment of any part of the feedback-control loop can have a detrimental 
effect on a person's ability to speak (van Riper and Irwin, 1958, Chapter 6). 

2.2.1.1 The sub-laryngeal vocal apparatus 

The sub-laryngeal (below the larynx) part of the vocal apparatus consists of the lungs, 
trachea and associated airways, and the various muscles which are used for breathing. 
The primary purposes of these organs are to transfer oxygen to the blood and carbon 
dioxide from the blood to the atmosphere. However, in doing so, they produce a 
flow of air through the larynx. This provides a source of energy from which sound 
can be generated. The natural function of breathing can be modified by humans so 
that the expiratory flow of air is held at a relatively constant rate for comparatively 
long intervals (e.g. tens of seconds) while the inspiratory phase of the breath cycle is 
shortened to less than a second (Lieberman and Blumstein, 1988j Hardcastle, 1976). 
In some people, such as singers or public speakers, this breath control is developed to 
a very high degree. 

2.2.1.2 The larynx 

The air from the lungs passes through the trachea to the larynx and thence out of 
the mouth and nose (Fig.2.3). The larynx consists of several cartilages surrounding 
the airway, together with the "vocal cords" which can be adjusted so as to obstruct 
the airway appropriately (see Fig.2.4) and hence generate sounds. The cartilages serve 
mainly to anchor and protect the various muscles which control the constriction. The 
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Vocal ligaments 

Thyroid cartilage 

Glottis 

Figure 2.4. Diagramatic view of the larynx: (after GobI, 1989). 

opening between the vocal cords through which the air flows is termed the glottis. 
More extensive details of the anatomy of the larynx are presented in Chapter 4 of 
Hardcastle (1976). 

During normal breathing, the vocal cords are relaxed, and the glottis is fully 
open, so that the air flow encounters little obstruction. However, when the appropriate 
muscles contract, the glottis closes, and the air flow is obstructed. This causes a 
differential air pressure to build up across the glottis. When sufficient tension is put on 
the vocal cords, the glottis becomes closed to such a degree that the air flow may stop. 
This causes the pressure differential to increase and force the glottis open again. The 
sudden puff of air that is emitted both reduces the pressure differential and produces a 
force (by means of the Bernoulli effect) which pulls the vocal cords back together again 
(van den Berg, 1968). Thus, as long as both the air flow and the tension on the vocal 
cords are maintained, a periodic series of pressure pulses is emitted from the larynx. 
These puffs of air are termed glottal pulses and the sounds produced with this type of 
excitation are termed voiced (§2.1.4). This brief description of how sound is produced 
by the vocal cords is expanded in §2.3.1.1 where I discuss the models which are invoked 
to describe their operation. Further details of the various physiological factors involved 
in the operation of the larynx are given by Lieberman and Blumstein (1988, Chapter 6) 
and Hardcastle (1976, Chapter 4). 

2.2.1.3 The supra-laryngeal vocal apparatus 

The primary functions of the supra-laryngeal vocal apparatus are to aid in providing 
air and food to the body. However, in most mammals, and especially humans, they 
are adapted to help produce different types of sound (Lieberman, 1975). The vocal 
purpose of the supra-laryngeal vocal tract (in the remainder of this thesis I refer to 
it simply as the 'Vocal tract) is to modify the character of the sound coming from the 
larynx, and radiate it into the air. 

The major components of the vocal tract are shown in the cross-sectional view 
displayed in Fig.2.3. The important characteristic of the vocal tract for speech pro
duction is that it can attain a wide variety of shapes, by movement of the articulators. 
These are the tongue, lips, velum and jaw. Different configurations of vocal tract shape 
modify the sound character in different ways (see §2.3.1.3), and thus sequences of dif-
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ferent sounds can be produced by moving the articulators in various ways. The vocal 
tract can also be configured so that it constricts the flow of air to such an extent that 
the resulting turbulence produces a sound. Sounds produced by such turbulent exci
tation are termed unvoiced (§2.1.4. Speech sounds may also be produced by a mixed 
excitation containing both voiced and unvoiced components (e.g. for the sound /z/). 

The exact vocal tract configuration by which different sounds are produced 
is beyond the scope of this thesis. Many references are available, both in the field 
of speech-language therapy and the field of physiological phonetics, which describe the 
vocal tract and the different ways in which people configure it to produce speech sounds 
(cf. Fant, 1960; Hardcastle, 1976, Chapter 6; Lieberman and Blumstein, 1988, pp114-
131; Skinner and Shelton, 1978, Chapter 8). It is relevant, however, to note that the 
vocal tract can assume only a finite range of shapes, which limits the types of sounds 
that can be produced (Lieberman, 1975, pp68-74). The rate at which the vocal tract 
can alter its shape is also finite, which places a limit on how rapidly a person can talk. 

2.2.2 Speech perception 

2.2.2.1 Physiology of the ear 

A cross-sectional view of the ear is shown in Fig.2.5. The ear is divided neatly into 
three parts, termed the outer, middle and inner ears. 

The outer ear channels the sounds from outside the head to the eardrum, caus
ing it to vibrate. The channel has a fairly broad resonance centred at 3kHz, which tends 
to amplify sounds in the range of 2-6kHz (Kinsler et al., 1982, p257). The eardrum is 
a sealed membrane which fOrnls the boundary with the middle ear. 

The middle ear acts as a mechanical impedance matching transformer. It also 
protects the inner ear from damage due to high intensity sounds. The mechanical 
vibrations of the eardrum impinge on a lever type arrangement of three small bones 
(the ossicular chain, consisting of the malleus, incus and stapes), which transfers the 
vibrations to another membrane, termed the oval window. This is the boundary with 
the inner ear, and has an area about 17 times less than that of the eardrum. A 
transformation between the high impedance of the outer ear and the low impedance of 
the inner ear is effected by this area ratio, in conjunction with the lever arrangement 
of the ossicular chain (Kolston, 1989). ' 

The ear has two built-in defense mechanisms against very high intensity sounds. 
Firstly, the mode of vibration of the stapes depends upon the sound intensity. For high 
intensity sounds, it vibrates in a way that is less efficient at transferring energy to the 
inner ear. Secondly, reflexive muscles in the inner ear act on the stapes and malleus 
when high intensity sounds occur, pulling the stapes from the oval window and hence 
reducing the amount of energy transferred through to the inner ear (Flanagan, 1972, 
§4.12). 

The inner ear, or cochlear, consists of a spiral, fluid filled tube, divided longi
tudinally into two cavities by the basilar membrane (Fig.2.5b). The cochlear acts as 
a transducer, converting mechanical motion at the stapes into nerve pulses which are 
sent to the brain. 

The vibration of the stapes on the oval window induces pressure waves in the 
fluid, which move along the upper cavity of the cochlear. Energy is transmitted to the 
lower cavity by movement of the basilar membrane or directly through a small hole at 
the apical (furthest away) end of the cochlear. As the pressure wave moves along the 
upper cavity of the cochlear, it displaces the basilar membrane. However, each portion 
of the membrane is most responsive to a particular range of frequencies, and so the 
position along the basilar membrane where the maximum amplitude response occurs 
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Figure 2.5. a: Cross-sectional view of the human ear, and b: diagramatic view of the components of 

the ear (after Skinner and Shelton, 1978). 

indicates the frequency of the sound wave (Greenberg, 1988). The response peak ranges 
from about 20kHz at the basal (next to the middle ear) end of the membrane, to about 
20Hz at the apical end (Kinsler et al., 1982, Chapter 11). 

Conversion of the mechanical motion of the basilar membrane into nerve pulses 
is performed by many thousands of hairs and associated nerve receptors. The hairs are 
bent by the motion of the membrane, and thereby produce electrical signals. These are 
then converted into nerve pulses which are transmitted to the brain (Flanagan, 1972, 
§4.14). 

Further details of the physiology of the ear, as it relates to hearing, are given 
by Flanagan (1972, chapt4), Kinsler et al. (1982, Chapter 11) and Kolston (1989, 
Chapter 2). 

2.2.2.2 Perception of sounds by humans 

The physiological structure of the ear, as outlined in §2.2.2.1, has important conse
quences for the way in which sounds are perceived by humans. In this section, I discuss 
some of the characteristics of sound perception that are pertinent to speech perception. 

The first characteristic of human hearing of interest here is that the sensitivity of 
the ear to sounds varies according to the frequency of the sound. Maximum sensitivity 
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occurs for sounds in the range 1 to 3kHz (Skinner and Shelton, 1978, p128). The 
perception of the relative loudness between two sounds is not linearly related to the 
measurable intensity of the sounds. In addition, sounds of different frequencies that 
are perceived as being of equal loudness have different intensities (Fig.2.6). 

A second characteristic of sound perception (especially of periodic signals) is 
that of pitch, which is the term given to the perception of a sound's fundamental 
frequency. However, the perceived pitch is not a linear function of frequency (in Hertz). 
A frequency scale which is related to the perception of pitch by humans is the mel scale, 
shown in Fig.2.7 (Kinsler et ai., 1982, p273). A further interesting characteristic of pitch 
perception is that the fundamental need not be present (cf. Houtsma and Goldstein, 
1972). 

The cochlear can be imagined as acting like a bank of overlapping filters. The 
width of the frequency bands manifests itself in two ways. Firstly, two sinusoidal tones 
must be separated in frequency by some minimum amount before they are perceived 
separately (Lieberman and Blumstein, 1988, pp159-161). Secondly, a sinusoidal tone 
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is masked out by noise (of equal intensity) only if the noise has a bandwidth greater 
than some critical bandwidth. These critical bands are roughly 1/3rd of an octave in 
width. They probably relate to physical characteristics of the cochlear (Kinsler et al., 
1982, § 11. 7). They are often termed Bark bands in the literature (cr. Traunmiiller and 
Branderud, 1989). 

The masking of sounds by other sounds mentioned in the previous paragraph 
also extends to sounds outside the critical band if the interfering sound is of sufficient 
intensity. An interfering sound usually masks out sounds of higher frequency that are 
more than about 20dB lower in intensity (cr. Skinner and Shelton, 1978, p136j Atal 
and Schroeder, 1979). 

Masking only occurs when sounds are presented simultaneously. If different 
tones are presented sequentially, listeners are able to detect frequency differences of the 
order of 1/30th of the frequency of the tone, and amplitude differences of the order of 
3dB (Flanagan, 1972, pp279-286j Kinsler et al., 1982, pp264-166). 

Because the cochlear detects sounds according to their short- term spectral mag
nitude, it is insensitive to phase distortions of the sound waveform (Schroeder, 1975). 
Of course, it is sensitive to phase distortion that is sufficiently severe that the waveform 
is distorted over an interval longer than the effective time-constant of each band-pass 
filter (cf. Schroeder, 1983). 

Another characteristic of hearing is a consequence of the non-linearities intro
duced by both the cochlear and neural processing of sounds. This is the generation 
of sum and difference frequencies when two or more sounds of different frequencies 
are present. Everyone is familiar with the "beating" produced when two tones close 
« 10Hz difference) in frequency are simultaneously played. This effect is due to non
linearities in the cochlear, and vanishes when the two tones are separately, but simulta
neously, applied to opposite ears. However, for tones that are separated by more than 
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a critical band, sum and difference frequencies are produced by non-linearities in the 
neural processing of the sounds (they are present even when the tones are presented 
separately, but simultaneously, one to each ear). These sum and difference frequen
cies allow a fuller appreciation of the subtleties of a musical harmonic scale. They 
also enable us to regenerate within our brains any "missing" fundamental frequency 
of harmonically related sounds. This last characteristic is helpful for the success of 
limited bandwidth speech reproduction schemes, which often discard the fundamental 
frequency, but without apparent degradation of the perceived sound. 

2.2.2.3 Psychoacoustic characteristics of human speech perception 

In addition to the characteristics of human sound perception discussed in §2.2.2.2, the 
perception of speech has characteristics which indicate that specialised neural processes 
are employed (Stevens and House, 1972). When speech sounds are being listened to, 
electrical activity in the brain is localised to a greater extent than it is for musical 
sounds (McAdam and Whitaker, 1971). Various psychoacoustic experiments have indi
cated that people employ different types of neural processing for speech than for other 
sounds. For instance, in experiments with synthesised speech-like sounds, listeners who 
were told to expect speech sounds could clearly understand words in the sounds, while 
listeners who were not expecting speech sounds reported them as "buzzes", "whistles" 
or other non-speech sounds (Remez et ai., 1981). Other studies (cf. Cutting, 1974) 
have suggested that the brain contains "property detectors" which respond to certain 
types of signals (e.g. frequency transitions). 

Another characteristic of speech perception is that speech sounds often ap
pear to be perceived in a categorical, rather than discriminatory, fashion (Cutting and 
Rosner, 1974; Darwin, 1976, pp206-217; Lieberman and Blumstein, 1988, pp152-159; 
Stevens, 1989). By varying a single acoustic feature in a synthetic speech generator 
(for example, the voicing delay time for stop consonants), a range of sounds can be 
produced which encompass several "real" speech sounds as well as the "speech-like" 
sounds which lie between them on the "feature continuum". When people are asked to 
identify sounds from such a continuum, their classification exhibits sharp transitions 
between categories. In addition, people cannot discriminate between two sounds if they 
are both members of the same category, although they can easily discriminate between 
sounds that are members of different categories, even when the acoustic difference may 
actually be less than in the first case. It appears that the brain assigns a sound to 
a particular category (usually equated to a phoneme) and then "forgets" the actual 
sound (Cutting and Rosner, 1974). This allows a great saving in the memory required 
for words and sentences, because only the category needs to be stored, not the actual 
acoustic pattern. The "category perception" mechanism is especially marked for con
sonant sounds (Lieberman and Blumstein, 1988, pp156-159). By contrast, perception 
of other sounds is usually more "continuous", in that smooth variation in a acoustic 
feature results in a smooth variation in the response. 

2.3 Speech modelling 

The information in speech can be described in terms of various phonetic features 
(§2.1.3.1). In order to extract these features from speech sounds using signal processing 
techniques, it is useful to have a model of how a typical speech sound is produced. Fur
thermore, in order for the features to be extracted accurately, so that they adequately 
embody the desired information, the model must be physically and anatomically re
alistic. Models on which the analysis of speech signals are based generally mimic, in 
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approximate ways, either the human speech mechanism or our understanding of how 
speech is perceived by humans. Models of the human speech production mechanism 
(§2.3.1) generate features that are related to the anatomy and aerodynamics of the vocal 
organs (e.g. the vocal tract shape and glottal source signal §2.2.1). Perceptual models 
(§2.3.2), however, are employed to analyse speech in terms of the auditory and neural 
characteristics of hearing that are considered to be important for speech perception 
(§2.2.2). 

As well as serving as bases for the extraction of features from speech sounds, 
the models mentioned above can themselves be studied and refined to gain a greater 
understanding of the actual processes of speech production (cf. Ishizaka and Flanagan, 
1972; Fant, 1986) and perception (cf. Kolston, 1989). Such studies are often accom
panied by extensive physiological experimentation and measurements to confirm the 
validity of whatever model is being investigated (cf. Boves, 1984, Chapter 4; Sondhi, 
1979). 

2.3.1 Speech production models 

To be useful, any model of speech production must be based on the physical processes 
by which the vocal apparatus generates speech (§2.2.1). The glottal voice source is usu
ally modelled as a self-oscillating mechanical/aerodynamic oscillator (Flanagan, 1972, 
pp246-251), while unvoiced sounds are modelled as being caused by air turbulence at 
a constriction in the vocal tract (Flanagan, 1972, pp251-259). The vocal tract is mod
elled as a tube of variable cross-section (Stevens and House, 1955), often represented 
by its electrical analogue, a transmission line (Fant, 1960; Flanagan, 1972). Radiation 
of sound from the mouth is often modelled by considering the radiation from a small 
piston on the surface of a sphere (Fant, 1960). 

In §2.3.1.1 and §2.3.1.2 I discuss some of the models which explain how sound 
energy is generated in the vocal apparatus. §2.3.1.3 describes the ways in which the 
vocal tract is modelled. Finally, §2.3.1.4 introduces the simplified "source-filter" model 
of speech production, which is the most popular model invoked by analysers of speech 
sounds. 

2.3.1.1 The glottal excitation 

The glottal excitation is a quasi-periodic series of air pulses emitted by the vibrating 
vocal cords (§2.2.1.2). Models of how this excitation is produced usually consist of a 
mechanical model of the vocal cords which interacts with an aerodynamic model of 
the air flow through the larynx. Fig.2.8 illustrates the "two-mass" model of the vocal 
cords developed by Ishizaka and Flanagan (1972) (See also Flanagan et al., 1975). 
The vocal cords are modelled by two mass-and-spring oscillators. The spring stiffness 
and damping factors represent the properties of the vocal cord tissue and the tension 
which is put on them during voiced speech. These parameters can be determined by 
physiological measurements (van den Berg et al., 1957). Two masses are employed to_~ 
simulate the measured characteristics of vocal cord vibration more closely than is pos
sible with only a single mass (Ishizaka and Flanagan, 1972; Gupta et al., 1973). Detail!r 
of the acoustic signals produced by several modifications of the basic two-mass model 
are described by Koizumi et al. (1987). 

An alternative mechanical~odel of the vocal cords is a single mass model which 
opens like a "zipper" to avoid the sudden contact-no-contact discontinuity which occurs 
in the two-mass model (Childers et al., 1986). Some observations of vocal vibration 
made with high-speed cinegraphy show the cords perfonning in this manner. A model 
that includes a parallel "leak-opening" to the two-mass model has been proposed by 
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Figure 2.8. Simplified two-mass model of vocal cord vibration (after Ishizaka and Flanagan, 1972). 

p. is the sub-glott~l pressure, Ug the glottal flow velocity, while Ti, 8i, and mi, i = 1,2 represent the 

equivalent viscous resistances, elastances, and masses respectively of the two mass components of the 

vocal cords. 

Cranen and Boves (1986) in order to account for leakage of air past incompletely closed 
vocal cords. 

The mechanical models of the vocal cords express the variation!Il ar_e~ of the 
glottal opening, and lience the flow of air through the glottis (Ishizaka, 1981). Feedback 
from the airflow to the mass-spring model arises from the forces exerted on the cords 
by the air pressure (both static and that caused by the Bernoulli effect). The air flow 
is also determined by the pressure difference across ~he glottis, which is the difference 
between the (effectively constant) lung pressure and the instantaneous pressure at the 
start of the vocal tract. The impedance which the vocal tract manifests to the larynx 
(and hence the pressure at that point) varies with time, both because of the varying 
shape of the tract (Bickley and Stevens, 1986), and because of pressure variations 
caused by resonances in the tract (Koizumi et al., 1985). 

The equations which define the mechanical-aerodynamic models of glottal ex
citation require a great deal of iterative computation to solve. Hence these models are 
seldom used to analyse or synthesise speech (A speech synthesiser employing the two
mass model (Sondhi and Schroeter, 1987) requires more computing power than that 
available in a Cray-1 supercomputer in order to produce speech in real-time). 

By modellihg the glottal excitation as independent ofthe vocal tract, the glottal 
flow can be calculated without laborious iterations. However, ignoring the influence of 
the vocal tract on the glottal flow introduces some errors which may be significant 
for certain sounds. The influence of the vocal tract arises mainly from the pressure 
variations caused either by the first formant resonance (since that is close in frequency 
to the pitch frequency, Ananthapadmanabha and Fant, 1982) or by sudden changes 
in tract shape (such as the closure of the tract during a stop sound, Bickley and 
Stevens, 1986). These influences tend to "skew" the glottal flow so that it is not simply 
proportional to the glottal area. 

Ananthapadmanabha and Fant (1982) propose a formulation of the "true" glot-
tal flow which is a combination of a (short-circuit) source component together with a 
"ripple" component caused (largely) by the effects ofthe first formant. In a similar vein, 
Rothenberg (1981,1983) parametrises the "shape" of the glottal area and then uses a 
simple LC model of the first formant to calculate the actual glottal air flow. Titze et 
al. (1983) model the glottal vibration by a combination of two sinusoidal components, 
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Figure 2.9. Simple model of the glottal excitation. The impulses ale spaced by the pitch interval. 

The glottal shaping filter models the "shape" of each glottal pulse 

characterising the upper and lower portions of the vocal cords. The glottal area, con
tact area, and hence glottal flow waveforms are described by simple combinations of the 
two components. Comparisons between glottographic waveforms (cr. §3.4.1) obtained 
from real speakers and the waveforms predicted by the mQdel indicate a close match, 
although the model does not explicitly explain the effects of vocal tract interaction 
(Titze et at., 1983). 

The simplest model of glottal excitation is a quasi-periodic train of impulses, 
each filtered by a glottal shaping filter (Fig.2.9). In this model, the impulses are spaced 
by the pitch interval to accord with the quasi-periodicity of the glottal excitation. The 
filter impulse response models the shape of each pulse of air, which may vary with each 
pulse (Flanagan, 1972, p233). Often simple shapes such as triangular, sine-squared or 
other approximations are used as the "filter" (Rosenberg, 1971; Flanagan, 1972, pp232-
246), since these are simple to (digitally) implement. In addition, they approximate the 
average spectral characteristics of the actual glottal excitation (a -12dB/octave slope on 
the magnitudes of the spectral coefficients, cr. Sundberg and Gauffin, 1979) re,asonably 
well (Flanagan, 1972; Holmes, 1973). 

The independent glottal excitation model (see also §2.3.1.4) is often employed 
in the analysis of speech because the assumptions of linearity and independence between 
the glottal and vocal tract models simplify the analysis (cf. §3.2,§3.4). 

2.3.1.2 Unvoiced sound source 

Unvoiced sounds are caused by turbulence in the air flow through the vocal apparatus. 
The simplest model for unvoiced sounds is a white noise source, which replaces the 
glottal excitation source. However, this assumes that speech sounds are composed 
of exclusively voiced and unvoiced segments, which is obviously not true (§2.1.4.2). 
This drawback can be overcome by providing for a "mixed excitation" sound type, in 
which both sound sources are present to some degree. When analysing speech sounds, 
however, it is often difficult to determine the correct "mixture" of voiced and unvoiced 
excitation. 
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Figure 2.10. Acoustic model of the vocal tract, as a tube of varying cross-section (after Flanagan et 

al., 1975). 

Since unvoiced sounds are produced at constrictions in the vocal tract, one 
can examine the cross-sectional area of the tract (§2.3.1.3) and add some noise to the 
excitation if the area is small enough that turbulence is to be expected (Flanagan, 
1972, p251). In addition, the noise can be added to the vocal tract at the point of 
constriction, which is more realistic than simply assuming that it originates from the 
glottis (Sondhi and Schroeter, 1987; Flanagan et al., 1980). 

2.3.1.3 Vocal tract models 

The vocal tract consists of the mouth and nasal passages (§2.2.1.3). By virtue of the 
wide range of shapes which it can assume, it is able to affect the character of the sounds 
propagating through it in a great variety of ways. The effect of the vocal tract can be 
evaluated by considering the transmission of acoustic sounds through a tube of varying 
cross-section (Fig.2.10j Flanagan, 1972, Chapter 3; Flanagan et al., 1975). Radiation 
from the ends of the tubes (at the mouth and nose) is modelled by considering the 
characteristics of a vibrating piston in a spherical baffle (Fant, 1960, pp34-36). At the 
glottis, the tube is terminated by a varying size opening. The velum acts like a valve, 
connecting or disconnecting the nasal passages from the rest of the tract. 

The dimensions of the vocal tract are smaller than the dimensions of a wave
length for sounds of frequencies less than about 4kHz. Thus the wave propagation 
through the tract can be considered to be effectively planar (Sondhi, 1974). In addition, 
the walls of the vocal tract can be assumed to be effectively rigid for sound frequen
cies greater than 500Hz (Sondhi, 1974). By taking into account these approximations, 
the vocal tract can be modelled in one dimension as a transmission line, with a side 
branch for the nasal passages (Fig.2.11). The transmission line can usually be modelled 
usefully by a lumped-parameter approximation of about four stages (Flanagan, 1972, 
pp80-83), although more stages are obviously more accurate. The termination of the 
transmission line at the mouth and nose is modelled by an impedance calculated from 
the characteristics of a radiating piston (Fant, 1960, pp35-36,pp61-63). The glottis 
can be considered as a time- varying impedance. 

The acoustic tube model of Fig.2.10 can also be approximated by a series of 
uniform tubes of different diameters (Fig.2.12). Often the nasal tract is also neglected, 
since this simplifies the mathematical analysis. Nasal sounds can usually be approx-
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Figure 2.12. Model of the vocal tract as a series of uniform tubes. The nasal tract is ignored in this 

representation. 

imated by additional sections in the uniform tube model. If losses are ignored, the 
response of the uniform tube model can be calculated by considering the reflections 
caused at each discontinuity. Such an analysis leads to a set of reflection coefficients 
which characterise the vocal tract (see §3.2 for details of an analysis technique which 
makes use of this representation). In addition, this model is equivalent to the lumped
component transmission line discussed above. 

For most speech sounds, the vocal tract is configured as one or two cavities. 
Hence the shape of the vocal tract (tube) can be parametrised by considering the 
position and amount of the constriction and the sizes of the cavities (Flanagan et al., 
1980). Flanagan et al. (1980) employ this method of encoding the area function of 
the vocal tract in their articulatory speech synthesiser. By treating each section (e.g. 
glottis-to-velum, velum-to-constriction etc.) separately, Sondhi and Schroeter (1987) 
construct input-output matrices for each, and then simply multiply them together in 
the frequency domain to obtain the response for the entire vocal tract (including the 
nasal passages). Mermelstein (1973) presents a comprehensive model of the physical 
structures of the vocal tract which allows an investigation into the relationships between 
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tract illter is a time-varying filter which also includes the effect of the lip radiation. 

particular speech sounds and their corresponding articulatory parameters. 

2.3.1.4 The source-filter model of speech production 

The model of speech production most commonly employed in speech analysis schemes 
is the source-filter model (Fant, 1960), shown in Fig.2.13. In this model the source and 
vocal tract are modelled independently, which greatly simplifies (by comparison with 
interactive models) the extraction of features from speech signals. 

In the source-filter model, the vocal tract is represented by a time-varying filter, 
which also includes the effect of radiation from the lips. The source is modelled by a 
train of pulses for voiced sounds (§2.2.1.2) and by white noise for unvoiced sounds 
(§2.2.1.3). 

In this thesis, I use the symbols e(t), vet) and set) to refer to the source (or 
excitation) signal, vocal tract impulse response and resulting speech signal respectively. 
When discussing voiced speech signals, I use the symbol get) to denote the glottal 
excitation. The sampled version of each of these quantities is denoted by ern], v[n], 
s[n] and g[n] respectively. 

For short segments of speech (a few pitch periods), the sound emitted by the 
lips in the source-filter model is described by the following convolutional equation: 

set) = e(t) 0 vet) + c(t) (2.1) 

where I introduce the symbol c( t) to represent any part of the speech signal that cannot 
be represented by the convolution. In keeping with a variety of developments in this 
laboratory (cf. Bates, 1982; Bates and McDonnell, 1986; Brieseman et ai., 1987), c(t) 
is called the contamination, and includes the effects of non-linearities, source-filter 

. interaction and additive noise. Note that the convolution (2.1) is only true for short 
segments of speech because the vocal tract impulse response changes as different sounds 
are uttered. A formulation of (2.1) which explicitly takes this variation into account is 
(Brieseman et al., 1987) 

M 

set) = L vm(t) 0 gm(t - Tm) + cm(t) (2.2) 
m=:l 
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Figure 2.14. Block diagram of the stages in the perception of speech sounds (after Fant, 1973, 

Chapter 10.) 

where the speech signal is assumed to be divided into M individual segments, each 
of which is characterised by a different tract response vm(t), glottal pulse gm(t) and 
contamination crn(t). The mth glottal pulse grn(t) occurs at the instant Tm' Any part 
of the speech signal in the mth interval which is due to overlap from the signals in the 
(m - l)th interval is accounted for by the contamination term crn(t). 

By employing this linear model of speech production, signal processing tech~ 
niques suchas deconvolution and Fourier analysis can be straightforwardly appIf~dlto 
extract features from the speech'signal. 

2.8.2 Models of speech perception 

Perceptual models are based on the way in which sounds are perceived by humans (cf. 
Fant, 1973, Chapter 10). They involve characterising the speech signal in terms of its 
perceptually important features (§2.2.2). By doing this, they attempt to overcome some 
of the difficulties, outlined in §2.1.3 and §2.1.4, of the wide variability in the acoustic 
representation of phonemes (cf. Syrdal and Gopal, 1986). The model of speech percep
tion that is commonly invoked consists of several stages, each one of which transforms 
the speech signal into a representation with less redundancy. Figure 2.14 depicts the 
stages in one model of speech perception (Fant, 1973, Chapter 10). 

The first stage of speech perception is the transformation of sounds into nerve 
pulses, which occurs in the cochlear (§2.2.2.1). The response of the cochlear can be 
modelled by a bank of filters (Allen, 1985; Kolston, 1989). Usually this filter-bank is 
implemented by performing some standard spectral analysis of the sound (§1.3.1) and 
then modifying the spectral coefficients to conform with the experimentally obtained 
characteristics ofthe cochlear (cf. Allen, 1985; Syrdal and Gopal, 1986). The perceptual 
characteristics which are employed to modify the acoustic features are those of relative 
loudness perception, critical bandwidths and relative pitch (see §2.2.2.2). 

The neural processes by which sounds (whether speech or not) are perceived by 
humans are still not fully understood, but their characteristics can be partially inferred 
from psychoacoustic experiments (§2.2.2.2 and §2.2.2.S). The observed characteristics 
can then be accounted for by suitable transformations of the acoustic features of the 
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sounds. Comprehensive models of perceptual processes are yet to be developed, but 
approaches based on neural networks (Lippmann, 1987) may eventually prove useful. 
Neural networks have also been employed to model the process of sound-to-neural 
transduction that occurs in the cochlear (Lyon and Mead, 1988). 

Another approach to modelling the phonetic/linguistic levels of the perceptual 
model shown in Fig.2.14 is to describe the linguistic units of a language in terms. 
of distinctive acoustic features (Jakobson et ai., 1961). This approach is appealing 
because of evidence (§2.2.2.3) that people perceive speech in terms of distinct phonemes 
(Stevens, 1989). Unfortunately, the acoustic manifestations of the acoustic features of 
particular phonemes vary widely (§2.1.3.1), and work is still proceeding on ways to 
account for this variation (cf. Traunmiiller and Branderud, 1989). 

A model of human speech perception that is currently the subject of much 
debate (cf. Fowler, 1986; Remez, 1986 and other articles in the same journal issue) 
is the "motor theory", which postulates that humans perceive speech by determining 
the articulatory configuration required to make each type of sound heard. They then 
match that particular articulatory configuration to its associated linguistic "lab el" (d. 
Tobias, 1972, pp47-56; Fowler, 1986; Lieberman and Blumstein, 1988, pp147-149). 
This "analysis-by-synthesis" model is supported by observations that some parts of the 
brain are common to both speech production and perception. However, the difficul
ties inherent in determining the vocal tract configuration from the speech sound only 
(Sondhi, 1979,1984; Bonder, 1983), cast doubts on how far the motor theory can be 
applied in explaining speech perception. 

In conclusion, the most useful application of perceptual models seems to be as 
a method of modifying the features obtained by techniques, such as short-term spectral 
analysis, so that they relate more closely to the manner in which humans perceive 
those features. Evidence from several studies indicates that this approach improves the 
performance of word and phoneme recognition schemes (d. Syrdal and Gopal, 1986; 
Cohen, 1989), especially speaker independent speech recognition (Bladon, 1985; Johns
Lewis, 1986). 
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This chapter describes some of the established techniques that are employed for analys
ing speech signals. Because the techniques that I introduce in subsequent chapters relate 
to glottal pulse estimation (Chapter 4) and low data rate speech encoding (Chapter 5), 
the thrust of this chapter is towards these areas. 

In §3.1 through §3.3 I introduce the techniques by which the features of speech 
sounds are extracted. §3.1 describes techniques that extract features related to the 
prosodic structure of speech, §3.2 describes the linear prediction. method of speech 
analysis, and §3.3 explains how speech can be analysed in terr'ns of its spectral content. 
In §3.4 I describe the application of the above-mentiohed techniques to estimating the 
glottal excitation waveform, while §3.5 is concerned with techniques for encoding speech 
at low data rates. §3.6 briefly introduces the application of speech analysis techniques 
to the problems of speech and speaker recognition, text-to-speech conversion, and the 
diagnosis of, and therapy for, speech disorders. 

The speech processing literature is very extensive, and more details of the 
material introduced in this chapter can be found in the references cited. Some use
ful textbooks are those by Rabiner and Schafer (1978), especially with regard to the 
time domain, frequency domain and low data rate analysis techniques, Markel and 
Gray (1976), who comprehensively cover the various LPC techniques, Fallside and 
Woods (1985), who provide a wide background, especially on speech recognition top
ics, and Flanagan (1972), who covers many of the techniques of speech analysis and 
synthesis, together with their application to low data rate speech encoding. 

3.1 Prosodic feature analysis 

Prosodic features of speech are time domain characteristics, such as the variation of 
pitch during an utterance and the syllabic structure. The latter includes the classifi
cation of speech segments as voiced or unvoiced (§2.2.1), segmentation of speech into 
words, the changes in loudness that occur for each syllable, and determination of the 
speech "rate". 

3.1.1 Loudness of speech 

The loudness of speech is a para-linguistic feature which characterises the syllabic struc
ture of an utterance. It also carries non-linguistic information such as the emotional 
state of the speaker (§2.1.3.1). For applications such as automatic speech recognition, 
the analysis of loudness must take into account how loudness is perceived by humans. 
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For other applications, however, such as speech compression, this is unnecessary, pro
vided that the original loudness levels are preserved in the resynthesised speech. 

The usual measure of speech loudness is the short-term energy envelope of the 
speech signal, defined as 

1 m+L/2-1 

E[m] = L L s2[i], 
i=m-L/2 

(3.1) 

where L is the length of the window that delineates the segment of speech that E[m] 
refers to. The length of the window determines the resolution with which changes in 
loudness are reflected in E[m]. (3.1) can also be viewed as the convolution between the 
squared speech signal and w[n], the window function: 

E[m] = ~ f s2[i]w[m - i]. 
-00 

The window implied in (3.1) is then given by 

w[m] = { ~ -L/2 ::; m ::; L/2 1 
otherwise 

(3.2) 

The right hand side of (3.2) can be regarded as a filtering operation, implying that the 
loudness measure is equivalent to the output of an envelope detector. The envelope 
E[m] is usually (Rabiner and Schafer, 1978, p124) calculated only at values of m spaced 
much further apart than the spacing between the samples of sri]. Care must then 
be taken that the Fourier transform of w[i] is small enough at frequencies greater 
than half the new sampling frequency (of E[m]) so that aliasing does not occur. The 
bandwidth of the smoothing window needs to be large enough that changes in the 
loudness envelope occurring between syllables are adequately sensed, but low enough 
that variations within a pitch interval are smoothed out. Bandwidths between 20 and 
50Hz are commonly employed, depending on whether the overall syllabic structure of 
an utterance or the finer detail within a syllable is required. A window, of simple form, 
that is often employed for envelope calculation is the Hamming window (see §1.3.1.1) . 

. A drawback of the energy envelope as defined in the above paragraph is its large 
dynamic range. The root-mean-square (RMS) envelope or the mean absolute envelope 
are alternatives which are often more useful because they have the same dimensionality 
as the original signal. Fig.3.1 shows an example of energy, RMS, and absolute envelopes 
for a short segment of speech. 

3.1.2 Voiced/unvoiced decision analysis 

Voiced/unvoiced (VUV) analysis entails deciding whether short segments of speech are 
of voiced, unvoiced, or mixed type (§2.2.1). Several approaches to implementing such 
decisions have been proposed (cf. Siegel, 1979; Knorr, 1979). In this section I briefly 
describe several disparate methods that illustrate the range of techniques employed. 

VUV classification is often associated with silence detection, which is the de
tection of gaps between words. The main difficulty that must be overcome in order to 
reliably classify speech and "silence" is to detect the difference between a quiet fricative 
sound and background noise (De Souza, 1983). Silence detection techniques are invoked 
for isolated-word recognition, in order to isolate the individual words and identify their 
start and end points (cf. Savoji, 1989). 

One approach to VUV classification is based on the differences in spectral 
content between voiced and unvoiced sounds. The energy in the voiced excitation is 
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window. 

concentrated at low frequencies, while that for the unvoiced sounds occurs throughout a 
broader and higher band of frequencies (§2.1.4.2). Hence a decision based on comparison 
of the short- term energy in high frequency and low frequency sub-bands of the speech 
is an effective method of distinguishing between voiced and unvoiced sounds (Knorr, 
1979). I employ a method similar to this when performing VUV analysis for the 
algorithms described in this thesis. The speech is low-pass filtered by a filter with 
a cutoff frequency of 200Hz. The RMS envelope Rt[m] of this band is then calculated. 
In addition, the speech signal is differentiated to accentuate the high frequencies (this 
is simpler than performing a high-pass filtering operation). The RMS envelope Rd[m] 
of the differentiated speech signal is also calculated. The RMS envelope Rs[m] of the 
complete speech signal is computed in order to check for "silent" segments. The speech 
is classified according to the following rule: 

Segment m is 
Silent if Rs[m] < es 
unvoiced if Rs[m] > es AND R/[m] < 1.25Rd[m] 
voiced if Rs[m] > es AND R/[m] > 1.25Rd[m] 

The factor of 1.25 introduced above is required to ensure that the comparison between 
the two envelope signals produces reasonable results (Brieseman, 19XX). 
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An indication of the spectral content of a speech segment is also provided 
by the zero-crossing rate, which is defined as the number of times that the signal 
amplitude changes sign in that segment (Rabiner and Schafer, 1978, §4.3). A segment 
that contains mainly high frequency components has more zero-crossings than one that 
is comprised mainly oflow frequency components (see Scarr, 1968). Hence the segment 
can be relatively easily classified as unvoiced, if its number of zero-crossings is above 
some threshold, or voiced, if this number is below the threshold. Usually, the energy 
of the segment is also examined, to decide whether the segment is of speech or silence 
(since silent segments still contain noise, and hence zero-crossings). This approach is 
useful for real-time applications because of its simplicity (Watson et al., 1988). 

Another method of making a VUV classification is to examine the results of 
a pitch analysis of the speech signal (§3.1.3). During segments of unvoiced speech, 
pitch analysis techniques usually fail to produce a pitch estimate. Hence the lack 
of periodicity can be used as an indication of whether the speech signal is voiced or 
unvoiced (cf. Gold and Rabiner, 1969). 

A final VUV analysis technique is based on applying pattern recognition ap
proaches to several features, usually including some of those mentioned above (Siegel, 
1979; Siegel and Bessey, 1982). In this approach, the characteristics of voiced and un
voiced sounds are specified by "templates" of features. The templates are obtained by 
an analysis of many examples of the two types of speech sounds. Segments of speech 
are then classified according to the template they are closest to. This type of analysis 
can be easily incorporated into speech recognition schemes (§3.6.1). 

3.1.3 Pitch detection 

The pitch, or fundamental frequency of a voiced segment of speech is the reciprocal of 
the average interval between successive glottal pulses (§2.2.1.2). In this thesis I use 
the term pitch period to refer to the duration of a single period of glottal excitation. 
The term pitch interval identifies a segment of speech of one pitch period in duration. 
The pitch varies during an utterance as a result of non-linguistic and para-linguistic 
information in the speech signal (§2.1.3.1). For example, if the pitch rises towards 
the end of an utterance, it indicates that the utterance is a question. The purpose 
of pitch detection is to estimate all the individual pitch periods of the voiced parts 
of an utterance. The resulting pitch estimates specify the durations and instants of 
occurrence of each pitch interval in the utterance. 

Accurate determination of the pitch periods of voiced speech is useful for several 
purposes. Firstly, the naturalness and intelligibility of the speech synthesised from 
several of the low data rate speech encoding schemes described in §3.5.2 is dependent 
on the accuracy of the pitch estimates. Secondly, certain techniques of speech analysis 
(see §3.2.2 and §3.3.3) are pitch synchronous, in that they operate on segments of speech 
aligned to each pitch interval. A third application for the use of the pitch estimates is 
that of diagnosing the medical state of the speaker's vocal cords (§3.6.4.1) 

Methods for determining the pitch of a speech signal can be divided into those 
which operate on the speech in the time domain and those which operate on a frequency 
domain representation of the speech. 

One time domain method of estimating the pitch of a speech signal involves 
calculating the autocorrelation of a short (20-50ms) segment of speech and examining 
its structure. Such an autocorrelation reveals the pitch period because it exhibits peaks 
at lags equal to the pitch interval (Rabiner and Schafer, 1978, §4.6). In some cases, 
however, especially when the first formant of the speech signal is relatively strong or of 
narrow bandwidth, the autocorrelation also contains peaks at lags corresponding to the 
formant frequency. Techniques such as centre-clipping (Sondhi, 1968), in which only 
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the tips of the few largest peaks are employed in the autocorrelation calculation, can 
help to reduce the effect that the formant structure has on the autocorrelation. 

Other time domain techniques are based on pattern matching approaches (Gold 
and Rabiner, 1969; Tucker and Bates, 1978). Gold and Rabiner (1969) take measure
ments of the amplitudes of peaks in a segment of the speech waveform and then match 
sets of these measurements in various combinations in order to produce several esti
mates of the pitch period. The estimates are then compared and the pitch period for 
that segment is defined as the one that occurs in the majority of estimates. When 
the techniques that I discuss in other sections of this thesis call for a pitch analysis 
of the speech signal, I use a modification of the Gold and Rabiner technique (Tucker 
and Bates, 1978; Brieseman, 1984). The extrema of the speech signal are first located, 
with the instant of occurrence and amplitude of the mth extrema denoted by tm and 
Am respectively. The pitch estimate at the instant tm is obtained by finding the lowest 
value of P for which 

for n = m,m 1, .. . ,m- 2P, (3.4) 

where f is a threshold that determines the maximum "variability" that the peaks are 
allowed to possess between pitch intervals. f is set to 20% of the magnitude of the 
largest peak in the current interval. The pitch period is given by tm - tm-p. This 
algorithm has been found to be useful for determining the pitch of musical sounds as 
well as speech sounds (Brieseman, 1984). In order to ensure that the pitch is estimated 
accurately, I filter the speech signal to remove the components with frequencies greater 
than 500Hz. In addition, the algorithm is limited to finding pitch estimates between 
75Hz and 500Hz. These constraints are necessary to ensure that the formants do not 
adversely affect the pitch estimates (Brieseman, 1984). H children's voices are to be 
analysed, it is wise to increase both the higher limit and the filter cutoff frequency to 
about 900Hz (Watson, 1989). 

Instead of estimating the pitch from the speech signal directly, it can be es
timated from the residue that remains after removing the effects of the formant res
onances (§3.2). Because the residue produced by filtering the speech signal with the 
inverse LPC filter often exhibits sharp spikes spaced by the pitch interval, this can be 
an effective method of pitch estimation. Descriptions of techniques that make use of 
the LPC residue are given by Markel (1972) and Markel and Gray (1976, Chapter 8). 

Frequency domain pitch analysis techniques take advantage of the harmonic 
structure inherent in the (short-term) spectral representation of voiced speech. The 
pitch corresponds to the fundamental component of these frequency striations. Some
times the fundamental frequency component is not present (for instance, in some sounds 
emitted by certain musicalinstruments (cf. Houtsma and Goldstein, 1972) and in speech 
signals that have been transmitted through a limited bandwidth telephone system). In 
other cases it is not clearly defined (perhaps because the first formant frequency is close 
to the fundamental frequency). The fundamental frequency in both the above situations 
can be determined by calculating the difference in frequency between adjacent peaks in 
the spectrum or by calculating the common factor of two or more widely spaced peaks 
(cf. Harris and Weiss, 1963). Other techniques include the use of the cepstrum, which 
is the Fourier transform of the logarithm of the power spectrum (§3.3.2). The "fine 
structure" (which is what the striations caused by the pitch are called) is periodic at 
a rate equal to the pitch period, and so produces a peak at that "quefrency" in the 
cepstrum. The pitch period for that segment of speech is determined by locating the 
position of the cepstral peak (Rabiner and Schafer, 1978, §7.3). 

Pitch estimates obtained by any of the above techniques can often be improved 
by further processing. For example, a pitch estimate that is half or double the length of 
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the estimates of the slllTounding pitch intervals is obviously wrong and should therefore 
be discarded (cf. Rabiner et ai., 1975; Sutherland et ai., 1988). 

3.2 Linear prediction analysis 

The source-filter model of speech production (§2.3.1.4) provides a simple framework 
for extracting features from speech signals. The characteristics of the source signal 
(loudness, voiced or unvoiced excitation, and pitch if voiced) can be estimated by 
straightforward means as described in §3.1. All that remains in order to complete a 
parametric description of the speech signal is to describe the parameters of the filter 
component. One successful method of parametrising the speech filter is by means of 
linear predictive coding (LPC). In this section, the mathematical basis of LPC analysis 
is briefly described (§3.2.1) and then (in §3.2.2) some ofthe details of implementing the 
analysis are discussed. The text by Markel and Gray (1976) provides extensive details 
of all aspects of the mathematics and implement ion of LPC analysis. 

3.2.1 Mathematical description 

The source-filter model introduced in §2.3.1.4 expresses a speech signal as a convolution 
between an excitation, or source, component and a time-varying filter component. In 
order to justify the approximations used in the linear prediction (LP) model, it is useful 
to expand the source-filter equation introduced in §2.3.1.4 and describe the general 
characteristics of each term. In the z-domain, (2.1) can be expanded as (Markel and 
Gray, 1976, §1.3) 

S(z) E(z)G(z)V(z)L(z) (3.5) 

where E(z) is the excitation, G(z) is the glottal shaping filter, V(z) is the vocal tract 
transfer function, and L( z) describes the characteristics of sound radiation from the 
lips. 

The excitation function E(z) describes the energy source for the speech signal. 
It comprises a quasi-periodic impulse train for voiced sounds and white noise for un
voiced, both of which have an essentially flat spectrum. As described in §2.3.1.1, glottal 
pulses vary in shape from one to another. However, the spectral shape of an average 
glottal pulse can be approximated as a -12dB/octave slope (cf. Flanagan, 1972, p233j 
Sundberg and Gauffin, 1979). This is equivalent to the transfer function of a filter with 
two poles (Atal and Hanauer, 1971): 

(3.6) 

where gl and g2 are close to unity. The effect of lip radiation can likewise be ap
proximated by a first order filter with a +6db/octave spectral slope (Flanagan, 1972, 
§6.25): 

L(z) 1 - z-l (3.7) 

The transfer function of a lossless acoustic tube (§2.3.1.3) contains only poles, so is 
described by 

V(z) = __ 1_ (3.8) 

where K is the order of the filter. 
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By combining (3.6), (3.7), and (3.8), and noting that the zero in L(z) is effec
tively cancelled by one of the poles in G(z), a simplified all-pole model of the "speech 
shaping filter" can be derived: 

where 

1 
G(z)V(z)L(z) = A(z) 

p 

A(z) = 1 - L aiz- 1 

i=l 

(3.9) 

(3.10) 

is an all-pole filter which models the vocal tract shape, glottal pulse shape, and lip 
radiation characteristics. The all-pole speech model is obtained by substituting A(z) 
into (3.5): 

1 
S(z) = E(z)--p--

1- LajZ-l 

i=l 

(3.11) 

By transforming (3.11) into the sampled time domain, the speech prediction 
model 

p 

s[n] = ern] + L ajs[n i], (3.12) 
i=l 

is obtained. This can also be expressed as 

ern] s[n] - s[n]. (3.13) 

where s[ n] is the predicted value of the nth speech sample. 
In (3.12), the value of the nth speech sample is predicted by a weighted sum 

of the previous P samples. The prediction error ern] (also called the residue) is seen 
to be equivalent to the excitation that is necessary to reconstruct s[n] from the LPC 
coefficients. 

Linear prediction entails choosing a set of coefficients {ad such that the pre
diction error is minimised. Usually, a least-squares minimisation is performed over a 
number of sample values, although Denoel and Solvay (1985), for ins~a:rtce, employ a 
mean absolute error criteria, while Lee (1988) develops a coefficient estimation algo
rithm based on a general error weighting criterion. Least-squares minimisation results 
in the set 

p 

L ajCik -COk 
i==l 

k 1,2 ... P (3.14) 

of linear equations, which can be straightforwardly solved using standard techniques 
(Markel and Gray, 1976). The matrix C is composed of short-term autocorrelation or 
covariance coefficients, defined by (Markel and Gray, 1976, pp13-15) 

nl 

Cij = L s[n - i]s[n - j]. (3.15) 
n=no 

In the autocorrelation method, no and nl are effectively set to -00 and +00 

respectively. However, the speech signal is windowed so that it is zero outside the 
interval 0 < n < N. Hence (3.15) is equiValent to the short-term autocorrelation, with 

(3.16) 

where RN[ k] is the autocorrelation of the speech segment containing N samples (Ra
biner and Schafer, 1978, p402). Because of the truncation, each coefficient in RN[k] is 
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formed from a different number of summation terms. This introduces errors into the 
autocorrelation coefficients and hence into the predictor coefficients. This error can 
also be understood to occur because the predictor filter is effectively trying to match 
the sudden discontinuity at each end of the analysis segment (Rabiner and Schafer, 
1978, §8.1.1). Hence, the prediction error e[n] is large for the first and final P samples 
of the segment. It is thus good practice to window the segment with a tapered window 
(§1.3.1.1) in order to reduce the effects of the errors at the ends of the segment. Some 
of the consequences of this windowing are discussed in §3.2.2. 

Another method of LPG analysis is the covariance method. In this approach, 
the summation limits in (3.15) are arranged so that each member of the set eij of 
coefficients is computed from the same number of summation terms. This can be 
accomplished by setting no 0 and nl = N 1, and allowing the summation in (3.15) 
to include speech samples beyond the limits no and nl' Therefore, by contrast with 
the autocorrelation method, there are no discontinuities at the segment boundaries. 
Hence it is not necessary (or desirable) to window the signal (Rabiner and Schafer, 
1978, §8.1.2). Various pertinent aspects of both these methods, including details of 
their implementation, are discussed further in §3.2.2. 

A third method of obtaining the LPG coefficients is via a "lattice filter" formu
lation (Rabiner and Schafer, 1978, §8.3.3), which models the resonances in an acoustic 
tube model of the vocal tract. It therefore generates a set of coefficients different from 
the predictor coefficients obtained by the technique described above. The coefficients 
can be straightforwardly transformed from one formulation into the other, however. 
The details of the lattice filter method are presented by Friedlander (1982) 

Linear prediction can also be developed as a spectral matching scheme, rather 
than a time domain predictive coder. In this approach, the parameters are chosen so 
that the model spectrum fits the speech spectrum according to a maximum likelihood 
criterion (Itakura and Saito, 1968; Schroeder, 1984). Such a model leads to the same 
set of equations as derived above. The details are beyond the scope of this thesis, and 
so interested readers are referred to Markel and Gray (1976, §2.2) or Schroeder (1984) 
for a more complete treatment. 

3.2.2 Implementation techniques and considerations 

In the autocorrelation method, the matrix C, introduced in §3.2.1, is Toeplitz (symmet
ric with all elements along a given diagonal equal), which means that it can be solved 
using 'the Levinson-Durbin recursive algorithm (Rabiner and Schafer, 1978, §8.3.1). In 
the covariance method, the matrix C is symmetric and so Gholesky decomposition 
can be employed to solve (3.14) (Rabiner and Schafer, 1978, §8.3.2). Optimised com
puter programs for implementing both of these algorithms are presented by Markel and 
Gray (1976, §9.3). 

As mentioned in §3.2.1, the autocorrelation method of analysis usually requires 
that the signal be windowed by a tapering (e.g. a Hamming) window. The use of a 
window reduces the fluctuations in the analysis error E (and hence in the computed 
coefficients) that occur as the analysis frame is moved, sample by sample, along the 
speech signal (Rabiner et al., 1977). Large analysis errors occur because of the effective 
discontinuities at the ends of the analysis frame, as described in §3.2.1. However, 
although windowing reduces both the value of E itself and its sensitivity to the position 
of the analysis frame relative to the excitation, the error between the LPG coefficients 
and the actual speech signal is considerably greater than if no windowing is employed 
(Brieseman, 19XX). This is because the LPG coefficients match the windowed speech 
signal, which is significantly different from the actua~ unwindowed signal. 

In the covariance method of analysis it is not usual to window the speech, 
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because the summation limits in (3.15) are arranged so that the end-effects, which 
occur in the autocorrelation method, are absent. However, the coefficients obtained 
via the covariance approach are strongly affected by the position of the analysis frame 
relative to the glottal excitation pulses (Rabiner et al., 1977). This is because the 
assumption that ern] (in (3.12)) is negligible is violated during the portions of the pitch 
interval wherein the excitation occurs. Hence, the coefficients are adversely affected 
by the presence of such excitation in the analysis frame. In order to obtain reliable 
coefficients, which accurately model the resonances of the vocal tract, the analysis 
window should be aligned with the closed glottis interval (CGI). During this interval, 
no excitation occurs, and so the speech signal is due solely to the decaying resonances 
of the vocal tract (cf. Makhoul and Wolf, 1972). Methods of locating the CGI are 
discussed in §3.4.1 (also see §3.3.3 for more discussion of the importance of aligning the 
analysis frame correctly). 

The main advantage of the autocorrelation method over the covariance method 
is that the estimated coefficients are guaranteed to produce a stable all-pole filter (Ra
biner and Schafer, 1978, §8.4). However, the covariance method produces coefficients 
that, when they are stable, more accurately represent the speech signal (Rabiner and 
Schafer, 1978, §8.5). Stability can usually be ensured by suitable selection ofthe analy
sis interval (as discussed in the previous paragraph), but this increases the computation 
required for the analysis. Hence the autocorrelation method is commonly employed in 
low data rate speech encoding schemes, where fast computation and stability of the 
LPC filter are required (Witten, 1982, pI35). For applications where accuracy is a 
more important consideration, such as glottal inverse filtering (§3.4.1) or vocal tract 
area estimation (§3.2.3), the covariance method, in conjunction with a technique for es
timating the correct analysis frame, is often employed (Markel and Gray, 1976, §4.4.1). 

In order to adequately model speech sounds, the order P of the speech filter 
A(z) must be sufficient to account for the vocal tract resonances, the glottal pulse 
shape and lip radiation. In addition, if the vocal tract filter contains zeros (such as 
for nasal or fricative sounds), additional terms are required in A(z) to approximate 
their effect. Because the LPC coefficients can be related directly to the geometry of 
the vocal tract (see §3.2.3), enough coefficients must be computed to specify the entire 
length of the tract. Sound waves require about lms to propagate the 17cm average 
length of the vocal tract for adult male speakers. Hence the duration encompassed 
by the coefficients should also be of this order (Wakita, 1973)'. Practical values for 
the number of coefficients are therefore suggested as "the sampling rate in kHz plus 4 
or 5)) (Markel and Gray, 1976, pI54). The 4 or 5 additional coefficients are required to 
adequately represent the departures from the all-pole model that are mentioned above 
(cf. Makhoul and Wolf, 1972). 

The speech signal is usually differentiated before LPC analysis is performed 
upon it in order to improve the numerical stability of the analysis (Gray and Markel, 
1974). This also effectively cancels the combined effects of the glottal shaping filter 
and lip radiation (§3.2.l). The speech filter A(z) then effectively models the vocal 
tract only. The assumptions of negligible average excitation that lead to (3.14) are 
thus more closely met than if undifferentiated speech is analysed. When speech is 
reconstructed from such coefficients, it must be integrated (low-pass filtered with a 
filter having a -6dB / octave slope) in order to restore its correct spectral balance. If 
the intention of LPC analysis is to extract the shape of the vocal tract from the speech 
(§3.2.3), a first order differentiation is useful because the coefficients then match the 
vocal tract filter V(z) more accurately (Wakita, 1973; Markel and Gray, 1976, §4.4) 

The predictor coefficients are sensitive to small errors (such as those introduced 
by quantisation) because the roots of the predictor polynomial A(z) are the poles of 
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the LPC speech filter. The filter is only stable if all its poles are inside the unit circle 
(§1.2.5.2). Because small differences in the values of the polynomial coefficients can 
cause large changes in the root positions, quantisation errors in the predictor coefficients 
can cause the LPC filter to become unstable. In order to guard against this source of 
instability, the coefficients are usually transformed into a different formulation, that is 
less sensitive to quantisation errors, before quantising them (Makhoul, 1975). §3.2.3 
describes the different sets of coefficients that are commonly employed. ' 

3.2.3 Alternative sets of LPC coefficients 

The coefficients obtained by means of (3.14) are termed prediction coefficients, because 
they anow one to directly predict the value of a speech sample from knowledge of 
previous samples. By suitable transformations, other (equivalent) sets of coefficients 
can be obtained. In this section I introduce the coefficient sets that are commonly 
invoked, together with the transformations necessary to obtain them from the prediction 
coefficients. Further details of these coefficient sets can be found in the references cited. 

The pole positions of the speech filter l/A(z) can be evaluated by factoring the 
polynomial (3.10) to give 

p 

A(z)=II(l ZpZ-l) (3.17) 
p=:l 

where {zp} is the set of LPG poles. The speech filter 1/ A( z) is stable providing that 
all the poles are inside the unit circle. The poles are the z-transform representation of 
the resonances of the vocal tract. The frequency F and bandwidth iJ corresponding to 
a pole at z zp are given by 

(3.18) 

and 

(3.19) 

respectively, where Is is the sampling frequency (Atal and Hanauer, 1971). 
As stated in § 1.2.4, the DFT corresponding to the z-transform of a signal can 

be obtained by evaluating the z-transform function at equally spaced points around the 
unit circle. Hence the spectrum 18(1)12 of a speech segment can be obtained from the 
LP C filter 1/ A( z) of that segment by evaluating 

18(1) 12 = _--:::::-_1 __ _ (3.20) 

11 Laje-21fijf/f'12 

i==l 

where Is is the sampling frequency of the speech signal (Rabiner and Schafer, 1978, 
§8.6). Examples of speech spectra obtained by this method are presented in §3.3.3. 

The cepstral coefficients ern] (§3.3.2) of the LPC all-pole filter can be obtained 
directly from the prediction coefficients {ai} by the recursive procedure 

n-l ( k) 
e[n]=an+L 1-- e[n 

k=l n 
(3.21) 

where ao = 1 and e[l] = a[l] (Atal, 1974). 
The impulse response of the LPC filter can be straightforwardly obtained by 

evaluating (3.12) with ern] = e[n], where e[n] is a unit impulse at n = O. 
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The all-pole model of the vocal tract filter is equivalent to a lossless resonating 
tube (§2.3.1.3). Two types of coefficients which relate to the acoustic tube model can 
be derived from the LPC coefficients. If the acoustic tube is modelled as several con
catenated uniform tubes, then the area coefficients characterise the cross-sectional area 
of each of the tubes (Wakita, 1973). In addition, the reflection coefficients describe 
the reflections that occur between each segment (Markel and Gray, 1976, §4.2). Reflec
tion coefficients are equivalent to the PAR COR partial correlation coefficients that are 
prq9.uc~~ ;,ls aJ)YJlroduct of th~ a1.!t()(:~!!~I;,lH(:mllleth2~ (Wakita",19Z3). 

The reflection coefficients kj are related to the areas Aj of each section of the 
vocal tract by the relati()n (MmeLan.d Gray, 1976;-§4.2) 

(3.22) 

with 
(3.23) 

The reflection coefficients can be obtained from the prediction coefficients by 
the following "backward" recursion, where i P ... l (Rabiner and Schafer, 1978, 
§8.8): 

(i) a· t 
(i)+ (i) (i) 

01. j 01.; 01.._ j 

I-ki l~j~i-l 

The coefficients {o;}P)} are set equal to the predictor coefficients {aj}: 

0; (P) = a' 1 < J' < P. 
J J' - -

(3.24) 

(3.25) 

A "forward" recursive procedure is invoked to obtain the predictor coefficients 
from the reflection coefficients. Thus, for i = 1 .. . P, 

(i) 
0;. 

t 

( i) 
0;. 

J 
1 ~ j ~ i-I, 

with the predictor coefficients given by (3.25) once again. 

(3.26) 

If the area coefficients that are obtained from the speech signal via the LPC 
method are to accurately match the true vocal tract area, it is important that the 
effects of lip radiation and glottal excitation are separately accounted for. This can 
be accomplished by applying a simple +6dB / octave pre-emphasis to the speech signal 
(Wakita, 1973), although, as discussed by Sondhi (1979), the sensitivity of the computed 
areas to the particular compensation employed means that techniques such as CGI LPC 
analysis should be invoked to improve the estimation of the coefficients (cf. §3.3). 

3.3 Frequency domain analysis 

As described in §2.2.2 and §2.3.2, the cochlear extracts spectral information from sounds 
entering it. Furthermore, speech is produced by a mechanism (the vocal tract) which is 
usefully modelled as a number of resonant chambers (§2.3.1.3). Hence many approaches 
to analysing speech signals are based on extracting information from a spectral repre
sentation of speech. In §3.3.1 I discuss the concept of a time-varying spectrum, which 
can be employed to represent the spectral content of a speech signal. §3.3.2 describes 
the cepstrum, which is useful for revealing some of the structure inherent but not read
ily apparent in the spectrum, and §3.3.3 introduces some of the ways that spectral 
analysis techniques are employed to extract information from a speech signal. 
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t 
o 2 sec 

Figure 3.2. Time-varying spectrum (spectrogram) of the first two seconds of the utterance AM

RAINl. A 256 sample long Hamming window was used to delineate each segment. The image density 

represents energy, with white being lowest and black highest. 

t 
o 2 sec 

Figure 3.3. Time-varying spectrum (spectrogram) of the first two seconds of the utterance AM

RAIN!. A 64 sample long Hamming window was used to delineate each segment. The image density 

represents energy, with white being lowest and black highest. 

3.3.1 Spectral representation of speech 

Speech can be considered as a signal whose (short-term) spectral content is 
continually changing (due to the movements of the articulators). However, for segments 
of short duration (of the order of lO-20ms), the speech signal is essentially the output 
of a time-invariant system (§2.3.1.4). It can therefore be considered to be invariant 
over such short intervals (cf. § 1.2.5.4). The time-varying spectrum (or spectrogram) 
is constructed from the power spectra of successive segments. It can be visualised 
as a two-dimensional signal, with frequency along one dimension and time along the 
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other. Note that this "frequency" is different from "conventional frequency", as defined 
in §I.2.1, because it is defined as the Fourier transform of only a short segment of the 
signal. Hence the frequency axis of the time-varying spectrum is properly referred to as 
the "short-term frequency" axis (see §I.2.1). Fig.3.2 shows an example of a spectrogram 
calculated from the utterance AM-RAIN I. The horizontal and vertical axes denote time 
and frequency respectively, while the image density at each point in the spectrogram 
indicates the portion of the speech energy at that point in time and frequency. In 
the remainder of this section, I describe some of the details of spectrographic speech 
analysis. Further details are presented by, among others, Rabiner and Schafer (1978, 
Chapter 8) and Tribolet and Crochiere (1979). ' 

The time-varying spectrum of a (discrete) signal s[m] is defined by (Flanagan, 
1980) 

00 

I: h[n m]s[m]e-21!'ikm (3.27) 
m=-oo 

where Sn[k] is the (discrete) short-term spectrum at the instant nand h[mJ defines 
the window (see §I.3.1.1) over which the transform is obtained. The time-varying 
spectrum Sn[k] can be interpreted either as the output of a bank of filters, or as the 
Fourier transform of the segment of speech h[n-m]s[m] (Tribolet and Crochiere, 1979). 
In the jilter-bank interpretation, (3.27) is viewed as a convolution between a low-pass 
filter response h[n] and the signal s[n] modulated by a sinusoid of frequency k: 

sk[n] h[n] 0 [s[n]e- 21!'ikm] (3.28) 

where sk[n] is the output of the filter with centre-frequency k. In the block transform 
interpretation, Sn[k] is viewed as the Fourier transform of the segment of speech de
lineated by the extent and position n of the window h[n m]. If a tapered window 
(§1.3.1.1) is employed to reduce the effects ofleakage, it is necessary to overlap adja
cent segments. This is because such a window reduces the contribution from speech 
samples near to the ends of the segment. Hence the segments need to be spaced closer 
than the actual duration of the window. The next paragraph discusses these "overlap 
requirements" further, but from the viewpoint of the filter-bank interpretation of the 
time-varying spectrogram. 

Because the filter-bank interpretation of the time-varying spectrum indicates 
that h[n] performs a filtering function as well as a windowing function, it is necessary 
(for accurate determination of the short-term spectra) that the frequency response 
of h[n] be well behaved. In particular, it should not have high side-lobes that may 
cause leakage of strong spectral components into other than the correct filter band. 
In addition, if the individual sub-bands are sampled at a lower rate than the original 
signal is, the magnitude of the Fourier transform of h[n] should be small enough, at 
frequencies greater than half the new sampling frequency, that aliasing does not occur. 
The approximate bandwidth of a Hamming window (§I.3.1.1), oflength L samples, is 
(Rabiner and Schafer, 1978, p264) 

B 
2Fs 

If == (3.29) 

where Fa is the frequency at which the speech signal is sampled. 
Fig.3.3 shows a spectrogram, of the same utterance as that to which Fig.3.2 

relates, but computed with a wide instead of a narrow bandwidth filter ("short" instead 
of "long" window). Although the resolution with which true spectral features are 
revealed is very much reduced in Fig.3.3, rapid transitional features are revealed much 
more clearly. §3.3.3 describes in more detail some of the methods of abstracting useful 
information from "spectrographic" representations of speech signals (see also Koenig 
et al., 1946) 
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3.3.2 The cepstrum 

A convolution in the time domain between two signals is represented in the frequency 
domain by a multiplication between their respective spectra (§1.2.5.1). The logarithm 
of the composite spectrum is thus composed of a sum between the two components. 
Hence the components can be separated by linear filtering if their individual cepstra do 
not overlap. The complex cepstrum c(r) of a signal set) is defined by (Bogert et al., 
1963) 

c(r) = :F-1 {log(S(J»)} (3.30) 

where S(J) is the spectrum of set) and the independent variable r is often termed 
quefrency to distinguish it from the time variable, t. Because S(J) is complex, the 
logarithm is defined as 

log(S(J)) = log(IS(J)1) + i¢(J) (3.31) 

where ¢(J) is the phase of S(J). The complex cepstra is only required if the spectral 
phase is important (for example, if the time domain signal is to be reconstructed). 
IT not, the cepstrum can be calculated from the magnitude spectrum, in which case 
(3.30) and (3.31) are replaced by their real equivalents (Oppenheim and Schafer, 1975, 
Chapter 10). 

The cepstral components are related to the log spectrum of a signal in the 
same way that the spectral components are related to the time domain signal (hence 
the terms "cepstrum" and "quefrency" that were introduced by Bogert et ai., 1963). 
The low quefrency components therefore characterise the smoothly varying components 
of the spectrum, while the high-quefrency components characterise closely spaced (har
monic) components of the spectrum. The (complex) cepstrum has been employed 
for blind deconvolution of signals whose constituent components differ in this manner 
(Oppenheim et al., 1968). One such signal is of course speech, because the pitch pe
riodicities introduce closely spaced harmonics into the spectrum, while the formants 
have a much smoother spectral shape (§3.3.3). Hence these two components can often 
be separated in the cepstral domain (Rabiner and Schafer, 1978, §7.2). Fig.3A shows 
time domain, spectral domain and cepstral domain representations of a typical segment 
of voiced speech. Cepstral analysis of speech is invoked for pitch estimation (§3.1.3), 
extracting smoothed estimates of the formant frequencies (§3.3.3), low data rate speech 
encoding (§3.5), and speech recognition (§3.6.1). Further details of the application of 
cepstral analysis techniques to speech signals are covered by Rabiner and Schafer (1978, 
Chapter 7). . 

Cepstral analysis is often referred to as a type of homomorphic signal processing 
(cf. Oppenheim et al., 1968). A homomorphic system is one that obeys a generalised 
superposition principle (cf. §1.1.3). It can therefore described by a "generalised convo
lution", similar to that introduced in §1.1.3 for linear systems. By suitable transfor
mations the convolution can be represented as a summation of the two components. 
Cepstral analysis is one technique for performing this transformation. The details of 
generalised homomorphic signal analysis are beyond the scope of this thesis, but they 
are treated by Oppenheim and Schafer (1975, Chapter 10). 

3.3.3 Extracting information from a speech spectrum 

The time-varying spectrum (whether calculated by Fourier or LPC analysis) ofa speech 
signal conveys information about the types of sounds being uttered (§2.1.4). The main 
features of interest in the time-varying spectrum are the formants, or spectral peaks, 
which correspond to the resonances of the vocal tract (§2.3.1.3). As indicated in §2.1.4, 
the frequencies of the first two formants, or vocal tract resonances, are sufficient to 
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Figure 3.4. Exa.mple of cepstral analysis of a short segment of voiced speech. a: Time domain, h: 

Spectral domain and c: Cepstral doma.in representations of the same speech segment (from utterance 

AM-RAINI). 

identify each of the vowels. The consonants are identified by (among other features) the 
formant "transitions" (cf. §2.1.4.2). Hence it is necessary to resolve both the frequencies 
of the formants and the timing of the transitions in order to reliably extract phonetic 
features from the time-varying spectrum of a speech signal. There is an unavoidable 
trade-off between the spectral and the transitional resolution that can be obtained 
(see §1.2.5.4, §1.3.1.1, and Gabor, 1946). However, the human cochlear also performs 
a "spectrographic" type of analysis in order to detect sounds (§2.2.2.1), and so it is 
subject to the same "time-frequency" trade-off. It is therefore only necessary to ensure 
that the spectrographic analysis employed in the feature extraction process has similar 
characteristics to that employed by the human cochlear. 

In order to make the spectrographic analysis of speech mimic the human au
ditory system more closely, the "raw" spectrogram can be modified (Le. perceptually 
weighted) according to the characteristics of human hearing (see §2.2.2). For example, 
Cohen (1989) weights the short- term spectra of the speech sounds by the auditory char
acteristics of loudness perception, critical bands, and neural adaptation (cf. §2.2.2.2). 
Ghitza (1987) describes a system in which the short-term spectrum is divided into 100 
overlapping sub-bands. The sub-bands are shaped according to the characteristics of 
the human peripheral auditory system (see §2.2.2.2). Each sub-band is considerably 
wider than the reciprocal of the effective duration of the analysis interval (§3.3.1), al
lowing many individual frequency components to be identified within each sub-band. 
The dominant frequency component in each sub-band is then identified, with those fre-

f 
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quency components appearing in several adjacent bands being selected as characteristic 
features of the speech sound. This selection of the spectral peaks that occur in several 
"auditory bands" is supposed to model the patterns of nerve firings that occur in the 
auditory nerve (cf. Allen, 1985; Greenberg, 1988). 

The formant frequencies can be computed directly from the LPC coefficients, by 
invoking (3.18). This gives the frequencies of the "poles" of the LPC speech filter, which 
correspond to resonances in the vocal tract. However, the LPC filter generally contains 
more poles than there are formants, because additional poles are required to adequately 
model a speech signal (§3.2.2). In addition, for segments of speech that are not all-pole 
(such as nasal or fricative sounds), it is not clear what the pole frequencies represent 
vis a vis the vocal tract resonances (McCandless, 1974; Rabiner and Schafer, 1978, 
p450). Fig.3.5 a shows the pole frequencies corresponding to the LPC coefficients of the 
utterance AM-RAINl. The formant frequencies can be seen, but they are obscured 
by the many other poles of different frequencies. For these reasons determining the 
"true" formant frequencies from the pole positions is not a trivial task. Techniques 
for "tracking" the formants from frame to frame are necessary to determine which 
poles correspond to the formants and which to other features of the speech signal. 
McCandless (1974) and Markel and Gray (1976, Chapter 7) present further details on 
these techniques. 

The formant frequencies can also be obtained by computing the DFT from 
the LPC coefficients, as defined by (3.20). The formants correspond to the spectral 
peaks of the DFT. Fig.3.5b shows the spectrogram computed in this manner from the 
utterance AM-RAINl. In some cases the exact frequencies of the formants can be 
difficult to determine because the spectral peaks are too wide. They can be made more 
pronounced by evaluating the LPC filter around a circle in the z-plane, centred on the 
origin, but with a radius less than unity. Because such a circle is closer to the poles 
than the unit circle (§3.2.3), the peaks in the computed spectrum are rendered much 
sharper (McCandless, 1974; Duncan and Jack, 1988). 

Another obstacle in the path of reliable formant estimation is the influence of 
the glottal excitation. As described in §2.2.1 and §2.3.1, the speech signal is effectively 
composed of two components - the excitation and the vocal tract filter. For voiced 
sounds, the excitation consists of a quasi-periodic train of pulses. The estimated for
mant frequencies are influenced both by the periodicity of this excitation, and by the 
spectral content of the pulses (cr. Makhoul, 1973). 

Fig.3.6 a shows the spectrum obtained from a segment of speech of 45ms dura
tion (which is approximately equal to four pitch periods). As shown, the positions of 
the formant peaks are obscured because of the pronounced "ripple" in the spectrum. 
This arises from the strongly harmonic nature of voiced speech. One method of remov
ing this ripple is to deconvolve the pitch component out by cepstral smoothing (§3.3.2). 
Fig.3.6b shows the result of smoothing the spectrum in Fig.3.6a by discarding all but 
the first 4ms of the cepstrum. Another method of removing the "pitch ripple" is to use 
LPC analysis since, as implied in §3.2.1, this effectively ignores the pitch periodicities 
because they do not conform to the all-pole model (Makhoul, 1973). Fig.3.6c and d 
show the spectra obtained in this manner when 10 and 20 coefficients respectively are 
employed in the LPC analysis. 

The spectral content of the glottal excitation influences the formant estimates 
by altering the frequencies of the observed peaks in the spectrum. This is especially 
severe for LPC analysis when a short analysis frame is employed (Markel and Gray, 
1976, §7.6.3). The estimated formant frequencies then vary according to the position of 
the analysis frame relative to each pitch interval. The formant frequencies can be made 
more consistent by aligning each analysis frame with each glottal excitation pulse by 
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Figure 3.5. Spectrographic analysis via linear prediction, of the mst two seconds of the utterance 

AM-RAINI. A segment size of 128 samples, Hamming window, and the autocorrelation method ofLPC 

were all employed to compute the coefficients. a: Pole frequencies evaluated by means of (3.18). Six 

LPC coefficients were employed. h: The spectrogram, computed by evaluating the LPC ffiter l/A(z) 
at 128 points equally spaced aJ:ound the uppeJ: half of the unit cil:cle (see (3.20) in §3.2.3). Sixteen LPC 

coefficients were employed for each spectrum. 

means of a suitable pitch algorithm (tenned pitch synchrono'ILs analysis). Paliwal and 
Rao (1981) present such a method, whereby the pitch periodicity is taken explicitly 
into account by setting the duration of each analysis frame equal to the pitch period. 
Each analysis frame is positioned synchronously with the start of each pitch interval. 
Their technique provides better estimates of the spectral content of synthetic speech 
than do conventional autocorrelation or covariance methods. 

"Pitch synchronous" analysis helps to make the fonnant estimates more con
sistent, which is especially important for speech recognition purposes. However, appli
cations such as glottal waveform extraction (see §3.4), or estimation of the vocal tract 
shape (cf. Sondhi, 1979) require that the fonnant estimates represent the resonances 
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Figure 3.6. Smoothed spectrum of segment of speech shown in Fig.3.4a. The spectrum was smoothed 

by: b Computing the (real) cepstrum, discarding the coefficients with quefrency greater than 4ms, and 

transforming back to the Fourier domain; c and d Extracting (10 and 20 respectively) LPC coefficients 

from the speech signal then converting them to spectra by evaluating (3.20). 

of the vocal tract alone. In order to be assured of this, the analysis window should be 
positioned in the closed glottis interval (CGI) of the excitation waveform (Wood and 
Pearce, 1989), which is when the glottis is (assumed to be) closed (see §3.4.1). The 
formant frequencies can be estimated more accurately when the glottis is closed be
cause the effects of the sub-laryngeal airways on the vocal tract resonances are absent 
(cf. Makhoul and Wolf, 1972). The open glottis changes the resonant characteristics of 
the vocal tract, by introducing "zeros" that correspond to the resonances of the sub
laryngeal tract. The presence of these zeros leads to erroneous estimates of the vocal 
tract formant frequencies and bandwidths (cf. Makhoul and Wolf, 1972). 

Pitch synchronous analysis can also be combined with Fourier methods of spec
tral estimation (Rabiner and Schafer, 1978, §6.6.1), in order to equalise, as far as pos
sible, the effect of the glottal excitation in each analysis frame. 

3.4 Glottal waveform estimation techniques 

Voiced speech can be regarded as a convolution between a glottal waveform and a time
varying vocal tract filter (§2.3.1.4). Techniques for estimating the exact form of the 
glottal waveform from observations of the (voiced) speech signal are useful for several 
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reasons. Frrstly, the quality of synthetic speech (§3.5.2) appears to be influenced by the 
type of excitation employed (Rosenberg, 1971; Holmes, 1973). By employing an excita
tion signal that is more closely related to the actual glottal waveform than the simple 
signals usually employed, more natural sounding speech can be synthesised (Holmes, 
1973). A second application is the diagnosis of certain laryngeal disorders §3.6.4.1. 
Extracting the glottal waveform is a non-invasive method of assessing abnormalities of 
the vocal cords (Childers, 1990). . 

There are two main approaches to the problem of estimating the glottal wave
form from the speech signal. Both approaches are effectively species of blind decon
volution. In the first approach, the vocal tract filter response is estimated, by taking 
into account knowledge of its general characteristics (see §3.2~1 and §3.4.1). The glottal 
waveform is then obtained by filtering the speech signal with the inverse of the vocal 
tract filter. Techniques that rely on this approach are discussed in §3.4.1. The second 
approach, discussed in §3.4.2,. is to estimate the glottal waveform directly from the 
speech waveform. 

An indication of the glottal waveform can also be obtained by tactile senso~s 
which measure mechanical manifestations of the glottal vibration. Several of these 
types of techniques are mentioned in §3.4.1. 

3.4.1 Inverse filtering techniques 

The process of estimating the glottal waveform by inverse filtering of the speech signal 
proceeds by, first, estimating the vocal tract impulse response and, second, deconvolving 
that from the speech signal. The inverse filter is formed from the estimate of the vocal 
tract filter produced by either spectral or LPC analysis of the speech waveform. The 
accuracy of such an estimate of the glottal waveform depends upon the accuracy with 
which the estimated LPC filter models the vocal tract rather than the glottal excitation 
characteristics. Because of the effect of the lip radiation, which is approximately a 
first order differentiation, the waveform obtained by inverse filtering is usually the 
differential of the glottal waveform. Hence, some methods suffer from low frequency 
distortion caused by the requisite integration involved in obtaining the glottal flow 
waveform (cf. Veeneman and Bement, 1985). This means that the particular value 
of the computed waveform that corresponds to zero airflow in the actual waveform 
cannot be established unambiguously. Rothenberg (1973) overcomes this difficulty by 
measuring the air flow at the mouth instead of the sound pressure. In Rothenberg's 
technique, the arr flow is measured by means of a special mask placed over the speaker's 
mouth. Several recent studies (cf. Karlsson, 1986; Fritzell et ai., 1986) have employed 
this same technique to investigate to what extent the glottis actually does completely 
close. Their results indicate that the amount of glottal closure varies between different 
speakers (see §3.6.4.1). • 

Early studies of inverse filtering characterise the vocal tract filter by an esti
mate of the formant frequencies and bandwidths obtained from a spectrogram of the 
speech signal (Miller, 1959). However, some manual adjustment of the inverse filter's 
parameters is required to obtain a "correct" result (Miller, 1959). The parameters are 
adjusted until the glottal waveform exhibits a "closed phase", a feature that is often 
observed in high-speed motion pictures of glottal vibrations (Fletcher, 1953). Rosen
berg (1971) obtains the inverse filter by an (automatic) iterative procedure of varying 
the pole positions of a trial filter until the best match with the real spectrum is found. 
An initial glottal waveform is approximated by means of spectral zeros. A similar ap
proach is taken by Oppenheim and Schafer (1968), who fit a series of resonators to 
the smoothed log-spectrum of the speech signal. The difference between the model 
log-spectrum and the actual log-spectrum of the speech becomes the log-spectrum of 
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the glottal waveform. 

Most recent approaches to inverse filtering (cf. Veeneman and Bement, 1985; 
Wong et aI., 1979) have employed LPC estimates of the vocal filter. Thls is because, as 
emphasised in §3.3.3, LPC analysis employs an all-pole model that matches the formant 
resonances of the vocal tract. However, in order to ensure that the estimate of the vocal 
tract filter is not affected by the glottal excitation characteristics, it is advisable to 
perform the analysis only on the closed glottis interval of each pitch interval (see §3.2.2 
and§3.3.3). Whlle the requirement to identify the CGI before performing the analysis 
that reveals the glottal waveform seems somewhat circular, there are several techniques 
whereby the CGI can be approximately (and adequately) located beforehand. For 
instance, LPC analysis (using the covariance method) can be performed on analysis 
frames positioned at successive samples throughout the speech signal. The analysis 
error exhibits a periodic variation, according to the amount of excitation encompassed 
by the analysis frame (Rabiner et al., 1977). So, the instant of glottal c~osure can be 
identified by the sharp fall in the analysis error that occurs when the analysis frame is 
positioned one sample after that instant in the speech signal (Wong et al., 1979). The 
error then rises again as the analysis frame begins to overlap the next excitation pulse. 
The interval between the sharp fall and the subsequent rise is identified as the CGI. 

Ananthapadmanabha and Yegnanarayana (1979) employ a similar technique to 
the above, except that they filter the LPC residue to identify the "epochs" correspond
ing to the locations of glottal closure. Because the glottal waveform has effectively been 
differentiated twice (by the effect of lip radiation and the differentiation performed as 
part of LPC analysis), any slope discontinuities in the flow waveform effectively become 
impulses in the LPC residue. Slope discontinuities occur at the instants of glottal clo
sure because of the sudden cessation of flow. Even though other slope discontinuities 
may occur during the glottal flow, Ananthapadmanabha and Yegnanarayana (1979) 
find that they are still able to identify the instant of glottal closure for a wide variety of 
voices. However, for voices that are very noisy (see §3.6.4.1), the glottal closure epoch 
is not so easily identified. 

Typical glottal waveforms obtained by inverse filtering segments of utterances 
from three different speakers are shown in Fig.3. 7. These examples were generated using 
the approach of Wong et al. (1979), with the LPC analysis over the CGI performed by 
the covariance method. In each of Fig.3. 7 a and b, (i) shows the recorded speech signal, 
whlle (il) shows the variation of LPC error signal as the analysis frame was moved along 
the (differentiated) speech signal. The "x" marked on the LPC error signal indicates 
the start of the analysis frame from whlch the inverse filter was computed. Each 
graph labelled with (iii) represents the differentiated glottal waveform, sometimes called 
the "equivalent glottal excitation" (Wong et al., 1979). The glottal flow waveforms 
identified by (iv) are obtained by integrating the equivalent glottal excitation waveform. 

Several recent studies (cf. Boves, 1984; Veeneman and Bement, 1985; Krish
namurthy and Chllders, 1986) have employed additional information in the form of 
electroglottographic (EGG) signals in order to help identify the CGI. The use of signals 
additional to the speech signal is inconvenient for the application of speech analysis 
to low data rate speech encoding, but for clinical applications it is feasible. An EGG 
signal is obtained by placing electrodes on the skin, on either side of the voice-box, 
thus measuring the impedance across the glottis (Krishnamurthy and Chllders, 1986). 
As the vocal cords vibrate, the impedance varies, and so the EGG gives an indication 
of the vocal cord contact area, which is related to the glottal area and glottal flow 
waveform (cf. Titze et al., 1983). The EGG can also assist in accurate determination 
of the pitch frequency and VUV classification of the speech signal, because it indicates 
the actual vibration of the vocal cords, without any "distortion" applied to the signal 
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Figure 3.7. Typical glottal wavefonns, obtained by inverse filtering of the speech signal. The segments 

of speech signal are from utterances a: AM-RAINI and b: TF -RAIN!. In each case the waveforms are: 

(i) Differentiated speech signal, (ii) LPC error, (iii) glottal excitation function, and (iv) glottal flow 

waveform. The LPC analysis frame is of length 5ms for the example in a and of length 2.5ms for that 

in b. 

from the vocal tract resonances (Krishnamurthy and Childers, 1986). 

Other tactile observations of the vocal cord vibration have involved the use 
of high-speed video and cinegraphy (cf. Fletcher, 1953; Anastaplo and Karnell, 1988; 
Childers, 1990), ultrasonic and photo-intensity measurements akin to EGG (Titze et 
al., 1983; Boves, 1984), and the direct measurement of air pressure at various points 
in the vocal apparatus by means of miniature pressure transducers placed in the vocal 
tract (Boves, 1984). Such studies help to confirm the types of waveforms that are 
obtained by inverse filtering techniques and those that are predicted by models of vocal 
cord vibration (§2.3.1.1). 
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Figure 3.8. Long-term-average-spedra (LTAS) of utterances a: AM-WAL and b: TF-WAL. 

3.4.2 Direct estimation 

Only a few methods have been proposed for estimating the glottal waveform directly 
from the speech signal. Some of these techniques are "averaging" types of blind de
convolution, and therefore only estimate the average "glottal pulse". In this section 
I briefly describe two methods of "direct glottal estimation". The shift-and-add tech
nique, which is also "direct", is neglected here because it is described in great detail in 
Chapter 4. 

The long-time average spectrum (LTAS) is obtained by computing the average 
spectral content of the speech signal over a long (10-40seconds) period of time (Boves, 
1984). Because the vocal tract filter varies continually and considerably during a typical 
utterance, while the glottal waveform spectrum is relatively invariant, the LTAS is 
effectively the spectrum of the average glottal excitation (Boves, 1984). Fig.3.8 shows 
the LTAS computed from utterances of two speakers. The LTAS of each utterance 
was obtained by dividing the voiced portions of the utterance into segments, each of 
duration 25.6ms. Each segment was windowed with a 3-term Blackman-Harris window 
and zero-extended (§1.3.1.1) to a total duration of 51.2ms before computing its power 
spectrum by means of the FFT algorithm. 

The LTAS has been employed as a descriptor in a speaker recognition system 
(§3.6.2). It has also been investigated for use in a system for diagnosing laryngeal 
disorders (§3.6.4.1). 

Another approach to estimating the glottal waveform, which is more akin to 
the straightforward inverse filtering methods described in §3.4.1, is to simultaneously 
extract the vocal tract parameters and the parameters of a glottal waveform model by 
some suitable optimisation technique. This is the approach used by Milenkovic (1986), 
who models the glottal waveform by parametrising its opening and closing transients. 
By incorporating the glottal waveform into the LPC analysis, both sets of parameters 
can be optimised by a single procedure. 

3.5 Low data rate speech encoding techniques 

Much of current speech research is aimed at investigating and developing techniques 
to encode speech signals in the most compact form possible, while still retaining the 
essential (in the context of a particular application) characteristics of the speech sounds 
(see §2.1.2, §2.1.3.3 and §2.1.4.3). In this section, I discuss some of the established 



3,5 LOW DATA RATE SPEECH ENCODING TECHNIQUES 87 

methods for perfonning this feat. Techniques that are invoked to assess the performance 
of speech coding systems are described in §3.5.3. Chapter 5 presents a new technique, 
which draws upon some of the techniques described here. All the techniques discussed 
in this section operate on sampled versions of the speech signal, generating parameters 
that are represented as sets of discrete numbers. 

There are two main approaches to encoding speech signals. One -involves en
coding the waveforms of signals (§3.5.1). The data rate is reduced by taking advantage 
ofthe redundancy of typical speech signals. Such schemes generally operate at medium 
to high data rates (16-64kbit/s) and are usually able to encode other sounds such 
as music or data signalling tones. In the other approach, parameters characterising 
models of speech signals are encoded (§3.5.2). An approximation to an original speech 
sound can be reconstructed from a set of parameters by means of a suitable synthesiser. 
Such schemes enable speech to be encoded at rates ranging from less than 1kbit/s to 
about 16kbit/s. The reconstructed speech is generally less "natural sounding" than 
that produced by a waveform coder. However, the reduced data rates can make such 
techniques attractive whenever communication or speech storage is expensive (such as 
in mobile telephone links or for message storage on computers). Jayant (1990) presents 
a recent and comprehensive review of the state of the art in high quality speech coding 
techniques. 

3.5.1 Waveform coders 

The most straightforward method of digitally encoding speech signals is to simply 
encode each sample as a digital word (§1.3.4). This is inefficient, however, because there 
is a great deal of redundancy inherent in speech waveforms. Hence, the entropy of the 
signal (§1.1.5) is less than the number of bits required to straightforwardly represent 
each sample. A multitude of techniques have been developed to take advantage of 
this redundancy, so as to encode the speech signals at data rates closer to their actual 
information content (cr. Flanagan, 1972, §1.3). 

The first type of redundancy arises because of the large dynamic range of a 
typical speech utterance. There tends to be a wide variation in sound levels between 
quiet and loud segments of speech. However, the quantisation noise level is constant, 
depending only on the number of bits used to encode each sample. So, the signal-to
quantisation noise ratio (SNR) is greater for the high amplitude parts of speech than 
for the low amplitude parts. In order to encode the speech signal so that the SNR 
is relatively constant over a wide range of signal amplitudes, it is quantised with a 
non-uniform quantiser (Rabiner and Schafer, 1978, §5.3). This encodes the smaller 
amplitude samples more accurately than the larger amplitude samples. "Standard" 
PCM (pulse coded modulation) employs a logarithmic-based non-uniform quantiser, 8 
bit words for each sample and a sampling rate of 8kHz (Jayant and Noll, 1984, Chap
ter 5). The data rate is therefore 64kbit/s. Because of the non-uniform quantisation, 
the SNR is relatively constant, at about 40dB, for a wide range of speech loudness 
levels (Jayant and Noll, 1984, §5.3). 

In addition to the non-uniform quantisation referred to above, the quantisation 
process can be optimally adapted to the particular characteristics of each segment of 
speech. §3.5.1.1 discusses the various techniques used in these types of coders. 

A third reason why redundancy exists in the sampled speech signal is that, 
although a sampling rate of 8kHz is required to represent all the perceptually important 
features of speech, many segments of speech (in particular the voiced segments) contain 
only insignificant spectral components above 2kHz. In addition, the higher frequency 
components of a speech signal can suffer higher levels of distortion before the noise 
becomes perceptually noticeable (due to the effects of masking, see §2.2.2.2). Hence, 
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a speech waveform can be effectively encoded by dividing it into frequency sub-bands 
and treating each one separately (§3.5.1.2). 

A comprehensive treatment of all aspects of waveform coding of speech signals 
is provided in the recent text by Jayant and Noll (1984). Other references are cited at 
the relevant places throughout this section. 

3.5.1.1 Adaptive coding techniques 

Adaptive coding techniques take advantage of the short-term steady-state nature of 
speech sounds. For example, a fricative sound consists of low energy, high frequency, 
"noise", while a vowel sound is of much larger amplitude, is of lower frequency, and 
is strongly periodic. Two methods of adaptation to the short-term nature of a speech 
sound are employed. One technique is to adapt the quantisation step size to the ex
pected sample amplitudes. The step size can either be calculated from the variance of 
the input speech, in which case it must be transmitted separately to the receiver, or 
it can be calculated by feedback from the quantised signal itself (Rabiner and Schafer, 
1978, §5.4). The latter method is most often employed, because the quantisation in
formation is then inherent within the encoded data stream and no "side channel" is 
required. However, such schemes have a greater sensitivity to transmission errors. 
Adaptive quantising schemes can provide an improvement of about 4-7 dB in SNR 
(equivalent to a one bit per sample reduction in word size for the same SNR) over 
standard PCM (Rabiner and Schafer, 1978, p207). 

Another short-term adaptive technique involves predicting the value of the 
current sample from previous samples, encoding only the difference between the actual 
and predicted values. Because of the redundancy in speech signals, the variance of 
the difference is smaller than the variance of the actual speech, and fewer bits are 
required to represent each sample (Rabiner and Schafer, 1978, §5.5). A single predictor 
(equivalent to transmitting the weighted difference between successive samples) affords 
a SNR improvement of 4-11 dB (a reduction of about 1 bit per sample) over standard 
PCM (Noll, 1975). 

In order to obtain further improvements in coding efficiency, the predictor coef
ficients can be adapted to take advantage of the short-term characteristics of the speech 
signal (Atal and Schroeder, 1970). The coefficients are calculated for each segment of 
speech by the method described in §3.2.1, with the number of coefficients normally set 
to about 4-10 (Rabiner and Schafer, 1978, pp229-234). Because the predictor coeffi
cients are so effective for predicting the value of each speech sample, the residue can be 
represented with one or two bits per sample (Atal and Schroeder (1970) used one bit). 
Such adaptive predictive coding (APC) schemes provide SNR improvements of about 
14 dB (or a reduction of 2 bits per sample) over standard PCM (Noll, 1975). 

APC schemes are equivalent to the LPC vocoder schemes discussed in §3.5.2.2 
with the residue (error) signal being transmitted instead of the pitch, voiced/unvoiced, 
and loudness parameters. After linear prediction has been performed on the speech, 
the residue signal contains some long-term redundancy (such as the pitch periodicity) 
that the short-term nature of the predictor cannot model. Hence, several schemes 
employ a long-term pitch predictor, in addition to the short-term predictor, to try and 
reduce the data rate required to code the residue (cr. Ramachandran and Kabal, 1989). 
Further refinements in predictive coding are discussed in the section on LPC vocoders 
(§3.5.2.2). 

Predictive coders are commonly combined with adaptive quantising schemes 
in order to take advantage of the benefits of both. Adaptive quanti sat ion applied to 
a single predictor coder (termed ADPCM, adaptive differential PCM) has become an 
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international standard, with a data rate of 32kbit / s providing speech quality equivalent 
to 64kbit/s PCM (Decina and Modena, 1988). 

3.5.1.2 Sub-band coding techniques 

The redundancy in speech signals, referred to in §3.5.1.1 as a high correlation between 
closely spaced speech samples in the time domain, can also be viewed in a similar 
way in the frequency domain. Typically, a short segment of a voiced speech signal 
has very little energy at frequencies above 3kHz, while energy below that frequency 
is concentrated in the fundamental component and in the formants (cf. §2.1.4.2). By 
contrast, the energy in segments of unvoiced speech is typically concentrated in fre
quencies higher than 2kHz. In addition to these short-term concentrations of energy 
in relatively narrow frequency bands, the long-term spectral content of speech sounds 
is mainly concentrated at low frequencies. To take advantage of these characteristics 
of speech signals, so that they can be coded more efficiently, it is convenient to divide 
them into several sub-bands, with each being encoded separately (using any of the tech
niques discussed in §3.5.1.1, but often ADPCM) Typically, such a sub-band coder (SBC) 
divides the speech signal into 4-10 sub-bands. Good quality speech can be produced 
by encoders working at data rates down to about 24kbit/s (Daumer, 1982). Usually, 
the low frequency sub-bands are narrower than the higher frequency bands, and more 
bits are allocated to encoding the lower bands (Tribolet and Crochiere, 1979). 

Another frequency-based coding t.echnique is adaptive transform coding (ATC). 
In ATC, the speech signal is divided into segments of (typically) 10-25 ms duration, 
the (Fourier or other) transform of each segment is obtained, and the transformed 
signal coefficients are encoded for transmission (Tribolet and Crochiere, 1979). The 
coefficients can be encoded by techniques similar to those invoked for SBC (using 
fewer bits for higher frequency coefficients), vector quantisation (Chang et al., 1987), 
or by merely encoding the spectral peaks (Almeida and Tribolet, 1984; McAulay and 
Quatieri, 1986). In addition, the transform vector for each segment can be encoded by 
an adaptive technique to take advantage of time variations in the spectral content of 
the speech signal. ATC techniques can be used to encode speech at data rates down to 
16kbit/s with little distortion (Crochiere, 1978; Tribolet and Crochiere, 1979). 

An important aspect of frequency-based coding schemes is that they allow 
straightforward implementation of techniques for spectrally weighting the quantisation 
noise. This involves forcing the spectral shape of the quantisation noise to be similar 
to the spectral shape of the speech signal, but offset in power level by the SNR of the 
system. Because of the effect of auditory masking (which renders noise inaudible if it is 
more than some 24dB lower in amplitude than a tone within the same critical band, as 
described in §2.2.2.2), spectral weighting of the noise effectively improves the perceived 
quality of speech produced by the coder (cf. Schroeder et al., 1979). Spectral weighting 
can also be implemented with other coding techniques, but not in such a direct way 
(cf. §3.5.2.4; Atal and Schroeder, 1979). 

3.5.2 Model based coders 

According to the speech production model presented in §2.3.1, speech is generated by a 
mechanism that is controlled by (relatively) slowly varying parameters. Therefore, the 
speech can be encoded at low data rates if the parameters for each particular segment 
of speech can be easily extracted from the speech signal, encoded, and used to control 
a synthesis model which is able to regenerate a close replica of the original speech 
(Schroeder, 1966). A speech coder of this type is commonly called a vocoder (voice 
coder), after the introduction of the first device with this name by Dudley (1939). 
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The simplest speech model is the source-filter model (§2.3.1.4). Parameters 
for this model are the source type (voiced or unvoiced), pitch frequency (for voiced 
segments), source amplitude, and filter characteristics. Over the last five decades, many 
techniques have been developed to represent the source and filter characteristics. The 
aim of all these techniques is to represent the parameters in an efficient and accurate 
manner. §3.5.2.1 describes several of these techniques that operate with a spectral 
representation of the parameters, while §3.5.2.2 describes the use of LPC to represent 
the filter parameters. Some of the techniques that have been developed to improve the 
quality of LPC-encoded synthetic speech are discussed in §3.5.2.3 and §3.5.2.4. 

3.5.2.1 Spectral-based vocoders 

The oldest form of the vocoder is the channel coder (Dudley, 1939), where the spectral 
magnitude of the speech filter is described by the output of (typically) 10 to 20 narrow 
band filters. The signal from each filter is rectified and low-pass filtered to typically 
20Hz for transmission. At the receiver, each one is used to control the gain of one of a 
similar set of band-pass filters. The excitation for the filters comes from a pulse or noise 
generator, controlled by pitch and VUV information from the transmitter (Schroeder, 
1966). Such vocoders are able to encode speech at rates of about 2kbit/s, although the 
quality is generally poor at such data rates (Schroeder, 1966). 

A refinement of the channel vocoder involves transmitting only the spectral 
peaks (McAulay and Quatieri, 1986) or formant frequencies (Linggard, 1985, §4.3). 
Both the formant amplitudes and frequencies must be encoded, but only the first three 
or four formants are required to represent the character of different speech sounds 
(§2.1.4). The formant frequencies can be extracted by any of the methods discussed in 
§3.3.3. 

The extraction of only the spectral peaks (ignoring whether or not they are 
"formants") is a useful technique (McAulay and Quatieri, 1986) because the synthetic 
speech can be reconstructed from an ensemble of sinusoids at these frequencies. The 
phase of each sinusoid is also required for this technique, which means that higher 
data rates result. Such coders approach the quality and complexity of ATC techniques 
(§3.5.1.2 ). 

Other frequency domain based vocoder techniques are the phase vocoder, where 
the magnitude and phase derivative of the signal in each frequency band is transmitted 
(Flanagan and Golden, 1966), and the homomorphic vocoder, where the few low-order 
cepstral coefficients (§3.3.2) are used to represent the spectral shape ofthe speech signal 
(Oppenheim, 1969). 

3.5.2.2 LPC-based vocoders 

Linear prediction (§3.2) has been employed for low data rate speech encoding since it 
was first applied to speech signals (Atal and Schroeder, 1968; Itakura and Saito, 1968). 
Because the speech filter coefficients vary only relatively slowly, they only need to be 
transmitted at rates of about 20-100 times per second. In addition to these filter coef
ficients, information on the excitation type (noise or impulse train, §3.1.2), amplitude 
(short-term energy, §3.1.1) and pitch period (§3.1.3) is required by the synthesiser. The 
data rate of the encoded speech depends on the rate at which these various parameters 
are updated and on the number of bits employed to encode each set. 

Quantising the predictor coefficients can lead to the prediction filter becoming 
unstable and therefore the coefficients are usually transformed into another represen
tation before quantising (§3.2.3). The poles ofthe filter are sometimes employed (Atal 
and Hanauer, 1971) because the filter is guaranteed to be stable if all the poles are 
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inside the unit circle (which can be easily ensured). However, a more usual course is to 
encode the reflection coefficients, since stability is ensured if these all have a magnitude 
less than unity (Markel and Gray, 1976, p229). In order to improve the encoding effi
ciency, techniques such as logarithmic compression of the coefficients (Markel and Gray, 
1976, p234) or vector quantisation of each set of coefficients (Wong et al., 1982) have 
been employed. Such approaches have led to techniques of encoding speech at data 
rates down to 800 b,its/s (Wong et al., 1982) (typically, the simple LPC techniques can 
encode speech at 2.4kbit/s). Readers are referred to texts such as those by Markel and 
Gray (1976) and Rabiner and Schafer (1978) for further details on these techniques. 

3.5.2.3 Optimised excitation techniques for improved LPC-encoded speech 

Speech produced by a simple source-filter synthesiser from a pitch-pulse/noise excita
tion signal often has an unnatural "buzzy" character. In order to improve the "quality" 
of the re-synthesised speech, various techniques are employed to obtain more "optimal" 
excitation signals. 

Improvements are obtained most readily by employing "shaped" pulses rather 
than simple impulses for the voiced excitation (Holmes, 1973). Often a triangular 
shaped pulse is employed, since this has a spectrum that is similar to that of the glottal 
waveform (Flanagan, 1972, §6.241). Another technique employs an excitation that 
differs in each of several frequency sub-bands (Fujimura, 1968; Griffin and Lim, 1988). 
Such an excitation takes into account the occurrence of "mixed" excitation (see §2.2.1). 
Also, because voiced speech is not perfectly periodic, its spectrum, especially at higher 
frequencies, is not composed entirely of harmonics of the "fundamental". Employing 
an excitation signal that differs in several frequency sub-bands can therefore help to 
produce less "buzzy" sounding speech. The reconstructed speech quality can also be 
improved by adjusting the phase of the excitation spectrum so that the excitation is not 
so "peaky" (cf. Schroeder, 1975). In addition, a small random "jitter" of the phase can 
help to introduce (more natural sounding) pitch perturbations into the reconstructed 
speech signal (Fujimura, 1968; Kang and Everett, 1985). 

Another method of improving the excitation source is to encode the LPC 
residue. This is called residue excited LPG (RELP) coding and is very similar to 
the APC techniques discussed in §3.5.1.1. In traditional RELP coding, the excitation 
is derived from a low-pass filtered version of the residue signal (Markel and Gray, 1976, 
§10.4). In order to reduce the data rate required, techniques such as sub-band cod
ing of the residue (Un and Lee, 1984) have been employed. For voiced speech, the 
residue exhibits a pronounced periodicity at the pitch frequency (§3.1.3). This can be 
removed with a pitch prediction filter (Ramachandran and Kabal, 1989). Apart from 
this, RELP techniques, and the methods discussed in subsequent paragraphs, typi
cally do not require the use of VUV or pitch analysis, because this is inherent in the 
excitation coding. 

Techniques for modelling the LPC residue can be invoked to parametrically 
represent the "optimum" excitation signal at low data rates. For example, Sreeni
vas (1988) computes "spike" and "noise" components that optimally model the residue 
signal. In another approach, Atal and Remde (1982) model the residue by a few (typi
cally 4-10) discrete pulses in each segment. The amplitudes and positions of each pulse 
are calculated in order to minimise the weighted error between the original and the 
reconstructed speech (Atal, 1985). Methods for constructing these pulses are described 
in more detail in §3.5.2.4. 

Yet another approach to modelling the excitation is to produce a code book 
of possible excitation sequences, choosing that sequence which minimises the resultant 
reconstruction error (Atal and Schroeder, 1984). A code book of 1024 different ex-
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Figure 3.9. Analysis-by-synthesis technique fOJ: obtaining an optimal excitation sequence. The per

ceptual weighting increases the amount of allowable error in spectral regions where the speech energy 

is high. 

citation sequences (.inferring a code of 10 bits per frame) is typically employed, with 
each sequence being about 5ms in duration (Atal and Schroeder, 1984; Davidson and 
Gersho, 1986). 

3.5.2.4 Multi-pulse excitation technique 

The multi-pulse method of obtaining an "optimal" excitation sequence for LP C-encoded 
speech is described in more detail than the other methods mentioned in §3.5.2.3 because 
of its similarity to the new technique that I present in Chapter 5. 

Multi-pulse (MP) excitation models the excitation signal as a few discrete 
pulses. Typically, 4-10 pulses are employed per 10ms segment. MP-LPC is often 
termed an analysis-by-synthesis technique. In contrast to the RELP techniques de
scribed in §3.5.2.3, for which the excitation is (usually) obtained from the residue after 
performing LPC analysis (note, however, that the CELP technique described in §3.5.2.3 
is also an analysis-by-synthesis scheme), the excitation signal for analysis-by-synthesis 
schemes is obtained in an iterative fashion by minimis.ing the error between the original 
speech and the speech that would be reconstructed by the trial excitation ( cf. Kroon and 
Deprettere, 1988). Fig.3.9 shows a block diagram of an analysis-by-synthesis scheme. 
The error is weighted so as to reduce its value in regions of the spectrum where it is 
perceptually less noticeable (Atal and Schroeder, 1979). A simple weighting function 
W(z), described by Atal and Remde (1982), is formed from the LPC filter A(z) by 

W(z} 
A(z) 

A(z/t)' 
(3.32) 

where i is a constant between 0 and 1 that determines the amount of de-emphasis 
given to the formant peaks by W(z). 

For the case of the multi-pulse LPC (MP-LPC) technique, the excitation gen
erator identified in Fig.3.9 determines the positions and amplitudes of the pulses that 
comprise the excitation signal (Atal and Remde, 1982). In this section I briefly de
scribe the method by which these pulses are located. Further details are presented by 
Atal (1985) and Singhal and Atal (1989). 
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The perceptual weighting of the error signal that is indicated in Fig.3.9 can be 
applied equivalently to the actual and trial speech signals. The weighted mean square 
error over the interval 0 S n < N then becomes 

N-l 

E = E [y[n] _y[n]]2 , (3.33) 
n=O 

where y[n] is the weighted speech signal and y[n] is the weighted synthetic speech. The 
synthetic speech is produced by a convolution between the weighted impulse response 
h[n] of the LPC synthesis filter A(z) and the trial excitation 

m-l 

urn] = E f3kS[n - nk], (3.34) 
k=O 

where ,13k and nk are the amplitude and position respectively of the kth excitation pulse 
respectively. The synthetic speech can therefore be expressed as 

m-l 

y[n] ::::: E f3k h[n - nk] + yo[n], 0 S n < N, (3.35) 
k=O 

where yo[n] is the memory of the synthesis filter from the previous frame. yo[n] can be 
computed (assuming that the filter h[n] does not change too much between each frame) 
by means of 

m-l 

yo[n] E ,Bkh[n - nk], 0:::; n < N, (3.36) 
k=O 

where ,Bk and iLk are the amplitudes and positions of the m excitation pulses in the 
previous frame. 

Substituting (3.35) into (3.33), setting the derivative of E with respect to each 
of the pulse amplitudes ,13k to zero, and rearranging, leads to the set of equations 

m-l 

E f3kanknj cnjl 0:::; j < m (3.37) 
k=O 

where aij, which is the autocorrelation of h[n], is defined to be 

N-l 

aij E h[n i]h[n - j], i,j O ... N -1, (3.38) 
n=O 

and the vector Cj is the cross-correlation of h[n] and the signal y[n] = y[n] yo [n]: 

N-l 

Cj E y[n]h[n - i], i = O ... N - 1. (3.39) 
n=O 

Substituting (3.35) and (3.37) into (3.33) leads, after some manipulation, to 
the expression 

N":'l m-l 

Ernin E y2[n] E f3kcnk (3.40) 
n=;O k=O 

for the minimum value of E. Since only the second term in RRS (3.40) depends on 
the excitation, the optimum value for Ernin can be found by finding a solution (3.37) 
which maximises this term. This is computationally impractical in general, and so 
sub-optimal schemes for locating the pulses are invoked (Singhal and Atal, 1989). One 
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such scheme involves locating the pulses sequentially in a recursive procedure. IT u[n] 
consists of only one pulse, (3.37) reduces to 

(3.41) 

and (3.40) to 
N-l 

Em1n[i] L jp[n] - cllaii, (3.42) 
n=O 

where j3o[i] and Em1n[i] are the values of j30 and Em1n respectively when the pulse is 
located at n i. The error is minimised when the second term in RHS (3.42) is at 
a maximum. Hence, the pulse is located at the position no = i for which CUaii is 
maximised. 

The second pulse of u[n] can be found by setting m = 2 and incorporating 
j30 and no, found as described in the previous paragraph, into (3.37) and (3.40). The 
recursive procedure for finding the ph pulse, for j 1 ... m - 1, is: 

and 

i=O ... N-l., 

n' = arg max [cV)] 2 10." J .• u, , 

(3.43) 

(3.44) 

{./. - cU)/"" (3 45) fJJ - n; '-'n;nj' • 

After all m pulses have been found by this procedure, their amplitudes are re-optimised 
by solving (3.37). Fig.3.10 shows a segment of speech, the MP excitation sequence 
(found as described above) and the resultant synthetic speech waveform. Eight pulses 
were obtained in each segment (each of which was 7.5ms in duration), with the spacing 
between adjacent segments being 5ms. The pulses in the overlap regions between 
segments were discarded as suggested by Singhal and Atal (1989). The LPC filter was 
composed of 10 coefficients obtained at 7.5ms intervals. Each LPC filter was computed 
from a segment of lOms in duration by the autocorrelation method (§3.2). 

The method of locating the pulses described in the above two paragraphs does 
not work well when m is large. This is because the pulse amplitudes remain fixed 
after they have been initially located (Lefevre and Passien, 1985). The first few pulses 
may therefore be inaccurate because the effect of later pulses has not been accounted 
for. The pulse amplitudes can be re-optimised by application of (3.37) after each 
pulse has been found, but this increases the amount of computation required. Singhal 
and Atal (1989) present an "optimised" procedure, in which the pulse amplitudes are 
implicitly allowed to vary until all the pulses have been located. 

Further improvements to MP-LPC include the use of pitch prediction to capi
talise on the "periodicity" of the pulse signal (cf. Araseki et at., 1986; Singhal and Atal, 
1989), re-computation of the LPC filter parameters by taking into account the newly
found MP excitation signal (Singhal and Atal, 1983), and various "optimal" methods 
of locating the pulses (cf. Lefevre and Passien, 1985; Boyd, 1987). 

Another variant of the multi-pulse approach, which has recently gained promi
nence as the coding technique adopted for the European digital mobile radio scheme 
(Nat vig , 1988), is called regular pulse excitation (RPE). In this technique, the pulses 
are positioned at regular spacings (e.g. every five samples) throughout each segment. 
Hence only the position of the first pulse needs to be specified, together with the am
plitudes of each of the pulses (Kroon et at., 1986). The RPE scheme typically requires 
more pulses than MP-LPC in order to attain the same performance, but this is more 
than compensated for by only having to specify one position (Kroon and Deprettere, 
1988). 
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Figure 3.10. Example of multi-pulse coding of speech. a: (Differentiated) speech waveform (taken 

from utterance AM-RAINl). b: Multi-pulse excitation sequence. c: Synthetic speech waveform. d: 

Enor signal. 

3.5.3 Performance evaluation of speech coding techniques 

The evaluation of the performance of a particular speech encoding scheme requires that 
the "distortion" of the speech signal by the system be quantified in some meaningful 
manner. In this section I describe some of the techniques that have been developed to 
assess the quality of speech produced by low data rate speech coding schemes. §3.5.3.1 
is concerned with subjective measures of speech quality, as judged by human listeners, 
while §3.5.3.2 describes techniques for obtaining "objective" measures of the amount 
of distortion suffered by a processed speech signal. 

The quality of speech produced by a particular encoding system is enumerated 
by the quality "score" or "rating" of utterances processed by the system. This score 
may be obtained by the subjective assessment methods described in §3.5.3.1, in which 
case it is a comparative rating on a perceptual scale of "speech quality", or by the 
objective assessment methods described in §3.5.3.2, in which case it is a rating on a 
specified scale of "speech fidelity". The different quality scales can be related to each 
other by comparing the scores for particular utterances when assessed by each of the 
different methods (see §3.5.3.1). 

Any measure of the "performance" of a speech encoding scheme must of course 
include reference to the data rate of the encoded speech, the computational complexity 
of the requisite processing, and the sensitivity of the scheme to errors in the encoded 
data (cf. Natvig, 1988). The cost of data storage or transmission is the main reason 
for utilising low data rate speech encoding schemes. The trade-off between data rate 
and speech quality can be determined by evaluating the quality scores of utterances 
encoded at a range of data rates. The relative performances of different schemes at 
any particular data rate can then be compared by examining their respective quality 
scores. The scores should also be compared at a range of transmission error rates, 
because of the trade-off between error rate and data rate on any data transmission 
channel (cf. Hamming, 1980). The computational complexity of an encoding scheme 
is an important consideration because it directly influences the cost of the processing 
hardware required to implement it. 
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3.5.3.1 Subjective measures of speech quality 

There are several relevant aspects of the "goodness" of speech produced by a speech 
encoding or synthesis scheme. Intelligibility is the accuracy with which words and 
syllables can be correctly identified after they have been processed by the system. 
Another aspect is the naturalness of the speech, which for speech encoding schemes is a 
measure of how well the speech mimics the voice characteristics of the original speaker. 
Naturalness is of particular concern for higher data rate schemes, whereas intelligibility 
ratings are of more importance for low data rate schemes (Kitawaki and Nagabuchi, 
1988). In this section I describe methods of evaluating the perceived quality of processed 
speech, where quality is a term that encompasses all aspects of "how good" a certain 
speech signal sounds to human listeners. It therefore includes both the intelligibility 
and naturalness of the speech. Techniques for assessing the intelligibility of speech on 
its own (cf. Fairbanks, 1958; Kitawaki and Nagabuchi, 1988) are neglected here. 

There are two main methods of evaluating the perceptual quality of speech. 
Both of them involve playing speech utterances to groups of listeners and obtaining 
their opinions about their perception of the quality of each utterance. Before reviewing 
these assessment methods, I discuss, in the next two paragraphs, criteria for choosing 
utterances for the evaluation. 

The utterances employed in the evaluation should be of phrases that are pho
netically balanced, so that they cover a range of sounds. A list of appropriate phrases 
has been published (cf. IEEE, 1969». Alternatively, a variety of "phoneme-specific" 
sentences can be employed to evaluate the ability of the processing system to reproduce 
different "types" of phonemes, such as vowels, fricatives, or nasals. Huggins and Nick
erson (1985) list suitable phrases and describe procedures for evaluating the results of 
such an approach. The content of each phrase should be neutral so that the listeners 
can focus on the quality of the utterances more easily. It is usual to have several differ
ent phrases of similar style and length (IEEE, 1969). Utterances spoken by a range of 
speakers may be employed in the assessment so as to avoid biasing the results by the 
peculiarities of any particular speaker's voice quality (IEEE, 1969). 

In each of the assessment methods, the test utterances, which are utterances 
that have been processed by the systems under investigation, are augmented by refer
ence utterances, which are utterances that have been distorted by a quantified level of 
noise. Hence the subjective quality ratings can be associated with equivalent signal-to
noise ratios. Reference utterances are obtained by corrupting utterances, that in other 
respects are the same as the ones used for the test utterances, with various levels of 
noise according to the formula 

ret) = set) + kn(t) (3.46) 

where ret), set), and net) represent the reference, "perfect" speech, and noise signals 
respectively, and k represents the level of distortion. (IEEE, 1969). A convenient way 
to obtain a noise signal that is uncorrelated with set), but at the same time is related 
to the short-term amplitude of set) (so that the SNR is relatively constant for different 
levels of speech amplitude) is to multiply set) by a spectrally weighted random noise 
signal no(t): 

net) = s(t)no(t) (3.47) 

where no(t) is obtained by filtering white noise through a filter with a slope of -
10dB/decade (IEEE, 1969; Rothauser et al., 1968), so as to match the average spectral 
content of typical speech signals. The SNR of the reference signal defined by (3.46) 
and (3.47) is given by 

SNRref = 20 log { k~no } (3.48) 
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where Rna is the RMS level no( t). Further aspects of generating reference utterances are 
discussed by Rothauser et ai. (1968) and the authors of (IEEE, 1969). An alternative 
type of reference signal, in which no( t) is replaced by a signal that has unit amplitude 
but whose phase changes randomly by 11", is described by Schroeder (1968). 

The category judgement method of quality assessment involves asking each lis
tener to rate each utterance separately on a scale of "quality", usually from one to 
five (cf. IEEE, 1969; Rothauser et al., 1971j Huggins and Nickerson, 1985; Daumer, 
1982; Kitawaki and Nagabuchi, 1988). The scale is usually labelled: 1- unacceptable; 
2-poorj 3-fairj 4-goodj and 5-excellent (IEEE, 1969). The scores for each utter
ance are averaged over the listeners to produce a mean opinion score (MOS) for that 
utterance. 

The category judgement test requires that the listeners have an idea of what the 
different categories mean in terms of speech quality. This can be effected by presenting 
them with utterances of a specified quality, such as those at the extremes, before they 
begin the test (IEEE, 1969). This "anchoring" can also be augmented by presenting 
examples of the utterances from the whole range of qualities that are to be tested. This 
gives the listeners an opportunity to become familiar with the material, and enables 
them to form opinions about the different categories. A subset of the utterances is often 
repeated, say at the beginning and the end of the test, to examine the consistency of 
each person's scoring (Huggins and Nickerson, 1985) 

In comparison or ranking methods of quality assessment, each listener is asked 
to compare pairs or groups of utterances, and rank them accordingly. There are sev
eral approaches to accomplishing this. The paired comparison, or iso-preference, test 
requires that the listener judge which is the better of every pair of utterances (cf. 
Rothauser et al., 1968; IEEE, 1969; Huggins and Nickerson, 1985). The probability 
matrix of preference between each pair of utterances is then obtained by averaging 
the responses from all listeners. Pairs of speech utterances are deemed to be equal in 
quality when they are preferred with equal probability (hence the term iso-preference). 
The utterances can therefore be ranked in order of quality. 

The paired comparison test is very time consuming, since about O(N2) com
parisons must be made (where N is the number of utterances). One way of reducing 
the number of comparisons is to implement an elimination tournament strategy, where 
utterances are "eliminated" from the "tournament" when they "lose" a certain number 
of comparison tests. The ranking of a particular utterance is the number of comparisons 
that it "wins". Rosenberg (1971) describes the details of this type of test. Another 
technique for comparing many utterances is to present them in small groups, asking 
each listener to rank the utterances within the group (d. IEEE, 1969; Rothauser et ai., 
1971). Such a test requires fewer comparisons than the iso-preference method when 
the total number of utterances is large. 

Each of the quality assessment methods discussed above produces a rating for a 
particular utterance (and hence for the coding scheme that produced that utterance) on 
an arbitrary scale. The scales for the different methods can be related by performing 
different tests on the same set of utterances. Huggins and Nickerson (1985) assert 
that the category judgement and iso-preference methods produce virtually identical 
results. However, Rothauser et al. (1971) find that the scales produced by the category 
judgement and iso-preference methods cannot be directly related. They postulate that 
this is because the five quality steps in the category judgement method are too coarse So, 
they propose a modification of this method that allows listeners to rate each utterance 
on a decimal (non-quantised) scale from 0 to 10. Their modified method produces 
results that are more in accord with those from the iso-preference method. 

The scale for any method can be related to an SNR scale by incorporating 
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reference signals into the test (cf. Rothauser et al., 1971; Kitawaki et al., 1988). How
ever, "quality" is in general not a uni-dimensional quantity, since it is related to several 
aspects of a speech signal, such as its naturalness, the amount of additive noise, or the 
accuracy with which phonetic features are represented. Statistical techniques such as 
multidimensional scaling can be invoked to examine the relationship between the qual
ity score and its various physical or perceptual correlates (cf. Hecker and Guttman, 
1967; Rosenberg, 1971; Cummiskey et al., 1973; Huggins and Nickerson, 1985). 

Goodman and Nash (1982) compare the results of subjective measures (via 
category judgement tests) of the quality of each of several speech transmission systems 
obtained from listeners in seven different countries. They find that the only significant 
differences in scores between countries occurs for listeners in Japan (lower MOS ratings 
than the all-country average) and the USA (higher MOS ratings). 

Further details of the methodology of these tests, and a comprehensive review 
of previous work on subjective speech quality evaluation can be found in IEEE Recom
mended practice for speech quality measurement (IEEE, 1969). 

3.5.3.2 Objective measures of speech quality 

By an "objective" measure of speech quality I mean a rating that can be numerically 
computed from the speech signal. Such measures are necessary adjuncts to subjective 
measures (§3.5.3.1), both because of the time consuming nature of performing sub
jective tests, and because of the difficulty of ensuring conformity between subjective 
judgements made under different conditions (especially those made in different labo
ratories). Of course, as pointed out by Takahashi (1988), a subjective evaluation of 
quality measures the opinions of the users directly, which is of prime importance in 
any commercial environment. In this section I describe some of the objective measures 
that have been proposed to measure the "quality" of processed speech signals. More 
properly, they measure the distortion between the processed and unprocessed signals. 
The quality can be expressed as the proportional amount of distortion in the processed 
signal. 

Perhaps the simplest measure of quality is the SNR, which is defined by 

SNR 
{y[n]2)n 

10 log {{y[n]- z[n]P}n (3.49) 

where z[n] and y[n] are the input and output signals respectively of the speech process
ing system under test (cf. Dimolitsas, 1989). The SNR of an utterance is usually defined 
as the average of the ensemble of SNR values computed, by means of (3.49), from short 
sequential segments of the utterance. The SNR defined in this way has two deficien
cies. The first is that the relative noise level during the "silent" segments of speech 
can be high, and hence the SNR can be large and negative, without the noise being 
perceptually noticeable (because the signal energy is so low anyway). The segmental 
SNR is defined so that each segment has a minimum SNR of OdE. For the mth segment 
(of duration M samples), the segmental SNR Ls[m] is defined by (Mermelstein, 1979) 

(m+J)M 

L z[nYl 
1 + n=mM 

(m+1)M 
(3.50) 

L {y[n] 
n=mM 

The average segmental SNR for the utterance SNRseg is then defined as 

SNRseg 10 log {exp«(Ls[m])m -1)}. (3.51) 
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Crochiere (1978) defines an alternative form of segmental SNR in which the SNR of 
each segment is computed by (3.49), but only the values for segments whose energy is 
greater than some threshold are averaged to give the actual SNR value. 

The other deficiency of SNR ratings, which applies to both the simple and the 
segmental SNR measures defined in the previous paragraph, is that many waveform 
distortions are not perceptually relevant. For instance, sign inversion of a speech sig
nal results in a SNR of -6dB, yet the speech sounds the same as non-inverted speech. 
In addition, noise that is correlated with the signal generally has a lower perceptual 
effect than uncorrelated noise (Jayant, 1974). Most vocoder-type speech coding tech
niques do not preserve the waveform, yet they produce perceptually adequate speech. 
Several distance measures or distortion measures have been developed to characterise 
the perceptually relevant distortions of a speech signal (cf. Atal and Schroeder, 1979; 
Schroeder et al., 1979; Kitawaki et al., 1988; Dimolitsas, 1989). These are all based on 
short-term spectral representations of the speech sounds. They are closely related to 
the distance measures employed in speech recognition schemes (§3.6.1). 

The most straightforward spectral distance measure is the difference between 
the short-term spectral, cepstral, or LPC coefficients of the processed and unprocessed 
speech signals (cf. Kitawaki et al., 1988; Dimolitsas, 1989). Kitawaki et al. (1988) define 
a cepstral distance deEP measure as 

P 

deEP = 10 log 2 L{ef erp (3.52) 
i=l 

where ei and er are the (pth order) cepstral coefficients (§3.3.2) of the unprocessed and 
processed speech signals respectively. The average distance measure for an utterance is 
obtained by averaging the value of deEP computed from each short segment of speech. 
Kitawaki et al. (1988) relate this measure to the perceptual MOS scale of speech quality 
by comparing the results obtained in a subjective and objective evaluation of a set of 
speech utterances. They find that the cepstral distance gives results with a good 
correspondence to those obtained by the category judgement method (§3.5.3.1). The 
short term log spectral distance dsp is defined by 

(3.53) 

where Xm(f) and Ym(f) are the spectra of the mth segment of the original and processed 
speech signals respectively. 

Other distance measures have included several commonly employed in speech 
recognition. Reviews of these are given by Gray and Markel (1976) and Nocerino 
et al. (1985), from the point of view of speech recognition, and Dimolitsas (1989) 
from a speech quality assessment point of view. Schroeder et ai. (1979) present a 
comprehensive scheme for processing the short-term spectra of speech sounds according 
to the characteristics of human sound perception. Their scheme takes into account both 
the characteristics of sound-to-neural transduction and the effects of noise masking. The 
speech degradation is expressed as a number between zero and unity, estimating the 
ratio of perceived noise to perceived speech loudness. 

3.6 Other applications of speech processing techniques 

In this section, I discuss some of the applications, other than low data rate speech en
coding, of the speech analysis techniques introduced in §3.1 through §3.4. Techniques 
that are commonly invoked in speech recognition schemes are described in §3.6.1, while 
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§3.6.2 provides an introduction to the field of speaker recognition. §3.6.3 gives a brief 
overview of text-to-speech conversion. Finally, §3.6.4 describes some of the analysis 
techniques that have been applied to speech therapy and the diagnosis of vocal disor
ders. 

Since my research was not directly concerned with any of the applications 
described in this section, they are treated somewhat cursorily. However, this section 
is included in order to complete the coverage of speech processing techniques which is 
the subject of this chapter, and because of the similarities of some of the techniques to 
those discussed in Chapters 6 and 7. In addition, the new speech analysis techniques 
that I present in Chapters 4 and 5 could feasibly be applied to any of the problems 
described here (see the discussion in §8.2). 

3.6.1 Automatic speech recognition 

The area of speech recognition is one of the most challenging currently facing speech 
researchers. Although my research has not been concerned with speech recognition, 
the difficulties that are encountered, and the techniques for overcoming them, are rel
evant to many other problems, such as the classification of cough sounds and animal 
vocalisations discussed in Chapters 6 and 7 respectively. In this section I briefly review 
the techniques that have been developed for recognising speech. The related field of 
speaker recognition is similarly treated in §3.6.2. 

Note that I am not concerned here with techniques of "machine understanding", 
but only of converting speech sounds into their text equiValent. Techniques of language 
understanding and "artificial intelligence" are treated in depth by many authors (cf. 
Woods, 1985). It should be kept in mind, however, that it will probably be necessary to 
incorporate "higher level" linguistic processing into any computer algorithm that will 
(if, in fact, this ever eventuates) be capable of recognising speech as well as humans do 
(see the discussion in §2.1.3.3). The types of applications for which speech recognition 
schemes are useful include "hands free" controllers for machines, automatic dictation 
machines, and telephone services such as airline reservation systems (cf. Rabiner and 
Levinson, 1981). 

The basis of any recognition technique is to compare the test pattern of an 
(unknown) input signal with a number of standard template patterns. The template 
that best matches the input pattern is judged to represent the unknown signal. In 
the context of speech recognition, the signals consist of individual words or word units 
(such as phonemes or syllables). Speech recognition schemes can be divided into those 
that recognise individual words, termed isolated word recognition schemes, and those 
that connected words or sentences,which are termed continuous, or connected, speech 
recognition schemes (Rabiner and Levinson, 1981; Vaissiere, 1985). The discussion in 
this section is limited to isolated word recognition, although many of the concepts are 
also applicable to recognition of continuous speech. Recognition schemes are termed 
speaker independent if they are designed to recognise words from any speaker and 
speaker dependent if they are limited to a single speaker (Vaissiere, 1985). 

Successful speech (or speaker) recognition relies on the estimation of features 
which adequately describe the phonetic content of speech sounds (or characteristics of 
an individual's voice). All ofthe analysis techniques described in §3.1 through §3.3 can 
be employed to extract features for the recognition of words and voices. In §3.6.1.1 I 
describe the types of features that are commonly invoked for speech recognition pur
poses. §3.6.1.2 introduces the techniques that are employed to match the test and 
reference patterns, while §3.6.1.3 briefly discusses the difficulties involved in training 
speech recognisers. 
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Fig.3.11 shows a block diagram of a word recognition scheme. The feature mea
surement stage consists of one (or more) ofthe techniques described in §3.1 through §3.2. 
Features that are commonly employed for word recognition include the short time spec
tral content or formants, LPC coefficients, and (low order) cepstral coefficients (Davis 
and Mermelstein, 1980; Rabiner and Levinson, 1981; Juang et al., 1987). Cepstral co
efficients currently appear to provide the best recognition performance (Rabiner et al., 
1989). The features are often weighted so as to account for the perceptual characteris
tics of human hearing. For example, Davis and Mermelstein (1980) weight the formant 
frequencies according to the mel-scale (§2.2.2.2) description of human speech percep
tion. However, in their comparison of various distance measures, Nocerino et al. (1985) 
find that such weighting does not improve recognition performance. Cohen (1989) and 
Ghitza (1987) both process the short-term spectral content of an input sound according 
to the characteristics of human sound-to-neural transduction (see §3.3.3). In addition 
to these perceptual weightings, the different components of the feature vector are often 
weighted according to an experimentally obtained estimate of their individual impor
tance in characterising the differences between sounds (Juang et al., 1987; Tohkura, 
1987). 

Perceptual weighting of features is often implemented by weighting the distance 
measure used to characterise the similarity between pairs of features (Gray and Markel, 
1976). The particular distance measure employed is important because it determines 
how the similarity between patterns is evaluated, and hence affects the performance of 
the recognition (Gray and Markel, 1976; Juang et ai., 1987). Most successful distance 
measures are based on the log likelihood ratio (Itakura and Saito, 1970; Nocerino et 
al., 1985). This matches the spectral peaks more closely than the intervening dips 
(§3.2.2), which conforms to the perceptual characteristics of masking, whereby spectral 
prominences mask regions of lower energy (§2.2.2.2). 

3.6.1.2 Pattern matching techniques 

Because of the great variation in the manner in which words are uttered, sophisticated 
schemes for matching the input features to the templates must be employed. 

Words are composed of temporal sequences of phonetic features (see §2.1.3.1). 
Thus, the patterns that must be compared in the second stage of the recogniser 
(Fig.3.H) consist of variable length lists of feature vectors. The comparison stage 
involves characterising the similarity between the test pattern and each of the reference 
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patterns. Because speaking rates vary widely, techniques for aligning the patterns must 
be employed. The end-points of isolated words can be detected by silence detection 
techniques (§3.1.2). In order to match two patterns of unequal length, techniques of 
non-linearly "warping" (often termed Dynamic time-warping, or DTW) the lengths 
of each pattern to obtain the optimum match are invoked (cf. Rabiner and Levinson, 
1981). 

The final stage of the recogniser (Fig.3.11) consists of deciding on the correct 
word or list of words. In some systems, the several "best" matches are chosen (Rabiner 
and Levinson, 1981), and further decisions are made at a higher level (perhaps by 
applying syntactical rules). In addition, further (more computationally expensive) 
techniques may be applied to the patterns if they are found to belong to certain sub
classes of similar words (Fissore et at., 1989). In this way, large vocabularies can be 
searched relatively quickly. A preselection . stage is performed, separating the words 
into broad phonetic groups. The word is then matched to one of the templates in the 
(much smaller) sub-vocabulary (Fissore et at., 1989). 

Other techniques for comparing patterns employ statistically-based models of 
the templates, with the time-variation of the features implicit in each model. One 
such method is hidden Markov modelling (HMM), in which each reference pattern 
is represented as a HMM (Rabiner and Juang, 1986). A HMM consists of several 
hidden states, each of which possesses an associated observation vector that describes 
the probabilities of each possible feature aris~ng from that state. The complete HMM 
is characterised by this observation matrix and the matrix of transition probabilities 
between each state. Such models appear to be successful in speaker-independent and 
connected-speech recognition schemes (Rabiner et al., 1989). 

Another matching scheme makes use of neural networks (Lippmann, 1987). 
These are still at a largely experimental stage, but because they appear to model 
the human brain, it is hoped that they will solve many of the problems that beset 
traditional matching schemes (cf. Burr, 1988). A neural network consists of a large 
number of interconnected nodes. Each node has a large number of weighted inputs, 
and its output is similarly connected to the inputs of many other nodes. The value 
of the output is a non-linear function of the sum of the weighted inputs to that node. 
Neural networks naturally conform to a parallel architecture, with the operation of each 
node being particularly simple. Helice, real-time operation, even with very intricate 
systeIIl~Lshg1!ld be relatively straightforward to achieve. Several topologies.have been 
investigated for orgamsmg the layout of neural networks. One common topology is 
the multi-layered approach, where interconnections are only made between nodes on 
different layers (Lippmann, 1987). 

In a neural network, the reference patterns are implicit in the weightings applied 
to the inputs of each node (Waibel et al., 1989). An advantage of neural networks for 
speech recognition is that the "decision rules" (or word models for HMM techniques) 
do not fleed to be explicitly chosen a priori. So, neural networks are able to optimise 
themselves to form arbitrarily complicated "decision boundaries" between each class of 
word or phoneme (Burr, 1988). Also, instead of a separate model for each word, as for 
the HMM technique, all words are catered for by the one network. Hence the training 
process can minimise the response of competing words at the same time as maximising 
the response of the correct word (cf. Kohonen, 1988). This can increase the level of 
discrimination between words (Bourlard and Wellekens, 1989). ' 

A difficulty with applying neural networks to speech recognition i.s that there is 
no straightforward way to incorporate information about the temporal variation of the 
features, which is obviously of great importance for reliable speech recognition. Waibel 
et al. (1989) incorporate temporal information about the speech signal by storing several 
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time-delayed feature-sets and using them as additional inputs to the network. 

3.6.1.3 Training methods 

For any of the techniques mentioned in §3.6.1.1, the reference patterns must be obtained 
by a training process. Training consists of analysing many examples of a particular 
word and determining one or more reference patterns from the ensemble of examples. 
Techniques such as clustering are employed to find the pattern vectors that optimally 
represent the input words. The centroid of a cluster is therefore all that is necessary 
to represent all of the points in that cluster (Gray, 1984). In order to account for the 
variations resulting when several speakers use the system, more than one template or 
centroid may be stored for each word (Rabiner and Levinson, 1981). 

In the HMM and neural network approaches, training involves an iterative 
process of (re )calculating the probability matrices and adjusting the node input weights, 
respectively, for each test word, in order to find an optimal solution (cf. Lippmann, 1987; 
Rabiner and Juang, 1986). 

3.6.2 Speaker recognition techniques 

Speaker recognition is a problem that is akin to speech recognition (§3.6.1) but with the 
patterns of words replaced by patterns representing the characteristics of individuals' 
voices. In §3.6.2.1 I introduce the requirements of speaker recognition schemes, while 
in §3.6.2.2 I briefly describe the features that are employed in such schemes. 

3.6.2.1 Speaker recognition requirements 

Speaker recognition schemes can be divided into two types - those concerned with 
identifying a given individual from a (known) population, and those that attempt to 
verify the claimed identity of a speaker (O'Shaughnessy, 1986). The recognition strate
gies differ somewhat between these two cases, although the same features (§3.6.2.2) can 
be employed. ' 

In a speaker identification scheme, the system must compare the test pattern 
with each of the reference templates for the speakers that it knows about. A decision 
is then made as to the identity of the speaker. If none of the templates are "close 
enough", the speaker is classed as "not known". 

. By contrast, a speaker verification system must decide whether the voice char
acteristics of the speaker are "close enough" to the reference template of the speaker's 
claimed identity. The system must make a decision about the "closeness' of the test and 
reference patterns by comparing the distance between them with the expected inter
speaker and intra-speaker variation of distances (Doddington, 1985). A verification 
system can make two types of errors either rejecting a "true" person, or accepting 
an "imposter". The two types of error are in opposition, since raising the "closeness" 
threshold to allow for more intra-speaker variation also increases the chances of an 
imposter being accepted (cf. Birnbaum et ai., 1986). 

, In the speaker verification scenario, the population size is potentially unlim
ited, sinf!!'e the system presumably does not have templates for all the imposters who 
might make a false claim. However, such a system only needs to make a "Yes" I"No" 
decision, while a speaker identification system must make a choice of one out of many 
speakers. Hence, the error rates for verification systems are usually lower than those 
for identification schemes (Doddington, 1985). 

Speaker recognition schemes can additionally be divided into those that are 
text-dependent, and those that are text-independent. In the text dependent approach, 
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which is often employed in speaker verification schemes (O'Shaughnessy, 1986), a stan
dard phrase is used for all training and verification. Because of this, features which 
relate to the actual text, such as the way in which particular sounds are pronounced, 
can be invoked for recognition. By contrast, text-independent approaches (which are 
appropriate when the co-operation of the speaker is not assured) are restricted to 
features which describe the "average" characteristics of a person's voice, irrespective 
of the actual text (Furui, 1981). Generally, recognition performance is better in the 
text-dependent approach, because greater control is possible over the test conditions 
(Doddington, 1985). 

3.6.2.2 Features for speaker recognition 

There are two classes of features that are employed for speaker recognition. The first 
relates to the "average" characteristics of a person's voice, while the second contains 
information about the dynamic or temporal structure of how they speak (Furui, 1981). 

One of the earliest approaches to recognising voices by technological means 
was the "voiceprint" (Kerst a, 1962), which is simply the spectrogram of a given ut
terance. However, although subjective evaluation of voiceprints can provide success 
rates in excess of 98% for the identification of speakers (for small population sizes), it 
cannot be automated straightforwardly. Endres et al. (1971) describe several methods 
of extracting descriptive features from spectrograms. 

Another way of describing the dynamic characteristics of a specific utterance is 
to construct a "time-varying" pattern of features that characterise short-term aspects 
ofthe speech sounds. Such features can include the pitch (Atal, 1972), LPC (reflection) 
coefficients (Furui, 1981), and cepstral coefficients (O'Shaughnessy, 1986). So that they 
can be matched effectively, dynamic patterns must be aligned such that the short-term 
features corresponding to each sound unit coincide. Atal (1972) linearly normalises 
each utterance to a fixed duration, but, because changes in speaking rate do not scale 
the duration of each phonetic segment equally, it is generally better to invoke some 
such technique as dynamic time-warping (DTW) (Furui, 1981; O'Shaughnessy, 1986). 
A practical system which employs DTW on the cepstral coefficients of a fixed phrase 
to verify the identity of a speaker is described by Birnbaum et al. (1986). Other 
techniques for matching the feature patterns include HMMs and neural networks, which 
are described in §3.6.1. 

The characteristics of a speaker's voice include the long term (over several sec
onds) averages of features such as the pitch frequency, loudness, and spectral content 
(Markel et al., 1977; Furui, 1981). Furthermore, the standard deviations ofthese speech 
characteristics over several seconds can indicate the "expressiveness' of the speaker 
(Markel et al., 1977). The spectral content can be characterised by the LPC coeffi
cients (Markel et ai., 1977) or by the spectrum (LTAS, see §3.4.2) itself (Doddington, 
1985). Furui (1981) finds that recognition rates (for both identification and verification 
schemes) are similar whether "statistical" features or "dynamic" features are employed. 

A technique of feature matching that takes into account both the long-term 
average features and the specific peculiarities of a person's pronunciation is to vector 
quantise all the (short-term) feature vectors of an utterance (Burton, 1987; Soong 
et al., 1985). The resultant code book of cluster centroids (§3.6.1.3) represents the 
different types of sounds uttered by the person. Furthermore, the centroids differ for 
each person because of peculiarities in pronunciation of each phoneme. Hence, the 
code book obtained from each speaker can be thought of as a descriptor of the average 
characteristics of that person's voice and pronunciation. 
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3.6.3 Text-to-speech conversion 

Text-to-speech conversion is the technical term for for automatic conversion of an ar
bitrary text into speech. It is invoked for various types of computer output, for book 
reading aids for blind people, and for voice storage (Klatt, 1987). In this section I 
overview what is required of text-to-speech conversion systems. Klatt's (1987) review 
comprehensively covers all other relevant details. 

A text-to-speech system has two main functions. First, the system must analyse 
the text and determine its phonemic content (despite the vagaries of how sounds are 
spelt in different words). If the system is required to produce "natural sounding" 
speech, it must also analyse the syntax and semantics of the text. This is necessary 
so that it can determine the correct intonation and stress to apply to the speech. The 
details of such linguistic analysis are provided by Klatt (1987). 

The second step in the text-to-speech conversion process is the transformation 
of the linguistic representation of the text into an acoustic representation. This requires 
both a synthesiser, which can produce the required quality of speech, and some method 
of converting the linguistic description ofthe text into control signals for the synthesiser. 

Three types of synthesiser are commonly employed in text-to-speech systems. 
One of these is the formant synthesiser, which generates sounds from a description of 
them in terms of their formant frequencies and excitation (VUV and pitch). Synthesis 
of speech from its formant frequencies is discussed in §3.5.2.1. Straightforward rules 
can be invoked to convert the different phonemes, and combinations of phonemes, into 
their appropriate formant, pitch, and VUV control signals (Klatt, 1987). 

Another type of synthesiser is directly modelled on the human speech produc
tion mechanism (§2.3.1). Such articulatory synthesisers are controlled by parameters 
such as tongue position, lip opening, nasality, and vocal cord tension. Although such 
synthesisers are attractive because of their potentially high voice quality (due to their 
close mimicry of human speech production), the reliable extraction of control param
eters from text, and the operation of such synthesisers in real time (cf. Sondhi and 
Schroeter, 1987), must both be improved before these benefits can be fully realised. 

A third approach to synthesising speech for text-to-speech conversion is simply 
to concatenate appropriate segments of real speech according to the linguistic infor
mation extracted from the text. The segments (which are generally compr~ssed by an 
appropriate technique, such as LPC §3.5) may comprise single phonemes, diphones, 
or parts of syllables. Phoneme-based systems have the lowest storage requirements 
(about 40-60 segments of sound, corresponding to each of the different phonemes and 
allophones, are all that are required for an English language system), but produce 
speech that sounds very unnatural. This is because discontinuities often occur when, 
different phonemes are concatenated. Also, such systems are unable to account for co
articulation (§2.1.4.2) effects between phonemes. Systems based on the concatenation 
of diphones (which are phoneme pairs) are able to account for co-articulation effects 
between these pairs. Typically, about 1000 diphones are required to produce reasonable 
sounding speech. 

Apart from the ability of the linguistic analysis stage of a text-to-speech con
vertor to produce an accurate rendition of the content of a given text, the quality of 
speech from such a system depends on the sophistication of the speech synthesiser. For
mant based synthesisers are currently the most flexible in producing natural sounding 
speech, although concatenation methods of synthesis are often able to generate speech 
of comparable quality. Improvements in the quality of speech generated by both these 
methods can be made by improving the "naturalness" of the voiced excitation source 
(cf. Holmes, 1973). For the concatenation schemes, improved methods of speech storage 
are required. These should provide the flexibility to alter the pitch and loudness levels 
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of the synthetic speech, while still producing speech of high quality. 

3.6.4 Medical and therapuetic applications 

In this section I discuss the use of speech analysis techniques in the diagnosis of cer
tain voice disorders (§3.6.4.1), in providing aural and visual feedback during speech 
training(§3.6.4.2), and for assisting people with speech-related disabilities (§3.6.4.2). 

3.6.4.1 Diagnosis of laryngeal dysfunction 

The diagnosis of laryngeal disorders is commonly accomplished during clinical examina
tion by such means as "laryngoscopes" and radiography (cf. Aronson, 1985, Chapter 4), 
or by subjective evaluation of patients' voice quality (Kasuya et al., 1986). For example, 
laryngeal pathologies such as vocal nodules or vocal cord paralysis cause speech to have 
a "breathy" or "rough" quality (cf. Wendler et al., 1986; Kasuya et al., 1986). Indeed, 
experienced voice pathologists tend to be consistently reliable in· diagnosing voice and 
laryngeal disorders by subjective evaluation of such voice qualities (cf. Wendler et al., 
1986). However, acoustic analysis of the speech signal is useful in that it allows a quan
titative measurement of voice dysfunction. Several recent studies have examined the 
relationship between the subjective evaluation of voice quality by experienced clinicians 
and various quantitative features which characterise certain aspects of the speech signal 
(cf. Imaizumi, 1986; Fritzell et al., 1986; Childers, 1990). 

Several features have been invoked in attempt~ to characterise the "abnormal" 
character of breathy, rough, or otherwise dysfunctional voices (Kasuya et al., 1986). 
The pitch often exhibits perturbations which contribute to the rough quality of a voice 
(cf. Lieberman, 1963; Maeda et at, 1968). In addition, breathy or rough voices exhibit 
a high level of vocal noise, superimposed upon the vocalic sound. This noise arises 
because dysfunctional vocal cords often do not close completely (cf. Kasuya et al., 
1986). Various techniques have been developed for measuring the pitch perturbation 
during an utterance. Koike (1973, quoted in Kasuya et al., 1986) defines a perturbation 
quotient as the ratio of the average variation of pitch between different pitch estimates 
and the average pitch period during the utterance. Using this measure, Kasuya et al . 

. attempt to classify voices as "normal" or "pathologic" with only partial success (error 
rates of about 20%). Imaizumi (1986) employs a perturbation measure that describes 
the perturbations in the correlations between segments of speech in different pitch 
intervals. This measure shows a reasonable correlation with subjective evaluations of 
voice "roughness". 

Kasuya et ai. (1986) measure the amount of vocal noise which remains after 
the speech is filtered with an adaptive comb filter, thereby removing the harmonics of 
the fundamental pitch frequency. They again classify voices as normal or pathological, 
with error rates of about 20%. Band et al. (1986) characterise the noise by measuring 
the energy in the LPC residue signal (as defined in §3.2.1). Their classification of 
pathological and normal voices is in error by 17% on average. 

Other researchers have extracted the glottal waveform from the speech signal 
(§3.4) as an aid in characterising glottal function. Fritzell et al. (1986) employ an 
inverse filtering technique to obtain the glottal flow waveforms for several normal and 
pathological subjects. From the flow waveforms they measure the "leakage" airflow 
and hence obtain an estimate of the glottal insufficiency, or size of the glottal leakage 
opening. In addition, they compute the quotient of minimum to maximum airflow. 
Both of these measures correlate favourably with the subjective ratings of "breathiness" 
made by voice clinicians. 
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Several studies have examined the usefulness of the LTAS (see §3.4.2) as a 
descriptor oflaryngealfunction. Boves (1984, §5.3.5) shows that the LTAS characterises 
the average spectrum of the glottal excitation. L5fqvist (1986) characterises the LTAS 
by two measures: the ratio of energy below 1kHz to that in the band I-5kHz; and the 
relative energy in the band 5-8kHz. The energy above 5kH~ is supposed to indicate 
the level of noise in the speech signal while the low frequency ratio is a measure of 
the "slope" of the LTAS, which indicates the relative level of harmonic components in 
the glottal waveform (also see Sundberg and Gauffin, 1979). However, both Lofqvist 
and Wendler et al. (1986) find that their measures of LTAS do not distinguish between 
normal and pathological voices. The differences between normal speakers is greater 
than any differences due to pathologies. Despite this, the LTAS obtained from any 
particular speaker, throughout the course of treatment for a vocal disorder, tends to 
alter consistently with changes in the individual's disorder (Lofqvist, 1986). So it seems 
that the LTAS could be useful as a comparative measure of how someone's voice changes 
during therapy. 

3.6.4.2 Therapy for people with voice disorders 

In. this section I briefly introduce the use of speech processing techniques as aids 
for people with speech difficulties. Further details can be found in the reviews by 
Damper (1982), Mangold (1988), and Childers (1990). 

One application in this area is that of providing bio-feedback about certain 
speech characteristics in order to help people correct any deficiencies in their speech. 
The use ofbio-feedback has been shown to improve the rate oflearning for many types 
of learning tasks (cf. Rubow, 1984). In the context of speech therapy, an example is 
furnished by the learning of intonation by deaf people. Inu:n.ediate visual feedback of 
the pitch and loudness of their speech sounds can assist them in attaining control over 
these parameters (cf. Levitt, 1973; Elder et al., 1987; Bernstein et al., 1988; and also see 
Scott and Caird, 1983). Another effective type of visual feedback of speech parameters 
is the real-time display of speech spectrograms (so-called "visible speech", d. Kopp 
and Green, 1946) for helping people to learn to generate particular sounds correctly 
(Levitt, 1973). 

Another application is the provision of speech aids to people who have speech 
or language communication difficulties. For people with speaking disabilities, the use 
of a portable and easily controllable synthetic voice can greatly improve their ability 
to communicate, and hence their quality of life (Thornett, 1989). Blind people expe
rience many difficulties, some of the more serious of which are due to their inability 
to read things such as books, newspapers, computer displays, etc. Text-to-speech sys
tems are beginning to make a real impact as "reading machines", especially since their 
performance and affordability continue to improve (cf. Klatt, 1987). Speech recogni
tion devices are also useful for motor impaired people so that they can control their 
environment (cf. Fried-Oken, 1985; Mangold, 1988). 

Aids for deaf people range from devices to transpose speech sounds into lower 
frequency bands, where their hearing is better (at least for those with only partial 
hearing loss), to techniques for translating speech into visual, tactile, or cochlear nerve 
patterns (Pickett, 1972; Levitt, 1973; Dormer and Phillips, 1987). Although such 
devices cannot as yet provide deaf people with sufficient levels of "aural" perception 
to understand everyday speech adequately enough for normal conversation, they can 
assist the deaf person's use of lip reading by providing additional information about 
the types of sounds being spoken (d. Levitt, 1973; Kassling, 1989). Devices such as 
these are especially useful in situations when normal lip reading is not possible, such 
as when communicating by telephone. The future development of speaker independent 
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and large vocabulary speech recognition systems would facilitate the implementation 
of personal speech-to-text translation devices for deaf people (Damper, 1982). 



Chapter 4 

Shift-and-add processing of 
speech 

109 

Shift-and-add (SAA) is a method of blind deconvolution which is applicable when 
an ensemble of differently blurred signals are available (Bates and Cady, 1980). The 
technique arose as a method of removing the distorting effects of the atmosphere on 
astronomical images produced by large telescopes. §4.1 describes these astronomical 
origins of SAA. In §4.2 the source-filter model of speech production is re-formulated in 
a way that is more relevant to SAA processing. The technique of SAA, when applied 
to speech signals in the manner described in §4.2, is a method of extracting an estimate 
of the average glottal excitation "pulse". §4.3 presents some of the results obtained by 
applying SAA to synthetic and natural speech, and describes how the SAA signal can 
be refined to represent the glottal pulse shape more closely. SAA is a necessary step in 
the speech encoding technique introduced in Chapter 5. §5.4 of that chapter contains 
a discussion of the different ways in which the SAA signal can be interpreted. Some 
other applications where SAA may become useful are discussed in §8.2.1 of Chapter 8. 

4.1 Astronomical background 

Large telescopes are employed by observatories in order to gather more light for the 
observation of distant stars. In order to gather more light from faint objects, exposure 
times of many minutes or hours are common. However, the distortion introduced by the 
atmosphere (termed the seeing problem) means that the maximum resolution attainable 
by a large telescope (operating under average seeing conditions at a wavelength of about 
500nm, which is near the middle of the visible spectrum) is about 1 arcsec, or no better 
than that possessed by one with a 10cm diameter (Bates, 1982; Roddier, 1988). By 
comparison, the theoretical resolution (diffraction limit) for a 4m diameter telescope 
is about 0.025 arcsec for light of wavelength equal to 500nm (Davey, 1989, §4.1). The 
distortion is due to continual and random phase fluctuations introduced by turbulence 
in the atmosphere (cf. Strohbehn, 1968). The image of an ideally unresolvable object 
(i.e. unresolvable even under ideal seeing conditions) that is formed by a long exposure 
is termed the seeing disk. It is worth noting that very few stars are ideally resolvable 
even in the largest telescopes. 

During short exposures (typically of 10ms duration), the atmosphere is effec
tively frozen (Davey, 1989, §4.2). The resulting images have a speckly appearance and 
so are called speckle images (Bates, 1982). A speckle image sm(x) can be considered as 
a convolution between the ideal image, or object f(x) and a (random) blurring function 
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hm(x) which characterises the atmosphere and telescope (Davey, 1989, pp53-55): 

( 4.1) 

The quantity cm(x), which is termed the contamination, characterises all deviations 
from the convolutional model. The subscript m indicates that sm(x) is one of an 
ensemble of M such speckle images, recorded sequentially so that the atmospheric 
blurring function hm(x) is essentially statistically independent between each pair of 
measurements. The variable x is in general a two-dimensional vector. Note also that 
all quantities appearing in (4.1) are positive (Le. non-negative real) because optical 
astronomical objects are spatially incoherent. 

4.1.1 Astronomical shift-and-add 

Shifi-and-add (SAA) (Bates, 1976; Bates and Cady, 1980) is a method of ensemble 
blind deconvolution (Davey, 1989, Chapter 3). SAA processing of the speckle images 
described above involves (a) locating the brightest point Xm (termed the SAA reference) 
in the mth speckle image, (b) shifting each sm(x) so that the brightest point is at the 
origin, and (c) averaging together the ensemble of M speckle images (Davey, 1989, 
§4.8.1). The resulting SAA image fsa(x) can be expressed as 

fsa(x) (sm(x + xm»)m 
= f(x) 0 (hm(x + xm»)m + c(x) 
= f(x) 0 hsa(X) + c(x) 

(4.2) 

where c(x) is the contamination and hsa(x) is the SAA blurring function. M should 
be large enough to ensure that spatial variations exhibited by fsa(x) are smaller than 
those in f(x). Fig.4.1 shows an example of SAA applied to computer-generated speckle 
images of an (artificial) object. This illustrates how the components of the star are 
recovered from the speckle images, but super-imposed upon a fog, which is similar in 
form to the seeing disk mentioned in the first paragraph of this section. 

The fog can be removed from the SAA image of the object by generating a SAA 
image from a single ideally unresolvable star (under seeing conditions statistically sim
ilar to those pertaining when the object was observed) and de convolving this estimate 
of the fog from the SAA image (cf. Davey, 1989, pp66-67). Fig.4.2 shows the result of 
this type of "defogging' applied to the SAA image shown in Fig.4.1d. 

4.1.2 Ghosts in Shift-and-add 

The basic SAA defined in (4.2) is successful in recovering the true image when the 
object contains a single, unresolvable, point which is much brighter than all the other 
points in the image (Davey, 1989, §4.8.2). This is because each speckle image sm(x), 
defined the convolution (4.1), can be considered as many copies of f(x), with hm(x) 
specifying the weighting applied to each copy. If the brightest point in f(x) dominates 
all the other points of the object, the brightest point in sm(x) (the SAA reference) then 
corresponds to that same point in the brightest copy of the object. Hence the copies of 
the object that are centred by the "shift" of SAA from each of the speckle images add 
constructively and f(x) is recovered faithfully. 

For objects that are not dominated by a single bright point, the SAA reference 
in each speckle image may not always correspond to the brightest point in the brightest 
copy of the object. When this occurs, the brightest copy of the object is shifted to the 
"wrong" place relative to the origin and f(x) is not faithfully recovered. For example, 
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(a) (b) 

(c) (d) 

Figure 4.1. SAA of computer-generated speckle images of an object having several distinct peaks. a: 

The ideal image f(x). b: A typical computer-generated speckle image. c: The seeing disk formed by 

adding (without shifting) 1024 speckle images such as the one shown in b. d: f.a(x) of 1024 speckle 

images similar to that shown in b (these images copied with permission from Bates and Davey, 1987). 

(a) (b) 

Figure 4.2. a: SAA of an uuresolvable star. b: The SAA image shown in Fig.4.1d "defogged" by 

de convolving out the SAA shown in a (after Bates and Davey (1987), with thanks). 
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f(z) 

(a) (b) 

Figure 4.3. Ghosts in SAA images. a: Object, containing two spikes of unequal, but comparable, 

magnitudes. b: SAA image, obtained from an ensemble of computer generated speckle images, each a 

different distortion of the object shown in a. The ghost is the third spike that appears on the left of 

the SAA image. 

FigA.3 a illustrates an image consisting of two non-zero "spikes" (such as might repre
sent a binary star). In the ensemble of speckle images, the SAA reference sometimes 
refers to the left-most point of the brightest copy of the object, and sometimes to the 
right-most point. These events occur in the same proportion as the relative magnitudes 
of the spikes. In consequence of this, the SAA image, Fig.4.3b, contains three spikes 
instead of two. The third spike (tenned a ghost) results from the constructive super
position of the copies of f(x) that were centred on the wrong peak (Bates and Cady, 
1980). 

The amplitudes of the ghosts depends on the fonn of the object and the rel
ative dominance of the major peak (Hunt et al., 1983, §§4,5). Because of the object
dependence of the ghosting, it is convenient to separate the SAA blurring function into 
an object-dependent component haao(x) and a seeing-dependent component haa,(x) 
(Bates and Davey, 1987). hsa(x) is then described by 

(4.3) 

The fog mentioned in the previous paragraph is seen to correspond to hsa, (x), while the 
ghosting corresponds to hsao(x). Various techniques have been proposed for removing 
the ghosting and improving the faithfulness of the SAA images (Bates and Davey, 
1987; Davey et al., 1989; Davey, 1989, §4.8.3). However, each of these extensions adds 
significantly to the amount of computer processing required. 

4.1.3 Other applications of shift-and-add 

SAA has also been applied to ultrasonic imaging (Bates and Robinson, 1981). Ultra
sonic images are obtained by measuring the acoustic waves scattered from an object 
when it is subjected to an incident field of ultrasonic radiation. The true image f( x) of 
the equivalent object is the distribution of the complex scattering amplitude through
out the insonilied part of the acoustic medium. The images have a speckly appearance, 
which is different for images recorded in different frequency bands (Bates and Robinson, 
1981). Thus SAA can be perfonned on the ensemble of speckle images so produced to 
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recover a representation of the true image. Because the speckle images are complex
valued, the SAA process is modified by multiplying each speckle image by the phase of 
the brightest point: 

(4.4) 

where l/J(xm) is the phase of the brightest point. Because the object and the blurring 
functions are spatially coherent (as manifested by their possession of phases as well 
as magnitude), an ultrasonic fcsa(x) tends to be fog-free (the fog is self-cancelling by 
destructive interference). 

4.2 SAA for speech signals 

The reasoning which led to the development of SAA for astronomical speckle imaging 
can also be applied (with a suitable modification of terminology) to speech signals. 
This section develops that reasoning, and in doing so presents the mathematical basis 
for performing SAA analysis on speech signals (§4.2.1). Some of the characteristics of 
speech signals that influence SAA processing of speech are discussed in §4.2.2. The SAA 
algorithm for speech signals is presented in §4.2.3. Finally, details of the implementation 
are described further and in depth in §4.2.4. 

A speech signal (initially I limit the discussion to voiced speech) can be con
sidered as a convolution between a series of glottal pulses and a time-varying vocal 
tract filter (§2.3.1.4). By likening each pitch interval of the speech signal (which con
tains a "blurred" copy of the "archetypal" glottal pulse) to one of the speckle images 
observed in speckle astronomy, the technique of SAA can be adapted to extract the 
"glottal pulse" from its many differently-blurred manifestations that occur during a 
typical speech utterance. In short, the technique of SAA, as described in §4.1, is ap
plied to speech by making the following metaphorical relations between astronomical 
and vocal quantities: the true astronomical object with the archetypal glottal pulse; 
the randomly varying atmospheric distortions with the random (!) distortions induced 
by the vocal tract; and each speckle image with each pitch-period length segment of 
speech. Note that the variations in the shapes of individual glottal pulses are considered 
as distortions of the archetypal pulse shape. These distortions are assumed to be less 
than the distortions introduced by the vocal tract (see §4.2.2.1). §4.2.1 expands this 
model of the speech signal, in order to elucidate the characteristics of SAA processing 
on speech. 

4.2.1 Mathematical description 

A speech utterance consists of many, say M, segments sm(t), each containing a single 
period of voiced speech, together with other segments, suitably juxtaposed, containing 
unvoiced speech which I shall conveniently ignore until §4.2.4.5. The (voiced) speech 
signal s( t) is therefore described by 

M 

set) = L Sm(t - Tm) (4.5) 
m=l 

where Tm identifies the instant at which the magnitude of sm(t) is greatest. Taking 
the source-filter approach, each speech segment is further described by a convolution 
between the excitation pulse gm(t) during the mth segment and the causal response of 
the vocal tract filter vm(t): 

(4.6) 
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where Tem , the instant at which \gm(t)\ is greatest, is introduced because, due to the 
"blurring" effects of vm(t), it is in general different from Tm. 

It is convenient to separate gm(t) and vm(t) into invariant and variant compo
nents. The invariant component is defined to be the average of all the signals gm(t) or 
vm(t) respectively. The variant component of each signal can be further divided into 
convolutional and additive parts. For instance, the excitation pulse gm(t) is described 
by 

(4.7) 

where gi(t) is the invariant component, g~(t) is the convolutional part, and g~(t) is 
the additive part of the variable component of the mth pulse gm(t). The invariant 
excitation is defined to be 

(4.8) 

where (r- + T+) is the effective duration of gi(t). 
The convolutional component g~(t) can be considered as modelling the linear 

deviations of gm(t) from gi(t), while the additive component g~(t) models any non
linear deviations that cannot be accommodated by the convolution. Because of the 
general inconsistency of convolution (§1.2.5.3), there are an infinite number of signals 
g~(t) and g~(t) that satisfy (4.7). Further constraints must be introduced to ensure 
that they can be unique (see §4.2.2 and §5.4). 

The vocal tract is represented in the source-filter model as a time-varying filter. 
However, for short intervals it may be considered as time-invariant (§2.3.1.3). Hence it 
can be likened to the atmospheric blurring that occurs in optical astronomical speckle 
images. Because the vocal tract does not in general vary in a completely unbiased 
manner (cf. §4.2.2.1), it is appropriate to separate it into variant and invariant parts. 
The vocal tract response vm(t) for the mth speech segment is described by 

( 4.9) 

with v~(t) and v~(t) being the convolutional and additive deviations, respectively, 
from the invariant part vie t). This invariant part is the "average" vocal tract response, 
which depends upon the utterance being spoken, the physiology of the speaker's vocal 
tract, and nuances of the speaker's articulation (§2.1.4.1). It is useful, for the purposes 
of SAA, to define the invariant component viet) as 

( 4.10) 

The shift-and-add signal ssa(t) is defined by 

(4.11) 

where (T~ +T+') is the duration of the average pitch interval for the utterance. Invoking 
the definitions (4.7) and (4.9) allows (4.11) to be expressed as 

Ssa(t) = (grn(t + Tern) 0 vm(t + Tm - Tern»)m 
~ i(t) 0 viet). 

(4.12) 

( 4.13) 

It is useful to call ssa(t) the invariant speech component, rewriting it for notational 
consistency as si(t). Taking (4.13) to be exact rather than merely approximate (see 
§4.2.2.2) allows the speech segment sm(t) to be expressed as 

(4.14) 



4.2 SAA FOR SPEECH SIGNALS 115 

where 
s~(t) g~(t) 0 v;:'(t), (4.15) 

is termed the generalised speech filter component and 

(4.16) 

is called the contamination term (Brieseman et al., 1987). The quantities Tm- and Tm+ 
define the extents of the mth pitch interval, before and after, respectively, the instant Tm 
of maximum speech magnitude. The limits Tm- and Tm+ mean that sm(t) is effectively 
a truncated version of the convolution between sa(t) and s~(t). Consequently, the 
contamination s~{t) also includes the parts of stet) 0 s~_l (t) that overlap into the mth 

segment. 
It is important to recognise that there are many possible ways of defining s~(t) 

and s~(t) so that they satisfy (4.14). Further constraints are necessary for s~(t) and 
s~(t) to be unique. As regards SAA processing, the relative contributions of s~(t) and 
s~(t) to sm(t) are unimportant. For the kind of processing described in Chapter 5, 
however, s~(t) must dominate s~(t) in some useful sense. The constraints that the 
characteristics of speech signals place on the relative contributions of s~ (t) and s~ (t) 
are discussed in detail in §5.4.1. 

4.2.2 Speech characteristics relevant to SAA processing 

Application of SAA processing to speech signals, in the manner described in §4.2.1, re
quires several assumptions to be made about the nature of speech sounds and how they 
are to be mathematically represented. §4.2.2.1 examines the validity of representing 
speech signals in terms of variant and invariant components, while §4.2.2.2 discusses 
the characteristics of the glottal pulse and vocal tract response that affect the success 
of SAA on speech. There is further discussion of these topics in §5.4.1, with emphasis 
on the implications of SAA combined with CLEAN processing for speech. 

4.2.2.1 Variability and invarmnce in speech 

In the source-filter model of speech espoused in §4.2.1, each segment of speech sm(t) 
contains a glottal source component gm(t) and a vocal tract filter component vm(t). 
Within anyone of these segments, which are typically of 5ms to lOms in duration, both 
gm(t) and vm(t) can be considered as time-invariant impulse response functions. How
ever, in a typical utterance, they both vary considerably between different segments. 

Variability in the vocal tract impulse response arises from the different articula
tory configurations employed to pronounce different phonemes, whereas the variability 
in glottal excitation results mainly from changes in pitch, vocal intensity, and vocal 
stress (§2.1.4). In a typical utterance, then, the variability in the speech signal due to 
changes in the articulatory configuration is greater (and more linguistically relevant) 
than that due to changes in the glottal excitation. Consequently, as a first approx
imation, one can view the glottal pulse gm(t) as invariant and the vocal tract vm{t) 
as variable with (vm(t))m negligible. The invariant component si(t) of an utterance 
then reduces to the invariant glottal pulse gi(t) while the variant component s~(t) be
comes the vocal tract response v~(t). Further refinements of this approximation are 
considered in §4.3 and §5.4.1. 

The variation of gm(t) and vm(t) between different segments is not "random", 
in the sense that tossing a coin is random, because it is related to the linguistic and 
para-linguistic content of the utterance (cr. § 2.1.3.1). Thus one expects closely spaced 
segments to be more highly correlated than those that are further apart. However, 
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the variation can be called random in the sense that, assuming the utterance to be 
phonetically balanced (i.e. it is not weighted in favour of any particular type of sound), 
the difference between any randomly selected pair of segments is effectively "random". 
An utterance which is phonetically balanced in this way is termed "unbiased" in this 
thesis. 

4.2.2.2 Ghosting in SAA processing of speech 

In this section I discuss the characteristics of speech that affect the "peakiness" of the 
invariant speech component. As mentioned in §4.1.2, SAA is most successful when 
the object contains a dominant peak. The peakiness of the invariant component is 
determined mainly by the form of the glottal pulse, as pointed out in §4.2.2.1. The 
characteristics of the "blurring" induced by the vocal tract also affect the ability of 
SAA to extract a faithful replica of the true pulse, since the form of blurring influences 
how accurately the peak of the (largest copy of the) glottal pulse can be identified. 

It is convenient here to employ the traditional source-filter terminology, with 
the assumptions made in §4.2.2.1 that si(t) gi(t) and s~(t) = 11~(t). Each segment 
of a speech signal, viewed as a convolution between a glottal pulse and the vocal tract 
filter, can be regarded as many copies of the glottal pulse, each shifted and weighted 
differently. Although the convolutional blurring "smooths out" the peakiness of the 
glottal pulses, there is a certain probability that the position of greatest magnitude in 
the speech segment sm(t) corresponds to the peak of the largest copy ofthe glottal pulse 
gi(t). The success of SAA is predicated on this probability being appreciable enough 
that the instances when the largest copy of gi(t) is correctly identified dominate in the 
SAA average. The copies of gi(t) which do not have their peaks aligned with the largest 
magnitude in sm(t) tend to cancel out if they are randomly distributed. Conversely, 
any systematic placement of non-centred copies of gi(t) gives rise to ghosting, in the 
way described in §4.1.2. 

As mentioned in §4.1.2, astronomical SAA (by itself) is most successful at 
recovering true images that contain a dominant, unresolvable peak. However, by incor
porating additional processing steps into the recovery procedure (see Ayers and Dainty, 
1988 and Davey et al., 1989 for details), an individual blurred multi-dimensionalimage 
can almost always be blindly deconvolved uniquely into its constituent components. On 
the other hand, unique blind deconvolution of a one-dimensional image, or signal, is in 
general impossible (Lane and Bates, 1987). So, SAA can only really restore a blurred 
one-dimensional signal if it contains a dominant, unresolvable peak. In the context of 
speech signals, I use the term "impulsive" instead of "unresolvable" to refer to a peak 
that is effectively of one sample duration (i.e. it has a flat spectrum from d.c. to half 
the sampling frequency). The peak is dominant if its magnitude is much greater than 
any of the other samples of which the signal is comprised. 

The acoustic pressure field outside the head is related to the acoustic waveform 
at the lips by the radiation characteristics of the lips, which can be approximated by 
first order differentiation (§3.2.1). This means that a recorded waveform is actually 
almost the differential of the acoustic waveform inside the vocal tract. Hence, the 
glottal pulse train of the recorded speech signal is more "peaky" than the "real" glottal 
flow waveform (see §3.4.1). This peakiness accords well with the requirements of SAA 
(§4.1). 

The glottal pulse, while it is peaky due to the differentiation effect of lip radia
tion, does not possess a dominant impulsive peak. Nevertheless, by differentiating the 
speech signal, the effective glottal pulse, which is the second derivative of the glottal 
flow waveform, can be considered to be approximately impulsive (cf. §3.4.1j Anantha
padmanabha and Yegnanarayana, 1979), In §4.2.4.7 I present results of SA A performed 
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on differentiated and undifferentiated speech. These indicate that differentiating the 
speech signal does seem to "improve" the SAA signal in that it appears to correspond 
more closely with glottal waveforms obtained by other techniques. 

As well as being affected by the shape of the glottal pulse, the severity of 
ghosting in SAA is affected by the characteristics of the vocal tract impulse response. 
The vocal tract filter is comparatively more narrow-band than the point spread function 
of the atmosphere which manifests itself in astronomical SAA (§4.1). The point spread 
function of the atmosphere has a relatively flat magnitude response, its blurring arising 
from phase distortion of the wave front as it passes through the atmosphere (cf. Bates, 
1982). Because of this, the point spread function can be considered to be a number of 
impulses, randomly scattered over roughly the same extent as the seeing disk (Bates, 
1982). By contrast, the magnitude response of the vocal tract filter consists of a 
number of relatively narrow resonance peaks. The width and centre-frequencies of 
these resonances vary according to the particular sound being uttered (cf. Fant, 1960). 
The effect of the relative narrowness of the vocal tract filter is to effectively broaden 
the peak of the glottal pulse. Hence, the position of maximum speech amplitude is 
less likely to correspond to the actual peak of the largest copy of the glottal pulse 
than in the astronomical case. In practice, the narrow-band nature of the vocal tract 
filter does not appear to adversly affect the performance of SAA. This is illustrated 
in §4.3.2, which presents results of performing SAA on speech-like sounds constructed 
from synthetic "vocal tracts" of various bandwidths. 

By contrast with the atmospheric blurring, the vocal tract filter is imperfectly 
random. This can be most simply dealt with by incorporating any bias in the variation 
of the vocal tract response into the SAA signal, by means of the definition of si(t) 
introduced in §4.2.1. 

The "ghosting" effects described in the previous paragraphs mean that the 
resulting SAA signal ssa(t), instead of equalling si(t) as implied by (4.13), is equal to 

(4.17) 

where hsag(t) is the SAA ghosting function, its "severity" being determined by the 
magnitude of the effects discussed above (cf. §4.1.2). 

Note that SAA for speech does not exhibit the fog which characterises astro
nomical SAA. The latter fog arises because astronomical images are positive, implying 
that the SAA image can only increase as more speckle images are added. By contrast, 
SAA for speech is "coherent" (cf. Bates and Robinson, 1981; see also (4.4) in this chap
ter) so that "noise" and non-centred copies of the glottal pulse tend to average to zero 
by destructive interference. 

4.2.3 SAA algorithm for speech 

As §4.2.1 indicates, SAA is performed on segments sm(t), each containing a single 
pitch interval of voiced speech extracted from a complete utterance s(t). One of the 
attractive aspects of SAA is that these segments do not need to be explicitly identified 
before applying the SAA algorithm. This is because the segments can be identified 
during the SAA algorithm itself, as described in the next paragraph. Hence there is no 
need for accurate pitch or VUV analysis. 

It is necessary to modify the SAA algorithm described in §4.1 so that it can 
be applied with good effect to speech signals. This is because the individual "speckle 
images" actually occur as sequential segments of a single speech signal. Hence the two 
steps, of segmenting the speech signal, and shifting each segment so its largest peak is 
at the origin, must be combined into one algorithm. The first step in the algorithm is 
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Parameter Default value (units) Comment 
7"8 12.8 (ms) Segment duration 

7"p 10.0 (ms) Segment spacing 

1]SQ 1.0 (% of peak) Silence threshold value 
1]uv 15.0 (% of peak) "Unvoiced" threshold value 

Table 4.1. Suggested default values for the parameters in the SAA algorithm described in §4.2.3. 

to set 7"1 = 7"p, where 7"p is an estimate of the average pitch within the utterance (see 
§4.2.4.1 for suitable values for 7"p) Thereafter, for the mth segment, 

1. The maximum magnitude peak in sm(t), which is the segment of set) delineated 
by the limits 7"m < t < 7"m + 7"s, is denoted by Tm: 

Tm = argmax Is(t)1 ,7"m < t < 7"m +7"s, (4.18) 

where 7"s is the segment duration (see §4.2.4.1 for suitable values for 7"8)' 

2. The mth SAA segment sm(t) defined by 

sm(t) = set + Tm - 7"s/2) , 0 < t < 7"s 

is extracted from set). 

3. The start of the (m + 1)th search segment sm+1(t) is located at 

7"m+1 = Tm - 7"s/2 + 7"p-

(4.19) 

(4.20) 

4. Steps 1,2 and 3 are repeated until 7"m+1 +7"s exceeds the duration of the utterance. 

5. The SAA signal is constructed by normalising and averaging together each of the 
sm(t) for which ISm(O)1 > 1]SQ' where 1]SQ is a threshold set to exclude segments 
that contain inter-word "silence" (also see §4.2.4.5): 

(4.21) 

§4.2.4, in addition to presenting detailed results arising from the application 
of this algorithm to various speech signals, describes the effects of altering the various 
parameters of the algorithm. Typical values for these parameters are listed in Table 4.1. 

4.2.4 Implementation considerations 

In this section I describe the results obtained by applying SAA processing to speech 
under various conditions. These conditions include both the various parameters of 
the algorithm presented in §4.2.3, and the characteristics of any particular utterance 
that the algorithm may be called upon to process. §4.2.4.1 describes the effect on the 
resulting SAA signal of varying the duration and spacing parameters, while §4.2.4.2 
presents results illustrating the effect of changing the duration and content of an utter
ance. In §4.2.4.3 I discuss the ill-effects that result from phase distortion of the speech 
signal, and describe a method by which they can be ameliorated. §4.2.4.4 describes 
the effect that additive noise has on the SAA signal obtained from an utterance. The 
question of whether to normalise each segment of speech before averaging is considered 
in §4.2.4.6, while §4.2.4.5 discusses ways in which the unvoiced sections of an utterance 
can be removed or processed. Finally, §4.2.4.1 describes the apparent improvement 
in SAA performance that occurs if the speech signal is pre-emphasised by first-order 
differentiation before SAA is performed. 
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4.2.4.1 Choice of segment duration and spacing 

The parameters Ts and Tp which represent, respectively, the duration of each of the 
speech segments comprising a particular utterance and the estimated interval between 
successive segments, are said in §4.2.3 to be equal to the available estimate of the average 
pitch period during the utterance. It is, however, computationally highly convenient 
for the values OfTp and Ts to be fixed for all utterances. In this section I present results 
which illustrate the changes in ssa(t) that arise from varying Tp and Ta' Since these 
results indicate that ssa(t) is relatively insensitive to changes in Tp and Tal fixing their 
values for all utterances seems to be justified. 

The segment duration Ta must be no less than the average pitch period for 
the utterance being processed, in order to comply with (4.21). Fig.4.4 shows that the 
shapes of the central features of saa(t) are little dependent upon the value OfTs. In 
fact, the only noticeable effect of changing Ta is to change the duration of s.~a(t). It 
is convenient, therefore, to choose Ts to be somewhat greater than the average pitch 
period of all the utterances which are to be processed. The duration of each ssa(t) can 
then be trimmed according to the requirements of any further processing that is to be 
performed on it (see, for example, §5.2.5.1). 

Fig.4.5 shows several SAA signals obtained with different values for '1'11' These 
are all similar, except that the number of segments M from which each ssa(t) is formed 
is smaller in the cases when Tp is larger. The details are discussed in the next few 
paragraphs. §4.2A.2 presents more details on what effects different values of M have 
on the form of saa(t). 

The "segmentation" of s( t) into its constituent segments Sm (t) occurs as part of 
the SAA algorithm described in §4.2.3. Because the consequences of this segmentation 
are largely governed by the values assigned to Tp and Ts, it is appropriate to examine 
the types of segmentation errors that can occur for various extreme values OfTp andTs • 

One type of segmentation error occurs when any particular pitch period pm 
within an utterance is greater than Tp + '1'8/2. As illustrated in FigA.6 a, this means 
that the search segment Sm+1(t) does not encompass the position of the largest peak 
in the (m + l)th pitch interval. Hence the segment Sm+1(t), that is added to the SAA 
average, is not centred on the "true" instant of glottal excitation. However, for typical 
values OfTs and Tp (see Table 4.1), this type of error only occurs if the pitch frequency 
falls below 57Hz, which only applies to a small number of pitch intervals in utterances 
by a few male speakers. 

Another type of error that can occur is illustrated in FigA.6b, which shows an 
instance of a maximum of Is(t)1 occurring slightly outside the segment sm(t). In this 
example no sample within sm(t) has a magnitude greater than that of the sample at 
the end-point of sm(t) nearest to the above-mentioned maximum. Because this sample 
is not actually a true peak in the signal, using it as the SAA reference causes ghosting 
of the SAA signal. This type of error can cause a small "bump" to appear on the side 
of the main peak of ssa(t); 

Fig.4.6c shows another type of segmentation error that can occur if Pm < 
(Tp - Ts/2), implying that the algorithm skips a complete pitch interval. This is of 
less concern than the errors mentioned in the previous two paragraphs, since it simply 
means that a longer utterance is required to generate a ssa(t) from a given number M 
of segments. 

Because the errors mentioned above occur infrequently for typical utterances, 
their effects can effectively be ignored in practical applications of SAA (as is attested 
by the consistency of the SAA signals shown in Figs.4.4 and 4.5). This is because any 
"glitches" caused by the errors are "averaged out" by the averaging inherent in the 
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(a) (f) 

(b) (g) 

(e) (h) 

(d) (i) 

(e) (j) 

Figure 4.4. SAA signals obtained when the segment duration T. is varied, from 5ms to 30ms. In 
each case Tp = 3/4T •• Utterance TF-RAINI (see Table 1.2): T. = a: 5ms, b: 10ms, c: l5ms, d: 2Oms, 

and e: 30ms. Utterance WM-RAINl: T. f: 30ms, g: 20ms, h: l5ms, i: 10ms, and j: 5ms. All the 

SAA signals shown here, and in the remainder of this thesis, are plotted to the same time scale. The 

horizontal line on each signal represents the dc level of that signal, and the small vertical "tick marks" 

on this line indicate plus and minus 5ms (assuming that the SAA signals are centred on the time 

origin). The amplitude of each signal is arbitrarily normalised so that its peak value is unity. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 4.5. SAA signals obtained when the pitch estimate T"p is varied, from 5.5rns to 30rns. In each 

case T". = lOms. Utterance TF-RAINl: T"p= a: 5.5rns, h: lOrns, and c: 30rns. Utterance WM-RAINl: 

T"p = d: 5.5rns, e: lOms, and f: 3Oms. 

set) set) 

t t 

I 

~ ~ 
8m -l(t) Sm(t) 8m-l(t) Sm(t) 

(a) set) Tm- l Tm (b) 

~ 
8m -l(t) Sm(t) 

(c) 

Figure 4.6. Segmentation errors produced by discrepancies between the pitch period pm and the 

estimate of its average T"p. a: mIn pitch period pm > T"p + T"./2, so that an erroneous peak is selected 

as the position of Tm. h: Signal maximum just outside extent of search segment, causing erroneous 

"peak" estimate. c: mtn pitch period Pm < T"p T"./2, causing the algorithm to skip a valid peak. 
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SAA process. 
Since the results presented in this section indicate that the form of the SAA 

signal is insensitive to the values of7"s an:d";r;i:I have set them equal to 12.8ms and 10ms 
respectively for all SAA processing desErI1it;din the remainder of this thesis. Although 
these values are about twice as long as the average pitch period for utterances that are 
spoken by female speakers, the results presented in this section (notably in Fig.4.4a) 
indicate that in practice this has very little effect on the shape of the central portions 
of SAA signals from utterances spoken by female speakers. Note that a necessary 
constraint on the values of 7"8 and 7"p is that 7"s < 27"p, so that Sm+l(t) does not overlap 
s(Tm). 

4.2.4.2 Effects of differences between utterances 

SAA extracts an estimate of the invariant component of a speech signal which, as 
defined for any particular utterance by (4.12), is an average over all segments in the 
utterance. Hence the exact form of the SAA signal for any particular utterance depends 
upon the content of that utterance. If the aim of performing SAA is to extract an 
estimate of a person's average glottal excitation, it is necessary that the content of the 
utterance be phonetically balanced (§4.2.2.1), so that the average vocal tract response 
can be considered negligible. How long the duration of an utterance should be to 
provide a reliable estimate of a person's glottal excitation depends on the content 
of the utterance. Computational experience suggests that 10 seconds is an adequate 
duration for a typical utterance. However, reliableSAA estimates can be obtained 
from utterances lasting no longer than 3 seconds, if they are carefully chosen to have 
appropriately balanced'phonetic content. 

In this section I present results which show the differences between SAA signals 
obtained from utterances of different durations and of different content. It is convenient 
here to introduce the quantity €~~:b) defined by 

j r./2 [ 2 
€(a:b) = sea) (t) - s(b) (t)] dt 
sa / sa sa , -r. 2 

(4.22) 

where s~~)(t) and s~~(t) represent the SAA signals which are being compared. Both 

s~~)(t) and s~~(t) are normalised to have a peak amplitude of unity. Throughout this 

thesis, €~~:b) is invoked to quantify the differences between any pair of SAA signals. 
The labels (a) and (b) may therefore refer to actual utterances or to different forms of 
processing applied to a single utterance. Even though it merely identifies a difference 
between two estimates ofthe "true" invariant component si(t), €~~:b) is a useful measure 
of how "consistent" are the SAA signals obtained under different conditions. 

Fig.4.7 shows the SAA signals obtained from sections of various durations taken 
from a single utterance. The number M of segments ranges from 10 for Fig.4. 7 a to 600 
for Fig.4.7 f (corresponding to utterance durations of about lOOms to lOs). The SAA 
signals corresponding to values of M greater than 200 are all seen to be very similar to 
each other. Curves of €~~:600) versus m for utterances spoken by two different speakers 
appear in Fig.4.8. €~~:600) is the error between the SAA signal for M = 600 and that 
for M m. The two curves shown in Fig.4.8 confirm that the SAA signal does not 
change much for M > 300 for any particular utterance. 

In order to illustrate the dependency of ssa(t) on the content of an utterance, 
Figs.4.9 shows SAA signals obtained from different utterances spoken by the same 
speaker. The utterances from which the SAA signals shown in Figs.4.9a and b were 
computed are of the same phrase, but spoken at different times, while the utterances 
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(a) (b) (c) 

(d) (e) (f) 

Figure 4.7. SAA signals obtained when the number of segments M is varied from 10 to 600. Utterance 

WM-BRIT (Table 1.2): a: M = 10, b: M 20, c: M 100, d: M = 200, e: M = 400, f: M 600, 

1.0 1.0 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0.0 -t--+---+::::::::=r=====-!r---+---+- m 0.0 +--+---+-..::::::r::::::::::::::p==t----t+ m 
o 200 400 600 0 200 400 600 

(a) (b) 

Figure 4.8. SAA error €\~:600): a: Utterance WM-BRIT, and b: Utterance TF-WAL. 

corresponding to Fig.4.9 c-f are of different phrases. Notice that there are more differ
ences between the SAA signals for different phrases than there are between the SAA 
signals obtained from different occurrences of the same phrase. In addition, the SAA 
signals obtained from the "phoneme specific" phrases WM-VOWEL and WM-NASAL 
differ from the other, more phonetically "balanced", phrases (see §4.2.2.1). 

Fig.4.10 shows SAA signals obtained from utterances spoken by different peo
ple. The results shown in Figs.4.9 and 4.10 suggest that, providing that the content 
of the utterance is relatively balanced, SAA signals obtained from utterances spoken 
by different people show greater diversity than SAA signals from utterances spoken 
by a single speaker. These results suggest that SAA could be useful as a technique of 
characterising a person's voice in a speaker recognition system (see §8.2.1.1). 

The results shown in Figs.4.7 through 4.10 all pertain to utterances that are 



124 CHAPTER 4 SHIFT-AND-ADD PROCESSING OF SPEECH 

(a) (b) (c) 

(d) (e) (f) 

Figure 4.9. SAA signals from the voiced sections of different utterances spoken by a single person. 

Utterances (Table 1.2) a: WM-RAIN2, h: WM-RAIN3, c: WM-VOWEL, d: WM-NASAL, e: WM

TESTA f: WM-TESTB. 

(a) (b) (c) 

(d) (e) (f) 

Figure 4.10. SAA signals from the voiced sections of an utterance spoken by different people. Utter

ances (Table 1.2) a: AM-WAL, h: WM-WAL, c: BM-WAL, d: TF-WAL, e: KF-WAL f: CF-WAL. 

spoken in a "normal" voice. When a speaker talks in a different manner, the shape 
of the SAA signal changes markedly. Figs.4.11a, b, and c respectively show the SAA 
signals obtained from utterances spoken with the muscles around the throat highly 
tensed, very relaxed, and in a normal speaking condition. Note the marked differences, 
especially between the SAA signal corresponding to the tense utterance and the other 
two. Part of this difference is due to the consequent change of pitch, but much of it also 
appears to be due to changes in the form of the glottal vibration caused by differences 
in the configuration of the muscles around the larynx. 
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(a) (b) (c) 

Figure 4.11. SAA signals obtained from utterances spoken in al a "tense", b: a "relaxed", and c: 

a "nornial" speaking manner. The utterances are (Table 1.2) a: WM-RAINT, b: WM-RAINR, c: 

WM-RAINI. 

4.2.4.3 Effects of phase distortion of the speech signal 

Phase distortion of speech waveforms is of little consequence for most speech processing 
purposes because of the ear's insensitivity to such distortions (see §2.2.2.2). However, 
phase distortion changes the shape of the waveform, thereby affecting the locations of 
the peaks. In this section I show what effects phase distortion of a speech signal has 
on the shapes of the SAA signals obtained from that utterance. I then describe one 
method by which speech signals can be processed to partially correct for the ill-effects 
of phase distortion. 

By phase distortion of a signal I mean that the magnitudes of the signal's 
spectral components are unchanged, while the phase of each component is altered. This 
occurs when the signal is filtered by a linear time-invariant system having a transfer 
function described by 

H(f) = exp(i'if;(f)) ( 4.23) 

with 'if;(f), which is called the phase distortion, being real and odd. Note that the 
case of 'if; (f) I I, where I is an arbitrary scaling constant, does not constitute phase 
distortion, since it merely represents a time delay through the system. 

Graphic illustration of the effect of phase distortion on SAA is provided by 
the simple phase distortion 'if;(f) = 'if;o sgn(f), where 'if;o is a real constant. Fig.4.12a 
shows a segment of speech, as it was recorded, while FigsA.12b and c show the same 
segment after it has been subjected to phase distortions of'if;(f) 'If' /6 sgn(f) and 
'if; (f) 'If' /2 sgn(f) respectively. The segment of speech shown in FigA.12d has been 
distorted by a pseudo-random 'if;(f) which is composed of random numbers, with a 
uniform pdf, in the range from -'If' to +'If'. The SAA signals shown in FigsA.13a,b,c 
and d are obtained from the same utterances that the segments shown in FigA.12a,b,c 
and d are abstracted from. 

As indicated by the differences between FigsA.13a,b,c and d, phase distortion 
of the speech signal also changes the shape of the SAA signal. However, applying 
the inverse distortion to each SAA signal, as is shown in Fig.4.14, does not produce 
a signal like the ssa(t) of the undistorted speech signal. For minor amounts of phase 
distortion (such as is illustrated in Figs.4.12 a and 4.13b), SAA produces a reasonably 
consistent estimate of si(t). The moral of this story is that if one wishes to compare 
SAA signals obtained from different utterances (for instance for speaker recognition 
purposes, as described in §8.2.1.1), apparatus used for recording each utterance should 
have similar phase responses. This could be an important consideration for systems 
that accept speech over telephone lines, since the phase response may differ between 
each connection. 
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(c) (d) 

Figure 4.12. Phase distortion of a speech signal. a: Segment of signal as it was recorded. The same 

segment with a constant phase shift (4.23) of h: 1/I(f) = 7f/6 sgn(f), c: 1/I(f) = 7f/2 sgn(f), and d: 

1/I(J) = pseudo-random noise. 

(a) (b) 

(c) (d) 

Figure 4.13. SAA signals ofthe utterance (see Table 1.2) AM-RAIN1 after it has been distorted by the 

phase distortions described in the text. a: No distortiou, h: 1/I(J) 7f/6 sgn(f), c: 1/I(J) 7f/2 sgn(f), 

and d: 1/I(f) = pseudo-random noise. 

One way to counteract the effects of phase distortion is to apply a "worse" 
distortion in the computer (!> which, when it is subsequently removed, removes the 
invariant phase distortion as well (cr. Bates, 1976; Bates and Robinson, 1982; Bates, 
1982). By worse, I mean a distortion that changes the shape of the signal waveform 
much more than the distortion it is desired to repair, so that it dominates in the SAA 
processing (Dainty, 1973). In addition, a different distortion must be applied to each 
speech segment (or speckle image, §4.1), with the ensemble of such distortions having 
negligible mean. In the next paragraph I describe the technique which I employ to com-
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(a) (b) (c) 

Figure 4.14. The SAA signals shown in FigA.13 after they have been processed by the inverses of 

the respective phase distortions that were applied to the speech signals. a: ""(I) = ?r/6 sgn(l) , b: 

¢(I) 'If'/2 sgn(l), and c: ""(I) = pseudo-random noise. 

(a) (b) 

(c) (d) 

Figure 4.15. SAA signals of the utterances described in the caption of Fig.4.12, but where each 

speech segment is corrupted further with random noise before performing SAA. a: Undistorted, b: 

¢(J) = 'If'/6 sgn(J), c: ""(I) ?r/2 sgn(l), and d: ¢(I) pseudo-random noise. 

pute the "noise-convolved" SAA signal (sa(t) (where I use the term noise-convolved to 
mean the SAA signal obtained when each speech segment is distorted, in the computer, 
by random noise). 

Onto each segment of speech sm(t), a segment of white noise nm(t), of equal 
duration to sm(t), is convolved. nm(t) is generated by a random number generator and 
has a uniform pdf. In this way a new ensemble of noise-convolved segments (m(t) is 
produced: 

(4.24) 

Shift-and-add is performed on the ensemble (m(t) to form (sa(t). Fig.4.15 shows the 
SAA signals of utterances, corresponding to these described in Fig.4.13, in which each 
segment has been convolved with noise before performing SAA. These are all much 
more similar than are the corresponding "ordinary" SAA signals shown in Fig.4.13. 
FigA.16 shows the mean square error €1~:d) between the undistorted and each of the 
phase distorted SAA signals, computed for "ordinary" and "noise-convolved" SAA 
respectively. The much smaller values of €~~:d) for the noise-convolved SAA signals 
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Figure 4.16. Mean square error E~~:d) between undistorted and phase distorted SAA signals. a: 

"Ordinary" SAA and hI "noise-convolved" SAA. In each case the errors from the SAA signals of four 

different utterances (AM-RAIN1, AM-WAL, WM-RAIN1, TF-RAIN1) are shown. The labels on the 

abscissa of each plot identify the type of distortion suffered by the SAA signals represented in the 

column above. i: 'I/J(J) = 'Ir/6 sgn(J), ii: 'I/J(J) = 'Ir/2 sgn(J), and iii: 'I/J(J) = pseudo-random phase 

distortion. 

confirms that this noise distortion has "removed" at least some of the constant phase 
distortion that was applied to the signals. 

Because of the increased computation required to produce the noise-convolved 
SAA signal, I have not investigated its use further than is described here. However, 
it is worthwhile to mention one implication of the results presented here. Since it 
appears that convolving white noise onto each segment before performing SAA tends 
to "remove" any constant phase distortion, one may ask what happens to the "phase" of 
si(t) itself. Inspection of the SAA signals shown in Fig.4.15 shows that they are more 
symetrical than those appearing in Fig.4.13. This seems to confirm that the phase 
information in si(t) has been partly "removed" by the noise-convolved SAA processing. 
This implies that the SAA signals obtained by this approach, while they are more 
consistent under different conditions of phase distortion, contain less information about 
si(t) than do SAA signals obtained in the ordinary manner. 

4.2.4.4 The effects of additive noise 

Speech signals are often subjected to additive noise, which can take the form of trans
mission noise, interfering speech signals, or other environmental background sounds. In 
this section I examine how much the SAA signal of a given utterance is changed when 
the utterance is subjected to various levels of additive contamination. I investigate the 
effects of both (spectrally weighted) random noise and interfering speech signals. 

As implied by the results of "noise-convolved" SAA presented in §4.2.4.3, SAA 
produces remarkably consistent results even when the speech signal is subjected to 
severe amounts of random (convolutional) distortion. This is emphasised by the SAA 
signals shown in Fig.4.17, which were obtained from speech signals corrupted by various 
levels of additive noise. The noise was generated by a random number generator and 
then filtered by a leaky fust-order integrator having a feedback constant of 0.95. The 
noise therefore has a spectrum that falls off at about 6 dB per octave. At SNRs greater 
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(a) (b) (c) 

Figure 4.17. SAA signals of the utterance AM-RAINI that have been corrupted with various levels 

of additive noise. SNRs of a: 30 dB, b: 15 dB, c: 0 dB. 

than 15 dB, the SAA signal is hardly different from the SAA signal obtained from the 
original utterance. At higher levels of additive noise, the SAA signal is more "noisy", 
and has a narrower "spike". Fig.4.18 shows the variation of €~ a:N) a, the error between 
the uncorrupted SAA signal and the SAA signal obtained from an utterance with SNR 
equal to NdB, for levels of SNR ranging from 30dB down to OdB. 

Contamination by interfering speech signals may be expected to have different 
effects on the SAA signal of an utterance than similar levels of contamination by "noise" , 
since the interfering signal has itself an ssa(t) that is similar to the ssa(t) of the desired 
utterance. In order to investigate the effect of interference from other speech signals, 
I mixed two utterances in varying ratios, and performed SAA on the result. Ii the 
utterances are represented by s(a)(t) and s(l»(t), the mixed speech signal s(-y)(t) is given 
by 

(4.25) 

where; is the mixing ratio, which is bounded by 0 and 1. The error €i~:'i') is the 
error between the SAA signals of s(a)(t) and s(-y)(t). Fig.4.19 a shows €~~:'i') when the 
utterances labelled by (a) and (b) are spoken by different male speakers, while Fig.4.19b 

shows €~~:'i') for the interference between a male and a female speaker. The errors are 
much greater in Fig.4.19b because the differences between the two SAA signals s~~)(t) 
and s1~(t) are much greater than when the speakers are of different gender. These 

figures show that s~~)(t) follows a rather smooth, though not linear, transition between 

s1~)(t) and s1~(t) as ; is varied between 0 and 1. 

4.2.4.6 Dealing with unvoiced speech 

In §4.2.1 through §4.2.4 I assume that unvoiced sections of each utterance are removed 
by standard VUV analysis techniques (see §3.1.2) before any of the SAA processing is 
performed. In this section I describe two methods by which the unvoiced sections of 
an utterance can be effectively removed, without performing an explicit VUV decision 
analysis. I also discuss the possibility of performing SAA on the unvoiced sections of 
an utterance. 

A simple decision as to whether a segment of speech is voiced or unvoiced can 
be made by considering the peak signal amplitude within the segment. Most segments 
containing unvoiced speech have a peak magnitude considerably lower than that for a 
typical segment of voiced speech. Step 5 ofthe SAA algorithm can be modified so that 
any segment sm(t) for which 

( 4.26) 
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Figure 4.18. Error between SAA signals of uncontaminated utterance AM-RAINI and the same 

utterance subjected to various levels of additive noise. 
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Figure 4.19. Error E~':.:"I) between SAA signals of uncontaminated utterances and signals composed 

of additive mixtures of the two utterances. a: Two male speakers (AM-RAINI and WM-RAINI). b: 

Male and female speakers (AM-RAINI and TM-RAINI). Note the different scales on the two graphs 

(necessary because of the much greater error for the male-female mixture). 

is discarded, where "luv is a threshold that is set to a value such that most of the 
unvoiced segments are excluded while most ofthe voiced segments are accepted (Elder, 
19XX). Although application of (4.26) does not remove all the segments of unvoiced 
speech from an utterance (e.g. stop consonants usually exhibit high amplitude peaks), 
the averaging that is the essence of SAA implies that the few unvoiced segments which 
are not discarded do not have much effect on the final SAA signal. 

FigA.20 shows SAA signals computed from the voiced sections only of the ut
terance AM-RAIN1, together with SAA signals computed from the entire utterance, 
with the threshold "luv ranging from 25% down to 0% of the peak magnitude of the 
speech signal s(t). The reduced value of M given in FigA.20 for each of the SAA signals 
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(a) (b) (c) 

(d) (e) (f) 

Figure 4.20. Demonstration of thresholding to exclude silent and unvoiced segments of speech signal. 

a: SAA of voiced segments of utterance AM-RAIN1 only (extracted by means of the VUV algorithm 

described in §3.1.2). SAA signals of the entire speech signal with the threshold TJIlV set at h: 0, c: 1%, 

d: 5%, e: 10%, and f: 25% of the peak magnitude of s(t). 

when TJUY > 0 indicates how many of the segments in the utterance are excluded by 
the threshold. The main peak in the SAA signal appears to be "sharper" when TJUY is 
smaller, indicating that the main effect of unvoiced segments that are not excluded by 
the threshold is to increase the sharpness of the main peak. However, the experience of 
both my colleagues and myself (Elder, 19XX) suggests that the consistency, noted in 
§4.2.4.2, between SAA signals obtained from different utterances spoken by the same 
person, is also evident when the "threshold" method is invoked to discard the unvoiced 
speech segments. If the aim of SAA is to produce a "descriptor" of a speaker's average 
voice characteristics, as might be required for a speaker recognition system (§8.2.1.1), 
the threshold method appears to be adequate, while reducing the computational com
plexity of the processing that is required. However, if the aim is to characterise the 
average glottal excitation, the incorporation of a few unvoiced segments into ssa(t) may 
unacceptably distort the signal that is so produced. This question is examined further 
in §4.3. 

Another method of effectively removing the unvoiced segments of speech is to 
low-pass filter the speech signal, since most of the energy in voiced sections of speech 
is concentrated in frequencies below about 3kHz (§2.1.4). This approach, which is 
discussed further in §5.4.3.3, is useful when the SAA processing is part of the speech 
encoding technique described in Chapter 5. This is because it separates the (effectively) 
voiced and unvoiced sections of speech without any of the difficulties of accurately 
performing a VUV decision analysis. It also means that sections of speech having a 
mixed excitation can be straightforwardly represented by a mixture of the two bands. 
Fig.4.22a shows the SAA signal obtained from the frequency band 0-2.5 kHz of the 
utterance AM-RAIN!. This is very similar to the SAA signal obtained from only the 
voiced sections of the unfiltered version of the same utterance (Fig.4.20 a). Separating 
the speech signal into two sub-bands requires considerably more computation than 
either a straightforward VUV analysis or the simple unvoiced threshold described above, 
so I do not employ it for the results presented elsewhere in this chapter. However, it 
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(a) (b) (c) 

(d) (e) (f) 

Figure 4.21. SAA signals computed for the unvoiced sections of the utterances a: AM-RAIN1, h: 

AM-RAIN2, c: AM-WAL, d: WM-RAIN1, e: TF-RAlNl, and f: TF-WAL. 

reappears in Chapter 5, where the extra computation is justified on the grounds of the 
consequent improvement in performance of the CLEAN method of speech analysis. 

The reasoning underlying the development of SAA processing of voiced speech 
can also be applied to the unvoiced sections of an utterance. In §4.2.1, each segment of 
(voiced) speech is described by a convolution between an invariant component (that is 
dominated by the glottal pulse shape) and a variant comp onent (that mainly represents 
the vocal tract filter). The SAA signal is thought of as approximating the invariant 
component. Unvoiced speech can be described by a similar convolution, with the invari
ant component representing the "average" unvoiced excitation. SAA of the unvoiced 
sections of an utterance should therefore produce an estimate of this average unvoiced 
excitation. 

Fig.4.21 shows SAA signals obtained from the unvoiced sections of several ut
terances. These SAA signals are very different from the SAA signals computed from 
the voiced sections of the same utterances (Fig.4.9). The narrowness of their main 
peaks can indicate either that the unvoiced excitation contains a broad-band invariant 
component, or that it varies so much between segments that its invariant component 
(as defined in §4.2.1) is negligible. Note that the second alternative does not imply the 
first, since an ensemble of narrow-band signals vm(t) can have an impulsive SAA signal 
if the ensemble (INm(f)l)m' where Nm(f) = F{vm(t)}, is fiat (see §4.3.2.2). In §5.4 
I present further results indicating that the SAA signal obtained from the unvoiced 
sections of an utterance can be thought of as representing the "invariant component" 
of the unvoiced excitation for that utterance. 

Note the similarity between the SAA signal of the high frequency sub-band 
2.5-5 kHz shown in Fig.4.22 b and the SAA signal of the unvoiced sections of the same 
utterance shown in Fig.4.21a. This again illustrates the point made above about the 
usefulness of separating the speech into sub-bands as a means of separately character
ising the essentially voiced and unvoiced parts respectively of a speech signal. 
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(a) (b) (c) 

Figure 4.22. SAA signals obtained from sub-bands of the utterance AM-RAINI. a: SAA signals 

of the sub-band 0-2.5kHz. h: SAA signal of the sub-band 2.5-5kHz. c: SAA signal of the sub-band 

2.5-5kHz after it has been frequency shifted so that it lies in the band 0-2.5kHz. 

4.2.4.6 To normalise or not to normalise 

The loudness of speech varies a great deal between different syllables and words (§3.1.1). 
Hence the question arises as to whether or not the segments sm(t) should be normalised 
by dividing each one by sm(Tm) before forming ssa(t). Such normalisation causes 
all segments to be weighted equally, in the sense that their relative amplitudes are 
discarded. However, it also means that segments of low amplitude, which one would 
expect to have a higher level of "noise" corruption, are amplified relative to the segments 
with high signal amplitudes. 

Fig.4.23 shows SAA signals computed from the voiced sections of an utterance 
with (Fig.4.23 a) and without (Fig.4.23 b) amplitude normalisation. FigsA.23c and d 
show SAA signals, with and without normalisation respectively, computed from the 
entire utterance, with a threshold "'llV 10% of the peak amplitude of s( t). The "noise" 
exhibited by the SAA signal shown in FigA.23c is the result of the amplification of the 
unvoiced segments of the utterance that are not excluded by the threshold. 

Since the amplitude variations between segments are modelled by the variant 
component s~(t) of the speech model (§4.2.2.1), it seems reasonable that they should 
not contribute to the SAA signal, which is a model of the invariant component i(t) 
(§4.2.1). For this reason I prefer to normalise each segment sm(t) before averaging them 
to form ssa(t). I rely on the threshold .,,8 or ."UV to exclude segments oflow amplitude 
which may contain inter-word silences or unvoiced speech. 

4.2.4.7 Differentiating the speech signal to improve SAA 

As described in §3.2.1, the spectrum of the glottal waveform falls off at approximately 
12dB / octave, while the effect of lip radiation is to apply an approximate +6dB / octave 
emphasis to the speech spectrum. The "effective" glottal excitation is therefore approx
imately modelled with a -6dB/octave spectral slope. By pre-emphasising the speech 
signal with a first-order differentiation, the spectrum of the effective glottal excitation 
becomes approximately flat. This means that each glottal pulse is nearly "impulsive", 
which, as mentioned in §4.2.2.2, improves the performance of the SAA algorithm by 
reducing the ghosting due to wrongly-identified peaks. 

Fig.4.24 shows SAA signals computed from the voiced sections of utterances 
that have been pre-emphasised by first order differentiation. Integrating the SAA 
signals shown in Fig.4.24 results in the signals shown in FigA.25. The differences 
between these signals and the SAA signals of the same, but undifferentiated, utterances 
(Fig.4.9), emphasise the non-linearity of SAA (because of the signal dependence of 
ghosting, see §4.1.2). However, comparing the signals in Figs.4.25 and 4.9 with the 
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Figure 4.23. Differences between SAA signals when the segments are normalised or un-normalised. 

SAA signals computed from at normalised, and h: un-normalised, segments of the voiced sections 

only of utterance AM-RAINI. SAA signals of the c: normalised, and d: un-normalised, segments of 

the entire utterance, with a threshold set to 10% of the peak amplitude of B(t) to exclude silent and 

unvoiced segments. 

(a) (b) (c) 

Figure 4.24. SAA signals from the voiced sections of utterances that have been pre-emphasised with 

a first-order differentiation. Utterances a: AM-RAIN1, h: TF-RAIN1, and c: WM-RAINl. 

waveforms obtained by other glottal estimation techniques (§3.4.1) indicates that SAA 
may give an improved estimate of the glottal pulse if the speech signal is first pre
emphasised. This is discussed in more detail in §4.3. 

Note that if the speech signal is pre-emphasised before performing SAA, the 
threshold method described in §4.2.4.5 of excluding the unvoiced sections of speech is 
not so effective. This is because pre-emphasis enhances the speech amplitude during 
the unvoiced sections relative to the amplitude during voiced sections. For this reason 
it seems to be best to perform pre-emphasis only when the speech signal has been 
separated into voiced and unvoiced sections, or into high and low frequency sub-bands, 
as described in §4.2.4.5. 
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(a) (b) (c) 

Figure 4.25. Signals resulting from first-order integration of the SAA signals shown in Fig.4.24. Each 

part corresponds to the same part of Fig.4.24. 

4.3 Relating the SAA signal to the glottal waveform 

As §4.2 explains, SAA processing of speech signals produces an estimate of the invariant 
component (i.e. the component that is the same in each pitch period, see §4.2.1) of a 
speech utterance. However, such an estimate contains contributions from both the 
glottal excitation and vocal tract components that together make up the traditional 
source-filter model of speech (cf. §2.3.1.4). In this section I investigate the relationship 
between the SAA signal and the glottal excitation component of the source filter model. 
In particular, I investigate the validity of the assumption that sea(t) is an estimate of 
the invariant component gi(t) of the glottal excitation waveform. §4.3.1 compares the 
results obtained by SAA with those obtained by other methods of estimating the glottal 
pulse. In order to examine the extent to which SAA ghosting distorts the estimate of the 
glottal excitation, §4.3.2 presents the results of performing SAA processing on synthetic 
speech, where the form of the glottal excitation is known. In §4.3.31 introduce a method 
which attempts to refine the SAA signal to obtain an improved estimate of the "true" 
glottal pulse. Finally, §4.3.4 presents some conclusions about what the relationship 
between the SAA signal and the glottal waveform really is. 

4.3.1 Results from real speech 

As implied in §4.2.2.2, saa(t) is actually the first derivative of the glottal flow "pulse", 
because of the differentiation effect of lip radiation. Furthermore, if the speech is 
pre-emphasised before performing SAA, in the manner described in §4.2.4.7, sea(t) is 
approximately the second derivative of the glottal flow. Unfortunately, integrating the 
SAA signal to counteract these differentiations can result in low frequency instability 
because integration introduces a pole at zero frequency. In order to overcome the low 
frequency instability, a "leaky" integrator can be employed. in the results presented 
here, I only invoke a leaky integrator when performing the double integration on the 
SAA signals obtained from pre-emphasised speech (§4.2.4.7). I use a double integrator 
of the form 

H(z) = (1 
1 

(4.27) 
Z-l )(a 

where a = 0.95 is the leak constant. 
In addition to the instability caused by integration, the zero that is introduced 

at d.c. by the differentiation of lip radiation means that the estimated glottal flow 
waveform cannot be referenced to a true zero value. This is a difficulty inherent in 
almost all methods of estimating the glottal flow from the speech signal (§3.4.1). 

In §4.3.1.1 I present results which compare estimates of the glottal excitation 
obtained by SAA processing with those obtained by the inverse filtering technique of 
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Figure 4.26. Typical inverse filtering waveforms obtained from four segments of the utterance AM

RAINl by the method of Wong et al. (1979). See §3.4.1 for details on the inverse filtering technique. 

Wong et al. (1979), while in §4.3.1.2 I compare them with the results of long term 
spectral averaging of the voiced speech signal (cf. Boves, 1984). 

4.3.1.1 Comparison with inverse :B.ltering 

SAA produces an estimate of the average shape of the glottal excitation over an entire 
utterance, whereas the inverse filtering techniques described in §3.4.1 produce an esti
mate of the glottal waveform on a cyc1e-to-cyc1e basis. Fig.4.26 shows glottal waveforms 
obtained from several different sections of the utterance AM-RAINl by the inverse fil
tering method of Wong et al. (1979). These glottal waveform estimates are different, 
suggesting that the shape of the glottal waveform changes as different sounds are ut
tered. Fig.4.27 d shows the average glottal waveform of the utterance AM-RAINl. This 
is obtained by dividing the voiced sections of the utterance into sections of 50ms in 
duration, performing the inverse filtering operation on each section (thereby obtaining 
an ensemble of signals such as those shown in Fig.4.26), and synchronously (according 
to the SAA paradigm) averaging the ensemble so formed. The similarities between this 
signal and the (integrated) SAA signal shown in Fig.4.27b support the contention that 
SAA processing produces an estimate of the average glottal excitation. 

In §4.2.4.7 I mentioned that differentiating the speech signal before performing 
SAA should reduce ghosting in the SAA signal because it flattens the spectrum of 
the glottal pulse. FigA.28 a shows the SAA signal computed from the (voiced sections 
of the) differentiated utterance AM-RAINl. The twice-integrated "equivalent glottal-

flow" signal corresponding to this appears in FigA28 c. Like the "undifferentiated"SAA 
signal, this also is quite similar to the average glottal excitation shown in FigA~27d. 

Because of the overall similarity between the SAA signals and the inverse fil
ter estimates of the glottal waveform, as illustrated by the results shown in FigsA.26 
to 4.28, I am encouraged in my assumption that the SAA signal represents the aver
age glottal excitation (§4.2.2). The differences that are apparent between the signals 
shown in FigsA.27 a,b, and 4.28b may be due to the different assumptions made in their 
derivations, which lead to different types of errors in the estimates. For instance, the 
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(a) (b) 

(c) (d) 

Figure 4.27. Comparison between SAA and inverse filtering as techniques of characterising the glottal 

excitation. a: SAA signal of the voiced sections of the utterance AM-RAINl. h: Integrated SAA signal. 

c: Average glottal excitation signal obtained by performing SAA on the ensemble of signals produced 

by inverse filtering contiguous lOOms segments of the voiced sections of the utterance AM-RAINl, (Note 

that SAA is performed on signals which are actually differentiated versions of the examples shown in 

FigA.26). d: Integrated version of the signal shown in b. 

(a) (b) (c) 

Figure 4.28. a: SAA performed on the utterance AM-RAINl after it has been pre-emphasised by 

first-order differentiation. h: Integrated, and c.: twice-integrated, versions of the SAA signal shown in 

a. 

inverse filtering approach which produced the signal shown in Fig.4.27 d assumes that 
the vocal tract is modelled by an all-pole filter, whereas the SAA technique which gave 
rise to the signals shown in Figs.4.27 a and 4.28 b assumes that, if the SAA signal is to 
represent the average glottal waveform, the long term average vocal tract filter response 
is negligible. Since actual speech signals violate these assumptions in different ways, 
one expects the errors in the two glottal excitation estimates to also differ. 

4.3.1.2 Comparison with the Long-term average spectrum (LTAS) 

Since SAA prod~ces an estimate of the average glottal pulse shape, it is relevant to 
compare SAA signals with the results obtained by the long-term average spectrum 
(LTAS) approach. The LTAS of an utterance is obtained by dividing it into many short 
segments, computing the power spectrum of each, and then obtaining the ensemble 
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Figure 4.29. LTAS obtained from the voiced sections of several utterances. A segment length of 

12.8ms, and a Blackman window, were employed in their computation. Utterances a: AM-RAINl, b: 

TF-RAINl, c: AM-WAL, and d: WM-WAL. 

average. It is thus the spectral equivalent of SAA. Stockham et al. (1975) employ 
spectral averaging to estimate the invariant component of the distortion introduced by 
acoustic recording equipment on old sound recordings (§1.3.2). Boves (1984) compares 
LTAS with the average spectra of actual glottal waveforms, concluding that the LTAS 
of an utterance has similar characteristics to the average glottal excitation spectrum, 
with at least some of the observed differences arising because first-order differentiation 
is an inadequate model of lip radiation (Boves, 1984, §5.3.5). 

Fig.4.29 shows the LTAS obtained from voiced sections of several different ut
terances. The spectra of the corresponding SAA signals are shown in Fig.4.30. These 
figures indicate that the SAA spectra, although they are of similar overall shape, fall 
off much faster at high frequencies than do the LTAS. The greater smoothness of the 
LTAS occurs because of the spectral averaging (d. §1.3.1.2) over segments with differ
ent pitch frequencies. This means that the pitch harmonics tend to smooth out. By 
contrast, the SAA spectra are obtained from a single instance of a quasi-periodic (albeit 
of approximately only one period in duration) signal, so that they contain prominent 
harmonic structure. 

The much sharper roll-off at high frequencies in the SAA spectra when com
pared to the LTAS probably results from the low frequency components of the speech 
signal dominating in the SAA processing. The high frequency components, which are 
not in general synchronised with the low frequency components (d. :Flijimura, 1968) 
tend to cancel out in the SAA averaging (§5.4.3). The spectral averaging, however, is 
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Figure 4.30. Spectra of SAA signals obtained from several utterances. The utterances pertaining to 

the spectra shown in aI, hI, el, and d: are the same as those described in Fig.4.29. 

non-coherent, so all such components accumulate in the sum. 

4.3.2 . Results from synthetic speech 

In order to determine the efficacy of SAA at extracting the true glottal pulse from a 
speech utterance, SAA processing was performed on synthetic speech generated with 
a fixed excitation pulse shape. In §4.3.2.1 LPC parameters from actual utterances are 
employed as the filter component of the synthetic speech, while in §4.3.2.2 an artificial 
filter, having negligible invariant component, is employed. 

4.3.2.1 Synthetic speech generated from actual LPC parameters 

One way of generating synthetic speech with a known excitation is to excite the LPC 
filter coefficients obtained from actual utterances with a fixed pulse shape. It is prefer
able to employ "actual", rather than random, LPC filter coefficients because the signals 
generated from random coefficients are not really "speech-like" and so behave differ
ently in the SAA processing. FigA.31 shows the synthetic pulse shapes used as the 
excitation signals in the various trials presented here. Speech was generated by con
volving the impulse response of an LPC filter with an excitation waveform made up of 
copies of the synthetic pulse, positioned according to the pitch information from the 
same utterance from which the LPC filter parameters were obtained. Table 4.2 lists the 
synthetic utterances, detailing the pulse shapes and the natural utterances from which 
the speech parameters were obtained. Note that only the voiced sections of speech were 
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(a) (b) 

Figure 4.31. Synthetic glottal pulse shapes. a: Triangle "saw-tooth". b: Raised cosine or sine-squared. 

Label Pulse shape Actual utterance ! 

AM-SAW saw-tooth AM-RAIN1 
AM-SIN sine-squared C AM-RAIN 1 i 

AM-IMP impulse AM-RAIN1 I 
WM-SAW saw-tooth WM-RAIN1 
WM-SIN sine-squared WM-RAIN1 
WM-IMP impulse WM-RAIN1 
TF-SAW saw-tooth TF-RAIN1 
TF-SIN sine-squared TF-RAIN1 
TF-IMP impulse TF-RAIN1 

Table 4.2. List of the synthetic utterances that were generated to test the efficacy of SAA at extracting 

the actual glottal pulse shape. The "Pulse shape" colunm refers to the shape of the excitation employed 

in the synthesis while the "Actual utterance" colunm refers to the utterance from which the LPC 

parameters were abstracted. 

retained for this experiment. The autocorrelation method was invoked to compute 10 
LPC coefficients every lOms during the utterance. The speech samples in each analysis 
frame, which were of 20ms in duration, were multiplied by a Hamming window before 
LPC analysis was performed (see §3.2 for further details on LPG analysis techniques). 

SAA was performed on each of the synthetic utterances listed in Table 4.2, 
resulting in the SAA signals shown in Fig.4.32 a through Fig.4.32f. The shapes of the 
SAA signals are by and large similar to the shapes of the original pulse shapes shown in 
Fig.4.31. However, significant distortions are apparent for some of the utterances, espe
cially in the interval immediately after the peak of the saw-tooth pulse (Figs.4.32a,b). 
This distortion could arise either because of ghosting in the SAA process, or because 
the LPG filter has an invariant component in the sense that its ensemble average 
is not negligible (see §4.2.1). Fig.4.33 shows the SAA signals obtained from impulse
excited synthetic speech signals. These SAA signals provide estimates of the invariant 
component vi(t) of the vocal tract filter, as far as it is modelled by the LPG coefficients. 
Note that de convolving these estimates of vi(t) from the 8 sa(t) shown in Fig.4.32 does 
not restore the shapes of the original pulses (see Fig.4.34). This is because the ghost
ing is dependent on the actual form of the signal, so is different for differently excited 
synthetic utterances. In §4.3.2.2 I describe the use of synthetic utterances, that are 
generated in such a way that their invariant component is negligible, to investigate the 
amount of ghosting that can be expected when performing SAA on speech-like signals. 
§4.3.3 describes a method by which the distortions, whether due to SAA ghosting or 
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Figure 4.32. SAA signals relating to the synthetic utterances listed in Table 4.2. SAA was performed 

with T. 12.8ms and Tp = 10ms. a: AM-SAW, b: WM-SAW c: TF-SAW, d: AM-SIN, e: WM-SIN, 

and f: TF -SIN) 
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Figure 4.33. SAA signals obtained from the synthetic utterances a: AM-IMP, b: WM-IMP, and c: 

TF-IMP. 

the invariant component of the filter, can be iteratively removed. 

4.3.2.2 Synthetic speech generated from artificial filters 

The results presented in §4.3.2.1 demonstrate the ability of SAA to extract estimates 
of the glottal pulse shape from (synthetic) speech signals. However, because the speech 
signals are synthesised from LPC coefficients taken from actual speech, the SAA signal 
contains contributions from the invariant component of the LPC filter. In order to 
evaluate the extent to which ghosting affects the shape of a SAA signal, I generated 
synthetic "vocal tract filter" signals vs(t) that had a negligible invariant component. 
These were used to generate synthetic speech-like signals by convolving them with fixed 
"glottal pulses". SAA signals were obtained from these synthetic signals and compared 
to the original pulses. Because of the negligible invariant components of the filter 
signals, any differences between the original pulse shapes and the SAA signals can be 
attributed to the effects of ghosting. 

So that vs(t) has similar characteristics to an actual vocal tract filter response 
signal, I generate it from an ensemble of band-pass filters. Such a signal approximates 
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Figure 4.34. Estimates of the original pulse shapes obtained by deconvolving the "impulse-excited" 

SAA signals shown in Fig.4.33 fr~m the appropriate SAA signals shown in Fig.4.32. A Wiener constant 

of 0.05 times the maximum spectral component in the filter was used in the deconvolution (see §1.3.2 

for details on deconvolution techniques). 

a single-formant model of speech, which, while inadequate to represent the phonetic 
information in speech (§2.1.4), does approximate the resonant characteristics of the 
vocal tract more than, for instance, white noise (which also has a negligible invariant 
component). In this model of speech, the vocal tract is represented as a single resonance 
having variable bandwidth and centre-frequency. vs(t) is composed of M concatenated 
segments, each of which is the impulse response vsm(t) of an ideal band-pass filter 
Vsm(J). The bandwidths and centre-frequencies of these filters are determined so that 
the long term average spectrum of vs(t) is flat: 

M 

E I v"m(J) I = Ks, ( 4.28) 
m=l 

where M is the number of segments in vs(t) and Ks is an arbitrary (unspecified) 
constant. (4.28) can be satisfied in a straightforward way by constructing ideal band
pass filters v"k(J) which have spectral magnitudes given by (for positive frequencies) 

Vsk(J) = rect (f -f~;~k -!)), k = 1 ... K ( 4.29) 

where fBW = fH / K is the bandwidth of each of the K filters, fH being the highest 
attainable frequency (Le. half the sampling frequency in the discrete case). The impulse 
responses Vsk(t) corresponding to the filters v"k(J) described by (4.29) are constructed 
from suitably frequency-shifted and time-compressed sinc functions. 

In order to simulate the variation that occurs in the equivalent bandwidth of 
the vocal tract filter, I constructed several ensembles {Vsk(t)} according to (4.29), with 
bandwidths fBW ranging from 50Hz to 1000Hz in 50Hz steps. All such ensembles 
were then concatenated to form the synthetic time-varying vocal tract filter, vs(t). In 
order to confirm that the vs(t) that is formed in this manner had a negligible invariant 
component, I computed the LTAS and SAA signal from vs(t). These are shown in 
Figs.4.35a and b respectively, and indeed confirm this conjecture. 
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Figure 4.35. Demoustratiou that the invariant compouent of the syuthetic filter v.(t) is negligible. 

a: LTAS ofv.(t). b: SAA signal obtained from v.(t}. 

Synthetic speech-like utterances were constructed by convolving v,,(t) with the 
synthetic glottal pulses shown in Figs.4.31 a and b. Performing SAA on these utterances 
resulted in the SAA signals depicted in Figs.4.36 a and d respectively. The SAA signal of 
the saw-tooth excited utterance has a saw-tooth shape except for a significant spike on 
top. By cqntrast, the SAA signalofthe sine-squared excited utterance is much closer in 
shape to the o;r:;iginal. Pre-emphasising each synthetic utterance before performing SAA 
leads to the SAA signals shown in FigA36b ande, which, when integrated, appear as in 
Fig.4.36c a;nd f. It is interesting that, when pre~emphasis is applied, the reconstruction 
of the saw-tooth is more faithful than that of the sine-squared pulse, while, without 
pre-emphasis, the reconstruction.Qf the sine-squared pulse is more faithful than that of 
the saw-tooth. 

The differences between the various SAA signals shown in Fig.4.36 can be un
derstood by considering the different mechanisms involved. First-order differentiation 
of the saw-tooth pulse results in a signal with a large impulsive spike, corresponding 
to the trailing edge of the saw-tooth. The presence of this large spike means that SAA 
ghosting is greatly reduced. By contrast, first-order differentiation of the sine-squared 
pulse results in a "pulse" that is a complete period of a sinusoid. This contains two 
equal-magnitude peaks, which results in severe ghosting, since each peak is equally 
likely to he chosen in the SAA algorithm. 

4.3.3 Refinement of true glottal pulse 

As (4.13) explicitly defines, and §4.2.2 discusses in detail, the SAA signal contains 
contributions from the invariant components of both the glottal pulse and the vocal 
tract filter. If the purpose of SAA is to characterise the (average) glottal pulse alone, 
then some method for separating it from the vocal tract component is required. In 
this section I briefly describe a method of accomplishing this. This method, which is 
described more fully by Brieseman et ai. (1987), iteratively produces an estimate of the 
glottal pulse from the SAA and LPC parameters of the speech utterance. Although 
this method of refining the glottal pulse estimate is yet to be comprehensively tested, it 
provides a starting point for examining the relationship between the glottal, vocal tract 
and ghost components of the SAA signal. Much further research is required to ascertain 
the properties of these relationships, and the methods and requisite conditions under 
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Figure 4.36. SAA signals obtained from the synthetic utterances generated by convolving v.(t) with 

a: saw-tooth and d: sine-squared pulses (see Fig.4.31). SAA signals of pre-emphasised utterances 

generated by b: saw-tooth and e: sine-squared excitations. Their first-order integrals appear in c: and 

f: respectively. 

which they can be exploited to separate the different components of the SAA signal. 
Linear prediction (LP) (§3.2) of a speech signal results in a time-varying all-pole 

filter that tends to match the formants or peaks of the (short-term) speech spectrum. 
These correspond to the resonances in the vocal tract, rather than to the glottal wave
form characteristics (§3.4). Hence LP can be used to estimate the contribution of the 
vocal tract to the speech signal. As emphasised in §3.3.3 and §3.4.1, however, LP 
models the vocal tract accurately only if the analysis is performed when the glottis 
is closed. For the purposes of computation~ simplicity, I have not yet performed the 
processing in this way. Hence the LP filter coefficients are likely to be affected by the 
glottal excitation. This may be of little account because the inherent averaging in the 
subsequent SAA processing means that, if the effect of the glottal excitation on the 
LP filter coefficients varies enough when each LP analysis frame is aligned differently 
with the excitation, the average effect is reduced. In any case, these results give an 
indication of what can be expected with this technique. 

By assuming that the LP filter characterises the vocal tract filter alone, it 
is reasonable to further assume that, if the excitation used to generate the synthetic 
speech is a train of "true" glottal pulses, the resulting SAA is necessarily identical to 
that obtained from the original speech utterance. Brieseman et al. (1981) propose an 
algorithm that iteratively refines an estimate of the true glottal pulse in such a way 
that the SAA signal obtained from the synthetic utterance converges to the SAA signal 
of the original speech utterance. This algorithm is described by the following sequence 
of steps: 

1. Calculate SBa(t), the SAA signal of the original (voiced) speech utterance s(t). 

2. Abstract LP and pitch parameters from s(t) in the usual way (§3.2 and §3.1.3). 

3. Initia;tise the estimate of true glottal pulse as g~l)(t) = Set). 

4. Construct an excitation signal by replicating gr)(t) according to the pitch infor-
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(a) (b) (c) 

Figure 4.37. Iterative improvement of SAA signal to extract the glottal pulse component. a: a.a(t) 

of the utterance AM-RAIN2. b: Op(t). and c: u.a(t) after 5 iterations. 

mati on obtained in step 2. 

5. Compute a synthetic speech utterance u(t)(t) from the excitation signal (step 4) 
and LP parameters (step 2). 

6. Calculate u~~)(t), the SAA signal of u(t)(t). 

7. Compute the error e(t)(t) between the synthetic and original SAA signals: 

(4.30) 

8. Update the estimate of the true glottal pulse 

(4.31) 

9. Repeat steps 4 through 9 until enough iterations have been performed or the 
average error l1(t) is small enough: 

j T./2 (t) Ie (t)ldt < 1Jthresh. 
-T./2 

(4.32) 

The result of applying 10 iterations of the above algorithm to an utterance is 
illustrated in Fig.4.37, which also shows the "raw" SAA for the same utterance. As 
shown, the main peak in 9p(t) is much "sharper" than that in 8 sa (t). Figs.4.38 a and h 
show the effect of integrating ssa(t) and 9p(t) respectively, in order to obtain the volume 
flow (§4.3.1). It appears from a comparison of Figs.4.38a and h, and by reference to 
the glottal flow signals shown in §4.3.1.1, that the iterative procedure results in a more 
accurate representation of the "true" glottal pulse (see also Brieseman et al. (1987) and 
Brieseman, 19XX). 

One of the difficulties encountered in implementing the above algorithm is that 
the extremities of 9p(t) are rarely equal to zero or even to each other. Hence step 4 
tends to result in an excitation signal with gross discontinuities at the "joins" between 
each pulse. Furthermore, the synthetic speech arising from such an excitation, although 
it incorporates an SAA signal identical to the SAA of the original speech, is of much 
poorer perceptual quality. Further research is required to determine how the iteratively 
improved estimate of the glottal excitation can be sufficiently improved for it to be 
useful for speech analysis and synthesis (see §8.2.1). 



146 CHAPTER 4 SHIFT-AND-ADD PROCESSING OF SPEECH 

(8) (b) 

Figure 4.38. First-order integration of a: II .... (t). and bl gp(t) after 5 iterations, to illustrate the 

improved relationship that gp(t) has with the glottal flow (see Fig.4.27 in §4.3.1.1). 

4.3.4 Discussion 

From the results on synthetic utterances, it appears that SAA provides a good esti
mate of the invariant component of the glottal excitation. However, as shown by the 
differences between the SAA signals obtained from utterances formed out of entirely 
synthetic components, and those partly derived from actual speech signals, the SAA 
signal contains a significant contribution from the invariant component of the vocal 
tract filter response. The iterative improvement scheme described in §4.3.3 appears to 
remove some of the contribution from the vocal tract filter, but at the expense of much 
greater processing. The SAA signal also contains contributions caused by ghosting, 
which can be partially overcome by pre-emphasising the speech signal before obtaining 
the SAA signal. 

The results of performing inverse filtering on different portions of an utterance 
indicate that the glottal excitation may vary significantly during an utterance (see 
§4.3.1.1). SAA, however, is only able to provide an estimate of the average, or invariant, 
excitation throughout the utterance. However, this estimate seems to be reasonably 
consistent with the average glottal excitation obtained via inverse filtering ofthe speech 
waveform (§4.3.1.1). 

Because the SAA signal comprises both the average glottal excitation and the 
average (invariant) component of the vocal tract filter, it seems best to think of it as 
representing the long term characteristics of a person's voice, rather than just the glottal 
excitation. I treat it in this regard in Chapter 5, for the purposes of encoding speech 
at low data rates, and in §8.2.1.1, for the purposes of facilitating . .speaker recognition. 
Further interpretation of the SAA signal is presented in §5.4, together with a discussion 
of CLEAN processing of speech. 
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Chapter 5 

Speech analysis by shift-and-add 
and CLEAN 

The model of speech presented in Chapter 4 describes a speech signal as the convolution 
between invariant and time-varying components. Furthermore, the'invariant part can 
be estimated by the blind deconvolution technique called shift-and-add (§4.2). All 
that is required to obtain the variant component is to deconvolve the shift-and-add 
component from the speech signal. Several approaches to deconvolving the shift-and
add signal from the speech signal are available (§1.3.2). This chapter describes in 
detail the subtractive deconvolution technique called "CLEAN", which was originally 
developed in the context of radio astronomy (§5.1.1). The advantages and disadvantages 
of Wiener filtering, which is an alternative deconvolution teclmique, are discussed in 
§5.1.3. 

In §5.1 I briefly describe the astronomical background of CLEAN, and thereby 
introduce the terminology used by Hogbom (1974) to describe the teclmique. §5.1 also 
refers to the several other areas to which CLEAN has been applied, and discusses its 
relationship to Wiener filtering. The details of how the algorithm is applied to speech 
signals are described in §5.2, while §5.3 presents the results obtained by employing SAA 
and CLEAN in a low data rate speech encoding scheme. Finally, a detailed discussion 
of various ways that the SAA/CLEAN approach to speech analysis can be interpreted 
appears in § 5.4 

5.1 Background 

5.1.1 Astronomical origins 

CLEAN is a method of subtractive deconvolution that arose in the context of synthesis 
radio astronomy (Hogbom, 1974). §5.1.1.1 briefly describes the technique, employed in 
radio astronomy, of "synthesising" a very large telescope from several small, widely 
spaced, telescopes. §5.1.1.2 then describes the CLEAN algorithm as presented by 
Hogbom (1974). Hogbom's terminology for describing CLEAN is also introduced in 
§5.1.1.2. 

5.1.1.1 Synthesis telescopes in radio astronomy 

In radio astronomy, two or more antennas are instrumented to measure the magnitude 
and phase of the incoming radiation, by means of interferometry (Napier et al., 1983; 
Thompson et al., 1986). Each measurement provides data for a single point in the 
aperture of a very large "synthetic" telescope (Christiansen and Hogbom, 1969). The 
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aperture plane is related by the (two-dimensional) Fourier transform to the image plane, 
in which the image of the heavens is revealed. As stated in § 1.2.5.4, the resolution in 
one domain is inversely proportional to the extent of the signal in the other domain. 
Hence synthesis radio astronomy is a method of obtaining far greater resolution than 
that possible from a single antenna. However, because the aperture plane is only 
sampled at a few points, the synthetic image is severely blurred. The blurring can be 
described by considering the measured aperture distribution R( tt, v) (where tt and v 
are the two-dimensional Fourier coordinates) to be the product of the true aperture 
distribution T( tt, v) and a sampling function G( tt, v) that is unity at discrete points and 
zero elsewhere. By application of the convolution theorem, the resulting image r(:I:, y) 
is given as (Hogbom, 1974) 

F-1{T( tt, v).G(tt, v)} 

t(:I:, y) 0 g(:I:, y) 

where t(:I:, y) is the true image and g(:I:, y) is the blurring function. 

(5.1) 
(5.2) 

g( :1:, y) in (5.1) typically exhibits large sidelobes that may extend across the 
whole extent of r(:I:, y). Because G( tt, v) consists of only a few non-zero components, it 
is not realistic to employ Wiener filtering to deconvolve it from the measured image. 
In fact, deconvolution of G( tt, v) is effectively the same as interpolating between the 
sampled values of T( tt, v). In general this is of course not possible (except from spe
cialised points of view such as underly, for instance, the maximum entropy principle in 
image processing contexts, cf. Narayan and Nityananda, 1986; Cornwell, 1988) without 
taking into account some a priori information about the distribution of astronomical 
objects (Hogbom, 1974). An example of such information is that the true image con
sists primarily of only a few point sources distributed throughout the image (Schwartz, 
1978). 

5.1.1.2 The CLEAN algorithm 

The reasoning that leads to the technique of CLEAN follows directly from the point 
made in the last paragraph of §5.1.1.1. Rephrased, it states that r(z, y), hereafter 
called the dirty map, is the result of a convolution between a few point sources (which 
collectively comprise t(:I:, V), the CLEAN map) and g(:I:, y), termed the dirty beam. This 
convolution can be expressed as 

N 

r(:I:,y) L{3i9(:I: :l:i,y Vi) (5.3) 
i",,1 

where N is the number of discrete points in the image, the ith of which is located 
at position (Zi' Vi) and has amplitude {3i. The pulse positions and amplitudes can be 
estimated iteratively by the CLEAN algorithm (Hogbom, 1974): 

1. The peak of maximum magnitude in the dirty map is located. 

2. The dirty beam, weighted both by the amplitude of the peak identified in step 1 
and a suitable factor (called the loop gain), is centred on the peak position and 
subtracted from the dirty map. 

3. Steps 1 and 2 are repeated, with the dirty map replaced by the remainder from the 
previous iteration, until the maximum value is deemed to be no longer significant. 

4. All the pulses identified in step 1 are added together to form the CLEAN map. 
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5. The restored image is obtained. by convolving the CLEAN map with the CLEAN 
beam, which is the ideal point spread function corresponding to a completely 
filled, uniform aperture. 

Readers who wish to find out more about the radio-astronomical applications of CLEAN 
are referred to Hogbom (1974) for the original treatment, Schwartz (1978) for an in
depth mathematical-statistical analysis of the algorithm, and Chapter 11 of Thompson 
et al. (1986) for an up to date general overview of the subject. 

5.1.2 Application of CLEAN to other deconvolution problems 

CLEAN has also been applied to deconvolution problems in several diverse fields (Bates 
et al., 1982a). Millane and Bates (1982) invoke CLEAN to deblur transmission line 
reflections in order to improve their method of time domain reflectometry. The true 
signal in this application consists of discrete impulses corresponding to discontinuities 
in the transmission line. However, the echoes that are actually recorded are blurred, so 
it is desirable to remove this blurring function before attempting to find any particular 
"inverse solution". CLEAN is appropriate for performing this "deblurring" because it 
produces an impulsive signal. However, the loop gain must be very small to ensure 
that the impulse positions are located accurately (Bates et al., 1982a). 

Another application where CLEAN has been successful is the deblurring of bio
chemical analysis data (Bates, 1981; Bates et al., 1982a). Such data tend to exhibit 
position-variant blurring, so that ordinary multiplicative deconvolution (§1.3.2) is in
appropriate. CLEAN can be invoked to resolve the exact positions of several peaks 
(for example in a record of chromatographic data) that otherwise tend to be blurred 
together (Bates et al., 1982a). 

5.1.3 Comparison with Wiener filtering 

CLEAN is termed a subtractive deconvolution technique, while Wiener filtering (§1.3.2) 
is called multiplicative deconvolution (Bates and McDonnell, 1986, Chapter III). In this 
section I discuss the relationship between these two types of deconvolution. 

Wiener filtering consists of multiplying the Fourier transform of the blurred 
signal with an inverse filter formed from an estimate of the blurring function (Note that 
the filter can also be applied equivalently as a convolution in the time domain). The 
deconvolution is thus performed as a "single" operation. By contrast, CLEAN consists 
of iteratively subtracting scaled copies of the blurring function from the blurred signal. 
It thus does not involve any Fourier transformation, but nevertheless requires greater 
computational effort (Bates et al., 1984). 

Because CLEAN operates by means of repeated subtractions in the time do
main, it is straightforward to .allow the blurring function to be time-variant. Wiener 
filtering can only deconvolve a time-variant blurring function if the signal can be use
fully partitioned into segments over each of which the blurring function is invariant. 
This is the rationale behind many of the inverse filtering techniques invoked in speech 
analysis (which are themselves species of deconvolution cf. §3.4.1; §3.5.2). 

Another situation in which multiplicative deconvolution is inappropriate arises 
when the data contain "missing values". Indeed, the CLEANing of radio-astronomical 
images is motivated by large areas of Fourier space being zero-valued (§5.1.1.1). CLEAN 
is also more reliable when the data are truncated in the time domain (Bates et al., 
1982b ). 

Even when large amounts of Fourier data are "missing", it is straightforward 
to CLEAN the data with the actual blurring function, which effectively interpolates 
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the missing values in the Fourier domain (cf. Bates et al., 1984; Thompson et aI., 1986, 
§11.1).The CLEAN signal is then re-convolved with the "ideal" blurring function (Le. 
step 5 of the procedure introduced in §5.1.1.2). Wiener filtering can then be invoked 
to complete the deconvolution. ill this way the computational efficiency of Wiener 
filtering can be combined with the ability of CLEAN to cope with missing data values 
(Bates et al., 1984). 

Because CLEAN produces an impulsive CLEAN signal, regardless of the form of 
the original, undistorted, signal, intricate precautions have to be taken when attempting 
to reconstruct "smooth" signals (Bates et aI., 1982b; Cornwell, 1983). 

5.2 CLEAN processing of speech signals 

The purpose of applying CLEAN to speech is to deconvolve out its invariant charac
teristics, as represented by the SAA signal (§4.2). The resulting "CLEAN signal" thus 
represents the dynamic or time-varying aspects of the speech signal. As described in 
§8.2.1.2, it is possible to perform this by means of standard Wiener filtering techniques. 
However, CLEAN has several advantages over Wiener filtering that make its use in this 
application much more attractive. The main advantage is that it produces a signal 
that consists of relatively few non-zero "pulses". As shown by the results presented 
in §5.3, this means that the CLEAN signal can be directly encoded at low data rates, 
without the need for further processing (the usefulness of CLEAN as a pre-processor for 
LPC schemes is introduced in §8.2.2.4). The second advantage of CLEAN over Wiener 
filtering is that it is not troubled by the smallness of the higher frequency components 
in the spectrum of the SAA signal (Hogbom, 1974). 

This section discusses the application of the CLEAN algorithm to speech sig
nals. §5.2.1 introduces appropriate terminology. The characteristics of speech signals 
that must be considered in order to successfully employ the CLEAN algorithm are dis
cussed in §5.2.2, while a modified algorithm is presented in §5.2.3. Details of the latter 
algorithm's implementation are discussed in §5.2.5. ill §5.2.6, a technique of improving 
the estimates of the pulse amplitudes is described. 

5.2.1 Application of the CLEAN algorithm to speech 

The model of speech introduced in §4.2 describes a speech signal in terms of the in
variant (from one pitch interval to another) and variant components of the glottal 
excitation and vocal tract filter. Furthermore, the invariant component can be simply 
and efficiently estimated by shift-and-add (§4.3). Although methods for separating the 
invariant glottal and vocal tract components are available (§4.3.3), they are not neces
sary for the types of processing described in this chapter. Following this approach, a 
speech utterance set) is represented as 

(5.4) 

where si(t) is the invariant part of the speech signal, sUet) is the variant component, 
and seCt) is the "contamination". 

It is convenient to employ Hogbom's terminology when discussing the CLEAN 
algorithm. The speech signal set) then becomes the "dirty signal", while the term 
"CLEAN signal" is applied to the deconvolved signal sUet). I refrain from calling the 
SAA signal si(t) the "dirty beam", because I do not have an associated CLEAN beam 
as is appropriate in radio astronomy. illstead, I refer to it as the CLEAN kernel, or SAA 
signal, whichever is the more appropriate at the time. Although this graphic terminol
ogy suggests several interesting applications for the technique of "CLEANing" speech, 
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feats such as automatic censoring of movie sound tracks are beyond the algorithm's 
abilities! 

5.2.2 Speech characteristics relevant to CLEAN processing 

Several characteristics possessed by speech signals have forced me to alter the basic 
CLEAN algorithm introduced in §5.1.1.2. The SAA signal, obtained by the process 
described in §4.2.4, is only valid for the voiced sections of a speech utterance. Two 
methods of accounting for the unvoiced sections are available. The first is to employ 
standard VUV teclmiques (§3.1.2) to section the speech signal into voiced and unvoiced 
parts. These can either be processed separately, or a different kernel can be employed 
for the voiced and unvoiced sections, thus taking advantage of the ability of CLEAN to 
utilise a time-variant kernel (Bates et ai., 1982c) I have found that a better approach 
is, however, to separate the speech into two sub-bands (cf. §3.5.1.2), the lower of which 
contains most of the energy of the voiced speech sections, while the high frequency 
band contains most of the unvoiced energy. Each sub-band can then be processed sep
arately by SAA and CLEAN. §5.2.5.5 and §5.4.3.3 discuss the details and implications 
respectively of performing CLEAN on sub-bands of the speech signal. 

Another difference between speech and astronomical signals is that speech sig
nal is of arbitrarily long duration, while most astronomical images are of fixed and 
quite limited extent. Many applications, however, require that speech be processed in 
segments of short duration, so that only a small delay is introduced by the processing. 
For example, low data rate encoding schemes must analyse the incoming speech in 
"real time", with a delay between the input and output of the system of several tens of 
milli-seconds at the most. For this reason, the CLEAN algorithm must be modified to 
process short segments of speech in a sequential fashion, rather than the whole signal at 
once as described in §5.1.1.2. The details of how the speech is segmented are described 
in §5.2.5.3. 

A further characteristic of speech signals is that they vary a great deal from 
one segment to another. Although si(t) is presumed to represent the component of 
the speech signal that remains the same for all segments, it is defined by an average 
over many segments. Anyone particular segment, however, may comprise components 
that are quite different from the average, without significantly affecting that average. 
Hence, the SAA signal may not realistically represent one component of a convolution 
making up that segment (if the "contamination" for that segment is relatively high). 
An extreme example of this is of course an unvoiced segment, as intimated in the 
first paragraph of this section. An unvoiced sound cannot be realistically modelled as a 
convolution between the SAA signal obtained from voiced segments of speech and some 
other component, even though the SAA signal obtained from both voiced and unvoiced 
segments of speech is not very different from that obtained from voiced segments only 
(§4.2.4.5). Further discussion of this point appears in §5.4.3.2. 

Even though a particular speech segment may not be modelled "realistically" 
by a convolution between the SAA signal and some other component, si(t) can be 
deconvolved from it to leave a "variant" component s~ (t). As indicated in the next 
two paragraphs, it may not matter that s~(t) is not physically realistic. 

The original justification for the development of CLEAN was that many astro
nomical images are dominated by only a few isolated "spikes". By performing CLEAN 
with a low enough loop gain, the spikes in the resulting CLEAN map are therefore justi
fiably assumed to accurately represent the true image. The validity of this assumption 
has been confirmed by experiments with computer generated images (cf. Bates et al., 
1982b; Bates et ai., 1984). When reconstructing signals that are continuous, how
ever, the resulting CLEAN map still has a "spiky" appearance (compare Fig.5.1e with 
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(a) (b) (c) 

(d) (e) (f) 

Figure 1>.1. Application of CLEAN to a smooth (non-spiky) signal. a: Original signal. h: Blurring 

function (Gaussian). c: Blurred version of the signal shown in a (the dirty signal). d: CLEAN signal 

after 50 iterations with a loop gain of 0.2, showing its "spiky" nature. e: CLEAN signal after 200 

iterations. f: The "synthetic" blurred signal formed by convolving the CLEAN signal shown in d with 

the blurring function shown in b. 

Fig.5.1a; also see Bates et al., 1984). Nevertheless, this spiky signal is still a possible 
solution to the deconvolution problem, as evidenced by the close similarity between 
the bl1ll'red version of the original signal (Fig.5.1 c) and the reconstruction formed from 
the (CLEANed) spiky signal (Fig.5.1'!). The small difference between Figs.5.1c and f 
(even though the CLEANed signal shown in Fig.5.1e bears little resemblence to the 
"original" signal shown in Fig.5.1a) implies that a variety of different signal pairs sUet) 
and seCt) are able to adequately satisfy the speech model (5.4). 

For the purpose of representing the speech signal for later resynthesis, the exact 
form of suet) does not matter, as long as set) can be recovered from it. In fact, for the 
method of low data rate encoding described in §5.3, the sparse nat1ll'e of the CLEAN 
signal is a great asset. 

Despite the adequacy of a "spiky" CLEAN signal as a representation of sUet), in 
the sense that sUet) can be faithfully reconstructed from it, the question remains as to 
whether it represents any "real-world" speech component (such as what the excitation 
signal and filter are supposed to represent in LP analysis). This question is discussed 
further in §5.4.1. 

5.2.3 CLEAN algorithm for speech signals 

The modified CLEAN algorithm for a segment of speech is defined by the following 
sequence of steps. Initially, Tl(t) is set equal to set) and vo(t) 0, for 0 < t < r seg, 

where rseg is the duration of the segment (see §5.2.5.3 for details on segmentation). 
The CLEAN kernel get) is set to ssa(t) or a modified form of ssa(t) (see §5.2.5.1). 
Thereafter, for each iteration labelled by j: 

1. The position of the new pulse Pi is located at the instant 

Pi (5.5) 
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2. The amplitude of the new pulse Vj is given by 

Vj = '1rj{pj)jg(O) (5.6) 

where '1 is the loop gain (see §5.2.5.2). 

3. The CLEAN signal is updated: 

(5.7) 

4. H the pulse position Pj signifies a new distinct pulse in v( t) (Le. Vj-l (pj) 0), 
the pulse counter Np is incremented. 

5. The dirty signal is reduced: 

rj+l(t) = rj(t) Vjg(t Pj), Pi + r;; < t < Pi + r;; (5.8) 

where r; < t < r: is the interval over which get) is non-zero when the maximum 
magnitude in get) occurs at t = O. 

6. Steps 1-5 are repeated until either IVil < '1ch Np = Pmax1 or j 2': Jmax (see §5.2.5.4 
for details on each of these threshold parameters). 

It is appropriate here to introduce a special notation for the non-zero samples 
of the CLEAN signal (i.e. the samples of vet) =J. 0). I write this set of non-zero samples 
as {Vii Pi, i = 1,2 ... Pmax}, which I call the sequence of CLEAN pulses. 

5.2.4 Reconstructing speech from the CLEAN signal 

Speech can be reconstructed from the CLEAN signal vet) simply by convolving it with 
the kernel signal get). The convolution can be computed very efficiently if one takes 
appropriate advantage ofthe large number of zero-valued samples in vet). The following 
sequence of steps represents one way of doing this: 

1. Initialise s( t) = 0, 0 < t < rseg 

2. Repeat the following step for each of the non-zero samples in vet), the kth of 
which is of amplitude Vk and position Pk. 

3. Add the kernel corresponding to the kth pulse to set): 

(5.9) 

5.2.5 Implementation details and considerations 

In this section I provide details on the implementation of the CLEAN algorithm pre
sented in §5.2.3. §5.2.5.1 explains how the SAA signal is modified so that it can be used 
as the CLEAN kernel, while §5.2.5.2 describes the effect that the loop gain factor '1 has 
on the operation of the CLEAN algorithm. §5.2.5.3 discusses the need to segment the 
speech utterance before performing CLEAN, and describes how this can best be done. 
§5.2.5.4 discusses the various conditions that can be invoked to terminate the CLEAN 
algorithm, while §5.2.5.5 describes how CLEAN can be applied to the unvoiced sections 
of speech. Finally, §5.2.5.6 describes the improvement in performance that is obtained 
when the speech signal is pre-emphasised before performing SAA and CLEAN. 
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Parameter Default value Description 

"I 0.7 Loop gain 
rseg 

k 25ms Segment duration 

AT 15ms Segment spacing 

1]~ 0.01 max{ls(t)\} Global threshold 
1]clk 0.05 max{\sk(t)l} Local threshold 
Pmax variable Maximum number of pulses 

per segment 

Jmax 2Pmax Maximum number of itera-
tions per segment 

Table 5.1. Default values for the parameters in the CLEAN algorithm. See §5.2.5.1 through §5.2.5.6 

for details 

5.2.5.1 Necessary modifications to the SAA signal 

My implementation of the SAA procedure described in Chapter 4 produces a signal 
that is of fixed duration (12.8ms) for all utterances, no matter what the average pitch 
of the utterance is. While this is of no concern for the purposes of Chapter 4, it is 
necessary to modify the SAA signal before it can be used in the CLEAN algorithm 
described in this chapter. The SAA signal is, firstly, usually longer than the average 
pitch period of the utterance and, secondly, its end-points are seldom of zero amplitude. 
Consequently, discontinuities ate introduced into the dirty signal when the SAA signal 
is subtracted from it at step 5 of the CLEAN algorithm (§5.2.3). In this section I 
discuss several strategies for modifying the SAA signal so that it is better suited for 
use in CLEAN processing. 

Extracting a portion of the SAA signal of duration equal to the average pitch 
period of the utterance, as is illustrated in Fig.5.2a, does not in general result in a 
signal whose end-points are of zero amplitude. It is thus necessary to subtract an offset 
equal to the average value of the end-points from the SAA signal. 

Fig.5.2 illustrates several ways in which the SAA signal is modified for use 
in the CLEAN algorithm. The "raw" SAA signal saa(t) obtained from the utterance 
AM-RAIN1 is shown in Fig.5.2a. Instants T; and r: are identified at locations having 
approximately the same values and slopes of saa(t). An offset equal to (saa(r;) + 
ssa(T:))/2 is subtracted from ssa(t) and the result, for T; < t < r:, denoted by get). 
The signal get) is shown in Fig.5.2b .. 

Because the addition of a d.c. offset to the SAA signal is likely to affect the 
operation of CLEAN (because it is a method of subtractive deconvolution), I have 
investigated several other methods of modifying the SAA signal so that its end-points 
are of zero amplitude. One approach is to identify the instants r; and r: as illustrated 
in Fig.5.2a, but instead of subtracting an offset, modify ssa(t) outside the interval 
r; < t < rit so that it goes smoothly to zero. The resulting get), which is longer 
than rg because of the "edge-extension", is shown in Fig.5.2 c. This technique has been 
successful in countering the effects of truncation when reconstructing a wide variety of 
classes of signals and images (Bates and McDonnell, 1986, §15). Another approach is to 
multiply the SAA signal by a tapering window (cf. §1.3.1.1) so that its values at r; and 
r: are zero. A final approach to obtaining get) from saa(t) is to position the end-points 
at instants where a zero-crossing occurs in ssa(t), as shown in Fig.5.2d. Unlike in the 
other methods outlined in this and the previous paragraph, the SAA signal values are 



5.2 CLEAN PROCESSING OF SPEECH SIGNALS 155 

Zofs 

(a) (b) 

(c) (d) 

Figure 5.2. illustration of ways in which the SAA signal S.a( t) is modified to form the CLEAN kernel 

g(t). a: Raw SAA signal, showing the positions of the end-points ril and r: respectively. b: CLEAN 

kernel obtained by subtracting an offset from the SAA signal, such that the values of g(t) at the end

points shown in a are zero. c: "Edge-extending" Soa(t) with a smooth Gaussian roll-off from each of 

the end·points identified in a to zero amplitude. d: Positioning the end-points of g(t) at zero-crossing 

instants in S.a(t). 

not actually changed in this approach. 
Experiments with each of the methods described above convinced me that the 

simple approach of subtracting a d.c. offset so that the end-points Ssa(rg-) and ssa(r;t) 
are nearly zero leads to the best performance as far as subsequent CLEAN processing is 
concerned. All the results presented in this chapter are therefore generated with SAA 
signals modified in this manner. 

5.2.5.2 Choice of gain parameter 

This section discusses how changing the value of the loop gain factor i affects the 
operation and results of the CLEAN algorithm described in §5.2.3. It is first necessary 
to introduce some fresh terminology. The CLEAN algorithm produces a CLEAN signal 
and a residual dirty signal. The CLEAN signal represents the convolutional component 
of the speech signal, while the residual signal represents the additive contamination 
(§5.2.1). In this and subsequent sections I often refer to the level of the dirty signal. 
By this I mean the average (squared) magnitude of the dirty signal compared to the 
original speech signal. The level of the dirty signal rlev is defined by 

(5.10) 

which is seen to be related to the signal-to-noise ratio SNR by the expression 

(5.11) 
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s(t) s(t) 

~~~~~~~~~4+~~~~~t 
170rns 

(a) 

(c) 

+A~~~~+H~+H~~H+H+~+H-t 
Barns 

(b) 

(d) 

Figure 5.3. Segments of speech invoked to illustrate the operation of the CLEAN algorithm. a: 

Segment of the utterance AM-RAIN!. b: Segment of the utterance TF-RAINl. c: Modified SAA 

signal from the utterance AM-RAIN!. d: Modified SAA signal from the utterance TF-RAINI 

When describing the convergence of the CLEAN algorithm, I find it convenient to 
employ the terminology rlev • When discussing the CLEAN algorithm in terms of low 
data rate speech encoding, however, the more conventional SNR is invoked. 

The value of the loop gain / strongly influences the rate of convergence of the 
CLEAN algorithm. A smaller value for / means that a larger number of iterations are 
required to CLEAN a dirty signal down to any given level. This is because the dirty 
signal is reduced by only small "nibbles" at each iteration, instead oflarge "bites" when 
a larger value is used. Fig.5A shows the SNR versus the number of iterations when the 
segments of speech shown in Fig.5.3 a and b are CLEANed with the SAA signals shown 
in Fig.5.3 c and d respectively. Results are shown for several values of / ranging from 
0.1 to 1.0. 

Figs.5.5 to 5.7 show the CLEAN residual, and reconstructed signals that arise 
when the segments of speech shown in Figs.5.3a and b are CLEANed with various 
values of / ranging from 0.1 to 1.0. The dirty signals shown in both Figs.5.5 to 5.7 
have been reduced to a similar level, but the forms of the CLEAN signals are very 
different. In particular, the number of non-zero CLEAN pulses is very much greater 
when / is smaller. Fig.5.S shows curves of SNR versus the number of non-zero samples 
in the CLEAN signals obtained as described above. 

The value of the CLEAN loop gain / can be viewed as an estimate of the level 
of confidence in how well the amplitude of the current maximum peak in the dirty 
signal represents the amplitude of the CLEAN pulse at that instant. For instance, if 
one knows that the CLEAN signal consists of well separated pulses, one can assume 
that a peak in the dirty signal is composed of a single copy of the kernel, positioned on 
that peak. A reasonable value for / is therefore unity. On the other hand, if the dirty 
signal is composed of many overlapping copies of the CLEAN kernel, the maximum 
peak is likely to be composed of the superposition of many overlapping copies of the 
CLEAN kernel. Hence the amplitude of the peak is likely to be appreciably different 
from the amplitude of the CLEAN pulse at that position, implying that a low value 
for / is advisable. The results presented here suggest that / should not be too small, 
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Figure 5.4. SNR as a function of the number N of CLEAN iterations applied to the speech segments 

shown in Fig.5.3. a: pertains to the segment shown in Fig.5.3 a while b: pertains to the segment shown 

in Fig.5.3b. Curves are shown for values ofloop gain 'Y equal to 0.1, 0.5, and 1.0. 
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Figure 5.5. The results of applying CLEAN with a loop gain 'Y of 0.1, to the speech segment shown 

in Figs.5.3a and b. a: CLEAN, bl residual, and c: reconstructed signals obtained from the segment 

shown in Fig.S.3a. d: CLEAN, e: residual, and f: reconstructed signals obtained from the segment 

shown in Fig.5.3b. 2800 CLEAN iterations are performed to produce the CLEAN signal shown in a, 

while 6500 are required to produce the CLEAN signal shown in d. The resulting SNR is lSdB in each 

case. The number of non-zero "pulses" in the CLEAN signals shown in a and d are equivalent to 2700 

and 3100 pulses per second respectively. 
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Figure 5.6. The results of applying CLEAN with a loop gain 'Y of 0.5, to the speech segment shown 

in Figs.5.Ja and b. a: - f: are the same as in Fig.5.5. 4JO and 1000 CLEAN iterations respectively 

Me performed for a: c: and d: - f:, resulting in SNR 15dB in each case. The CLEAN signals 

shown in a and d contain the equivalent of 1580 and 2760 pulses per second respectively. 

both to avoid the stagnation evident in Fig.5.4, and to reduce the number of non-zero 
samples in the CLEAN signal. Conversely, it should not be large, or else instability may 
result. For the remainder of this chapter, I employ a value of / = 0.7 unless otherwise 
specified. 

5.2.5,3 Segmentation considerations 

Because a speech utterance is a signal of arbitrarily long duration, it is necessary 
to divide it into short segments of convenient duration before performing CLEAN. 
Each segment is processed by the CLEAN algorithm described in §5.2.3, with the total 
CLEAN signal being formed by concatenating the individual CLEAN signals from each 
segment. However, care must be taken to avoid "segmentation edge effects" which can 
occur when an utterance is segmented arbitrarily. In this section I describe these effects 
and how they can be minimised. 

Before discussing the details of the segmentation edge effects, it is useful to in
troduce some pertinent terminology. A speech utterance s(t) is divided into K segments 
sdt), each defined by 

0< t < T
seg 

, - - k (5.12) 

where Tk is the position and Tkcg the duration of the kth segment Sk(t). Note that it is 
necessary that TZeg 2: Tk+1 Tk, with the inequality holding if the adjacent segments 
Sk( t) and Sk+1 (t) overlap (see the final paragraph of this section). 
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Figure 5.7. The results of applying CLEAN with a loop gain 'Y of 1.0, to the speech segment shown 

in Figs.5.3a and b. a: f: are the same as in Fig.5.5. 175 and 450 CLEAN iterations respectively are 

performed for a: c: and d: - f:, resulting in SNR = 15dB in each case. The CLEAN signals shown 

in a and d contain the equivalent of 940 and 2640 pulses per second respectively. 
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Figure 5.S. SNR as a function of the number Np of non-zero samples in the CLEAN signal. a: 

pertains to the segment shown in Fig.5.3a while b: pertains to the segment shown in Fig.5.3b. Curves 

are shown values of the loop gain 'Y equal to 0.1, 0.5, and 1.0. Note that the abscissa is expressed in 

terms of Rpl the number of CLEAN pulses per second. 
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The first type of segmentation edge effect that I wish to discuss occurs because 
of the truncation inheren,t in (5.12), coupled with the finite duration of the CLEAN 
kernel g(t). When a CLEAN pulse occurs near the end of Sk-l(t), the shifted kernel 
(step 5 of the CLEAN algorithm in §5.2.3) extends beyond the end of Sk_l(t) and 
into the kth segment Sk(t). The kth segment must therefore be modified to take into 
account the effect of this pulse. Thus, CLEAN is performed on the modified segment 
8k(t), defined by 

(5.13) 

where Vk-l(t) is the CLEAN signal for the (k - l)th segment. 
Another edge effect arises because the CLEAN kernel g(t) is non-causal (in the 

sense that it is non-zero for t < 0), which means that when a CLEAN pulse occurs 
near the start of a segment, the shifted kernel extends into the previous segment (see 
the above paragraph for the analogous situation for pulses near the end of a segment). 
In the absence of segmentation, the subtraction ofthese copies of the kernel may cause 
additional pulses to be identified by subsequent iterations of the CLEAN algorithm in 
that part of the signal corresponding to the previous segment. However, because of 
segmentation, the CLEAN signal in the (k _lyh segment cannot be updated when the 
kernel overlaps from the kth segment. As a result, existing CLEAN pulses near the end 
of the segment (k l)th may have incorrect amplitudes, and pulses that would have 
existed in the absence of segmentation may not be present. 

Another type of segmentation edge effect occurs when the maximum magnitude 
sample located by step 1 of the CLEAN algorithm in §5.2.3 occurs at the end-point 
Sk(T:eg

), but when that sample is not a local maximum of s(t) (Le. the edge of the 
kth segment truncates a slope in s(t). This results in an erroneously positioned peak, 
which can be avoided by testing for the possibility of such an occurrence in step 1 of 
the algorithm. 

Because of the edge effects described above, it seems that the duration of each 
segment T:eg should be as large as is convenient. However, larger segments take longer 
to process, in that the speech signal at the output of the CLEAN analysis and recon
struction process is delayed with respect to the input speech signal. They also require 
more computation, since each iteration of the CLEAN procedure must search through 
more samples before it locates the maximum. In order to partially allay the effects 
of segmentation, adjacent segments are overlapped, so that the regions in which edge 
effects occur (Le. approximately half the duration of g( t) from each end of the segment) 
are processed in both the kth and (k + 1 )th segments. For the results presented in the 
remainder of this chapter, I employ a segment duration T:eg 25ms and a spacing, 
AT Tk+l Tk 15ms between adjacent segments. This provides an overlap of 10ms. 

5.2.5.4 Terminating the iterations 

The model of speech invoked to explain the processing of speech by SAA and CLEAN 
(§4.2.1,§5.2.1) consists of a convolution of an invariant component (represented by the 
SAA signal) and a variant component (represented by the CLEAN signal), together 
with an additive "contamination" term that encompasses all aspects ofthe speech signal 
that cannot be described by the aforesaid convolution. In each iteration of the CLEAN 
algorithm, one of the (shifted and scaled) copies of the invariant component, from which 
the signal is composed, is removed from the dirty signal and an equivalent impulse is 
added to the CLEAN signal. After many such iterations, the dirty signal is reduced 
to the level of the contamination, implying that further iterations cannot improve the 
CLEAN signal. Since the contamination level is unknown, indirect measures must be 
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Figure 5.9. a A segment of speech (different from that shown in Fig.5.4b) from the utterance AM

RAIN!. b: Curves of SNR versus the number of iterations when CLEAN is applied to the segment 

shown in a with values of 'Y equal to 0.1, 0.5, and 1.0. 

invoked to decide when to terminate the CLEAN procedure. In this section I discuss 
some of the methods which I have found to be useful for this purpose. It is obviously 
important, if one desires to minimise the number of CLEAN pulses (such as for low 
data rate speech encoding, §5.3), to terminate the CLEAN algorithm as soon as the 
dirty signal has been reduced "enough". 

Perhaps the simplest approach to estimating when to terminate the CLEAN 
algorithm is to apply an arbitrary threshold7jclon the dirty signal. The iterations are 
terminated when the maximum magnitude of the dirty signal (as found in step 1 of the 
algorithm described in §5.2.3) is less than 77e!' which is an estimate of the contamination 
level within the speech signal. 

In order to adjust the threshold to account for the varying amplitude of the 
speech signal from syllable to syllable (§2.1.3), I set a threshold 77clk to a pre-determined 
proportion ofthe peak magnitude within each speech segment (see §5.2.5.3 for details on 
how the speech utterance is segmented). In addition, I set a global minimum threshold 
1}clg so that segments which contain inter-word silences are not unnecessarily CLEANed. 
The actual threshold 77cl for any particular segment is set to the larger of 1}clg and 1}clk • 

One drawback with applying a threshold as described above to determine when 
a segment of speech has been CLEANed "enough" is that the actual contamination level 
may vary significantly between different segments, even when expressed as a proportion 
of the peak speech magnitude. As is discussed in §5.2.2, some segments of an utterance 
are modelled well by a convolution between si(t) and a s~(t) composed of a few discrete 
impulses, implying that the additive contamination s~(t) is small for that segment. 
However, other segments are not so well modelled. If the contamination level is much 
larger than the threshold 1}eh the CLEAN algorithm may stagnate before it reaches the 
threshold. This is illustrated in Figs.5.9 which shows SNR as a function of the number 
of iterations of the CLEAN algorithm when it is applied to a different segment of the 
utterance AM-RAINl as that depicted in Fig.5.3 a. The segment depicted in Fig.5.9a 
has a much higher contamination level than the one depicted in Fig.5.3 a, as evidenced 
by the stagnation of the CLEAN algorithm at a lower SNR. 

In order to account for the effects of stagnation, I set a limit Jrnax on the number 
of iterations that the CLEAN algorithm can complete for any particular segment of 
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Figure 5.10. Segmental SNR during the voiced sections of the first two seconds of the utterance 

TF-RAINI (solid line). The maximum number of CLEAN pulses Pmax in each segment was set to 30 

(corresponding to an average pulse rate of 1400pps), while the maximum number of iterations Jrnax 

was set to 60. The thresholds 'l/cl~ and 71clk were set to zero. The dotted line represents the RMS 

envelope of the speech signal while the broken line represents the SNR when the pulse amplitudes are 

re-optimised in the manner described in §5.2.6. The average (un optimised) SNR over the extent of the 

signal is 16dB. 

speech. I also limit the number Pmax of non-zero "CLEAN pulses" that the CLEAN 
signal (in anyone segment) can be composed of. These limits act like a threshold on 
the dirty signal that varies according to the level of the contamination in the speech 
signal. This is because, for a given Pmax or Jrnax , the level of the dirty signal is much 
lower for a segment with little contamination than for one with a larger contamination 
level. Fig.5.l0 shows the variation of SNR during an utterance when these limits are 
applied. 

Limiting the number of CLEAN pulses by means of Pmax is attractive in the 
low data rate scheme described in §5.3 because it bears directly on the data rate of the 
encoded speech. It is thus relatively straightforward to adjust the coding strategy for 
different data rates. 

5.2.5.5 Dealing with unvoiced speech 

It is explained in in Chapter 4 (§4.2.4.5) that the voiced and unvoiced sections of a 
speech signal are so different in character that they must be separated and processed 
independently by SAA. The same reasoning applies to CLEAN processing, since it 
makes no sense to deconvolve a signal that represents the excitation of the voiced 
sections of an utterance from a section of unvoiced speech (see §5.4.3.2). 

The most straightforward way to deal with the differences between voiced and 
unvoiced sections of speech is, first, to separate them by means of standard VUV anal
ysis techniques (see §3.1.2), and then to perform SAA and CLEAN separately on the 
voiced and unvoiced sections. However, as explained in §4.2.4.5, this is often inade
quate, both because of errors in the VUV classification, and because of the occurrence 
of sections of speech having a mixed excitation. 

Another way of separating the effectively voiced and unvoiced sections of an 
utterance is to filter it into two frequency sub-bands. As described in §4.2.4.5 for 
the case of SAA processing, the high frequency sub-band contains most of the energy 
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Figure 5.11. a: A section of speech (the word '':raindrops'') from the utterance AM-RAINI. b: Low 

frequency sub~band 0-2.5kHz. c; High frequency sub-band 2.5-5kHz. 

arising from the unvoiced excitation, while the low frequency band contains most of 
the voiced excitation. Sections of speech having a mixed excitation are represented by 
energy distributed between both of the bands. 

Fig.5.11 a shows a section of speech containing both voiced and unvoiced parts. 
The two sub-bands are shown in Figs.5.11b and c respectively. Performing CLEAN on 
these sub-bands results in the reconstructed and residual signals shown in Figs.5.12. 
Notice how the voiced and unvoiced sections shown here are neatly allocated to the two 
frequency bands, with only a small amount of energy in the low and high frequency sub
bands during the unvoiced and voiced sections of the utterance respectively. Further 
implications of processing speech in several sub-bands are discussed in §5.4.3.3. 

5.2.5.6 Differentiation of the speech signal 

The success of the CLEAN algorithm in de convolving the SAA signal from the speech 
signal rests on the assumption that the peaks in the speech signal (and the dirty signal 
at later iterations of the algorithm) represent a "copy" of the SAA signal which is 
located at the same instant as the peak. As discussed in §4.2.2, these assumptions 
are not strictly met by actual speech signals. The glottal pulse does not contain a 
dominant impulsive peak, which means that highest peak in the speech signal identified 
in the CLEAN algorithm (§5.2.3) may not correspond to the highest peak in the glottal 
pulse. Pre-emphasising the speech signal by first order differentiation should therefore 
improve the performance of SAA (see §4.2.4.7) and CLEAN because it makes the 
effective excitation signal more "peaky". 

Fig.5.13 shows curves of the SNR versus the pulse rate for speech that has 
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Figure 5.12. Reconstructions of the a: low frequency and h: high frequency sub-bands shown in 

Fig.5.11b and c respectively after they have been CLEANed with the SAA signals obtained from the 

respective sub-bands of the entire utterance (see Figs.4.22a and b). c: and d: Residual signals of the low 

and high frequency sub-bands respectively. e: Total reconstructed signal formed by adding together 

the signals shown in a and b. The average SNR of the low frequency band is 11dB, with 1400 CLEAN 

pulses per second. The conesponding values for the high frequency sub-band are 12dB and 1700pps 

respectively. 'Y = 0.5 in each case 
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Figure 5.13. SNR versus the pulse rate for speech that has been pre-emphasised by first-order 

differentiation before SAA and CLEAN was performed. SAA and CLEAN was performed on the voiced 

sections of the utterances a: AM-RAINI and b: TF-RAINI. The upper line in each graph denotes the 

SNR after amplitude re-optimisation (see 55.2.6). A loop gain factor 'Y ::= 0.7 was employed. 

been pre-emphasised before SAA and CLEAN processing was perfonned. Comparing 
Fig.5.l3 with the equivalent curves shown in Fig.5,4 indicates that pre-emphasis actu
ally reduces the SNR at any particular pulse rate. however, the reconstructed speech 
sounds considerably better than without pre-emphasis. This is probably because the 
pre-emphasis enhances the high-frequency components so that they are better rep
resented by the CLEAN signal (see §5.4.3 for further discussion of this point). In 
addition, the necessary de-emphasis of the reconstructed signal reduces the error in the 
high-frequency components. Because of the perceived improvement in speech quality 
that is obtained, I employ pre-emphasis in the low data rate speech coding scheme 
described in §5.3. 

Another advantage of differentiating the speech signal before performing SAA 
and CLEAN is that the resulting SAA signal shows a tendency towards having end
points of zero amplitude. As described in §5.2.5.l, the SAA signal must be modified, 
so that its end-points are at zero amplitude, before it can be employed in the CLEAN 
algorithm. Fig.5.l4 shows the SAA signals obtained from the voiced sections of two 
utterances, both before and after the utterances have been differentiated. In my expe
rience, SAA signals obtained from differentiated utterances spoken by male speakers 
ahnost always have zero-amplitude end-points (such as that one shown in Fig.5.l4a). 
However, SAA signals obtained from differentiated utterances spoken by female speak
ers usually have non-zero end-points, as is illustrated in Fig.5.l4b. They must therefore 
still be modified in the manner described in §5.2.5.1. 

5.2.6 Optimisation of the CLEAN pulses 

In §5.2.5.2, it is noted that the fonn of the CLEAN signal varies markedly with changes 
in the loop gain factor /. Each such signal is an approximate solution to the decon
volution problem, in that it is consistent with the given speech and SAA signals, at 
the specified contamination level. However, each CLEAN signal is "sub-optimal" in the 
sense that it is possible to adjust the pulse amplitudes to further reduce the contamina
tion level. The reason that the simple CLEAN signal is sub-optimal is that the pulses 
are located sequentially. At each iteration, the amplitude of the new pulse is estimated 
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(c) Cd) 

Figure 5.14. SAA signals obtained from the voiced sections of undilferentiated and dilferentiated 

utterances. Undilferentiated: a: Utterance AM-RAIN I. h: Utterance TF-RAINI. Differentiated: e: 

Utterance AM-RAINI. d: Utterance TF-RAINI. 

by considering only the speech signal and the effects on it of the previously estimated 
pulses. Later pulses may modify the dirty signal such as to make the current estimate 
of the pulse position or amplitude inaccurate. If a peak in the dirty signal reappears in 
later iterations at the position of a particular pulse, its amplitude is updated. However, 
significant improvements to Tlev can be obtained by re-optimising the pulse amplitudes 
after they have been located by the CLEAN algorithm. 

It is convenient to present the optimisation algorithm in the sampled time 
domain. Readers should bear in mind, however, the implied correspondence between 
the sample index n and the time index t (strictly, t = nTs, where l/Ts is the sampling 
frequency). 

The mean square error E between the original speech s[n] and the speech signal 
reconstructed from the CLEAN signal is given by 

(5.14) 

where Np is the number of non-zero samples in the CLEAN signal, the ;th of which 
is of amplitude Vi and position Pi' Minimising E with respect to each of the Vi leads 
to a matrix equation which can be solved using standard techniques. For computa
tional reasons, it is convenient to perform the amplitude optimisation on blocks of Nopt 

CLEAN pulses, holding the remaining pulses constant. Denoting the index of the first 
pulse in such a block as ;0, (5.14) can be re-written as 

(5.15) 

where 
;,,-1 Np 

y[n] = s(n] - L Vjg[n - nil L vig(n - Pi] (5.16) 
i=:l i=;o+Nopl 
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is the signal remaining when the effects of all the CLEAN pulses that are not within 
the optimisation block have been removed from the speech signal. 

Setting the partial derivatives of E with respect to each of the Vj to zero leads 
to the matrix equation 

Nop\-l 

L gPkPjVk cPi' j jo .. . N opt 1 (5.17) 
k=ja 

where 
00 

gPiPj = L g[n pi]g[n pj] (5.18) 
n=-oo 

is the auto-correlation of the CLEAN kernel g[n] and 

00 

(5.19) 
n=-oo 

is the cross-correlation between the CLEAN kernel g[n] and the modified speech signal 
y[n] for the current optimisation block. Standard matrix solving techniques can be 
invoked to solve (5.17) and thereby obtain "optimised" values for the CLEAN pulses 

Vk· 
Because g[n] is non-zero for n; < n < nt only, the computational effort re

quired to evaluate (5.16) can be reduced since only those CLEAN pulses whose positions 

Pi satisfy Pja ng '5 Pi < Pja or P(jo+Nopt) '5 Pi '5 P(jo+Nop\-l) +ng , where ng = nt n;, 
need be subtracted. In practice, it is easier to form y[n] by adding the effects of the 
pulses within the optimisation block to the residual r[n] , since the residual is available 
from the CLEAN algorithm. A practical algorithm, which performs the CLEAN pulse 
amplitude re-optimisation, proceeds according to the following sequence of steps, with 
the initial residualr(O)[n] set equal to the residual remaining after the CLEAN algo
rithm (§5.2.3) has been applied to all segments (see §5.2.5.3) of the utterance being 
processed. 

00 

1. Compute the autocorrelation gg[i] = L g[n]g[n- i], z 0 .. . ng. 
n=-oo 

2. For each block of Nopt CLEAN pulses, perform the following five operations. 

(a) Compute the modified speech signal for the kth block: 

jak+Nop\-l 
y(k)[n] r(k-l)[n]+ L vjg[n-pj]' pjok -ng < n < P(jodNopt-1)+n9• 

(5.20) 

(b) Compute the cross-correlation vector cpj ' j = jok ••. jok + N opt 1, accord
ing to (5.19). 

( c) Isolate the appropriate elements of gg to form gPiPj' i, j 
N opt -1: 

jok" .jok + 

(5.21) 

(d) Obtain the updated values vi of the CLEAN pulse amplitudes by solving 
(5.17) with vi Vj' 
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Figure 5.15. Re-optimising the CLEAN pulse amplitudes. a:, d: CLEAN signals corresponding to 

those shown in Fig.5.6a and d respectively but after the pulse amplitudes have been optimised. b:,e: 

Residual, and c:,f:, recoustructed speech signals. The SNR after optimisation is 2IdB for each segment, 

compared with I5dB for the unoptimised equivalents. 
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Figure 5.16. Comparison between the SNR of optimised and unoptimised CLEAN. The upper curve 

in each figure represents the SNR after optimisation while the lower curve represents that before 

optimisation. Utterances a: AM-RAINI and b: TF-RAINI. A loop gain factor 'Y 0.7 was employed. 

Note that these figures are drawn with a vertical scale of 0-40dB instead of 0-30dB as on the other 

SNR graphs. 
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(e) Update the residual signal to take into account the optimised CLEAN pulses: 

jok+N"pt-1 

r{k}[n] = r{k-l)[n] - I: vjg[n 
(5.22) 

j=jok 

Piok ng < n < P(jok+Nopt-l) + ng' 
Figs.5.15aand d shows the CLEAN si~alsobtained after optimising the CLEAN 

pulses shown in Figs.5.6 a and d respectively. The resulting reconstructed speechsig
nals are shown in Figs~5.15c and f. The improvement in SNRover the unoptimised 
versions are indicated by the curves shown in Fig.5.16. These graphs, together with 
the curves of the variation of SNR during an utterance shown in Fig.5.10, indicate that 
pulse amplitudere-optimisationprovides roughly 6dB improvement to the SNR of the 
reconstructed speech. 

The number of pulses Nopt that can be optimised in each block is limited by 
the difficulties inherent in solving large matrix equatiQns. In addition, it does not 
make sense to simultaneously optimise pulses that are widely, separated, since they 
are practically independent. Computational experience suggests that Nopt can be as 
large as 100 without incurring any instabilities in the matrix solution. For the results 
presented in this chapter, N opt is set equal to the smaller of 100 or 4Pmax (where 
Pmax is the number of pulses found in each CLEAN segment of speech, see §5.2.5.4). 
This means that the pulses are optimised over an interval of approximately 4-5 times 
the extent ng of g[ n] (since ng is slightly smaller than the spacing between adjacent 
segments). 

5.3 Low data rate speech encoding via SAA and CLEAN 

As indicated by the results presented in §5.2, the CLEAN signal obtained from a 
speech utterance consists of non-zero "CLEAN pulses" interspersed with zero-valued 
samples. Depending on the utterance and the level to which the dirty signal is reduced 
by CLEAN, the number of CLEAN pulses ranges from 500-3000 per second. This 
is considerably less than the total number of samples in the speech signal (10000 per 
second for the utterances employed here) implying that the CLEAN pulses can be 
used as a low data rate representation of the speech signal. However, because the 
CLEAN pulses are not uniformly spaced, both their amplitudes and positions need to 
be encoded. In order to take full advantage of the benefits implied by the reduced 
number of pulses, efficient means of encoding the pulse positions and amplitudes must 
be employed. 

§5.3.1 describes the methods by which the CLEAN pulses are encoded, while 
§5.3.2 gives details of how the SAA and CLEAN analysis techniques described elsewhere 
in this and the previous chapter are employed for low data rate speech encoding. §5.3.3 
presents results pertaining to the performance of the scheme. 

5.S.1 Encoding the CLEAN signal 

A CLEAN signal is completely specified by the amplitudes and positions of all of 
its constituent CLEAN pulses. For encoding purposes, it is convenient to separately 
consider the information pertaining to the amplitudes of the pulses, and that which 
defines their positions. Following this rationale, I here represent a CLEAN signal by 
a set of amplitudes {vi, j = 1, ... , N tot } and a set of positions {Pi, j = 1, ... , N tot }, 

where the jth (out of N tot in total) CLEAN pulse has amplitude Vi and is located 
at time Pj. §5.3.1.1 describes how the pulse amplitudes are encoded, while §5.3.1.2 is 
concerned with the encoding of the pulse positions. 
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5.3.1.1 Encoding amplitudes 

The elements of the set of pulse amplitudes {Vj} are real numbers, which means that 
they must be quantised before they can be digitally encoded. Efficient quantisation 
and encoding requires that the statistical structure of the quantities to be encoded 
be reflected in the coding scheme (cf. Hamming, 1980). Two useful descriptors of the 
statistical nature of a list of numbers are its probability distribution function (pdf) and 
autocorrelation function. The pdf (§1.3.3) is approximated by a histogram showing the 
relative frequency of occurrence of each (quantised) amplitude value in the set {Vj}. 
The normalised autocorrelation function Ca [k] of the ordered set of nlimbers {aj} is 
defined by 

(a)' a)' k)' 
[k] - - J 

Ca - (~~) aJ j 
(5.23) 

where aj = aj a and a is the ensemble mean of {aj}. The autocorrelation gives 
an average indication of how much any particular pulse amplitude is related to the 
amplitudes of nearby pulses. 

Fig.5.17 shows histograms of the pulse amplitudes for various CLEAN signals. 
These show that the CLEAN pulses are predominantly of low amplitude. The autocor
relation functions cu(k] of the sets of pulse amplitudes from several CLEAN signals are 
shown in Fig.5.18. These indicate that the amplitudes of nearby pulses in the CLEAN 
signal are somewhat correlated, but that this correlation falls off rapidly with increasing 
k. 

Because the statistics of the pulse amplitudes as revealed by the histograms 
and correlation functions shown in Figs.5.17 and 5.18 are somewhat similar to those 
describing speech signals (cf. Rabiner and Schafer, 1978, §5.2), the techniques used to 
quantise speech signals (see §3.5.1) can be usefully invoked to quantise the pulse am
plitudes. I employ a simple adaptive quantisation scheme where the quantisation levels 
in each block of Nb pulse amplitudes are adjusted to the maximum magnitude pulse 
within that block. This is the same scheme described by Kroon and Deprettere (1988) 
to quantise the amplitudes of their multi-pulse excitation sequences. The maximum 
magnitude pulse within each block, called the quantisation gain, is denoted by Gk. 
Each amplitude value within the block is normalised, by dividing it by Gk, and then 
uniformly quantised with qa bits. The gain is also uniformly quantised, with qg bits, 
and transmitted along with each block. The average number of bits qav required to 
code each pulse amplitude is therefore 

(5.24) 

The quantisation parameters qa, qg, and Nb affect both the resulting data rate 
of the encoded speech and the quality of the reconstructed speech. Hence the particular 
values that are given to these parameters must be determined according to the required 
data rate and quality. §5.3.3 describes the results obtained when various values are 
employed for qa and qg. Computational experience suggests that Nb = 6 is the best 
value for this parameter. Larger values for Nb result in each block containing pulses 
whose amplitudes are significantly less correlated (as suggested by the low correlation 
values shown in Fig.5.18 for k > 6), while smaller values increase qav' 

5.3.1.2 Encoding the pulse positions 

The sequence of CLEAN pulse positions {pj} constitutes a point process (cf. Cox and 
Isham, 1980). It is convenient to represent this sequence by the set of inter-pulse 
intervals {Ij}, where 

Ij Pj - Pj-b j 1 ... N tot (5.25) 
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Figure 5.17. Histograms of the distribution of pulse amplitudes in various CLEAN signals. The 

histograms are plotted on a logarithmic scale, with the solid line pertaining to the low frequency sub

band and the dotted line the high frequency sub-band. a: AM-RAIJ:l1, 420 and 250pps in the low 

and high frequency sub-bands respectively. h: AM-RAINl, 1100 and 640pps. c: TF-RAINl, 520 and 

250pps. d: TF-RAINl, 1300 and 620pps. Note that the large value of p(IVjl) on the extreme right of 

each graph actually represents P(lvil > 40',,), where 0'" is the standard deviation of {Vj}. 

and Po = O. Note that the intervals Ii are positive integers, in units of the sampling 
interval of the CLEAN signal. An alternative representation of the sequence of pulse 
positions is as a binary sequence, with 1 's representing the pulse positions (the non
zero samples in the CLEAN signal) and O's representing the intervening zero-valued 
samples. Because the number of CLEAN pulses is relatively small (i.e. P(l) < < P(O)), 
this binary sequence consists of "runs" of O's terminated by l's. The interval values Ii 
defined in (5.25) are equal to the length of the runs plus one. 

A point process is described by the conditional probability 

(5.26) 

of a particular interval Ik occurring after a history of intervals {h-l ,!k-2, ... } (Cox and 
Isham, 1980). If each interval is independent of the previous history, (5.26) reduces to 
p(Ik), the zeroth-order pdf of {Ii} (Hamming, 1980, §5.2). The autocorrelation cI[k] of 
the sequence of intervals {Ii} gives an indication of how much the past terms in (5.26) 
need to be taken into account to adequately represent the sequence. Fig.5.19 shows the 
first few autocorrelation lags of the sets of intervals obtained from the utterances AM
RAIN1 and TF-RAINl. For most lags k > 1, ICJ[k]l < 0.05, which suggests that {Ii} 
is effectively independent of its past history and thus is adequately characterised by 
its pdf p(Ii)' Note that the small regularly spaced peaks in cI[k] result from the pitch 
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Figure 5.18. First 20 lags of the autocorrelation formed from ensembles of CLEAN pulse amplitudes. 

The solid line represents the low frequency sub-band and the dotted line the high-frequency sub-band. 

a: AM-RAINl, 420 and 250pps b: AM-RAINl, 1100 and 640pps. c: TF-RAINl, 520 and 250pps. d: 

TF-RAINl, 1300 and 620pps. 
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Figure 5.19. First 20 lags of the autocorrelation formed from ensembles of CLEAN pulse intervals. 

The solid line represents the low frequency sub-band and the dotted line the high-frequency sub-band. 

0.: AM-RAINl, 420 and 250pps b: AM-RAINl, 1100 and 640pps. c: TF-RAINl, 520 and 250pps. d: 

TF-RAINl, 1300 and 620pps. 

periodicity of the speech signals. A more sophisticated model of the interval process 
should therefore also contain a term representing this periodicity. 

Histograms of the interval distributions are shown in Fig.5.20 for sets of in
tervals taken from several different CLEAN signals, with pulse rates ranging from 
250-1200 pps. These histograms are plotted on a logarithmic scale to emphasise the 
almost exponential decrease in the probability of occurrence as the interval increases. 
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Figure 5.20. Histograms of the distribution of pulse intervals in several CLEAN signals. The solid line 

represents the low frequency sub-band and the dotted line the high-frequency sub-band. a: AM-RAIN1, 

420 and 250pps b: AM-RAIN1, 1100 and 640pps. c: TF-RAIN1, 520 and 250pps. d: TF-RAIN1, 1300 

and 620pps. Note that the large value of p(Ij) on the extreme right of each graph actually represents 

P(Ij> 10ms). 

Because the probability of shorter intervals occurring is so much greater than 
that for longer intervals (refer to the histograms shown in Fig.5.20), efficient codlng 
philosophy demands that they be encoded with fewer bits (cf. Shannon, 1948). A 
particularly simple method of encoding the intervals is to employ run-length codlng 
(Hamming, 1980, §5.9). Run-length codlng is so named because of the correspondence 
noted in the first paragraph of this section between the interval sequence {Ij} and the 
"runs" ofO's occurring in a binary sequence when P(l)« P(O). 

Run-length codlng is implemented by setting a fixed block-length bq which is 
the number of bits that comprise the basic code word. Such a code word can dlrectly 
represent intervals between 1 and 2bq - 1 samples by means of standard binary in
terpretations of the bit patterns. The 2bq th bit pattern represents a "carry-on" code, 
indlcating that another code word follows. This scheme implies that intervals between 
1 and 2bq - 1 samples require bq bits to code, those between 2bq and 2(2bq - 1) require 
2bq bits, and so on for longer intervals. The block length bq required to code any partic
ular set of intervals obviously depends on the pdf of that set, with longer block lengths 
being required to efficiently code the intervals at lower pulse rates (when the average 
interval is greater - see Fig.5.20). For the results presented in §5.3.3, I indlcate the 
block-length that is employed for each pulse rate. 

The "compression ratio" CR of a run-length code, assuming independence be-
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Figure 5.21. Compression ratios achieved by run-length coding of the CLEAN puIse intervals. a: 

Theoretical (x) and experimental (+) values of CR plotted against the pulse rate. b: Optimum block 

size (that which marimises the experimental value of CR) versus puIse rate. The experimental values 

of CR are computed CrOIn CLEAN signals obtained CrOIn utterances AM-RAIN! and TF-RAINl. 

tween each interval, is given by (Hamming, 1980) 

(5.27) 

where p = P(O), the probability of a 0 in the binary sequence referred to in the first 
paragraph of this section. Values of CR for various pulse rates are graphed in Fig.5.21 a, 
together with experimentally obtained values for several utterances. The block size 
hi that was found to offer the largest value of CR at each pulse rate is graphed in 
Fig.5.21 b. The experimentally obtained values of CR are close to those obtained via 
(5.27), indicating that the assumptions of independence between members of {Ij} are 
met reasonably well by the sequences of CLEAN intervals. 

Note that run-length coding becomes inefficient at very high pulse rates. This 
is because the average interval becomes comparable in size to the block length. When 
the block length hq = 1, the encoded signal is identical to the binary sequence referred 
in the first paragraph of this section. This implies that the maximum data rate (in 
bit/s) required to encode the pulse positions is equal to the sampling frequency (in 
Hz) of the CLEAN signal (10kHz here). The maximum pulse rate occurring in the 
results presented in Fig.5.21 is 2500pps, which, when coded with a block length bq = 3, 
requires a data rate of 8.6 kbits/s. 

While run-length coding is not as optimal as other methods such as Huffman 
coding (Hamming, 1980), the codes that result are generated in multiples of a fixed
length block. They can therefore be easily interlaced with the codes representing the 
pulse amplitudes (§5.3.1.1). In addition, the computational and memory buffering 
requirements are less than for "optimal" variable-length coders (cf. Mark and Todd, 
1981). Further details of run-length coding are given by Hamming (1980, §5.9) and 
Jayant and Noll (1984, Chapter 10). 

5.3.2 A practical speech encoding scheme 

Fig.5.22 shows the block diagram of the complete SAA/CLEAN low data rate speech 
encoding scheme. This was implemented on the departmental VAX computer system 
(see §1.3.4). Refering to Fig.5.22, the speech signal is first separated into two sub-bands. 
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Figure 5.22. Block diagram of the complete SAA/CLEAN low data rate speech encoding and recon

struction scheme. a: Speech encoder. b: Speech decoder. 

All the following processing is then performed on each sub-band. The SAA processing 
proceeds according to the algorithm detailed in §4.2.3 and §4.2.4 of Chapter 4. The 
SAA signals are modified, as described in §5.2.5.1, so that their end-points are of zero 
amplitude. CLEAN is then performed in the manner described in §5.2.3 through §5.2.6. 
The resulting CLEAN pulses are encoded in the way described in §5.3.1.1 and §5.3.1.2. 
Table 5.2 shows the number of bits employed for each sub-band at various data rates. 
Note that the higher band is encoded at a lower date rate, both by restricting the 
number of pulses to a smaller value than the low frequency band, and by encoding the 
pulse amplitudes with fewer bits. 

The SAA signals, which are computed once for each sub-band of an utterance, 
are stored separately from the CLEAN pulses. The SAA signals require only some 800 
bits to code (if the SAA signal is of duration 100 samples and is quantised to 8 bits) 
which, since it is averaged over the duration of the utterance, adds little to the total 
data rate. 

The reconstructed speech utterance is formed by, firstly, individually recon
structing the two sub-bands in the manner described in §5.2.4 and, secondly, adding 
them together. 
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Name Rp (pps) qa (bits) R (bit/s) 
Low High Low 

TC7KB 522 253 2 7133.5 
AC7KB 424 256 2 6587 
TCllKB 974 378 2 11082 
ACllKB 789 345 2 10102 
TC13KB 974 378 4 13030 
AC12KB 789 345 4 11530 
TC17KB 1297 626 4 17300.5 
AC16KB 1124 644 4 16296 

Table 6.2. Coding details for SAA/CLEAN at varioWi data rates. The value of q .. for the high 

frequency sub-band is 2 for all utterances. Other test utterances were also employed in the quality 

evaluations. These were formed by varying qa. between 2 and 4 (see Fig.5.29). 

Name Rp (pps) qa (bits) FRLPC R (bit/s) 
TM8KB 571 2 100 8242.5 
AM8KB 570 2 100 8455 
TM10KB 571 4 100 9384.5 
AM10KB 570 4 100 9595 
TM14KB 1135 4 100 13987.5 
AM14KB 1129 4 100 14160.5 
TM18KB 1160 4 200 17792 
AM18KB 1163 4 200 18033.5 

Table 6.S. Coding details and subsequent data rate for each of the utterances processed by MP-LPC 

that are compared with the SAA/CLEAN encoded utterances. F RLPC is the frame-rate at which the 

LPC filter coefficients are updated. 10 LPC coefficients are computed at each frame, each set being 

encoded with 36 bits (Kroon and Deprettere, 1988). 

5.3.3 Performance evaluation 

In order to evaluate the performance of the SAA/CLEAN speech encoding technique 
described in this chapter, I have employed several of the speech quality measures in
troduced in §3.5.3. I applied these to speech signals encoded at various data rates and 
also to speech processed by the multi-pulse LPC (MP-LPC) technique (see §3.5.2.4). 
The latter is a well-known speech encoding scheme that has many similarities to the 
SAA/CLEAN technique (see §5.4.2), making comparison of the two schemes worth
while. 

Results are presented in §5.3.3.1 through §5.3.3.3 of the processing of two ut
terances, from a male and a female speaker. Table 5.2 shows details of the pulse 
rate, quantisation of pulse amplitudes, and consequent data rate for the utterances. 
The same two utterances were also processed by the "optimal" MP-LPC technique of 
Singhal and Atal (1989). Table 5.3 gives the coding details and data rates for these 
utterances. §5.3.3.1 and §5.3.3.2 respectively present the results of "objective" and 
"subjective" evaluations of the speech quality. §5.3.3.3 then discusses some of the im
plications of these results, and presents example spectrograms of the re-synthesised 
speech signals. 
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5.3.3.1 Objective evaluation of encoder performance 

In order to objectively evaluate the quality of the reconstructed utterances processed 
by the SAAjCLEAN technique described in this chapter, several of the measures of 
speech quality introduced in §3.5.3.2 are invoked. Results are presented here for both 
the SAAjCLEAN and MP-LPC techniques, with test utterances encoded at various 
data rates as detailed in Tables 5.2 and 5.3 respectively. Note that the various quality 
measures employed here are described in detail in §3.5.3.2. 

The SNR indicates the accuracy with which the waveform of the reconstructed 
signal matches the original. Because waveform distortions are not always perceptu
ally relevant (§2.2.2.2), the SNR is not a reliable indicator of speech quality (§3.5.3.2). 
However, since both the SAAjCLEAN and MP-LPC techniques attempt to minimise 
the waveform error, it seems relevant to present the SNR of the reconstructed utter
ances. However, it is important to remember that both MP-LPC and SAAjCLEAN 
introduce certain perceptually insignificant waveform distortions. MP-LPC minimises 
a spectrally weighted error criterion which means that the perceptual effect of the error 
is less than the SNR would suggest. The waveform in SAAjCLEAN is distorted some
what because of the sub-band filters. In addition, both techniques involve an initial 
pre-emphasis of the speech signal, and since the subsequent de-emphasis is implemented 
as a "leaky integrator", further waveform distortions result. 

Fig.5.23 shows the segmental SNR during one of the processed utterances. Note 
the much greater variation in SNR in the SAAjCLEAN encoded utterance (Fig.5.23 a) 
than in the utterance that has been processed by MP-LPC. This variation arises because 
of the varying degrees to which different segments are modelled by the SAA/CLEAN 
model (see §5.2.5.4 and §5.4.2). The SNR of the MP-LPC encoded utterance is at a 
more constant level because the LPC filter is updated for each segment. Comparing the 
SNR curve shown in Fig.5.23a with the equivalent (but unquantised) curve shown in 
Fig.5.10 indicates that the various ancillary processing steps involved in the practical 
speech encoding scheme (i.e. separation into sub-bands, pre-emphasis, quantisation, 
and de-emphasis) significantly reduces the SNR of the reconstructed speech. However, 
as noted above, not all of this added distortion is perceptually relevant. 

Figs.5.24 a and b show the average segmental SNR for utterances processed by 
SAA/CLEAN and MP-LPC respectively as a function of data rate. The segmental 
SNR is computed as described in §3.5.3.2, with segment lengths of 20ms. 

Other objective quality measures are based on the short term spectral or cep
stral (§3.3) error in the reconstructed signal. Here I present results using log spectral 
and cepstral distortion measures (§3.5.3.2). Fig.5.25 shows the average log spectral 
distortion (see (3.53) in §3.5.3.2) as a function of data rate for utterances processed 

'by SAA/CLEAN and MP-LPC respectively. Curves displaying the variation with data 
rate of the cepstral distance measure of Kitawaki et ai. (1988) (see (3.52) in §3.5.3.2) 
are shown in Fig.5.26. The results of the SNR, log spectral, and cepstral distance mea
sures shown here all indicate that MP-LPC is better than SAAjCLEAN at the lower 
data rates( <12kbit/s), but that the two methods give comparable results at the higher 
rates. 

5.3.3.2 Subjective quality evaluation 

Informal listening tests indicated that the MP-LPC speech has a somewhat "clearer" 
quality than SAA/CLEAN encoded speech, but suffers from the presence of occasional 
"clicks". In order to obtain a quantitative measure of the subjective quality of the 
re-synthesised speech, a category judgement test (see §3.5.3.1) was performed on the 
SAAjCLEAN and MP-LPC encoded utterances. 



178 CHAPTER 5 SPEECH ANALYSIS BY SHIFT-AND-ADD AND CLEAN 

SNR 
30dB 

20 

10 

R.(t) 
1 

0.5 

O+L----~~---+--~~~~~~-l~~~--_4--~~--~~~t 

o 2s 

SNR 
30dB 

20 

10 

(a) 

r'<""'"'",\ 
\ 

" 1\ 
J \ 

I \ 

R.(t) 
1 

0.5 

O~------~-L/~~~---4~~--~~---4~~~----~~~----~~~~t 
o 25 

(b) 
Figure 5.23. Segmental SNR (solid line) as a function of time during the first two seconds of a: 

the SAA/CLEAN processed utterance TC17KB (16.5kbit/s), and h: the MP-LPC processed utterance 

TM18KB (17.5kbit/s). The dotted line represents the RMS envelope of the speech signal. 
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Figure 5.24. SNR as a function of data rate for utterances processed by a: SAA/CLEAN, and hI 

MP-LPC. The points marked with a + represent processed versions of the utterance TF-RAINl, while 

those marked with a X refer to the utterance AM-RAIN1 (see Tables 5.2 and 5.3 for details). The line 

drawn on each graph is a linear regression through all the points. 
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Figure 5.26. The cepstral distance measure of Kitawaki et at. (1988) (see §3.5.3.2) as a function 

of data rate for utterances processed by at SAAjCLEAN, and h: MP-LPC. Refer to the caption to 

Fig.5.24 for further details. 

The results presented here were obtained by means of the following procedure. 

1. Two original utterances were employed, one each from a male and a female speaker 
(AM-RAIN1 and TF-RAIN1). 

2. From each of the original utterances, the following test utterances were formed: 

• 4 reference utterances, corrupted with pink noise as described in §3.5.3.1. 
These had SNRs of 7,12,18, and 33 dB. 

• 9 utterances processed by SAA/CLEAN (as described in §5.3.2) at data 
rates ranging from 7kbit/s to 25kbit/s. See Table 5.2 for details. 

• 9 utterances processed by MP-LPC at data rates ranging from 8kbit/s to 
26kbit/s. See Table 5.3 for details. 

3. A menu-based speech play-back facility on an IDM PC-AT compatible computer 
was used to present the utterances. These were presented in four groups of ran
domly ordered utterances, labelled A1..All, B1..Bll, etc. The male and female 
utterances were in separate groups. Along with each group, a copy of the original 
utterance was also presented, labelled as such. 
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4. Each subject (there were 17, comprising 10 males and 7 females) was given in
structions to rate the quality of each utterance on a scale of 1 to 5, with the 
quality of the original utterance defined as 5. The subjects were provided with 
a descriptive interpretation of what each rating should be interpreted as (see 
§3.5.3.1). The subjects were told that they could listen to the utterances in any 
order and as many times as was necessary to judge the quality. 

The scores assigned to the utterances were averaged across all 17 subjects to 
produce a "mean opinion score" (MOS) for each utterance. Fig.5.27 shows the rela
tionship between MOS and SNR for the reference utterances. The MOS values for the 
utterances processed by MP-LPC and SAA/CLEAN respectively are shown as func
tions of the encoded data rate in Figs.5.28a and b. According to these results, there 
is little variation in the perceived quality of the processed utterances as the data rate 
is reduced down to about 10kbit/s. The quality drops off sharply below that rate, 
especially for the SAA/CLEAN encoded utterances. There does not appear to be any 
significant differences between the quality of the utterances spoken by male, and female 
speakers. Fig.5.29 shows the variation in MOS values as the quantisation level is varied, 
at several different pulse rates. These curves indicate that the pulse amplitudes can 
be quantised fairly coarsely (qau 3.5 bits) without much effect on the reconstructed 
quality. 

It is worth commenting, in a general way, on how well the MOS results reflect 
the variation in quality among the test utterances. Because categorical testing methods 
of the kind employed here limit subjects to a 5-point judgement scale, it is sometimes 
observed that such methods do not provide much discrimination between utterances of 
similar quality (cf. Rothauser et al., 1971). Indeed, several of the subjects in this test 
mentioned that they scored many of the utterances as "3" even though they noticed 
differences between them - the differences were just too small to warrant a "2" or "4". 
This could partly explain why the MOS results flatten off at about 3. In retrospect, 
it could have been better to follow the suggestion of Rothauser et al. (1971) and use a 
10-point scale. A preference type of test (§3.5.3.1) could also have been employed, but 
this demands much more of the subjects. Huggins and Nickerson (1985) suggest that 
preference and categorical methods produce similar results, so I did not consider the 
extra effort involved in performing a preference test to be warranted. Note, however, 
that the objective quality measures also level off at data rates above 16kbit/s, suggesting 
that the MOS results obtained are reasonable. 
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Each Cillve refresents the MOS for a different pulse rate, the rates being indicated on the figure. a: 

SAA/CLEAN, and h: MP-LPC. 

5.3.3.3 Spectrograms of synthetic speech 

The results presented in §5.3.3.1 and §5.3.3.2 indicate that SAA/CLEAN performs 
similarly to MP-LPC, although the quality of the reconstructed speech drops more 
rapidly at low data rates «12kbit/s) for SAA/CLEAN than for MP-LPC. In order to 
examine more closely the form that this degradation takes, I here present spectrograms 
of (reconstructed) speech signals that have been encoded by the SAA/CLEAN and 
MP-LPC techniques. 

Fig.5.30 shows the sp~ctrogram of an unprocessed segment of the utterance AM
RAIN!. Spectrograms corresponding to the same segment after it has been encoded 
at various data rates by the SAA/CLEAN and MP-LPC techniques respectively are 
shown in Figs.5.31 and 5.32. Comparing the spectrograms of the processed speech 
signals with that of the unprocessed speech gives an indication the types of distortions 
that result from the encoding. 

The spectrogram shown in Fig.5.31a, which is of an utterance that has been 
encoded by SAA/ CLEAN at a data rate of less than 8kbit / s, appears "blurred", with 
indistinct formants. By contrast, the spectrogram of the 8kbit/s MP-LPC encoded 
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t 

Figure 5.30. Spectrogram of the first two seconds of the utterance AM-RAIN1 (see Table 1.2 in 

§1.4.3). 

utterance (Fig.5.32a) exhibits much more distinct formants. At higher data rates, 
the spectrograms of the SAA/CLEAN and MP-LPC encoded utterances are much 
more similar. In fact, at the higher data rates spectrograms of the MP-LPC encoded 
utterance can actually "look worse" than those of the SAA/CLEAN encoded utterance 
when compared with the original. This is probably due to the spectral weighting 
employed in the MP-LPC pulse optimisation, which increases the error at the formants 
(§3.5.2.4 ). 

The more "distinct" formants produced by the MP-LPC technique, when com
pared with the SAA/CLEAN technique at low data rates, is to be expected, because 
the formants are well modelled by the LPC all-pole filter (which requires a data rate of 
only some 3-1kbit/s). The pulses in the MP-LPC technique are only required to pro
vide the excitation energy and to "fill in the details" not modelled by the LPCall-pole 
filter. By contrast, the CLEAN pulses are required to model both the excitation se
quence (although the excitation "shaping" is accomplished by the SAA signal), and the 
formant structure of the speech signal. With only a few pulses, SAA/CLEAN can only 
approximate the formant structure (see §5.4.3). Furthermore, because the sequence of 
CLEAN pulses represents an all-zero rather than an all-pole filter (as modelled by the 
LPC coefficients), more pulses are required to match the resonant characteristics of the 
formants. Further discussion on the differences, similarities, and relative advantages of 
the MP-LPC and SAA/CLEAN methods of speech coding appears in §5.4.2. 

5.4 Discussion: Approaches to interpreting SAA/ CLEAN 
analysis of speech 

In this section I draw together some of the points made elsewhere in Chapters 4 and 5 
about the meaning of the SAA and CLEAN signals. §5.4.1 discusses the relationship 
of this speech model to the source-filter model of speech, while §5.4.2 makes some com
ments on the similarities and differences between the CLEAN and MP-LPC techniques. 
Finally, §5.4.3 describes the somewhat different view of SAA and CLEAN as seen from 
the frequency domain. 



5.4 DISCUSSION 183 

t 

t 

t 

Figure 5.31. Spectrograms of an utterance (AM-RAINl) that has been encoded by SAAjCLEAN. 

Utterances (see Table 5.2) a: AC7KB, b: ACI2KB, and c: ACI6KB. 
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Figure 5.32. Spectrograms of an utterance (AM-RAINI) that has been encoded by MP-LPC (see 

§3.5.2.4). Utterances (see Table 5.3) a: AM8KB, b: AMI4KB, and c: AM18KB. 
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5.4.1 Relating the CLEAN signal to the vocal tract filter 

Shift-and-add of an utterance produces a signal that represents the long-term "invari
ant" characteristics of the utterance. §4.3 presents results which indicate that the SAA 
signal can be roughly associated with the average glottal excitation - but with a not 
insignificant component due to the long-term "invariant" vocal tract response. The 
CLEAN signal, obtained as described in this chapter, plays the complementary role of 
representing the "dynamic" aspects of an utterance. As a counterpart to §4.3 then, it 
seems appropriate to elucidate the extent to which the CLEAN signal can be associated 
with the vocal tract filter response. §5.4.1.1 recapitulates the variant/invariant model 
of speech introduced in §4.2.1, while §5.4.1.2 discusses, in a general way, the variant 
and invariant components of the source-filter speech model. Finally, §5.4.1.3 discusses 
one way in which the CLEAN signal can be directly associated with the vocal tract 
filter. 

5.4.1.1 Invariant/variant decomposition of speech 

Recall from §4.2.1 the model invoked to introduce SAA processing of speech. This 
model represents a speech signal set) as 

M 

set) = L Sm(t Tm ), (5.28) 
m::::l 

where each short segment sm(t) is separated into three components according to the 
expression 

Sm(t) = i(t) 0 s~(t) + s~(t), (5.29) 

with i(t), s~(t), and sin(t) being called the invariant, convolutional variant, and ad
ditive variant (contamination) terms respectively. The form of si(t) is fixed by SAA to 
be 

(5.30) 

since Tm in (5.28) is defined as the instant where ISm(t)1 is greatest. Fixing si(t) in 
this way implies that s~(t) and sin(t) both have negligible ensemble averages, but, 
because of the general inconsistency of convolution (§1.2.5.3), there are an infinite 
number of different signals s~(t) and sin(t) that satisfy (5.29). The CLEAN method 
of deconvolution described in §5.2 finds a solution that satisfies the restrictions 

Np 

• s~(t) = L Vk6(t 
[

where Np is small with respect to 
Pk) the Nyquist sampling requirements (see (5.31) 

k::::l §5.2.5,4 and §5.4.3.4) 

• (sin(t)2)t is minimised (§5.2.6). (5.32) 

Note that the two restrictions (5.31) and (5.32) may be incompatible for some segments 
of speech. §5.4.1.2 discusses the general characteristics of speech signals which allow 
one to make assumptions about the relative importance of s~(t) and sin(t). §5.4.3.2 
also discusses this incompatibility, with regard to instability in the CLEAN algorithm. 

5.4.1.2 Speech components Variant and invariant; source and filter 

The traditional simplified model of speech is the source-filter model, which represents 
a speech signal by the convolution between two physiologically relevant quantities, the 
excitation "source" and the vocal tract "filter" (§2.3.1.4). By contrast, the model of 
speech outlined in §5.4.1.1 represents a speech signal by means of components which are 
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defined in terms of the long-term behaviour of the speech signal, namely, "invariant" 
and "variant" components. The results presented in §4.3 suggest that the invariant 
component si(t) ofthe latter model contains contributions from the long-term averages 
of both the source and filter components of the source-filter model. The variant com
ponents s~(t) and s~(t) are thus formed by the variations of both the source and filter 
components throughout an utterance. 

For the SAA/CLEAN technique to successfully represent speech signals, it is· 
important that s~ (t) be in some way small relative to s~ (t) - because s~ (t) is dis
carded as a residual "error" during the CLEAN processing. In this section I discuss, 
in qualitative terms, the variant and invariant characteristics of the source and filter 
speech components, thereby reaching some conclusions about the relative importance 
of s~(t) and 8~(t) in representing sm(t). 

First, it is useful to recall the source-filter model of speech production (§2.3.1.4). 
A voiced speech signal set) is represented by the convolution between a quasi-periodic 
"pitch train" 

gp(t) E D(t - Tk) (5.33) 
k 

of unit impulses, the kth of which is positioned at t = Tki a glottal shaping filter 9k(t)i 
and a vocal tract filter Vk(t). The speech signal is therefore described by the equation 

set) = E gk(t - Tk) 0 Vk(t). (5.34) 
k 

The source-filter model as expressed by (5.34) can be equated to the variant/invariant 
model of (5.28) and (5.29) by separating both gk(t) and Vk(t) into variant and invariant 
components, substituting them in (5.34), and associating the invariant component of the 
expanded expression with si(t) and the variant components with s~(t) and s~(t) (see 
§4.2.1 for the details). For the reader's convenience, I repeat the definitions developed 
in §4.2.1: 

and 

i(t) = i(t) 0 viet), 

s~(t) = g~(t) 0 v~(t), 

s~(t) = v~(t) 0 i(t) 0 g~(t) + g~(t) 0 [v~(t) + vi(t) 0 v~(t)J, 

(5.35) 

(5.36) 

(5.37) 

where the superscripts i, v, and c imply the invariant, variant, and "contamination" 
terms respectively of the expanded signal quantities. 

The glottal pulse, while it varies due to factors such as vocal intensity and pitch, 
can usefully be considered as invariant, as is demonstrated by the ability of speech syn
thesisers employing a fixed pulse shape to synthesise reasonable quality speech (§3.5.2). 
Physically, the variations between each pulse are induced by the changes in the me
chanical properties of the vocal cords that result from muscular action (cr. §2.3.1.1j 
§2.2.1.2). The variations are modelled by a convolutional component g~(t) and an 
additive component g~(t). Because each glottal pulse is a separate "event", there is 
no physical implementation of a "convolution" between gi(t) and g~(t). Hence it is 
likely that the additive term g~(t) is as significant as g~(t) in describing the variation 
in pulse shape (recognising the point made in §1.2.5.3 that there are an infinite number 
of signal pairs g~(t) and g~(t) that satisfy the inconsistent convolution). 

The variable components of the vocal tract impulse response are intuitively 
much greater than those of the glottal pulse, since it is largely by such changes that 
a person utters different speech sounds (cr. §2.2.1). In fact, if the vocal tract varied 
in a completely unbiased manner, so that its average impulse response was negligible, 
the invariant component viet) (defined by (4.10) in §4.2.1) would become an impulse 
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function. Consequently, vrn(t) could then be completely described by the component 
v~(t), and the additive term v~(t) could be discarded. In practice (see the results in 
§4.3.2), the average vocal tract impulse response viet) is likely to be non-impulsive due 
to the limited mobility of the articulatory organs, the particular style of pronunciation of 
the speaker, and any phonetic imbalance in the utterance. If (despite the last sentence) 
vi (t) is assumed to be "almost" impulsive, one can infer that v~ (t) is more significant 
than v~(t) for representing the variation of vrn(t) from segment to segment. 

From the discussion in the previous two paragraphs, it can be seen that the 
relative significance of the "contamination" component s~ (t) in any segment depends 
mainly on how large g~(t) is. For segments in which the shape of the excitation 
pulse grn(t) is very different from gi(t), and when the differences cannot be modelled 
by the convolutional component g~(t), the definitions (5.36) and (5.37) imply that 
the contamination term s~(t) can, for some values of m, even dominate s~(t). §5.4.3.2 
contains further discussion of this point in terms of the frequency domain representation 
of the CLEAN algorithm. 

5.4.1.3 Physical interpretation of the CLEAN signal 

In §4.3 the SAA signal is shown to approximately represent the average glottal exci
tation get) of an utterance, together with a component due to the average vocal tract 
impulse response. This additional component cannot be easily removed from the SAA 
signal (see §4.3.3 for one approach), and its contribution depends upon the character
istics of both the speaker's talking style and the utterance. Assuming, however, that 
the component due to the average vocal tract impulse response viet) can be ignored, 
the SAA signal can be taken to approximate gi(t). By letting g~(t) = Amo(t), where 
Am is the amplitude of the mth occurrence of gi(t), the CLEAN signal becomes v~(t), 
which approximately represents the vocal tract filter vm(t). 

Now that I have managed to associate the CLEAN signal with the vocal tract 
impulse response - by the simple expedient of discarding all the other terms as negligi
ble (!), I can proceed to describe one way in which the CLEAN signal can be physically 
interpreted. Recall that the CLEAN signal consists of only a few non-zero "pulses". 
Such a signal could represent the impulse response of a uniform-tube model of the vo
cal tract (§2.3.1.3), with each pulse representing the superposition of all the multiply 
reflected impulses that arrive at the lips at a particular instant. 

In the usual formulation of the uniform-tube vocal tract model (cf. Wakita, 
1973), all segments are considered to be of the same length, corresponding to an acoustic 
time delay of one sampling interval. Thus an output "pulse" occurs at every sampling 
instant, and the impulse response is effectively smooth. Furthermore, because each 
segment is of the same length, it is relatively straightforward to compute the tube 
segment areas (assuming suitable boundary conditions) from the impulse response at 
the lips or even the speech signal itself (cf. Sondhi and Gopinath, 1971; Wakita, 1973). 

If the segments of the uniform-tube vocal tract model are allowed to be of 
arbitrary length, such that the acoustic delays through each segment are longer than 
the sampling interval, the resulting impulse response exhibits discrete pulses separated 
by intervals when no output signal occurs. Each pulse represents the superposition of 
one or more multiply reflected source impulses. However, calculating the dimensions 
of the tube segments from the pulse sequence is a difficult problem and is beyond the 
scope of this thesis (see Sondhi, 1984 and Millane and Bates, 1982 for some background 
on related problems). 

It is important to note that the usual formulation of reflection coefficients 
(§3.2.3) is in terms of an all-pole model, while the CLEAN pulses described here 
represent the impulse response (or all-zero formulation) of the reflections. Hence the 
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standard reflection coefficients represent the actual reflections that occur at each discon
tinuity within the resonant cavity. Each CLEAN pulse, on the other hand, represents 
the superposition of all the multiply reflected copies of the input pulse that leave the 
mouth at a particular instant. 

5.4.2 Comparison with multi-pulse LPC 

Several other sections of this chapter remark on the similarities between the CLEAN 
deconvolution and the MP-LPC pulse estimation schemes. Here I discuss the points 
of similarity and difference between the two techniques, explaining how the particular 
ways in which each scheme models the speech signal affects its performance. 

Both the MP-LPC and SAA/ CLEAN approaches to speech modelling represent 
the speech signal by a convolution between a sparse pulse sequence and a shaping 
filter. However, both the pulse sequence and filter are obtained by different methods, 
and model different aspects of the speech signal, in the two schemes. §5.4.2.1 details 
the differences and similarities in the techniques that are invoked to obtain the pulse 
sequence and filter components, while §5.4.2.2 discusses the components in terms of the 
information in the speech signal that they represent. 

5.4.2.1 Differences and similarities in the analysis techniques 

The "filter" in the SAA/CLEAN technique represents the long-term average, or invari
ant, component of the speech signal (§5.4.1). It is computed over intervals of some 
5-10s by means of the SAA technique described at length in Chapter 4. In the MP
LPC technique, the "filter" is actually a sequence of different filters, each representing 
the waveform of the speech signal during a short interval (10-20ms). These filters are 
formulated in terms of an all-pole model with a few (typically 8-16, see Kroon and 
Deprettere, 1988) coefficients. They are computed by ~eanS of the LPC algorithm, 
which minimises the least-squares error between the speech waveform and the filter's 
impulse response (§3.2). 

The SAA/ CLEAN pulse sequence is obtained by means of the CLEAN subtrac
tive deconvolution algorithm (this chapter). This algorithm iteratively locates pulses 
at the position at which the magnitude of the dirty signal (which is initially set equal to 
the speech signal) is at a maximum. The new pulse amplitude is set equal to a propor
tion of this maximum, and the pulse is added to the "CLEAN" signal. A scaled copy of 
the SAA signal (representing the filtered pulse) is then subtracted from the dirty signal 
for the next iteration. The iterations are continued until either the average level of 
the dirty signal has been sufficiently reduced, or until enough (as discussed in §5.2.5.4) 
pulses have been located. After this, the amplitudes of the pulses are re-optimised in 
a least-squares fashion. 

There are several techniques for computing the MP-LPC pulse sequence (cf. 
Singhal and Atal, 1989; Kroon and Deprettere, 1988). Probably the simplest is the 
method described in §3.5.2.4, in which at each iteration, a new pulse is placed at the 
instant where the magnitude of the cross-correlation between the filter impulse response 
and the "dirty signal" (where I use this term to emphasise the similarities with the 
CLEAN algorithm) is greatest. Unlike the CLEAN algorithm, subsequent iterations 
do not usually consider the positions of previously located pulses as candidates for new 
pulses. The amplitude of the new pulse is set to a proportion of the maximum value 
of the cross-correlation. Note that the cross-correlation signal does not need to be 
re-computed at each iteration because it can be updated from its value at the previous 
iteration. Generally a fixed number of iterations are performed, resulting in a specified 
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number of pulses for each segment. The amplitudes of the pulses are often re-optimised 
in the same way as the CLEAN pulses. 

The brief descriptions in the previous two paragraphs indicate the close sim
ilarities between the MP-LPC and CLEAN pulse searching algorithms. In fact, the 
main difference is that the pulses are positioned at the maximum magnitude of the 
dirty signal in the CLEAN algorithm, but at the maximum magnitude of the cross
correlation between the dirty signal and the filter impulse response in the MP-LPC 
algorithm. §8.2.2.2 describes how the CLEAN algorithm can be modified to locate 
pulses using this cross-correlation approach. It turns out that the MP-LPC algorithm 
is equivalent to performing CLEAN on the cross-correlation between the speech signal 
and the filter impulse response, with the auto-correlation ofthe filter impulse response 
as the CLEAN kernel (see §8.2.2.2). 

Note that another difference between the CLEAN and MP-LPC pulse searching 
algorithms is that MP-LPC usually includes some spectral weighting of the filter (Atal 
and Remde, 1982) so that the error residual is concentrated under the speech formants, 
where it is ofless perceptual importance (cf. Schroeder et al., 1979). It is not clear how 
to incorporate some such spectral weighting into the CLEAN algorithm, because the 
speech spectrum is not directly available as it is in MP-LPC (the LPC coefficients can 
be manipulated as if they refer to the speech spectrum). 

Because MP-LPC models the vocal tract filter with a time-varying all-pole fil
ter, there is no need to separate the voiced and unvoiced parts of speech as is done in 
the SAA/ CLEAN technique. In addition, the LPC filter matches the speech spectrum 
fairly closely within each segment, so fewer pulses are required for accurate reconstruc
tion than with SAA/CLEAN. However, the LPC parameters must also be stored or 
transmitted, which in turn increases the data rate. The LPC parameters can be encoded 
efficiently with 36 bits required for each set of 10 coefficients (Kroon and Deprettere, 
1988). Hence 1800 bits/s are required if the filter is updated at 50 Hz, and 7200 bits/s 
are required at an update rate of 200 Hz. 

In terms of the computational requirements, the two methods are roughly sim
ilar. Additional computation is required in the MP-LPC technique because of the need 
to extract the LPC coefficients, encode them for transmission, and compute their im
pulse response for use in the pulse searching algorithm. However, the SAA/ CLEAN 
technique described here requires that the speech signal be filtered into two sub-bands, 
with all subsequent operations being performed in parallel on both sub-bands. This 
actually increases the computational load by less than twice, since fewer pulses are 
found in the high frequency sub-band and because the high frequency CLEAN kernel 
can be made shorter than the low frequency one. 

5.4.2.2 Interpretation of pulse sequence and filter components 

In terms of information in speech, the LPC filter can be associated with the vocal tract 
filter, with a direct relationship between the filter coefficients and the shape of the 
vocal tract (§3.2.3). The LPC coefficients have been succesfully employed in speech 
recognition schemes (§3.6.1), which implies that they efficiently represent the linguistic 
information within an utterance. The MP-LPC pulse sequence attempts to make the 
speech reconstructed from the LPC coefficients sound more "natural". It can thus be 
thought of as an ancillary signal which represents those parts of a speech signal that 
are not modelled by the all-pole LPC filter. Note that the multi-pulse sequence was 
originally developed as an improved excitation source for LPC vocoders, producing 
more natural sounding speech, and implicitly representing both the voiced/unvoiced 
and pitch information which is otherwise necessary (see §3.5.2.3). 

In the SAA/ CLEAN technique, the pulse sequence represents aspects of both 
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the excitation sequence (Le. the pitch periodicity for voiced speech) and the vocal tract 
filter. In order to utilise the linguistic information inherent within the pulse sequence, 
the pulses within each pitch period must be identified (see §5.4.1.3). Further research 
is obviously required to ascertain whether the CLEAN pulses can be employed in a 
recognition scheme as useful descriptors of the linguistic content of speech (see §8.2.2). 

Note that the LPC filter is an all-pole filter, which efficiently matches the series 
of resonators that comprise the vocal tract filter. By contrast, the CLEAN signal during 
each pitch period is an all-zero representation of the "vocal tract filter". It is therefore 
not so adept at representing sharp resonances with only a few non-zero coefficients. 
Further discussion of this point appears in §5.4.3.1. 

5.4.3 CLEAN in the frequency domain 

As described in §2.1.4, speech sounds are characterised by their formants, which are 
spectral peaks representing the resonances in the vocal tract. Because of the important 
role that spectral representations of speech play in the traditional descriptions of speech 
sounds and analysis methods (e.g. §2.1.4, §3.3, §3.5), it is useful to examine the CLEAN 
algorithm from this point of view. This section describes the CLEAN algorithm in terms 
of its effects on the speech spectrum. §5.4.3.1 presents examples of spectra of CLEAN 
signals to illustrate the manner in which SAA/CLEAN analysis models the speech 
spectrum. §5.4.3.2 then discusses the convergence difficulties of the CLEAN algorithm 
from the point of view of spectral inconsistency between the SAA and speech signals. 
§5.4.3.3 indicates how this instability is partially allayed by processing the speech in 
two sub-bands. Finally, §5.4.3.4 introduces the concept of non-uniform sampling as an 
approach to understanding SAA/CLEAN speech analysis. 

5.4.3.1 A spectral view of the CLEAN signal 

Recall that in the radio-astronomical application of CLEAN (§5.l.1j Hogbom, 1974; 
Thompson et al., 1986), Fourier space contains large gaps where measurements are 
not made. Schwartz (1978) shows that CLEAN effectively performs a least-squares 
interpolation between the non-zero Fourier samples. Speech spectra are somewhat 
different than radio-astronomical spectra (!), but they are typically of large dynamic 
range (see Fig.4.29 in §4.3.1.2). CLEAN can therefore be viewed as a type of spectral 
flattening. As a deconvolution technique, it removes the severe low-pass filtering effect 
of the glottal shaping filter (for the voiced sections of speech. The general situation is 
treated in §5.4.3.3). 

Fig.5.33 shows the time domain and log spectrum of a segment of the utterance 
AM-RAINl. CLEAN signals obtained from this segment, having pulse rates ranging 
from 500pps to 2000pps, are shown in Figs.5.34a through d, while their log spectra 
appear in Fig.5.35. Note how the spectra of the CLEAN signals are very "rippled". In 
the frequency domain, the invariant/variant speech model (§5.4.1.1) is expressed as 

(5.38) 

where the upper case quantities are the Fourier transforms of the respective lower case 
quantities in (5.29). By replacing S~(f) with the ensemble of CLEAN pulses {VkiPk}, 
(5.38) can be written as 

Np 

Sm(f) :::: Si(f) 2: Vk e- i27r
!Pk + S~(f). (5.39) 

k=l 
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Figure 5.33. a: Time domain and b: log spectrum of a segment of the utterance AM-RAINI (theq, 
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Figure 5.34. CLEAN signals obtained from the segment of speech shown in Fig.5.33a. Pulse rates 

of a: 500pps, b: lOOOpps, and c: 2000pps. d: The optimised version of the CLEAN signal shown in c. 

The SNRs of the reconstructions of these four CLEAN signals are 8, 11, IS, and 18dE respectively. 

This equation asserts that the spectrum of the CLEAN signal consists of a sum of 
sinusoidal oscillations, each at a "frequency" proportional to the position of one of 
the pulses and weighted by the magnitude of that pulse (Schwartz, 1978). The recon
structed signal is obtained by multiplying the combined sinusoids with the spectrum of 
the SAA signal. 

As the number of pulses increases, the sinusoidal "ripples" reinforce in those 
parts of the speech spectrum where the formant peaks exist. Note that the sinusoids 
that comprise the CLEAN spectrum in (5.39) extend over the entire range of the Fourier 
domain. They therefore extend into frequencies where Si(f) is negligible. Although 
the magnitude of the components of the CLEAN spectrum are arbitrary in those parts 
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Figure 5.35. Log spectra of the CLEAN signals shown in Fig.5.34. 

of the Fouxier domain where Si(f) is negligible, they do not become unmanageably 
large as occurs in multiplicative deconvolution. This is because all the "deconvolution" 
operations in the CLEAN algorithm are performed on the dirty signal, which has ef
fectively been filtered by Si(f) so that it does not contain energy at the frequencies 
where Si(f) is negligible (that is if the additive contamination is negligible. §5.4.3.2 
discusses the effects of significant contamination). Each pulse is therefore positioned 
so as to reduce the error within the frequency bands where Si(f) is significant. The 
superposition of the sinusoids outside these frequencies tends to be relatively "flat". It 
is in this sense that CLEAN can be called a spectral flattening algorithm. 

5.4.3.2 Instability in CLEAN 

The CLEAN signal is represented in the frequency domain by (5.39). In terms of the 
notation employed in §5.2.3 to describe the CLEAN algorithm, Si(f) becomes G(f), 
the spectrum of the CLEAN kernel g(t), and S~(f) becomes Rm(f), the spectrum of 
the residual (error) signal r m (t). 

As discussed in §5.4.3.1, the speech spectrum Sm(f) is composed of the super
position of Np scaled and phase-shifted copies of G(f), together with an additive error 
Rm (f). The presence of the additive contamination implies that if G(f) is of negligible 
amplitude at some frequency at which the amplitude of Sm(f) is not negligible, the 
amplitude of Rm(f) at that frequency cannot be reduced by any number of CLEAN 
pulses. Furthermore, if G(f) contains energy at frequencies where Sm(f) does not, 
subtracting the kernel from the speech signal during the CLEAN proceduxe (§5.2.3) 
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Figure 5.36. Frequency domain illustration of the instability that occurs in CLEAN when the dirty 

signal and kernel are inconsistent. a: Original spectrum Sm(f). b: Spectrum of kernel G(f). c: 

Residual spectrum after one iteration, and d: after two iterations. 

actually adds energy to Rm(f) at that frequency which must then be removed by a 
subsequent subtraction. Thus the CLEAN algorithm can become unstable if Sm(f) and 
G(f) are (cf. §1.2.5.3). This is illustrated by the extreme example shown in Fig.5.36. 
The spectrum Sm(f) is shown in Fig.5.36a, while Fig.5.36b shows G(f). After one 
iteration (Np = 1), Rm(f) is as shown in Fig.5.36c. As shown, subtracting the kernel 
has not only failed to remove any of the energy in Sm (f), but it has added energy that 
was not there previously. The residual spectrum Rm (f) after a subsequent iteration is 
shown in Fig.5.36d. The time domain versions of these signals are shown in Fig.5.37. 

In terms of the speech model outlined in §5.4.1, the instability described above 
arises when the additive component g~(t) is large relative to gi(t) and g~(t) (see the fi
nal paragraph of §5.4.1.2). A large g~(t) implies that Gm(f) (and hence Sm(f))contains 
significant energy at frequencies where Gi (f) is negligible. 

Note that the instability difficulties described above do not occur in the radio
astronomical application of CLEAN (see §5.1.1). In radio-astronomical CLEAN, the 
kernel is consistent with the dirty signal by definition, because both spectra are non
zero at the same points (and only those points) in Fourier space. The kernel used for 
CLEANing of speech signals, however, is a long-term average, so may be inconsistent 
with some particular segments of the speech signal. 
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(a) (b) 

~'~\F~ 
(c) (d) 

Figure 5.37. Instability in CLEAN. Time domain versions of the spectra shown in Fig.5.36. a: Bm(t), 
h: g(t), c: r~(t), and d: r;'(t). 

5.4.3.3 Separation into spectral sub-bands 

Because of the disparate spectral characteristics of the voiced and unvoiced parts 
of speech, the same "spectral flattening filter" cannot be applied to both parts (see 
§5.4.3.2). In order to deal adequately with these differences, I separate speech signals 
into low and high frequency sub-bands before performing SAA and CLEAN (§4.2.4.5; 
§5.2.5.5). The frequency domain view of this action is shown in Fig.5.38. This figure 
shows the spectra of SAA signals computed from the low and high frequency sub-bands 
of the utterance AM-RAIN1, together with the spectrum of the SAA signal computed 
from the entire utterance (Fig.5.38c). Comparing Figs.5.38a and b with Fig.5.38c in
dicates that the SAA signal of the high frequency sub-band appears to represent the 
energy in that band better than does the SAA signal obtained from the entire signal, 
which has negligible energy in its high frequency components. 

The spectra of the low frequency and high frequency sub-bands of a segment 
of speech are shown in Fig.5.39, while those of the respective CLEAN signals appear in 
Fig.5.40. Notice that the CLEAN spectra extend over the half of the Fourier domain 
that is zero in the filtered versions of Si(t) and Sm(t). This "spectral interpolation" 
corresponds to the spectral flattening property of CLEAN described in §5.4.3.1. How
ever, this "interpolation" into the other sub-band is subsequently removed when the 
CLEAN signal is filtered with the SAA signal to form the synthetic reconstruction. 
Spectra of the reconstructions of the low and high frequency sub-bands are shown in 
Figs.5.41a and b respectively. The reconstruction of the entire signal, formed by adding 
together the two sub-band reconstructions, is depicted in Fig.5.42a. For comparison, 
Fig.5.42b shows the spectrum of the reconstruction formed from the CLEAN signal of 
the entire signal (as depicted in Fig.5.35 c). 

Performing CLEAN on the two sub-bands also allows one to take advantage 
of the lower requirements for fidelity in the higher frequency band by employing fewer 
pulses and coarser quantisation levels to encode that band. This results in a reduction 
in data rate with little loss in perceived quality. 
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Figure 5.38. Specta of SAA signals obtained from low and high frequency sub-bands of the utterance 

AM-RAINl. a: 0-2.5kHz, b: 2.5-5kHz. Note that the filters employed to separate the sub-bands have 

a stop-band rejection of 57dB, which is why the spectra shown here have a small component present in 

the filtered-out sub-band. c: Spectra of SAA signal computed from the entire utterance AM-RAINI. 

Note that the vertical scales on these spectra are necessarily arbitrary, because of the normalising effect 

of SAA. 
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Figure 5.39. Spectra of a: low frequency and b: high frequency sub-bands of the segment of speech 

shown in Fig.5.33. 
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Figure 5.40 •• tra of CLEAN signals obtained from the a: low frequency and b: high frequency 

sub-bands showJll.iI Fig.5.39. The number of CLEAN pulses is 1300 in each case, with SNRs of 11 and 

lOdB respective\!!. The vertical line in each spectrum indicates the boundary frequency between the 

sub-bands. 

IBIfI (I)I 
o dB 

-20 -20 

-40 -40 

-60 -t-----r--....... +-4--+--t-----I-+ f -60 +--~=--l-.l...-+_--+-~I_+ f 
o 1 2 3 45kHz 0 1 2 3 45kHz 

(a) (b) 

Figure 5.41. ,~ra of reconstructed signals formed from the CLEAN signals represented in Fig.5.40. 

5.4.3.4 Sult-sampling with "matched" reconstruction filter 

One further'i1!I'iIy to view CLEAN is as a sub-sampling process. Because short-term 
speech spectraare relatively narrow-band in comparison with the sampled signal band
width, there ,.much redundancy between closely spaced samples of the speech wave
form. ManyliMv data rate speech waveform coding schemes (e.g. predictive coding, 
§3.5.1.1 or sti1f.band coding, §3.5.1.2) attempt to reduce the data rate by taking ad
vantage of turedundancy. 

SAAtcLEAN can be interpreted as another method that takes advantage ofthe 
redundancy 1mlspeech signals. As discussed in §5.4.3.1, performing SAA and CLEAN 
"flattens" the spectrum of a speech signal by decomposing it into a finite sum of 
weighted sillllllids in the frequency domain. These sinusoids correspond to discrete 
pulses in thefime domain. CLEAN can therefore be thought of as a technique to 
choose a (srmll) set of pulses (or samples) that, when filtered again by the CLEAN 
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Figure 5.42. Spectra of reconstructed signals formed from: a: The CLEAN signal depicted in 

Figs.5.34c and 5.35c. b: The superposition of the reconstructions of the two sub-bands. 

kernel, "fit" the speech spectrum. In other words, deconvolving the SAA signal from 
the speech signal by means of the CLEAN algorithm tends to concentrate the energy in 
the speech signal into a few discrete pulses, which can then be treated as a sequence of 
(non-uniformly spaced) samples. The spectral "interpolation" which CLEAN extends 
over parts of the speech spectrum which have little energy can be thought of as an 
analogue of the spectral folding that occurs in uniform sampling (§1.2.5.5). The aliased 
energy at these frequencies is suppressed when the CLEAN signal is convolved with 
the SAA signal to form the reconstructed signal (Fig.5.42). . 

Viewed as a sub-sampling scheme, SAAjCLEAN can be compared to some 
other techniques of representing a signal by non-uniformly spaced samples. An early 
speech encoding scheme of this type is described by Mathews (1959), in which only 
the extrema of the speech waveform are encoded. Synthetic speech is subsequently 
generated by interpolating between these points with cubic spline functions. Another 
description of non-uniform sampling techniques is presented by Yao and Thomas (1967), 
who discuss the use of Lagrange interpolation functions. The type of non-uniform 
sampling described in these two papers differs from SAAj CLEAN in that the samples 
actually represent the amplitude of the signal at the sampling instants. Interpolation 
functions that are zero at all of the other sampling instants must therefore be employed. 
The CLEAN pulses are not restricted in this way, so the correct signal amplitude at 
the "sampling instants", as well as at all other instants, must be reconstructed by 
convolving the CLEAN pulses with the CLEAN kernel. This difference means that the 
CLEAN signal cannot be called a (non-uniformly) sampled signal in the traditional 
meaning of the term "sampled signal". 
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Chapter 6 

Asthmatic cough analysis system 

This chapter presents the results of my research into methods of analysing asthmatic 
cough sounds. The purpose of the research presented here is to design and implement a 
micro-computer signal analysis system to facilitate a clinical investigation of the sounds 
of coughs from asthmatic and non-asthmatic children. The motivations for this type of 
investigation are introduced in §6.1. The emphasis in this chapter is on the practical 
details of implementing the analysis system. Some preliminary results are presented in 
§6.2.1. However, the "wider" research effort, of which this system is an integral part, 
is still underway. The ways in which it is planned to use this system in the context of 
the wider research effort are outlined in Chapter 8. 

The goal of the wider research is to investigate the characteristics of the cough 
sounds made by asthmatic and non-asthmatic children. It is hoped that these charac
teristics can give an indication of the presence and severity of the asthmatic condition, 
particularly in young children. This would be clinically useful because other methods of 
assessing the severity of asthma are often impractical for this group of patients (§6.1.1). 

§6.1.3 describes the physiological mechanisms of cough and cough sound pro
duction. §6.2 then discusses the methods of analysis employed to reveal the characteris
tics of the sounds. The cough analysis system, introduced in §6.3 and §6.4, contains all 
the necessary hardware and software to collect cough sounds, perfonn spectrographic 
analysis on segments of the sounds and examine the time domain and spectrographic 
signals in detail. In 

6.1 Background 

6.1.1 Introduction to asthma diagnosis 

The diagnosis of asthma is usually made on a historical basis and by ·considering the 
clinical symptoms exhibited by the patient (cf. Connolly and Godfrey, 1970; Cloutier, 
1983; Canny and Levison, 1987). In addition, there are several methods that are 
commonly employed by physicians to assess the degree to which the air passages are 
affected in asthma. These are usually based on a provocation or challenge test, where an 
asthma-inducing stimulus is given to the patient and the airway response is evaluated 
(cf. Josephs et al., 1990). Conventional stimuli include exercise (e.g. several minutes 
of free running, cf. McFadden, 1984; Tsanakas et al., 1988) or the inhalation of an 
irritant substance (e.g. Histamine or Methacholine, Jones, 1966). The airway response 
is usually evaluated indirectly by means of so-called "spirometry", which measures the 
change in airways resistance. This is done by asking the patient to forcefully exhale. 
The differences in peak airflow and/or exhaled volume between the "pre-challenge" 
and "post-challenge" test characterise the change in airways resistance, which in turn 
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indicates the severity of the asthmatic condition (Jones, 1966; Josephs et al., 1990). 
Spirometric measurements commonly made include the peak expiratory flow 

rate (PEFR), which is the peak flow reached during the forced expiration, the forced 
expiratory volume (FEV), which is the total volume of air exhaled, and the FEV1, 
which is the volume exhaled during the first second of an expiration (cf. Cotes, 1975, 
Chapter 5). PEFR and FEV1 are significantly reduced in patients with asthma during 
and sometimes even between symptomatic episodes of wheezing (cf. Jones, 1966). 

Challenge test methods provide a quantitative and reproducible indication of 
the presence and severity of asthma in older patients. However, for young children and 
infants, several problems arise which often render this approach unsuitable. Firstly, it 
is often difficult to persuade children to co-operate and perform the necessary exercise. 
Secondly, it is usual for the evaluation of lung function to require a maximal forced 
expiration (Tsanakas et al., 1988). With young children (particularly those of less 
than four years) it is often difficult to ensure that the expiration is produced with 
maximal effort. Avital et al. (1988) suggest that the presence of wheezing can be 
used as a reliable indicator of increased airway resistance in young children, for whom 
conventional spirometry is inappropriate. A third factor is that young children with 
mild or developing asthma may only exhibit symptoms, such as the occurrence of 
persistent or night-time cough, which cannot be readily observed in the clinic (cr. 
Corrao et ai.; 1979; Cloutier, 1983; Anonomous, 1988). 

6.1.2 Other relevant ,research 

The. occurrence and nature of coughs associated with asthma attacks in children, es
pecially those occurring at night, have been the subject of recent studies (Archer and 
Simpson, 1985; Toop et al., 1986). The research presented here is a continuation of 
these studies, with signal processing techniques being introduced to allow more sophis
ticated analyses of the cough sounds to be made (Toop et al., 1989a). Previous studies 
of asthmatic cough sounds in children have compared the numbers of coughs occurring 
during the night with the severity of the asthmatic condition (Archer and Simpson, 
1985; Toop et al., 1986; Thomson et ai., 1987). 

The characteristics of cough sounds in general have also received some attention. 
Kelemen et al. (1987) compare plots of airflow rate, lung volume, and sound, all 
versus time, for different types of cough. They, and Korpas et ai. (1987), describe 
cough sounds according to their waveforms, finding that the envelopes of the sounds 
appear to differ between patients with different diseases. Further details of their cough 
classification scheme are summarised in §6.1.4.3. Korpas et al. (1987) and Salat et 
al. (1987) characterise a cough sound by its energy, which is the integral of the sound 
intensity. They present results which indicate that there is a significant difference 
between the total energy of asthmatic and non-asthmatic coughs. 

The spectral content of cough sounds has only recently received attention (De
breczeni et ai., 1987,1990; Toop et ai., 1989aj PiirWi and Sovijiirvi, 1989). Both De
breczeni et ai. (1987) and PiiriUi and Sovijiirvi (1989) obtain the average spectrum of 
the cough sound, while Toop et ai. (1989a) and Piirilii and Sovijiirvi (1989) compute 
spectrograms to indicate the evolution of spectral components with time. Debreczeni 
et ai. (1987,1990) compare the coughs of groups of patients with different types of 
airway disease. They treat each spectral component separately, using a statistical test 
to determine which frequency bands contain significantly different amounts of energy 
between each pair of groups. Although their average asthmatic and non-asthmatic 
cough spectra appear different, the wide inter-patient variability means that only a few 
frequency components are significantly different. 

Piirmi and Sovijiirvi (1989) estimate the upper frequency limit for the average 
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spectrum of each cough. In addltion, they estimate the duration of the mst and any 
subsequent sound, and the occurrence and duration of any "wheezing components", 
which they define as 'continuous sounds with duration more than 250 ms'. They find 
that the upper frequency limit is lowest for asthmatic coughs, and that the wheeze 
duration, as a proportion of the total cough duration, is greater in asthmatic than in 
other types of cough. 

Several studles have investigated the spectral content oflung and breath sounds 
for asthmatic and other conditions (Akasaka et al., 1975; Gavriely et al., 1981; Cohen 
and Landsberg, 1984; Baughman and Loudon, 1985; Fenton et al., 1985; Pasterkamp et 
al., 1989). These have been attempts to quantify the lung sounds that physicians have 
for many years employed as an indication of the presence of asthma and various other 
ailments (Forgacs, 1978; Loudon and Murphy, 1984). Aspects of these investigations 
are introduced whenever relevant throughout this introductory section. 

6.1.3 Coughs 

The physiological purpose of coughing is to expel foreign particles and excess mucus 
from the airways (cf. Cloutier, 1983). Coughing is thus necessary for survival and occurs 
in all people, healthy or not. However, in some cases, pathologies of the airways cause 
pathological or chronic coughing (Irwin et al., 1977; Cloutier, 1983). The common cold 
and, as has already been suggested, asthma are two well known examples of conditions 
which can cause chronic cough (Cloutier, 1983). 

Non-voluntary coughs occur when the cough refte:ds triggered (Macklem, 1974). 
This usually happens when some sort of irritation occurs to a nerve ending of one of 
the many cough receptors, which are spread throughout the airways (Irwin et al., 1977). 
The act of coughing usually consists of the following physiological actions. Firstly, air is 
inhaled into the 'lungs. Secondly, the glottis closes and the breathing muscles compress 
the lungs, producing a high air pressure in the sub-laryngeal airways. The glottis then 
opens suddenly, and air is forcefully expelled through the mouth (Irwin et al., 1977). 

The compression of the pleural cavity (the space between the rib cage and the 
lungs) exerts a compressive force on the lungs and airways. Because these have an elastic 
recoil, this force increases the pressure in the airways to be above atmospheric pressure. 
Hence the air is forced out of the lungs and the airways (Macklem, 1974). Fig.6.la 
depicts the lungs and airways dlagrammatically during a cough. The pressure in the 
lung Pa/I) is greater than the pleural pressure pp/ because of the elastic recoil of the lung. 
The pressure at the mouth Patm is much less than Pp/, and so the pressure difference 
across the walls of the airways varies as shown in Fig.6.1b. Because of the compressive 
forces on the airways downstream of the equal-pressure point (where Ppl ::= Pall))' the 
airways tend to collapse, thus increasing their resistance and causing the steep drop 
in pressure shown in Fig.6.1h (Macklem, 1974). In some diseases such as asthma, the 
airways are already partially occluded, and so the equal-pressure point occurs more 
dlstally (further from the mouth). Hence the airways are usually compressed to a 
greater extent in such condltions. 

The compression of the airways implies that there is a limit on the maximum 
airflow that the airways can support. This limitation occurs because increasing pleu
ral pressure (necessary for higher flows) is counteracted by greater airways resistance 
caused by the collapsing airway walls (Dawson and Elliott, 1977). The velocity of the 
air flow through the airways is increased dramatically because of this compression of 
the airways. Ross et al. (1955) measure the compression by means of x-ray tracings of 
the airways. They estimate that the dlameter of the larger airways can be compressed 
by as much as 50% during a cough by a healthy subject. Air velocities of up to l20m/s 
have been measured within the airways during a cough (Macklem, 1974). However, 
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Figure 6.1. a: Model of lungs and airways during a cough. The pressure in the lung is greater than 

the pleural pressure because of the elastic recoil of the lung. b: Diagram showing the pressure gradient 

across the airway walls at different positions. The airways become compressed downstream of the 

equal-pressure point 

even though such high velocities may be achieved, the volume flow of air is limited 
because of the narrow cross-section of the airways (cf. Macklem, 1974; Dawson and 
Elliott, 1977). 

Asthma is characterised by swelling of the mucosal lining of the airways. This 
increases the thickness of the airway walls, and decreases their internal cross-sectional 
area. Hence the resistance of the airways is increased, and the peak air flow is reduced 
( cf. Loudon and Shaw, 1967). Excessive mucus production also occurs and this, together 
with the swollen mucosa, may mechanically stimulate the cough receptors (see the first 
paragraph of this section). 

6.1.4 Cough sounds 

This section reviews the sounds that accompany coughing. In §6.1.4.1 I introduce 
the models invoked to explain the mechanisms by which sounds are generated during 
coughs) while in §6.1.4.2 I briefly discuss the way in which the transmission of sounds 
through the lungs and airways is affected by pathological conditions such as asthma. 
§6.1.4.3 outlines the subjective terms given to cough sounds by physicians, and then 
introduces the schemes that have been proposed to quantitatively describe various types 
of cough sounds. 
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6.1.4.1 Models of cough sound production mechanisms 

Sound energy during a cough is generated both by turbulence in the air flow, and by 
"flapping" of the airway walls. The literature on models that describe these sources of 
sounds is sparse, although models of airflow during coughing or breathing (§6.1.3) form 
the basis of descriptions of sound generation (cf. Forgacs, 1978; Grotberg and Davis, 
1980; Gavriely et ai., 1984; Webster et ai., 1985). 

In this section I briefly introduce one approach to understanding how cough 
sounds are generated. The purpose of this discussion is to provide some justification 
for the types of analysis described in §6.2. Hence I provide only a broad outline of 
the important concepts. The mathematical details are presented in greater depth by 
Grotberg and Davis (1980) while discussion of the interpretaion of breath sounds in 
light of this model of sound production is provided by Gavriely et ai. (1984). 

The mechanisms by which cough sounds are generated can be modelled by 
considering the airways as flexible channels and by analysing the flow of air through 
such channels (Grotberg and Davis, 1980). Such an analysis can be applied to the 
flow of air arising from both breathing and coughing. It also enables the effects of 
changes in the airway structure on the airflow (such as those that occur in asthma) 
to be investigated. By means of these analyses, the types of sounds produced under 
different conditions can be predicted (Gavriely et ai., 1984; Hinchey and Snellen, 1987). 

Because the airway walls are flexible, they form an unstable mechanical-aero
dynamic system when the air velocity is greater than some critical value (Grot berg 
and Davis, 1980). This instability can be simplistically understood as arising from 
the interaction between the forces generated by the movement of the air, the pleural 
compression of the airways, and the elastance and mass of the airway walls. As the 
airways are compressed (flattened) by the pleural compression, the air velocity increases 
as described in §6.1.3. In addition, the Bernoulli force which the movement of the air 
induces also causes the airways to flatten. At some critical velocity, the airway walls 
begin to vibrate ("flap"). The vibration occurs because of an unstable relationship 
between air velocity and airway cross-section: Increasing air velocity causes the airway 
cross-section to decrease, but this increases the resistance of the airways, thus reducing 
the air velocity. This flapping of a flexible tube can be easily observed by blowing up 
a balloon and then letting the air escape. The neck of the balloon (the flexible tube) 
vibrates according to the above mechanism. The frequency of the flapping depends on 
the elastance, mass, and size of the airway walls (Forgacs, 1978; Grotberg and Davis, 
1980; Gavriely et ai., 1984). 

The flapping of the walls occurs together with a vibration in the airflow through 
the airway, which vibration constitutes the "wheeze" type of sound often heard when 
the airways are constricted by, for instance, asthma. Asthma causes the airway walls to 
thicken, thus reducing the airway size, increasing the wall mass, decreasing its elastance, 
and increasing the air velocity. Hence the critical velocity is reduced and vibrationary 
sounds are more easily generated (Gavriely et ai., 1984). 

The model described above of flow through a flexible tube also explains the 
airflow limitation mentioned in §6.1.3. This occurs because the increase in air velocity 
is matched by a consequent decrease in airway cross-section (cf. Dawson and Elliott, 
1977). Hinchey and Snellen (1987) suggest that airway vibration is alrnolJt always 
associated with flow limitation. They, and Beck and Gavriely (1990), fllld that the 
onset of flow limitation is often accompanied by the appearance of high frequency 
(I-2kHz) peaks in the short-term spectra of the breath sounds. 

In addition to the "oscillatory" types of sounds generated by the flapping of the 
airway walls, "noise-like" sounds are generated by turbulence in the airflow. Turbulent 
flow occurs when the air velocity exceeds a critical value, that is dependent on the 
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Reynolds number of the gas. Turbulence can be precipitated by bifurcations or ob
stacles in the airways, or by surface "roughness' on the airway walls (Reynolds, 1974, 
Chapter 1). The airway narrowing which occurs during asthma because of the swelling 
of the airway walls increases the air velocity, which leads to greater air turbulence. 
Asthma is also associated with the excretion of mucus, which changes the surface char
acteristics of the airway walls. Hence the character of the air turbulence is likely to be 
different than in the non-asthmatic case. For instance, asthmatics commonly exhibit a 
type of cough which is termed "moist cough", referring to its association with mucus 
secretions. 

6.1.4.2 Sound transmission through the lungs and airways 

The character of the sounds are modified by their transmission through the body before 
they can be recorded. There are two routes for the sounds to travel. A microphone 
placed on the chest wall picks up sounds that propagate through the lung tissue and 
chest wall. Wodicka et al. (1989) model the transmission characteristics of such tissue by 
considering it to be constructed of many small bubbles of air, distributed throughout a 
medium that essentially has the acoustic properties of water. Because of the consequent 
absorption of acoustic energy by such a structure (Wodicka et al., 1989), the sounds that 
pass through the tissue are strongly attenuated, especially those of higher frequencies. 
The sounds heard on the chest wall therefore consist almost entirely of the low frequency 
components of the original sounds. Forgacs (1978, pH) shows that the healthy lung 
acts like a low pass filter with a cut-off frequency of about 200Hz and an attenuation 
that increases at about 10-20dB / octave above that frequency. 

Sounds that are detected at the mouth must propagate through the airways 
and mouth. This is essentially the vocal tract described in §2.3.1.3, although with the 
important addition of the sub-laryngeal airways. The influence of the supra-laryngeal 
vocal tract on the cough sounds is not likely to change much between coughs because 
the mouth is usually relatively open during a cough. However, the sound transmission 
characteristics of the sub-laryngeal airways are likely to be affected by asthma because 
of the narrower, thicker airways and the increased amount of mucus on the airway walls 
(Gavriely e.t al., 1984). 

6.1.4.3 Types of cough sounds 

Since everybody coughs, and for many different reasons, the value of a cough as a 
diagnostic aid depends upon the ability of the physician to distinguish between normal 
and pathological coughs. The frequency and persistence of coughing is one indication 
that the cough is caused by some pathology (Irwin et al., 1990). 

The characteristics of the sounds of different types of cough have been described 
in subjective terms by physicians as an aid to categorising their causes. Some of these 
subjective terms are metaphorical, such as the terms "wheezy", "tight", "brassy", 
"squeaky", and "rasping", to name a few (Toop, 1989). Other coughs are simply la
belled by association with a particular disease. For example, a physician may describe 
a cough as "asthmatic" or "barking" (in the case of croup), thus indicating a character
istic type of cough (Toop, 1989). The particular characteristics of each of these terms 
are of w'Jrse learnt by experience, although the metaphorical terms provide a basis for 
categorising the different types of cough. 

The metaphorical terms mentioned above for the different cough sounds indi
cate that the coughs arising from different diseases do indeed "sound different" to the 
ear. It is likely that the differences between coughs with names such as "wheezy" and 
"brassy" are largely related to differences in the spectral content of the S0U11ds. There-
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Figure 6.2. Waveforms of typical cough sounds. The coughs shown in in a: and b: exhibit the three 

phases referred to in the text as the "first sound" I the "noisy interval" I and the "second sound". c: 

Cough sound with an extended initial burst. d: Cough sound having no final burst. 

fore, spectral analysis is a logical approach to obtaining a quantitative description of 
the different "types" of cough. 

One of the difficulties in designing a quantitative analysis procedure for describ
ing the cough sounds is the translation of the subjective terms into equivalent acoustic 
features. Kelemen et al. (1987) divide a cough sound into seven parts, with three major 
phases. These three phases are the "first sound", the "noisy interval", and the "second 
sound". They relate the first sound to the rapid acceleration of flow at the start of th.e 
cough, the noisy interval to the relatively steady flow during the cough, and the final 
sound to the flow deceleration as the cough ends. Korpas et al. (1987) suggest that the 
final sound originates in the larynx. ill any particular cough, the second and/ rir third 
phase may be missing. Fig.6.2 shows typical cough waveforms that exhibit the three 
phases. 

Korpas et al. (1987) show representative waveforms of cough sounds corre
sponding to different diseases. They describe cough sounds as generally consisting of 
a "first" and a "second" cough sound. This pattern changes for different diseases, so 
that a particular sound may be composed of one to four or more "bursts", with the 
"gaps" between each burst also varying according to the disease. 

6.2 Analysis Methods 

The aim of analysing cough sounds is to classify the coughs according to physiological 
changes in the airways. Developing signal processing techniques for analysing the cough 
sounds involves three major steps. Firstly, the types of features which characterise the 
coughs and their differences need to be established. Secondly, techniques for extracting 
and quantifying the features must be developed and refined. The third step is to develop 
a system by which the severity of any clinical condition can be automatically inferred 
from the features of the cough sound. 

§6.2.1 describes the preliminary analysis (Toop et al., 1989a) of several examples 
of asthmatic and non.,asthmatic cough sounds which was carried out in order to justify 
the development of the cough analysis system presented in §6.3 and §6.4. In §6.2.2 I 
explain why spectral analysis techniques are invoked to characterise the cough sounds. 
The several types of descriptive features that can be used to characterise the spectra of 
the sounds are discussed in §6.2.3. Th.e third step mentioned above, of automatically 
inferring the severity of asthma from the features of the sounds, is not mentioned further 
in this chapter and is relegated to §8.2.3. 
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Label Age Asthmatic? Time recorded PEFR reduction i 

A-PRE 7 Yes Pre-exercise normal 
A-POST 7 Yes 10 min. post-exercise 30% fall 
N-PRE 7 No Pre-exercise normal 
N-POST=: 7 No 10 min. post-exercise 10% fall 

Table 6.1. Coughs employed in the preliminary analysis of cough sounds. Coughs from two children 

are presented here. The labels identify the child (U A" or UN") and the time at which the sound was 

recorded ("PRE" or "POST" exercise). The PEFR reduction column refers to the measured PEFR as 

compared with the expected normal value for a child of that height. 

6.2.1 Preliminary analysis of cough sounds 

As mentioned in §6.1.2, several researchers have examined the spectral content of lung 
sounds. In order to determine if spectral analysis of the cough sounds might be a useful 
avenue to take in an investigation of their characteristics, I recorded and analysed sev
eral examples of asthmatic and non-asthmatic coughs. §6.2.1.1 describes the methods 
employed in t:pis analysis, while §6.2.1.2 presents the results so obtained. 

6.2.1.1 Methods invoked in the preliminary analysis 

Coughs were recorded from a seven year old boy with a history of asthma and nocturnal 
coughing and also from a child with no asthmatic history. Coughs were recorded 
from both children before and at intervals after undertaking strenuous exercise. The 
cough sounds were recorded using a SONY ECM-16T condenser lapel microphone 
connected to a UHER 4200 tape recorder. From this record, selected examples of 
coughs were digitised at a rate of 20kHz by a 12bit LPAll-K AID converter, and 
stored in a DIGITAL VAX computer. The signals were low-pass filtered by a KEMO 
VBF /8 filter, having a 3dB cutoff frequency of 9kHz and a roll-off of 48dB/octave 
above that. Table 6.1 identifies the coughs involved in this experiment, together with 
the condition of the patient at the time each one was recorded. 

Subsequent to digiti sing the coughs, it was found that their spectral components 
above 5kHz contained negligible energy. Each one was therefore digitally filtered, to 
remove all energy above 5kHz, and re-sampled at a rate of 10kHz. This re-sampling 
was done to reduce the disk storage requirements. 

The time-varying spectrum of each cough sound was computed by the method 
described in §3.3.1. Segment of 25.6ms in duration, each one starting 5ms after the 
start of the one before, were multiplied by a 3-term Blackman-Harris window and were 
then Fourier transformed. The resulting spectrogram, which comprises all the short
term spectra computed as described above, is displayed as a "stack plot" in order to 
reveal the evolution of spectral components with time. A stack plot produces a "three
dimensional" effect, with frequency as the horizontal axis, time "receding" up the page 
as if into the distance, and the spectral magnitude at each epoch represented by the 
vertical height of the short- term spectrum at that epoch above an imaginary base-line. 

6.2.1.2 Results of preliminary analysis 

Fig.6.3a shows the sound waveform and spectrogram of a typical cough (N-PRE) from 
the normal child before exercise. There is power across the range of frequencies from 500 
to 2000Hz with few definite peaks. Fig.6.3b shows that, following exercise, the sound 
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Figure 6.S. Cough sound and spectrogram from norma.l child. a: Pre-exercise cough N-PRE. h: Post 

exercise cough N-POST. Table 6.1 identifies ea.ch of the coughs. 
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Figure 6.4. Cough sound and spectrogram from asthmatic child. a: Pre-exercise cough A-PRE. h: 

Post exercise cough A-POST. Table 6.1 identifies each of the coughs. 

of the cough changes little, although the duration of the cough increases somewhat, 
with the spectral energy also being more "spread out" rather than being concentrated 
in the initial "burst". 

By contrast, the sound of the cough from the child with asthma exhibits major 
changes following a similar interval of exercise. The sound and the spectrogram for the 
pre-exercise cough A-PRE, shown in Fig.6.4a, are similar to those of the pre-exercise 
cough shown in Fig.6.3 a. The sound is of short duration and the spectrogram indicates 
energy in a wide band offrequencies. However, the post-exercise cough A-POST, shown 
in Fig.6.4b, is very different from its pre-exercise counterpart. The duration of the 
cough increases significantly, and the spectrogram indicates much sharper concentration 
of energy in spectral components around 500-600Hz. In addition, there is a second 
"burst" of sound some 250ms into the cough. This sound has a very pronounced peak 
at a frequency of about 600Hz, together with what appear to be harmonics at 1200 and 
1800Hz. 

6.2.2 Discussion of the merits of spectrographic analysis 

During prelirr.Jnary &:nalyses of several coughs (§6.2.1), features based on the spectral 
content of the sounds were chosen as most the promising for describing the changes 

369 "" 
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associated wlthasthma. Spectral analysis of the sounds enables the occurrence of 
wheezes to be detected. As described in §6.1.4.1, wheezes are produced by vibration of 
the airway walls. During asthma, the airway walls are thickened, leading to an increase 
in air velocity and hence a greater likelihood of wheezes occurring. In addition, the 
frequency of the wheezes depends on the mass and elastance of the airway walls, both 
of which are changed by an asthmatic condition. 

In addition to wheezes, cough sounds contain a wide spectral range of "noise" 
components generated by turbulence in the airways. One expects that the character
istics of the turbulent noise should alter if the airways change due to asthma. Other 
"noise" components of cough sounds are generated at the glottis, as it opens and closes 
at the start and end of each cough. These sounds are likely to have some semblance 
of a harmonic nature, due to the quasi-periodic glottal vibration. However, they tend 
to dominate when present since they are generally of much greater intensity than the 
sounds generated in the airways (see §6.1.4.3 and §6.2.3). 

The sound transmission characteristics of the airways (§6.1.4.2) are dependent 
on the cross-sections of the airways and the nature of the airway walls (cf. §2.3.1.3). 
Since asthma affects both of these aspects of the airways, one would expect that the 
sound transmission characteristics would also change during asthma. Specifically, re
duction in airway cross-section should lead to an upward shift in the resonant frequen
cies of the airways. 

The purpose of time-varying spectral or spectrographic (§3.3.1) analysis of cough 
sounds is to display the evolution of the spectral content of the sounds. Spectrogra
phic analysis identifies short-term spectral components of sounds during the course of 
coughs. One difficulty encountered in such an analysis is the unavoidable trade-off 
between temporal and spectral resolution (§3.3.1). If one wishes to observe the rapid 
changes that occur during the course of a cough, one must accept a limited resolution 
of spectral details. This could be a drawback in the identification of "wheezes", which 
are characteristically narrow-band "tones". 

6.2.3 Characteristic features of cough sounds 

Although a full description of characteristic features which describe the cough sounds is 
beyond the scope of this thesis, it is important for the reader to appreciate the general 
characteristics of the sounds upon which a future system for determining the presence 
and severity of asthma can be based. In this section I outline the types of characteristic 
features which I think may usefully describe the differences between cough sounds . 

. Cough sounds are inherently high intensity, "noisy", sounds, which poses dif
ficulties when one attempts to extract useful information from them. This may by 
one reason why there has been so few previous analyses of them. However, both from 
examining the previous literature on the subject (§6.1.4.3), and from the preliminary 
results of the spectrographic analysis presented in §6.2.1.2, it seems that most of the 
"noisy" sound energy in the cough appears in the initial and final "bursts". During 
the second, quieter, phase, more subtle sounds, that are perhaps due to the particular 
airway characteristics, may be more apparent. In addition, the second part of the cough 
sound appears to be more interesting from the point of view of investigating changes in 
the airways because the glottis, being fully open, has little influence on the airflow. Any 
noises heard during this interval are thus likely to originate in the airways themselves. 
Indeed, experience suggests that wheezes are heard during this phase (Toop, 1989). 

The classification of cough sounds by Kelemen et.al. (1987) into different types 
according to their energy envelopes provides only a coarse level of discrimination be
tween different types of cough. Despite this, Kelemen et al. and Korpas e:t al. (1987) 
show some generic differences between cough sound waveforms for different diseases. In 
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view of the conunents made in the previous paragraph, however, I think that ~xamining 
changes iv. the spectral content of the cough sounds is a more promising up'proach to 
identifying the severity of any changes in the airways. 

Chabonneau et al. (1983) characterise the spectra of breath sounds in terms 
of several parameters computed from the average spectrum of each breath. These pa~ 
rameters are the the peak. frequency, the half~power bandwidth, the highest significant 
frequency (the hJghest frequency with amplitude greater than 10% of the spectral am~ 
plitude at the peak frequency), and the weighted mean frequency. An index composed 
of the sum. of normalised parameter values appears to discriminate successfully between 
asthmatic and JIlormal breath sounds. 

Because of gross differences in intensity between the three "phases" of a typ
ical cough sound, Chabonneau et. ai's (1983) approach to analysing breaths must be 
modified before it can be adapted to the characterisation of coughs. It is necessary to 
analyse each phase of a cough sound separately. Debreczeni et al. (1987) and PiiriUi 
and Sovijarvi (1989) partially accomplish this by only computing the average spectrum 
for the part of the cough sound which follows the initial burst. Debreczeni et al. (1990) 
compute avera.ge spectra from successive 50ms segments of the cough sounds, find~ 
ing that later segments are somewhat better at distinguishing coughs from different 
diseases. 

fu summary, a system designed to extract characteristic features from cough 
sounds must, first, separate each cough sound into individual phases and, second, esti
mate parameters that characterise the average spectra of each phase. 

6.3 A clinical cough analysis system 

In this section I introduce the system that was designed to facilitate the operation 
of a clinical study employing the analysis techniques described in §6.2. §6.3.1 gives 
an overview of the system and the requirements which guided its development. The 
system hardware is described in §6.3.2 and §6.3.3. The software for the system, which 
absorbed the bulk of the effort put into constructing the system, is described in detail 
in §6.4. 

6.3.1 System overview and requirements 

The cough analysis system is intended to facilitate the operation of the clinical study 
of cough sounds. To this end, it is designed to be easy to operate, with pro,cessing 
performed automatically wherever possible. 

The requirements of the system are, firstly, that it be capable of simultaneously 
digitising several different signals at possibly different sampling rates. In the clinical 
trials that have been performed so far with this system, the system has been configured 
to digitise ah :flow rate from a flow meter and sound pressure from two microphones. 
However, when digiti sing sOlmds that have been previously recorded on a tape recorder, 
only a single cha,nnel is required. The flow signal is used to align the sounds with the 
cough, a.nd also to perform standard spirometric tests (§6.1.1) during the recording 
session. Th,'! mic::ro,phoneE ,al~f! p]aeed at the mouth and on the chest wall. Traditi'lYrJ.:hl.ly, 
phy~id3.n.s have Jiste-D.<:d. to breathing sounds through the chest wall only, Howevcr~ 

sounds l'>ecord.ed at the mouth axe not affected by the severe high frequency attenuation 
which occun; through the lun.gs and chest wall (§6.1.4.2). Also, it is sometimes easier 
to record, sounds at the mouth, such as when night coug}tS are being obtained (§tt1.2). 

The rate a,t which the system is required to digitise the sounds is 5kHz. This 
rate wa.s determined by a preliminary study of a few cough sounds (§6.2.1), in which 
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L 

Figure 6.5. Photogx-aph of the equipment comprising the Cough analysis system 

it was noticed that most of the energy in the sounds occurs at frequencies less than 
2kHz. A much lower sampling rate, of 500Hz, is adequate for the flow channel. This is 
conveniently one tenth of the sampling rate for the sound channels. 

The system is also required to be capable of interactively displaying the signals 
and allowing the interesting portions to be extracted (from all channels simultaneously) 
and stored for later analysis. Spectrographic analysis must be performed on the stored 
sound channels, with the results being displayed on the screen or a plotter. The displays 
of both the signals and their spectrograms need to be examined in detail. 

A third requirement of the system is that it must be as simple as possible to 
operate. This is particularly necessary in the data collection parts of the system so that 
the clinicians can concentrate their attentions on the patient rather than the computer. 
More g~ri~rally, the system is required to store and process a large amount of data 
from many patients. In order for the research to proceed efficiently, it is necessary that 
the data be managed in a fashion that is comprehensible to the user and discourages 
mistakes. 

A final requirement ofthe system is that it be expandable. Future developments 
that are planned include the automatic identification of the end-points of individual 
coughs, the extraction of descriptive features from the spectrographic representations 
of the cough sounds, and, if the research proves it to be possible, the extraction of an 
"asthmatic severity index" from. the cough sounds (see §8.2.3). 

6.3.2 System H~rdware 

A .photograph of the system is shown in Fig.6.5. The flowmeter was :built by the 
Department of Bio-Engineering and Medical Physics, Christchurch Hospital. It mea-
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Face mask 

Figure 6.6. Cross-sectional view of the flow meter used to measure the air flow during coughs. 

sures airflow indirectly by sensing the pressure differential developed across a small 
aero-dynamic resistance introduced into the airflow. The resistance is constructed of 
a spiral coil of corrugated stainless steel plate. The pressure differential is detected 
by a piezo-electric pressure transducer. The signal from the flow meter is amplified 
and low-pass filtered to 100Hz. A face mask is used to direct cough air flow into the 
flow meter. The flow meter was calibrated by connecting it in series with a calibrated 
flow meter and comparing the AID sample values to the flow values provided by the 
standard. §6.3.3.1 describes the calibration procedure. 

The chest sounds are obtained through a HEWLETT-PACKARD HP-21050A 
contact microphone. It has a flat frequency response between 30 and 2000 Hz. The 
mouth microphone is a BEYER-DYNAMIC MCE-6.9 condenser microphone which has 
a frequency response that is flat between 20Hz and 10kHz. The mouth microphone 
is mounted on the exhaust end of the flow meter. Mounting the microphone in this 
way does mean that the sounds are affected by their passage through the face mask 
and flow meter. However, all the coughs are affected similarly, so the distortion can 
be estimated and removed by post-processing within the computer. §6.3.3.2 describes 
the procedure that was followed to estimate the acoustic transfer function of the flow 
meter and face mask. 

The two microphone signals are amplified and then filtered by custom built (by 
the Bio-Engineering and Medical Physics Dept. at Christchurch Hospital) 7-th order 
elliptic switched-capacitor anti-aliasing filters having cutoff frequencies of 2.5kHz and 
stop-band attenuation of 70dB. The gain .of the two amplifiers can be controlled to 
match the dynamic range of the cough signals tb that of the AID converter. Indicators 
on the front panel of the amplifier unit indicate when the output signal exceeds half 
(green) and full scale (red) of the AID input range. A variable gain is necessary because 
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Constant Description Value 
S Annubar flow coefficient 0.62 

I D Pipe internal diameter 1.049 inches 

p' Air density 0.076491b/ft3 

at 20°C 
N Units conversion constant 36.91 

! 
K Overall constant 35.101/s/(mm)1/2 

Table 6.2. Values of the constants in (6.1), taken from the manufacturer's data sheet. 

of the wide variation in sound intensity between the coughs of different people. The 
disadvantage of variable gain is that absolute inten:;ities of different coughs cannot be 
compared. The amplifiers also have provision for feeding in sounds from another source 
such as a tape recorder. An anti-aliasing filter, amplifier, and speaker is included so 
that sounds may be replayed from the computer via a D I A convertor. The interface 
hardware is an ANALOG DEVICES RTI-815-A with 1612 bit AID convertors and two 
12 bit D I A convertors. 

The micro-computer system consists of a SUNDOX 286 computer, which is fully 
compatible with an IBM PC-AT, running at a clock speed of 12MHz. A HERCULES 
graphics display and GENIUS GM-6 "mouse" is employed for interaction with the 
human operator (see §6.4.3). A NEC 114MByte hard disk provides storage for data 
and software, and an ARCHIVE XLE 40MByte tape streamer is employed for data 
backup and archiving. A FACIT 4551 plotter is used to produce plots of the processed 
signals. The entire system fits on a wheeled trolley so that it can be easily moved 
between different locations in the hospital. 

6.3.3 Hardware calibration procedure 

6.3.3.1 Calibration of flow meter 

The flow meter was calibrated by connecting it in series with an ANNUBAR flow meter 
(type 713-316ss, size 1.049) and passing a range of constant air flows through both 
instruments. The pressure differential hw (in mm of H20) through the ANNuBAR flow 
meter was measured by a V ESSEN micro-manometer, and the flow Qs computed by 
means of the formula. (from the manufacturer's data sheet) 

Qs = K Vh:;litres/sec (6.1) 

where K N S D2 -IP depends on the flow meter diameter D and flow coefficient S, 
the air density p, and a conversion factor N. Values for these constants are given in 
Table 6.2. 

Fig.6.7 shows the curve obtained by regression of the measured flow rate on to 
the AID values from our flow meter. As shown, it is linear up to flow-rates of 4l/s. At 
higher flow rates, a quadratic correction term, obtained by a least squares match to the 
data, appears to match the deviation from linearity well. This quadratic relationship 
between AID numbers and flow rate is implemented in the system software in order to 
provide actual values of flow rate. 
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Figure 6.7. Calibration graph for the flow meter. Flow values were calculated via the formula (6.1) 
from measurements made with an ANNUBAR. flow-meter. A-D values are given after subtraction of 
zero-flow offset. The quadratic regression curves ar~: Inhale flow 

y = 0.18 + 5.728 x 10-3 x - 6.72 X 10-1 x 2 

and exhale flow 
y 0.11 +6.16 x 1O-3 x 7.50 X 1O-1 x 2

• 

Note that the inhale flow and AID numbers have been multiplied by -1 so that they can be graphed 

on the same axes as the exhale numbers .. 

6.3.3.2 The acoustic transfer function of the flow meter and facemask 

The face mask and flow meter change the characteristics of sounds passing through them 
because they act as resonant cavities, thus attenuating some frequency components 
more than others. The flow meter can be considered to be a linear time invariant acous
tic filter, with a transfer function HjU) and impulse response hj(t) = :F-1{HjU)}. 
The filtered sound sr(t) is therefore related to the emitted sound se(t) by 

(6.2) 

It is straightforward to estimate hj(t) by Wiener filtering (Bates and McDonnell, 1986) 
once sr(t) and se(t) are known. 

The signals se(t) and sr(t) refer to, respectively, a sound that is unaffected 
by the flow meter, and one that is so affected. In order to measure se(t) and sr(t) 
through a single microphone, it was necessary to digitise them separately. I recorded 
a reference sound on a tape recorder, then replayed it twice, first digitising the sound 
directly and, second, digitising it after it had passed through the flow meter. The two 
digitised signals thus differed only in that one was affected by the transfer function of 
the flow meter. Sections of sound were extracted from each of the recordings by means 
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Figure 6.8. a: Acoustic transfer function lilA!)1 of the flow meter (scale in dB). b: Estimated 

correction filter IW/(f)1 for the flow meter transfer function. 

of the "cough edit" program (§6,4). The position of the section from each recording 
was chosen so that the resulting signals, which I denote by se(t) and sr(t) respectively, 
are time-aligned. Time aligrunent was easily achieved because the sounds exhibited a 
definite "starting" transient, which was positioned at t 0 for both signals. 

In order to reduce the effect of noise on the estimate Hf(f) of H/(f) , I averaged 
several preliminary estimates together. Since the duration of hf(t) is short (of the 
order of a few ms) because of the· dimensions of the flow meter, it is sufficient to divide 
se(t) and sr(t) into segments of short duration and deconvolve each pair of segments 
separately. The resulting ensemble of filter estimates can then be averaged to produce 

Hf(f)· 
I divide se(t) and sr(t) into segments of duration 51.2ms (256 samples), with 

the start-points of adjacent segments separ~ted by 10ms (50 samples). Each segment 
is multiplied by a Blackman window and the FFT algorithm is employed to compute 
the Fourier coefficients. The magnitudes of these, for the mth segment· of se( t) and 
s,.(t) respectively, are denoted by ISe(fj m)1 and ISr(f; m)l. Note that this is the same 
procedure that I employ to compute the cough spectrograms (§6,4.4). In fact, I used 
the spectrographic analysis program described in §6,4 to compute the spectrograms of 
seCt) and sr(t). .. 

Each pair of spectra ISe(fj m)1 and ISr(fj m)l, for m l..T 150ms, where Tis 
the duration of seCt) and sr(t), is subjected to Wiener filtering to produce IWf(f; m)l, 
the "spectrographic" estimate of the inverse filter of H f(f). I W:,(f i m) I is defined by 

(6.3) 

where 4> 0.2 is the Wiener constant and ISe(fi m)12 and ISr(fi m)12 are versions of 
ISe(fi mW and ISr(fj m)j2, respectively, which have been scaled to have unit energy. 
The value of 4> was chosen after examination of the results of several trial evaluations 
of (6.3) with a range of values for 4>. The value of 0.2 for 4> was the smallest that 

. consistently avoided generating apparently spurious large values of IWf(fj m)1 within 
the ranges of f and m wherein IWf(fj m)1 was expected to be significant. 

The final estimate of the inverse filter IWf(f)12 is obtained by averaging each 
of the individual spectral lines in IWf(fj m)l2. Fig.6.8b shows a plot of IW,(f)I, while 
Fig.6.8a shows the estimate of the flow meter transfer function IHf(f)1 = 1/IWf(f)I· 
It can be seen that IH,(f)1 contains pronounced spectral peaks and dips. 



6.4 SYSTEM SOFTWARE 

Doto 
Collection 

@-oota rile 

Top-level 
Control 

Cough 
Editing 

.................. 
............... , ..... ........................ 

............ \ 

Spectrogram 
plotting 

215 

Figure 6.9. Block diagram of the cough system software, showing the various steps that are required 

in the analysis procedure. The flow of data between the various modules is also indicated. Each 

operational module accepts data from one set of data files and writes its output to another set of files. 

6.4 System software 

Fig.6.9 shows a block diagram of the COFF system software. The software consists of 
about 400kBytes of source code, written in the Modula-2 language (JPI TOPSPEED). 

Graphics is implemented through the "METAGRAPHIcs" interface (Meta Window Cor
poration). In this section I describe the structure of the COFF software (§6.4.1), some 
details ofits implementation (§6.4.2 through §6.4.3), and facets of its operation (§6.4.4). 

6.4.1 Overview of COFF system software 

The COFF program is written in a number of separate modules, each of which performs 
a particular part of the processing required in the system. Dividing the program into 
separate modules is necessary to ease the tasks of implementing and maintaining the 
software (d. Brinch Hansen, 1977). 

There are two type of modules in the program. Operational modules implement 
the blocks identified in Fig.6.9, being steps in the process of analysing the sounds. 
These are: digitising the sound and flow data, editing the data to isolate the coughs, 
performing spectrographic analysis on the cough sounds, and displaying and plotting 
the cough spectrograms. The support modules implement function,s required in all parts 
of the program such as facilities for managing data files and interacting with the user. 

The operational modules (refer to Fig.6.9) are functionally separate from each 
other. Data are transferred between each operational module via files on the hard disk. 
The program was structured in this way for three reasons. Firstly, the modules could 
be developed independently. This meant that clinical collection of cough sounds could 
begin as soon as the fust module was completed. Secondly, it allows for development 
and expansion of the system in the future. New modules can be added without affecting 
existing modules. Thirdly, an individual module can be improved without affecting the 
overall system. 

The different operational modules (refer to Fig.6.9) are each linked to, and 
controlled by, the Top-levelmodule. Some of the modules require no human interaction, 
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and so operate automatically~ while others are interactive. The interactive modules are 
activated by the selection of the appropriate menu entry in the top-level menu. The 
non-interactive modules, however, operate automatically after being activated at the 
start of program execution. 

The non-interactive modules operate as "background tasks" in the multi-tasking 
environment provided by MODULA-2 (Wirth, 1983). Each background task is acti
vated by the top-level module at the beginning of program execution. Thereafter it 
exists as a separate, concurrent, process from the main process. The processes can be 
treated as effectively executing in parallel (Brinch Hansen, 1977). Multi-tasking re
quires that a supervisory scheduler arbitrates between processes and ensures that each 
has a "fair" share of the CPU time (Brinch Hansen, 1977). The scheduler supplied with 
JPI Modula-2 is a time-slicing scheduler, in that it allocates to each process a "slice" of 
time to execute on the CPU. At the end of the time-slice, the scheduler interrupts the 
process that it is executing, and swaps it with another process. The scheduler main
tains a list of all the processes, together with all the information necessary to restart 
the process when its turn arrives. Each process also has a priority associated with it, 
so that more important processes are allocated a greater proportion of the CPU time. 
In the COFF program, background processes are given a lower priority than foreground 
or interactive processes. This is to ensure that the program responds to' the user with
out undue delay. The background processes only become active when the foreground 
process becomes inactive, such as when it is waiting for user input. At present, back
ground processes are only employed to perform the spectrographic analysis and to plot 
spectrograms on the pen plotter. . 

Further details of the theory and design of multi-tasking programs can be found 
in many texts (cf. Brinch Hansen, 1977). The JPI TOPSPEED Modula-2 manual 
(J ensen et al., 1988) can be consulted for details of the particular scheduler utilised 
here. 

6.4.2 Data management and control 

In a project such as the cough sound research described here, large amounts of data must 
be efficiently managed (d. Starmer et al., 1987). The data that the COFF program 
must manage consist ofthe processed and unprocessed cough sound and airflow signals, 
replicated for each of the 30 or 40 subjects of the clinical study. Because of the modular 
way in which the COFF program is implemented(§6.4.1), data files e)!:ist for each of the 
intermediate stages in the analysis. In this section I describe how the files are managed 
so that the analysis can proceed without risk of confusing the data from one subject 
with that of another. Many texts on data management are available which may be 
consulted for background information on general techniques for organising extensive 
databases (cr. Inmon, 1981). 

The flow of data and information between the various modules of the COFF 
program is indicated in Fig.6.9. Each stage in the analysis produces a set of output 
data files and associated index files. The index files contain information about the 
contents of the data files, as well as any information that may be supplied by the user 
at that stage. 

6.4.2.1 Subject differentiation 

The data files of each subject's coughs are kept separate by storing them in individual 
DOS sub-directories. Fig.6.10 illustrates this type of division. Sub-directories for the 
subjects Fred and Jane are contained in the directory DATA. A list of these sub
directories can be summoned by the user at the top level of the COFF program. Then 
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Figure 6.10. Data directory structure. Each subject has a sub-directory that contains all the data files 

pertaining to their coughs. The subject sub-directories may be grouped together into different "types" 

of subjects by putting each group into a different "data" top-level directory. The active sub-directory 

is chosen by the user via a menu at the top level of the COFF program. 

one of them can be selected. Each of the interactive modules reads and writes data 
only to the currently selected sub-directory. This means that the user can select a 
subject, and then not have to worry further about file names or any of the other details 
of saving data to, or recalling it from, the disk. 

As indicated in Fig.6.l0, groups of subjects can be placed in different "par
ent" directories. This means that,: for example, data from the control subjects can 
be grouped separately from that of the other subjects. The choice of which group is 
"active" is made by the user from the top level menu. 

All the functions necessary to control the division between each subject's data 
files are implemented in a single support module. As mentioned above, the current sub
ject is selected by the user in the top level of the COFF program. The complete path of 
that sub-directory is then stored in a file called DATADIR. CFG. This becomes the default 
until changed (even if the power is turned off in the mean time). Each of the interactive 
modules determines the current sub-directory by examining the DATADIR. CFG file. It 
then performs all its data file reading and writing to that sub-directory. This manner 
of communicating the name of the current patient directory to each module accords 
with the philosophy of having completely separate modules which communicate only 
via the hard disk (§6.4.l). 

6.4.2.2 Data differentiation 

Each subject's sub-directory contains data from the various stages of the analysis pro
cedure, replicated for each of the six or seven coughs collected from that subject, and 
replicated again for the two sound channels and one flow channeL In order to keep 
track of all this data, several conventions are invoked. A "generic" file name is used 
to identify each type of data (i.e. raw data from the AID routine, edited cough data, 
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File type Contents Format 
ADCn. DA T ! Raw data from Fixed size blocks of data + time flag for 

AID each block. 

EDITn.DAT Coughs se- Variable sized blocks. Each cont~ning 
leded by user data from one cough. The length and 
in Edit module location of each block is specified in the 

EDITO. IDX index file 
FFTn.DAT Spectrographic Variable sized blocks, each containing one 

data of each spectrogram. Position and size of each 
cough block specified in the FFTn. IDX index file 

Table 6.3. List of the files, and their generic names, used to store data at each stage of the COFF 

analysis. 

Index file name Contents 
ADC.CFG patient name, exercise time, sampling de-

tails 
EDITO.IDX Position and length of each block of data 

in the EDITn.DAT files. Also the location 
of the block in the ADCn. DAT files, and a 
comment entered by the user. 

FFTn.1DX Details on each spectrogram in the 
FFTn.DAT file. For each spectrogram: 
size of each spectraillne, spacing between 
spectral lines, number of spectra, posi-
tion and size (in bytes) of spectrogram in 
FFTn. DA T file. 

Table 6.4. List of the index files used'to record the positions and identities of the individual cough 

records within each data file. 

spectrographic data). Each actual file name is composed of a generic name and a num
ber identifying the signal channel. For example, the raw data file for channel number 
14 is identified by the filename ADC14. DAT. Table 6.3 lists the generic file names used 
for each type of data. 

The file for each type of data contains the relevant data from all the coughs 
of that subject. To identify each individual segment of data in a file, an index file 
is associated with each data file. Each of the index files contains information on the 
location and duration of each segment within the appropriate data file, together with 
identifying information such as the exercise time or any comments entered by the user. 
The index files and their contents are listed in Table 6.4. 

In order to easily access data from any file, support modules are implemented 
for each type of data file. For instance, the module Edi tFiles implements procedures 
which allow a program to access any edited cough record, merely by specifying the sub
directory name, the channel number, and the cough record number. Similar facilities 
are also provided for the other types of data. 
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6.4.3 The human interface 

The COFF program is used mainly by non-technical people during all aspects of data 
collection, management, analysis, and display. It therefore had to be simple and 
straightforward to operate. This is especially important for the parts of the program 
used in a clinical situation, where clinicians want to focus their attentions on the patient 
rather than the computer. 

The "human interface" is a term which describes all those aspects of the pro
gram that affect how it interacts with the (human) user. Thi~ includes the methods of 
controlling the operation of the computer, the ways in which information is presented 
to the user, and the logical structure of the program. Brown (1988) presents a compre
hensive coverage of human-computer interface design. He points out that the principal 
goal in designing the human interface is to minimize the effort required to perform any 
task. This naturally requires the program to be logically organised. The user can then 
easily "navigate" around the various functions of the program in the course of per
forming some particular operation (cf. Hogue and Fackrell, 1987). The effort required 
to perform any task is further rolnirnised by avoiding "multi-level" menus whenever 
possible. This is in contrast to some other menu-driven programs where the user may 
need to select an item on a top-level menu, which causes a sub-menu to "pop up". The 
actual function is then selected from that menu or a further sub-menu (cf. Hogue and 
Fackrell, 1987). Such an approach may be necessary when a program has many func
tions available, but it means that accessing any particular function takes more effort 
than if they are all laid out in a single menu (Brown, 1988). A useful human interface 
on a computer program must not only be simple to operate, it must present information 
in a straightforward manner to the user (Brown, 1988). 

The human interface of the COFF program was refined over a period of several 
months by a process of consultation with clinicians who were using a prototype program 
to collect coughs from patients. 

The COFF program is logically divided into several smaller modules, each of 
which performs only the functions relevant to the particular task to which that module 
is dedicated. The different modules are organised in a "tree" type of structure, with 
each one accessible from the top-level of the program. The tree is "broad" rather than 
"deep", which means that nested sub-menus are avoided as far as possible. Deeply 
nested menus (where a particular function is accessed by sequentially selecting items 
on successive sub-menus) are confusing for the user because it is so easy to forget one's 
position in the "tree" (cf. Hogue and Fackrell, 1987). With a "broad" tree, however, 
one is never far from the top-level, so it is much quicker to move to another part of the 
program. One disadvantage with a broad menu tree is that a large number of menu 
options are required at the top level if the program contains many individual modules. 

Within each module, every function is represented by an item on a single menu. 
The menu takes the form of a simple "control panel" on one side of the screen (Fig.6.1l). 
Selection of an item on the menu is performed by means of a mouse or keyboard key
press. The use of the keyboard for typing in commands is avoided, although it is used 
for entering the patient's name. If so desired, the keyboard can be used for selecting 
items on the menu. 

Information that the COFF program must present to the user consists of graphs 
of the sound and airflow waveforms, spectrograms of the cough sounds, information 
about the origins of the graphs being presented, messages about the status of the pro
gram itself, and the progress of the automatic data analysis. By employing a standard 
screen format in each of the different modules (see Fig.6.11), the user becomes accus
tomed to the way in which information is displayed, even in parts of the program which 
have not been used before. 
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Title Window 
Information 
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Graph Window 

Command 
Menu 

Message Window 

Figure 6.11. Standard screen format used in all parts of the system. 

Each screen contains several windows. The main part of the screen consists 
of the graphics window. This contains the waveform or spectrogram that is currently 
being examined. On the right of the screen appears the menu panel. This has a 
separate item for each of the functions associated with the module. An item on the 
menu can be selected either by pointing to it with the mouse and pressing a mouse 
button; using the cursor-control keys on the keyboard to highlight the item and then 
pressing the <ENTER> key; or by pressing the key on the keyboard corresponding to 
the first letter of the word identifying the ite¥1' These different selection mechanisms are 
provided because different people have disparate preferences for controlling a computer. 
The menu panels for each module are laid out in a similar fashion with,for instance, 
"Help" and "Return to Main Menu" being the last two items on each menu. 

The COFF program provides information to the user via two windows on the 
screen. The information window, on the top right of the screen, contains information 
about the data being examined. This includes things such as the patient's name, the 
time at which the current cough was collected, etc. The message window is an area at 
the bottom of the screen where messages from the program are displayed. These include 
warnings that something is amiss in the program (such as if the user tries to display 
data that the background process has not analysed yet), information messages about 
the operation of the analysis, and status messages from the program. The message 
window also prompts the user on the few occasions when something must be typed in 
(such as a comment to go with the edited cough data). 

The fifth window on the screen is the title, which performs no purpose other 
than to identify which module is active. The display format of each of the modules 
is basically the same as described here, with appropriate modifications depending on 
the particular requirements of the module. The details of the user interface and its 
operation are discussed in §6.4.4. 

6.4.4 Operational features of the COFF program 

In this section I describe the operation of the COFF system, illustrating the discussion 
with examples of the screen display during a typical session with the COFF system. 

In the "top-level" of the COFF program, the user can select a patient name 
from the list that is presented, or enter a new patient. After entering a new patient, 
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Figure 6.12. The screen of the COFF system when it is performing the "cough collection" task. See 

the text for details. 

the user has the opportunity to change the sampling parameters to allow, for instance, 
single-channel collection from a tape recorder. Instead of a graph, the top level displays 
information about the currently selected patient, including the amount of data that 
has previously been collected and processed. Other menu entries at this level allow the 
user to select any of the "task" modules (described below), display some informative 
"Help" text, or to "Quit" from the program. If "Quit" is selected while the background 
processing (Spectrographic analysis or hard copy plotting) is in progress, the user is 
asked for confirmation before the program 'actually does terminate. 

A photo of the screen as it appears 'in the "cough collection" module is shown in 
Fig.6.12. In the protocol for collecting cough sounds from a patient, coughs are collected 
at approximately two minute intervals after an exercise test. The data collection module 
samples the input signals continuously. When the patient actually coughs, the clinician 
presses a key to stop the sampling, retaining in memory the previous six seconds of 
sound. The sound can be replayed through a loud-speaker so the clinician can listen 
to the cough again. If satisfactory, the data can then be saved to disk, automatically 
including a label which uniquely identifies the time at which that cough was collected 

Fig.6.13 shows a photo of the screen as it appears in the "cough edit" module. 
The three graphs represent, from top to bottom, the sound as recorded at the mouth and 
chest respectively, and the flow signal. The two vertical lines called "cursors" are used 
to iden#fy the extent of a segment of the signals. The cursors are positioned by means 
of the "mouse". The segment so selected can be saved to the disk for (background) 
spectrographic processing, it can be replayed, or it can be re-plotted on an expanded 
time-scale ("zoomed") so that the details of the waveforms can be examined in greater 
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set AMplification 

Save cough 

Play cough 

Figure 6.13. The screen of the COFF system when it is performing the "cough edit" group of 

functions. See the text for details. 

detail. Each of these actions is represented by an entry on the menu, which appears 
on the right hand side of the screen (Fig.6.13). Note that any particular cough from 
either the raw data records or the edited cough records (see §6.4.2) can be selected 
and displayed, by means of the "Get new record" and "get Edit record" menu entries 
respectively. . 

The coughs that are selected and saved to disk by the "cough edit" module 
are automatically processed by the spectrographic analysis module, operating as a 
background process. Segments of 256 samples (51.2ms) duration are extracted at 50 
sample (10ms) intervals throughout the cough sound. Each segment is then multiplied 
by a Blackman window (§1.3.1.1). Fourier coefficients are calculated by means of the 
FFT algorithm. The magnitudes of the first 128 Fourier coefficients (representing 
frequencies from 0 to 2.5kHz) are then computed. The spectrographic data are then 
saved in "FFT" files (see §6.4.2) for later display and any further analysis. 

When the spectrographic data for a particular cough is available (typically each 
spectrogram is computed in about 1-5 minutes) it 'can be displayed. A typical screen 
display from the "spectrogram display" module is shown in Fig.6.14. The spectrogram 
is displayed as a "stack-plot" of spectral lines, with the sound and flow waveforms 
plotted alongside for reference. As in the cough edit module, the sound can be re
played through the speaker. In order to examine the spectral features in more detail, 
any particular spectral line can be selected by "pointing" to it with the mouse and 
clicking a mouse button. The spectral line then appears in the small window near 
the top of the screen (Fig.6.14). In addition, the frequency, epoch, and magnitude of 
,the selected point are displayed in the small information box to the lower right of the 
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Figure 6.14. The screen of the COFF system as it appears when displaying a spectrogram of a cough. 
See the text for details. 

spectrogram itself. The spectrogram of any particular cough from the current patient 
can be displayed by selecting it via the "get New cough" menu entry. The format of 
the spectrogram plot can be altered by means of a sub-menu accessed via the "Graph 
parameters'; entry on the menu shown in Fig.6.14. 

Spectrograms can be plotted on paper to produce a permanent record of the 
cough. The plotter is controlled by a sub-menu that is accessed from the "spectrogram 
display" module. Typical spectrograms produced by the COFF program are shown in 
Fig.6.15. 
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(b) 

Figure 6.15. Spectrograms produced by the COFF program from a non-asthmatic child. The spectro

gram on the left is of a cough sound recorded at rest, while the one on the right is of a cough recorded 

six minutes after the completion of an exercise test. Note that some text has been added to the figure 

by a graphics editor program. 

(0) (b) 

Figure 6.16. Spectrograms produced by the COFF program from coughs by an asthmatic child. 
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Hector's dolphin, Cephalorhynchus hectori, is a small coastal dolphin native to New 
Zealand (Baker, 1978). As part of a comprehensive study of these dolphins (Slooten and 
Dawson, 1988), many sounds were recorded from free-ranging individuals. The purpose 
of the studies described in this chapter was to derive a procedure that quantitatively 
characterise the recorded sounds using signal processing techniques. 

The research reported here was performed in close collaboration with Steve 
Dawson, as part of his Doctoral studies in the Zoology Department. Many of the results 
could not have been obtained without this inter-disciplinary approach. Although there 
was close consultation between us during all parts of the analysis, the data collection, 
described in §7.2.1, was undertaken entirely by Steve Dawson. The analysis in §7.2.2 
through §7.2.2.5 and §7.3 was performed largely by myself, and the statistical analysis 
of §7.2.3 mainly by Steve. I report this research from my viewpoint as an engineer, so 
that the conclusions that I make are largely related to the engineering aspects of the 
study. Alternative perspectives, stressing the biological and behavioural implications 
of this work are given by Dawson and Thorpe (1990) and Dawson (1990) respectively. 

In §7.1 I present a brief introduction to sonar systems in general, the use of 
echo-location and other vocalisations by marine mammals, and the techniques that 
have been employed in past studies to examine animal sounds. I also provide some 
background on Hector's dolphins, and give an overview of the physiology of delphinid 
sound production. In §7.2 I describe the te~hniques by which descriptive features were 
extracted (automatically) from the recorded sounds. The statistical techniques used to 
describe the variation in the vocal repertoi~e of the dolphins are also described. Finally, 
§7.3 describes the analysis techniques used to evaluate the echo-location performance 
of the sounds. 

7.1 Background 

7.1.1 Hector's dolphin 

Hector's dolphin, Cephalorhynchus hectori is native to New Zealand, but is closely 
related to three other .species, namely Cephalorhynchus commersonii. (which chiefly 
inhabits the eastern coasts of South America), Cephalorhynchus eutropia (which is 
found in Chilean waters), and Cephalorhynchus heavisidii (inhabiting Southern African 
coasts). Hector's dolphin is the world's smallest dolphin, and one ofthe rarest (Dawson 
and Slooten, 1988). Its behaviour and ecology has only recently been examined in 
detail, by Slooten and Dawson (1988). The analyses of Hector's dolphin vocalisations 
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reported here are a continuation of these studies. Much of the work described in 
this chapter is also reported in publications by Dawson and Thorpe (1990), Thorpe 
and Dawson (19XX) and Thorpe et al. (19XXb). The behavioural implications of the 
sounds made by Hector's dolphins, as analysed in the ways described in this chapter, 
are discussed by Dawson (1990). . 

Hector's dolphins live in small groups, and seldom stray more than 8km from 
shore (Dawson and Slooten, 1988). They feed on many types of small fish and squid, 
from the surface down to the sea floor (Slooten and Dawson, 1988). Like many other 
dolphin species, they are inquisitive and investigate any (slow-moving) boat that enters 
their area (Slooten and Dawson, 1988). 

In common with many other marine mammals, the incidental catch of Hector's 
dolphin in gill-nets (nets which are left in place for a period of time, and which catch 
fish as they swim through them by entangling in their gills) is of considerable con
cern (Slooten and Dawson, 1988; Dawson, 19XXa). This problem is especially acute 
around the Banks Peninsular area because of the substantial gill-netting effort in the 
region. Dawson (1988) estimates that upwards of 228 dolphins were killed in both 
commercial and recreational gill-nets between 1984 and 1988 in this region. A seasonal 
ban on gill-netting around Banks Peninsular was enforced from 1989 in order to pro
tect the remaining population of some 660 individuals (Dawson, 19XXa). In light of 
the demonstrated echo-location abilities of odontocetes, it is natural to ask whether 
Hector's dolphins are capable of detecting monofilament nylon nets (Dawson, 19XXb). 
Part of the motivation for carrying out the research described in this chapter was to 
investigate whether the emitted sounds are, in principle, such as to permit the dolphins 
to perceive nets. 

The sounds emitted by Hector's dolphin (or any of the other species in the 
Cephalorhynchus genus) have not been studied in detail previously. The only previous 
reports ofrecordings of the sounds of Hector's dolphins are by Watkins et al. (1977) and 
Dawson (1988). The sounds ofthe closely related species Cephalorhynchus commersonii 
have been examined by (among others) Kamminga and Wiersma (1982), and those of 
Cephalorhynchus heavisidii by Watkins et al. (1977). Hence it is interesting to analyse 
Hector's dolphin's sounds and compare them with those reported of other odontocetes. 
This was another part of the reason for undertaking the research reported in §7.2 and 
§7.3. 

7.1.2 Sonar systems 

Echo-location is the technique of actively probing the environment with some sort 
of radiating signal and determining the 10 cation ( s) and form( s) of ob ject( s) in the 
environment by analysis of the signal echoes. Most commonly, the radiation employed 
to probe the environment is electromagnetic (used in radar systems by aircraft, ships 
etc, cf. Skolnik, 1980) or acoustic (used in sonar systems by ships and some animal 
species cf. Kinsler et al., 1982). 

The range R of a target can be calculated from the estimated time delay td 
between the transmitted and received signals: 

R= td 
2c 

(7.1 ) 

where c is the wave velocity of the radiation in the medium. The factor 2 in (7.1) occurs 
because the signal must travel to the target and back again. The angular position of 
the target is determined by transmitting only a narrow beam of radiation, and using it 
to scan through each radial segment of the surrounding environment. The velocity at 
which the target is travelling relative to the sonar system can be calculated by measuring 
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the Doppler frequency shift in the echo. Doppler occurs because the reflected waves 
are compressed (or expanded) by the motion of the target towards (or away from) the 
sonar system. Hence the frequency of the echo is scaled by an amount relative to the 
(radial) velocity of the target (Skolnik, 1980, Chapter 3). The Doppler shift III for a 
single frequency component 1 is (Kinsler et al., 1982, p416) 

lll=2
RI 
c 

(7.2) 

where i1 is the radial component of the velocity difference between the source and the 
target. 

The resolution to which an echo-location system can .determine the r'ange and 
velocity of a target is determined by the form of the signal employed. Unfortunately, 
the requirements of good resolution in both range and velocity of the target are in 
opposition to each other. A short wide band signal (ideally, an impulse) is required for 
accurate range resolution, but a long duration (narrow band) signal (ideally, a signal 
of infinite extent) is required for accurate determination of target velocity.J Hence the 
type of signal employed for any application must be suited to the type of information 
required. The ambiguity of a particular sonar signal describes its joint range and velocity 
resolving, capabilities (cr. Woodward, 1953; see §7.3 of this thesis). 

The resolution to which angular position can be determined is restricted by 
the directionality of the transmitting and receiving transducers. Since directionality 
is approximately proportional to transducer size (relative to the signal wavelength), 
human engineered sonar systems usually employ signals of the smallest wavelength 
that is feasible after taking into account signal propagation factors and other pertinent 
practicalities (Skolnik, 1980, Chapter 2). 

The maximum range at which a sonar system can detect targets is limited by 
the signal-to-noise ratio of the received echoes. This depends on the transmitter power, 
signal attenuation in the medium, reflectance of the targets and the amount of noise in 
the environment (Kinsler et al., 1982, §15.8). For underwater sonar, signal attenuation 
varies with frequen,cy. Higher frequency sounds are attenuated to a far greater extent 
than those of low frequency. However, high frequency sounds are advantageous for 
several reasons: directional transducers are physically small and hence more realistic; 
interference from other sound sources is limited to those in the near vicinity; wider 
bandwidth signals are easier to produce and detect; and environmental noise levels are 
lower than at lower frequencies (Kinsler et al., 1982, pp412-414). 

Echo-location was first observed in bats and marine mammals about the same 
era that technological sonar and radar systems Were being developed (cr. Griffin, 1979; 
McBride, 1956; Watkins and Wartzok, 1985). In addition to bats and some species 
of odontocetes (whales, dolphins and porpoises), echo-location capabilities have been 
observed in several other animal species such as swifts and shrews (cf. Henson and 
Schnitzler, 1979). 

7.1.3 Vocalisation and echo-location by marine mammals 

Marine mammals collectively make a wide variety of sounds, ranging from short "clicks" 
to musical "whistles", "grunts", and "burst-pulses". Each species, however, has its 
own repertoire of vocalisations, which may include one or more distinct types of sounds 
(such as those mentIoned above). Sounds are employed by animals for many pur
poses, such as communication between individuals or groups, warnings, etc (Seyfarth 
et al.,1980a,1980b). In addition, a few species of odontocetes (toothed whales) have 
demonstrated the ability to echo-locate by means of sonar "clicks" (Evans, 1973). Al
though it is sometimes assumed from this observation that click-type sounds are solely 
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employed for echo-location, while other types of sounds have alternative uses (cf. Pop
per, 1980), this is not an unequivocal distinction. For example, Watkins (1979) reports 
observations of sperm whales emitting click-like sounds in a manner that strongly sug
gested that they were not using them for echo-location. In addition, some odontocete 
species only emit click-type sounds (Watkins, 1979) and it is inconceivable that such 
vocal and social animals do not employ their vocalisations for some form of communi
cation (Herman and Tavolga, 1980). 

The characteristics of the clicks produced by marine mammals differ, in some 
cases widely, between species (Evans, 1973). Most clicks are less than 1ms in dura
tion, with some species emitting clicks shorter than 50ILs (Evans, 1973). The spectral 
characteristics of the clicks also vary widely. For instance, Tursiops truncatus emits 
clicks of broad bandwidth, with significant energy in a range of 100Hz-100kHz (Evans, 
1973). By contrast, the clicks of the Cephalorhynchus genus are of much narrower 
bandwidth, about 20kHz, with the energy centred at a frequency of about 120kHz (cf. 
Kamminga and Wiersma, 1982; this chapter, §7.2.3.1). The sounds of the larger whales 
are of correspondingly lower frequency than those made by smaller cetaceans such as 
dolphins. For example, the largest cetaceans, blue and fin whales, emit sounds whose 
energy extends from about 200Hz down to less than 20Hz (cf. Payne and Webb, 1971; 
Watkins and Wartzok, 1985). 

In addition to the variability between species, there is a great variability in 
the characteristics of clicks reported in different studies of animals of the same species. 
For example, the clicks of Inia geofJrensis presented by Evans (1973) are very wide
band, while Wiersma (1982) reports clicks from an animal of the same species that are 
relatively narrow-band. Whether these differences are due to different experimental 
procedures or due to differences between the individual animals is not clear (see Diercks 
et al. (1973), Watkins (1974), Au (1979,1986), and §7.1.4.1 of this chapter for further 
comments on possible sources of variability in delphinid sounds). 

Whistles consist of long (up to several seconds) sequences of musical sounding 
tones (Popper, 1980). Some studies have noted the occurrence of dual component 
sounds, with both click and whistle sounds present simultaneously (cf. Dziedzic, 1978, 
pp49-69). However, whistles have not been observed from Hector's dolphins or any of 
its near relatives (Dawson, 1988; Evans et al., 1988). 

Further details of the sounds produced by marine mammals, and the uses to 
which they put those sounds, can be found in texts such as those by Popper (1980) or 
Herman and Tavolga (1980). Evans (1973) and (Watkins and Wartzok, 1985) review 
the different types of cetacean click-type sounds that have been recorded. 

7.1.4 Physiology and models of sound production and perception 

Fig.7.1 shows a cross-section of a dolphin head and indicates the various structures 
associated with sound production and perception. §7.1.4.1 gives an overview of what is 
currently understood about the mechanisms by which dolphins produce sounds, while 
§7.1.4.2 does the same for how they perceive sounds. 

7.1.4.1 Sound production 

The exact mechanism by which sounds are produced in cetaceans is the subject of 
some debate (Norris, 1969, p404). It is possible that there may be two separate sound 
production mechanisms, for whistles and clicks respectively (Dziedzic, 1978, pp49-52). 

Because the sound producing organs are deep within the animal's head, it is 
difficult to investigate the mechanisms by which sounds are generated. Cetaceans have 
no vocal cords. It appears that (at least for echo-location) sounds are produced by the 
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Figure 7.1. Section of a dolphin head, showing the various structures associated with sound production 

and perception (after Popper, 1980). 

"nasal plugs" (Popper, 1980; Cranford, 1988). These are hard muscular organs which 
jut into the anterior surface of the nasal passage as it exits from the skull (Fig.7.1). 
Ridgway and Carder (1988) have shown that the intra-nasal pressure increases when the 
animal is phonating. Furthermore, when they introduced a leak into the nasal passage 
(by means of an open catheter), sound production was seriously impaired. Several 
studies have shown that the spectral character of the high frequency click sounds does 
not change when the animal is breathing a helium air mixture (cf. Cranford, 1988). 
This indicates that these sounds are not produced in an air-filled resonant cavity (as are 
human speech sounds), but rather by the vibration of some tissue structure (Cranford, 
1988). 

The spectral content of some low frequency whistles change when the animal 
breathes a helium air mixture (Cranford, 1988), which supports the hypothesis that 
there are two sound producing mechanisms. It seems reasonable to assume that the 
click-type sounds are produced by the nasal plugs and associated organs, while other 
sounds (such as whistles) are produced in another structure such as the larynx (cf. 
Norris and Evans, 1966). 

The click sounds emitted by dolphins are very directional (Au et al., 1986). 
Several researchers have postulated that the melon, a fatty, oval-shaped tissue situated 
in the bulbous forehead of the animal (see Fig.7.1), acts as an acoustic lens (Popper, 
1980; Cranford, 1988). The melon abuts onto the nasal plugs (Cranford, 1988) and 
it seems very likely that sounds generated by vibration of the nasal plugs or some 
associated organ are coupled directly into the melon. 

The waveforms and spectra of recorded clicks vary widely according to the ori
entation of the dolphin's "sound beam" with the sound transducer Au et al. (1986). 
This variability could partly explain some of the variation in click waveforms observed 
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by different researchers (§7.1.5). Au (among others) postulates that the sound. beam is 
formed, not only by refraction within the melon, but also from internal echoes off struc
tures such as bones and air sacs in the animal's head. Kamminga and Wiersma (1981) 
suggest that it is these internal reflections that often cause click pulses to exhibit phase 
discontinuities (see Fig.7.6). 

Dziedzic (1978) and Popper (1980) both review cetacean sound production 
mechanisms in more detail than is presented here. 

7.1.4.2 Models of sound perception 

Like the mechanisms of sound production, the perception of sounds by dolphins is still 
something of a mystery. Physically, the ear canals are quite small, so that it is probable 
that sound is coupled from outside the animal to the ears through other structures, 
such as the lower jaw (Norris, 1969). The lower jaw contains a fat-filled canal which 
terminates near the middle ear (Popper, 1980, p29). This canal has a lower acoustic 
index than water so could act as a slow-wave antenna. The "jaw-hearing" hypothesis 
was supported by an an experiment which indicated that a dolphin could hear better 
when its jaw was not covered by an acoustic hood (Brill et al., 1988). 

There are several models of how a dolphin analyses echoes in order to obtain 
target informdtion. One model incorporates a matched filter detector, which is often 
employed in technological echo-location or communication systems. This correlates the 
incoming signal with a copy of the. transmitted pulse. A large correlation value indicates 
that an echo of that pulse is present in the signal, while a small correlation indicates the 
probable absence of a pulse echo (Cook and Bernfield, 1967). Such a detector provides 
the optimum capability for detecting the presence of a specific signal in background 
noise (Woodward, 1953). However, evidence from several recent studies indicates that 
matched filter detection is probably not employed by echo-locating mammals (cf. Altes, 
1988; Au and Moore, 1988) . 

. Au and Moore (1988) have performed an experiment to investigate the type 
of click detection employed by dolphins. They instrumented a computer to process 
clicks emitted by a dolphin so that simulated echoes could be returned to the dolphin. 
By varying the echoes that they returned, they could observe the effect of different 
click characteristics on the ability of the dolphin to detect the echoes. Specifically, 
they investigated the effect of returning closely spaced multiple copies of a click to the 
dolphin. If two or more clicks were contained within an interval of less than 260ps, 
they found that the detection performance of the dolphin improved in proportion to 
the number of clicks within that interval. However, there was no improvement if the 
clicks were spaced by more than 260ps. These results support the hypothesis that the 
dolphin is using a simple energy detector, with a time constant of 260ps, to detect the 
pulses. An energy detector estimates the presence or otherwise of a desired signal in 
background noise on the basis of the energy envelope (§3.1.1) of the signal plus noise. 
The signal is deemed to be present when the envelope exceeds a certain threshold. The 
time constant refers to the interval over which the energy of the signal is integrated. 
Hence if more than one click occurs within an interval equal to the time constant, 
the energy envelope is proportionally increased and the probability of detecting the 
presence of the echo is improved. By contrast, the detection performance of a matched 
filter detector does not depend on the spacing between in.dividual clicks (Cook and 
Bernfield, 1967, Chapter 2). 

Altes (1988) comes to a- similar conclusion after examining the echo-locating 
performance of bats. He proposes a spectrogram correlation model of detection, in which 
the matching is performed on the time-varying spectral magnitude of the sounds. As 
described in §3.3.1, the spectrogram can be understood as a set of energy envelopes 
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corresponding to the outputs of a bank of filters. Therefore, this model of perception 
is basically the same as that proposed by Au and Moore, with the refinement that the 
signal is filtered before its envelope is computed. This model is similar to the filter·bank 
model of the cochlear that is invoked to explain human auditory perception (cf. §2.2.2). 

A consequence of the energy detection model is that the envelope of the sig
nal is particularly significant. When a rapid sequence of clicks is heard, a tone equal 
to the repetition rate is perceived. This so-called time-separation pitch (TSP) arises 
because the spectrum of the click train has a "rippled" nature, with peaks occurring 
at harmonics of the repetition rate. TSP occurs even if the click "train" only consists 
of two clicks. Due to non-linearities in the detection process, the "fundamental" can 
be perceived as a tone (see §2.2.2.2). Hammer and Au (1980) propose that dolphins 
determine the structure of a target (at least partly) by means of the TSP induced by 
the multiple echoes from the target. Recent experiments by Au and Pawloski (1989) 
have indicated that dolphins can detect TSP between 2 and 75kHz, which corresponds 
to inter-click delays of 500-13I's. Experiments where echoes from (dolphin) clicks are 
slowed-down and played to human listeners have indicated that they are able to dis
criminate the echoes from different targets as well as the dolphins can (Au, 1988a). 
The listeners' comments indicated that they discriminated between the targets on the 
basis of~the time-structure of the echoes. 

7.1.5 Studies of cetacean vocalisations 

Some studies of cetaceans have concentrated on the characteristics of their sounds which 
are pertinent to echo-location (cf. Evans, 1973; Kamminga and Wiersma, 1981; Au, 
1988a), while others have investigated the animals' actual echo-location abilities (cf. 
Dziedzic, 1978; Murchison, 1979; Au, 1988b). Studies which focus on the characteristics 
of the sounds have as one of their goals the elucidation of the mechanisms by which 
the dolphins are able to extract information about their environment from the sounds. 
The models which are proposed to explain the production and perception of sounds by 
dolphins are introduced in §7.1.4. 

Most studies of the echo-location abilities of cetaceans have been performed 
on Atlantic bottlenose dolphins TUTSiops truncatus or Harbour porpoises Phocoena 
phocoena (Kamminga, 1988). These creatures have demonstrated the ability to detect 
wires or monofilament nylon of about O.2mm diameter (Norris, 1969; Evans et al., 
1988), to discriminate between spheres that are only 10% different in size (Popper, 
1980, p35), and sheets of metal that vary in thickness or composition (Norris, 1969, 
p417). The range at which Bottlenose dolphins are able to detect targets has been 
variously estimated at about 75m for a steel ball 7.6cm in diameter (Murchison, 1979) 
to about 1km for detecting a school of fish (Evans, 1973). Although the low frequency 
sounds of fin whales have been observed at great distances (trans-oceanic), it is unclear 
whether these sounds are employed for echo-location (cf. Payne and Webb, 1971). 

Another group of studies on cetacean sounds is related to the behavioural corre
lates of various vocalisations. Such studies have usually focussed on the audible types 
of cetacean sounds (cr. Lilly and Miller, 1961; Ford and Fisher, 1982). The reason 
for this is partly technological, because standard audio recording equipment is readily 
available and much lesa expensive than wide-band equipment. Also, many researchers 
seem to have assumed that the high frequency clicks are used strictly for echo-location. 
However, as mentioned in §7.1.3, there seems to be no reason why such signals could 
not also be used for communication. 

Researchers conducting behavioural studies often assign recorded sounds to 
various categories (Clark, 1982; Chabot, 1988) and then attempt to determine whether 
different categories can be associated with particular behaviour patterns (cf. Herman 
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and Tavolga, 1980; Clark, 1982; Sjare and Smith, 1986). Elucidation of the commu
nication systems of cetaceans is of considerable interest in view of the animals' large 
brains (cf. Morgane et al., 1986) and complex behaviour (cf. Connor and Norris, 1982). 
However, acoustic repertoires have been analysed and described in detail for only a few 
cetacean species. 

Just as the recording of animal sounds has been limited by available equipment, 
so too has their analysis. The tendency in the past has been to classify animal sounds 
according to the subjective impressions of human listeners (cf. Dreher, 1966). The 
development of electronic instruments which display visual representations of the time 
and frequency components of sounds (e.g. the spectrogram, see §3.3.1) has allowed 
researchers to compare sounds pictorially. Sound spectrograms have been compared 
subjectively (cf. Marler and Peters, 1981) and quantitatively. There have been several 
approaches to the problem of quantitatively comparing visual images of sounds. Many 
researchers have manually extracted parameters directly from the images (cf. Dawson 
and Jenkins, 1983; Clark, 1982). Others have digitised printed images of the sounds 
(cf. Miller, 1979; Chabot, 1988). In either approach, the resulting data are usually 
analysed using multi-variate statistical methods (cf. Sparling and Williams, 1978). In 
only a few recent studies have sounds been digitised directly on to a computer before 
being analysed with the aid of digital signal processing techniques (cf. Goedeking, 1983; 
Clark et al., 1987). 

7.2 Characterisation of acoustic repertoire 

This part of the research had two aims. The first was to codify whatever correla
tions there might be between sounds made by and the observed behaviour of Hector's 
dolphins. An essential preliminary to this was to quantitatively characterise recorded 
sounds in order to classify them into different types. The second aim, which was reached 
through the process of achieving the first, was to investigate the application of digi
tal signal processing techniques to the analysis of animal vocalisations. As stated in 
§7.1.5, researchers in this field have only recently begun employing sophisticated signal 
processing techniques. With the advent of affordable and powerful computers, coupled 
with sophisticated signal processing software, it is becoming increasingly feasible to 
automate the extraction of features from recorded sounds, thus relieving much of the 
drudgery of research in this field (cf. Davis, 1986). 

Fig.7.2 summarises the approach I have adopted to recording, analysing, and 
characterising Hector's dolphin sounds. The sound recording procedure is described in 
detail in §7.2.1, while the methods used to analyse the sounds and extract characteristic 
features from them are presented in §7.2.2. The statistical analysis of the resulting 
feature data-set is described in §7.2.3. Finally, §7.2.4 assesses the results and discusses 
some of the difficulties encountered during the extraction and statistical analysis of the 
features. 

7.2.1 Sound recording procedures 

Recordings were made in Akaroa Harbour (43°50'S; 172°56'E), and in the nearby in
shore waters of the south coast of Banks Peninsula, New Zealand, over the summer 
seasons of 1986/87 and 1987/88. 

Sounds were recorded with a BRUEL AND KlJER 8103 hydrophone, BRUEL 

AND KllBR 2635 charge amplifier, and a RACAL STORE 4DS recorder operated at 
a tape speed of 60ips (152.4cm/s) or 30ips (76.2cm/s). At these tape speeds, the 
recorder has a signal/noise ratio of 40dB and a minimum frequency response of 300Hz 
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Figure 7.2. Block diagram illustrating the extraction of descriptive features from the sounds. 
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to 150kHz( + / -3dB). A BRUEL AND KJ lER 4223 hydrophone calibrator was used to 
generate a reference level from which received sound pressure levels could be calculated. 
Behavioural notes were dictated onto another channel of the recorder, together with 
timing signals and the settings of the recorder's signal input amplifier, which were 
varied to avoid saturation. Recordings were made in calm conditions (wind speed <10 
knots) from a four-metre inflatable boat. 

Twelve hours of sounds were recorded, and subsequently all the tapes were 
transcribed at reduced speed in order to establish an index of their contents. The loca
tion of sounds that corresponded with known behavioural contexts were identified and 
listed. All tapes were transcribed at 1/16 speed or less using a MULTIGON INDUSTRIES 

UNISCAN II spectrum analyser or GOULD 084000 digital storage oscilloscope to view 
the signals. Signal output was also fed to a NAGRA JV-L tape-recorder operating in 
'test' mode so that its calibrated modulometer could be used to read relative sound 
pressure levels. The transcripts provided a directory of the sounds, their location on 
tape, relative sound pressure level, and a written version of the commentary. 

From the transcripts, sounds that were made in known behavioural or biological 
contexts were located. Click sequences that contained clicks from more than one dolphin 
were discarded. At a tape replay speed 1/32 of the original recording speed, eight second 
segments of each sequence were digitised at a sampling rate of 20kHz with a DEC LPA-
11 12 bit A/D converter. To avoid aliasing (§1.2.5.5), the signals were filtered with a 
48dB / octave low-pass filter (KEMO VBF /8), which had a 3dB cutoff frequency of 
9kHz, before they were digitised. The effective sampling rate was thus 640kHz and 
each digitised segment corresponded to 0.25 seconds at the original recording speed. 
Each segment, or record, was stored on magnetic tape for later analysis. 
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Figure 7.S. Envelope profiles for two representative sound records. a: 10 IDS and b: 50 ms inter-click 

interval. 

7.2.2 Characteristic features 

In this section I introduce and describe the features that were employed to charac
terise the sounds. §7.2.2.l presents representative examples of the sounds that were 
encountered during the study, while §7.2.2.2 introduces a set of features that describes 
the time and frequency domain structures of the "click" type of sounds (see §7.2.2.l). 
§7.2.2.3 describes the procedure for extracting features from each 0.25 second long 
sound record. §7.2.2.4 explains how synthetic click envelopes were reconstructed from 
the estimated feature variables, to assess how well the features characterised the clicks. 
Finally, §7.2.2.5 comments on the automatic implementation of the feature extraction 
scheme. 

7.2.2.1 Examples of sounds encountered 

Examples of the sounds that were encountered during the study are shown in Figs.7.3 
to 7.5. In Fig.7.3 the envelope profiles for two of the sound records are depicted. 
The (RMS) envelope was obtained by the method described in §3.1.l (see §7.2.2.3 for 
details). The interval between clicks varied from about lms to l60ms (median 27ms) 
in the available sound recordings. 

As indicated in Fig.7.3, the dolphin sounds consist of very short "clicks", fairly 
regularly spaced within each record. In order to examine the features of the clicks more 
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Figure 1.4. a: Average envelope profile, b: click waveform and c: average spectrum for a narrowband 

click with a single click in the time domain. 
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Figure 7.5. a: Average envelope profile, b: click waveform and c: average spectrum for a click with a 

double click in the time domain and "double" spectral peak. 
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Figure 7.6. A series of clicks frOIIl a single record. Each trace is O.BIIlS in length, and the start of each 

one relative to the whole record is indicated by the number on its left. 

minutely, individual clicks were extracted from each record. The waveforms of typical 
clicks are shown in Fig.7.4 and 7.5, together with their envelope profiles and plots of 
their spectra. Note that the clicks are short, narrow-band signals with a dominant 
frequency of approximately 125kHz. Each click envelope consists of one or more peaks 
spread over 100-600JLs. 

7.2.2.2 Descriptive features of click waveforms and spectra 

This section qualitatively describes the features which I chose to characterise the dol
phin clicks. §7.2.2.3 details the steps in the procedure for extracting these features from 
the sound records. The complete list of variables which are invoked to characterise the 
clicks within any particular sound record are itemised in Table 7.1. Note that I use 
the term "feature" to indicate a characteristic of the clicks that I wish to de~cribe, and 
the term "feature variable" to mean' a particular quantity that can be given a value 
characterising a certain aspect of a feature. Three general features of the clicks are 
evident from Figs.7.3 through 7.5. 

The first feature consists of the inter-click interval, which varies widely between 
records, and may increase or decrease within a record, as is also commented on by 
Au (19!9). ,Hence I estimate the average inter-click interval for a record, together 
with the minimum, maximum, variance, and average trend of the inter-click intervals 
throughout a record (Step 3 in the procedure described in §7.2.2.3). The latter four 
variables characterise the amount of variation of the inter-click interval during the 
record. 

The second feature is the envelope profile of each click. This can be affected 
by echoes and multi-path distortion and must be cautiously interpreted. However, 
by averaging the envelope profile for each click in a record, the effects of echoes are 
minimised, since they vary from click to click and hence tend to cancel out. Note that 
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Figure 7.7. Diagram showing the features abstracted from the average click energy euvelope. The 

amplitude, position, and decay-time of each peak greater than 1/3rd the maximum were determined. 

even though the the length of each record is only 1/4 second, there can be considerable 
variation in the individual clicks, as is illustrated in Fig.7.6. The shape of the envelope 
profile is described by quantifying the amplitude, width (or decay time), and position of 
each of the individual peaks (Fig. 7. 7). Only those peaks that were greater than 1/3rd 
of the maximum amplitude were considered. If there were more than 4 such peaks, 
only the largest 4 are employed as feature variables. Step 4 of the procedure (§7.2.2.3) 
defines these variables. The duration of each click is also estimated by considering the 
click envelope as a probability distribution function (pdf, §1.3.3) and computing its 
standard deviation (Step 5) 

The third feature comprises the major characteristics of the spectrum of each 
click. As stated above, most of the signals were narrow-band. A simple way to charac
terise such signals is by their dominant frequencies (defined in Step 8 of the procedure 
described in §7.2.2.3) and half-power bandwidths. Signals with complicated spectral 
shapes (see Fig.7.5) can be characterised by the amplitudes, centre frequencies and 
half-power bandwidths of several of the larger peaks in their spectra (Fig.7.8). As with 
the envelope features, only the 4 largest peaks, having amplitudes greater than 1/3rd 
of the maximum peak, are considered. Step 9 of the procedure (§7.2.2.3) describes 
how these variables were estimated. The average spectrum can also be characterised 
by treating it as a pdf and estimating the mean and standard deviation of the spectral 
energy distribution (Step 10). 

In order to determine if the frequency content of the clicks varies from click 
to click, I estimate the peak frequency for each click. I then compute the average, 
standard deviation, and average trend of the peak frequency throughout each record 
(Step 7). For the purpose of comparing different methods of characterising the dominant 
frequency component in a click (i.e. that single frequency which best characterises the 
click spectrum), I also estimate the average zero crossing rate in each click, as described 
in Step 8, computing the same statistics as mentioned above for the peak frequency. 
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Figure 7.S. Abstraction of features from the average spectral magnitude. For each peak (up to 4) 

greater in amplitude than l/3rd ofthe maximum peak, the amplitude, frequency, half-power bandwidth 

and centre-frequency were determined. 

7.2.2.3 Feature extraction procedure 

The following sequence of steps describes in detail the processing that was performed 
to estimate characteristic features from each sound record. This processing was imple
mented in the SIGPROC signal processing language (§1.3.4). Each 0.25 second long 
sound record, which I denote here by set), was processed in turn by this procedure, 
with the resulting feature variables being stored for later statistical analysis (§7.2.2.5). 

1. The RMS envelope R(t) is computed by means of the technique described in 
§3.1.1. Each sample in R(t) corresponds to the RMS value of a 50j.ts segment of 
set) after the data values within the segment have been multiplied by a Hanning 
window. R(t) is sub-sampled by a factor of 8 times relative to set). 

2. The start of the kth click, k = 1 •.. N c) where Nc is the number of clicks in the 

sound record, is located at the first instant TJ.:) at which 

R(t) > 1/3max{R(t)}, t> TJ:-l) + Tel (7.3) 

where Tel ,= O.8ms is the duration of each extracted click. The kth click envelope 
r~k)(t) is defined as 

(7.4) 

where Tors 

envelope. 
50j.ts is an offset to account for the finite rise-time of the click 

3. Click intervals I~k) are defined by 

I(k) = T(k+l) T(k) k = 1 ... Nc - 1 c cs cs , (7.5) 
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and the average Ie, standard deviation (fIel maximum Icmax, and minimum Icmill 
are evaluated. The average trend in the click intervals is defined by 

(7.6) 

Note that if Ne = 1, the click interval is undefined, so each of the variables defined 
in this step are set to zero. Likewise if Ne = 2, dIe is set to zero. 

4. The average click envelope 
(7.7) 

is computed and the number of peaks Npc in Re(t) of amplitude greater than 
1/3 max:{Re(t)} obtained. For each peak j 1 ... min( 4, Npc), ordered according 
to their amplitudes, the peak amplitude Apcj, position Tpej, and decay-time Dpcj 
are estimated. The decay time Dpcj is defined as the time taken for the envelope 
to decay to a value of O.4Apej. If Npe < 4, the remaining variables (Apej, Tpej, 
and Dpej, j = Npc .. . 4) are set to zero. 

5. Treating Re(t) as a probability density function (pdf) means that an equivalent 
time duration 6.t for the click can be estimated by considering the variance of 
the signaJ. about its mean (Gabor, 1946). 6.t is defined as 6.t (ft/27r, where (ft 
is the standard deviation of the normalised click envelope Re(t), defined by 

where Re(t) is the click envelope, modified according to 

{ 
Re(t), 
0, 

0< t < 4ms, Re(t) > l/lOmax{Re(t)} 
otherwise 

(7.8) 

(7.9) 

The envelope is modified in this manner so that (ft is not overly increased by noise 
in the signal. This admittedly crude and ad hoc modification was found to be 
necessary because the duration, 0.8ros, of Re(t) is much longer than the duration 
of most of the clicks, so that noise near the end of Re(t) dramatically increases 
(ft. See §7.2.3.1 for more discussion of this point. 

6. The power spectrum p(k) (f) of the kth click is defined by the squared magnitude 
of the Fourier transform of a O.4ms segment of sound centred at the position Tpcl 

of the largest peak in the envelope of the kth click: 

(7.10) 

where wf(t) is a 3-term Blackman-Harris window of duration 0.4ms. The win
dowed segment is zero-extended so that it consists of a total of 4096 samples 
before computing p(k)(f) by means of the FFT algorithm. 

i 

7. The peak frequency fJk) is obtained from each click spectrum p(k)(f). The 

average 1 p' standard deviation (f f p ' and average trend df p ofthe ensemble of fJk) 
estimates are computed in a similar way to that described in step 3 for the click 
interval variables. 

8. The dominant frequency of each click is also characterised by estimating the 
period of oscillation of the click waveform. The zero-crossing rate fJ~) is defined 
as half the reciprocal of the average interval between zero-crossings in the click 
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Figure 7.9. Reconstruction of click envelopes and spectra from the feature variables. a: Spectral 

magnitude, generated by overlaying a Gaussiau-shaped pulse for each of the spectral peaks. b: Time 

domain envelope, reconstructed by overlaying a Gaussian pulse with exponential decay for each of the 

peak estimates. 

w~veform s!!,)(t) during the interval for which 'l'~k)(t) > 1/3max{'l'~k)(t)}, where 

s~k)(t) is the sound waveform corresponding to the click interval defined in (7.4). 
The average Izc, standard deviation (J'f"", and average trend dfzc of the Nc values 
of fzc are computed as described in step 3. 

9. The average power spectrum P(f) of the sound record is obtained by aver
aging the p(k)(f), for f > O. The number of peaks with amplitude greater 
than 1/3 max{ P(f)} is defined as Npf. For the peaks of greatest amplitude 
j = 1 ... min(4, Npf), the amplitude Apfi' frequency fpj, half-power bandwidth 
Bpfi' and centre frequency fci are estimated. fci is defined as the frequency mid 
way between the half-power frequencies either side of fpj. The centre frequency 
provides an indication of any assymetry in the spectral peak. As in step 4, if 
Npf < 4, the remaining variables (labelled by j = NpJ •... 4) are set to zero. 

10. The average spectrum P(f) can be treated as a pdf P(f) by defining 

P(f) = P(f)/ 10
00 

P(f)df· (7.11) 

Standard statistical formulae can be invoked to obtain the mean frequency I p sd 

and standard deviation (J' fpsd of P(f). The equivalent bandwidth of P(f) is then 
defined as t1f 2(J'fpsd (Gabor, 1946). 

Table 7.1 itemises all the feature variables invoked in this section. It also lists 
the variable values for the sounds illustrated in Figs.7.4 and 7.5. 

7.2.2.4 Reconstructing the clicks from the feature variables 

In order to discover how well the extracted features characterise the clicks, synthetic 
versions (shown in Fig.7.10 and 7.11) of the signals shown in Fig.7.4 and 7.5 respectively 
were reconstructed from the features. 

The spectral magnitude is reconstructed from the frequencies, amplitudes and 
half-power width estimates by overlaying a Gaussian shaped pulse, of the appropriate 
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Variable 

Nc 
Ic 
(TIc 

Icmin 
Icmu 

dIe 

Description 

N umber of clicks in sound record 
Mean inter-click interval 
Inter-click interval standard deviation 
Minimum inter-click interval 
Maximum inter-click interval 
Mean trend of inter-click interval 

Npc Number of major peaks in average RMS 
envelope 

Apel ••• Apc4 Amplitudes of 4 largest peaks 

Tpc1 ••• Tpc4 Positions of 4 largest peaks 

Dpcl ••• Dpc4 Decay-times of 4 largest peaks 

NpJ 

A pJ1 •• • A pJ4 

/pl" '/P4 

BpJl •• • B pJ4 

6./ 

1pSd 

6.t 

6.t6./ 

Differences between positions of 3 
largest peaks 

Standard deviation of peak frequencies 
in record 
Mean of peak frequencies 

Mean trend of peak frequencies 

Standard deviation of zero crossing 
rates of clicks in record 
Mean of zero crossing rates 

Mean trend of zero crossing rates 

Number of peaks in average spectrum 

Amplitudes of 4 largest peaks 

Frequencies of 4 largest peaks 

Bandwidths of 4 largest peaks 

Centre frequencies of 4 largest peaks 

Differences between frequencies of 3 
largest peaks 

Equivalent bandwidth of average spec
trum 
Mean frequency of average spectrum 

Equivalent click duration of average 
RMS envelope 

Time-bandwidth product 

Examples nnits 

Fig.7.4 Fig.7.5 
3 8 

103 
7.93 
95.2 
111 

15.9 

30.4 ms 
1.27 ms 
28.9 ms 
33.1 ms 

0.7 ms/click 
1 2 

367,0, 
0,0 
87.5,0, 
0,0 
37.5,0, 
0,0 

-,-,-

0.99 

125 

-0.86 

20.2,0, 
0,0 
125,0, 
0,0 
14.9,0, 

1.13 

124 

-1.2 

1 

0,0 
124.6,0, 
0,0 

-,-,-

15.2 

125 

1.4 

21.2 

368,323, 
0,0 
187.5,62.5, 
0,0 
50.0,37.5, 
0,0 

125,-,-

3.0 

118 

-0.80 

2.58 

120 

-0.77 

15,13.9, 
9.1,0 
121,115, 
131,0 
14.8,22.3, 
25.9,0 
119,122, 
123,0 
-6.6,9.5, 
16.1 

3 

32.5 

121 

1.57 

51 

p,s 

kHz 

kHz 

kHz 

kHz 

kHz 

kHz 

kHz 

kHz 

kHz 

kHz 

kHz 

kHz 

ms 

Table 7.1. Feature variable values characterising the dolphin clicks shown in Figs.7.3 and 7.5. 

height and width, for each of the peaks j 
described by 

1. . .4. Each Gaussian peak !SGj(f)! is 

(7.12) 

where /p is the peak frequency of the pulse and g Jj is related to the bandwidth Bpi j 
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of the jth peak by the expression 

B f' 
9 ,- P J 

/J - 2yf2ln(0.5)" 
(7.13) 

Note that (7.13) defines the standard deviation 9fj of the gaussian peak such that 
its half power bandwidth is equal to Bpfj. The maximum amplitude of ISGj(f)1 is 
normalised to the estimated amplitude of the spectral peak .,fA;jj. The total total 
reconstructed spectral magnitude ISGT(!)I is given by 

(7.14) 

The time domain envelope is reconstructed similarly by overlaying a pulse, 
consisting of a Gaussian combined with an exponential decay, for each of the component 
peaks of the click (Fig.7.9). Each Gaussian pulse is described by expressions similar 
to (7.12) and (7.13), with I, SGj(f), 9fj, Ipj, and Bpfi replaced by their time domain 
equivalents t, sGj(t), 9tj, Tpcj, and Dpcj respectively (see §7.2.2.3 and Table 7.1 for a 
description of each of these variables). The exponential decay for each peak is described 
by 

(7.15) 

The total time domain envelope is constructed by overlaying sGj(t) and Sej(t), for 
j = 1 ... 4, in a similar way as described by (1:14) for the frequency domain data. An 
exponential decay was employed in the time domain envelope reconstruction because 
it fitted with the observed data and was simple to calculate. In addition, it accords 
with the decay of oscillations caused by a damped resonating sound generator (or 
equivalently by decaying echoes within the dolphin's head see §7.1.4.1). 

Figs. 7.10 and 7.11 show the reconstructed time and frequency domain envelopes 
corresponding to the feature variables obtained from the clicks shown in Figs. 7.4 and 7.5 
respectively. The similarities between the original and reconstructed versions of these 
clicks indicate the ability of the feature variables invoked here to to describe the shapes 
of the click envelopes. 

7.2.2.5 Comments on the automatic extraction of descriptive features 

Automatic implementation of the feature estimation process requires the programs to 
be capable of processing the entire range of sound records. The programs were written 
in a modular fashion, and the processed signals (prior to the actual extraction of the 
feature variables) were saved on magnetic tape. If any part of the extraction procedure 
was later found to require modification, it was a simple matter to repeat that procedure 
on the processed signals. 

After each set of features was extracted from a sound record, it was written 
out as a text file, together with a label denoting the original tape and tape counter 
number corresponding to the sound record (see §7.2.1). These labels enabled the matrix 
of feature variables to be easily integrated into an already existing database (on a 
Macintosh SE micro-computer) that listed the behavioural contexts of each recording. 

The labels also facilitated the management of the data. This was important 
due to the large amount of data (about 430 raw data records of 300 kBytes each). The 
processing was performed in batches of about 60 records each, with the rest of the 
data stored on magnetic tape. To avoid having to re-process the raw data if any of the 
analysis parameters required adjustment, the extracted clicks, average time envelopes, 
average spectral magnitudes and records of inter-click intervals for all clicks were stored 
separately from the raw data records. By means of this data compression (effectively 
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(0) 

o time (ms) 0.8 
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(b) 

) \ 
o Frequency (kHz) 320 

Figure 7.10. Reconstruction of the click shown in Fig. 7 .4. a: Average envelope profile and b: average 

spectrUIIl. 

removing the gaps between the clicks) the processed data for all records could be stored 
in about 20 MBytes. 

In order to check the integrity ofthe records employed in the statistical analysis, 
stackplots of the click waveforms, and the average click envelope spectrum from each 
sound record were visually inspected on a graphics work-station. This identified any 
records containing overlapping clicks from several dolphins, or those that were corrupted 
by unduly high levels of noise. The records so identified were discarded from the data 
set. 

7.2.3 Statistical analysis of Hector's dolphin acoustic repertoire 

7.2.3.1 Descriptive statistics of sound features 

The 401 records that were analysed contained 7661 "clicks", with the average interval 
between clicks in a record ranging from 1.3ms to 164ms (median = 27.6ms). The average 
frequency of the clicks ranged from 82kHz to 135kHz, with a mean of 125kHz. Most 
of the records had clicks with one (52%) or two (36%) peaks in their energy envelope, 
and 92% had one or two peaks in their spectrum (Dawson and Thorpe, 1990). 

Histograms of the click time duration and bandwidths are shown in Fig.7.12 
and 7.13. The histograms illustrate that most of the clicks are short and narrow
band. The few that are very wide-band and/or oflong duration generally seem to be 
"noisy" signals. One of the very wide-band signals contained a strong low frequency 
component. This is described in §7.2.4. Noise served to increase the standard-deviation 
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o time (ms) 0.8 
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I } \ 
o Frequency (kHz) 320 

Figure 7.11. Reconstruction of the click shown in Fig.7.5. a: Average envelope profile and b: average 

spectrum. 

in both the time and frequency domains. The effect of noise and echoes on the time 
duration feature was reduced by setting everything in the average signal envelope that 
was below a certain threshold to zero before calculating the variation. 

The time-bandwidth product gives an indication of how "complicated" a signal 
is. Gabor (1946) showed that there is a minimum value that indicates the "simplest" 
type of signal. Because of the way in which it is defined here (§7.2.2), the minimum value 
is unity. A histogram ofthe time-bandwidth values obtained for the clicks analysed here 
is shown in Fig.7.14. While most of the signals have a near-minimum time-bandwidth 
product, some values are considerably larger. The values are much greater than those 
obtained by Wiersma (1982,1988) for various other odontocete sonar signals, which 
were all between 1.1 and 1.5. This seems to suggest that Hector's dolphin sonar signals 
are more "complicated" than the ones that Wiersma studied. However, as discussed 
in the previous paragraph, the ones with very large values generally consisted of noisy 
signals. 

Part of the difference between the time-bandwidth values described by Wiersma 
and those presented here could arise from the differences between our respective mea
suring techniques. Wiersma manually selects a segment of each click that encompasses 
the main "lobe" of the click but excludes the subsequent, lower amplitude, "decay" of 
the waveform (see Fig.7.5b). The lower amplitude parts of the waveform are assumed 
to arise from echoes within the dolphin's head (§7.1A.l). By using this technique, it is 
not suprising that he obtains near-minimum values for the time-bandwidth product. 
I think that the time-bandwidth product should include the entire signal as emitted 
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Figure 7.12. Histogram of the time durations at of the dolphin clicks. 
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Figure 7.13. HistograIIl of the spectral bandwidths at of the dolphin clicks. 

by the dolphin, since this is what the dolphin actually uses for its echo-location (see 
also Kamminga and Wiersma, 1981). However, the few very large values of l:!..f and l:!..t 
that I obtained imply that the statistical approach to measuring bandwidth and time 
duration is not appropriate when the signal consists of several components or peaks, or 
is corrupted with significant amounts of noise. Because of my automatic approach to 
evaluating the feature variables, I employed a threshold to exclude noise in the signal 
(§7.2.2.3). A simple automatic approach such as this cannot hope to be as accurate as 
manual editing of each individual click waveform. 
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Figure 7',14. Histogram of the time-bandwidth products D.tD.f of the clicks. 

7.2.3.2 Principal Component Analysis 

Principal component analysis (PCA) is a method of reducing the dimensionality of a 
feature set by determining the orthogonal "principal components" which describe most 
of the variance in the data set (Cooley and Lohnes, 1971). Typically only the largest 
two or three principal components (often termed factors) are retained. The feature 
vectors can be projected onto the principal component axes and plotted as points in 
a two or "three" dimensional space, in order to indicate the occurrence of clusters or 
patterns in the data (§1.3.3). The relationship between the original feature vectors and 
each of the principal components is indicated by the factor loadings, which are simply 
the factors expressed as vectors in the original feature space. 

The magnitude of the factor loading for a particular feature va,riable indicates 
the degree to which that feature is correlated with the factor. ComreY(1973) suggests 
that the magnitude of a factor loading can be interpreted as representing "good", 
"very good", or "excellent" correlation between a variable and a factor if it is greater 
than 0.55, 0.63, or 0.71 respectively. In the PCA results presented here, variables are 
associated with the factors for which their factor loadings are greater then 0.55. 

In general, it is difficult to interpret the physical significance of the principal 
components identified by PCA, because each one contains contributions from all the 
physical feature variables. In order to facilitate the interpretation of the PCA, the axes 
can be rotated so that each one is, as much as is possible, composed of a different subset 
of the feature variables. The "varimax'" rotation (Cooley and Lohnes, 1971, §5.3) was 
invoked in this analysis. Each of the resulting rotated factors can then be associated 
with a separate physical interpretation. 

Principal component analyses were conducted using the Systat statistics pack
age (Wilkinson, 1987) running on a Macintosh SE micro-computer. Two PCAs were 
performed, one with variables describing the time domain characteristics of the clicks, 
and the other with variables that described the frequency domain characteristics. 

Table 7.2 shows the loadings of the time domain variables for each of the first 
three factors. Together these three factors account for 74.6% of the total variance 
in the set of data. The loadings indicate that factor 1 represents the amplitude and 
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variable 
Tpcl 
Dpcl 
Apc2 
Tpc2 
Dpc2 
Apc3 0.775 0.425 
Tpc3 0.965 0.191 0.056 
Dpc3 ~0.001 0.107 0.703 
dT12 0.057 0.932 -0.168 
dT13 0.960 0.185 -0.060 
dT23 0.936 0.040 -0.135 
Variance 
explained 32% 26% 16.5% 

Table 7.2. Rotated PCA factor loadings for the time domain analysis. High correlations between 

variables and factors are identified by bold type. 

variable 3 Factor 4 

IpI -0.215 

Ap/l -0.710 

Bpll 0.220 0.199 -0.056 0.791 

lel -0.170 0.040 -0.960 0.052 

I p2 0.043 0.962 0.106 0.152 
Apf2 0.014 0.808 -0.096 -0.225 
Bpf2 0.218 0.766 0.140 0.441 

le2 0.068 0.958 0.114 0.158 

Ip3 0.969 0.075 0.170 0.072 

Apf3 0.852 0.125 -0.092 -0.125 

Bpf3 0.862 0.034 0.227 0.306 

le3 0.967 0.074 0.177 0.078 

dh2 0.048 0.644 0.690 0.093 
dh3 0.657 0.008 0.683 0.052 ! 

dh3 0.025 0.406 0.168 
Variance 
explained 31% 24% 20% 11% 

Table 7.3. Rotated PCA factor loadings for the frequency domain analysis. High correlations between 

variables and factors are identified by bold type. 

position of the third peak relative to the first and second peaks, factor 2 represents the 
characteristics of the second peak, while factor 3 represents the decay (width) of the 
first and third peaks. A scatter plot of the first two factors (Fig.7.15) indicates three 
broad groups of sounds, corresponding to those with 1, 2, or 3 peaks respectively in 
their time domain amplitude envelopes. The sounds are spread out along the factor 2 
axis according to the separation of the first two peaks, and along the factor 1 axis 
according to the distance of the third peak (if present) from the first two peaks. The 
dense cluster of points in the lower left of the figuxe represents sounds that only have 
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Figure 7.15, Graph of the data records relative to the fust two factors of the PCA conducted on the 

variables obtained from the average envelope of each record. Example waveforms and energy envelopes 

are also shown, together with the position of each example in the scatter plot. 

a single peak. 

peA of the variables that describe the shape of the average click spectrum of 
each record revealed four significant factors, that together accounted for 86% of the 
total variance in the data set (after rotation). The factor loadings (Table 7.3) indicate 
that factor 1 represents the characteristics of the third spectral peak, if it is present, 
while factor 2 represents the characteristics of the second peak. Factor 3 represents the 
peak and centre frequencies of the largest peak, and factor 4 represents the amplitude 
and half-power width of the largest peak. 

Fig.7.16 shows a scatter plot of the sound records according to their first two 
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Figure 7.16. Graph of the data records relative to the first two factors of the PCA conducted on the 

variables that describe the shape of the average power spectrum of each record. Example waveforms 

and spectra are also shown, together with the position of each example in the scatter plot. 

frequency domain peA factors. This indicates that the sounds are largely characterised 
by their number of spectral peaks. Sounds whose spectra consist of a single peak are 
grouped in the tight cluster at the lower left of the scatter plot. Above this cluster is 
a more diffuse group of points which represents signals for which two spectral peaks 
were detected. Sounds with three spectral peaks are spread out in the diffuse cloud of 
points on the right of the scatter plot. 
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o time 0.8 

Figure 7.17. Example of a click with a single peak in its envelope that was originally classified as 

having two peaks. Notice the minor second peak, which is greater than 1/3rd of the major peak, so is 

encoded as a second feature peak. 

7.2.4 Comments on repertoire characterisation 

The three ways in which I measured the dominant frequency of clicks [by measuring the 
peak frequency for each click in a record and averaging over all the clicks in the record 
(fp); by measuring the mean frequency from the average spectrum of a record (j psd); by 
averaging the zero-crossing rate of each click over all clicks in a record Uu;)] produced 
results that were highly correlated (r > 0.733, p < 0.001). However, in 22 record the 
measurements differed by more than 10 kHz between any two of the three methods. 
These records often had several peaks in their spectra, and had significantly wider 
bandwidths 1lt (mean = 52.7± 8.4 kHz [95%ci]) than the remainder (26.1 ± 0.9 kHz; 
t=6.57, 21df, p < 0.001). It is obvious that the spectral shape of such signals is not 
adequately represented by a simple single measurement of the domin,ant frequency. 

One of the problems encountered in the repertoire analysis was the sensitivity 
of the statistical analysis to changes in the choice of features. For example, in a pre
liminary analysis of the time domain envelope features, there did not appear to be any 
clear-cut distinctions between clicks in different clusters. However, closer inspection 
revealed that the clusters were in fact characterised by the number of peaks in the 
envelope. The problem lay in the definition of "peak". Fig.7.17 shows a click that 
has a dominant single peak in its envelope. Because the small "bump" on the side 
of the main peak is slightly greater than 1/3rd the amplitude of the main peak, the 
feature extraction procedure of §7.2.2.3 obtained two peaks for this click. Furthermore, 
peA located this cli~k close to the one shown in Fig.7.5, rather than that of Fig.7.4 as 
one would expect. In order to overcome this problem, the locations of the second and 
subsequent peaks were replaced by their distances from the previous peaks, and the 
heights of each peak were specified as a proportion of the largest peak. Even though 
the distances between peaks are linear combinations of the actual peak positions, this 
re-expression appeared to "improve" the results obtained in the peA. The peA of the 
resulting data set was much more physically "satisfying" than that originally obtained, 
in that clicks such as the one shown in Fig. 7.17 were placed closer to clicks like the one 
shown in Fig.7.4. 

The above-mentioned problems of feature selection, and the difference in group-
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Figure 7.1S. a: Example of a click with distinct hlgh- and low-frequency components, together with 

b: its corresponding spectrum. 

ings between the PCAs conducted on the time and the frequency domain features, il
lustrate the difficulties of interpretation that occur in this type of statistical analysis. 
The groups indicated by the statistical analysis are strongly affected by the choice of 
features. Because the sounds were analysed according to features that characterised 
the signal envelope and spectral shape, the results appear in terms of the variation of 
these quantities. In particular, the signal shapes were characterised by "peaks", and 
the classification obtained was in that form. The validity of these features as descriptive 
of the signal shape is confirmed by the reconstructions described in §7.2.2.4. Whether 
such a classification is relevant in terms of the perception of the dolphin is difficult to 
ascertain. For echo-location purposes, the occurrence of multiple peaks in the energy 
envelope is probably of importance (§7.1.4.2). The occurrence of multiple peaks in the 
(average) spectrum can occur either because of the presence of multiple peaks in the 
time domain envelope (the so-called time-separation pitch §7.1.4.2) or because of phase 
or frequency shifts in the time waveform. Phase shifts could be caused by multiple 
sources or internal reflections in the sound production mechanisms as suggested by 
Dziedzic (1978) and Wiersma (1982). Multiple peaks in the average spectrum can also 
occur if there is a difference in the peak frequencies of different clicks within a single 
record. 

In many of the plots of statistical results, including the PCA scatter diagrams 
and the histograms of !1t!1f and bandwidth, one click appeared on its own as an outlier. 
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Figure 7.19. a: Low-frequency component, b: high-frequency component and c: expanded high

frequency component of the click shown in Fig. 7.1 B. 

Upon closer examination, this click was found to contain two distinct frequency compo
nents, at 5.8 kHz and 122 kHz (Fig. 7 .18). Separating the two components by (digital) 
filtering shows that the high-frequency part is similar to the other high-frequency sig
nals that were recorded (Fig.7.19c). The two parts are clearly not independent, since 
the production ofthe high-frequency component severely affects the low-frequency com
ponent (Fig.7.19a). No other records contained low-frequency «50 kHz) peaks greater 
than 1/3 of the maximum peak in the spectral magnitude. 



254 CHAPTER 7 ANALYSIS OF HECTOR'S DOLPHIN VOCALISATIONS 

7.3 Echo-location capability of Hector's dolphin 

By treating the recorded clicks as sonar signals, the ability of Hector's dolphin to localise 
prey and underwater obstacles can be assessed by means of ambiguity analysis of the 
click sounds. 

Unlike some other echo-locating mammals, such as a few species of bats (e.g. 
Rhinolophus lerrumequinum which employs CF-FM (constant frequency, frequency 
modulated) composite sonar signals, Schnitzler, 1968), and some other odontocetes (e.g. 
Phocoena phocoena which has a dual-component sonar signal, Evans, 1973), Hector's 
dolphins emit sounds of comparatively narrow (3dB) bandwidth (typically 15% of the 
frequency of the spectral peak - see §7.2.3.1). Consequently, standard narrow-band 
radar signal processing theory (Skolnik, 1980, Chapter 11) is sufficient for assessing 
the dolphin's echo-location capabilities. The narrowness of the bandwidth, and the 
smallness of the time-bandwidth product, of each of the recorded sounds enables the 
procedure outlined in §7.3.1 to be employed for this purpose. In §7.3.2 I present the 
results obtained by applying this technique to examples of the clicks encountered Fi
nally, §7.3.3 attempts to elucidate aspects of the dolphin's echo-location performance 
from the analysis results. 

7.3.1 Calculation of ambiguity surface 

Calculation of the ambiguity function of each of the clicks proceeds according to the 
following series of steps: 

(i) The sound is expressed in terms ofits analytic signal representation 'ifJ(t) (§1.2.6): 

(7.16) 

where 10 is the carrier frequency (defined in (iii) below) of the sound, and u(t) is 
the waveform (Le. the modulation on the carrier) of the sound. 

(li) 'ifJ(t) is constructed by, first, computing the spectrum S(!) of the sound, then 
defining 

\l(f) 0 for I < 0 
S(f) for I ~ 0, 

and finally taking 'ifJ(t) to be the inverse Fourier transform of \l(f). 

(7.17) 

(iii) u(t) is taken to be the inverse Fourier transform of \l(f 10)' with 10 defined as 
the mean value of 1\l(f)I. 

(iv) The narrow band ambiguity function (Woodward, 1953) is computed by applica
tion of 

x(r, <1» i: u*(t) u(t + r)e(-i21rq,t) dt (7.18) 

where r and <I> represent the usual incremental delay (equivalent to target range) 
and doppler (equivalent to target velocity) parameters. 

1. The ambiguity density of the sound is defined as 

A(r, <1» Ix(r, <I»/X(O, oW· (7.19) 

The ambiguity density sets the fundamental limit on the sound's ability to 
distinguish by echo-location between two targets of equal strength (Le. equal reflectiv
ity) separated by r and <I> in delay and doppler respectively (Woodward, 1953). It is 
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important to remember that all waveforms possess the same "total ambiguity" because 

00 ! J A( T, l/J )dTdl/J = 1 (7.20) 
-00 

The signal response function xC T, l/J) was calculated by evaluating u*( t )u( t + T) 
for discrete incremental delays T ::::: Tn and then employing the FFT to generate X( Tn, l/J) 
for each value of the integer n defined by Tn ::::: nilT within the range -Tmax < Tn < Tmax, 

where Tmax is the maximum desired temporal delay and ilT is the required temporal 
resolution. Both ilT and Tmax were calculated using the usual radar range equation 
(§7.1.2) from the range resolution ilR and the maximum range Rmax respectively that 
were deemed to be sufficient to reveal relevant details in each ambiguity diagram. For 
the results reported in §7.3.2 ilR = 5mm and Rmax = 200mm. 

The spacing ill/J of adjacent values of l/J, at which X( T, l/J) is evaluated, need 
be no less than the reciprocal of the effective duration of u*(t)u(t + T). In order to 
display more clearly the detail revealed in the ambiguity diagrams, and also to ensure 
that the number of temporal samples of u*(t)u(t + T) is a power of 2 (necessary to 
implement the FFT algorithm available to me), u*(t)u(t + T) was zero-extended, so 
that its actual duration was up to an order of magnitude longer than its effective 
duration. Consequently, ill/J was always somewhat less than both liT and the value, 
corresponding to a velocity resolution of 4m/s, which was deemed adequate to reveal 
relevant details in the ambiguity diagrams. 

Note that the ambiguity diagrams displayed in Figs. 7.20 to 7.22 are plotted as 
functions of incremental range R and velocity v, rather than delay T and Doppler fre
quency l/J. Even though target velocities exceeding 10m/s are probably of little concern 
to Hector's dolphin, all the detail (out to values of Il/JI corresponding to velocities of 
lOOmis) revealed in the computed ambiguity diagrams are plotted in the figures, in 
order to display the complete structure of each diagram. 

7.3.2 Results of ambiguity analysis 

Figs.7.20b,c 7.21b,c and 7.22b,c depict the ambiguity diagrams of the clicks 
shown in Figs.7.20a, 7.21a and 7.22a respectively. Both contour plots and relief maps 
of the ambiguity diagrams are presented in order to display as clearly as possible the 
full structure of each diagram. Note that the relief maps reveal more detail. Since the 
reason for including the contour plots is to make it easier for the reader to interpret the 
relief maps, a comparatively coarse contour spacing is adequate for these. Figs. 7.20 b 
and c show an ambiguity diagram exhibiting several major peaks, which occur along 
the velocity and range axes, with only a little ambiguity density off these axes. The 
main peak has a width (measured from its centre to where it falls to half of its peak 
value) of 2cm along the range axis and 20m/s along the velocity axis. The other lobes 
all have peak amplitudes which are less than half the value of the main peak. The click 
responsible for this ambiguity diagram could resolve velocity differences down to 20m/s 
and range differences greater than 2cm. However, Hector's dolphins have a maximum 
swimming speed of about 10m/s (Slooten and Dawson, 1988) and so seem unlikely to 
have much use for such coarse velocity resolution. 

The ambiguity diagram shown in Figs.7.21band c consists almost entirely of a 
narrow (in range) ridge extending out to beyond 50m/s along the velocity axis, with 
negligible ambiguity density more than lcm (in range) from this axis. A sonar system 
employing the click shown in Fig. 7.21a would have negligible ability to resolve velocity 
differences and can be described as doppler insensitive. The range ambiguity of 2cm is 
essentially the same as that for the click shown in Fig. 7.20 a. 
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Figure 7.20. a: Example of a sonar click exhibiting several distinct peaks and its ambiguity diagram: 

b: contour plot (contours spaced at A(O,O)/1O), c: relief map 

Figs.7.22b and c show an ambiguity diagram that again consists of a single 
narrow ridge, but which is angled with respect to the velocity axis, due to a slight 
frequency sweep within the click. The extent of this sweep implies that the velocities 
of targets are resolvable if their differences exceed about 70m/s, which seems to be far 
too coarse a resolution to be of practical assistance to the dolphins in detecting real 
targets, whose velocities seldom exceed 10m/s. However, it may be useful in that it 
enables the dolphin to emit a click longer than that shown in Fig.7.21a (for example), 
thereby significantly increasing the energy in the transmitted sound, while retaining 
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Figure 7.21. a: Example of a short sonar click and its ambiguity diagram: b: contour plot (contours 

spaced at A(0,0)/10), c: relief map 

a similar range resolving ability. As indicated by the results in §7.2.3, clicks similar 
to that displayed in Fig.7.22a are much more common than clicks like those shown in 
Figs.7.20a and 7.21a. 

7.3.3 Interpretation of ambiguity diagrams 

Hector's dolphins, emitting the types of sounds examined in §7.3.2, should be capable 
of resolving targets down to 2cm apart. This accuracy is achieved at the expense 
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Figure 7.22. a: Example of a sonar click exhibiting a small frequency sweep and its ambiguity diagtam: 

h: contout plot (contouts spaced at A(O,O)/lO), c: teliefmap 

of velocity resolution, which is never better than 20m/ s. It is extremely doubtful 
if any prey hunted by Hector's dolphin are capable of swimming at 2Om/s (39 knots), 
implying that the velocity resolution of the sonar clicks is not useful for foraging. Many 
of the sounds indicate a slight frequency sweep, but this appears insufficient to improve 
velocity resolution to any useful degree. 

The ambiguity diagrams of sonar sounds emitted by marine mammals have 
been calculated for only a few species (e.g. Phocoena phocoena and Delphinus delphis 
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Dziedzic, 1978). They mainly consist of narrow ridges aligned along the velocity axis 
(Dziedzic, 1978j Dziedzic et at., 1977), which tend to be broader along the range axis 
than those of Hector's dolphins. However, Dziedzic appears to have recorded the sounds 
with equipment of comparatively narrow bandwidth (30kHz). More recent studies have 
cast doubt on the validity of the low frequency (about 2kHz) signals obtained in this 
way (Kamminga and Wiersma, 1981). 

Hector's dolphins seem primarily concerned with resolving the ranges of targets, 
and their emitted sounds possess no useful doppler resolving capability. This probably 
stems from the high speed of sound in water, which renders the resulting doppler shifts 
relatively small for the range of target velocities that naturally occur. However, this 
velocity resolution applies only to a single click, and in no way inhibits the dolphin 
from inferring velocities of targets from changes in their ranges over several clicks. 

Note that the ambiguity results do not infer anything about the sensitivity of 
the dolphin's sonar to target size. The range resolution of 2cm merely asserts that 
objects can be separately resolved if they are separated in range by more that 2cm. 
This does not conflict with the ability of dolphins to detect monofilament nylon down to 
O.2mm in diameter (§7.1.5). The ability to detect small targets rests on the reflectivity 
of the target, the amount of background noise, the emitted signal strength and receiver 
sensitivity (§7.1.2). 

With regard then to the question raised in §7.1.1 about whether Hector's dol
phins can perceive gill-nets, the results presented here only provide an indication that 
the dolphins can resolve detail down to 2cm. Since gill-nets comprise structures that 
are much larger than this, it seems reasonable to assume that Hector's dolphins can 
perceive features of the net by means of their sonar. The previously demonstrated 
ability of (at least some species of) dolphins to detect monofilament nylon means that 
a net, which contains a large amount of such material, should offer sufficient signal 
strength to be detected. In addition, nets consist of floats and other supports that 
reflect sonar signals very well. All in all then, it seems almost certain that dolphins 
(of the kinds that have been studied) can detect gill-nets with their sonar. However, 
whether they perceive them as a danger is a completely separate question. It has also 
been suggested that a dolphin may not constantly employ its echo-location abilities, 
especially in familiar territory, and may therefore fail to detect a net even if it has the 
inherent ability to do so (Dawson, 19XXbj Evans et al., 1988) Further discussion of the 
issues surrounding this question is provided by Dawson (19XXa,19XXb). 
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This thesis provides a review of established teclmiques, and presents several new tech
niques, for processing sounds in order to extract some kind of useful information from 
them. Some concluding remarks about the new work reported in this thesis are made in 
§8.1, while some suggestions for how this research could be fruitfully extended appear 
in §8.2. 

8.1 Conclusions 

The preceding chapters of this thesis have discussed many different signal analysis 
teclmiques, and their application to several types of signals. Chapters 4 and 5 describe 
teclmiques that separate (speech) signals into two distinct components, based on the 
long-term characteristics of the signals. Chapter 6 is primarily concerned with the 
mechanics of implementing a signal analysis system. It also shows how spectrographic 
analysis allows the temporal structure of the (cough) sounds to be revealed. The 
analysis teclmiques detailed in Chapter 7 describe the structure of dolphin "clicks" in 
terms of simple features of their time domain and spectral envelope shapes. Statistical 
analyses reveal patterns in the ensemble of the sounds which are analysed. 

In addition to the specific signal analysis teclmiques described in previous chap
ters, there are several "meta-themes" running through this thesis which deserve men
tion. The first of these is simply the observation that each analysis teclmique provides 
one with a different type of information about a signal. In order to effectively analyse 
a particular signal then, it is necessary to have knowledge of what is important about 
that signal, and of what analysis techniques are best able to characterise that particular 
information. 

Another important point that emerges the work reported here is that useful 
and novel results can often be obtained through a multi-disciplinary approach to re
search. Both the SAA and CLEAN teclmiques were originally developed as methods of 
astronomical image reconstruction. However, as the results in Chapters 4 and 5 demon
strate, they can be successfully applied to the quite different field of speech processing. 
The work reported in Chapters 6 and 7 demonstrates the value of collaborating with 
researchers in other fields. One of the concerns of engineering is to develop practical 
applications of teclmological science, so collaboration with workers in other fields is 
indeed necessary in order to ensure that the most beneficial and appropriate results are 
obtained. 
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8.1.1 Speech analysis by SAA and CLEAN 

The SAA technique described in Chapter 4.is a straightforward and robust approach to 
estimating the long-term invariant component of an utterance. The results presented 
in §4.3 show that the SAA signal, obtained from the voiced sections of an utterance, 
approximately represents the average glottal excitation signal, but with a significant 
contribution from the average vocal tract response. SAA signals obtained from different 
people differ more than those obtained from a single person on different occasions. 
The shape of an individual's SAA signal depends somewhat on the content of the 
utterance being spoken, but seems to be largely determined by the person's manner of 
speaking. This suggests that the SAA signal can be associated with the vocal setting 
of Laver (1980) which describes the long-term characteristics of a person's voice (see 
§2.1.4.1). The computational simplicity of the SAA technique means that it can be 
easily implemented on low-cost digital signal processing hardware (Watson et al., 1988). 

Chapter 5 describes the CLEAN method of subtractive deconvolution. This is 
applied to the problem of removing the long-term characteristics of an utterance (as 
represented in the SAA signal) so as to leave the variant components. In terms of the 
model of Laver mentioned above, the variant components can be thought of as repre
senting the dynamic aspects of a speech signal, which correspond to the distinguishing 
features of different phonemes in a speech utterance (§2.1.4). CLEAN is a straight
forward algorithm which iteratively identifies the positions and amplitudes of discrete 
pulses that represent the convolutional part of the variant component. 

Because of the sparse nature of the "CLEAN" signal, the SAA and CLEAN 
techniques of separating a speech signal into invariant and variant components can be 
employed as a low data rate speech encoding scheme. The results of such a scheme, 
presented in §5.3, suggest that this method performs about as well as the MP-LPC 
method of low data rate speech encoding, especially at the medium data rates of about 
16kbit/s. 

In conclusion, the main advantage of the SAA/CLEAN speech analysis tech
nique is that it provides a method of separating a speech signal into a set of components 
that are very different than those obtained by other analysis methods. The fact that 
synthetic speech can be reconstructed from these components confirms that they do 
represent the important features of the speech utterance. The main emphasis of the 
work reported in Chapters 4 and 5 is to develop the application of the SAA and CLEAN 
techniques to speech signals. Results are presented describing the operation and con
vergence of the algorithms under a wide variety of conditions. 

8.1.2 Asthmatic cough sound analysis 

Chapter 6 is concerned with the development of a micro-computer-based system for 
analysing cough sounds. This system is designed to facilitate a clinical study into the 
differing characteristics of cough sounds between children with and without asthma. 

One of the difficulties of applying signal processing techniques to the study of 
clinical sounds is the large amount of data that must be managed. The COFF system, 
described in Chapter 6, facilitates research into cough sounds because it allows cough 
data from a large number of patients to be easily accessed for display and analysis. 

The system employs a graphics-oriented human interface and is based on a 
tree-structured menu paradigm. It enables the time domain and frequency domain 
characteristics of the cough sounds to be interactively examined. Although the system 
is primarily designed to facilitate the analysis of cough sounds, it has, as far as that 
has been possible, been implemented in a general way so that it can easily be applied 
to the spectral analysis of other signals. 
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The system has a modular structure, which means that it is straightforward to 
modify or extend it. For instance, it can easily be modified to make use of other AID 
boards, or its signal processing capabilities can be augmented by adding new analysis 
modules. §8.2.3 describes some of the ways in which it is planned to expand the system 
in order to automatically extract descriptive features from the cough spectrograms. 

The preliminary results obtained so far (see §6.2.1) indicate that there are 
differences between "asthmatic" and "non-asthmatic" cough sounds. These differences 
are revealed by spectrographic analyses of the sounds. 

8.1.3 Analysis of dolphin vocalisations 

Chapter 7 describes the analysis methods invoked to obtain a quantitative description of 
the vocal repertoire of Hector's dolphin. The methods of automatic feature extraction 
facilitated the analysis of 401 0.25 second long records of Hector's dolphin click trains, 
containing 7661 clicks. Using basic operations in a signal processing language, 48 
variables were estimated from each record. Without the aid of the computer-based 
analysis techniques, especially the ability to perform them automatically, this analysis 
would have been prohibitively labour intensive. 

The feature variables were analysed by means of the principle component analy
sis transformation technique in order to identify the general characteristics of the clicks. 
The analyses performed separately on the time domain and frequency domain feature 
variables identified a small number of principle components that explained a~large pro
portion of the total variance in the dataset. These components represented the number 
of individual peaks in the time domain or spectral envelopes respectively, together with 
their separations and widths. This interpretation of what features of the sounds are 
important is intuitively satisfying, because the occurrence and positioning of multiple 
peaks has relevance in terms of current models of cetacean perception. These suggest 
that sounds are perceived largely according to the "time-separation-pitch", which man
ifests itself as multiple peaks in the time domain and spectral envelopes (see §7.1.4.2j 
Altes, 1988j Au and Moore, 1988). 

The vocal repertoire of Hector's dolphins is very simple, consisting almost en
tirely of short, narrowband, high frequency clicks. This is what one would expect if the 
clicks are used for simple echo-location purposes~ However, there were also a significant 
minority of clicks which had a more "complicated" structure. Three possibilities suggest 
themselves as explanations for these signals. Firstly, they could be artefacts caused by 
noise, or multipath distortion. However, the high signal to noise ratio and undistorted 
waveforms of many examples suggest that this is not always the case. Secondly, they 
could be a different type of sonar signal, for use in a different type of target situation. 
Thirdly, they could be signals for use in communication. The relative scarcity of the 
"complicated" clicks in the entire sample may not indicate low importance, since one 
would expect most of the clicks recorded to be for sonar. High frequency cetacean sonar 
signals are highly directional (cf. Au et al., 1986), so the strongest signals are recorded 
when the phonating dolphin is orientated towards the hydrophone. This situation is 
likely to have occurred most often when they were using sonar to examine it. 

The difficulties involved in quantitative analysis and comparison of animal 
sounds has severely handicapped studies of acoustic behaviour. The development here 
of objective, automatic, feature estimation techniques has, in combination with multi
variate statistical methods, facilitated a much more detailed analysis of Hector's dolphin 
sounds than would have been possible via previous manual methods. The development 
of such techniques is an important advance towards an understanding of animal sounds 
and their significance. 

The final section of Chapter 7 is concerned with the echo-location capability 
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of Hector's dolphins (§7.3). Hector's dolphins, utilising the types of sounds examined 
in §7.3, should be capable of resolving targets down to 2cm apart. This accuracy is 
achieved at the expense of velocity resolution, which is never better than 20m/ s. It is 
extremely doubtful if any prey hunted by Hector's dolphin are capable of swimming at 
20m/ s (39 knots), implying that the velocity resolution of the sonar clicks is not useful 
for foraging. Note, however, that this velocity resolution applies only to a single click, 
and in no way inhibits the dolphin from inferring velocities of targets from changes 
in their ranges over several clicks. Some of the sounds that were examined indicate a 
slight frequency sweep, but this appears insufficient to improve velocity resolution to 
any useful degree. 

8.2 Suggestions for further research 

This section provides details on some of the many ideas for extending the research 
reported in this thesis that occurred to me as I journeyed through the (rather long!) 
process of writing it. In addition, I present preliminary results for some practical 
extensions of the analysis techniques described in previous chapters. These results may 
encourage further research along the lines suggested. 

8.2.1 Speech analysis by SAA 

Several practical applications where SAA processing of speech could become useful 
are discussed in this section. In §8.2.1.1 I briefly describe the use of the SAA signal 
as a descriptor in a speaker recognition scheme. §8.2.1.2 discusses methods by which 
a speech signal can be "pre-processed" by the SAA signal in order to improve the 
subsequent estimation of descriptive parameters from the speech. These techniques 
attempt to remove the SAA component from the speech signal in order to leave the 
"variant" component only for the later processing. Note that this pre-processing is 
really an alternative to the method of CLEAN that is described in detail in Chapter 5. 
Finally, §8.2.1.3 briefly discusses the usefulness of the SAA signal as an aid in diagnosing 
laryngeal disorders. 

8.2.1.1 Speaker recognition 

As intimated by the results presented in §4.2.4.2 and §4.3, SAA can be employed to 
produce an estimate of a speaker's long term voice characteristics. One application 
where this ability is useful is in a speaker recognition scheme. As described in §3.6.2, 
the speaker recognition problem arises because the intra-speaker variation in speech 
characteristics is often as great as the inter-speaker variation. The usefulness of a 
particular speech descriptor for speaker recognition purposes depends on the ratios of 
the intra- and inter-speaker variations of that descriptor. However, even when these 
ratios are low, a descriptor may still be useful for speaker recognition if it characterises 
a different facet of voices than other descriptors. It can then be combined with those 
other descriptors to provide improved recognition performance. 

The SAA signal characterises the long term characteristics of a speaker's voice, 
although, as indicated in §4.3.1.2, it does so in a different manner than does the LTAS 
(which has also been employed for speaker recognition, Boves, 1984, §5.3.5). Because 
the SAA signal does not involve a great deal of computational processing, it should 
be possible to combine it with other descriptors of a person's speaking style without 
adding too much computational complexity to the entire speaker recognition system. 

As commented on in §4.2.4.2, the intra-speaker differences are greater for ut
terances that are composed of different phrases than those that are repetitions of the 
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same phrase. However, these differences are still less than the inter-speaker differences. 
This means that the SAA signal may be useful as a text-independent descriptor of a 
speaker's voice. However, SAA signals are markedly changed when a person speaks in 
a "different" manner (§4.2.4.2), which suggests that SAA is not useful for recognising 
speakers who are disguising their voices. 

8.2.1.2 Improved estimation of speech parameters 

In LPC analysis, the speech signal is assumed to be formed by the convolution of a 
train of impulses and an all-pole filter. Actual speech signals, however, contain spectral 
zeros, contributed by the non-impulsive glottal pulse shape and anti-resonances in the 
vocal tract filter. As Gray and Markel (1974) demonstrate, the numerical stability of 
the LPC analysis procedure is directly related to the spectral flatness of the speech 
signal. In order to reduce the ill effects caused by the wide dynamic range of typical 
speech spectra, it is usual practice to pre-emphasise the speech signal with a first
order differentiation before performing LPC analysis. This approximately counteracts 
the effect of non-impulsive glottal pulse shape, as is explained in §3.2.1. However, 
glottal pulse shapes vary between different people (cf. §3.4, §4.2.4.2), so it seems that 
pre-processing a speech signal with a filter derived from the SAA signal, which is 
characteristic of that person's glottal excitation, would be even better than merely 
differentiating it (Gray and Markel (l974) suggest that an adaptive pre-emphasis gives 
better results than a fixed one). In this section I outline the techniques involved in 
pre-processing speech signals with the SAA inverse filter in order to improve the LPC 
coefficients obtained from the speech. 

One method of de convolving the SAA signal from the speech signal is to em
ploy Wiener filtering (§1.3.2). Figs.8.l and 8.2 shows the spectral and time domain 
representations of the Wiener filter constructed from the SAA signal of the utterance 
AM-RAINl, with various values for the Wiener constant <p. A first order differentiator 
is also depicted. The results of convolving the filters shown in Figs.8.2 b,c and d onto 
the speech signal shown in Fig.8.3a appear in Figs.8.3b,c and d respectively. Fig.8.4 
shows the Fourier magnitudes of the signals shown in the respective parts of Fig.8.3. 
As these figures illustrate, the effect of increasing the value of the Wiener constant is 
to decrease the amount of emphasis given to the high frequency components of the 
speech signal. This de-emphasis of the high frequencies is a well-known drawback of 
Wiener filtering (Bates et ai., 1982b) arising because the Wiener constant "swamps" 
the spectrum of the deconvolution kernel at those frequencies. Other techniques of 
deconvolution, notably CLEAN (see Chapter 5), can be invoked to "reconstruct" the 
higher frequency components. 

Performing LPC analysis on the segments shown in Fig.8.3 and transforming 
the LPC coefficients to the frequency domain results in the spectra appearing in Fig.8.5. 
These results indicate that pre-processing speech utterances by Wiener filtering with 
their SAA signals may improve the estimation of LPC parameters. The spectra ob
tained from the LPC parameters when the speech is pre-processed with the SAA signal 
(especially the spectrum shown in Fig.8.5 d) is generally flatter overall, with more promi
nent formant peaks, than those obtained from unprocessed and differentiated speech 
signals. 

Note that I have only applied the processing described here to voiced sections 
of speech. Unvoiced sections of speech must be processed separately, either by splitting 
the speech signal into two sub-bands as described in Chapter 5 and then recombining 
them after Wiener filtering, or by performing a VUV analysis on the speech and Wiener 
filtering the voiced and unvoiced sections separately. 
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Figure 8.1. a: Spectrwn of SAA signal of the utterance AM-RAINI. Log spectra of h: a first order 

differentiator, c: and d: Wiener filters constructed from SAA signal shown in a with Wiener constants 
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Figure 8.2. Time domain versions of the spectra shown in Fig.8.I. 
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Figure 8.3. a: Segment of speech signal and pre-emphasised versions formed by processing with the 

filters shown in Figs,8,l and 8.2. h: First order differentiation. c: and d: Wiener filtered versions with 
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Figure 8.4. Fourier magnitudes of the signals shown in Fig.8.3. a: Speech signal IS(I)I. h: Pre

emphasis by first order differentiation. el, d: SAA signal deconvolved out with Wiener constant of 

10-4 and 10-6 times the peak of IS.a(fW respectively. 
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Figure 8.5. Spectra (computed via LPC analysis) of the segments of deconvolved speech shown in 

the respective parts of Fig.S.3. Sixteen LPC coefficients were computed from each segment. 

8.2.1.3 Investigating glottal source characteristics 

In order to investigate the possibility of using the SAA technique to characterise the 
state of a speaker's larynx, I processed utterances spoken in "tense", "relaxed", and 
"normal" manners. These different ways of speaking change the glottal excitation 
because they change the muscle tension around the larynx. Although these results 
(see Fig.4.11 in §4.2.4.2) do not reveal anything about specific laryngeal disorders, 
they indicate that the SAA signal changes markedly in response to changes in the 
larynx. Together with the results in §4.3 showing that the SAA signal can provide 
an estimate of the average glottal excitation (albeit combined with the average vocal 
tract response), these results suggest that the SAA signal may provide an indication of 
those laryngeal pathologies that change the shape of the glottal waveform (cr. §3.6.4.1). 
Further research is required to investigate the differences in the shapes of SAA signals 
to be expected from speakers with various laryngeal disorders. 

In addition to the possible uses as a diagnostic aid, the ability to characterise the 
glottal excitation is important in endeavours to synthesise "natural-sounding" speech 
(cf. Gauffin and Sundberg, 1989). In order to evaluate the usefulness of SAA in this 
role, I recommend that a comprehensive investigation be carried out into the changes 
in the SAA signal that occur when a person talks in different ways. It would be useful 
to compare the results of such an investigation with those obtained by other methods 
of glottal source characterisation (cr. Gauffin and Sundberg, 1989; GobI, 1989). 
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8.2.2 Speech analysis by CLEAN 

There are two main areas in which the CLEAN technique described in Chapter 5 could 
be further developed. Firstly, the method employed to estimate the pulse positions 
and amplitudes could be improved. §B.2.2.1 and §B.2.2.2 describe two approaches for 
seeking such an improvement. The second area where useful gains could be made is in 
the encoding of the pulses. §B.2.2.3 makes some suggestions in this regard. 

In addition to the low data rate speech encoding scheme described in Chapter 5, 
there are several other applications where SAA/CLEAN speech analysis could be useful. 
Several of these are briefly discussed in §B.2.2.4. 

8.2.2.1 Refinement of pulse positions 

The optimisation procedure described in §5.2.6 only optimises the amplitudes of the 
pulses that have been found by the CLEAN algorithm it does not adjust their 
positions. In this section I describe the iterative position refinement scheme introduced 
by Bates et al. (19B2c) and briefly examine its usefulness as a method of improving 
CLEAN processing of speech signals. This scheme individually adds the CLEAN kernel 
corresponding to each of the CLEAN pulses to the residual signal and then re~estimates 
the position and amplitude of that pulse. 

The residual dirty signal r(t) remaining after CLEAN has been performed on 
a speech signal s(t) can be expressed as 

Np 

r(t) = s(t) - L Vig(t Pi) (B.1) 
i=l 

where g(t) is the CLEAN kernel and the Vi and Pi are the amplitudes and positions 
respectively of the Np pulses in the CLEAN signal. Now, for j 1 .. . N p, the jth pulse 
is removed from the CLEAN signal and the appropriately weighted kernel is added to 
the residual. The jth interim residual eAt) is then given by 

(B.2) 

where ro{t) r(t). The position and amplitude of the jth pulse is then re~estimated as 
indicated in Steps 1 and 2 of the CLEAN algorithm described in §5.2.3. The residual 
signal is updated by 

(B.3) 

where Vj and Pi are the refined pulse amplitude and position respectively. 
Fig.B.6a shows the changes in SNR that result when the postions of the pulses 

in a CLEAN signal are refined by the above procedure. The SNR increases at first, 
but then decreases as further refinement iterations are applied (where a "refinement 
iteration" refers to the application of the above procedure to every individual CLEAN 
pulse). The curves shown in Fig.B.6b indicate that the number of CLEAN pulses is 
reduced slightly after each refinement iteration. This occurs because closely-spaced 
pulses may be combined by the refinement procedure. 

It would be worthwhile to investigate further how much improvement in the 
accuracy of the CLEAN signal can be obtained by this procedure, and whether it 
justifies the additional processing that is required. In addition, the ability to improve 
the positions of the pulses may be a useful pre-processing step for the technique of 
estimating the vocal tract area from the CLEAN signal postulated in §5.4.1.3. 
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Figure 8.6. a: SNR, and b: pulse rate, versus the number of iterations of the position refinement 

scheme. The two lines represent two different CLEAN signals (of the speech segment shown in Fig.5.3a, 

with pulse rates of 1000 and 2000ppsrespectively). 

8.2.2.2 Locating pulses by cross-correlation 

In the basic CLEAN algoritlun presented in §5.2.3, the jth pulse is located at the 
instant for which Ir(j)[n]I is a maximum. A more "optimal" location can be found by 
minimising the mean-square level ofthe residual E(j+1) at the (j + 1yh iteration, where 
E(j+1) is defined by 

00 

E(i+1) = L.: [r(j)[n] - vjg[n (8.4) 
n==-oo 

Referring to (5.15) through (5.19) in §5.2.6, replacing y[n] with r(i)[nj, and setting 
Nopt = 1, the "optimal" value for Vj is given by 

(8.5) 

By substituting (8.5) into (8.4) and recalling the definitions of Ci and gij given in §5.2.6, 
the error E(j+1) can be expressed as a function of possible pulse positions i by means 
of 

00 

E(i+1)[i] = L.: r(i)[n]2 - cl / gii. (8.6) 
n=-oo 

The "optimal" pulse position is defined as the value of i which minimises E(i+1)[i], 
which, since only the second term on RHS (8.6) depends on i, is given by the maximum 
of CU9ii. 

Although steps 1 and 2 of the algoritlun described in §5.2.3 can be modified to 
implement (8.6) and (8.5) directly, the cross-correlation Cj between g[n] and r(i)[n] must 
then be evaluated at each iteration, which means that the computational requirements 
are greatly increased. It turns out, however, that the computational load can be reduced 
considerably by invoking the following recursive scheme. Initially,. cP) is set to be the 
cross-correlation between g[n] and the speech signal s[n]. The;th pulse is found at the 

maximum of Ic}j) I (since gii is a constant), where, for j > 1, 

CIi) = eli-I) v 9 
• • j-l Pj-l j • (8.7) 
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The amplitude of vi is given by (8.5), evaluated with d!}. Since the cross-correlation 
is updated at each step, it does not need to be re-evaluated. This is in fact the same 
scheme that is invoked to locate the pulses in the multi-pulse LPC technique (see 
§3.5.2.4 for the details). 

It is interesting to compare this recursive pulse locating scheme with the CLEAN 
algorithm described in §5.2.3. Inspection of (8.5) and (8.7), recalling that gij = 
gg[li - jl], reveals that this scheme is actually equivalent to the CLEAN algorithm, but 

with s[n] replaced by cP) and gg[i] taking the place of g[n] (provided that gg[O] 1). 
Hence the simplicity of the CLEAN algorithm still applies to the "optimal" pulse loca
tion scheme. 

Some informal experiments with this technique of locating the pulses suggested 
that it did not seem to greatly improve on the performance of the basic CLEAN pro
cedure described in §5.2.3. However, if it turns out that the re-optimisation step that 
is invoked in the "standard" approach is not necessary with this modified approach, a 
significant saving in computation would accrue. 

I think that it is also worthwhile to pursue this approach because of more 
fundamental considerations. As discussed in detail in §5.2.2, the assumptions that 
underly the use of max Ir(t)1 as an estimate for the CLEAN pulse position and amplitude 
(i.e. that get) is "peaky") are not fully satisfied by speech signals. Employing the 
maximum cross-correlation between ret) and get) should provide a better estimate of 
the pulse amplitude and position because it takes into accou,nt the overall shape of 
get). Further research along this line could also be useful in some of the other areas in 
which CLEAN has been applied (Note that Hogbom initially considers the use of the 
cross-correlation criterion, but is able to resort to the more straightforward maximum 
magnitude criterion because the nature of the radio-astronomical images means that 
the two approaches are equivalent). 

8.2.2.3 Modifications to the SAA/CLEAN low data rate speech encoding 
scheme 

Chapter 5 describes a low data rate speech encoding scheme which employs the SAA and 
CLEAN analysis techniques. However, this speech encoding scheme was implemented 
in a signal processing development environment on a multi-user computer system. Fur
thermore, in order to simplify the development of the scheme, it was designed so that 
the component operations of the scheme were carried out on the entire utterance in 
sequential order. This type of implementation is suited to applications when the en
tire utterance is available throughout the processing, such as for compression of speech 
data files on a computer system. For real-time operation, such as is required for low 
data rate speech transmission, the entire sequence of operations must be carried out on 
short segments of the input speech signal, so as not to introduce undue delay into the 
signal path. In particular, the SAA signal cannot be obtained over the whole utterance 
being encoded, as is done in §5.3. The results presented in Chapter 4 (see §4.2.4.2) 
indicate that, providing a person continues to talk in a similar way, their SAA signal 
remains fairly consistent. The SAA signal obtained from a "training period" should 
therefore be suitable for use in a subsequent period. A useful line of future research 
would be to implement the scheme in a real-time environment, so that its performance 
as a practical method of low data rate speech transmission can be evaluated. 

The low data rate of the SAAjCLEAN scheme is a consequence of the sparse
ness of the CLEAN signal. However, its coding efficiency is very dependent on the 
efficiency with which the CLEAN pulses are encoded into binary numbers. One sug
gestion to improve the efficiency of the pulse encoding is to combine the pulse sequences 
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from the two sub-bands and encode them jointly. Because the statistics of the joint 
sequence are more regular than those of the individual sequences on their own, a re
duced data rate should result. Note however, that it is probably not worthwhile trying 
to implement an encoding scheme that is too complicated, because that would erode 
the computational advantage that SAAj CLEAN has over some other speech coders. 

8.2.2.4 Miscellaneous applications of CLEAN speech analysis 

In addition to the low data rate speech coding scheme referred to in §8.2.2.3, there are 
several applications where it would be useful to investigate the use of SAAj CLEAN 
speech analysis. 

One such application is to use the CLEAN pulses as a feature in a recognition 
system. This may be useful because, as indicated in §5.4, the CLEAN signal represents 
the linguistic information in an utterance in a somewhat different fashion than the 
LPC coefficients. Two approaches to putting the CLEAN pulses in a form suitable for 
recognition are suggested here. One approach is the use of CLEAN as a pre-processing 
step in a standard LPC analysis, in a similar manner to the use of Wiener filtering 
described in §8.2.1.2. The purpose of CLEAN in this approach is therefore to remove 
the contribution of the SAA signal from the speech utterance, therefore improving the 
estimated LPC coefficients. It would be interesting to compare the results obtained by 
pre-processing in this way with CLEAN with those. obtained via the Wiener filtering 
approach outlined in §8.2.1.2. Other comparisons of CLEAN and Wiener filtering have 
noted that each method is suited to different types of signals (see §5.1.3; Bates et al., 
1982b,1984). 

Another approach to abstracting features from the CLEAN signal is to employ 
the CLEAN pulses themselves as feature parameters. However, this is not a straight
forward undertaking, both because of the varying number of pulses from segment to 
segment, and because both the pulse positions and amplitudes are significant. In ad
dition, the pulses are not "robust" in the sense that small changes in the signal may 
induce large changes in the CLEAN pulses. For instance, one large pulse may be 
nearly equivalent (as far as the CLEAN algorithm is concerned) to two adjacent pulses 
of smaller amplitude. However, in terms of feature paramaters, two smaller, adjacent, 
pulses cannot be easily reconciled with a single large pulse. Possibly the pulse position 
refining technique introduced in §8.2.2.1 would help to alleviate this difficulty. 

In order to compare the CLEAN pulses from two speech sounds, the pulses 
must be somehow "aligned". One suggestion is to extract fixed numbers of pulses from 
each segment in a "pitch -synchronous" fashion. As argued in §5.4.1.3, the largest pulse 
in a pitch period can be thought of as the "primary excitation" pulse. It can therefore 
serve as a reference for the remaining pulses in the pitch period. The feature vector 
is then composed of the relative positions and amplitudes of these pulses, which can 
be thought of as representing reflections in the vocal tract. However, it is not clear 
how to order the pulses in the feature vector. They could be arranged in order of 
magnitude, in which case different vectors are distinguished largely by the positions of 
each successively smaller pulse. The other way to arrange them is in their temporal 
order. In this approach, the vectors are distinguished by the amplitude and position of 
each successive pulse. 

Another possible use for CLEAN speech analysis could be as part of a method 
of estimating the vocal tract shape area. As discussed in §5.4.1.3, the CLEAN signal 
can be associated with the vocal tract impulse response if the CLEAN kernel is assumed 
to represent the glottal excitation. Since the SAA signal does not really fulfil the latter 
assumption, as is indicated by the results in §4.3, it would be interesting to perform 
some experiments with synthetic speech (where the excitation shape is known) to find 
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out how closely the CLEAN signal matches the impulse response of a discrete tube 
model of the vocal tract. In this regard, it may also be worthwhile to see if the position 
refinement (§8.2.2.1) and cross-correlation pulse identification (§8.2.2.2 schemes provide 
better estimates of the pulse positions in the impulse response. If the method is applied 
to natural speech, it may be necessary to employ estimates ofthe glottal excitation other 
than the SAA signal in order to obtain a better estimate of the vocal tract impulse 
response. 

8.2.3 Asthmatic cough sound analysis 

The work reported in Chapter 6 primarily concerns the development of a clinical cough 
sound collection, analysis, and data management system. This is part of a wider 
research effort to identify changes in the characteristics of cough sounds that occur as a 
result of asthma. In this section I present some of the ways in which the COFF system 
is being expanded so as to extract quantitative features from the cough sounds. 

The goal of the research project for which the COFF system was implemented 
is to characterise the differences between the coughs of asthmatic and non-asthmatic 
children. The COFF system as described in Chapter 6 facilitates the collection of cough 
sounds, and allows their temporal and spectral structure to be interactively examined. 

In order to pursue the development of quantitative analysis techniques which 
characterise the cough sounds, a framework is required in which candidate analysis 
techniques can be implemented and their usefulness evaluated. What I propose is a 
"shell" program into which specific analysis procedures can easily be inserted. The shell 
program would implement all the details of getting the cough data from the appropriate 
files and of collating the results of the analysis. Initially it would be worthwhile to 
make use of a stand-alone statistical analysis package to investigate the results of the 
analysis. The shell program would therefore need to create data files in a format that 
can be imported into the statistical package. When a set of useful feature variables has 
finally been chosen, the COFF system could be extended to implement the appropriate 
analysis procedures. 

As far as the actual analysis procedures are concerned, the preliminary results 
of §6.2.1 and those of other researchers discussed in §6.2.3 suggest that it will first 
be necessary to separate each cough into several segments representing the different 
"phases" that can be observed in a typical cough. This segmentation is most simply 
performed by applying thresholds to the energy envelope of the sound to identify the 
beginning and end points of the segments. If this approach proves unreliable, one of the 
many adaptive segmentation techniques (cf. Bodenstein and Praetorius, 1977; Andre
Obrecht, 1988) could be applied. Adaptive segmentation may be necessary because of 
the confusion that could otherwise arise between a loud "second phase" and the final 
burst itself (see §6.2.3). 

Features that could be extracted from the coughs range from simple descriptors 
such as the mean frequency, energy, and duration of each of the segments referred to 
above, to more sophisticated shape descriptors such as LPC or cepstral coefficients. 
It could also be useful to identify and track spectral peaks in order to recognise the 
occurrence of "wheezes" in the cough sound. 

8.2.4 Analysis of dolphin vocalisations 

There are several useful directions in which to extend the research described in Chap
ter 7 of characterising the vocalisations of hector's dolphins. Firstly, it would be in
teresting to analyse longer sequences of clicks. Practical considerations limited the 
duration of the click sequences that were analysed to 0.25 s. However, when listening 
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to recordings of the clicks, there sometimes appear to be patterns in the click sequence 
over much longer time spans. These patterns are revealed to the ear as varying tones 
caused by changes in the click rate. It would be worthwhile to digitise a few of these 
longer click sequences and analyse the long-term structure of the click sequence. 

Another useful extension of this research would be to apply similar techniques 
to the analysis of other animal vocalisations. As mentioned in §7.1.5, digital analysis 
techniques are only beginning to be applied to studies of animal sounds. In order for 
such methods to become widely available to zoologists, it is necessary that a range 
of analysis techniques be developed, suitable for characterising the wide variety of 
animal sounds that are encountered. The analysis techniques described in Chapter 7 
are suitable for "impulsive" types of sounds which can be described by the shapes of 
their time domain and spectral envelopes. For longer duration signals (such as dolphin 
whistles), such techniques are less suitable because of the time-varying nature of the 
signal. It is necessary to segment the signal and describe it in terms of the temporal 
variation in its short-term characteristics. Suitable analysis techniques include the 
use of the time-varying spectrum (§3.3.1), adaptive segmentation (cf. Bodenstein and 
Praetorius, 1977), and syntactic descriptions of the temporal structure (cf. Fu, 1974). 
The use of temporal normalisation schemes such as those employed in speech recognition 
(§3.6.1) may also be necessary in order to take into account small variations in the 
durations of different signals. 
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