
The Recognition of New Zealand English 
Closing Diphthongs Using Time-Delay 

Neural Networks 

JOHN ROBERT KIRKLAND 
'l; 

A thesis presented for the degree of Doctor of Philosophy in Electrical and 

Electronic Engineering at the University of Canterbury, 

Christchurch, New Zealand. 

January 1995 





iii 

Abstract 

As a step towards the development of a modular time-delay neural network (TDNN) 

for recognizing phonemes realized with a New Zealand English accent, this thesis focuses on 

the development of an expert module for closing diphthong recognition. The performances of 

traditional and squad-based expert modules are compared speaker-dependently for two New 

Zealand English speakers (one male and one female). Examples of each kind of expert 

module are formed from one of three types of TDNN, referred to as basic-token TDNN, 

extended-token TDNN and sequence-token TDNN. 

Of the traditional expert modules tested, those comprising extended-token TDNNs are 

found to afford the best performance compromises and are, therefore, preferable if a 

traditional expert module is to be used. Comparing the traditional and squad-based expert 

modules tested, the latter afford significantly better recognition andlor false-positive error 

performances than the former, irrespective of the type of TDNN used. Consequently, it is 

concluded that squad-based expert modules are preferable to their traditional counterparts for 

closing diphthong recognition. Of the squad-based expert modules tested, those comprising 

sequence-token TDNNs are found to afford consistently better false-positive error 

performances than those comprising basic- or extended-token TDNNs, while similar 

recognition performances are afforded by all. Consequently, squad-based expert modules 

comprising sequence-token TDNNs are recommended as the preferred method of recognizing 

closing diphthongs realized with a New Zealand accent. 

This thesis also presents results demonstrating that squad-based expert modules 

comprising sequence-token TDNN s may be trained to accommodate mUltiple speakers and 

in a manner capable of handling both uncorrupted and highly corrupted speech utterances. 
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Chapter 1 

Introduction 

Speech is perhaps the most frequently used and fastest means of communication 

between two or more human beings (Miller 1981). It is, therefore, not surprising that humans 

might desire to interact with other entities in their environments using speech. For example, 

conventional computer software, such as the word processor used to generate this document, 

might be enhanced both by being able to transcribe a human speaker's utterances and by 

being able to react to his or her spoken commands. Similarly, other machines with which 

humans interact may well benefit from a simpler interface afforded by automated speech 

recognition. 

The central problem of concern in this thesis is the automated recognition of English 

utterances produced with a New Zealand accent. This problem is of interest for the following 

reasons. First, it is evident that recognition systems designed to suit one accent of a language 

such as English, may not be well suited to other accents of this language. Clarke (1993) found 

that systems using speech features best suited to the recognition of American English words, 

are less suitable for recognizing the same words spoken with a New Zealand accent. It is, . . 
therefore, desirable to develop recognition systems for each accent of a given language, rather 

than just for the popular accents for which speech databases exist.1 The knowledge gained 

from this initial exercise may then be used to develop a general approach to the recognition 

of such a language and possibly to develop a system capable of recognizing all of its accents 

simultaneously. 

Second, the automated recognition of New Zealand English speech is of interest 

because some linguists, like Holmes (1994), believe that changes occurring within the 

pronunciation of this accent, particularly in the vowels, are likely to occur in other accents 

of English in the future. Consequently, problems associated with the recognition of New 

Zealand English speech currently, may well emerge when attempting to recognize other 

accents of English in the future. 

Third, the New Zealand accent, like other accents of English, contains diphthong 

phonemes whose realizations are difficult to recognize using traditional approaches based on 

IThe major accents of American English are popular when developing speech recognition 
systems as a consequence of the TIMIT (Zue and Seneff 1988) and other speech databases. 
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time-delay neural networks (TDNNs, see §4.2), due to their extended durations. Recognition 

of closing diphthong realizations produced with a New Zealand accent is further complicated 

by the significant overlap of spectral features exhibited by realizations of lai! and lei!. As 

discussed in §S.1.4.1, these realizations may cause TDNNs like those proposed in Waibel et 

al (1989a) and Hataoka and Waibel (1990) to produce ambiguous responses. 

To progress towards the recognition of New Zealand English using a system based on 

TDNNs, this work focuses on recognizing closing diphthongs realized with a New Zealand 

accent. Approaches based on three TDNN architectures are reported and compared, these 

being referred to as basic-token TDNN, extended-token TDNN and sequence-token TDNN (see 

§4.2.3). Basic-token TDNN closely resembles the network proposed by Waibel et al (1989a) 

and has been applied successfully in experiments attempting Japanese phoneme recognition 

(Waibel et al 1989a; Waibel et al 1989b; Miyatake et al 1990; Sawai 1991a; Minami et al 

1991). Extended-token TDNN resembles the most successful TDNN proposed by Hataoka and 

Waibel (1990) for the recognition of American English diphthong realizations. In contrast to 

basic-token TDNN, extended-token TDNN uses longer duration tokens to better represent 

closing diphthong realizations. Sequence-token TDNN is a novel TDNN approach developed 

in this work and is intended specifically for the recognition of closing diphthongs realized 

with a New Zealand accent. 

The next section presents a brief overview of the field of automated speech 

recognition. More extensive reviews may be found in Clark (1993), Roe and Wilpon (1993), 

Owens (1993), Picone (1993), Ainsworth (1988) and Dixon and Martin (1979). This is 

followed in §1.2 by a summary of the contributions made to the field of automated phoneme 

recognition by the work presented in this thesis. Finally, this chapter concludes with an 

overview of the content to be found in the remaining chapters of this thesis. 

1.1 Automated Speech Recognition: An Overview 

Automated speech recognition IS described variously as a pattern 

recognition/classification problem, or as a speech-to-text conversion task (Roe and Wilpon 

1993; Morgan and Scofield 1991; Church 1987). It is sometimes distinguished from the 

problem of speech understanding which requires the use of linguistic and other forms of 

knowledge to interpret the meaning of an utterance, in addition to identifying its form (Church 

1987). Increasingly, however, this distinction is being eroded by the realization that accurate 

speech recognition may also require the use of such knowledge to supplement the information 

obtained from speech utterances (Church 1987). 

In this thesis, automated speech recognition is defined generally as the process 

whereby tangible speech utterances are transformed into discrete abstract units through the 
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actions of a machine. It is assumed that a speaker's utterances partially represent the abstract 

messages he or she intends to communicate to one or more listeners. It is further assumed that 

such messages may also be represented by models utilizing discrete abstract units (see §2.2) 

and that these units may be represented within a machine. Ideally, the transformations applied 

during speech recognition convert tangible speech utterances into representations that are more 

concise, comprises fewer unique entities and are more suitable for machine manipulation. 

However, they also yield two fundamental problems; what abstract units should be used and 

how do these units relate to speech utterances and to one another? 

In this thesis, a hierarchy of abstract units, representing progressively higher levels of 

abstraction between tangible speech utterances and the abstract messages they represent, is 

assumed. This hierarchy is borrowed from segmental theories of language and speech 

proposed by linguists and contains the fundamental abstract units referred to as the phoneme, 

the morpheme and the sememe (these are discussed in §2.2.1). It is assumed that speech 

utterances may be transformed into sequences of phonemes (the least abstract of the 

fundamental units) using pattern recognition techniques like those discussed in this thesis. It 

is envisaged that such sequences might then be used in conjunction with language and task­

specific knowledge to derive more abstract representations incorporating morphemes and 

sememes. Ideally, transformation of speech utterances into sememes (the most abstract of the 

fundamental units) may permit their meaning to be represented within a machine, thereby 

approaching speech understanding. It is anticipated that such transformation will ultimately 

be necessary to achieve transcriptions of speech utterances comparable with those of a human 

listener, such as a court stenographer (Roe and Wilpon 1993). 

Within the last twenty five years, approaches to automated speech recognition have 

included isolated-word, connected-word and continuous-speech recognition systems. In 

isolated-word recognition, recognition is achieved by matching utterances isolated by intervals 

of "silenceu with pre-stored templates (these utterances may be words or short phrases, see 

Pu 1980). Connected-word recognition relaxes the need for utterance isolation, but limits 

utterances to a pre-specified vocabulary (Rabiner and Levinson 1981). Like isolated-word 

recognition, connected-word recognition is also achieved using pre-stored templates formed 

from isolated utterances. Continuous-speech recognition generally involves the recognition of 

sub-word units, such as phonemes, syllables, dernisyllables or diphones, to permit large 

vocabulary recognition (Rabiner and Levinson 1981; Lee and Alleva 1992). This approach 

is considerably more difficult than isolated- or connected-word recognition, since the units 

to be recognized are less well defined acoustically (Rabiner and Levinson 1981). Systems 

based on all three approaches have been created for individual speakers (speaker-dependent 

systems) and for groups of speakers (multi-speaker and speaker-independent systems). 

The recognition systems discussed in this thesis attempt phoneme recognition as a step 

towards continuous-speech recognition. Traditionally, it was anticipated that systems 
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attempting automated phoneme recognition would have to segment speech utterances prior 

to recognizing the phoneme realizations contained (see Rabiner and Levinson 1981). 

Fortunately, however, current phoneme recognition systems, like those discussed in this work 

based on TDNNs, do not require speech signal segmentation, except to select speech portions 

for system training (see §3.3). This is advantageous since the segmentation of continuous 

speech into sub-word units is an extremely difficult problem. 

Figure 1.1-1 depicts the principal components of current automated speech recognition 

systems that utilize automated phoneme recognition. Following the acquisition of a speaker' s 

utterance, feature analysis is undertaken to provide the information necessary for phoneme 

recognition, while eliminating irrelevant information like that arising from a speaker's 

environment (Roe and Wilpon 1993). Feature analysis is commonly used to produce 

sequences of spectral features representing the changes in a speech signal's spectral 

characteristics with time. From these sequences, sequences of phonemes are then derived 

using pattern recognition techniques. Finally, the phoneme sequences representing an utterance 

are transformed into traditional text or some other form of symbolic representation using 

language processing. 

y 
Feature Pattern Language 

-
Analysis Recognition Processing 

Sequences Sequences Text or 
Speech of Spectral of Symbolic 
Signal Features Phonemes Representation 

Figure 1.1-1 The principal components of current automated speech recognition system utilizing automated phoneme 
recognition. Based on Figure 1 in Roe and Wilpon (1993). 

As indicated in Figure 1.1-1, pattern recognition plays a central role in automated 

phoneme recognition. The process of human, or natural, pattern recognition may be viewed 

abstractly as shown in Figure 1.1-2 (a). Realizations of an object X are given an appropriate 

object index, Ix, by a human who is modelled by an opaque mapping, Rolx). To emulate 

human pattern recognition by machine, Rolx) must be replaced by a transparent mapping, 

R,,(!(x)), that may be described precisely to a machine (Pao 1989). Within this expression,J(x) 

transforms a realization, x, into a pattern containing a set of features, referred to as a token. 

Ideally, each token is transformed by R,l) to produce the same object index as a Human 

would processing x . 
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(a) 

(b) 

Figure 1.1·2. An abstract view of the process of pattern recognition when (a) conducted by a human and (b) 
conducted by a machine. Based on Figure 1.1 in Pao (1989). 

Within the last 25 years, there have been four basic approaches to the recognition of 

patterns representing speech utterances (Roe and Wilpon 1993). Examples of these four 

approaches are referred to as template matchers, rule-based systems, hidden Markov models 

(HMMs) and artificial neural networks (ANNs). All four approaches have been applied to the 

problem of automated phoneme recognition, as discussed by Clark (1993), Ederveen and 

Boves (1991), Lee (1990) and Waibel et al (1989a), respectively. Usually, the transparent 

mappings "applied" by systems using these pattern recognition approaches are difficult to 

express mathematically. However, for each approach, the algorithm for "learning" or 

"implementing" a transparent mapping may usually be expressed mathematically and in a 

manner suitable for use by computer. 

Template matchers attempt to find the closest match between input feature sets and 

feature sets "stored" as predefined templates. Unfortunately, such systems are sensitive to 

temporal distortions caused by variable speaking rate, unless this distortion is minimized using 

a technique like dynamic time warping (Roe and Wilpon 1993). Dynamic time warping 

minimizes the timing diff~rences between two feature sets by warping the time-axis for one 

set so that the maximum coincidence is obtained with the other (Clark 1993). 
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Rule-based systems attempt pattern recognition using a series of rules forming a 

decision tree (Roe and Wilpon 1993). Unfortunately, for many speech recognition tasks, 

finding sufficiently general rules to accommodate all speech signal variations has proven 

difficult (Roe and Wilpon 1993). 

HMMs attempt pattern recognition by modelling the statistics of an ensemble of 

utterances selected for system training. This modelling assumes that speech is a Markovian 

process and that successive observations (portions of a speech signal) are independent 

(Rabiner 1989). Despite these simplistic assumptions, various forms of HMMs have been 

shown to perform well on complex speech recognition tasks (for example, see Sagayama et 

al 1992). The principal advantage of HMMs over template matching systems is that they 

retain more statistical information about training utterances than templates do (Roe and 

Wilpon 1993). Rabiner (1989) discusses HMMs for automated speech recognition in more 

detail. 

The approach to pattern recognition reported in this thesis, is based on ANN s, a 

recognition approach inspired by biological neural networks (Haykin 1994). Like HMMs, 

ANNs are trained using an ensemble of training utterances, however, the training algorithms 

and philosophies for these two approaches are very different. In contrast to HMMs which are 

formulated based on assumptions about the statistics of the process being modelled, ANNs 

are formulated based on assumptions about the form of the recognition system required 

(Bridle 1992). During training, an ANN's free parameters are altered to minimize its output 

error, rather than to explicitly model the statistics of its training data, as is the case in HMM 

training. ANN training is also competitive, forcing an ANN to form powerful discriminate 

functions for object recognition, rather than merely forming independent models of objects, 

as in HMM training (Song 1992). 

Of the four pattern recognition approaches for speech recognition discussed, the 

approach using HMMs is currently the most successful and widely used (Roe and Wilpon 

1993). Despite this, new ANN based approaches, such as TDNNs, are continually evolving 

and being shown to perform as well as, or better than, HMMs (see Waibel et al 1989a). 

Further, the properties of HMMs and ANN s have lead many researchers to combine both 

approaches in order to integrate their complementary advantages in one system (for example, 

see Robinson et al1994; Devillers and Dugast 1994; Lippmann and Singer 1993; Le Cerf and 

van Compernolla 1993; Gao et al 1990). In particular, such combinations link the powerful 

discriminative ability of ANNs with the ability of HMMs to handle temporal variation. 

Despite more than forty years of research in the field of automated speech recognition 

(Clark 1993; Ainsworth 1988), which has yielded several successful commercial systems in 

the United States, Canada and Japan, their still exists no system which can perform as well 

as a human in tasks such as court stenography (Roe and Wilpon 1993; Owens 1993). The 

work presented in this thesis continues that of other researchers using TDNNs for automated 
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phoneme recognition (see §4.2). A more detailed discussion of automated speech recognition 

using sub-word units is presented in §2.5, following on from the discussion of the phoneme 

in §2.2.2. 

1.2 Contributions Made by this Thesis 

Following Waibel et al (1989b) and Miyatake et al (1990), automated phoneme 

recognition may be achieved using a modular TDNN. As discussed in §4.2.2, such networks 

consist of several experts modules that are each trained to recognize a particular class of 

phonemes and an arbitration module that combines the responses of these expert modules. 

All these modules are formed from TDNNs, though the specific architecture used for each 

may vary. As a step towards the development of a modular TDNN for recognizing New 

Zealand English phonemes, this thesis focuses on the development of an expert module for 

closing diphthong recognition. In so doing, two main contributions are made to the field of 

automated phoneme recognition. 

The fIrst contribution is the development of a new method of using traditional TDNNs 

wherein sequences of TDNN responses are used to signify phonemes, rather than individual 

responses. This method is applied in the sequence-token TDNNs discussed in this thesis and 

contributes to the superior false-positive error performances of expert modules comprising 

these networks (see §5.1). 

The second contribution is the development of a mechanism for selective attention for 

use with TDNN based systems attempting phoneme recognition. Instead of using individual 

TDNNs to form expert modules as is traditional, this thesis proposes using ensembles of 

identical and similarly trained TDNNs, referred to as squads, to form such modules. In 

contrast to their traditional counterparts, squad-based expert modules for closing diphthong 

recognition are able to correctly classify tokens representing these phonemes, while "ignoring" 

tokens representing phonemes from other classes (see §5.1.4 and §5.2). 

1.3 The Remaining Chapters 

The topics covered by the remaining chapters of this thesis are as follows. 

Chapter 2 presents an overview of speech and automated speech recognition using sub­

word units. Tangible and abstract aspects of speech are discussed and related with particular 

emphasis on the phoneme. 

Chapter 3 discusses the speech utterances acquired for the experiments described in 

chapter 5. This chapter also discusses the speech preprocessing (feature analysis) used in this 
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work to prepare tokens for expert modules. Finally, chapter 3 discusses selecting speech 

portions from closing diphthong realizations to create training tokens for TDNNs. 

Chapter 4 presents a brief overview of selected topics concerning multi-layer feed­

forward artificial neural networks, before presenting a detailed description of TDNNs. In 

addition, a review of important experimental results concerning TDNNs for automated 

phoneme recognition is presented, along with a discussion of pattern recognition using squads. 

Chapter 5 describes several experiments with various types of expert module for 

closing diphthong recognition. Traditional expert modules comprising individual basic-, 

extended- and sequence-token TDNNs are compared, speaker-dependently, with squad-based 

expert modules comprising the same types of TDNNs. To further test squad-based expert 

modules comprising sequence-token TDNNs, several multi-speaker experiments are also 

conducted. 

Chapter 6 presents some conclusions and suggestions for further work. 
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Chapter 2 

Speech and Automated Speech Recognition 

Speech may be analyzed in many different ways. For instance, its production and 

perception by humans, or its physical properties as an acoustic waveform, may be analyzed. 

Alternatively, one may analyze the information it bears concerning the abstract messages it 

is intended to convey. The development of an automated speech recognition system requires 

an understanding of all these facets of speech and the relationships between them. 

This chapter discusses speech, with emphasis on topics relating to automated phoneme 

recognition. The next section discusses some physical properties of speech. This is followed 

in §2.2 by a discussion of segmental linguistic theories concerning speech communication, 

including those concerning the phoneme. §2.3 and §2.4 discuss the phonology of New 

Zealand English and diphthongs, respectively, both of which are topics of central interest in 

this thesis. Finally, §2.5 discusses automated speech recognition in conjunction with sub-word 

units, with emphasis on automated phoneme recognition. 

2.1 Physical Properties of Speech 

The following sections present an overview of human speech production (§ 2.1.1), the 

properties of speech signals (§2.1.2) and human speech perception (§2.1.3). Frequently, as in 

this work, speech signals provide the raw materials for automated phoneme and speech 

recognition. How such signals are generated and perceived by humans provides insights into 

which of their meany features are of importance to their recognition. 

2.1.1 Aspects of Human Speech Production 

Speech is produced through the controlled, time ordered, gestures of a speaker's vocal 

organs. These gestures result in audible and visual cues which may be used by a hearer to 

discover a speaker's abstract message. Figure 2.1.1-1 depicts examples of both these types of 

cues. Humans are usually more adept at recovering a speaker's message using audible cues 

in isolation, than they are using visual cues in isolation. Consequently, it is commonly 
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assumed by engineers and linguists alike that a speaker's gestures may be represented 

adequately by the resulting audible cues alone. This assumption is convenient since speech 

signals, like that shown in Figure 2.1.1-1 (a), may be readily stored and manipulated by 

machine.' 

(a) 

>' '-' 
<!.) 

"d 

2.4 

.B 0 

~ 
<r: 

-2.4 

(b) 

0.2 0.4 

(i) U1k, II{ l+,i ~ I\v V'v V'v 

0.6 0.8 1 1.2 1.4 1.6 1.8 

Time (sec) 

Figure 2.1.1-1. Examples of the (a) Audible and (b) visible cues associated with speech utterances. Part (a) shows 
a transverse wave representation of an utterance containing the words bide (/haidl) and bade (/heidi) in succession. 
Inserts (i) and (ii) show speech portions exemplifying a vocoid and a contoid, respectively. Part (b) shows snapshots 
of a speaker's lip movements whilst uttering the word babe (lbeibJ). 

'Not all the articulatory gestures executed during the course of speaking result in audible 
sound (Singh and Singh 1976). Prephonatory articulatory gestures are required to position 
articulators at the commencement of an utterance, while postphonatory gestures return these 
articulators to their resting positions. Cues associated with such gestures are only available 
visually to a hearer and are, therefore, not available to automatic speech recognition systems 
utilizing speech signals alone. 
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Figure 2.1.1-2. The primary components of a speaker's vocal organs. Air-flow may be initiated by the subglottal 
system including the lungs and the diaphragm. Speech sounds are caused by constricting or interrupting this air stream 
using the articulators of the vocal tract (the air passages above and including the larynx, Crystal 1980). Sound may 
be emitted from both the nasal and oral cavities (depending on the positioning of the velum) and may be initiated 
at more than one point in the vocal tract. Adapted from Miller (1981), Crystal (1980b), Clark and Yallop (1990) and 
Lieberman and Blumstein (1988). 

Figure 2.1.1 -2 shows the primary components of a speakers vocal organs. The 

movement of air required for speech is typically initiated by the subglottal system, including 

the lungs and muscles of the chest and abdomen (Fry 1979). Sound is generated by 
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interrupting or constricting this movement of air through the supraglottal system, usually 

while exhaling? Such limitation of air movement may occur at numerous points within the 

vocal tract (the air passages above and including the larynx (Crystal 1980» leading to sounds 

of differing qualities.3 

........ 
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Q) 
<Zl 
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§ 
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0 
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0 
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o 0.1 

0.01 

Pitch =--.L 
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0.02 
Time (sec) 

Fundamental (Fo) 

0.5 
Frequency (kHz) 

1 

Figure 2.1.1-3. A simplified graph of air flow rate (volume-velocity) through the glottis (part (a)) and its spectrum 
(part(b)). Adapted from Clarke and Yallop (1990) and Lieberman and Blumstein (1988). 

A significant number of speech sounds, including the sounds associated with the 

closing diphthongs studied in this work, are produced in conjunction with vocal cord vibration 

and are referred to as voiced speech sounds (Crystal 1980). The fundamental frequency (Fo) 

of vocal cord vibration may be controlled by a speaker and its perceptual correlate is pitch 

(Clark and Yallop 1990). Figure 2.1.1-3 (a) shows a waveform representing the air-flow 

through the glottis (the opening between the vocal cords, Crystal 1980) during normal voiced 

speech. Its spectrum (part (b» is characterized by a series of harmonically related impulses 

commencing at Fo (Hz) and spaced Fo (Hz) apart. As shown in Figure 2.1.1-3 (b), the 

2Sounds generated while exhaling air are referred to as egressive (Crystal 1980). Speech 
may also comprise sounds made while inhaling which are referred to as ingressive. 

3Quality, in the sense used throughout this thesis, refers to the timbre of a sound resulting 
from the range of frequencies that constitute its identity (Crystal 1980). 
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magnitudes Df these impulses are inversely related to. their frequencies. 

Speech sDunds excited only by the vibratiDn Df the vDcal cDrds are referred to. as 

vocoids (GimsDn 1989, Crystal 1980). Such sDunds are Dften exemplified by thDse assDciated 

with the vDwels Df a language. All Dther speech sDunds, such as thDse excited by cDnstrictiDns 

Dr interruptiDns elsewhere in the vDcal tract, are referred to' as contoids (GimsDn 1989, Crystal 

1980). CDntDids may be voiced Dr unvoiced, the latter being produced withDut vDcal cDrd 

vibratiDn (such cDntDids are also. referred to' as unvoiced speech sounds). The relatiDnships 

between vDwels, cDnsDnants, VDCDids and cDntDids are discussed further in §2.3. 

A speaker may shift his Dr her active articulators, such as the lips, tDngue and IDwer 

jaw, relative to' passive articulators, such as the palate and the upper teeth, to' cDntrDI the 

quality Df sDunds produced (Crystal 1980). CDnsequently, a speaker's vDcal Drgans are capable 

Df producing a cDntinuum Df sDund qualities implying an infinite number Df sDund variants. 

A central issue fDr speech research is understanding hDW the sDunds used by a speaker for 

speech are Drganized to' assist the cDmmunicatiDn Df abstract messages. A mDdel Df this 

DrganizatiDn is discussed in §2.2. 

2.1.2 Some Properties of Speech Signals 

Speech signals represented by transverse waveforms (see Figure 2.1.1-1 (a), fDr 

example), are derived frDm measurements Df pressure variatiDns caused by the IDngitudinal 

propagatiDn of speech waves thrDugh air (zero in Figure 2.1.1-1 signifies atmDspheric 

pressure). Often, such signals exhibit cDntinually changing properties in respDnse the cDntinual 

fluid mDtiDn Df a speaker's active articulatDrs. This variatiDn may be Dbserved using "ShDrt­

time" measurements Df the sort discussed in §3.2. 

For vDiced sDunds, in particular VDCDids, the envelope Df the shDrt-time spectrum is 

characterized by peaks which are related to' the reSDnant frequencies of a speaker's vo.cal tract 

(Lieberman and Blumstein 1988). Figure 2.1.2-1 depicts such a spectrum. The reSDnant 

frequencies Df a speaker's vo.cal tract are referred to. as the formants and are the frequencies 

at which his or her vo.cal tract permits the greatest transmissio.n o.f excitatio.n sDurce energy. 

Notably, energy is no.t present at fo.rmant frequencies unless these are harmDnically related 

to. the fundamental frequency (Lieberman and Blumstein 1988). Despite this, such frequencies 

may be estimated using techniques such as linear prediction (Makho.ul 1975). 

Typically, frequencies spanning a range co.ntaining the first two. Dr three fDrmants are 

required fo.r co.rrect speech perceptio.n by humans (Lieberman and Blumstein 1988; Miller 

1981). These fDrmants are no.rmally labelled Fl , F2 and F3, as in Figure 2.1.2-1, and may 

exhibit the frequency and bandwidth ranges listed in Table 2.1.2-1 (Witten 1982). 
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Formant 
Frequencies 
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Figure 2.1.2-1. A typical spectrum of a vocoid. Energy is only present at frequencies harmonically related to the 
fundamental frequency which may not coincide with any oftheformantfrequencies (FI> F2, FJ , ... ) of a speaker's vocal 
tract. 

Formant Frequency 
Range 
(Hz) 

100 - 1100 
500 - 2500 

1500 - 3500 

Bandwidth 
Range 
(Hz) 

45 - 130 
50 - 190 
70 - 260 

Table 2.1.2-1. Approximate frequency and bandwidth ranges of the first three formants associated with human vocal 
organs. Based on Table 5.1 in Witten (1982). 

During voiced speech, the fluid motion of a speaker's active articulators may produce 

smoothly varying formant frequencies. Observations of such variations, like those depicted 

in Figure 2.1.2-2, are referred to as raw formant tracks (Owens 1993). By "connecting" 

related formant estimates in these tracks, smoothed formant tracks may be obtained using a 

process known as formant tracking (see McCandless 1974; Seneff 1976). Vocoids, such as 

those associated with the vowels, may be characterized by the positions and movements of 

their formant frequencies. For example, the final sounds in the words key, she and fee 

(realizations of the phoneme Ii!) are characterized by low first and high second formant 

frequencies as shown in Figure 2.1.2-3. Some authors refer to these characteristic frequencies 

as targets (Broad and Cleremont 1987; Crystal 1980). During normal continuous speech, 
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Figure 2.1.2-2, Raw formant tracks for the word bide spoken by (a) a male and (b) a female, The elements of each 
track are computed at discrete time intervals (corresponding to a time-shifted frame, see §3,2) and are represented 
by , +'s , The vertical members of each' +' indicates the bandwidth of their associated formant estimate, 

formant transitions may fail to reach these target frequencies due to the constraints imposed 

on articulation by the production of adjoining sounds (Broad and Cleremont 1987), 

Despite the information inherent in the transitions of the first three formant 

frequencies, it is uncommon for current phoneme recognition systems to rely solely on this 

information for phoneme identification (Hanes et al (1994) is one recent exception). However, 

formant tracks do provide one means of identifying speech portions for training token 

generation (see §3.3) and help to identify sounds which may prove difficult to distinguish (for 

example, the realizations of lail and leil studied in this work, see §4.2.3.1). 

Figure 2.1.2-3 also shows how speech segments are defined in this thesis following 

Pant (1973). Sections of a speech signal bounded by "distinct changes in speech wave 

structure" are referred to as speech segments. These changes may be observed in several 

domains, the time and time-frequency domains being common. The relationship between 

speech segments, features and phonemes is discussed further in §2.2.3. To avoid confusion 

with speech segments, the phrase speech portion is used in this thesis to refer to an arbitrary 

section of speech signal. 
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Figure 2.1.2-3. Speech signals (time-domain) and formant tracks (time-frequency domain) for the words (a) key, (b) 
she and (c) fee , showing how variation in the initial unvoiced sound (realizations of the phonemes fkJ, IJI and if/, 
respectively) produces varying cues in both domains. Each unvoiced sound (first 30 msec approximately) exhibits a 
characteristic "formant pattern" and affects the transition of formants leading into the neighbouring vowel sound (a 
realization of the phoneme Ii/). Part (c) indicates the target frequencies for the first three formants which are ideally 
realized during production of this vowel sound (frequencies indicated by "bull's-eyes"). It also shows the partitioning 
of the signal associated with fee into segments corresponding to major "signal changes", such as the onset of voicing 
at the end of segment one (denoted Seg 1), or the completion of formant transitions at the end of segment two 
(denoted Seg 2). 
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2.1.3 Aspects of Human Speech Perception 

During the preparation of speech signals for presentation to a phoneme recognition 

system, several transformations are typically performed in order to focus attention on features 

useful for phoneme identification (such transformations were denoted, generally, by f(.) in 

Figure 1.1-2). Some of these transformations are non-linear and are inspired by observations 

of the physiology and behaviour of the human auditory system. In particular, transformations 

which approximate the human auditory spectrum (Hermanski 1990) are desirable. This 

spectrum contains relevant information concerning speech sounds between approximately 100 

Hz and 7 kHz (Lieberman and Blumstein 1988). Typically, only the magnitude of energy at 

these frequencies is considered, since the human auditory system is insensitive to phase 

differences between frequencies (Lieberman and Blumstein 1988). 

Human perception experiments show that the frequencies forming a complex sound 

cannot be individually identified within a certain critical bandwidth (Picone 1993). This 

bandwidth is typically 10% to 20% of a complex sound's centre frequency. It is also evident 

that humans do not perceive frequency on a linear scale. Consequently, an approximate 

mapping between usual linear frequency, f (Hz), and a mel scale, like 

mel 259510g lO(1 +_f_J 
700 

(2.1.2-1) 

(Picone 1993), is often employed. This transform attempts to map f onto a scale which is 

linear perceptually. The critical bandwidth concept may be combined with a mel scale 

transform to create critical band filterbanks. Such a filterbank has bandpass filters linearly 

spaced along a mel scale with each filter having a bandwidth equivalent to the critical 

bandwidth associated with its centre frequency (Picone 1993). An approximate critical band 

fllterbank comprising 16 fllters is used for speech signal preparation in this work, following 

Waibel et al (1989a) (see §3.2). Notably, the frequency resolution of such a fllterbank 

decreases with increasing frequency, J, due to the increasing critical bandwidths of its filters 

(Waibel 1989a). 

In contrast to its decreasing frequency resolution, the human auditory system exhibits 

increasing sensitivity with increasing frequency and is most sensitive at approximately 3.3 

kHz. This is particularly noticeable for quiet sound levels, as depicted in Figure 2.1.3-1 which 

plots perceived equi-Ioudness contours (in phons) with respect to sound pressure level (SPL, 

in dB). The variation in human auditory sensitivity may be crudely emulated by taking the 

logarithm (base 10) of magnitude spectrums prior to their use (log compression), or by more 

elaborate transformations such as those proposed by Hermansky (1990) (perceptual 

compression). Both approaches yield similar results for vocoids (of interest in this work), as 

demonstrated by the example depicted in Figure 2.1.3-2. In this example, the most significant 
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Figure 2.1.3-1. Contours of perceived equi-Ioudness (in phons) versus sound pressure level (SPL, in dB). The lowest 
contour corresponds to the minimum audible sound level and the remaining contours are traced such that phons=SPL 
at 1 kHz. From these contours, the ear appears to be most sensitive at approximately 3.3 kHz for all sound pressure 
levels. Based on figure in Davis and Davis (1987). 
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Figure 2.1.3-2. Examples of (a) log compression and (b) perceptual compression emulating varying human auditory 
sensitivity (see Figure 2.1.3-1). For vocoids (of primary interest during the experiments discussed in chapter 5), the 
two approaches yield similar results, due to the tendency of such spectrums to decay at higher frequencies prior to 
compression. 
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differences between log and perceptual compression occur at low frequencies approachingj=O 

(Hz). Following the preprocessing approach proposed by Waibel et al (1 989a), log 

compression is used in this work to emulate varying human auditory sensitivity (see §3.2). 

Experiments with the perception of synthetic speech have revealed many properties 

of the human auditory system and its processing of speech. For example, such experiments 

have demonstrated the importance of spectral shape to sound identification, particularly for 

vocoids (Miller 1981), and to the robustness of speech communication in general. It is 

estimated that conversation may take place successfully in environments with signal-to-noise 

ratios (see equation (5.2.1-1)) approaching -6 dB (Miller 1981). In noisy environments, words 

are easier to perceive correctly in the context of sentences since a listener has a better idea 

of what to expect (Miller 1981). These expectations exist in the listener's mind rather than 

in the acoustic signal and are used to compensate for inevitable lapses in speech production 

and perception. Emulating these expectations by machine requires models of language and 

speech, such as those discussed next. 

2.2 Segmental Linguistic Theories of Language and Speech 

This section discusses segmental linguistic theories concerning the form of the abstract 

messages conveyed by speech, with particular emphasis on theories concerning the phoneme. 

The next section discusses a simplified model of speech communication arising from these 

theories. Within this model, phonological processing constitutes one step in the conveyance 

of abstract messages between a speaker and a hearer. §2.2.2 discusses the phoneme of central 

importance to automated phoneme recognition. Finally, §2.2.3 briefly discusses the problems 

associated with modelling speech utterances using phonemes. 

2.2.1 The Speech Chain 

Figure 2.2.1-1 depicts a simplified model of human speech communication, referred 

to as the speech chain (Denes and Pinson 1973). In this model, an abstract message to be 

communicated undergoes several levels of "encoding" before being realized as speech through 

the gestures of a speaker's vocal organs. After acoustic transmission, this speech is perceived 

by a hearer and undergoes several levels of "decoding" in order to discover the speaker's 

message.4 Though interaction between levels is likely during both the "encoding" and 

4The term discover is used in preference to recover, in this context, to emphasize the fact 
that a speech signal is not infinitely informative about a speaker's intended message. A hearer 
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"decoding" of an abstract message, particular attention is paid to this phenomenon during 

"decoding", since it is evident that some messages must be "decoded" at multiple levels 

simultaneously (Moulton 1969). For automated speech recognition, the processes "conducted" 

by the hearer are of primary interest. 

Speaker Hearer 

Message Message 

r:: 
0 

Semantic Encoding Semantic Decoding ';':l 
u ro 

Aspects .b 
'" .D 

<r: of 
OJ) Grammatical Encoding r:: ...... 

Shared '" ro 
Q) 
I-< 
U Language .s Phonological Encoding 

Neuronal Encoding 

Acoustic Transmission 

Figure 2.2.1-1. A simplified model of speech communication between humans indicating broadly the steps involved. 
The aspects of shared language are required by both a speaker and a hearer for this process to be successful and are 
the principal concern of linguistic theories of speech and language. Adapted from Matthei and Roeper (1983), Denes 
and Pinson (1973), with detail from Moulton (1969). 

As indicated by Figure 2.2.1-1, language and speech may be analyzed at various levels. 

Several of the levels depicted are language specific and are grouped together by the box 

marked aspects of shared language (for convenience, these levels are referred to as the 

linguistic levels, henceforth). The transformations envisaged within these levels are described 

by segmental linguistic theories, making extensive use of discrete abstract units. Clark and 

Yallop (1990, page 93) discuss the rational for this approach; 

must often rely on other sources of information, such as the constraints of the language being 
spoken and the context of an utterance, to "decode" and understand a message. 
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In describing language we need to refer to the units of language. The fundamental 

reason for this in not just that it is traditional and convenient to refer to sounds and 

words and syllables and other such elements; it is that language itself depends on 

discrete and finite options. 

Abstract units permit the options available to a speaker creating an utterance, or a hearer 

interpreting an utterance to be modelled. Within Figure 2.2.1-1, such options exist within the 

three language specific levels denoted semantic, grammatical and phonological 

encoding/decoding. The abstract units traditionally associated with these levels are the 

sememe, the morpheme and the phoneme, respectively (Crystal 1980). 

Sememes are used in some semantic theories as minimal units of meaning (Crystal 

1980). Not all languages share a common set of sememes. For example, German uses the 

sememe Uhr when describing any instrument for time-keeping, whereas English differentiates 

between portable and non-portable instruments using the sememes watch and clock, 

respectively (Moulton 1969). Ultimately, the automated transformation of speech utterances 

into sememe units may permit their· meanings to be represented within a machine, thereby 

facilitating automated speech understanding, or enhanced automated speech recognition. 

Morphemes are the minimal distinctive units of grammar (Crystal 1980) and may 

correspond to words such as self, or parts of words such as un. For example, the English word 

unselfish contains three morphemes, un, self and ish. Morphemes are the principal subjects 

of morphology which is concerned with word structure (Crystal 1980). As well as 

morphology, the grammatical level of the model in Figure 2.2.1-1 is concerned with the 

combination of words to form larger entities, such as sentences. Rules for word combination 

form the basis of the syntax of a language and are the principal concern of syntactics (Crystal 

1980). 

Phonemes are the minimal units of the sound structure of a language (Crystal 1980). 

These and other related units are described in detail in the next section. 

A fundamental theorem of segmental linguistics is that at each linguistic level within 

the model depicted in Figure 2.2.1-1, utterances may be represented by combinations of the 

level's abstract units. For example, at the phonological level, an utterance of the word bide 

might be represented by a combination of the phonemes fbI, Idl and /ail. For convenience, 

such combinations are often sequentially ordered following western orthographic practices. 

An utterance of the word bide, for example, may be transcribed phonemically as fbaidl. This 

ordering may resemble (approximately) the temporal ordering of speech features associated 

with the realizations of fbI, Idl and /aiI, however, it does not necessarily indicate the order in 

which these abstract units are presumed to be discovered by a hearer (see the example 

concerning the phrase I was riding/writing ... in the next section). 

As the model depicted in Figure 2.2.1-1 suggests, the linguistic levels may be arranged 
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hierarchically in order of increasing abstraction (the phonological level being the "closest" to 

tangible speech utterances). Ideally, representations at the higher levels (the grammatical and 

semantic levels) may be obtained by transforming representations formed at the lower 

linguistic levels. In this way the higher level representations desired during automated speech 

recognition might be derived from phonological representations produced by an automated 

phoneme recognition system. 

Currently, the relationships between morphological and phonological representations 

of speech utterances are being actively researched (Church 1987). Transforming phoneme 

sequences into morpheme sequences, rather than into word sequences as at present (see 

Waibel 1992b; Lee 1990), may permit more efficient storage of the lexicon required for 

automated speech recognition (Church 1987). Such transformation may also permit the tight 

coupling that exists between phonological and morphological processes to be utilized (Church 

1987). Research into the relationships between semantic and grammatical representations of 

speech utterances is also ongoing (for example, see Hinton et al 1986a), however, such 

relationships are still particularly contentious. 

From the model of human speech communication depicted in Figure 2.2.1-1, it is 

assumed in this thesis that a hierarchy of abstract units incorporating phonemes, morphemes 

and sememes, is necessary to permit automated speech recognition. The work presented in 

this thesis concentrates on the transformation of speech utterances into phoneme sequences, 

which are assumed to be the raw materials necessary to form more abstract representations. 

2.2.2 The Phoneme and Related Units 

Naturally a fundamental concept underlying any approach to automated phoneme 

recognition is the concept of the phoneme. It is, therefore, regrettable that the phoneme and 

related concepts are poorly described by some authors when discussing speech processing. For 

instance, some authors make no distinction between phonetic and phonemic analyses of 

speech utterances. Owens (1993, page 85) states that "The aim in phonetic analysis is to 

derive the phonemic structure of an utterance directly from the speech signal". Consequently, 

it is common for speech researchers to describe the relationships between acoustic events and 

phonemes as acoustic-phonetic mappings (Owens 1993; Waibel et al 1989a; Waibel and 

Hampshire 1989), rather than acoustic-phonemic mappings. Some authors regard phonemes 

as the "building blocks" of speech utterances, rather than abstract units for describing or 

modelling them. For example, Morgan and Scofield (1991, page 97) suggest that phonemes 

are "used to pronounce a word" and that "Phonemes are constructed from permutations of 

voicing, tongue, mouth, jaw and lip positions". Other authors do not distinguish between 

phones and phonemes, despite the former being tangible speech sounds and the latter being 
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abstract units (as discussed in this section). For example, Lee (1990) refers to the "50 phones 

in English" (rather than the 50 phonemes in English) and the "phone ItI" (rather than the 

phoneme ItI). As a consequence of poor descriptions like those above, this section presents 

a concise review of the phoneme and related concepts of interest to researchers in automated 

phoneme recognition. 

The phoneme is for linguists the most basic unit beyond which it is not worth 

proceeding when describing the meaning of larger units (Gimson 1989). This abstract unit is 

the principal concern of phonology and is the fundamental unit used when describing the 

sound structure of a language (Crystal 1980). The concept of the phoneme is not a new one. 

As Arbercrombie (1991) suggests; 

The phoneme idea is found as an explicit concept about 1880, but for a considerable 

time before we can find it implicit in a number of early writers on language. They 

may point out, for example, that some differences of sound in a language do not affect 

meanings; or do not have to be shown in writing; or have no reality for either speaker 

or hearer, by whom they are 'not felt' or 'not heard'. 

The term phoneme was coined by the French phonetician A. Dufriche-Desgenettes and 

first used in a paper he presented to the Societe de Linguistique in 1873 (Abercrombie 1991). 

In 1879, the phoneme was given its current technical sense, as something to be contrasted 

with, and distinguished from, a speech sound, by the Polish linguist M. Kruszewski 

(Abercrombie 1991). 

A phoneme is simply defined as "the smallest unit of sound in a language which can 

distinguish two words" (Richards et at 1985). For example, utterances of the words pin and 

bin may differ only in their initial sounds which can be treated as realizations of the 

phonemes Ipl and fbI. This simple (linguistic) definition, though useful, is perhaps misleading 

since one might conclude that phonemes are tangible units of sound. In reality, "phonemes 

are the abstract units that form the basis for writing down a language systematically and 

unambiguously" (Ladefoged 1982). To clarify this view, Figure 2.2.2-1 presents an idealized 

pictorial representation showing some of the conceptual relationships between phonemes and 

speech sounds. This figure, like the notion of the phoneme itself (Clark and Yallop 1990), is 

extremely controversial. It is unlikely that any linguist would condone such a simple 

representation, however, it is necessary for engineers to formulate a "model" of the 

relationships between phonemes and speech sounds in order to progress with the problem of 

automated phoneme recognition. 

The outermost region depicted in Figure 2.2.2-1 represents all the sounds which may 

be produced by human vocal organs and is referred to as the sound-space. The study of these 
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Figure 2.2.2-1. An idealized representation ofthe conceptual relationships between phonemes, allophones and phones. 
Sound-space contains all the sounds, or phones, that may be produced by human vocal organs. This space is partially 
spanned by phonemic-space which contains all the phones used by a particular language or accent. Phonemic-space 
is sub-divided into phoneme-spaces, representing phonemes, which group phones that similarly affect the meanings 
of utterances in which they occur. Phoneme-spaces are futther sub-divided into allophone-spaces which represent a 
phoneme's allophones, or its significant phonetic variants. Developed in collaboration with Catherine Watson. 

sounds, or phones5
, is the principal concern of phonetics (Catford 1988) and is language 

independent. 6 Within this space, a fuzzy framework modelling the sound structure, or 

phonology, of a language may be superimposed. This framework encloses a region referred 

to as the phonemic-space and contains all the phones used by a language or accent. In 

general, phonemic-spaces are smaller than the sound-space, since languages seldom use all 

possible phones. In English, for example, phones such as "clicks" are not used during the 

course of normal speech. 

The organization of phonemic-space is the central concern of phonology. The 

phonemic-space may be subdivided into overlapping regions representing the phonemes of 

5 A phone is "the smallest perceptible discrete segment of sound in a stream of speech" 
and, within segmental models of speech, is the physical realization of a phoneme (Crystal 
1980). 

6Speech sounds analyzed phonetically are normally represented by symbols enclosed 
between [] to avoid confusion with phonemes. The later are represented by symbols placed 
between II. Sequences of symbols placed between [] and II are referred to as phonetic and 
phonemic transcriptions, respectively. 
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a language (these are referred to as phoneme-spaces). This division, like the extent and 

location of phonemic-space, is highly language and accent dependent. A phoneme-space, 

being a sub-space within sound-space, contains an semi-infinite number of phones. These 

phones are realizations of a phoneme and are grouped together because of their common 

effect on the meaning of utterances in which they are used. For example, the realizations of 

the phoneme Ipl in utterances of the words ape (leipl) and pie (lpail) are likely to be different 

phones, yet from the perspective of meaning, they serve equally to distinguish ape and pie 

from utterances of the words aid (/eidl) and dye (/dail), respectively. 

The phoneme-spaces depicted in Figure 2.2.2-1 overlap to reflect the fact that certain 

phones may be "interpreted" as one of two or more phonemes, depending on the context in 

which they are used. For example, a phone lying in the overlapping region of the phoneme­

spaces for Idl and It! may be used when uttering a phrase commencing I was ridingiwriting ... 

(Moulton 1969). This phone is interpreted as a realization of It! or Idl depending on whether 

riding or writing is "selected" by a hearer using the context provided by the rest of the phrase. 

For example, if the entire phase uttered were I was riding/writing a horse, this phone would 

usually be interpreted as a Idl giving the phrase I was riding a horse.? 

As Figure 2.2.2-1 shows, phoneme-spaces may be further subdivided into overlapping 

regions whose elements systematically vary from those of another phoneme-space sub-region 

according to the contexts in which they are used (linguistic or social contexts, Crystal 1980). 

These regions are referred to as allophone-spaces in this thesis and delineate the major 

variants, or allophones, of a phoneme.s For example, the phoneme III may contain allophonic­

spaces such as those denoted by [1], [1] and [0] ([0] appears as an allophone of III in models 

of the Cockney accent of English, Gimson 1989). Allophonic observations are not required 

in order to represent the meaning of word length utterances. However, they are sometimes 

necessary when describing continuous speech to remove ambiguities arising from the 

economy of pure phonemic transcriptions (see §2.2.3). 

The division of phonemic-space into regions of phones related by meaning, is an 

abstraction similar to calling a band of the visible light spectrum orange. As Catford (1988, 

page 203) explains, 

?This example also demonstrates that ambiguity at the phonemic level may require 
semantic knowledge to correct. Both riding and writing are verbs, therefore, the ambiguity 
arising in the example cannot be overcome at the grammatical level. Semantic knowledge that 
I was riding a letter and I was writing a horse are unlikely phrases, is required. 

8Following Catford (1988), allophones are assumed in this thesis to be abstract units like 
phonemes, with the exception that their realizations are more uniform. However, it must be 
noted that some linguists treat allophones as tangible phoneme realizations (Crystal 1980; 
Bolinger 1975) and transcribe them using symbols within [], as is the normal practice when 
transcribing phones. 
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It is important to be aware that phonemes are abstractions or generalizations: they are, 

that is to say, abstract phonological units, each of which is manifested, or realized, in 

speech in a number of different ways. You cannot pronounce a phoneme. You can 

only pronounce a specific sound which may be the realization of a phoneme. If you 

say, for instance, the English word cat you are producing a quite specific sequence of 

sounds. That sequence of sounds is not itself a sequence of phonemes: it is the 

outward or concrete manifestation, of the sequence of phonemes that we represent in 

the transcription as /kretl. 

The phonemes of a language are typically identified through the process of 

commutation, the discovery of minimal pairs through sound substitution (Gimson 1989, 

Crystal 1980). The words pin and bin are an example of a minimal pair which reveal the 

phonemes Ipl and /b/. Phonemic representations of pin and bin, IpInI and /bIni, differ only in 

their initial phonemes which represent, abstractly and economically, the differences in sound 

quality that distinguish these words for speakers of English. 

Ideally, observations from numerous minimal pairs, including those where contrasts 

occur in word initial, medial and final positions, reveal all the phonemes of a language, a set 

described as a phonemic solution. However, it is often necessary to consider the wider 

patterning of sounds within a language when developing such a solution (Clark and Yallop 

1990). For example, in phonemic solutions for English, it is common for the sequence of 

sounds [tf] (as found at the start of the word chop) to be treated as one phoneme, the affricate 

ItIl, whereas the sequence of sounds [ts] (as found at the end of a word like spots) to be 

treated as two phonemes, the voiceless plosive Itl and the fricative lsI. A phonemic solution 

may be likened to one subdivision of a phonemic-space into phoneme-spaces and is not 

necessarily the only subdivision possible. Several phonemic solutions for English are currently 

in use, due mainly to the varying significance attached to vowel quality (Gimson 1989). 

The use of minimal pairs to develop a phonemic solution results in an inventory of 

phonemes given by negative, rather than positive, definitions (Gimson 1989). For example, 

the essence of Ipl is that it is not Itl or 1kI. To provide positive phoneme definitions, linguists 

describe the significant (qualitative) features concerning the voice, place and manner by which 

their realizations are articulated (see Crystal 1980 for a discussion of voice, place and 

manner). For example, the English phoneme Ipl is described positively by the features 

voiceless, bilabial, oral, stop (see Crystal 1980 for definitions of these terms). Such a feature 

description may cover many, but not all, realizations of a given phoneme. For example, Ipl 

may also be realized as a labio-dental stop instead of a bilabial stop in words like cup-full. 

Features ascribed to the articulation of phoneme realizations are intended to highlight the 

differences, or oppositions (Crystal 1980), between phonemes, rather than to provide a full 

description. 
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As discussed above, the realization of a phoneme may vary depending on the phonetic 

context in which it is used, the major variants being grouped as allophones. This variation is 

referred to generally as context-sensitivity or co-articulation (though the latter term is not used 

consistently by all linguists ) (Clark and Yallop 1990). Co-articulation results because, as Clark 

and Yallop (1990, page 118) state; 

Speech does not consist simply of a string of target articulations linked by simple 

movement between them. Instead, the articulation of individual segments is almost 

always influenced by the articulation of neighbouring segments, often to the point of 

considerable overlapping of articulatory activities. 

Co-articulation is necessary to cope with the inherent delay between neuromuscular 

commands and their associated speech gestures that results from the inertia of a speaker's 

active articulators (Clark and Yallop 1990). If co-articulation was avoided, normal speaking 

rates of 150 words a minute, or 3 to 5 phonemes per second (Miller 1981), would be difficult 

to attain. Consequently, co-articulation is not a needless complication interfering with the 

ideal properties of speech, but rather is an efficient encoding scheme that ensures good 

performance despite the constraints imposed by the human vocal organs (Clark and Yallop 

1990). 

Within linguistic research, phonemes are often used to transcribe speech utterances. 

Phonemic transcription (or broad transcription) is the most common and least cumbersome 

method of indicating the spoken realization of language (Gimson 1989). For example, a 

utterance of the word titles may be transcribed phonemic ally as /taitlz/. Within this highly 

sophisticated representation are a number of implicit assumptions (Gimson 1989). First, it is 

assumed that the phonemes transcribed have predictable realizations as phones based on the 

phonological rules of their associated language. For example, the phonetic transcription (or 

narrow transcription) [tShli"etUz.] representing the phones used when uttering the word 

titles, should be predictable from Itaitlz/. Secondly, within a phonemic transcription, the 

number and nature of the phonemes comprising the phonemic solution assumed, is also 

implicit. Traditionally, automating phonemic transcription has been the aim of researchers 

attempting automated phoneme recognition. However, these transcriptions are not without 

problems as discussed in §2.2.3. 

A suitable summary for many of the concepts presented in this section is provided by 

Gimson (1989, page 221): 

Speech must, therefore, be considered from a phonetic point of view as an ever­

changing continuum of qualities, quantities, pitches and intensities. If, for practical 

purposes, e.g. in a phonetic/phonemic transcription of the spoken language, we treat 
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speech as a succession of articulatory or auditory separable units, it is largely because 

we impose, upon the gross material of speech, entities which we have derived 

(consciously or unconsciously) from a knowledge of the linguistically significant 

oppositions operating for any particular language system, i.e. the phonemic 

categories .... 

.. .It should not, however, be forgotten that such a linear presentation is an abstraction 

from the concrete material of speech rather than a statement of the gross phonetic 

material composing the continuum. 

2.2.3 Problems With Phonemic Representations 

In developing models incorporating the phoneme to describe speech utterances, 

linguists have identified a number of problems with them. These problems may influence the 

ability of an automated ~peech recognition system to form a transcription of a speaker's 

message, or understand its meaning. This section discusses some of the major problems with 

phonemic models of speech utterances. All but the first of these problems are left for future 

work. 

The first and most obvious problem with phoneme based models is identifying the 

speech portions which correspond to phoneme realizations. In this thesis, Fant's model 

relating phonemes and speech signals, depicted in Figure 2.2.3-1, is adopted (Fant 1973, page 

22). A speech 'signal may be partitioned into segments, as discussed in §2.1.2, and shown in 

parts (a) and (b) of Figure 2.2.3-1. Neighbouring segments may share common features (see 

part (c)) that may span all, or part, of their length depending of which "changes in waveform 

structure" are used to establish segment boundaries. Each segment may contain information 

corresponding to one or more phonemes, as indicated by the phoneme-sound correlation plot 

in part (d), and each phoneme may span one or more segments, as shown in part (e). Ideally, 

the speech portion assigned to each phoneme has the highest correlation with that phoneme, 

giving the ideal segmentation shown in part (t) of Figure 2.2.3-1. In practice, however, 

phoneme-sound correlation, as depicted in part (d) of Figure 2.2.3-1, is seldom known9
, 

implying the speech portions associated with the phonemes depicted in part (e) must be 

established using educated "guesswork". The method by which such speech portions 

associated with phonemes are identified in this work is discussed in §3.3. 

Another significant problem with phonemic representations is caused by the high 

9 A system capable of deducing phoneme-sound correlations could also serve as a 
phoneme recognition system. 
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Figure 2.2.3-1. The conceptual relationship between speech segments, features and phonemes after Fant (1973). The 
speech signal in part (a) (utterances of bide and bade) may be partitioned into the segments shown in part (b), which 
may share similar features with one another as indicated by part (c). Depending on the phoneme-sound correlation 
(part (d)) within its extent, a segment may contain information concerning one or more phonemes (part (e)). Similarly, 
the ideal extent of a phoneme (part (e)) may include one or more segments. Part (f) shows the ideal segmentation of 
the speech signal in part (a) into "phoneme realizations" which is only possible when the ideal phoneme sequence 
(part (e)) is known. 

degree of redundancy present in languages such as English (Miller 1981; Gimson 1989). As 

a consequence of this redundancy, a high level of confusion is tolerable at the phonemic level 

(Gimson 1989). This fact is utilized by speakers when speaking in a rapid or casual manner. 

Phonemic transcriptions derived from utterances spoken rapidly or casually may diverge from 

"ideal" (or desired) transcriptions in two ways, both of which preclude simple transformations 

to determine more abstract linguistic units, such as morphemes and sememes. 
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The first divergence, assimilation, results when the realization of one phoneme 

approaches that of another due, to the influences of phonetic context (the realizations of 

neighbouring phonemes, Crystal 1980, Clark and Yallop 1990). For example, the realization 

of InJ in ten bikes may be more like a realization of 1m! when this phrase is uttered 

informally. In this case, the phonemic transcription produced by an automatic phoneme 

recognition system might be Itembaiks/, rather than Itenbaiks/, thereby complicating the 

deduction of the desired morpheme ten. 

The second divergence, elision, results from the omission of sounds, or groups of 

sounds, from connected speech (Crystal 1989; Clark and Yallop 1990). For example, 

realizations of words such as camera and february may omit entire syllables, causing them 

to be transcribed phonemic ally as Ikarnral and Ifebri/, respectively (Crystal 1980). Once again 

such sequences complicate morpheme deduction. 

Another significant problem with phoneme based models of speech arises from the 

desire of engineers to use automated phoneme recognition to process utterances containing 

multiple words. Such usage is not entirely shared by linguists when describing speech for 

their purposes. As Gimson (1989 page 52) points out 

It frequently happens that a phonemic analysis is based on a unit not larger than the 

word. If any larger section of the utterance is used, the analysis becomes a great deal 

more complicated. 

This point is demonstrated by the two phrases plum pie and plump eye which may share an 

identical phonemic transcription IplampaII (Gimson 1989). Utterances of these phrases are 

distinguished principally by the aspiration that accompanies the realization of Ipl in pie ([ph]), 

which is absent from the realization of the final Ipl in plump ([pD. Aspiration, and other 

aspects of pronunciation, are not commonly presented in traditional phonemic transcriptions 

(particularly those produced automatically), since they are typically not essential when 

ascribing meaning to sounds. However, as in the case shown, the recognition of such features 

may be required in parallel with phoneme recognition to avoid ambiguity when attempting 

to recognize utterances containing multiple words. 

The final problem with phoneme based models is that of phoneme neutralization 

(Girnson 1989). When describing the phonology of a language, it happens that some phones 

may be assigned to one of several phonemes with equal validity. For example, in English the 

phones directly following the realization of lsI in spin, steam and scum could be treated as 

realizations of Ipl, It! and 1kI, respectively, or Ibl, Idl and Ig/, respectively. For orthographic 

reasons, Ipl, It! and IkI are commonly used when transcribing these phones, even though they 

are reputed to have more in common with realizations of Ib/, Idl and Ig/ perceptually (Gimson 

1989). This approach causes no ambiguity within linguistic models of English, since Iptk/ are 
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never opposed to fbI, Idl and Igl after lsI, however, it is unclear whether this arbitrary decision 

is equally suited to automated phoneme recognition, which attempts to emulate human 

perception. This example highlights the need for engineers to seek alternative "phonemic 

solutions" suited to automated speech recognition, as was done when transcribing the TIMIT 

speech database (see Zue and Seneff 1988). 

2.3 The Phonology of New Zealand English 

This section introduces the phonology of New Zealand English and the phonemic 

solution for this accent adopted in this work. New Zealand English has gradually developed 

as a distinct variety of English during the course of the last one hundred years (Holmes and 

Bell 1992). Phonologically, New Zealand English is a variety of English similar to that found 

in the southeast of England, however, phonetically its is quite distinct (Holmes and Bell 1992; 

Bauer in print). Differences between British RplO
, American and New Zealand English 

phoneme realizations provide one motivation for attempting the automated recognition of New 

Zealand English phonemes, as discussed in chapter 1. Like Australian English, the 

pronunciation of New Zealand English varies with "social class", causing linguists to define 

two types of New Zealand English accent, referred to as general and broad (Bauer 1986). The 

former is more "cultivated" than the latter and is the accent spoken by both New Zealand 

English speakers studied in this work (see §3.1) 

New Zealand English, according to one phonemic solution, may be described using 

the 43 phonemes listed in Table 2.3-1. This solution is based upon that proposed by Hawkins 

(1973) and differs only in the omission of lal, which by Hawkins' own admission "cannot be 

established as a separate phoneme for New Zealand English". The phoneme notation adopted 

in this thesis is identical to that proposed by Carstairs-McCarthy (1989) (based upon Hawkins 

1973), with the exception of the labels associated with the closing diphthongs, which follow 

the more familiar notation used by Jones (1967). 

The phonemes listed in Table 2.3-1 are divided into the broad classes labelled vowel 

and consonantY The consonants, of which there are twenty four, are subdivided into groups 

l<Rp is short for received pronunciation and refers to a regionally neutral accent of British 
English (Crystal 1980). 

11 The convention of using the terms consonant and vowel to refer to phonological 
function rather than phonetic form, proposed by Pike (Clark and Yallop 1990, Gimson 1989, 
Crystal 1980), is adopted in this thesis. The term vowel is applied to phonemes which 
typically form the nucleus of syllables rather than to the entire group of phonemes whose 
realizations are examples of vocoids (Crystal 1980). Consequently, the phonemes Irl, Ill, IjI 
and Iwl, though typically realized as vocoids, are treated as consonants in English due to their 
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Figure 2.3-2 Cardinal vowel diagrams for (a) vowels realized with unrounded lips (see Figure 2.3-3 (a) and (c)) and 
(b) vowels realized with rounded lips (see Figure 2.3-3 (b)). The eighteen cardinal vowels (male average) are 
displayed on two separate diagrams, in this figure, to allow the frequencies of the fust two formants, PI and F2 to be 
indicated (normally these diagrams are superimposed, as in Clarke and Yallop (1990)). The tongue position labels 
indicate the location of the tongue when producing each cardinal vowel. For example, i is produced with the tip of 
the tongue ("Front") approaching near to the palate ("Close (High)"), placing the vocal tract in a closed formation. 
Adapted from Catford (1988) and Clarke and Yallop (1990). 

based on the primary features of their articulation. The vowels, of which there are nineteen, 

are subdivided into two separate categories labelled monophthong and diphthong. The former 

category contains phonemes whose realizations exhibit little perceptible change in quality wi~h 

time (sometimes called pure vowels), whereas the phonemes contained in the latter category 

are realized with considerable changes in quality, or glides (Crystal 1980). 

Unfortunately, the description of vowel realizations, particularly in terms of place, is 

more complicated than it is for the consonants, since vowels are not produced with such 

obvious articulator contact or proximity. Consequently, it is common practice to describe 

vowel quality in terms of a set of language independent reference realizations known as the 

cardinal vowels (Catford 1988). Figure 2.3-2 shows cardinal vowel diagrams which represent 

the "space" occupied by the rounded and unrounded cardinal vowels for an average adult 
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(a) Spread (b) Rounded 

(c) Neutral 

.......................................................................................................................... , ........................................................................................................... :.::: 

Figure 2.3-3. Various lip configurations that may be observed during normal speech. Vowel realizations are often 
described as being rounded (b) or unrounded (a or c) depending on the lip configurations used to realize them. 

(a) Unrounded 

00 o 

(b) Rounded 

(, ................ . ~~~.: ............ .... . ~.:~~.~~~.~~~~~~ .................. ...... ~.~i~.~~~.~~~.S~~... . ..... 1 
Figure 2.3-4. A comparison between the cardinal vowels (Figure 2.3-2) and the monophthong and closing diphthongs 
of New Zealand English (average of 25 male speakers). Unfortunately, diphthong representation is complicated in 
this figure by pi/ and taut which transit between rounded and unrounded vowel qualities. Adapted from Maclagan 
(1982). 
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male (unfortunately, no similar female diagrams were presented in Catford 1988). The terms 

rounded and unrounded refer to lip configurations like those depicted in Figure 2.3-3. 

Figure 2.3-4 shows the monophthongs and closing diphthongs of New Zealand English 

(an average of 25 male speakers, Maclagan 1982) superimposed on the cardinal vowel 

diagrams given in Figure 2.3-2 (the centring diphthongs are ignored for reasons discussed in 

§2.4). This figure shows that the glides associated with realizations of certain closing 

diphthongs may contain qualities (approximately) characteristic of the realizations of one or 

more monophthongs. As a consequence of this proximity, the behaviours of the expert 

modules for closing diphthong recognition discussed in this thesis have been examined in 

response to utterances containing monophthong realizations. Interestingly, the average glides 

associated with lail and leil in Figure 2.3-4 do not exhibit the overlap observed in this work 

(see Figures 4.2.3.1-3 and 4.2.3.1-4). This fact is most likely due to the averaging of glides 

produced by speakers with general and broad New Zealand English accents (see Bauer 1986). 

For the latter, the glides associated with lail and leu are typically more distinctive, as depicted 

in Figure 2.3-4. 

2.4 Diphthongs 

This section discusses one particular class of phonemes known as the diphthongs. 

Table 2.3-1 lists the closing and centring diphthongs of New Zealand English which constitute 

just under one half of this accent's vowel phonemesP Closing diphthongs are characterized 

by'glides that tend towards the top of the cardinal vowel diagram shown in Figure 2.3-2 (see 

Figure 2.3-4), implying their final qualities are produced by more closed vocal tract 

configurations. Centring diphthongs, by contrast, tend to the centre of the cardinal vowel 

diagram. 

Traditionally, diphthongs are denoted using a sequence of two symbols, such as lail 

or leil, to highlight their changing qualities which result from changing vocal tract 

configurations (Cleremont 1991). Such sequences do not cause ambiguity in phonemic 

transcriptions of English utterances, since monophthongal sequences, such as Ia! followed by 

Iii, do not occur (Hawkins 1973). Despite this, the biphonemic notation can give a misleading 

impression of the qualities of a diphthong. laiI, for example, is not realized by concatenating 

12In recent texts on automated speech recognition (see for example Morgan and Scofield 
1991; Owens 1993), diphthongs are often distinguished from vowels, despite the many 
linguistic texts concerning English which regard diphthongs as one class of vowels (see for 
example, Clark and Yallop 1990; Gimson 1989; Ladefoged 1982). Given the nuclear 
distributions of diphthongs within English syllables they, like the monophthongs, are regarded 
as vowels in this thesis. 



36 CHAPTER 2 SPEECH AND AUTOMATED SPEECH RECOGNITION 

realizations of the monophthongs Ia! and Iii (Hawkins 1973). Indeed the qualities associated 

with each end of a diphthong's glide (marked diphthong-glide in Figure 2.4-1) may not 

resemble any monophthong vowel quality at all (Ladefoged 1982; Lehiste and Peterson 1961). 

1 
» 
e.n v c 
~ 
"0 v 0.5 

(a) N 

~ 
E 
0 z 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
Time (sec) 

4 

----
~ 3 
» 
(,) 
c 2 

(b) v 
::l 
0' 

&: 1 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
Time (sec) 

2.2 1.6 - F2 (kHz) 1 0.2 

( Off-glide) ~ 
~ 

Steady-state 2 ~ 
0.5 

On-glide 
(c) 

Steady-state 1 

"----_---'--_----'-__ ~_---'-_~ _ ______1 0.9 

Figure 2.4-1. Instrumental analysis of the word bide containing a realization of the closing diphthong lail (female 
speaker). Part (a) shows a plot of normalized signal energy which decays during lail's realization (the interval from 
0.25 to 1.4 seconds approximately) as is typical. Part (b) shows the formant tracks corresponding to the entire 
utterance which have been subdivided into sections relevant to the realization of lail. Part (c) shows the trace of the 
first two formants in part (b) plotted against one another. This plot omits the time axes so that steady states become 
single points, thereby emphasizing the glides. 



2.4 DIPHTHONGS 37 

Some authors, such as Hawkins (1973), choose to notate diphthongs using a 

biphonemic sequence with the second element superscripted, for example lail and lei/. This 

is intended to reflect the typical prominence of the first quality within diphthong realizations, 

which is usually longer in duration and larger in amplitude (Ladefoged (1982), Hawkins 

(1973». Figure 2.4-1 illustrates this point. The fIrst "steady state" portion (steady-state 1) is 

longer in duration and more intense than the second (steady-state 2), as shown by parts (b) 

and (a) of Figure 2.4-1, respectively. On occasions, this pattern of prominence within 

diphthong realizations may be reversed with the final quality being emphasized. Consequently, 

increasing signal energy may not be used as a robust indicator for the absence of a diphthong. 

Part (c) of Figure 2.4-1 shows the trace which results when the first two formants in 

part (b) are plotted against one another. For convenience, this trace is referred to as an F]-F2 

trajectory in this thesis. The unusual axes directions within this plot ensure that the FeF2 

trajectory shown resembles the orientation of its associated glide in a traditional cardinal 

vowel diagram (in this case, the glide for lail in Figure 2.3-4). FeF2 plots of this kind are 

commonly used during instrumental studies of speech sounds (see Maclagan 1982, for 

example) and are utilized in this work to select speech portions for training phoneme 

recognition systems (see §3.3). Such plots reduce "steady-state" speech portions to single 

points, emphasizing the glides within phoneme realizations. 

As well as classifying diphthongs by their glide directions (centring or closing), some 

authors, following Lehiste and Peterson (1961), divide the diphthongs of a language into 

genuine (or phonemic) and pseudo (or non-phonemic) types (see Cleremont 1991; Bond 1978; 

Bond 1982). Genuine diphthongs consist of two steady-state portions separated by a glide and 

are, therefore, considered to contain two targets (Bond 1978). The diphthong depicted in 

Figure 2.4-1 is an example of such a diphthong. By contrast, pseudo diphthongs consist of 

only one target and a glide within which this target is embedded (Lehiste and Peterson 1961). 

The particular diphthongs classifIed as genuine and pseudo English diphthongs is 

accent dependent. For example, Bond (1982) classifies lail, lau! and bil realized by speakers 

of American English (from Dayton, Ohio) as genuine diphthongs, whereas Bernard (1970) 

classifies lail, lau!, bit, leil and lou! realized by speakers of "general" Australian English as 

genuine diphthongs (the last two diphthongs in this case being pseudo diphthongs in American 

English, Lehiste and Peterson 1961). For Australian accented English, the set of genuine 

diphthongs corresponds exactly to the set of closing diphthongs. Given the similarities 

between Australian and New Zealand diphthongs (Maclagan 1982), it is assumed in this thesis 

that the closing diphthongs of New Zealand English are also its genuine diphthongs. 13 

BIn the experiments described in chapter 5, only the closing diphthongs of New Zealand 
English were considered. This simplification was made for two reasons. First, it is assumed 
that only the closing diphthongs of New Zealand English exhibit the true characteristics of 
a diphthong under the definition given by Lehiste and Peterson (1961). Second, and more 
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On encountering genuine diphthongs for the first time, it may be wondered why the 

realizations of such phonemes - the apparent concatenation of two vowel like qualities -

should be treated as single phoneme at all? Within the phonology of a language, the 

classification of complex vowel-like sound sequences depends upon their function. In English 

certain vocoid sequences are classified as diphthongs because they act as a single vowel 

forming the nucleus of a syllable (Clark and Yallop 1990). For example, the word bide 

(/baidl) which contains the diphthong lail, is considered to be monosyllabic, even by 

phonologically naive speakers. Other complex sequences, such as those occurring across word 

boundaries in continuous speech, are regarded as concatenated monophthongs, since their 

elements belong to different syllables. The complex sequence of Iii and Ia! resulting from the 

combination of the words key (/kiI) and arch (/atS/) in the phrase, "The key arch of the 

building ... ", is such an example. 

Interestingly, phonemic solutions for some languages, such as Japanese (Okada 1991), 

have no diphthongs at all, whereas others, such as Hong Kong Cantonese (Zee 1991), have 

more than English. In the case of Japanese, all complex sequences of two vowel-like sounds 

have "two distinct elements which constitute two different 'morea' linked by a glide" (Dolan 

and Mimori 1986).14 Consequently, experiments using TDNNs to recognize Japanese 

phonemes (Waibel et al1989b) have avoided the problem of diphthong recognition altogether. 

Diphthong Usage (%) 

lail 1.83 
leil . 1.71 
loul 1.51 
laul 0.61 
bil 0.14 

Table 2.4·1 The average usage of each closing diphthong in colloquial RP English (Gimson 1989). For this accent, 

the closing diphthongs occur 4.8% of the time and the vowels (all types) 39.2%. 

Table 2.4-1 lists the frequency of occurrence of the closing diphthongs in colloquial 

RP English (Gimson ·1989). Assuming these levels are applicable to New Zealand English 

also, since this accent is morphologically and phonologically similar to RP (Maclagan 1975), 

importantly, there is currently considerable uncertainty about the number and nature of 
centring diphthongs within New Zealand English, due to the apparent merger and 
monophthongalization of IiI! and leI! and the infrequent usage of luI! (Maclagan 1982). 

14A mora is a unit of timing; each mora takes the same amount of time to say (Ladefoged 
1982). 
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the diphthongs lail and lei! are the most frequently used, closely followed by lou/. These 

usage levels are significant, since the experimental results discussed in chapter 5 demonstrate 

that lail and lei! are the most readily confused of the five closing diphthongs of New Zealand 

English, at least when realized within phonemic contexts including fbi, Idl and Ig/. 

The experiments involving closing diphthongs discussed in chapter 5 are motivated 

by the small number of results reported concerning closing diphthong recognition by TDNNs, 

particularly for non-American accents. Realizations of the closing diphthongs produced by 

American and New Zealand English speakers differ significantly, posing different problems 

for recognition. In particular, American realizations of lail and lei! are distinctive since only 

the latter is a genuine diphthong (see Bond 1982), whereas in New Zealand English, both 

phonemes are genuine diphthongs whose realizations may share similar spectral features (see 

Figure 4.2.3.1-4). 

2.5 Automated Speech Recognition Using Sub-word Units 

This section presents an overview of automated speech recognition in conjunction with 

sub-word units15
, including the phoneme. These units, and the recognition approaches with 

which they are commonly associated, are discussed in the next section. This is followed in 

§2.5.2 by an overview of automated phoneme recognition, the variety of sub-word recognition 

attempted in this work. 

2.5.1 Some Sub-word Units 

Attempts at automated speech recognition through sub-word unit recognition are 

motivated strongly by the desire to achieve large vocabulary speech recognition (Holmes and 

Pearce 1993; Lee 1990). Recognition systems based on word recognition have been shown 

to work successfully for small vocabularies (Lippmann et al 1987; Rabiner et al 1988), 

however, increasing the scale of these systems poses several serious problems. For example, 

word recognition systems must be trained for each word individually (training data may not 

be shared between words, Lee 1990), implying a large quantity of training data is required. 

This inconvenience extends to user-added words for which several repartitions are also 

required to enable training. 

In contrast to words, sub-word units permit training data for more than one unit to be 

15The term sub-word unit is one used commonly by engineers, whereas linguists prefer 
the term segmental unit. 
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derived from a common utterance, reducing the number of utterances required for training. 

For example, an utterance of the word bide (fbaidl) may be used to create training data for 

three phonemes (fbI, lail and IdI), rather than just one word. This approach becomes desirable 

when the size of the vocabulary exceeds the number of sub-word units to be recognized. 

Lee (1990) suggests good sub-word units should be consistent and trainable 

(sentiments echoed by Holmes and Pearce 1993). Consistency implies that different instances 

of the same sub-word unit should have similar characteristics, while trainability refers to the 

amount of training data required for successful system operation. Importantly, the degree to 

which a sub-word unit must be consistent is dependent upon the approach used to recognize 

it. For example, Lee and Alleva (1992) regard the phoneme as an inconsistent unit, when used 

in conjunction with hidden Markov models (HMMs), since phonemic HMMs perform poorly 

due to their "broad distributions". Despite this, other authors, such as Waibel (1992), fmd the 

phoneme sufficiently consistent to allow good recognition performances in conjunction with 

artificial neural networks (ANNs). Both authors agree that the limited number of phoneme 

units (43 for New Zealand English, see Table 2.3-1) makes such units very trainable. 

To improve the performance of HMMs for sub-word unit recognition, a number of 

new sub-word units have been proposed. For example, some authors use diphone and triphone 

units to overcome the variation inherent in phoneme realizations. These units are used to 

better model phoneme realizations and the transitions between them (Lee 1990). Though 

diphone and triphone HMMs prove more consistent than phoneme HMMs, they are less 

trainable since there are significantly more of them. Lee (1990) overcomes this problem by 

using generalized triphones, which are clusters of traditional triphones having similar hidden 

Markov models. This approach significantly reduces the number of sub-word units required 

making them more trainable. 

Despite these and other sub-word units proposed, the phoneme is selected for 

automated recognition in this thesis since many authors, such as Kasabov (1993), Fallside 

(1992), Watrous (1990) and Waibel et al (1989a, 1989b), have shown that phonemes may be 

successfully recognized using ANNs. 

2.5.2 Automated Phoneme Recognition: An Overview 

Automated phoneme recognition is defmed in this thesis as the process of assigning 

abstract phonemic symbols to speech portions in order to produce phoneme sequences 

resembling traditional phonemic transcriptions in symbol ordering. Due to co-articulation, it 

is likely that such portions may contain features associated with more than one phoneme. 

Consequently, it is assumed that the label assigned to a speech portion during phoneme 

recognition corresponds to the phoneme most strongly indicated by the features it contains 
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(a) 
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Figure 2.5.2-1. A simplified view of the ideal operation of an automated phoneme recognition system (part (a)) and 
examples of the types of errors which may occur during non-ideal operation (part (b)). During operation, speech signal 
portions are selected by a frame sliding along the time axis and transformed into input suitable for a recognition 
system. This system responds to its input (one response for each frame position) by producing a sequence of phoneme 
labels (or q indicating "silence"), referred to as a response-sequence. Ideally (part (a)), this sequence contains 
contiguous groupings of identical phoneme labels which are readily collapsed to form a phoneme sequence. In practice 
(part (b)), the response-sequence may contain unwanted responses, leading to false-positive errors, or leave out desired 
responses, leading to omission errors. 

(the phoneme with the highest correlation in terms of Fant's model, see Figure 2.2.3-1). 

Figure 2.5.2-1 (a) shows a simplified view of the ideal operation of a phoneme 
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recognition system. Speech portions are selected by a frame which is stepped progressively 

across a speech signal and transformed to provide input for a recognition system. A 

preprocessing transform is necessary to highlight those features likely to assist phoneme 

recognition, while eliminating irrelevant features like those arising from a speaker's 

environment (this transformation is equivalent to thefeature analysis depicted in Figure 1.1-

1). 

The recognition system responds to its input by producing a sequence of phonemic symbols, 

referred to as a response-sequence in this thesis. For simplicity, this response-sequence is 

depicted containing a single phonemic symbol for each frame position processed, though in 

practice it is likely to contain several alternatives, ranked in order of likelihood (this 

arrangement may be necessary to handle ambiguous phoneme realizations, such as that arising 

in the I was ridinglwriting example discussed in §2.2.2). Ideally, a response-sequence contains 

contiguous groups of replicated symbols corresponding to individual phoneme realizations and 

may be readily collapsed to form an ideal phoneme sequence, like that depicted in Figure 

2.5.2-1 (a). Phoneme sequences contain information concerning the identity, extent and 

relative temporal positions of phoneme realizations observed. Such sequences may be further 

simplified to produce representations approximating traditional phonemic transcriptions. 

However, for the purposes of automated speech recognition, it is desirable to retain as much 

information as possible concerning observed phoneme realizations, to aid subsequent 

processing. 

When training an automated phoneme recognition system, the aim is to make the 

recovery of an ideal phoneme sequence as easy and reliable as possible. Ideally, the examples 

used to train a system should constrain its behaviour such that only desired responses are 

produced. In practice, however, this is not always possible leading to two types of errors, 

referred to as omission and false-positive errors (Miyatake et al 1990 refers to these as 

deletion and insertion errors, respectively). An omission error occurs when the realization of 

a given phoneme present in an utterance does not elicit this phoneme's symbol from a 

recognition system. By contrast, a false-positive error occurs when a phonemic symbol is 

produced that does not correspond to the phoneme realization actually being processed. 

Examples of these errors are depicted in Figure 2.5.2-1 (b). 
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Chapter 3 

Speech Acquisition and Preparation 

This chapter discusses the acquisition and preparation of the speech utterances used 

in the experiments described in chapter 5. §3.1 discusses the vocabulary of the utterances 

acquired as well as the method by which these utterances were digitally sampled. This is 

followed in §3.2 by a discussion of the preprocessing used in this work to prepare speech 

signals for phoneme recognition. Finally, §3.3 discusses the method used to select speech 

portions from closing diphthong realizations to generate training tokens for TDNNs. 

3.1 Speech Acquisition and Vocabulary 

For the experiments discussed in chapter 5, two adult speakers of general New 

Zealand English (see §2.3), one female (speaker HD) and one male (speaker JK), were 

recorded. Both speaker's utterances were recorded digitally in an anechoic chamber using an 

IBM personal computer equipped with a 16 bit analogue-to-digital converter board (an SX-10 

by Antex Electronics). A sampling frequency of Fsamp=lO kHz was used to ensure the 

transitions of each speaker's first three formants were captured (for realizations of the closing 

diphthongs, these lie below 3.2 kHz on average, as shown in Figure 4.2.3.1-4). An anti­

aliasing filter was provided automatically by the SX-10 board with its cutofffrequency set to 

F.3dB=4.4 kHz. Microphone amplification was achieved using a custom built amplifier with 

a maximum gain of 60 dB ,1 

Figure 3.1-1 shows the frequency-domain characteristics of the analogue channel used 

when recording speech in this work (the channel from the amplifier's input to the input of the 

SX-JO board's analogue-to-digital converter). Within the frequency range of the first three 

formants observed for speakers JK and HD (see the lighter shaded region in Figure 3.1-1 (a)), 

the magnitudes of aliased frequencies (frequencies exceeding the Nyquist frequency F Nyquist=5 

kHz, Owens 1993; see the darker shaded regions in Figure 3.1-1 (a)) are attenuated by at least 

70 dB, as suggested necessary by Owens (1993), Within this same frequency range, the phase 

lSuch a high gain is necessary to permit natural speech utterances from quieter speakers 
to be recorded without undue contamination as a consequence of quantization noise (see 
Stremler 1982 for a discussion of quantization noise). 
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response of the analogue channel is approximately linear as shown in Figure 3.1-1 (b). No 

attempt has been made to correct for the phase lags at higher frequencies in this response, 

since phase information is ignored during the preparation of speech signals for automated 

phoneme recognition is this work (see §3.2).2 
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Figure 3.1-1. The (a) magnitude response and (b) phase response of the analogue channel (less the microphone) used 
for recording speech in this work. The magnitude response decays rapidly after the cut-ojffrequency (F.3dB) so that 
aliased frequencies (frequencies exceeding F N)"Ql/iS(=5 kHz) are attenuated heavily, as indicated by the darker shaded 
region marked Aliasing. Within the range of the first three formants exhibited by speakers JK and lID (the lighter 
shaded region marked Range FJ to F3), aliased frequencies are attenuated by at least 70 dB (part (a)) and the phase 

response is approximately linear (part (b)). 

The next section discusses the utterances recorded to train and test examples of the 

expert modules for closing diphthong recognition discussed in §4.2.3. This is followed in 

§3.1.2 by a discussion the utterances recorded to test the abilities of the squad-based expert 

modules discussed in §4.2.3 to "ignore" input corresponding to monophthong realizations. 

2This approach is common and is based on the observation that the Human auditory 
system is insensitive to phase differences between frequencies (see §2.1.3). 
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3.1.1 Closing Diphthong Syllables 

Following the initial experiments involving the recognition of Japanese phoneme 

realizations in conjunction with TDNNs (see §4.2.1 and Waibel et al 1989a; Waibel et al 

1989b; Haffner et al1989; Sawai et a11989; Miyatake et a11990; Minami et a11990; Sawai 

1991a), realizations of the five closing diphthongs of New Zealand English were recorded in 

the context of short isolated utterances. In particular, each of the five closing diphthongs was 

recorded in the phonemic contexts listed in Table 3.1.1-1 to permit observations of isolated 

and syllable initial, medial and final realizations. 

Final Initial 

fbi Id! Igj (J 

fbi fb_bl Id_bl I~bl Cbl 

Idl fb_d! Id_d! Ig_dl Cd! 

Igl fb~1 Id~1 Ig--'61 I~I 

I.J fb..J Id.J Ig_1 I.J 

Table 3.1.1-1. The sixteen phonemic contexts in which each of the five closing diphthongs of New Zealand English 
was recorded in this work. In each context, '_' represents one of the five closing diphthongs. 

In New Zealand English, all five closing diphthongs (particularly lei!) may be realized 

in isolation (represented by (J in Table 3.1.1-1) during informal speech, though only 

realizations of lail constitute formal English words (the words eye and I). Some of the 

phoneme combinations listed in Table 3.1.1-1, like Ibeibl (babe) and Ibaid! (bide), represent 

common words in New Zealand English, while others, like Idoud! (in endowed) and Igaid! (in 

brigade), constitute syllables appearing in common words. Some combinations, like Ig;igl and 

Ig:>ib/, constitute nonsense syllables which appear in no common English words at all. Such 

utterances are necessary for completeness when training a system for closing diphthong 

recognition, since words comprising these unusual phoneme combinations may become 

common at any time. For example, Igeigl only appears in the name Geiger associated with 

the well known term Geiger counter (entering English circa 1928, Korff 1955). Dolan and 

Mimori (1986) also use isolated nonsense syllables during their experiments with English 

diphthongs. 
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For both speakers JK and HD, four realizations of each closing diphthong in each 

phonemic context listed in Table 3.1.1-1 were sampled, giving a total of 320 isolated 

utterances per speaker. Within each speaker's utterances, a total of 800 phoneme realizations 

were recorded, including 320 closing diphthong realizations (64 realizations of each) and 480 
voiced plosive realizations (160 realizations of each). Each utterance was stored in an 

individual file surrounded by short intervals of "silence". 

Though the syllable contexts listed in Table 3.1.1-1 are only a small fraction of those 

possible in English, the realizations of each closing diphthong recorded in these contexts still 

exhibit significant variation, particularly in the on- and off-glides. For example, Figure 3.1.1-1 

shows FI-F2 trajectories estimated from the medial realizations of fail produced by speaker 

HD (36 realizations in total; note that Figure 2.4-1 (c) shows the trajectory associated with 

one of these realizations). Though all aspects of these realizations exhibit variation, the off­

glides in particular vary significantly depending of the identities of the final voiced plosive 

realizations. 

0.1,-----,------,-----,------,-----,-----,------,------

0.2 

0.3 

0.7 

0.8 Key: 

(--=O:-::-ff::--g-:Cli:--:-de-C-=-o-n-te-x~t ) 

0.9 On-glide Context 

2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 

Figure 3.1.1-1. FI-F2 trajectories for syllable medial realizations of lail produced by speaker HD. The shaded region 
highlights the diphthong-glides associated with all 36 realizations shown, which all transit in the direction indicated 
by the arrow. The on- and off-glide contexts marked indicate the identities of the voiced and unvoiced plosives that 

influence the trajectories with which they are associated. 
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Figure 3.1.1-2. Plots of diphthong-glide lengths (measured in token slices, see text) for (a) speaker JK and (b) speaker 
RD. Within each plot, values for the mean (m) and standard deviation (s) of the 64 diphthong-glide lengths displayed 
are given. The mean glide length is also indicated in each plot by the horizontal dashed line. 
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As the shaded region in Figure 3.1.1-1 indicates, the diphthong-glides associated with 

a closing diphthong's realizations may be similar, irrespective of the context in which it is 

realized. It is assumed in this thesis that such glides are characteristic of their associated 

diphthong's realizations and efforts are made to include them in tokens representing these 

phonemes (see §3.3). Figure 3.1.1-2 shows the diphthong-glide lengths measured from the 

closing diphthong realizations recorded for speakers JK and RD. These lengths were estimated 

manually using the software package STEP discussed in §3.3 and are expressed in slices 

indicating the approximate sizes of the tokens required to fully represent them (see §3.2 for 

a discussion token slices). The average slice length of 28.9 slices for all 640 closing 

diphthong realizations considered (an average length of 26 and 31.7 slices for speakers JK and 

HD, respectively) is nearly twice the number of slices used by Waibel el al (1989a) to form 

tokens representing Japanese phoneme realizations (15 slices). To more fully represent (on 

average) the diphthong-glides of speaker JK's and speaker HD's closing diphthong 

realizations, extended-token TDNN (see §4.2.3.1) uses tokens containing 30 slices. The 

benefits of this approach are evaluated by comparing the perfOlmances of expert modules 

comprising these TDNNs with those comprising basic-token TDNNs which use tokens 

containing 15 slices (see §5.1). 

3.1.2 Monophthong Syllables 

. To permit testing of the abilities of squad-based expert modules for closing diphthong 

recognition to "ignore" monophthong realizations (see §5.1.4.2 and §5.2.2), utterances 

containing such realizations were sampled for speakers JK and HD. One realization of each 

monophthong in Table 2.3-1, excluding laI, was recorded in each of the sixteen contexts listed 

in Table 3.1.1-1, giving 160 isolated utterances per speaker (realizations of Ia! were ignored 

due to their similarity to realizations of IAI in New Zealand English; see Figure 2.3-4). Within 

each speaker's utterances, a total of 400 phoneme realizations were recorded, including 160 

monophthong realizations (16 realizations of each) and 240 voiced plosive realizations (80 

realizations of each). 

3.2 Speech Preprocessing 

As discussed in §2.5.2, speech signals to be processed by an automated phoneme 

recognition system must first be converted into a suitable form by a preprocessing transform. 

This section discusses the preprocessing transform used in this work, which was first proposed 

by Waibel et al (1989a). This transform converts a speech signal into a :;pectrogram 
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comprising a series of mel-scaled spectrums from which tokens suitable for a TDNN may be 

derived. It is now explained in conjunction with Figures 3.2-1 and 3.2-2. 

Preprocessing commences by computing mel-scale magnitude spectrums of the speech 

samples contained within a sliding frame (see Figure 3.2-1). This frame contains N=256 

speech samples (25.6 msec of speech when Fsamp= 10 kHz) and is shifted by 50 samples (5 

msec) between successive spectrum estimations to permit short-time spectral characteristics 

to be tracked (Owens 1993; Morgan and Scofield 1991). For each frame position, a mel-scale 

magnitude spectrum is estimated as follows. First the frame's samples, s(nTsamp) n=O,l, ... ,N-l 

(see Figure 3.2-1 (a)) are scaled by the samples of a DFT-even3 Hamming window function, 

h( nTsamp), given by 

[
21tnJ 0.54-0.46cos IV ' n=0,1, ... ,N-1 

(3.2-1) 

0, otherwise 

(Harris 1978). The scaled samples, s(nTsamp)h(nTsamp) n=O,l, ... ,N-l (see Figure 3.2-1 (b)), are 

then transformed into the frequency-domain by evaluating the discrete Fourier transform 

(DFT) given by 

N~l .2nnk 
~J 

S(k) = L s(nTsamp)h(nT,mmp)e 71, k=0,1, ... ,N-1 (3.2-2) 
n~ 

where S(k) is the complex-valued spectral estimate at the frequency f=kFsam/N and 

Tsamp=lIFsamp is the sampling interval (Owens 1993; Morgan and Scofield 1991). The linear­

scale magnitude spectrum given by ls(k)1, k=O,1,2 ... N-l (Figure 3.2-1 (c) shows the 

logarithm of this spectrum), is then compressed into a mel-scale log-magnitude spectrum 

(Figure 3.2-1 (d)) using the transform proposed by Waibel and Yegnanarayana (1981) 

(henceforth referred to as a Waibel transform for convenience). The t h coefficient produced 

by the Waibel transform, W(i) (assuming Fsamp=lO kHz as in Waibel and Yegnanarayana 

1981), is given by 

3A sampled window function is DFT-even when w(n)=w(N-n) for n=1,2, ... ,N-1 and 
w(n=O) is unmatched (where N is the number of samples forming the window) (see Harris 
1978). 
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(3.2-3) 

where i=I,2, ... ,16 and the indices ks and ke are listed in Table 3.2-1 for each value of i.4 

As shown in Figure 3.2-1 (d), the frequency bands associated with the sixteen 

coefficients produced by the Waibel transform vary in width depending on frequency. This 

variation is intended to simulate the varying frequency resolution of human auditory 

perception, as discussed in §2.1.3. Log compression is also used within the Waibel transform 

to simulate varying human auditory sensitivity (see §2.1.3 also). Apart from simulating human 

perception, the Waibel transform also reduces the amount of data required to represent 

spectrum estimates (from 129 coefficients representing the positive frequencies of the linear­

scale magnitude spectrum, IS(k) I, down to 16). This was done to reduce the number of free 

parameters in a TDNN, thereby simplifying its training (see §4.2). 

i ks ke is (Hz) Ie (Hz) 

1 0 2 0 78 
2 2 6 78 243 
3 6 10 243 391 
4 10 14 391 547 
5 14 18 547 703 
6 18 22 703 859 
7 22 26 859 1015 
8 26 30 1015 1172 
9 30 35 1172 1367 

10 35 41 1367 1602 
11 41 48 1602 1875 
12 48 57 1875 2227 
13 57 68 2227 2656 
14 68 81 2656 3164 
15 81 97 3164 3789 
16 97 116 3789 4531 

Table 3.2-1. Indices and frequencies associated with the sixteen mel-scale coefficients produced by the Waibel 
transform. The i'h mel-scale band commences at k=kli) and ends at k=k.(i), which corresponds (approximately) to the 
start and end frequencies Is and Is, respectively. 

4The frequencies associated with the indexes listed in table 3.2-1 differ from those listed 
by Waibel and Yegnanarayana (1981) who incorrectly associate S(k=2) with (approximately) 
117 Hz instead of (approximately) 78 Hz. When Fsamp=10 kHz, a 256 point DFT has a 
frequency resolution of (approximately) 39.1 Hz. Consequently, all the frequencies listed in 
Waibel and Yegnanarayana (1981), expect S(k=O)=O Hz, are in error by (approximately) 39.1 
Hz. 
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Figure 3.2-1. The method by which speech signals are processed in this work to produce mel-scale log magnitude 
spectrums. A group of N=256 speech samples (part (a» is selected by a sliding frame and scaled by a (Hamming) 
window (the results of this scaling are shown in part (b». The scaled speech samples are then transformed using a 
discrete Fourier transform (DFT) to give a magnitude spectrum (ultimately; see part (c» whose coefficients are further 
transformed into a mel-scaled log magnitude spectrum (part (d» using the Waibel transform. 

Having evaluated a sequence of mel-scaled log-magnitude spectrums for a speech 

signal (or portion thereof), preprocessing is completed by averaging pairs of these spectrums 

(coefficient wise) to form the columns, or slices, of a spectrogram like that depicted in Figure 

3.2-2 (b). In this representation of a speech signal, the vertical axis constitutes mel-scaled 

frequency and the horizontal axis constitutes time. Note that each slice of a spectrogram is 

created from a speech portion that is offset by 10 msec from that used to create its 

neighbouring slices, implying a 10 msec slice rate (Waibel et al 1989a). Though low in 
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Figure 3.2-2. The method by which mel-scale log magnitude spectrums are combined to form a spectrogram from 
which tokens for a TDNN may be derived. A speech signal (part (a)) is first processed as in Figure 3.2-1 to give a 
sequence of mel-scaled log magnitude spectrums which are then averaged in pairs to produce a spectrogram (part (b)). 
Groups of slices from this spectrogram are then selected (again by a sliding frames) and normalized (part (c)) to 
produce a token like that in part (d) . This token is depicted using a Hinton diagram in which the black squares 
represent the magnitudes of positive coefficients and the grey squares represent the magnitudes of negative 
coefficients. 

frequency resolution, particularly at higher frequencies, this spectrogram contains sufficient 

information to permit phoneme recognition, as evidenced by the excellent expert module 
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recognition perfonnances presented in chapter 5. 

From spectrograms like that depicted in Figure 3.2-2 (b), tokens for a TDNN may be 

derived by selecting several slices (like the group enclosed within the frame shown in Figure 

3.2-2 (b)) and normalizing these so that their coefficients all lie between ±1 (Waibel et al 

1989a). Normalization is accomplished by first subtracting the average coefficient magnitude 

from each coefficient in a group of slices selected and then dividing by the largest resulting 

coefficient magnitude (Waibel et af 1989a; see Figure 3.2-2 (c)). This approach is referred 

to as token-wide normalization and results in tokens like that depicted in Figure 3.2-2 (d) (this 

token is depicted using a Hinton diagram in which the black squares represent the magnitudes 

of positive token coefficients and grey squares represent the magnitudes of negative 

coefficients; see Hinton and Sejnowski 1986). In this thesis, the coefficient with the largest 

magnitude after the average coefficient magnitude is subtracted, is referred to as the 

normalizer and is represented in a token by a unit sized square (the maximum size) with a 

hollow centre. The frequencies listed in Figure 3.2-2 (d) correspond to the limits of the bands 

associated with the critical band filters used by the Waibel transform (see Table 3.2-1). 

During the normal operation of a TDNN based system for phoneme recognition, the 

frame used to select spectrogram slices for token generation is advanced slice-by-slice 

(Minami et al 1991), as depicted in Figure 3.2-2 (b). This approach enables the recognition 

of phoneme realizations without careful pre-segmentation of speech signals and is the reason 

why TDNN based systems produce repeated phonemic symbols in response to each phoneme 

realization processed (see Figure 4.2.2-1). 

3.3 Speech Portion Selection For Training 

When training a TDNN based system for phoneme recognition, a set of tokens with 

known phonemic identities is required. To generate training tokens representing a given 

phoneme, appropriate speech portions must first be selected from its realizations. 

Traditionally, such speech portions have been selected about the "centres" of a phoneme's 

realizations (see Waibel et af 1989a; Waibel et af 1989b; Miyatake et al 1990). For certain 

phonemes, such "centres" are assumed to correspond, conveniently, to "obvious" time-domain 

features within their realizations. For instance, Waibel et al (1989a) assumes the vowel onsets 

within voiced plosive realizations correspond to their "centres". This assumption permits 

simple speech portion selection based on time-domain observations. Unfortunately, however, 

the realizations of many phonemes, such as the closing diphthongs, may exhibit no obvious 

time-domain features, since they are vocoids. 

One might argue that the "centre" of a vocoid could be deduced by interpolating 

between obvious time-domain features corresponding to neighbouring phoneme realizations. 
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However, this approach assumes that neighbouring realizations exhibit such features and that 

the "centre" being sort lies medially between them. Clearly, in utterances of words like waylay 

(/weileil), the first assumption is unlikely to be valid when attempting to locate the "centres" 

of lei/'s realizations. For the first realization in particular, leil's neighbouring phonemes Iwl 

and III are, themselves, realized as vocoids and may not provide the required time-domain 

features to permit the "centre" of lei/'s realization to be located. Consequently, a more 

sophisticated method of determining the "centres" of phonemes realized as vocoids is required 

to permit speech portions representing them to be selected. 

In this work, speech portions representing phonemes realized as vocoids are selected 

using time-domain "centres" determined from frequency-domain observations. In the 

frequency-domain, vocoids are characterized by formant tracks (see §2.1.2) which may be 

readily estimated and displayed. For a given phoneme (whose realizations are vocoids), the 

characteristic features of such tracks may be assessed simply by viewing several of its 

realizations simultaneously in the frequency-domain (see Figure 3.1.1-1 for example). These 

features may then be used to locate frequency-domain It centres" that in turn may be used to 

compute time-domain "centres" for speech portion selection. This approach is used in this 

work to generate training tokens to suit the different TDNNs discussed in §4.2.3.5 

The remainder of this section discusses a purpose written software package for finding 

the time-domain "centres" of vocoids and selecting speech portions using them. For 

convenience, this package is referred to as STEP, short for Speech Training Example 

Preparation. STEP is intended to reduce the human effort required to select speech portions 

from vocoids, while still allowing the validity of the portions selected to be easily checked. 

Figure 3.3-1 shows a simplified flow diagram of STEP's operation with graphical inserts 

resembling those it produces. Its operation is now explained in the context of processing 

closing diphthong realizations. 

Using STEP, the realizations of a given closing diphthong are first processed to 

produce sets of smoothed formant tracks. These tracks are determined by estimating the 

formant frequencies and bandwidths associated with the speech samples selected by a sliding 

frame. For convenience, this frame is identical to that used to create the mel-scaled 

spectrograms discussed in the previous section. For each frame position, estimates of the 

formant frequencies and bandwidths are determined from a linear predictive model of the 

speech samples contained, using the method given in Chandra and Lin (1974). These 

estimates are then used to form smoothed formant tracks using a tracking algorithm based on 

5Note that for sequence-token TDNNs, the "centres" selected are within the realizations 
of sub-phoneme objects, rather than within the realizations of phoneme objects, as for basic­
or extended-token TDNNs. 
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Figure 3.3-1. A flow diagram of the operation of STEP when processing closing diphthong realizations. 

that proposed by McCandles (1974) (see also Seneff 1976; Owens 1993). 
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Having determined the sets of smoothed formant tracks for a given closing diphthong, 

these are then manually cropped to prevent STEP from assigning time-domain "centres" to 

incorrect speech samples. For example, the formant tracks leading to the F j -F2 trajectories 

depicted in Figure 3.1.1-1 are cropped to give the trajectories shown in Figure 3.3-2, to 

prevent time-domain "centres" from being incorrectly assigned to speech samples associated 

with the on- or off-
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Figure 3.3-3. Finding the closest raw (FJ,F2) coordinate on an FJ-F2 trajectory from a user selected coordinate. 

glides.6 Having cropped the formant tracks, FI-F2 trajectories are then plotted to permit a user 

60n- and off-glides are peripheral in closing diphthongs realizations and vary with context 
as shown in figure 3.1.1-1. In some contexts these glides may lie close to the diphthong-glides 
of such realizations, causing STEP to mistake them for diphthong-glides unless they are 
cropped. 
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to select an (F1,F2) coordinate (a frequency-domain "centre") based on the frequency-domain 

features observed. Such a coordinate in shown in Figure 3.3-2. 

From the user selected (F1,F2) coordinate, STEP then determines the nearest raw 

(F1,F2) coordinate on each of the FeF2 trajectories displayed, as depicted for one trajectory 

in Figure 3.3-3.1 Knowing the speech samples used to compute these raw (F1,F2) coordinates, 

STEP then determines the time-domain "centre" of each phoneme realization being processed. 

In addition, STEP also displays the FeF2 trajectories of the speech portions that would be 

selected using these "centres" (these portions are of a known fixed length suitable for token 

generation). By observing these trajectories, a user may locate their (F1,F2) coordinate to best 

capture the appropriate frequency-domain features of the phoneme realizations being 

processed. This coordinate may be relocated repeatedly until a suitable one is found. Once 

a satisfactory (F1,F2) coordinate is selected, details of the time-domain "centres" and speech 

portions selected are stored for each phoneme realization processed. Using this information, 

tokens like those discussed in §5.1.1 may be generated. 

IThese coordinates correspond to the raw Fl and F2 formant frequencies found during 
formant estimation in conjunction with the sliding frame. For convenience, the closest raw 
coordinate is found using a Euclidean distance measure. 
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Chapter 4 

ANNs and Automated Phoneme Recognition 

Within recent years a number of artificial neural network (ANN) approaches to the 

problem of phoneme recognition have been proposed including traditional multi-layer 

perceptrons (or multi-layer feed-forward networks), Kohonen's learning vector quantizer 

(LVQ), time-delay neural networks (TDNNs), time-delay LVQ and recurrent networks (see 

Lippmann 1989; Morgan and Scofield 1991). Of these, the "most promising" results have 

been reported in conjunction with various forms of TDNNs (Lippmann 1989). In this work, 

TDNNs of the form proposed by Waibel et al (1989a) are used to form expert modules to 

recognize closing diphthongs realized with a New Zealand accent. The next section presents 

a brief overview of multi-layer feed-forward networks, including details of their training. This 

is followed in §4.2 by a discussion of TDNNs for phoneme recognition, including a 

discussion of those used in this work. Finally, §4.3 discusses the use of network ensembles, 

or squads, to improve the performance of expert modules for phoneme class recognition. 

4.1 Multi-Layer Feed-Forward ANNs 

As depicted in Figure 4.1-1, a multi-layer feed-forward ANN consists of an input 

layer, one or more hidden layers and an output layer of simple processing units referred to 

as nodes (Haykin 1994; note this author uses the term neuron instead of node). These nodes 

are intended to simulate (crudely) the processing action of biological neurons and are 

interconnected by a series of weighted connections intended to simulate (again crudely) the 

axons, dendrites and synapses that link biological neurons. In feed-forward networks, all 

weighted connections are directed "forwards" from the input layer towards the output layer, 

implying nodes nearer the output may not influence those nearer the input. Traditionally, as 

with TDNNs, these connections only join pairs of nodes in adjacent layers and mayor may 

not link all possible pairings, implying two layers may be partially or fully connected (see 

Figure 4.1-1). 

For all the ANNs discussed in this thesis, the output (or activation), 0i' of an arbitrary 

node, ~, in the hidden or output layers is related sigmoidally to its input, vi' by 
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Figure 4.1-1. A stylized multi-layer feed-forward artificial neural network. This example has an input layer, two 
hidden layers and an output layer of nodes joined by weighted connections. Each node produces an output by first 
summing its inputs, including an input from a fully active bias node, and then performing a transformation on this 
sum (a sigmoidal transformation in this figure). In an ANN like that shown, adjacent layers may be fully connected 
(like the input and first hidden layers), implying all possible node pairs are joined by weighted connections, or 
partially connected (like the first and second hidden layers), implying some node pairs are not connected. 

1 
0,= 

} ---
1 +e - Vj 

(4.1-1) 

where Vj is given by 

M - J 

vj = L wiPi(m) +WbOb , 
(4.1-2) 

111=0 

In this expression, o/m) is the output of one of the M previous layer nodes connected to node 

~ and wij is the weight associated with this connection. Similarly, Wb is the weight associated 
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with the weighted connection joining node IS to its network's bias node (note ob=l 

permanently). From equation (4.2-1), the output of node IS may vary between 0 (inactive, 

implying vj=-oo) and 1 (fully active, implying vj=+oo). In contrast to the other layers, the 

output of an arbitrary node, Nk , in the input layer is given by the J(h element of a token. 

Consequently, when tokens like those proposed by Waibel et al (l989a) are used (see Figure 

3.2-2 (d) for an example of such a token), the activation of each input layer node may vary 

between ±1 . 

For an ANN like that in Figure 4.1-1, the activations of its output nodes are functions 

of its weights and the input applied to it. This may be expressed mathematically using 

o=F(x, w), (4.1-3) 

where 0 is a vector containing the activations of an ANN's output layer nodes, w is a vector 

containing all the weights associated with its weighted connections and x is a token (a matrix 

in this work, see Figure 3.2-2 (d)) (Haykin 1994). Such an ANN may be trained to respond 

usefully to tokens by altering the values of its weights. Following Waibel et al (1989a), the 

TDNNs used in this work (see §4.2) are training using the back-propagation algorithm. This 

supervised learning algorithm incrementally alters an ANN's weights with the intention of 

reducing the differences between its responses and those desired for a set of training tokens. 

x( 1), x(2), ... , x (P) 

Environment X 

Teacher 

ANN 

Compute 
Error and 

dw(t) 

WEW I 

o(l). 0(2) ..... o(P) (Ar»): 
I I 
---------------- ---

Figure 4.1-2. A model of supervised ANN training. A sample of tokens, x(p) p=1,2, ... ,P, is derived from an 
environment of interest (environment X) and processed by both a teacher and an ANN. From the responses of these 
two entities, an error representing the differences between them is evaluated and used as a bases for adapting the free 
parameters of the ANN (in this figure signified by the set of weights w, representing one point in a multi -dimensional 
weight space W) so that its responses more closely resemble those of the teacher. Based on Figure 2.13 in Haykin 
(1994). 

Figure 4.1-2 depicts a model of supervised learning. A set of training tokens x(p), 

p=1,2, ... ,P, is obtained from an environment of interest (environment X) and processed by a 

teacher who produces a set of desired responses, d(p) p=1,2, ... ,P. The same tokens are also 

processed by a trainee ANN which produces a set of responses o (p), p=1,2, ... ,P. These 
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responses are compared with those produced by the teacher and if not "sufficiently similar" 

are used to determine a vector of weight changes .Aw(t). A trainee ANN's weights are then 

updated using 

w(t+ 1) ""w(t) ~.Aw(t) (4.1-4) 

where w(t+l) and wet) are its new and existing weights, respectively (Haykin 1994). 

Initially, a trainee ANN's weights are set to small random values. These initial 

weights, denoted w(O), are then altered using small weight changes in conjunction with 

equation (4.1-4) until training is terminated. Ideally, at the completion of training an ANN's 

responses closely resemble those of its teacher for all tokens that may be obtained from 

environment X. A network that approaches this ideal is said to have generalized well from the 

information present in its training tokens. For convenience, the final weights obtained during 

ANN training are denoted w* in this thesis. 

When using the back-propagation algorithm for ANN training, the jlh element of .Aw(t) 

may be evaluated using 

(4.1-5) 

where 11 is the learning rate used to control the magnitude of weight changes, wlt) is the i1h 

element of w and g;v is a measure of the average difference, or error, between a trainee 

ANN's responses and those desired when processing x(p), p=1,2, ... ,P. This method of 

evaluating .Aw(t) corresponds to the batch mode of back-propagation learning and is used 

exclusively in this work (alternative modes of back-propagation learning are discussed by 

Haykin 1994; Haffner 1989). In batch mode, a trainee ANN's weights are only updated using 

equation (4.1-4) once all the training tokens (one epoch of tokens, Haykin 1994) have been 

processed in conjunction with the current weights wet). 

The average error, g;v' may be evaluated using 

(4.1-6) 

where g'(p) is the error between a trainee ANN's response to the token x(p) and that desired. 

In this work, g'(p) is evaluated using McClelland's error measure to accelerate training (see 

Haffner et alI989). Assuming a trainee ANN has M output nodes, g'(p) is given by 

M-l 

~(p) - L In[ 1 (em (p»)2] (4.1-7) 
m~O 

where 
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(4.1-8) 

and dm(p) and om(P) are the mth elements of d(p) and o(p), respectively. As well as being used 

in the evaluation of weight changes, i!;v is also used in this work to terminate back­

propagation learning. In particular, ANN training is terminated when i!;v falls below a 

"sufficiently small threshold" (examples of these thresholds are given in chapter 5). 

Back-propagation learning is complicated mainly by the need to evaluate equation 

(4.1-5) for each weight in an ANN. Haykin (1994) discusses the evaluation of equation (4.1-

5) for the weights of afully connected multi-layer feed-forward ANN. Appendix 2 discusses 

the more complicated problem of evaluating this equation for each unique weight in a TDNN. 

As discussed in §4.2, TDNNs are only partially connected and share common weights 

between several weighted connection replicas. 

Back-propagation learning may be used to solve a variety of training problems 

including function approximation, prediction and pattern recognition (Haykin 1994). In this 

work, it is used to train TDNNs for pattern recognition. An ANN may be used to recognize 

tokens (patterns) representing the realizations of several objects by assigning one object index 

(see Figure 1.1-2) to each of its output nodes. During training, such an ANN is taught 

(ideally) to respond to each training token with one output node highly active (0::::::0.9) and the 

remaining output nodes nearly inactive (0::::::0.1). For each training token, the output node made 

active is that associated with the object whose realization it predominantly represents. During 

the operation of an ANN trained in this manner, the most-active rule may be used to 

determine the object index it selects when processing each token (pattern) presented. This rule 

may be stated formally as 

The object index selected by an ANN as best signifying the identity of a token it is 

processing is that associated with its most active output node. 

In this thesis, one object index is assigned to each output node of all the TDNNs discussed 

(see §4.2). In addition, all the performance results presented in chapter 5 were obtained in 

conjunction with the most-active rule. 

Unfortunately, ANN training using the back-propagation algorithm can be slow since 

the learning rate, 11 (see equation (4.1-5», is identical for all weights and remains constant 

throughout training (Haykin 1994). The next section discusses a variant of the back­

propagation algorithm in which these conditions are relaxed. This variant was used to train 

all the TDNNs discussed in this thesis. 
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4.1.1 The Delta-Bar-Delta Learning Rule 

The delta-bar-delta learning rule is based upon several heuristics intended to accelerate 

the convergence of the traditional back-propagation algorithm (Jacobs 1988; Haykin 1994). 

These heuristics suggest that each free parameter of an ANN (its weights in this thesis) 

should have its own learning rate and that these rates should be allowed to vary during 

training. Further, they suggest that when Aw/t) continually exhibits the same sign, its 

associated learning rate should be increased and when Aw/t) alternates in sign, its learning 

rate should be decreased. 

The delta-bar-delta learning rule may be expressed mathematically as follows. In place 

of equation (4.1-5), the weight change for each weight, Wi' is given by 

ag> (t) 
Aw.(t) = -11. av 

I I awi(t) 
(4.1.1-1) 

where lli is now unique. When the weights are updated at the end of each epoch (batch mode 

weight update), the learning rates are also modified using 

(4.1.1-2) 

where 11/t+1) and l1lt) are the new and current learning rates, respectively, and the rate 

change All/t) is given by 

A lli (t) == -q, lli (t) 

a 

In this expression p/t) is given by 

otherwise 

and contains the current sign of the weight change Awtft), P;(t) is given by 

p Jt) =(1-9)pJt) +9p j(t-l) 

(4.1.1-3) 

(4.1.1-4) 

(4.1.1-5) 

and contains an exponential average of the current and previous weight changes (and their 

signs) and K, q, and 9 are training constants. 

In this work, the training constants K, q, and 9 were set to 1.5, 0.1 and 0.5, 

respectively, to train all the TDNNs created. In addition, the individual learning rates were 
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not permitted to fall below l1min=O.OOl, the value to which each was initialized at the 

commencement of training. These values were selected during cursory training trials with 

basic-token TDNNs (see §4.2.3.1) and found to be satisfactory for all the TDNNs created in 

this work. 

Haykin (1994) compares the effectiveness of the traditional back-propagation algorithm 

for ANN training with the delta-bar-delta learning rule. His example demonstrates that the 

latter may be significantly faster and more successful at reducing average ANN error (g;;'v) 

than the former, provided it is used in conjunction with batch mode weight updating. 

4.2 Time~Delay Neural Networks 

TDNNs of the form used in this thesis were first proposed in Waibel et al (1989a), 

though their basis lies in the ANNs reported by Lang and Hinton (1988). The TDNN 

architecture was originally conceived for phoneme recognition to overcome certain problems 

associated withfully connected multi-layer ANNs. Such networks usually require accurate pre­

segmentation of speech signals (accurate selection of speech portions for token generation) 

during training and normal operation (Lippmann 1989), and have many free parameters 

implying large quantities of training data may be required (Lang and Hinton 1988). 

Simple multi-layer feed-forward ANNs, like that in Figure 4.1-1, process their inputs 

in parallel to produce an output. Such networks have no "memory" of earlier inputs and are, 

therefore, incapable of processing object realizations whose characteristic features are 

displaced in time. A simple method of overcoming this problem is to store information over 

time for simultaneous presentation to such networks (Lippmann 1989). Unfortunately, 

however, this approach requires accurate pre-segmentation of temporal events (Lippmann 

1989), or training with sufficient data to accommodate the variation caused by poor pre­

segmentation (Lang and Hinton 1988). Regrettably, both these approaches entail an 

undesirable increase in computational effort. 

The TDNN architecture described in this section avoids the need for accurate pre­

segmentation of speech signals for phoneme recognition by incorporating shift invariant 

feature detectors in its structure. Such detectors are a consequence of two structural 

modifications to the architecture of a traditional fully-connected multi-layer ANN. First, the 

number of weighted connections (degree of connectivity) is dramatically reduced so that the 

nodes in each hidden layer of a TDNN only have a "localized view" of the nodes in their 

preceding layer. Second, these nodes (and the weights associated with the connections feeding 

them) are replicated to reduce a TDNN's dependence on the positioning of features within 

the tokens it processes (this approach to shift-invariance is also used by Fukushima 1980). 

Both modifications have the effect of reducing the number of free network parameters (unique 
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weights), permitting network training in conjunction with smaller data sets (Lang and Hinton 

1988). The second modification also improves the tolerance of TDNNs to inaccurate pre­

segmentation of speech signals during training (Waibel 1992a) and during normal operation 

(Waibel 1989a), compared to similar fully connected ANNs (Grayden and Scordilis 1992). 

As proposed by Waibel et al (1989a), a TDNN consists of an output layer, two hidden 

layers and an input layer. The output and second hidden layers both contain one node 

corresponding to each object to be recognized. The number of nodes in the input layer is 

equivalent to the number of coefficients produced by the Waibel transform (16 in this work, 

see §3.2). Figure 4.2-1 shows the two ways in which TDNNs are traditionally depicted (see 

Waibel et alI989a). In the first depiction (Figure 4.2-1 (a», each node in the top three layers 

is connected to one or more nodes in a preceding layer via multiple weighted connections 

incorporating different amounts of delay (an example of this connectivity for one node in each 

of these layers is shown). These nodes are also connected to a bias node via individual 

weighted connections incorporating no delay. For example, each output node is connected to 

one node in the second hidden layer via nine weighted connections, each having a different 

delay (an integer multiple of 1:). By contrast, each node the second hidden layer connects to 

each of the eight nodes in the first hidden layer via five weighted connections, each having 

a different delay (again, an integer multiple of 1:). Connections between the input and first 

hidden layers are similar to those between the first and second hidden layers. 

For convenience in Figure 4.2-1 (a), the weighted connections feeding higher level 

nodes are depicted originating from the outputs of tapped delay-lines, where the output of 

each tap is delayed by an integer multiple of a fixed delay 1: {'t is equivalent to the mel-scale 

spectrogram slice rate of 10 msec; see 3.2). Thus, for example, each node in the second 

hidden layer is fed via a unique set of 40 weighted connections (with unique weight values) 

connected to the same tapped delay-line outputs. 

Figure 4.2-1 (b) shows the second way in which TDNNs are traditionally depicted 

(Waibel et al 1989a). In this depiction, the network is unfolded in time and represented by 

a partially connected multi-layer feed-forward ANN, with the input and hidden layers 

represented by matrices of nodes (depicted using Hinton diagrams; see Hinton and Sejnowski 

1986). Within these matrices, the elements of a column correspond to the nodes shown in part 

(a) and the rows contain time replicas of these nodes representing their activations at different 

time instances (equivalent to the taps of the delay lines shown in part (a». Consequently, for 

the TDNN depicted, the layers from the input layer to the output layer contain 16, 8, 5 and 

5 unique nodes and 15, 13, 9 and 1 time replicas, respectively. 

Naturally the weighted connections in Figure 4.2-1 (a) and (b) are the same, though 

they are depicted somewhat differently. In contrast to the former, the latter shows the 

weighted connections with unique weights at one time instant. For comparison, Figure 4.2-2 

shows the same weighted connections at two other time instances. The connections in Figure 
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Tapped Delay-lines 
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(48 Unique Weights) 
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Figure 4.2-1. The two traditional methods for depicting a TDNN (in this case, a basic-token TDNN for processing 
closing diphthong realizations, see §4.2.3.1). Part (a) shows the nodes present in each layer of a TDNN and its bias 
node (these nodes are represented by squares for convenience). The weighted connections associated with the shaded 
nodes in the top three layers demonstrate how the nodes in these layers are connected to those in their preceding 
layers. As well as having access to the instantaneous outputs of nodes in their preceding layers, the nodes in the top 
three layers also derive input from earlier outputs, delayed by a multiple of the interval 'to For convenience, these 
delayed outputs are viewed as originating from tapped delay lines, as shown. 



4.2 TIME-DELAY NEURAL NETWORKS 

(b) 

( Output Layer) hi! 
fauf 
fai! • 

fouf 
fei! 

1 Weighted Connection 

( Hidden Layer 2 ) hif 
fauf 

•••••• 
40 Weighted Connections 

••••• 
( Hidden Layer 1 ) 

(~I-n-p-ut-L-a-y-e-r -~) J I 
• • • • • 

Key: • •••••• •• •• •• ••• •• •• ••• 
<0 a •••••• ' •••••• 

• ;;.0 •••••••••••••••••••• 
Time 

67 

Figure 4.2-1(cont). Part (b) shows the TDNN depicted in part (a) unfolded in time to give a partially connected multi­
layer feed-forward network. The nodes in each row of the lower three layers are time replicas of one another and 
show the activations of the nodes in part (a) over time. The nodes in each column of the top three layers are joined 
to a "window" of nodes in their preceding layers by weighted connections with unique weights (examples of these 
connections are indicated for the same shaded nodes in the top three layers as in part (a)). 
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Figure 4.2-2. The same weighted connections as shown in Figure 4.2-1 (b) except offset by (a) one time-step ('C) and 
(b) by the maximum time-step possible while still influencing the same TDNN response. 

4.2-2 (a) are offset by one time-step ("C) from those shown in Figure 4.2-1 (b), while those in 

Figure 4.2-2 (b) are offset by the largest time-step possible while still influencing the same 

TDNN response. 

From the unfolded depiction of a TDNN in Figure 4.2-1(b), the structural 

modifications to a traditional fully-connected ANN discussed earlier become clear. In Figures 

4.2-1 (b) and 4.2-2, each node in the first hidden layer receives input from connections to a 
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"window" of 48 nodes in the input layer (16 unique nodes by 3 time replicas) and a bias 

node. For each unique node in the first hidden layer (each node in a column), these 

connections have unique weights which are shared by the replicated connections feeding all 

its time replicas (see Figure 4.2-2). 

The second hidden layer is similarly connected to the fIrst with the exception that each 

unique node in this layer (each node in a column) is joined to a window of 40 nodes (8 

unique nodes by 5 time replicas) in the first hidden layer by 40 weighted connections with 

unique weights. Once again, replicas of each unique node are fed by connection replicas 

sharing the same set of weights. As pointed out in Waibel et al (1989a); 

The choice of a larger 5 frame window in this layer was motivated by the intuition 

that higher level units should learn to make decisions over a wider range in time based 

on more local abstractions at lower levels. 

This intuition is extended further in the output layer. Each output layer node is joined to a 

single row of replicas in the second hidden layer by weighted connections all sharing the 

same weight. Each output layer node is intended to integrate the activations of its row of 

counterparts in the second hidden layer for a fIxed time interval. 

Like other multi-layer feed-forward ANNs (see §4.1), TDNNs may be trained using 

the back-propagation algorithm (Waibel et al 1989a). In this work, McClelland's error 

measure (see equation (4.1-7)) and the delta-bar-delta learning rule (see §4.1.1) were used to 

accelerate TDNN training, as discussed in §4.1. Appendix 2 presents a derivation of the 

expressions for the weight changes required to update the unique weights of a TDNN using 

equation (4.1·,4). This derivation assumes batch mode weight update and is complicated 

primarily by the partial and non-uniform pattern of connections between a TDNN's layers. 

Expressions for the weight changes, ~w(t), required during TDNN training are given by 

equations (A2.1-12), (A2.1-13), (A2.2-10), (A2.2-11), (A2.3-12) and (A2.3-13) (note that (t) 

is dropped from the notation used to denote these changes in appendix 2 for simplicity). 

The TDNNs used in the experiments discussed in chapter 5 (see §4.2.3), maintain the 

fundamental TDNN architecture proposed by Waibel et al (1989a). This architecture has been 

applied successfully to Japanese phoneme recognition (see §4.2.1) and it is, therefore, 

interesting to discover how it performs on New Zealand English before engaging in 

signifIcant architectural modifications. 

The next section discusses the major experimental results concerning phoneme 

recognition using TDNNs reported by other authors. This is followed in §4.2.2 by a 

discussion of modular TDNNs, the state-of-the-art phoneme recognition systems for which the 

expert modules discussed in this work are intended. Finally, the architectures of the three 

TDNNs used to form these expert modules are discussed in §4.2.3. 
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4.2.1 Major Experimental Results with TDNNs 

The first experiments with TDNNs of the form used in this thesis were reported by 

Waibel et al (1987) (subsequently published as Waibel et al 1989a) and concerned the 

recognition of the Japanese voiced plosives fbi, IdI, and Ig/, using a TDNN resembling that 

in Figure 4.2-1. Realizations of these phonemes were obtained from common Japanese words 

uttered in isolation by three Japanese male speakers (all professional announcers). For these 

three speaker's, TDNNs were trained speaker-dependently and gave "recognition rates" of 

98.8%, 99.1% and 97.5% for aligned test tokens.2 Waibel et al (1989a) found these rates 

were "considerably higher" than those for similarly trained HMMs, which achieved only 

92.9%, 97.2% and 90.9% for the same three speakers and test conditions. 

Having shown TDNNs could perform well for Japanese voiced plosives, Waibel and 

his colleagues then demonstrated the same approach could be applied successfully to six other 

classes of Japanese phonemes (Waibel et al 1989b; these classes appear in Figure 4.2.1-1). 

Following this success, they then turned to the wider problem of devising a TDNN 

architecture to recognize all the phonemes of Japanese simultaneously. As a step towards 

finding such an architecture, Waibel and his colleagues first attempted to enlarge their TDNN 

for voiced plosive recognition to recognize both the voiced and unvoiced plosives. 

Unfortunately this network (a TDNN resembling that in Figure 4.2-1 (b) with six output 

nodes) proved extremely difficult to train, leading Waibel and his colleagues to conclude that 

a_single monolithic TDNN was impractical for recognizing all Japanese phonemes (Waibel et 

al 1989b). Consequently, they next sort a method of combining the individual TDNNs they 

had successfully trained for each phoneme class. 

An initial attempt to combine the individual TDNNs for voiced and unvoiced plosive 

recognition using the most-active rule (see §4.1), succeeded only in reducing their individual 

classification performances from 98.3% and 98.7%, respectively, to 60.5% when combined. 

It was found, as in this thesis, that individual TDNNs trained for one phoneme class may 

respond highly actively to realizations of phonemes from other classes. Consequently, it was 

concluded that to combine the voiced plosive TDNN with the unvoiced plosive TDNN, the 

two networks would need to be fused together as one network and some portions retrained. 

Several different schemes for combining and partially retraining these networks were devised. 

The most successful of these schemes achieved a (speaker-dependent) classification 

performance of 98.6% for test tokens representing both voiced and unvoiced plosive 

realizations (Waibel et al 1989b). 

2Aligned test tokens are generated from carefully selected speech portions of known 
identity. They differ from training tokens (see §3.3) only in that they are not experienced by 
an ANN during training. Recognition rates obtained using aligned test tokens are referred to 
as classification performances in this thesis (see §5.1.1). 
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Using the principles learned from combining their individual TDNNs for voiced and 

unvoiced plosive recognition, Waibel and his colleagues continued to combine individual 

TDNNs and eventually produced a modular network capable of recognizing realizations of 

all 23 Japanese phonemes and q for "silence" (this network was first discussed briefly by 

Waibel et al 1989c and then in detail by Miyatake et al 1990; Minami et al 1991; Sawai 

1991a). Figure 4.2.1-1 depicts their modular TDNN which is entitled LP-TDNN, short for 

large phonemic time-delay neural network. Within this network, seven expert modules provide 

intra-class discrimination of phoneme realizations corresponding to seven phoneme classes 

(six consonant classes and one vowel class), one module (c-class) provides inter-class 

discrimination for the consonant classes and one module (speech-silence) detects the presence 

or absence of speech. All of these expert modules share the same input layer (and tokens) and 

consist of two further independent hidden layers. For each expert module, these layers 

resemble the first three layers of the TDNN depicted in Figure 4.2-1 (b) and are connected 

in a similar fashion. None of the expert modules in Figure 4.2.1-1 contain the integrating 

output layer of the TDNN depicted in Figure 4.2-1 (b), since this function is transferred to 

the arbitration module in LP-TDNN. 

The arbitration module depicted in Figure 4.2.1-1 is tasked with combining the 

activations of the various expert modules as is discussed in the next section. This module 

consists of two layers of nodes (and the weights feeding them) resembling the top two layers 

of the TDNN depicted in Figure 4.2-1 (each output node integrates the activations of a row 

of nodes in the final hidden layer). The arbitration module is apparently densely connected 

to the nine expert modules, as depicted in Figure 4.2.1-1, though the specific details of this 

connectivity have not been made public. The next section discusses some general concepts 

concerning the form and function of modular TDNNs for phoneme recognition. 

Miyatake et al (1990) observed that the practice of training expert modules for each 

phoneme class first and then combining and retraining these to form an LP-TDNN, can cause 

the combined network to produce large numbers of false-positive errors (such errors are 

defmed in §2.5.2). Consequently, they trained their LP-TDNNs as single integrated networks, 

with the hope that false-positive errors would be reduced by "lateral inhibition" (presumably 

acting between the expert modules). The first LP-TDNN created by Miyatake et al (1990) was 

trained using tokens generated from speech portions "centred" on the phoneme realizations 

produced by one Japanese male speaker. On isolated-word test utterances containing 13 974 

phonemes realizations, this network correctly recognized 95.8% of these realizations, but 

produced 8 698 false-positive errors. 

In an attempt to improve upon the performance of their first LP-TDNN, Miyatake et 

al (1990) trained a second LP-TDNN with tokens aligned and misaligned with the centres of 

phoneme realizations. This was done to better constrain the acoustic-phonemic relationships 

learned by the second LP-TDNN by labelling and presenting more of each phoneme's 
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realizations. On the test utterances used previously, the second LP-TDNN correctly recognized 

98% of the phoneme realizations, while producing 3 236 false-positive errors. Despite 

producing far fewer false-positive errors than their first LP-TDNN, Miyatake et al (1990)'s 

second LP-TDNN still made a large number of these errors, leading them to express the need 

for "new training methods" to improve upon this situation. 

Sawai (1991a) further tested the second LP-TDNN reported by Miyatake et al (1990) 

by processing 1 940 phoneme realizations extracted from 278 continuous-speech Japanese 

phrases (all previous tests used realizations from isolated words). Under test, the recognition 

performance of this network fell to 81.2%, while producing 926 false-positive errors. This 

decrease in recognition performance was attributed to "the different co-articulatory effects 

between word speech and continuous speech" (Sawai 1991a). To rectify this problem, the 

second LP-TDNN was retrained using tokens representing phoneme realizations observed in 

continuous-speech phrases as well as those used previously. This led to an improved 

recognition performance of 89.1% in conjunction with the test set of 1 940 phoneme 

realizations, while only 500 false-positive errors were made. 

The experimental results discussed so far have all concerned speaker-dependent 

TDNNs or LP-TDNNs trained for one of three Japanese male speakers. Sagayama et al 

(1992), discussing ATR's ATREUS project, compares the performances of full speaker­

dependent and speaker-independent speech recognition systems incorporating LP-TDNN s for 

phoneme recognition.3 These systems are found to afford recognition rates of 65% and 68%, 

respectively, on a Japanese phrase recognition task.4 Unfortunately, however, these results 

are found to be worse than those for similar systems incorporating HMMs, the best of which 

achleve 94% and 83% for speaker-dependent and speaker-independent phrase recognition, 

respectively. Notably, however, the performances of systems incorporating LP-TDNNs 

reported by Sagayama et al (1992), are for networks trained using phoneme realizations from 

isolated words only. By contrast the best performing HMMs reported were trained using 

phoneme realizations from isolated-word and continuous-speech phrases. Consequently, in 

light of the results reported by Sawai (1991a), the comparisons reported by Sagayarna et al 

(1992) are somewhat biased in favour of the systems incorporating HMMs. 

Aside from the incomplete training afforded the systems incorporating LP-TDNNs 

compared by Sagayarna et al (1992), their relatively poor performances compared to systems 

3It is assumed that the results presented by Sagayarna et al (1992) refer to LP-TDNNs, 
though this is not clearly stated in their report. The other experiments with LP-TDNNs 
discussed in this section were also conducted at ATR Interpreting Telephony Research 
Laboratories, Japan. 

4The performance figures quoted in this section are only approximate since they are 
presented graphically by Sagayama et al (1992). 
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incorporating HMMs might also be attributed to the large numbers of false-positive errors 

made by their component LP-TDNNs. Rather than attempting to find a new training method 

to overcome these errors, as suggested by Miyatake et al (1990), this thesis proposes a new 

method of forming expert modules from TDNN s. Instead of using a single TDNN (or part 

thereof) as previous researchers have, it is proposed that expert modules be formed from 

ensembles of TDNN s, referred to as squads. This concept is discussed further in §4.3 and the 

performances of traditional and squad-based expert modules for closing diphthong recognition 

are compared in §S.1. 

Apart from the experimental work already discussed in this section, that by Hataoka 

and Waibel (1990) is also relevant to this thesis. These authors discuss the recognition of 

American English vowel realizations using various speaker-independent TDNN s. As a 

consequence of preliminary experiments with vowel realizations from the TIMIT database, 

Hataoka and Waibel (1990) suggest a TDNN with a larger input layer (more node replicas) 

is necessary when attempting to recognize diphthong realizations. The best ("large sample") 

classification performance reported by these authors is 82.38% for a TDNN comprising an 

input layer with 20 node replicas, which they trained to recognize American English 

diphthongs. Consequently, the benefits of using a TDNN with an extended input layer to 

recognize closing diphthongs realized with a New Zealand accent is examined in this work 

(see the discussion of extended-token TDNN in §4.2.3.1). 

A significant feature of the results discussed in this section, particularly those used to 

compare various recognition systems, is that none were reported in conjunction with any form 

of statistical significance testing. In fairness, the lack of such statistical evidence is not 

confined to reports concerning phoneme recognition by TDNNs. As Gillick and Cox (1989) 

state; 

It is common practice for researchers to test two or more [speech or phoneme 

recognition] algorithms together and then to make claims about their relative efficacy 

on the basis of the test results. However, these claims are seldom backed by any 

evidence that any difference in performance is statistically significant; indeed, most 

papers show an almost complete lack of awareness of the importance of comparing 

the results of experiments in a way that takes account of variability and uncertainty 

in a principled manner. 

Consequently, in this thesis an attempt is made to analyze the significance of performance 

differences where possible. 
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4.2.2 Modular TDNNs for Automated Phoneme Recognition 

As discussed in the previous section, the problem of recognizing all the phonemes of 

Japanese eventually led to the development of modular TDNNs, like LP-TDNN, since 

monolithic TDNNs proved too difficult to train. Figure 4.2.2-1 shows the basic structure and 

operation of a modular TDNN for phoneme recognition. A common token is fed to a set of 

expert modules which are either trained to recognize phoneme realizations corresponding to 

one phoneme class (intra-class recognition), or to recognize the classes to which phoneme 
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Figure 4.2.2-1. The basic structure and operation of a modular TDNN for phoneme recognition . Tokens obtained from 
a spectrogram like that in Figure 3.2-2 are fed to a set of expert modules whose responses are combined by an 
arbitration module to form a response-sequence. 
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realizations belong (inter-class recognition). The outputs of these expert modules are 

combined by an arbitration module, whose task is to decide which classification(s) to enter 

in a modular TDNN's response-sequence. For simplicity this sequence is depicted containing 

a single phonemic symbol for each token processed, though in practice it is likely to contain 

ranked alternatives as discussed in §2.5.2. 

Within a modular TDNN, the task of recognizing all the phonemes of a language is 

partitioned into simpler sub-tasks associated with a set of phoneme classes. Phoneme class 

partitioning is enforced by limiting the number of output nodes associated with each expert 

module. It enables such modules to be trained "easily", which in turn enables a modular 

TDNN to be formed more readily than a monolithic TDNN. Unfortunately, however, 

simplifying an expert module's classification task reduces the constraints on it to respond 

desirably to all possible input. Ideally, an expert module should only respond actively to 

tokens representing phoneme realizations associated with its phoneme class and remain 

inactive for all other tokens. This behaviour is desired to reduce conflicts between expert 

modules, thereby simplifying the task of arbitrating between their responses. Regrettably, an 

expert module trained with tokens representing phoneme realizations associated with one 

phoneme class, may respond highly actively to tokens representing realizations associated with 

other classes (Waibel et al 1989b). Consequently, phoneme class partitioning may result in 

modular TDNNs (like those discussed in §4.2.1) that produce large numbers of false-positive 

errors. This problem is discussed further in §4.3, wherein a solution based on ensembles of 

ANNs, referred to as squads, is proposed. 

To accommodate some of the expert modules discussed in this thesis, particularly 

those comprising sequence-token TDNNs (see §4.2.3.2), it is anticipated that the architecture 

of the module required for arbitration will take a very different form to that used in LP­

TDNN. In particular, this module is likely to be a hybrid combining ANNs with traditional 

serial or fuzzy algorithms (see for example Kasabov and Shishkov 1993; Kasabov 1993). 

Following the approach used by Waibel and his colleagues (see §4.2.1), the exact form of this 

module is left until the properties of appropriate expert modules for recognizing all the New 

Zealand English phonemes have been determined. 

4.2.3 Three TDNN ArcWtectures for Closing Diphthong Recognition 

As discussed in chapter 1, the experiments described in chapter 5 concern closing 

diphthong recognition using expert modules comprising one of three types of TDNN, referred 

to as basic-, extended- and sequence-token TDNNs. Following the success of Waibel et al 

(1989a), the initial aim of these experiments was to create and test expert modules comprising 

basic-token TDNNs (these resemble closely the TDNN proposed by Waibel et al1989a; see 
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Figure 4.2.3-1. Outlines of the traditional ((a), (b) and (c)) and squad-based ((d), (e) and (f)) expert modules for 
closing diphthong recognition compared in this work. Traditional expert modules comprise individual TDNNs, 
whereas squad-based expert modules comprise ensembles of TDNNs whose responses are combined by a combiner. 
The expert modules comprising sequence-token TDNNs ((c) and (f)) also contain matchers to convert the output 

sequences produced by their component TDNNs into phonemic symbols. 

Figure 4.2-1). This aim was altered, however, following Hataoka and Waibel's suggestion that 

TDNNs for diphthong processing should have an extended input layer (see §4.2.1). 

Consequently, the aim become to create and compare expert modules comprising basic-token 

TDNNs with similar modules comprising extended-token TDNNs. 
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During the initial experiments with expert modules comprising basic- and extended­

token TDNN s, observations of the former suggested another method of using traditional 

TDNNs to form expert modules for closing diphthong recognition. In particular, it was 

observed that expert modules comprising basic-token TDNNs would (undesirably) respond 

with consistent sequences of different most active output nodes, when processing certain 

closing diphthong realizations (most notably those of Jail and Jei/; see Figure 5.1.4-1). 

Consequently, expert modules comprising TDNNs trained to respond intentionally with such 

sequences, referred to as sequence-token TDNNs, were conceived and the experiments 

discussed in this thesis extended to include them. 

Figure 4.2.3-1 depicts the broad outlines of the expert modules for closing diphthong 

recognition tested in this work. These modules are of two kinds, referred to as traditional «a) 

through (c» and squad-based expert modules «d) through (f). The former comprise 

individual basic-, extended-, or sequence-token TDNNs, as is traditional (see Waibel et al 

1989b; Miyatake et al 1990), whereas the latter comprise ensembles of such networks. 

Comparing the traditional and squad-based expert modules depicted, the latter require 

combiners to form collective responses from the responses of their individual component 

TDNNs. Compared to the modules (of both kinds) comprising basic- and extended-token 

TDNNs, those comprising sequence-token TDNNs require matchers to convert the sequences 

produced by their component TDNNs into phonemic symbols. 

The next section discusses the basic- and extended-token TDNNs used in this work 

to form expert modules for closing diphthong recognition. This is followed in §4.2.3.2 by a 

discussion of the sequence-token TDNN used. 

4.2.3.1 Basic- and Extended-token TDNNs 

Figure 4.2-1 depicts the architecture of the basic-token TDNNs used to process closing 

diphthong realizations in this work. This architecture is identical to that proposed by Waibel 

et al (1989a) for voiced plosive recognition, with the exception that the top two layers have 

five rather than three (unique) nodes to accommodate the five closing diphthongs. Similarly, 

Figure 4.2.3 .1-1 depicts the architecture of the extended-token TDNN s used to process closing 

diphthong realizations. This architecture differs from that in Figure 4.2-1 only in that there 

are more node and weight replicas in the first three layers. In particular, the input layer 

contains 30 node replicas corresponding to an input token of 30 slices. As discussed in §3.1.1, 

tokens of this length were chosen to capture (on average) the full extents of the diphthong­

glides produced by the two New Zealand English speakers sampled. 

For both basic- and extended-token TDNN, each output layer node (and associated 

second hidden layer node) is arbitrarily assigned a phonemic symbol corresponding to one of 
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the closing diphthongs. During training, one of these nodes is "forced" to be highly active 

(0=0.9 ideally) in response to each training token, while the remainder of the output nodes 

are "forced" to be nearly inactive (0=0.1 ideally). This process is depicted in Figure 4.2.3.1-2 

for both types of TDNN in conjunction with training tokens representing a realization of fail. 

Following the approach used by Waibel et al (1989a) and Hataoka and Waibel (1990), 

the basic- and extended-token TDNNs created in this work were trained using tokens 
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( Hidden Layer 2 ) 

( Hidden Layer 1 ) 

( Input Layer 

leil I • 

loil i . . 
lau! . 

lai/ . 

lou! 
leil 

. : . : 

...... .. ; ..... ; •. -.; .• : ~. : .... 

Time 

Figure 4.2.3.1-1. The architecture of the extended-token TDNNs used to process closing diphthong realizations in this 
work. 
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Figure 4.2.3.1-2. A training token, x(1), and the desired response, d( 1), for (a) basic-token TDNN and (b) extended­
token TDNN. The tokens shown both represent realizations of lail, hence it is desired that the output node associated 
with lail for each TDNN depicted be highly active (0",0.9) and the remaining output nodes nearly inactive (0",0.1). 
When the output node associated with lail for each TDNN is most active, this is assumed to signify that the current 
token being processed represents a realization of this closing diphthong. 

generated from speech portions selected about the "centres" of closing diphthong realizations. 

For each speaker, the (F1,F2) coordinates depicted in Figure 4.2.3.1-3 were used in conjunction 

with STEP to locate the frequency-domain "centres" of the realizations corresponding to each 

closing diphthong (see §3.3). In this work, these "centres" are assumed to lie medially within 
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the common diphthong-glide region shared by a given closing diphthong's realizations (see 

Figure 3.1.1-1 for example). Given the frequency-domain "centres", STEP was then used to 

determine the time-domain "centres" of each speaker's closing diphthong realizations and to 

select appropriate length speech portions about these "centres". These speech portions were 
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Figure 4.2.3.1-3. (FJ,F2) coordinates (labelled black dots) used in conjunction with STEP to select "centred" speech 
portions from (a) speaker JK's and (b) speaker HD's closing diphthong realizations. For each diphthong, the F J-F2 

trajectory shown is an average computed from the speech portions selected to suit extended-token TDNN (3206 speech 
samples; note the short arrows lying next to these trajectories indicate the directions of their transitions with time). 
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then used to generate the tokens discussed in §5.1.1. 

As well as showing the (F1,F2) coordinates used to determine the time-domain 

"centres" of each speaker's closing diphthong realizations, Figure 4.2.3.1-3 also shows the 

average F]-F2 trajectories of the speech portions selected to suit extended-token TDNN (3206 
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Figure 4.2.3.1-4 Three dimensional projection plots of the average diphthong-glides for (a) speaker JK's and (b) 
speaker HD's closing diphthong realizations (formant trajectories are projected onto the FJ-F2, FJ-F3 and F2-F3 planes). 
The shaded areas depicted contain the regions where the trajectories associated with realizations of lail and leil exhibit 
near overlap for each speaker. 
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Figure 4.2.3.1-5. Same as Figure 4.2.3.1-3 except for basic-token TDNN. The solid-line F]-F2 trajectories shown are 
averages computed from the speech portions selected (1706 samples) to suit basic-token TDNN, while the dotted-line 
trajectories are the same as those in Figure 4.2.3.1-3. 

speech samples). Notably, these trajectories are all quite distinct for both speakers, except for 

those corresponding to lail and leil which exhibit extended regions of near overlap. As the 

shaded regions in Figure 4.2.3.1-4 highlight, this near overlap remains evident when F3 is also 

considered. This figure shows the projections of the average diphthong-glides of speaker JK' s 

and speaker HD's closing diphthong realizations onto the F 1-F2, FeF3 and F2-F3 planes. In all 
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three planes, the average trajectories corresponding to lail and leil exhibit near overlap within 

the shaded regions shown. From more detailed plots produced by STEP resembling that in 

Figure 4.2.3.1-3, it is also apparent that the rates of Fl, F2 and F3 transition within the regions 

of trajectory overlap in Figures 4.2.3.1-3 and 4.2.3.1-4 are similar for realizations of lail and 

leil. Consequently, for each speaker, in is evident that realizations of lail and leil are not 

readily distinguished by the transitions of their first three formants within the region of 

trajectory overlap. This fact hinders extended-token TDNN training (see the epoch counts in 

Tables A1.1.1.1-1 and Al.l.l.2-1) and strongly influences the states defined to permit closing 

diphthong recognition using sequence-token TDNNs (see the next section). 

Figure 4.2.3.1-5 shows the average FeF2 trajectories (solid lines) measured from the 

speech portions selected to suit basic-token TDNN (1706 speech samples). These trajectories 

are shorter than those for extended-token TDNNs (the dotted lines), since they correspond to 

15 instead of 30 slice tokens. The average glides for lail and leil in Figure 4.2.3.1-5 overlap 

less than their counterparts in Figure 4.2.3.1-3, making basic-token TDNNs somewhat easier 

to train than extended-token TDNNs (see Tables Al.l.l.l-l and Al.l.1.2-1). 

4.2.3.2 Sequence-token TDNN 

Figure 4.2.3.2-1 depicts the architecture of the sequence-token TDNNs used to process 

closing diphthong realizations in this work. This architecture is identical to that of basic-token 

TDN:N (see Figure 4.2-1) with the exception that the top two layers have six rather than five 

(unique) nodes. Unlike the output nodes of basic- and extended-token TDNNs which have 

phonemic symbols assigned (see Figures 4.2-1 and 4.2.3.1-1), each output node (and 

associated second hidden layer node) of a sequence-token TDNN is assigned a state (0 to 5 

in Figure 4.2.3.2-1). These states constitute the elements of sequences that a sequence-token 

TDNN is intended to produce in response to closing diphthong realizations. Consequently, 

each state corresponds to an object whose realizations are equivalent to specific portions of 

one or more closing diphthong's realizations. 

Figure 4.2.3.2-2 illustrates the anticipated relationships between the six states 

associated with the sequence-token TDNNs discussed in this thesis and a set of coarse Fl-F2 

sub-regions containing portions of closing diphthong realizations (the relationships shown are 

for the multi-speaker sequence-token TDNNs discussed in §5.2). These sub-regions were 

selected to contain "similar" features (FeF2 trajectory portions), while minimizing the number 

of states required to successfully distinguish realizations of the five closing diphthongs of 

New Zealand English. For example, state 1 is intended to contain the initial portions of the 

overlapping trajectories associated with lail's and leil's realizations. Similarly, state 2, is 

intended to contain the final portions of these overlapping trajectories, as well as the final 
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portions of the diphthong-glides associated with hil's realizations. 

Given the assignment of states shown in Figure 4.2.3.2-2, realizations of lail are 

typically distinguished from those of leil by virtue of the additional state (state 0) produced 

by sequence-token TDNNs in response to such realizations. In particular, the sequence 1-2 

is the intended response to realizations of leil, whereas the sequence 0-1 -2 is the intend 

response to realizations of lail. Since the reference sequence, 0-1-2, for lail incorporates the 
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Figure 4.2.3.2-1 The architecture of the sequence-token TDNNs used to process closing diphthong realizations in this 
work. 
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Figure 4.2.3.2-2 The anticipated relationships between FI-F2 regions (the regions partitioned by the dashed lines) and 
the six states (the circled numbers) associated with the sequence-token TDNNs discussed in this thesis, for (a) speaker 
JK and (b) speaker RD. The (F1,F2) coordinates used to select "centred" speech portions suiting sequence-token 
TDNNs (the labelled black dots) are also shown. 
'Note that only speech portions from selected realizations of this phoneme were used to generate tokens representing 
state 2. 

reference sequence, 1-2, for lei/, it is assumed that longer reference sequences are matched 

with those produced by a sequence-token TDNN in preference to shorter reference sequences. 

Thus, a response sequence like 4-0-1-2-4 is eventually matched with 0-1-2 signifying lail in 
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preference to 1-2 signifying lei/, as shown in Figure 4.2.3.2-3. 

As Figure 4.2.3-1 depicts, expert modules comprising sequence-token TDNNs also 

contain matchers. Figure 4.2.3.2-3 depicts the simple algorithm implemented by the matchers 

used in this work to match the sequences produced by a sequence-token TDNN with the 

reference sequences for the five closing diphthongs listed in Table 4.2.3.2-1. A matching 

frame slides along the collapsed response-sequence produced by such a TDNN (see Figure 

5.1.2-3), selecting groups of three states (the number of states in the longest reference 

sequence used in this work). For each frame positioning, attempts are made to match 

progressively shorter sequences that each start with the first state in the frame. If no match 

is found (part (a)) then the matching frame advances by one state and the new sequences 

contained are tested for a match (see part (b)). If an expert module's matcher finds a match 
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Figure 4.2.3.2-3. A depiction of the algorithm used to match the collapsed response-sequences produced by a 
sequence-token TDNN with reference sequences corresponding to the five closing diphthongs of New Zealand 
English. This algorithm is implemented by the matcher in expert modules comprising sequence-token TDNNs. 
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(part (b)), the corresponding phonemic symbol is entered in its output phoneme sequence (see 

Figure 5.1.2-3). Following this, the matching frame is advanced by the number of states in 

the matching reference sequence (see part (c)). 

More sophisticated matching algorithms than that depicted in Figure 4.2.3.2-3 are 

conceivable for matching the sequences produced by sequence-token TDNNs with reference 

sequences. For example, one might consider an algorithm incorporating dynamic time warping 

or hidden Markov models. However, as the experimental results discussed in §5.1.4 and §5.2 

demonstrate, the simple matching algorithm depicted in Figure 4.2.3.2-3 is sufficient when 

used in conjunction with the collective response-sequences produced by a squad of sequence­

token TDNNs. 

As Table 4.2.3.2-1 indicates, not all the reference sequences signifying a closing 

diphthong are the same length and not all these phonemes are represented by multiple 

sequences. The top sequence for each diphthong is that originally intended to signify it. 

However, the additional sequences listed for lail and bil, were added after observing the 

behaviours of sequence-token TDNNs processing closing diphthong realizations (including 

their behaviours when processing noise corrupted realizations). These additional sequences 

permit variation in the realizations of lail and l.)iI, while still enabling them to be 

distinguished from one another and the other closing diphthongs. Unlike the other closing 

diphthongs listed in Table 4.2.3.2-1, lou! is signified by a reference sequence containing only 

one state (state 5). This representation was adopted for simplicity and in hindsight is the 

principal weakness of the sequence-token TDNNs discussed in this work. The use of such a 

short reference sequence is a major cause of the (few) false-positive errors produced by expert 

modules compnsing these networks (see §5.2.2). 

Diphthong 

lail 

lau! 

bil 

leil 

loul 

Sequences 

0-1 - 2 
0-1 
o 2 

4-3 

3-2 
3 - 5 - 2 

1 2 

5 

Table 4.2.3.2-1. The reference sequences used in conjunction with sequence-token TDNNs to signify closing 
diphthongs in this work. 
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To train sequence-token TDNNs to produce the reference sequences listed in Table 

4.2.3.2-1, tokens were generated from speech portions whose time-domain "centres" were 

selected by STEP in conjunction with the (F1,F2) coordinates shown in Figure 4.2.3.2-2. For 

each closing diphthong, except loul, these coordinates were selected to fully capture the 

diphthong-glides associated with its realizations using one or more 15 slice tokens. In 
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Figure 4.2.3.2-4. Training tokens, x( 1), x(2) and x(3) and their associated desired responses, d( 1), d(2) and d(3) for 
a sequence-token TDNN. The three tokens shown are derived from one realization of lail and (from top to bottom) 
represent the states 0, 1 and 2. Consequently, the desired responses shown have the output nodes associated with these 
states most act. During the operation of the sequence-token TDNN shown, the time-order sequence 0-1-2 is desired 

in response to realizations of lai/. 
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addition, they were also selected to capture portions of the on- and off-glides to provide 

contextual information concerning closing diphthong realizations. Consequently, many of 

(Fl,F2) coordinates depicted in Figure 4.2.3.2-2 are close to the ends of the average FeF2 

trajectories depicted in this figure. 

Figure 4.2.3.2-4 illustrates the process of training a sequence-token TDNN using 

tokens derived from a realization of Jail (this figure depicts one network, three training tokens 

and three desired responses). Associated with the group of training tokens shown (x(l), x(2) 

and x( 3) is a group of desired responses (d( 1), d(2) and d( 3) that signify the elements of the 

time-ordered sequence 0-1-2, which in turn signifies Jail (see Table 4.2.3.2-1). Ideally, during 

the operation of a sequence-token TDNN, 0-1-2 is produced in response to a realization of 

Jail, as shown in Figure 5.1.2-3. 

An important feature of the reference sequences listed in Table 4.2.3.2-1 is that only 

a small fraction of those possible are used to signify closing diphthongs. In particular, given 

that the reference sequences contain a maximum of three states and that attempts are made 

to match longer reference sequences first, there exist 150 possible reference sequences of 

which 8 are used (5.33%). The number of possible reference sequences may be found as 

follows. Considering the reference sequences containing three states first, these may be 

written generally as a-b-c under the constraints that a=l=b and b=/=c, where a, band c E 

{O, 1 , ... ,5 }. The constraints a=l=b and b=l=c reflect the fact that consecutive occurrences of the 

same state in a sequence-token TDNN's response-sequence cannot arise, since these would 

be collapsed to single occurrences prior to matching. Assuming six possible states, {0,1, ... ,5}, 

there are 6x5x5=150 possible three state sequences, a-b-c, that satisfy the conditions above. 

For a matcher to "find" examples of the shorter reference sequences listed in Table 4.2.3.2-1 

when processing matching frames containing three elements, at least one of the three state 

reference sequences, having the shorter reference sequence as its initial elements, must not 

be used as a reference sequence. For example, to find 0-1, at least one of the reference 

sequences 0-1-c must not be used (0-1-5 for example). Similarly, to find 5, at least one of the 

reference sequences 5-b-c must not be used.5 Consequently, each shorter reference sequence 

in Table 4.2.3.2-1 replaces at least one of the three state sequences, implying a maximum of 

150 reference sequences are possible. 

Using only 8 of the 150 reference sequences possible to signify closing diphthongs is 

advantageous since the response-sequences produced by sequence-token TDNNs in response 

to "noise" (sounds other than closing diphthong realizations) are less likely to contain closing 

5Note in this case that at least one of the reference sequences 5-b must not be used either. 
In this example, the two-state reference sequences desired (see table 4.2.3.2-1) satisfy this 
condition, since none are of the form 5-b. 
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diphthong reference sequences (assuming all 150 possible reference sequences are equally 

likely in response to noise). Consequently, as demonstrated by the results presented in §5.1, 

expert modules comprising sequence-token TDNNs are less likely to produce false-positive 

errors compared to expert modules that use individual TDNN responses to signify closing 

diphthongs (see Figure 4.2.3-1 (a), (b), (d) and (e». The use of sequences to signify the 

closing diphthongs does incur one minor penalty, however. Such sequences require time to 

observe, implying recognition is delayed until near the ends of closing diphthong realizations 

(until the onsets of their off-glides approximately). This delay does not pose a problem 

provided the arbitration module used can accommodate it. Information concerning the 

temporal positioning of a closing diphthong realization is available from the matcher, once 

it has been identified. This information may be used by an arbitration module to realign the 

phoneme sequences produced by expert modules comprising sequence-token TDNNs with 

those of expert modules whose phoneme sequences are undelayed (such as those comprising 

basic- or extended-token TDNNs). Note the depictions of the phoneme sequences in Figures 

5.1.2-3 and 5.1.4.5 assume such realignment. 

4.3 ANN Squads 

The use of phoneme class partitioning in the formation of a modular TDNN for 

phoneme recognition (see §4.2.2) poses a significant dilemma. On the one hand, such 

partitioning enables modular TDNNs to be trained tractably by splitting the task of phoneme 

recognition into simpler sub-tasks. On the other hand, however, this simplification results in 

expert modules whose under-constrained behaviours evoke large numbers of false-positive 

errors. 

Several methods of overcoming the dilemma posed by phoneme class partitioning have 

been proposed, however, these have either proven ineffectual or costly. Miyatake et al (1990) 

proposes training modular TDNNs (LP-TDNNs, see §4.2.1) as integrated networks to 

overcome false-positive errors by "lateral inhibition". Despite training in this manner, and 

with aligned and misaligned tokens (see §4.2.1), their LP-TDNNs still produced large 

numbers of these errors. Several authors, such as Sawai et al (1989) and Hataoka and Waibel 

(1990) suggest training expert modules using tokens representing realizations of the phonemes 

they are intended to recognize, as well as tokens representing realizations of counter-example 

phonemes (phoneme from other classes). Unlike the expert modules discussed in this thesis, 

the expert modules proposed by Sawai et al (1989) and Hataoka and Waibel (1990) have a 

special output node (or nodes) assigned to counter-examples, as well as the output nodes 

assigned to the phonemes. being recognized. Although the use of tokens representing counter­

examples during training better constrains the behaviour of expert modules as desired, it 
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dilutes the benefits of phoneme class partitioning. Typically, the number of counter-example 

phonemes to be "learned" by an expert module greatly exceeds the number of phonemes to 

be recognized (for example, an expert module trained to recognize the five closing diphthongs 

of New Zealand English must learn to recognize 38 counter-example phonemes also). 

Inclussion of tokens representing all possible counter-example phonemes greatly complicates 

the training of an expert module, since such tokens will exhibit enormous variation, making 

the learning of effective decision boundaries very difficult. Sawai et al (1989) attempts to 

overcome this problem by limiting the number of counter-example phonemes to those whose 

realizations are readily confused with the realizations of the phonemes to be recognized. 

Regrettably, this compromise is not entirely successful, since the resulting expert modules 

may still respond actively to realizations of the phonemes not chosen as counter examples 

(Sawai et al1989 gives and example of this). 

In this thesis, it is proposed that the dilemma of phoneme class partitioning be 

overcome by using expert modules that comprise ensembles of TDNN s rather than individual 

networks. This approach produces better constrained expert modules, thereby minimizing 

potential false-positive errors, while enabling the TDNNs they comprise to be trained on 

simple classification sub-tasks, as intended under phoneme class partitioning. In this work, 

ensembles of TDNNs were initially trained to permit the performance variations due to 

different weight solutions (w*) to be studied. These ensembles are referred to as squads, to 

signify that each network contained has the same architecture and is trained using the same 

training tokens, but different initial weights W(O).6 In this work, the weights were initialized 

with random real numbers lying in the range [-0.5,0.5], following Pao (1989) (as usual, these 

values were randomly sampled from a uniform population). By current standards this range 

is large (see Haykin 1994, section 6.7), however, it ensures that the component networks of 

a squad have a good chance of acquiring different weights solutions, w*, during training, 

since satisfactory convergence to different local minima (or different points within the 

depressed region surrounding a local minima) is more likely. 

The rational for using squads of networks to form expert modules is now explained 

in conjunction with the simplified classification task depicted in Figure 4.3-1. This task 

involves classifying the realizations of two objects, 0] and O2 which are represented by 

normalized tokens containing the elements I] and 12 (I},12 E [-1,1]). Figure 4.3-1 (a) depicts 

the pattern-space spanned by the possible values of I] and 12, The labelled symbols 

("dingbats") within this space indicate the values of I} and 12 associated with training tokens 

representing realizations of 0 1 and O2, The dashed line in Figure 4.3-1 (a) represents a 

decision boundary which might be learned by the network, Net}, depicted in Figure 4.3-1 (b). 

6The term squad seems appropriate since, according to one dictionary definition, it refers 
to a "small group of soldiers working or being trained together" (Cowie 1989). 
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Figure 4.3-1. The pattern-space (part (a)) for a simple classification task involving two objects, 0, and 0 2' whose 
realizations are represented by normalized tokens comprising two elements, I, and 12 • Part (b) shows a block diagram 
of a simple ANN trained to classify realizations of 0, and 02' whose learned decision boundary appears in part (a). 

This boundary splits the pattern-space into two regions whose elements are classified as 0) 

or O2 when processed by Net) in conjunction with the most-active rule. From the positioning 

of this boundary, it is clear that all the training tokens represented in this example are 

correctly classified. 

As well as correctly identifying the tokens representing 0) and O2 in Figure 4.3-1, 

Net) also classifies the remaining elements of pattern-space, like that indicated by the e in 

Figure 4.3-1 (a) which is classified as a realization of O2, While this behaviour may be useful 

in some circumstances, it is not desirable if Net) is to form an expert module in a modular 

network. Ideally, as discussed in §4.2.2, an expert module should only classify tokens 

corresponding to its classification sub-task and "ignore" all other input (the token represented 

bye, being distant from the training tokens representing 0) and O2 , is unlikely to be a 

realization of either object and should, therefore, be "ignored"). Unfortunately, Net) (like 

individual TDNNs, Waibel et al1989b) is incapable of achieving this ideal and is likely cause 

false-positive errors by responding highly actively to inappropriate tokens, like that 

represented by e in Figure 4.3-1(a). 

Due to the simplicity of the classification task posed for Net), there exist other similar 

networks whose decision boundaries may also split the pattern-space depicted in Figure 4.3-1 

(a) to permit correct classification of the training tokens representing 0) and O2 shown. 

Possible examples of such decision boundaries are depicted in Figure 4.3-2. From these 

boundaries it is evident that their associated networks agree concerning the classifications of 

the tokens corresponding (predominantly) to 0) and O2 , and disagree concerning all other 
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Figure 4.3-2. Examples of several possible decision boundaries corresponding to networks which may correctly 
classify the tokens shown representing objects 0 1 and O2 , Those regions where all these networks agree about the 
classification of the tokens contained are shaded. 

tokens (like that represented by • in Figure 4.3-2). By combining the responses of these 

networks, the level of agreement they exhibit concerning a given token may be used to 

determine whether it should be classified or "ignored". In this way several networks may be 

combined to form a system that is selective about the tokens it attempts to classify. For 

convenience, such systems are referred to as selective-systems. 

In this thesis, the responses of the individual networks forming a squad are combined 

using a generalized version of the majority voting rule (Hansen and Salamon 1990), referred 

to as the selective-system voting rule. Under this rule, the classification of a given token 

produced collectively by a squad is that reached by a fraction, A, of its networks, where 

Y2 < A ::;; 1 is referred to as the agreement threshold. If a smaller proportion than A of these ' 

networks agree concerning the identity of a token, then a null classification is produced to 

signify that the squad cannot classify this token.7 For example, if A=l, then the token 

represented by . in Figure 4.3-2 would lead the squad of networks whose decision boundaries 

are also depicted in this figure to produce a null classification under the selective-system 

voting rule, since not all these networks agree concerning the classification of this token. 

The selective-system voting rule may be stated mathematically as follows. Assuming 

R networks, each having K output nodes, are combined, the activation of the ill! collective 

7In practice this null classification could be signalled in a number of different ways. In 
this thesis, it is envisaged that a null classification be signalled by setting all the collective 
or squad output nodes to 0, implying complete inactivity. 
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output node, <l>i' is given by 

<I>.",{o/, 
I 0, 

if S(i):2:A 

otherwise 

where OJ is the average activation of fh output node for all R networks given by 

R 

A is the agreement threshold and SCi) is given by 

In'this expression, M,(r) is given by 

{
I, 

M,(r) == 
I 0, 

R 

LM/r) 
SCi) == _r_:l __ 

.R 

if 0. is the most active 
I,r 

otherwise 

95 

(4.3-1) 

(4.3-2) 

(4.3-3) 

(4.3-4) 

. and 0i,r is the ith output of the yh network combined. If the ith output node of all R networks 

combined is the most active, then all M,(r) will be equal to 1, S(i)=1 :2: A and <1>i=Oi' implying 

the object index associated with the ;th collective output node is the collective classification. 

If no S(i)?A, i=1,2, ... K, then all the squad output node activations are zero, implying a null 

classification.6 In the event of a tie such that the largest values of SCi), i=1,2, ... ,K are equal, 

a null classification is also produced, since no SCi) > 0.5 and, therefore, all are less than A. 

Figure 4.3-3 (a) depicts a modular network incorporating one expert module to classify 

the objects 0 1 and O2 and another to classify the objects 0 3 and 0 4, If these modules are 

formed from the squads of networks whose decision boundaries are shown in Figures 4.3-3 

(b) and (c), andA=1, then inappropriate tokens for each module, like those represented by the .s shown, are (predominantly) given null classifications. Consequently, unhindered by 

conflicting classifications from the two expert modules shown in Figure 4.3-3 (a), the 

arbitration module is more likely to select the classifications produced by the appropriate 

expert module for each token processed and is, therefore, less likely to produce false-positive 

errors. 

Interestingly, the task of classifying the objects represented by the tokens depicted in 
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Figure 4.3-3. A modular network (part (a)) to solve a classification task involving four objects, 0), O2, 0 3 and 0 4, 

whose realizations are represented by normalized tokens containing the elements I) and 12, The pattern-spaces shown 
in parts (b) and (c) contain the decision boundaries (dashed lines) associated with the component networks of the 
squad used to form each expert module in part (a). Parts (d) and (e) show decision boundaries associated with the 
component networks required to form an optimal squad for each expert module. 

Figure 4.3-3 (b) and (c) might be achieved optimally using squads comprising just two 

networks each. The decision boundaries associated with these networks are depicted in parts 

(d) and (e) of Figure 4.3-3. Unfortunately, these networks are less likely to be produced by 

training algorithms such as the back-propagation algorithm (see §4.1), since they are likely 

to be associated with larger values of g;;v (see equation 4.1-6). However, as yet there is no 
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better way of designing component networks for squads, implying larger, sub-optimal, squads 

must be used. Despite being more computationally intensive, sub-optimal squad-based expert 

modules may better approximate ideal expert modules for phoneme class recognition than 

traditional expert modules comprising individual networks, as is demonstrated by the results 

presented in §5.1.4. 

An ideal expert module for phoneme class recognition is an example of a selective­

system that applies phoneme classifications to selected tokens, while "ignoring" (applying null 

classifications to) others. This behaviour is viewed as a form of selective attention in this 

thesis, since such modules give the appearance of attending to (applying non-null 

classifications to) only selected tokens. ANN mechanisms for selective attention have also 

been demonstrated by Fukushima (Fukushima and Imagawa 1993; Fukushima 1987). His 

networks are intended to both segment and classify hand written characters and are, therefore, 

significantly more complicated than the squads proposed in this thesis (these must only 

classify or "ignore" their input). 

The use of network ensembles in various applications has been proposed by a number 

of authors, such as Benediktsson et al (1993), Benediktsson and Swain (1992), Jordan and 

Jacobs (1992) and Hansen and Salamon (1990). Regrettably, these network ensembles are of 

limited use for automated phoneme recognition, since their architectures do not permit 

temporal information processing. Benediktsson et al (1993) discusses using network 

ensembles (so called parallel consensual neural networks) to solve classification tasks 

involving data obtained from several sources (remote sensing and geographic data), and 

analyses these in terms of statistical consensus theories (similar work is also described in 

Benediktsson and Swain 1992). Hansen and Salamon (1990) discuss using ensembles to 

improve upon the performances of individual networks when solving non-modular 

classification tasks (like classifying realizations of 0 1 and O2), Their statistical analyses of 

such ensembles attempt to treat the difficult problem of correlation between component 

network outputs. Unfortunately, their findings are not applicable to the squads of TDNNs 

discussed in this thesis, since the component networks of these are trained using identical 

tokens.s 

The modular network comprising ensembles of local experts discussed by Jordan and 

Jacobs (1992), is currently the closest network architecture to the modular TDNNs discussed 

in this thesis. As with the expert modules of a modular TDNN, local experts are trained to 

classify object realizations belonging to one sub-task of a recognition problem that has been 

partitioned into several sub-tasks. As with expert modules, local experts also derive input 

8This training practice invalidates Hansen and Salamon's assumption that the component 
networks make independent errors, which (as they discuss) is only valid approximately, even 
when independent token sets are used for training. 
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from a common input token. However, in contrast to modular TDNN s, arbitration between 

local experts is conducted by gating networks that use the input tokens fed to local experts, 

rather than their outputs, to decide which to "believe" in response to each input token 

processed. Consequently, current module networks compising local experts cannot make use 

of squad-based local expert architectures, since information concerning network agreement 

cannot influence arbitration decisions. 

In this thesis, the results of experiments with traditional and squad-based expert 

modules for closing diphthong recognition are reported (see §5.1). These results provide 

empirical evidence to suggest that the latter are better approximations to ideal expert modules 

for closing diphthong recognition than the former. This evidence provides a strong motivation 

for further theoretical investigation of network ensembles in the context of modular network 

approaches to automated phoneme recognition. 
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Chapter 5 

Closing Diphthong Recognition Using TDNNs 

This chapter presents the results of experiments using traditional and squad-based 

expert modules of the form discussed in §4.2.3 to recognize New Zealand English closing 

diphthong realizations. The next section compares the performances of speaker-dependent 

expert modules comprising basic-, extended- and sequence-token TDNNs created for the two 

New Zealand speakers discussed in §3.1. §5.2 presents the results of further experiments to 

discover the properties of expert modules comprising squads of sequence-token TDNNs. 

These experiments attempt multi-speaker recognition of the closing diphthong realizations 

produced by both New Zealand speakers. Finally, §5.3 summarises the main results presented 

in this chapter. 

5.1 Speaker-Dependent Experiments 

This section discusses the creation and testing of traditional and squad-based expert 

modules comprising basic-, extended- and sequence-token TDNNs. §5.1.1 discusses the 

training of the TDNNs used to form these modules. This is followed in §5.1.2 by a discussion 

of the methodology adopted in this work to compare expert modules. §5.1.3 presents test 

results for the traditional expert modules comprising individual TDNNs. These results are 

used as a reference for comparison with the squad-based expert module test results presented 

in §5.1.4. 

5.1.1 Training 

For speakers JK and lID (see §3.1.1), 50 examples ofbasic-, extended- and sequence­

token TDNN were trained successfully using the modified back-propagation algorithm 

discussed in §4.2 (150 networks in total). Speaker-dependent training (and subsequent testing) 

was adopted following the experimental approach used by Waibel and his colleagues for 

Japanese phoneme recognition (see §4.2.1). This approach establishes whether candidate 

expert modules for a given phoneme class can accommodate intra-speaker variation before 

\'f 
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progressing to more difficult multi-speaker and speaker-independent recognition tasks 

incorporating inter-speaker variation as well. 

To determine the best method of training basic-, extended- and sequence-token TDNNs 

to process speaker JK's and speaker lID's closing diphthong realizations, initial training 

experiments were conducted. For these experiments, tokens representing the closing diphthong 

realizations in each speaker's 320 closing diphthong syllables (see §3.1.1) were generated to 

suit each type of TDNN. For the basic- and extended-token TDNNs, these tokens were 

generated from "centred" speech portions selected using STEP in conjunction with each 

speaker's (F1,F2) coordinates, as discussed in §4.2.3.1. For each speaker, a total of 320 tokens 

were generated to suit both these types of TDNN. For the sequence-token TDNNs, tokens 

were generated from speech portions selected using STEP in conjunction with each speaker's 

(F1,F2) coordinates discussed in §4.2.3.2. For each speaker, a total of 580 tokens were 

generated to suit this type of TDNN, with many tokens representing different portions of the 

same closing diphthong realizations (see Figure 4.2.3.2-2). 

As discussed in §3.1.1, four realizations of each closing diphthong were recorded for 

speakers JK and lID in each of the sixteen contexts listed in Table 3.1.1-1. Consequently, for 

each speaker, the tokens suiting each type of TDNN were split into four groups containing 

one token representing each closing diphthong in each context. Examples of each type of 

TDNN were trained (speaker-dependently) using one, two and three of their associated groups 

of tokens. From these trials it was found that examples of basic-, extended- and sequence­

token TDNNs, when trained with one group of tokens, could correctly classify all the tokens 

in their other three groups. Consequently, all the TDNNs created for the speaker-dependent 

experiments di'scussed in this section were trained using one group of tokens representing one 

quarter of their associated speaker's available corpus of closing diphthong realizations (80 

realizations). The remaining tokens (representing 240 realizations) were used to test the 

classification performances of their associated TDNNs at the completion of training. For 

convenience, these tokens are referred to as aligned test tokens in this thesis. 

For speakers JK and HD, §A1.1.Ll and §A1.1.1.2 give training details for the 50 

examples of basic-, extended- and sequence-token TDNNs created for the experiments 

discussed in this section. For each speaker, the examples of each type of TDNN were trained 

using identical training tokens, but with different initial random weights, w(O), given by real 

numbers chosen randomly from the range [-0.5, 0.5J (all the weights for each TDNN trained 

were initialized with such values). Initially, this was done to permit the variation in 

performance due to different weight solutions to be observed, however, subsequently it 

enabled the formation of expert modules comprising squads of TDNNs. During the training 

of each TD NN created, its weights were updated until the average McClelland error (see 

equation (4.1-6)) fell below a predetermined threshold; i!;v < 0.015 for basic- and sequence­

token TDNNs and i!;v < 0.05 for extended-token TDNNs. These target errors were chosen 
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following the preliminary experiment~ with each type of TDNN discussed above and led to 

the perfect classification performances listed in Tables Al.1.1.1-1 and Al.l.1.2-1, for all 

examples of the three types of TDNN created. 

5.1.2 A Methodology for Comparing Expert Modules 

Given a set of candidate expert modules for a particular phoneme class, such as the 

closing diphthongs, a method of comparing these modules is required to permit one to be 

selected for use in a modular TDNN. Ideally, the best candidate might be selected by 

incorporating each in an existing modular TDNN, one at a time, and comparing the resulting 

performances. Unfortunately, however, a modular TDNN for New Zealand English does not 

yet exist, implying candidate expert modules for such a system must be compared in some 

other manner. 

One method of comparing candidate expert modules in the absence of a modular 

TDNN is to compare the classification performances afforded by their component TDNNs 

(Hataoka and Waibel 1990 use this approach). Using this method, a set of aligned test tokens 

not observed during training are processed by a trained TDNN to determine the proportion 

of these it can correctly classify. This proportion (often quoted as a percentage) is then used 

as an estimate of the network's classification performance. Unfortunately, this performance 

measure does not completely describe the behaviour of an expert module when operating 

within a modular TDNN. In particular, classification performance only measures the ability 

of such a module to correctly process appropriate input (tokens representing phoneme 

realizations from its phoneme class), while ignoring the errors it may potentially cause by 

responding to inappropriate input (tokens associated with phoneme realizations from other 

classes). 

Classification performance is also of limited use when comparing the various types 

of speaker-dependent expert modules discussed in this chapter for two further reasons. First, 

all of the TDNNs from which these modules are formed afford perfect classification 

performances (see Tables Al.l.l.1-1 and Al.1.l.2-1). Consequently, this performance measure 

provides no guidance concerning which candidate expert module to select. Second, 

classification performance does not equate to phoneme recognition performance (recognition 

performance, henceforth) for expert modules comprising sequence-token TDNNs. For these 

expert modules, classification performance only indicates that the elements of a desired 

reference sequence may be identified from aligned test tokens, not that such elements may 

be identified in the correct sequence to enable phoneme recognition. 

Given the problems with classification performance described above, it is desirable to 

establish a new method of comparing expert modules that considers more fully their potential 
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effects on the performance of a modular TDNN. The method proposed in this thesis compares 

the responses of candidate expert modules to entire utterances, rather than to aligned test 

tokens. Input derived from such utterances better resembles that which expert modules would 

receive if present in an operational modular TDNN, permitting their behaviours to be 

observed more fully. For example, Figure 5.1.2-1 depicts the response of a traditional expert 

module comprising a basic-token TDNN to an utterance of the word bide (lbaid/). Part (a) 

shows the speech signal associated with this utterance, while part (b) shows estimates of the 

fonnant frequencies associated with the centre slice of each token processed (these tokens 

contain 15 slices). Part (c) shows a Hinton diagram representing the expert module's response 

to each token (a column of squares in this diagram represents one response). Part (d) shows 

the response-sequence (for convenience, plotted rather than listed as in Figure 2.5.2-1) derived 

from the Hinton diagram in part (c) using the most-active rule (see §4.1). Part (e) traces the 

activation associated with the most active module output. The dashed lines in parts (a) delimit 

the speech portion used to create an aligned test token from the utterance of bide shown. The 

corresponding lines in part (b) delimit the formant transitions within this speech portion. 

Apart from the desired response corresponding to a realization of laiJ in the utterance 

depicted in Figure 5.1.2-1, highly active and incorrect responses are also produced while 

processing other portions of this utterance. Potentially, these incorrect responses may lead a 

modular TDNN to produce false-positive errors, particularly those responses signifying laul 

and lei! in the vicinity of lail's realization. 

Without observing a modular TDNN in operation, the degree to which a candidate 

expert module must be active to cause a false-positive error at a given instant, is unknown. 

One method of overcoming this lack of knowledge is to take the pessimistic view that all 

incorrect responses lead to false-positive errors. Figure 5.1.2-2 shows the effect of applying 

this view to the response-sequence depicted in Figure 5.1.2-1. In this case, groups of like 

responses within the sequence depicted in part (c) (the horizontal line-segments) are collapsed 

to form single elements of the phoneme sequence depicted in part (d). This sequence is 

assumed (pessimistically) to be the output of a modular TDNN in response to the utterance 

of the word bide processed and contains five false-positive errors, as shown. 

Given phoneme sequences concerning entire utterances, like that in Figure 5.1.2-2 (d), 

the performances of their associated expert modules may be compared. For convenience, this 

method of comparing expert modules is referred to as the isolated-test method, since the 

modules compared are isolated from a modular TDNN. The isolated test method permits 

candidate expert modules to be compared in terms of recognition peiformance and false­

positive error peiformance. Recognition perfonnance measures the ability of an expert module 

to correctly recognize phoneme realizations represented by tokens that it would receive if 

present in an operational modular TDNN. Importantly, these tokens are not aligned in any 

way with the phoneme realizations present in test utterances. False-positive error performance 
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Figure 5.1.2-1. The response of a traditional expert module comprising a basic-token TDNN to an utterance of the 
word bide (/baid/) (speaker JK). Parts (a) and (b) show the speech signal and raw formant tracks for this utterance 
respectively, while part (c) is a Hinton diagram of the module's response. The elements of this response are aligned 
with the centre slices of their associated tokens and span the full temporal extent of the utterance shown (they do not 
extend over all the "silence" at each end of this utterance, since tokens for basic-token TDNN must contain 15 slices). 
The response-sequence depicted in part (d) indicates which module output node is most active at each instant of time. 
The activation of this most active output node is given in part (e). 

measures the potential of an expert module to cause false-positive errors when operating in 

a modular TDNN. Comparing expert modules using this performance measure is desirable 

since false-positive errors are a major problem with current modular TDNNs (see 4.2.1) . 

For traditional expert modules comprising individual basic- or extended-token TDNNs, 

phoneme sequences for use with the isolated-test method are derived directly from the 

response-sequences of their component networks, as depicted in Figure 5.1.2-2. For squad-
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based expert modules comprising these types of TDNNs, phoneme sequences are derived 

directly from their collective response-sequences, as discussed in §5.1.4. For traditional expert 

modules comprising individual sequence-token TDNNs, phoneme sequences are derived as 

depicted in Figure 5.1.2-3. The response-sequence of the component sequence-token TDNN 

within such a module (see part (c)) is first collapsed by replacing groups of like responses by 

single elements (see part (d)). The algorithm depicted in Figure 4.2.3.2-3 is then applied by 
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Figure 5.1.2-2. The method used to derive phoneme sequences for use with the isolated-test method from the 
responses of a traditional expert module comprising a basic-token TDNN (phoneme sequences are derived similarly 
for expert modules comprising extended-token TDNNs). Parts (a) and (b) show an utterance of the word bide and 
the expert module's response to it, respectively. Part (c) shows the response-sequence derived from part (b) using the 
most-active rule. From this sequence, the required phoneme sequence shown in part (d) is derived directly. As 
indicated, this phoneme sequence contains one correct response and five false-positive errors. Detections of the desired 
diphthong lail are only regarded as valid within the extent marked by the dashed lines shown in part (a), which 
correspond to the hand labelled instances of plosive release (or "silence" for diphthong syllables not beginning or 
ending with a plosive). Speech portions outside this extent are assumed to have a low correlation with the diphthong 
lail (see Fant's model, Figure 2.2.3-1), an assumption supported by the low activation of the lail output for these 

portions (see part (b». 
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Figure 5.1.2-3. The method used to derive phoneme sequences for use with the isolated-test method from the 
responses of a traditional expert module comprising a sequence-token TDNN. Parts (a) and (b) show an utterance of 
the word bide and the expert module's response to it, respectively. Part (c) shows the response-sequence derived from 
part (b) using the most-active rule. This sequence is collapsed (see part (d» and then processed by the module's 
matcher to produce the required phoneme sequence shown in part (e) (note the blank element of this sequence implies 
a null classification). 

the module's matcher to determine if any closing diphthong realizations are present. If found, 

information concerning the extents of such realizations is obtained from the matcher and 

entered in the module's phoneme sequence (see part (e)). Note that the blank elements 

depicted in such sequences signify null classifications, implying no closing diphthong 

realization is present. The derivation of phoneme sequences from squad-based expert modules 

comprising sequence-token TDNNs follows a similar process, but once again uses collective 
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response-sequences as discussed in §5.1.4. 

When comparing expert modules using the isolated test method, detections of the 

"correct" phoneme that do not fall within the region anticipated for its realization are regarded 

as false-positive errors. For example, as shown in Figure 5.1.2-2, detections of tail that do not 

fall within bounds marked by the dashed lines in part (a), are regarded as false-positive errors 

(these bounds were hand labelled and correspond to the instances of plosive release in the 

example shown). It must be noted that false-positive error performances obtained using the 

isolated-test method verge on worst case estimates, since many of the "errors" observed 

correspond to marginally active module responses that may not normally cause false-positive 

errors. However, given the similar propensity for basic- extended- and sequence-token TDNNs 

to be highly active in response to inappropriate input (see, for example, the mean activations 

in Figures 5.1.4-1 through 5.1.4-3), it is assumed that false-positive error performances 

compared in this work are representative of the relative potential for expert modules 

comprising these TDNNs to cause false-positive errors. 

5.1.3 The Performances of Traditional Expert Modules 

This section discusses the performances of traditional expert modules for closing 

diphthong recognition comprising individual basic-, extended- and sequence-token TDNNs. 

These performances were estimated using the isolated-test method and provide a reference for 

comparison with those observed for the squad-based expert modules discussed in §5.L4 

5.1.3.1 Performances on Closing Diphthong Syllables 

For speakers JK and HD, Table 5.1.3.1-1 lists statistics concerning the recognition 

performances of traditional expert modules comprising individual basic-, extended- and 

sequence-token TDNNs. For convenience, these modules are referred to as BT1s, ET1s and 

ST1s, respectively.l For each speaker, these statistics were determined by processing the 

closing diphthong syllable utterances not used for network training (240 utterances per 

speaker) using the 50 expert modules of each type available. For both speakers, the 

recognition performances of the BTls and ETls are uniformly perfect, like the classification 

performances of their component networks (see §A1.1.1.1 and §A1. 1. 1.2). In contrast, the 

IThe subscript 1 indicates an expert module containing an individual network. In §5.1.4, 
expert modules comprising squads of TDNNs are similarly named with the subscripted 
numeral indicating the number of networks combined within each squad. 
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recognition perfonnances of the ST1s are imperfect and variable, unlike the perfect 

(a) Speaker JK 

Module Type 

Basic-Token (BT 1) 
Extended-Token (ET 1) 
Sequence-Token (ST 1) 

(b) Speaker HD 

Module Type 

Basic-Token (BTl) 
Extended-Token (ET 1) 
Sequence-Token (ST1) 

min. 

100 
100 
67 

min. 

100 
100 
67 

% Correct 
mean max. standard 

deviation 

100 100 0.0 
100 100 0.0 
78 90 5.1 

% Correct 
mean max. standard 

deviation 

100 100 0.0 
100 100 0.0 
85 94 6.5 

107 

Table 5.1.3.1-1 Statistics concerning the recognition performances of traditional expert modules comprising individual 
basic-, extended- and sequence-token TDNNs when processing (a) speaker JK's and (b) speaker HD's closing 
diphthong syllables (syllables not used for network training). 

classification perfonnances of their component networks (see §A1.1.1.1 and §A1.l.1.2). 

From Table 5.1.3.1-1, it is apparent that the recognition perfonnances for the ST1s 

differ from those for the BT1s and ET1s. The significance of these differences may be 

analyzed further using Cochran's generalized Q-test for correlated proportions (see §A3.1). 

This test examines the null hypothesis that the recognition perfonnances (expressed as 

proportions) are equal, while accounting for the correlations that may exist between them. 

Such correlations are likely, since each speaker's expert modules have been trained and tested 

using the same sets of speech utterances (one set for training and one set for testing). 

Applying Cochran's generalized Q-test to the recognition perfonnances for speaker 

JK's expert modules (M::::150 modules in total) gives Q::::7429, which exceeds the critical 

value Qa=o.oie::::O.0154,v::::149)::::640, where a is the level of significance (Neter et al 1988; 

Daniel 1990), e is a variable computed during testing (see §A3.1) and v is the degrees of 

freedom. Consequently, the null hypothesis that speaker JK's traditional expert modules all 

perfonn equally is rejected at a significance level of 0.01. From this outcome it is inferred 

that the recognition perfonnances of at least some of speaker JK's ST1s differ significantly 

from 100%, the perfonnance afforded by all of this speaker's BT1s and ET1s. 

To discover if all speaker JK's ST1s perfonn differently from this speaker's BT1s and 
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ET 1 s, a second Q-test may be conducted in conjunction with worst examples of the latter 

modules and the best ST1"2 This test gives Q=48 > Qa=o,OlE=0.5,v=2)=14.2, implying the 

performance of the best ST1 differs significantly from 100%, the performance afforded by the 

worst BTl and ET l . From this outcome, and that of the first Q-test, it is inferred that the 

performances of all speaker JK's STls differ significantly from 100%. Since the recognition 

performances of these modules are worse than those of the BTl sand ET 1 S (worse than 100%), 

it is concluded that speaker JK's BTls and ETls afford significantly better recognition 

performances than his STls when used for speaker-dependent closing diphthong recognition. 

The same conclusion is also reached for speaker HD's traditional expert modules. In 

this case, the first (full) Q-test gives Q=5830 > Qa=o,olE=0.019,v=149)=579, while the second 

(partial) Q-test gives Q=28 > Qa=o,olE=0.5,v=2)=14.2. Notably, the poorer recognition 

performances of the STls tested are caused by interposed errors in the response-sequences 

produced by their component sequence-token TDNNs, as depicted in Figure 5.1.3.1-1. Ideally, 

an ST1's component sequence-token TDNN should produce a response-sequence (part (a)) 

that, when collapsed (part (b)), may be matched to a reference sequence corresponding to a 

closing diphthong (in this example 0-1-2 corresponding to laiI). If an interposed error occurs 

(part (d)), the collapsed response-sequence resulting (part (e)) may no longer contain a 

sequence corresponding to the desired phoneme. This in turn causes the matcher to produce 

an omission error (implying recognition failure) and may also lead to a false-positive error 

as depicted in Figure 5.1.3.1-1 (f). As §5.1.4 discusses, the detrimental effects of interposed 

errors like that in Figure 5.1.3.1-1 (d), may be alleviated by using squads of sequence-token 

TDNNs. 

For speakers JK and HD, Table 5.1.3.1-2 lists statistics concerning the false-positive 

error performances of their BT}s, ET]s and STls. Once again, these statistics were measured 

using the closing diphthong syllable utterances not used for network training (240 utterances 

per speaker containing 600 phoneme realizations, of which 360 are not closing diphthong 

realizations). The false-positive error performances listed in Table 5.1.3.1-2 indicate the 

abilities of the various traditional expert modules tested to "ignore" phoneme realizations 

corresponding to the voiced plosives fbI, Idl and Igl and intervals of "silence" also present in 

the test utterances (see §3.1.1). 

2Using the original version of Cochran's Q-test, the proportions (recognition 
performances) that are significantly different may be identified by partitioning Q into separate 
components, each of which measures a specified source of variability (Fleiss 1973). 
Unfortunately, however, the same technique has not yet been extended to the generalized 
version of Cochran's Q-test discussed in §A3.1. The alternative to partitioning used in this 
thesis is biased in favour of finding no significant difference, since proportions exhibiting the 
least differences are compared. Such biasing is acceptable when the differences being 
compared are large, leading to the rejection of the null hypothesis of equal proportions. 
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Figure 5.1.3.1-1. The manner by which interposed errors may cause traditional expert modules comprising individual 
sequence-token TDNNs to fail. Parts (a) through (c) show the desired behaviour of such a module and its component 
sequence-token TDNN. When the latter produces an interposed error, as in part (d), the phoneme sequence produced 
by the former (part (f» may not resemble that desired (part (c» . 

To permit a fair comparison of the false-positive error performances listed in Table 

5.1.3.1-2, it is necessary to first normalize each performance with respect to the number of 

tokens processed by its associated expert module. Due to the short, isolated test utterances 

used to estimate these performances, the BT1s and ST1s process considerably more input 

tokens than the ET1s, since the latter uses 30 instead of 15 slice tokens (see §4.2.3.1). 

Consequently, the BT1s and ST1s produce more responses per test utterance (see Figures 

5.1.4-1 through 5.1.4-3), implying they have a greater likelihood of producing potential false­

positive errors. To counter this imbalance (which would be less pronounced if long continuous 

utterances had been used for testing), the false-positive error performances of the BT1s, ET1s 
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and STls observed in this work are scaled by lINBT> llNET and lINST> respectively, where NBT, 

NET and NST are the numbers of tokens processed (and responses made) by each type of 

module. For speaker JK, NBFNsF17 200 and Ner13 600, while for speaker RD, 

NBFNsr=17_312 andNer13 712. Using these values, Figure 5.1.3.1-2 depicts the normalized 

sampling distributions of false-positive error performance associated with the 50 examples of 

each speakers three types of traditional expert module. 
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Figure 5.1.3.1-2. The sampling distributions of normalized false-positive error performance for (a) speaker JK's and 
(b) speaker HD's traditional expert modules comprising basic-, extended- and sequence-token TDNNs. The dashed 
vertical lines in this figure indicate mean false-positive error performance for each distribution. 

Since each speaker's false-positive error performances displayed in Figure 5.1.3.1-2 

do not arise from dichotomous expert module responses (more than one false-positive error 

may occur per test utterance), Cochran's generalized Q-test may not be used to compare them. 

Consequently, an alternative statistical test that does not assume dichotomous responses is 

required. In this thesis, the Games-Howell test discussed in §A3.2 is used to compare false­

positive error performances. This test permits multiple pair-wise comparisons between an 



5.1 SPEAKER-DEPENDENT EXPERlMENTS 111 

arbitrary number of means, provided estimates of their variances are also available. The 

means compared may be estimated from different sized samples and their populations need 

not have the same variances. In this thesis, it is assumed that the mean false-positive error 

performances of expert modules tested are positively correlated. Evidence for this assumption 

is presented in §A3.2. Though intended for comparing independent means, the Games-Howell 

test is conservative when used in conjunction with positively correlated means (see §A3.2), 

implying only large differences in mean false-positive error performance are likely to be found 

significant. Since a more suitable (and powerful) statistical test does not yet exist to compare 

mUltiple correlated means, while assuming different sample sizes and population variances, 

the Games-Howell test must suffice. 

(a) Speaker JK 

Module Type 

Basic-Token (BTl) 
Extended-Token (ET 1) 
Sequence-Token (ST 1) 

(b) Speaker HD 

Module Type 

Basic-Token (BTl) 
Extended-Token (ET 1) 
Sequence-Token (ST 1) 

False-Positive Errors 
Per Expert Module 

rnm. mean max. standard 
deviation 

875 
478 
34 

1100 
584 
170 

1419 
681 
368 

105 
44 
73 

False-Positive Errors 
Per Expert Module 

min. mean max. standard 
deviation 

745 957 1242 
352 451 582 
41 110 223 

122 
49 
49 

Table 5.1.3.1-2. Statistics concerning the false-positive error performances of traditional expert modules comprising 
individual basic-, extended- and sequence-token TDNNs when processing (a) speaker JK's and (b) speaker lID's 
closing diphthong syllables (syllables not used for network training). For each speaker, the utterances processed 
contain 600 phoneme realizations, of which 360 are realizations of fbi, Idl and Igi. 

Table 5.1.3.1-3 lists the results of Games-Howell tests comparing the normalized mean 

false-positive error performances of each speaker's traditional expert modules (these are 

presented following the method used in Sokal and Rolhf 1981). Each number below the 

diagonal is associated with one pairing of the three expert modules being compared and 

indicates the difference between their normalized mean false-positive error performances. The 
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numbers above the diagonal correspond to the minimum significant differences (MSDs, see 

equation (A3.2-5» evaluated by the Games-Howell tests. Each MSD corresponds to the pair­

wise mean difference diagonally opposite it, and indicates the minimum difference considered 

statistically significant when a=0.01. For convenience, the pair-wise mean differences which 

exceed their associated MSD are marked with an asterisk. For differences so marked, the null 

hypothesis that the pair of normalized mean false-positive error performances compared are 

the equal, is rejected with a significance level of a=0.01. 

(a) Speaker lK 

BTl 
ETI 
STI 

(a) Speaker HD 

BTl 
ETI 
ST1 

BTl 

0.021 * 
0.054* 

BTl 

0.022* 
0.049* 

0.005 

0.033* 

ETI 

0.006 

0.027* 

0.005 
0.004 

0.005 
0.003 

Table 5.1.3.1-3. Results of Games-Howell tests comparing the normalized mean false-positive error performances 
of each speaker's traditional expert modules for closing diphthong recognition. The numbers below the diagonal are 
the normalized pair-wise mean differences observed, while the numbers above the diagonal are the minimum 
significant differences (MSDs, see equation (A3.2-5)) evaluated by the Games-Howell test with a=0.01. The pair-wise 
differences that exceed their associated MSD (diagonally opposite) are marked with an asterisk to indicate that they 
are statistically significant. 

For each speaker, the results listed in Table 5.1.3.1-3 indicate that the mean false­

positive error performances of the three types of expert module compared differ significantly 

from one another. From the relative positions of the distributions in Figure 5.1.3.1-2, it is, 

therefore, concluded that each speaker's STls afford significantly better false-positive error 

performances than their ET 1 s, which in tum afford significantly better performances than their 

BTls (in the context of processing closing diphthong syllable utterances like those discussed 

in §3.1.1). 

The superior false-positive error performances of each speaker's STls are attributed 

to their use of a limited set of valid reference sequences to represent closing diphthong 

phonemes, as discussed in §4.2.3.2. Consequently, for example, a speech portion that causes 

the component sequence-token TDNN of an ST1 to produce the sequence 2-0-3-4 (see the first 

0.35 seconds of Figure 5.1.3.1-1 (b», does not cause any false-positive errors, since this 



5.1 SPEAKER-DEPENDENT EXPERlMENTS 113 

sequence, nor any of its sub-sequences, matches any of the reference sequences listed in Table 

4.2.3.2-1. By contrast, this same speech portion may cause a BTl or ETI to produce one or 

more false-positive errors. 

Comparing the performances of the traditional expert modules created for each 

speaker, those for speaker HD are slightly better in terms of recognition and/or false-positive 

error performances than those for speaker JK. In this thesis, no particular significance is 

attached to this finding since a sample of two speakers (one of each sex) is insufficient to 

analyze trends, such as those based on speaker sex. It is, however, reassuring to know that 

traditional expert modules for closing diphthong recognition function similarly for New 

Zealand English speakers of both sexes. 

To summarise, the results presented in this section demonstrate that traditional expert 

modules comprising individual basic- and extended-token TDNNs afford significantly better 

recognition performances than their counterparts comprising individual sequence-token 

TDNNs, but at the cost of significantly worse false-positive error performances. Of the three 

types of traditional expert module tested, those comprising individual extended-token TDNNs 

afford the best performance compromises. These modules share the high recognition 

performances afforded by modules comprising basic-token TDNNs, but make significantly 

fewer false-positive errors than the latter modules. Interestingly, the traditional expert modules 

comprising basic-token TDNNs tested afford excellent recognition performances despite using 

short 15 slice tokens. Consequently, in contrast to Hataoka and Waibel's suggestion (see 

§4.2.1), improving false-positive error performance provides are stronger motive for using 

extended tokens to represent closing diphthong realizations, than improving recognition 

performance does. 

5.1.4 The Performances of Squad-based Expert Modules 

This section presents the performances obtained using expert modules comprising 

squads of basic-, extended- and sequence-token TDNNs for closing diphthong recognition. 

Such squads were originally motivated by observations of TDNN responses like those shown 

in Figures 5.1.4-1,5.1.4-2 and 5.1.4-3. These figures depict the responses of all speaker JK's 

basic-, extended- and sequence-token TDNNs, respectively, to one of his utterances of the 

word bide (lbaidl). Part (a) of each figure shows the raw formant tracks for this utterance. 

Part (b) of each figure shows the response-sequences for all 50 examples of the TDNN s 

associated with it (these are superimposed upon one another). Finally, part (c) of each figure 

shows the mean and range of activations for the most active output nodes of all 50 TDNN 

examples. In each figure, the dashed vertical lines in part (a) again delimit the extent of an 

aligned test token(s) representing the realization of fail in speaker JK's utterance of bide. 
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From Figures 5.1.4-1 through 5.1.4-3, the following may be observed. First, for each 

type of TDNN, the 50 response-sequences depicted coincide for tokens resembling the aligned 

test tokens, implying complete agreement about the classifications of these tokens. With the 

exception of the second interval of such agreement for the basic-token TDNNs (that for feil 

in Figure 5.1.4-1 (b)), the intervals of complete agreement depicted correspond to desired 

responses for the closing diphthong realization processed. Specifically, the basic- and 

extended-token TDNNs all respond most actively with the output node signifying fail, while 

the sequence-token TDNNs all produce the sequence of most active outputs 0-1-2, which also 

signifies fail (see Table 4.2.3.2-1). Second, during the intervals of complete agreement 

depicted in Figures 5.1.4-1 through 5.1.4-3, the activations associated with the most-active 

outputs for all 50 TDNN examples shown, tend to 0.9, the activation desired for tokens 

representing fail during training. This behaviour is apparent for all three TDNN approaches, 

however, as indicated by the traces for the extended-token TDNNs (Figure 5.1.4-2 (c)), may 

be less pronounced than the coincidence of TDNN response-sequences. 

Third, during intervals where network agreement is not complete, the activations of 
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Figure 5.1.4-1. The responses of all speaker JK's 50 basic-token TDNNs to an utterance of the word bide (lbaid/). 
For reference, part (a) shows the raw formant tracks for this utterance whose signal is depicted in part (a) of Figure 
5.1.2-1. Part (b) shows the response-sequences for all 50 TDNNs. These are coincident (agree completely) in the 
vicinity of the aligned test token (the region delimited by the dashed lines in part (a)) whose centre is indicated by 
the arrow joining parts (a) and (b). During the interval of complete agreement, the activation of the most-active output 
(part (c)) approaches 0.9, the magnitude desired for tokens representing Jail during training. During the remainder of 
the utterance, the 50 networks often disagree and their most active output nodes may be highly active, as indicated 
by the mean and max curves in part (c). 
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Figure 5.1.4-2. The same as Figure 5.1.4-1 except the traces are for 50 extended-token TDNNs. 
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Figure 5.1.4-3. The same as Figure 5.1.4-1 except traces are for 50 sequence-token TDNNs. Note that only the solid 
line arrows joining parts (a) and (b) correspond to aligned test tokens extracted from the utterance of bide processed 
for this example, while the dashed-line arrow indicates the approximate spectral content of the tokens associated with 
the final region of complete network agreement. 
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the most active output nodes tend to be more variable. In particular, the most active output 

nodes of certain TDNN examples are highly active during such intervals, which often 

correspond to realizations of phonemes other than the closing diphthongs. Such activity is 

undesirable when these examples are used individually to form traditional expert modules, 

since it is likely to cause false-positive errors (see §4.2.2). Unfortunately, high activations in 

response to inappropriate input are exhibited by all 50 of each speaker's basic-, extended- and 

sequence-token TDNNs, though the input eliciting such activations differs from one TDNN 

example to the next. Consequently, traditional expert modules comprising such TDNNs are 

unlikely to perform like an ideal expert module for closing diphthong recognition (see §4.2.2). 

From Figures 5.1.4-1 through 5.1.4-3, it is apparent that basic-, extended- and 

sequence-token TDNN examples might be combined to form squads of like networks to 

correctly classify input tokens representing closing diphthong realizations, while "ignoring" 

tokens representing other phoneme realizations or "silence". In this work, the response-

Individual Response-Sequences 
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Figure 5.1.4-4. The method used to derive phoneme sequences for use with the isolated-test method from the 
individual response-sequences of component extended token TDNNs forming a squad-based expert module (phoneme 
sequences are derived similarly for squad-based expert modules comprising basic-token TDNNs). Part (a) shows the 
individual TDNN response-sequences, which when processed by the combiner (part (b)), are transformed into the 
collective response-sequence shown in part (c). The latter response is transformed into a phoneme sequence (part (d)) 
using the same method as for traditional expert modules comprising basic- or extended-token TDNNs (see Figure 
5.1.2-2). 
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sequences produced by the component TDNNs of a squad are combined to form collective 

response-sequences by a combiner (see Figure 4.2.3-1) that utilizes the selective-system voting 

rule discussed in §4.3. Figures 5.1.4-4 (c) and 5.1.4-5 (c) show the collective response­

sequences that result when such a combiner is applied to the individual extended- and 

sequence-token TDNN response-sequences shown in parts (a) of these figures, respectively 

(collective response-sequences similar to that in Figure 5.1.4-4 (c) are observed for basic­

token TDNN squads also). In these examples, the agreement threshold, A, is set to 1, implying 

complete agreement is required to produce a non-null collective response. As shown in 

Figures 5.1.4-4 (c) and 5.1.4-5 (c), this setting rejects all but the intervals of complete 

agreement between the response-sequences combined. 

Apart from showing the formation of collective response-sequences, Figures 5.1.4-4 

and 5.1.4-5 demonstrate the method used to derive phoneme sequences from squad-based 
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Figure 5.1.4-5. The method used to derive phoneme sequences for use with the isolated-test method from the 
individual response-sequences of component sequence-token TDNNs forming a squad-based expert module. Part (a) 
shows the individual TDNN response-sequences, which when processed by the combiner (part (b)) , are transformed 
into the collective response-sequence shown in part (c). The latter response is collapsed (part (d)) and the resulting 
sequence (part (e)) transformed by the module's matcher (part (f)) to produce its phoneme sequence (part (g)) . During 
matching, short intervals of null classification in a collective response-sequence are ignored, while the longer intervals 
of null classification (marked by the asterisks) act as boundaries over which matching sequences may not straddle. 
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expert modules for use with the isolated-test method (these figures were produced using 

speaker JK's TDNNs and the same utterance of the word bide used to produce Figures 5.1.2-2 

and 5.1.2-3). For squad-based expert modules comprising basic- or extended-token TDNNs, 

phoneme sequences are derived from their collective response-sequences using the same 

method of collapsing like responses into single phonemic symbols, as is used with their 

traditional expert module counterparts (as before, the blank elements of the phoneme sequence 

shown in Figure 5.1.4-4 (d) correspond to null classifications). For squad-based expert 

modules comprising sequence-token TDNN s, phoneme sequences are derived using the same 

approach as for their traditional expert module counterparts, with one exception; during 

sequence matching, short intervals of null classifications (:::;5 responses) are ignored, while 

longer intervals (>5 responses) are treated as boundaries over which matching sequences may 

not straddle. In Figure 5.1.4-5 (e), the longer intervals of null classification in the collapsed 

response-sequence shown, are marked with asterisks to indicate their special status. 

As Figures 5.1.4-4 and 5.1.4-5 show, combining TDNNs into squads may be used to 

suppress many of the highly active and inappropriate responses made by such networks 

individually (see Figures 5.1.4-1 through 5.1.4-3). Consequently, expert modules formed from 

squads of TDNNs may produce phoneme sequences that better resemble those of an ideal 

expert module, than those produced by traditional expert modules. In particular, squad-based 

expert modules for closing diphthong recognition may be trained to produce phoneme 

sequences that contain non-null elements (non-blank elements) only in the vicinities of closing 

diphthong realizations, as shown in Figures 5.1.4-4 and 5.1.4-5. 

In this work, the agreement threshold, A, is set to 1 for all squad-based expert modules 

discussed. As a consequence of the perfect classification performances of the component 

basic-, extended- and sequence-tokens TDNNs forming these squads (see A1.1.1.1 and 

A1.1.1.2), this setting permits good rejection of inappropriate input, without reducing their 

recognition performances. Selecting an optimal value of A for use with squads of TDNNs 

generally is left as a subject for further research. 

The next section discusses the performances of speaker-dependent squad-based expert 

modules when processing speaker JK's and speaker RD's closing diphthong syllable 

utterances. This is followed in §5.1.4.2 by a discussion of the false-positive error 

performances of these modules when processing the monophthong syllables uttered by 

speakers JK and HD (see §3.1.2). 

5.1.4.1 Performance on Closing Diphthong Syllables 

For speaker's JK and RD, Table 5.1.3.1-1 lists statistics concerning the recognition 

and false-positive error performances of expert modules comprising squads of basic-, 
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extended- and sequence-token TDNNs, referred to as BTN, ETN and STN, respectively (where 

N is the number of networks combined to form a squad). The performances of five expert 

modules comprising squads of 10 (randomly chosen) TDNNexamples and one expert module 

comprising a squad of 50 examples, are listed for each speaker and TDNN approach. As in 

§5.1.3.1, these performances were measured using the closing diphthong syllable utterances 

not used in conjunction with network training (240 syllables per speaker). 

(a) Speaker JK 

Module Type % Correct 

Basic-Token (BTlO) 100 
Extended-Token (ETlO) 100 
Sequence-Token (STlO) 98.8 

Basic-Token (BT50) 100 
Extended-Token (ET50) 100 
Sequence-Token (ST50) 99.7 

(b) Speaker HD 

Module Type % Correct 

Basic-Token (BTlO) 100 
Extended-Token (ETlO) 100 
Sequence-Token (ST 10) 100 

Basic-Token (BT50) 100 
Extended-Token (ET50) 100 
Sequence-Token (ST 50) 100 

False-Positive Errors 
Per Module 

min. mean max. standard 
deviation 

357 407 437 33.1 
53 93 134 33.8 
2 4 8 2.4 

201 
18 
1 

False-Positive Errors 
Per Module 

min. mean max. standard 
deviation 

279 390 496 99.3 
158 184 216 30.0 

0 2 4 1.5 

208 
84 
0 

Table 5.1.4.1-1. The recognition (% correct) and false-positive error performances of expert modules comprising 
squads ofbasic-, extended- and sequence-token TDNNs containing 10 TDNNs (five modules tested) and 50 TDNNs 
(one module tested) when processing each speaker's closing diphthong syllables (syllables not used for network 
training). 

With the exception of speaker JK's ST lOS and ST 50' all the expert modules tested 

recognized 100% of the closing diphthong realizations present in the utterances processed. 
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Speaker JK's STlOs recognized 98.8% of these realizations on average3
, while this speaker's 

STso recognized 99.7%. Comparing these performances with those of speaker JK's other 

squad-based expert modules using Cochran's generalized Q-test, reveals that the recognition 

performances of all these modules are not significantly different. In particular, comparing the 

STlOs with the BTlOS and ETlOS (15 modules in total), a Q-test gives Q=46.1 < 

Qa=o.oiE=O.1l32,v=14)=72.5, while comparing the STso with the BTso and ETso (3 modules 

in total), Q=2 < Qa=O.OlE=O.1l32,v=2)=13.3. Consequently, it is concluded that all the squad­

based expert modules tested afford the same recognition performance. 

Comparing the recognition performances of each speaker's squad-based expert modules 

(Table 5.1.4.1-1) with their traditional expert module counterparts (Table 5.1.3.1-1), it is 

apparent that only the performances of their ST lOs and STso differ from those of their ST1s. 

The significance of these differences may be tested for each speaker by comparing the best 

ST1 with the worst STlO using a Q-test. Comparing these modules for speaker JK gives 

Q=12.5 > Qa=o.olE=1,v=1)=6.6. From this outcome, it is inferred that the recognition 

performances of all speaker JK's ST lOS and ST 1 S are significantly different. The same 

inference may also be made for this speaker's STso, since its recognition performance exceeds 

that of his worst ST 10' Similarly, comparing speaker RD' s worst ST 10 with this speaker's best 

ST1 gives Q=14 > Qa=o.olE=1,v=1)=6.6, implying the inferences made for speaker JK also 

apply to speaker RD. Consequently, considering the relative recognition performances of each 

speaker's ST1s, STlOs and STso, it is concluded that their STlOs and STsos afford significantly 

better recognition performances than their ST1s, when attempting to recognize their closing 

diphthong realizations. The high (near perfect) recognition performances of the ST lOS and 

ST50s tested, indicate that the use of squads in conjunction with the selective-system voting 

rule (see §4.3) may effectively eliminate the interposed errors produced by their component 

sequence-token TDNNs (see Figure §5.1.3.1-1). Such errors are not present within the 

collective response-sequences of these squad-based expert modules, since not all component 

sequence-token TDNNs make the same interposed errors at the same times. Consequently, the 

interposed errors produced by the individual component sequence-token TDNNs of a squad 

are "ignored" as a result of network disagreement concerning these responses. 

As in § 5 .1.3 .1-1, the mean false-positive error performances of the various squad-based 

expert modules must also be normalized to permit fair comparisons of these performances. 

The scale factors used for this normalization are identical to those discussed in §5.1.3.1-1, 

since (in the worst case) the component networks of a squad may produce unanimous 

responses that alternate between incorrect object indices when processing a series of tokens. 

Table 5.1.4.1-2 presents a full list of Games-Howell test results obtained when 

3For these expert modules, the mlUlITlUm performance was 97.9%, the maxImum 
performance was 99.2% and the standard deviation was 0.51 %. 
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comparing the normalized mean false-positive error perfonnances of each speaker's traditional 

and squad based expert modules (only the modules comprising squads of 10 TDNN examples 

are considered, since estimates of the perfonnance variation associated with each speaker's 

BT50, ETso and STso are unavailable). Comparing the BTlOs, ETlOS and STlOs amongst 

themselves fIrst, the nonnalized mean false-positive error perfonnances of speaker JK's STlOs 

and ETlOS are found to be signifIcantly different from this speaker's BTlOs, but not 

significantly different from one another. In contrast, the exact opposite results are found for 

speaker HD's BTlOs, ETlOS and STlOs, due mainly to the largish variation associated with the 

false-positive error perfonnances of this speaker's BTlOS (see Table §5.1.4.1-1). In particular, 

only her STlOs and ETlOS are found to afford significantly different false-positive error 

perfonnances. From Table 5.1.4.1-1, it is apparent that both speaker's STlOs afford the best 

false-positive error perfonnances of the expert modules comprising squads of 10 TDNN 

examples tested. Regrettably, however, there is only partial statistical evidence to support the 

conclusion that the ST10s afford signifIcantly better false-positive error perfonnances than the 

other two types of expert modules. 

Comparing the nonnalized mean false-positive errors of each speaker's traditional 

(a) Speaker JK 

BTl ETI STI BTlO ETIO ST IO 

BTl 0.005 0.005 0.007 0.009 0.004 
BTl 0.021* 0.004 0.008 0.011 0.002 
STI 0.054* 0.033* 0.007 0.010 0.003 

BTIO 0.040* 0.019* 0.014* 0.016 0.009 
ETIO 0.057* 0.036* 0.003 0.017* 0.012 
STIO 0.064* 0.043* 0.010* 0.023* 0.007 

(b) Speaker HD 

BTl ETI STI BTIO ETIO STIO 

BTl 0.006 0.005 0.025 0.007 0.005 
ETI 0.022* 0.003 0.028 0.007 0.003 
STI 0.049* 0.027* 0.027 0.008 0.002 

BTIO 0.033* 0.010 0.016 0.029 0.027 
ETIO 0.042* 0.020* 0.007 0.009 0.009 
STIO 0.055* 0.033* 0.006* 0.022 0.013* 

Table 5.1.4.1-2. Results of Games-Howell tests comparing the normalized mean false-positive error perfonnances 
of (a) speaker JK's and (b) speaker HD's traditional and (small) squad-based expert modules when processing their 
associated speaker's closing diphthong syllable utterances. 
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expert modules with their counterparts comprising squads of 10 TDNNs (see the italicized 

entries in Table 5.1.4.1-2), it is evident that these are significantly different, irrespective of 

component TDNN type. Consequently, from the relative performances of these modules, it is 

concluded (for both speakers) that the BTlOs, ETlOS and STlOs tested afford significantly better 

false-positive error performances than their traditional expert module counterparts, when 

processing closing diphthong syllable utterances like those discussed in §3.1.1. Since the 

false-positive error performances of each speaker's BTso, ETso and STso are better than any 

of their BTlOs, ETlOS and STlOs, respectively, the same conclusion is also likely when 

comparing the larger squad-based and traditional expert modules, though there is insufficient 

evidence to confirm this statistically. 

The superior false-positive error performances of the expert modules comprising the 

larger squads of 50 TDNN examples, is attributed to the greater probability of combining 

(randomly chosen) networks that disagree about inappropriate input (see §4.3). The false­

positive error performances associated with each speaker's BT50, ETso and ST50 provide an 

indication of what might be achieved by smaller squads whose component networks are 

optimally trained for use in a squad. §A1.1.2.1 and §A1.1.2.2 give detailed breakdowns of the 

potential false-positive errors produced by speaker JK's and speaker lID's BT 50' ET 50 and 

ST50, respectively (similar patterns were observed for the modules comprising 10 TDNN 

examples also). Of greatest interest are the false-positive errors associated with diphthongs 

fail and fei/. Each speaker's BTso frequently produced the phoneme sequence lail-Ieil in 

response to realizations of both these phonemes, implying one correct response and one false­

posi1;ive error. Unfortunately, on occasion, both elements of this ambiguous phoneme sequence 

were produced in conjunction with highly active (expert module) output nodes, providing no 

reliable cue as to which element was false. Consequently, it is likely that not all ambiguous 

fail-/eil sequences produced by a BTso in response to realizations of lail or lei/, may be 

corrected by an arbitration module. Unfortunately, the ambiguity created by this sequence 

may, therefore, be conveyed to subsequent levels of linguistic processing, like morpheme 

recognition where, for example, it could make distinguishing between morphemes such as 

bide and bade difficult.4 

Since lail and feil are perhaps the most frequently used closing diphthongs in New 

Zealand English (see §2.4), the ambiguity created by each speaker's BTso is extremely 

undesirable. Though such ambiguity might be corrected during subsequent processing, the 

performances of each speaker's STso indicate that it need not arise in the first place. In 

comparison to their BTso, each speaker's ETso produces far fewer ambiguous lail-/ei/ phoneme 

sequences, however, these are not entirely eliminated. Only each speaker's ST 50' like their 

4In the case of bade and bide, ambiguity caused by the phoneme sequence Ibl-iail-ieil-idl 
would have to be corrected at the semantic level, since both words are verbs. 
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STlOs, were observed to produce no ambiguous fail-feil sequences. 

To aid summarizing the performance results presented in this section and §5.1.3.1, 

Figure 5.1.4.1-1 depicts these performances graphically with separate axes corresponding to 

recognition and normalized false-positive error performances. The lines associated with the 

various types of expert module compared (where visible) correspond to the range of 

performances observed when processing their associated speaker's closing diphthong syllable 

utterances. Comparing the traditional expert modules with squad-based modules of the same 

type, the squad-based modules afford identical or significantly better recognition performances 

compared to the traditional expert modules, while affording significantly better false-positive 

error performances. Consequently, it is concluded that squad-based expert modules are more 

o 0.01 0.02 

Normalized False-Positive Error 
Performance 

0.03 o om 0.Q2 

Normalized False-Positive Error 
Performance 

0.Q3 

Figure 5.1.4.1-1. A summary of the performance results presented in this section and §5.1.3.1 for (a) speaker JK and 
(b) speaker HD. 
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suitable for closing diphthong recognition, since their performances better approximate those 

of an ideal expert module. 

Comparing the various types of squad-based expert modules tested, it is apparent that 

these differ mainly in their false-positive error performances, since all afford very similar 

recognition performances. The consistently better false-positive error performances of the 

squad-based expert modules comprising sequence-token TDNNs provides a strong motive for 

preferring these modules for closing diphthong recognition. Of all the modules tested, the 

ST 50S afford the best approximations to ideal expert modules for closing diphthong 

recognition, recognizing all (or nearly all) of the closing diphthong realizations they 

processed, while making nearly no potential false positive errors. Each speaker's ST lOs 

afforded performances only marginally worse than their STso' while requiring only afifth of 

the computational effort. 

5.1.4.2 Performance on Monophthong-Syllables 

As discussed in §4.2.2, an expert module designed to recognize one class of phoneme 

realizations should, ideally, ignore realizations corresponding to phonemes from other classes. 

Consequently, it is desirable to compare the false-positive error performances of candidate 

expert modules for closing diphthong recognition in response to realizations of phonemes 

other than closing diphthongs (this was done partially in the previous section). As discussed 

in §2.3, the glides associated with certain closing diphthong realizations may contain qualities 

characteristic of the realizations of one or more monophthongs. For this reason, realizations 

of these phonemes have a high priority when testing the abilities of candidate expert modules 

for closing diphthong recognition to ignore inappropriate input. The false-positive error 

performances discussed in this section indicate the abilities of the various types of squad­

based expert modules tested to ignore monophthong phoneme realizations (in addition to 

realizations of the voiced plosives). 

Table 5.1.4.2-1 lists statistics concerning the false-positive error performances of 

speaker JK's and speaker HD's squad-based expert modules observed when processing their 

160 monophthong syllable utterances (400 phoneme realizations per speaker; see §3.1.2). 

These performances were obtained by treating any non-null expert module response as a 

potential false-positive error, since the monophthong syllables processed contain no closing 

diphthong realizations (§3.1.2). As in §5.1.2, groups of identical non-null responses were 

collapsed to form single false-positive errors. 

Mirroring the false-positive error performances reported in the previous section, each 

speaker's STlOs and ST50 afford the best performances (for their respective squad sizes) when 

processing their associated speaker's monophthong syllable utterances. Table 5.1.4.2-2 lists 
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the Games-Howell test results obtained by comparing the normalized mean false-positive error 

performances afforded by each speaker's BTlOs, ETlOS and STlOs. Once again, these 

performances were normalized using the scale factors discussed in §5.1.3.1 with 

NBT=NsT=9_146 and NET=6 746 for speaker JK and NBT=NsT=8 132 and Nrr=5 732 for 

speaker HD. 

As Table 5.1.4.2-2 indicates, only the mean false-positive error performances of 

speaker JK's STlOs and BTlOS differ significantly from one another. By contrast, the mean 

performance 

(a) Speaker JK 

Module Type 

Basic-Token (BT lO) 

Extended-Token (ET 10) 
Sequence-Token (ST 10) 

Basic-Token (BT50) 
Extended-Token (ET50) 
Sequence-Token (ST 50) 

(b) Speaker HD 

Module Type 

Basic-Token (BTlO) 
Extended-Token (ET 10) 
Sequence-Token (ST 10) 

Basic-Token (BT50) 
Extended-Token (ET 50) 
Sequence-Token (ST50) 

False-Positive Errors 
Per Module 

min. mean max. standard 
deviation 

229 263 284 20.3 
68 110 131 29.5 
36 46 61 11.8 

165 
36 
26 

False-Positive Errors 
Per Module 

min. mean max. standard 
deviation 

200 246 284 36.1 
108 136 156 21.9 
28 33 35 2.8 

150 
64 
20 

Table 5.1.4.2-1. False-positive error performanees for expert modules eomprising squads of 10 or 50 basic-, extended­
and sequenee- TDNNs when processing (a) speaker JK's and (b) speaker HD's monophthong syllable utterances (160 
utterances per speaker). 

of speaker HD's STlOs are significantly different from those of this speaker's BTlOS and ETlOs. 
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Consequently, from the relative performances of speaker HD's BTlOS, ETlOS and STlOs, it is 

concluded that this speaker's STlOs afford better false-positive error performance than her 

BTlOS and ETlOS, when processing her monophthong syllable utterances (see §3.1.2). For 

speaker JK, it may only be concluded that this speaker's ST lOS afford significantly better 

false-positive error performances than his BTlOs. 

As observed when processing each speaker's closing diphthong syllable utterances (see 

Table 5.1.4.1-1), the squad-based expert modules comprising 50 TDNNs also afford the best 

false-positive error performances observed when processing each speaker's monophthong 

syllable utterances. In particular, each speaker's STso makes fewer than 30 potential false-

(a) Speaker JK 

BTlO ETlO ST lO 

BTIO 0.015 0.007 
ETlO 0.012 0.017 
STlO 0.024* 0.011 

(a) Speaker HD 

BTlO ETlO STIO 

BTIO 0.016 0.016 
ET10 0.007 0.014 
STlO 0.026* 0.020* 

Table 5.1.4.2-2. Results of Games-Howell tests comparing the normalized mean false-positive error performances 
of (a) speaker JK's and (b) speaker HD's various expert modules when processing their monophthong syllable 
utterances. 

positive errors in response to the 400 phoneme realizations present in their monophthong 

utterances (160 of which are monophthong realizations). §A1.1.2.3 and §A1.1.2.4 give 

detailed breakdowns of the false-positive errors produced by the BTso, ET50 and STso 

associated with speakers JK and HD, respectively. The majority of potential false-positive 

errors for speaker JK's BT 50 and ET 50 are caused by front or central monophthongs being 

detected as lail or lei!. For this speaker's ST 50' potential false-positive errors are 

predominantly detections of loul, due to the single element reference sequence used to 

represent this diphthong (see Table 4.2.3.2-1). By contrast, the majority of potential false­

positive errors for speaker HD's BTso and ETso are caused by high front monophthong, or 

"silence", being detected as Ici!. This closing diphthong is also falsely detected by speaker 

HD's STso, mainly in response to realizations of the back rounded monophthongs. For both 



5.2 MULTI-SPEAKER EXPERIMENTS 127 

speakers, no one monophthong is primarily responsible for the false-positive errors observed. 

This finding is attributed to the relatively even spread of diphthong-glides within the 

frequency space corresponding to monophthong realization qualities (see Figure 2.3-4 for 

example). 

5.2 Multi-Speaker Experiments 

As a consequence of the good results obtained with squad-based expert modules 

comprising sequence-token TDNNs, the properties of such modules for closing diphthong 

recognition were investigated further. In particular, important questions concerning the ability 

of such expert modules to handle utterances produced by multiple speakers and to handle 

noise corruption were examined. This section presents the results arising from experiments 

conducted to answer these questions. Since these results are exploratory, rather than 

comparative as in §5.1, they are not analyzed statistically. 

The next section discusses the performances of multi-speaker expert modules 

comprising squads of sequence-token TDNNs observed when processing speaker JK's and 

speaker HD's closing diphthong syllables. This is followed in §5.2.2 by a discussion of 

similar performances observed when processing each speaker's monophthong syllables. 

Finally, §5.2.3 discusses the robustness of squad-based expert modules comprising sequence­

token TDNNs when processing corrupted versions of each speaker's closing diphthong 

syllables. 

5.2.1 Multi-Speaker Performance on Closing Diphthong Syllables 

To test the ability of squad-based expert modules comprising sequence-token TDNNs 

to function with multiple speakers, 50 sequence-token TDNNs were trained using a 

combination of the tokens used previously for speaker-dependent training (a total of 290 

training tokens derived from 80 of speaker JK's and 80 of speaker HD's closing diphthong 

syllable utterances, see §5.1.1). For convenience later in §5.2.3, these networks are referred 

to as the CL sequence-token TDNNs, where CL implies training in conjunction with "clean" 

speech utterances. Training details for the CL sequence-token TDNNs are given in §A1.2.1.1. 

These networks were trained using identical training tokens, but different initial weights. As 

for the speaker-dependent TDNNs trained in this work (see section 5.1.1), these weights were 

initialize with random real numbers lying in the range [-0.5, 0.5]. Compared to the speaker­

dependent sequence-token TDNNs, the CL sequence-token TDNNs were slightly more 

difficult to train, requiring 177.2 epochs on average to train compared to 145 and 153.4 for 
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the speaker-dependent networks. In contrast to the speaker-dependent sequence-token TDNNs, 

not all of the CL sequence-token TDNNs achieved perfect classification performances during 

training. However, all the misclassifications made consisted of tokens representing state 2 

associated with realizations of fail (by speaker HD) being misclassified as state 1, which does 

not hinder correct fail recognition, since 0-1 is sufficient to signify this phoneme (see Table 

4.2.3.2-1). 

To permit comparison with the speaker-dependent results discussed in §5.1.4.1, five 

multi-speaker expert modules comprising squads of 10 sequence-token TDNNs (STlOs) and 

one such module comprising a squad of 50 sequence-token TDNNs (STso) were tested. Table 

5 .2.1-1 list statistics concerning the recognition and false-positive error performances observed 

when processing the 480 closing diphthong syllable utterances (240 per speaker) not used for 

network training. As indicated by this table, the ST 50 affords near perfect performances, while 

those of the STlOs are only fractionally worse. Comparing the multi-speaker STlO and ST50 

performances with those of their speaker-dependent counterparts (see Table 5.1.4.1-1), they 

are practically identical. Note that the numbers of false-positive errors made by the multi­

speaker STso and STlOs (processing 480 syllables) are equal, or approximately equal on 

average, to the cumulative numbers of such errors made by their speaker-dependent 

counterparts (each processing 240 syllables). 

(a) Squads of 10 Sequence-Token TDNNs (STLO) 

Quantity 

% Correct 
False-positive Errors 

min. 

98.5 
2 

mean 

99.4 
7.2 

(b) Squad of 50 Sequence-Token TDNNs (STso) 

Quantity 

% Correct 
False-positive Errors 

Value 

100 
1 

max. 

100 
10 

standard 
deviation 

0.56 
3.6 

Table 5.2.1-1. Recognition (% correct) and false-positive error performances for multi-speaker expert modules 
comprising (a) squads of 10 sequence-token TDNNs (five modules tested) and (b) a squad of 50 sequence-token 
TDNNs (one module tested) when processing both speaker lK's and speaker HD's 240 closing diphthong syllables 
(syllables not used for network training containing 1200 phoneme realizations in total, of which 720 are not closing 

diphthong realizations). 

The results presented in this section demonstrate that multi -speaker expert modules 

comprising squads of sequence-token TDNNs may be created which perform comparably with 
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similar speaker-dependent modules (at least for two speakers). In particular, they show that 

such modules may be successfully trained to accommodate the large differences in average 

diphthong-glides evident between adult male and female speakers (particularly those 

associated with fail and feil, see Figure 4.2.3.1-4). 

5.2.2 Multi-Speaker Performance on Monophthong Syllables 

Table 5.2.2-1 list statistics concerning the false-positive error performances observed 

while processing both speaker JK's and speaker HD's monophthong syllable utterances (160 

utterances per speaker), using the STlOs and STso discussed in the previous section. The STso 

makes 40 potential false-positive errors while processing the 800 phoneme realizations present 

in these utterances. This error count is slightly better than the 46 errors made cumulatively 

by the speaker-dependent STsos (see Table 5.1.4.2-1). By contrast, the multi-speaker STlOs 

perform marginally worse than their speaker-dependent counterparts, producing 85 potential 

false-positive errors (on average) compared to a cumulative total of 79 errors (on average) for 

the latter (see Table 5.1.4.2-1). 

(a) Squads of 10 Sequence-Token TDNNs (STlO) 

Quantity min. mean 

False-positive Errors 73 85 

(b) Squad of 50 Sequence-Token TDNNs (STso) 

Quantity Value 

False-positive Errors 40 

max. 

99 

standard 
deviation 

9.3 

Table 5.2.2-1. False-positive error performances for multi-speaker expert modules comprising (a) squads of 10 
sequence-token TDNNs (five modules tested) and (b) a squad of 50 sequence-token TDNNs (one module tested) when 
processing both speaker JK's and speaker lID's 240 monophthong syllables (800 phoneme realizations in total, of 

which 320 are monophthong realizations), 

Details of the false-positive errors made by the multi-speaker STso in response to 

speaker JK's and speaker HD's monophthong syllable utterances are given in §A1.2.2.1. 

Notably, false-positive detections of foul constitute over half of the potential false-positive 

errors made, indicating that the sequence representing this phoneme (currently -5-, see Table 

4.2.3.2-1) should be lengthened to reduce the likelihood of its "chance" occurrence in 

response to inappropriate input. 
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The results presented in this section demonstrate that training component sequence­

token TDNNs for multiple speakers may not unduly hinder the ability of STlOs and ST50s for 

closing diphthong recognition to ignore monophthong (and voiced plosive) realizations. 

5.2.3 Robustness to Noise Corrupted Closing Diphthong Syllables 

Using the sequence matching approach depicted in Figure 4.2.3.2-3, the correct 

operation of the matcher within a squad-based expert module comprising a squad of sequence­

token TDNN s relies on the production of uncorrupted sequences corresponding to a set of 

reference sequences (see Table 4.2.3.2-1). Consequently, it is desirable to know how the 

recognition and false-positive error performances of such modules are affected by noise 

corrupted speech utterances. This section discusses the performances of three multi-speaker 

ST50s in response to speech utterances corrupted with band-limited white noise. Larger squads 

of 50 sequence-token TDNNs were tested because they provide the best indication of the 

performances that may be achieved by smaller squads whose component sequence-token 

TDNNs are optimized for use in a squad. White noise was selected as the source of 

corruption following the experimental approach used by Dawson and Sridharan (1992) to test 

TDNNs for speech enhancement. 

The solid lines in Figure 5.2.3-1 indicate the recognition and false-positive error 

performances of the ST50 discussed in §5.2.1 (denoted ST5o(cL))' verses signal-to-noise ratio 

(SNR). Once again, these performances were estimated using the 480 closing diphthong 

syllables (240 utterances per speaker) not used for network training. Estimates of the 

recognition and false-positive error performances of the ST50(CL) were obtained using these 

utterances as they were recorded (denoted "CL" in Figure 5.2.3-1, implying "clean" speech 

utterances) and with additional white noise to give approximate SNRs of 0,5, 10, 15, 20 and 

30 dB. SNR was estimated for the M samples representing each utterance using 

M 

L (s(m) _S)2 
(5.2.1-1) 

m=l 

(Elder 1992), where sCm) and n(m), m=l, 2, ... , M, are speech and noise samples, respectively, 

and the mean speech level, s, is given by 
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Figure 5.2.3-1. (a) Recognition (% correct) and (b) -false-positive error performances of three expert modules 
comprising squads of 50 sequence-token TDNNs when processing speaker JK's and speaker HD's closing diphthong 
syllables corrupted with varying levels of white noise (varying SNR). 

M 

Ls(m) (5.2.1-2) 
- 111=1 s=---

M 

As Figure 5.2.3-1 (a) indicates, the recognition performance of the ST50(CL) decays 

gradually with decreasing SNR, until SNR falls below 20 dB, at which point it decays rapidly. 

In contrast, the number of potential false-positive errors made by ST50(CL) rises gradually with 

decreasing SNR and peaks at less than 30 errors. These performances, particularly the 

recognition performances, indicate that an ST 50 trained to accommodate the variation in 

uncorrupted closing diphthong realizations produced by speakers JK and HD (a male and a 

female speaker; see Figure 4.2.3.2-2), may "tolerate" variation caused by white noise 

corruption provided SNR~20 dB. When SNR falls below 20 dB, the variation between 

corrupted and uncorrupted closing diphthongs becomes too extreme and uncorrupted 
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realizations are treated as inappropriate input. Importantly, such realizations are not 

misclassified, but rather are "ignored" as indicated by the low number of potential false­

positive errors made by the STSO(CL) for small values of SNR. 

In an attempt to obtain improved recognition performance from a multi-speaker STso 

at low SNR, two further expert modules, STSO(lS-CL) and STSO(O-lS-CL)' were created and tested. 

These modules were formed from separate sets of 50 sequence-token TDNNs referred to as 

the J5-CL sequence-token TDNNs and the O-J5-CL sequence-token TDNNs, respectively. All 

of these networks were trained in conjunction with the same closing diphthong realizations 

used to train the CL sequence-token TDNNs (160 realizations, see §5.2.1), however, tokens 

representing corrupted and uncorrupted versions of these realizations were used. In particular, 

the J5-CL sequence-token TDNNs were trained in conjunction with "clean" versions and 

versions corrupted with white noise to give SNRs approximating 15 dB (implying 580 training 

tokens). Likewise, the O-J5-CL sequence-token TDNNs were trained in conjunction with 

"clean" versions and versions corrupted to give SNRs approximating 0 and 15 dB (implying 

870 training tokens). §A1.2.1.2 and §A1.2.1.3 give training details for the J5-CL and O-J5-CL 

sequence-token TDNNs, respectively. These networks were trained using fixed numbers of 

back-propagation iterations (100 340 for the J5-CL networks, 200 100 for the O-J5-CL 

networks), since establishing satisfactory target errors, a priori, proved difficult. 

The dashed and dotted lines in Figure 5.2.3-1 show the recognition and false-positive 

error performances of the STSO(lS_CL) and the STSO(O-lS-CL)' respectively (§A1.2.2.2 presents the 

data for all the curves plotted in Figure 5.2.3-1). Both these expert modules afford better 

recognition performances than the STSO(CL) at low SNRs (particularly between 0 and 20 dB), 

but are marginally worse for "clean" speech utterances. Unfortunately, as Figure 5.2.3-1 (b) 

shows, the improved recognition performances of the STSO(lS_CL) and STSO(O-IS-CL) at low SNRs 

come at the cost of poorer false-positive error performances typically, particularly for the 

ST SO(O-lS-CL)' This behaviour is attributed to the need to enlarge the agreement regions in 

pattern-space (see Figure 4.3-2), in order to accommodate the greater variation present in the 

training tokens representing varying levels of noise corruption. By enlarging these regions, 

the probability of component network disagreement concerning inappropriate input is 

diminished, leading to a rise in the number of potential false-positive errors made. 

The results associated with the STSO(lS-CL) and STSO(O-IS-CL) indicate that using a single 

expert module to recognize closing diphthong realizations corrupted by an arbitrary amount 

of noise is undesirable, since false-positive error performance may be poor. A more desirable 

alternative to this approach might be to use several expert modules for closing diphthong 

recognition, each suited to a specific range of SNR. This alternative has the advantage that 

the individual modules trained must only accommodate part of the variation in closing 

diphthong realizations caused by varying levels of noise corruption. Provided the number of 

potential false-positive errors made by each module is small in response to realizations whose 
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level of corruption suits another module, this approach may be successful. 

The results presented in this section demonstrate that an STso trained in conjunction 

with "clean" speech utterances may be expected to perform reasonably robustly, provided 

SNR ~ 20 dB. They also indicate that attempting to recognize arbitrarily corrupted closing 

diphthong realizations using a single expert module is perhaps undesirable. 

5.3 Summary 

From the speaker-dependent results reported in §S.l, the following results are 

important. First and foremost, expert modules comprising squads of basic-, extended- or 

sequence-token TDNNs afford significantly better recognition andior false-positive error 

performances than their traditional expert module counterparts. This implies the former are 

better approximations to an ideal expert module for closing diphthong recognition. Second, 

there is partial evidence to suggest that squad-based expert modules comprising sequence­

token TDNN s are better for closing diphthong recognition than similar modules comprising 

basic- or extended-token TDNNs. Such modules constitute the best approximations to an ideal 

expert module for closing diphthong recognition observed and, unlike the other two module 

types, do not produce ambiguous phoneme sequences in response to realizations of fail and 

fei!. 

The results presented in §S.2 demonstrate that multi-speaker expert modules 

comprising squads of sequence-token TDNNs afford comparable recognition and false-positive 

error performances to their speaker-dependent counterparts. In particular, it is demonstrated 

that such modules may successfully recognise male and female closing diphthong realizations, 

despite the large differences that may exist between their average diphthong-glides. The 

results presented in this section also demonstrate that squad-based expert modules comprising 

sequence-token TDNNs may be trained to recognize "clean" and highly corrupted closing 

diphthong realizations, though at the cost of degraded false-positive error performances. 
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Chapter 6 

Conclusion and Suggestions for Further Research 

------------------------~ ..... --.~-- .. ~.~.--

6.1 Conclusion 

As a step towards the development of a modular TDNN for recognizing phonemes 

realized with a New Zealand accent, this thesis focuses on the development of an expert 

module for closing diphthong recognition. Realizations of these phonemes pose problems for 

traditional recognition approaches based on TDNNs, due to their extended durations (Hataoka 

and Waibel 1990). In addition, when realized with a New Zealand accent, the diphthong­

glides associated with realizations of Iaj} and lei! may overlap significantly, making them 

difficult to recognize unambiguously. This thesis presents and compares two kinds of expert 

modules for closing diphthong recognition, referred to as traditional and squad-based expert 

modules. Traditional expert modules comprise individual TDNNs and have been used 

extensively for Japanese phoneme recognition (see Waibel et al 1989a; Waibel et al 1989b; 

Miyatake et al 1990). In contrast, the squad-based expert modules proposed in this thesis 

comprise ensembles of similarly trained TDNNs, referred to as squads. This thesis discusses 

exaniples of both kinds of expert module formed from one of three types of TDNN, referred 

to as basic-, extended- and sequence-token TDNNs. Unlike basic-token TDNN, extended- and 

sequence-token TDNNs are intended specifically for diphthong recognition, the latter being 

developed in this work to recognize New Zealand English closing diphthongs. 

Following the approach used by Waibel and his colleagues to develop expert modules 

for Japanese phoneme recognition (Waibel et al1989a; Waibel et al1989b), traditional and 

squad-based expert modules for closing diphthong recognition are trained, tested and 

compared speaker-dependently in this work. Expert modules are compared in terms of 

recognition and false-positive error performances, the latter being a measure of a module's 

potential to cause false-positive errors when used within a modular TDNN. This thesis 

discusses traditional and squad-based expert modules created and compared for two adult 

speakers of New Zealand English (one of each sex), both of whom have general New Zealand 

English accents. 

Comparing the performances of the various traditional and squad-based expert modules 

tested, the following results are observed for both speakers. First, of the traditional expert 

modules tested, those comprising extended-token TDNNs afford the best performance 
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compromises. In particular, these modules exhibit significantly better recognition 

performances than traditional expert modules comprising sequence-token TDNNs (though 

worse false-positive error performances) and significantly better false-positive error 

performances than those comprising basic-token TDNNs (though identical recognition 

performances). Consequently, if traditional expert modules are to be used for closing 

diphthong recognition, those comprising extended-token TDNNs are to be preferred. A similar 

preference is reported by Hataoka and Waibel (1990) also, who test TDNNs resembling basic­

and extended-token TDNNs for American English diphthong recognition. However, in contrast 

to the findings of Hataoka and Waibel (1990), the use of extended tokens when recognizing 

New Zealand English closing diphthongs is principally motivated by the desire to improve 

false-positive error performances, rather than recognition performances. 

Second, squad-based expert modules for closing diphthong recognition afford 

significantly better recognition and/or false-positive error performances than their traditional 

expert module counterparts, irrespective of whether basic-, extended- or sequence-token 

TDNNs are used. In particular, their false-positive error performances are consistently better 

as a consequence of their ability to "ignore" phoneme realizations from classes other than 

their own. This ability is viewed as a form of selective attention in this thesis, since squad­

based expert modules may "attend" (respond with phonemic symbols) to selected input, while 

"ignoring" (responding with a null classification to) other inappropriate input. 

Importantly, selective attention is achieved (to varying degrees) by the squad-based 

expert modules discussed in this thesis, by training with tokens that only represent phoneme 

realizations from their own class - the closing diphthongs. These modules do not need to 

experience examples of tokens representing phoneme realizations from other classes during 

training, to be able to "ignore" them during operation. For modular approaches to automated 

phoneme recognition, this ability is advantageous since the pool of phonemes whose 

realizations must be "ignored" by a given expert module is generally much larger than the 

pool of phonemes whose realizations must be recognized. Consequently, the need to train only 

with tokens representing the latter greatly simplifies training. Based on the results presented 

in this thesis, it is concluded that squad-based expert modules are preferable to traditional 

expert modules for closing diphthong recognition. 

Third, of the squad-based expert modules tested, those comprising sequence-token 

TDNN s afford consistently better false-positive error performances than those comprising 

basic- or extended-token TDNN s, while the recognition performances of all three types of 

modules are very similar. In particular, it is demonstrated that squad-based expert modules 

comprising sequences-token TDNNs are better at "ignoring" voiced plosive and monophthong 

realizations than squad-based expert modules comprising the other two types of TDNN. In 

addition, the former do not produce the ambiguous phoneme sequence lai/-/ei/ in response to 

realizations of lai/ and lei/ that squad-based expert modules comprising basic- or extended-
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token TDNNs do. Consequently, squad-based expert modules comprising sequence-token 

TDNNs are recommended as the preferred method of recognizing closing diphthongs realized 

with a New Zealand accent. 

The speaker-dependent results reported in this thesis also demonstrate that traditional 

and squad-based expert modules for closing diphthong recognition may be trained to perform 

equally well for New Zealand English speakers of either sex. Given the large differences that 

may exist between the average diphthong-glides of closing diphthongs realized by adult male 

and female speakers, it is desirable to know whether such modules may be trained to 

accommodate these differences. The additional experiments with squad-based expert modules 

comprising sequence-token TDNNs discussed in this thesis, demonstrate that multi-speaker 

modules of this type may perform very similarly to their speaker-dependent counterparts. 

They also demonstrate that such modules may be trained to recognize highly corrupted and 

uncorrupted closing diphthong realizations, though at the expense of false-positive error 

performance. 

6.2 Suggestions for Further Research 

Based on the findings presented in this thesis, the following areas of research are 

suggested for further investigation. 

First, a new method of training TDNNs for use in squads is required to produce better 

and more computationally efficient squad-based expert modules. The TDNN s used to form 

the squad-based expert modules discussed in this thesis were trained sub-optimally using a 

variant of the traditional back-propagation algorithm to minimize the errors associated with 

their individual performances. This algorithm may perhaps be modified to train several 

TDNNs simultaneously to allow the errors associated with their performance as a squad to 

be minimized. Ideally, an algorithm developed to train component TDNNs for squads should 

only use training tokens representing appropriate input in order to keep training as simple as 

possible. 

Second, to permit the construction of a modular TDNN for New Zealand English 

phonemes, research to find suitable expert module architectures for this accent's phoneme 

classes, other than the closing diphthongs, is required. Following the results reported by 

Waibel and his colleagues concerning Japanese phoneme recognition (Waibel et al 1989a; 

Waibel et al 1989b; Miyatake et al1990), it is likely that expert modules comprising basic­

token TDNNs may suffice for most of these classes. From the results presented in this thesis, 

it is also anticipated that these expert modules should be formed from squads of TDNNs to 

ensure good false-positive error performances. 

Third, using knowledge of the expert module architectures best suited to recognizing 
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all the phonemes of New Zealand English, an arbitration module capable of integrating their 

responses is required. This module must be able to process delayed phoneme sequences if 

expert modules comprising sequence-token TDNNs are used for closing diphthong 

recognition. Ideally, it should also produce phoneme sequences containing ranked phonemic 

alternatives to permit subsequent processing of ambiguous phoneme realizations in 

conjunction with feed-back from processing at higher linguistic levels. 
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Appendix 1 

TDNN Training and Test Results 

A1.1 Speaker-Dependent Experiments 

A1.1.1 Training 

A1.I.1.1 Speaker JK 

(a) Basic-Token TDNN 
Quantity 

Classification Perfonnance 

/!;,v 
Iterations 
Epochs 
Target Error 

(b) Extended-Token TDNN 
Quantity 

Classification Perfonnance 

/!;,v 
Iterations 
Epochs 
Target error 

(c) Sequence-Token TDNN 

Quantity 

Classification Performance 

/!;,v 
Iterations 
Epochs 
Target Error 

min. 

100% 
0.0136 
6240 
78 

min. 

100% 
0.Q35 
7280 
91 

min. 

100% 
0.0145 
16820 
116 

mean 

100% 
0.0146 
7652 
96 
0.Ql5 

mean 

100% 
0.048 
12494 
156.2 
0.05 

mean 

100% 
0.0149 
24032 
145 
O.oI5 

max. standard 
deviation 

100% 0 
0.m5 0.0003 
9840 778 
123 9.7 

max. standard 
deviation 

100% 0 
0.050 0.004 
20000 3675 
250 45.9 

max. standard 
deviation 

100% 0 
0.m5 0.002 
48285 5191 
333 36 

Table AI.I.1.I-I. Statistics concerning the training of 50 basic-, extended- and sequence-token TDNNs for speaker 
JK (see §5.1.1). Classification peiformance measures the ability of these TDNNs to correctly classify the aligned test 
tokens not used for training. /!;,V is the average McClelland error at the completion of training (see equation (4.1-6)). 
Iterations is the number of (modified) back-propagation algorithm iterations used during training and epochs is the 
number of weight updates used (batch mode weight update). Finally, target error indicates the maximum value of 
iff;., for successfully trained networks. 
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Al.l.1.2 Speaker HD 

(a) Basic-Token TDNN 
Quantity min. mean max. standard 

deviation 

Classification Perrormance 100% 100% 100% 0 

~ 0.0137 0.0146 0.0150 0.0003 
Iterations 5040 10294 15920 2251 
Epochs 63 126.3 250 28.1 
Target Error 0.015 

(b) Extended-Token TDNN 
Quantity min. mean max. standard 

deviation 

Classification Perrormance 100% 100% 100% 0 

$.. 0.041 0.047 0.050 0.001 
Iterations 5120 12908 20000 3852 
Epochs 64 161.3 250 48 
Target error 0.05 

(c) Sequence-Token TDNN 
Quantity min. mean max. standard 

deviation 

Classification Perronnance 100% 100% 100% 0 

$.v 0.0143 0.0148 0.0150 0.0002 
Iterations 17110 22243 45675 4492 
Epochs 118 153.4 315 31 
Target Error 0.G15 

Table Al.l.l.2-1. Statistics concerning the training of 50 basic-, extended- and sequence-token TDNNs for speaker 
HD (see §5.1.l). See Table A1.1.1.1-1 for descriptions of the quantities listed in this table. 

Al.l.2 Test Results for Squad-Based Expert Modules 

Al.1.2.1 Diphthong Syllables: Speaker JK - False-Positive Errors 

(a) Basic-Token (BT5o) 
Diphthong in False-Positive Error Diphthong 

Syllable lail lau! bi! lei! lou! 

lail 17 8 39 11 
lau! 12 21 0 0 
bil 0 3 7 3 
lei! 32 0 22 0 
lou! 1 1 24 0 
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(b) Extended-Token (ETso) 
Diphthong in 

Syllable lail 

lai! 
lauf 0 
/:;)i/ 0 
leil 0 
louf 0 

(c) Sequence-Token (STso) 

APPENDIX 1 TDNN TRAINING AND TEST RESULTS 

False-Positive Error Diphthong 
lauf bi! lei! 

4 0 10 
4 0 

0 0 
0 0 
0 0 0 

louf 

o 
o 
o 
o 

One realization of lei! (the one realization not correctly recognized) leads to 
a lail false-positive error. 

Table AI.I.2.1-1. A breakdown of the false-positive errors for speaker JK's BT5o, ET50 and ST50 when processing 
his 240 closing diphthong syllables not used for network training. Diphthong in syllable refers to the diphthong 
realization present within a syllable processed, while false-positive error diphthong refers to the diphthong falsely 
detected during this processing. 

Al.l.2.2 Diphthong Syllables: Speaker HD - False-Positive Errors 

(a) Basic-Token (BTso) 
Diphthong in 

Syllable lail 

lail 
lauf 18 
/:)i! 0 
lei! 46 
louf 0 

(b) Extended-Token (ET50) 
Diphthong in 

Syllable lail 

lail 
lauf 14 
I!>il 0 
lei! 16 
louf 0 

(c) Sequence-Token (STso) 

No false-positive errors. 

False-Positive Error Diphthong 
lauf "i! leil 

35 15 27 
7 2 

23 1 
0 26 
2 6 0 

False-Positive Error Diphthong 
lauf I!)i! lei! 

0 5 1 
6 0 

0 0 
0 42 
0 0 0 

louf 

o 
o 
o 
o 

louf 

o 
o 
o 
o 

Table AI.I.2.2-1. A breakdown of the false-positive errors for speaker lID's BT50, ET50 and ST50 when processing 
her 240 closing diphthong syllables not used for network training. 
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Al.l.2.3 Monophthong Syllables: Speaker JK - False-Positive Errors 

(a) Basic-Token (BT5o) 
Monophthong False-Positive Error Diphthong 
in Syllable lail lau! hil leil loul Total 

IDI 4 16 0 0 0 20 
lad 12 0 0 11 0 23 
I'JI 4 8 6 0 0 18 
leI 6 0 1 16 0 23 
131 5 0 0 0 7 12 
Iii 9 0 0 4 0 13 
luI 7 0 4 0 4 15 
IAI 13 1 1 0 0 15 
II! 7 0 0 7 0 14 
11)1 2 1 4 3 2 12 

Total 69 26 16 41 13 165 

(b) Extended-Token (ET5o) 
Monophthong False-Positive Error Diphthong 
in Syllable lail lau! hi! lei! lou! Total 

10 I 0 2 0 0 0 2 
lrel 0 0 0 8 0 8 
I'JI 0 0 6 0 0 6 
lei 0 0 0 1 0 1 
131 0 0 0 0 4 4 
Iii 0 0 0 0 0 0 
luI 0 0 1 0 3 4 
IAI 0 1 0 0 0 1 
II! 0 0 0 6 0 6 
11)1 0 0 2 0 2 4 

Total 0 3 9 15 9 36 

Table Al.1.2.3·1. See caption on opposite page. 
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(C) Sequence-Token (STso) 
Monophthong False-Positive Error Diphthong 
in Syllable lail laul bil leil loul Total 

10 I 0 0 0 0 0 0 
lrel 0 0 0 6 0 6 
1'1 0 0 0 0 0 0 
lei 0 0 0 0 0 0 
131 0 0 0 0 10 10 
Iii 0 0 0 0 0 0 
lui 0 0 0 0 6 6 
IA! 1 0 0 1 0 2 
II! 0 0 0 0 0 0 
lui 0 0 0 0 2 2 

Total 1 0 0 7 18 26 

Table Al.l.2.3-1. A breakdown of the false-positive errors for speaker JK's BTso' ETso and STso when processing 
his 160 monophthong syllables. Monophthong in syllable refers to the monophthong realization present within a 
syllable processed andJalse-positive error diphthong refers to the diphthong falsely detectcd during tbis processing. 

Al.l.2.4 Monophthong Syllables: Speaker HD ~ False-positive Errors 

(a) Basic-Token (BTso) 
Monophthong False-Positive Error Diphthong 
in Syllable lail laul bil leil loul Total 

/01 0 16 5 0 0 21 
lrel 0 0 10 14 0 24 
1:>1 0 9 4 0 0 13 
lei 0 0 14 5 0 19 
131 0 0 8 0 7 12 
Iii 0 0 16 0 0 16 
lui 0 0 9 0 4 9 
IA! 5 0 8 0 0 13 
II! 0 0 16 0 0 16 
lui 0 1 6 0 2 7 

Total 5 26 96 19 4 150 

Table Al.1.2.4-1. See caption on next page. 
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(b) Extended-Token (ET50) 
Monophthong False-Positive Error Diphthong 
in Syllable lail laul bil leil loul Total 

I 0 4 2 0 0 6 
lrel 0 0 4 4 0 8 
1:;1 0 0 6 0 0 6 
lei 0 0 6 0 0 6 
131 0 0 0 0 1 1 
Iii 0 0 16 0 0 16 
lui 0 0 1 0 0 1 
IA! 0 0 0 0 0 0 
III 0 0 16 6 0 16 
lui 0 0 4 0 0 4 

Total 0 4 55 4 1 64 

(c) Sequence-Token (ST5o) 
Monophthong False-Positive Error Diphthong 
in Syllable lail laul bil lei! loul Total 

lei 0 0 5 0 0 5 
lrel 0 0 0 6 0 6 
/':>1 0 0 2 0 0 2 
lei 0 0 0 0 0 0 
131 0 0 0 0 1 1 
Ii! 0 0 0 0 0 0 
lui 0 0 0 0 0 0 
IA! 0 0 0 1 0 1 
/II 0 0 0 0 0 0 
lui 0 0 5 0 0 5 

Total 0 0 12 7 1 20 

Table Al.1.2.4-1 (continued). A breakdown of the false-positive errors for speaker HD's BT50, ETso and STso when 
processing her 160 monophthong syllables. 
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A1.2 Multi-Speaker Experiments 

A1.2.I Training Results 

AI.2.I.I CL Sequence-Token TDNNs 

Quantity min. mean max. standard 
deviation 

Classification Performance 99.7% 99.9% 100% 0.005 
g;v 0.0110 0.0126 0.0139 0.00073 
Iterations 35670 51382 78590 7086 
Epochs 123 177.2 271 24.4 
Target Error 0.Ql5 

Table At.2.t.l-t. Statistics concerning the training of the 50 CL sequence-token TDNNs for speakers JK and HD. 
See Table AI. 1.1.1-1 for a description of the quantities list in this table. The training tokens for these TDNNs were 
derived from speech portions as recorded in an anechoic chamber ("clean" speech portions). 

AI.2.1.2 15-CL Sequence-Token TDNNs 

Quantity 

Classification Performance 
g;. 
Iterations 
Epochs 

min. 

99.4 
0.0192 

mean 

99.7 
0.0257 
100340 
173 

max. 

99.9 
0.0414 

standard 
deviation 

0.094 
0.0038 

Table At.2.t.2-t. Statistics concerning the training of the .50 lS-CL sequence-token TDNNs for speakers JK and HD. 
The training tokens for these TDNNs were derived from "clean" speech portions and from speech portions corrupted 
with band-limited white noise to have approximate SNRs of 15 dB. 

Al.2.1.3 0-15-CL Sequence-Token TDNNs 

Quantity 

Classification Performanccs 
g;v 
Iterations 
Epochs 

min. 

94.2 
0.0734 

mean 

94.9 
0.0823 
200 100 
230 

max. 

95.6 
0.1097 

standard 
deviation 

0.32 
0.00632 

Table At.2.1.3-t. Statistics concerning the training of the 50 0-lS-CL sequence-token TDNNs for speakers JK and 
HD. The training tokens for these TDNNs were derived from "clean" speech portions and from speech portions 
corrupted with band-limited white noise to have approximate SNRs of 0 dB and 15 dB. 
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A1.2.2 Results 

A1.2.2.1 Monophthong Syllables: False-Positive Errors (CL Sequence-Token TDNNs) 

Monophthong False-Positive Error Diphthong 
in Syllable lai! laul hi! lei! loul Total 

10 I 0 0 3 0 0 3 
lrel 0 0 0 5 0 5 
I:JI 0 0 3 0 0 3 
lei 0 0 0 0 0 0 
131 0 0 0 0 12 12 
Ii! 0 0 0 0 0 0 
lui 0 0 0 0 9 9 
IA! 1 0 0 0 0 1 
III 0 0 0 0 0 0 
lui 0 0 7 0 0 7 

Total 1 0 13 5 21 40 

Table A1.2.2.1-1. A breakdown of the false-positive errors for the multi-speaker ST 50 trained for speakers JK and 
HD (comprising CL networks) when processing their monophthong syllables (320 utterances). 

Al.2.2.2 Robustness to Noise Corruption 

(a) STSO(CL} 

SNR (dB) 

o 
5 

10 
15 
20 
30 

Clean 

(b) STso( IS-CL} 

SNR (dB) 

0 
5 

10 
15 
20 
30 

Clean 

% Correct 

7.7 
21.3 
48.1 
79.4 
95.5 
99.4 

100.0 

% Correct 

33.0 
17.5 
94.5 
98.6 
99.5 
99.8 
99.6 

Number of 
False-Positive 

Errors 

21 
24 
20 
29 
16 
5 
1 

Number of 
False-positive 

Errors 

100 
59 
19 
13 
9 

11 
30 
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( C) ST50(o. I 5-CL) 

SNR (dB) 

0 
5 

10 
15 
20 
30 

Clean 

APPENDIX 1 TDNN TRAINING AND TEST RESULTS 

% Correct Number of 
False-positive 

Errors 

50.6 
65.8 
84.8 
94.7 
96.4 
97.7 
96.9 

173 
134 
94 
78 
95 
51 
45 

Table A1.2.2.2-1 The recognition (% correct) and false-positive error performances for (a) STSO(CL)' (b) STSO(lS-CL)' and 
(c) ST 5O(O-15-CL) when processing speaker JK' s and speaker HD' s closing diphthong syllables (480 utterances) corrupted 
by white noise. 
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Appendix 2 

Weight Changes for TDNNs 

This appendix presents a derivation of the expressions required to determine the 

weight changes for the unique weights of a TDNN like those used in this work. These 

networks are assumed to have an input layer, two hidden layers and an output layer (see 

Figure 4.2-1), referred to by the letters h, i, j and k, respectively. Due to the complex pattern 

of connectivity within TDNNs, expressions for the weight changes desired during training 

must be formulated for each layer individually. Consequently, these expressions are derived 

in the next three sections, commencing with the weights feeding the output layer (layer k) and 

working backwards to those feeding the fIrst hidden layer (layer i). Within this derivation the 

following notation is adopted. 

the output of the (n,m)th node of layer x in response to token x(p) (a matrix of 

nodes is assumed following the "unfolded" representation of a TDNN depicted 

in Figure 4.2-1 (b)). 

y(n,m) 

wx(a,b) the current weight associated with the weighted connection joining the (a,b)th 

node of layer x to the (n,m)th node of layer y . 

v:,m(P) the sum of the inputs into the (n,m)th node of layer x when processing x(p). 

Ll y(n,m) 
Wx(a,b) the required weight change for the weighted connection joining the (a,b)th node 

'l1 y (n,m) 
, Ix(a,b) 

of layer x to the (n,m)th node of layer y. 

the current learning rate for 
y(n,m) 

Wx(a,b) 
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A2.1 Weight Changes for Connections Feeding the Output Layer 

As depicted in Figure A2.1-1, each node in the output layer (layer k) is connected to 

a row of Mj nodes in the second hidden layer (layer j) by weight connections with the same 

weight and to a bias node by another connection with a unique weight. Consequently, only 

two unique weights need be stored for each of the Nk output nodes. This section derives 

expressions for the weight changes required to update these unique weights using equation 

(4.1-4). 

(a) 

(b) 

k(O) 
Wj(O,*) 

o 

o 

Nk -1 

Layer k 

Nk -1 

__ Layer k 

o 

o 

N
j 

-1 

Layer j 

N
j 

-1 

Layer j 

Figure A2.1-1. Shows examples of the weighted connections feeding the output layer nodes of a TDNN. Part (a) 
shows the connections feeding the first node in layer k (node 0), which is fed by Mj weighted connections (all with 
weights equalling w//oo.\) from layer j and one weighted connection (weight equal to Wbk(O)) from a bias node. Similar 
weighted connections feed the second node in layer k (node 1), as shown in part (b) . Note that N'=N and M is the 
number of node replicas in layer j. 

For the nth node in layer k, the required change to the common weight shared by the 

weighted connections linking this node to the nth row of layer j, is given by 

M i - l 

~ ~ k(/I) 
L...,; Wj(/I ,Il/) (A2.1-1) 

A k(/I) Il/ ~O 
LlWj(/I, *) = --~--

Mj 

where n=O,1, ... ,N' (N'=N) and M is the number of node replicas in layer j. The notation for 
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this weight change includes an asterisk, instead of an index m, to indicate it is identical for 

all the weighted connection replicas corresponding to m=O,1, ... ,Mj-1. 

The weight changes summed on the right hand side of equation (A2.1-1) must be 

evaluated separately, since they are typically different for each weighted connection replica. 

The weight change required for each connection replica is given by 

A ken) 
LlWj(n,m) 

which becomes 

A ken) 
LlWj(n,m) 

aZ' ken) av 

-11}(n, -) a ken) 

W}(n,m) 

ken) P-l 
_ 11}(n'*)L aZ'(p) 

p =0 a ken) 
p Wj(n,m) 

(A2.1-2) 

(A2.1-3) 

using equation (4.1-6) (note 11 in this expression is associated with the common weight change 

given by equation (A2.1-1». Expanding the partial derivative on the right of this expression 

gives 

where 

aZ'(p) 

a ken) 
Wj(n,m) 

k 2en (p) 

using equation (4.1-7) (note enk(p) is the same as em(p), see §4.1), 

aenk(p) = a [d ( )-0 k( )]=-1 
k k /I P 11 P aOn (p) aOn (p) 

(A2.1-4) 

(A2.1-5) 

(A2.1-6) 
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using equation (4.1-8), 

(A2.1-7) 

assuming a sigmoidal non-linearity (see equation (4.1-1)) and 

(A2.1-8) 

since v,,\p), the summed input to the nth output node prior to non-linear transfonnation, is 

given by 

(A2.1-9) 

For convenience later, the recursion tenn an k(p) is defined as 

c/( ) = d g(p) 
"p k 

dVn (p) 

(A2.1-1O) 

k 
-2e" (p) k ( k ) 

= k 0" (p) 1-0" (p) 
1 ell (p)2 

Rewriting equation (A2.1-4) using this expression and equation (A2.1-8), it may be used in 

conjunction with equations (A2.1-2) and (A2.1-3) to rewrite equation (A2.1-1) as 

(A2.1-11) 

where n=O,I, ... ,N'. This may be simplified to 

(A2.1-12) 
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Note that if en k(p »0 when processing x(p) (the desired value, dn(p) exceeds the observed 

output, On k(p)) then I1w//n
ll

,J *J > ° in response to this training token, ensuring on k(p) is 

increased as required. 

Similarly, the weight change associated with each output node's weighted connection 

to the bias node is given by 

(A2.1-13) 

assuming this connection originates from a fully active node (ob=l). Unlike equation 

(A2.1-12), this change is derived from an average over the P recursion terms alone, since 

there is only one time replica of this weighted connection feeding the nth output node. Note 

that if en k(p »0 when processing x(p), then I1wb k>O in response to this training token, implying 

the associated sigmoidal non-linearity is "displaced" towards smaller values of the net input 

vnk(p), ensuring onk(p) is increased as required. 

Equations (A2.1-12) and (A2.1-13) give the required weight changes for the unique 

weights associated with the weighted connections feeding the nodes in layer k (including all 

the replicas of these connections). Each of these unique weights has a unique learning rate, 

as required for delta-bar-delta learning (see §4.1.1) (for simplicity, this learning rate is 

denoted using the same indices as the weight change). 

A2.2 Weight Changes for Connections Feeding the Second Hidden Layer 

As depicted in Figure A2.2-1, the M replicas of each node in the second hidden layer 

(one row of nodes in layer j) are each connected to a "window" of NxL i nodes in the fIrst 

hidden layer (layer i) by weighted connections sharing the same set of common weights. 

These M node replicas are also connected to the bias node by weighted connections sharing 

the same weight. Consequently, only NxLi+ 1 unique weights need be stored for each of the 

N unique nodes in the second hidden layer. This section derives expressions for the weight 

changes required to update these unique weights using equation (4.1-4). 

For each node replica in the n'h row of layer j, the required weight changes for the set 

of weighted connections linking it to a "window" of nodes in layer i is given by 

Mi-] 

~ 11 j(n,m) 
L wi(a,m+l) 

11 W j(n, *) - _,,_,=_0 _---,-__ 
i(a,/) - M j 

(A2.2-1) 

where a=O,l, ... ,N-l and l=O,l, ... ,Li-l index the set of unique weights shared by all M node 
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(a) 

(b) 

wi (0,') 
i (a,l) 

o 

o 

o 
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Layer i 

o 
-1 

Layer i 

o 
-1 

Figure A2.2-1, Shows examples of the weighted connections which join each node in layer j to a window of nodes 
in layer i. The weights feeding each replica of a node (for example, the shaded replicas in row 0 of layer j, shown 
in parts (a) and (b)) are fed by weighted connections sharing the same weights for (positionally) equivalent pairs of 
nodes joined, 

replicas and n=O,1, ... ,N-l. Once again the index m is replaced by an asterisk to indicate that 

each weight change is identical for all m=O,1, ... ,M. 1 

The weight changes summed on the right hand side of equation (A2.2-1) must be 

evaluated separately, since they are typically different for each value of m. These changes are 

given by 

~ }(/J,m) =-ll}(/J,') a~v 
Wi(a, III +1) i(a,l) a }(/J, III) 

W i (a,III +1) 

_,,}(n,') P-' -:'I <PIp) 
• Ii(a,l) L _O_E7_', __ 
P p=o a }(/J,III) 

W i (a,III+1) 

(A2.2-2) 

'Note, however, that this replication is viewed with respect to the receiving layer (layer 
j) instead of the originating layer, as in the previous section. 
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Expanding the partial derivative incorporating ztp) gives 

where 

a~(p) 

a j(n,m) 
wi(a,m+l) 

a~(p) 

assuming a sigmoidal non-linearity (see equation (4.1-1)) and 

aV';'m(P) i 

'( ) ==oa,m+l(P)' 
a J n,m 

wi(a,m+l) 

since 

[

N'-l £'-1 ] 
j _ j(n,m) i + j(n,m) 

Vn,m (p) - ~ ~ Wi(a,m+l)Oa,m+l(P) Wb .1 

(A2.2-3) 

(A2.2-4) 

(A2.2-5) 

(A2.2-6) 

The remaining partial differential term in equation (A2.2-3) (the first term on the right) 

is evaluated by considering which nodes in layer k are affected by oj m(P), the output of the 

(n,m)th node in layer j. In the case of a TDNN, the usual expression for a fully connected 

network 

a~(p) == ~1 a~:p) . av«p) 

a O,;'m(p) e=O aVe (p) ao:'m(p) 
(A2.2-7) 

simplifies to 

a~(p) 

(A2.2-8) 

'f/ () k(n) == n P Wj(n,m), 

since only the d h node of layer k is affected by o/,ip), regardless of the value of 

m=O,1, ... ,M-l (the terms replacing the two partial derivative terms on the right hand side of 

this expression are derived from equations (A2.1-10) and (A2.1-9), respectively). 

For convenience later, the recursion term bnk,m(P) is defined as 
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(A2.2-9) 

where the expressions replacing the two partial differential terms (right most on first line) are 

obtained from equations (A2.2-8) and (A2.2-4), respectively. Rewriting equation (A2.2-3) 

using this expression and equation (A2.2-5), equation (A2.2-1) may be rewritten as 

(A2.2-1O) 

_,...j(n,.) [Mi_ 1 P-1 ] 
IIi(a,l) . i 

== . L L (fn,n,(p)oa,m+/(P) 
M JP m~O p=O 

where a=O,l, ... ,N-l, l=O,l, ... ,Li-l and n=O,l, ... ,N-l. 

Similarly, the weight change required for the weighted connection joining each unique 

node in layer j to the bias node, may be deduced by averaging the weight changes evaluated 

for each for each of its replicas thus 

MI-1 L b..wt(n,m) 
m=O 

=_1 . £1 [_~(n,*) I: &",m(P).l] 
MJ m=O P p=O 

(A2.2-11) 

A2.3 Weights Changes for Connections Feeding the First Hidden Layer 

As depicted in Figure A2.3-1, the M replicas of each node in the first hidden layer 
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(one row of nodes in layer i) are each connected to a "window" of N'xL" nodes in the input 

layer (layer h) by weighted connections sharing the same set of common weights. These M 
node replicas are also connected to the bias node by weighted connections sharing the same 

weight. Consequently, only N' xL" + 1 unique weights need be stored for each of the N unique 

nodes in the first hidden layer. This section derives expressions for the weight changes 

required to update these unique weights using equation (4.1-4). 

For each node replica in the nl
" row of layer i, the required weight changes for the set 

of weighted connections linking it to a "window" of nodes in layer h is given by 

M' - l 
~ ~ i(II,III) 
~ w"(a,III +I) 

~ W i(lI, *) = _'_" =_0 __ -:--__ 
"(a,l) Mi 

(A2.3-1) 

where a=0,1, ... N'-1 and 1=0,1, ... ,L"-1 index the set of unique weight values shared by all M 
node replicas and n=0,1, ... ,N-1. As for the second hidden layer, the index m is replaced by 

an asterisk to indicate that each weight change is identical for all m=O,I, ... ,M. 
Once again, the weight changes summed on the right hand side of equation (A2.3-1) 

must be evaluated separately using 

wi(O,') 
h (a,\) 

Layer i 

Figure A2.3-1. Shows an example of the weighted connections which join each node in layer i to a window of nodes 
in layer h. These connections, and those like them feeding the other N -1 unique nodes in layer i, are replicated in 
an identical fashion to the weighted connections feeding layer j (see Figure A2.2-1). 
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A i(n,m) 
L.l Wh(a,m +I} 

i(n, *) a g"av 
-llh(a, 1) '() a I n,m 

Wh(a,m+l) 
(A2.3-2) 

i(n, *) P-1 
~ -llh(a,1) L a ~p) 

P - a i(n,m} 
p-O Wh(a,m+l) 

Expanding the partial derivative incorporating ~p) gives 

a~p) a~p) aon:m(p) aVn~m(P) 
----~----.---- ---- (A2.3-3) 
aw~i;::)+l) aOn~m(P) avn:m(p) aWh(a,m+l) 

where 

(A2.3-4) 

assuming a sigmoidal non-linearity and 

(A2.3-5) 

sInce 

j i(n,m) h i(n,m) 
[

N'-l Lh-l ] 

vn,m(P) = ~ ~ wh(a,m+l)Oa,m+l(P) + Wb .1 
(A2.3-6) 

As with the second hidden layer, the remaining partial differential term in equation 

(A2.3-3) (the flrst term on the right) is evaluated by considering which nodes in layer j are 

affected by o/m(P) , the output of the (n,m)th node in layer i. Unfortunately, the usual 

expression for a fully connected network 

a~(p) =,£1 £1 ag"(p) av!.sCp) 

aon:m(p) r~O s~O avr,s(p) aon:m(p) 

Ni-l MJ-l 

" " & () j(r,s) L,; L,; r,s P Wj(n,m) 
.r~O s-O 

(A2.3-7) 
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does not account for the pattern of connectivity within a TDNN (many of the weights in this 

expression are zero, implying no connection), or the replication of weights (note the terms 

replacing the two partial derivative terms on the right hand side of this expression are derived 

from equations (A2.2-9) and (A2.2-6), respectively). 

The pattern of connections joining layers i and j is perhaps best understood by 

considering a simplified example in which N=N=I, such as that depicted in Figure A2.3-2. 

In this example, M=8, implying M=6, and Li=3. Figure A2.3-2 (a) through (c) depict the 

connections between individual node replicas in layer j and their associated "windows" of 

node replicas in layer i, as normally presented when describing TDNNs (see for example, 

Figure 4.2-1 (b)). In this figure, the unique weights are each given a different line type to 

highlight the common set of weights joining node replicas in layers i andj. Figure A2.3-2 (d) 

and (e) show examples of the node replicas in layer j affected by a given node replica in layer 

i and the weights (indicated by the different line-types) associated with their interaction. 

Significantly, as shown in Figure A2.3-2 (f), not all node replicas in layer i affect the same 

number of node replicas in layer j. Only node replicas Li -1 through M _Li affect the maximum 

number of node replicas, Li. 

(a) (d) 

o 

(b) 

o 

o 
I I I I 

~l'\ ". \ . 
\ . 

(c) (f) 

o 

Figure A2.3-2. A simplified example (N=N=], M=8, Mi=6 and L i=3) showing the pattern of connectivity between 
layers i andj from the perspective of layer j (parts (a), (b) and (c); the traditional view as in Figure 4.2-1 (b)) and 
from the perspective of layer i (parts (d), (e) and (f)) . The latter view is necessary to determine which nodes in layer 
i affect nodes in layer j, and through weighted connections with what weight? In this example, there are three unique 
weights represented by the solid, dashed and dotted arrows. Only the shaded nodes in part (f) affect the maximum 
number of nodes in layer j . 
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To account for the pattern of connectivity evident in Figure A2.3-2 (and more 

complicated TDNN examples), equation (A2.3-7) may be rewritten in terms of the unique 

weights as 

where 

and 

dg'(p) =El t d~(P) dV;s(P) 

dOn:m(P) r~O s~a dV;'s(p) dOn:m(P) 

Ni-l P 
_ " "~(P) j(r, *) - L...t L...t Ur,s wi(n,m-s) 

r=O s=a 

m=O, 1, ... ,L i-I 

m i,L i+l, ... ,Mj-l 

m =0, 1, ... ,M I-L i 

m=M i-L i +1,M i -L i..,.2, ... ,M i-I 

For uniformity, the term O,/,m(P) is defined as 

O~,m(P)= d~(P) . dOn.~m(P) 
dOn:m(P) dV:,m(P) 

(A2.3-8) 

(A2.3-9) 

(A2.3-1O) 

(A2.3-11) 

where the expressions replacing the two partial differential terms are obtained from equations 

(A2.3-8) and (A2.3-4), respectively. Rewriting (A2.3-3) using this expression and equation 

(A2.3-5), equation (A2.3-1) may be rewritten as 



A2.3 WEIGHT CHANGES FOR CONNECTIONS FEEDING THE FIRST HIDDEN LAYER 

A j(n,') 
Ll WII(a,l) 

1 ~l [ -11~~~,~» ~ Oi ( )0 II ()] 
. ~ p ~ lI,m P a,m+/ P 

M I m=O p=O 

.. m } . where a=O,1, ... ,lV-1, 1=O,1, ... ,L 1_1 and n=O,1, ... ,N-1. 
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(A2.3=12) 

Similarly, the weight change required for the weighted connection joining each unique 

node in layer i to the bias node, may be deduced by averaging the weight changes evaluated 

for each of its replicas thus 

M'-l L L1wi(n,m) 
A i(n,') _ m=O 
LlWb - . 

M' 

(A2.3-13) 

-l1~(n,.) M'-l P-l 

= L L O~,m(P) 
M ip m=O p=O 
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Appendix 3 

Statistical Tests 

This appendix describes the statistical tests used in this work to compare the 

recognition and false-positive error performances of expert modules for closing diphthong 

recognition. When comparing various speech or phoneme recognition systems experimentally, 

two approaches may be taken to estimate such performances (be they recognition, false­

positive error, or some other type of performances). The first is to use separate sets of speech 

utterances to train and test each system being compared so that their perfOlTIlanCeS may be 

assumed to be statistically independent. This approach has the advantage that statistical tests 

for independent performances are simple are readily available within common statistical 

packages. However, given the usual limitations on the amount of speech data available, 

training and testing systems to be compared with separate sets of speech utterances 

necessitates that these tasks be conducted with less speech data. This practice may result in 

poorer, less realistic, recognition systems for comparison and/or less powerful statistical tests. 

The second approach when estimating and comparing recognition system 

performances, is to use an identical set of utterances for training all the systems to be 

compared and another identical set for testing all these systems. This approach permits more 

speech data to be used when training and testing each system, but results in correlated 

performances. Given the small amount of speech data available for the experiments discussed 

in this thesis, the second approach to system training and testing has been adopted. The next 

section discusses Cochran's generalized Q-test which is used in this work to compare 

correlated recognition perfonnances. This is followed in §A3.2 by a discussion of the Games­

Howell test which is used to compare the positively correlated false-positive error 

performances observed in this work. 

A3.1 Cochran's Generalized Q-test 

Assuming the recognition performances of M recognition systems (treatments) are 

estimated and compared using N utterances (blocks), a contingency table like that shown in 

Table A3.1-1 may be composed (see Daniel 1990; Fleiss 1973). Each elementXij in this table 

represents the response of the lh recognition system to the ;th utterance and takes a value of 
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1 when this utterance is correctly recognized and 0 when is not (Xu is a dichotomous random 

variable). These elements are assumed to be correlated within each row, since they represent 

the responses of different recognition systems to the same utterance. By contrast, the elements 

Xu in each column are assumed to be independent, implying a recognition system's response 

to one utterance must not influence its response to another.1 This condition is most easily 

satisfied by processing speech utterances (or portions thereot) which do not overlap in time, 

such as isolated words or syllables. 

Block 

1 
2 
3 

N 

Treatment 
Totals 

1 2 

Xu Xl2 

X2i X22 
X3i X32 

Treatment Block 
3 M Totals 

X13 X 1M Si 
X23 X2M S2 
X33 X3M S3 

T 

Table A3.1-1. A contingency table for Cochran's Q-test. For experiments with speech recognition systems, the 
treatments are separate recognition systems trained and/or tested using the same sets of speech data, while the blocks 

are test utterances. 

Cochran's Q-test examines the null hypothesis that the treatments (the recognition 

systems) are equally effective (OanieI1990), implying a two-sided test (see Neter et aI1988). 

This hypothesis may be stated mathematically as Ho: Pi = P2 = ... = PM; P12 = Pl3 =.... PM-i,M 

(Berger and Gold 1973), where the population proportions, Pj' and joint proportions, Pu' may 

be estimated using 

and 

T. p. ==_J 
IN 

(A3.1-1) 

IOue to this condition, speech or phoneme recognition systems that make use of prior or 
subsequent classifications when attempting to recognize their current input (perhaps using 
some form of language model) may not be compared using Cochran's Q-test (Gillick and Cox 
1989). 
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(A3.1-2) 

respectively, where Xni and Xnj are elements from the ith andfh columns of Table A3.1-1 and 

~ is the sum of this table's column corresponding to the /h treatment. Cochran's test statistic, 

Q, is given by 

M 

M(M-1)L:T/-T 2 

Q= ______ ~j_~l ____ __ 

N 
(A3.1-3) 

MT-L: sn
2 

(Fleiss 1973) where the Sn are the block totals given in Table A3.1-1 and T is their total. 

When Ho is true, Q has a limiting chi-square distribution with v=M-J degrees of freedom 

(X2(v) (Daniel 1990; Bhapkar and Somes 1977; Berger and Gold 1973). 

In many experiments, including those involving speech recognition systems, one is 

often interested in testing the equivalence of the proportions, Pj' irrespective of the equality 

of the joint proportions, Pi)" When these joint proportions are not equal, the limiting 

distribution of Q is no longer X2(V). Consequently, to test the more general hypothesis Ho': 

PI = P2 = .. ,= PM' percentiles (critical values) of the limiting distribution for Q under this 

hypothesis are·required. According to Wallenstein and Berger (1981), these percentiles are 

given approximately by 

2 

Q (E, v) 'laCE v) 
a E 

(A3.1-4) 

where X0:2(,} is the percentile of X2
(.) corresponding to a significance level of ex (see Daniel 

1990), and E is a test dependent constant that may be estimated using 

~= (tr[VBJr (A3.1-5) 

(M-1)tr[(VBfJ 

In this expression, tr[] signifies the trace operator (Kreyszig 1988) and B and V are 

square matrices whose elements are given by 
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(M-l) 
i"1 

M (A3.1-6) 
B(i,j) = 

1 
i*j 

M 

and 

i=j 
(A3.1-7) 

#j 

respectively, where i=j=1,2, ... ,M-1 in both cases. When Cochran's original hypothesis Ho is 

true, £=1, otherwise it takes a value between 11(M,..1) and 1. 

Wallenstein and Berger (1981) demonstrate that their approximate percentiles are 

reasonably accurate (on average) for sample sizes of N=50 and N=100 blocks and a=0.05. 

Consequently, recognition performances ascertained with at least 50 utterances are likely to 

be tested satisfactorily using Cochran's Q-test in conjunction with the percentiles given by 

equation (A3.1-4). This test method is referred to as Cochran's generalized Q-test in this 

thesis, to indicate the assumptions concerning the joint proportions made by the original Q­

test do not apply. 

A3.2 The Games-Howell Test 

Regrettably, Cochran's generalized Q-test may not be used to compare false-positive 

error performances, like those presented in chapter 5, since these do not result from 

dichotomous expert module responses. In particular, an expert module may produce two or 

more false-positive errors in response to syllable utterances like those used for testing in this 

work, making it impractical to represent the module's responses using dichotomous random 

variables. In this circumstance, one might be tempted to select shorter speech portions over 

which to test false-positive error performance so that only one false-positive error is possible 

per portion. However, such portions are difficult to select a priori (as is necessary to avoid 

biasing) unless they correspond to those used to generated individual input tokens. Individual 

input tokens only yield single responses when processed so that only one false-positive error 

is possible in response to each. However, neighbouring input tokens are generated from 

overlapping speech portions, implying the responses made by an expert module to such tokens 
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are not independent. This dependence invalidates the principal assumption of Cochran's Q-test 

that the blocks (responses to utterances) are independent. Consequently an alternative 

statistical test is required. 

U sing traditional statistical techniques, the false-positive error performances of a pair 

of expert modules might be analyzed by comparing their mean performances, denoted 0; and 

OJ. Such analysis usually compares the difference between these means (OrO;) to zero and 

relies on having an estimate of cf{OrOJ, the variance of (OrO;). cf{Oj-O) is given generally 

by 

(A3.2-1) 

where cf (O) and cf {OJ} are the variances of OJ and OJ, respectively, and a (OJ' 0) is the 

covariance between these means (Neter et aI1988). The variance cf{Oj-O) may be estimated 

using 

(A3.2-2) 

provided the estimates S2{OJ, i{O}} and S2{O;, OJ} are also available (the subscript C implies 

correlated means are assumed). Using the square-root of S2{Oj-OJc' test statistics of the form 

(A3.2-3) 

are common (see Neter et aI1988), where the population means J1i and J1j are assumed to be 

equal, implying the null hypothesis Ho: J1j=J1i (or Ho: J1rJ1;=O equally). Assuming the random 

variables Uj and ~ to which OJ and OJ correspond are approximately normally distributed, the 

test statistic t follows a Student's t-distribution when nj and np the number of samples used 

to estimate OJ and O} respectively, are small. 

In the circumstance where OJ and OJ are positively correlated (implying a{O;,O}>O) 
and a good estimate of a{Oj,Oj} is unavailable, the variance cf{Oj-Oj} may be estimated 

(crudely) using 

(A3.2-4) 

(see Neter et al 1988) which is likely to result in an overestimate (the subscript I implies 

independent means are assumed). If (i{Oj-OJjh is then used to evaluate a test statistic like 

that in equation (A3.2-3), the value of this statistic will be smaller than if a better estimate 

were used, resulting in a conservative statistical test (the probability of type I error, n, is 

actually lower than specified by the experimenter). A conservative test may have insufficient 
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power to find small (but real) differences significant, however, this is inconsequential if the 

differences (OJ-Oi) to be analyzed are large. Fortunately, the main mean false-positive 

performances compared in this work exhibit large differences, permitting a conservative test 

to be used successfully. 

(a) Speaker JK 

BTl 
ETl 
ST1 

BTlO 
ETlO 
STlO 

0.99 
0.95 
0.87 
0.87 
0.48 

(b) Speaker HD 

BTl 
ETl 0.99 
ST1 0.88 
BTlO 0.97 
ETlO 0.95 
STlO 0.28 

ETl 

0.94 
0.98 
0.90 
0.51 

0.83 
0.98 
0.94 
0.27 

0.91 
0.83 
0.34 

0.86 
0.80 
0.42 

0.93 
0.57 

0.93 
0.25 

0.52 

0.26 

Table A3.2-1. Correlations observed between the mean false-positive error performances of the various expert module 
types listed when processing 10 independent sets of each speaker's 240 closing diphthong syllables not used for 
TDNN training. 

In this thesis, it is assumed that the mean false-positive error performances of each 

speaker's expert modules discussed in §5.1.3 and §5.1.4 are positively correlated. Evidence 

for this assumption was obtained using the following experiments. For each speaker, 10 

independent groups of 24 utterances were formed (randomly) from their 240 closing 

diphthong syllables not used for TDNN training. These 10 groups were then processed using 

their associated speaker's BTls, ETls, ST1s, BTlOS, ETlOS and STlOs (see §5.1.3.1 and §5.1.4.1) 

to give 10 estimates of mean false-positive error performance for each module type. The 

correlations between the six sets of means were then estimated for each speaker and found 

to be positive in all cases as indicated by Table A3.2-1. This experiment was then repeated 

for each speaker's 160 monophthong syllables by dividing these into 10 groups of 16 

(randomly chosen) utterances and processing them using the appropriate speaker's BTlOs, 
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ETlOS and STlOs (only the false-positive error perfonnances of these expert modules are 

compared, see §5.1.4.2). Once again, only positive correlations between the sets of means for 

each speaker were observed (these correlations were similar in magnitude to those listed in 

Table A3.2-1 for the BTlOS, ETlOS and STlOS). 

Since up to six means must be compared for each speaker at a time, the statistical test 

attributed to Games and Howell (1976) by Sokal and Rohlf (1981) is used to compare mean 

false-positive error perfonnances in this thesis. For convenience, this test is referred to as the 

Games-Howell test henceforth. The Games-Howell test permits multiple pair-wise 

comparisons between an arbitrary number of independent means. These means may be 

estimated from different sample sizes and their populations need not have the same variances 

(the populations are assumed to be heteroscedastic) (Sokal and Rohlf 1981). Considering two 

of the k means to be compared, Vi and tJj, the Games-Howell test indicates that the minimum 

significant difference (MSD) between these means is given by 

(A3.2-5) 

(Sokal and Rohlf 1981), where Ra,[k,v*l is an element of the studentized range tabulated by 

Rohlf and Sakal (1981) (Table 18)2 and v*, a weighted average degrees of freedom, is given 

by 

v* 
( n i - 1 ) (nj - 1 ) ( n j s 2 { U j } + n is 2 { Uj} r 

(A3.2-6) 

(n/ -n/)( s 2 {U j } r +(n/ _n j

2
)( s 2 {Uj} r 

If (tJj-Vj) ~ MSDij' then the null hypothesis that the population means estimated by Vj and tJj 
are equal (Ho: /1(:::::'I1:i) is rejected. Since MSDij relies on the square-root of the variance 

estimate given by equation (A3.2-4), it is overly large when the means compared are 

positively correlated, making the Games-Howell test conservative in this circumstance. 

2The symbol R is used to represent an element of the studentized range instead of Q (as 
in Sokal and Rolhf 1981) to avoid confusion with Cochran's Q statistic. 
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