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AB TRACT 

The use of explosive forming for small production runs has 

been considered suitable for New Zealand manufacturing. 

i. 

A literature review of the explosive forming process establishes 

the need for instrumentation that enables the loading of the workpiece 

to be determined, particularly that associated with the workpiece/ 

energy transfer medirnn interaction. Because of the magnitude of the 

initial shock wave the development of a pressure transducer based upon 

the non-linear deflection of a circular clamped plate or plate/dielectric 

foundation is considered. 

A modal analysis of the linear response of a clamped plate or 

plate/foundation system with viscous damping and subject to a transient 

loading is derived. The Winkler and Pasternak models were used to 

represent the foundation behaviour. To determine the non-linear 

response of both a rigidly fixed edge and a s:i.rrply supported :i.mrovable 

edge plate for similar conditions to those applied to the modal analysis 

a numerical program is developed. The spatial domain is modelled by 

central finite differences with a time element method giving a resultant 

recurrence scheme which is used in the time domain. An analysis of the 

effect of viscous damping on the stability of a range of three point 

schemes is derived for a single degree of freedom system and the 

results presented. 

For a range transient loads a strong correlation was obtained 

between the linear deflection results determined from numerical 

program and the modal analysis. The dynamic non-linear deflection of 

the plate and plate/foundation system is presented for step loads and 

a transient exponentially decaying load. 



CHAPTER ONE 

1.1 

1.2 

1.3 

CHAPTER TWO 

2.1 

2.2 

CON TEN T S 

INTRODUCTION 

High energy rate forming 

Explosive forming 

1. 2.1 

1. 2.2 

1. 2.3 

Closed deflagration 

contact detonation 

stand-off detonation 

1.2.3.1 stand-off explosive die forming 

1.2.3.2 stand-off free forming 

of project 

LITERATURE REVIEW 

Introduction 

General 

2.2.1 Free forming 

1 

1 

4 

5 

5 

7 

7 

9 

13 

14 

17 

2.2.1.1 Plug cushion technique 18 

2.2.2 

2.2.3 

2.2.1.2 Sandwich technique 21 

2.2.1.3 Oxide removal 21 

2.2.1.4 principal 21 

2.2.1.5 Results of free forming research 21 

Die forming 

2.2.2.1 Die manufacture and materials 

Influence of explosive forming on 
material 

2.2.3.1 Residual stresses 

2.2.3.2 plastic deformation mechanism 

28 

29 

31 

32 

33 

ii. 



2.3 

2.4 

2.5 

CHAPTER THREE 

3.1 

3.2 

3.3 

Underwater explosions 

2.3.1 

2.3.2 

2.3.3 

2.3.4 

Detonation 

Shock waves 

Gas bubble behaviour 

Energy transfer in explosive forming 

Deformation of plate subjected to impulsive 
loading 

2.4.1 

2.4.2 

Membrane deformation theories 

Bending deformation theories 

35 

37 

38 

44 

48 

49 

51 

59 

2.4.2.1 Simply supported circular plates 59 

2.4.3 

2.4.4 

Energy 

2.5.1 

2.5.2 

2.5.3 

2.5.4 

2.4.2.2 Clampled circular plates 70 

Combined bending and membrane stress 
plastic deformation analysis 

General technique of analysis 

transfer 

Deformation/energy transfer correlation 

Energy absorbed by blank 

Deflection/energy transfer interactions 

Experimental studies of energy transfer 

74 

79 

80 

80 

83 

87 

89 

INSTRUMENTATION 

Introduction 95 

96 Deformation measurement 

3.2.1 

3.2.2 

3.2.3 

Pin contactor method 

High speed streak photography 

High stereophotogrammetry 

96 

98 

100 

Pressure measurement techniques 100 

3.3.1 

3.3.2 

3.3.3 

strain gauge pressure measurement 
technique 101 

Capacitance pressure measurement techniques 104 

Piezoelectric pressure transducer 108 

iii. 



3.4 

3.5 

3.3.4 

3.3.5 

3.3.6 

3.3.7 

Magnetostrictive or reluctance pressure 
measurement techniques 

Piezoresistance pressure measurement 
techniques 

Miniaturised impact bar pressure 
measurement techniques 

Miscellaneous pressure measurement 
techniques 

llO 

III 

112 

114 

3.3.7.1 Diode transducer 114 

3.3.7.2 Transistor transducer 116 

3.3.7.3 Carbon resistor transducer 116 

3.3.7.4 Intermetallic resin transducer 117 

3.3.7.5 Rubber resistive transducer 118 

Calibration 118 

3.4.1 

3.4.2 

static calibration 

Dynamic calibration 

Pressure transducer 

3.5.1 Transducer output 

118 

119 

120 

124 

ClffiPTER FOUR ANALYSIS OF PRESSURE TRANSDUCER 

4.1 

4.2 

4.3 

4.4 

4.5 

Introduction 

Assumptions 

Equations governing pressure transducer 
behaviour 

4.3.1 

4.3.2 

Dynamic transient response for plate 
and foundation 

Static deflection for plate on elastic 
foundation 

Boundary conditions 

4.4.1 

4.4.2 

4.4.3 

Outer space boundary 

Inner space boundary 

Initial time boundary 

Discussion of analysis 

127 

127 

129 

133 

135 

136 

136 

136 

137 

138 

iVa 



CHAPTER FIVE MODAL ANALYSIS OF PLATE/FOUNDATION COMBINATION 

5.1 

5.2 

5.3 

Introduction 

Linear analysis 

5.2.1 

5.2.2 

5.2.3 

5.2.4 

5.2.5 

Rectangular loading case 

5.2.1.1 condition 

5.2.1.2 damped condition 

5.2.1.3 condition 

5.2.1.4 Undamped condition 

Exponential decay loading case 

5.2.2.1 Underdamped condition 

5.2.2.2 Critically damped condition 

5.2.2.3 Overdamped condition 

5.2.2.4 Undamped condition 

Reflection 

Roots of frequency equation 

Flow diagram linear solution program 

Non-linear analysis 

5.3.1 

5.3.2 

5.3.3 

5.3.4 

5.3.5 

5.3.6 

Constant loading case 

5.3.1.1 Underdamped condition 

5.3.1.2 Critically damped condition 

5.3.1.3 Overdamped condition 

5.3.1.4 Undamped condition 

Deflection 

Radial deflection 

Solution of roots for mode 

Determination of elapsed time 

Flow diagram - non-linear solution 
program 

141 

142 

147 

148 

149 

149 

150 

150 

150 

151 

151 

151 

152 

152 

154 

157 

158 

158 

159 

159 

159 

160 

160 

161 

164 

165 

v. 



CHAPTER SIX 

6.1 

6.2 

CHAPTER SEVEN 

7.1 

7.2 

7.3 

7.4 

7.5 

NUMERICAL SOLUTION OF GOVERNING EQUATIONS 

Introduction 

Non-linear numerical equations 

6.2.1 

6.2.2 

6.2.3 

Static case circular plate 

static case: circular plate with 
foundation 

Dynamic case circular plate/foundation 

167 

170 

171 

185 

192 

6.2.3.1 Time domain 192 

6.2.3.2 Recurrence relationship/direct 
integration operator 194 

6.2.3.2.1 Three point recurrence 
relationship 196 

6.2.3.2.2 Four point recurrence 
relationship 207 

6.2.3.2.3 Direct integration 
operator 

6.2.4 Dynamic central difference program 

RESULTS AND DISCUSSION 

Introduction 

Linear modal analysis 

7.2.1 

7.2.2 

7.2.3 

7.2.4 

7.2.5 

Linear response 

Time domain - numerical experimentation 

viscous damping 

Winkler foundation 

Pasternak foundation 

Non-linear dynamic results 

7.3.1 

7.3.2 

7.3.3 

7.3.4 

Non-linear dynamic transient deflection 

Viscous damping 

Winkler foundation 

Pasternak foundation 

Non-linear modal analysis 

Transducer performance 

211 

212 

214 

215 

216 

218 

226 

227 

231 

231 

233 

238 

241 

252 

261 

264 

vi. 



vii. 

Page 

CHAPTER EIGHT CONCLUSIONS AND RECOMMENDATIONS 272 

REFERENCES 276 

APPENDIX A 302 

B 304 

C 306 

D 307 

E 308 

F 309 

G 313 

H 315 

I 325 

J 326 

K 327 



viii. 

LIST OF FIGURES 

Figure No. . Description Page 

1.1 Deformation velocity ranges for several conventional 

machines, high velocity forming systems 2 

1.2 Schematic of typical gas forming arrangements 2 

1.3 Stand-off explosive die forming 6 

1.4 Stand-off explosive free forming 8 

2.1 Plug cushion technique 19 

2.2 Sandwich technique 19 

2.3 Carriage technique 19 

2.4 Deformation profiles in free forming 27 

2.5 Schematic pressure-time curves for low and high 

explosives 27 

2.6 Semilogarithmic plot of pressure against time 39 

2.7 Increase in impulse from later portions of the 

shock wave [2.70] 39 

2.8 Radius of the gas bubble as a function of time for 

a 0.55 pound (0.25 kgm) tetryl charge [2.70] 46 

2.9 Schematic of gas bubble radius and migration as a 

2.10 

2.11 

function of time after Schauer 

Schematic of pressure history after Schauer 

Construction of UERL diaphragm gauge after Cole 

2.12 f.bde of deformation of damped circular disc 

during explosive free forming 

2.13 

2.14 

2.15 

2.16 

2.l7a 

2.l7b 

Tresca yield condition applied to Hopkins et ale 

First phase deflection Hopkins et ale 

Cbmparison of analysis by Hopkins & Wang as a 

function of pressure ratio applied pressure: 

static yield pressure 

Deflection impulse relation for simply supported 

plates 

Final deformation profile predicted by visco 

plastic and perfectly plastic solution compared 

with experimental data. After Wierzbicki. 

Permanent central plate deflection SiR vs applied 

impulse 1. Curves for several values of viscosity 

constant canpared with experimental results 2.85 

and solution for perfectly plastic plates. After 

Wierzbicki. 

46 

46 

50 

50 

60 

60 

65 

65 

69 

69 



ix. 

Figure No. Description 

2.l8a Maximum deformation as a function of the maximum 

pressure for various pulse shapes. After Youngdahl. 71 

2.l8b 

2.19 

2.20a 

2.20b 

2.2la 

2.2lb 

Max:i.mum. deformation as a function of the effective 

pressure for various pulse shapes. After Youngdahl. 

Relationships between 0 A and I 

Final deflection as a function of pulse shape. 

After Krajcinovic. 

Final deflection as a functton of effective pressure 

P for various pulse shape. After Krajcinovic. 
c 

Comparison of theory with exper:iroental results for 

an impulsively loaded simply supported plate 

Deflection-impulse relation for simply supported 

circular-rigid plastic plates. After Jones. 

2.22 Permanent central plate deflection vs applied impulse 

solution (large deflection) and perfectly plastic 

solution (small deflection) as compared with 

experimental results 

2.23 Comparison between the theory (viscoplastic material) 

71 

73 

73 

73 

76 

. 76 

76 

and the theory of Jones (perfectly plastic material) '78 

2.24 

2.25 

2.26 

2.27 

2.28 

2.29 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

Experimental and theoretical central deflections for 

clamped plates 

Deformation vs time at 3/16 of blank radius 

Velocity vs time at 3/16 of blank. radius 

Velocity vs deformation at 3/16 of blank radius 

Deformation profile 

Pressure-time curve when using an air-bag in 

explosive forming 

pin contactor method of deflection and velocity 

measurement. After Hobson et ala 

Idealised trace from pin contactor method 

High speed streak photography. After Hobson et ala 

High speed steJ:;:'eophotograrrmetry. After Bednarski. 

Diaphragm strain gauge transducer 

Strain gauge transducer 

Strain gauge pressure transducer 

capacitance pressure transducer 

78 

90 

90 

91 

91 

94 

97 

97 

99 

99 

102 

102 

105 

105 



Figure No. Description 

3.9 Bagnoff pressure transducer 

3.10 Mylar film pressure transducer 

3.11 

3.12 

3.13 

Piezoelectric pressure transducer. After York. 

Miniaturised impact bar transducer 

Tunnel diode transducer showing idealised current 

voltage curves for turmel diode and resistor in 

parallel. After Sikorski. 

3.14 Static pressure test rig 

3.15 

3.16 

3.17 

4.1 

capacitance pressure transducer 

Piezoelectric pressure transducer 

capacitance pressure transducer with guard ring 

Bending and membrane stresses acting on a plate 

element subject to dynamic loading and viscous 

damping 

106 

106 

109 

109 

115 

121 

121 

126 

130 

5.1 Plot of frequency equation J l OJ I OJ + J (-x.) OJ 153 o 0 

5.2 Plot of frequency equation ~'I J 1 C"-I} Io (A2) and 

A2 J 0 (.AI) II (A2), v~ Al a Pasternak foundation 

where A2 = (G + Al)~ 153 

5.3 Flow diagram linear program 155 

5.4 Ratio dynamic deflection: static deflection at 

5.5 

5.6 

6.1 

6.2 

6.3 

6.4 

plate centre vs time 

Ratio of dynamic bending rroment: static bending 

rroment at plate centre vs time 

Flow diagram non-linear program 

Flow diagram of static central difference 

program for slope 

Flow diagram of static central difference 

program for deflection 

Linear deflection profile for E = 15, v = 0.3 

Q = 40, 6p = 1/40 

Profile of slope for linear case, E = IS, v 0.3 

Q = 40, 6p = 1/40 

6.5 Profile of second derivative for linear case, 

E = 15, v 0.3, 0 40, 6p = 1/40 

156 

156 

166 

175 

ISO 

lS2 

lS2 

lS3 

x. 



No. 

6.6 

6.7 

6.8 

6.9 

6.10 

6.11 

Description 

d "d2 
Percentage error in deflection, d~ and dp CI. for 

linear case 

g = 15, v = 0.3, 0 = 40, 6p 1/40 

Central deflection vs load parameter v == 0.3 

Bending stress vs central deflection 

Bending membrane stress vs central deflection 

Radial in-plane deflection vs radial position 

for g 10, v = 0.3, 0 == 40.0 

Vertical deflection vs radial position for 

g == 10, v == 0.3, 0 = 40 

6.12 Central deflection vs load parameter for Winkler 

6.13 

foundation v = 0.3 

Stability criteria for three point recurrence 

scheme for single degree of freedcm withy = ~ 
6.14 Spectral radius vs ratio of step size: undamped 

period for viscous damping y = ~, e = ~ and X 

is fraction of critical damping 

6.15 Spectral radius vs ratio of step size: undamped 

period for viscous damping y ~, e = 1/6 and X 

is fraction of critical damping 

6.16 Spectral radius vs ratio of step size: undamped 

6.17 

6.18 

period for viscous damping y ~, e := 1/10 and X 

fraction of critical damping 

Spectral radius vs ratio of step size: undamped 

period for viscous damping y = 3/2, e = 4/5 and 

X is fraction of critical damping 

Spectral radius vs ratio of step size: undamped 

period for viscous damped y == 0.6 I' B = 0.5, and 

X is fraction of critical damping 

6.19 Spectral radius vs ratio of step size: undamped 

period for viscous damping y = 0.6, 8 == 0.3025, 

6.20 

6.21 

6.22 

and X is fraction of critical damping 

Three level (Newmark) expression relative period 

error vs 6t/T 

Maximum m:>dulus root of polyncmial against 6t/T 

Percentage period elongation against 6t/T 

6.23 Flow diagram of non-linear dynamic central 

difference program 

183 

184 

186 

187 

188 

189 

191 

202 

203 

203 

204 

204 

205 

205 

206 

206 

210 

213 

xi. 



Figure No. Description 

7.1 central deflection vs time for linear modal analysis 

over 30 roots, rectangular pulse load E = 10, 

7.2 

7.3 

7.4 

Cd = 0.2, v = 0.3 

central deflection vs time for first root and 

roots two-thirty, E = 10, Cd = 0.2, v = 0.3 

Central deflection vs time E = 10, Cd = 0.2, v = 0.3 

Central radial bending ItlCJI11eIlt vs time for 

E = 10, v = 0.3 

7.5 Difference between central deflection from numerical 

method and rrodal analysis for linear case E = 10, 

xii. 

217 

217 

219 

219 

Cd = 0.2, v = 0.3 220 

7.6 Absolute error vs time Newmark recurrence scheme 

7.7 

y = 0.5, S = 0.25, E = 10, Cd = 0.2, v = 0.3 

Absolute error vs time Newmark direct integration 

operator y = 0.5, S = 0.25, E = 10, Cd = 0.0 - 0.2, 

v = 0.3 

7.8 Error vs time three point recurrence scherne 

7.9 

7.10 

7.11 

y 0.6, S = 0.3025, E = 10, Cd = 0.2, v = 0.3 

Error vs time three point recurrence scheme 

y 0.6, S 0.5, E = 10, Cd = 0.0 - 0.2, v = 0.3 

Deflection vs time Galerkin three point recurrence 

scheme y = 1.5, S = 0.8, E 10, Cd 0.2, v 0.3 

~C 0.005, 0.0075, 0.01 

Error vs time Roubal t four point recurrence scheme 

Q = 27, S = 9, y = 3 

7.12 Error vs time four point recurrence scheme 

n = 24, S = 8, y = 3 

7.13 Deflection vs time Galerkin four point recurrence 

scheme n = 702/35, B = 36/5, y = 13/5 

7.14 Deflection vs time four point recurrence scheme 

n = 22, S = 8, y = 3 

7.15 Deflection vs time Wilson 0 I = 1.4 four point 

7.16 

recurrence scherne ~ = 16.24, S = 6.58, y = 2.58 

central deflection vs time for viscous damping 

X = 0.8, 16, 24, 32 with constant load E = 10, 

v 0.3 

220 

221 

221 

222 

222 

223 

223 

224 

224 

225 

228 



Figure lb. Description 

7.17 Central deflection vs time for. viscous damping 

X = 0, 8, 16, 24, 32, with rectangular pulse 

7.18 

7.19 

7.20 

load € = 10, cd = 0.2, v = 0.3 

Central deflection vs time for viscous damping 

X = 8, 16, 24, 32 with exponential decaying load 

Pm = 10, e = 0.5, v = 0.3 

Central deflection vs time for plate/Winkler 

foundation k* = 0, 50, 100, with constant load 

€ = 10, v = 0.3 

Central deflection vs time for a plate/Winkler 

foundation k* 50 with viscous damping X = 8, 

24, 32 for exponential loading, P 10, e = 0.5, 
m 

xiii. 

229 

229 

230 

v = 0.3 230 

7.21 Central deflection vs time for a plate/Pasternak 

foundation k* 50, G = 50, 100 for constant load 

€ = 10, v = 0.3 232 

7.22 Non-linear central deflection vs time for rigidly 

damped plate € = 10, v = 0.3 

7.23 Central deflection and first derivative vs time 

for rigidly damped plate € = 10, v 0.3 

7.24 Central deflection and second derivative vs time 

7.25 

7.26 

7.27 

7.28 

7.29 

7.30 

7.31 

for rigidly damped plate 2 = 10, v = 0.3 

Central deflection and ~ct~y vs for rigidly 

damped plate € 10, v = 0.3 

Non-linear central deflection vs time sL~ly 

supported imrovable edge plate € = 10, v 0.3 

Effect of damping on dynamic response for rigidly 

damped plate € 10, v = 0.3 

Effect of damping on the dynamic response, Alwar 

Effect of damping on non-linear dynamic response 

a simply supported imrovable edge plate 

€ == 10, v = 0.3 

Effect damping on the dynamic response for 

constant load € = 10, after Alwar 

Canparison numerical results with Sinha [6.3] 

for damped plate/foundation v = 0.3 

7. 32 Non-linear central deflection vs time for damped 

plate/foundation combination with Winkler constants 

232 

236 

236 

237 

237 

239 

239 

240 

240 

242 

k* = 0, 50, 100 & 150 for a load € = 10, v 0.3 242 



Figure No. ·nescription 

7.33 Resp:mseof damped edge circular plates on 

Winkler foundation for constant load £ = 10 

After Nath. 

7.34 Non-linear central deflection vs time for rigidly 

damped plate/foundation combination for Winkler 

foundation k* = 50, 100, and £ = 10, v = 0.3 

comparison with Nath's results 

7. 35 Static response of damped circular plates on 

Winkler foundation after Nath with super-imposed 

sinha and numerical results 

7.36 Response of simply supported edge circular plates 

on Winkler foundation for constant load £ ~ 10 

After Nath. 

7.37 Central deflection vs time for. simply supported 

xiv. 

243 

243 

244 

244 

immovable edge plate/foundation combination Winkler 

foundation constants k = 50, 100, 150, £ = 10, v = 0.3 250 

7.38 Static central deflection for simply supported 

immovable edge plate on Winkler foundation v = 0.3 250 

7.39 Non-linear central deflection vs time for rigidly 

damped plate/pasternak foundation k* :;;;;: 50, G* =: 0, 

7.40 

50, 100 for constant load £ = 10, v = 0.3 

Response of damped edge circular plates on 

Pasternak foundation for £ =: 10, k* = 50 

After Nath. 

7.41 Influence of Pasternak foundation m::xlule on the 

central deflection of damped circular plates 

£ = 10, After Nath. 

7.42 Variation of central deflection with G* for static 

non-linear deflection for rigidly damped plate 

7.43 

7.44 

£ :::: 20, v = 0.3 

Non-linear response of simply supported immovable 

edge circular plates on Pasternak foundation from 

numerical program £ = 10, k* = 50, v = 0.3 

Response of simply supported edge circular plates 

253 

253 

254 

254 

255 

on Pasternak foundation £ = 10, k* :::: 50, after Nath. 255 

7.45 static central deflection vs Pasternak foundation 

constant for a simply supported immovable edge plate 

v 0.3, £ 20 256 



xv. 

Figure No. Description Page 

7.46 Schematic of Pasternak foundationrnodel 258 

7.47 Schematic of Filonenko. - Borodich foundation m:x1el 258 

7.48 Non-linear modal analysis for rigidly damped plate 

E = 10 262 

7.49 y2 ~ - Ai vs oU(o) for rigidly damped plate 262 

7.50 Central deflection vs frequency for first m:x1e of 

non-linear modal analysis for plate 263 

7.51 Central deflection fA u (p) dA and (fA a (p) dA) 
o 0 

instantaneous pressure vs time for plate subject 

to an exponentially decaying load E 15, 

8 0.5, X = 20, v = 0.3 263 

7.52 Vertical deflection profiles for plate subject to 

an exponentially decaying load E = 15, 8 = 0.5, 

X = 20, v = 0.3 266 

7.53 Radial deflection profiles for plate subject to 

an exponentially decaying load E = 15, 6 = 0.5, 

X 20, v = 0.3 

7. 54 Combined radial stress parameter profiles for 

plate subject to an exponentially decaying load 

£ = 15, 8 = 0.5, X = 20, v = 0.3 

7.55 Radial bending stress parameter profiles for plate 

subject to an exponentially decaying load 

7.56 

7.57 

E = 15, 8 0.05, X = 20, v = 0.3 

Radial membrane stress parameter profiles for 

plate subject to an exponentially decaying load 

£ = 15, 6 = 0.5, X = 20, v 0.3 

Combined tangential stress parameter profiles for 

plate subject to an exponentially decaying load 

E = 15, 8 = 0.5, X = 20, v = 0.3 

7.58 Tangential bending stress parameter profiles for 

plate subject to an exponentially decaying load 

E = 15, 8 = 0.5, X = 20, v = 0.3 

7.59 Tangential membrane stress parameter for plate 

subject to an exponentially decaying load 

£ = 15, 6 = 0.5, X = 20, v = 0.3 

266 

267 

267 

268 

268 

269 

269 



Figure No. Description 

7.60 Vertical deflection profiles. for plate foundation 

k* 50 subject to an exponentially decaying load 

E = 15, B = 0.5, X = 20, v = 0.3 

7.61 

7.62 

7.63 

Central deflection fA a(p)dA and ( fA a(p)dA) / 
o 0 

instantaneous pressure vs time for plate foundation 

k* 50 subject to an exponentially decaying load 

E = 15, B = 0.5, X = 20, v 0.3 

Vertical deflection profiles plate/foundation 

k* == 100 subject to an exponentially decaying load 

E 15, B = 0.5, X = 20, v = 0.3 

Central deflection fA a (p)dA and (/: a (p)dA)/ 
o 0 

instantaneous pressure vs time for plate/foundation 

k* = 100 subject to an exponentially decaying load 

E IS, B = 0.5, X = 20, v = 0.3 

xvi. 

270 

270 

271 

271 



Table No. 

2.1 

2.2 

6.1 

6.2 

LIST OF TABLES . 

Description 

Explosive constants after Cole [2.70] 

Explosive constants for decay constant 

Coefficients for three-point recurrence schemes 

(after Zienk:iewicz) 

Coefficients for the four-point recurrence 

scheme (after Zienk:iewicz) 

xvii. 

41 

42 

197 

208 



Note: 

Subscripts i, j 

m, n, r 

NOMENCIA'IURE 

pi vota! points 

surnnation 

xviii. 

Dot denotes derivative with respect to time. 

Symbol 

a 

b 

B e 
B 
m 

B* 

c 

c 
m 

c o 

c 

d 

Description 

Radius of plate 

Constant for the roth nodal shape 

Radius of gas bubble 

Integration limit for impulse 

Explosive constant 

Area of guarded active transducer plate 

Coefficients for modal pollution 

Area of transducer plate 

Initial area of blank normal to incident pressure 

Explosive constant 

Material constant 

Imposed change in area 

1 
12 Standard deviation 

Explosive constant 

Coefficients for modal solution 

Material constant 

Charge energy available 

Yield stress/density 

Velocity of sound 

Capacitance 

Explosive constant 

Viscous damping corresponding to the i th eigenvalue 

Constant in modal shape equation 

Matrix of viscous damping value 

Depth of forming 



Syrnlx:>l 

D 

D e 
D o 
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E e 
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f 
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ff 
f 
P 

~t 
f 

F 

F 

F(w) 

F' 
-1 

F' ( 
1 

~2 

F' ( 
2 

F' 
-2 

F* (ex) 

. Description 

FlexUral rigidity or plate stiffness 

Explosive Constant 

Die opening dia:rreter 

Constant in rrodal shape equation 

Energy available at explosive charge 

r~ulus of elasticity for plate material 

Explosive energy 

Energy flux density 

After-flow energy flux density 

Orthonormal constant for m th rrode 

Potential energy of energy transfer medium 

Constant in rrodal shape equation 

Function 

Explosive constant (Floral) 

Frequency of plate/foundation 

Frequency of plate 

Load vector at t 

Sum of load vectors 

Excess of dynamic stress over the static yield 

Load vector 

Foundation reaction 

Explosive constant 

Constant in rrodal shape equation 

Vector of pseudo-loads containing the non-linear 

terms 

Vector of pseudo-loads containing the non-linear 

terms 

Frequency equation for non-linear m:x1al analysis 

Vector of pseudo-loads containing the non-linear 

terms 

Radial b::>undary condition equation for non-linear 

rrodal analysis 

Vector of· pseudo-loads containing the non-linear 

terms 

Non-dimensional foundation reaction 

xix. 



Symbol 

g 

G 

G m 
G* 

h 

hf 
h. 

1 

H 

HCr) 

HI' H2, 

i 

I 

I n 

j 

J n 
JI 

2 

kf 
k. 

1 

k s 
k v 
k* 

K 

K' 

K m 

K 
0 

K
I

, K2 

H3 

Description 

Function for given eigenvalue 

Pasternak foundation constant 

Orthonormalisation constant for mth mode 

Non-dimensional Pasternak foundation constant 

Plate thickness 

Final thickness 

Instantaneous thickness 

Head of transfer medium 

Heaviside step function 

Function in solution for root of non-linear 

modal analysis 

* see initial note 

Impulse 

Bessel function of the modified first kind and 

the nth order 

* see initial note 

Bessel function of the first kind and nth order 

Second stress deviatoric 

Non-dimensional Winkler foundation constant 

Eigenvalue 

yield stress in simple shear 

Viscous damping coefficient of plate vertical 

Non-dimensional Winkler foundation constant 

Matrix of coefficients 

Matrix of coefficients for slope 

Bessel function of the rrodified second kind 
th d . and n or er 

Material constant 

Explosive constants associated with gas bubble 

behaviour 
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K' 
---a 

L 

L 

L' 

m 

m 
o 

n 

p. 
]. 

P 

pet) 

P 
e 

P 
m 

P 
o 

P s 

Description 

Constant 

Matrix of coefficients for vertical deflection 

of plate 

Matrix of coefficients for vertical deflection 

for plate/foundation combination 

Matrix of coefficients for radial deflection 

Explosive decay constant 

Function for given eigenvalue 

Distance from explosive 

Load vector 

Load vector 

Density of plate 

Densi ty of energy transfer medium at ambient 

pressure 

Density of energy transfer medium 

Mass matrix 

xxi. 

Radial bending rroment/unit length of circumference 

Tangential bending rroment/unit length of 

circumference 

Strain hardening exponent 

Radial membrane force/unit length of circumference 

Tangential membrane force/unit length of 

circumference 

Force parallel to the plate surface 

dan .th. al Constant depen t on]. e].genv ue 

Pressure 

Pressure acting on diaphragm 

Efficient pressure 

~~ pressure 

Static yield pressure 

Static collapse load 



q(r,t) 

r 

s .. 
1J 

S 

t 

t (r) 

t c 
t

f 
t m 
trne 
t 
y 

T 

Te 
T o 
T* r 

Description 

Pressure at time t 

Pressure due to incident shock wave 

Material constant 

wad intensity 

Change in capacitor 

Constant dependant on i th eigenvalue 

Force normal to plate surface 

Co-ordinate of constraint notion to ensure 

unifonn thinning of undeformed material 

Shear stress/unit length of circumference 

Stress resultant nonnal to the deformed surface 

Radius 

Radius of die-opening 

Matrix of co-efficients for foundation reaction 

Explosive charge radius 

Maximum gas bubble radius 

Distance fram explosive 

Stress deviator 

Stand-off of explosive charge 

Time 

Time at which hinge circle passes through r 

Plate separation 

Time at completion of plastic defonnation 

Time at completion of defonnation 

Time at centroid of pulse 

Time at onset of plastic defonnation 

Elapsed time since incidence of shock front 

Elapsed time for integration 

Pulsation time for gas bubble 

Chebyshev polynomial 
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u 

v 

v o 

V 

w 

W 

W(t) 

W. 
1. 

y 

y 
n 

z 

z c 

. . Description 

Radial deflection 

Initial radial position 

Veloci ty of energy transfer Iredium. 

Shock front velocity 

Initial velocity 

Strain energy 

Radial displacement after Hudson 

Voltage 

Initial normal velocity 

Volume 

Vertical deflection 

Weight of explosive charge 

Function to describe dynamic plastic deflection 

Length of Cordtex in rrm 

Primary yield stress 

Bessel function of the second kind and nth order 

Tangent plane 

Central deflection of plate in analysis of 

explosive forming 
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Symtol 

ct* 

o 

o (max) 

o 
o 

0
1 

0' 
1 

0' 

E 

E 
m 

E 
o 

E 
r 

E 

£. 
1 
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xxiv. 

Non-d.imensional vertical displacement parameter 

Explosive constant 

Constant associated with shock front velocity 

Orthonormal modal shape 

Vertical deflection as a function of radius only 

Vector of vertical non-dimensional deflection 

Material constant 

Coefficient for time recurrence relationships 

Hinge circle radius 

Explosive constant 

Non-dimensional radius to thickness ratio 

Central deflection (Krajcinovic) 

Central deflection (Florence) 

Explosive constant 

Explosive constant 

Order of power series 

Backwards difference operator 

Non-dimensional biharmonic operator 

2 a3 1 02 1 a 
+ -p -2 - + 3" ap) 

a ap p 
Biharmonic operator 

a4 2 a3 1 a2 
1 a 

(-4 + r -3 "r2 + r3 ar) 
ar ar a 

Non-dimensional load parameter 

Field strength between capacitance plates 

Hoop strain 

Strain rate 

Strain at centre 

Permittivity 

Relative permittivity 

Effective plastic strain 

Instantaneous strain rate 

Coefficient for time recurrence relationships 

Energy transfer coefficient 



Symbol 

y 

y' 

e 
e' 

p 

T 

T* 
m 

r(T) 

. Description 

Coefficient time recurrence relationship 

Constant following Berger's assumption 

Viscosity constant 

Explosive constant 

Non-dimensional constant following Berger's 

assumption 

Eigenvalue 

Spectral root 

Decay constant 

. Constant for representation of time domain 

Diffraction time 

Characteristic time 
. f .th. 1 Functlon or 1 elgenva ue 

Membrane stress in diaphragm 

Radial stress 

Tangential stress 

Static yield stress 

Effective Stress 

capacitance charge density 

Non-dimensional radial displacement parameter 

Vector radial non-dimensional deflections 

Non-dimensional radial parameter 

Non-dimensional time parameter 

Lapsed time after diffraction wave arrived at 

the surface the blank 

xxv. 

Effective elapsed time in non-linear modal analysis 

Function in time domain 



n' m 

v 

xxvi. 

Description 

Non-d.imensional vertical viscous damping paraneter 

Fraction of initial damping for i th eigenvalue 

Fractional viscous damping coefficient 

Instantaneous strain rate 

th Undamped circular natural frequency for the m 

mode 

Work hardening rate 

Darrped circular natural frequency (under-damped 

case) for the mth mode 

Darrped circular natural frequency (over-damped 

case) for the m th mode 

Angle between the radial direction and the radial 

tangent to the deformed middle surface of the plate 

Poisson's ratio for plate material 

Parameter: Schmidt' s analysis of non-linear 

elastic deflection 

dW 
Slope, 

Power function of dynamic stress over static yield 

Stress function 
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1.1 IITGH ENERGY RATE FORMING 

One of the newer metal forming techniques which received 

considerable attention in the last fifteen years was the development 

of the High Energy Rate Forming (HEW) or High Velocity Forming 

(HFV) processes. The main distinction between the conventional and 

the High Energy Rate Forming processes was the rate of energy 

transfer to the workpiece and the resultant strain rates achieved 

during forming as illustrated in Fig. 1.1, page 2. 

The High Energy Rate Forming processes involve the 

transmission of energy to the workpiece as a large amplitude impulse 

with a total duration ranging from microseconds to milliseconds, 

rather than the long duration, constant amplitude energy transfer 

with the conventional metal forming technique. 

1.2 EXPIDSIVE FORMING 

EKplcsive forming was considered to justify a study in depth 

because of the advantages of 1011 capi tal and. tooling costs that were 

economic for soort or one-off production runs. These were in 

ad::Htion to the following advantages claimed [1.2] for High Energy 

Rate Forming processes qy comparison with conventional forming 

methods, which were to: 

(1) Reduce the size of the equipment required to form large 

1. 



forming machine 
or system 

velocity range 
(feet per se:ond) 

loqarithmic scale 

conventional machines 

2. 

0!1(0-03) 1-6 (0-3) 10 (3-0) 100 (30) .1o'OO·(300)1{. 

brake press 
rubber press 
hydraulic jTeSs 
mechanical press 
drop hammer 

pneumatic- mechonical 

low explosive 
explosive as 
high explosive 
electro-hydraulic 

universal 
mixing 
head 

pt blank 

high velocity forming systems 
iii i I 

0-1 (0-03) 1-0 (0' 3) 10 (3' 0) 100 (30) 1000 (300) 

1;. m/s 

ignitor 
02 inlet 

H2 inlet 

check valve 

vacuum seal 

vacuum line 

FIG 1-2 SCHEMATIC OF TYPICAL GAS FORMING 
ARRANGEMENTS (1 '1] 



(2) Facilitate the making of parts from certain materials not 

easily formed qy conventional methods, 

(3) Make parts which are not producible qy other methods because 

of size, material characteristics, or both, 

(4) Improve dimensional tolerances, 

(5) I.a-;rer production costs, 

(6) Reduce cost in the fabrication of "one-offll parts. 

The lewer capital cost of Explcsive Forming l:!t comparison 

with other High Energy Rate Forndng processes was due to the 

inexpensive permanent installation used to transmit t.he energy from 

the energy source to the workpiece. The cost of the dies was 

relatively lew because often a female die only was required and 

inexpensive die materials such as concrete, cast iron, plastic or 

low carbon steels could be used which resulted in simple tooling 

requirements. Also the size of workpiece was limited only by the 

strength of the container restraining the energy transmission media 

while the versatility of the process was such that all the following 

fonning operations muld be carried out using explosives as the 

energy source; namely sizing, drawing, embossing, engraving, 

flanging, compacting and cutting. 

The limitations that existed for explcsive forming 

process were: 

(1) A short production run because it was a labour intensive 

operation. 

(2) Noise and vibration when associated and sited with other 

production facilities or in residential areas. 

(3) Storage of explosives and detonators to comply with local 

dangerous goods regulations. 

(4) Qualifica.tions required qy personnel to meet local regulations 

governing irrlustrial usage of explosives. 

(5) Mcrlification of material properties. 

Because of these limitations the explosive forming processes 
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must considered complimentary to conventional forming techniques 

rather than replacing them. 

In spite of these limitations it was felt that for New 

Zealand engineering and manufacturing conditions which often 

involved lew volume or one-off production runs this process was 

ideal and allaved the cheap utilization of the advantages associated 

wi th High Energy Rate Forming. For these reasons this project was 

concentrated on the ~losive Forming process. 

The Explosive Forming process was divided into three distinct 

classifications: Closed Deflagration, Contact Detonation and 

Stand-off Detonation. These classifications were deppJ1dent upon the 

energy source and the method of energy transmission fram the source 

to the workpiece or metal blank to be deformed. 

1. 2.1. CLOSED DEFIAGAATICN 

'Ihe energy source was obtained l¥ coml:ustion of either a slow 

burning propellant explosive or gaseous mixtures. Because of the 

relatively slaw pressure rise and lew peak pressures due to either 

the containment of the products of combustion or the combination of 

containment and the impinging of coml:ustion front 00. the 

workpiece, Fig. 1. 2, page 2, the deflagratioo. processes lent 

themselves to close control of the pressure i.Inp.Ilse as 't'lE!11 as being 

the most su i table explosive forming technique to ini tially autanate. 

[1. 2] 

Preliminary investigations on this forming method using an 

oxygen! acetylene gaseous mixture were conducted at the Mechanical 

Engineering Department, University of Canterbury [1.3] but 

discontinued because of the danger of pre-ignition with this 

p3rticular gaseous mixture. 

Because of the requirement to contain the products of 
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combustion, the size of the workpiece was limited and the capital 

cost higher than for the equivalent explosive detonation forming 

process. 

1. 2. 2 a:JNTAcr DEI'CNATICN 

The high explosive in this process was detonated in contact 

with the workpiece, which resulted in very rapid stress rises in the 

ma.terial, and high maximum stresses associated with the detonation 

front in the explosive. This process was used for explosive 

welding, powder compaction, engraving, hardening and cutting. The 

major variables in this method were detonation velocity and 

configuration of the explosive with respect to the workpiece, whim 

influenced both the final deformation and the material properties of 

the product. 

1. 2. 3 Sl'AND-OFF DEl'CNATICN 

This explosive forming operation, Fig. 1.3, page 6, relied 

upon the transmission of the energy fram the high explosive charge 

to the metal blank to be formed l::¥ a shock wave moving through the 

transmission medium soch as air or water. 

Hence the stand-off of the explosive marge from t..he blank 

surface, and its size and shape were major variables because they 

controlled the geometric form and the intensity of the shock wave 

bnpinging upon the blank surface. Other major variables were the 

transmission meditnn, the required product shape and \l"Qrkpiece 

material. The hold-down force or method of draw wrinkle control 

also influenced the final product shape and strain distribution. 

All these variables were interdependent and therefore 

cptimization was usually based upon experience and experimentation, 
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and although sane analytical research work [2.4, 2.5] has been 

carried out the majority of the research work has been restricted to 

emperical analysis. [2.6, 2.7,2.8]. 

Stand-off detonation techniques were further divided into two 

categories of die forming and free forming. 

1. 2.3.1 srAND-OFF EXPLOSIVE DIE RJRMJNG The e.xplooi ve charge was 

placed above the workpiece, as shown in Fig. 1.3, page 6 , and 

detonated. The energy released was transmitted through the transfer 

Jreditnn as a shock wave to the blank or \\Orkpiece which was located 

over the female die of the required final shape. The cavity between 

the blank and die was evacuated because the rate of deformation of 

the blank resulted in 'quasi-adiabatic' ccmpression of any trapped 

residual air. This compression could produce local gas temperatures 

sufficient to weld [2.9] the blank to the die or otherwise damage 

the workpiece and die surface l:¥ overheating or 'burning'. Also any 

residual air prevented the blank fram bottorrdng on the die and 

therefore resulted in incomplete forming. 

If evacuation of the air was complete the workpiece deformed 

into die and took up shape of the die. 

1.2.3.2 STANDHDFF FREE The metal blank, as shown in Fig. 

1. 4, page 8, was supported l:¥ a dr aw ring which fLmctioned in 

conjunction with the hold-down ring to control draw wrinkling and 

gave the peri:(;heral diameter of the final sha.pe. 

This process had limited a:pplication and could only be used 

for very basic operations such as bulging and the development of 

simple syrrmetric shapes, although there were some techniques which 

allaved an element of control of the final shape. 
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1. 3 SOOPE CF PRXJECf 

The alin of the project was to investigate the explosive 

forrrdng process and to oonsider the energy transfer mechanism and 

associated instrumentation. 

Chapter Two contains a general review of the literature on 

stand-off explosive forming in 'Which the specific processes of 

forming and die forming are presented. In considering tmder water 

explosions and the subsequent energy transfer to the workpiece it 

became apparent that considerable effort has been put into the study 

of the detonation, primary pressure pulses and subsequent behaviour 

of the gaseous products of large homogeneous explosive dlarges (0.2 

- 100 kgm) and the associated energy transfer to the water. 

HCMever, the explosive has been located at distances of 10 100 m 

belCM the free surface of a semi-infinite body of water and the 

resultant pressure measurements were made at distances of 1 - 10 m 

frcm the charge 'Which precludes the direct use of the data in 

typical explosive forming processes. In explosive forming 

operations the energy source is often non-hc:m::>geneous being some 

arrangement of a detonating fuse such as Cordtex, with a point 

source detonation. Usually these forming operations are carried out 

in a tank or finite body of water and Lher e fore the distances 

between the explosive charge and the free surface are in the order 

of 0.1 - 3 metres while for energy efficiency the dlarge is in close 

proximity to the workpiece with stand-off distances of 0.025 0.300 

m beil19' common. 

The deformation of plates sUbject to impulsive loading is 

reviewed because the close proximity of the explosive charge to the 

deforming blank is considered to interact with the secondary energy 

transfer associated with behaviour of the gaseous products of 

deformation. There is evidence that this secondary loading is 

significant in this forming process. 

Energy transfer in the explosive formil19' process is also 

reviewed and this infonnation is mainly based on the measurement of 
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the subsequent plastic deformation and equating this to the energy 

available fran the explosive. Sane pressure measurements have been 

carried out during the explcsive forming process but the transducer 

used has been lcx:;ated ;:May from the region of the vvorkpiece. 

Fran the review of the explosive forming literature it became 

apparent that the major ity of explcsi ve forming research has 

involved experimentation and the collection of data for specific 

formed product shapes, specific materials or modified free forming 

processes. 

10. 

While some empirical relationships have been developed there 

was a need to better understand the interaction between the blank 

deformation and the energy transfer so that the deformation 

mechanisms could be adequately described. This pointed to the 

requirement for a pressure transducer whidl could be located in the 

energy transfer medium in the im:nediate region of the workpiece. It 

vvould have to withstand and record the primary pressure pulse while 

having sufficient sensitivity to record the reloading phase as well 

as being of such a size that it did not interfere with the energy 

transfer . 

Therefore a review of instrumentation for deformation and 

pressure measurement is contained in Chapter Three with emphasis on 

pressure transducers whidl would be capable of operating in the 

region im:nediately adjacent to the deforming blank. High pressure 

and shock tube pressure measurement techniques are the main areas 

reviewed although conventional strain gauging techniques as well as 

use of a range of standard components whidl exhibit pressure 

sensitivity are considered. Following the review it became apparent 

that to record the pressure in the region adjacent to the blank a 

miniature transducer is required based on a plate/dislocation 

crystal. Because of the requirement to withstand and produce 

infonnation on the incident initial shock wave as well as the 

reloading t;hase of the explcsive forming process, the developnent of 

a pressure transducer which operates in the non-linear deflection 

mode for the primary shock wave and the linear deflection mode for 

the reloading phase is considered. Because of the difficulty 



associated with accurately calibrating the transducer for the 

propooed operating regime the decision was made to numerically 

analyse the behaviour of the proposed design under the anticipated 

pressure loading conditions. 

TO achieve the requisite sensitivity in the reloading phase, 

the deflection of the transducer would exhibit geanetrically 

non-linear behaviour during the initial incident shock wave and 

therefore the analysis had to describe the non-linear response of 

the plate/ foundation combination to impllsi ve transient loading. 

Chapter Four gives the develoJ?ffient of the dynamic form of the Von 

Karman equations and the required boundary conditions to describe 

the non-linear dynamic behaviour of a plate/foundation system with a 

fixed edge boundary. 

TO establish the accuracy of the spatial numer ical rrodel for 

the plate prior to studying the transient non-linear behaviour of 

the plate/foundation combinations, a modal analysis is presented in 

Chapter Five, which satisfies the given boundary conditions and 

describes the linear dynamic response of the plate/foundation 

loading. This gave a basis for verification of the accuracy of 

the numerical rnodelling of the transducer response in linear 

range as well as allowing a· of the alogirithrns available 

to describe the time domain. modal analysis is extended by the 

application of quasi-linearisation and the use of an effective 

time parameter to an approximate response to the 

transient loading in the non-linear deflection regime. Hence the 

non-linear deflection determined by the numerical analysis, 

described in Chapter Six, could be canpared with the approximate 

deflec:tion from the non-linear modal analysis. 

After consiceration of a range of methods of solution a 

central finite difference scheme is used to describe the spatial 

domain. The Winkler and Pasternak foundation models were 

implemented in the sI;atial numerical scheme. 

The geometric non-linearity is considered to act as a pseudo 

load and at each time step iteration is carried out to converge on 
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the resultant ron-linear deflection. A time-stewing solution based 

upcn a three or four point recurrence scheme is applied to the ti.rre 

domain and the stabil i ty of the three point scheme for visoous 

damping conditions is investigated arrl the resultant spectral radii 

presented. 

The results of the numerical investigation into the time 

danain recurrence schemes response for a multi-degree of freedan 

. system, subject to a rectangular pllse load are oontained in Chapter 

Seven. The comparison between the results fran the linear modal 

analysis and the numerical program are presented for the plate and 

plate/ foundation system to ver ify the spatial and t:Ll\e numerical 

representation. 

The non-linear dynamic transient deflection for the plate and 

plate/foundation with a simply supported immovable edges and the 

rigid clamped edge is presented in Chapter Seven and oompared with 

the information available in the literature. The 

quasi-linearisation technique applied and the spatial representation 

used in the only published data for the non-linear plate/foundation 

combination is discussed. For fixed boundary conditions and 

particularly the Pasternak foundation model there is a major 

discrepancy in the plblished results. The design performance of the 

transducer is shown for the anticipated exponentially decaying 

transient load. 

Chapter Eight oontains the oonclusions from this 'WOrk as well 

as reconmendations for subsequent developnent and testing of the 

pressure transducer, and further research into ron-linear 

transient deflection. 
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LITERATURE REVIEW 

2.1 INT:RJDUCTION 

The large volume of literature associated with explosive 

forndng ranged fram the descriptions of the development of ific 

components, such as submarine end closures [2.1] with their 

assa:::iated problems and methods of overcoming these problems, to the 

theoretical analysis of the deformation of the metal blank for 

explosive forming its interaction with the energy transfer [2.2] 

Therefore the literature review for explosive forming was 

considered under 

de formation mot'n""n 

following headings of general, energy transfer, 

and energy transfer/deformation interaction. 

AI. though major developments in the a:pplication of High 

Energy Rate Fbrming techniques have occurred within twenty 

years, explosive forndng was first suggested as a metal working 

process in 1888 when C.E. Munroe[2.3J described a method of metal 

engraving using gun cotton as the energy source. 

Of the general introductory texts in High Energy Rate Fbrming 

that have subsequently become available, the reference by Dr. A. 

A. [2.4] contained a comprehensive collection of results of 

both analytical and experimental research work in explosive forming 

up to 1972, as well as explosive data of particular application to 

explosive forming and welding. This bcok was an excellent 

introductory text, particularly with respect to explosive forming as 

it considers the mechanism of energy transfer, explosive forming of 

domes, scaling laws for rrodel studies, expansion of rings by 

explosives, explosive forming dies, analysis and design of explosive 

, forming ilities, explosives and the effect of explosive formin:; 

on material properties, to quote relevant chapter topics. 



Another general introductory reference, 'High-Velocity 

Forrrdng of Metals' [2.5] gave 'a concise yet intensive treatment of 

the mechanics, principles, equipment and methods errployed in the 

forming of metals by the explosive, electro-hydraulic, magnetic 

pulse and pneumatic-mechanical processes 1. J .5. Rinehart et 

al[2.6] have produced a comprehensive general reference for 

practical explosive forming techniques and gave methods of 

overcoming the problems facing the engineer installing this metal 

working process. 

Work carried out in the Department of Mechanical Engineering 

at the University of Birmingham, is reported in the reference for 

high speed metal forming, written by R. Davies et al [2.7], while a 

critical evaluation of explosive forrrdng methods was given by H.G. 

Baron et al[2.8] 

2.2 

Reviews of the state of the local application of explosive 

forming \V'ere presented the First International Conference of the 

Centre for High Energy Forming, 1967, for Belg ium, France, Germany, 

Japan and Norway. 

The paper presented by Pietteur[2.9] gave an overview of the 

~k carried out at the Centre National De Recherces Metallurgiques, 

Belgium, investigating the deep drawing of a range of mater ials and 

the manufacturing of specialised shapes difficult or ~ssible to 

produce by conventional techniques. The conclusions presented 

suggested that deep drawing could be profitably applied in the 

forming of product shapes involving large dimensions, with a 

suggested lower size limit of approximately two metres diameter, and 

a diameter:thickness ratio (D/h) which satisfied the relationship 

20< (d/h) < 190, and if the risk of draw wrinkling was accepted, it 

could be increased to 20< (D/h) <235. Also the economic production of 

specialised shapes such as corrponents for aeronautical applications 
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was investigated, as well as the forming of high strength and 

stainless steels. 

Frey's paper [2.10] briefly described the range of products 

manufactured by Secathen, a French canpany which was formed to use 

the e~losive forming techniques as a primary production method, 

particularly involving stainless steels, light alloys such as the 

aluminium-magnesium allo.ys or specialised metals such as titanium. 

A point of interest in this paper was the mention of the discrepancy 

between the ear lier optimistic technical reports on e:xplcsi ve 

forming and the subsequent experience of the canpany in the 

application of this forming method to the manufacture of specific 

products. 

This point was reinforced by S:immler [2.11] in his review of 

the implementation of High Energy Rate Forming in Germany. 

Exploratory tests carried out both within German industry and 

Technical Institutes found that the areas of the explosive forming 

technique requiring more research prior to industrial acceptance of 

the process were; 

(a) Scaling relationships to allOil reliable small 

scale experimentation for large component 

manufacture. 

(b) The determination of explosive properties and 

characteristics in methods more appropriate to 

their application in this forming technique. 

(c) A kno.vledge of the interaction bei:rN'een the 

explosi ve and energy transmission media for 

distances of less than 0.3 metres fran the 

charge. 

(d) An understanding of draw wrinkling at high 

deformation velocities. 

(e) The study of the energy transfer to the blank, 

the influence of the gas bubble following 

detonation and the resultant effect of these 

factors upon the material properties following 

forming. 



(f) The developIrent of techniques to take advantage 

of the characteristics of high energy rate 

forming; improveIrent of the preparation 

and charging times, as well as making large dies 

ITOre economic to produce. 
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Subsequent research was conducted within Germany and Iblland 

on developing suitable instrumentation, deriving scaling laws to 

utilise small scale experimental results in industrial production 

and determining the effects of this forming method on 'fatigue, 

ductility, brittle fracture and corrosion resistance'. As a result 

of this work, and to reduce charge sizes and hence associated 

vibration and shock wave anplitudes, a contact explosive forming 

technique was developed using specially produced low brisance 

explosives with prolonged pressure-time characteristics. 

Nemitz [2.12] described the results of one aspect of the 

German research into the cold forming of high strength steels in the 

hardened condition I:¥ the use of oontact explosives as as the 

development of inproved dies. A general review of the products 

manufactured I:¥ Japanese industry using High Energy Rate Forming was 

presented I:¥ Kiyota[2.l3] 

By consider ing the case histor ies of the application of 

explosive forming to a range of manufactured products, 

Haegland[2.l4] further highlighted the difficulties experienced in 

the industrial application of the process in a small country such as 

Norway. The exper ience of Berman et al [2.15] in the comerc ial 

application of explosive forming showed the feasibility of the use 

of small stand-offs of the explosive charges so that the energy 

available at the blank surface was appropriate for deformations that 

were non-uniform. 'Ibis enabled the energy distribution to be 

related to the required deformation. 



'llie description of the manufacturing history of a range of 

products such as end closures for a research submarine [2.1] , 

domes[2.16,2.17,2.18] and fuel tank caps for aerospace products such 

as for the Saturn V C rockets [2.19] indicated the extent of 

corrmercia1 application of the explosive forming process in Amer ica. 

It was pointed out by Sirmller[2.11] that the majority of reported 

American applications involve production in the large aerospace 

industry. 

has been descr ibed [2.5] the major areas of research into 

the explosive forming process has concerned the energy release and 

transmission to the workpiece, the resultant behaviour of the 

~kpiece and the material properties of the product manufactured by 

this forming method. While considerable effort has been expended 

particularly in the latter two areas, much of the energy transfer 

research has been either qualitative or the n:odification of results 

obtained for large charge sizes based upon Naval research [2. 20] • 

'Ibis research has been conducted into studying the destructive 

capability or performance of explosive charges. Since explosive 

forming involved relatively small charges in close proximity to the 

deforming workpiece, it was considered that the energy transfer 

associated with stand=off explosive forming was an area requiring a 

better understanding. 'Ibis was because of the interaction and 

dependence of the workpiece behaviour on the engergy transfer. 

2.2.1 FREE FORMING 

'Ibis process,described in section page ,involved 

m1y a 1imi ted rumber of var iab1es by compar ison wi th explosive die 

forming, and therefore a oonsiderab1e section of fundamental 

investigation into explosive forming has been based upon the free 

forming technique. As Sag [2.21] suggested, the initial impetus for 

the current interest in utilization of explosive energy for metal 

forming -was the result of the many investigations into the effect of 

underwater explosions carried out during and following the Second 

Wx Id War. While these investigations mainly considered the damage 
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caused to a structure by an underwater explosion as a function of 

charge size and distance from the charge, results associated with 

deformation gauges[2.22,2.23,2.24] could be applied to explosive 

free formiI1g', thus further concentratiI1g' research into this method 

rather than the die formiI1g' process. An exanple of this was the 

UREL[2.24] diaphragm gauge Which resulted in interest in the 

deformation of a circular diaphragm subjected to explosive loadiI1g' 

before the advent of cornnercial explosive formiI1g'. 

N.N. Ida et al[2.25] discussed the advantages and 

limitations of the process, as well as economic auxiliary methods 

aimed at overcomiI1g' the limitations of 

'(1) excessive thinniI1g' of the material at the 

apex of the sheet, 

(2) a tendency for ex tens i ve buckliI1g' to occur 

at the nouth of the formed shape, 

(3) inability to form shapes other 

order paraboloids of revolution. 

fourth 

(4) the formability curves of the materials 

c:orrmonly used for missile parts in 

conjunction with thickness specified, 

severely restricts the depth to which the 

domes can be formed. I 

The auxiliary techniques used to obtain the maximum economic 

advantages of the die-less formiI1g' process and to overcame the 

disadvantages, were the plug cushion technique, the sandwich 

technique, the renoval of surface oxides and the carriage principle. 

2.2.1.1 PIl.G (lJSHION 'lECHNIQUE The plug cushion 

technique ,Fig. 2.1 page 19 , relied upoo the placim of a pad of 

material such as lead or rubber on the upper surface of the blank 

and hence the energy was transmitted through the plug cushion to the 

blank. 
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By variation of the plug cushion thickness, profile and 

material, along with the other parameters associated with the free 

forming process, considerable oontrol was possible on shape, 

thickness strain distribution and draw wrinkling. 

Johnson et al[2.26] did preliminary investigations into the 

influence of the following parameters associated with free forming; 

I (i) charge weight, 

(ii) plug cushion thickness and peripheral 

angle, 

(iii) blank thickness, 

(iv) die profile radius 

(v) the effect of the clearance between the 

blank and the clamping ring, 

(vi) the strain distribution resulting from 

these operations. I 

For these investigations plug mater ial was lead and the 

desired product shape was a drawn hemi=spherical cup. Subsequent 

work by Johnson et [2.27] gave the results of an ilWestigation 

inbo the influence of the hydrostatic head and stand=off upon deep 

drawing using the plug cushion. Also in this reference, the 

velocity of deformation was measured using the pin contactor method* 

bo determine the effect of the plug cushion upon the energy 

transfer • 

The displacetrent velocity of the blank was similar bo that 

exhibited in the free forming of a blank without a plug 

cushioo[2.28], the kinetic energy of the blank being developed in 

two \\'ell defined phases. In the case of the plug cushion, the two 

proposed possible mechanisms of energy transfer were due bo the 

pr imary shock wave inping ing on the surface of the plug, while the 

second phase energy tr ansfer was due either bo the bubble pulse 

acticn and/or a water harrmer effect following the collapse of 

cavitation, or a separation of the blank-plug interface under the 

linary shock wave and a transfer of kinetic energy at the 

2 



subsequent re-establishment of the interface contact from the 

plug to the blank. 

2.2.1.2 SANDWICH TECHNIQUE The sandwich technique,Fig 2.2 

page 19 , of expl03i ve free forming was an extension of the plug 

cushion method, which obtained similar results by sandwiching the 

blank to be formed between layers of a softer alloy. The softer 

alloy would attenuate the applied loading as well as control the 

blank profile b¥ the blank/alloy plate interface friction and the 

interaction of the deformation of the layers and the blank. 

2.2.1.3 OXIDE REMOVAL It was claimed that b¥ removing the 

surface oxide on aluminium blanks tmmediately prior to expl03ive 

forming, the resultant deformation profile was modified by 

comparison with aluminium blanks for which oxide removal was oot 

carried out. However the oxide would reform immediately on exposure 

to air or water. 

2.2.1.4 CARRIAGE PRINCIPLE The carriage principle,Fig 2.3 

page 19, allcwed the blank to "bottomll on a thick rubber sheet 

which modified the final deformation by generating a force opposing 

the explcsive generated pressure wave, as the blank and hence the 

rubber sheet deformed. This technique according to Ida[2.25] 

applied a cupping action which resulted in the advantages associated 

with the plug cushion method. 

2.2.1. 5 RESULTS CF FREE FORMING RESEA.ICH The work of 

Jdmson and Scwerty [2.29] suggested that for free forming an optimum 

hydrostatic head existed dependent upon the charge weight and 

stand-off, but in agreement with other results [2.27], [2.30], above 

two feet(300mm) the influence of hydrostatic head was negligible. 

It was thought that this J;henomenon resulted from the control the 

hydrostatic head had upon the migration of the bubble of gaseous 

products of detonation and/or the venting of such a bubble to 

at.:.rt1a3phere during the initial expansion. Subsequent work was done 
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using the oontactor pin Irethod to determine the blank deformation 

velocity throughout the forming process, and therefore obtain an 

indication of the energy transfer. It was found that in the range 

of hydrostatic heads up to three feet (900nm) , the t:ime taken for the 

blank to reach rest was less than that for the secondary pressure 

pulse, due to the gas bubble oscillations, to reach the blank 

surface. Hence it was assUIred that the bubble pulsation had a 

negligible influence upon the final deformed shape. Therefore the 

second stage of kinetic energy exhibited by the blank -was possibly 

derived from either water hanmer following the collapse of 

cavitation, or gas bubble migration to the blank surface. Also the 

initial velocity of deformation and the velocity- deformation 

relationship was of interest, because of the dependence of lIDst 

analytical models of imp.tlsive deformation on an assumed initial 

velocity distribution. Tests were also oonducted on the influence 

of charge size and stand-off upon the deformation. 

Finally the influence of a tank air curta in and the use of 

air cells to obtain water hanmer were studied. It was found that 

the water hanmer "".,..,ror'''' due to the oollapse of the air did 

result in an increase of deflection for a given charge size and 

stand-off, W:l ile the 

de flection obta ined. 

curtain interference gave a decrease in the 

Watts et al[2.31] also carried out some free forming 

experimental work, mainly to study the obtainable elongations under 

high velocity forming oonditions for various metals. Velocity 

measurements were taken and an atterrpt was also made to measure the 

temperature. 

Free forming of circular blanks was studied by Johnson et al 

[2.32] with particular interest being taken in the following 

aspects; 

(i) The use of a rigid baffle plate 

surroundim the blank to increase the 

efficiency of the energy transfer, 

(ii) The use of a reflecting plate above the 



charge to obtain a further improvement in 

the efficiency of the process, 

(iii) The influence of orientation of the die 

and explosive assembly to the free 

surface of the water in the forming tank, 

(iv) The use of air cells to improve the 

efficiency of the energy transfer. 
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Miscellaneous influences ware also studied, such as the 

effect of eccentricity in the locating of the explosive charge with 

respect to the blank, and eccentricity in the placing of the 

assembly in the forming tank. 

At the University of Birmingham oonsiderable work has been 

done en the development of an explosive forming machine with the 

initial studies being based upon free forming [2.24,2.33, 

2.34,2.35,2.36]. After an initial study of the suitability of shock 

reflectors, a parabolic reflector was used, with the charge placed 

at the focal point to obtain the maximum efficiency in energy 

utilisation. Instrumentation based upon the pin contactor system 

and streak photography was used to measure the velocity of 

deformation and deformation history, vbile the pressure in the 

region of the reflector was measured using piezoelectric 

transducers. The locality of the pressure transducer resulted in 

the measurement of the energy reflected by the walls of the machine 

and difficulty was encountered with the overloading of the 

transducers. A satisfactory oorrelationship was obtained between 

the streak photography method of velocity measurement and the pin 

contactor system. A theoretical study was conducted into the 

reflection of the shock wave from the reflector surface. 

A development of importance associated with free forming was 

that of scaling laws or process equations, so that the exper imental 

checks on the fea.siblity of forming of large oompcnents by rrodel 

stu:l.ies were relevant. Erza et al[L6] did a dimensional analysis 

of the parameters involved in explosive free forming. The results 

obtained for 2024 Aluminium alloy in various heat treated states 



showed that for 'the follOW'ing oonditions of similitude an adequate 

scaling law was operable; 

(1) Geometrical similitude must be provided; 

(2) The mechanical properties of the metal 

blank before explosive forming must be the 

same for model and full scale, 

(3) The kind and shape of explosive charge 

must be the same for model and prototype. ' 

e 
The dimensicnless parameter was cryh3 and within test 

limits was not influenced by changes in transfer medium visoosity, 

mass of the draw ring die or the hold-down force of the blank. 

Where 

e "" the energy of the explosive charge. 

cry:::: the static yield stress of the metal 

blank before explosive forming. 

h "" the thickness of the metal blank. 

J .M. Boffi.lell [1. 8] worked upcn the development of a process 

equation giving the relationship between the main parameters in the 

free forming of aluminium. 

(W)o6806 (D )07325 
z :::: 1.6938 0 
c {lOOh)o883l {S)·6707 

where z ;:: polar deflection 
c 

W = weight of the explosive charge 

D the die opening diameter 
0 

h = the blank thickness 

S :::: the stand-off of the explosive charge 
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WJrk was also carried out to determine the profile and 

strain distr ibution across the deformed blank. 

EKper imental investigation into the free forming of var ious 

metals by D.E. Baguley[l. 7] obtained an empirical formula to 

determine the depth of deformation \\hich was given by 

where W. = 
1. 

K = o 
d := 

amount of charge in mn of Cordtex 

constant governed by the mater ial used 

depth of forming 

fX* = a mater ial constant 

R:= the radius of the die opening 

as well as the appropriate symbols from the previous 

representation • 

S.E. Corbett [2. 37] studied the profile of the blank during 

free forming, using a high speed camera and photographing in 

silhouette. Hence the deformation and bending wave velocity were 

determined and it was found that the deformation process fell into 

four stages; 

I (1) After the arrival of the shock wave, there 

is a delay of the order of 100 microseconds 

before any lIDVeI'lEllt is observable. 

(2) The diaphragm then very quickly accelerates 

to a constant velocity perpendicular to 

the initial plane of the diaphragm. 

(3) The diaphragm lIDves substantially as a 

flat plate but the peripheral restraint 

very quickly brings the edges to rest; 

this effect is transmitted radially inwards 

so that successive annular elements are 

til ted and brought to rest, until the shape 

is substantially a cone with a rounded tip. 

(4) A much slower rounding-out process occurs 
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in the arrested mater ial. This is sometimes 

accompanied by a small decrease in central 

deflection. The final profile is a IlOre 

gently rounded contour. I 

26. 

The typical initial deformation profile for the first three 

of the proposed stages of deformation were as in Fig 2.4 page 27. 

Ezra and MalcoJm[2.38] carried out an experimental program to 

study' the effect of explosive stand-off and it was found that the 

influence of the stand-off 00 the final product was 

carplex.Optimization of stand-off involved a conpromise between 

charge size, strain distribution, blank pull-in, draw depth, draw 

uniformity and form shape, as was pointed out by Beck et 

al[2.l7]* 

While Ezra et found that increasing stand-off resulted in 

a change in the final form fran an ellipsoidal profile to a 

parabolic profile, was noted by Beck et aI, that the decreasirg 

of the stand-off distance, below an "optimum" value gave rise to a 

"peaked" profile rather than an ellipsoidal profile. Although 

results appear to be at variance, it should noted that Beck's 

work considered a range of stand-off distance:die openirg diameter 

of 0.01-0.20 while Ezra considered the range 0.083-0.500, and hence 

the non-uniform distribution of energy at the blank, due to the 

enaller stand-off, wc:uld give rise to localised central deformation 

cbserved by Beck et al. .Again there was a conflict of results 

involving the influence of stand-off on uniformity of draw, with 

Beck et al sU9'gesting that increasirg stand-off resulted in 

decreasing uniformity, while Ezra et al found that an optimum 

stand-off :die openirg diameter was obtained by increasing the 

stand-off outside Beck f s experimental range to 0.333. Finally both 

WJrks foond that increasirg stand-off decreased draw and hence 

adversely affected strain distribution. Beck et al suggested that 

* Footnote: Beck et al. -worked on die forming however their 
consideration of stand-off was applicable to either 
free or die forming. 
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this was due to the reinforcing of the hold-down pressure by the 

explosive force on the hold-down ring as the stand-off increased and 

therefore stretching of the blank resulted before the final shape 

was taken up with the resultant thinning. 

While the ure of explosive free forrnin,;J was limited to 

synmetrical simple thin shapes, its economic advantages has resulted 

m research a.imed at extending the range of application such as the 

investigation into the free forming of thick steel domes by 

wittrock [2.39] and the expansion of tubes[2.40,2.41] and 

rings[2.42] • 

2.2.2 DIE FORMING 

As explamed in section 1.2.3.2, explosive die forming 

involved a large number of variables and hence was not used as the 

basis of much of the reported experimental work into the 

fundamentals of explosive formin,;J. 

The mam factors under consideration for the die forming 

method were springback the final strain distribution; the 

sprin,;Jback determining the dimensional accuracy I and the strain 

distribution limiting the shapes and depth of draw obtainable with 

th is forming process. 

Originally it was claimed that all H.E.R.F. processes 

resulted in the virtual elimination of springback [1.1] but this was 

disproved by Watts et al[2.31] and the conclusion reached was that 

'springback is not eliminated with the application of high stram 

rates. I Also Agrirola et al[2.43] studied sprin,;Jback and reached the 

follav-in,;J conclusions relevant to spdngback; 

• (1) Explosive forming of partially restrained, 

nonaxisymmetric blanks causes modification 

in springback behaviour. 

(2) Least metal spdngback is achieved by usin,;J 



sheet explosive. 

(3) Close explosive stand-offs usirg sheet 

explosive yield lower metal springback than 

the use of high explosive stand-offs. 

(4) Large blank coverage, achieved by usirg 

sheet explosive is desireable both from the 

standpoint of reduced springback and 
uniform straindistr ibution across the blank. 

(5) Increasing the clanpirg and the hold-down 

ring roughness decreases the sprirgback. 

(6) Springback amounts decrease as blank 

thickness increases. 

(7) Lubrication of the die entrant radius causes 

an increase in blank spr ingback • 

(8) When using nonaxisymnetric die shapes, 

changes in die entrant radii and the depth 

of draw do not aQ?reciably mo:Hfy springback 

behaviour if partial blank restraint used.' 
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Bees [2.44] showed that, within limits, increasirg the charge 

we ight decreased the spr irgback • 

2.2.2.1 ~DI~E=-~~~~~-!..AND~~MATE~.!:::!!RI:.:ALS~ A factor having 

considerable influence 00 the economics of explosive die formirg and 

the resultant feasibility of the explosive forming process was the 

manufacturirg cost and durability of the dies. The limited 

productioo runs asscciated with this forming technique resulted in 

investigations into the use of a range of die materials and die 

configurations. 

~'fuile the general references in explosive formirg [2.4, 

2.5,2.6] gave qualitative guidelines for the design of simple dies, 

it was obIT ious that the difficulty of predictirg the die per formance 

was havin:J a major effect on industrial acceptance [2. 11, 14,2.16] 

of this formirg process. The die design technique was still a 

function of intuition, enpirical formula[1.2,2.8] and experimental 



development[2.16,2.45] rather than accurate quantitative analysis. 

Experience in the use of concrete as a die material was 

reported by a range of \\Orkers, exanples being Nemitz [2.12] , 

Giannoccolo[2.1] and the report of Haegland[2.l4]. Nemitz described 

.. the use made of a concrete die with a steel draw and hold-down ring, 

while Giannoccolo used a glass fibre lined concrete die supported by 

a steel containment ring for the single shot manufacture of 

submarine em closures. Haegland found that fibre epoxy resin lined 

concrete dies were only suitable for production of a limited number 

of canponents because of the deterioration of the die linings. Also 

described briefly in this paper was the use of particle board as a 

die material. BeDnan et al[2.15,2.46] presented interesting papers 

discussing the conmercial manufacture of dies, particularly the 

preparation of s~le profiles by fabrication rather than machining 

and involving relatively cheap materials. 

The use of a thin fibre glass shell die on a shock absorber 

rrounting with a steel draw and hold-down rings to manufacture ten 

foot diameter domes was investigated by Ezra et al[2.16]. Initial 

experiments were conducted on one fifth scale models and using the 

scaling laws developed by Ezra, the production die was prepared. 

The major difficulty reported was in scaling characteristics of 

the shock abrorbers which may have contributed to the discrepancy 

between an average mean production run of twelve shots between die 

failures for the model, and failure occurring after each shot for 

the production die. The definition of failure was the inability to 

rna.intain vacuum and hence the application of epox.y resin between 

shots was used to increase the die life, but not to the nUIIi:>er of 

shots predicted by the rrodel study. 

A further investigation into the design of water backed thin 

shell dies to produce domes was presented in a paper by Kulkarni et 

al [2.47], and was based upon a menbrane analysis to descr ibe the 

behaviour of the die under explosive forming conditions. An 

experimental program based upon dynamic strain measurement confirmed 

the analytically predicted results and allowed a calculated 

compar ison of peak strain and stress levels for the water backed and 
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unbacked thin shell dies. 

Measurement of elastic die strains were also obtained by 

Bourma[2.48] in a study of energy transfer and dynamic strain in the 

deforming blank. 

A low cost roothod of die manufacture was sU9'gested by 

Lieberman et al[2.49] using ice as the die material. A die was cast 

for each forming shot from a ITDuld, in the shape of the required 

product. The resultant die was destroyed during the explosive 

:Eormirg operation. HcMever it was claimed that the transfer of 

energy fran the blank to the die which preceded the die failure 

ensured that the blank underwent no further plastic deformation 

following the bottoming in the die. The advantages claimed for the 

process were the low material and manufacturing costs of the die and 

a greater dimensional accuracy for the production of a run of 

corrrpcnents. This final advantage was due to the fact that the wear 

00 the rrould used in producing the dies was considerably less 

than that 00 the high strength die being subjected to typical 

explosive forming loads. 

2.2.3 EDRMING CN I.VlATERIAL 

ProPERTIES 

The influence of explosive forming on material properties has 

been the subject of research investigation for the following 

reasons. 

The dynamics of the high velocity forming methods gave rise 

to residual stress distributions in the final product which varied 

marke1ly from those obtained by conventional forming methods for the 

similar product shape. This modified residual stress distribution 

\.vas considered to be due to a combination of the var iation in the 

final strain distribution between the forming techniques, and the 

effoct of the WJrkpiece velocity when it impacted the die in the 



case of die forming. Since the material properties such as ultimate 

tensile strength, fatigue strength, stress corrosion susceptability 

and ~act strength were influenced by residual stressing, 

researchers have compared the residual stress affected properties 

for products formed by both conventional and explosive forming 

techniques. 

Also the dynamic strain rates, (400-600) /sec, associated with 

the forming processes were considered to result in plastic 

deformation mechanisms which differ significantly from those 

associated with the lower strain rates, (0.01-20)/sec, of 

conventional forming processes. Hence the material properties 

influenced by plastic deformation were modified when products were 

manufactured by the explosive forming technique, as opposed to those 

anticipated from conventional forming techniques. 

Finally, sioce the high velocity forming methods were capable 

of manufacturing components from materials with properties which 

prevented or restricted their 'WOrk by conventional techniques, 

there was considerable interest [ 50,2. ,2.31] in the effect of the 

forming on their properties. 

2.2.3.1 RESIDUAL STRESSES Stone [2.521 using a split tube 

deflection method showed that the residual stress in an explosively 

formed 316 stainless steel hexagonal tube was conpressive, while a 

cold drawn round tube of the same material exhibited a tensile 

residual stress. The maximum residual stress was observed at the 

corners of the hexagonal profile where 'WOrkpiece/die impact was 

greatest, suggesting that volumetric strain due to the shock ~act 

was significant in contributing to the residual stress in explosive 

die forming. 

This confirmed \\Ork by Orava et al[2.53] involving comparison 

becNeen explosively die formed and explosively free formed 316 

stainless steel in which subsequent tensile tests exhibited a 29.6% 

increase in yield strength for the explosively die formed steel, as 

oompared to a conventionally formed steel, while ooly a 3.4% 
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increase \'las observed for an explosively free formed steel with 

strain energy aboorption similar to that for both the conventional 

and explosively die formed product. 

Van Wely[2.54] also carried out residual stress measurements 

on five foot pressure vessel ends manufactured by cold pressing and 

explosive formin:;J low carbcn AlSI 304-L and HYlOO steels. The 

residual stresses were determined by both the back scattering X-ray 

technique and the strain gauge method involving placing strain 

gauges on the point of interest and locally relieving the residual 

stresses by dr illing a hole. Both methods allowed the radial and 

tangential residual stresses to be measured. Sane difficulty was 

encountered with the X-ray technique because of the localised 

surface nature of the measurement with the back scattering occuring 

only from a 10 micron outer layer of the material. The general 

comlusioo was that the explosive die forming gave rise to a 

residual compressive stress, while the cold pressin:;J method of 

manufacturing gave residual tensile stress. 

It has been 

postulated [2.55] that since the pressure of the incident shock 

wave assa::iated with explosive forming can be such that it may 

exceed the dynamic yield strength of the mater ial to formed, the 

deformation mechanisms were mcrlified to allow the redistribution of 

the applied loading. 

A rrodification which has been reported to occur as a function 

of the dynamic strain rate, was an increase in the proportion of 

twins observed[2.56] for the given strain magnitude and ambient 

temperature. This would result in a greater re-orientation of the 

lattice towards more favourable slip conditions and the possible 

increased concentration of mobile dislocations within the lattice. 

Also, increased concentration of point defects due to the lattice 

shock loading has been suggested [2.55] • 



TtNO further rrodifications have been discussed: firstly, the 

fracture of inclusions, as a furction of the rate of dislocation 
propagation due to the dynamic load application, and the second 

being the presence of different dislocation structures or 

distr ibutions following deformation than would be anticipated from 

conventional forming. 

The observations 00 changes to the plastic deformation 

mechanisms have been basically uncorroborated and there exists a 

number of contradictory reports in the literature 00 this aspect of 
the effect of explosive forming on material properties. 

The major ity of observations currently available giving 

detailed examination of the dynamic deformatioo mechanisms either 

involve high pressure, short duration,(O-5 microseconds) contact 

explosive loading situations [2.51,2.57,2.58], or the development 
and operation of dynamic stress-strain rigs[2.59,2.60] used in work 

aimed at deriving constitutive equations to describe the material 
behaviour at high strain rates. While the results from these 

investigations may be applicable in certain specific stand-off 
explosive forming operations, care must taken in equating these 

results to phenomena observed in stand-off explosive forming 

exper iments. 

The rrodification of properties has been used to reinforce 

observations involving a suggested deformation mechanism in a 

limited number of cases such as the accelerated ageing reported by 

Otte[2.61] for aluminium alloy. The accelerated ageing was 

attributed to ircreased diffusion rates within the lattice Which 

were a furction of the excess concentration of vacancies resulting 
from the non-conservative rrotion of edge jogs 00 screw dislocations. 

Aloo increased ernbrittlement and corrosion behaviour have been 
attributed to the rrodified plastic deformation mechanisms. 

Optica1[2.62] and Electron Microscopy [2.51,2. 55] have been 

used in a limited number of studies to verify these modifications 

for a specific material or loading condition, but again 

contradictory information has resulted. 
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2.2.3.3 ~RIAL PROPERTY EFFECTS There exists 

in the literature a large number of unrelated descriptions of 

researdl carried out en the effect of explosive forming on 

material properties[2.50,2.54,2.55,2.56,2.62] . 

'!he IIDstrelevant review paper was that of R.N. Orava et 

al [2.53] vbidl considered 'The effect of High Rate Forming on the 

Terminal Characteristics of Materials.' While this survey was 

restricted to cases where a comparison could be made between a 

high energy rate formed cornpalent and a conventionally formed 

ca:nponent with similar deformation, it gave a conprehensive 

collection of the results of the significant research into this 

field up until 1969. 

The major ity of research into mater ial effects was carr ied 

out during this peria:l and hence, while recognising that work has 

been subsequently done, the conclusions of this review were still 

applicable. 

2.3 UNDERWATER EXPLOSIONS 

'!he feature which uniquely identified these methods of 

metal forming was the energy source and the technique of 

transmitting the energy from that source to the blank or 

'workpiece' to be deformed or rrodified. 

While a range of energy transmission media such as 'air, 

water, oil, gelatin, talc and liquid ' have been mentioned 

for stand-off forming operations by Rinehart et al[!.l] and 

research has been carried out into the efficiency of plasticine, 

sand and water,sand and oil[2.63] as transfer media, it was 

considered that this investigaticn should be restricted to the 

stanu-off explosive forming process using water as the energy 

transfer media. 
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'Ihe selection of this media was based upon its romnon 

usage, increased relative safety and industrial acceptability. 

'Ihe major safety aspect was the romparatively high transfer 

efficiency resulting in a smaller charge size for a given amount 

of plastic deformation when rompared with other media. Also the 

containment effect of the water reduced the required safety 

distances for shot firing P1 preventing debris such as detonator 

casings attaining high velocities. 

Another advantage of the reduced charge and the water 

energy transfer media was the lessening of noise and vibration 

problems associated with this manufacturing method, and hence 

reducing the restrictions on the siting of the forming 

installation. 

Finally, water generally has an advantage of low cost, 

availability and ease of handling. 

The energy source used in this forming method was high 

explosive charges as owosed to a low explosi ve charge. The 

distinction between high and low explosives shown in Fig 2.5 

page 27 • 

'Ihe high explosive involved a shock or detonation wave, the 

chemical reaction occurring within this discontinuity which 

propagated through the explosive, while the low explosive reacted 

P1 deflagration. Although the rate of chemical reaction or 

deflagration increased with pressure, and the pressure was related 

to the chemical reaction rate giving rise to an explosion, the 

resultant rate of reaction was usually a few tenths of one per 

cent of that in the detonation wave [2. 64] 
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2.3.1 D~ION 

The quantitative description of the detonation of rolid 

explosives has, and continues to be the subject of considerable 

research [2.65,2.66] and is still not understood completely_ The 

study of detonation in underwater explosions has been restricted 

to research carried out with respect to large charges, greater 

than one kilogram of 'lNl' or its equivalent, mainly in support of 

naval research and weapons development [2. 20,2.67 ,2.68] • 

The detonation and subsequent behaviour of the detonation 

products has a llOst significant influence on the node of energy 

transfer to the surrounding m:dia. The detonation wave impinging 

on the explosive/media interface gives rise to the primary shock 

wave and the subsequent non-hoirogenous behaviour of the gaseous 

products particularly at the interface determines the further 

energy transfer and decay characteristics of the primary shock 

wave. Finally, the media-gaseous detonation products interaction 

provides the mechanism controlling the final stages of the energy 

transfer. While significance was recognised it was considered 

impractical to attempt to correlate the detonation in the charge 

to the resultant energy transfer. 

This decision was taken because the energy rource used in 

this investigation was Cordtex, consisting of a waterproof 

flexible cord containing a charge of granular pentaerythritol 

tetranitrate (P.E.T.N.) of weight 10.4 gms/metre wrapped around a 

No. 6 electric detonator in an approximation to a sphere. This 

arrangement of charge made location of detonation and its 

subsequent propagation indeterminant. Although it was feasible to 

analyse detonation in line-charges of Cordtex, since they were 

non-uniform in the pressure, linpulse and energy distribution, 

line charges were not suitable for the stand-off free forming 

operation under consideration. Also the common representation of 

shock waves for explosive forming[2.69] involved the assumption of 

either an acoustic approxlination or alternatively, incompressible 

hydrodynarrdcs because the charge size and resultant peak pressures 



were not sufficiently large be require the finite amplitude 

approach. Hence a knowledge of the detonation and non-h.oirogenous 

iJehav iour of the gaseous products of detonation irrmediately 

following passage of the detonation was not so significant. 

It should be noted finally that \'A1ile analyses of limited 

accuracy [2.65,2.70] were available to describe the detonation, 

studies into the shcx::k wave behaviour in the energy transfer media 

were usually based upoo an assumption simplifying the 

detonation/media interaction, such as adiabatic explosion at a 

constant volume[2.70J. Although these simplifications were 

general, ~rk by S. A. Berger et al[2.68l did analytically 

described the detonation front of pentaerythritol tetranitrate and 

the resultant shock wave until it had travelled approximately 7 

charge ra:Hi fran the charge centre,allowing for nonisentropic 

behav iour of the detonation products beh ind the main shcx::k wave, 

and before the secondary shock wave. 

2.3.2 WAVES 

Experimental measurements for large explosive charges, 

unaffected by boundaries, give a general pressure history for the 

shock wave generated in water by a ical charge, shown in Fig 

2.6 page 39 after Cble[2.70] and Schauer(2.69l 

An important experimentally derived result from the point 

of view of the usefulness of the explosive for plastic deformation 

of structures was the impulse available from the passage of the 

shock wave. A typical graIil derived from pressure recording 

eg:uipment, used in the investigation of the performance of large 

charges, is given in Fig 2.7 page 39 after Cble[2.70] for a fixed 

point in sea water twenty feet (6.lm) away from a 300 pamd (136 

Kgm) charge. 
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From the typical experimental results obtained, for large 

charges in effectively infinite baUes of water, it was found for 

a fixed point within the medium that the initial section of the 

pressure profile could be empirically represented by the equation 

where T :::: time elapsed since the inc idence 

of the shock front 

P :::: peak pressure of the shock front at the m 
fixed point 

8 = exponential time decay constant 

Pt = instantaneous pressure at time 

the shock wave. 

Also from exper imental [2.711 

due to 

and 

stud ies [2.70] it could be shown 

P 
~/3 ctl 

= (-) 
m ~ 

B 

I 
~/3 ~/3 1 

:::::; B (--) 
e ~ 

vJ3 
J-13 Yl 

E = (-) 
e ~ 

2.1 

similarity 

2.2 

2.3 

2.4 

represented the peak pressure P in psi (MP), Effective Unit 

Impulse (I) in lb-sec/in (KN-sec;M) and Effective Unit Energy 

Flux Density Ee in in-lb/in (KN/m) passing through unit area 

surface located at the fixed point, distance 1\ in feet (m) from 

the spherical charge weight W in lb (Kgm), and the surface being 

normal OJ the incident shock wave propagation direction. The 

constants , Be' Ce,ctl'Bl,ylwere obtained from the Table 2.1[1.2] 

for a limited range of explosives 
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Explosive Density Peak Impulse Energy Integr-

Pressure ation 

Tline 

gm/oc Pm I (t) E{t) sec 

~ 0,1 B Sl Ce Yl e 

'!NT 1.52 21,600 1.13 1.46 0.89 2410 2.05 7.66 

(52.4)* (5.75) (82.5) 

Loose 0.93 21,400 1.15 1. 73 0.98 3000 2.10 5.06 

Tetryl (51.0) (6.26) (98.1) 

Pentolite 1.60 22,500 1.13 2.18 1.05 3270 2.12 6.76 

(54.6) (7.40) (105.0) 
-

==~::...:= Explosive Constants after [2.70] 

* The constants for 3I units based on the dimensions in ,..,J..<;;,'-'''':;;; .... O 

Finally the value of the exponential decay tUne constant 

for a given explosive type, charge weight and stand""Off could be 

obtained. Either fran a graph of 6 ;wI/3 vs Wl/3 /~ for the 

particular explosive or alternatively if the graph could be 

ag;>roxiroated to a straight line in the region of the corrlitions 

applying, then the relationship 
-6' 

1/3 Wl/3 1 
6 = D W"' (--) 

e ~ 
2.5 
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enabled the decay constant e to be calculated vtlere Deand 0 were 

~pDOpriate constants. 

Erza[2.4] gave an alternative relationship for the decay 

constant 

where L was in in (m) and the constants were obtained from the 

table 2.2. 

Explosive RSx 10
6 

Ye 

'1NT 38.4 -0.18 

(92.3) 

Pen to li te 38 .4 -0.18 

(92.3) 

_Tab_l_e __ 2 Explosive Constants for Decay Constant. 

It should be realised that these empir ical relationships 

were awroximations to experimental results for idealised 

conditions of a horrogenous spherical charge, spherical detonation 

wave and an infinite body of water. Unfortunately this 

information was available for a limited number of explosive types 

and mly applied for stand-offs greater than seven to ten times 

the radius of the sfher ical charge. Also, as can be seen from Fig 

2.6 page the representation of the pressure profile, equation 

2.1 by an exponential decay was only valid for a pressure range to 

30% of the peak pressure. While this often represented the limit 

of accurate pressure measurement for the shock wave phenomenon 
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during these experiments, because of the slower decay rates of the 

'tail I, these pressures contr ibuted to the impulse available for 

deformation. It was suggested [2. 70] that while the pressure 

profile was diverging from exponential decay at times 1.28, a 

realistic value of iIJlpulse due to the shock wave would be obtained 

by the integration 

f
al 

I = 0 Pt dt 2.6 

where <i.. was between and 6.78. 

'!he energy flux associated with the passage of the shock 

wave could be found for the exponential decay section of the 

pressure profile as follows[2.70,2.7l]. 

'!he expression for the energy flux density to time Te after 

the arrival of the shock wave was given by 

Ef ~ [\ Uv 6Ep + ""; + :t}t 2.7 

2 
where'" [Ep + ~Uv] was the in potential and kinetic energy 

for a unit volume of the energy transfer medium, Et. was the 

pressure, rot density and Uv velocity of the medium. 

Considering finite amplitude waves and applying the 

Rankine-Hugoniot conditions for the shock wave, the equation 

becarre 

e o 
P

t u-­
roU 

o 

dt 2.8 

and when the approximation U Co (1 + ct2P) descr ibed the shock 

front velooity, then by exparrling powers of P and substituting for 

the exponential decay pressure profile, the energy flux was given 

by 

2.9 



(where Co velocity of sound) 

for the pressure range 0 - 40,000 psi (275 MP). Alternatively, 

for aCalstic waves of infinitesimal anplitude, it has been 

established that the energy flux was given by 

.. (m ~) f P~ dt 
00 

2.10 

The divergence of shock wave profile from the 

exponential decay calld attributed to the interaction at the 

explosives/energy transfer medium interface following the 

inpingement of the detonation wave. As shown by S.A. Berger et 

al[2.67 ,2.68], the density of the water caused a second shock wave 

to inplode into the centre of the products of detonation and 

therefore re-propagated as a reflected or refracted wave alcwards, 

behind the main shock wave as a secondary pressure pulse. Also 

the interaction of the detonation waves and the subsequent 

expansion of the bubble of gaseoos products following detonation 

oontr ibuted to this secondary pressure pulse or peak, ~ich 

according to Cble[2.70] was intrinsically an explosive 

characteristic and oould be used to identify explosive type. 

Following the propagation of the shock wave away from the 

medium/gas interface, the gaseoos products of detonation remained 

ina condition of high temperature and high pressure Pt ~ere Pt 
» ~ the ambient pressure. This high energy condition caused, as 

has been observed [2. 70], a rapid expansion of the gas bubble with 

an outflow of water and the resultant radial velocity of the water 

was such that ~en the gas pressure equalled the ambient water 

pressure, the kinetic energy of the water caused the continued 

expansion at a decreasing radial velcx:dty, until the work done 

against the pressure difference (Po -Pt ) was sufficient to 

counteract the radial kinetic energy in the water adjacent to the 

gas bubble. 
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Subsequently, the pressure difference gave rise bo an 

inward radial water velocity which overshot the radius for which 

the ambient and gas pressure were equal, and therefore the gas 

bubble underwent a rumber of dynamic oscillations about an 

equilibrium radius, with a decreasing radial amplitude of 

oscillation as the energy was transferred to the surrounding 

medium both as kinetic energy or after-flaw and a discrete 

pressure pulse. 

A typical experimental observation [2. 70] was shown in Fig 

2.8 page 46 and it was noted that for charges particularly at 

considerable depths in an infinite bcdy of water,. the bubble 

remained awroximately symnetrical and that it retained its 

identity irrespective of the dynamic radial behaviour and the 

bubble's vertical rrotion. 

Obviously the gravitational forces caused the bubble bo 

rise and it was observed[2.69] Fig 2.9 page 46, that the upward 

migration occurred mainly as the bubble approached its minimum 

radius. 

Finally, the Fig 2.10 46 shows the resultant pressure 

profile for the bubble pulsation, and it was noted that for the 

recorded pressure amplitudes involved, the acoustic assumptions 

such as inoornpressibility of water, were valid in the analysis of 

the gas bubble behaviour. 

On the basis of the exper imental work the folloNing 

empirical relationships could be used to describe the gas bubble 

behaviour, as a function of depth, explosive weight and explosive 

type 

TO Kl 
wl/3 

= 
(H + 33) 

2.11 

R K2 
J-/3 

= 
(H + 33) 1/3 m 

2.12 

45. 



c 

Vl 
:J 
'"0 
d 
L 

46. 

20 
\«(500) 

15 
(375) 

10 
(250 

5 
(125 

0 20 40 60 80 
'time m/sec 

FIG 2·8 RADIUS OF THE GAS BUBBLE AS A FUNCTION OF 
TIME FOR A 0·55 POUND (0·25kqm) TETRYl CHARGE 300 FEET 
(91·4m) BELOW THE SURFACE. AFTER COLE [2'70] 

*millimeters 

FIG 2·9 SCHEMATIC OF GAS BUBBLE RADIUS AND 

MIGRATION AS A FUNCTION OF TIME. AFTER SCHAUER [2 ·69] 

shock wave 

I 
I 
I 

I bubble pulse fi 
I 

OJ 
L 
:J 
Vl 
Vl 
OJ 
L a.. 1st 2nd 

---+----T2 time 

FIG 2·10 SCHEMATIC OF PRESSURE HISTORY 

AFTER SCHAUER [2 '69] 



vklere T was the pulsation me for the first bubble minlinum, R o . m 
maximum gas bubble radius, H the depth of the explosive belOW' the 

free surface, W the weight of explosives and the oonstants Kl ,K2 
were functions of the explosive type. Again these experimental 

results and relationships were derived for idealised oonditions of 

an infinite body of energy transfer media without interaction from 

any rolid boundary or free surface. It has been shown that the 

gas bubble behaviour was influenced by the presence of any solid 

boundary or proximity to the free surface of the medium because 

these boundaries would affect the after-flOW' of the medium. The 

bubble has been observed [2.70] to translate to a rigid boundary in 

close proximity to the charge. 

Bebb [2 e 71], 00 the basis of exper imental measurements and 

analytical work by Savic, derived an approximate ratio of the 

after flOW' energy flux to primary shock wave energy flux using the 

empirical equations. 

Ef K3 (RiRe}-l 2.13 

where ::::: After energy flux 

Ef 
::: Primary shock energy flux 

K3 ::::: Coostant 

11. ::; Distance from the charge 

R ::: Explosive charge radius 
e 

Hence the total energy in the transfer medium following an 

explosion at distance Rl from the explosive was given by 

(47T~ x primary energy flux density) + 

2 
(47TRJ. x (Rl/ar ) x after flow energy flux density) 
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where a was the radius of the gas bubble at the limit of the 
r 

time integration. 

Calculations based upon these relationships for a spher ica1 

chargearl for Ry'Reratios of 50 to 1 gave primary energy results from 

0.20 to 0.27, and after-flow energy results from 0.21 to 0.24, where 

the resultant energy was represented as a function of the total 

available chemical energy in the charge. 

2.3.4 ENERGY TRANSFER IN EXPLOSIVE FORMlNG 

Having briefly examined the information available in the 

literature which empirically and qualitatively represented the main 

phenomena associated with underwater explosions, it was considered 

that the application of this information to a study of energy 

transfer in the· explosive forming processes applicable to New 

Zealand engineering and manufacturing conditions 

consideration. 

warranted 

The experience of Baguley[1.7] at Physics and Engineering 

Laboratories D. LR. suggested that a charge radius to stand-off 

ratio of less than ten was applicable, assuming that all the 

P.E.T.N. available within the Cordtex fuse was present as a 

spherical charge of density 1.60 gm/cc. Cordtex detonating fuse has 

been used in the majority [1. 7 ,1.8,1. 9] of experimental research in 

New Zealand into explosive forming, because of its ready 

availability and freedan from legal restrictions that apply to other 

explosi ve types. 

with the low stand-off to charge size ratio, the presence and 

deformation of the blank was going to have a significant influence 

upon the incident pressure distribution and gas bubble behaviour. 

Since the theoretical studies available [2. 72,2.73,2.74] on 

underwater explosions were usually developed for large charges at 

d tance to charge size ratios of greater than ten, and often 
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assuming infinite bodies of water without boundaries or free 

surface, the resultant theories were not valid in the study of the 

explosive forming process. 

Finally, a knowledge of the blank deformation could not be 

separated fran a study of the energy transfer because of the 

interaction and the interdependence of these two p~esses on each 

other. 

2.4 DEFORMATlOO OF PIATE SUBJEClED TO IMPUISIVE WADING 

The theoretical research into the response of plates 

subjected bo ~lsive loading such as occurs in explosive forrrdng 

originated from studying the Underwater Explosive Research 

Laboratory (U.E.R.L.) diaphragm gauge, Fig 2.11 page 50 bo inprove 

its resolution and application. 

The gauges consisted of a diaphragm of either copper or steel 

clamped bo a gauge body giving it an backing. The gauge was 

placed a fixed distance fr01l1 the explosive charge and the subsequent 

depth of the centre of the approximately serrd-spherical deformed 

diaphragm was used as a measure of the explosive effectiveness, as 

well as its potential for structural damage. 

With the development of numerical techniques and the use of 

high speed large canputers in the late sixties, there was 

considerable interest in the reponse of structures bo dynarrdc 

overloads such as occur in earthquakes or frorrl shock or blast waves 

associated with explosions. While there existed general review 

papers by Jones et al[2.75], Jones[2.76] and Rawlings[2.77] on the 

plastic respcnse of plates or structures bo dynamic loads, a review 

of these analytical and numerical techniques was carried out where 

it was applicable bo explosive forming. The review was restricted 

to consideration of the response of circular plates because the 

basis of this study ~vas the stand-off explosive free forming of 
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circular blanks. The selection of the free forming operation of 

circular blanks was to reduce the number of parameters when 

considering the energy transfer and simplify the experlinental 

procedures in the measurement of the blank velocity during 

deformation. 

These studies could be considered in three general 

classifications. 

2.4.1 MEM3RANE DEFORMATION 'lHIDRIES 

These theories were derived on the assumption that the stress 

generated in response to the applied loading was predominantly a 

membrane stress system, and therefore the effect of bending on the 

subsequent deformation could be ignored. The other major assumption 

made in the membrane analysis was that the material behaviour was 

rigid-plastic and the elastic strain energy effects were also 

ignored. 

Richardson et al[2. derived a model for a diaphragm 

roounted on an infinite baffle subjected to shock loading with 

allcwance being for the diffraction and rarefaction of the 

pressure pulse due to the diaphragm and baffle deformation. 

Follcwirg the assumption that the diaphragm deformed with a 

geometrically similar parabolic profile at all times, the pressure 

profile became; 

P(t) = 2Pl (t) 2 (-) z (t - 8 ) 
8d c d 

2.14 
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where 

pet) =: Applied pressure pulse to the diaphragm surface 

Pl(t) =: Initial incident pressure pulse without 
inter fence 

flb =: Transfer medium density 

Co == Velocity of round in transfer medium 

Zc = The central displacement of the diaphragm 
Tl = Lapsed time after diffraction wave arrived at 

the sur face of the blank. 

8 d "" Diffraction time 
=: alc o 

52. 

Finally the following assumptions 'Were made aboot the 

diaphragm deflection; 

(1) Plastic deformation approx:iJnated by membrane 

tension. 

(2) Negligible restraint by the medium behind the 
diaphragm. 

(3) Thickness was negligible. 

From the first assumption the stress was given by 

2.15 

and although this strictly applied for small spherical deformations 

the error introduced by this divergence from the parabolic 

deflection assumption was small. 

Therefore the equation of rotion was obtained for the 
diaphragm. 

m 
d2 

Z 
c = P(t) - cr (t) 

n 2.16 
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The final form of the equation rolved I:::¥ Richardson et al was 

derived I:::¥ the combination of equations 2.14,2.15 and 2.16. The 

solution ro obtained only applied up to the time when the derivative 

of the central deflection with respect to time reached zero and the 

resultant deflection was the final deformation of the diaphragm. 

Alro if the plate was sufficiently thin the inertial effects 

could be ignored and for times of less than e d the diffraction terms 

in the equation 2.ll were ignored. This gave the following 

solution; 

where 

2P e m 
mc 
00 

8 
e Pe (exp{-t/8) - exp{-t/8

p
)) 

p 

8 = 
P 

=: the characteristic time i.e. 0.63 of the 

final deflection. 

This gave the follooing final deflection of 

for the initial pressure pulse given I:::¥ the equation 2.1 where 

t 8.Sp 
m = 8-8 In(e/e) 

p p 

2.17 

The interesting conclusion reached from this result was that 

the maximum deflection was proportional to the incident impulse on 

blank PmS Ttbich was verified I:::¥ the work of Boes[2.44] 
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Cavitation was shown to occur adjacent to the deforming blank 

and Richardson et al proposed the following cr iter ia for the 

formation of such cavitation; that the diffraction time must exceed 

the cavitatioo time at the blank centre. The ag;>roximation to 

cavitation time was obtained by considering the central n:otion to be 

similar to that of an infinitely free plate of equal mass per unit 

area and given by 

2.18 

The energy transfer to the blank ooce cavitation occurred, 

was reduced to zero and any subsequent deformation was due to the 

kinetic energy the diqphragm possessed bnmediately prior to 

cavitatioo. Also the collapse of cavitation following its 

termination resulted in a water hamner effect supplying additional 

energy to 'round-ou t I to the final deformed profile. 

This mathematical rrodel of the deformation was limited in its 

atplication because of the assumptions made, particularly those 

concerned with the thickness strain and the parabolic deflection. 

Hudson [1.4] developed a theory of diaphragm plastic 

deformation due to shock loading in which the energy was assumed to 

be imparted as a discrete impllsive loading, which resulted in the 

diqphragm having an initial normal velocity relative to its 

rrountings. The deformation mechanism was assumed to be in the form 

of radial stretching and thinning of the flat portion of the blank, 

Fig 2.U page 50. The berding wave propagating from the clarrped 

perifhery towards the blank centre, did not absorb energy but 

SUWlied a discontinuity bringing the blank to rest in both the 

vertical and horizootal range folla.dng its passage. 
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Since the situation was extrerrely oomplex the following major 

simplifying assumptions were made by Hudson, 

(1) Deformation was due to the passage of a plastic 

bending wave completely converting the kinetic 

energy of the plate into plastic deformation. 

(2) The stresses associated with the wave were radial 

and circumferential principal stresses just ahead 

of the wave and the normal stress conponent along 

the generator of the tilted surface, a shear stress 

component and a circumferential normal stress 

oompcnent. 

(3) The flat undeformed region retained its normal 

velocity throughout the deformation and was subject 

to uniform thinning, with a radial flow of materiaL 

(4) The radial displacement of a particle was given by 

q (t) 
U

1 
= U (1 + _1 __ 1 

o a 

where ql(t) =: the normal coordinate of the 

super~sed constraint motion to 

ensure the uniform thinning of 

undeformed material. 

(5) Elastic effects were negligible. 

(6) Kinetic Energy of thinning was negligible. 

(7) No work was done in the propagation of the plastic 

wave and there was no impulsive thinning associated 

wi th the wave. 

(8) The material obeyed the Mises-Hencky yield criteria 

and followed the Prandtl-Reuss flow rule or stress­

strain relationship. 

From assumption (3) some form of oonstraint forces were 

necessarily super~sed upon the system which satisfied tile 

oonditions given but which did not result in additional i\Qrk being 

done during the deformation. 
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Therefore qy considering the conditions of equilibrium and 

continuity 
ootained. 

associated with the bending wave, a solution was 

For the case of non-work hardening yield the solution was 

Where 

Vo 
w = (a - r) c 

m 

h = h(!:.) 
f a 

(v Ic ) 2 
a m 

va =: the normal velocity 

hf = the final thickness 
cr = the material yield stress y 

cr c = J.. m m 

For the case of work hardening 

h 
cr (log (-.f» 

h 

h 
cr + w log (-.f) yah 

with suitable manipulation and ~roximations 
2 

cm ~ 
hf = h exp (- -( (1 - K) 1) 

d2 
1 

w = VCmo Jr

a 

(l - K) dr 

d
2 w 

\-A1ere 0 
1 m 

v
2 

d
2 

2 (0 1) r 
K = log(-) 

c4 a 
m 

2.19 

2.20 

2.21 

solution was 

2.22 

2.23 

The assumption that the energy for plastic deformation was 

based upon the incident impulse on the blank again satisfied Bees's 

c:bservations. 
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S.E. Corbett [2. 37] nrxiified the analysis with the assurrption 

that the deformed blank awroximated a cone in shape and the angle 

of tilt at was given by 

a = t 

This major simplification in connection wi th Hudron 's 

technique of bending wave analysis resulted in the thickness 

distribution given by 
a 

4sm2 (~) 2 
h. == h(E.) 2.24 

1 a 

where h. :::: the instantaneous thickness 
1 

Wo :::: the central deflection of the diaphragm. 

The experimental work <.X)nducted showed that, as with the 

Hudscn analysis, the thickness strain distribution predictions vlere 

suitable for regions away from the blank centre, but approaching the 

centre the theory failed, as would be anticipated from the equations 

ived. 

Wi th both these theor ies no allCMance was made for the 

p..111-in of material at the edge of the die and in practice an error 

would arise because of this phenomenon's considerable influence on 

the strain distr ibution a.bcut the draw radius. 

Boswell [1. 8] extended the Hudron analysis to allCM for strain 

rate as well as strain hardening and obtained the follCMing 

expression; 

2.25 
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where E. = the strain rate 
1 

Xs = the strain rate coefficient from the follo;.l1ing 

dynamic stress-strain relationship. 

h. 'd h. 
er = er + w log (~) + X log(dt (log (h 1») y 0 h s 

G.A. Thurston [2.5] solved the equations gQilerning plastic merrbrane 

deformation of a diaphragm with respect to explosive forming 

er -t o 

~r (r err ~;) + pr(l + ~) (1 + ~~) 

which were derived by Boyd [2. 78] frcrn the assurnptions1 

(1) Small finite-def1ection theory applied. 

(2) Bending strains neglected to give a merrbrane theoryo 

(3) Elastic strains neglected with comparison to plastic 

strains and a deformation theory of plasticity used 

with a power-law stress-strain relationship. 

2.26 

2.27 

(4) Radial inertia terms neglected in the equation of notion. 

The power-law was expressed 

- -n er = K E 

for the material used. 

By substitution, tw'o equations of n:otion in terms of the 

radial and vertical deflection were obtained. These were solved 

numerically using an explicit finite-difference technique to 

determine the value of vertical deflection and therefore obtain the 

value of radial deflection by a Picard iterative procedure. G.A. 

Thurston ~roved the convergence to the correct solution by the use 

of Newton' smethod of correction. 
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For the case of die forming this method of solution was still 

used but the equation 2.27 was replaced by a constraint equation, 

giving the die shape as a function of the radius and radial 

displacement. 

Considering the plate asa visooplastic membrane Wbjno et 

al[2.79] presented a perturbation solution based upon the linear 

eigenvalue problem. The results were compared with existing 

experimental data for contact explosive loading of steel and 

titanium plate and showed a strong correspandance. 

2.4.2 BENDING DEFORMATICN 'IHEORIES 

These analytical methods were based upon the assumption that 

the plastic deformation was due to the propagation of plastic 

bending hinges across the blank, any membrane stress being ignored. 

The analysis also was considered for either the clamped circular 

plate or the stmply supported circular plate. 

2.4.2.1 SIMPLY SUPPORTED CIRCULAR PLATES The majority 

of these bending analyses were based upon a rigid-plastic 

assUIlption, the elastic effects being effectively ignored. It 

should be realised that \lihile this could adequately descr ibe final 

deflections it would not describe the qynamic deflection. 

H.G. Hopkins and w. Prager [2.80] extended the static limit 

analysis of a thin, circular, sinply sUfPOrted plate to determine 

the dynamic behaviour of such a plate subjected to a uniformly 

distributed load, \lihich was instantaneously applied and released. 

The plate material was assumed to obey the Tresca yield condition, 

Fig 2.13 page 60, and the associated flON' rule. 



-0' o 

C1 ( tangential stress 

O'r 

radial stress 

0'( = M <p I h2 

O'r = Mr Ih 2 

0'0 = Mo/h2 

h -= thickne 

YIELD CONDITION APPLIED TO HOPKIN S 
ET AL (2'80) 

R 

I 
stationery hinge 

'----- f 0 _ point 

FIG. 2 '14 FIRST PHASE DEFLECTION HOPKINS ET AL 2 

60. 



61. 

'lbe aspect of the analysis of significance to explosive 

formdng was the high load case, where the applied pressure was 

greater than twice the static pressure which gives rise to yield. 

The analysis was based upon these distinct phases~ the first being 

the load application, during which period there existed a stationary 

plastic hinge circle, the radius of the hinge circle being a 

function of the applied pressure ooly. This phase resulted in the 

ini tial deformation in the form of a cone and the development of 

kinetic energy in the plate. The stationary hinge circle of the 

preceding phase then contracted until at the termdnation of the 

second phase, the hinge circle approached the centre of the plate. 

The final phase was the conversion of the kinetic energy existing at 

the completion of the second phase into plastic work. 

The solution of the equation 

o Jr o2w -(rM ) - M =: - (p - rn -) r dr or r t ot2 
a 

2.29 

under a rectangular load pulse for the necessary conditions of 

continuity and piecewise discontinuity across the hingle circle gave 

the foUa.dng resultant deflection for the simply supported plate. 

The first phase deflection 2.14 P 60 0 < t < TI was given 

by 

w(r,t) = r<tl o < r < 13 
0 2.30 

W(t) R-r 13 < r < R 
R - 13 0 

0 

where W(t) 
pt2 

2m 

P R3 
= 2P 

0 (R So) (R + So) 

6M 
P 0 == 

R2 0 

== Static Yield Pressure 
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While the second phase deflection Tl < t <T2, as the plastic 

hinge circle propagated from So at timeTl when unloading occurred to 

the centre at time? was given by considering the velocity of the 

plate. 

and 

aw(r,t) :::: 
at 

S (t) 3 
(0 ) 

R 

PTl 
m 

PT 
1 R - r 

m R-S (t) 
a 

So (t) 
( R ) 

o < r < S(t) 

S(t) < r < R 

2P t a :::: Pi' -1 

2.31 

2.32 

From the equation for the hinge circle propagation it was 

shown that at SO (T2) 0 

T2 :::: 
PTl 
2P a 

and hence by consideration continuity conditions across the 

propagating plastic hinge circle, it was shown by Hopkins et 

al[2.80] that the deflection was 

r < S ... a 2.33 

The final deflection at the end of the third phase 

T2 < t < T3 was given by 

2.34 



63. 

Also of interest was the result for deflection at the plate 

centre 

where I == total impulse acting on plate 

== pT 1 

A.J. Wang [2.8l] also developed an expression for the 

permanent deformation of a s:i.nply Sl..lWOrted plastic plate subjected 

to impulsive lOi'lding. Again the analysis was based upon a rigid 

plastic material which obeyed the Tresca yield criteria and 

associated flow rule. Also it was assumed that the energy was 

impulsively transferred to the plate, which developed an 

instantaneous, transverse velocity. This kinetic energy was 

converted into plate deformation bringing the plate to rest in its 

permanently deformed shapeD 

The deformation mechanism "Was in two distinct phases, 

corresponding to the final t'WO phases in the previously mentioned 

analysis. The first phase involved the propagation of a bending 

hinge from the outer boundary towards the plate centre and the 

second occurred when the plate ItOved as a whole foliooing the 

approach of the hinge to the centre. 

w{r,T) 

where 

This gave the foliowing equation for the deflected shape; 

= 
m v2 R2 

o 
-:-24~Mo-- (3 

o 

r 
R 

2 
(!:.) 
R 

Vo the initial transverse velocity of the blank. 

2.34 



64. 

~ == the limit nornent by Tresca analysis. 

Also the analysis assumed that the velocity distribution in 

the first IIOde of deformation was expressed as 

aw R - r 
at (r,t) == Vo R - 8 (t) 

o 

= v o I 

8 (t) < r < R o 

8 (t) > r > 0 
o 

where 8o(t) gave the radius of the hinge circle at the time t. 

2.35 

Comparison of the results for the final central deflection 

obtained by Wang's[2.81] analysis with that from Hopkins[2.80] for 

the condition 

mv = PI' o 1 

was as is shown in Fig 2. page 65 0 

was anticipated, tdth in.creasing P the ratio of Hopkin's 

solution to Wang's approached unity asymtopically, because the 

applied impulse of Hopkin's solution ma.de an increasingly closer 

approxlination to the instantaneous velocity conditions associated 

with Wang's analysis. 

R.G. Thomson [2. 82] developed expressions to describe the 

'Plastic Behaviour of Circular Plates under Impulsive Loadings of 

Gaussian Distribution'. .Again an impulsive energy transfer was 

considered to impart to the plate an initial transverse velocity 

distribution; the plastic W)rk being due to the absorption of the 

kinetic energy available to the plate. The plate material was 

assumed to follow the Tresca yield criteria and associated flow 

rule, as well as catplying with thin shell assunptions. The two 

stage deformation proposed by A.J. Wang [2.81] applied, but the 

variation in rronentum distribution resul ted in the analysis being 

divided into three regions of llDmentum distribution. 
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Solution. of the equation. 2.29 for the necessary conditions 

resulted in an expression for the final deflection as well as the 

deflection. history, strain rates and velooities in terms of the 

radius under consideration, the plate radius, elastic limit and the 

initial nomentum distribution. 

'Ihe final deflection was given by 

v 
-E.) 
2 2.36 

where for the first term w(r, t:t) the following case of 0 < t < t 

w(r,t) 
2 2 mv R 

= vot(r)exp(-b r) + Vo l~ 
o 

2 
2 

(1 - £) ((i(E..) + _3--:;:,-
R 2 R 2(bR)2 

S 2 2 
~ - -)exp(-2b S ) 

R 
3 

2 (bR) 

r 2 2 
~ - -) }exp(-2b r » 

R 

(S < r < S(o)} 

622 
~ - -)exp(-2b S } 

R 

3 6 ( ) 2 3 S (0) 2 2 
(-(~) + ----::- - ~ - --}exp(-2b r » 
2 R 2 (bR) R 

where 

tl = 

t2 = 

6 (t) :::: 

6(0) 

( S (0) < r < a) 

time taken for the plastic hinge circle to 

reach the plate centre. 

time at which all rrovement ceases and gives 

the permanent deformation of the plate. 

S 

the radius of the hinge circle at time t. 

the initial radius of the hinge circle. 

2.37 



t(r) :::: the time at which the hinge circle passes 

through the radius r. 
b = constant from the Gaussian I10rrentum distribution 

1 :::: 

T2S 

where the I10rrentum distr ibution was a function of the form 
r 2 (-~ (-) ) 

e s 
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Hopkin's and Prager's \tPrk[2.80] was extended by Conroy[2.83] 

using similar assumptions and analysis methods to the case of a 

simply supported plate under a rectangular load pulse uniformly 

distributed over a central circular area while Mazalov et al's[2.84] 
extension of the original analysis considered the response of a 

circular piecewise nonhonogenous plate to a uniformly distributed 

pressure pulse. 

The only major exper imental -work on the analysis of simply 

supported circular blanks was the work of Florence[2.85] in which 

the deformation, following impulsive loading by sheet explosives on 

simply supported blanks was ccmpared with Wang I S analysis for two 

rraterials. '!he results, Fig 16 page 65, suggested. that the 

resultant deformation was accurately described by Wang [2. 81] for 

only a limited. final deflection of less than one tenth the blank 

radius for steel and even less for aluminium alloys. The result 

suggested that Hopk in's et al [2.80] analysis would also be 

inadequate because of the similar ity to the Wang analysis. Florence 

proposed that the error could be attributed Do the exclusion of 

membrane stresses from the analysis and theories involving combined 

membrane and bending are discussed in the next section. 

Wierzbicki [2. 86] considered that the strain rates of the 

order of 100 - 500 sec would influence the resultant plate 

response and therefore analysed the dynamics of a rigid circular 

plate of viscoplastic material. The material yield condition was 

assumed Do be described by the Huber~ises relationship while the 

viscoplastic constitutive equation was 

. 
E:. • 
1J 

dF = Y cp(F)-o dO .. 
1J 

2.38 
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vtlere . 
strain rate E = 

Y 

~ F 
0 1 

:::: a ~er ftmction of F 

F v'J' /k 2 s 1 
:::: excess of dynamic stress ~er the static yield 

Yo 
:::: viscosity constant 

k :::: yield stress in simple shear s 
J' second stress deviatoric 2 2 2 :::: (a - a r at + at )/3 r 
a radial stress r 
at :::: tangential stress. 

The equations g~erning the plate deformation were obtained 

~ consideration of the rates of curvature. 

The resultant parabolic type partial differential equations 

were not amenable to an analytical rolution, and therefore a 

numerical technique was used. The equations were solved for the 

s~ly supported circular plate with a tmiform pressure pulse of 

finite duration TO' using a finite difference representation of the 

equations in the spatial dcmain. Iteration to satisfy these 

conditions at each time pivotal point was carried out before 

integrating to the next pivotal point in the time dcmain by use of 

the Runge-Kutta technique. Using a viscosity Yo of 200 sec and a 

power series (0') of unity, the grafhs Fig 2.17 page 69 show the 

results from this analysis compared with those obtained from Hopkins 

et al[2.80] analysis for similar conditions. 

While Wierzbicki's analysis was !TOre conservative than that 

derived ~ Hopkins et aI, it was pointed out by the author that 

ignoring the membrane stress effectively restricted the application 

of the results obtained and a combined bending membrane analysis was 

justified. 
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Youngdahl [2. 87] modified the Hopkin's et a1 analysis 

to consider a uniformly distributed pulse of arbitrary time history 

with finite rise time. Of interest in the analysis of plastic 

deformation was the case for maximum pressure arrp1itude P > 21b 

where Po was the static yield for the plate. Because the arbitrary 

time history restricts the generality of any solution, coefficients 

were used by Ycungdah1 to describe the loading and graph Fig 2.18 

page 71 ,shows the resultant central deflection 0o/R. 

2.4.2.2 crAMPED CIRCUlAR PrATES A.J. Wang and H.G. 

Hopkins [2.88] extended the analysis method of H.G. Hopkins and W. 

Prager [2. 80] and developed a model for the mode of plastic 

deformation of built-in circular plate subjected to an impulsive 

1oading~ the plate being of a perfectly rigid-plastic material and 

follOW'ing the assUIIptions assoc iated wi th the previous hinge 

analysis techniques. The first of the two phases postulated for 

this deformation theory resulted from the motion of two plastic 

hinge circles and terminated when the faster propagating hinge 

circle approached the plate centre. The kinetic energy remaining 

after the ccmp1etion of phase one was subsequently converted to 

plastic work by the motion of the final hinge circle. 

Again the solution involved the equation 2.29 and conditions 

associated with the boundaries and hinge circles, but unfortunately 

because of the numerical complexity of the analysis, the only 

results calculated were the duration of each phase and the resultant 

polar deflection. 

These results where 

Time of phase cne 

2 
m v R o 

== 0.57 12 M 
o 
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TiIre of phase two 

Polar deflection during 

filaseooe 

Polar deflection during 

filase two 

Florence [2.89] extended the analysis of Wang et al[2.88] by 

assurrdng that during the pressure pulse the hinge circles have a 

fixed stationary lcx::ation, rather than originating from the rigid 

boundary and propagating inwards as in the work of Wang et al. On 

reroval of the pressure, the hinge circles propagate inwards and 

when the inner hinge circle awroaches the plate centre, propagation 

of the outer hinge circle ceases, the remaining kinetic energy being 

converted directly to plastic deformation without plastic hinge 

propagation. 

Again the oomplexity of the equation gOlTerning the hinge 

circle behaviour precluded analytical solution and required a 

numerical solution. The results for the central deflection were 

given in Fig 2.19 page 73 for a rectangular pressure pulse of 

amplitude P and impulse I a plate of radius 
m 

density m , 

bending yield limit Mo and static yield pressure PSG 

A paper by Krajcinovic[2.90] applies the Florence analysis to 

the case of uniformly distributed pressure pulse with an arbitrary 

time history, and to generalise the resultant numerical solution, 

correlation factors based upon Youngdahl's work [2087] were used. 

These were 

P = Effective Pressure. e 

= I 
2t: me 
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where 

I = Impllse 

= [f(t ty)p(t)dt 

Y 
Centroid of pulse 

i ff 
ty 

(t - t )p(t)dt 
y 

ty time at onset of plastic deformation 

= time at completion of plastic deformation. 

The result of this YJOrk was given in the graph, Fig 2.20 page 

73 where the central deflection was given by 0 • , max 

The assumption of a bending rrode of deformation was limited 

in its application to either the clamped or simply supported 

circular plate as was shown by the experimental results of 

Florence [2.85] and Wierzbicki et al[2.9l]. Hence combined 

bending and membrane stress situation had to be considered to 

adlieve an accurate model of the dynamic final plastic deformation 

by the techniques discussed abaTe. 

2.4.3 <XMBINED 

DEFORMATION ANALYSIS 

While Jones [2. 76] considered both bending and merrbrane 

stresses his analysis involved an initial predominantly bending 

deformation node which was solved by the method after Wang[2.8l] for 

the fir st phase. 

solved by the 

A second stage membrane deformation stage was 

use of Bessel functions. The initial conditions 

considered for the second stage of the solution ensured continuity 

74. 
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of deflection and velocity but accepted a discontinuity in bending 

manents. A comparison with the experimental work of Florence Fig 

2.21 page suggested that the analysis gave a reasonable 

awroximation to the plastic deformation of a silTply suworted plate 

subjected to an impulsive loading. However it sOOuld be pointed out 

that neither strain-rate nor work hardening effects were considered. 

Wierzbicki [2. 92] presented solutions for both the bending 

rrode for small deflections and berding-membrane rrode for large 

deflections for an impulsively loaded simply supported plate of 

strain rate sensitive material. 

Using a constitutive equation 

(k ~ 2 s .. s .. ) s .. 
£ •• = ( 1J 1J 

Yo k 1) 1J :k for ~ s .. s .. > k 
1J s 2 1J 1J S 

(~ s .. s .. ) 
1J 1J 

where 

£ •• ::::: strain rate 1J 
s .. deviatoric stress 1J 
ks :::: yield stress in simple shear 

Yo = viscosity constant 

the problem was initially solved for a small deflection case for the 

berrling stress alone and then the velocity distribution, and hence 

the deflection was obtained. Using the governing equation obtained 

by the principle of virtual work, and subsequently linear ising the 

constitutive equation by the use of a "state of compression stress 

tensor", Wierzbicki used the small deflection result on the shape 

functions in a Galerkin procedure, and hence obtained a solution for 

the combined bending-membrane large deflection case. 

The comparison of the results obtained by Wierzbicki with 

experimental work by Florence[2.85] was shown in Fig 2.22,page 76, 

l,J1ile a comparison with Jones [2.76] analysis for a five term 

expansioo of the series of Bessel functions ~<Ja.S given for the 
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thickness to radius ratios in Fig 2.23, page 78 0 

Wier zbick i et al [2.91] extended the analysis technique above 

to consider a clamped plate tmpulsively loaded to obtain solutions 

for the follcming cases; 

(a) Viscoplastic bending action for small deflection. 

(b) Viscoplastic bending-membrane action for small 

deflections (central deflection < 2h) 

(c) Rigid-plastic bending-membrane action for large 

deflections 

(d) Rigid-plastic bending-membrane action for all 

deflections. 

and obtained a reasonable correlation, Fig 2.24 page 78 , 

with the experimental work they carried out. Again the range of 

application of the technique was limited to the viscoplastic case 

and it was considered by the author that the discrepancy between 

theoretical and exper mental results would be due, in large 

deflections, to the assumption of small strains in the derivation of 

the equations governing motion, as well as having ignored strain 

sensitivity and strain hardening in this case. 

Batra et al[2.93] derived a generalised incremental analysis 

for impulsively loaded circular plates to study their dynamic 

behaviour in the elastic- plastic range. The study enabled the 

deflection to be determined for a known initial velocity 

distribution in the deflection range where the combined bending 

rroment and membrane forces were significant. 

The numer ical solution involved a finite element rrodel and 

canparisons were made with experimental results in the literature. 

Finite element procedures have been used to descr ibe the dynamic 

nonlinear elastic-plastic deformation of plates subjected to 

transient or shock loading and examples of these techniques have 

been presented by Wu et al [2. 94], Mondkar et al [2. 95] and Bathe 

al[2.96] .Current research mainly concentrates in the application of 

finite element techniques to this problem. 
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2.4.4 GENERAL 'r.EOINIQUES OF ANALySIS 

Wierzbicki[2.97] developerl an interestin::] alternative method 

of representin::] the constitutive equation as a pseudo strain rate 

sensitive oondition, and hence allowed a rnJdal eigenfunction 

expansion technique to be applied. This superposition does not 

apply for plastic deformation and therefore it was accepted that the 

yield condition would be locally violated. The modification to the 

constitutive equation insured that the yield conditions were 
satisfied globally over the structure under consideration. 

In oonsiderin::] the case of a simply sqp.ported circular plate 

the methcd of rolution was applied, and a deformation profile 
derived from a given initial velocity distribution and a ran::]e of 

shape functions. An ~rtant advantage claimed for the analysis 

method was that it could inverted, and from the desired 

deformation profile it was possible to calculate the required 
initial velocity or impulse radial distribution to free form the 

requ shape. 

The development of programs to determine the large dynamic 

deformation of bearers, rin::]s, plates and shells has been reported 

by witmer et al[2.98] ,Leech et al[2.99] and Marino et al(2.100], 

mile ccmparison of the numerical results with the experimental 

studies has been carried out l:¥ Marino et al[2.101] and Duffey et 

al [2.102]. The program involved the use of an integral technique to 

describe the strain increments over each time step, mile the 

spatial representation involved a Illllped mass finite difference 

scheme. The lLmped mass scheme in the thickness was such that the 

applied bendin::] moments were considered to be resisted by separate 

discrete layers of material. For each time step, the 

stress-distribution at each spatial point was considered and hence 

the pDDgression applied for the followin::] material cases; 1) 

elastic material, 2)elastic, perfectly plastic material, 3) elastic, 

plastic strain hardening and strain rate sensitive material. 
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2.5 ENERGY TRJ.\t\lSFER 

'!he energy transfer to the explosively formed blank has been 

of interest [2.69,2.103J because it determined the efficiency of the 

50rming operation and the mechanisms involved influence the plastic 

deformation mechanisms, final strain distribution and hence the 

resultant mater ial properties and in the case of free forming, the 

final product shape. 

2.5.1 DEFORMATlOO/ENERGY TRANSFER CDRRELATlOO 

Noble and Oxley [2.104] developed a s~le method of 

determining the amount of explosive necessary in the production of 

simple syrrmetrical shapes. The work done in plastically deforming 

the metals was given by; 

Work done::: h.Y.l\A 

where h::::: thickness of the metal blank. 

Y = yield stress of the metal. 

M = imposed change in area, to the first order 

of accuracy-, due to biaxial loading. 

Tne energy available at the blank surface due to the 

explosive was given by 

Energy ::::: 
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~ere 1b :: the initial area of the blank normal to the 

incident explosive energy flux. 

r :: the energy flux available at the blank surface 

.f\: :: transfer coefficient ~ich allows for energy 

losses in the transfer medium due to friction, 

friction,turbulance and viscosity. 

W :: the weight of explosive. 

To determine the weight of explosive necessary for a 

particular product, the work required to be done was equated with 

the energy available, and the charge weight expressed in terms of 

the stand-off, transfer coefficient, yield stress of the material 

and the geometry of the required shape. 

This rrethod implied the explosive was effectively a point 

charge and. released its energy without any directionality, while the 

expression for work done in the blank assumed a biaxial stretch 

deformation and. hence restricted its application to symmetrical 

shapes. The analysis was based upa1 a perfectly plastic material 

~ich further limited its accuracy. 

Floral [2.103] carried out a more rigorous investigation into 

the forming of domes using an energy minimization technique which 

allaY'ed consideration of large strains, edge pull-in effects and 

non-linear material behaviour. The deformed shape was assumed to 

take up either an elliproid or paraboloid shape in the vertical 

sense, while the radial displacement was described in a function 

whim allowed for edge pull-in 

A power law 

cr = 

where cr = representative stress 
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2 2 ~ 
= (0' - 0' at + at) r r 

£: = representative strain 

(!(£:2 + 2 ~ 
"'" £: + £:t» 3 r r 

gave the material properties and hence the strain energy was 

given by 

J
E?+l dv 

Edv 

v 

Floral minimised the strain energy with respect to the 

arbitrary constants in the vertical and radial displacement 

ftmctions usirg a computer based method, and thus allowed the total 

potential energy to be minimised. By equating the resultant 

potential energy to the energy delivered to the blank, the blank 

profile was obtained. The delivered energy was obtained by usirg 

the following relationship derived by Ezra to account for the 

proximi ty of the charge to the blank. 

I = 

\vhere Al and f were explosive dependent constants, W was the 

explosive charge weight and S was the explosive stand-off from the 

blank. 

HP-flCe Floral obtained the expression 

Energy :::: 

2 (f+l) 
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where h was the initial thickness, m was the mass density L the 

axial distance from the charge to blank and Do die diarreter. 

Exper imental work reported in Floral's paper suggested that 

the effect of the edge pull-in required further study. 

While these analyses gave results which correlated deflection 

to the estimated or empirically determined incident energy or 

impulse, they did not adequately describe the energy transfer 

mechanisms involved or enable the resultant strain rates within the 

deforming blank to be determined. 

2.5.2 ENERGY ABSORBED BY BIJ\NK 

Johnson [2.l05] in a surrmary of \\Ork carried cut at the 

Manchester Institute of Science and Technology on High Energy Rate 

fonnirg reported a simple technique of calculating the work done on 

a blank, relating it to the final thickness strain distribution and 

the stress-strain curve for the blank material. The derivation 

relied upon the assumption that the hoop and radial strain were 

approximately equal and hence, due to incompressibility, the 

thickness strain was of the oJ;POsite sign and twice the value of the 

hoop and radial strain. Therefore the representative strain based 

00 the Hencky-Mises distortion energy theory became equivalent to 

the magnitude of the thickness strain, which gave an easy method of 

direct measurement of the representative strain. 

It was also assumed that the material stress-strain curve 

could be represented by either the Swift equation 

-n 
(J = A* (B* + E) 

where M B* and n were mater ial constants and in the case of annealed 

materials B*was taken as zero, or alternatively 

0" == y + p*"E 
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where Y was the primary yield stress and pkwas the plastic modulus 

for a rigid linear strain hardening material. 

Hence the relationship applied Do an annealed material gave 

'V\brk Dcne I
v -n+l 

:: A* _E_ dv 
n+l 

o 

I

R -n+l 
= 2rrh A* _E_ r dr 

n+l 
o 

while for linear strain hardening material 

'V\brk Done Io
V 

- p* 
== (Y E + . dv 

Finally was assumed that the variation of hoop strain with 

respect Do the initial radial position was given by 

where 

r 
£ = £ (l - -) 
t m R 

Em::: strain constant. 

r ::: initial reference radius 

R :::: cuter radius 

Hence for the first case with B equal Do unity gave 
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Ybrk Done "" (n+l) (n+2) (n+3) 

m lie for the second case 

Ybrk Done = 1T R2 h (2Y + p* £ )/3 
m m 

The initial velocity of the blank was obtained by assuming 

that the kinetic energy was acquired in the passage of the shock 

wave over the blank and was entirely dissipated as plastic work, 

hence 

where 

m(n+l) (n+2) (n+3) 

Vo "" initial speed of the blank. 

m "" mass density 

while for the strain hardening case 

2 2Y + p* £ 
V == - E: ( m) 
o 3 m m 

Finally in method similar to that developed Noble and 

Oxley I the plastic work done was related to the energy available 

the blank surface, due to the explosive giving the following 

equation 2.26. 

(n+l) (n+2) (n+3) 

where R = the blank radius. 

S = the staoo-off 

c = the charge energy available 
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Also the assumption was made follCMing Bebb [2 071] , 

that a};proximately one quarter of the total energy available was 

associated with the shock wave as a reversible primary energy. 

The second material property representation gave 

(2Y + p* E: ) 
m 

It was obvious that the use of static stress-strain 

character is tics in the prediction of dynamic behaviour introduced a 

large elementofuncertainity in the accuracy of the final result. 

However it did act as a guide and reduced the arrount of experimental 

work necessary in setting up an installation to explosively form a 

product. 

Sag[2.2l] determined the spatial distribution of strain 

energy within a dish end manufactured by explosive forndng by 

placing a grid on the blank and measuring the thickness and hoop 

strain. The in.cx:mpressibility condition was then applied to obtain 

the ~ivalent strain from the Hencky~ises distortion energy theory 

to be used in the power law representation of the material 

stress-strain characteristics. 

Also, using a corrq;:uter-based numerical sunmation the total 

strain energy for the blank was obtained and compared with the 

initial explosive energy available. 

Sag derived the following relationships 

DE 0.01499 WO. 529 
for Aluminium = W 

= 0.01709 wO. 3Ol for Stainless Steel 

= 0.02397 WO. 169 for Mild Steel 
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where DE Deformation Energy 

~i == . Explosive Charge Weight 

based upon a Cordtex charge wound in 200mm diameter circles 

arrl located one arrl one half the die diameter above the blank. The 

equivalent hydrostatic pressures were calculated to achieve the sarre 

deformation energies as were obtained by explosive forming. 

2.5.3 DEFLEX::TIOlo/ENERGY TRANSFER INTERACTICNS 

Considerable effort was expended [2.20] in studying the 

interaction of deflection on energy transfer with particular 

emphasis upon the damage caused upon structures such as ships, by 

underwater explosions. As previously mentioned these analyses 

assurre large explosive quantities at a significant distance from the 

deforming material and hence there was no interaction between the 

deforming surface and the mechanisms of energy release from the 

explosi ve. The analytical techniques descr ibed have been applied to 

diaphragm gauges[2.22,2.23] and while these methods give a basis for 

preliminary investigations into explosive forming, they do not 

adequately allow for the close proximity of the explosive charge to 

the deforming blank. 

H.M. Shauer [2.69] reported on an ana lysis in which a 

reloading phase due to a combination of after flow with gas bubble 

expansion and the collapse of cavitation immediately adjacent to the 

blank was considered. Initial deflection was considered to be 

caus:d by the idealised shock wave represented by 

= P exp{-t/e) 
m 
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:fur which acoustic approximations applied, and hence the total 

loadiI1g' on the plate due to the iooident and secondary radiated 

plane shock waves was given by 

pi ax = 2Pt - TIlC! at 

where m :::: plate mass density 

c :::: veloc ity of round in energy transfer medium 

ax :::: plate velocity. 
at 

At the onset of cavitation the loodiI1g' on the plate ceased 

am the slbsequent deformation was a function of the absorption of 

the kinetic energy in the blank immediately precediI1g' cavitation. 

On collapse of cavitation the plate was reloaded and, usiI1g' 

linear hydrodynandc relationships and an idealised spherical gas 

bubble behaviour, the deflection was obtained. 

Ezra et al[2.2] studied the interaction of the underwater 

shock wave with a deforming circular plate until cavitation 

occurred. It was assurred that since the time to cavitation was so 

smU, the resultant deflection was satisfactorily described by a 

small deflection elastic bendiI1g' analysis. Ag'ain as in the work of 

Schauer, a plane pr imary shock wave and acoustic theory was assumed. 

where 

Hence the gOV'erniI1g' equation was 

2 
= q(r,t) - mh a w 

at2 

q(r,t) = 2P e-t / 6 .. . dw 
m -moco at 

and hence by separation of variables in a technique similar to that 

given in Chapter Five an expression was obtained for the deflection. 
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It was apparent that while some qualitative methods were 

available to describe the energy transfer in the explosive forming 

operation, the oomplexity and interaction of the energy transfer 

from the explosive to the transfer medium with blank deformation 

prevented a realistic quantitative analysis until more relevant 

experimental information was available, particularly asso:::iated with 

the pressure history in the region ad.jacent to the deforming blank. 

2.5.4 OF ENERGY TR1INSFER 

Sane fundamental studies into the explosive forming have 

examined the deformation history of the blank by either the pin 

contacOor method [2.24,2.27-2.29,2.106,2.107], high speed 

photography [2.108,2.109], streak photography [2.28,2.110] or high 

stereophotograrometry [2.111,2.112]. 

Typical results a pin contacOor imental program are 

given in Figs 2. .28 pages 90, 91 location for the first 

three Figures being at a radial distance from blank centre 

3/16 of the blank The results shown were for a charge size 

of 250rom of Cordtex with a No.6 electric deOonator, wound into a 

spherical shape with an 89 rom stand-off for a forming 

operation. 

This result was verified by the alternative methods of 

measuring deformation history[2.28,2.ll3], the significant feature 

was the apparent reloading of the blank at a time of 0.3 - 0.45 

milliseconds following the initial movement of the blank. 

As can be seen from Fig 2.26, initially the impinging shock 

wave imparted an impulsive load to the blank and as suggested by 

rrost analytical rn:::Xiels, the resultant kinetic energy was absorbed as 

plastic deformation until approximately 0.3 milliseconds had 

elapsed, following the initial deformation. Subsequently the blank 

\VclS reloaded the deformation velocity achieved a maximum at an 



90. 

(2) 1 ~ ... 
( 3) (38-1) 

(4) 1];4 
iJ (5) (31-8) 
~ VI 

~~ (6) 1 

~ ~ ( 7) (25 -4) 
E c 3 
~ -~ (8) ~ o 

~ c (9) (19,1) 
~ 

..§ (10) Y2 

..0 

(11)(12'7) 0 ... 

(12) ~ 
(6- 4) 

o~--~--~~----~--~----~--~---o 0-1 0·2 0'3 0-4 0'5 0'6 

time after pin 12 (miltisec) 

FIG 2'25 DEFORMATION vs TIME AT ~6 OF BLANK RADIUS [2-107] 

'* In mm 
~* see Chapter 3 

1000 
(25-4) 

\ 

peak veloc i ty = 3200 in/sec 
(81' 3)~ 

0-6 

time after pin 12 (milli sec) 

FIG 2 -26 VELOCITY vs TIME AT 3/16 OF BLANK RADIUS [2 -1071 

.1* velocity in m /sec 



- 3000 u 
QJ 

( 76'2) t/) 

......... 
c .-

2000 
>-. ( 50--B) ...s-
u 

..9 
QJ 1000 > 

(25-4) 

l\-

Y4 Y2 }4 
(6-4)'II- (12-7) (19-1) 

1 
(25'4) 

1 Y4 1Y2 
(31-8) (38-1) 

deformation - inches 

FIG 2·27 VELOCITY vs DEFORMATION AT 

Y8 

~ deformation in mm 
~1{. velocity in m/sec 

t = time in mitlisec 

16'4)~- ----t=o 
~ t ,. 0·5 

B t • 0-1 
(127)Y2 

- ~_~t_=~0-~2 ____________ --

~ ~ t :0 0-3 
c (19-1) ~ l-...:.....

t
-:::-=..0..::...3S--------

~ Ye t"" 0,4 
~ (25-4) 11-----------
c­
o 

"I-
OJ 
-0 1J-s~ 

(31·8 )1h I-=----r-
1 % r:::..-----

(38-1 )11-2 

1~ 

J ___ --
3/16R 
( R 1 ) 

OF BLANK 

Y4 R R 
radial distance 

( R4) 

91. 

1="1r:; ?·?R nJ:'!=nRMllTlnN PRnFl1 F r ?·1071 ~rlpformntion in rnm 



elapsed time of approximately 0.4 milliseconds. 

The reloading phase was attributed to either the gas bubble 

pllsatic:n and migration [2. 28] or to the oollapse of a cavitation 

reg ion in the energy transfer medium immediately adjacent to the 

deforming blank [2.69] • The suggested gas bubble mechanism was 

discarded because it was shown [2.113] that the tL~e for gas bubble 

pllsation to achieve a size to give significant pressure pulses was 

considerably greater than that for the reloading phase. 

The alternative mechanism involved the formation of a 

cavitation regic:n irrmediately adjacent to the workpiece due to the 

velocity and reflection of the incident shock wave. Such cavitation 

has been observed[2.69,2.70]. The expansion of the gas bubble 

contributes to the subsequent collapse of the cavitation region as 

the blank velocity deceases, and the afterflow of the energy 

transfer medium as well as the water-harrmer effect of this collapse 

was considered to give rise to the reloading phase. 

The correlation between experimental 'NOrk and analytical work 

by Schauer[2.69] suggested that this proposed mechanism of reloading 

was valid. 

There was no experimental work reported, to the knowledge of 

the author, which measured the pressure history in the region 

immediately adjacent to the deforming blank. G.E. Hobson et 

al [2.28,2.33], dur ing the development of an explosive forming 

machine carried out some pressure history measurements with 

transducers mounted in the walls of the pressure reflector and also 

rrounted a transducer in a 5/8 inch (15.8nm) plate which was put in 

place of the blank. These results were restricted in their 

application because of the presence of the pressure reflector and 

the distance from the workpiece of the reflector-mounted 

transducers. In the case of the plate mounted transducer no blank 

defotmation occurred and hence this result was of limited use in 

understanding the energy transfer mechanisms associated with the 

explosive forming process. 

92. 
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U. Nishiyana et al[2.114] photographically recorded the 

detonation and obtained same pressure history measurements using the 

collapsible air cell suggested by Jdmson et al[2.29] to obtain 

water-hammer effects. 

The pressure measurement was made within the air cell and 

hence was not in the region of immediate interest., Fig. 2.29, P 94. 

It was apparent that there was a need for a method of 

measuring the pressure history in the region of the blank/energy 

transfer medium and t::o be able t::o correlate that t::o the resultant 

blank deformation for the following reasons; 

(1) To obtain a better understanding of the energy 

transfer mechanism and the deformation/energy 

transfer interaction. 

(2) To enable the development of an improved analytical 

moClel of blank deformation because the existing 

ana~tical models[1.4,2.37,2.76,2.81-2.93] relied 

upon idealised loading conditions. 

(3) To develop same form of economic pressure 

instrumentation which would lirrprove the repeatability 

of the explosive forming process by giving a basis 

of comparison between the forming operations. 
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CHAP'IER THREE 

INSTRrJMENrATICN' 

Since in e~losive forming finite discrete events occurred in 

the order of microseconds and the total duration of the operati~~ 

was four to six milliseconds, any effective instrumentation required 

response times of the order of 1 MHz. 

Instrumentation described in the literature was divided into 

two main regions~ the first being measurement of deformation and 

hence deformation velocities and dynamic strain, while the second 

Vias the limited information on attempts to obtain the pressure 

history in the energy transfer medium. This chapter contains a 

review of methods of deformation measurement in explosive forming as 

well as pressure transducers available for the measurement of 

transient and high pressures. 

Methods of calibration of dynamic pressure measurement 

systems are presented and the selection of an appropriate pressure 

tr ansducer design discussed. 
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3.2 DEFrnMATICN MEASUREMENl' 

As was previously mentioned in Chapter 2.5.4 deformation 

history was used in an attempt to obtain an understanding of the 

loading history of the blank and the methods used to extract this 

information were the pin contractor method, high speed streak 

photography and high speed stereophotogrammetry. 

3.2.1 PIN OONTACTOR METHOD 

The pin rontactor method, follcwing Fyfe et al [2. 24] , 

involved a series of pins which were connected to charged R-C 

circuits. As the blank deformed it rontacted these pins, which were 

placed at a known position and distance with respect to the blank 

and earthed the associated circuits. A typical layout was that of 

HObson et al [2.28], the schematic of which shown in Fig 3.1 page 

97 . 

As the flexible pins were struck, earthing the circuits, the 

signals of the decay of the associated discharged R-C circuits were 

recorded on an oscilloscope against an appropriate time base. Hence 

the time at which a particular radial location on the blank reached 

a koown vertical position from rest was known, and therefore the 

deformation profile and deformation velocities calculated. It 

should be noted that the pin rigidity was important. It had to be 

sufficiently rigid to ensure that it could be accurately placed with 

respect to radial and vertical locations at the contact point I::ut it 

should not be so rigid that it interfered with the vertical rrovement 

of the workpiece, follcwing contact. A typical outplt crace was of 

the form shown in Fig 3.2 page 97, and it can be seen that pin 

pJlarity and height was organised so that a positive and negative 

pulse appeared alternatively on the trace. Typical results are 

shO'NTl in Chapter Tv.o page 90 . 
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FIG 3·1 PIN CONTACTOR METHOD OF DEFLECTION AND VELOCITY 
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3.2.2 HIGH SPEED STREAK PIDTOGRAPHY 

This technique used by Hudson et al[2.ll0] and Hobson et 

al [2.28] to determine the blank deformation history , involved 

placing a line of reflecting spots, syrrmetrical with respect to the 

centre, on the blank. Reflecting spots also were placed on the 

retaining ring in line with those on the blank to give a measurement 

reference. A high speed camera used in the streak or oscillographic 

mode, i.e. without framing, TNas arranged at an inclination to the 

blank, as shown in Fig 3.3 page 99 and so that the film moved at 

right angles to the line of spots. Lighting was arranged as shown 

in Fig 3.3. 

As the blank deformed the locations of the reflecting spots 

were continuously recorded as a streak image on the film. Assuming 

axisymmetric blank deformation and considering the image spots 

symmetrically about the blank centre, the deformation history was 

calculated. The results obtained by Hobson et al using this method 

were used to confirm those derived from the pin contactor technique 

for t."1e initial blank velocity. 

The advantage of this system was that a continuous record of 

blank deformation was achieved and as opposed to silhouette high 

speed tilotography [2.108,2.109] convex phenomenon could be observed. 
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3.2.3 STEREOI?~RY 

Foilcwing work reported by Rinehart et al[2.6] research on 

defonnation measurement was carried out by T. Bednarski 

[2.111,2.112J based ~ generating stereo image pairs within a 
single frame using the equipment shown in Fig 3.4 page 99. 

The resultant contours were plotted for each frame with a 

stereo romparator, and hence the deformation history was obtained. 

3.3 PRESSURE ME!ASUREMENl' 

As mentioned in the previous chapter it was apparent that a 

better understanding was required of pressure history at the 

workpiece/energy transfer medium interface. An initial survey of 

pressure transducers available when this project began showed a lack 

of any appropriate rommerciaily available pressure transducer which 

would be sufficiently robust to withstand the loading conditions and 

yet snail enough to be able to be placed adjacent to the blank 

without 11lCdifying the behaviour of the process so that it negated 

the validity of the resultant information. 

The anticipated operating ronditions for the transducer were 

based upon a maximum charge of 0.5 metres of Cordtex of 10.5 gms per 

Iretre of PEl'N and a distance of 50 mm from the charge. The 

resultant maximum pressure P was 230 MFa while e the decay 
ronstant was 12.9 x 10-6 sec Therefore the follcwing 

requirements for the pressure transducer were considered a minimum 

for explcsive forming; 



(i) MaxiImmt recording range of 200 Mpa 

(ii) Sensitivity of 0.1 of a Full Scale Reading. 

(iii) Rise time of 10 microseconds 

(iv) MaXTInUffi overload of greater than 100% 

(v) Maximum height of recording surface above blank 

surface of Smn. 
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Although these specifications were less rigorous than would 

be anticipated fran the description of the shock waves it was hoped 

that foliaving the development of a prototype, the accuracy and 

dynamic performance of the transducer oould be improved. 

The oonstruction of a pressure transducer was oonsidered and 

a review of the techniques of dynamic pressure measurement was 

carried out. 

3.1 SI'RAIN GAtGE 

The diaphragm pressure transducer Fig 3. S page 102, developed 

by Redshaw[3.l] and subsequently modified by Bert et al[3.2J used a 

specially developed diaphragm strain gauge to measure the surface 

strain in a circular diaphragm or plate subjected to a normal 

pressure. The recorded strain oould be related to the applied 

presssure and hence the pressure loading was obtained. 

The dynamic characteristics and sensitivity of the sensory 

element were the major limitation of this pressure transducer 

system. 

Hence the diameter was determined by the follaving 

consicl=rations: 
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(a) Availability of suitable commercial diaphragm strain gauges. 

(b) Ability to meet the rise-time requirements. 

(c) Suitable size bo give a natural frequency 

which would meet the prototype specification. 

Ideally the thickness of the diaphragm was based upon the 

following considerations; 

(d) It soould be adequate bo keep the stress level at overload 

pressure below the proportional limit of the material 

selected. 

(e) It soould prevent the deflection over the full operating 

pressure range from exceeding approximately one-half of 

the thickness, since deflections larger than this would 

develop in-plane membr ane stresses which would result in 

non-linearity in the response to pressure. 

(f) It soould result in a natural frequency which is as high as 

is feasible, consistent with the required sensitivity. 

From Fig 3.5 page 102, it could be seen that the transducer 

was relatively slinple and strong but the size range of the 

oommericially available diaphragm strain gauges precluded 

development of a pressure transducer of this type. While 

alternative use could have been made of standard semiconductor 

strain gauges of small size(2.032x0.127xO.Ol3 rom) which have been 

used for diaphragm pressure transducers in aerospace 

applications[3.3], the need bo place a four gauge bridge on the 

transducer would have increased the diaphragm size bo give 

unacceptably low dynamic characteristics. 

FollCJNing the ,york of R. V. Milligan [3.4,3.5], the 

alternative use of a strain gauge mounted upon a metal strip as in 

Fig 3.6 page 102, '\vas considered. Assuming a nondirectional pressure 

loading the measured strain could be related to the applied pressure 
by the relationship 
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e - PCl - 2v) 
x - E 

and hence a linear pressure-strain relationship was obtained as a 

function of the mounting material and this was verified by 

experimental work [3.4,3.5]. At higher pressures of the order of 

100 Kpsi (689 Mpa.) the piezoresistance effect for the strain gauge 

and leads was koown to be significant [3.6] • 

An alternative use of strain gauges in a pressure transducer 

\'las that shown in Fig 3.7 page 105, and reported in the literature 

associated with shock loadings [3.7,3.8,3.9]. A resultant uniaxial 

strain was recorded in the rod or tube, one end of which was exposed 

to the pressure pulse and hence a pressure recording obtained. The 

major difficulty envisaged in the anticipated mode of operation was 

the required length of the transducer and therefore the ability for 

it to be located in the region of interest. 

3.3.2 CAPACITANCE 

The operation of the capacitance transducer, Fig 3.8 page 

105 I recorded the change in capacitance of the transducer due to 

pressure induced deflection of the sensory element. By calibration 

a relationship bet</leen the applied pressure and the recorded change 

of capacitance could be obtained. 

By placing a dielectric elastic foundation between the 

sensory element and transducer base such as CaF2 [3.10] rather than 

evacuating the cavity the applied voltage could be increased. This 

increased voltage reduced the influence of the spurious noise 

signals that were induced during the necessary amplification of the 

signal and fram the cable connecting the transducer to the recording 

equipnent. 

Bagnoff[3.11] and Hanson et al [3.12] described a form of 

capacitance transducer developed for shock tunnel work , shown in Fig 

3.9 page 106. The deformation of the transducer material following 

the initiation of the stress wave due to the impinging shock wave 

rrodified the capacitance between the surface and internal electrode. 
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By suitable adjustment of the capacitance thickness a rise time of 

0.1 microseconds was reported in the literature [3.11,3.12]. 

However because the behaviour of the stress wave was far fran an 

ideal plane stress wave,due to the surface and lateral stress 

disturbances, the ratio of outer electrode diameter to inner 

electrode diameter had to be greater than a fixed predetermined 

value. The ratio of capacitance plate diameters was determined fran 

the disturbance and stress wave velocities and the dimension t. 

These disturbances were responsible for the limited accurate 

sequential recording time of the order of 5-10 micro-seconds for the 

system. 

The major operational difficulty with this form of transducer 

was the short recording duration and the length of transducer 

required bo eliminate the possibility of interference from the 

stress wave reflection off the free surface at the non-impingement 

end of the transducer. 

An initial e:xperimental investigation was carried out on a 

film transducer, Fig 3.10 page 106, to determine its sensitivity. 

The transducer was based upon a corrmercially available material, 

.Mylar film, which consisted of a synthetic polyester dielectric film 

with a metallic coating on one surface. On awlication of pressure, 

the thickness of the dielectric, and therefore the capacitance of 

the system changed giving a method of determining the pressure 

acting. 

The major difficulty with this sensory unit was the 

probability of destruction due to the loading conditions associated 

with e:xplcsive forming. While the gauge had the advantage of being 

cheap and easily constructed, the calibration would have been 

difficult and involved considerable time, and therefore the 

possibility of having to use a new gauge for each shot made it 

impractical. 
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3.3.3 PIEZOELECi'RIC PRESSURE TRANSIlJCER 

In certain crystal structures with asymmetric charge 

distribution, orientated lattice deformation due to applied loads 

resulted in relative displ~ement of the positive and negative 

charges within the lattice. This produced equal external charges of 

opposite polarity on the crystal faces, in the orientation of the 

lattice deformation, and hence a potential difference between the 

relevant crystal surfaces. 'Ibis ];i1enomenon, called the 

Piezoelectric effect, has been considered an effective method of 

pressure history measurement and has been used extensively 

particularly for large transient pressures because the piezoelectric 

crystal's high transient response permits accurate detection and 

delineation of events of micro-second duration [2.70,2.71, 

3.13-3.26] • 

A major advantage of the piezoelectric transducer was that 

the signal response followed the stress-strain curve of the material 

in the orientation of the applied load and provided the curve was 

linear for the operational range, the transducer response was linear 

with respect to the applied pressuree Also the high frequency limit 

was bmposed ~ the mechanical resonance of the piezoelectric crystal 

and mountings, and crystals of 10 Megacycles natural frequency were 

commercially availablee 

Typically transducers involving piezoelectric crystals in 

shock tubes[3.l8,3.2l,3.22] were of a construction shown in Fig 3.11 

page 109. Initially the transducer design [3.18] * was based upon a 

backing rod of material with a closely matched acoustic impedance to 

that of the piezoelectr ic crystal. This was considered to 

effectively decouple the piezoelectric element by eliminating stress 

'Nave reflections from the crystal surfaces, the stress waves instead 

*IDIE: Basically an Impact bar transducer -see 

page 112. 

3.3.6 
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being propagated into the backing rod. 

Later e~erlinental analysis [3.21] suggested that acoustic 

bnpediance matching between the backing rod material and the crystal 

was rot as critical as the ability of the backing rod to dampen out 

the sympathetic radial oscillations occurring in the piezoelectric 

crystal due to the passage of the stress wave. 0l::1I.Tiously the length 

of the backing rod was significant in that the length of accurate 

continuous recording of the incident pressure was determined I.::y the 

time taken for the stress wave reflected fran the free end of the 

backing rod to linpinge on the crystal. 

Because of this length problem it was decided that this type 

of transducer was not satisfactory for use in explosive forming 

studies. Unfortunately piezoelectric crystals were also sensitive 

to temperature, vibration and electrical or magnetic noise. 

While a piezoelectric crystal could be placed in the energy 

transfer medium without support or backing the possibility of damage 

was considerable due to the nature of the loading, given the 

crystals have high compressive strengths >600 Mn/m but law tensile 

strengths 80 Mn/m. Attaching the crystal to the blank would 

cause failure because of the plastic deformation exper ienced by t.~ 

workpiece. 

3.3.4 MAGlErcm'RIcrIVE CR RELtCl'ANCE PRESSURE 

MFAS URE."1ENr 'IEONI<)JES 

The operation of the magnetostrictive transducers [3.27] was 

based upon a pressure induced change in reluctance. The resultant 

change in irrluctance of the circuit was then measured and gave a 

record of the dynamically applied pressure. These transducers 

usually consisted of a ferramcgnetic material subjected to a 

polarizing magnetic field. The necessity bD polarize the transducer 
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resulted in a tulky arrangement, while the frequency response of 

such transducers limited the operation to a narrcw band width. Also 

since the measurement was based upon inductance of the circuit, 

static calibration was impossible. 

3. 3. 5 PIEZrnES ISTANCE PRESSURE MEASUREMENl' 'IECHNI<;1.JES 

Bridgman [3.28,3.29] used the piezoresistance effect of 

certain metals as a method of measuring high pressures and found 

that for many metals the resistance change with pressure was 

effecti vely linear and cnuld be represented by 

where 

R 

R 

b 

[l,P 

R = R (1 + bl\P) 
o 

= instantaneous resistance 

= resistance at one atmosphere 

pressure cnefficient of resistance 
:::::: incremental pressure change. 

change 

Mo:Hfications to this technique were carried out [3.30,3.31] 

to enhance sensitivity and accuracy. However the low sensitivity of 

the wire-type piezoresistance gauges precluded their use in 

explosive forming. 

Wit.h the development of !IPnolithic d1ip manufa.c:ture in the 

electronics industry, pressure transducers in which a sensory 

element su:::h as an etched silicon n-type diaphragm, has an 

arrangement of p-dDped regions diffused into the chip were developed 

[3.32 - 3.34]. Pressure d1ange was m:>nitored by measuring the 

piezoresistance change in the p-type material. 
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The change in resistance was rot due to the distortion of the 

gauge geometry as in the previously discussed strain gauge cases, 

rut to the change in the p-type material as a function of the 

applied strain to th e material. The p-type areas were usually 

arranged in a four arm wrneatstone bridge circuit and in some 

oommercialtransducers [3.33] the signal discrimination, 

conditioning and temperature compensation circuitry was ruilt into 

the edge of the sensory element using morolithic thick film methods. 

Unfortunately the available transdcuers of this type were limited in 

pressure range and where hence not suitable for explosive forming. 

3.3.6 ~TURISED 

TE03NlQUES 

BAR PRESSURE MEASUREMENl' 

This pressure measurement system was based upon the Hopkinson 

Pressure Bar method[3.35]. 

Ideally a uniform pressure pulse impinging upon one end of a 

rod created a plane longitudinal stress wave governed by the 

one-dimensional waves equation [3.36,3.37] * 

'Where 
1 - v E 

(1 + v) (1 2v)~) 

Note: This relationship assumed no dispersion of the lcngitudinal 

stress wave. However it has been shown [3.36] that dispersion 

occurred and hence transverse strain behaviour must be considered in 

an analytical study. Therefore, for only relati vely slow 

applications of the load does the strain pulse approximate a plane 

wave. 
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The amplitude of the resultant stress pulse was directly 

related, by equilibrium conditions, to the magnitude of the incident 

pressure. 

There were many methods of determining the stress wave in the 

bar but the most corrmon one was the use of a piezoelectric crystal. 

This was Cbne by sandwidling the piezoelectr ic disk in the impact 

bar; as the stress pulse traversed the crystal a charge was 

generated at the respective disk faces and the pressure determined. 

Care was taken at the crystal- irnpact bar faces to ensure no spurious 

stress wave reflections occurred, by matching the acoustic 

impediance of the bar to that of the piezoelectric crystal. 

The rise-time and frequency range of the gauge were limited 

by the dimensions and material, which determined the dynamic 

characteristics of the impact bar. The disadvantages of this type 

of transducer were the deviation of the stress pulse from the ideal 

plane wave due to the surface and lateral stress wave disturbances 

and the length of time of sequential recording. The time of 

sequential recording of the pressure wave was determined by the time 

taken far reflected stress disturbances off the free end surface .of 

the bar to reach the piezoelectric sensory element. Thus the 

requ ired length of the bar '!flaS determined as a function of the 

velocity of wave propagation and the total time of the event to be 

recorded. 

A typical transducer is shown in Fig 3.12 page 109 • 

Much work has been Cbne to overcome these difficulties 

[3.36,3.38 - 3.40] either by variations in bar material, bar 

dimensions and/or sensory elements. The problem of length and 

reflected tension waves has been reduced by use of a tapered bar to 

transmit the incident compressive pulse into absorbent medium[3.41]. 

It was obvious that because of the required length of the 

transducer and the resulting mounting problem, this method of 

gauging ~vas not suitable for energy transfer study in explosive 

formia;)' . 
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3.3.7 MISCELIANEOOS PImSORE MEASUREMENr 'IECHNltJJES 

These processes involved the use of techniques which took 

advantage of the pressure sensitivity of a range of oamponents and 

materials oot oormally oonsidered to lie within the general grouping 

of pressure measurement techniques discussed so far. 

3.3.7.1 DIODE TAANSOOCER Sikorski et al{3.42] soowed that 

a tunnel diode in the ampification mode, with a suitable stabilising 

shunt resitanoe oould be satisfactor ily used as a pressure 

transducer. 

The idealised characteristics of a tunnel diode in the 

amplifier mode is shown if Fig 3.13 page 115,and with the associated 

resultant effect of the pressure on the idealised characteristics. 

It can be seen that by selecting the value of bias current and shunt 

resistance, the operating point oould be adjusted to give either 

maximum sensitivity for either a S1Iall range about a given pressure 

p::>int or for a wide pressure range. 

Sikorski et al claimed that 'the advantages of the tunnel 

diode transducers were (1) snail size, (2) sensitivity, and (3) 

versatility.' The significant advantage of the high sensitivity was 

the low to moderate amplification required, '/lith the resultant 

advantages of reduction in spurious wise signals, as well as a 

higher frequency band width. As has been explained [2. 70] the snaIl 

size meant satisfactory rise-times ,moor interference I:¥ the 

transducer on the shock wave form and the probability of being able 

to looate the sensory element in the region of interest immediately 

adjacent to the blank surface. 
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'Ihe problem, whidl has been discussed by Cohen et al[3.43] 

was that of temperature sensitivity of the tunnel diode which they 

suggested could be minimised by the selection of a suitable 
operating point. 

Wlodarski et al[3.44] reported on a study into the use of 

diode semiconductor devices to monitor rapidly varying pressures. 

The operating point was selected to minimise the temperature effects 

and two semiconductor types, silicon and galliLml arsenide, were 

studied. Testing was carried out for both static and dynamic 

pressure loading and in the case of dynamic pressure loading a 

compa.r ison of pressure measurement was obtained with a conmercially 

available quartz crystal piezoelectric transducer. A satisfactory 

sensitivity was obtained in the static testing while good agreement 

between the diodes and the quartz transducer was obtained for the 

dynamic testing with differences of less than 1.S% for silicon and 

less than S% for gailiLml arsenide. 

3.3.7.2 TRANSISTOR TRANSDUCER Transistors as a pressure 

sensitive element were used by Sikorski et al[3.4S] as the basis of 

a microphone. This would have given a cheap snail and sensitive 

pressure transducer similar to the tunnel diode, by use of a 

suitable operating point on the dlaracteristic. 

3.3.7.3 CAREeN RESISTCR TRANSDUCER The piezo-

resistance behaviour of carbon resistors was sufficient to enable 

them to be rrounted in a polyethylene rod and used by Watson [3.46] 

to d:!termine the pressures associated with shock, blast and 

detonation waves. Further study into the piezo-resistance 

dlaracteristics of five commercially available resistors of 

1 OOOohms, in the range of 0 -SOOpsi. (3. 4 MFa.) by Miiler et al [ 3.47] 

gave a repeatability of better than 1%. On less accurate tests of 

up to 2,000 psi. (13.8 MFa.) these resistors still exhibited 

linear pressure response. 
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Sane dynamic testing' of up to 1 Kc. was carried out to 

canpare the recording's with that of a cormmercial pressure 

transducer and agreement was obtained. 

This suggested that the linearity, a sensitivity of 1.5 -

o. 55xlO-5 (~R/R) (l/~P) ,availability and the low cost oould 

make the commercial carbon oomposition resistor a pressure 

transducer for both static and dynamic pressure measurement. The 

only apparent disadvantage was the temperature sensitivity of the 
carbon resistor. 

Stankiewicz et al[3.48] described experiments carried out on 

oomnercially available carbon resistors for a range of pressures up 

to II Kilobars (1111.4 MPa.) and for temperatures of 295,77 and 4.2 

K and found that while the pressure dependent variation of the 

resistance was non-linear the results were repeatable. It was noted 

that the resistors showed hysteresis effects on the removal of the 

pressure. 

3.3.7.4 RESIN TRANSOOCER Clark [3.49] 

srowed that use could be made of resins processed with Zirconium 

Tetra-chloride as pressure transducers because of the large change 

in electrical resistance exhibited when subjected to pressure. 
Because the resins could be applied as paints on to conducting' 

surfaces it was ~iously a versatile material for pressure 
measurement. 

The advantages claimed for these resins were high 

sensitivity, slinple construction of transducers and possible 

measurement of a wide range of pressure. The apparent disadvantages 

were those of hysteresis of up to 2% and poor dynamic response 

although bv preloading' the hysteresis was reduced. Another 

disadvantage was that of a non-linear pressure response. 
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3.3.7.5 lUBBER RESISTIVE TRANSIlJCER As for the 

intermetallic resins, Massey et al [3.50] used a conductive rubber 

which underwent a change of resistance under compression. 

Unf~tunately while the type of transducer described was sensitive, 

cheap and small it had a limited pressure range. 

3.4 CALIBAATICN 

The pressure measurement system calibration was considered in 

two stages ~ (1) static calibration and (2) dynamic calibration. 

While it was recognised that the mode of operation of the 

system was critically dependent upon the dynamic characteristics of 

the proposed pressure transducer, it was considered that static 

calibration was significant in the preliminary work with the 

transducer, particularly with respect to sensitivity. This was 

because of the difficulty in achieving a repeatable, accurately 

defined, pressure pulse of the magnitooe and rise times associated 

with e~lcsive forming. 

3.4.1 STATIC CALIBRATICN The static calibration was 

necessary to determine the pressure response of the transducer 

throughout the operating range as well as determining the deviation 

fran linearity within this range. Dead weight testing was the most 

awropriate equipment to do the static pressure calibration, but for 

the proposed range this was rot feasible on the existing equiprnent 

in the Department. The initial investigation into the film 

capacitance transducer was conducted on the Amsler Compression 

machine Serial No 79/ll9 using a rig shONI1 in Fig. 3.14 page 115. 
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The frictional error which was inherent in such a loading 

rig, when the pressure was measured as force per unit area was 

overOJffie by the meth:Xl developed by King [3. 51] with repeated cycling 

of the awlied load about the theoretical value required, with a 

diminishing &~litude of piston displacement. 

the total frictional error was reduced to 

In King's experiments 

1.4% of the applied 

pressure which was acceptable accuracy. Hence as an initial meth:>d 

of static calibration it was considered that this would be a 

satisfactory meth:Xl during the development stage of the pressure 

tr ansducer • 

3.4.2 DYNAMIC CALIBFATIClil As can be seen from the 

authoritative review of dynamic pressure calibration [3. 52], there 

was considerable difficulty in achieving an aperiodic dynarrnc 

calibration system with a risetime of the order of microseconds and 

the required pressure amplitude of 200 Mpa. While gas shock tubes 

give the required risetime, to obtain the required pressure 

amplitude, with this risetime, would have involved the developnent 

of an appropriate shock tube facility in the department which was 

not feasible. The alternative use of a periodic pressure 

generator[3.52] would not have achieved the necessary risetime. 

It was considered that a technique of dynamic calibration of 

the pressure measurement system based upon the existing [2. 70] 

theories of energy propagation fram explosives detonated underwater 

would have been feasible. Since many theoretical and experimental 

investigations [ 20] have been conducted upon this phenomenon, it 

was considered that the use of an explosive charge underwater with 

the transducer located in the region, for which information was 

available would approach the requirement of a repeatable pressure 

pulse, similar to that anticipated during the explosive forming, to 

the accuracy specified. 
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3.5 PRESSURE TRAN3DUCER 

The requirements of high frequency and law risetimes limited 

the range of pressure transducers suitable for explosive forming 

research to the capacitance and piezoelectric types. 

Initial investigations were carried out into the development 

of a film capacitance transducer I section 3.3.2, page 104, based upon 

Mylar 1 s film. Lack of sensitivity and the delicate nature of the 

senscry element made this impractical for use in explosive forming. 

Other possible designs of the transducers considered were those in 

Fig- 3.15 page 121, for a capacitance transducer or Fig. 3.16 page 

l2l,fcr a plate/foundation capacitance or piezo electric transducer. 

A capacitance transducer was chosen in preference to a piezoelectric 

transducer because it would be less sensitive to noise and spurious 

signals due to the stress waves generated in the sensory element, 

particularly those in the radial direction. 

To ensure that the sensitivity of the transducer was adequate 

to delineate the reloading phase, it was decided to assume the 

initial pressure pulse would take the plate or plate/foundation 

ccmbination into the geanetrically non-linear deflection regime. 
Because of the difficulty associated with dynamic calibration and 

the assumption that operating in the non-linear deflection region 

W)uld enhance the sensitivity in the reloading Iflase, numerical 

modelling of the proposed transducer behaviour was carried out, 

Chapter Four to Chapter Seven, for both the plate and plate/ 

foundation systems. 

An advantage of the plate transducer was that the major 

transverse stress waves which would be associated with the sensory 

elEment WJuld have a frequency of f_= c /h where c was the velocity 
-p a a 

of sound in the plate and if h was sufficiently small the resultant 

effects of the stress waves o::mld be filtered out. The disadvantage 

~vas that the natural frequency of the plate [3.53] was given by 
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f = 
P 

(3.196) 2 IE (~) 
4rr 13m(1 - v2) a2 

where a = plate radius 

m = plate density 

E = modulus of elasticity 
v = poisson's ratio 
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Therefore the plate thickness to radius ratio was a 

canpromise between sensitivity, natural frequency and stress wave 

effects. 

While the plate/foundation system would introduce stress 

waves which would be a function of the plate, foundation and base 

thickness and mater ial density, the resultant natural frequency 

would be given by [3.53]. 

ff 
r = 

p 

k a 4 ~ 
(1 + D (3.196) ) 

where k = Winkler foundation modulus 

fp = Plate frequency 

ff = Plate/foundation frequency 

D = Plate flexural rigidity 

Eh
3 

= 
12(1 -

and hence iocreased as a function of the foundation modulus. 

The design of the plate/foundation transducer was such that 

either a capacitance or piezoelectric transdUcer could be produced 

depending on the foundation used. Therefore the major factor 

influencing the initial dimensions was the commercial availability 

of PZ'f - SA style F piezoelectric crystals with a 4.8 rrm diameter 

and 0.3 rrm thickness. These crystal dimensions gave the maximum 
possible parallel resonant frequency of the order of 6 MHz. 
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Following Yo:rk [3.2l] the transducer material was stainless 

steel with the follaving properties: 

Density = 7769 Kgm/m 

Elastic modulus == 196 GN/m 

Poisson's ratio = 0.3 

Elasti c lirni t = 240 Mn/m 

while the physical properties of the piezo electric materials 

were 

Density 

Elastic modulus (~3) * 
Poisson's ratio 

Compressive strength 

Tensile strength 

3 = 7600 Kgm/m 
2 

= 52.9 GN/m 

== 0.3 
2 

> 600 MN/m 
'" 80 MN/l 

Given that the transducer height was 5 rrm and the speed of 

sourrl c in the stainless steel was 5020 rrVsec ie (E/m)~ the period 

for a stress wave to propagate to the blank/transducer interface was 

1 ]JSec. Therefore high frequency contributions frc:m the stress wave 

would limit the frequency range of the resultant transducer and 

filtering would be required. Although the speed of sound in the PZT 

- SA was 2620 rrVsec the multiple interfaces would give stress wave 

periods of O.ll]JSec as well as rapid attenuation due to the 

interface friction. 

Since the transducer had to be able to include a 

piezoelectric crystal of radius 2.4 nm the minimum plate radius 

considered was 2. 75 rrm. Therefore a non-dimensional geometrical 

non-linear dynamic analysis was carried out to determine the 

tr ansducer per forrnance • 

*Note: Because of the directionality of the properties of a 

piezoelectric crystal the superscript 33 represents the property 

normal to the plane of the disc. 
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3. 5.1 TRAN:3DlJCER 00'IP0l' 

The potential difference between two parallel plates in a 

capacitor was given 1::¥ [3.54] 
t 

V = JoC £c dx = £c tc 

where tc == plate separation 

ec == field strength between plates 

== o*/e e o r 
eo == permittivity of free space 

er == relative permittivity of air/dielectric 

and therefore 

a*A 
t 

where At::: area of plate giving 

== e e Aft o r 

for ~ =:' charge in coulanbs. 

Consideration of the plate deflection under a constant dlange 

con(U tion resul ted in a change in vol tage as a function of the 

change in capacitance. The average separation of the plates 

would determine the voltage and was given 1::¥ 

= t c 



where a(p) = deflection of plate. 

Therefore the vol tage change was 
At 

!J.v = £ t - £ (t - A
a I a, (p ) dA) 

c c c c t 

£ fAt 
AC a a,(p)dA 

t . 
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Slinilarly by ignoring radial deflection after York, to the 

first order of accuracy, the output fran the piezoelectric crystal 

was proportional to the integral 

[IV a I~p)dA 

Hence the required inf~ation to describe the transducer 

performance was the integral f a,(p)dA 

For capacitance transducers, to ensure a uniform 

electrostatic field, an external ring can be used and would be 

rna intained at a constant dlarge f Fig. 7.17, page 126. ~refore 

calculations were also carried out to derive the integral f a,(p)dA 

where Ag = 0.64 \:. 

For the reasons given above, a theoretical study was 

conducted into the response of proposed pressure transducers, Figs. 

5.]5 -5.17. 
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CHAP'IER Fa.JR 

.ANALYSIS OF PRESSURE TRANSWCER. 

4.1 INTIDOUCTIOO 

Since the proposed pressure transducer would operate in a 

non-linear regime it was considered necessary to model its 

behaviour. This analysis was carried out in three stages. The 

first stage involved the static non-linear analysis of a plate on an 

elastic foundation. A comparision was made betw'een the methods of 

representing the dielectric crystal behaviour ,either as a linear 

Winkler [4.1] foundation characteristic,or as a Pasternak foundation 

characteristic [4.1] in the static analysis. Next, the non-linear 

dynamic transient response of the plate and the plate on an elastic 

foundation was considered. This gave a model of the response of the 

proposed pressure transducer OJ pressure pulse typical of a shock 

wave. 

4.2 ASSUMPTIOOS 

The assumptions used in deriving the equations governing the 

non-linear behaviour of the pressure transducer were as follows: 

(1) The plate material was perfectly elastic and obeyed 

Hcoke's law. 

(2) The plate material was isotropic and honngenous. 

(3) The nonnals OJ the middle surface or plate mer idan 

remained straight and normal OJ that surface after 

deformation. 

(4) The plate was initially flat and of uniform 



thickness. 

(S) The lead and deformation of the plate was 

axisyrrmetric. 

(6) The normal stresses in the transverse direction 

were negligible. 

(7) The slopes produced by flexure were moderately 

large but snail in canparison with unity, and 
aw hence could be neglected and represented by ar = ~. 

(8) The curvature of the plate meridianor bending axis 
a2w could be represented by arz . 

(9) The external forces acting on the plate were normal 

to the plate surface. 
(10) The structural damping within the foundation and 

the plate/foundation interface could be 

represented by viscous damping. 

(11) The foundation material was perfectly elastic, 

isotropic and homogenous. 

(12) The foundation reactions were transmitted normal 

to the plate/foundation interface. 

(13) Shear stresses could not be transmitted across the 

plate/foundation interface as the coefficient of 

friction was taken as zero. 
(14) The density of the foundation material was 

significantly less than that of the plate material, 

and therefore in the dynamic analysis,the inertia 

term for the foundation was ignored. 

(15) The foundation had a finite thickness and was 

supported by a rigid base 
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4.3 EQUATICN3 GOVERNING PRESSURE 

TRANSIlJCER BEHAVIOUR. 
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The derivation of the equations governing the non-linear 

behaviour of a plate supported by an elastic foundation was based on 

the above assumptions and consideration of the element Fig 4.1 page 

130. 

Taking rrornents in the r-z plane about the centre gave 

{M + ~Mr or)u:- + or)o~ - M. r o~ - Mtoro~ + (Q + ~Q or) (r + or)o~ or r or r or 2 
aN 

+ Qro~2r + ~w (N + ~ or) (r + or) o~ - N ro~ = 0 4.1 or r or r 

where M = Radial bending m:::ment/unit length of r 
circumference 

\ Tangential bending rrornent/unit length of 

radius 

Q . = Shear stress/unit length of circumference 

N.r = Rad.ial membrane force/unit length of 

circumference 

Eb2 2 
::: --2 (au + !:.{aw) + v ~) 

I-v ar 2 ar r 

D ::::: Flexural rigidity or plate stiffness 

V ::::: Poisson I s ratio for plate mater ial 

E = Modulus of elasticity for plate material 

h ::: Plate thickness 



o 

+ m h r 5 rp 5 r " :;Z Ii kv 0 W 

P 

(0 + ~ ...... or) 
or 

FI G 4 -1 BENDING AND MEMBRANE STRESSES ACTING ON A PLATE 
ELEMENT SUBJECT TO DYNAMIC LOADING AND VISCOUS 
DAMPING 

(Nr+~'o 
'Or 

Nt 



W ::::: Vertical deflection 

u ::::: Radial deflection 
r ::::: Radius 

aw = Slope. ar 
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Hence ignoring second order noments CNer the length of the 

element or , the equation is reduced to 

4.2 

Considering the transverse equilibrium and allowing for 

inertia after D'Alembert and viscous damping of the plate under the 

dynamic transient loading, the following equation is obtained for 

the shear stress. 

1 Q=­r 

where 

fo
r 2 

(q(r,t) - rnh a w 
at2 

aw 
kv at - F(w) )r.dr 

q(r, t) == Load intensity 

F(w) =: Foundation reaction 

m =: Density of the plate 

k :;: Viscous damping coefficient of the plate 

as a function of vertical deflection. 

t ::::: Time 

4.3 

Therefore substituting for Q, ~ and ~ the equation 4.3 

became 

aw 
- kv at - F (w) ) r dr = 0 4.4 

Also considering the radial equilibrium for the element/Fig 

4.1 page 130, and ignoring the radial inertia and damping, the 



follO>ling relationship can be obtained. 

aN 
(N + -a r or) (r + or) o~ - N ro<j> - 2N o<j> or = 0 r r r t 2 
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4.5 

where Nt = Tangential membrane force/unit length of radius. 

= Eh 

1 -

Again ignoring the second order terms the relationship gave 

4.6 

whidl substituting for Nr and Nt became 

2 2 2 
a u + 1:. au _ ~ + aw a w + (1 - v) (aw) = 0 
ar2 r ar r2 ar· ar2 2r ar 4.7 

The integral term was removed from equation 4.4 by 

differentiation and resubstitution to give, 

2 
~ a w + ..l. aw 

2 '" 2 3 ar r or r 

1 ",2 a aN 1 a ",2w '" 
(~N + ~ ~ + - ~ N + ( t) - mh _0 _ - k oW = D ar2 r ar ar r ar r q r, at2 v - F(w)) 

4.8 

Hence equations 4.4 and 4.8 govern the dynarrdc behaviour of a 

plate under conditions satisfying the given assumptions. The 

resultant relationships are a dynamic analogue to the von Karman 

equations governing the non-linear behaviour of a circular plate, as 

have been used by NcMinski[4.2] and Huang [4.3] in vibration 

analysis. 

Substitution with equation 4.6 gave an alternative form 

2 2 
= 1 (a w N + 1:. aw N + (r t) _ mh a w 

D ar2 r r ar t q, at2 

4.9 
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:::4 
where'i/ was the biharmonic operator and was equivalent to 

a4 2 a3 1 a2 1 a (-+------+- -) 
a 4 r a 3 2 a 2 3 ar r r r r r 

By eliminating the radial displacement from the relationship 

for the membrane forces and applying Hooke's law, the compatibility 

equation 

a (Nt + Nr > 
= 

can be obtained. 

Eh (aw) 2 
2r ar 4.10 

Hence the equations governing the dynamic non-linear 

deflections of a plate were 

+ aw Eh 
ar 1 _ 

2 2 
(a u + ~ au .... ~ u + aw a w) 
a 2 r ar 2 ar a 2 r r r 

2 
+ q(r,t) - mh a w k aw F{w» 

at2 v 
4.11 

4.12 

4.3.1 DYNAMIC TRANSIENT RESPCNSE FOR PlATE ..AND FOUNDATION 

The relationships governing the ron-linear dynamic transient 

response of the pressure transducer is given by equations 4.11 and 

4.12 

These equations describe the non-linear behaviour of a plate 

in contact with an elastic foundation. The reaction of the 

foundation was described by either the Winkler [4.1J relationship. 

F(w) 4.13 



134 

where kf :::: MOdulus of the foundation reaction if the 

foundation was considered bD be linear,or following Pasternak[4.l] 
by 

F(w) :::: kfw - G v2w 4.14 

where G :::: Pasternak Foundation Constant 

-2 2 
'i/ :::: (_d _ +!~) 

dr2 r dr 

The non-dimensional form of these relationships was obtained 

as follON's 

\vhere a. 

p 

1; 

0 

e:(r,t) 

:::: w/a Vertical displacement parameter 

=: ria Rad ial parameter 

= ula Radial displacement parameter 

=a/h Radius 

::: q(r,t) a4 
12(1 

Eh4 

::::: Load parameter. 

~ o :::: t. (--4) 
mba 

= Time parameter 

bD thickness ratio 

\)2) 

4.15 

4.16 



== Vertical Damping parameter 

2 
a 

G* == G. (D) 

== Non-d±mensional Pasternak foundation constant 

== Non-d±mensional Winkler foundation constant 
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It should be noted that the Winkler foundation is the 

limi ting case when G* = O. 

4.3.2 "CIr..-rrrr"'T FOR PrATE (N ELASTIC 

Also of interest was the static form of the equations which 

was 

2 
+ 120 

2 2 
d I; + 1: dl; _ .L + da d a + l (da) 2 (1 _ v) = 0 
d 2 p dp 2 dp d 2 2p dp p p p 

4.17 

4.18 
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4.4 BaJNDARY cnIDITlOOS 

'lbe solution was obtained for the fixed edge condition 

because this gave the idealised boundary conclition which best 

approximated the proposed transducer. 

4.4.1 CU'IER SPACE BOlJNIlARY 

At the outer boundary, p =1, the following conditions were 

associated with the fixed edge condition: 

(a) p=l = 0 4.19 

(~) = 0 
3p p=l 

4.20 

( 1;) = 0 
p==l 

4.21 

At the inner boundary, p , the following conditions apply~ 

== 0 Syrrmetry 4.22 

1;(0,,) = 0 Continuity 4.23 

At the centre, equation 4.5 became singular but the physical 

system implied that a relationship existed for the conclition p=O 

Applying L' Hopital' s rule to a term (~ ~~) 
p 

Limit 
p -+ 0 

(~ aa) 
p Clp = 

2 
(~) 

2 3p p=O 

gave the limit 

4.24 



and hence the term '(~~) 3 ap 
p 

2 
became(~ ~) 

2 2 p ap p=o 
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Considering the boundary condition equation 4.22,the physical 

system, and the form of the "exact" solution by Way[4.4] for the 

static case,it was assumed that the solution for the vertical 

deflection could be represented by a symmetric function of the 

vertical deflection a. with respect to the radius. 

3 
(~) == 0 

3 ap p=o 
Therefore 

and by applying LIHopital to the term 

Limit 

p + 0 

3 
(!~) = 
p ap3 

4 
(~) 

4 ap p=o 

Finally considering the term 

application of L'Hopital rule gave, 

p + 0 

(~) 
ap p=o 

Limit (.:!.) 
p 

4.25 

was 

4.26 

4.27 

Subst'itution of the equations 4.24,4.25 and 4.26 into the 

equation 4.15 gave the equation 

4.28 

whim governs the behaviour of the centre, p ,of the plate. 

4.4.3 INITIAL TIME BOONDARY 

Sin:::e the pressure was due to a transient dynamic shock wave 

the resultant initial boundary conditions with respect to time were 

assUI1l2d to be as follO'ls. 
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4.30 

4.31 

4.32 

4.5 DISCUSSION OF ANALYSIS 

With plates of diameter to thiclmess ratios which generate 

bendi.n:J the major limitation of the application of the analysis was 

that as the deflection increased and approached twice the thickness 

of the plate, thi curvature of the meridian axis oould no looger be 

represented qy ~ , while the value of the slope would become 

significant wi4
p 
respect to unity, and hence oould no looger be 

represented qy ~~. Therefore, the derivation of the equations 4.1 

and 4.2 would not be valid,and an alternative analysis based on that 

propooed by He issner [ 4.5] would have had to be developed for the 

plate/foundation case. 

This would have resulted in a relationship less tractable qy 
finite difference techniques. 

In the case of static deflection of the plate, the equations 

derived qy Reissner[4.5] were 

where 

r dljJ Q + rp :::: 0 
dr 

dQ + Q + r(dljJ N + N sin ljJ) 
r dr dr r t r + rq = 0 

== 0 



M 
r 

= -D (~ + 'J sin 1jJ) 
ar r 

= Radial bending noment/unit length of 

circumference 

= -D (sin 1jJ + 'J a1jJ) 
r ar 

= Tangential bending rrornent/unit length of 

radius 

2 2 
N = Eh (au + 1:. a u + 1:. a w + 'Ju) 
r 1 'J 2 ar 2 ar2 2 ar2 r 

= Radial membrane force/unit length of 

circumference 

= 

::::: Tangential membrane force/unit length of 

radius 

1jJ ::::: Angle between the radial direction and the 

radial tangent to the deformed middle surface 

of the plate. 

Q Stress resultant normal to the deformed 

surfa::e. 

q = Force normal to the plate surface. 

p ::::: Force parallel to the plate surface. 
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Since very large deflections would decrease the response time 

and increase the degree of non-linearity of the transducer,it was 

decided to limit the analysis to the range 0 < OCl(O,T) < 2 • 

Therefore the initial assumptions on plate behaviour were considered 
, 

to be sufficiently accurate to obtain the results on which to 

finalise the transducer design. 

The assumptions associated with the plate/foundation 

interface and foundation behaviour initially appeared to limit the 
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applimtion of the solution. However the current range of analysis 

of the static and dynamic non-linear deflection of beams on elastic 

foundations as well as plates [4.6,4.7,4.8] were all based on 

similar simplifying asslID!ptions,either stated or implied. This did 

not adversely affect the applimtion of these results and therefore 

to avoid the inherent complexities 

associated with the plate/foundation 

and numerical difficulties 

friction and foundation 

inertia,the initial asslID!ptions were considered realistic and the 

equations 4.15 and 4.16 governing the transducer behaviour were 

solved. 

The analysis was initially carried out using finite 

difference numerical technique for the spatial domain and a 

recurrence relationship in the time domain as is shown in Chapter 

Six. 'lb give a basis of comparison, and to allO!f.1 the determination 

of the frequency of the system, a rn::ldal analysis was also carried 

out as can be seen in Chapter Five. 



CHAP'IER FIVE 

MCDAL ANALySIS OF PLA'lE/FOONDATICN" c:xM3INATION 

5.1 1NTroDUCTION 

'Ib provide a known solution by which the numer ieal procedure 

could be verified, the eigenfunction expansion technique for the 

linear forced vibration solution,presented by T.M. Hrudey[5.l] to 

determine the response of a plate subject to a transient load, was 

expanded to the ease of a clamped circular plate on a foundation and 

subject to viscous damping. Two foundation characteristics were 

a:msidered1 

(1) Pasternak [4.1] foundation with the reaction 

2 = k*a(p,T) - G* V a(p,T) 

(2) Linear Winkler [4.1] foundation with a reaction of 

the form 

The resultant governing equations were studied using 

separation of variables for the case of a step function pressure 

pulse, and an exponentially decaying pressure pulse with respect to 

time. 
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5.2 LlNFAR .ANALYSIS 

The non-dbnensional equation governing the plate behaviour 

was for the Pasternak foundation ,section 4.3.1 page 133 . 

5.1 

Substitution of a(p,T) =a' (p)r(T) 

portion of equation 5.1 gave 

in to the homogenous 

5.2 

or 

5.3 

where 

A2 A2 = G* 2 1 

A2 A2 1 ir(T) __ X_ ar(T) - k* = - r (T) 1 2 
ai 

r (T) aT 

It should be noted that in the case of the Winkler foundation 

the value of G*goes to zero and Al equals A2 . 

4 4 
(I] - A ) a' (p) r h) = 0 5.4 

In the case of a damped system provided r(T) was a function 

of the form r (T') = A e'1nT or for the undamped system r (T) was a m m m 
function of the form r (T) = A sinw T + B cosw T, then the term m m m m m 
Ai/A; becomes independent of radial position giving the eigenvector 

equation for the Pasternak foundation 
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5.5 

Therefore the vertical deflection was 

5.6 

while for the Winkler foundation 

5.7 

where J ,Y ,I and K were Bessel functions of the first, second, 

modified first and modified second kind respectively. and since the 

deflection at p=O was finite and Al ,A2 were real, the coefficients 

Eland Flwere equated to zero and the deflection given by 

for the Pasternak case with the Winkler foundation being 

gave 

But applying the Ix>undary condition at p =1 

ex' (p) 

dex I (p) 

dP 

= 0 

= 0 

5.8 

5.9 

5.10 
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qy application of Bessel function recurrence relationships [5.2] 

Separaticn of the constants gave the frequency equation for G * 
t- 0 

5.11 

or 

while for G*= 0 

5.12 

or 

Jl(A)1 (A) + J (A) (A) = 0 o 0 

Therefore the resultant orthonormal eigenfuncticn associated 

withAlm ,A2m the mth roots of the frequency equation was for G*t- 0 

um{p) = Gm JO(AlmP) (A 2m) - Jo (Alm)1o (A 2mp) 5.13 

and for 0 

Um(p) = G J (A )1 (A ) - J (A )1 (A p) mom om omom 5.14 

Application of orthogonality conditions with respect to the 

radius parameter p as a weight function resulted in the following 

relationship for the eigenfunction Appendix A 

J
p a (p)a (p)dp = 0 m n 

== 1 

mt-n 5.15 
m=n 

144. 
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Therefore 

G = . IE J (A
lm

) m IO (A2m) 5.16 
m 0 

where 

.~.{Alm) 2 

~ 
Il (A2m) 

Em = 1 + ~ -
~ (Alm) I; (A2m) 

5.17 

It sh::>uld be noted that by squaring the frequency equation 

11 

5.18 

for the A2m the solution reverts to 

the Winkler case withE = 1 m 

The resultant orthonormal modal shape for the m th roots of 

the frequency equation was given by 

for the Pasternak foondation, and for the Winkler case by 

ex (p) == 
m 

I (A p) o m 
I (A ) ) 
o m 

5.19 

5.20 

Solution of the vertical deflection equation was rDW obtained 

by summation of the modes of free vibration according to 

5.21 

where A (,d were unkn:::>wn functions of time satisfying the 
m 

requirements for the separation of variables. 



Substitution in the governing equation 

separation of variables 

+ k* A (T)(i" (p) m m 

* . * for G t- 0 while for G = 0 

00 dA (T) 
(A (T)V

4
(i" (p) + k* A (T)(i" (p) + X m (i" (p) 

m m m m m 
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1, gave on 

5.22 

5.23 

EXpanding the applied pressure amplitude as a generalised 

Fourier series expansion of unity,based upon the natural frequencies 

of the plate,gave 

00 

e:(T) ::: £(T) E An (i" (p) 
1 m 

UFO 

where ~ were constants with respect to the orthogonal of 

functions J\(i" (p)a (p)dp n m 
Hence Fourier constants(S.3) were 

o 

* cbtained ,Appendix B for G t 0 

am ::: f 
1 

p a (p) dp 
o m 
1 (Alm) 

= 7E" (J (A
lm

> 
m 0 

In the case Alm = A2m for 

a = 
m 

o ,E = 1 and therefore 
m 

5.25 

5.26 
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Substitution into equation 5.22 

00 d
2

A (Tl 
E ( m 

lIFO dT2 

5.27 

'llie equations v;ere reduced by multiplying through by petm (p) 

and applying the orthogonality condition which gave 

5.28 

Hence for leading, in which the pressure varies as a known 

function of time, the resultant equation for the mth root can be 

solved to give the required a:>efficient, and surrmation of the roots 

gives the required deflection. 

CASE. 

Consider the leading case 

E(T) = E(H(T) - H(T - Td» 5.29 

where Td ::::: time of lead application and H(T) was the Heaviside step 

function which gave the follaving equation of a:>efficients 

d2
A (T) dA. (T) 
m + 2x w m + w2 A (T) =. E{H(T) - H(T - Td» 5.30 

dT2 'lu m dT m m 

vklere for rft- 0 
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while for cf= 0 

2 A4 + k* w = m m 

and 

Xm = X 
2w 

m 

The initial boundary conditions in the time domain gave 

dA (0) 
m 

A (0) 
m 

= 0 

= 0 

The solution form will be a function of the damping for the 

specific mode and therefore the underdamped Xm < 1, the critically 

damped xm == 1 and the overdamped xm > 1 as well as the undamped 

conditions xm:::: 0 were considered. should be noted that the 

result for the Winkler foundation can be obtained fran that for the 

Pasternak foundation using the condition "1m = A2m "" Am. Therefore 

only the relationships for the Pasternak foundation are quoted& 

5. 2.1.1 UNDERDAM!?ED (X)NDITlOO Xrn < 1 Using the Laplace 

transformation with the initial boundary conditions, the 

coefficients ~(T) ~re obtained 

o < T < Td 

-)( W T 
"mm. ) e Sill n T 

m 

T > Td 



mere 

5.2.1.2 CRITICALLY DAMPED CONDITION ~ :::: 1 Again using 

the Laplace transformation with the initial boundary conditions, the 

coefficients were obtained 

e:a -w r 
:::: m (1 _ e m 

"2 
wm 

-W r 
e m) - W T m 

e:a -w (r-rd) -w r 
Am (r) :::: 2

m
(e m (1 + wm {r-Td} - e m (1 + wmr» 

wm 

> 1 5.2.1.3 OVERDAMPED Applying the initial 

149. 

boundary conditions and Laplace transf~mation the coefficients ~(r) 

were obtained 

o < r < rd 

e:a -Y WmT. • 2y W -x w r I 

- m (1 _ e 'm coshn r _ 'm m m m inhn ) - "2 m n e s mr 
w m 
m 

e:a 
m A (r) :::: m 2 

wm 
-~w r I 2~w T 

- e m (coshn r + I m sinhn r)} 
m n m 

m 

where 

1}~ 



';( = 0 5.2.1.4 UNDAMPED CONDITION 'in The coefficients were 

derived fram the underdamped case with X o giving 

o < T < Td 

f)j e;a 

a(p,T) = L: -..!!! (1 - cos W T) 

ItFO w2 m 
m 

00 Ea 
o:(p,T) ::: L: 2

m (sin W T sin W Td + cos W T (cos W Td - 1)) 
ItFO ill m m m m 

m 

2.2 EXP(NENTIAL I..OADING CASE 

Coosider the looding case 

== E e m 
-Tie 

for the underdamped, critically damped,overdamped and undamped 

casesiagain applying the Laplace transformation and obtaining the 

required coefficients. As mentioned above the Pasternak foundation 

is the general case while the Winkler foundation is satisfied by 

* G == 0 or ;., =;., ==;., 
1m. 2m m 

and hence only the Pasternak foundation 

solution is presented •. 

';( < 1 5.2.2.1 UNDERDAMPED CONDITlOO 'in The coefficients 

were 

A (T) 
m == 

-';( W T 
(e-T/e _ e 'in m (cosQ T _ ~"* 

m eQ m 

150. 



where 

5.2.2.2 CRITICALLY DAMPED a:NDITION Xm =:: 1 

~lication of the Laplace transformations the coefficients were 
2 

E a e m m -w T 
-Tie m (1 (1 - W )T) e -e - e m 

From 

5.2.2.3 OVERDAMPED CONDITION Xm > 1 

coefficients were 

As previously the 

2 
Em am e -)( W I 

= ------..".-w (e -Tie - e 'm (coshnmT 
1 - 2)( we + w2e2 

'mm m 
I 

)( W A) sinhn T» 
'mm m 

1 
- ~ (1 

en m 

where 

5.2.2.4 UNDAMPED a:NDITION xm = 0 From the underdamped 

case the coefficients for X :: 0 were 
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5.2.3 DEFLECTION 

The resultant deflection is given I::¥ 

a(p,l) = 

for the Pasternak foundation while for the Winkler foundation or 

plate 

a(p,l) = 

5.2.4 HJOIS OF FREQUENCY EQUATION 

The roots of the equations for the plate, Fig 1 page 153, or 

the equation for the Pasternak foundation, Fig 5.2 paqe 153 50, 

or Fig. 5.2 page 153 100, for the range 0-10, were obtained I::¥ 
using a Newton-Raphson[5.4] iterative procedure 

(dA.., ) i 
where i iterative step nurnber!!l3nd which for the case G :f 0 gave 

the relationship 

df (A ) . m 
dA]m 
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while for the case G*=: 0 was 

= J1(A ) I (A ) + J (A ) I1(A ) <m om omm 

= J (A ) I (A ) + !a(J (A ) 12 (A ) - J 2 (Am) Io(Am» om om omm 

The convergence of this procedure for roots of greater than 

10 became unstable because of the relative magnitudes of the 

function and the first derivative. The rapidly increasing magnitude 

of the functioo can be seen fran the limited number of roots shavn 

in Figs 5.1 & 5.2 and hence the first derivative became large as the 

root was awroached. The use of a modified Newton-Raphson procedure 

did not give adequate convergence, so an initial approximation based 

on an accepted convergence when the change in value of the roots, 

due to the iterative procedure was less than lxlO-6 , <was obtained. 

Using this value a logarithmic search was carried out in an attempt 

to locate t11.e roots rrore accurately. It was found that the 

logarithmic search did not change the roots' value within the first 

five decimal places, so subsequently for the Pasternak foundation 

the convergence criteria used was that associated with the initial 

approximation. Because the roots for the linear case ooly needed to 

be calculated once for each value of G* and are presented for G*=O in 
* Appendix C ,for G=50 in Appendix D , and forG*=lOO in Appendix E , 

this time representatioo was acceptable in complter time. 

5.2.5 FIOW DIAGRAM - LINEAR SOLUTICN pRJGAAM 

The flOil dia:Jram for the program to determine the deflectioo 

and bending moment at the plate centre is given in Fig 5.3 page 

155. 

The first thirty roots were obtained and it was found that 

these gave an adequate description of the deflection and bending 

rroment as can seen in Figs 5.4 page 156 & 5.5 page 156 where the 

resul ts are canpared following surrmation over 29 and 30 roots. 
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5.3 NJN - LINFAR ANALYSIS 

The eigenfunction expansion technique used to determine the 

response of a plate subject to a transient load was expanded to the 

case of oon-linear deflection of a clamped circular plate on a 

foundation with a linear Winkler characteristic, and subject to 

viscous damping with quasi-linearisation of the eigenroots over 

small time increments in the time domain. 

The dynamic loa.ding was considered to be a pressure pulse, 

unliorrnly distributed across the plate, with a time dependent 

amplitude. H. H. Berger's [5.5] assumption was used to allOil 

effective decoupling of the governing equations. The known errors 

associated with this assumption [5.6, 5. 7] particularly with respect 

to the simply suworted corrlition were appreciated. However it gave 

a basis of compar ison for the numer ical oon-linear program as there 

was 00 known information in the literature to verify the program 

accuracy for a foundation. Radial inertia and radial damping were 

ignored. 

The non-dimensional equations governing the plate behaviour 

were; 

where from Berger's assumption 

5.32 

Since the equation 5.31 was of an identical form to the 

previous linear case with the Pasternak foundation equation 5.2, the 

solution for the modal shapes of the vertical deflection was of the 

form 

157. 
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-0; (p) 
m 5.33 

where 

and >"lrn' >"2m were the m th roots of the equations 

>..2 _ >..2 = y2 
2 1 

5.34 

5.35 

2 
with y being a function of the deflection associated with the 

rrode. 

5.3.1 CPNSTANl' LOADING CASE 

Therefore F for a oonstant load applied at time T:= 0, the 

vertical deflection was defined as in section 5. 1 in the region 

o < T < Td. Again the solution form will be a function of the 

damping for the specific mode and therefore the underdamped 

~ < 1 , the cr i ticall Y damped. ~ == 1 , the overdamped 

~ > 1 as well as the undamped condi tion ~ == 0, were 

oonsidered. The form of the ooefficients was as for the previous 

section 2. 

Xm < 1 5.3.1.1 UNDERDAMPED CONDITION The coefficients were 

descr ibed by 

A Cd 
m 

where 

ea -~w T* 2~w 
= 2m (1 - e m (cos S"lmT* - S"l m sin S"lmT*» 

w m 
m 

X 

21L'm 
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T* Effective elapsed time. 

Since the vertical deflection was non-linear. AIm ' A2m were 
fWlCtions of the deflection for the roode at a given point in real 

time and as a result wm varied with deflection. The effective 

elapsed time T* was the equivalent time that the specific mode of 

the plate/foundation combination could be considered to be loaded if 

the current value of 

Therefore T* varied 
Wm was constant throughout the loading. 

as a ftmction of the previous deflection 
history for the given mode and its derivation is discussed in 

section 5.3.4. 

5.3.1.2 CRITICALLY DAMPED CDNDITICN Xm == 1 As previously 

the ooefficients were described by 

sa -w T* 
Am{T) == -1!! {1 - e m (1 + W T*)) 

w2 m 
m 

5.3.1.3 OVERDAMPED CDNDITICN ~ > 1 Again as previously 

described the coefficients 

A (T) 
m 

vtlere 

5.3.1.4 UNDAMPED CDNDITICN ~ == 8 As for the section 

5.2.1.4 the coefficients were 

sa 
Am (T) = 2

m 
(I - OOSWmT*) 

wm 
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5.3.2 DEFLECTTON 

As previously, the resultant deformation is given by 

a(p,T) 

5.3.3 RADIAL DEFLECl'ICN 

Based upon Berger I s assumption the nodal shape of the radial 

deflectioo corresponding to the mth root at a given point in time 

was obtained by assuming that since the radial inertia and damping 

were ignored, then the radial deflection was given by 

3~ (p) 3a (p) 2 ~ (p) A2ro2 - A21m 
( m + 1:( m ) + m :: 5 3 

3p :2 3p p • 6 
T 

But far the constant load case the vertical deflection far the roth 

mode at the time T was 

a (p ,T) 
m 

5.37 
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At the bamdary p =1, I;; (p ) =0 because the edge was fixed and 

therefore 

2 2 
A2m -: Alm 

o = .. --=---
2402 

5.38 

Therefore the roots of the roth rrode must satisfy both the 

equation 5.34 and equation 5.38 under the free vibration condition. 

3.4 

The roots for the roth node were obtained the time T by the 

sllnultaneous solution of the frequency equation 5.34 and the radial 

boundary oondition equation 5.38, that the location of the roots 

for the folla'ling equations; 

5.39 

where F1 = 0 and F2 = 0 



'nle roots mich satisfied both functions Fl and F2 'Were 

obtained using an iterative technique based upon the Newton- Raphson 

Irethod. At a point on the surfaces Fl and F 2oorresponding to the 

point CAlm). , (A"),..,). the previous ith iteration, the tangent 
, 1 '£..Ill 1 

planes to the surfaces 'Were found and the intersection of the traces 

of these planes in the surface z::::O was taken as the next value of 

the roots "'lm). l' (A.2m). 1· 1+' 1+ 

162. 

'nle tangent plane to the funcion F (A.lm' AaJ at the i th 

iteration Le. point "'lm) , (AaJ was given by 

flFl 
(aA

lm
) i ( CAlm) i+l - (A lm) i) 

5.40 

where Z defines the tangent plane to the function and assuming 

continuous partial derivatives of the first order over the region of 

interest. 'nlerefore the trace of the tangent plane in the surface 

z=O would contain a closer approxtmation to the required roots at 

(A,lm )i+l' (A2nfi+l where the trace intersects with that for the 

tangent plane to (A,lm ,A2m )i at point (Alm) i' (A2m ) i and the surface 

z=O. Therefore the trace for the tangent plane to Fl was obtained 

and hence 



Similarly for the second function the trace of the tangent 

plane at point (A )" (A ) in the surface z=O was described by 
. 1m]. 2rri 

dF2 . . . F2 
( A 1m) i (;\1m) i+l + ( A

2m
) (A2m) i+l 

The intersection of the traces gave the next approximation to 

the requ ired roots 

("1m) i+l 
dF

2 
ClFl 

(Hl (d"2m) i - H2 (Cl"2m) i)/H3 
5.41 

ClF2 
ClFl 

("2m) i+l == (Hl (dA
1m

) i - H2 (ax-) )/H3 
1m 

where 

The iterations were initiated using the linear root \n for 

themth node such that A = A2m= A and then iterations were 
1m n 

continued until the value of EJ.. and F 2 were less than lxlO -6 

The derivatives for the constant lood case are given in 

Afpend ix G and H. 
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5.3.5 Dm'ERMINATIOO OF ELAPSED TIME 

The method of determining the effective elapsed time 

was based upon the assumption of continuity of the solution at the 

mid-point between the discrete pivotal points in the time cbmain for 
th 

each m:x:l.e, therefore for the m m:x:l.e 

( * In) a. p,T '+-2 m m,l. ( * !J.T) = a. p,T '+1 - --2 m m,l. 5.42 

where T*, :::: effective elapsed time at the i th time step mil. 

* f' 1 ' th' lth , Tm,i+l = ef ective e asped t:une at e 1+ tlffie step 

!J.T :::: time increment. 

For each m:x:l.al shape iteration to a solution for· the roots 

"1m I "2m and T~ was carried out based upon the equations for 

the roots 5.34, 5.38 and the mid-point requirement. 

~ (p) A (T* ,+ !J.T) 
m m n,l. 2 

- () (* !J.T) = a. pAT '+1 - --2 m m n,l. 

It was initiated by taking the effective elapsed time for the 

specific l.IDde at the previous pivotal point in the time danain and 

the real time increment was added to give the first approximation to 

the effective elapsed time at the current time. Initially the roots 

"1m I "2mfor the value of T~ were calculated and subsequently a new 

value of \; obtained for the given time step and a further 

iteration carried out to determine new roots "1m'''2m" The iteration 

was terminated when the change in the elapsed time was less than 

0.01% between successive iteration steps. 

Each m:x:l.e has an individual effective elapsed time T~ 



5.3.6 EI.OW DIAGRAM NCN - LINEAR SOLUTICN ProGRAM 

The flow diagram for the program to determine the deflection 

for the non-linear case is given in Fig 5.6 page 166. 
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aIAPTER SIX 

1:U1ERICAL SOwrION OF GOVERNING EX;2UMIONS 

6.1 INTRODUCTION 

'!he first approximate solutions to the coupled Von Karman 

equations 4.ll ,4.12 governing the static non-linear deflection of 

plates were derived qy assurrdng a shape function for the plate. 

Constants associated with the shape function were obtained by 

consider ing the minimwn of either the var iation of applied load as 

calmlated from the shape function and governing equations in the 

work of Nadai[6 .1], or the total strain energy in the case of 

T:i.rnoshenko[6 .2] • 

An exact series solution of static non-linear deflection was 

obtained by Way[4.4]. The first derivative of vertical deflection 

wit.., respect to radius was described qy an odd series function of 

raHus while the radial merrbrane stress was given by an expansion of 

an even series function of radius. The coefficient relationships 

were derived by substituting the series in the governing equations. 

'Ibe solution was obtained qy initially estimating values for the 

constant and first coefficient of the even and odd series 

respectively, and the deflection and stresses were then calculated. 

'Ibis process was repeated for a range of constant and first 

coefficient values and the radius at which the outer boundary 

coooitions,'tlere met was determined. While t.his did not satisfy the 

inner boundary condition, if sufficient numerical cases were 

considered then interpolation enabled the appropriate starting 

values to be obtained, and hence the non-linear static deformation 

to be determined so that it satisfied the boundary conditions as 

we II as the govern ing equations. 



168. 

'!he assU11.'ption that the second :invariant of the merrbrane 

strains in the strain energy expression was negligible was made by 

Berger [5.5]. While this assU11.'ption has m physical :interpretation, 

because it effectively reduced the coupling of the Von Karman 

eq:uations and therefore simplified the solution technique, it has 

been the basis of subsequent static [6.3] and dynamic 

[6.4,6.5,6.6,6.7] analysis of mn-linear deflections in th:in shells 

and plates. '!his lack of interpretation has given rise to some 

oontroversy[5.6,5.7,6.8] , particularly with respect to the simply 

supported edge oondition. 

Fbr the static analysis the modified equations were 

\7
4 _ 1262(d~ +~(da)2 + I)\72a £ = dp dp p 6 6.1 

d~ k(da)2 ~ 
*2 

+ + == -y-
dp 2 dp p 

126
2 6.2 

d
2 

1 d 
v.here = ( + --) 

dp p dp 

*2 
Y 

126
2 

Constant of :integration 

=:: £ + 
TIn 

= Radial Membrane stress Strain 

= Circumferential Membrane Strain. 

and t.'I1e parameters were those defined:in Olapter 4, page D4. 

The general solution of these equations for a fixed edge 

circular plate with a uniform loading was 

. a (p) 

~ (p) 

* * £ 2(Io (Y)- IoCY p)) 2 
= -- - p +1 

46y*2 

2 
Il(yp) 

12 (yp) 2 
- 4 + ~p 

yIl(Y) 

(y) 

6.3 
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* \-..here the value of y satisfying the loading condition was 

determined from the following non-linear relationship 

2 
E 

I. (y*) 4 
o +_ 

y~l (y*) y*2 

6.4 

The equations were nondimensionalised. for compar ison with 

4.18,4.19 given that 1
0

,1. and ~ were rocrlified. Bessel fuoctions of 

the zero, first and second order respectively. 

Schmidt[6.9] noted. that the solutions obtained. for the 

non-linear deflections of circular plates were relatively 

insensitive to the values of Poisson's ratio and therefore 

rearranged the Von Karman's equations and developed a perturbation 

solution based upon a paral'lEter \l \..here 

J.I = 1 - \) 

By substituting 

dw 
00 n dwn 

dr 
:::::: E \l dr-

n=l 
6.S 

00 

E 
n w == \l w 

n=l n 
6.6 

00 

E 
n 

u \l ~ n=l 
6.7 

in the gOllerning equations and equatirg coefficients of paral'lEters a 

series of equations were obtained \..hich could be successively 

integrated. It was of major interest that the first resultant 

equations were identical to those derived from the assumption of 

Berger. As was ind iciated., if the Poisson's ratio was assUl'lEd to be 

equal to unity [6. 9] then the second l'lEnbrane strain invariant ~vas 
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eliminated from t.he strain energy equation. This argument was 

further pursued to claim a physical justification for Berger's 

governing equations, although it should be noted that the Poisson's 

ratio can never be greater than 0.5. Further work was carried out 

by Sdlmidt et al[6.l0] extending this perturbation technique to 

non-symmetric non-linear deflection of a circular plate. 

All the techniques discussed abOJe gave solutions to the Von 

Karman equations with varying degrees of accuracy and corrplexity 

of calculation. However they \~re not easily adapted for use on a 

oomp..1ter. 

Therefore the development of a nurrer ical technique to 

represent and solve the equations governing the non-linear 

deflection of a circular plate vvas studied, with errphasis on 

obtaining a methcrl of representation \\bich was capable of being used 

to solve the static and dynamic case. 

6.2 NCN-

Aspointed out by Haisler[6.ll],in the last ten years 

considerable research effort has been involved in obtaining 

solutions to structural problems involving geornetr ical 

non-linearity. The resultant increase in papers on this topic has 

paralleled the availablity of the large high speed computer and the 

development of increasingly efficient numerical alogrithms has 

made studies of these problems either possible or economically 

feasible. A paper by Murthy et al[6.12], dealing specifically wit.., 

non-linear bending of elastic plates of variable profile, references 

in the introduction the exponents of the various techniques of 

solution of the non-linear plate problem, and as such is of value. 
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Since no generalised theory for the numerical solution of 

non-linear equations exists, there has developed a large range of 

techniques capable of solving particular non-linear problems. The 

najority of these :rrethods involve the mJdification of existing 
linear nunerical techniques. 

Finite element techniques have been used for non-linear 

transient analysis of plates[6.13,6.14,6.15]. However the initial 

decision en the nuner ical technique preceded these publications and 

hence a finite difference technique was considered. 

6.2.1 srATIC CASE CIRCUIAR PrATE. 

The first case considered was the oolution of the non-linear 

static deflection of a circular plate with a fixed edge condition 

and governed by the follCMing equations, 

2 2 
d ;;; + 1: d;;; _ .L + do. d a + 1.- (do.) 2 = 0 

2 p dp 2 dp d 2 2p dp ap p p 
6.8 

Keller et al[6.16] reported a nunerical iterative conputer 

procedure based upon a central finite difference representation of 

the Von Karman equations with respect bo the first derivative of 

deflection ~~ It was observed that the direct iteration 
procedure only converged for a limited range of load para:rreters and 

therefore an interpolation parameter was introduced bo enhance the 
range for which the iteration converged. 
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A finite difference representation was applied qy Mah[6.17] 

to the governing equations derived by a variational method for large 

non-linear deflection of a circular plate. To enable the iteration 

to converge for a reasonable range of deflections the following 

iteration scherre 'HaS used. The calculations were initially rolved 

for a load in the linear deflection regime and the non-linear 

solution obtained. Subsequently the non-linear terms from the 

previous rolution were used when the calculations were repeated, 

follcwing the load being incrementally increased. As the deflection 

am non-linearity increased, the incremental load step was decreased 

to further extend the convergence range of the iteration scherre. 

To numerically deterrrdne the deflection and stress levels, it 

was decided that the use of a central finite difference 

representation of the spatial relationship in the governing equation 

\'wOUld best allcw a rrethod which could be used in the static and 

dynamic cases. 

Initially the numer ical rolution was based on a m:xUfied form 

of the Von Karman equations. 

u = 

where <P 

w 

u 

r 

q(r) 

D 

v 

4JN 
-.£ + 

D 
~ J r {q(r)rdr 
rD 0 

(4J d4> 
de + I-v(4J)2) 

2r 

= dw 
dr 

== Vertical deflection 

== Radial deflection 

== Radial position 

= Applied load 

= Flexural rigidity 

= Poisson's ratio 

6.9 

6.10 
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Advantage was taken of the identical form of the left 

hand sides of the equations of moment and radial equilibrium; the 

equation 6.9 being initially solved for slope or first derivative of 

the vertical deflection with respect to radius and the second 

equation 6.10 for radial deflection only. It was also noted that 

for the fixed edge cirrnlar plate, the boundary conditions for the 

slope and radial deflection were identical. 

<Pr=0 == 0, u == 0 r=0 
6.11 

<Pr=a == 0, u 
r=a == 0 

Substituting central finite difference equations for the 

derivatives an the left hand side of the equation resulted in the 

£allowing difference relationships for the ith pivotal point for the 

jth iteration where i= 2,3,4, n-2,n-l given that the plate 

was divided radially into n equidistant pivotal points excluding the 

bamdaries: 

III 
4>. • +1 (1 + .. ) <p., (2 + -2) + <p. , 1 (1 - .. ) 
),1 1 J,l i J,l- 1 

/tr2 1 i 
== -D «rpN ). 1 . + 'A~ 1: q(Q,llr) Q, llr /tr) 

r )-,1 1UL Q,=O 

(1 + 1:.,) 1 1 u. '+1 - u. ,(2 + -2) + u .. 1(1 - -;-) ),1 1 J,l . ),1- 1 

where J 

1 

a 
llr == n+l 

6.12 

6.13 

Afplying the bamdary conditions at r=O gave the following 

for the first pivotal point. 

2<p. 2 
) , 3rp. 1 ), 

2u. 2 - 3u. 1 J, ) , 

6.14 

2 d<p 1 - v 2 
== -/tr (<pdr + llr if> )j-l,l 6.15 



mile the nth pivotal point gave 

1 -u. (2 + -) ],n 2 n 

1 + U. 1 (1 - -) ],n- n 

+ 1 - \) 2 
nllr (1jJ) )j-l,n 

6.16 

6.17 

'!he grouping of the equations 6.12 - 6.17 gave the matrix 

re lationships 

= L' + FI 
~l = FI 

-2 

mere KI =: Matrix of Coefficients 

L':::::: Load Vector 

FI 
-1 

FI :::::: 
-2 

Vector equivalent pseudo-loads containing 

the non-linear terms 

\1Ot"+-I'"" .... of equivalent pseudo-loads containing 

the non-linear terms. 

6.18 

6.19 

'!he solution involved a deferred-correction method, 

Apperrlix I, at each iteration step to determine both the slope and 

radial deflection with an iterative technique to correct the 

non-linear terms and allow convergence on the correct result as is 

shown by the flow dia;Jram 6.l,page 175. 

It was found that the program solved the problem and 

converged for the range of deflection under consideration in the 

transducer operation without requiring any form of interpolation 

technique. The advantage of the initial method for solving the 

static deflection was that it involved an identical co-efficient 

matrix for each of the governing equations which sinplified the 
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programnil19'. This resulted in an efficient use of merrory,a reduced 

program development time as well as optimising the CO!TIflUter 

execution time required for solution because only a single matrix 

inversion was required. With appropriate modification of the 

coefficient matrix,baundary conditions oti1er than those associated 

with the clamped edge could be and were considered. However this 

resulted in different coefficient matrices for the vertical and 

radial governing equations. Hence two coefficient matrices were 

generated and inverted which eliminated the advantages discussed 

abOlle. 

The disadvantage of this technique was that the matrix 

operaticn gave the slope rather than the vertical deflection, and 

hence any subsequent adaption of the program to solve the dynamic 

deflection of the circular plate or circular plate/foundation 

combination became numer ically difficult. 

Therefore a second numerical technique was used to obtain the 

following representaticn of the norrlimensiona1 governing equation 

6.8 qy substitution of the finite difference equations given in 

Apperrlix J for the ith pivotal point and the jth iteration where i = 

1,2 ,4..... n-2 

(1 + -*"- + _1 ___ 1_) a .. + (-4 
1 12i2 12i3 ],1+2 

2 

242 ---+-)a 
i 3i2 3i3 j,i+1 

_ ~ + da d a» 
2 dp d 2 . 1 . p p]- ,1 

A 2(dad
2
a +·1~ v dll) = -up -- -. dp dp2 2p dp j-1,i 

6.20 

6.21 
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where n 'Was the number of equidistant pivotal points excluding the 

bamdar ies p =0 and p =1 

1 
!:J.p = -n 

p = i!:J.p 

Now at the balndary p =O,according to the analysis presented 

in Chapter Four page 137 the gOllerning equation becane, 

4 
3 d (). = 

dp 
4 6.22 

which on substitution for the derivatives from Appendix J gave the 

re lationsh ip 

using the balnding condition (dd().) 0 :::: o. 
p p= 

6.23 

At the pivotal point the following equations were 

obtained for the initial vertical and radial deflections. 

~l;; 
2 

p 

6.24 

7 1 2dct d2(). I-v d(). 2 
- -2 l;;. 1 + 2t;;. 2 - -6 t;;, 3 = -!:J.p (--d + ---2A (--d) ) '-1 1 6.25 

J , J , J , p dp LIP P J , 
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while at the pivotal point i= 2 for the radial equation z;, 0=0 and 
J, 

hence the equation was 

1 1 4 ·2 . 5 ·1 
(- 12 - 12j) Z;j,i+2 + (3 + 3i) Z;j,i+1 + (2 - i 2) Z;j,i 

4 2 2 do. d
2

o. I-v do. 2 
+ (-3 - 31') Z;" :: -6p (- -- + -(-) ) 

J,1-1 dp dp2 2p dp j-1,i 
6.26 

'!he equations for the pivotal point i=n-1 was 

2 4 2 '5 2 4 2 
(-4 - - -2 + -3)a" '+1 + (6 + -2)0., , + (-4 + .. - -2 - 3)0., . 1 

3i 3i J,1 2i J,1 1 3i 3i J,1-

III 
+ (1 - .. + --2 + --3) o.. . 2 

1 12i 12i J,1-

222 
(d a + 1: do.) (dz; + k (do.) + v Z;) + da, (d Z; + ~ dt; 

dp 2 dp dp 2 dp p dp dp 2 p dp 

v do. d
2 

- - Z; + - ~» 
p dp d 2 . 1 . 

P J-,1 

2 
:: _6p2(do. d a, + 1 - v (do.) 2) 

dp ::2d 2p dp '1' p J- ,1 

while the equations for the pivotal point were 

(7 + ~ + 31 .l:... 
1 12.2 

1 

1 2 2 2 1 
--3)0., , + (-4 + .. - -2 - -3 -3) a, , , 1 
12i J,1 1 3i i J,1-

+ (1 ~ + _1_ + _1_) a, , , 
1 12i2 12i3 J,1-2 

«d
2

o. + 1: do.) (dZ; + k (da,) 2 + ~ Z;) 
dp 2 p dp dp 2 dp p 

2 
~ Z; + (do.) (d a» 

2 dp d 2 '1' p p J-,1 

2 
+ do. (d Z; + ~ dZ; _ 

dp dp2 p dp 

6.27 

6.28 

6.29 
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Hence the grouping of the equations 6.20 - 6.30 gave the 

matrix relationships 

Where .3x 
L 

F 
-1 

K 
---l; 
F 
;;2 

g 

~ 

=L+F 

=F 
-2 

1 

:::: Matrix of coefficients for vertical deflection. 

=:: Load Vector 

=: Vector of equivalent pseudo-loads containing the 

non-linear terms in the moment equilibrium equation. 

=:: Matrix of coefficients for radial deflection. 

6.31 

Vector of equivalent pseudo-loads containing the 

non-linear terms in the radial equilibrium equations. 

=:: Vector of vertical norrlimensional deflections for 

the pivotal points. 

Vector of radial nondimensional deflection for the 

pivotal points. 

As for the previously described method of solution a deferred 

-correction scheme, Awerrlix I , was applied at each iteration step 

to the vertical and radial deflection within an iterative technique 

to account for the non-linear ity. 'lb obtain convergence over the 

required range of deflections 0 < Oct < L 5 a simple averag ing 

interpolation technique was applied to each iteration step. The 

program lcgic is shown in the flow diagram Fig 6.2,page 180. On 

convergence being satisfied a further iteration was carried out to 

confirm the correct value had been obtained. 

The advantage of this method of representing the governing 

equations at the pivotal points was the capability of the program to 

be rrodified to enable the solution of the non-linear deflection of a 

circular plate/foundation corrbination. This was due to the direct 

representation of vertical deflection rather than the slope as in 

the prellioos case. The methcrl also could be used in the solution 

for the dynamic transient loading of both the circular plate and the 

circular plate/foundation corrbinations undergoing non-linear 

deflection. This was simplified by the direct representation of the 



FIGURE 6.2 

Input Data J 

No 

Calculate ex 

and iterate to reduce 
error term as for Flow 
Diagram 6.1 

Differentiate ex and 
calculate F 

~2 

_1 
Calculate ~ K F2 

-~ 
and iterate to reduce 
error term as for 
Flow Diagram 6.1 

Yes 

FLOW DIAGRAM OF 

Calculate the appropriate 
Matrix of coefficients K 
and invert. 

No 
Recalculate 

!':1 

STATIC· CENTRAL 

-ex 

DIFFERENCE PROGRAM 

180. 



applied load and acceleration at a pivotal point, rather than the 

integral of the JlPment of these forces from the centre of the plate 

to the partirular pivotal point as occurred in the previous 

technique. 

To ver ify the accuracy of the spatial representation for the 

governing equation, rolutions from the numerical program were 

compared with results from the well-known analytical rrodel, 

of static linear deflection for a fixed edge plate. '!he radial 

profiles for deflec
2
tion, Fig 6.3 page 182, slope Fig 6.4 page 182 and 

second derivative 4 ' Fig 6.5 page 183were obtained. 
d 

p 

Since the non-linear term in the gOV'ernirg equation is a 

function of slope and second derivative, and numerical 

differentiation has inherent inaccuracies, the error profile is 

presented for 40 radial pivotal points,Fig 6.6 page 183. '!he load 

paraIIEter value of 15 was used which gave a central deflection Octo 

of 2.56, which was twice the anticipated deflection range for the 

subsequent use of the program. '!he large apparent percentage errors 

were a function. of the values of the dependent variables awroaching 

zero. The abrolute magnitude of errors for slope and second 

derivative over the range of step size IJ.p :: 1/20 to IJ.p 1/50 was 

0.004 to 0.002 with the relevant magnitudes of the dependent 

variables beirg that shown in Figs 6.2 - 6.5 

While the selection of a large number of pivotal points in 

the radial direction reduced the error in the initial determination 

of the deflection, it increased the computational effort and 

therefore on the basis of the above results, a spatial step size of 

1/30 was considered adequate. 

Results of non-linear static deflection "Were compared with 

results from the literature [4.4] and using the Berger relationship 

equations 6.1 til 6.2. The central deflection was plotted against 

load parameter as can be seen in Fig 6.7 page 184, while Fig 6.8 

181. 
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page 186 gives the central and edge radial bendin:J stress in 

relation to the central deflection. Finally, there is a plot of 

central nerrbrane stress and radial edge nenbrane stress a.gainst 

central deflection, Fig 6.9 pa.ge .187. The profile of the radial 
in-plane deflection is shown in Fig. 6.10 pa.ge 188 and the 

discrepancy between the finite difference technique applied to the 

Von Karman equations and the Berger assumption can be seen. The 

vertical deflection profile Fig. 6.11 page 189 shows good 

a.g reenen t. 

As can be seen the progam results a.gree with those from the 

exact solution after Way[4.4] and with the exception of the central 

nerrbrane stress, coincides with those obtained from the Berger's 

equations. Hence it was considered that the spatial finite 

difference scheme adequately described the non-linear behaviour of 

the plate. 

6.2.2 STATIC PIATE wrm EOONDATION. 
------------~---------------------------

The equations governing the deflection of a circular plate on 

an elastic Pasternak foundation were 

F(w) :::: k (w) -
f 

6.33 

where the foundation characteristic in terms of the nondimensional 

paraneters was given by 

F*(a} = k*a - G*V 2 a 

iJ1ere F* (a) :: Reactive Nond:imensional force 

G* ::::: Norrlimensional Pasternak constant 
k* ::::: Nondimensional Klinker constant 

6.34 

6.35 
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J, 

Therefore applying the difference equations Appendix 

the reaction can be restated as follows 

F*(o.) 
G* .. 1 . 1 . 4 . 1 

=k.*C/. i - A~2 o.i +2 (- 12 - 12,) + o.i +1 ('3 + 6."") 
4J ]. ]. 

6.35 

and applying the same bamdary conditions as for the plate equation 

it being noted at the boundary p= 0 that the equation reduces to 

2G* 1 
F* (0.) _ =k*a - -(0. (--) 

p-o 0 ~p2 -2 12 

1 
+ 0.2 (- 12» 

The matrix of coefficient can be m:xUfied as follows, 

K' 0. ::::: K 0. + R 0. - --a.~--

where the foundation reaction defined b¥ 

and 

F* 0.::::: R 0. 

R Matr ofcoefficients for foundation reaction 

K' == Matrix of coefficients for vertical 
--a. 

deflection of plate/foundation corrbination 

6.36 

6.37 

Hence the problem can be solved by using the same procedure 

as for the plate case with the alternative matrix of coefficients 

K' ,Fig 6.2 page 180. -C/. 

The Winkler foundation characteristic can be solved as a 

special case of the Pasternak foundation if G == 0.0. The results 

from S.N. Sinha's v.ork [6.3] gave a basis of comparison with those 

obtained from the program, Fig 6.12 page 191, and the plot of 

central deflection against load parameter for a range of foundation 

characters shows the agreement between the methods. The work of 

Sinha considered a Winkler foundation and b¥ using Berger's 

assumption obtained a solution to equations governing the non-linear 
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deflection of a circular plate on an elastic foondation. 

6.38 

6.2.3 DYNAMIC CASE ClRaJIAR PLATEjFaJNDATION 

'lhe equations governing the dynamic transient non-linear 

deflection of a circular plate were the dynamic form of the Von 

Karman equations. 

2 
(~ + 1 aeL) + k*a 
ap2 p ap 

6.39 

The technique of representation for the spatial pivotal 

points was identical to that used in the rolution of the static 

case, and the time domain could be represented by either a direct 

integration operator or a reccurence scheme. 

6.2.3.1 TIME DOMAIN 'lhe second order equation governing 

the behaviour in the time domain for the plate/foondation 

oombination was 

MeL+Ca+KeL+F = 0 6.40 



where !:::: Matrix of COefficients 

f :::: The nondimensional viscous danpin;J coefficient 

~ :::: 1 follC1llirg the form of the time 

norrlimensional parameter used. 

193. 

and the dot denotes partial differentiation with respect to 

nondimensional time. 

As discussed by Argyris et al[6.l8] when considerirg the 

first order dynamic equation, M:::: 0, in relation to diffusion 

analysis, the time domain could be represented by either rrodal 

analysis such as in Chapter 5, or recurrence relationship/direct 

integration operators in a discrete step by step procedure. 

The modal analysis required the separation of the spatial and 

time variable and the subsequent superposition of the 

orthonormalised eigenmodes to achieve the solution. The 

oornputational effort could be reduced by consideration of only the 

few dominant fundamental modes in typical engineering problem. 

HCMever the accuracy of the solution was a function of the numer of 

rrodes for which the sunmation was carried out. 

Fbr linear elastic problems the spatial and time 

representation could be decoupled since C and K were constant while 

F was independent of a.. Therefore the dominant orthonormal 

eigenfunctions had ooly to be determined at the initiation of the 

solution program and the sunmation of the rrodes' contribution 

awlied at each time interval, (see section 5.2,page142 ). The 

forc ing function could be expanded as an infinite ser ies of the 

orthonormal eigenfunctions. Therefore the 

representation for each rrode was determined 

resultant time 

from the g~ernirg 

equation, the initial boundary corrlitions in the time domain and the 

forcing function. For the application of this technique to obtain 

an exact solution to the linear case see section 5.3. 
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For a non-linear dynamic system mere K was a function of CI. 

mile F was a function of previous deflection as well as time, the 

orthonormalised eigenmodes had to be determined at each time step as 

in section 5.3, or over a limited nurrber of time steps with an 

assunption of quasilinear isation between pi veta 1 time points to 

ensure decoupling. AIoo the assunption of superposition failed and 

therefore the resultant rolution of the geometrical non-linear 

deflecticn of the plate was inexact. This is discussed in detail in 

section 7.4, page 261 • 

Since the determination of orthonormalised eigenmodes was 

demarrling in CClrCplter time, and superposition failed in the case of 

geometrical non-linearity, the alternative recurrence relationship 

in the time domain was initially cansid,ered. 

This method, rorrmonly used in dynamic structural analysis, 

represented time as a series of finite discrete time domains and 

subsequently uses a specific relationship between the nodal points 

in time which satisfied the governing equations. This resulted in a 

time-stepping or recurrence rolution which progressed through the 

time domain. 

6.2.3.2 INTEGRATION 

OPE~ The deflection,velccity and acceleration 

could be represented by direct integration operators of the form, 

CI. = CI. + y<; In + (1 - y) CI. tn 
-t+l -t t -t+l 

a. = CI. + 0: In + B CI. tJ.T 6.41 -t+l t -t -t+l 

for the nodal points t+ 1 and t where tJ.T is the time step length and 

y, B were constants associated with the specific 

operator. 

integration 
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Alternatively Zienkiewicz[6.19] derived a recurrence 

relationship, based upon a finite element approximation, of the form 

2 2 
[~ + yMs;. + SLh K ] a + [..:..2H" + (1 - 2y) Me + (~ - 2S+y) M K ] a. 

- -t+l - -t 

2 . - 2 
[~- (l-Y)~Ts;. + (~+ 13 - y)M K]a. + f ~T = 0 

-t-l 
6.42 

where 

I = f 13 + f (~- 213 + y) + f (~ + 13 - y) 
-t+l -t -t-l 

and the subscripts define the nodal points in time while y,13 are 

specific to the particular recurrence scheme. 

When selecting a schene for the time domain the suggested 

criteria after H.M. Hilber et al[6.20] is 

'(1) Unconditional stability when applied to linear 

problerrs 

(2) No IlDre than one set of implicit equations should 

have to solved each time step 

(3) Second order accuracy 

(4) Controllable algorithmic dissipation in the higher 

IlDdes 

(5) Self-starting' 

'llie basis of the first condition was to ensure that the 

relationship was convergent and stable for a time step which allowed 

an economical presentation of the forc ing function and from 

Krieg [6.21] implied an implicit schene. 
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'!he second rondition was to minimise the corrputer 

requirements for large solution schemes. Previous experience had 

ind icated the super ior ity of the second order accuracy. Because of 

the finite number of points used to define the shape of the 

plate/foundation combination, the higher frequency modes could not 

be accurately represented. Therefore algorithmic dissipation in the 

higher modes was desirable to danp out any spurious contribution by 

these modes. However numerical dissipation in the lower modes would 

give rise to relative period error in the solution. 

To achieve the final condition of seli-starting, the algorithm 

should contain the initial time boundary conditions. While this 

criteria would suggest the time domain should be defined by a direct 

integration operator, at the time of developing the dynamic program 

a Ei:JUbolt recurrence scheme[6.22] was used and subsequently modified 

folladng Zienkiewicz, to allow a range of schemes. 

For the second order dynamic equation either a three-point or 

four-point recurrence scheme could be applied. Initially the 

stability of the three-point recurrence scheme was consiCiered,after 

Zienkiewicz, for viscous damping. 

6.2.3.2.1 As had 

been established by using a weighted residual approach [6.19] , the 

general three-point recurrence relationship in the time domain, for 

linear conditions was given by 

[~ + y6.C + S6.2!J ~ + [-2M + (1 - 2y)6.~ + (~ - 2S + y)6T2!]~ 
-n+l -n 

+ ~M - (1 - y)6T~ + (~ + S - y)6.2KJ ~ + f6. 2 = 0 
-n-l 

6.43 



where 

f = f + f (~ - 2S + y) + f (~ + S - y) 
-n+l -n n-l 

8T = Time increments between nodal points 

S,y = Constants dependent upon the specific 

recurrence relationship and are given 
in the Table 6.1 

y S Scherre 

1/2 0 Central Explicit 
1/2 1 Backward 

1/2 1/6 Linear Accleration * 
1/2 1/10 

3/2 4/5 Galerkin 

1/2 1/12 Fox Goodwin 

1/2 1/4 Constant Average Accleration * 

~LE 6.1 Coefficients for Three-point 

Recurrence scheme (after Zienkewicz) 

*Note: Frcm the Newmark family of integration schemes 

197. 

'Ihe stability criteria was obtained by considering the linear 

equation of the general form [6.23] 

M. CI.. + C. a. + k. CI.. + f. = a 
1 1 1 1 111 

6.44 

it being noted that for this case M. :::: 1 due to the nondimensional 
1 

form of time in the governing equation. As for section 5.2 , 
using the real eigenvalues of the free vibration 

2 
w. k. 

1 1 
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nodal decomposition was applied. 

Again the honogenous equation was considered with :Ii = 0 and 

a solution of the form 

(a. ) 
~n 

= A*(a..) , ~n 

= A*(a.) 1 
~ n-

was assumed. Therefore substitution into the general recurrence 

relationship for a single degree of freedom gave the characteristic 

equation 

6.45 

substitu Hng 

~ = tnC. 
~ 

= 2x.w.tn 
~ ~ 

2 
:= 6:r k. 

~ 

2 1J.T2 w. 
~ 

C. 
v.here X. := 2~ and represented a fraction of the critical darrping, 

~ to· 
following the ~finition of the nondimensional time parameter gave 

2 
A* [1 + yq. + Sp. ]+ y*[-2 + (1 - 2y)q. + (~- 2S + y)P. ] 

~ ~ 1. 1. 

+ [1 (1 y) q. + (~ + S - y) D'] = 0 
~ '-1 

6.46 



but substituting 

9 = 
q.+(~ + y)p. 
l. l. 

1 + yq. + Sp. 
l. l. 

gave the roots 

~i + (~ ~Y)Pi 
9., == --::--:----:---::---

. 1 + yq. + Sp. 
l. l. 

(2 .-'-g)± / (2-g)2 - 4 (1 + 9.,) 

2 

199. 

6.47 

For the roots to be complex and hence the procedure to be 

stable 

2 
(2 - g) < 4 (1 + 9.,) 

From Append ix K 

where 8~ "" w 11 
1. 

th gave 

2 
1) + 4(1 - Xi) > 0 

which in the case of x. :: 0 reduced to the given condition[6.23] for 
1. 

the unda.rrped case 

6.48 

Considering the limit condition for the inequality 

6.49 

then 

8* < 
-2 Xl.' (2y-l) ± 14x~ (2y-l) 2 .~ 16 (4S~ (y+~)2) (l-x~) 

1. 1. 
6.50 



gave the limiting condition for el~ and since e~ = tn:w. 
1 1 

w. = 
1 

21f 
T. 

1 

< 

mere T. was the per iod of the frequency w .• 
1 1 

J 2 2 2 2 
-2Xi (2y-1)±v 4Xi (2y-:-l) -:-16(4 . (y~) ) (I-Xi) 

2 (46 - (y + 1z) 

200. 

and 

6.51 

As pointed out by Sharpe[6.24] from the form of the equation, 

unconditional stability was dependent upm 

2 
46 - (y + ~) = 0 

'\\him was independent of danping as well as being consistent. with the 

corditim obtained by that author for the case y = 1/2 , 6= 1/6, in 

that the equation reduced to 

D.T 
- < T. 

1 

1 11 - x~ 
iT /1 - 46 

13 2 
< -(1 - x.)1z 

'IT. 1 

tak ing the positive com i tion. 

6.52 

'Ihe rrodu1us of A * was required to determine if artificial 

numerical damping occurred and for stability had to satisfy 

k 
(1 + ~) 2 < 1 

Therefore squaring the term 

-1 < ~ < 0 

ard substituting for ~ gave 

2 -2x·e* + (1z - y)e* 
1 -1 < -------_=:_ < 0 

1 + 2x. ye*+ S 
1 

. 

6.53 



201. 

which again for x. ::::0, the undanped case satisfied the known 
1 

relationship[6.23] 

for no algorit.. .. unic dissipation. 

Conditional stability will occur for real roots of 

prov ided that 

Therefore the stability criteria for damped single degree of 

freedcm systems can be presented as Fig 6.13 page 202 for y :::: 1/2. 

It can be seen from Fig 6.13 that for the Newmark schere y = 1/2, 

a :::: 1/6 the results confirm those presented b¥ Sharpe. 

Plots of the m::xlulus of the roots Ai ' Ai or the 'spectral' 

raUus Figs 6.14 Fig 6.19 pages 203 - 205 show the limit on 

stability as \\.!ell as the influence of the combination of viscous 

danping and algorithmic darrping for the three-point recurrence 

schemes. The limiting case x. 0 gave the results presented in 
1 

other works[6.20,6.23,6.251. It can be seen that as reported [6.20] 

high order m::xles exhibit minimal danping. 

In the literature[6.20,6.25] results have been presented for 

undanped systems on the relative period error as a function of the 

time step size, Fig 6.20 page 206. Since numerical experimentation 

usirg the results fran the linear case and a modal solution was to 

be carried out, further analysis on the relative period error for a 

damped system was not considered justified. 

With the recurrence schere, for transient loading conditions, 

a starting procedure was required to initiate the solution. Since 

the initial bcundary conditions for the time domain \\.!ere· zero 

vela:::: ity and displacement, to the first order of accuracy it was 

assumed that 
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and that the pressure loading was applied from time T == 00 Hence 

the value of (Xl was calculated and thus the recurrence relationship 

applied for the solution of all subsequent displacerrents. 

6.2.3.2.2 FOUR POINI' RECURRENCE RELATI<NSIITP An 

extension of the weighted residual method of Zienkiewicz [6.26] using 

cubic shape functions resulted in the Four-point Recurrence Scheme 

2 3 
+ (-3y + 4)~ + (? + 4y - 2) S.8T + (-l:2n + 28 

3 5 2 + (3y - 5)~ + (¥ - 5y + 3)S.lIT + (l:2n - ¥ + 3y)~8T (X 
-n-l 

I I 2 3 2 
+ (6n - ~8 + yd f 8T + (-l:2n + 28 - 2Y)~ liT 

~n+l n 

5 2 I 
+ (~n - ¥ + 3y) fliT + (6,n + 8 

-n-l 

for the initial equation 6.40, where as previously 

8T == tirre increment between nodal points 

S,y, n :::: constants dependent upcn the specific 

recurrence relationship and are given 

in the Table 6.2 

o 6.54 



n ~ y Sche'lle 
.. 

27 9 3 Houbolt 

702/35 36/5 13/5 Galerkin 

16.244 6.039 2.40 Wilson e I = 1.4 

18.125 6.583 2.50 Wilson e' = 1.5 

24 8 3 

22 8 3 

Table 6.2 Coefficients for the Four-point 

Recurrence Scheme (after Zienkiewicz) 

208. 

Also the ooefficients for the foor-point scheme can be 

related to e' sche'lles by the relationship, 

n = 2 + 4e' + 3e,2 + e,3 

~ = .! + 2e' + e,2 
3 

y = 1 + 6' 

The given general stability conditions for the undamped case 

were 

2 < ~ + 1 
2 Y <"3 2" 

~ + ¥ -5y < n < 
2 -9y + 3~y + 13y - 6 6.55 
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and Figs 6,21 page206 Or 6.22 page 210 show the 'spectral' radius 

and the relative period error for specific values of C,a,y as a 

function of the ratio of the time step to the undanped period. 

Again graI;i1ica1 data is available only for the undanped case 

although WOOd[6.2-7] has established stability criteria for a danped 

system of the form 

., 2 iST 
a + X. & + w a = p e 

1 

'Iherefore nurrerical experimentation was carried out using the linear 

analytical model and the numerical program, for the cases of viscous 

damping • 

As with the three-point recurrence scherre a starting 

procedure was required, a typical exanple being that associated with 

the Houbolt recurrence where the initial conditions in time were 

a{p,O) = 0 

a.(p,O) = 0 

arrl the acceleration and velocity for the nodal point Ih "" 0 were 

given by 

3a{p,O) 
3y 

1 = 6~T(2a(p,~T) + 3a{p,0) - 6a(p, - ~T) + a(p, - 2~T» 

Substitution in the governing equation gave 

2 
3 a(p,O) = 8(0) 

3T2 -&-

resulting in the initial starting conditions 

a(p,-M) 

a(p,-2M) 

8 (0) 2 = -- ~T - a(p,M) 
& 
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Curve 
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D 22 8 3 

E 20.275 7.65 3 

F 430.5 154 51.5 

W 16.224 6.093 2.4 
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Which were substituted inbe the appropriate recurrence relationship 

be give the required starting corrlitions for the first three nodal 

p::>ints in time. Therefore there were two inversions or partitions 

required of the coefficient matrix. 

while the recurrence scherre did not satisfy all the suggested 

criteria [6.20] particularly items 4 & 5 page 195,it had been 

initially decided to use the Houbolt relationship. Subsequently 

th is was expanded be the general three-point and four-point 

recurrence scherres to represent the time domain. 

As for the three-point scherre, nurrerical experimentation was 

carried out for the linear case with the exact oolution from the 

m:::>d.al analysis. 

6.2.3.2.3 DIRECT ]NTEG~ION OPE~ Finally, because 

of the stability and self-starting 'characteristics, a Newmark 

scherre[6.27] for 

6.56 

= ~ + ~~T(a + a ) 
~i -i -i+l 

was refornulated to give 

= _l_(a - a - ~La - ~L2 (~ - S) a 
tlL

2S -i+l -i -i i 

= a + ~~L(~ + ~ ) 
-i -i -i+l 

Substitution inbe the original equation 6. 40 gave 

1 1 
(~ -2- + f ~ AD + !9 a 

~L S uT~ -i+l 

= f + M _l ___ (a + ~La + ~L2(~ - S)~) 
-i+l - ~L2S -i -i 

6.57 
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This scherre was :impleIreI1ted by nodifying the roefficient 

matrix and gave a basis for comparison with the recurrence schemes. 

The starting condition "Was, for the time M , 

CI. = 0 
~i 

CI. == 0 
-i 

CI. ::::: 0 
-i 

The respcnse of this . technique of representing 

domain has been analysed by Sharpe [6. 24] and shown 

satisfactory although the relative period error can 

significant at large time steps. 

6.2.4 DYNAMIC CENTRAL DIFFERENCE PROGRAM 

the time 

to be 

become 

The technique of solution described above "Was grouped into a 

single program, with the logic shown in flow diagram,Fig 6.23 page 

213. This program "WaS capable of solving the impact loading case 

giving either a linear or non-linear dynamic deflection of a plate 

or plate/foondation combination such as occurred in the proposed 

transducer. 

The linear dynamic results were used to verify the program 

performance against known results as well as results determined by 

alternative programming techniques. 
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CHAPTER SEVEN" 

RESULTS AND DISaJSSICN 

7.1 lNI'IDDUCrICN 

The results from the linear modal analysis were used to 

determine the appropriate recurrence scheme to represent the time 

domain. The oompar ison was based upon a rectangular p11se load of 

E = 10, Td = 0.2, v = 0.3 because this was a stringent test of the 

stability and accuracy of the time response by ensuring that the 

maximum deflection was approached prior to the removal of the load. 

The influence of viscous damping was also considered for the linear 

deflection and the accuracy of the selected time danain alogarithm 

confirmed. 

In addition, the linear modal analysis was used to ver ify the 

alogarithm describing the vertical deflection for the plate and 

plate/foundation oombination, particularly that assoc~ated with the 

Pasternak foundation. This was because of the inaccuracy in the 

only published results for the non-linear dynamic response of a 

fixed edge circular plate/Pasternak foundation ccmbination when 

subjected to a step load condition of E 10. The load cases used 

in this ccmparison where the step load, the rectangular pulse load, 

and the exponentially decaying load. The rectangular pllse load E = 

10,Td =0.2 was used for the reasons discussed previously while the 

step load E 10 has been used for the results presented in the 

literature on non-linear plate behaviour. The exponentially 

decaying load described. the anticipated initial pressure pulse 

acting in the explosive forming, section 2.3, page 35. 

The ron-linear dynamic results for the plate obtained from 

the central difference were ccmpared with those of Alwar et al[7.1] 

and Coleby et al[7.5] and the quasi-linearisation technique applied 

Alw::rr et al discussed. The bolmdary condi tions considered were 
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extended and solutions for: the clamped edge and the simply 

supported immovable edge outer boundary determined for the 

non-linear dynamic response. 

The plate/foundation non-linear transient deflection was 

calculated using the numerical program for both the Winkler and 

Pasternak foundation characteristic and the results discussed in 

relatioo to those of Nath[7.7]. The differences beaveen Nath's 

results for: the Winkler foundation and the numer ical solution are 

discussed for the plate with a fixed edge boundary condition. A 

closer agreement was obtained for the simply supported plate 

boundary. For the Pasternak foundation with a fixed edge plate, the 

discussion centres on the erroneous results presented qy Nath and a 

canparison is made with those obtained fran the program. The form 

of ~~e response for the simply supported plate boundary was similar 

for the program and Nath's research,while there was a variation in 

maximum deflection amplitude. 

The results of the non-linear modal analysis were compared 

with those fran the numerical program and the discrepancy discussed. 

Finally the design for:mance of the pressure transducer 

presented as well as typical deflection and stress profiles for a 

plate stbject to an exponentially decaying load. 

7.2 LINEAR RESPONSE 

An 'exact' solution for the linear dynamic response of the 

plate and the plate/foundation canbination using the modal analysis 

sectioo 5.1- 5.2.5 was obtained for: the step load, rectangular PJ,lse 

load and an exponentially decaying load. The step load case for the 

plate was used to examine the three and four point recurrence 

schemes discussed in section 6.2.3.1-6.2.3.2.3. 
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Undamped and viscously damped dynarrdc deflection of the plate 

was calculated for the load cases and the resul ts canpared with 

those derived from the numerical programs. Similarly the 'exact' 

solution for the Winkler and. Pasternak foundations were determined 

for a range of val1.;teS k * and G* and soowed aggreement with t..he 

numerically derived results. 

7.2.1. ~ MODAL ANALYSIS 

The central deflection of a plate subject to a rectangular 

pulse load of £ = 10 for T = 0.0 to T = 0.2 is given in Fig. 7.1, 

page 217. It can be seen that the amplitude of the resultant 

sinusoidal deflection was not constant but varied by 4. 7%. Fig. 

7.2 page 217 exmtains the deflection associated with the first root 

as well as the sumnation of deflection for the higher order roots 

2-30 which did not sum to zero rut to an alternating deflection of 

variable frequency with a mean value of the order of 3.8 times that 

of the first root. Therefore the higher order roots of the modal 

analysis beat against the first order root giving the observed 

variation in the deflection amplitude. The resultant central 

deflection time graph was used to determine the accuracy, 

algorithmic damping and relative periOd error associated with 

specific three-point and four-point recurrence schemes used in the 

time domain, sections 6.2.3.1-6.2.3.2.3, for a range of time step 

sizes. 
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7.2.2. TIME DCMAlN - NUMERICAL EXPERIMENTATION 

A comparison between the dynamic deflection results from the 

modal analysis and the finite difference program, using a Newmark 

direct integration operator S = ~, y =~, bT = 0.0075 is shown in 

Fig. 7.3 page 219 while Fig. 7.4 page 219 gives the results for 

the corresponding central bendingmaments. As would be anticipated 

the accuracy of the central radial bending moment from the numerical 

program was less than that for deflection because of the inherent 

inaccuracies associated with central difference differentiation 

techniques, particularly at I:xJundaries. 

The absolute differences between the deflection results are 

presented in Fig. 7.5 page 220 and the increasing amplitude with 

time sh::>wed the influence of errors in waveform and period. The 

apparent disparity between the error graph and the deflection is due 

to the plotted resolution being less i.e. bT :: 0.01 than the time 

step M 0.0075 used in the calculation. Error conditions defined 

as 

Error :: 
a
o 

dynamic . 

(a static) 
o program 

aodynamic 

(a
o 

static) modal 

for specific three point recurrence schemes are presented in Fig. 

7.5 7.9 P 220-2 for the rectangular pulse loads, of E 10 for T 

0.0 0.2, with time step size of M == 0.005 and bT = 0.010 while 

Fig. 7.10 shows the deflection for S "" 0.8, Y :: 1. 5 and time step 

size of M :: 0.005, 0.0075 and 0.010. 

Alogarithmicdamping is apparent in Fig. 7.7 - 7.10 as was 

expected from the spectral radius, Fig. 6.17 6.19 pages 204-5 , 

\vith no relative perioo error being in evidence while Fig. 7.5-

7.6 exhibit the effects of relative period error with limited 

amplitlrle change, which was anticipated, section 6.2.3.2.1. 

Therefore the Newmark, S = 0, Y = 0.25, gave the best representation 

of the time domain for the three point recurrence scheme and was 

adopted for the nonlinear analysis. The results for the canparison 

of the four-point recurrence schemes with respect to the linear 

modal analysis are given in the Figs.. 7.11 - 7.15 pages 223.5. The 

Houbolt recurrence relationship, Fig. 7.11, exhibited alogrithmic 

da~ing characteristics of the scheme [6.23], as the time step size 
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was increased and for this procedure step sizes of less than 6T :::: 

0.0005 had to be employed for accurate plate analysis. Tne scheme 

:::: 24, S :::: 8, y = 3, Fig. 7.12 displayed a similar error to the 

Houbolt relationship with the source of error being a function of 

the dlange in period and no apparent alogrithmic damping, as would 

be expected [6. 23]. The Wilson technique e I == 1. 4, Fig. 7.15 for an 

equivalent step si ze fit :::: 0.005 exhibited both overshoot [6.24 1 and 

relative period error as well as alogrithmic damping, as did the 

Galerkin four point sdleme, Fig. 7.13. 

Finally for s :::: 22, 13 :::: 8, y ::: 3, Fig. 7.14, the recurrence 

scheme exhibited a relative period error and overshoot but for a 

step size of 6T:::: 0.005, there was no alogrithmic damping. 

Therefore, while the Houbolt recurrence sdleme was initially 

used with small step sizes of the order of 6T :::: 0.0025 for the 

non-linear analysis, subsequent work was based upon the Newmark 

three point recurrence scheme. As can be seen from Fig. 7.6 and 

Fig. 7.11 these gave the most accurate representation for fiT:= 

0.005 of the sdlemes oonsidered 

7.2.3. DAMPING 

From section 6.2.3.2.1. it can be appreciated that the 

viscous damping would modify the response of the algorithms used to 

describe the time domain and therefore the results from the 

numerical program were compared with those from the modal analysis 

for transient, dynamic deflection. The load cases oonsidered were a 

rectangular pulse loading, a constant load and an exponentially 

decaying load condition using a range of ron- dimensional viscous 

damping valves. 



227. 

Canpar ison of the results for oentral deflection from the 

numerical solution of the plate subject to viscous damping, can be 

seen on Figs. 7.16 - 7.18, pages 228-9for constant pressure loading, 

rectangular pulse pressure loading and exponentially decaying 

pressure respectively. For non-dimensional viscous damping values 

of 8, 16, 24 and 32 the two solution methods were identical for a 

step size of M = 0.005. Therefore the Newmark recurrence alogrithm 

adequately described the viscous damping, in agreement with section 

6.2.3.2.1 page~96 and Sharpe's work [6.24]. 

The Houbolt recurrence sdleme was also compared with the 

linear modal analysis for an identical step size and gave similar 

agreement. From these results it can be seen that for the plate, 

critical damping lies between X = 16 and X = 24 and for the 

fundamental first mode frequency was X 't= 20.43. 
Cr:! .. 

7.2.4 WINKLER FOJNDATICN 

From Fig. 7,,19, page 230 it can be seen that the increasing 

value of foundation constant raised the fundamental frequency of the 

system, as would be expected, according to the relationship 

f = 0.,4 + k*)~ 
1 1 

Therefore the step size in the time danain had to be 

decreased to ~T = 0.0025 to avoid relative period error, 

particularly for stiffer foundations of k* > 100. The numerical and 

modal analysis solutions for oentral deflection are srown in Fig. 

7.20 for a constant load case and again are in B.g'reement. 
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An example of the o=ntral deflection history for a 

plate/Winkler foundation canbination, subject to viso::>us damping, 

fol1CMing the application of an exponentially decaying pressure, is 

gi ven in Fig. 7.20, page 230. For the given time step f..T:: 0.0025, 

the linear numerical and mcx:1al results are in agreement for viscous 

damping values of X = 8, 24 and 32. 

7. 2.5 PAS'lERNAl{ FOUNDATICN 

Fig. 7.21 srows the result for a plate/pasternak foundation 

canbination when subjected to a constant load of E = 10 with k :::: 50 

and for G* = 50 and 100. 

The linear numerical results for o=ntral dynamic deflection 

are in agreement with those fram the modal analysis, section 5.2, 

page 142, and as for the Winkler foundation, the increasing 

fundamental frequency with increasing stiffness, as G* increases in 

magnitude can be observed. 

As for the previous case, a step size of ~T :::: 0.0025 was 

required to avoid relative period error in solutions approaching T ::: 

10. 

7.3 N:N-LINEAR DYNAMIC RES ULTS 

The run-linear dynamic results for the rigidly clamped and 

simply supported immovable edge plate were obtained fram the central 

difference program for a step load condition. These were plotted 

with the published results of Alwar et al[7.l] and Coleby et al[7.5] 

and discrepancies in the resultant form of the reponse discussed. 

Again viscous damping results were derived and canpared with the 
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results presented qy Alwar et ala 

The numerical results of the non-linear response of the 

plate/foundation canbinations with Winkler and Pasternak foundation 

models for the above boundary conditions were presented and 

consicered in relation to the work of Nath [7. 7 J • 

7.3.1 NCN-LINEAR DYNAMIC TRAl'BIENr DEFLEcrlOO 

The results of Alwar et al [7.1] for the non-linear 

transient deflection of a fixed edge plate are canpared, Fig. 7 .. 22 

page 232 with those from the program for an identical loading 

condition and it can be seen that there exists sane differences in 

the rentral deflection history and the maximum deflections diverge 

qy 2.9 • 

This solution was based upon the use of Cheqyshev polynomials 

to describe the spatial danain, in a technique developed by Alwar et 

al [7.2] for the static solution of the non-linear deflection of 

plates. The Houbolt four-point recurrence scheme was used in the 

time domain while a quasi-linearisation technique was implemented to 

allON the generation of a set of linear algebraic equations of the 

variable coefficients for the Chebyshev polynomials. The 

coefficient equations were a function of the governing equations and 

I:oundary conditions. This was solved at each nodal point in time 

and it would appear [7.3] that a time increment of In 0.001 was 

required for an accurate solution. 

The observed difference in deflection history was a function 

of the linearisation technique applied by Alwar et al for the 

non-linear terms in 
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using a Taylor series expansion of the form 

(x). = 
]. 

and the back substitution of a backward difference scheme for the 

first and second derivative with respect bo time. 

The first derivative, using backward difference, was given by 

[7.4 ] 

where V was the backward difference operator, j was the time nodal 

point while the second was 

= (,,2 + ,,3 + 11 ,,4 )-
v v 12 v •••• x j _l 

The substi tutioo made by Alwar was 

= 

and 

which gave 

= 

- - - 2 
(x. 1 - 2x. 2 + X. 3)/~T 
]- ]- ]-

(~) (2.5(3a) 
3p . 3p . 

] ] 
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HaY'ever, the der i vation ignored the second order term for 

the first partial derivation with respect to time, which was of the 

same order of magnitude as the included second partial derivative 

with respect to time and if it had been included would have given 

the resultant quasi-1inearisation 

Therefore the errors in the quasi-1inearisat~ were of the 
2 a2a 3 a . 

order of \] and when values of 3pClT and 3pClT 1ncreased, 

particularly as the maximum deflection was approached, this would 

have becane significant, having the same influence as the second 

order partial derivative with respect ":=2 time. Figs. 7.23 and 7.24 

page 236 shaY' the variation of aa and g as a function of time at ap 
locations p 2 0 and p 0.33 while Fig. 7.25/ page 237 gave the 

derivatives ~P~T at those locations within the accuracy of numerical 

differentiation. From this figure it can be seen that the amplitude 
2 

of ~ is significant and the rate of change is a maximum at the 
apaT 

regions of discrepancy between the plb1ished results and those from 

the finite difference program-

The summation of the coefficients for both representations of 

the 1inearisation was unity and therefore the viscous damping case 

would give the static solution following decay of the oscillation 

irrespective of the accuracy of the dynamic deformation history. 

Therefore the check used l:¥ Alwar et al did not confirm the accuracy 

of the intermediate dynamic results, only those for the fully damped 

condition. 

The spatial representation for the plate is also discussed in 

section 7.3.3 page 241 and the formulation considered. 

To obtain a further compar ison the numer ica1 program was 

modified to allow solution for the immovable edge simply supported 

roundary condition Le. 

a
2

a + ~ act. = 0 
3p2 p p , 

at p = 1 

a = 0, z:: = 0 



2-0...----------------. 0-2 

J' 1'5 ........... ~~-+__-.....-...-::li_-_I__--L-_+>r==-I____I o 
IJJ 

c: 
.Q 
t 
OJ lO 
--' 
'+­
OJ 

-0 
--' e 0-5 
-+­c: 
OJ 
I..J 

o 

0-1 

I 
J 

I 
1-( ~ O() 

\ 'bp If =- 0 -33 
I...... I 

\ I ', .. ,,/ \ I 
\ I , ..... 

central deflection 

0-2 0-3 0·4 
time parameter t 

-0-4 

0-5 

236. 

FIG 7 -23 CENTRAL DEFLECTION AND FIRST DERIVATIVE vs TIME 
FOR RIGIDLY CLAMPED PLATE £ = 10, ~ = 0 ·3 

2·0 0·1 
,/rx 

1· 5 
/'(Of 2

) ['"0 
0-05 I ,,1\ ~IN c: , \ (\J Cl-. 0 

t 1\ , \ /0/0 

OJ I \ I \" ,", OJ 
~ 1-0 J\,( \ , ./\J{ \ 0 > 
OJ \ ttl ,'" \ ,I -+-

-0 " \ d 
...- \ , 

J\ I \ ,\ 
> 

e ·c t \ ( \ OJ 
-+- -0 c: 0·5 \ ,.. I ( ~ '2 IX) " -0-05 OJ \ 1\ I -- -0 u 

\ V\ I \1'- I 'op2 ro- c: 
0 \/. I u ... "'\ ,..... I\. r: I OJ 

\ I \.. '.I \ I til 

0 \ I ~ 0-1 
\.J 

0'1 0'2 0-3 0-4 0·5 
time parame ~er t 

FIG 7- 24 CENTRAL DEFLECTION AND SECOND DERIVATIVE 
vs TIME FOR RIGIDLY CLAMPED PLATE 
€. -:: 10) ~ = 0 -3 



237. 

2'0 

0 1·5 £S 
(/;) 

02()( 1-0 /\(Opll1:) 
f \ p "'0'33 
I \ 0·5 ~ 
J \ 

~ /0 I \ 
\ cJ ~ 

.!!! lO 
'+-
OJ 

D 

(j 

0·5 L 

~ 

\ J ....... 
;to /'0 

\ 0 OJ , .2: 
\ I 13 r' 

'" I 
>-
L 

\ I .... 0·5 OJ 
..J 'U 

U 

o -1-0 

o 0-1 0·2 0·3 0-4 0-5 
time parameter ~ 

FIG 7-25 CENTRAL DEFLECTION AND -o?cX vs TIME 
C\()( (:) ~ 

FOR RIGIDLY CLAMPED PLATE £, -= ~:: 0·3 

2·4 r------~-------------~ 

2 ·1 

c: lS 
.Q c 
+- 0 
~ 4= 1·5 

--" u 
'+- (JJ 

OJ -
'U Qj 1'2 
(j'U 

!: 12 0-9 c +­
OJ C 
u ~ 0.6 
.~ u t ~0'3 
'U 

o 
-0-3 

0'10 0,2 0·3 0'4 

I 
I 

I 
)( 

time paramet~r 1:: 

/.' ;if 
I I 

If 
" I I 

I" 
I I 

)( I 
I I 

I I 

D,S 0,6 0-7 

FIG 7·26 NON- LINEAR CENTRAL DEFLECTION vs TItv'IE FOR SWIPLY 
SUPPORTED IMMOVABLE EDGE PLATE t'.=10, ~ =0'3, 



238. 

Figure 7.26 page 237 shows the results of the program as *!ll 

as t.l-)ose of Alwar. 

An alternative solution presented I:::y' Colel:::y' et a1[7.5] was 

based upon the application of Berger's assumption to effectively 

decouple the governing equations and implementation of the 

iso-amplitude method of Mazumdar et al [7.6]. The resultant 

solutionofor the circular plate with a rigidly clamped and simply 

suworted irrm:::>vable edge are presented in Fig 7.22 page 232 and Fig 

7.26 page 237 , respectively. For the fixed edge rondition the 

results of Coleby et al more closely fol1CMed the numerical program 

solution than those of Alwar et ala It has been established by 

Alwar et al [7.3J . that Berger's assumption did not affect the 

accuracy of solution for e:::: 5, however some discrepancy was apparent 

for loads of e:::: 10. Therefore the difference exhibited between the 

numer ical solution and that of Colel:::!i et al was ronsistent with 

these results. The simply supported irrm:::>vable edge boundary 

rondition showed a similar difference in response. 

7.3.2 VISmUS 

The results of dynamic non-linear plate response, subject to 

viscous damping, were canpared with those from Alwar et al [7.1]. 

As for the undamped plate behaviour, there was discrepancy in the 

deflection histories for the reasons discussed in the previous 

section. 

Fig. 7 .. 37 page 239 presents the results fran the numerical 

program while Fig. 7.38 page 239 contains Alwar et al' s graph for 

rigidly damped plate subject to a load of £ ~ 10 with a Poisson's 

ratio of v ::: O. The maximum differentiation amplitude is 3.4% 

interpolating fran the graphs. The results for the simply supported 

irrm:::>vable edge plate are given in Figs. 7.29, 7.30, page 240 

,,.,ith the maximum difference in amplitude being 4.6%. 
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As for the linear case it can be seen in Fig. 7.27 giving 

the response of a fixed edge plate that the amplitude of the maximum 
) 

deflection varies also. 

7.3.3 WlNKIER FOUNDATION 

The results of static non-linear deflection for the plate/ 

foundation canbination were in agreement with Sinha [ 6.3], Fig. 

6.l2page 191. 

To verify the accuracy of the dynamic solution, constant 

loads were applied, with a viscous damping value of X ::: 20 to a 

clamped circular plate. resultant central deflection was 

recorded, following cessation of oscillation, against the load for 

specific Winkler foundation oonstants k* = 80 and k* ::::: 120, Fig. 

7. 31 page 242. As for the static case the resul ts coincided with 

those of Sinha. 

The central deflection was plotted on a function of time for 

foundation constraints of k* ::: 50, 100 and 150, Figure 7.32 page 242 

'...bile the results of Nath (7.7] for similar foundation and load case 

are presented in Fig. 7.33 page 243. It can be seen that while the 

results from the program approximated those of Nath's, the published 

resul ts had a lower value of maximum central deflection particularly 

for those with a large Winkler foundation constant. Fig. 7 .. 34 page 

243 shows superimposed results for k* ::: 50 and k*::: 100 and 

illustrates the above point. 

The resultant values from the dynamic damped cases, along 

with the appropriate Sinha results for the given' foundation 

constraints were super imposed on those from Nath I s paper and are 

presented on Fig. 7.35 page 244. It can be seen that a discrepancy 

exists between the results presented b¥ Nath,and those from Sinha 

and the numerical analysis. The results obtained by Nath were 
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stiffer than those from either Sinha or the numerical program. 

Nath extended the work of Alwar et al [7.1] to des cribe the 

transient non-linear dYnamic deflection of circular pI ate/ 

foundation combinations. 

3,,4 
p v a 

aa 
- X aT 

The governing equations used t¥ Nath were 

l202p2 ~ (X* ~) + p3(k*a - G*v2a) - p3(e(T) ap ap 
2 
~) == 0 
aT2 

where the symbols were, as for Chapter Four, wi th the stress 

function being given t¥ 

and X :::: rN 
r 

~ :::: N ar e 

This was a re-staternent of equations 4.15 and 4.16. 

Quasi-linerisation based upon the method,discussed in section 

7.3~,of Alwar et al was used while the spatial integration of the 

governing equation was carried out using a finite Chebyshev 

polynomial series. 

The deflection a (p ,T), stress function x* (p ,T) and their 

respective derivation with respect to p were defined by a Chebyshev 

series in the range 0 < p < 1 as follCMs: 

a(p) 
N 
L: a T*(p) 
1 

r r r= 
= 

N 
L:' a T*(p) 
O rr r= 



x* (p) 

dX*(p) 
3p 

N-1 (1) (1) 
+ E a T*(p) = a 

::;; 

r=1 

N-1 
E I a (1) T* (p) 

r r 
r=O 

r r 

(2) N-2 
::;; ao + E a

r
(2) T*(p) -2- r 

r=1 

= 

= 

= 

= 

N-2 
E' a(2) T*(p) 

r r 
r=O 

N-3 
E' a (3) T* (p) 

r r r=O 

X* N 
°2 + E X* T*{p) 

N 

1 r r 
r= 

E' x* T*{p) 
O rr r= 

N-1 (I) 
::;; E' x* T*{p) r r 

r=O 

+ 
N-1 

E I 

r=1 

a 
(2) 

= a 
(3) 

a 
(4) 
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vtlere subscripts (2) describe the order of the derivative with 

respect to p. Therefore the substitution of the vertical deflection, 

stress function and their respective derivatives was maCle allo;dng 

for the quasi -linear isation for the non-linear terms. 

. 
The derivatives when multiplied by powers of P were reduced 

to Chebyshev polynomials using product terms. 

th 
Consider for the j time step; the derivative 

4 
3 a a(p) 

P 4 ap 

N-4 
= p3 E' a(4~ T*(p) 

r=O r,J r 

wh . ..,J... tak . the d' 1 te 3.. de th t . ~U.l on ~ng ra ~a rm p ~ns~ e stmlIla ~on gave 

= 

The product term, for the shifted Chebyshev polynomial of the 

first kind was given by [7.8] 

where 
(2,S) 2s! 
~ (2s-i)!i! 

Therefore the derivative term became on substitution for s 

and t 
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The recurrence relationship which could have been used to 

regroup the Chebyshev polynomials without introducing derivatives of 

the Chebyshev polynomials was 

Ho'N'ever the form of the above equation was rot amenable to this 

regrouping wi thout reverting to the or iginal product term. 

Considering the terms r :::: n-3 to r ::::: n+3 by inspection, it 

could be seen that the coefficients for T*(p) were 
r 

Therefore terms for r > 3 and r > N-7 ~..vould satisfy the result given 

by Nath 

and since ~n (P) :::: 0 if values of / n - i I < 0 result in a /n-i / = 0 

the result given by Nath could be applied for the range r ::::: 0 to r <:. 

N - 7. 

+ additional terms in the range N 7 <r < N - 4 

and only if the condition ar = 0 where r > N - 4 does the 

description used by Nath apply over the range 0 < r < N 4. 
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On substitution of the Chebyshev polynondals into the 

governing equations for the vertical deflection and stress function, 

Nath uses incorrect limits for the sunmation of the lower order 

der i vati ves. In the case of the lcwer der i vati ves the sLIImlation 

should have been fran r = 0 to r = N - i where i was the order of 

the derivative. 

Alternatively the derivatives oould have been left in the 

form 

p 

substituted into the governing equations,and the ooefficients of the 

respective Chebyshev polynomials equated to zero. Again the 

recurrence relationship 

(k+l) 
ulr+ll 

would be used to relate the ooefficients of derivatives of differing 

orders. 

The differences were oonsistent with those observed for the 

maximum central deflection histories in the published data [7.7 ] 

and the results derived from the numerical program. 

The oompar ison wi th Way IS results [4.4] was exact, wi thin 

the accuracy of the presentation of the data; and therefore the 

source of error was oonsidered to be in the implementation of the 

foundation response. 

The simply supported immovable edge plate/foundation 

ccmbination was also considered and the results can be seen in Fig. 

7.36, page 244 from Nath's work and Fig. 7.37, page 244 for the 

central difference program. In this case there was a closer 

oorrrespondence between the two sets of results with the difference 

in the first cycle maxlinum central deflection being -4%, -3.4% and 

-0.6% for k*:::: 50, 100 and 150 respectively. This should be 
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campared with the fixed edge plate/ foundation combination where the 

differences for the same constants were -7.3% , -8.3 % and -7.3% 

respecti ve 1y • 

Also static central deflection for the simply supported 

immovable edge case is presented in Fig. 7.38, page 250 for loads in 

the range e: = 0 - 20 and for Winkler foundation constants k* = 0, 

40, 80, 120, 160 and 200. 

The representation of the Winkler foundation in theecntral 

difference program was identical for the linear and non-linear 

transient dYnamic analysis while the geometrical non-linear 

contribution was not directly associated with the time danain model. 

In section 7.2.4, it was shown that the linear numer ical solution 

was in agreement with the modal analysis while the static and damped 

dYnamic solutions coincided with the published data on Sinha, Fig. 

6.12, page 191. Therefore the numerical program was considered to 

describe the behaviour of the plate/foundation more accurately tl1an 

the published results. 

Since Nath I s results were the only published information for 

the dynamic non-linear deflection of a clamped or simple supported 

immovable edge circular plate on a foundation no other comparison 

could be made and for the reasons given above, it was considered the 

finite difference numerical program would be an appropriate model on 

which to base transducer behaviour studies, when considering a 

dielectric with' Winkler foundation characteristics. 

Nath' s paper was marred ty typographical errors which made it 

difficult to determine if the discrepancy was a function of 

incorrect formulation or programming errors. 
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7.3.4. PASTERNAK FOUNDATION 

The dynamic response for a fixed edge circular plate on a 

Pasternak foundation is sho;.m in Fig. 7.39, page 253 and it can be 

seen that it v;e.s at variance with the co~responding results obtained 

by Nath [7.7], Fig. 7.40, page 253. For a fixed value of k* the 

results fvam the finite difference program showed a decrease in 

deflection with increasing value of G*. The referenced results 

exhibit a decrease in central deflection for G * :::: 50, k* = 50 by 

ccmparison with the Winkler foundation k* :::: 50 while for G * :::: 100, 

k* :::: 50 the central deflection increases in relation to (jt :::: 0, k* :::: 

50. 

Fig. 7.41 page 254 gives the influence of the Pasternak 

foundation roc>dule on maximum central deflection as obtained for a 

clamped circular plate by Nath. Since the maximum central 

de flection was not constant for each cycle, i. e. Fig. • 7.27, page 

239, the plot of static central deflection for k* :::: 50 and k*:::: 100 

as a function of Pasternak foundation roc>dule for € "" 20, v 

presented in Fig. 7.42, page 254. 

0.3 is 

For the simply supported immovable edge plate the central 

deflection history is presented in Fig. 7.43, page 255 and it can 

be seen that in this case an increasing value of G* results in an 

increase in the stiffness of the system. While the form of the 

response was similar to that derived by Nath, Fig. 7.44, page 255 

the difference in the amplitudes of the first maximum for G* ::::: 50 

and G* = 100 were 9.2% and 10.2%. As for the fixed edge condition 

the plot of static central deflection for k* 50 and k* 100 as a 

function of the Pasternak foundation modulii for € :::: 20, v 0.3 is 

presented in Fig. 7.45, page 256. 

The results from the central finite difference program were 

taken as being an accurate representation of the non-linear 

transient deflection of a rigidly damped plate for the Pasternak 

foundation. 
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The Pasternak foundation was based QPOn a shear interaction 

being superbmposed on the spring model of Winkler equation.The 

spring elements, Fig. 7.46, page 258 were considered effectively 

connected to an isotropic layer of incompressible vertical elements 

which can only deform in transverse shear. The resultant 

eq.1 il ibri um cond i tion [7.9] gave 

q(x,y) 2 = k w(x,y) - G V w{x,y) 

where G was the shear modulus for the incompressible layer. 

Therefore for polar ~ordinates the relationship was 

q(r) = k w(r) 2 
G V w(r) 

for axisymmetric defOLmation. 

Selvadurai pointed out 

Filonenko-Borodich model, Fig. 

would give in polar en-ordinates 

q{r) 2 = k w{r) - G V w{r) 

the similarity with the 

7.47, page 258 where T :::: G which 

Since the equivalent model consisted of an elastic membrane, 

tensioned to T, on which the springs act, it can be visualised that 

if the values of T increased, the stiffness of the plate/foundation 

enmbination 'WOuld increase. 

Alternatively, considering an element in the shear layer 

acting in the Pasternak foundation it can be shown that the 

equilibrium enndition was [ 7.9] 

31:* 
rz + ar 

T* rz - r + p - k{w) a 
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where T* rz transverse shear stress 

p = applied pressure 

k(w} = spring reaction 

= G oW 
or 

\vhidl gave the Pasternak foundation dlaracteristic 

2 
GV' W + P k(w) = 0 

259. 

and if the spring support was equated to zero, tt'1e resultant 

transverse shear would react against the applied loading. Therefore 

as the value of G increased the magnitude of T* , for a given value 
rl; 

of slope ~; or linear deflection, would increase proportionately 

giving a greater reactive force to the plate. This implied ~hat the 

effect of increasing G would be to stiffen the plate/foundation 

combination as observed in the results from the numerical program. 

The awarent reduction in stiffness with increasing magnitude of G* 

for the rigidly clamped plate, after Nath [ 7. 7 ], Fig. 7.40, page 

253 and Fig. 7.41, page 254 contradicted this consideration. 

Further, as for the Winkler foundation, the linear dynamic 

control deflection of a rigidly clamped circular plate on a 

Pasternak foundation obtained l::¥ numer ical and mcx.lal analysis showed 

agreement for G* ::: 50, 100 and k* 50, Fig. 7.21, page 232. The 

same alogorithm was used to implement the Pasternak foundation, in 

the programs for the linear and non-linear solution while the 

numerical technique used be describe the geometric non-linearity was 

common to all the non-linear programs. The geometric non-linearity 

alcgorithm gave identical results be Way and Sinha for static 

non-linear deflection, Fig. 6.7, page 184 and Fig. 6.12, page 191 

while for damped dynamic deflection the results again corresponded 

to the published data, Fig. 7.31, page 242. As mentioned above the 

Pasternak foundations alogorithm satisfied the dynamic linear 

deflection. 
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Also it W)uld be anticipated that the change in response for 

the ron-linear deflection, with increasing value of G*, W)uld be 

similar in form to that for: the linear deflection rut rNith reduced 

amplitude since the geometric non-linearity was a function of the 

vertical deflection. 

In the comparison bet-ween the program results for the simply 

supported inm:>vable edge plate and the fixed edge plate, Fig. 7.39, 

page 253 and Fig. 7.43, page 25~ again the form of response was 

similar with variation of amplitude and frequency as was expected. 

Since the simply supported edge condition of the first case had a 

lONer rigidity while the in-plane boundary condition was identical, 

the resultant deflection and frequency increased. From Nath's 

results, the maximum central deflection was of the order 00.
0 

~ 1. 7 

for the rigidly clamped plate given G* = 100, k * 50, E: = 10, while 

for the same conditions for the simply supported plate, the central 

deflection was 00.
0 

'" 0.6. 

In view of these results, comments in the section 7.3.3. 

and the previous discussion, the central finite difference program 

was taken as describing the behaviour of a rigidly clamped plate/ 

foundation system, particularly for the Pasternak foundation, while 

Nath I s results were considered to be in error. 

It W)uld appear that the implementation of the rigidly 

clamped boundary condition had a more significant effect on the 

accuracy of Nath' s results than the simply supported cases, 

particularly in the presence of foundations. 
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7.4 NN-LINEl\R IDDAL ANALySIS 

The result for central deflection from the non-linear modal 

analysis can be seen in Fig. 7.48, page 262 along with that from 

the numerical program for the fixed edge circular plate, subject to 

a unifocm constant load at p = o. 

It could be seen that the modal analysis result approximated 

those from the central difference program for deflections in the 

range oCto > O. 7. lIcMever, for greater deflections the results of 

modal analysis were significantly lower, the error in the maximum 

deflection being -9.2%. 

Therefore, the non-dimensional form of the Berger solution 

for static non-linear deflection was considered because the method 

of decoupling the equations governing vertical and in-plane 

deflectioo used the assumption that the first strain invariant was 

constant, after Berger, and was equated to the diffe:cence between 

the square of the roots;\ 22 - ;\ 21 at a given point in time. Fig. 

7.49, page 262 shows the relationship between Y*~. and the central 

deflection Octo and it can be seen that it was non-linear. Therefore 

the requirement of linearity for superposition was not satisfied and 

the modes could not be effectively deooupled so that the higher 

order modes, in particular, were inaccurate in amplitude and 

frequency. 

Although the instantaneous influence of the non-linearity in 

the values of ;\ 2 2 _;\2
1 

for the given mode was determined, the 

assumed independence of modes introduced errors in the values of 

;\22 - ;\\ and hence, W n as well as the effective elapsed time. 

The relationship between ;\22 - ;\21 and oa (0) for the first order 

mode is shown in Figure 7.49 while the resultant frequency as a 

function of central deflection is compared with results from the 

literature [4.3] in Fig. 7.50, page 263- The values of ;\22 - ;\21 

for the first mode and 'Y*2 did not coincide because of the time 

dependence of ;\ 2
2 ;\ 2 l' Also the time dependence of the radial 
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boundary condition resulted in the frequency for the apparent 

deflection being greater than that predicted l::¥ Huang [4.3]. 

Beyond T:::: 0.33 the divergence between results increased due 

to the influence of the non-linearity on the calculation of the 

effecti ve elapsed time. 

7.5 TRAN3Dl.XER PERFORMANCE 

Based upon section 3.5 page 

transducer the change 

given l::¥ 

where % = charge 

E ::: permittivity of 
0 

free space 

Er 
:::: relative permittivity 

for a capacitance 

1\ "" area over which capacitance measured 

a (p) ::::: vertical delection of plate, 

while if a piezoelectric crystal foundation was used, then 

ignoring radial effects following York [3. 21] v to the first order of 

accuracy the resultant change due to the deflection would be 

proportional to the area integral. 

Therefore Fig 7.51 page 263, plots the term I~ a (p) dA for a 

plate subject to an exponentially decaying load E == 15, e = 0.5, X ::::: 

20, \) = 0.3 for At equals the area of the plate while the integral 

limit ~ was equal to an area of 0.641\ for a capacitance transducer 

using a guard ring section 3.5 to ensure a uniform electrostatic 

field. The response of the transducer was considered by also 
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plottin,J r\ (p)dlI/instantaneous pressure against time 00 the same 

Fig 7.51. 

Profiles of the vertical and radial deflection of the plate 

are presented for times T :::: 0.12,0.16,0.19 and 0.235 in Figs 

7.52,7.53 page 266 while the combined radial stress as well as the 

radial bending and radial membrane stresses are contained in Figs 

7.54-7.56 pages 267-8 for the times T :::: 0.12,0.16 and 0.235. 

Similar ly tangential stress prof lies are shown in Figs 7.57-7.59 

pages 268- 9 for the same times. 

The vertical deflection profiles for a plate/foundation 

ccmbination,k*,:::: 50, under identical loading conditions as well as 

the plot: of the oontral deflectioo, rtc«p)dA and JA~(p)dlI/ 
instantaneous pressure are contained in the Figs 7.60, 7.61 page 

270. Finally for a Winkler foundation constant of k * :::: 100, results 

for vertical deflection profiles and central deflection and response 

are presented in Figs 7.62, 7.63 page 271. 

It can be seen that the foundation modulii k * ::::: 100 gave the 

response most appropriate for the pressure transducer and therefore 

a compromdse between sensitivity and dynamic response based upon the 

rigidity of the dielectric foundation was required. 
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CHAPTER EIGHI' 

cnNCLUSION AND REOJM.1EN])ATIONS 

FoUadng a review of the literature on explosive forming it 

was apparent that information on the pressure history in the region 

of the blank/ transfer medium interface was required. This would be 

necessary be understand the reloading phase and the blank/transfer 

medium interaction as well as the initial loading };hase due to the 

incident shock wave. Therefore, following the consideration of a 

capacitance or piezoelectric transducer the response of circular 

plates and plate/foundation combinations were analysed for transient 

loading conditions. For the fixed edge lx:>undary condition the 

linear and non-linear response were determined, as was the 

non-linear response for the simply supported immovable edge boundary 

condition. 

extension of the existing linear model analysis of a 

plate subjected to transient loading [5.1], to include viscous 

damping and a foundation gave an exact rolution. Winkler and 

Pasternak foundation models were used while the selected boundary 

condition was the fixed edge case. 

The central difference program accurately described the 

linear response of the plate and plate/foundation system. The 

com:t:;arison with the linear modal results showsed that the 

representation of the vertical deflection, the Winkler and Pasternak 

foundations and the spatial boundary conditions were correct. The 

consideration of the time danain recurrence schemes resulted in the 

use of a three point scheme based upon Newmark1s work for y ==!:2, (3 = 
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The program results for the non-linear response of the fixed 

edge and simply supported :i.rrm::>vable edge plate canpared favourably 

wi th the existing plblished "WOrk of Alwar [7.1] for maximtnn 

deflection while the difference in the form of the response was a 

function of the quasi-linearisation associated with Alwar's 

solu tiona For the Winkler model, the plate/foundation deflection 

. derived from the numerical IIlJdel, for both boundary oonditions, was 

similar in form to that of Nath [7.7] altoough there \'las divergence 

in the results particularly as the foundation modulus was increased. 

The source of the error in Nath's results, for the 'Winkler 

Doundation was due to both the quasi- linearisation and the 

representation of the spatial danain. The canparison of the static 

oon-linear deflection results with th::>se of Sinha [6.3] for the 

fixed edge condition established that the numerical modelling of the 

geometric non-linearity was oorrect confirming the results obtained 

for the plate [4.4]. 

For the Pasternak foundation f the calculated oon-linear 

"""""TV'\""'-"'" based on the fixed edge condition was totally divergent 

from that of Nath. The results obtained by the program were 

consistent with those fram the linear analysis in that increasing 

values of the Pasternak modulus resulted in increased stiffness for 

a fixed value of Winkler modulus. The results of Nath exhibited a 

decrease in stiffness for an increase in Pasternak modulus beyond a 

specific value. 

For the simply supported immovable edge boundary oonditicn 

the form of the numerical solution and Nath' s results were in 

agreement on the influence of the Pasternak modulus although a 

difference in magnitude occurred. 

The central difference program gave an accurate presentation 

of the dynamic non-linear response of the plate and plate/foundation 

systems in viE!W of the compar ison maCIe for the linear dynamic and 

non-linear static solution. The comparisons were made with the 

published non-linear static solutions and the linear dynamic data 

from the modal analysis. 
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'Iherefore the response of the transducer based upon the 

program was calculated and it could be seen that the resultant 

sensitivity and frequency response was a compromise of foundation 

stiffness and plate thickness. 

'Ihe only data available on the non-linear dynamic deflection 

of the plate/foundationcanbination was limited to Nath' s analysis 

[7.7] and the results obtained from the central difference program 

were at variance with Nath's for the reasons discussed in section 

7.3. 1 and 7.3.3. 'Iherefore it is reoommended that an exper imental 

study en plate and plate/foundation response to impulsive loading be 

conducted for the non-linear deflection regime. The only existing 

experimental data in the literature is associated with the 

determination of the frequency of plates [8.1] and plate/foundation 

canbinatien [4.8] at large deflection. The plate experiment would 

use a capacitance measurement system while the plate/foundation 

system would be based upon the use of a dielectric foundation with 

capacitance measurement or a piezo electric foundation to determine 

the plate deflection. 

Mcrlification to program to incorporate radial inertia and 

radial viscous damping as well as allowing the simply supported 

rrovable free edge would extend the range of the application beyond 

that required for the development the transducer. 

Since the central difference method was not easily modified 

to describe the material non-linearities associated with plastic 

deformation, the development of a finite element program to model 

the plate behaviour should be considered. This then could be 

extended to ca lru late the deflection of the workpiece during 

explosive free forming using the loading history determined by the 

pressure transducer. Also for the transducer the dielectric model 

could be extended to enable the description of the piezoelectric 

behaviour to incorporate the influence of radial deflection. 
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Consideration should be given to correcting the work of Alwar 

and Nath in conjunction with the discussion in section 7.3.1 and 

7.3.3. This would take advantage of the Chetyshev polynomial 

technique whim enables the derivatives of deflection to be 

determined directly with greater accuracy than numerical 

differentiation, particularly at the spatial boundaries. .IJa..lever, 

the criteria an convergence for this method would have to be based 

~ the highest derivative considered and hence sufficient 

coefficients would need to be determined to ensure convergence on 

that derivative. 

The stress function representation of Nath 

<P = r N r 

3<p 
-- :::: N 
3r t 

where <P = Airy stress function 

v.;ould have the advantage of reducing numerical differentiation 

required in the determination of both the contribution of the 

geometric non-linearity as well as the membrane stresses. While 

this would decrease the number of iterations required to converge on 

an accurate result, the stress function solution would not allc:w the 

direct inclusion of radial inertia and radial damping. 

The main recommendation, in conjunction with the previously 

mentioned developnent, is that capacitance and piezoelectric 

transducers based ~ the existing program sOOuld be developed and 

applied to the explosive free forming process to enable the loading 

history to be determined. 
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APPENDIX A 

DEI'ERMINATIONOF "ORTHONORMAL "EIGENFUNCTION 

;: (p) = G {J ( A 1mP ) I (A 2m) - J (A 1m) I ( A 2mP ) } m moo 0 0 

Application of the orthogonality conditions with respect 

to the radius parameter S as a weight function gave 

mt-n 

m=n 

Therefore 

I: P (Gm{Io (,1m") 10 ('2m) 

giving 

G
2 

(1
2 

('2m) r P ~ (Alnf)dp - 2Jo (A1m)Io (A 2m) m 0 

0 

r P Jo('lmP)Io('2nf)dp +J~ ('lm) (p 12 (A2nf)dp ) = 
0 

0 

But the standard fonus of the integrals 7.3 were 

Jl p ~ ('lmP)dp = ~(~ ('lm) + Ji ('lm)) 

o 

1 t p J o ('1m")Io ('2nf)dp 

= 

but from the frequency equation 

302. 

1 



Therefore substitution in the original equation gives 

II p a- (P)a- (p)dp 
m n 

o 

Letting 

and applying the orthogonality condition 

1 = G2 J2 (A ) 10
2 (A

2m
) E 

rno 1m m 

Le. 
1 
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APPENDIX B 

. 'DEI'ERt.rrNATION 'OF 'CONSTANTS 'FOR 

GENERALISED FOURIER SERIES EXPANSION 

The constants were given by [5. 3J 

a ::: 
m 

I 

2 
pel (p)dp 

o m 

and since ; (S) was orthonormal with respect to the weight function S 
the constan~s were obtained by the equation 

am = J~ p"m(p)dp 

Therefore substituting for 

= 

gave 

am = JI 7i 
o m 

Cbnsider the term 

using the relationship 5.2 

d
d {z v J (z)} = 

z v 
v 

z J
v

- l (z) 

it can be shown that 
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Next considering the term 

The relationship 

~ {ZV I (z)} = zV I (z) 
d V-I z· \I 

'Jave 2 
a II (ka) 

ka 

giving 

f~ 
Therefore substitution in the original equation gave the constant 

for AIm:f. A2m 

II (A2m)· 

A2m1o (A 2m)) 

while for AIm = A2m it has been shown that Em = 1 and the constant 

reverts to 
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APPENDIX C 

ROJrS 'IO FRElJUENCY mUATlOO 

MXl.e Value M:>de Value M:>de Value 

1 3.1962 2 6.3064 3 9.4395 

4 12.5771 5 15.7164 6 18.8565 

7 21. 9971 8 25.1379 9 28.2789 

10 31.4200 11 34.5612 12 37.7025 

13 40.8438 14 43.9852 15 47.1266 

16 50.2680. 17 53.4095 18 56.5509 

19 59.6924 20 62.8339 . 21 65.9754 

22 69.1169 23 72.2584 24 75.3999 

25 78.5414 26 81.6830 27 84.8245 

28 87.9660 29 91.1076 30 94.2491 

31 97.3907 
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APPENDIX D 

Irol'S TO F'REX:?UENCY D:?UATION 

A1J 1 (A1) 1
0

(1. 2) +.A2Jo(A1)1l(A2) = 0 

1.2 = (G + A 2)~ . 
. 1 

G = 50 

M:x1e . Al . 1.2 M:x1e . Al . 1.2 
1 2.7532 7.5882 16 50.2631. 50.·7581 

2 6.0990 9.3380 17 53.4051 53.8712 

3 9.3268 11. 7042 18 56.5470 56.9874 : 

4 12.5080 . 14.3683 19 59.6889 60.1063 

5 15.6701 17.1917 20 62.8307 63.2273 

6 18.8236 20.1079 21 65.9725 66.3504. 

7 21.9725 23.0822 22 69.1143 69.4750 

8 25.1189 26.0951 23 72.2560 72.6012 

9 . 28.2637 29.1348 24 75.3977 ·75.7286 

10 31.4077 32.1938 25 78.5394 78.8571 

11 34.5510 35.2671 26 81.6811 81.9866 

12 37.6939 38~3514 27 84.8228 85.1170 

13 40.8365 41.4441 28 87.9644 88.2482 

14 43.9788 44.5437 29 91.1061 91.3801 

15 47.1210 47.6486 30 94.2477 94.5126 
. 31 97.3894 97.6457 
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. APPENDIX E 

RCXYI'S 'IO FREX;2UENCY' E)JUATION 

A1J 1 (AI) 10 (A 2) ~ A2J
O 

(AI) 11 (A2) = 0 

A2 ::: . (G ~ Ai)~ 

G = 100 

M:Jde . Al A2 M:x1e , Al . "2 

1 2.6562 . 10.3468 17 53.4008 54.3291 

2 5.9952 11.6594 18 56.5432 57.4207 

3 9.2504 13.6224 19 59.6855 60.5174 

4 12.4539 ' 15.9718 20 62.8276 63.6185 

5 15.6310 18.5561 21 65.9697 66.7233 

6 18.7944 21.2892 22 69'.1117 69.8314 

7 21.9500 24.1206 23 72.2536 72.9424 

8 25.1011 27.0197 24 75.3955 76.0558 

9 28.2494 29.9671 25 78.5374 79.1715 , 

10 31.3959 32.9500 26 81.6792 82.2891 

11 34.5411 35.9595 27 84.8210 85.4085 

12 37.6855 38.9897 28 87.9628 88.5294 

13 40.8293 42.0953 29 ' 91.1046 91.6518 

14 43.9726 45.0953 30 94.2463 94.7754 

15 47.1156 48.1651 31 97.3880 97.9001 

16 50.2583 51.2435 
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APPENDIX F 

RADIAL DEFLECI'ION 

For a fixed point in time, once radial inertia and radial 

damping were ignored, the radial deflection, after Berger [5.5], 

could re represented by, 

(dr;( p) ) + k (dct (p T ) ) 2 + 
dp T :2 dp T 

Therefore for the mth mode 

CL = a A (T)(; (p) 
m m m m 

giving 

Integrating once gave 

p2p,2 _ / ) 
2m 1m 

24 

COnsider the term 

f do (p) 2 
a 2 A2

(T) pm) 2"( dp dp = m m 

Since (; (p) 
1 J o (Alnf) 

= 7E( J (A
1m

) m m 0 

dl\n (p) 1 1 dJo (AlmP) 
= F(J (A

1m
) dp 

m 0 

dct 2 
_ .e. ( -..!!!) 

2 dp 

- 2 d(ct (p» 
P m 2"( dp ) dp 

10 (A 2mp) 

10 (A2m) 

1 
d(I (A

2m
p» 

10 (A 2m) 
o ) 

dp 

and from the recurrence relationships 
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therefore 

dp 

so the term 

1 r p J 1 (A lmP)I1 (A2nf) 2 

= Em J 2(A
lm

J() (A
lm

) + A2mI o (A
2m

P» dp 

== ~ I ~/i (AlmP) + 2Jl (AlmP) I 1 (A2nf) 

Em 2 Aim J~{Alm) . AlmA2mJo(Alm)Io(A2m) 

2 
11 (A

2m
p) 

+ 2 2 ) dp 
. A2m 10 (A2mp) 

COnsider the first term 

using a standard integral [5.2] on regrouping gave 

Fran the recurrence relationships 

1 dJl (AlmP) 1 
. - J 2(A

lm
P) - >:J) J 1 (AlmP) = 

Alm dp 
lm 

1 dJl(AlmP) 1 
J o (AlmP) + >:J) J 1 (AlmP) = 

Alm dp 
·lm 
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giving 

Consider the second term 

from the standard integral fonn. 

Similarly the third term gave 

using the standard integral form [5.2] 

From the recurrence relationships 

1 
II (A2mp) 

1 dIl (A 2mP) 
-I

2
(A

2m
p) -- = A2mP A2m dp 

1 
II (A2mP) +~ 

dI
1

(A
2m

p) 
= +10 (A2mP) 

A2mP A2m 

giving 
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Therefore substituting into the original equation and dividing 

through by p the description of the radial deflection associated 

with the mth node at time T was given by 

222 
.(A2m~' AJm) . P J. 1 AJrn [ 2 ] 

~ (p) = P 2 4lE 2 J 1 ("ImP) - Jo (AJmP)J2 (AJmp) 
246 m Jo ("Jm) 

since the value of 1;; (0) o at the centre of the plate and the 

resultant value for the constant of integration was A = O. 
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APPENDIX G 

.. DERIVATIVES 'OF 'FREQUENCY 'EQUATION 

Given the equation for function Fl 

the partial derivative with respect to the root 1m was 

But from the recurrence relationships 

giving 

while the partial derivative with respect to the root A2m was given by 
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But from the recurrence relationships 

giving 
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APPENDIX H 

DERIVATIVE OF RADIAL BOUNDARY CONDITION EQUATION 

),2 
2 

~ 
2m 

- I
o

(A
2m

)I
2

(A
2m

)) y == (11 (I'2m) m I~ (A2m) 

Z 
Alm A2m 1 (A

lm
J

2
(A

lm
)I

1 
(A

2m
) = JO(Alm)10 (A2m) m A2 + A2 

lm 2m 

A2 A2 
F

2
(A

lm
,A

2m
) = 2m lm _ l a2 A2 (.) (X + y + Z ) 

2402 Em m m m m m 

The partial derivative with respect to the root Alm was 

" Alm 1 2 2 dEm = - --2 + 2" a A (.) (X + y + Z )ax-
120 E m m m m m. 1m 

m 

1 2 "dan "1 2 dAm(·) 
- - 2a A (T) (X + Y + Z )-' - - -E 2a A (.) (X + y + Z ) --;:;-c;---

Em m m m m m dAlm m m m m m m dAlm 
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while the partial derivative with respect to the root "'2m was 

. "'2m .. 1 . 2 2 . . . aEm 
= --2 + -2 a A (r) (X + Y + Z ) --

126 E m m m m md"'2m 
m 

1 2 aa m 1 2 . dA ( r ) 
- -E 2.a A (r) (X + y + Z ) -- - -E 2a A (r) (X + y + Z ) d~ 

m m m m m m d"'2m m m m m m m. 2m 

*Considering individual terms in the equations 

2 2 
J l (Alm) 

~ 
II (A2m) 

E == 1 + ~ -m J~(~) I; (A2m) 

dEm 
== 

J l ("'lm) J l ("'lm) 
2 

J l ("'lm) Jo ("'lm) 

dAlm J; (A lm) d"'lm (A
lm

) d"'lm 

But 
dJ

l 
(A

lm
) 

~(Jo(Alm) - J 2 (A lm» == 
dAlm 

dJ
O 

(A
lm

) 
- J

l 
(A

lm
) = (lA

lm 

Therefore 

J
l 

(A
lm

) J l (Alm) I2 (Alm) 
3 

dE J
l 

(A
lm

) 
m = k - ~ + 

dAlm 2 J
o 

(A
lm

) 
(A

lm
) J; (A lm) 

*Footnote: While the derivative could be rearranged into alternative 

forms with possibly less terms, using recurrence relationships, 

they -were prograrrmed as shown in the interest of time. 
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while 

II (A 2m) . II (A 2m) 
2 

.. 1
0 

(A
2m

) dE II (A2m) m + = -
aA

2m I; (A 2m) 
.dA 2m I~ (A2m) 

aA
2m 

From recurrence relationships [5.2] 

dE 
m 

dA2m 

J
l 

(A
lm

) II (A2m) 
a = (A

lm 
J

o 
(A

lm
) ) 

m A2m 10 (A2m) 

da 
( 1 

dJ
l 

(A
lm

) J
l 

(A
lm

) J
l 

(A
lm

) dJ
O 

(A
lm

) 
m = 

dAlm Alm J o (Alm) dAlm 2 2 
Alm J o (Alm) AlmJo (A lm) 

J
2 

(A
lm

) J
1 

(A
lm

) 
2 

1 1 1 1 J 1 (Alm) 
= (~.- -~- J

o 
(A

lm
) - Aim J o (Alm) 

+- ) 
Alm Alm Alm J2{A ) 

o lm 

da 
1 all (A2m) II (A 2m) II (A 2m) dI

o 
(A

2m
) 

m = 
A2mI o (A 2m) + 2 + 2 dA2m dA 2m dA2m A2m 10 (A 2m) A2m 10 (A2m) 

12 (A2m) I
1

(A
2m

) 
2 

1 1 II (A2m) 
= -~--~-

10 (A 2m) + 2 
A2m A2m A2m 10 (A2m) A2m (A

2m
) 



But 

ax m = 0 
dA 2m 

= 0 

318. 

J (A )J (A ) 
+ l;; --:::--- 2 1m 0 1m - J (A )J (A ) ) 

11m2 1m 



ay 
m 

aA
2m 

But 

Z m = 
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az 
m 

a"lm 

2 
= (" A2m 1 .2A lm A2m 1 

,,2 +,,2 J (AI }I ("2 ) - (,2 + ,2)2 J~("lm)I~(A2m) 1m 2m (} m (} m . AIm . A2m v u 

1m 2m 
2 + 2 
1m 2m 
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loading Case Step load 

For the step loading case where 

Underdamped Condition Xm < 1 

Equation of coefficient 

A Cr) 
m 

am -XJnWmT 
= 2 (1 - e cos nl 

T 

W 
m 

aA (T) 
Since xm == 2~ the partial differential form m 

m 
or A2m was given by 

3a 
m 

aAm (T) e:: ax-
=: 

2 
W 
m 

I 

2~wm anm 
--:-,- TCOS niT) ~ 

n m m 
m 

where 
- I l ( "2m) 

. ~Io.( A2m) ) 

where A == Alm m . 
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giving the partial derivative with respect to "1m of 

aa 
m 

a"1m 

while the partial derivative with respect to "2m was 

aa 
m 

a"2m 

where 

= 
1 all (A 2m) + 1 I 1 (A2m) +. 1 II (A2m) 

"2mIo (A 2m) aA2m ,,~ 10 (A
2m

) "2m (A
2m

) 

giving the partial derivative with respect to Alm of 

2 
A1m A2m 

and the partial derivative with respect to "2m of 

2 
aWm . "1m A2m 

= 
dA2m W 

m 
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when 
2 2 

nm ::;. wm (1 - Xm) 

2 2 
::; (w - l:ix ) 

m 

giving the partial derivative with respect to Alro. of 

::; 

and hence the partial derivative with respect to A2m of 

::; 

It should be noted that the undamped condition Xm ::; a was the 

lind ting cause for this condition, 
3a 

giving 

m 
3A (T) £ ax-

m ::; ( m 
2 

w m 

Critically Damped Condition Xm = 1 

Equations of coefficients 

£a -w T -w T 
:: m (1 _ e m _ 'Ie m) -2-

wm 

The partial differential form 

by 

3A (T) 
m 

m 
= 

3a 3w 

-W T dW m m 
ar-

3A (T) m 
-3"""'A-- where Am::; Alro. or A2m was given 

m. 

-W T 
m 

m m 
where ~ 'ax- have been previously defined. 

m m 
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Overdanped Condition \n > 1 

Equations of coefficients. 

Since xm 
x .aAm (T) 

= . 2w the partial differential fonn a A where 
m . m 

Am = AJro or A2m was given by 

aa 

dA 
m 

= 

m 
E: ax:-

( m 
2 

wm 

E:a -)( W T 
m 'mm - 2 e (sinh n' T -

W m 
m 

INhere 

2 
w 
m 

giving the partial derivative with respect to Alm of 
I 

, a n 
2n m m = 

m aA
lm 

aw 
m 

-2w -- = m dAlm 

, 
an 

m 
aA

lm 
= 

and hence the partial derivative with respect to A2m of 

= 

2 
. AJm A2m 

I 

n 
m 

aam aWm 
and ~ , ~ have been previously defined. 

m ·lm 

2)( w 
"m m . nhr. I » , S1. ~G T 
n m 
m 
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APPENDIX I 

DEFERRED CORRECI'ION METHOD 

Gonsider the equation 

!5. g = ~ + ~l + !? (1) 

'Where K = Matrix of coefficients 

L = wad vector 

~l = Vector of equivalent pseudO-loads, containing 

the non-linear terms 

D == Vector of errors 

== c a. 

c = Ha.trix for differences greater than the fourth 

order term. 

Initially the solution was obtained for: 

(2 ) 

was obtained by ignoring terms of greater than the fourth order. 

The error for ignoring these terms was taken as e and gave 

0.=0. +e 
- -a 

Substi tution in the original equation 

Therefore ignoring the higher order terms of the error, gave 

Ke:i: Co. - - --a 

allowing the value of deflection to be corrected: 

Therefore iterations \\€re carried out until I~I was within the 

accepted convergence criteria. 

( 3) 

(4 ) 

(5) 
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APPENDIX J 

CENI'RAL FINITE 'DIFFERENCES 

4 
Since the derivative a ~ was necessarily represented by a 

ap 
fourth order difference term, the representation of all other 

derivatives include up to a third or fourth order difference 

term depending on whether they were on odd or even derivative. 

Using standard difference operator symbols 7.4 

the derivatives were obtained as following. 

3 
3(~) 

Ps 3 ap i 

4 
4(~) 

Ps 4 ap i 

= 

== 

== 

:::: 

= 

131 5 
h-J(S - ~o + 30 lJO •••• ) ai 

1 
(~(ai+l - ai) - l2(ai +2 - 2ai +l + 2ai _l 

1 5 
- a i - 2» + (30 lJO + ..... )ai 

( .1'2 _ l .1'4 -I- l .1'6 ) 
u 12 u 90 u - •••• a i 

2a. + a. 1 
1 1-

1 2 
- 4a. 1 + a. 2» + (90 a .•• )a . . 1- 1- 1 

4 1 6 
(0 -"6 0 ••• ) a i == 

4 + ) + (-! .1'6 
- a. 1 a. 2 c U 1- 1- u-

••• ) a. 
1 

where 0 == Central difference operator 

lJ = Averaging operator 

Ps = Step size 
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APPENDIX K 

STABILITY CRITERIA 

A condition for a bounded. oscillatory solution was the 

roots of the characteristic equation* 

>.* = 1,2 
(2 - g) ± I (2 - g) 2 - 4 (1 + .1'.) 

2 

'Were complex. 

Substituting for 

q. = 2x· 6* 
1 1 

*2 p. = 6 
1 

where 6* = 8TW. 
1 

into the definitions of g and .I'. gave 

(2 - g) = 

(1 + .1'.) = 

*2 2 + 2x.6*(2y - 1) + (28 - ~ - y)6 
1 

1 + 2X.y6* + 86 
1 

*2 1 + 2X.6*(y - 1) + (~ - y + 8)6 
1 

1 + 2X.y6* + 86 
1 

Therefore the condition for complex roots 

4(1 + R.) > 

gave the inequality 

2 
(2 - g) 

4(1 + 2x.6*(y-1) + (~-y+8)6*2) (1 + 2X. y6* + 86*2) 
1 1 

*2 
> (2 + 2X.6*(2y-1) + 6 (28-~-y» 

1 

which reduced to: 

* Footnote: Symbols defined in Chapter 6. 
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