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ABSTRACT

The use of explosive forming for small production runs has

been considered suitable for New Zealand manufacturing.

A literature review of the explosive forming process establishes
the need for instrumentation that enables the loading of the workpiece
to be determined, particularly that associated with the workpiece/
energy transfer medium interaction. Because of the magnitude of the
initial shock wave the development of a pressure transducer based upon
the non-linear deflection of a circular clamped'plate or plate/dielectric

foundation is considered.

A modal analysis of the linear response of a clamped plate or
plate/foundation system with viscous damping and subject to a transient
loading is derived. = The Winkler and Pasternak models were used to
represent the foundation behaviour. To determine the non-linear
response of both a rigidly fixed edge and a simply supported immovable
edge plate for similar conditions to those applied to the modal analysis
a numerical program is developed. The spatial domain is modelled by
central finite differences with a time element method giving a resultant
recurrence scheme which is used in the time domain. An analysis of the
effect of viscous damping on the stability of a range of three point
schemes is derived for a single degree of freedom system and the

results presented.

For a range of transient loads a strong correlation was obtained
between the linear deflection results determined from the numerical
program and the modal analysis. The dynamic non-linear deflection of
the plate and plate/foundation system is presented for step lecads and

a transient exponentially decaying load.
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Description
Constant
Matrix of coefficients for vertical deflection
of plate
Matrix of coefficients for vertical deflection
for plate/foundation combination
Matrix of coetfficients for radial deflection
Explosive decay constant

Function for given eigenvalue

Distance from explosive
Load vector
Ioad vector

Density of plate
Density of energy transfer medium at ambient
pressure

Density of energy transfer medium

Mass matrix
Radial bending moment/unit length of circumference
Tangential bending moment/unit length of

circumference
Strain hardening exponent

Radial membrane force/unit length of circumference
Tangential membrane force/unit length of

circumference

Force parallel to the plate surface
Constant dependant on ith eigenvalue

Pressure

Pressure acting on diaphragm
Efficient pressure

Maximum pressure

Static yield pressure

Static collapse load
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Symbol Description

Pt Pressure at time t

Pl (t) Pressure due to incident shock wave

p* Material constant

g(r,t) Ioad intensity

9. Change in capacitor

94 Constant dependant on ith eigenvalue

9, Force normal to plate surface

d; (t) Co-ordinate of constraint motion to ensure

uniform thinning of undeformed material

Q Shear stress/unit length of circumference

Qn Stress resultant normal to the deformed surface
r Radius

R Radius of die-opening

R Matrix of co-efficients for foundation reaction
Re Explosive charge radius

Rm Maximum gas bubble radius

Rl Distance from explosive

sij Stress deviator

S Stand-off of explosive charge

t Time

t(r) Time at which hinge circle passes through r

tc Plate separation

te Time at completion of plastic deformation

tn Time at completion of deformation

tme Time at centroid of pulse

ty Time at onset of plastic deformation

T Elapsed time since incidence of shock front

T, Elapsed time for integration

TO Pulsation time for gas bubble

T]*_f Chebyshev polynomial
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" 'Description
Radial deflection
Initial radial position
Velocity of energy transfer medium

Shock front velocity

Initial velocity

Strain energy

Radial displacement after Hudson

Voltage
Initial normal velocity

Volume

Vertical deflection

Weight of explosive charge

Function to describe dynamic plastic deflection

Iength of Cordtex in mm

Primary yield stress
Bessel function of the second kind and nth order

Tangent plane

Central deflection of plate in analysis of

explosive forming

xxiii.
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" Description

Xxiv.

Non-dimensional vertical displacement parameter

Explosive constant

Constant associated with shock front velocity

Orthonormal modal shape

Vertical deflection as a function of radius only

Vector of vertical non-dimensional deflection

Material constant

Coefficient for time recurrence relationships

Hinge circle radius
Explosive constant

Non-dimensional radius to thickness ratio
Central deflection (Krajcinovic)

Central deflection (Florence)

Explosive constant

Explosive constant

Order of power series

Backwards difference operator
Non-dimensional biharmonic operator
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Biharmonic operator
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4 r 3 2.2 3 dr
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Non-dimensional load parameter

Field strength between capacitance plates
Hoop strain

Strain rate

Strain at centre

Permittivity

Relative permittivity

Effective plastic strain

Instantaneous strain rate

Coefficient for time recurrence relationships

Energy transfer coefficient
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" ‘Description
Coefficient for time recurrence relationship
Constant following Berger's assumption
Viscosity constant

Explosive constant

Non-dimensional constant following Berger's

assumption

Eigenvalue

Spectral root

Decay constant

_Constant for representation of time domain

Diffraction time
Characteristic time

Function for ith eigenvalue

Membrane stress in diaphragm
Radial stress

Tangential stress

Static yield stress
Effective Stress

Capacitance charge density

Non-dimensional radial displacement parameter
Vector of radial non—-dimensional deflections

Non-dimensional radial parameter

Non-dimensional time parameter

Lapsed time after diffraction wave arrived at

the surface of the blank

Effective elapsed time in non-linear modal analysis

Function in time domain
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" ‘Description
Non-dimensional vertical viscous damping parameter
Fraction of initial damping for ith eigenvalue
Fractional viscous damping coefficient
Instantaneous strain rate

Undamped circular natural frequency for the th
mode
Work hardening rate

Damped circular natural frequency (under-damped
case) for the mth mode

Damped circular natural frequency (over-—damped
case) for the mth node

Angle between the radial direction and the radial
tangent to the deformed middle surface of the plate

Poisson's ratio for plate material

Parameter: Schmidt's analysis of non-linear
elastic deflection
oW

Slope ’ —BT_':

Power function of dynamic stress over static yield

Stress function



CHAPTER NE

INTRODUCTICN

1.1 HIGH ENERGY RATE FORMING

One of the newer metal forming techniques which received
considerable attention in the last fifteen years was the development
of the High Energy Rate Forming (HERF) or High Velocity Forming
(HFV) processes. The main distinction between the conventional and
the High Energy Rate Porming processes was the rate of energy
transfer to the workpiece and the resultant strain rates achieved
during forming as illustrated in Fig. 1.1, page 2.

The High Energy Rate Forming processes  imwvolve  the
transmission of energy to the workpiece as a large amplitude impulse
with a total duration ranging from microseconds to milliseconds,
rather than the long duration, constant amplitude energy transfer

associated with the conventional metal farming technique.

1.2 EXPIOSIVE FORMING

Explesive forming was considered to justify a study in depth
because of the advantages of low capital and tooling costs that were
economic for short or one-off production runs. These were in
addition to the following advantages claimed [1.2] for High Energy
Rate Forming processes by oomparison with oonventional forming
methods, which were tog

(1) Reduce the size of the equipment required to form large parts,
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(2) Facilitate the making of parts fram certain materials not
easily formed by conventiocnal methods,

(3) Make parts which are not producible by other methods because
of size, material characteristics, or both,

(4) Improve dimensicnal tolerances,

(5) Lower production costs,

(6) Reduce cost in the fabrication of "one-off" parts.

The lower capital cost of Explosive Forming by comparison
with other High Energy Rate Forming processes was due to the
inexpensive permanent installation used to transmit the energy from
the energy source to the workpiece. The cost of the dies was
relatively low because often a female die only was required and
inexpensive die materials such as concrete, cast iron, plastic or
low carbon steels could be used which resulted in simple tooling
requirements. Also the size of workpiece was limited only by the
strength of the container restraining the energy transmission media
while the versatility of the process was such that all the following
forming operations ocould be carried out using explosives as the
energy source; namely sizing, drawing, embossing, engraving,

flanging, compacting and cutting.

The limitations that existed for the ewplesive forming
process were:

(1) A short production run because it was a labour intensive
operation.

(2) Noise and vibration when associated and sited with other
production facilities or in residential areas.

(3) Storage of explosives and detonators to comply with local
dangerous goods regulations.

(4) Qualifications required by personnel to meet local regulations
governing industrial usage of explosives.

(5) Modification of material properties.

Because of these limitations the explosive forming processes



must be considered camplimentary to conventional forming techniques
rather than replacing them.

In spite of these limitations it was felt that for New
Zealand engineering and manufacturing conditions which often
involved low volume or one-off production runs this process was
ideal and allowed the cheap utilization of the advantages associated
with High Energy Rate Forming. For these reasons this project was
concentrated on the Explosive Forming process.

The Explosive Forming process was divided into three distinct
classifications: Closed Deflagration, Contact Detonation and
Stand-off Detonation. These classifications were dependent upon the
energy source and the method of energy transmission fram the source
to the workpiece or metal blank to be deformed.

1.2.1. CLOSED DEFLAGRATICN

The energy source was obtained by combusticn of either a slow
burning propellant explosive or gaseous mixtures. Because of the
relatively slow pressure rise and low peak pressures due to either
the contaimment of the products of combustion or the combination of
contaimment and the impinging of the coombustion front on the
workpiece, Fig. 1.2, page 2, the deflagration processes lent
themselves to close ocontrol of the pressure impulse as well as being
the most suitable explosive forming technique to initially autcmate.
[1.2]

Preliminary investigations on this forming method using an
oxygen/ acetylene gaseous mixture were conducted at the Mechanical
Engineering Department, University of Canterbury [1.3] but
discontinued because of the danger of pre-ignition with this

particular gaseous mixture.

Because of the requirement to oontain the products of



combustion, the size of the workpiece was limited and the capital

cost higher than for the equivalent explosive detonation forming
process.

1.2.2 QCONTACT DETONATION

The high explosive in this process was detonated in coontact
with the workpiece, which resulted in very rapid stress rises in the
material, and high maximum stresses associated with the detonation
front in the explosive. This process was used for explosive
welding, povder oompaction, engraving, hardening and cutting. The
major variables in this method were detonation welocity and
confiquration of the explosive with respect to the workpiece, which
influenced both the final deformation and the material properties of
the product.

1.2.3 STAND-OFF DETCNATICN

This explosive forming operation, Fig. 1.3, page 6 , relied
upon the transmission of the energy fram the high explosive charge
to the metal blank to be formed by a shock wave moving through the

transmission medium such as air or water.

Hence the stand-off of the explosive charge from the blank
surface, and its size and shape were major variables because they
oontrolled the geometric form and the intensity of the shock wave
impinging upon the blank surface. Other major variables were the
transmission medium, the required product shape and workpiece
material. The hold-down force or method of draw wrinkle control
also influenced the final product shape and strain distribution.

All these variables were interdependent and therefore

optimization was uswally based upon experience and experimentation,
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and although same analytical research work [2.4, 2.5] has been
carried out the majority of the research work has been restricted to
emperical analysis. [2.6, 2.7, 2.8].

Stand-off detonation techniques were further divided into two
categories of die forming and free forming.

1.2.3.1 STAND-OFF EXPLOSIVE DIE FORMING The explosive charge was
placed above the workpiece, as shown in Fig. 1.3, page 6 , and
" detonated. The energy released was transmitted through the transfer
medium as a shock wave to the blank or workpiece which was located
over the female die of the required final shape. The cavity between
the blank and die was evacuated because the rate of deformation of
the blank resulted in ‘quasi-adiabatic' compression of any trapped

residual air. This compression could produce local gas temperatures
sufficient to weld [2.9] the blank to the die or otherwise damage
the workpiece and die surface by overheating or 'burning'. Also any
residual air prevented the blank fram bottoming on the die and

therefore resulted in incomplete forming.

If evacuation of the air was complete the workpiece deformed
into the die and took up the shape of the die.

1.2.3.2 STAND-OFF FREE FORMING The metal blank, as shown in Fig.

1.4, page 8, was supported by a draw ring which functioned in
conjunction with the hold-down ring to control draw wrinkling and
gave the peripheral diameter of the final shape.

This process had limited application and could only be used
for very basic operations such as bulging and the development of
simple symmetric shapes, although there were some techniques which
allowed an element of control of the final shape.
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1.3 SOOPE CGF PROJECT

The aim of the project was to investigate the explosive
forming process and to consider the energy transfer mechanism and

associated instrumentation.

Chapter Two contains a general review of the literature on
stand-off explosive forming in which the specific processes of free
forming and die forming are presented. In considering under water
explosions and the subsequent energy transfer to the workpiece it
became apparent that considerable effort has been put into the study
of the detonation, primary pressure pulses and subsequent behaviour
of the gaseous products of large homogeneous explosive charges (0.2
- 100 kgm) and the associated energy transfer to the water.
However, the explosive has been located at distances of 10 - 100 m
below the free surface of a semi-infinite body of water and the
resultant pressure measurements were made at distances of 1 — 10 m
fram the charge which precludes the direct use of the data in
typical explosive forming processes. In explosive forming
operations the energy source is often non-homogeneous being some
arrangement of a detonating fuse such as Cordtex, with a point
source detonation. Usually these forming operations are carried out
in a tank or finite body of water and therefore the distances
between the explosive charge and the free surface are in the order
of 0.1 - 3 metres while for energy efficiency the charge is in close
proximity to the workpiece with stand-off distances of 0.025 - 0.300
m being common.

The deformation of plates subject to impulsive loading is
reviewed because the close proximity of the explosive charge to the
deforming blank is considered to interact with the secondary energy
transfer associated with behaviour of the gaseous products of
deformation. There is evidence that this secondary loading is

significant in this forming process.

Energy transfer in the explosive forming process is also

reviewed and this information is mainly based on the measurement of



the subsequent plastic deformation and equating this to the energy
available fram the explosive. Sane pressure measurements have been
carried out during the explosive forming process but the transducer
used has been located away from the region of the workpiece.

From the review of the explosive forming literature it became
apparent that the majority of explosive forming research has
involved experimentation and the oollection of data for specific
formed product shapes, specific materials or modified free forming
processes.

While some empirical relationships have been developed there
was a need to better understand the interaction between the blank
deformation and the energy transfer so that the deformation
mechanisms could be adequately described. This pointed to the
requirement for a pressure transducer which could be located in the
energy transfer medium in the immediate region of the workpiece. It
would have to withstand and record the primary pressure pulse while
having sufficient sensitivity to record the reloading phase as well
as being of such a size that it did mot interfere with the energy
transfer.

Therefore a review of instrumentation for deformation and
pressure measurement is contained in Chapter Three with emphasis on
pressure transducers which would be capable of operating in the
region immediately adjacent to the deforming blank. High pressure
and shock tube pressure measurement techniques are the main areas
reviewed although conventional strain gauging techniques as well as
use of a range of standard oomponents which exhibit pressure
sensitivity are considered. Following the review it became apparent
that to record the pressure in the region adjacent to the blank a
miniature transducer is required based on a plate/dislocation
crystal. Because of the reguirement 0 withstand and produce
information on the incident initial shock wave as well as the
reloading phase of the explosive forming process, the development of
a pressure transducer which operates in the non-linear deflection
mode for the primary shock wave and the linear deflection mode for
the reloading phase 1is considered. Because of the difficulty

lo.



associated with accurately calibrating the transducer for  the
proposed operating regime the decision was made to numerically
analyse the behaviour of the proposed design under the anticipated
pressure loading conditions.

To achieve the requisite sensitivity in the relocading phase,
the deflection of the transducer would exhibit gecmetrically
non-linear behaviour during the initial incident shock wave and
therefore the analysis had to describe the non-linear response of
the plate/ foundation combination to impulsive transient lecading.
Chapter Four gives the development of the dynamic form of the Von
Karman equations and the required boundary oonditions to describe
the non-linear dynamic behaviour of a plate/foundation system with a
fixed edge boundary.

To establish the accuracy of the spatial numerical model for
the plate prior to studying the transient non-linear behaviour of
the plate/foundation ocombinations, a modal analysis is presented in
Chapter Five, which satisfies the given boundary conditions and
describes the 1linear dynamic response of the plate/foundation
loading. This gave a basis for the verification of the accuracy of
the numerical modelling of the transducer response in the linear
range as well as allowing a camparison of the alogirithms available
to describe the time domain. The modal analysis is extended by the
application of quasi-linearisation and the use of an effective
elapsed time parameter to give an approximate response to the
transient loading in the non-linear deflection regime. Hence the
mon—-linear deflection determined by the numerical analysis,
described in Chapter Six, could be compared with the approximate
deflection from the non-linear modal analysis.

After consideration of a range of methods of solution a
central finite difference scheme is used to describe the spatial
domain., The Winkler and ©Pasternak foundation models were
implemented in the spatial numerical scheme.

The geometric non-linearity is considered to act as a pseudo

load and at each time step iteration is carried out to converge on

11.



the resultant mon-linear deflection. A time-stepping solution based
upon a three or four point recurrence scheme is applied to the time
domain and the stability of the three point scheme for viscous
damping conditions is investigated and the resultant spectral radii
presented. V

The results of the numerical investigation into the time
damain recurrence schemes response for a multi-degree of freedam
‘system, subject to a rectangular pulse locad are contained in Chapter
Seven. The camparison between the results fram the linear modal
analysis and the numerical program are presented for the plate and
plate/ foundation system to verify the spatial and time numerical

representation.

The non-linear dynamic transient deflection for the plate and
plate/foundation with a simply supported immovable edges and the
rigid clamped edge is presented in Chapter Seven and compared with
the information available in the literature. The
quasi-linearisation technique applied and the spatial representation
used in the only published data for the non-linear plate/foundation
combination is discussed. For fixed edge boundary conditions and
particularly the Pasternak foundation model there is a major
discrepancy in the published results. The design performance of the
transducer is shown for the anticipated exponentially decaying
transient load.

Chapter Eight contains the conclusions from this work as well
as recommendations for subsequent development and testing of the
pressure transducer. and further research into non-linear
transient deflection.

12,
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CHAPTER TWO

LITERATURE REVIEW

2.1 INTRODUCTION

The large volume of literature associated with explosive
forming ranged fram the descriptions of the development of specific
companents, such as submarine end closures[2.1] with  their
assaciated problems and methods of overcoming these problems, to the
theoretical analysis of the deformation of the metal blank for
explosive forming and its interaction with the energy transfer[2.2]

Therefore the literature review for explosive forming was
considered under the following headings of general, energy transfer,
deformation mechanisms and energy transfer/deformation interaction.

Although the major developments in the application of High
Energy Rate Forming techniques have occurred within the last twenty
years, explosive forming was first suggested as a metal working
process in 1888 when C.E. Munroe[2.3] described a method of metal
engraving using gun cotton as the energy source.

Of the general introductory texts in High Energy Rate Forming
that have subsequently become available, the reference by Dr. A.
A. Ezral2.4] ocontained a ocomprehensive collection of results of
both anmalytical and experimental research work in explosive forming
up to 1972, as well as explosive data of particular application to
explosive forming and welding. This book was an excellent
introductory text, particularly with respect to explosive forming as
it considers the mechanism of energy transfer,explosive forming of
domes, scaling laws for model studies, expansion of rings by
explosives, explosive forming dies, analysis and design of explosive
forming facilities, explosives and the effect of explosive forming

on material properties, to quote relevant chapter topics.



Another general  introductory reference, "High-Velocity
Forming of Metals'[2.5] gave ‘a concise yet intensive treatment of
the mechanics, principles, equipment and methods employed in the
forming of metals by the explosive, electro-hydraulic, magnetic
pulse and pneumatic-mechanical processes'. J.S. Rinehart et
al[2.96] have produced a comprehensive general reference for
practical explosive formihg techniques and gave methods of
overcoming the problems facing the engineer installing this metal
working process.

Work carried cut in the Department of Mechanical Engineering
at the University of Birmingham, is reported in the reference for
high speed metal forming, written by R. Davies et al [2.7], while a
critical evaluation of explosive forming methods was given by H.G.
Baron et al[2.8]

2.2 GENERAL

Reviews of the state of the lccal application of explosive
forming were presented at the First International Conference of the
Centre for High Energy Forming, 1967, for Belgium, France, Germany,
Japan and Norway.

The paper presented by Pietteur[2.9] gave an overview of the
work carried out at the Centre National De Recherces Metallurgiques,
Belgium, investigating the deep drawing of a range of materials and
the mamifacturing of specialised shapes difficult or impossible to
produce by oonventional techniques. The oonclusions presented
suggested that deep drawing could be profitably applied in the
forming of product shapes involving large dimensions, with a
suggested lower size limit of approximately two metres diameter, and
a diameter:thickness ratio (D/h) which satisfied the relationship
20<(d/h)< 190, and if the risk of draw wrinkling was accepted, it
could be increased to 20<(D/h)<235. Also the economic production of

spacialised shapes such as components for aeronautical applications
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was investigated, as well as the forming of high strength and
stainless steels,

Frey's paper[2.10] briefly described the range of products
manufactured by Secathen, a French campany which was formed to use
the explosive forming techniques as a primary production method,
particularly involving stainless steels, light alloys such as the
aluminium-magnesium alloys or specialised metals such as titanium.
A point of interest in this paper was the mention of the discrepancy
between the earlier optimistic technical reports on explosive
forming and the subsequent experience of the company in the

application of this forming method to the manufacture of specific
products.

This point was reinforced by Simmler [2.11] in his review of
the implementation of High Energy Rate Forming in Germany.
Exploratory tests carriéd out both within German industry and
Technical Institutes found that the areas of the explosive forming
technique requiring more research prior to industrial acceptance of
the process were:

(a) Scaling relationships to alicw reliable small
scale experimentation for large component
manufacture.

(b) The determination of explosive properties and
characteristics in methods more appropriate to
their application in this forming technique.

(c) A knowledge of the interaction between the
explosive and energy transmission media for
distances of less than 0.3 metres fram the
charge.

(d) An understanding of draw wrinkling at high
deformation velocities.

(2) The study of the energy transfer to the blank,
the influence of the gas bubble following
detonation and the resultant effect of these
factors upon the material properties following
forming.
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(£) The development of techniques to take advantage
of the characteristics of high energy rate
forming; improvement of the preparation
and charging times, as well as making large dies
more economic to produce.

Subsequent research was conducted within Germany and Holland
on developing suitable instrumentation, deriving scaling laws to
utilise small scale experimental results in industrial production
and determining the effects of this forming method on 'fatigue,
ductility, brittle fracture and corrosion resistance'. BAs a result
of this work, and to reduce charge siZes and hence associated
vibration and shock wave amplitudes, a oontact explosive forming
technique was developed using specially produced low brisance
explosives with prolonged pressure-time characteristics.

Nemitz[2.12] described the results of one aspect of the
German research into the cold forming of high strength steels in the
hardened condition by the use of contact explosives as well as the
development of improved dies. A general review of the products
manufactured by Japanese industry using High Fnergy Rate Forming was
presented by Kiyota[2.13]

By considering the case histories of the application of
explosive forming to a range of manufactured products,
Haegland[2.14] further highlighted the difficulties experienced in
the industrial application of the process in a small country such as
Norway. The experience of Berman et al[2.15] in the commercial
application of explosive forming showed the feasibility of the use
of small stand-offs of the explosive charges so that the energy
available at the blank surface was appropriate for deformations that
were non-uniform. This enabled the energy distribution to be
related to the required deformation.



The description of the manufacturing history of a range of
products such as end closures for a research submarine(2.1],
domes[2.16,2.17,2.18] and fuel tank caps for aerospace preducts such
as for the Saturn V C rockets[2.19] indicated the extent of
commercial application of the explosive forming process in America.
It was pointed ocut by Simmler[2.11] that the majority of reported
American applications involve production 1in the large aerospace
industry.

As has been described[2.5] the major areas of research into
the explosive forming process has concerned the energy release and
transmission to the workpiece, the resultant behaviour of the
workpiece and the material properties of the product manufactured by
this forming method. While considerable effort has been expended
particularly in the latter two areas, much of the energy transfer
research has been either qualitative or the modification of results
obtained for large charge sizes based upon Naval research[2.20].
This research has been conducted into studying the destructive
capability or performance of explosive charges. Since explosive
forming involved relatively small charges in close proximity to the
deforming workpiece, it was considered that the energy transfer
associated with stand-off explosive forming was an area regquiring a
better understanding. This was because of the interaction and
dependence of the workpiece behaviour on the engergy transfer.

2.2.1 FREE FORMING

This process,described in section page » involved
anly a limited number of variables by comparison with explosive die
forming, and therefore a considerable section of fundamental
investigation into explosive forming has been based upon the free
forming technique. As Sag[2.21] suggested, the initial impetus for
the current interest in utilization of explosive energy for metal
forming was the result of the many investigations into the effect of
underwater explosions carried out during and following the Second
World War. While these investigations mainly considered the damage
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caused to a structure by an underwater explosion as a function of
charge size and distance from the charge, results associated with
deformation gauges[2.22,2.23,2.24] could be applied to explosive
free forming, thus further concentrating research into this method
rather than the die forming process. BAn example of this was the
UREL[2.24] disphragm gauge which resulted in interest in the
deformation of a circular diaphragm subjected to explosive loading
before the advent of commercial explosive forming.

N.N. Ida et al[2.25] discussed the &advantages and
limitations of the process, as well as economic auxiliary methods

aimed at overcoming the limitations of

"(1) excessive thinning of the material at the
apex of the sheet,

(2) a tendency for extensive buckling to occur
at the mouth of the formed shape,

(3) inability to form shapes other than fourth
order paraboloids of revolution.

(4) the formability curves of the materials
commonly used for missile parts in
conjunction with the thickness specified,
severely restricts the depth to which the
domes can be formed.'

The auxiliary techniques used to obtain the maximum economic
advantages of the die-less forming process and to overcome the
disadvantages, were the plug cushion technique, the sandwich
technique, the removal of surface oxides and the carriage principle.

2.2.1.1 PLUG CUSHION TECHNIQUE The plug cushion
technique ,Fig. 2.1 page 19 , relied upon the placing of a pad of
material such as lead or rubber on the upper surface of the blank

and hence the energy was transmitted through the plyg cushion to the
blank.



;_ explosive charge
hold down ring ' /-plug cushion

A4,

N N7 77
blank = S SN N O R R R T S T T O NN ASNSSEENKIRSSS

FIG 21 PLUG CUSHION TECHNIQUE

explosive charge
-
an ring ; . soft alloy plate
W/‘{\\\\ SO NN S ANN NN \\\\\ ///////
blank —=/ /[/ il (7((/\/(// /// /7//
Kwring

FIG.2-2  SANDWICH TECHNIOUE

;\explosive charge

blank rubber buffer
SOUONONNSNONANNSIN NN NN \\\\\\\\\\\>\\\I

~ )

OO NNV SN ANNNNNONANANNNNNY

) 7

FIG 23 CARRIAGE TECHNIQUE

19.



By variation of the plug cushion thickness, profile and
material, along with the other parameters associated with the free
forming process, oconsiderable oontrol was possible on  shape,
thickness strain distribution and draw wrinkling.

Johnson et al[2.26] did preliminary investigations into the
influence of the following parameters associated with free forming;

(1) charge weight,

(ii) plug cushion thickness and peripheral
angle,

(iii) blank thickness,

(iv) ‘die profile radius

(v) the effect of the clearance between the
blank and the clamping ring,

(vi) the strain distribution resulting from
these operations. '

For these investigations the plug material was lead and the
desired product shape was a drawn hemi-spherical cup. Subsequent
work by Johnson et al[2.27] gave the results of an investigation
into the influence of the hydrostatic head and stand-off upon deep
drawing using the plug cushion. Also in this reference, the
welocity of deformation was measured using the pin contactor method*
to determine the effect of the plug cushion upon the energy
transfer.

The displacement velocity of the blank was similar to that
exhibited in the free forming of a blank without a plug
cushion[2.28] , the kinetic energy of the blank being developed in
two well defined phases. In the case of the plug cushion, the two
proposed possible mechanisms of energy transfer were due to the
primary shock wave impinging on the surface of the plug, while the
second phase energy transfer was due either to the bubble pulse
action and/or a water hammer effect following the collapse of
cavitation, or a separation of the blank-plug interface under the

primary shock wave and a transfer of kinetic energy at the

2U.



subsequent re-establishment of the interface contact from the
plug to the blank.

2.2.1.2 SANDWICH TECHNIQUE The sandwich technique,Fig 2.2
page 19 , of explosive free forming was an extension of the plug
cushion method, which obtained similar results by sandwiching the
blank to be formed between layers of a softer alloy. The softer
alloy would attenuate the applied loading as well as control the
blank profile by the blank/alloy plate interface friction and the
interaction of the deformation of the layers and the blank.

2.2.1.3 OXIDE REMOVAL It was claimed that by removing the

sur face oxide on aluminium blanks immediately prior to explosive

forming, the resultant deformation profile was modified by
comparison with aluminium blanks for which oxide removal was mnot
carried out. However the oxide would reform immediately on exposure

to air or water.

2.2.1.4 CARRIAGE PRINCIPIE The carriage principle,Fig 2.3
page 19, allowed the blank to "bottom" on a thick rubber sheet
which modified the final deformation by generating a force opposing

the explosive generated pressure wave, as the blank and hence the
rubber sheet deformed. This technique according to Ida[2.25]
applied a cupping action which resulted in the advantages associated
with the plug cushicn method.

2.2,1.5 RESULTS (F FREE FORMING RESEARCH The work of
Johnson and Sowerly [2.29] suggested that for free forming an optimum

hydrostatic head existed dependent upon the charge weight and
stand-off, but in agreement with other results [2.27],[2.30], above
two feet(300mm) the influence of hydrostatic head was negligible.
It was thought that this phenomenon resulted from the control the
hydrostatic head had wupon the migration of the bubble of gaseous
products of detonation and/or the venting of such a bubble to
atmosphere during the initial expansion. Subsequent work was done

21.
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using the ocontactor pin method to determine the blank deformation
velacity throughout the forming processj and therefore obtain an
indication of the energy transfer. It was found that in the range
of hydrostatic heads up to three feet(900mm), the time taken for the
blank to reach rest was less than that for the secondary pressure
pulse, due to the gas bubble oscillations, o0 reach the blank
surface. Hence it was assumed that the bubble pulsation had a
negligible influence upon the final deformed shape. Therefore the
second stage of kinetic energy exhibited by the blank was possibly
derived from either water hammer following the collapse of
cavitation, or gas bubble migration to the blank surface. Also the
initial velocity of deformation and the velocity-=  deformation
relationship was of interest, because of the dependence of most
amalytical models of impulsive deformation on an assumed initial
velocity distribution. Tests were also conducted on the influence
of charge size and stand-off upon the deformation.

Finally the influence of a tank air curtain and the use of
air cells to obtain water hammer were studied. It was found that
the water hammer effect due to the oollapse of the air cell did
result in an increase of the deflection for a given charge size and
stand-off, while the air curtain inter ference gave a decrease in the
deflection obtained.

Watts et al[2.31] also carried cut some free forming
exper imental work, mainly to study the obtainable elongations under
high velocity forming oonditions for various metals. Velocity
measurements were taken and an attempt was also made to measure the
temperature.

Free forming of circular blanks was studied by Johnson et al
[2.32] with particular interest being taken in the following
aspects;

(1) The use of a rigid baffle plate
surrounding the blank to increase the
efficiency of the energy transfer,

(ii) The use of a reflecting plate above the
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charge to obtain a further improvement in
the efficiency of the process,

(iii) The influence of orientation of the die
and explosive assembly to the free
surface of the water in the forming tank,

(iv) The use of air cells to improve the
efficiency of the energy transfer.

Miscellaneous influences were also studied, such as the
effect of eccentricity in the locating of the explosive charge with
respect to the blank, and eccentricity in the placing of the
assembly in the forming tank.

At the University of Birmingham considerable work has been
done on the development of an explosive forming machine with the
initial studies being based upon free forming [2.24,2.33,
2.34,2.35,2.36) . After an initial study of the suitability of shock
reflectors, a parabolic reflector was used, with the charge placed
at the focal point t© obtain the maximum efficiency in energy
utilisation. Instrumentation based upon the pin contactor system
and streak photography was used to measure the velocity of
deformation and dJdeformation history, while the pressure in the
region of the reflector was Tmeasured using piezoelectric
transducers. The locality of the pressure transducer resulted in
the measurement of the energy reflected by the walls of the machine
and difficulty was encountered with the overloading of the
transducers. A satisfactory correlationship was obtained between
the streak photography method of velocity measurement and the pin
contactor system. A theoretical study was conducted into the
reflection of the shock wave from the reflector surface.

A development of importance associated with free forming was
that of scaling laws or process equations, so that the experimental
checks on the feasiblity of forming of large ocomponents by model
studies were relevant. Erza et al[l.6] did a dimensional analysis
of the parameters involved in explosive free forming. The results
obtained for 2024 Aluminium alloy in various heat treated states



showed that for °'the follewing conditions of similitude an adequate
scaling law was operable;

(1) Geometrical similitude must be provided;

(2) The mechanical properties of the metal
blank before explosive forming must be the
same for model and full scale,

(3) The kind anxdd shape of explosive charge
must be the same for model and prototype.'

e
The dimensicnless parameter was c p3 and within test

limits was not influenced by changes in transfer medium viscosity,
mass of the draw ring die or the hold-down force of the blank.
Where

e = the energy of the explosive charge.
Uy = the static yield stress of the metal

blank before explosive forming.
h = the thickness of the metal blank.

J.M. Boswell[l.8] worked upon the development of a process
equation giving the relationship between the main parameters in the
free forming of aluminium.

.6806 . 7325

) 5% (o)
(100n) <8831 (g)

z, = 1.6938 5707

where z, = polar deflection
W = weight of the explosive charge
DO =  the die opening diameter
h = the blank thickness
S

=  the stand-off of the explosive charge
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Work was also carried ocut 0 determine the profile and
strain distribution across the deformed blank.

Experimental investigation into the free forming of wvarious
metals by D.E. Baguley[l.7] obtained an empirical formula to
determine the depth of deformation which was given by

Oy :
B d 1.68  1.43
where Wi = amount of charge in mm of Cordtex
K, = constant governed by the material used
d = depth of forming
o, = a material constant
R =  the radius of the die opening
as well as the appropriate symbols from the previous
representation.

S.E. Corbett[2.37] studied the profile of the blank during
free forming, using a high speed camera and photographing in
silhouette. Hence the deformation and bending wave velocity were
determined and it was found that the deformation process fell into
four stages;

'(1) After the arrival of the shock wave,there
is a delay of the order of 100 microseconds
before any movement is observable.

(2) The diaphragm then very quickly accelerates
to a constant velocity perpendicular to
the initial plane of the diaphragm.

(3) The disphragm moves substantially as a
flat plate but the peripheral restraint
very quickly brings the edges to rest;
this effect is transmitted radially inwards
so that successive annular elements are
tilted and brought to rest, until the shape
is substantially a cone with a rounded tip.

(4) A much slower roundirmg-out process occurs
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in the arrested material. This is sometimes
accompanied by a small decrease in central
deflection. The final profile is a more
gently rounded contour.'

The typical initial deformation profile for the first three

of the proposed stages of deformation were as in Fig 2.4 page 27.

Ezra and Malcolm([2.38] carried cut an experimental program to
study the effect of explosive stand-off and it was found that the
influence of the stand-off on the fimal product was
complex.Optimization of stand-off involved a oompromise between
charge size, strain distribution, blank pull-in, draw depth, draw
uniformity and free form shape, as was pointed ocut by Beck et
al[2.17]*

While Ezra et al found that increasing stand-off resulted in
a change in the final form from an ellipsoidal profile to a
parabolic profile, it was noted Ly Beck et al, that the decreasing
of the stand-off distance, below an "optimum" value gave rise to a
"peaked” profile rather than an ellipsoidal profile. Although the
results appear to be at variance, it should be noted that Beck's
work considered a range of stand-off distance:die opening diameter
of 0.01-0.20 while Ezra considered the range 0.083-0.500, and hence
the non-uniform distribution of energy at the blank, due to the
smaller stand-off, would give rise to localised central deformation
observed by Beck et al. Again there was a oonflict of results
involving the influence of stand-off on uniformity of draw, with
Beck et al suwggesting that increasing stand-off resulted in
decreasing uniformity, while Ezra et al found that an optimum
stand-off :die opening diameter was obtained by increasing the
stand-off outside Beck's experimental range to 0.333. Finally both
works found that increasing stand-off decreased draw and hence
adversely affected strain distribution. Beck et al suggested that

* Footnote: Beck et al. worked on die forming however their
consideration of stand—off was applicable to either
free or die forming.
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this was due to the reinforcing of the hold-down pressure by the
explosive force on the hold-down ring as the stand-off increased and
therefore stretching of the blank resulted before the final shape
was taken up with the resultant thinning. '

While the use of explosive free forming was limited to
symnetrical simple thin shapes, its economic advantages has resulted
in research aimed at extending the range of application such as the
investigation into the free forming of thick steel domes by
Wittrock[2.39] and the expansion of tubes[2.40,2,41] and
rings[2.42].

2.2.2 DIE FORMING

As explained in section 1.2.3.2, explosive die forming
involved a large number of variables and hence was not used as the
basis of much of the reported experimental work into the
fundamentals of explosive forming.

The main factors under consideration for the die forming
method were springback amnd the final strain distribution; the
springback determining the dimensional accuracy, and the strain
distribution limiting the shapes and depth of draw obtainable with
this forming process.

Originally it was claimed that all H.E.R.F. processes
resulted in the virtual elimination of springback[l.1l] but this was
disproved by Watts et al[2.31] and the conclusion reached was that
'springback is not eliminated with the application of high strain
rates.' Also Agrioola et al[2.43] studied springback and reached the
following conclusions relevant to springback;

'(1) Explosive forming of partially restrained,
nonaxisymmetric blanks causes modification
in springback behaviour.

(2) Least metal springback is achieved by using
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sheet explosive.

(3) Close explosive stand-offs using sheet
explosive yield lower metal springback than
the use of high explosive stand-offs.

(4) Large blank coverage, achieved by using
sheet explosive is desireable both from the
standpoint of reduced springback and
uniform strain distribution across the blank.

(5) Increasing the clamping and the hold—down
ring roughness decreases the springback.

(6) Springback amounts decrease as blank
thickness increases.

(7) Lubrication of the die entrant radius causes
an increase in blank springback.

(8) When using nonaxisymmetric die shapes,
changes in die entrant radii and the depth
of draw do not appreciably modify springback
behaviour if partial blank restraint used.'

Boes[2.44] showed that, within limits, increasing the charge
weight decreased the springback.

2.2.2.1 DIE MANUFACTURE AND MATERIALS A factor having

considerable influence an the economics of explosive die forming and

the resultant feasibility of the explosive forming process was the
manufacturing cost and durability of the dies. The limited
production runs associated with this forming technique resulted in
investigations into the use of a range of die materials and die

configurations.

While the general references in explosive forming [2.4,
2.5,2.6] gave qualitative guidelines for the design of simple dies,
it was obvious that the difficulty of predicting the die per formance
was having a major effect on industrial acceptance[2.11,2.14,2,16]
of this forming process. The die design technique was still a
function of intuition, empirical formula[l.2,2.8] and experimental



development[2.16,2.45] rather than accurate quantitative analysis.

Experience in the use of concrete as a die material was
reparted by a range of workers, examples being Nemitz[2.12],
Giannoccolo[2.1] and the report of Haegland[2.14]. Nemitz described
~ the use made of a concrete-die with a steel draw and hold-down ring,
while Giannoccolo used a glass fibre lined concrete die supported by
a steel oontainment ring for the single shot manufacture of
submarine end closures. Haegland found that fibre epoxy resin lined
concrete dies were only suitable for production of a limited number
of camponents because of the deterioration of the die linings. Also
described briefly in this paper was the use of particle board as a
‘die material. Berman et al[2.15,2.46] presented interesting papers
discussing the commercial manufacture of dies, particularly the
preparation of simple profiles by fabrication rather than machining
and involving relatively cheap materials.

The use of a thin fibre glass shell die on a shock absorber
mounting with a steel draw and hold-down rings to manufacture ten
foot diameter domes was investigated by Ezra et al[2.16]. Initial
exper iments were conducted on one fifth scale medels and using the
scaling laws developed by Ezra, the producticn die was prepared.
The major difficulty reported was in scaling the characteristics of
the shock absorbers which may have contributed to the discrepancy
between an average mean production run of twelve shots between die
Failures for the model, and failure occurring after each shot for
the production die. The definition of failure was the inability to
maintain vacuum and hence the application of epoxy resin between
shots was used to increase the die life, but not to the number of
shots predicted by the model study.

A further investigation into the design of water backed thin
shell dies to produce domes was presented in a paper by Kulkarni et
al[2.47], and was based upon a membrane analysis to describe the
behaviour of the die under explosive forming corditions. An
experimental program based upon dynamic strain measurement confirmed
the analytically predicted results and allowed a calculated
compar ison of peak strain and stress levels for the water backed and

30.
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unbacked thin shell dies.

Measurement of elastic die strains were also obtained by
Bourma[2.48] in a study of energy transfer and dynamic strain in the
deforming blank.

A low cost method of die manufacture was suggested by
Lieberman et al[2.49] using ice as the die material. A die was cast
for each forming shot from a mould, in the shape of the required
product. The resultant die was destroyed during the explosive
forming operation. However it was claimed that the transfer of
energy fram the blank to the die which preceded the die failure
ensured that the blank underwent no further plastic deformation
following the bottoming in the die. The advantages claimed for the
process were the low material and manufacturing costs of the die and
a greater dimensional accuracy for the production of a run of
components. This final advantage was due to the fact that the wear
on the mould used in producing the ice dies was considerably less
than that on the high strength die being subjected to typical

explosive forming loads.

2,2,3 INFLUENCE OF EXPLOSIVE FORMING (N MATERIAL

PROPERTIES

The influence of explosive forming on material properties has
been the subject of research investigation for the following

reasons,

The dynamics of the high velocity forming methods gave rise
to residual stress distributions in the final product which varied
markedly from those obtained by conventicnal forming methods for the
similar product shape. This modified residual stress distribution
was considered to be due to a combination of the variation in the
fimal strain distribution between the forming techniques, and the
effect of the workpiece velocity when it impacted the die in the
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case of die forming. Since the material properties such as ultimate
tensile strength, fatique strength, stress corrosion susceptability
and impact strength were influenced by residual stressing,
researchers have compared the residual stress affected properties
for products formed by both conventional and explosive forming
techniques.

Also the dynamic strain rates, (400-600)/sec, associated with
the forming processes were considered to result in plastic
deformation mechanisms which differ significantly from those
associated with the lower strain rates, (0.01-20) /sec, of
oconventional forming processes. Hence the material properties
influenced by plastic deformation were modified when products were
manufactured by the explosive forming technique, as opposed to those
anticipated from conventional forming techniques.

Finally, since the high velocity forming methods were capable
of mamifacturing components from materials with properties which
prevented or restricted their working by conventional techniques,
there was considerable interest[2.50,2.51,2.31] in the effect of the
forming on their properties.

2.2.3.1 RESTOUJAL STRESSES Stone[2.52] using a split tube
deflection method showed that the residual stress in an explosively
formed 316 stainless steel hexagonal tube was compressive, while a
cold drawn round tube of the same material exhibited a tensile

residual stress. The maximum residual stress was observed at the
corners of the hexagonal profile where workpiece/die impact was
greatest, suggesting that volumetric strain due to the shock impact
was significant in contributing to the residual stress in explosive
die forming.

This confirmed work by Orava et al[2.53] involving comparison
petween explosively die formed and explosively free formed 316
stainless steel in which subsequent tensile tests exhibited a 29.6%
increase in yield strength for the explosively die formed steel, as
compared k0 a conventionally formed steel, while only a 3.4%
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increase was observed for an explosively free formed steel with
strain energy absorption similar to that for both the conventional
and explosively die formed product.

Van Wely[2.54] also carried out residual stress measurements
on five foot pressure vessel ends manufactured by cold pressing and
explosive forming low carben AISI 304-I, and HY100 steels. The
residual stresses were determined by both the back scattering X-ray
technique and the strain gauge method involving placing strain
gauges on the point of interest and locally relieving the residual
stresses by drilling a hole. Both methods allowed the radial and
tangential residual stresses to be measured. Some difficulty was
encountered with the X-ray technique because of the localised
. surface nature of the measurement with the back scattering occuring
only from a 10 micron cuter layer of the material. The general
corclusion was that the explosive die forming gave rise to a
residual compressive stress, while the oo0ld pressing method of
manufacturing gave residual tensile stress.

2.2.3.2 PIASTIC DEFORMATION MECHANISMS It has been
postulated[2.55] that since the peak pressure of the incident shock
wave assaciated with explosive forming can be such that it may
exceed the dynamic yield strength of the material to be formed, the
deformation mechanisms were modified to allow the redistribution of
the applied loading.

A modification which has been reported to occur as a function
of the dynamic strain rate, was an increase in the proportion of
twins observed[2.56] for the given strain magnitude and ambient
temperature. This would result in a greater re-orientation of the
lattice towards more favourable slip conditions and the possible
increased concentration of mobile dislocations within the lattice.
Also, increased concentration of point defects due to the lattice
shock loading has been suggested[2.55].



™wo further modifications have been discussed: firstly, the
fracture of inclusions, as a function of the rate of dislocation
propagation due to the dynamic load application, and the second
being the presence of different dislocation  structures or
distributions following deformation than would be anticipated from
conventional forming.

The observations on changes to the plastic deformation
mechanisms have been basically uncorroborated and there exists a
number of contradictory reports in the literature on this aspect of
the effect of explosive forming on material properties.

" The majority of observations currently available giving
detailed examination of the dynamic deformation mechanisms either
involve high pressure, short duration,(0-5 microseconds) contact
explosive loading situations {2.51,2.57,2.58], or the development
and operation of dynamic stress-strain rigs[2.59,2.60] used in work
aimed at deriving constitutive equations to describe the material
behaviour at high strain rates. While the results from these
investigations may be applicable in certain specific stand-off
explosive forming operations, care must be taken in equating these
results to phenaomena observed in stand-off explosive forming
exper iments.,

The modification of properties has been used to reinforce
observations involving a suggested deformation méchanism in a
limited number of cases such as the accelerated ageing reported by
Otte[2.61] for aluminium alloy. The accelerated ageing was
attributed to increased diffusion rates within the lattice which
were a function of the excess concentration of vacancies resulting
from the non-—conservative motion of edge jogs on screw disleocations.
Also increased embrittlement and corrosion behaviour have been
attributed to the modified plastic deformation mechanisms.

Optical[2.62] and Electron Microscopy[2.51,2.55] have been
used in a limited number of studies to verify these modifications
for a specific material or loading condition, bhut again
contradictory information has resulted.

34.



2.2.3.3 MATERIAL PROPERTY EFFECTS There exists

in the literature a large number of unrelated descriptions of

research carried out on the effect of explosive forming on
material properties[2.50,2.54,2.55,2.56,2.62].

The most relevant review paper was that of R.N. Orava et
al [2.53] which considered 'The effect of High Rate Forming on the
Terminal Characteristics of Materials.' While this survey was
restricted to cases where a comparison could be made between a
high energy rate formed component and a conventionally formed
camponent with similar deformation, it gave a  comprehensive
collection of the results of the significant research into this
field up until 1969.

The majority of research into material effects was carried
out during this period and hence, while recognising that work has
been subsequently done, the conclusions of this review were still
applicable.

2.3 UNDERWATER EXPLOSIONS

The feature which uniquely identified these methods of
metal forming was the energy source and the technique of
transmitting the energy from that source to the blank or
'workpiece' to be deformed or modified.

While a range of energy transmission media such as ‘air,
water, oil, gelatin, talc and liquid salts' have been mentioned
for stand-off forming operations by Rinehart et al[l.1] and
research has been carried out into the efficiency of plasticine,
sand and water,sand and 011[2.63] as transfer media, it was
considered that this investigation should be restricted to the
stand-off explosive forming process using water as the energy
transfer media.
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The selection of this media was based upon its common
usage, increased relative safety and industrial acceptability.
The major safety aspect was the ocomparatively high transfer
efficiency resulting in a smaller charge size for a given amount
of plastic deformation when compared with other media. Also the
containment effect of the water reduced the required safety
distances for shot firing by preventing debris such as detonator
casings attaining high velocities.

Another advantage of the reduced charge and the water
energy transfer media was the lessening of mnoise and vibration
problems associated with this manufacturing method, and hence
reducing the restrictions on the siting of the forming
installation. '

Finally, water generally has an advantage of low cost,
availability and ease of handling.

The energy source used in this forming method was high
explosive charges as opposed to a low explosive charge. The
distinction between high and low explosives is shown in Fig 2.5

page 27 .

The high explosive involved a shock or detonation wave, the
chemical reaction occurring within this discontinuity which
propagated through the explosive, while the low explosive reacted
by deflagration. Although the rate of chemical reaction or
deflagration increased with pressure, and the pressure was related
to the chemical reaction rate giving rise to an explosion, the
resultant rate of reaction was usually a few tenths of one per
cent of that in the detonation wave[2.64]

36.
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2.3.1 DETCNATION

The quantitative description of the detonation of solid
explosives has, and continues to be the subject of considerable
research[2.65,2.66] and is still not understood completely. The
study of detonation in underwater explosions has been restricted
to research carried out with respect to large charges, greater
than one kilogram of TNT or its equivalent, mainly in support of
naval research and weapcns development[2.20,2.67,2.68] .

The detonation and subsequent behaviour of the detonation
products has a most significant influence on the mode of energy
transfer to the surrounding media. The detonation wave impinging
on the explosive/media interface gives rise to the primary shock
wave and the subsequent non-homogenous behaviour of the gaseous
products particularly at the interface determines the further
energy transfer and decay characteristics of the primary shock
wave. Finmally, the media-gaseous detonation products interaction
provides the mechanism controlling the final stages of the energy
transfer. While the significance was recognised it was considered
impractical to attempt o correlate the detonation in the charge
to the resultant energy transfer.

This decision was taken because the energy source used in
this investigation was Cordtex, consisting of a waterproof
flexible cord containing a charge of granular pentaerythritol
tetranitrate (P.E.T.N.) of weight 10.4 gms/metre wrapped around a
No. 6 electric detonator in an approximation to a sgphere. This
arrangement of charge made the location of detonation and its
subsequent propagation indeterminant. Although it was feasible to
analyse detonation in line-charges of Cordtex, since they were
non-uniform in their pressure, impulse and energy distribution,
line charges were not suitable for the stand-off free forming
operation under consideration. Also the common representation of
shock waves for explosive forming[2.69] involved the assumption of
either an acoustic approximation or alternatively, incompressible

hydrodynamics because the charge size and resultant peak pressures



were not sufficiently large to require the finite amplitude
approach. Hence a knowledge of the detonation and non-homogenous
behaviour of the gaseous products of detonation  immediately

following passage of the detonation was not so significant.

It should be noted finally that while analyses of limited
accuracy [2.65,2.70] were available to describe the detonation,
studies into the shock wave behaviour in the energy transfer media
were usually based upon an assumption simplifying the
detonation/media interaction, such as adiabatic explosion at a
constant volume[2.70]. Although these simplifications were
general, work by S. A. Berger et al[2.68] did analytically
described the detonation front of pentaerythritol tetranitrate and
the resultant shock wave until it had travelled gpproximately 7
charge radii fram the charge centre,allowing for nonisentropic
behaviour of the detonation products behind the main shock wave,
and before the secondary shock wave.

2.3.2 SHIXCK WAVES

Experimental measurements for large explosive charges,
unaffected by boundaries, give a general pressure history for the
shock wave generated in water by a spherical charge, shown in Fig
2.6 page 39 after Cole[2.70] and Schauer[2.69]

An important experimentally derived result from the point
of view of the usefulness of the explosive for plastic deformation
of structures was the impulse available from the passage of the
shock wave. A typical graph derived from pressure recording
equipment, used in the investigation of the performance of large
charges, is given in Fig 2.7 page 39 after Cole[2.70] for a fixed
point in sea water twenty feet (6.lm) away from a 300 pound (136
Kgm) charge.
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From the typical experimental results obtained, for large
charges in effectively infinite bodies of water, it was found for
a fixed point within the medium that the initial section of the
pressure profile could be empirically represented by the equation

Pr = Bpexp(~ T/8) 2.1
where T = time elapsed since the incidence
of the shock front
Prrl = peak pressure of the shock front at the
fixed point

= exponential time decay constant
P, = instantaneous pressure at time due to
the shock wave.

Also from experimental work([2.71] and similarity
studies[2.70] it could be shown that
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represented the peak pressure P in psi (MP), Effective Unit
Tmpulse (I) in lb-sec/in (KN-sec/M) and Effective Unit Energy
Flux Density E, in in-lb/in (KN/m) passing through unit area
surface located at the fixed point, distance R in feet (m) from
the spherical charge weight W in 1b (Kgm), and the surface being
normal to the incident shock wave propagation direction. The
constants Ae, Be’ Ce,al,Bl,Ylwere obtained from the Table 2,1[1.2]

for a limited range of explosives

40,
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Explosivé Density| Peak Impulse Energy Integr-
Pressure ation
Time
gm/cc P, I(t) E(t) sec
Ae 1 Be Bl Ce 71
TNT 1.52 21,600 1.13 |(1.46 0.89 | 2410 2.05| 7.60
(52.4)* (5.75) (82.5)
Loose 0.93 21,400 1.15 |1.73 0.98 | 3000 2.10]| 5.0¢
Tetryl (51.0) (6.26) (98.1)
Pentolite | 1.60 22,500 1.13 [2.18 1.05 (3270 2.12| 6.79
(54.6) (7.40) (105.0)

Table 2.1 Explosive Constants after Cole[2.70]

* The constants for SI units based on the dimensions in brackets

Finally the value of the exponential decay time constant
for a given explosive type, charge weight and stand-off could be
obtained. Either from a graph of G'/Wl/3 vs Wl/3/R1 for the

particular explosive or

alternatively

if the graph oould be

épproximated to a straight line in the region of the conditlions
applying, then the relationship

NIE
e

6'

W1/3'1

(=)

Ry

2.5
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enabled the decay coonstant® o be calculated where Deand § were
appropriate constants.

Erza[2.4] gave an alternative relationship for the decay
constant

Yo
_ W1/3 Wl/ 3
8 = Ky (“i’)

vhere L was in in(m) and the constants were cbtained from the
table 2.2.

. 6
1 10
Explosive Kex Ye
TNT 38.4 -0.18
(92.3)
Pentolite 38.4 -0.18
(92.3)

Table 2.2 Explosive Constants for Decay Constant.

It should be realised that these empirical relationships
were approximations bo experimental results for idealised
conditions of a homogenous spherical charge, spherical detonation
wave and an infinite body of water. Unfortunately this
information was available for a limited number of explosive types
and anly applied for stand-offs greater than seven to ten times
the radius of the spherical charge. Also, as can be seen from Fig
2.6 page the representation of the pressure profile, equation
2.1 by an exponential decay was only valid for a pressure range to
30% of the peak pressure. While this often represented the limit

of accurate pressure measurement for the shock wave phenomenon



during these experiments, because of the slower decay rates of the
‘tail’, these pressures contributed to the impulse available for
deformation. It was suggested [2.70] that while the pressure
profile was diverging from exponential decay at times 1.20, a
realistic value of impulse due to the shock wave would be obtained
by the integration

Jal
I = P_dt 2.6
o t

where & was between 58 and 6.78.

The energy flux associated with the passage of the shock
wave could be found for the exponential decay section of the
pressure profile as follows([2.70,2.71].

- The expression for the energy flux density to time Te after
the arrival of the shock wave was given by

e 2 Pt
Ef = Omt UVAE:p‘{';lev'FI—n—-i[dt 2.7

where A[Ep+ %Lé] was the increase in potential and kinetic energy

for a unit wvolume of the energy transfer medium, R was the
pressure, T the density and u, the velocity of the medium.

Considering finite amplitude waves and applying the
Rankine-Hugoniot conditions for the shock wave, the equation
became

dt 2.8

and when the approximation U = c (1 + ®,P) described the shock
front velocity, then by expanding powers of P and substituting for

the exponential decay pressure profile, the energy flux was given

by
2

“

2
{1 - -§(u2
oo o)

1 2
- = )Pm}J Py dt 2.9
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(275 MP). Alternatively,
it has been

for
from

(where c, = velocity of sound)
for the pressure range 0 - 40,000 psi
acoustic waves of infinitesimal amplitude,
established that the energy flux was given by
2.10
the

Ef N
The divergence of the shock wave profile
attributed to the interaction at the
following the
As shown by 5.A. Berger et

exponential decay could be
explosives/energy transfer medium interface
al[2.67,2.68], the density of the water caused a second shock wave
products of detonation and

5| e
g
OO.

impingement of the detonation wave.
to implode into the centre of the
therefore re-propagated as a reflected or refracted wave ocutwards,
behind the main shock wave as a secondary pressure pulse. Also
the interaction of the detonation waves and the  subsequent
expansion of the bubble of gaseocus products following detonation
contributed to this secondary pressure pulse or peak, which
intrinsically an explosive

was
characteristic and could be used to identify the explosive type.

according to Cole[2.70]

B

2,3.3 GAS BUBBLE PBEHAVICUR
the gaseous products of detonation remained
t

Following the propagation of the shock wave away from the
P where

This high energy condition caused, as

medium/gas interface,
in-a condition of high temperature and high pressure
has been observed[2.70], a rapid expansion of the gas bubble with

>> B the ambient pressure.
an outflow of water and the resultant radial velocity of the water
was such that when the gas pressure equalled the ambient water
pressure, the kinetic energy of the water caused the continued
until the work done
was sufficient to

eXpansion at a decreasing radial velocity,
against the pressure difference (B, -F.)
counteract the radial kinetic energy in the water adjacent to the

gas oubble.



Subsequently, the pressure difference gave rise to an
inward radial water welocity which overshot the radius for which
the ambient and gas pressure were equal, and therefore the gas
bubble underwent a mumber of dynamic oscillations about an
equilibrium radius, with a decreasing radial amplitude of
oscillation as the energy was transferred to the surrounding
medium both as kinetic energy or after-flow and a discrete

pressure pulse.

A typical experimental observation[2.70] was shown in Fig
2.8 page 46 and it was noted that for charges particularly at
considerable depths in an infinite body of water, the bubble
remained approximately symmetrical and that it retained its
identity irrespective of the dynmamic radial behaviour and the
bubble's vertical motion.

Obviously the gravitational forces caused the bubble to
rise and it was observed[2.69] Fig 2.9 page 46, that the upward
migration occurred mainly as the hubble approached its minimum

radius.

Finally, the Fig 2.10 page 46 shows the resultant pressure
profile for the bubble pulsation, and it was noted that for the
recorded pressure amplitudes involved, the acoustic assumptions
such as incompressibility of water, were valid in the analysis of
the gas bubble behaviour.

On the basis of the experimental work the following
empirical relationships could be used to describe the gas bubble
behaviour, as a function of depth, explcosive weight and explosive

type
3
o/
T = K, ——— 2.11
o 1 (H + 33)5/6
/3 .

(H + 33)

45,
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where ’1‘o was the pulsation time for the first bubble minimum, Rm
maximum gas bubble radius, H the depth of the explosive below the
free surface, W the weight of explosives and the constants Kl,K2
were functions of the explosive type. Again these experimental
results and relationships were derived for idealised conditions of
an infinite body of energy transfer media without interaction from
any s0lid boundary or free surface. It has been shown that the
gas bubble behaviour was influenced by the presence of any solid
boundary or proximity to the free surface of the medium because
these boundaries would affect the after-flow of the medium. The
bubble has been observed[2.70] to translate to a rigid boundary in

close proximity to the charge.

Bebb[2.71], on the basis of experimental measurements and
amlytical wark by Savic, derived an approximate ratio of the
after flow energy flux to primary shock wave energy flux using the
empirical equations.

=71 :
[ — e
Ef : Ef K3 (Rl/Re) 2.13

where Ej'E = After flow energy flux

Ef = Primary shock energy flux

K3 = Constant

Rl = Distance from the charge

Re = Explosive charge radius

Hence the total energy in the transfer medium following an
explosion at distance Rl from the explosive was given by

(4-nR]2_ X primary energy flux density) +

(4'nR]2_ x (Ry/a) x after flow energy flux density)

47.



where a_ was the radius of the gas bubble at the limit of the
time integration.

48.

Calculations based upon these relationships for a spherical

charge and for Rl/Reratios of 50 to 1 gave primary energy results from
0.20 to 0.27, and after-flow energy results from 0.21 to 0.24, where
the resultant energy was represented as a function of the total
available chemical energy in the charge.

2.3.4 ENERGY TRANSFER IN EXPLOSIVE FORMING

Having briefly examined the information available in the
literature which empirically and qualitatively represented the main
phenomena associated with underwater explosions, it was oonsidered
that the application of this information to a study of energy
transfer in the - explosive forming processes applicable to New
Zealand engineering and manufacturing conditions warranted
consideration.

The experience of Baguley[l1.7] at Physics and Engineering
Laboratories D.5.I.R. suggested that a charge radius to stand-off
ratio of less than ten was applicable, assuming that all the
P.E.T.N. available within the Cordtex fuse was present as a
spherical charge of density 1.60 gm/cc. Cordtex detonating fuse has
been used in the majority[l.7,1.8,1.9] of experimental research in
New Zealand into explosive forming, because of its ready
availability and freedom from legal restrictions that apply to other
explosive types.

With the low stand-off to charge size ratio, the presence and
deformation of the blank was going to have a significant influence
upan the incident pressure distribution and gas bubble behaviour.
Since the theoretical studies available[2.72,2.73,2.74] on
underwater explosions were usually developed for large charges at

distance to charge size ratios of greater than ten, and often
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assuming infinite bodies of water without boundaries or free
surface, the resultant theories were not valid in the study of the
explosive forming process.

Finally, a knowledge of the blank deformation oould not be
separated from a study of the energy transfer because of the
interaction and the interdependence of these two processes on each

other.

2.4 DEFORMATION OF PIATE SUBJECIED TO IMPULSIVE LOADING

The theoretical research into the response of plates
subjected to impulsive loading such as occurs in explosive forming
originated from studying the Underwater Explosive Research
Laboratory (U.E.R.L.) diaphragm gauge, Fig 2.1l page 50 to improve
its resolution and application.

The gauges consisted of a diaphragm of either copper or steel
clamped to a gauge body giving it an air backing. The gauge was
placed a fixed distance from the explosive charge and the subsequent
depth of the centre of the approximately semi-spherical deformed
digphragm was used as a measure of the explosive effectiveness, as

well as its potential for structural damage.

With the development of numerical techniques and the use of
high speed large computers in the late sixties, there was.
considerable interest in the reponse of structures to dynamic
overloads such as occur in earthquakes or Erom shock or blast waves
associated with explosions. While there existed general review
papers by Jones et al[2.75], Jones[2.76] and Rawlings[2.77] on the
plastic response of plates or structures to dynamic loads, a review
of these analytical and rnumerical techniques was carried out where
it was applicable to explosive forming. The review was restricted
to consideration of the response of circular plates because the

basis of this study was the stand-off explosive free forming of
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circular blanks. The selection of the free forming operation of
circular blanks was to reduce the number of parameters when
considering the energy transfer and simplify the experimental
procedures in the measurement of the blank wvelocity during
deformation.

These studies oould be <coonsidered in three general

classifications.

2.4.1 MEMBRANE DEFORMATION THEORIES

These theories were derived on the assumption that the stress
generated in response to the applied loading was predominantly a
membrane stress system, and therefore the effect of bending on the
subsequent deformation could be ignored. The other major assumption
made in the membrane analysis was that the material behaviour was
rigid-plastic and the elastic strain energy effects were also
ignored.

Richardson et al[2.23] derived a model for a diaphragm
mounted cn an infinite baffle subjected to0 shock loading with
allowance being made for the diffraction and rarefaction of the
pressure pulse due to the diaphragm and baffle deformation.
Following the assumption that the diaphragm deformed with a
gecmetrically similar parabolic profile at all times, the pressure
profile became;

_ _ 2 -
P(t) = 2Pl(t) moco (a{:— + (Sd) zc(t Sd)
t
- (i)) z (t,)dr 2.14
62 c' 1 C °
d t-0

51.
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where
P(t) = BApplied pressure pulse to the diaphragm surface
Pl(t) = Initial incident pressure pulse without
inter fence
m, = Transfer medium density
S, = Velocity of sound in transfer medium
z, = The central displacement of the diaphragm
Ty = Lapsed time after diffraction wave arrived at
the surface of the blank.
94 = Diffraction time
= a/co

Finally the following assumptions were made about the
diaphragm deflection;

(1) Plastic deformation approximated by membrane
tension.

(2) Negligible restraint by the medium behind the
diaphragm.

(3) Thickness strain was negligible.

From the first assumption the stress was given by

40’0h
o = ( 2)zc 2.15
a

and although this strictly applied for small spherical deformations
the error introduced by this divergence from the parabolic
deflection assumption was small.

Therefore the equation of motion was obtained for  the
diaphragm.

dzz

C
m = P(t) - o_(t) 2.16
at> n
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The final form of the equation solved by Richardson et al was
derived by the combination of equations 2.14,2.15 and 2.16. The
solution so obtained only applied up to the time when the derivative
of the central deflection with respect to time reached zero and the
resultant deflection was the final deformation of the diaphragm.

Also if the plate was sufficiently thin the inertial effects
could be ignored and for times of less than Bd the diffraction terms
in the equation 2.11 were ignored. This gave the following

solution:
ZPme Sp
Z. = mo 5=% (exp(-t/8) - exp(-t/ep)) 2.17
oo P
where 2
mc a
g = 00
P 4001'1

= the characteristic time i.e. 0.63 of the
final deflection.

This gave the following final deflection of

2P o

m
-t /0
mco exp ( rr/p)

for the initial pressure pulse given by the equation 2.1 where

8.6

= p
i 8-8, In(o/o,)

The interesting conclusion reached from this result was that
the maximum deflection was proportional to the incident impulse on
blank P8 which was verified by the work of Boes[2.44]
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Cavitation was shown to occur adjacent to the deforming blank
and Richardson et al proposed the following criteria for the
formation of such cavitation; that the diffraction time must exceed
the cavitation time at the blank centre. The approximation to
cavitation time was obtained by considering the central motion to be
similar to that of an infinitely free plate of equal mass per unit
area and given by

8

b = ‘B‘l—:—l" In(8;) 2.18
moce
where Bl = o
m

The energy transfer to the blank once cavitation occurred,
was reduced to zero and any subsequent deformation was due to the
kinetic energy the diaphragm possessed  immediately prior to
cavitation. Also the oollapse of cavitation following its
termination resulted in a water hammer effect supplying additional
energy to ‘round-cut' to the final deformed profile.

This mathematical model of the deformation was limited in its
application because of the assumptions made, particularly those
concerned with the thickness strain and the parabolic deflection.

Hudson[l.4] developed a theory of diaphragm plastic
deformation due to shock loading in which the energy was assumed to
be imparted as a discrete impulsive loading, which resulted in the
digphragm having an initial normal velocity relative to its
mountings. The deformation mechanism was assumed to be in the form
of radial stretching and thinning of the flat portion of the blank,
Fig 2.12 page 50 . The bending wave propagating from the clamped
periphery towards the blank centre, did not absorb energy but
supplied a discontinuity bringing the blank to rest in both the
vertical and horizontal range following its passage.
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Since the situation was extremely complex the following major

simplifying assumptions were made by Hudson,

1)

(2)

(3)

(4)

(3)
(6)
(7)

(8)

Deformation was due to the passage of a plastic
berding wave completely converting the kinetic
energy of the plate into plastic deformation.

The stresses associated with the wave were radial
and circumferential principal stresses just ahead
of the wave and the normal stress component along
the generator of the tilted surface, a shear stress

- camponent and a circumferential normal stress

companent.

The flat undeformed region retained its normal
velocity throughout the deformation and was subject
to uniform thinning, with a radial flow of material.
The radial displacement of a particle was given by

qy (t) )

Ul = Uo(l +

where ql(t) = the normal coordinate of the
super imposed constraint motion to
ensure the uniform thinning of
undeformed material.
Elastic effects were negligible.
Kinetic Energy of thinning was negligible.
No work was done in the propagation of the plastic
wave and there was no impulsive thinning associated
with the wave.
The material obeyed the Mises-Hencky yield criteria
and followed the Prandtl-Reuss flow rule or stress-

strain relationship.

From assumption (3) some form of oonstraint forces were

necessarily superimposed upon the system which satisfied the

conditions given but which did not result in additional work being

done during the deformation.
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Therefore by considering the conditions of equilibrium and
continuity associated with the bending wave, a solution was
aobtained. For the case of non-work hardening yield the solution was

Yo
w = -~ (a-1) 2.19
m
2
N (vb/cm) |
he = h(3) 2.20
where v, = the normal velocity
hy = the final thickness
o0, = the material yield stress
- a
C, = ¥
m

For the case of work hardening

hf hf
a({log (h—)) = ay + W log (h—-— 2,21

with suitable manipulation and approximations the solution was

C
he = hexp(- 2((1-x%-1 2.22
d
1
v X
1
w=—c—°J 1-x)"%ar 2.23
m
a
w
where dz = 2
1 m
vod
K = 2(c4 )log(g)
m

The assumption that the energy for plastic deformation was
based upon the incident impulse on the blank again satisfied Boes's

cbservations.
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S.E. Corbett[2.37] modified the analysis with the assumption
that the deformed blank approximated a cone in shape and the angle

of tilt @, was given by

=1 Wo
DLt = Tan (a—)

This major simplification in oonnection with Hudson's
technique of bemding wave analysis resulted in the thickness
distribution given by

a
4sin® -5
= r
hi = h(a) 2.24
where hi = the instantaneous thickness
woo= the central deflection of the diaphragm.

The experimental work conducted showed that, as with the
Hudson analysis, the thickness strain distribution predictions were
suitable for regions away from the blank centre, but approaching the
centre the theory failed, as would be anticipated from the equations
derived.

With both these theories no allowance was made for the
pull-in of material at the edge of the die and in practice an error
would arise because of this phenomenon's considerable influence on
the strain distribution about the draw radius.

Boswell[1.8] extended the Hudson analysis to allow for strain
rate as well as strain hardening and obtained the following

expression;
X
r _S
h - n m(g) - 0.06 mv2
i &P : © 2.25
< Xq .
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where €, = the strain rate
Xg = the strain rate coefficient from the following
dynamic stress-strain relationship.
By A N
o = g, + W log (H—) + Xg log(af (log(h—)))

G.A. Thurston[2.5] solved the equations governing plastic membrane
deformation of a diaphragm with respect to explosive forming

B(Ur)

Ot - = 0 2.26
Iy

9 ow. u u Bzw

T (xr Or E) +p]’_'(]. +£_-) (1 +a—r') = mrhat—z 2.27

which were derived by Boyd([2.78] fram the assumptions;

(1) Small finite—deflection theory applied.

(2) Bending strains neglected to give a membrane theory.

(3) Elastic strains neglected with comparison to plastic
strains and a‘ deformation theory of plasticity used
with a power—law stress-strain relationship.

(4) Radial inertia terms neglected in the equation of motion.

The power—law was expressed

- -n
g = Ke

for the material used.

By substitution, two equations of motion in terms of the
radial and vertical deflection were obtained. These were solved
numerically using an explicit finite-difference technique to
determine the value of vertical deflection and therefore obtain the
value of radial deflection by a Picard iterative procedure. G.A.
Thurston improved the convergence to the correct solution by the use
of Newton's method of correction.
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For the case of die forming this method of solution was still
used but the equation 2.27 was replaced by a constraint equation,
giving the die shape as a function of the radius and radial
displacement.

Considering the plate as a viscoplastic membrane Wojno et
al[2.79] presented a perturbation solution based upon the linear
eigenvalue problem. The results were compared with existing
experimental data for contact explosive loading of steel and
titanium plate and showed a strong correspondance.

2.4.2 BENDING DEFORMATICN THEORIES

These analytical methods were based upon the assumption that
the plastic deformation was due to the propagation of plastic
bending hinges across the blank, any membrane stress being ignored.
The analysis also was considered for either the clamped circular

plate or the simply supported circular plate.

2.4.2.1 SIMPLY SUPPCRTED CIRCULAR PLATES The major ity
of these bending analyses were based upon a rigid-plastic

assumption, the elastic effects being effectively ignored. It
should be realised that while this could adequately describe final
deflections it would not describe the dynamic deflection.

H.G. Hopkins and W. Prager(2.80] extended the static limit
analysis of a thin, circular, simply supported plate to determine
the dynamic behaviour of such a plate subjected to a uniformly
distributed load, which was instantaneously applied and released.
The plate material was assumed to obey the Tresca yield oondition,
Fig 2.13 page 60 , and the associated flow rule.
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The aspect of the analysis of significance to explosive
forming was the high load case, where the applied pressure was
greater than twice the static pressure which gives rise to vyield.
The analysis was based upon these distinct phases; the first being
the load application, during which period there existed a stationary
plastic hinge circle, the radius of the hinge circle being a
function of the applied pressure only. This phase resulted in the
initial deformation in the form of a cone and the development of
kinetic energy in the plate. The stationary hinge circle of the
preceding phase then contracted dntil at the termination of the
second phase, the hinge circle approached the centre of the plate.
The final phase was the conversion of the kinetic energy existing at
the completion of the second phase into plastic work.

The solution of the equation

r 2
S (M) -M =—J (e -m Yy ar 2.29
ar' r t 2 :

ot

o)
under a rectangular load pulse for the necessary conditions of
continuity and piecewise discontinuity across the hingle circle gave
the following resultant deflection for the simply supported plate.

The first phase deflection Fig 2.14 p 60 0 < t < T, was given
by
wir,t) = W(t) 0 <r < B
2.30
R~-r
W(t) R= B BO <r <R
o
2
where W(t) = %ﬁ—
P R
2p 2
o (R - BO) (R + Bo)
GMO
P = —
(o] R2

= Static Yield Pressure
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While the second phase deflection Ty < t <T,, as the plastic
hinge circle propagated frcm BO at timeTl when unloading occurred to

the centre at time T, was given by considering the velocity of the

plate.
PTy
w(r,t) _ - 0 <r < g(t)
It 2.31
i R-r B(t) <r <R
m R—Bo(t)
wdos w3 g2 g 2t
(R ) = ( R ) - ( R ) = —P—I'— -1 2.32

From the equation for the hinge circle propagation it was
shown that at B, (T,)= 0

T = i

2 2P

o

and hence by consideration of continuity conditions across the
propagating plastic hinge circle, it was shown by Hopkins et
al[2.80] that the deflection was

Prf 5 2 3
w(r,T,)) = 5=—|2-=5-=) -1|, 0<r <8 2.33
2 2m 2PO R2 R3 o

The final deflection at the end of the third phase
T2<t<T3wasgivenby

fﬁhﬂi(3 r_ﬁ—ﬁ) -1 0 <r <
2m | 2P R R2 R3 ' = ‘Bo
w(rlT3) =9 2-34

2 2 B3

PT. B B

1 P o o (o] r

| TR T 273 ‘E{ -3 By xR
| © R R
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Also of interest was the result for deflection at the plate

centre

23 %o
Te-8)
W, Ty) = o
o
where I = total impulse acting on plate

]

PTy

A.J. Wang[2.8l] also developed an expression for the
permanent deformation of a simply supported plastic plate subjected
to impulsive loading. Again the analysis was based upon a rigid
plastic material which obeyed the Tresca yield criteria and
associated flow rule. Also it was assumed that the energy was
impulsively transferred to the plate, which developed an
instantaneous, transverse velocity. This kinetic energy was
converted into plate deformation bringing the plate to rest in its
permanently deformed shape.

The deformation mechanism was in two  distinct phases,
correspording to the final two phases in the previcusly mentioned
analysis, The first phase involved the propagation of a bending
hinge fram the outer boundary towards the plate centre and the
second occurred when the plate moved as a whole following the
approach of the hinge to the centre.

This gave the following equation for the deflected shape;
2 2

m vy R r r 2 r 3
w(r,T) = '—jm:" (3 - R (f{_) - (E) ) 2.34
where
v, = the initial transverse velocity of the blank.

o
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M = the limit moment by Tresca analysis.

Also the analysis assumed that the velocity distribution in
the first mode of deformation was expressed as

ow R-=-r
3¢ (Let) Vs R——E;W r B (8) <r <R
2.35
= v, r BylE) >r >0

where Bo(t) gave the radius of the hinge circle at the time t.

Comparison of the results for the final central deflection
obtained by Wang's[2.81] analysis with that from Hopkins[2.80] for
the condition

was as is shown in Fig 2.15 page 65.

As was anticipated, with increasing P the ratio of Hopkin's
soluticn to Wang's approached unity asymtopically, because the
applied impulse of Hopkin's solution made an increasingly closer
approximation to the instantaneous wvelocity conditions asscciated

with Wang®s analysis.

R.G. Thomson[2.82] developed expressions to describe the
'Plastic Behaviour of Circular Plates under Impulsive Loadings of
Gaussian Distribution'. Again an impulsive energy transfer was
considered to impart to the plate an initial transverse velocity
distribution; the plastic work being due to the absorption of the
kinetic energy available to the plate. The plate material was
assumed to follow the Tresca yield criteria and associated flow
rule, as well as complying with thin shell assumptions., The two
stage deformation proposed by A.J. Wang[2.8l] applied, but the
variation in momentum distribution resulted in the analysis being
divided into three regions of momentum distribution.
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Solution of the equation 2.29 for the necessary oonditions
resulted in an expression for the final deflection as well as the
deflection history, strain rates and velccities in terms of the
radius under consideration, the plate radius, elastic limit and the
initial momentum distribution.

The final deflection was given by

L RVS
W(r,tz) = W(r,tl) + (1 - ﬁ)( lZMo 7) 2.36

whexe for the first term w(r,tl) the following case of 0 < £ < t

2
mv_R 2
- 42 2 o _r o 3mp 3
w(r,t) vot(r)exp( b” r") + Vo oM (1 R) ((-2-(§) + —
o 2 (bR)
: 2.2, 3r° 3 r 22
~ % - Dexp(-2b"87) - (5(3) =% ~ =) )exp(-2b"r"))
R 2'R Z(bR)z R
(B <r < g(0))
2
mv_R B 2
o r.,,3,70 3 B 22
= Vol - (5= + =% - Zexp(-2b"8"7)
o lZﬂO R"2'R" . 2(bR)2 R
B 2 8
- G+ 2 -k - Dyepw’)
2 (bR)
(Blo) < x < a)
2.37
where
t; = time taken for the plastic hinge circle to
reach the plate centre.
t, = time at which all movement ceases and gives
the permanent deformation of the plate.
B(t) = B '
= the radius of the hinge circle at time t.
B(0) = the initial radius of the hinge circle.
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t(r) = the time at which the hinge circle passes
through the radius r.
b = constant from the Gaussian momentum distribution
-1
T V2 s

wherer the momentum distribution was a function of the form
(%))
e .
Hopkin's and Prager's work[2.80] was extended by Conroy[2.83]
using similar assumptions and analysis methods to the case of a
simply supported plate under a rectangular load pulse uniformly
distributed over a central circular area while Mazalov et al's[2.84]
extension of the original analysis oonsidered the respanse of a
circular piecewise nonhomogencus plate ©o0 a uniformly distributed
pressure pulse.

The only major experimental work on the analysis of simply
supported circular blanks was the work of Florence[2.85] in which
the deformation, following impulsive loading by sheet explosives on
simply supported blanks was ocompared with Wang's analysis for two
materials. The results, Fig 2.16 page 65 , suggested | that the
resultant deformaticn was accurately described by Wang[2.8l] for
only a limited final deflection of less than ane tenth the blank
radius for steel and even less for aluminium alloys. The result
suggested that Hopkin's et al[2.80] analysis would also be
inadequate because of the similarity to the Wang analysis. Florence
proposed that the error could be attributed to the exclusion of
membrane stresses fram the analysis and theories involving combined
membrane and bending are discussed in the next section.

Wierzbicki[2.86] considered that the strain rates of the
order of 100 - 500 sec would influence the resultant plate
response and therefore analysed the dynamics of a rigid circular
plate of viscoplastic material. The material yield condition was
assumed toO be described by the Huber-Mises relationship while the
viscoplastic constitutive equation was

. 3F
1]



68.

where éy = strain rate
s = %
= a power function of F
= ¢ -
F /Jz/ks 1
= excess of dynamic stress over the static yield
Yo = viscosity oconstant
kS = yield stress in simple shear
Jé = secord stress deviatoric
- 2 2
(Ur o_ o, + ot)/3
o. = ‘radial stress
o, = tangential stress.

The equations governing the plate deformation were obtained

v consideration of the rates of curvature.

The resultant parabolic = type partial differential equations
were not amenable to an analytical seolution, and therefore a
numerical technigue was used. The equations were solved for the
simply supported circular plate with a uniform pressure pulse of
finite duration t_, using a finite difference representation of the
equations in the spatial damain. Iteration to satisfy these
conditions at each time pivotal point was carried out before
integrating to the next pivotal point in the time domain by use of
the Runge-Kutta technique. Using a viscosity v, of 200 sec and a
power series (¢') of unity, the graphs Fig 2.17 page 69 show the
results from this analysis compared with those obtained from Hopkins
et al[2.80] analysis for similar conditions.

While Wierzbicki's analysis was more conservative than that
derived by Hopkins et al, it was pointed out by the author that
ignoring the membrane stress effectively restricted the application
of the results obtained and a cambined bending membrane analysis was
justified.
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Youngdahl1[2.87] modified the Hopkin's et al analysis
to consider a uniformly distributed pulse of arbitrary time history
with finite rise time. Of interest in the analysis of plastic
deformation was the case for maximum pressure amplitude P > 2%
where Po was the st.atic yleld for the plate. Because the arbitrary
time history restricts the generality of any solution, coefficients
were used by Youngdahl to describe the loading and graph Fig 2.18
page 71 ,shows the resultant central deflection §,/R.

2.4,2.2 CIAMPED CIRCUIAR PIATES A.J. Wang and H.G.
Hopkins[2.88] extended the analysis method of H.G. Hopkins and W.
Prager([2.80] and developed a model for the mode of plastic
deformation of built-in circular plate subjected to an impulsive

loading; the plate being of a perfectly rigid-plastic material and
following the assumptions associated with the previous hinge
analysis techniques. The first of the two phases postulated for
this deformation theory resulted from the motion of two plastic
hinge circles and terminated when the faster propagating hinge
circle approached the plate centre. The kinetic energy remaining
after the completion of phase one was subsequently converted to
plastic work by the motion of the final hinge circle.

Again the solution involved the equation 2.29 and oconditions
associated with the boundaries and hinge circles, but unfortunately
because of the numerical complexity of the analysis, the only
results calculated were the duration of each phase and the resultant
polar deflection.

These results where

Time of phase one = 0.57
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Florence[2.89] extended the analysis of Wang et al[2.88] by
assuming that during the pressure pulse the hinge circles have a
fixed stationary location, rather than originating from the rigid
boundary and propagating inwards as in the work of Wang et al. On
removal of the pressure, the hinge circles propagate inwards and
when the inner hinge circle approaches the plate centre, propagation
of the outer hinge circle ceases, the remaining kinetic energy being
converted directly to plastic deformation without plastic hinge

propagation.

Again the complexity of the equation governing the hinge
circle behaviour precluded analytical solution and required a
numerical solution. The results for the central deflection were
given in Fig 2.19 page 73 for a rectangular pressure pulse of
amplitude Pm and impulse I for a plate of radius R, density m,
bending yield limit MO and static yield pressure P,.

A paper by Krajcinovic([2.90] applies the Florence analysis to
the case of uniformly distributed pressure pulse with an arbitrary
time history, and to generalise the resultant numerical solution,
correlation factors based upon Youngdahl's work[2.87] were used.

These were

v
U

Effective Pressure.

72.
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I = Impulse

g
= J (t—ty)p(t)dt
t

y
te = Centroid of pulse

t
1 f
= = t-t t)dt
T { ( Pt
t
Y
where
ty = time at onset of plastic deformation
ty = time at campletion of plastic deformation.

The result of this work was given in the graph, Fig 2.20 page

73 where the central deflection was given by ‘Smax .

The assumption of a bending mode of deformation was limited
in its application to either the clamped or simply supported
circular plate as was shown by the experimental results of
Florence[2.85] and Wierzbicki et al[2.91]. Herice the combined
bending and membrane stress situation had to be oonsidered to
achieve an accurate model of the dynamic final plastic deformation
by the techniques discussed abwowve.

2.4.3 COOMBINED BENDING AND MEMBRANE STRESS

PLASTIC DEFORMATION ANALYSIS

While Jones[2.76] considered both bending and membrane
stresses his analysis involved an initial predominantly bending
deformation mode which was solved by the method after Wang[2.81] for
the first phase. A second stage membrane deformation stage was
solved by the use of Bessel functions. The initial conditions

considered for the second stage of the solution ensured continuity
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of deflection and velocity but accepted a discontinuity in bending
moments. A comparison with the experimental work of Florence Fig
2.21 page , suggested that the analysis gave a reasonable
approximation to the plastic deformation of a simply supported plate
subjected to an impulsive loading. However it should be pointed ocut
‘that neither strain-rate nor work hardening effects were considered.

Wierzbicki[2.92] presented solutions for both the bending
mode for small deflections and bending-membrane mode for large
deflections for an impulsively loaded simply supported plate of
strain rate sensitive material.

Using a constitutive equation

1L
(s Slj l:l) ’ ij
= - 1 for % s .. > k
i3 T Yok, PSR, 713 7 T s
1] 1]
where
Eij = gtrain rate
Sij = deyiatoric stress

yield stress in simple shear

™
i

viscosity constant

-2
]

the problem was initially solved for a small deflection case for the
bending stress alone and then the velocity distribution, and hence
the deflection was obtained. Using the governing equation obtained
by the principle of virtual work, and subsequently linearising the
constitutive equation by the use of a "state of compression stress
tensor", Wierzbicki used the small deflection result on the shape
functions in a Galerkin procedure, and hence obtained a solution for
the combined bending-membrane large deflection case.

The comparison of the results obtained by Wierzbicki with
experimental work by Florence[2.85] was shown in Fig 2.22,page 76,
while a comparison with Jones[2.76] analysis for a five term

expansion of the series of Bessel functions was given for the
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thickness to radius ratios in Fig 2.23,page 78.

Wierzbicki et al[2.91] extended the analysis technique above
to consider a clamped plate impulsively loaded to obtain solutions
for the following cases;

(a) Viscoplastic bending action for small deflection.

(b) Vis_coplastic bending-membrane action for small
deflections (central deflection < 2h)

(c) Rigid-plastic bending-membrane action for large
deflections

(d) Rigid-plastic bending-membrane action for all
deflections.

and obtained a reasonable correlation, Fig 2.24 page 78 ,
with the experimental work they carried out. Again the range of
application of the technique was limited to the viscoplastic case
and it was considered by the author that the discrepancy between
theoretical and experimental results would be due, in large
deflections, to the assumption of small strains in the derivation of
the equations governing motion, as well as having ignored strain
sensitivity and strain hardening in this case.

Batra et al[2.93] derived a generalised incremental analysis
for impulsively loaded circular plates to study their dynamic
behaviour in the elastic- plastic range. The study enabled the
deflection to be determined for a known initial velocity
distribution in the deflection range where the combined bending
moment and membrane forces were significant.

The numerical solution involved a finite element model and
comparisons were made with experimental results in the literature.
Finite element procedures have been used to describe the dynamic
nonlinear elastic-plastic deformation of plates subjected to
transient or shock loading and examples of these techniques have
been presented by Wu et al[2.94], Mondkar et al[2.95] and Bathe et
al[2.96] .Current research mainly concentrates in the application of
Einite element technigues to this problem.

77.
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2.4.4 GENERAL TECHNIQUES CF ANALYSIS

* Wierzbicki[2.97] developed an interesting alternative method
of representing the constitutive equation as a pseudo strain rate
sensitive condition, and hence allowed a modal eigenfunction
expansion technique to be applied. This superposition does not
apply for plastic deformation and therefore it was accepted that the
yield corditicn would be locally violated. The modification to the
constitutive equation insured that the yield oonditions were
" satisfied globally over the structure under consideration.

In considering the case of a simply supported circular plate
the method of solution was applied, and a deformation profile
derived from a given initial velocity distribution and a range of
shape functions., An important advantage claimed for the analysis
method was that it coould be inverted, and from the desired
deformation profile it was possible to calculate the required
initial velccity or impulse radial distribution to free form the
required shape.

The development of programs to determine the large dynamic
deformation of bearers, rings, plates and shells has been reported
by Witmer et al[2.98] ,Leech et al[2.99] and Marino et al[2.100],
while comparison of the nrnumerical results with the experimental
studies has been carried out by Marino et al[2.101l] and Duffey et
al[2.102]. The program involved the use of an integral technique to
describe the strain increments owver each time step, while the
spatial representation involved a lumped mass finite difference
scheme. The lumped mass scheme in the thickness was such that the
applied bending moments were considered to be resisted by separate
discrete layers of material. For each time step, the
stress-distribution at each spatial point was considered and hence
the progression applied for the following material cases; 1)
elastic material, 2)elastic, perfectly plastic material, 3) elastic,

plastic strain hardening and strain rate sensitive material.
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2.5 ENERGY TRANSFER

The energy transfer to the explosively formed blank has been
of interest [2.69,2.103] because it determined the efficiency of the
forming operation and the mechanisms involved influence the plastic
deformation mechanisms, final strain distribution and hence the
resultant material properties and in the case of free forming, the
final product shape.

2.5.1 DEFORMATICN/ENERGY TRANSFER CORRELATICN

Noble and Oxley[2.104] developed a simple method of
determining the amount of explosive necessary in the production of
simple symmetrical shapes. The work done in plastically deforming
the metals was given by;

Work done = h.Y.AA

i

where h thickness of the metal blank.
Y = yield stress of the metal.
AA =  imposed change in area, to the first order
of accuracy, due to biaxial loading.

The energy available at the blank surface due to the

explosive was given by

Enerqgy = nt.AoI.W
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where A, = the initial area of the blank normal to the
incident explosive energy flux.
I = the energy flux available at the blank surface

o, = transfer coefficient which allows for energy
losses in the transfer medium due to friction,
friction, turbulance and viscosity.

W = the weight of explosive.

To determine the weight of explosive necessary for a
particular product, the work required to be done was equated with
the energy available, and the charge weight expressed in terms of
the stand-off, transfer coefficient, yield stress of the material
and the geometry of the required shape.

This method implied the explosive was effectively a point
charge and released its energy without any directionality, while the
expression for work done in the blank assumed a biaxial stretch
deformation and hence restricted its application to symmetrical
shapes. The analysis was based upon a perfectly plastic material
which further limited its accuracy.

Floral[2.103] carried cut a nore rigorous investigation into
the forming of domes using an energy minimization technique which
allowed consideration of large strains, edge pull-in effects and
non—-linear material behaviour. The deformed shape was assumed to
take up either an ellipsoid or paraboloid shape in the vertical
sense, while the radial displacement was described in a function
which allowed for edge pull-in

A power law
_.n
£

g = K

where o = representative stress
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(or o, oy + ot)
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gave the material properties and hence the strain energy was .

given by

En+l av
= _K._ Ed
Us n+l o
v

Floral minimised the strain energy with respect to the
arbitrary constants in the vertical and radial displacement
functions using a computer based method, and thus allowed the total
potential energy to be minimised. By equating the resultant
potential energy to the energy delivered to the blank, the blank
profile was obtained. The delivered energy was obtained by using
the following relationship derived by Ezra to account for the
proximity of the charge to the blank.

where A and f were explosive dependent constants, W was the
explosive charge weight and S was the explosive stand-off from the
blank.

Hence Floral obtained the expression

2 (F+1)
2 73 2
ey = LY r % 1t 1 1
Y mh 2 2F 4 T+ L 2 (EFD) 2
D D (= L £+1
12 D

C
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wvhere h was the initial thickness, m was the mass density L the
axial distance from the charge to blank and Dodie diameter.

Exper imental work reported in Floral's paper suggested that
the effect of the edge pull-in required further study.

While these analyses gave results which correlated deflection
to the estimated or empirically determined incident energy or
impulse, they did not adequately describe the energy transfer
mechanisms involved or enable the resultant strain rates within the
deforming blank to be determined.

2.5.2 ENERGY ABSORBED BY BLANK

Johnson[2.105] in a summary of work carried ocut at the
Manchester Institute of Science and Techrnolegy on High Energy Rate
forming reported a simple technique of calculating the work done on
a blank, relating it to the final thickness strain distribution and
the stress-strain curve for the blank material. The derivation
relied upon the assumption that the hoop and radial strain were
approximately equal and hence, due to  incompressibility, the
thickness strain was of the opposite sign and twice the value of the
hoop and radial strain. Therefore the representative strain based
on the Hencky-Mises distortion energy theory became equivalent to
the magnitude of the thickness strain, which gave an easy method of

direct measurement of the representative strain.

It was also assumed that the material stress—-strain curve
could be represented by either the Swift equation

g = At (B* + )"

where A% B*and n were material constants and in the case of annealed

materials B*was taken as zero, or alternatively

g = Y + P*g
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vhere Y was the primary yield stress and P*was the plastic modulus

for a rigid linear strain hardening material.

Hence the relationship applied to an annealed material gave

Work Done

- while for linear strain

Work Done

—2
%
(Y Pz'g)dv
Jo
R
—  px g2
2nh(Y T+ 25 ar
4 Q

Finally it was assumed that the variation of hoop strain with

respect to the initial radial position was given by

where £

-
It

Hence for the

Ir
Em(l - -R—)
strain constant.
initial reference radius

oauter radius

first case with B equal to unity gave
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2n+2 T R2 h A* en+l

Work Done L) mF2) (o 3)

while for the second case

2
= *
Work Done TR h _(2Y + P* ¢ )/3

The initial velocity of the blank was ocbtained by assuming
that the kinetic energy was acquired in the passage of the shock
wave over the blank and was entirely dissipated as plastic work,

hence
2n+3 A® €n+l
v = m
o m(n+l) (n+2) (n+3)
where v, = initial speed of the blank.
m = mass density

while for the strain hardening case

2Y + P* ¢
m

V:g.e(
o 3 m m )

Finally in method similar to that developed by Noble and
Oxley, the plastic work done was related to the energy available at
the blank surface, due to the explosive giving the following
equation 2.26 .

52_ c _ 2n+2 . R2 h A% EIrr11+l
452 4 (n+l) (n+2) (n+3)
the blank radius.

-
D
[n]
17
)

i

the stand-off
the charge energy available
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Also the assumption was made following Bebb[2.71],
that approximately one dquarter of the total energy available was
associated with the shock wave as a reversible primary energy.

The second material property representation gave

R

45>

(2Y + P* ¢ )
m
3

c _ 2
Z = TTRhEm

It was obvious that the use of static stress-strain
characteristics in the prediction of dynamic behaviour introduced a
large element of uncertainity in the accuracy of the final result.
However it did act as a guide and reduced the amount of experimental
work necessary in setting up an installation to explosively form a
product.,

Sag[2.21] determined the spatial distribution of strain
energy within a dish end manufactured by explosive forming by
placing a grid on the blank and measuring the thickmess and hoop
strain. The incompressibility condition was then applied to obtain
the equivalent strain from the Hencky-Mises distortion energy theory
to be used in the power law representation of the material

stress—strain characteristics.

Also, using a computer-based numerical summation the total
strain energy for the blank was obtained and compared with the

initial explosive energy available.

Sag derived the following relationships

%—E = 0.01499 W °%°  for Aluminium
= 0.01709 WO'3Ol for Stainless Steel
0.169

0.02397 W for Mild Steel
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il

where DE
W

Deformation Energy
 Explosive Charge Weight

I

based upon a Cordtex charge wound in 200mm diameter circles

and located one and one half the die diameter above the blank. The
equivalent hydrostatic pressures were calculated to achieve the same

deformation energies as were obtained by explosive forming.

2.5.3 DEFLECTION/ENERGY TRANSFER INTERACTIONS

Considerable effort was expended([2.20] in studying the
interaction of deflection on energy transfer with particular
emphasis upon the damage caused upon structures such as ships, by
underwater explosions. As previously mentioned these analyses
assume large explosive quantities at a significant distance from the
deforming material and hence there was no interaction between the
deforming surface and the mechanisms of energy release from the
explosive. The analytical techniques described have been applied to
digphragm gauges[2.22,2.23] and while these methods give a basis for
preliminary investigations into explosive forming, they do not
adequately allow for the close proximity of the explosive charge to
the deforming blank.

H.M. Shauer[2.69] reported on an analysis in which a
reloading phase due to a combination of afterflow with gas bubble
expansion and the collapse of cavitation immediately adjacent to the
blank was considered. Initial deflection was considered to be
caused by the idealised shock wave represented by

Pt = Pm exp{-t/0)
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for which acoustic approximations applied, and hence the total
loading on the plate due to the incident and secondary radiated
plane shock waves was given by

- e X
p 2Pt mc T
wherem = plate mass density
c = velocity of sound in energy transfer medium
g—)é = plate velocity.

At the onset of cavitation the loading on the plate oceased
ard the subsequent deformation was a function of the absorption of
the kinetic energy in the blank immediately preceding cavitation.

On collapse of cavitation the plate was reloaded and, using
linear hydrodynamic relationships and an idealised spherical gas
hubble behaviour, the deflection was obtained.

Ezra et al[2.2] studied the interaction of the underwater
shock wave with a deforming circular plate until cavitation
occurred. It was assumed that since the time to cavitation was so
small, the resultant deflection was satisfactorily described by a
small deflection elastic bending analysis. Bgain as in the work of
Schauer, a plane primary shock wave and acoustic theory was assumed.

Hence the governing equation was

2
D-V_4w = gf(r,t) - mha—g
ot
_ -t/8 . . ow
where glr,t)y = 2Pme “MCy we

and hence by separation of variables in a technique similar to that

given in Chapter Five an expression was obtained for the deflection.
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It was apparent that while some qualitative methods were
available to describe the energy transfer in the explosive forming
operation, the complexity and interaction of the enerqgy transfer
from the explosive to the transfer medium with blank deformation
prevented a realistic quantitative analysis until more relevant
experimental information was available, particularly associated with
the pressure history in the region adjacent to the deforming blank.

2.5.4 EXPERIMENTAL STUDIES OF ENERGY TRANSFER

Some fundamental studies into the explosive forming have
examined the deformation history of the blank by either the pin
contactor method [2.24,2.27-2.29,2.106,2,107], high speed
photography [2.108,2.109], streak photography [2.28,2.110] or high
speed stereophotogrammetry [2.111,2.112],

Typical results for a pin contactor experimental program are
given in Figs 2.25-2.28 pages 90, 91 the location for the first
three Figures being at a radial distance from the blank centre of
3/16 of the blank radius. The results shown were for a charge size
of 250mm of Cordtex with a No.6 electric detonator, wound into a
spherical shape with an 8% mm stand-off for a free forming
operation.

This result was verified by the alternative methods of
measuring deformation history[2.28,2.113], the significant feature
was the apparent reloading of the blank at a time of 0.3 - 0.45
milliseconds following the initial movement of the blank.

As can be seen from Fig 2.26, initially the impinging shock
wave imparted an impulsive load to the blank and as suggested by
most analytical models, the resultant kinetic energy was absorbed as
plastic deformaticn until approximately 0.3 milliseconds had
elapsed, following the initial deformation. Subsequently the blank

was reloaded and the deformation velocity achieved a maximum at an
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elapsed time of approximately 0.4 milliseconds.

The reloading phase was attributed to either the gas bubble
pulsation and migration[2.28] or to the oollapse of a cavitation
region in the energy transfer medium immediately adjacent to the
~ deforming blank[2.69]. The suggested gas bubble mechanism was
discarded because it was shown [2.113] that the time for gas bubble
pulsation to achieve a size to give significant pressure pulses was
considerably greater than that for the relcoading phase.

The alternative mechanism involved the formation of a
cavitation region immediately adjacent to the workpiece due to the
‘velocity and reflection of the incident shock wave. Such cavitation
has been observed[2.69,2.70]. The expansion of the gas bubble
contributes to the subsequent collapse of the cavitation region as
the blank wvelocity deceases, and the afterflow of the energy
transfer medium as well as the water-hammer effect of this collapse
was considered to give rise to the reloading phase.

The correlation between experimental work and analytical work
by Schauer[2.69] suggested that this proposed mechanism of reloading

was valid.

There was no experimental work reported, to the knowledge of
the author, which measured the pressure history in the region
imediately adjacent to the deforming blank. G.E. Hobson et
al[2.28,2.33], during the development of an explosive forming
machine carried out some pressure history measurements with
transducers mounted in the walls of the pressure reflector and also
mounted a transducer in a 5/8 inch (15.8mm) plate which was put in
place of the blank. These results were restricted in their
application because of the presence of the pressure reflector and
the distance fram the workpiece of the reflector-mounted
transducers. In the case of the plate mounted transducer no blank
deformation occurred and hence this result was of limited use in
understanding the energy transfer mechanisms associated with the
explosive forming process.

92.
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U. Nishiyama et al[2.114] photographically recorded the
detonation and obtained scme pressure history measurements using the
collapsible air cell suggested by Johnson et al[2.29] to obtain
water-hammer effects.

© " The pressure measurement was made within the air cell and
hence was not in the region of immediate interest, Fig. 2.29, p 94.

It was apparent that there was a need for a method of
measuring the pressure history in the region of the blank/energy
transfer medium and to be able to correlate that to the resultant
blank deformation for the following reasons;

(1) To obtain a better understanding of the energy
transfer mechanism and the deformation/energy
transfer interaction.

(2) To enable the development of an improved analytical

model of blank deformation because the existing

analytical models[1.4,2.37,2.76,2.81-2.93] relied

upcn idealised lecading conditions.

(3) To develop same form of economic pressure
instrumentation which would improve the repeatability
of the explosive forming process by giving a basis
of comparison between the forming operations.
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CHAPTER THREE

INSTRUMENTATION

3.1 INTRODUCTICN

Since in explosive forming finite discrete events occurred in
the order of microseconds and the total duration of the operation
was four to six milliseconds, any effective instrumentation required
response times of the order of 1 MHz.

Instrumentation described in the literature was divided into
two main regions; the first being measurement of deformation and
hence deformation velocities and dynamic strain, while the second
was the limited information on attempts to obtain the pressure
history in the energy transfer medium. This chapter oontains a
review of methods of deformation measurement in explosive forming as
well as pressure transducers available for the measurement of

transient and high pressures.

Methods of calibration of dynamic pressure measurement
systems are presented and the selection of an appropriate pressure
transducer design discussed.
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3.2 DEFCRMATION MEASUREMENT

As was previously mentioned in Chapter 2.5.4 deformation
histary was used in an attempt to obtain an understanding of the
loading history of the blank and the methods used to extract this
information were the pin contractor method, high speed streak

photography and high speed stereophotogrammetry.

3.2.1 PIN (ONTACTOR METHOD

The pin oontactor method, following Fyfe et al[2.24],
involved a series of pins which were connected to charged R-C
circuits. As the blank deformed it contacted these pins, which were
placed at a known position and distance with respect to the blank
and earthed the associated circuits. A typical layout was that of
Hobson et al [2.28], the schematic of which is shown in Fig 3.1 page
97 .

As the flexible pins were struck, earthing the circuits, the
signals of the decay of the associated discharged R-C circuits were
recorded on an oscilloscope against an appropriate time base. Hence
the time at which a particular radial location on the blank reached
a known vertical position from rest was known, and therefore the
deformation profile and dJdeformation wvelocities calculated. It
should be noted that the pin rigidity was important. It had to be
sufficiently rigid to ensure that it could be accurately placed with
respect to radial and vertical locations at the contact point but it
should not be so rigid that it interfered with the vertical movement
of the workpiece, following contact. A typical output trace was of
the form shown in Fig 3.2 page 97, and it can be seen that pin
polarity and height was organised so that a positive and negative
pulse appeared alternatively> on the trace. Typical results are
shown in Chapter Two page 90.



97.

-----

|
S — S I
| | :
e |
® ]
¥ ¥ |
2 é R [
- l
SRUIRS 3 :
|
ﬁ{% I{L‘% Loyl Stov }

rd s 2

i L _-.4.1'

Qutput 2
To oscilloscope

Qutput {

C=0-0l uF  RFIM

Rp=22 K2

R, IKQ

FL, 100 K1 RgIM

FIG 31 PIN CONTACTOR METHOD OF DEFLECTION AND VELOCITY
MEASUREMENT AFTER HOBSON ET AL [2°28]
Pin 1 K
% Pin 3 Pin 5 N
t=0 Timz
Pin 2 / Pin &4
FIG 3-2 IDEALISED TRACE FROM PIN CONTACTOR METHOD




98

3.2.2 HIGH SPEED STREAK PHOTOGRAPHY

This technique used by Hudson et al[2.110] and Hobson et
al[2.28] to determine the blank deformation history, involved
placing a line of reflecting spots, symmetrical with respect to the
centre, on the blank. Reflecting spots also were placed on the
retaining ring in line with those on the blank to give a measurement
reference. A high speed camera used in the streak or oscillographic
mode, i.e. without framing, was arranged at an inclination to the
blank, as shown in Fig 3.3 page 99 and so that the film moved at
right angles to the line of spots. Lighting was arranged as shown
in Fig 3.3. ‘

As the blank deformed the locations of the reflecting spots
were continuously recorded as a streak image on the film. Assuming
axisymmetric blank deformation and oonsidering the image spots
symmetrically about the blank centre, the deformation history was
calculated. The results obtained by Hobson et al using this method
were used to confirm those derived fram the pin contactor technique
for the initial blank velocity.

The advantage of this system was that a continuous record of
blank deformation was achieved and as opposed to silhouette high
speed photography [2.108,2.109] convex phenomenon could be observed.
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3.2.3 HIGH SPEED STEREOPHOTOGRAMMETRY

Following work reported by Rinehart et al[2.6] research on
deformation measurement was carried out by T. Bednarski
[2.111,2.112] based upon generating stereo image pairs within a
single frame using the equipment shown in Fig 3.4 page 99.

The resultant contours were plotted for each frame with a
stereo comparator, and hence the deformation history was obtained.

3.3 PRESSURE MEASUREMENT TECHNIQUES

As mentioned in the previous chapter it was apparent that a
better understanding was required of the pressure history at the
wor kpiece/energy transfer medium interface. An initial survey of
pressure transducers available when this project began showed a lack
of any appropriate commercially available pressure transducer which
would be sufficiently robust to withstand the loading conditions and
yet small enough to be able to be placed adjacent to the blank
without modifying the behaviour of the process so that it negated
the validity of the resultant information.

The anticipated operating conditions for tne transducer were
based upon a maximum charge of 0.5 metres of Cordtex of 10.5 gms per
metre of PEIN and a distance of 50 mm from the charge. The
resultant maximum pressure P was 230 MPa while 6 the decay
constant was 12.9 x 10~6 sec . Therefore the following
requirements for the pressure transducer were considered a minimum

for explosive forming;
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(i) Maximum recording range of 200 Mpa

(ii) Sensitivity of 0.1 of a Full Scale Reading.

(iii) Rise time of 10 microseconds

(iv) Maximum overload of greater than 100%

(v) Maximum height of recording surface above blank
- surface of 5 mm.

Although these specifications were less rigorous than would
be anticipated fram the description of the shock waves it was hoped
that following the development of a prototype, the accuracy and
dynamic performance of the transducer could be improved.

The construction of a pressure transducer was considered and

a review of the techniques of dynamic pressure measurement was

carried out.

3.3.1 STRAIN GAUGE PRESSURE MEASUREMENT TECHNIQUES

The diaphragm pressure transducer Fig 3.5 page 102, developed
by Redshaw[3.1] and subsequently modified by Bert et al[3.2] used a
specially developed diaphragm strain gauge to measure the surface
strain in a circular diaphragm or plate subjected to a normal
pressure. The recorded strain oould be related to the applied
presssure and hence the pressure loading was obtained.

The dynamic characteristics and sensitivity of the sensory
element were the major limitation of this pressure transducer

system.

Hence the diameter was (determined by the following

oonsiderations:
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(a) Availability of suitable commercial diaphragm strain gauges.
(b) Ability to meet the rise-time requirements.
(c) Suitable size to give a natural frequency

which would meet the prototype specification.

- ‘Ideally the thickness of the diaphragm was based. upon the
following considerations:

(d) It should be adequate to keep the stress level at overload
pressure below the proportional limit of the material
selected.

(e) It should prevent the deflection over the full operating
pressure range fram exceeding approximately one-half of
the thickness, since deflections larger than this would
develop in-plane membrane stresses which would result in
non-linearity in the response to pressure.

(£) It should result in a natural frequency which is as high as

is feasible, consistent with the required sensitivity.

From Fig 3.5 page 102, it could be seen that the transducer
was relatively simple and strong but the size range of the
commer icially available diaphragm  strain gauges precluded
development of a pressure transducer of this type. While
alternative use could have been made of standard semiconductor
strain gauges of s=mall size(2,.032x0.127x0.013 mm) which have been
used for diaphragm pressure transducers in aerospace
applications[3.3], the need to place a Ffour gauge bridge on the
transducer would have increased the diaphragm size to give
unacceptably low dynamic characteristics.

Following the work of R.V. Milligan [3.4,3.5], the
alternative use of a strain gauge mounted upon a metal strip as in
Fig 3.6 page 102, wvas considered. Assuming a nondirectional pressure
~ loading the measured strain could be related to the applied pressure
by the relationship
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and hence a linear pressure-strain relationship was obtained as a
function of the mounting material and this was verified by
exper imental work [3.4,3.5]. At higher pressures of the order of
100 Kpsi (689 Mpa.) the piezoresistance effect for the strain gauge
and leads was known to be significant[3.6].

An alternative use of strain gauges in a pressure transducer
was that shown in Fig 3.7 page 105, and reported in the literature
associated with shock loadings [3.7,3.8,3.9]. A resultant uniaxial
strain was recorded in the rod or tube, one end of which was exposed
to the pressure pulse and hence a pressure recording obtained. The
major difficulty envisaged in the anticipated mode of operation was
the required length of the transducer and therefore the ability for
it to be located in the region of interest. |

3.3.2 CAPACITANCE PRESSURE MFASUREMENT TECHNIQUES

The operaticn of the capacitance transducer, Fig 3.8 page
105, recorded the change in capacitance of the transducer due to
pressure induced deflection of the sensory element. By calibration
a relationship between the applied pressure and the recorded change
of capacitance oould be obtained.

By placing a dielectric elastic foundation between the
sensary element and transducer base such as Ca_'E'2 [3.10] rather than
evacuating the cavity the applied voltage could be increased. This
increased voltage reduced the influence of the spurious noise
signals that were induced during the necessary amplification of the
signal and from the cable connecting the transducer to the recording
equipment.

Bagnoff [3.11] and Hanson et al [3.12] described a form of
‘capacitance transducer developed for shock tunnel work, shown in Fig
3.9 page 106 . The deformation of the transducer material following
the initiation of the stress wave due to the impinging shock wave
modified the capacitance between the surface and internal electrode.
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By suitable adjustment of the capacitance thickness a rise time of
0.1 microseconds was reported in the literature [3.11,3.12].
However because the behaviour of the stress wave was far from an
ideal plane stress wave,due to the surface and lateral stress
disturbances, the ratio of outer electrode diameter to inner
electrode diameter had to be greater .than a fixed predetermined
value. The ratio of capacitance plate diameters was determined fram
the disturbance and stress wave velocities and the dimension t.
These disturbances were responsible for the 1limited accurate
sequential recording time of the order of 5-10 micro-seconds for the
system.

The major operational difficulty with this form of transducer
was the short recording duration and the length of transducer
required to eliminate the possibility of interference from the
stress wave reflection off the free surface at the non-impingement

end of the transducer.

An initial experimental investigation was carried out on a
film transducer, Fig 3.10 page 106, to determine its sensitivity.
The transducer was based upon a commercially available material,
 Mylar film, which consisted of a synthetic polyester dielectric film
with a metallic coating on one surface. On application of pressure,
the thickness of the dielectric, and therefore the capacitance of
the system changed giving a method of dJdetermining the pressure
acting.

The major difficulty with this sensory unit was the
probability of destruction due to the loading conditions associated
with explcsive forming. While the gauge had the advantage of being
cheap and easily constructed, the calibration would have been
difficult and involwed oonsiderable time, and therefore the
possibility of having to use a new gauge for each shot made it
impractical.
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3.3.3 PIEZOELECIRIC PRESSURE TRANSDUCER

In certain crystal structures with asymmetric charge
distribution, orientated lattice deformation due to applied loads
- resulted in relative displacement of the positive and negative
charges within the lattice. This produced equal external charges of
opposite polarity on the crystal faces, in the orientation of the
lattice deformation, and hence a potential difference between the
relevant crystal surfaces. This phenomenon, called the
Piezoelectric effect, has been considered an effective method of
pressure history measurement and has been used extensively
particularly for large transient pressures because the piezoelectric
crystal's high transient response permits accurate dJdetection and
delineation of events of micro-second duration [2.70,2.71,
3.13-3.26] .

A major advantage of the piezcelectric transducer was that
the signal response followed the stress-strain curve of the material
in the orientation of the applied load and provided the curve was
linear for the operational range, the transducer response was linear
with respect to the applied pressure. Also the high frequency limit
was imposed by the mechanical resonance of the piezoelectric crystal
and mountings, and crystals of 10 Megacycles natural frequency were
commercially available.

Typically transducers involving piezoelectric crystals in
shock tubes[3.18,3.21,3.22] were of a construction shown in Fig 3.11
page 109, 1Initially the transducer design [3.18]* was based upon a
backing rod of material with a closely matched acoustic impedance to
that of the piezoelectric crystal. This was oonsidered to
effectively decouple the piezoelectric element by eliminating stress

wave reflections from the crystal surfaces,the stress waves instead

*NOTE: Basically an Impact bar transducer -see 3.3.6
page 112,
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being propagated into the backing rod.

Later experimental analysis[3.21] suggested that acoustic
impediance matching between the backing rod material and the crystal
was mot as critical as the ability of the backing rod to dampen out
the sympathetic radial oscillations occurring in the piezoelectric
crvstal due to the passage of the stress wave. Obviously the length
of the backing rod was significant in that the length of accurate
continuous recording of the incident pressure was determined by the
time taken for the stress wave reflected fran the free end of the
backirg rod to impinge on the crystal.

Because of this length problem it was decided that this type
of tramsducer was not satisfactory for use in explosive forming
stidies. Unfartunately piezoelectric crystals were also sensitive
to temperature, vibration and electrical or magnetic noise.

While a piezoelectric crystal could be placed in the energy
transfer medium without support or backing the possibility of damage
was considerable due to the nature of the loading, given the
crystals have high compressive strengths >600 Mn/m but low tensile
strengths 80 Mn/m . Attaching the crystal to the blank would
cause failure because of the plastic deformation experienced by the

workpiece.

3.3.4 MAGNETOSTRICIIVE (R RELUCTANCE PRESSURE
MEASUREMENT TECHNIQUES

The operation of the magnetostrictive transducers [3.27] was
based upon a pressure induced change in reluctance. The resultant
change in inductance of the circuit was then measured and gave a
record of the dynamically applied pressure. These transducers
usually consisted of a Ferromagnetic material subjected to a
polarizing magnetic field. The necessity to polarize the transducer
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resulted in a bulky arrangement, while the frequency response of
such transducers limited the operation to a narrow band width. Also
since the measurement was based upon inductance of the circuit,
static calibration was impossible.

3.3.5 PIEZORESISTANCE PRESSURE MEASUREMENT TECHNIQUES

Bridgman [3.28,3.29] used the piezoresistance effect oOf
certain metals as a method of measuring high pressures and found
that for many metals the resistance change with pressure was
effectively linear and could be represented Ly

R = Ro(l + biP)
where
R = instantaneous resistance
R = resistance at one atmosphere
i = pressure ooefficient of resistance change
AP = incremental pressure change.

Modifications to this technique were carried out [3.30,3.31]
to enhance sensitivity and accuracy. However the low sensitivity of
the wire-type piezoresistance gauges precluded their use in
explosive forming.

With the development of monolithic chip manufacture in the
electronics industry, pressure transducers in which a sensory
element such as an etched silicon n-type diaphragm, has an
arrangement of p-doped regions diffused into the chip were developed
[3.32 — 3.34]. Pressure change was monitored by measuring the

piezoresistance change in the p-type material.
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The change in resistance was mot due to the distortion of the
gauge geametry as in the previously discussed strain gauge cases,
hut to the change in the p-type material as a function of the
applied strain to th e material. The p-type areas were usually
arranged in a four arm Wneatstone bridge circuit and in some
comnercial -transducers [3.33] the signal discrimination,
conditioning and temperature compensation circuitry was built into
the edge of the sensory element using monolithic thick film methods.
Unfortunately the available transdcuers of this type were limited in
pressure range and where hence not suitable for explosive forming.

3.3.6 MINATURISED IMPACT BAR PRESSURE MEASUREMENT
TECANIQUES

This pressure measurement system was based upon the Hopkinson
Pressure Bar method[3.35].

Ideally a uniform pressure pulse impinging upon one end of a
rod created a plane longitudinal stress wave doverned by the

one-dimensional waves equation [3.36,3.37]*%

e 3 a
X _ 2 XZ
2 - G2
at ax
where 5 L .
_ - v E
T AFva-) @

Note: This relationship assumed no dispersion of the longitudinal
stress wave. However it has been shown [3.36] that dispersion
occurred and hence transverse strain behaviour must be considered in
an analytical study. Therefore, for only relatively slow
applications of the load does the strain pulse approximate a plane

wave .
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The amplitude of the resultant stress pulse was directly

related, by equilibrium conditions, to the magnitude of the incident
pressure.

There were many methods of determining the stress wave in the
- bar but the most common one was the use of a piezoelectric crystal.
This was done by sandwiching the piezoelectric disk in the impact
bar; as the stress pulse traversed the corystal a charge was
generated at the respective disk faces and the pressure determined.
Care was taken at the crystal-impact bar faces to ensure no spurious
stress wave reflections occurred, by matching the acoustic
impediance of the bar to that of the piezoelectric crystal.

The rise-time and frequency range of the gauge were limited
by the dimensions and material, which determined the dynamic
characteristics of the impact bar. The disadvantages of this type
of transducer were the deviation of the stress pulse from the ideal
plane wave due to the surface and lateral stress wave disturbances V
and the length of time of sequential recording. The time of
sequential recording of the pressure wave was determined by the time
taken for reflected stress disturbances off the free end surface of
the bar to reach the piezoelectric sensory element. Thus the
required length of the bar was determined as a function of the
velocity of wave propagation and the total time of the event to be

recorded.
A typical transducer is éhown in Fig 3.12 page 109 .

Much work has been done to overcome these difficulties -
[3.36,3.38 = 3.40] either by variations in bar material, bar
dimensions and/or sensory. elements. The problem of length and
reflected tension waves has been reduced by use of a tapered bar to

transmit the incident compressive pulse into absorbent medium([3.41].

It was obvious that because of the required length of the
transducer and the resulting mounting problem, this method of
gauging was not suitable for energy transfer study in explosive

forming.
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3.3.7 MISCELLANECQUS PRESSURE MEASUREMENT TECHNIQUES

These processes involved the use of techniques which took
advantage of the pressure sensitivity of a range of camponents and
materials not normally considered to lie within the general grouping

of pressure measurement techniques discussed so far.

3.3.7.1 DIODE TRANSDUCER Sikorski et al[3.42] showed that
a tunnel diode in the ampification mode, with a suitable stabilising

shunt resitance oould be satisfactorily used as a  pressure

transducer.

The idealised characteristics of a tunnel dicde in the
amplifier mode is shown if Fig 3.13 page 115,and with the associated
resultant effect of the pressure on the idealised characteristics.
It can be seen that by selecting the value of bias current and shunt
resistance, the operating point oould be adjusted to give either
maximum sensitivity for either a small range about a given pressure

peint or for a wide pressure range.

Sikorski et al claimed that 'the advantages of the tunnel
diode transducers were (1) small size, (2) sensitivity, and (3)
versatility.' The significant advantage of the high sensitivity was
the low to moderate amplification required, with the resultant
advantages of reduction in spurious noise signals, as well as a
higher frequency band width. As has been explained[2.70] the small
size meant satisfactory rise-times ,minor interference by  the
transducer on the shock wave form and the probability of being able
to locate the sensory element in the region of interest immediately
adjacent to the blank surface.
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The problem, which has been discussed by Cochen et al[3.43]
was that of temperature sensitivity of the tunnel diode which they
suggested could be minimised by the selection of a suitable
operating point.

Wlodarski et al[3.44] reported on a study into the use of
diode semiconductor devices to monitor rapidly varying pressures.
The operating point was selected to minimise the temperature effects
and two semiconductor types, silicon and gallium arsenide, were
stidied. Testing was carried out for both static and dynamic
pressure loading and in the case of dynamic pressure loading a
comparison of pressure measurement was obtained with a commercially
available quartz crystal piezoelectric transducer. A satisfactory
sensitivity was obtained in the static testing while good agreement
between the diodes and the quartz transducer was obtained for the
dynamic testing with differences of less than 1.5% for silicon and
less than 5% for gallium arsenide.

3.3.7.2 TRANSISTOR TRANSDUCER Transistors as a pressure

sensitive element were used by Sikorski et al[3.45] as the basis of

a microphone. This would have given a cheap amall and sensitive
pressure transducer similar to the tunnel diode, by use of a
suitable operating point on the characteristic.

3.3.7.3 CARBON RESISTOR TRANSIUCER The piezo-
resistance bchaviour of carbon resistors was sufficient to enable

them to be mounted in a polyethylene rod and used by Watson [3.46]
to determine the pressures associated with shock, blast and

detonation waves. Further study into the piezo-resistance
characteristics of fivwe oommercially available resistors of
1000chms, in the range of 0-500psi. (3.4 MPa.) by Miller et al[3.47]
gave a repeatability of better than 13. On less accurate tests of
up to 2,000 psi. (13.8 MPa.) these resistors still exhibited

linear pressure response.
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Samne dynamic testing of up to 1 Kec. was carried out to
campare  the recordings with that of a commmercial pressure -
transducer and agreement was obtained.

This suggested that the linearity, a sensitivity of 1.5 -
0.55%10™° (AR/R) (1/AP) ,availability and the low cost could
make the oommercial carbon composition resistor a  pressure
transducer for both static and dynamic pressure measurement. The
only apparent disadvantage was the temperature sensitivity of the
carbon resistor,

Stankiewicz et al[3.48] described experiments carried out on
comercially available carbon resistors for a range of pressures up
to 11 Kilobars (1111.4 MPa.) and for temperatures of 295,77 and 4.2
K and found that while the pressure dependent variation of the
resistance was non-linear the results were repeatable. It was noted
that the resistors showed hysteresis effects on the removal of the

pressure.

3.3.7.4 INTERMETALLIC RESIN TRANSIUCER Clark [3.49]
showed that use ould be made of resins processed with Zirconium

Tetra—Chloride as pressure transducers because of the large change
in electrical resistance exhibited when subjected to pressure.
Because the resins could be applied as paints on to oconducting
surfaces it was obwiously a wversatile material for pressure
measurement.

The advantages <claimed for these resins were high
sensitivity, simple construction of transducers and possible
measurement of a wide range of pressure. The apparent disadvantages
were those of hysteresis of up to 28 and poor dynamic response
although by preloading the hysteresis was reduced. Another

disadvantage was that of a non-linear pressure response.
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3.3.7.5 RIBBER RESISTIVE TRANSDUCER As for the
intermetallic resins, Massey et al[3.50] used a conductive rubber

which underwent a change of resistance under compression.
Unfortunately while the type of transducer described was sensitive,
cheap and small it had a limited pressure range.

3.4 CALIBRATION

The pressure measurement system calibration was considered in

two stages ;(l) static calibration and (2) dynamic calibration.

While it was recognised that the mode of operation of the
system was critically dependent upon the dynamic characteristics of
the proposed pressure transducer, it was oonsidered that static
calibration was significant in the preliminary work with the
transducer, particularly with respect to sensitivity. This was
because of the difficulty in achieving a repeatable, accurately
defined, pressure pulse of the magnitude and rise times associated
with explosive forming.

3.4.1 STATIC CALIBRATION The static calibration was

necessary to determine the pressure response of the transducer
throughout the operating range as well as determining the deviation
from linearity within this range. Dead weight testing was the most
appropriate equipment to do the static p;:essure calibration, but for
the proposed range this was mot feasible on the existing equipment
in the Department. The initial investigation into the film
capacitance transducer was oonducted on the Amsler Compression
machine Serial -No 79/119 using a rig shown in Fig. 3.14 page 115.
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The frictional error which was inherent in such a loading
rig, when the pressure was measured as force per unit area was
overcome by the method developed by King[3.51] with repeated cycling
of the applied load about the theoretical value required, with a
diminishing amplitude of piston displacement. In King's experiments
the total frictional error was reduced to 1.4% of the applied
pressure which was acceptable accuracy. Hence as an initial method
of static calibration it was considered that this would be a
satisfactory method during the development stage of the pressure
transducer .

3.4.2 DYNAMIC CALIBRATION As can be seen from the
authoritative review of dynamic pressure calibration[3.52], there

was considerable difficulty in achieving an apericdic  dynamic
calibration system with a risetime of the order of microseconds and
the required pressure amplitude of 200 Mpa. While gas shock tubes
give the required risetime, to obtain the required pressure
amplitude, with this risetime, would have involved the development
of an aporopriate shock tube facility in the department which was
not feasible. The alternative use of a ©periodic pressure
generator [3.52] would not have achieved the necessary risetime.

It was considered that a technique of dynamic calibration of
the pressure measurement system based upon the existing[2.70]
theories of energy propagation from explosives detonated underwater
would have been feasible. Since many theoretical and experimental
investigations[2.20] have been conducted upon this phenomenon, it
was considered that the use of an explosive charge underwater with
the transducer located in the region, for which information was
available would approach the requirement of a repeatable pressure
pulse, similar to that anticipated during the explosive forming, to
the accuracy specified.
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3.5 PRESSURE TRANSDUCER

The requirements of high frequency and low risetimes limited
the range of pressure transducers suitable for explosive forming
research to the capacitance and piezoelectric types.

Initial investigations were carried out into the development
of a film capacitance transducer, section 3.3.2, page 104, based upon
Mylar's film. ILack of sensitivity and the delicate nature of the
sensary element made this impractical for use in explosive forming.
Other possible designs of the transducers considered were those in
Fig. 3.15 page 121, for a capacitance transducer or Fig. 3.16 page
121,for a plate/foundation capacitance or piezo electric transducer.
A capacitance transducer was chosen in preference to a piezoelectric
transducer because it would be less sensitive to noise and spurious
signals due to the stress waves generated in the sensory element,
particularly those in the radial direction.

To ensure that the sensitivity of the transducer was adequate
to delineate the reloading phase, it was decided to assume the
initial pressure pulse would take the plate or plate/foundation
canbination into the geametrically non-linear deflection regime.
Because of the difficulty associated with dynamic calibration and
the assumption that operating in the non-linear deflection region
would enhance the sensitivity in the reloading phase, numerical
" modelling of the proposed transducer behaviour was carried out,
Chapter Four to Chapter Seven, for both the plate and plate/
foundation systems.

An advantage of the plate transducer was that the major
transverse stress waves which would be associated with the sensory
element would have a frequency of fp= qg/h where C was the velocity
of sound in the plate and if h was sufficiently small the resultant
effects of the stress waves could be filtered out. The disadvantage
was that the natural frequency of the plate [3.53] was given by
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2
£ = (3.196)7 VB il

P ar 3l - v3)  al

where a = plate radius
m = plate density
E = modulus of elasticity
v = poisson's ratio

Therefore the plate thickness to radius ratio was a
canpromise between sensitivity, natural frequency and stress wave

effects.

While the plate/foundation system would introduce stress
waves which would be a function of the plate, foundation and base
thickness and material density, the resultant natural £frequency
would be given by [3.53].

fe k

£ . ko _a 4%
£ (1 +5 G35 )

where K = Winkler foundation modulus
p Plate frequency

h
i

Plate/foundation frequency

o I Y
F
il ]

Plate flexural rigidity

Eh3

12(1 = v%)

and hence increased as a function of the foundation modulus.

The design of the plate/foundation transducer was such that
either a capacitance or piezoelectric transducer oould be produced
depending on the foundation used. Therefore the major factor
influencing the 1initial dimensions was the commercial availability
of PZT - 5A style F piezcelectric crystals with a 4.8 mm diameter
and 0.3 mm thickness. These crystal dimensions gave the maximum

possible parallel resonant frequency of the order of 6 MiHz.
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Following York [3.21] the transducer material was stainless
steel with the following properties:

Density = 7769 Kgm/m
Elastic modulus = 196 GN/m
Poisson's ratio = 0.3

Elastic limit = 240 Mr/m

while the physical properties of the piezo electric materials

were
3
Density = 7600 Kgm/m
. 33, 2
Elastic modulus (E, )* = 52,9 GN/m
Poisson's ratio = 0.3

2
Canpressive strength > 600 MN/m
Tensile strenath = 80 MN/m2

Given that the transducer height was 5 mm and the speed of
sound ¢ in the stainless steel was 5020 m/sec ie (E/m);i the period
for a stress wave to propogate to the blank/transducer interface was
1 usec. Therefore high frequency contributions from the stress wave
would limit the frequency range of the resultant transducer and
filtering would be required. Although the speed of sound in the PZT
- 5A was 2620 m/sec the multiple interfaces would give stress wave
periods of 0.11 wsec as well as rapid attenuation due to the

interfare friction.

Since the transducer had to be able to include a
piezoelectric crystal of radius 2.4 mm the minimum plate radius
considered was 2.75 mm. ‘Therefore a non-dimensional geometrical
non-linear dynamic analysis was carried out to determine the

transducer performance.

*Note: Because of the directionality of the properties of a
piezoelectric crystal the superscript 33 represents the property
normal to the plane of the disc.



3.5.1 TRANSDUCER OUTPUT

The potential difference between two parallel
capacitor was given by [3.54]

where t, = plate separation
e, = field strength between plates

c
U
o /eo €.
€ = permittivity of free space
€ = relative permittivity of air/dielectric

and therefore

= *
qc © At

where A = area of plate giving

C= qC/V
= €€, A/t
for g, = charge in coulambs.

plates
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in

a

Cansideration of the plate deflection under a constant change

ocordition resulted in a change in voltage as a function of the

change in capacitance. The average separation of the plates

would determine the voltage and was given by

At

Ll & - aalp))aa

av At (o] aa(p))
(o)

A

t
- . a
= t, -3 a(p)dar
t
o
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where ofp) = deflection of plate.

Therefore the voltage change was
A

Av

I
m

t
a
tc - EC(tC - _7&; { o(p)dAa)

Similarly by ignoring radial deflection after York, to the
first order of accuracy ,the output fram the piezoelectric crystal
was proportional to the integral

At
AV o [u(p)dA

Hence the required information to describe the transducer
performance was the integralJ a(p)da

For capacitance  transducers, to ensure a uniform
electrostatic field, an external ring can be used and would be
calculations were also carried out to derive the integral a(p)da

where Ag = 0.64 At.

maintained at a constant charge, Fig. 7.17, page 126 . ’lfﬁrefore

For the reasons given above, a theoretical study was
conducted into the response of proposed pressure transducers, Figs.
5.15 - 5,17,
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CHAPTER FOUR

ANALYSIS CF PRESSURE TRANSDUCER.

4,1 INTRODUCTION

Since the proposed pressure transducer would operate in a
non-linear regime it was considered necessary to model its
behaviour. This analysis was carried out in three stages. The
first stage involved the static non-linear analysis of a plate on an
elastic foundation. A comparision was made between the methods of
representing the dielectric crystal behaviour,either as a linear
Winkler[4.1] foundation characteristic,or as a Pasternak foundation
characteristic[4.1l] in the static analysis. MNext, the non—-linear
dynamic transient response of the plate and the plate on an elastic
foundation was considered. This gave a model of the response of the
proposed pressure transducer to pressure pulse typical of a shock

wave.

4.2 ASSWMPTIONS

The assumptions used in deriving the equations governing the

non-linear behaviour of the pressure transducer were as follows:

(1) The plate material was perfectly elastic and obeyed
Hooke's law.

(2) The plate material was isotropic and homogenous.

(3) The normals to the middle surface or plate meridan
remained straight and normal to that surface after
deformation.

(4) The plate was initially flat and of uniform



(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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thickness.

The load and deformation of the plate was
axisymmetric.

The normal stresses in the transverse direction
were negligible.

The slopes produced by flexure were moderately
large but small in camparison with unity, and

hence could be neglected and represented by g—: = Y.
The curvature of the plate meridianor bending axis
32w

oould be represented by w27 -
The external forces acting on the plate were normal
to the plate surface.
The structural damping within the foundation and
the plate/foundation interface could be
represented by viscous damping.
The foundation material was perfectly elastic,
isotropic and homogenous.
The foundation reactions were transmitted normal
to the plate/foundation interface.
Shear stresses could not be transmitted across the
plate/foundation interface as the coefficient of
friction was taken as zero.
The density of the foundation material was
significantly less than that of the plate material,
and therefore in the dynamic analysis,the inertia
term for the foundation was ignored.
The foundation had a finite thickness and was
supported by a rigid base



129

4.3 EQUATIONS GOVERNING PRESSURE
TRANSDUCER BEHAVIOUR.,

The derivation of the equations governing the non-linear
behaviour of a plate supported by an elastic foundation was based on
the above assumptions and consideration of the element Fig 4.1 page
130.

Taking moments in the r-z plane about the centre gave
M- 30 8T
M+ 5= sr)fe + 6r)d¢ - M_T 8¢ - M Srép + (Q + 2= 6T) (r + 6r)8¢ o

or
§r |, aw aNr
+ Qr6¢>2—+§:- (Nr + E— (Sr) (r + (Sr) SqJ - Nrr(SdJ = 0 4.1

Radial bending mament/unit length of

circumference

where M
r

2

W VoW
“-D(—= + — =)

a]__2 r Jr

Tangential bending moment/unit length of

o=

radius
2
- pld »w
D(rar v
or
Q - = Shear stress/unit length of circumference
N. = Radial membrane force/unit length of

circumference

E:112 ou 1 aw2

u
Lzt vy

D = Flexural rigidity or plate stiffness

Eh3

T 12(1 - V9

<
]

Poisson's ratio for plate material

e}
It

Modulus of elasticity for plate material
Plate thickness

=p
1]



FIG 41

/ v v
a P

+mhrb¢ &r

e
/—v’

BENDING AND MEMBRANE STRESSES ACTING ON A PLATE

ELEMENT SUBJECT TO DYNAMIC LOADING AND VISCOUS

DAMPING

0€T



131

Vertical deflection

u = Radial deflection
r = Radius

ow  _

= Slope.

Hence ignoring second order moments over the Ilength of the
element 8r , the equation is reduced to

E)Mr w
Mr+r§£_—-—Mt+Nra—r-r+Qr = 0 4.2

Considering the transverse equilibrium and allowing for
inertia after D'Alembert and viscous damping of the plate under/the
dynamic transient loading, the following equation is obtained for
the shear stress.

1 o 32w W
=z J'O (glr,t) -=-mh;:§— kvﬁ:_— F(w))r.dr 4.3

where (qlr,t) Load intensity

F(w) = Foundation reaction

m = Density of the plate

k = Viscous damping coefficient of the plate
as a function of vertical deflection.

t = Time

Therefore substituting for Q, M. and M, the equation 4.3
became

r
3 2 N
3w 13w 1 3w r ow 1 3w
SW oW oW T My = (gh,t) - mh &YX
ar3 r ar 2 ar D Jdr rD Jo at2
oW _
—kvE-F(w))rdr = 0 4.4

Also considering the radial equilibrium for the element,Fig
4.1 page 130, and ignoring the radial inertia and damping, the
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following relationship can be obtained.

BNf Sr
(Nr + T 8r) (r + 6r)d¢p — Nr r§¢ - 2Nt6¢ - = 0 4.5
where N, = Tangential membrane force/unit length of radius.
_ Eh u du , v ,3w,2
Sl 2t et &)

Again ignoring the second order terms the relationship gave

BNr
rgi_— + Nr_Nt = 0 4.6

which substituting for N and Nt became

ow 32w (1 - v) ,ow 2
+ (_r)

N r or arz 2r

The integral term was removed from eguation 4.4 by

differentiation and resubstitution to give,

a4w 233w 1 32w 1l ow

2 tr 3" 32t 3%

or or r 9dr r

2 aN 2
_ 1 8w w r 1 ow aw _ w
"M T traftdmy mmhon otk 5 - FW)

4.8

Hence equations 4.4 and 4.8 govern the dynamic behaviour of a
plate under conditions satisfying the given assumptions. The
resultant relationships are a dynamic analogue to the von Karman
equations governing the non-linear behaviour of a circular plate, as
have been used by Nowinski[4.2] and Huang[4.3] in vibration

analysis.

Substitution with equation 4.6 gave an alternative form

2 2
=4 1 3w 1 5w _ W
Vw = 5(—2 Nr+f—3r Nt+q(r,t) mh —
or ‘ at
ow
-k — - F(w)) 4.9

v ot
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4 \ .
where V' was the biharmonic operator and was equivalent to

12,
4 r 3 2 2 3 3r
r

By eliminating the radial displacement from the relationship
for the membrane forces and applying Hooke's law, the compatibility
equation

3(N,_ + N )
t o - _Ehdwe 4.10

ar T 2r or
can be obtained.

Hence the equations governing the dynamic non-linear

deflections of a plate were

2
=<4 1,,3"w 19w, Eh u , 1, ow wu
Vw = 5+ o) 7 Get 3 t P
ar 1
B_W Eh (_32u+iﬂl__v_u+a_w__32w)
r 2 2 r ar 2 r 2
l1-w ar r r
+ q(r,t) “h‘a_‘g‘“k —a—‘Z»—F(W)) 4.11
Vv 3t
at
azu 151 u Bwazw 1-v,9w
I T S Tl B T 0 4.12
or r ar

4.3.1 DYNAMIC TRANSIENT RESPCONSE FOR PIATE AND FOUNDATION

The relationships governing the non-linear dynamic transient
response of the pressure transducer is given by equations 4.11 and
4,12

These equations describe the non-linear behaviour of a plate
in contact with an elastic foundation. The reaction of the

foundation was described by either the Winkler [4.1] relationship.

F (W) = kew 4.13
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where kf = Modulus of the foundation reaction if the

foundation was considered to be linear,or following Pasternak[4.l1]

by

Fw) = kfw - G Ty 4.14
where G = Pasternak Foundation Constant
2
=2 _ 2 13
v = (—2- + T E)
or

The non-dimensional form of these relationships was obtained

as follows
2
4 2 elp,) 3 a 0,
- * * — — — —_
Va - G*¥V'a + k*a 5 5 X 37
0T
2.9z . 1,32 g, 2 2 da
+ = 2 —
1268 (Bp +2(ap) +vp)Vu+12<S 5
azz; v 2 v 3o 3
(—2“+E—E'=§~C+3%—g- 4.15
ap P ap
32; log ¢ 3a d 1 5,2
o2+ 2222 2 (EHY1 -y = 0 4.16
2 a
ap p dp p2 Ip Bp2 20 ‘o9p
where o = w/a Vertical displacement parameter
p = r/a Radial parameter
g = u/a Radial displacement parameter
8 = a/h Radius to thickness ratio
4
r,t =
e(r,t) q(r,z)a 12(1 - vz)
Eh

Load parameter.

Time parameter

mha4 s
X = kV= (T‘)
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Vertical Damping parameter

a2
% = paalil
G G. (D )
= Non-dimensional Pasternak foundation constant
a4
* = a
k kf. (D )
= Non—-dimensional Winkler foundation constant
2 32 19 A 2 2
v = (_2 +==), v = vV v
3p p 9p

It should be noted that the Winkler foundation is the

limiting case when G* = 0.

4.3.2 STATIC DEFLECTICN FOR PLATE (N ELASTIC FOUNDATICON,

Also of interest was the static form of the equations which

was
4 2 e 2dz . 1de2 ¢
- * & = = — — = 2
Va - G* o + k*q 5+125 (dp+2(dp) +p)
2
2(_d_cx)(d?;+_\)_d_?;_\)_?;+@__du 4,17
+ 126 d 2 2 d 2 : ‘
p do p up o pdp
ac  ldr ¢ | ded’ . 1 da2
2>y 5 ,ceaoe, LG - =
St a3 too @) - =0 4.18
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4.4 BOUNDARY C(ONDITIONS

The solution was obtained for the fixed edge condition
because this gave the idealised boundary ocondition which best
approximated the proposed transducer.

4.4.1 OUTER SPACE BOUNDARY

At the ocuter boundary, p=l, the following oconditions were
associated with the fixed edge condition:

(a)p=1 = 0 4,19

(%%) = 0 4.20
p=

(c)p=1 = 0 4,21

4.4.2 INNER SPACE BOUNDARY

At the inner boundary, p=0,the following conditions apply;

ao _
(E) o= = 0 Symmetry 4,22

]
o

z(0,1) Continuity 4.23

At the centre, equation 4.5 became singular but the physical
system implied that a relationship existed for the condition p=0

13
Applying L'Hopital's rule to a term (3 %) gave the limit
p

2

. 9 o

Limit == = (—) 4,24
p 3p ap2 0=0
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1 da
and hence the term (=3 57) became (— 2.2
P p~ 3p” p=0

Considering the boundary condition equation 4.22,the physical
system, and the form of the "exact" solution by Way[4.4] £for the
static case,it was assumed that the solution €for the vertical
deflection could be represented by a symmetric function of the
vertical deflection o with respect to the radius.

3

Therefore A = 0 4.25
3
ap- p=0
1 83
and by applying L'Hopital to the term (= __(3") was
p .
ap
3 4
- 1
Limit G5 = & | 4.26
b+ 0 9p 9p.” p=0
Finally considering the term (%),
p
application of L'Hopital rule gave,
Limit & = & 4.27
P ap

p >0 p=0

Substitution of the equations 4.24,4.25 and 4.26 into the
equation 4.15 gave the equation

4 2 2

Jd a 9 a £ 3 a da
— & = X = T e e em athuadl
3 a 2G 5 + k*a 3 5 X Ew
ap ap a1
2 Bza 9r
+ 2487 (L + v) — . == 4.28
Bp2 9p

which governs the behaviour of the centre, p=0,0f the plate.

4.4.3 INITIAL TIME BOUNDARY

Since the pressure was due to a transient dynamic shock wave
the resultant initial boundary conditions with respect to time were
assumed to be as follows.
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(@) g = O 4.30

() g =0 4.31

ao,

) = 0 4.32
=0

4.5 DISCUSSION OF ANALYSIS

With plates of diameter to thickness ratios which generate
bending the major limitation of the application of the analysis was
that as the deflection increased and approached twice the thickness
of the plate, thﬁ curvature of the meridian axis could no longer be
represented by —_Z s while the value of the slope would become

significant w1th respect to unity, and hence oould no longer be

ao.
ap
and 4.2 would not be valid,and an alternative analysis based on that

proposed by Reissner([4.5] would have had to be developed for the
plate/foundation case.

represented by . Therefore, the derivation of the equations 4.1

This would have resulted in a relationship less tractable by
finite difference techniques.

In the case of static deflection of the plate, the equations
derived by Reissner[4.5] were

dN

r - - =
r3 + Nr Nt cos ¢ r Q + rp 0
dQ dy sin ¢ -

r ar + 0O + r(——i Nr + Nt T ) + rg 0

Py
r 3 + M- Mt cos ¢y - rQ = 0

where
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M= —D(-,g—]"[_i-+v—-———5lg‘l’)

=  Radial bending moment/unit length of

circumference
= _n (Sin y .
M D (= + v

= Tangential bending moment/unit length of

radius

=  Radial membrane force/unit length of

circumference

L

-V ar or
= Tangential membrane force/unit length of

radius

v = Angle between the radial direction and the
radial tangent to the deformed middle surface
of the plate.

Q =  Stress resultant normal to the deformed
surface.

q = Force normal to the plate surface.

p = Force parallel to the plate surface.

- Since very large deflections would decrease the response time
and increase the degree of non-linearity of the transducer,it was
decided to limit the analysis to the range 0 < 8a(0,1) < 2 -
Therefore the initial assumptions on plate behaviour were considered
to be sufficiéntly accurate to obtain the results on which to

finalise the transducer design.

The assumptions  associated with the plate/foundation
interface and foundation behaviour initially appeared to limit the
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application of the solution. However the current range of analysis
of the static and dynamic non-linear deflection of beams on elastic
foundations as well as plates [4.6,4.7,4.8] were all based on
similar simplifying assumptions,either stated or implied. This did
not adversely affect the application of these results and therefore
to avoid the inherent ccmplexities and numerical difficulties
associated with the plate/foundation friction and foundation
inertia,the initial assumptions were considered realistic and the
equations 4.15 and 4.16 governing the transducer behaviour were
solved. '

The analysis was initially <carried out using finite
difference numerical technique for the spatial damain and a
recurrence relationship in the time domain as is shown in Chapter
Six. To give a basis of camparison, and to allow the determination
of the frequency of the system, a modal analysis was also carried
out as can be seen in Chapter Five.



CHAPIER FIVE

MODAL ANALYSIS OF PLATE/FOUNDATION COMBINATION

5.1 INTRODUCTION

To provide a known solution by which the numerical procedure
could be verified, the eigenfunction expansion technique for the
linear forced vibration solution,presented by T.M. Hrudey[5.1] to
determine the response of a plate subject to a transient load, was
expanded to the case of a clamped circular plate on a foundation and
subject to viscous damping. Two foundation characteristics were
considered;

(1) Pasternak[4.l] foundation with the reaction
_ 2
alpst) = K*a(p,T) - G* V7 alp,T)

(2) Linear Winkler[4.1l] foundation with a reaction of
the form

alp,t) = k* alp,1)

The resultant governing equations were studied using
separation of variables for the case of a step function pressure
pulse, and an exponentially decaying pressure pulse with respect to

time.
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5.2 LINEAR ANALYSIS

The non-dimensional equation governing the plate behaviour
was for the Pasternak foundation ,section 4.3.1 page 133 .

4 2 82( 1)
Valp,r) = GV al(p,t) + k* (p,1) + M—E—%L~—
‘ At
3d(p,T) -
+ X —~§?——— E(T) 5.1

Substitution of a(p,t) =a'(p)I (1) in to the homogenous
partion of equation 5.1 gave

I‘(T)V4a' (p) - F(T)G*Vza'(o) + I'(t)k*a' (p)

2 «
+ a'(p)g—zéll~+ X a'(p)égéll- = 0 5.2

9T

or

(v = 05 = 2D - 22 ad)et (p)r(n)

il
<

5.3

where
2 2
- = *
A2 Al G
2 .2 2 A
A A = - 1 d F(T) - X BF(T) - Kk
12 (1) 312 I'(t) 29t

It should be noted that in the case of the Winkler foundation
the value of G*goes to zero and A; equals A,.

@ - ae) Ty = 0 5.4

In the case of a damped system provided T (1) was a function
of the form I'm(‘l") = ZJ‘meEmT ~or for the undamped system I‘m(T) was a
function of the form I (t) = A singt + B cosw 1, then the term
5 9 . m mm oomTm )
>‘l’>‘ 5 becomes independent of radial position giving the eigenvector
equation far the Pasternak foundation
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(V" + xi)(vz - Ag)a'(p) = 0 5.5

Therefore the vertical deflection was
a'(p) = ClJb(le) + DlIO(AZp) + Ele(Alp) + Fle(Azp) 5.6
while for the Winkler foundation
a'(p) = ClJO(Ap) + DlJO(Ap) + ElYO(Ap) + Fle(Ap) 5.7
where J ,Y ,I and K were Bessel functions of the first, second,
modified first and modified second kind respectively. and since the

deflection at p=0 was finite and Ayrh, were real, the coefficients
Eland F,were equated to zero and the deflection given by

a'(p) = CyI (Ayp) + DI (Asp) 5.8
for the Pasternak case with the Winkler foundation being

a'(p) = ClJO(Ap) + DlIo()\p) 5.9

" But applying the boundary condition at p=1

a'{p) = 0

3a’ (p)

ap =0

gave

C Jo(xl) +D

1 IO(AZ) =0

1

5.10

I,

=Cyp A I3 +D

P Ag I =0
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by application of Bessel function recurrence relationships [5.2]

Separation of the constants gave the frequency equation for G*

# 0
R L R 5.11
JO(Al) IO(AZ) ;
or
AlJl(Al)IO(Az) + AZJO(Al)Il(Az) = 0
while for G*= 0
_Jl(” = Il(lz) 5.12
Jo()\) IO()\z)

or

i
o

Jl(x)lo(x) + Jb(A)Il(A)

Therefore the resultant orthonormal eigenfunction associated

with M * AZm the l:‘nth roots of the freguency equation was for G*# 0

a () = G I (eI () = I (A I (A, 0) 5,13

and for G™= 0

a (p) = G, Jb(%n )IO(Am) - Jb(%m)Io(Amp) 5.14
Application of orthogonality conditions with respect to the

radius parameter p as a weight function resulted in the following
relationship for the eigenfunction Appendix A

m#n 5.15

Jp Em(p)—c;n(p)dp
= 1 m=n
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Therefore
Cn T B T (L) I_(A) ' 5.16
m o  1m 2m
where
2
_,Jz(x ) CIT(A )
Em=1+%J;']m - 2—-21——23- 5.17
O(xlm) IO(AZm)
It should be noted that by squaring the frequency equation
5.11
2
Jz(x (A,)
lm = xzzln-;—ﬁ“— 5.18
Jz(x (A, )
o 2m
for the condition G'=0 i.e. }‘1m = )‘Zm the solution reverts to

the Winkler case with Em =1

The resultant orthonormal modal shape for the mth roots of
the frequency equation was given by

=) = (J (AyP) ) I, (A p)
P’ T VE' T () IOy

) 5.19

for the Pasternak foundation, and for the Winkler case by

(Jo(kmo) Io(kmp)

- ) 5.20
o()‘m) Io()‘m)

a_m(p)

Solution of the vertical deflection equation was now obtained
by summation of the modes of free vibration according to

a(p,7) = I A (Ta (p) 5.21
=0

where Am(T) were unknown functions of time @ satisfying the

‘requirements far the separation of variables.
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Substitution in the governing equation 5.1, gave on
separation of variables

z B (7' () - G* A (1)9°a (o) + k* A ()% (p)

an_(v) _ &a (1) _
+ X e am(D) + —""dT_Z—‘ Olm(p)) =  ef1) 5.22

*
for G # 0 while for G*= 0

z 4— — dAm(T) -
mi() (Am(t)V a (o) + k* Am(r)am(p) t X —x am(p)
dzAm(‘t) _
+ ———T—- am(p)) = E(T) 5.23

dt

Expanding the applied pressure amplitude as a generalised
Fourier series expansion of unity,based upon the natural frequencies
of the plate,gave

e(t) = e(t) I Am am(p) 5.24
=0
where g, were constants with respect to the orthogonal set of

1
functionsJ pEn(p)a'm(p)dp . Hence Fourier constants(5.3) were
o

*
obtained ,Appendix B for G # 0

1
% T Jopa (p)dp

o1 (J (A]m) _ O‘Zm)) 5 s
/E g, ( ) I (>\2m)
* =
In the case >‘lm . 2m for G=0 ’Em 1 and therefcre
I () I,.00p)

a = | - ) 5.26
m JO(Am) IO(Am)
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Substitution into equation 5.22

,
@  AA (1) _ A (1) _ s 3
I (=5 (p) + x —p— o (p) + (A Ao + K¥)
=0 dt
A (Da (p)) = e(1) miO a, o (p) 5.27

The equations were reduced by multiplying through by pEm(p)
and applying the orthogonality condition which gave

2
d Am('r) .y dAm(T)
d‘r2

+ +k*)Am('r) = 'E(T)am 5.28

2 2
ar (A m *om

Hence for loading, in which the pressure varies as a known
function of time, the resultant equation for the mth root can be

solved to give the required coefficient, and summation of the roots
gives the required deflection.
5.2.1 RECTANGITAR PUISE LOADING CASE.
Consider the loading case
5.29

e(t) = e(H(t) - H(t = td))

where 1d = time of lcad application and H(t) was the Heaviside step
function which gave the following equation of coefficients

2
a’a () dA (1)
m m 2 - - -
-—E:é—m + 2Xmmm ac + W Am(T) = ¢(H(t) = H(t = 1d)) 5.30

where for G# 0

2 _ .2 2 *
W —A~>‘]m>‘2m+k
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while for G'= 0

w2 = l4 + k*
m - m
and
= X
Xm 2w
m

The initial boundary conditions in the time domain gave

da (o)

m _
dt =0
Am(o) = (

The solution form will be a function of the damping for the
specific mode and therefore the underdamped x < 1, the critically
damped X= 1 and the overdamped Xy, > 1 as well as the undamped
conditions X= 0 were congidered. It should be noted that the
result for the Winkler foundation can be obtained from that for the
Pasternak foundation using the condition Ay =A, =A . Therefore
only the relationships for the Pasternak foundation are quoted.

5.2.1.1 UNDERDAMPED CONDITION ¥y < 1 Using the Laplace
transformation with the initial boundary conditions, the
coefficients Am(r) were obtained

0 <1 < 1d

€a -y W T 2¥ w =¥ W T
A (1) =(—E(l—exmmoosﬂr— ‘n’m exmmsinﬂr)
m 2 m Q m
w m
m
T > 1d
ca =y o {1=T1d) (mem
_ m, m'm _ m _. _
Am(‘r) = 5 (e (cos Qm(‘r d) + g sin Qm('r wd))
o , m
- w T (N}
—-exmm(oos Q.+ Xmmsj_n th))
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where

_ 2%
S A

5.2.1,2 CRITICALLY DAMPED CONDITION ¥m — ' Again using
the Laplace transformation with the initial boundary conditions, the
coefficients were obtained

0 <t <1d
ea_ ~w T “w, T
Am(T) = —2—(1-e —u)m're )
“m
T > 1d
Eam =y _(t=td) ~WT
Am(T) = ?—(e (1 + u)m('r-'rd) - (1 + me))
m

5.2.1.3 OVERDAMPED CONDITIGN *m > 1  Applying the initial
boundary conditions and Laplace transformation the coefficients Arn(T)
were obtained

€a =¥ W _T ' 2xmu) =Y W T .
" m _ m _ m mm .
Am(r) = —- (L -e coshQ t 5 sthmT)
w m
m
T > 1d '
€a =¥ w_(1=T1d) . 2y w .
A (1) = _21'_n_ (e o (coshQ_ (1=1d) + XT:‘m sj_tﬂ19m('r=='rd))
- w T u)Hl 2me Qm
' , « T
- e m’ (cosh@ 1 + — T sinh@ T))
Q
m
where



5.2.1.4 UNDAMPED CONDITION *m ~ © The coefficients were
derived from the underdamped case with yx = 0 giving

0 <t < 1d

® ea ‘
alp,T) = L —5- (L - cos w_t)
m
=0 w
m
T > 1d
@ Eam
alp,T) = L (sin w T sin wmrd + cos W T (cos wmrd - 1))
m=0 @

5.2.2 EXPONENTTAL DECAY LOADING CASE

Cansider the loading case

_ -1/0
e{t) = € e
for the underdamped, critically damped,overdamped and  undamped
cases;again applying the Laplace transformation and obtaining the
required coefficients. As mentioned above the Pasternak foundation
is the general case while the Winkler foundation is satisfied by
c'= 0 or A, SA. =2 and hence only the Pasternak foundation
- "Im - "2m - "m
solution is presented ..

5.2.2.1 UNDERDAMPED CONDITION *m < * The ooefficients

were

A 2 :
‘em,am,e L ‘(e_,r/e e Xl_nme (msﬂ - __ _l__ 3
m Oﬂm

A (t) = :
m l—2xmu)me + wrznez

(1 - Xmmme)smﬁm’r)
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where
_ 2%
Q = mm(l xm)
5.2.2.2 CRITICALLY  DAMPED OONDITION *m = 1 From
application of the Laplace transformations the coefficients were
E a 62 - T
A(r) = oI e/ e M- E-w))
" 1 - 2% w0 + wo0° °on
m” 7 “m
5.2,2.3 OVERDAMPED CONDITION *m > 1 As previously the
coefficients were
E_Aa 62 ==xmu)
- e
A(rt) = m_m (e T/et—e {(coshQ T
m 1 -2y 008 + we m
Xmn"m m
1 i '
- g;- (1 - xmwmA) .;:l.nhﬂm'r))
m
where
v N 2 _ ;5
Qm = mm()(_m 1)

5.2.2.4 UNDAMPED CONDITION *m ~ °  From the underdamped

case the coefficients for x = 0 were

_ 8 1,
A (1) = —— (e = cosu T + 5 s:.nmm'r)

1+ w8 m
m



5.2.3 DEFLECTION

The resultant deflection is given by
J 10} I (A

I (A

2mp)
2m)

p)
wo) = 1 A () A 2 lm

=0 m Jo( hn)

for the Pasternak foundation while for the Winkler foundation or
plate

© Jo(kmp) T (A p)
alp,7) = I (1) - )
ot T ) 1 (x )

5.2.4 ROOTS OF FREQUENCY EQUATION

The roots of the equations for the plate, Fig 5.1 page 153, or
the equation for the Pasternak foundation, Fig 5.2 page 153 G*= 50,
or Fig. 5.2 page 153 G* 100, for the range 0-10, were obtained by
using a Newton-Raphson[5.4] iterative procedure

f(>\ )
Mlivy = Oply - ""“‘""df(x )
(=7
where i = iterative step numberkniand which for the case G # 0 gave

the relationship

EOgr M) = Ay Jp0q) ToOpm) + Ao Jo0q) Iy ()

_ 3
where A, = (G + Ap)
A

df (2 ) S A o
A : , Mm Aom
a = J ) St ) IO * I, ) + I, ()

A 1" 2m 2

Im 2m

, A
M
ILOu) J2_(x]m) - = I 0u)

+ I 0 I + 2

152,



153.
0-5

o 7
> 0 .
NG,

2 5 |
c

o - -
=

g . -
o

o n .
= 05

c

e _ i
=

cr -

Q

[

[

Yo 1 2 3 L 5 6 7 8 9 10

FIG 5-1 PLOT OF FREQUENCY EQUATION Jq(X) Ig(a)+Jg(X) N

0-5 : 0-5

= 50
=100

G

<

1
et
i

frequency equation /69000

frequency equation/500,000 G

T2 3 4 5 6 7 8 9 10

-1-0
0

FIG 52 PLOT OF FREQUENCY EQUATION, :qJi(xq) Ty (N9) & o JolX)

[1(x)), vs Xq FOR A PASTERNAK FOUNDATION WHERE
M =lax Dy




while for the case G'= 0 was

£) = I 00 IO + I ) T
df()\m) '
E = Tl 0 EE 0 T00) = 300 10)

The convergence of this procedure for roots of greater than
10 became unstable because of the relative magnitudes of the
function and the first derivative. The rapidly increasing magnitude
of the function can be seen from the limited number of roots shown
in Figs 5.1 & 5.2 and hence the first derivative became large as the
root was approached. The use of a modified Newton-Raphson procedure
did not give adequate convergence, sc an initial approximation based
on an accepted convergence when the change in value of the roots,
due to the iterative procedure was less than lx10—6, was obtained.
Using this wvalue a logarithmic search was carried out in an attempt
to locate the roots more accurately. It was found that the
logarithmic search did not change the roots' value within the first
five decimal places, so subsequently for the Pasternak foundation
the convergence criteria used was that associated with the initial
approximation. Because the roots for the linear case cnly needed to
be calculated once for each value of G'and are presented for G*=0 in
Appendix C ,for G*=50 in Appendix D , and for G100 in Appendix E ,
this time representation was acceptable in computer time.

5.2.5 FLOW DIAGRAM — LINFAR SOLUTION PROGRAM

The flow diagram for the program to determine the deflection
and bending moment at the plate centre is given in Fig 5.3 page
155,

The first thirty roots were obtained and it was found that
these gave an adequate description of the deflection and bending
moment as can seen in Figs 5.4 page 156 & 5.5 page 156 where the
results are campared following summation over 29 and 30 roots.
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Enter Data on Plate/Foundation combination

and loading condition
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no foundation
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Foundation

Enter Roots ‘ ’ Enter Roots

~ ‘
1 v
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/N

> <
2
NQ . Yes
Damping
Z N,
ey e
N
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fk function for function for damped
undamped case - under-damped < P
mode
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\;No
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case ves mode
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&—] function for a» <:
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case
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of mode
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5.3 NON - LINEAR ANALYSIS

The eigenfunction expansion technique used to determine the
response of a plate subject to a transient load was expanded to the
~case of non-linear deflection of a clamped circular plate on a
foundation with a 1linear Winkler characteristic, and subject to
visocous damping with quasi—linearisation of the eigenroots over
small time increments in the time domain.

The dynamic loading was considered to be a pressure pulse,
uniformly distributed across the plate, with a time dependent
amplitude. H.H. Berger‘s[5.5] assumption was used to allow
effective decoupling of the governing equations. The known errors
associated with this assumption[5.6,5.7] particularly with respect
to the simply supported condition were appreciated. However it gave
a basis of comparison for the numerical non-linear program as there
was no known information in the literature to verify the program
accuracy far a foundation. Radial inertia and radial damping were

ignored.

The non-dimensicnal eguations governing the plate behaviour

were;
4 2 2 Bza(p T) do.(p,T)
Voalp,T) =y Voalp,t) + k*a(p,t) + 5+ X 57 = ¢(1) 5.31
9T
where from Berger's assumption
2 (s 2
(Bc(p,'r) + Li(aoc(p.v'r)) L+ & prr)) - X , 5.32
ap 3p p 126

Since the equation 5.31 was of an identical form to the
previous linear case with the Pasternak foundation equation 5.2, the
solution for the modal shapes of the vertical deflection was of the
form

157.
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Ty () I, ()
_ 1 Im 2m
o) = VE_ (J Ay I () ) 2-33
where
J2 IZ(A o
E = -1
m
Jz()\ 120, )
and ) A were the mth roots of the egquations
- "1m " "2m
I3 (A) Io()\z)‘ + A, I () Il(xz) =0 5.34
2 2 _ 2

with y2 being a function of the deflection associated with the
mode.

5.3.1 CONSTANT LOADING CASE

Therefore, for a constant load applied at time = 0,the
vertical deflection was defined as in section 5.2.1 in the region
0 < t < 1d. Again the solution farm will be a function of the
damping for the specific mode and therefore the underdamped
Xp <1 sthe critically  damped xp = 1 ,the overdamped
Xp > 1 as well ‘as the undamped condition x, = O, were
oonsidered. The form of the coefficients was as for the previocus

section 5.2.

1
5.3.1.1 UNDERDAMPED CONDITION'™ ~~ The coefficients were
described by

€a —xmw T* 2xmw
_ m _ m _ m _. *
Am(r) = (L-e (cos szmr* q— Sin Qm'r ))
W m
m
where
2 2 2 *
Oy T ‘(Alm om + k*)
2
m = Q- Xm)
— X
Xm = e
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t* = Effective elapsed time.

Since the vertical deflection was non-linear X, . Aom were
functions of the deflection for the mode at a given point in real
time and as a result W varied with deflection. The effective
elapsed time +1* was the equivalent time that the specific mode of
the plate/foundation combination could be considered to be loaded if
the current value of wo o~ was constant throughout the loading.
Therefare 1" varied as a function of the previous deflection
histary for the given mode and its derivation is discussed in

section 5.3.4.

5.3.1.2 CRITICALLY DAMPED CONDITIGN Xm = ! As previously
the cocefficients were described by

eam —me*
= *
Z-\m('r) 2 1-e (1 + w T ))
m

5.3.1.3 OVEFDAMPED CONDITION Xn > 1  Again as previously
described the coefficients

Ea X w T¥ g 2% W ;
A (1) = -—“‘=(1—exmm (coshq_t* + X‘I‘msian*))
m m2 m Q m

m m

where

5.3.1.4 UNDAMPED QONDITION X~ ° As for the section

5.2.1.4 the coefficients were

ed

Am(r) = ?n—l (1L - cbswm'r*)
m
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5.3.2 DEFLECTION

As previously, the resultant deformation is given by

w J (A, _p) I, (A, _p)
- 1 1m _ 2m
alp,T) ZO Am(‘r) VE;(JO(}‘lm) I )

om’

5.3.3 RADIAL DEFLECTION

Based upon Berger's assumption the modal shape of the radial
deflection corresponding to the mth root at a given point in time
was obtained by assuming that since the radial inertia and damping
were ignored, then the radial deflection was given by

ch(p) Bdm(p) 2 cm(p) A = A

K )+ ) Zn ___lm

( = 5.36

ap

But far the constant lecad case the vertical deflection for the mth

mode at the time T was

a o) = A (0. 2 oo Eil“‘r;) - i"iiz“f))
m o lm o
Therefore since C(p) was finite at p=0 the corresponding

‘radial deflection for the m mode was, from the Appendix F

2 2 2
c (o) = poZnm o S (@2 (0, )

m 0 2 i E 2 1 Im
248 m J (A
2 o "1m
A

Zm 2
0 015 g DI o L ) = I 00 T )]

4, A
Im" 2m 1
F 22 T 0T 050 2 Man VTl ) F Aoy O 0]

Alm+>‘2m

I (A 0)) } 5.37
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At the boundary p=l, ¢z (o)=0 because the edge was fixed and

therefore
2 2 2
A = A . Y S
0 = - (‘(A)—J()J(k)
' 2452 4EIn ch)(}‘ ) 1" 1m o'"'1lm
A 4x. A
2m 2 Im' 2m
+ (I (A5 ) = I (A, DI (A, )) + 55— -
1'Y2m o'\ "2m' 2V 2m’’ .2 ,.2 J (A] )T (A2 )
Jc2>(}\2m) ‘ ~ }‘]_mH‘Zm o °©
(MqTa Py Ty Oor) + ATy () Ty (o)) 5.38

Therefore the roots of the mt‘h mede must satisfy both the

equation 5.34 and equation 5.38 under the free vibration condition.

5.3.4 SOLUTION OF ROOTS FOR MODE

The roots for the mth mode were obtained at the time T by the
simultanecus solution of the frequency equation 5.34 and the radial
boundary condition equation 5.38, that is the lccation of the roots
for the following equations;

F, o= }\lJl(Alm)IO(AZm) + )\sz (A )Il(AZm)
2 2 2
Ae = A (a (—r)) A
_ 2m lm m 1m 72
F, = - % (T () =3 (A )T (A )
2 245 E, {Jz(A ) l4lm o'"Im’“2'"1m
Ay A
Aom 2 Im”2m
JZ(}\ (Il(len) I (>\2m)I2(>\2m)) ----—-——--}‘2 2
- “Im "2m
A J (Alm)Il(A )+ A, I (g )12_(x2m))} | 5.39

whereFl= 0andF2= 0
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The roots which satisfied both functions Fl and F2 were

obtained using an iterative technique based upon the Newton- Raphson
method. At a point on the surfaces Fl and onorresponding to the
point{ O‘Jm)i r AZm)i the previous ith iteration, the tangent
planes to the surfaces were found and the intersection of the traces
of these planes in the surface z=0 was taken as the next value of

the roots _ O )

]m)i+1 ! sz i+’
The tangent plane to the funcion F-O‘]m»' AZn) at the ith
iteration i.e. pointlo\]m) ,(y\zm) was given by
aFl
2= B o)y = G (Pl i ™ Py
i
BFl
+ () (A ). 0 = (&, ).) 5.40
BAZm i 2m’i+1 Zm’ i

where Z defines the tangent plane to the function and assuming
continuous partial derivatives of the first order over the region of
interest. Therefore the trace of the tangent plane in the surface
z=0 would contain a closer approximation to the required roots at
(7\lm)i+1 ’ ()\21")i+l where the trace intersects with that for the
tangent plane to ]i‘2 O\]m ’AZm)i at point O‘]m)i’ O‘Zm)i and the surface
z=0. Therefore the trace for the tangent plane to F| was obtained

aF) oF
(Com) i1 = Oop)y)
and hence
oF oF oF
1 1 _ 1
o), Pwdin * G Pandin = ) Pms
oF,
F ) ol T 1l Aoy
= H



163.

Similarly for the second function the trace of the tangent
plane at point ()‘lm)' ; ()‘Zm) in the surface z=0 was described by
: i

BFZ . F

( )
A m

~ 2
)i“lm)iﬂ + o AZm)“mn i+l

BF2 ) - .aF

= (e

8)\1m

2 ,
i(>\]_m)i + (ma)‘Zm) (o) s

)

ER AR

The intersection of the traces gave the next approximation to

the required roots

BFZ BFl
M) 41 () bx) = Hylgy™) )/Hy
2m i 2m i 5.41
BF2 BFl
(A, ). = (H,(sx—) - H,(—))/H
2m’ i+l 1 ax]m i 2 axlm 3
where
BFl 8F2 BFZ aFl
Hy = G0 G - G0 )
Imi "2m i SfIm i "2m i
The iterations were initiated using the linear root Ay for
themth mode such that }‘lm = }‘2m= }\n and then iterations were
oontinued until the value of 1‘1 and F, were less than 1x10 ~°,

The derivatives for the constant load case are given in
Appendix G and H.
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5.3.5 DETERMINATION CF ELAPSED TIME

The method of determining the effective elagpsed time
was based upon the assumption of continuity of the solution at the
mid-point between the discrete pivotal points in the time domain for
each mode, therefore for the mth mode

At At
* — = * -
0‘m(p’Tm,i + 2) CLm(p"fm,i+l 2) 5.42
. . . th .
where i = effective elapsed time at the i time step
% . . N = B
™ . .= effective elasped time at the i+l time step
m,i+l
At = time increment.

For each modal shape iteration to a solution for  the roots
>‘lm ’ >‘2m and 1;1 was carried out based upon the equations for
the roots 5.34, 5.38 and the mid-point requirement.

- AT - At
*® —_ = & Pl
0tm(p) Am(Tn,i + 2) O‘m(p) Am(Tn,i+l 2)

It was initiated by taking the effective elapsed time for the
specific mode at the previcus pivotal point in the time domain and
the real time increment was added to give the first approximation to
the effective elapsed time at the current time. Initially the roots
Mm Mg FOr the value of TI’; were calculated and subsequently a new
value of T;{‘l obtained for the given time step and a further
iteration carried out to determine new roots Alm’AZm' The iteration
was terminated when the change in the elapsed time was less than

0.01% between successive iteration steps.

Each mode has an individual effective elapsed time T;:l .
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5.3.6 FLOW DIAGRAM NN - LINEAR SOLUTICN PROGRAM

The flow diagram for the program to determine the deflection
for the non-linear case is given in Fig 5.6 page 166.
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CHAPTER STX

NUMERICAL SOLUTION OF GOVERNING EQUATIONS

6.1 INTRODUCTION

The first approximate solutions to the coupled Von Karman
equations 4.11 ,4.12 governing the static non-linear deflection of
plates were derived by assuming a shape function for the plate.
Constants associated with the‘ shape function were obtained by
considering the minimum of either the variation of applied load as
calculated fram the shape function and governing equations in the
work of Nadai[6.1l], or the total strain energy in the case of
Timoshenko[6.2] .

An exact series solution of static non-linear deflection was
obtained by Way[4.4]. The first derivative of vertical deflection
with respect to radius was described by an odd series function of
radius while the radial membrane stress was given by an expansion of
an even series function of radius. The coefficient relationships
were derived by substituting the series in the governing equations.
The solution was obtained by initially estimating values for the
constant and first coefficient of the even and odd series
respectively, and the deflection and stresses were then calculated.
This process was repeated for a range of constant and first
coefficient values and the radius at which the outer boundary
corditions,were met was determined. While this did not satisfy the
inner boundary oondition, if sufficient numerical cases were
considered then interpolation enabled the appropriate starting
values to be obtained, and hence the non-linear static deformation
to be determined so that it satisfied the boundary conditions as
well as the governing equations.
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The assumption that the second invariant of the menbrane
strains in the strain energy expression was negligible was made by
Berger [5.5]. While this assumption has no physical interpretaticn,
because it effectively reduced the coupling of the Von Karman
equations and therefore simplified the solution technique, it has
been the basis of subsequent static[6.3] and dynamic
[6.4,6.5,6.6,6.7] analysis of non-linear deflections in thin shells
and plates. This lack of interpretation has given rise to some
controversy[5.6,5.7,6.8], particularly with respect to the simply
suppoarted edge condition.

For the static analysis the modified equations were

4 2@,y de2, 02 _ €
v 1258 (dp + ,(dp) + p)V a = 5 6.1
*2
dg ;i(d_uZ + &2 = X 6.2
dp dp P 1262
2
2 d 1d
v = (— + = o
where (dp2 5 dp)
*2
X 5 = Constant of integration
126
= Erm4.ErB
Erm = Radial Membrane stress Strain
€ = Circumferential Membrane Strain.

and the parameters were those defined in Chapter 4,pagel34.

The general solution of these equations for a fixed edge

circular plate with a uniform loading was

* *
2(IO(Y )= IO(Y p))ﬁ_ 2

€

alp) = x % % p +1
2

) 2 -
o) = X o e I, (vp) IO(YD)Iz(YD)

2462 16 62Y4 I:Iz;(y)

I, (yp)
-4 2 2 6.3
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%
where the wvalue of Yy satisfying the loading condition was

determined from the following non-linear relationship

1 6
2 3 §‘Y ..... 6.
& 7 T (M2 I (M
o -2+
] T, (¥ Y, (v¥) Y*Z

The equations were nondimensionalised for comparison with
4,18,4.19 given that IO ,Il and I2 ware modified Bessel functions of

the zero, first and second order respectively.

Schmidt[6.9] noted that the solutions obtained for the
non~-linear deflections of circular plates were relatively
insensitive to the values of Poisson's ratio and therefore
rearranged the Von Karman's equations and developed a perturbation
solution based upon a parameter y where

dw _ . n iWL 6.5

dr L@ .

w = N un wn 6.6
n=1

u o= & 0 u, 6.7
n=1

in the governing equations and equating coefficients of parameters a
series of equations were obtained which could be successively
integrated. It was of major interest that the first resultant
equations were identical to those derived from the assumption of
Berger. As was indiciated, if the Poisson's ratio was assumed to be
equal to unity[6.9] then the second membrane strain invariant was
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eliminated from the strain energy equation. This arqument was
further pursued to claim a physical Jjustification for Berger's
governing equations, although it should be noted that the Poisson's
ratio can never be greater than 0.5. Further work was carried out
by Schmidt et al[6.10] extending this perturbation technique to
non-symmetric non-linear deflection of a circular plate.

All the techniques discussed above gave solutions to the Von
Karman equations with varying degrees of accuracy and complexity
of calculation. However they were not easily adapted for use on a
conputer.

Therefore the development of a numerical technique to
represent and solve the equations governing the non-linear
deflection of a circular plate was studied, with enphasis on
cbtaining a method of representation which was capable of being used
to solve the static and dynamic case.

6.2 NON - LINEAR NUMERICAL TECHNIQUES

As pointed out by Haisler[6.1l],in the 1last ten years
considerable research effort has been involved in obtaining
solutions to structural problems involving geometrical
non-linearity. The resultant increase in papers on this topic has
paralleled the availablity of the large high speed computer and the
development of increasingly efficient numerical alogrithms has
made studies of these problems either possible or economically
feasible. A paper by Murthy et al[6.12], dealing specifically with
non-linear bending of elastic plates of variable profile, references
in the introduction the exponents of the various techniques of

solution of the non-linear plate problem, and as such is of value.
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Since no generalised theory for the numerical solution of
non-linear equations exists,there has developed a large range of
techniques capable of solving particular non-linear problems. The
mjority of these methods involve the modification of existing
linear numerical techniques.

Finite element techniques have been used for non-linear
transient analysis of plates[6.13,6.14,6.15]. However the initial
decision on the numerical technique preceded these publications and
hence a finite difference technique was considered.

6.2.1 STATIC CASE CIRCULAR PLIATE,

The first case considered was the solution of the non-linear
static deflection of a circular plate with a fixed edge condition
and governed by the following equations,

R e g
dp- P @ et dp” 7P dp

dr do.2 v 2 du. A% v dr v du d%

A EEH+ ) 1126 ER S - 2 - 2o

(dp 2((:'lp) p) (dp dp2 p dp 3 dp dp2

c 14 da d% 1 do. 2
__§+_i_%+d_“_g+7(aﬁ) = 0 6.8
a0 pde | P o p ‘dp

Keller et al[6.16] reported a numerical iterative computer
procedure based upon a central finite difference representation of
the Von Karman equations with respect to the first derivative of

da

deflection & It was observed that the direct iteration

procedure only converged for a limited range of load parameters and

therefore an interpolation parameter was introduced to enhance the
range for which the iteration converged.
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A finite difference representation was applied by Mah[6.17]
to the governing equations derived by a variational method for large
non-linear deflection of a circular plate. To enable the iteration
to converge for a reasonable range of deflections the following
iteration scheme was used. The calculations were initially solved
for a load in the linear deflection regime and the non-linear
solution obtained. Subsequently the non-linear terms from the
previous solution were used when the calculations were repeated,
following the load being incrementally increased. As the deflection
ard non-linearity increased, the incremental load step was decreased
to further extend the convergence range of the iteration scheme.

To numerically determine the deflection and stress levels, it
was decided that the use of a central finite difference
representation of the spatial relationship in the governing equation
would best allow a method which oould be used in the static and
dynamic cases.

Initially the numerical solution was based on a modified form

of the Von Karman equations.

2 N t
d™¢ 1d¢ _ 9 _ ‘r . 1
gr_z_ + s 7 = 5 + 5 (g(r)rdr 6.9
r o
a%u 1 du u dé 1-v,, . 2
'd;Z 4 TE T 3 = (¢.—d—5 + —2r—(¢) ) 6.10
r
where b = dw
dr
w = Vertical deflection
u = Radial deflection
r = Radial position

g(r) = Applied load
D = Flexural rigidity

v = Poisson's ratio
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Advantage was taken of the identical form of the Ileft
hand sides of the equations of moment and radial equilibrium; the
equation 6.9 being initially solved for slope or first derivative of
the vertical deflection with respect to radius and the second
equation 6.10 for radial deflection only. It was also noted that
for the fixed edge circular plate, the boundary conditions for the
slope and radial deflection were identical.

6.11

Substituting central Ffinite difference equations for the
derivatives on the left hand side of the equation resulted in the
following difference relationships for the ith pivotal point for the

jth iteration where i= 2,3,4, . . . n-2,n-1 given that the plate
was divided radially into n equidistant pivotal points excluding the
boandar ies:
1 1 1
2 1 i
= ((¢N )J 1,4 T g—io q(RAr) 4 Ar Ar) 6.12
1 1
uj,i""‘l (1+I) - j, (2 +1—‘) +uj,l 1(1 'I)
2, d¢ 1-v 2
= - = ; \ \ .13
Ar™ (9 * 1Ar ¢ )3-1,1 6
a
where , Ar = o+l

Applying the baundary conditions at r=0 gave the following
for the first pivotal point.

Arz 1 2
2¢j - 3¢j,l = T((¢Nr)j—1,1 + Eq(Ar)Ar ) 6.14

1-v 2

4501 6.15

- - d¢
2uj 3u., = ( ¢dr +



while the nth pivotal point gave

. (2 2)+¢ a-3

j.n j,n-1

2 ) n

= ((¢N ). "'l n I’IATI' 2‘20 q(zAr)ZArAr) , 6.16

1
* uj,n—l(l "R

1 -
nAr

= —ar?(( ) + ORP 3-1,n 6.17

The grouping of the equations 6.12 - 6.17 gave the matrix

relationships
K'¢ =L+ F 6.18
K'u =F © 6.19
- . ~2
where K' = Matrix of Coefficients
L' = Load Vector
Ei = Vector of equivalent pseudo-lcads containing

the non-linear terms
FI = Vector of equivalent pseudo—loads containing

the non-linear terms.

The solution involved a  deferred-correction method,
Apperdix I, at each iteration step to determine both the slope and
radial deflection with an iterative technique to correct the
non-linear terms and allow convergence on the correct result as is

shown by the flow diagram 6.1,page 175.

It was found that the program solved the problem and
converged for the range of deflection under consideration in the
transducer operation without requiring any form of interpolation
technique. The advantage of the initial method for solving the
static deflection was that it involved an identical co-efficient

matrix for each of the governing equations which simplified the

174.
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programuing. This resulted in an efficient use of memory,a reduced
program development time as well as optimising the computer
execution time required for solution because only a single matrix
inversion was required. With appropriate modification of the
coefficient matrix,boundary conditions other than those associated
with the clamped edge could be and were considered. However this
resulted in different coefficient matrices for the vertical and
radial governing equations. Hence two coefficient matrices were
generated and inverted which eliminated the advantages discussed

above.

The disadvantage of this technique was that the matrix
operation gave the slope rather than the vertical deflection, and
hence any subsequent adaption of the program to solve the dynamic
deflection of the circular plate or circular plate/foundation
combination became numerically difficult.

Therefore a second numerical technique was used to obtain the
following representation of the nondimensional governing equation
6.8 by substitution of the finite difference equations given in
Apperdix‘J for the ith pivotal point and the jth iteration where i =
1,2,3,4c000..0=3,n-2

1. 1 1 2 4 . 2
(L4 54— = —=Ja, .+ (4= 2=t Z0q, ,
i 12i2 12i3 j,it+2 i 3i2 3i3 i+l
5 2 4 2 1, 1
P F 2, b (-a+2-2 2, s a-1s
2i2 j,i i 3i2 3i2 J,1i-1 1 12i2
€y 2
2 d d 2
t Ly, = wtep st (GG P E @20
12i” I ap? P p
2.
+§9‘(d§ 25 - Y+ 25 6.20
P dp p dp j_lri
11 4 2 5 1 4 2
CnTnD et BT T 27 25,0 B350
NP U B BN R S SR 6.21
12 7 12i7%§,i-2 TP gy 2 20 dp’j-1,i :

dp
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where n was the number of equidistant pivotal points excluding the
baundaries =0 and p =1

Now at the baundary p=0,according to the analysis presented
in Chapter Four page 137 the governing equation became,

4 2
da _ € 2 d’a do
3 —Z T 3 + 2487 (1 + v) 7 . d_p_ 6.22
dp dp

which on substitution for the derivatives from Appendix J gave the

relationship

2 % 2 &a, dr
18°‘j,0 - 24aj’l + Gaj'2 = Ap (T + 2487 (1=-v) (d—pi-) (aF))j—l,O 6.23
using the bounding condition (g—a) 0 = 0.

p p=

At the pivotal point i=1 the following equations were
obtained for the initial vertical and radial deflections.

2 2 4.5 4 .2
—4aj’0 + 8 go'j,l ) §°‘j,2 + 2aj’3 = Ap (_6—) + Ap~ 126
(& e Ly @ d? v o dedt vdey v
2 Apdp’tde  *'dp Ap dp L, 2  p'dp 2 "
d dp p
2
gﬂ_é_%)) 6.24
P 3p° 3-1,i

2
7 1 2.4 d% , 1-v,da,2
785,11V 2%4,2 755,37 M (3 302 G V51,1 6.25
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while at the pivotal point i= 2 for the radial equation Cj 0=0 and

hence the equation was

1 1 4 2 ) '(é 1 )

=13 12j) a2 T G ID 5y Y

2
4 :23 2dada+l—\)da2 6.26

+ (5__{) Cj,i—l= ~Ap (agp—z —5‘5) )j..]_ i

The equations for the pivotal point i=n-l was

2 4 2 5 2 4 2
(4 -5 = 2o+ L. .. .+ (6F o, . + (4 + 5 - — - Da. .
i 3i2 3i3 i+l 2i2 j,i i 3i2 3i3 3,

1 1 1 o4 5 4 .,..2
t -+ —m+t—3 = Bp" (<) + np 128

12i 12i

d"a lda

2
Sl 3 odyy) 6.27
p .

4, 2 5 1 2 1 1
G+, T 3D, 37305, Uit D 8y,
2
2,do d%a , 1 = vy da,2
= 0" oyt T3 ) 6.28
g % 9 Ty
while the equatlons for the pivotal point i=n were

1 311 1 2 2 2 1
(7T+53+==-~—a. . + (-4 + 5 - —5 -3 Fo. ._
i 12 i2 12i3 Jj,1 i 3i2 3 i3 j,i-1

E
+(1-%+—-1-2-+—1—3)u. i = Ap( Ay 4 oap? 1262
12i¢  12i° I

‘ 2
d% , 1l da + A2 v do 47z |, v dg _
((Ep—z‘ )( Z(dp) + C) + dp (d + = o do

2
o+r @®&™E& 6.29
p dp j-1,1

5 1 1 4 2
(‘5“?+((1+I)( +(§-““§)G-

+ .
)/12 (1 A 5,i-1

2(+1 2(1+1)))C i

2
1 2., do dadu+ l—\)(da)2) 6.30

1
gy, T e (G &G 32 2 d

j=1,i
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Hence the grouping of the equations 6.20 - 6.30 gave the

matrix relationships

+

F 6.31
1

A= g=
WY 1R
1}
Lt

Matrix of coefficients for vertical deflection.
Load Vector
Vector of equivalent pseudo-loads containing the

Where

]

EERE
li

non-linear terms in the moment equilibrium equation.
= Matrix of coefficients for radial deflection.

= Vector of equivalent pseudo-loads containing the

NPt

non-linear terms in the radial equilibrium equations.

= Vector of vertical nordimensional deflections for

Q2

the pivotal points.
tr = Vector of radial nondimensional deflection for the

pivotal points.,

As for the previously described method of solution a deferred
—-correction scheme, Appendix I , was applied at each iteration step
to the vertical and radial deflection within an iterative technique
to account for the non-linearity. To cbtain convergence over the
required range of deflections 0 < 8o < 1.5 a simple averaging
interpolation technique was applied to each iteration step.  The
program logic is shown in the flow diagram Fig 6.2,page 180. On
convergence being satisfied a further iteration was carried out to
confirm the correct value had heen obtained.

The advantage of this method of representing the governing
equations at the pivotal points was the capability of the program to
be modified to enable the solution of the non-linear deflection of a
circular plate/foundation combination. This was due to the direct
representation of vertical deflection rather than the slope as in
the previous case. The methad also could be used in the solution
for the dynamic transient lcading of both the circular plate and the
circular plate/foundation combinations undergoing non-linear
deflection. This was simplified by the direct representation of the
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applied load and acceleration at a pivotal point, rather than the
integral of the moment of these forces from the centre of the plate
to the particular pivotal point as occurred in the previous
technique.

To verify the accuracy of the spatial representation for the
governing equation, solutions from the numerical program were
compared with results from the well-known analytical model,

o = Sx12 - -eH? (6.32)
of static linear deflection for a fixed edge plate. The radial
profiles for deﬂecztion, Fig 6.3 page 182, slope Fig 6.4 page 182 and
second deri\mtivei—% ; Fig 6.5 page 183 were obtained.

fo)

Since the non-linear term in the governing equation is a
function of slope and second derivative, and numer ical
differentiation has inherent inaccuracies, the error profile is
presented for 40 radial pivotal points,Fig 6.6 page 183. The load
parameter value of 15 was used which gave a central deflection 6ch
of 2.56, which was twice the anticipated deflection range for the
subsequent use of the program. The large apparent percentage errors
were a function of the values of the dependent variables approaching
zero. The absolute megnitude of errors for slope and second
derivative aver the range of step size Ap = 1/20 to Ap = 1/50 was
0.004 to 0.002 with the relevant magnitudes of the dependent
variables being that shown in Figs 6.2 - 6.5

While the selection of a large number of pivotal points in
the radial direction reduced the error in the initial determination
of the deflection, it increased the computational effort and
therefore on the basis of the above results, a spatial step size of
1/30 was considered adequate.

Results of non-linear static deflection were compared with
results from the literature[4.4] and using the Berger relationship
equations 6.1 & 6.2. The central deflection was plotted against
load parameter as can be seen in Fig 6.7 page 184, while Fig 6.8



182.

3
. numerical
3\‘: solution
— e analytical
@2k solution
a
=
[
|
[
[
(@]
S
e,
o
pw)
, ] 1 1. L ' 2.
0 0-2 04 0-6 0-8 10

radius paramefer, P

FIG. 6-3 LINEAR DEFLECTION PROFILE FOR € =15 ~ =0-3
&5 = 40 Ap:i]/[‘()

1 I [ 1

0 02 0-4 06 0-8 10
radius parameter, p

FIG. 6-4 PROFILE OF SLOPE FOR LINEAR CASE E =15y =03

5 = 40, Ap = Yy




183.

XN
o5 S04
g
= 02
=
3 0
hw]
6 _
§ 0-2
_0.[, | ( ) i
0 02 0-4 06 08 1-0
radius parameter, p
FIG. 65 PROFILE OF SECOND DERIVATIVE FOR LINEAR CASE
€ =15, 3 =03 8§ =40, Ap=1p
b 120
3 | dp?
2 iY d()( t"
[ - . l‘
2 [ P~
Y / a\
| A
g‘ - &
G l/
(5
-1 ,
_.,2 | | ] |
0-2 0L 06 08 10
radius paramefer, p
2
FIG 6-6 PERCENTAGE ERROR IN DEFLECTION, % AND .3_95_ FOR

LINEAR CASE € =15, 3

03 6 =40, A p = V4o




x

_2r /
(F9) X .
o Linear non linear
}é 1-0F
g F /
a
E o8r % Poisson's rafio = 0-3
g T / radius thickness = 40
5 06 ;,;ﬁx | x  program
ko x o Way
@ Ok / e Berger
. B
= 0-2F
S N
O i 1 18 L |- H £ y H 1 ] 1 1
0 2 IR 6 8 10 12 14
load paramefer € = Pat
Ep &

FIG 6-7 CENTRAL DEFLECTION vs LOAD PARAMETER =03

"vel



185.

page 186 gives the central and edge radial bending stress in
relation to the central deflection. Finally, there is a plot of
central membrane stress and radial edge membrane stress against
central deflection,Fig 6.9 page 187 . The profile of the radial
in-plane deflection is shown in Fig. 6.10 page 188 and the
discrepancy between the finite difference technique applied to the
Von Karman equations and the Berger assumption can be seen. The
vertical deflection profile Fig. 6.11 page 189 shows good
agjreement.

As can be seen the progam results agree with those from the
exact solution after Way[4.4] and with the exception of the central
membrane stress, coincides with those obtained from the Berger's
equations. Hence it was considered that the spatial finite
difference scheme adequately described the non-linear behaviour of |
the plate.

6.2.2 STATIC CASE: CIRCULIAR PLATE WITH FOUNDATION.

The equations governing the deflection of a circular plate on

an elastic Pasternak foundation were

— - =2 ,
Flw) = kf(w) Gf v© W) 6,33
where the foundation characteristic in terms of the nondimensional

parameters was given hy
F*(a) = k% - G*V2o 6+34

Reactive Nondimensional force

Nondimensional Pasternak constant 6.35
Nondimensional Klinker constant

where F* (q)
G*
k*
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Therefore applying the difference equations Appendix
J, the reaction can be restated as follows

G* 11 NCRE!

F¥(a) =k*o, - =5 o035 Yo G
Do i i
5 1 4 1 11
o) e tE) fratnt 6.35

and applying the same boaundary conditions as for the plate equation
it being noted at the boundary p= 0 that the equation reduces to

2G* 1 4 5 4
= * D —— - —— — P — —
F*(a) _o =K¥o Apz(gz( 73 td(3) Fo (=) Fo 3
1
+ U.Z (““ E)) 6.36
The matrix of coefficient can be modified as follows,

K'a = o +Ra 6.37

K
—a

where the foundation reaction defined by

F*a= Rua
and = Matrix ofcoefficients for foundation reaction
Matrix of coefficients for vertical
deflection of plate/foundation combination

IERE

Hence the problem can be solved by using the same procedure
as for the plate case with the alternative matrix of coefficients

ig‘a,Fig 6.2 page 180.

The Winkler foundation characteristic can be solved as a
special case of the Pasternak foundation if G = 0.0. The results
from S.N. Sinha's work [6.3] gave a basis of comparison with those
obtained from the program, Fig 6.12 page 191 , and the plot of
central deflection against load parameter for a range of foundation
characters shows the agreement between the methods. The work of
Sinha considered a Winkler foundation and by using Berger's
assumption obtained a solution to equations governing the non-linear
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deflection of a circular plate on an elastic foundation.

4 2.d; ,de2 [ g, 2
Vo ~ 126 $+%(dp> + 2V

o +k*o = =
0 ., -6

2 |
LA 6.38
d T e 12

6.2.3 DYNAMIC CASE CIRCULAR PLATE/FOUNDATION

The equations gowverning the dynamic transient non-linear
deflection of a circular plate were the dynamic form of the Von
Karman equations.

R b L f R~ R
ap P 3p P 3p p~ P ap P
elp,T) 82a da, + 1262(32a + ;I__ia_q_) (35_ + ;(_@_g_)Z
8 2 X 3t 2 p 3p’ ‘9p 23 3p
9T ap
2 2 2
v 2.9%, ,07 , v dg v 90 3 a4, _
+ 27 4128+ (2 + -2 - w5 +——5) = 0
) 2 5 2
P 3p 3p2 P A P ap
201 sa 220 . 1 - v da,2
3—2—+—g—c-c—2+a—°‘—%+-—2-—-‘-’-(£)) = 0 6.39
3p p o P ap p

The technique of representation for the spatial pivotal
points was identical to that used in the solution of the static
case, and the time domain could be represented by either a direct

integration operator or a reccurence scheme.

5.2.3.1 TIME DOMAIN The second order equation governing

the behaviour in the time domain for the plate/foundation
compbination was

=
TR
+
@]
1@
+
|
(34
+

F = 0 6.40
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where K = Matrix of Coefficients
C = The nondimensional viscous damping coefficient
M = 1 following the form of the time

nondimensional parameter used.

and the dot denotes partial differentiation with respect to

nond imensional time.

As discussed by Argyris et al[6.18] when considering the
first order dynamic equation, M = 0, in relation to diffusion
analysis, the time domain oould be represented by either modal
analysis such as in Chapter 5, or recurrence relationship/direct
integration operators in a discrete step by step procedure.

The modal analysis required the separation of the spatial and
time variable and the subsequent superposition of the
orthonormalised eigenmodes to achieve the  solution. The
computational effort could be reduced by consideration of only the
few dominant fundamental modes in typical engineering problems.
However the accuracy of the solution was a function of the number of

modes for which the summation was carried cut.

For linear elastic problems the spatial and time
representation could be decoupled since C and K were constant while
F was independent of ©. Therefore the dominant orthonormal
eigenfunctions had only to be determined at the initiation of the
solution program and the summation of the modes' contribution
applied at each time interval, (see section 5.2,pageld42). The
forcing function could be expanded as an infinite series of the
orthonormal eigenfunctions. Therefore the resultant time
representation for each mode was determined from the governing
equation, the initial boundary conditions in the time domain and the
forcing function. For the application of this technique to obtain
an exact solution to the linear case see section 5.3.
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For a non-linear dynamic system where K was a function of g
while F was a function of previous deflection as well as time, the
orthonormalised eigenmodes had to be determined at each time step as
in section 5.3, or over a limited number of time steps with an
assumption of quasilinearisation between pivotal time points to
ensure decoupling. Also the assumption of superposition failed and
therefore the resultant solution of the geometrical non-linear
deflection of the plate was inexact. This is discussed in detail in
section 7.4, page 261 .

Since the determination of orthonormalised eigenmodes was
demarding in computer time, and superposition failed in the case of
geometrical non-linearity, the alternative recurrence relationship

in the time domain was initially considered.

This method, commonly used in dynamic structural analysis,
represented time as a series of finite discrete time domains and
subsequently uses a specific relationship between the nodal points
in time which satisfied the governing equations. This resulted in a
time-stepping or recurrence solution which progressed through the
time domain.

6.2.3.2 RECURRENCE RELATIONSHIP/DIRECT INTEGRATION

OPERAIOR  The deflection,velocity and acceleration
oould be represented by direct integration operators of the form,

&+Y§ AT+(1—Y)§. AT
"t “t t t+1

e
il

a = o +& AT+ 8a AT 6.41

~ -~

t+1 t "t T+l

for the nodal points t+l and t where At is the time step length and

Y, B were oonstants associated with the specific integration
operator.
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Alternatively Zienkiewicz[6.19] derived a recurrence

relationship, basad upon a finite element approximation, of the form

[1\_@ + yAtC + BATZK la + [v-‘-ZI.\_’I_'+ (1 - 2y)AC + % -~ 25+Y)AT2§_]OL

I 3 “t
: 2. = 2
M= (L =y)ATC+ (3 + 8 - y)ATK]a +f AT =0 6.42
- B v
where
Ff=f g+f (HB-2+y) +f G +8-vy)
~ ~t+1 ~t ~£=-1

and the subscripts define the nodal points in time while v,B are
specific to the particular recurrence scheme.

When selecting a scheme for the time domain the suggested
criteria after H.M. Hilber et al[6.20] is

'(1) Unconditional stability when applied to linear
problems

(2) No more than cne set of implicit equations should
have to be solved at each time step

(3) Second order accuracy

(4) Controllable algorithmic dissipation in the higher
modes

(5) Self-starting’

The basis of the first ocondition was to ensure that the
relationship was convergent and stable for a time step which allowed
an economical presentation of the forcing function and from
Rrieg[6.21] implied an implicit scheme.
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The second oondition was to minimise the computer
requirements for large solution schemes. Previous experience had
indicated the superiority of the second order accuracy. Because of
the finite number of points used to define the shape of the
plate/foundation combination, the higher frequency modes oould not
be accurately represented. Therefore algorithmic dissipation in the
higher modes was desirable to damp ocut any spurious contribution by
these modes. However numerical dissipation in the lower modes would
give rise to relative pericd error in the solution.

To achieve the final condition of self-starting, the algorithm
should contain the initial time boundary conditions. While this
criteria would suggest the time domain should be defined by a direct
integration operator, at the time of developing the dynamic program
a Houbolt recurrence scheme[6.22] was used and subsequently modified
following Zienkiewicz, to allow a range of schemes.

For the second order dynamic equation either a three-point or
four-point recurrence scheme could be applied. Initially the
stability of the three-point recurrence scheme was considered,after

Zienkiewicz, for viscous damping.

6.2.3.2.1 THREE POINT RECURRENCE RELATIONSHIP As had
been established by using a weighted residual gpproach[6.19], the

general three-point recurrence relationship in the time domain, for
linear conditions was given by

[gd_ + yATC + BATZE] o + [-2M + (1 - 2y) AC + (% - 28 + y)ATzK]a
“n+l - T *n

+ M- (L-yMmC+ (5+8 - yatRl o + Al = 0 6.43

n-1
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where

F=f +f£@G-2+y)+E (G+8-7)
- “nt+l “n n-1

At = Time increments between nodal points
B,y = Constants dependent upon the specific

recurrence relationship and are given
in the Table 6.1

Y 8 Schema
1/2 0 Central Explicit
1/2 1 Backward
1/2 1/6 Linear Accleration *
1/2 1/10
3/2 4/5 Galerkin
1/2 1/12 Fox Goodwin
1/2 1/4 Constant Average Accleration *

TABLE 6.1 Coefficients for Three-point

Recurrence scheme (after Zienkewicz)

*Note: Fram the Newmark family of integration schemes

The stability criteria was obtained by considering the linear
equation of the general form [6.23]

M, o, +C. &, +k, a, + £, = 0 6.44
i1 i1 ii i
it being noted that for this case Mi =1 due to the nondimensional
form of time in the governing equation. As for section 5.2 ’

using the real eigenvalues of the free vibration
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modal decomposition was applied.

Again the homogenous equation was considered with f:L =0 and
a solution of the form
()

= Ay,

%i'n+l

ag)y = Ay,

was assumed. Therefore substitution into the general recurrence
relationship for a single degree of freedom gave the characteristic
equation

)\*2 1+ ’YATCi + BATzki] +A*[-2 + (1 - 2‘Y)ATCi + (% - ZB-P;')A'rzki;l

+[1 - (1 - Y)ATCi + 5+ 8 - Y)Ar2ki] = 0 6.45
substituting
G = ATCi
= 2X.w,At
il
- 2
p;, = At ki
= u)2 AT2
where X; ~ Zi_ and represented a fraction of the critical damping,

following the d&finition of the nondimensional time parameter gave
2

x * [— - -

MEIL + yq + By T4 y¥[-2 4+ (1= 2y)q + (5= 28 + y)p; ]

+[1 - (l_Y)qi+ (%+B_Y)D] = 0 6.46
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but substituting

q; +. (s + Y)py e P C R 0Ny
g ) Q:v
1+ Yq‘i + Bpi 1+ Yqi + Bpi

gave the roots

A*

2
(2 -qg) + /(Z-g)‘ - 4(1L + &)
fa > 6.47

For the roots to be complex and hence the procedure to be
stable

(2 —g)2 <4(L + &)
From Appendix K this gave
2 2 2
BXT(48 —~ (Y + 5)7) + 20%y, (2y = 1) + 4(1L - x.) > 0
i i i
where 6% = o A T,
i i

which in the case of X; = 0 reduced to the given condition[6.23] for
the undamped case

932(43 — v+ 82 > 4 6.48

Cansidering the limit condition for the inequality
042 (48 — (v +%)2) = 20% x. (2y = 1) + 4(L = x2) = 0 6.49
i it i y

then

~2x; (2y-1) ¢/4xi(2Y-1)2‘e‘16(4a=(Y+%)2)(1—x?)
6% < 5 = 6.50
2048 - (v + %))
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gave the limiting ocondition for e; and since e; = Atw; and
wy = ?— vhere T. was the period of the frequency W, .
i i
2 2 2 2
Ar.2w —2xi(27—l)t/ 4x; (2y=1)"=16 (48~ (y+4) °) (1-x}) . 51
. 2 ®
T3 2048 ~ (v +%)°)

As pointed out by Sharpe[6.24] from the form of the equation,
unconditional stability was dependent upon

8- (y+32 = 0

which was independent of damping as well as being consistent with the
cordition obtained by that author for the casey = 1/2 , 8= 1/6, in
‘that the equation reduced to

2

a1 V1 - X;
Ti T vl = 48
. 1

taking the positive condition.

The modulus of A* was required to determine if artificial
numer ical damping cccurred and for stability had to satisfy

1
A = 1+07%<1

Therefore squaring the term

-1 < 4 <0

and substituting for 2 gave

“2y;0% + (5 - 1)0%
-1 < < 0 6.53

1+ 2xi Yo*+ B 6*2
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which again for X; =0, the undamped case satisfied the known
relationship[6.23]

v = %

for no algorithmic dissipation.

Conditional stability will occur for real roots of
provided that

Therefore the stability criteria for damped single degree of
freedom systems can be presented as Fig 6.13 page 202 for y = 1/2.
It can be seen from Fig 6.13 that for the Newmark scheme vy = 1/2,
B = 1/6 the results confirm those presented by Sharpe.

Plots of the modulus of the roots A} ,Aj or the ‘spectral’
radius Figs 6.14 - Fig 6.19 pages 203 -205 show the 1limit on
stability as well as the influence of the combination of viscous
damping and algorithmic damping for the three-point recurrence
schemes. The limiting case X; = 0 gave the results presented in
other works[6.20,6.23,6.25]. It can be seen that as reported [6.20]

high order modes exhibit minimal damping.

In the literature[6.20,6.25] results have been presented for
undamped systems on the relative period error as a function of the
time step size, Fig 6.20 page 206, Since numerical experimentation
using the results fram the linear case and a modal solution was to
be carried out, further analysis on the relative'period error for a
damped system was not considered justified.

With the recurrence scheme, for transient loading conditions,
a starting procedure was required to initiate the solution. Since
the initial bcundary conditions for the time domain were zero
velocity and displacement, to the first order of accuracy it was
assumed that
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and that the pressure loading was applied from time T = 0. Hence
the value of o was calculated and thus the recurrence relationship
applied for the solution of all subsequent displacements.

6.2.3.2.2 FOUR POINT RECURRENCE RELATIONSHIP An
extension of the weighted residual method of Zienkiewicz[6.26] using

cubic shape functions resulted in the Four—point Recurrence Scheme

My - 1) + (48 = y + 2)CAT + (2N~ 58 + KA

“n+l
' 2 3 3 2
+ (=3y + )M + (—§ﬁ + 4y - EJQAT + (=%n+ 28 - iv)KAT a
n
3 5 2
+ (3y - 5)M + (-2-3 = 5y + 3)CAt + (%n—-z—e + 3y)KATT «
“n=-1

+ (-y + 2)M + (%8 + 2y - %)g_m + (—én+ B - %'Y + 1)§AT2 o
“n-2
+ (l- - %8 + 1"y)f Arz + (=%n+ 28 = gy)f AT2
6 370 27707
n+l
+ (0= 28+ 3)E a4 (Nt B-Zy s DE ar° = 0 6.54
-1 “n=2

for the initial equation 6.40, where as previously

At = time increment between nodal points
B,y,n = constants dependent upon the specific
recurrence relationship and are given
in the Table 6.2
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Y B Y Scheme

27 9 3 Houbolt

702/35| 36/5 13/5 Galerkin

16.244| 6.039 | 2.40 Wilson o' = 1.4
18.125] 6.583 | 2.50 Wilson ' = 1.5
24 8 3

22 8 3

Table 6.2 Coefficients for the Four—-point

Recurrence Scheme (after Zienkiewicz)

Also the coefficients for the four-point scheme can be
related to o' schemes by the relationship,

no= 2440 +38'2 4 g3
_ 4 . 2

B——3—+29 + 8

vy = 1+ 8

The given general stability conditions for the undamped case

Njw
A
<
A
Wi ™
-+
N

no< -9y% & 3y + 13y - 6 6.55

ENI®
+
M_JJ\D
I
152}
<
Fay
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and Figs 6,21 page206 & 6.22 page 210 show the ‘spectral' radius

and the relative period error for specific values of z,B,y as a
function of the ratio of the time step to the undamped pericd.
Again graphical data is available only for the undamped case
although Wood[6.27] has established stability criteria for a damped
system of the form

Therefore numerical experimentation was carried out using the linear
anmalytical model and the numerical program, for the cases of viscous

damping .

As with the three-point recurrence scheme a starting
procedure was required,a typical example being that associated with

the Houbolt recurrence where the initial conditions in time were

af{p,0) = 0

a{p,0) = 0

and the acceleration and velocity for the nodal point AT =0 were
given by

2
3 a(glo) = 12 (a(p,AT) ﬂ;za(p'o) + a(p' _ AT))
ot At
da(p,0) = g%?(Za(p,Ar) + 3a(p,0) - 6a(p, — AT) + alp, = 2A1))

By

Substitution in the governing equation gave

2%a(p,0) _ clo)

8T2 §

resulting in the initial starting conditions

alp,~AT) = ,EéO) AT2 - a(p,AT)
alp,=2At) = GVE(O) AT2 - 8Ba{p,AT)
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which were substituted into the appropriate recurrence relationship
to give the required starting conditions for the first three nodal
points in time. Therefore there were two inversions or partitions

required of the coefficient matrix.

While the recurrence scheme did not satisfy all the suggested
criteria[6.20] particularly items 4 & 5 page 195,it had been
initially decided to wuse the Houbolt relationship. Subsequently
this was expanded to the general three-point and four-point
recurrence schemes to represent the time domain.

As for the three-point scheme, numerical experimentation was
carried out for the linear case with the exact solution from the

modal analysis.

6.2.3.2.3 DIRECT INTEGRATION OPERATOR Finally, because
of the stability and self-starting characteristics, a Newmark
scheme[6.27] for

o o + Ata +AT2(!~5 -B)a + ATZB&

~itl i i i i+l 6.56
& = a +X% (e + o )
~itl ~i "1 Titl
was reformulated to give
a = 12 (o - o - Ata —ATZ(%" B)a )
~itl ATTB i+l i ~i i
& = o +X%1t0 +a )
~it+l ~i "1 Titl
Substitution into the original equation 6. 40 gave
M-+ C% = + Ko
At B ~it+l
: 1 a 2 .
= f + M ——5—(a + Ata + AT (% - B)a)
~itl AT78 ~i ~i ~i
1 1, 4 pap - ArCs - 8)) 6.57

- =0
2ATB ~i 28
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This scheme was implemented by modifying the ocoefficient

matrix and gave a basis for comparison with the recurrence schemes.

The starting condition was, for the time At ,

a = 0
~i
o = 0
~i
o = 0
~i

The response of this technique of representing the time
domain has been analysed by Sharpe(6.24] and shown to be
satisfactory although the relative period error can become
significant at large time steps.

§.2.4 DYNAMIC CENTRAL DIFFERENCE PROGRAM

The technigque of solution described above was grouped into a
single program, with the logic shown in flow diagram,Fig 6.23 page
213. This program was capable of solving the impact loading case
giving either a linear or non-linear dynamic deflection of a plate
or plate/foundation combination such as occurred in the proposed
transducer.

The linear dynamic results were used to verify the program
performance against known results as well as results determined by

alternative programming techniques.,
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CHAPTER SEVEN

RESULTS AND DISCUSSION

7.1 INTRODUCTICN

The results from the linear modal analysis were used to
determine the appropriate recurrence scheme to represent the time
domain. The comparison was based upon a rectangular pulse load of
e = 10, 4 T 0.2, v = 0.3 because this was a stringent test of the
stability and accuracy of the time response by ensuring that the
maximum deflection was approached prior to the removal of the load.
The influence of viscous damping was also considered for the linear
deflection and the accuracy of the selected time damain alogarithm

confimed.

In addition, the linear modal analysis was used to verify the
alogarithm describing the vertical deflection for the plate and
plate/foundation combination, particularly that associated with the
Pasternak foundation. This was because of the inaccuracy in the
only published results for the non-linear dynamic response of a
fixed edge circular plate/Pasternak foundation combination when
subjected to a step load condition of € = 10. The load cases used
in this comparison where the step load, the rectangular pulse load,
and the exponentially decaying lcad. The rectangular pulse load e =
10,74 =0.2 was used for the reasons discussed previously while the
step load € = 10 has been used for the results presented in the
literature on non-linear plate behaviour. The exponentially
decaying load described the anticipated initial pressure pulse
acting in the explosive farming, section 2.3, page 35.

The non-linear dynamic results for the plate obtained from
the central difference were campared with those of Alwar et al[7.1]
and Coleby et al[7.5] and the quasi~linearisation technique applied

by Alwar et al discussed. The boundary conditions considered were
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extended and solutions for the clamped edge and the simply
supported immovable edge outer boundary determined for @ the

non-linear dynamic response.

The plate/foundation non-linear transient deflection was
calculated using the numerical program for both the Winkler and
Pasternak foundation characteristic and the results discussed in
relation to those of Nath[7.7]. The differences between Nath's
results for the Winkler foundation and the numerical solution are
discussed for the plate with a fixed edge boundary condition. A
clcser agreement was obtained for the simply supported plate
boundary. For the Pasternak foundation with a fixed edge plate,the
discussion centres on the erroneous results presented by Nath and a
canparison is made with those obtained fram the program. The form
of the response for the simply supported plate boundary was similar
for the program and Nath's research,while there was a variation in
maximum deflection amplitude.

The results of the non-linear modal analysis were oompared

with those fram the numerical program and the discrepancy discussed.
Finally the design performance of the pressure transducer is

presented as well as typical deflection and stress profiles for a
plate subject to an exponentially decaying load.

7.2 LINEAR RESPONSE

An 'exact' solution for the linear dynamic response of the
plate and the plate/foundation combination using the modal analysis
section 5.1- 5.2.5 was obtained for the step load, rectangular pulse
load and an exponentially decaying load. The step load case for the
plate was used to examine the three and four point recurrence
schemes discussed in section 6.2.3.1-6.2.3.2.3.
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Urdamped and viscously damped dynamic deflection of the plate
was calculated for the load cases and the results campared with
those derived from the numerical programs. Similarly the 'exact’
solution for the Winkler and Pasternak foundations were determined
for a range of wvalues k* and G" and showed aggreement with the
numer ically derived results.

7.2.1. LINEAR MODAL ANALYSIS

The central deflection of a plate subject to a rectangular
pulse load of € = 10 for T = 0.0 tO0 T = (.2 is given in Fig. 7.1,
page 217 . It can be seen that the amplitude of the resultant
sinusoidal deflection was not constant but varied by  4.7%. Fig.
7.2 page 217 contains the deflection associated with the first root
as well as the summation of deflection for the higher order roots
2-30 which did mnot sum to zero but to an alternating deflection of
variable frequency with a mean value of the order of 3.8 times that
of the first root. Therefore the higher order roots of the modal
analysis beat against the first order rocot giving the observed
variation in the deflection amplitude. The resultant central
deflection time graph was used to determine the accuracy,
algorithmic damping and relative period error associated with
specific three-point and four-point recurrence schemes used in the
time domain, sections 6.2.3.1-6.2.3.2.3, for a range of time step
sizes.
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7.2.2. TIME DOMAIN - NUMERICAL EXPERIMENTATION

A comparison between the dynamic deflection results from the
modal analysis and the finite difference program, using a Newmark
direct integration operator B =%, y =%, At = 0.0075 is shown in
Fig. 7.3 page 219 while Fig. 7.4 page 219 gives the results for
the oorresponding central bending moments. As would be anticipated
the accuracy of the central radial bending mament from the numerical
program was less than that for deflection because of the inherent
inaccuracies associated with central difference differentiation
techniques, particularly at boundaries.

The absolute differences between the deflection results are
presented in Fig. 7.5 page 220 and the increasing amplitude with
time showed the influence of errors in waveform and period. ‘The
apparent disparity between the error graph and the deflection is due
to the plotted resolution being less i.e. At = 0.01 than the time
step At = 0.0075 used in the calculation. Error conditions defined
as
R dynamic) ' ) (otodynamic)

uo static progranm oto static 1al

EBrror = (

for specific three point recurrence schemes are presented in Fig.
7.5 = 7.9 p 220-2 for the rectangular pulse loads, of ¢ =10 forr
= 0.0 - 0.2, with time step size of At = 0,005 and At = 0.010 while
Fig. 7.10 shows the deflection for B = 0.8, y = 1.5 and time step
size of At = 0.005, 0.0075 and 0.010.

Alogarithmic -damping is apparent in Fig. 7.7 = 7.10 as was
expected fram the spectral radius, Fig. 6.17 - 6.19 pages 204-5 ,
with no relative period error being in evidence while Fig. 7.5 -
7.6 exhibit the effects of relative period error with limited
amplitude change, which was anticipated, section 6.2.3.2.1.
Therefore the Newmark, B = 0, Y = 0.25, gave the best representation
of the time domain for the three point recurrence scheme and was
adopted for the nonlinear analysis. The results for the comparison
of the four-point recurrence schemes with respect to the linear
modal analysis are given in the Figs.. 7.11 - 7.15 pages 223.5. The
Houbolt recurrence relationship, Fig. 7.11, exhibited alogrithmic

. damping characteristics of the scheme [6.23], as the time step size
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was increased and for this procedure step sizes of less than At =
0.0005 had to be employed for accurate plate analysis. The scheme
=24, B = 8, vy = 3, Fig. 7.12 displayed a similar error to the
Houbolt relationship with the source of error being a function of
the change in period and no apparent alogrithmic damping, as would
be expected [6.23]. The Wilson technique §'= 1.4, Fig. 7.15 for an
equivalent step size At = 0.005 exhibited both overshoot [6.24] and
relative period error as well as alogrithmic damping, as did the
Galerkin four point scheme, Fig. 7.13.

Finally for £ = 22,8 =8,y =3, Fig. 7.14, the recurrence
scheme exhibited a relative period error and overshoot but for a
step size of At = 0.005, there was no alogrithmic damping.

Therefcore, while the Houbolt recurrence scheme was initially
used with small step sizes of the order of At = 0.0025 for the
non-linear analysis, subsequent work was based upon the Newmark
three point recurrence scheme. As can be seen from Fig. 7.6 and
Fig. 7.11 these gave the most accurate representation for AT =
0.005 of the schemes considered.

7.2.3. VISCOUS DAMPING

From section 6.2.3.2.1. it can be appreciated that the
viscous damping would modify the response of the algorithms used to
describe the time domain and therefore the results from the
numerical program were campared with those from the modal analysis
for transient, dynamic deflecticni. The load cases considered were a
rectanqular pulse loading, a constant load and an exponentially
decaying load oondition using a range of non- dimensional viscous
damping valves.
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Camparison of the results for central deflection from the
numerical solution of the plate subject to viscous damping, can be
seen on Figs. 7.16 - 7.18, pages 228-9for constant pressure loading,
rectangular pulse pressure loading and exponentially decaying
pressure respectively. For non-dimensional viscous damping values
.of 8, 16, 24 and 32 the two solution methods were identical for a
step size of At = 0.005. Therefore the Newmark recurrence alogrithm
adequately described the viscous damping, in agreement with section
6.2.3.2.1 page 19¢ and Sharpe's work [6.24].

The Houbolt recurrence scheme was also oompared with the
linear modal analysis for an identical step size and gave similar
agreement. From these results it can be seen that for the plate,
critical damping lies between y = 16 and yx = 24 and for the
fundamental first mode frequency was Xorit™ 20.43.

7.2.4 WINKLER FOUNDATICGN

From Fig. 7.19, page 230 it can be seen that the increasing
value of foundation constant raised the fundamental frequency of the
system, as would be expected, according to the relationship

1
f.o= (A 4+ k*)?

4
1 1

Therefore the step size in the time domain had to be
decreased to At = 0.0025 to avoid relative period error,
particﬁlarly for stiffer foundations of k* > 100. The numerical and
modal analysis solutions for central deflection are shown in Fig.
7.20 for a constant load case and again are in agreement.
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An example of the ocentral deflection history for a
plate/Winkler foundation combination, subject to viscous damping,
following the application of an exponentially decaying pressure, is
given in Fig. 7.20, page 230 For the given time step At = (0.0025,
the linear numerical and modal results are in agreement for viscous

damping values of x = 8, 24 and 32.

7.2.5 PASTERNAK FOUNDATICN

Fig. 7.21 shows the result for a plate/Pasternak foundation
combination when subjected to a constant load of € = 10 with k = 50
and for G* = 50 and 100.

The linear numerical results for central dynamic deflection
are in agreement with those from the modal analysis, section 5.2,
vage 142, and as for the Winkler foundation, the increasing
fundamental frequency with increasing stiffness, as G* increases in

magnitude can be observed.
As for the previous case, a step size of At = 0.0025 was

required to avoid relative period error in solutions approaching T =
10.

7.3 NON-LINEAR DYNAMIC RESULTS

The non-linear dynamic results for the rigidly clamped and
simply supported immovable edge plate were obtained fram the central
difference program for a step load condition. These were plotted
with the published results of Alwar et al[7.1l] and Coleby et al[7.5]
and discrepancies in the resultant form of the reponse discussed.
Again viscous damping results were derived and compared with the
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results presented by Alwar et al.

The numerical results of the non-linear response of the
plate/foundation combinations with Winkler and Pasternak foundation
models for the above boundary oonditions were presented and
oonsidered in relation to the work of Nath[7.7].

7.3.1 NON-LINFAR DYNAMIC TRANSIENT DEFLECTION

The results of Alwar et al [ 7.1] for the non-linear
transient deflection of a fixed edge plate are compared, Fig. 7.22
page 232 with those from the program for an identical loading
condition and it can be seen that there exists some differences in

the central deflection history and the maximum deflections diverge

by 2.9 .

This solution was based upon the use of Chebyshev polynomials
to describe the spatial damain, in a technigue developed by Alwar et
al[7.2] for the static solution of the non-linear deflection of
plates. The Houbolt four-point recurrence scheme was used in the
time domain while a quasi-linearisation technique was implemented to
allow the generation of a set of linear algebraic equations of the
variable <ooefficients for the Chebyshev polynomials. The
coefficient equations were a function of the governing equaticons and
- boundary conditions. This was solved at each nodal point in time
and it would appear[7.3] that a time increment of At = 0.001 was

required for an accurate solution.

The observed difference in deflection history was a function
of the linearisation technique applied by Alwar et al for the

mon—-linear terms in
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using a Taylor series expansion of the form

), = (&);_ =), 4 AT+ (=

~and the back substitution of a backward difference scheme for the

first and second derivative with respect to time.

The first derivative, using backward difference, was given by
[7.4]

X 2.1 3 —
ox = 3
Br)j—l (V + %9 + /3v voees)X

AT ( 5-1

where V was the backward difference operator, j was the time nodal

point while the second was
2—
2,9 x 2 3 11 _4

M (5=) = (VH T 4127 LR,
o2 5-1 12 j-1

The substitution made by Alwar was

o T By T Xyl
and
2—
3 X — 2
(—=) (X: 4 = 2x._, + X, _,)/At
aT2 5-1 j-1 j—-2 -3
which gave
a0 aa, aa. aa. aa aa,
e A S = (32 (2.5(32) 2(3) 0.5 )
3p . 9p’ . ap’ . ap’ . ap’ . ap’ .
p i p j-1 p j p -1 P j=2 P i-3
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However, the derivation ignored the second order term for
the first partial derivation with respect to time, which was of the
same order of magnitude as the included second partial derivative
with respect to time and if it had been included would have given
the resultant quasi-linearisation

Therefore the errors in the quasimlinearisati?n were of the

2 3“a 3 o
order of V and when values of and —r—
3pa3T 3pat

particularly as the maximum deflection was approached, this would

increased,

have became significant, having the same influence as t;he second
order partial derivative with respect toztime. Figs. 7.23 and 7.24
page 236 show the variation of g—z andg—ozl as a function of time at
0 and p = 0.33 while Fig. 7.25 page 237 gave the

at those locations within the accuracy of numerical

locations p =
32a
9paT

differentiation. From this figure it can be seen that the amplitude

derivatives

2

of ,g_%__ is significant and the rate of change is a maximum at the
pIT . .

regions of discrepancy between the published results and those from

the finite difference pregram -

The summation of the coefficients for both representations of
the linearisation was unity and therefore the viscous damping case
would give the static solution following decay of the oscillation
irrespective of the accuracy of the dynamic deformation history.
Therefore the check used by Alwar et al did not oconfirm the accuracy
of the intermediate dynamic results, only those for the fully damped

condition.

The spatial representation for the plate is also discussed in
section 7.3.3 page 241 and the formulation considered.

To obtain a further comparison the numerical program was
modified to allow solution for the immovable edge simply supported
boundary condition i.e. atp =1

2
3 o + Vv 30 — 0,

= — 0, a = z =0
sz p 9p
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Figure 7.26 page 237 shows the results of the program as well
as those of Alwar.

An alternative solution presented by Coleby et al[7.5] was
based upon the application of Berger's assumption to effectively
decouple the governing equatiohs and implementation of the
‘iso-amplitude method of Mazumdar et al [7.6]. The resultant
solutiors far the circular plate with a rigidly clamped and simply
supported immovable edge are presented in Fig 7.22 page 232 and Fig
7.26 page 237 , respectively. For the fixed edge oondition the
results of Coleby et al more closely followed the numerical program
solution than those of Alwar et al. It has been established by
Alwar et al [7.3] that Berger's assumption did not affect the
accuracy of solution for e = 5, however some discrepancy was apparent
for loads of € = 10. Therefore the difference exhibited between the
numerical solution and that of Colely et al was oonsistent with
these results. The simply supported immovable edge boundary
condition showed a similar difference in response.

7.3.2 VISQOUS DAMPING

The results of dynamic non-linear plate response, subject to
viscous damping, were campared with those from Alwar et al [7-11].
As for the undamped plate behaviour, there was discrepancy in the
deflection histories for the reasons discussed in the previous

section.

Fig. 7.37 page 239 presents the results from the numerical
program while Fig. 7.38 page 239 contains Alwar et al's graph for
rigidly damped plate subject to a load of £ = 10 with a Poisson's
ratioof v = 0.3. The maximum differentiation amplitude is 3.4%
interpolating from the graphs. The results for the simply supported
immovable edge plate are given in Figs. 7.29, 7.3Q, page 240

with the maximum difference in amplitude being 4.6%.
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As for the linear case it can be seen in Fig. 7.27 giving
the response of a fixed edge plate that the amplitude of the maximum
deflection varies also.

7.3.3 WINKIER FOUNDATION

The results of static non-linear deflection for the plate/
foundation cambination were in agreement with Sinha [ 6.3], Fig.
6.12page 191.

To verify the accuracy of the dynamic solution, constant
loads were applied, with a viscous damping value of x = 20 to a
clamped circular plate. The resultant central deflection was
recorded, following cessation of oscillation, against the load for
specific Winkler foundation constants k* = 80 and k* = 120, Fig.
7.31 page 242 . As for the static case the results coincided with
those of Sinha.

The central deflection was plotted on a function of time for
foundation constraints of k* = 50, 100 and 150, Figure 7. 32 page 242
while the results of Nath [7.7] for similar foundation and load case
are presented in Fig. 7.33 page243 . It can be seen that while the
results from the program approximated those of Nath's, the published
results had a lower value of maximum central deflection particularly
for those with a large Winkler foundation constant. Fig. 7.34 page
243 shows superimposed results for k*¥ = 50 and k* = 100 and
illustrates the above point.

The resultant values from the dynamic damped cases, along
with the appropriate Sinha results for the given 'foundation
oonstraints were superimposed on those from Nath's paper and are
prasented on Fig. 7.35 page 244. It can be seen that a discrepancy
exists between the results presented by Nath,and those from Sinha
and the numerical analysis. The results obtained by Nath were
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stiffer than those from either Sinha or the numerical program.
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Nath extended the work of Alwar et al [7.1l] to describe the

transient rmnon-linear dynamic deflection of circular

foundation ocombinations.

The governing equations used by Nath were

2
2,2 1. . Ll-wv 30,2 _
po (V "‘E)X +"“‘2—"""D(§'a) = 0
P
p3V40L - 1262p2 g—p (x* g—‘;) + p3(k*u - G*Vzu) - p3(e(1')
T 2
3T

where the symbols were, as for Chapter Four, with the

function being given by

[(1 - v3)/Eha].X

X* =

and x = IN
X _
dr Ne

This was a re—statement of equations 4.15 and 4.16.

plate/

stress

Quasi-linerisation based upon the method discussed in section
7.3.1,0f Alwar et al was used while the spatial integration of the
governing equation was carried out using a finite Chebyshev

polynomial series.

The deflection o (p,t), stress function x*(p,T)

and their

respective derivation with respect to p were defined by a Chebyshev

series in the range 0 < p < 1 as follaows:

oy N N
alp) = - t I a. T]’;(p) = I'o T (p)
r=1 r=0
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= 2 o rx(p)
=0 T r
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=0 r r
XS N
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where subscripts (2) describe the order of the derivative with
respect to p. Therefore the substitution of the vertical deflection,

stress function and their respective derivatives was made allowing
for the quasi-linearisation for the non-linear terms.

The derivatives when multiplied by powers of P were reduced
to Chebyshev polynomials using product terms.

th
Consider for the j  time step; the derivative

4 N-4

39 3

p ——a4(p) = p z' ot]_fd). T;(p)
ap r=0 vJ

which on taking the radial term p3 inside the summation gave

4 N-4

32 4

p> 22le) o o ()3
dp r=0 rJ r

The product term, for the shifted Chebyshev polynomial of the
first kind was given by [7.8]

2t
S 1 2s
pm T*(p) = —=— ¢ (™ T .1
£ 7 Tas B T Te-sti| )
where
(Zs) — 2s!
i (28=1) !'i!

Therefore the derivative term became on substitution for
and t

S5

4

15
3 o TTr 3 () + 35 32 Trez| )+ 57 Tioq) @

15

5 3 1
+ —T*(p) -y +l( o) +3—2 (p) vy r+3(p))

6
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The recurrence relationship which could have been used to
regroup the Chebyshev polynomials without introducing derivatives of
the Chebyshev polynomials was

T;+l(p) = 2(2p - l)T;'_j(p) - TTr+l| (p)

‘However the form of the above equation was rmot amenable to this
regrouping without reverting to the original product term.

Considering the terms r = n-3 to r = n+3 by inspection, it
auld be seen that the coefficients for 'I; (p) were

1 3 15 5
64 “|Inx3| T 32 *|nz2| Y% “Ins1| Y& %n

Therefare terms for r > 3 and r > N-7 would satisfy the result given
by Nath '

3.3 1 3 15 5
p(—) = ' {= + = + == 2
wd oo 68 %[ne3 32 %fns2| 7 Y|ne1| Y E %
and since T_’;I (P =0 if values of|n ==i| < 0 result in u|n—-il = 0

the result given by Nath could be applied for the range r = 0 to r #
N - 7e

4 N-7 1
p (—4) = I {6_4 (1(

3 15 5
+ = + = + = *
” —0 nt3| ¥ 37 %ns2| * & *|ns1| t 7 Ol TR ()

+ additional terms in the range N - 7 <r< N -~ 4

and only if the oondition a, = 0 where r > N - 4 does the

description used by Nath apply over the range 0 <r< N - 4.
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On substitution of the Chebyshev polynomials into the
governing equations for the wvertical deflection and stress function,
Nath uses incorrect 1limits for the summation of the lower order
derivatives. In the case of the lower derivatives the summation
should have been fram r =0 tor = N - i where i was the order of

the derivative.

Alternatively the derivatives ocould have been left in the
form

3., N-3
_oae) N3 ) 1 3
PT  rad (16 Thrap| 0) F Wy o) + g TRe))

substituted into the governing equations,and the coefficients of the
respective Chebyshev polynomials equated to zero. Again the

recurrence relationship

LD etl) ok
|r-1| |lr+1] T 3%
would be used to relate the cefficients of derivatives of differing

orders.

The differences were consistent with those observed for the
maximum central deflection histories in the published data [7.7 ]
and the results derived from the numerical program.

The comparison with Way's results [4.4 ] was exact, within
the accuracy of the presentation of the data; and therefore the
source of error was considered to be in the implementation of the
foundation response.

The simply supported immovable edge plate/foundation
canbination was also considered and the results can be seen in Fig.
7.36, page 244 from Nath's work and Fig. 7.37, page 244 for the
central difference program. In this case there was a closer
corrrespondence between the two sets of results with the Jifference
in the first cycle maximum central deflection being -4%, -3.4% and
-0.6% for k* = 50, 100 and 150 respectively. This should be
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canpared with the fixed edge plate/ foundation combination where the
differences for the same onstants were -7.3%, -8.3% and -7.3%
respectively.

Also static central deflection for the simply supported
immovable edge case is presented in Fig. 7.38, page 250 for loads in
“the range ¢ = 0 - 20 and for Winkler foundation constants k* =0,
40, 80, 120, 160 and 200.

The representation of the Winkler foundation in the -ecntral
difference program was identical for the linear and non—linear
transient dynamic analysis while the geometrical ron-linear
contribution was not directly associated with the time damain model.
In section 7.2.4, it was shown that the linear numerical solution
was in agreement with the modal analysis while the static and damped
dynamic solutions ooincided with the published data on Sinha, Fig.
6.12, page 191, Therefore the numerical program was considered to
describe the behaviour of the plate/foundation more accurately than
the published results.

Since Nath's results were the only published information for
the dynamic non-linear deflection of a clamped or simple supported
immovable edge circular plate on a foundation no other oomparison
oould be made and for the reasons given above, it was considered the
finite difference numerical program would be an appropriate model on
which to base transducer behaviour studies, when considering a
dielectric with Winkler foundation characteristics.

Nath's paper was marred by typographical errors which made it
difficult to determine if the discrepancy was a function of

incorrect formulation or programming errors.
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7.3.4. PASTERNAK FOUNDATION

The dynamic response for a fixed edge circular plate on a
Pasternak foundation is shown in Fig. 7.39, page 253 and it can be
seen that it was at variance with the corresponding results obtained
by Nath [7-7], Fig. 7.40, page 253. For a fixed value of k* the
results from the finite difference program showed a decrease in
deflection with increasing value of G* The referenced results
exhibit a decrease in ocentral deflection for G* = 50, k* = 50 by
camparison with the Winkler foundation k* = 50 while for G* 100,
k* = 50 the central deflection increases in relation to G* =0, k* =
50.

]

Fig. 7.41 page 254 gives the influence of the Pasternak
foundation module on maximum central deflection as obtained for a
clamped circular plate by Nath. Since the maximum central
deflection was not constant for each cycle, i.e. Fig.. 7.27, page
239, the plot of static central deflection for k* = 50 and k* = 100
as a function of Pasternak foundation module for € = 20, v = 0.3 is
presented in Fig. 7.42, page 254.

For the simply supported immovable edge plate the central
deflection history is presented in Fig. 7.43, page 255 and it can
be seen that in this case an increasing value of G* results in an
increase in the stiffness of the system. While the form of the
response was similar to that derived by Nath, Fig. 7.44, page 255
the difference in the amplitudes of the first maximum for G* = 50
and G* = 100 were 9.2% and 10.2%. As for the fixed edge oondition
the plot of static central deflection for k¥ = 50 and k* = 100 as a
function of the Pasternak foundation modulii for € = 20, vV = 0.3 is

presented in Fig. 7.45, page 256.

The results from the central finite difference program were
taken as being an accurate representation of the non-linear
transient deflection of a rigidly damped plate for the Pasternak

foundation.
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The Pasternak foundation was based upon a shear interaction
being superimposed on the spring model of Winkler equation.The
spring elements, Fig. 7.46, page 258 were oonsidered effectively
connected to an isotropic layer of incompressible vertical elements
which can only deform in transverse  shear. The resultant
equilibrium condition [7.9 ] gave

atx,y) = kwixy) - G v wx,y)
where G was the shear modulus for the incompressible layer.

Therefore for polar co-ordinates the relationship was

qgx) = kw() -G V2 w(r)
for axisymmetric deformation.

Selvadurai pointed out the similarity with the
Filonenko-Borodich model, Fig. 7.47, page 258 where T = G which

would give in polar co-ordinates

g{r} = kw() -G V2 w(r)

Since the equivalent model consisted of an elastic wmembrane,
tensioned to T, on which the springs act, it can be visualised that
if the values of T increased, the stiffness of the plate/foundation

oombination would increase.

Alternatively, considering an element in the shear layer
acting in the Pasternak foundation it can be shown that the
equilibrium condition was [ 7.9]

Atk T*
rz rz

AT + T + p - k(W) = 0
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ow
where r;z = transverse shear stress = G —

p applied pressure

k(w) spring reaction

which gave the Pasternak foundation characteristic
2 ' .
GV w + p - kiw =0

and if the spring support was equated to =zero, the resultant
transverse shear would react against the applied loading. Therefore
as the wvalue of G increased the magnitude of r;'_;;, for a given value
of slope —g% or linear deflection, would increase proportionately
giving a greater reactive force to the plate. This implied that the
effect of increasing G would be to stiffen the plate/foundation
oombination as observed in the results from the numerical program.
The apparent reduction in stiffness with increasing magnitude of G*
for the rigidly clamped plate, after Nath [ 7.7 ], Fig. 7.40, page

253 and Fig. 7.41, page 254 contradicted this consideration.

Further, as for the Winkler foundation, the 1linear dynamic
control deflection of a rigidly clamped circular plate on a
Pasternak foundation obtained by numerical and modal analysis showed
agreement for G* = 50, 100 and k* = 50, Fig. 7.21, page 232 . The
same alogorithm was used to implement the Pasternak foundation, in
the programs for the linear and non-linear solution while the
numerical technique used to describe the geometric non-linearity was
common to all the non-linear programs. The geametric non-linearity
alogorithm gave identical results to Way and Sinha for static
non—-linear deflection, Fig. 6.7, page 184 and Fig. 6.12, page 191
while for damped dynamic deflection the results again oorresponded
to the published data, Fig. 7.31, page 242. As mentioned above the
Pasternak foundations alogorithm satisfied the dynamic linear
deflection.
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Also it would be anticipated that the change in response for
the non-linear deflection, with increasing value of G*, would be
similar in form to that for the linear deflection but with reduced
amplitude since the geametric non-linearity was a function of the
vertical deflection.

In the comparison between the program results for the simply
supported immovable edge plate and the fixed edge plate, Fig. 7.39,
page 253 and Fig. 7.43, page 253 again the form of response was
similar with variation of amplitude and frequency as was expected.
Since the simply supported edge condition of the first case had a
lower rigidity while the in—-plane boundary condition was identical,
the resultant deflection and frequency increased. From Nath's
results, the maximum central deflection was of the order 6ao = 1,7
for the rigidly clamped plate given G* = 100, k* = 50, € = 10, while
for the same conditions for the simply supported plate, the central
deflection was o, = 0.6.

In view of these results, the comments in the section 7.3.3.
and the previous discussion, the central finite difference program
was taken as describing the behaviour of a rigidly clamped plate/
foundation system, particularly for the Pasternak foundation, while
Nath's results were considered to be in error.

It would appear that the implementation of the rigidly
clamped boundary condition had a more significant effect on the
accuracy of Nath's results than the simply supported cases,
particularly in the presence of foundations.



261.

7.4 NON-LINEAR MODAL ANALYSIS

The result for central deflection from the non-linear modal
analysis can be seen in Fig. 7.48, page 262 along with that from
the numerical program for the fixed edge circular plate, subject to
a uniform constant load at p = 0.

It could be seen that the modal analysis result approximated
those from the central difference program for deflections in the
range 8¢y >0.7. However, for greater deflections the results of
modal analysis were significantly lower, the error in the maximum
deflection being -9.2%.

Therefore, the non-dimensional form of the Berger solution
for static non-linear deflection was considered because the method
of decoupling the equations governing wvertical and in-plane
deflection used the assumption that the first strain invariant was
constant, after Berger, and was equated to the difference between
the square of the roots A%y - A1 at a given point in time. Fig.
7.49, page 262 shows the relationship between v*2 and the central
deflection 605 and it can be seen that it was non-linear. Therefore
the requirement of linearity for superposition was not satisfied and
the modes could not be effectively decoupled so that the higher
order modes, 1in particular, were inaccurate in amplitude and
frequency.

Although the instantaneous influence of the non-linearity in

the values of Azz - Azl for the given mode was determined, the

assumed independence of modes introduced errors in the values of
Azz - A*, and hence, W as well as the effective elapsed time.

The relationship between )2, - A* andda (o) for the first order

1
mode is shown in Figure 7.49 while the resultant frequency as a
function of central deflection is compared with results from the
literature [4.3] in Fig. 7.50, page 263. The values of A?, - A%
for the first mode and Y*? did not coincide because of the time

dependence of A2 , = )\21. Also the time dependence of the radial
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boundary condition resulted in the frequency for the apparent
deflection being greater than that predicted by Huang[4.3].

Beyond T = 0.33 the divergence between results increased due

to the influence of the non-linearity on the calculation of the
effective elapsed time.

7.5 TRANSDUCER PERFORMANCE

Based upon section 3.5 page , for a capacitance
transducer the change in voltage for a constant charge condition was
given by a a Be

v = €5, Kt o(p)dA
where qc = charge

€& - permittivity of free space

€. = relative permittivity

Ay = area over which capacitance measured

a(p) = vertical delection of plate,

while if a piezcelectric crystal foundation was used, then
ignoring radial effects following York[3.21], to the first order of
accuracy the resultant change due to the deflection would be
proportiohal to the area integral.

Be

Therefore Fig 7.51 page 263, plots the termJ a(p)da for a

plate subject to an exponentially decaying load e= 15,9 = 0.5,X =
20, v= 0.3 for A_ equals the area of the plate while the integral
limit Ag was equal to an area of 0.64A. for a capacitance transducer
using a quard ring section 3.5 to ensure a uniform electrostatic

field. The response of the transducer was considered by also
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Be

plotting J a(p)dp/instantaneous pressure against time on the same
Fig 7.51.

Profiles of the vertical and radial deflection of the plate
are presented for times T = 0,12,0.16,0.19 and 0.235 in Figs
7.52,7.53 page 266 while the combined radial stress as well as the
radial bending and radial membrane stresses are contained in Figs
7,54—7.56 pages 267-8 for the times T = 0.12,0.16 and 0.235.
Similarly tangential stress profiles are shown in Figs 7.57-7.59
pages 268-9 for the same times.

The vertical deflection profiles for a plate/foundation

canbination,k*.= 50, under identical loading conditions as well as
Be (B

the plot of the central deflection, a(p)dA and o.(p)dn/
instantanecus pressure are contained in the Figs 7.60, 7.61 page
270, Finally for a Winkler foundation constant of k* = 100, results
for vertical deflection profiles and central deflection and response
are presented in Figs 7.62, 7.63 page 271.

It can be seen that the foundation mcdulii k* = 100 gave the
response most appropriate for the pressure transducer and therefore
a compromise between sensitivity and dynamic response based upon the
rigidity of the dielectric foundation was required.
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CHAPTER EIGHT

CONCLUSION AND RECOMMENDATIONS

Following a review of the literature on explosive forming it
was apparent that information on the pressure history in the region
of the blank/ transfer medium interface was required. This would be
necessary to understand the reloading phase and the blank/transfer
medium interaction as well as the initial loading phase due to the
incident shock wave. Therefore, following the consideration of a
‘capacitance or piezcelectric transducer the response of circular
plates and plate/foundation combinations were analysed for transient
loading conditions. For the fixed edge boundary ocondition the
linear and non-linear response were determined, as was the
non-linear response for the simply supported immovable edge boundary
condition.

The extension of the existing linear model analysis of a
plate subjected to transient loading [5.1], to include viscous
damping and a foundation gave an exact solution. The Winkler and
Pasternak foundation models were used while the selected boundary
condition was the fixed edge case.

The central difference program accurately described the
linear response of the plate and plate/foundation system. The
comparison with the linear modal results showsed that  the
representation of the vertical deflection, the Winkler and Pasternak
foundations and the spatial boundary conditions were correct. The
consideration of the time damain recurrence schemes resulted in the

use of a three point scheme based upon Newmark's work for v =%, B =
L

Ze
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The program results for the non-linear response of the fixed
edge and simply supported immovable edge plate campared favourably
with the existing published work of Alwar [7.1] for maximum
deflection while the difference in the form of the response was a
function of the quasi-linearisation associated with Alwar's
solution. For the Winkler model, the plate/foundation deflection
“derived from the numerical model, for both boundary conditions, was
similar in formm to that of Nath [7.7] although there was divergence
in the results particularly as the foundation modulus was increased.
The source of the error in Nath's results, for the ‘Winkler
foundation was due to both the quasi~ linearisation and the
representation of the spatial domain. The comparison of the static
mon—-linear deflection results with those of Sinha [6.3] for the
fixed edge condition established that the numerical modelling of the
geometric non-linearity was correct confirming the results obtained
for the plate [4.4].

For the Pasternak foundation, the calculated non-linear
response based on the fixed edge condition was totally divergent
from that of Nath. The results obtained by the program were
consistent with those fram the linear analysis in that increasing
values of the Pasternak modulus resulted in increased stiffness for
a fixed wvalue of Winkler modulus. The results of Nath exhibited a
decrease in stiffness for an increase in Pasternak modulus beyond a
specific value.

For the simply supported immovable edge boundary condition
the form of the numerical solution and Nath's results were in
agreement on the influence of the Pasternak modulus although a
difference in magnitude occurred.

The central difference program gave an accurate presentation
of the dynamic non-linear response of the plate and plate/foundation
systems in view of the comparison made for the linear dynamic and
non-linear static solution. The coamparisons were made with the
published non-linear static solutions and the linear dynamic data
from the modal analysis.
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Therefore the response of the transducer based upon the
program was calculated and it could be seen that the resultant
sensitivity and frequency response was a ocompromise of foundation
stiffness and plate thickness.

The only data available on the non-linear dynamic deflection
of the plate/foundation combination was limited to Nath's analysis
[7.7] and the results obtained from the central difference program
were at variance with Nath's for the reasons discussed in section
7.3.1 and 7.3.3. Therefore it is recommended that an experimental
study on plate and plate/foundation response to impulsive loading be
oconducted for the non-linear deflection regime. The only existing
experimental data in the literature is associated with the
determination of the frequency of plates [8.1] and plate/foundation
canbination [4.8] at large deflection. The plate experiment would
use a capacitance measurement system while the plate/foundation
system would be based upon the use of a dielectric foundation with
capacitance measurement or a piezo electric foundation to determine
the plate deflection.

Modification to the program to incorporate radial inertia and
radial viscous damping as well as allowing the simply supported
movable free edge would extend the range of the application beyond
that required for the development of the transducer.

Since the central difference method was mot easily modified
to describe the material non-linearities associated with plastic
deformation, the development of a finite element program to model
‘the plate behaviour should be considered. This then oould be
extended to calculate the deflection of the workpiece during
explosive free forming using the loading history determined by the
pressure transducer. Also for the transducer the dielectric model
oould be extended to enable the description of the piezoelectric
behaviour to incorporate the influence of radial deflection.
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Consideration should be given to correcting the work of Alwar
and Nath in conjunction with the discussion in section 7.3.1 and
7.3.3. This would take advantage of the Chebyshev polynomial
technique which enables the derivatives of deflection to be
determined directly with greater accuracy than numerical
differentiation, particularly at the spatial boundaries. However,
the criteria on convergence for this method would have to be based
upon the highest derivative oonsidered and hence sufficient
coefficients would need to be determined to ensure convergence on
that derivative. _

The stress function representation of Nath

¢ = r N
r

ad

r - N

where & = Airy stress function

would have the advantage of reducing the numerical differentiation
required in the determination of both the contribution of the
geometric non-linearity as well as the membrane stresses. While
this would decrease the number of iterations required to converge on
an accurate result, the stress function solution would not allow the
direct inclusion of radial inertia and radial damping.

The main recommendation, in conjunction with the previously
mentioned development, is that capacitance and piezoelectric
transducers based upon the existing program should be developed and
applied to the explosive free forming process to enable the loading
history to be determined.
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APPENDIX A

- DETERMINATTON OF "ORTHONORMAL 'EIGENFUNCTION

a (p) = GI‘n{JO(xlmp)I Mom) = T Ay T Aope) b

Application of the orthogonality conditions with respect

to the radius parameter 8 as a weight function gave

i

m#n

Jo Eﬁ(p)ah(p)dp

= 1 m=nh

Therefore

1
J 0 (G T, ) Ty () = I (AT ()} )2 dp = 1
o]
giving
1
2 2 2 '
G (IO ()\Zm) J p I ()\lmp)dp - 2JO(Ahn)IO(A2m)

o
1

1
‘ 2 2

J p I AP I (A p)dp + T (A]m) ( p I ()\Zmo)dp) = 1

e} 0

But the standard forms of the integrals 7.3 were

= 2
J 2l = B0 () + 33 ()
J o Iy ) I (A p)dp
. A2 gy g T o) + Ay T Gg) + 13 0 ))
1
2 _ 2 2
{ p o0y p)dp = BTS00 = T30, )

o
but from the frequency equation

hn l(A )IO(AZm) + AZan(Alm)I (Azm) = 0



Therefore substitution in the original equation gives

1
J o Em(o)&_n(o)dp
(0]

2 2 2 2 2

Gm % JO()\]m) + Jl()\]m) X IO()\Zm) + %JO()\]m)x
2 | 2
ToGom) = Ip0gg)

2

2
2 2 2 1 M) L 1%
= G I (DI ()1 +% 2 -5 2
m “o'lm’ "o '"2m JO(A]_m) IO(AZm)
2 2
‘ JT (A, ) I7(A,)
Tetting Em=1+1~5—§—3“—-%ézm
JO()\]m) IO(AZm)

and applying the orthogonality condition

22 2
1 = GmJO (A]m) I (AZm) Em
l.e.
1
S0 T VB I () ()
m o' lm o' Z2m

303.
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APPENDIX B

" 'DETERMINATTON OF 'CONSTANTS FOR

‘GENERALISED FOURIER SERIES EXPANSION

- - The. constants were given by [5.3]
N S
m 1 pdm(p)dp

2
pam(p)dp o
o ,

and since o_(B) was orthonormal with respect to the weight function 8
the constants were obtained by the equation

1 ‘
a = pum(o)dp

m
(o]

Therefore substituting for

a (p) = 1 ( -
m 75 o M) o (o)
m
gave
m o /Em Jo(x]m) Io(>‘2m)

Consider the term

1
J p JO(A]mo)dp
(@]

Using the relationship 5.2

d v _
E{Z Jv (z)} = 2z J (z)

it can be shown that
J’a a” J, (ka)

Z Jo(kz)dz =
o

1 .
giving [OD JO(K]_mO)dD = “—X*-—-—“



Next considering the term

1
J B IO(Asz)dB
o

The relationship

d v Y
dz £2 Iv (z)} = z v—1 (z)
gave 9
a a’ I, (ka)
J z Io(kz)dz i
o) A
giving
1 I, ()
1'"2m
BI (A\,R)dB = ———
Jo o 2m AZm

Therefore substitution in the original equation gave the constant

L oo L (Jl(x]m) ) Il(AZm)‘ )
m fEm Ao O ) Mo h?m)

for Ahn # A2m

while for Alnlz XZm. it has been shown that Em = 1 and the constant
reverts to

L - L(Jl()\]m) IlO‘Zm)

m A T (A
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Mode
1

10
13
16
19
22
25
28
31

APPENDIX C

ROOTS TO FREQUENCY EQUATION

Jb(X)Il(k) + Jl(A)IQ(X) =0

Value

3.
12.
21.
3l.
40.
50.
59.
69.

8
87
97

1962
5771
9971
4200
8438

6924
1169
.5414
. 9660

.3907

2680,

Mode
2

11

17
20
23
26
29

Value

6.3064
15.7164
25.1379
34.5612
43.9852
53.4095

62.8339 -

72.2584
81.6830
91.1076

Mode
3

12
15
18
21
24
27
30

306.

Value

9.4395
18.8565
28.2789
37.7025
47.1266
56.5509
65.9754
75.3999
84.8245
94.2491



. Mode

W © 3 O o W~

10
11
12
13
14
15

AT APT(G) 4+ A0 ()T, () =0

A

x‘A

, = (& + xi)
G = 50
2.7532 7.
6.0990 9.
9.3268 11.
12.5080 14.
15.6701 17.
18.8236 20.
21.9725 23.
25.1189 26.
- 28.2637 29.
31.4077 32.
34.5510 35.
37.6939 38.
40.8365 41.
43.9788 44.
47.1210 47.

APPENDIX D
ROOTS TO FREQUENCY EQUATION

L

2
5882

3380
7042
3683
1917
1079
0822
0951
1348
1938
2671
3514
4441
5437
6486

Mode
16
17
18
19
20°
21
22
23
24

25

26
27
28
29
30

"3l

Ay

50.2631 .

53.4051
56.5470
59.6889
62.8307
65.9725
69.1143
72.2560
75.3977
78.5394
81.6811
84.8228
87.9644
91.1061
94.2477

97.3894

307.

Y
50.7581
53.8712
56.9874°
60.1063
63.2273
66.3504
69.4750
72.6012

75.7286

78.8571
81.9866
85.1170
88.2482
91.3801
94;5126
97.6457



\DOS\IO\W&UJNI—'E
1]

H o 2 R e e
o WO

. APPENDIX E
ROOTS TO FREQUENCY BEQUATION

MILAPIOG) + AT ()T ()

A

G

, = . G+ Ai)%

= 100

.Al

2.6562 _10.

5.9952 11.

9.2504 13.
12.4539 . 15.
15.6310 18.
18.7944 21.
21.9500 24.
25.1011 27.
28.2494 29,
31.3959 32.
34.5411 35.
37.6855 38.
40.8293 42
43.9726 45
47.1156 48
50.2583 51

A

3468
6594
6224

5561
2892
1206
0197
9671
9500
9595
9897

.0953

.0953
.1651
.2435

9718 .

Mode

17

18
15
20
21

22

23
24
25
26
27
28

29

30

31

=0

M

53.4008
56.5432
59,6855
62.8276
65.9697
69.1117
72.2536
75.3955
78.5374
81.6792

84.8210

87.9628

91.1046

94.2463

97.3880

54.
57.
60.
63.
66.
.8314

69

72.
76.
79.
82.
85.
88.
91.
94
97.

308.

3291
4207
5174
6185
7233

9424
0558
1715
2891
4085
5294
6518

7754

9001



APPENDIX F

" 'RADIAL DEFLECTION

309.

For a fixed point in time, once radial inertia and radial

damping were ignored, the radial deflection, after Berger [5.5],

could be represented by,

dg (p)
(dp )T

Therefore for the mth mode

o = amAm(r)Em(p)

o 2
yeledy o ele

T

2
'}\Zm‘-'-*)\

giving
2 2
dlpz (p)) p (Ao = ;\lm) 0 (du.m 2
dp 1262 2 ‘dp
Integrating once gave
2,2 2
pm (AL = A7) do
pr (o) = 2m 5 1m Sz dp + A
248
Consider the term
( da_(p) 2 d(o_(p))
p, m - 2,2 P m
JZ( an ) dp a, Am(r) 5 a ) dp
m VEm J (A) I (A, )
dam(p) 1 1 dJ (Almp) 1 d(Io(?\
dp B /Em(Jo(}‘hn) . dp _Io(}‘Zm)

and from the recurrence relationships

dJ ()\lmp) _ -J (A]mp)
dp }\lm

d IO(AZmp) _ Il(AZmp)
dp Aom
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therefore
dam(p) -1 ‘(Jlu].tn')' . I (AZmp) \
- . 4
dp VEI; M JO(A]_m) ‘ AZmIO(AZm)
so the term
E_(d(am(p)))zd
2 dp P
_ 1 [P_(Jl(xlmp) . I, 00 0) )2 %
E, J 2 xthQ(A]m) Moo PomP?
72 (0. p) 27, (0, 0)T, (A
ﬁLJp_(l 1m® N 1) T3 o)
E 2.2 2 J (A )I (A, )
m Alm JO(Alm) lm 2m o o'"2m
2
Il(>\2mp)
+ 5 5 ) dp
Aom IO(AZmp)
Consider the first term
dJ, (A,_p)
2 _ 2 1 1" Im
Jle(Almp)dp = Xp {2 ( b )
Mm

+ (1 ”““Z)Jl( lmp)}
lmp

using a standard integral [5.2] on regrouping gave

aJ, (x,_p)
2 _ 2,.2 1 1'"1Im
[DJl(A]mp)dp = % {Jl(klmp) + (A &
Im
aJ, (A, _p)
1 1 1Y Im 1
—— J, (A;_p)) x ( + J(A p)}
A]mp 1" 1m ->‘lm dp >‘]m 1m
Fram the recurrence relationships
i e LD SR 3, (0 p)
Mm dp AP 1\ 1P 2 1mP
dJ, (x,_p) .
1 1" Im 1
+ J. (A = J (A
A 90 AP 1 AP o M)
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giving

Jin(X]mp)dp = .%pszi(kmp) I (qpP) T (A ) ¥

Consider the second term
s
Aln * Ao

from the standard integral form.

Similarly the third term gave

di. (x, p) 2
2 : 1 1 2m 2
= Lky{-
Jle(AZmp)dp sp { Az( - ) +Il(A2mp)
' 2m
1 2
vz 7 IO
- Ao
using the standard integral form [5.2]
dar. (x, p)
2 1 1 1" 2m 1
= Lp{I () +(=—=— I, (A - ) x (== I, (A
1 9Ty (o)
+ 3 =n )}
2m
From the recurrence relationships
R i i N
Azmp 1" 2m A2m dp 2" 2m
a1, (A, _p)
1 1 1 2m
—— I,(A, p) + = +I 000)
)\Zmp 1Y 2m AZm dp 2m
giving

Jpli(AZmp)dp = %pz{Ii(XZmQ) = I, p) Iz-(AZmp)}
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Therefore substituting into the original equation and dividing
through by p the description of the radial deflection associated
with the mth mode at time 1t was given by

(Az -2 \2
o) = p — L %{‘El‘“zhj“‘" [Ji(x]mp) - Jo(xmpmz(xmp)]
246 mJ_ (A )
o''Im
1 Mmom
T2 42 T0 )I x )D T2 PP Iy (o) = ATy Ay)
Mm T Aom
‘ p 1- xim ' 2 2 2
ple IZ(mep)] + T Ern——l-z-a—T ,:Il(kzmp) - IO(mep)IZ(AZmp) }am Am(T) jl}
o 2m

since the value of r (o) = 0 at the centre of the plate and the
resultant value for the constant of integration was A = 0.
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APPENDIX G

" DERIVATTVES 'OF FREQUENCY. 'EQUATION

Given the equation for function F

1
By Ao = MmI1 (A]m)IO(Azm) + Ao (Alm)IZ(A )
the partial derivative with respect to the root 1 Was
°F1 M o) _ I, ()T (A ) + A 1% T ()
S 110 am’ T T oA o'"2m
BJ (A)
1m
+ A —-—-—-—.——mI‘(A )
2m 8 1m 1" 2m
But from the recurrence relationships
3T, (A, )
1'"1m
——— = 5T (A ) = T, (X))
3>‘lm o'"1m 2" 1m
aJ () . o)
BALn 1" 1m
giving
aFl(Alm,AZm) .
pv = I, ()T (A om! T Mo Mim To Mo

o Pad To Qo) = AgpTy Ay Ty ()

while the partial derivative with respect to the root Ao Was given by

Fl(xglkzln) = I ) aIa:A‘m‘) 3o () T1. (o)
%om %om ©

+ A J (K ) Efkiiéﬂl

-72m "o lm 3

2m
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But from the recurrence relationships

3T, (A, )
1'om’
_—45-)‘.;;\—* = ’%(Io()‘Zm) + IZ-(AZm))
3T (A, )
___%LEIE_': I, (A.)
EZe 1V 2m
giving
3F, (A,_ /2, )
1 m 2w’ |
1P Ty Co) T ) Ty ()
5 T0 ) To Po) + 220075 (Aqp) To (o)
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APPENDIX H

~ DERIVATTVE OF RADIAL BOUNDARY 'CONDITION EQUATTON

Given the equation for function F, was

>\2 - >\2 >\2
F2(>‘hn7>\21n) - __ZIH__;_Z_]_IH__El*am (1) {% 2 = (Ji(xlm) —Jo( ]_rn)J (x )
245 ™ (A, )
o im
>\2
2m
+%-—————-———(I (>\ ) - I (A, )I (A, ))
Iz()\ ) o "2m’' T2 2m
A A
Im "2m 1
+ ATy A )T ()
2 2 J (A )I (A ) 1'"2m
}‘lm+2m lm
Aom1 Ay Tp (o) )3
)\2
. _ lm 2 _
if Xm = %~——=——-——J2(>‘ ) (Jl(xlm) JO(Alm)Jz(Alm))
o "Im
7\2
_ 2m 2 _
Ym = %“I—é"z“;m“—)" (Il()\zm) IO()‘Zm)IZ(AZm))
o' Z2m
A A
Im "2m 1
7 = (A Ty ) Ty Op)
m VA?_er}‘gm JO(A]_m)Io(Azm) lm2 1Y 2m
+ AZmJl(Ahn)Iz(AZm))
A2 - )‘2
_ 2m - "Im 1 2 2
F2(>‘lm’>‘2m) - _-_;4:2__ E_ amAm(T)(xm+Ym+Zm)

The partial derivative with respect to the root Ay Was

OF, (Ay s o) A OF
]81;\1 - - ——Jin*f-*%az AZ(T) (Xm+ Tt Zm)'éTmm
“Mm 126° g T M m
Ba A AA (1)
1 1 2 m
" E A, A(T)(X Yo +z) - =2 A ()X +Y +Z)
m aA]m Em m m m m m ’aA]m
X Y YA

- 2 m
El”a‘m Ai(” (axm + axm )
m 1m 1m 1m
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while the partial derivative with respect to the root }‘Zm was

AR (A, A, ) A . . .. 3E
: . -2
: g\\ = - 2[; t 12 am Am(T) (xm t Ym t Zm) axm
S 2m 1268 Em - 72m
: ~2a A (1)
1 2 m 1 2 , m
- = 2.a_ A (1) (X +YV+Z)-—-———-‘—-—28.A(T)(’X +Y +2 )
Em m m m m m vaAZm Em mm m m m »aAZm
oX oY 02
1 2 .2 m
- —a~ A (1) ( + + )
Em m m N‘Zm a>‘2m axzm

*Considering individual terms in the equations

2 2
J7 (A ) I7(A,)
E_ = 1+»2-———~—§ Im”  _ 1/2-—-—--; 2m
Jo”lrn) Io(AZIn)
2
3E ) Jl(x]m) Jl(A]m) ) Jl(Alm) J (A]m)
A 2 3A 3 MY
Im JO(A]_m) Im JO(A]m) Im
3, (A, )
But 1'"1Im
aJO(A]m) o)
EP 1" 1m
Therefore
3
3 ;Jl()‘]m) ;Jl(A]m)Iz(A]m) Jl(A]m)
N 50w T 2o +J3(A )
o' Im o Im

*Footnote: While the derivative ocould be rearranged into alternative
forms with possibly less terms, using recurrence relationships,

they were programmed as shown in the interest of time.
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while
2
, BEm _ Il‘()\Zm),VIl‘()\Zm) +“11‘(A2m)‘.10(x2m)
ED) 2, A 3 EJN
" 2m IO(AZm) ~2m Io(xzm) Z%om

From recurrence relationships [5.2]

3L, (A, )
1'"2m
— e = B(I_(A, ) + I (A, ))
No o' 2m 2" 2m
aIO(AZm) ol
Ao 1 2m
3
oE _ Il(AZm) +%Il(A2m)12(x,2m) . Il(AZm)
A T (M) 2 3
2m o'2m IO()\Zm) IO()\Zm)
W Jl()\lm) ) Il(AZm) )
m Mm Jo(xlm) Aom Lo (AZm)
sa_ . 1 aJl(x]m) i Jl()\lm) mJl,(x]m) BJO(A]_m)
A T J () A 2 2 A
1m Im "o 1m 1m M Jo(xm) x]mJo(x]m) 1m
JTo (A ) J, (A, ) Jz()\ )
_(;_1__%1 2\ 1m lllm+lllm)
TV AL A J (A, ) 2 J (A, ) A 2
Im Im “o'"1lm x]m o'"1m lmJO()\lm)
CEW L 1 all(xm) »+ 11(x2m) N Il()\zm) BIO()\Zm)
A - A I (A-) A 2 2 I
2m 2m o '"2m 2m Ao IO()\zm) Xom IO()\Zm) 2m
2
O U T o s S U -+
G 20 I (A ) 2 ‘ 2
2m 0" 2m Ao IO(AZm) Aom Io()\zm)
2
g = ox M 20 g0 5 a0
m “J2 1" 1m o' "lm’' 72 1m
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3K M 5 x?m 5
“3-}\; = %3‘2‘6\"—)" T g = I AT, (0 ))) - % m(‘]l(}‘hn)
o' lm o' '"1lm
. ) 2
R N O R S ad, (A)
: - Tlm 1'"1m
-T L )T ) =2 oy T o7 (h, ) ——
o' Mm’"2 " 1m N Py o T
o' 1lm
3T (A, ) 3. (As_)
- I s () -3 (h, ) —= T
}‘lrn 2" 1m o' 1lm , aA]m
But
ad, (x;_) ' -
2'Mm 1
(2T, (A7) + A T (A, )
T M 2" m Im"1 ' *1m
2% 5 ‘A]m‘ xfm Iy ()
-aﬁx—]_r—; = (J1(>‘]m) “Jo(xlm)JZ(Alm))(% JZ(}\ )+%J3()\ )
o '"1m o'"1m
2
B
+% (3, )T ) = 3y ) T, () = Ty (T, ()
J7(x)
o lm
23, 5
" T, 0Ty () * 55 )T ) = B O) = 30T )
Mm *in SIS Aim Iy M Jo ()
( + 3 )+ 5 = 3 (A9, 0 )
200 IO 32y Im
> 8 ;
- = 3
P
\2
_ 2m 2 -
Ym = ;i??;—-)— (Ilo\Zm) IO(AZH)IZ(}\Zm))‘
o' Zm
oY
. 0
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2
Y A AL 3T (AL)
m - 2m < 2m o 2m 2
- = (% -k (IS (A, ) = I (A, )T (A, ))
E) 2 3 3N 1'"2m 0 "2m’ 72" 2m
2 () JO(AZm) 2m
2 ;
A AL (A, ) AT (A, ) I ()
£ (20 0y) 2 - A )+ T () a2
I°( ) I om 9 om ° 3om
o Z2m
But
9T (A )
2\ 2m 1
— = = (=21 (A~ ) + A I (A1)
3N o 2'""2m 2m1 ' 2m
Y A >\2 I (A' )
m 2n ,"2m1'"om 2 _
—a-i—z—r—l- = (X Iz(}\ : 5 13“ ))(Jl(AZm) IO(AZm)Iz(Azm))
o'"2m o'"Z2m
2
Aom
t % — (Il(xzm)Io(AZm) + Il(AZm)IZ(AZm) - Il(AZm)IZ(AZm)
IT(A.)
o'"Zm
v T ()T, 0y
o 2m
Ao A
1m "“2m 1
7 = (A T (A VI, (A)
m *in“”gm JO(A]_m)IO(AZm) Im 2 ' 1m’ 71 Y 2m
+ "szl“hn)Iz(}‘Zm))
cHN _ Aoy 1 ) Mm Mom 22
M m A]2m+x§m Io P! To Pom! (Ainfxgn)z IoPm! T (o)
As A 3T _(A;)
_ [lm "2m 1 o M,y x 3 ()T, (A, )
Vol ooz o,y ot o 2 lrem
- Tlm 2m o 1lm "o "Zm
M Ao 1
T AT M) Tp o)) 3 7 T T o T (A Ty (o)
A + A o' "1lm' o '"Z2m
- Mm - “2m
A T, (A, VI (A, ) BT, (A )
m Y2'%1m’ 71" 2m 1" 1m
+ 3\ * A om T Jo (o))

1m Im
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?
aZm _ (-A2m ( ) ( 'lem Aom ( )1
A 2 .2 I x ? 2.2 J (T (A, )
Im >‘1m+>‘2m im ~(>‘1m + >‘2m) o' 1m’ "o 2m
Ay A J. ()
<7 1Im T 2m 1Y 1Im
* 252 26 )1 () YO qpdo T o)+ 53 (1 (0g,))
Im "2m “o*"1m’ "o 2m
Aa A
Im “2m
+ (Do, VI (A, ) +3.(x, ) (-20,(x; )
>\2 +>\2 JO(Alm)IO(AZm) 2V Im’ "1V 2m 1V 2m 2V 1m
Im “2m
* o i) = 01 Tp000)) = T ST )
At oA 0" 1m0 2m
- "1m 2m
Zkim Mo J1 (A
Oan = 2,2 * 35,7 * M PanC 10?1 Ban) = 35(0 )
o' 1m
Im “2m
A A
2m 2m
L)+ 5= ()3 (g) = 7 = 3, () ()
2z A 2%, Al
m = (( 5 1m2 _ %m gm 2) ( ]). ( )
n AEVRINE
2m Alm + A2m (A1m+A2m) o'"Im’ 0" 2m
Ay A Al (A )
Im "2m 1
VIR T Az ) Ol g 1 O+ 5091 ()
Im “2m o'"1Im’ 0" 2m m
A al. (r, )
1m 2m 1 1Y 2m
L)) + = 2 30 T () Mo ) =5+ 31 () 1 ()
>‘1 0'"2m 2m
m 2
. 1) 12( 2m)) _ _1m 2m 1 (( m _ , 2
2m"1% 1m 2m §m+ gm ‘Jo( lm)Jo( Zm) 2m Im  2m
I.(A, ) A
| ALl _1m
) X Ot Ty Ogn) + apnd () T (000)) + (57 5 (4g)

o' 2m

(I () + 100p)) + 3100035 Gn) + 31 (000001 (o) = 23,(050)))



A

_ lim "z L (¢ Ay as o LA
2 .2 J )I(A).A Mudon T T )
A]mﬂ2m o "1lm’ o 2m o 2m
M
x (A J (A )Il(AZm) + A (Alm)IZ(AZm + TJZ-(A]IH)IO()\Zm)
. Mm
—J ()\]m)Iz )x ()\lm)Il(Azm) - l( ]m)I ()\Zm))
Loading Case Step Ioad
For the step loading case where
e(r) = e(H(1))
Underdamped Condition X < 1
Equation of coefficient
a -y W T 2% w =X __T
A() = —~(lL-e ™ os o't - Xm,mexmmsinfz'r)
w 9] m
m m
X 3A (1)
Since Xm = 3o the partial differential form me where Am
or A, Was given by
m
SAm(T) € 55 25:am Bmm X" ' ?.xmwm
= e —) (1 = e cos Q't - ;
M > w3 <Mm Q
m m m
~X_ 8 T -y w T 2% _w
exmmsin Q't) +—2—m ' (tsin Q'r+-—x—r:1-2ﬂsin§z"r
m m Q m
“m
2X u a9
- Xm'm Tcos Q°'T1) B_AE
9] m -~ m
m
where 3,00 T, Oy
A = J]ﬁ(lx ) I (x y
Mmlot A2m

I, )

321.



giving the partial derivative with respect to A, of

Im
day 1 A0y _HJl'(‘A ) ,.Jl‘(km)._’ABJOA(Am)
aA,_ A Jd (x, ) 23X \2 2 ER)
Im - "1lm o "1lm 1m M 2 (Alm) ’Almqo(khn) Im
:m B\ Jl(x y Yol =I5y "Jéulm) e Jz(A
Im “Mm o' *1m M Ty I ISy )
2
_ 11 J, (A1) I, (A ) + 1 l(X]m)
2\ 2\ J ) 2 72
1m 1m 1m AlmJ () oM )
while the partial derivative with respect to Aom
bay _ 1 9T, (A, ) L1 I, (A ).+, 1 L0 3T 00)
ar, Ay, I (A, ) 93X 22 A 2 E2)
2m 2m o " 2m 2m Mom To Pom) 2m I (x, )
1 ] L0, 1 L0,
- e T (AL )T (X)) + I,(0,)) + +
ZAZm o "2m’ ‘"o '"2m 2 7 2m Agm IO(AZm) om IZ(A )
O
I.(\, ) I.(x, ) IZ(A )
o1 172w 1 1t 1 71om
T2 23, T (A, ) 2 I 0,0 A, 2
2m Im "0 '"2m Ao © 2m o()‘Zm)
where
2 2 2
wm = Alm AZm + K
giving the partial derivatiﬁe with respect to Mn of
2
amm _ Ahn AZn
)
~"1m
2
me_ _ Alm AZn
axhn mm
and the partial derivative with respect to Ao of
2
me . Ahn AZn
A T

2m wm

322.
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when

giving the partial derivative with respect to i, of

Im
3mﬂm amm 2
20— = 2uw = 2 A
m axlm m Mlm Im " 2Zm
3 A )\2
P _ M tom
a}\lm Qm
and hence the partial derivative with respect to }‘Zm of
2
d Qm _ Alm AZm
A 2

5

m

It should be noted that the undamped condition Xp = 0 was the

limiting cause for this condition, giving

24
E m .
——waAm(T) = | a}\m - ZEam a(ﬂm) (1 —cos w 1°) + —Eam T sin w T —awm
aA 2 3 3 m 2 m 9A
m w w m w m
m m m

Critically Damped Condition Xy = 1

Equations of coefficients

ea ~w T —w T
Am("[') = (1 -e - Te )
w
m
3 (1)
The partial differential form 3 }\m where }‘m = A]m or >‘2m was given
by 2a '
e M
A (1) 3 2ea dw -ty T - T
m _ m m m m
= 5" 3 3 ) (1 - e - T e )
m w w - >\ITl
m m
Zam W T ,Bmﬁ1
PogletTle T o

P am 9 Lum
where ==, 37
m m

have been previously defined.
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Overdamped Condition Xn > 1

Equations of coefficients.

€a - W T 2y w =X _W_T
A (1) ____m(l_exmm coshQ'r—xT?mexmm sinh Q 1)
m m2 m Q m
m m
« _ A (T)
Since Xg = T the partial differential form where
W 'Bkm
Am = ‘Alnlor Aop Was given by
2a
e —1 9
A (1) ax €a-  ow -X_ W T ’ 2y w
. s B . e Y6 P PN . 1. B I8
m w w S m Q
m m m
t—:am X 2x;inmm 2Xran ‘Bﬂm
- ——e (sinh @'t = —=— sinhQ'Tt + — coshf't) ———
2 m 2 m A
w 2 9] m m
m m m
where
2 2,2
Qm = u (xm 1)
2 2
= L =
4 Xm T “m

giving the partial derivative with respect to A, of

1
[]
¢ 0.8 94
m m m 2
20 e = =20 = =2 A
m Bklm m Mlm Im “2m
! 2
BQm _ >‘lm >‘2m
Mm q
m

and hence the partial derivative with respect to A, of

Zm
2
BSZm L >‘lm )‘Zm
- i
»3)\2m Q
m
034 me
and TRAET) have been previously defined.
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APPENDIX I

DEFERRED CORRECTTION METHOD

Consider the equation

Ko = L + El + D (1)
vhere K = Matrix of coefficients
? = Ioad vector
F, = Vector of equivalent pseudo-loads, containing
the non-linear terms
D = Vector of errors
= cea
c = Matrix for differences greater than the fourth

order term.
Initially the solution was obtained for:
o, = K1(L+F,) (2)
~a - = = "
was obtained by ignoring terms of greater than the fourth order.
The error for ignoring these terms was taken as e and gave
a = a_ + e (3)

Substitution in the original equation

Kle, + & =L + F + c(o, +¢e) | (4)

Therefore ignoring the higher order terms of the error, gave
Ke = Ccu
== = *a

allowing the value of deflection to be corrected:

a = a + K ca (5)

Therefore iterations were carried out until |e| was within the

accepted convergence criteria.
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APPENDIX J

CENTRAL FINITE DIFFERENCES

4
Since the derivative E—%—was necessarily represented by a
op
fourth order difference term, the representation of all other
derivatives include up to a third or fourth order difference

term depending on whether they were on odd or even derivative.

Using standard difference operator symbols 7.4

the derivatives were obtained as following.

) 1 .3 5
ps(sg)_ = (pé - Eud + g%-uﬁ ....)ai
i
— 1
= Cslag g —og) = glayy = 2050 % 205
1l 5
- ay 2)) + (§5 uwé™ + ... )ai
2 2% 2 1 4. 1 6
DS(W)]- = (6 “’-1—2'(5 +—9—0—(5 - e....)0.1
= (0s.q =~ 2a, + -1 - ba, . + 6
TV T A% T %51 T 1242 i1 T 09
1 2
=~4u1_l+ ai_z)) + (9—001 cea)0
3
3
p3(3—§ = (ué —!5u65+,. 2oy
op~ i
= 35(OLJ.+2 - 20Li+l + 2“1—1 OL1—2)
5
(- %ué +....)a.i
4(34(1 = (64—£66 ) = | = 4o + 6o
psl—7). = g% oy = (40 i+1 T 0%y
op 1
1 .6
- 4ai*-l + ai_z) + (—~é6 ...)ai
where § = Central difference operator
y = Averaging operator
p. = Step size
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APPENDIX K

STABILITY CRITERTA

A condition for a bounded  oscillatory solution was the
roots of the characteristic equation*

s L -9/ @2-g’ -4+
1,2 )

were complex.

Substituting for

= *
q; 2xi6
*2
Pi = 6
where 6% = Atw.

1

into the definitions of g and % gave

*
2+ 2x,0%(2y = 1) + (28 - % - Y)8 2
(2-9) = 5
' 1+ 2XiY9* + A6
%2
L+ 2¢0%(Gy = 1) + (5~ y + B)O
(L+2g) =

*2
1+ 2Xiye* + RO

Therefore the condition for complex roots
2
4L +2) > (2-q)

gave the inequality

*2 *2
4(1 + ZXiS*(Y—l) + (5-y+B)O 7)) (1 + in y0* + g8 7)
*2
> (2 + 2Xi9*(2Y'1) + 8 “(28~%=v))
which reduced to:

. 2 . *2 2
(l—xi)+92xi(2Y-l)+9 (48 - (y+%7) > 0

* Footnote: Symbols defined in Chapter 6.



	Acknowledgements
	Abstract
	Contents
	Chapter One
	1.1 High energy rate forming
	1.2 Explosive forming
	1.3 Scope of project

	Chapter Two
	2.1 Introduction
	2.2 General
	2.3 Underwater explosions
	2.4 Deformation of plate subjected to impulsive
loading
	2.5 Energy transfer

	Chapter Three
	3.1 Introduction
	3.2 Deformation measurement
	3.3 Pressure measurement techniques
	3.4 Calibration
	3.5 Pressure transducer

	Chapter Four
	4.1 Introduction
	4.2 Assumptions
	4.3 Equations governing pressure transducer
behaviour
	4.4 Boundary conditions
	4.5 Discussion of analysis

	Chapter Five
	5.1 Introduction
	5.2 Linear analysis
	5.3 Non-linear analysis

	Chapter Six
	6.1 Introduction
	6.2 Non-linear numerical equations

	Chapter Seven
	7.1 Introduction
	7.2 Linear modal analysis
	7.3 Non-linear dynamic results
	7.4 Non-linear modal analysis
	7.5 Transducer performance

	Chapter Eight
	Conclusions and Recommendations

	References
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	Appendix K


