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Abstract 

The resolution and the quality of an imaged object are limited by four contributing fac­

tors. Firstly, the primary resolution limit of a system is imposed by the aperture of an 

instrument due to the effects of diffraction. Secondly, the finite sampling frequency, the 

finite measurement time and the mechanical limitations of the equipment also affect the 

resolution of the images captured. Thirdly, the images are corrupted by noise, a process 

inherent to all imaging systems. Finally, a turbulent imaging medium introduces random 

degradations to the signals before they are measured. In astronomical imaging, it is the 

atmosphere which distorts the wavefronts of the objects, severely limiting the resolution of 

the images captured by ground-based telescopes. These four factors affect all real imaging 

systems to varying degrees. 

All the limitations imposed on an imaging system result in the need to deduce or reconstruct 

the underlying object distribution from the distorted measured data. This class of problems 

is called inverse problems. The key to the success of solving an inverse problem is the correct 

modelling of the physical processes which give rise to the corresponding forward problem. 

However, the physical processes have an infinite amount of information, but only a finite 

number of parameters can be used in the model. Information loss is therefore inevitable. 

As a result, the solution to many inverse problems requires additional information or prior 

knowledge. The application of prior information to inverse problems is a recurrent theme 

throughout this thesis. 

An inverse problem that has been an active research area for many years is interpolation, 

and there exist numerous techniques for solving this problem. However, many of these 

techniques neither account for the sampling process of the instrument nor include prior 

information in the reconstruction. These factors are taken into account in the proposed 

optimal Bayesian interpolator. The process of interpolation is also examined from the point 

of view of superresolution, as these processes can be viewed as being complementary. 



Since the principal effect of atmospheric turbulence on an incoming wavefront is a phase 

distortion, most of the inverse problem techniques devised for this seek to either estimate 

or compensate for this phase component. These techniques are classified into computer 

post-processing methods, adaptive optics (AO) and hybrid techniques. 

Blind deconvolution is a post-processing technique which uses the speckle images to estimate 

both the object distribution and the point spread function (PSF), the latter of which is 

directly related to the phase. The most successful approaches are based on characterising 

the PSF as the aberrations over the aperture. Since the PSF is also dependent on the 

atmosphere, it is possible to constrain the solution using the statistics of the atmosphere. 

An investigation shows the feasibility of this approach. Bispectrum is also a post-processing 

method which reconstructs the spectrum of the object. The key component for phase 

preservation is the property of phase closure, and its application as prior information for 

blind deconvolution is examined. 

Blind deconvolution techniques utilise only information in the image channel to estimate 

the phase which is difficult. An alternative method for phase estimation is from a Shack­

Hartmann (SH) wavefront sensing channel. However, since phase information is present in 

both the wavefront sensing and the image channels simultaneously, both of these approaches 

suffer from the problem that phase information from only one channel is used. An improved 

estimate of the phase is achieved by a combination of these methods, ensuring that the 

phase estimation is made jointly from the data in both the image and the wavefront sensing 

measurements. This formulation, posed as a blind deconvolution framework, is investigated 

in this thesis. An additional advantage of this approach is that since speckle images are 

imaged in a narrowband, while wavefront sensing images are captured by a charge-coupled 

device (CeD) camera at all wavelengths, the splitting of the light does not compromise the 

light level for either channel. This provides a further incentive for using simultaneous data 

sets. 

The effectiveness of using Shack-Hartmann wavefront sensing data for phase estimation 

relies on the accuracy of locating the data spots. The commonly used method which cal­

culates the centre of gravity of the image is in fact prone to noise and is suboptimaL An 

improved method for spot location based on blind deconvolution is demonstrated. 

Ground-based adaptive optics (AO) technologies aim to correct for atmospheric turbulence 

in real time. Although much success has been achieved, the space- and time-varying nature 
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of the atmosphere renders the accurate measurement of atmospheric properties difficult. It 

is therefore usual to perform additional post-processing on the AO data. As a result, some 

of the techniques developed in this thesis are applicable to adaptive optics. 

One of the methods which utilise elements of both adaptive optics and post-processing is the 

hybrid technique of deconvolution from wavefront sensing (DWFS). Here, both the speckle 

images and the SH wavefront sensing data are used. The original proposal of DWFS is simple 

to implement but suffers from the problem where the magnitUde of the object spectrum 

cannot be reconstructed accurately. The solution proposed for overcoming this is to use an 

additional set of reference star measurements. This however does not completely remove 

the original problem; in addition it introduces other difficulties associated with reference 

star measurements such as anisoplanatism and reduction of valuable observing time. In this 

thesis a parameterised solution is examined which removes the need for a reference star, 

as well as offering a potential to overcome the problem of estimating the magnitude of the 

object. 
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Preface 

The research presented in this thesis is concerned with inverse problems in image processing, 

with a particular focus on astronomical imaging, This topic has been an active area of 

research for many years, and the aim is to obtain images with diffraction-limited (or even 

higher) resolution, 

My interest in image processing emanated from my honours year project with Dr, Richard 

Lane. With this newly developed interest, and the lack of it for entering the work force, I 

started my Ph.D. studies with Dr. Lane in 1999. 

As a lead in to my main research, I worked on an interpolation technique developed ini­

tially by Dr. Lane and Associate Professor Phil Bones, incorporating the sampling process 

and statistical information into the inverse problem. This led to a publication in Optical 

Engineering. 

The principal area of my research is astronomical imaging. The main obstacle in astronom­

ical imaging is the presence of the atmosphere between the object to be imaged and the 

ground-based telescope, which introduces a predominantly phase distortion to the incoming 

wavefront of the star, An obvious solution is to capture the images above the atmosphere 

8..<; in the Hubble Space Telescope, Although this is a viable approach, it is expensive to 

operate and as a result access to it is regulated. Moreover) there is a limit to the size of 

the telescope that can be deployed in orbit, Ground-based methods are therefore by far the 

popular option. 

There are three main approaches to overcoming the astronomical imaging problem: 

time adaptive optics, post-processing methods such as blind deconvolution, and hybrid 

methods which combine elements of the two, The main focus of my thesis was initially on 

blind deconvolution, which later widened to encompass hybrid methods and the processing 

of simultaneous wavefront sensing data, 

xvii 
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Blind deconvolution is an ill-posed inverse problem and many existing techniques involve a 

maximum a posteriori solution to the problem, incorporating prior knowledge of the object 

and the point spread function. The progress of this research over the years has been the 

improvement in the quality of the prior information, as well &':l the parameterisation of the 

unknown quantities to constrain the solution. The prior information I examined includes 

the statistics of the atmosphere, and the phase closure property of the bispectrum method. 

Varying degrees of success have been achieved. 

In 2001, Dr. Lane took sabbatical leave to perform research with the CRAL group at the 

Observatoire de Lyon in France, and I am very fortunate to have spent 5 months there. 

With the assistance of Dr. Michel Tallon and Dr. Thiebaut, astronomical data was 

collected, some of which was used for my thesis. The availability of simultaneous speckle 

images and wavefront sensing data broadened the scope of my research to include hybrid 

methods. 

In the process of using the wavefront sensing data, a deficiency in the existing centroid 

estimator is apparent, and a new improved approach based on blind deconvolution was 

devised. The application of the wavefront sensing data as a form of prior information in 

blind deconvolution is also investigated. 

Although adaptive optics is not within the scope of this thesis, some of the intrinsic prob­

lems with this technique are similar to those in one of the most established hybrid methods, 

deconvolution from wavefront sensing. For instance, the use of the Shack-Hartmann wave­

front sensor leads to the inability of these methods to accurately reconstruct the magnitUde 

of the object spectrum. A solution has been proposed but uses additional reference star 

measurements. In view of this, a parameterised approach is investigated to remove the re­

liance on reference star measurements. This approach also offers the potential to overcome 

the problem with estimating the magnitude of the object. 

One important recurring theme in this thesis is the concept of resolution. For a long time, it 

was thought that the highest attainable resolution is limited by the aperture of the optics, 

called the diffraction limit. In recent years, the phenomenon of reconstructing an object 

beyond the diffraction limit of the instrument, known as superresolution, is recognised to be 

attainable. Resolution is closely linked with sampling, however these two topics are rarely 

discussed together. In this thesis, I attempt to clarify the concept of resolution and its 

relation to sampling, as well as redefining some of the criteria for superresolution in relation 
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to the image-capturing instrument. 

0.1 Thesis organisation 

Chapter 1 presents an overview on image processing and the practical problems that are 

encountered. The specific problem of astronomical imaging is introduced, and a brief dis­

cussion of the possible solutions is given. 

Chapter 2 introduces the notation and mathematics required to understand this thesis. 

Linear systems, transform theory and statistical processes are presented. This chapter 

concludes with an examination of real world data, linking the theory to its application in 

image processing. 

Since all the problems examined in the thesis are inverse problems, an overview of the 

definition, feasibility and classes of solution for inverse problems is given in Chapter 3. Due 

to the ill-posed nature of many of these problems, regularisation, or the incorporation of 

prior information in the solution is essential. Different forms of prior information for image 

processing problems are also discussed in a general context in this chapter. 

In Chapter 4, the theory of imaging through turbulence is presented. principles of light 

propagation and the phenomenon of diffraction are examined. These are very important 

concepts because the design and analysis of the image processing algorithms in this thesis 

are built on these principles. The relationship between resolution and sampling, which is 

rarely found in literature, is clarified. The effect of the atmosphere on the wavefront of 

the star is defined, and properties of astronomical data are discussed. A review of the 

existing solutions for astronomical imaging is then given, and the associated pros and cons 

are pointed out. 

Chapter 5 addresses the inverse problem of interpolation, and presents an optimal Bayesian 

interpolator which incorporates prior information in the form of the sampling process and 

statistical information in its design. Experimental results show that this algorithm has 

superior performance to existing algorithms. The framework of optimal interpolaters also 

encompasses the existing methods such as the bilinear and the sinc interpolators. 

From Chapter 6 onwards, the focus is on astronomical imaging. Chapter 6 presents a 

review of existing blind deconvolution algorithms and investigates the application of two 



new forms of prior information for solving this problem. Since the distortion introduced on 

the wavefront depends on the Earth's atmosphere, it is reasonable to constrain the solution 

with the statistics of the atmosphere. Simulation results indicate that this approach has 

the potential to out-perform existing algorithms. The phase closure property employed in 

the bispectrum technique is also considered as a form of prior information. The results of 

this feasibility study are also presented in this chapter. 

One of the fundamental processes used on wavefront sensing data is the centroid estimator. 

The centroids of the spots need to be found in order to estimate the mean slope over the 

subapertures. However, the traditional centroid estimator suffers from many problems. An 

improved approach based on blind deconvolution is proposed in Chapter 7. Its superior 

performance is demonstrated on both simulated and experimental data. 

With the availability of simultaneous wavefront sensing data and speckle images, the ap­

plication of the former as an additional constraint in a blind deconvolution framework is 

examined in Chapter 8. The case of myopic deconvolution, where very good starting esti­

mates of the quantities to be retrieved are available, is also addressed. The performance of 

this approach is demonstrated on experimental data. 

In Chapter 9, the hybrid method of deconvolution from wavefront sensing (DWFS) is ex­

amined. The inability to accurately estimate the magnitude of the object spectrum in this 

method was pointed out by Roggemann et ai. [149], who proposed a solution based on us­

ing a reference star. However, this does not completely remove the magnitude problem and 

requires reference star measurements which have other difficulties. An alternative solution 

based on parameterisation is proposed. This method has been derived from the NASRIF 

algorithm proposed by Kundur and Hatzinakos [102]. Comprehensive simulation results 

demonstrate the performance of this approach compared to DWFS. 

Conclusions and recommendations for future work are presented in Chapter 10. 

0.2 Supporting publications 

Journal and conference papers published during the course of this thesis are listed below in 

the order of preparation. 

1. W-Y.V. Leung, R.G. Lane and P.J. Bones, "Statistical interpolation of scanned data", 

Proc. Image and Vision Computing New Zealand 1999, D. Pairman and H. North 
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(Eds.), pp 103-108, August 1999. 

2. W-Y.V. Leung and RG. Lane, "Blind deconvolution of images blurred by atmospheric 

speckle", Pmc. SPIE Image Reconstruction from Incomplete Data, VoL 4123, pp 73-

83, July/August 2000. 

3. W-Y.V. Leung and RG. Lane, "Joint blind deconvolution and registration of a se­

quence of undersampled images", Pmc. Image and Vision Computing New Zealand 

2000, M.J. Cree and A. Steyn-Ross (Eds.), pp 50-55, November 2000. 

4. W-Y.V. Leung, P.J. Bones and RG. Lane, "Statistical interpolation of sampled im­

ages", Opt. Eng., Vol. 40, No.4, pp 547-553, April200L 

5. W-Y.V. Leung, M. Tallon and RG. Lane, "Centroid estimation from undersampled 

wavefront sensing data", Signal and Recovery Synthesis, OSA Technical Digest, pp 

102-104, November 2001. 

6. W-Y.V. Leung and RG. Lane, "Deconvolution from wavefront sensing via parameter­

isation") Signal and Recovery Synthesis, OSA Technical Digest, pp 124-126, November 

2001. 

7. W-Y.V. Leung and RG. Lane, "Image reconstruction from undersampled images", 

Pmc. Image and Vision Computing New Zealand 2001, B. McCane and K. Novins 

(Eds.), pp 79-83, November 2001. 

8. W-Y.V. Leung, M. Tallon and RG. Lane, "Centroid estimation by model-fitting from 

undersampled wavefront sensing images") Opt. Comms., Vol. 201, pp 11-20, January 

2002. 

9. W-Y.V. Leung, RM. Clare and RG. Lane, "Blind deconvolution of speckle images 

constrained by wavefront sensing data", in Proc. SPIE Image Reconstruction from 

Incomplete Data II, 2002. 

Papers in preparation include: 

1. W-Y.V. Leung and RG. Lane, "Post-processing of partially compensated imagery by 

recursive inverse filtering", submitted to Opt. Comms. 
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Chapter 1 

Introduction 

In many scientific and engineering applications, information is recorded digitally for later 

reference or further processing. In image processing, information is restricted to two di­

mensions, such as images captured on charge-coupled device (CCD) cameras, photographs 

converted into a digital format by scanners, and astronomical images captured at telescopes 

by photon-counting cameras. Although all the image-recording devices have different modes 

of operation and can be used in varying conditions, they all suffer from the effects of noise 

and distortions introduced by the imaging elements and the imaging media. As a result 

of this non-ideal imaging, much of the captured digital data must be post-processed before 

the information can be interpreted. 

Image processing is divided into four main categories: rectification, enhancement, restora­

tion and reconstruction [9]. Image rectification deals with the spatial transformation of 

images in order to align them with respect to the reference grid or each other, and image 

enhancement refers to the improvement of the presentation of an image. Image restoration 

involves the recovery of an object from measured data in the absence of information on 

the distortions, while image reconstruction is the recovery of detail in severely distorted 

images when the distortion is known a priori. This thesis deals with all the aspects of 

image processing, but focuses mainly on image restoration, in particular the restoration of 

astronomical images. 

1 
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Image space 

Figure 1.1: Tl1e mapping of an object in object space into an m 
image space. 

1.1 Image formation, detection and degradation 

In order to solve the inverse problem of image processing, it is essential to understand the 

forward processes of image formation, detection and degradation. An object in object space 

(e, "7) is imaged in the image space (x, y) when the light rays of the object pass through the 

imaging components and are detected by an image-capturing device (Fig. 1.1). There are 

several limitations imposed on this system. Firstly, diffraction occurs when the wavefront 

of the light is truncated, for example by an aperture. Such an image is called a diffraction­

limited image. This phenomenon is common to all imaging systems, and the theory of 

diffraction is discussed in Chapter 4. 

Secondly, the images are corrupted by noise which is inherent to the image formation and 

detection processes. There are two main sources of noise in a photoelectronic system: 

random thermal noise resulting from the resistive circuit elements, and the photo electronic 

noise due to the statistical nature of light [19]. The former is adequately modelled by 

Gaussian statistics, and a common example of an image with Gaussian noise is a digital 

photograph. At low light levels, the small number of photons means that photoelectronic 

noise is better modelled as a Poisson process. In a speckle image captured at a telescope, 

both Poisson and Gaussian noises are present. 

Finite sampling frequency, finite measurement time, and the mechanical limitations of the 

equipment also affect the resolution and the amount of data captured. An example is the 

collection of astronomical images. The exposure time of an image is dependent on the avail­

able shutter speed, while the resolution of the captured images is dependent on the density 

and the size of the CCD array. Finally, the imaging medium also contributes to the quality 

of the captured images. In astronomical imaging, a major limitation to the resolution of the 
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images is the Earth's turbulent atmosphere. For an 8-metre telescope, an angular resolution 

of 0.01-0.02 arcsec is theoretically achievable. However, the atmospheric turbulence limits 

the realisable resolution to approximately 1 arcsec even at the best observing sites [147]. 

The success in solving the inverse problem of image processing relies on an accurate model 

of the forward problem of image formation, detection and degradation. Section 1.2 describes 

a commonly used model for the forward problem in image processing. 

1.2 Mathematical model 

The degradation process is described using a continuous linear model, denoted mathemati­

cally by a Fredholm integral [4J: 

d(x, y) = i: i: f(~, 7])h(x, y;~, 7])d~d7] + n(x, y) (1.1) 

where f(~, 7]) is the undegraded object, h(x, y;~, 7]) is the space-variant point spread function 

(PSF), n(x,y) is the noise on the system, and d(x,y) is the degraded noisy data. The 

Cartesian coordinates are denoted by (x, y). If the PSF is assumed to be space-invariant, 

or isoplanatic, it can be written as h(x - ~,y -7]). In this thesis, the PSF is restricted to 

the space-invariant case, which sufficiently describes the physical situations modelled. 

Although the continuous model is representative of real-world objects, a discrete model is 

required if the processing is to be performed digitally on a computer. The discrete form of 

the degradation model assuming space-invariance is: 

00 00 

d(x,y) L L f(k, l)h(x - k, y -l) + n(x, y). (1.2) 
k=-ool=-oo 

Taking into account the finite extent of the object and the PSF removes the need to perform 

a summation over all-space. This further simplifies Eq. (1.2) to: 

N/2-1 N/2-1 

d(x,y) L L f(k, l)h(x - k, y l) + n(x, y) (1.3) 
1=-N/2 

for an object of size N x N. Using a compact notation, the degradation model can be 

written as: 

d(x, y) = f(x, y) 8 h(x, y) + n(x, y) (1.4) 
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n(x,y) 

g(x,y) 4~,y) 
Degraded image 

Figure 1.2: An image degradation model. 

where 8 denotes the two-dimensional convolution operation. A block diagram in Fig. 1.2 

illustrates this degradation model. It is also common to represent this discrete model in 

matrix form [4]: 

d = Hf+n (1.5) 

where the two-dimensional functions f(x, y), n(x, y) and d(x, y) are lexicographically or­

dered into vectors. If f is the object of size N x N, then f is of size N 2 x 1. H is a Toeplitz 

matrix of size N 2 x N 2 which maps the object to the data. 

1.3 Inverse problems 

In many scientific problems, the direct measurement of the object is impossible or imprac­

tical. As a result, the object must be deduced from the degraded and distorted image 

by solving an inverse problem. In general, information loss is significant, and the correct 

modelling of the forward problem is vital in identifying the limited amount of information 

available for use in the inverse problem. 

This thesis deals with two major areas of inverse problems: overcoming firstly the limitations 

imposed by image-capturing instruments, and secondly the distortions introduced by the 

imaging medium, particularly atmospheric turbulence. While in the former, the primary 

causes for such a need are the under sampling of many image-capturing devices and the 

presence of detector noise [64, 73,83, 109], the latter arises due to the distortion of the 

astronomical object by the time-varying turbulent atmosphere [140,147]. 

Although the situations from which the inverse problems arise vary, the solutions to these 

problems are best derived according to the following principle (Fig. 1.3). In most cases, 

the forward problem is well-modelled, and the object of interest is updated by comparing 

the measured data with the estimated data when the object is put through the model. 
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Figure 1.3: The underlying principle for obtaining a solution for inverse 
problems. 

This methodology is adopted because the measured data is not altered, and as a result, no 

information within the data is inadvertently lost. 

In general, the accuracy of a solution increases with the complexity of the model. However, 

the latter is not necessarily directly proportional to the former. A good example is fitting 

a model to a function, where the degrees of freedom (DOF) in the model depends on the 

realistic degrees of freedom in the function. Increasing the number of parameters in the 

model provides a better fit to the function, u)1til the number of parameters equals the 

degrees of freedom in the function. After that, any increase in the model complexity does 

not improve but can potentially degrade the accuracy of the solution because the model is 

starting to fit the noise and not the data. The tradeoff between the potential accuracy of 

the solution and the ease of obtaining it must also be taken into account when solving the 

inverse problem. 

The following subsections discuss the two areas of inverse problems treated in this thesis. 

1.3.1 Overcoming instrumentation limitations 

The acquisition of real-world continuous data by a digital instrument is called sampling. If 

the values of the samples correspond directly to the values of the original functions at the 

sample points, this process is called point sampling. Although theoretically possible, this 

process is not adopted in real instrumentation. In real devices such as CCD and Shack­

Hartmann sensors, area sampling is performed where each sample value is obtained by 

integrating over each sensor and corresponds to the average of the light falling on it. This 

maximises the light captured, and is particularly relevant for instruments operating under 



low light levels. 

Although the sampling process does not record every point of the original function, provided 

that the function is band-limited and the samples are sufficiently close to each other, it is 

possible to reconstruct the function exactly. This is formalised in the Nyquist sampling 

criterion [9], which states that a band-limited signal must be sampled at at least twice 

the highest frequency component of the data for the original continuous function to be 

recovered. This is expressed mathematically a..'l: 

1 
Xo= 

2fH 
(1.6) 

where Xo is the sampling rate, and fH is the highest frequency component of the data. The 

corresponding sampling frequency is 1/ Xo. 

Consider a bandlimited one-dimensional continuous signal, whose spectrum is shown in 

Fig. 1.4(a). If this is critically sampled at the Nyquist frequency 2fH) the spectrum of 

the sampled signal is as shown in Fig. 1.4(b). However, if it was sampled at a frequency 

below that of 2fH, i.e. undersampled, the sampled spectrum is the sum of overlapping 

components, a phenomenon known as aliasing (Fig. 1.4(c)). Aliasing describes how a higher 

frequency component is shifted to a lower frequency sample in the spectrum. Since the 

shifted frequency is added to the existing lower frequency, the separation of these frequency 

components is difficult. 

F(CI) 

JYVfvyJ u 

(a) (b) (c) 

Figure 1.4: Illustrating the problem of undersampling. (a) Spectrum of 
a one-dimensional band-limited continuous signal. (b) Spectrum of the 
critically sampled signal. ( c) Spectrum of an undersampled signal. The 
grey areas indicate the overlapping of high and low frequency compo­
nents. 

Undersampling is a common problem when capturing images. Often, the charge-coupled 
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device (CCD) cells in the cameras do not meet the Nyquist criterion. This problem is 

exacerbated in astronomical imaging, where the CCD cell size is optimised to minimise 

read noise; as a result, the images acquired can be sampled at as low as 60 % of the Nyquist 

frequency. 

There are many approaches to overcoming the sampling limitations imposed by instrumen­

tation, one of which is image interpolation. Image interpolation involves the deduction 

of the underlying high-resolution object from the noisy low-resolution measurements and 

constitutes an inverse problem. This topic has been an active area of research in image 

processing for many years, and numerous methods have been devised to solve this inverse 

problem. These include the common linear interpolator, the sinc and its windowed coun­

terpart, polynomial interpolators and splines. 

However, many of the existing interpolation algorithms neither deal with aliasing in the 

data directly, nor do they take into account the sampling process and the noise on the 

image capturing instrument. One of the topics examined in this thesis is an optimal inter­

polator which incorporates the sampling process and deals with aliasing via the use of prior 

information. This is presented in Chapter 5. 

The process of interpolation is closely linked to superresolution as they can be viewed as 

being complementary to each other. Whilst the former describes the increase in sampling 

rate in the spatial domain, the latter depicts the extension of the meaningful frequency 

content of an image. In fact, in order to superresolve, the corresponding sampling rate 

must be increased [85]. 

Superresolution has generated much research interest, and there are many definitions of this 

process. One popular definition is the recovery of information beyond the frequency band­

width of the system that produced the signal [85]. In the context of two-dimensional image 

processing, superresolution strives to overcome the diffraction limit imposed by the opti­

cal instrument. This is shown to be theoretically possible [61,101], and several algorithms 

have had success in achieving superresolution in this sense. These include the Gerchberg 

algorithm [54] which projects between the spatial and Fourier domains to obtain the solu­

tion, and the reconstruction method for Poisson noise statistics, developed independently 

by Richardson [139], Lucy [114], and Shepp and Vardi [156]. Many algorithms proposed 

more recently [56,157] are based on these original algorithms. In each case, information in 
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addition to the measured data is required to achieve superresolution. 

In the above definition of superresolution, the diffraction limit of the optics is the principal 

form of resolution degradation in the imaging system. However, instead of the optics, it 

is more common for the CCD camera to be the major obstacle as it usually has a lower 

frequency cutoff compared to the optics. In this case, the process of superresolution must be 

redefined as the process of extending the frequency content of the recovered object beyond 

that imposed by the imaging element which has the lowest cutoff frequency. This is the 

definition adopted in this thesis. There are many published algorithms which address this 

problem of superresolution whereby the concept of subpixelly displaced images is used to 

improve the sampling rate [22,57,73,109]. In Chapter 7, the algorithm proposed by Hardie 

et al. [73] is extended and applied to severely undersampled astronomical data. 

1.3.2 Overcoming the imaging medium: atmospheric turbulence 

The wavefront from an astronmical object of interest such as a star propagates undistorted 

for lightyears, until it reaches the Earth's atmosphere (Fig. 1.5). The atmosphere can 

be viewed as a collection of lenslets with different and time-varying refractive indices. As 

a result, phase distortions are introduced to the wavefront. The atmospheric turbulence 

is sufficiently described by Kolmogorov statistics, characterised by the two-dimensional 

horizontal structure function [140]: 

,,----;r;---;----'" \ 5/3 

(1. 7) 

where TO is the effective diameter of the telescope and is in the order of about 5-15cm [147]. 

Another interpretation of TO is that it defines an aperture size over which the mean-square 

wavefront error is 1 rad2 [77]. 

When the wavefront subsequently propagates to ground, its intensity is also distorted, and 

this distortion is called scintillation. Nevertheless, since the principal effect of the distortion 

introduced by the Earth's atmosphere on an image is a phase component, the scintillation 

is assumed negligible in many cases. 

Due to the distorting effects of atmospheric turbulence, the images captured by a ground­

based telescope have a 'speckly' appearance, hence the name speckle images. Figs. 1.6(a) 
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and 1.6(b) illustrate a simulated binary star before and after the distortion of the atmosphere 

in the absence of noise, and Fig. 1.6(c) shows the distortion when Poisson noise is present. 

It can be seen that the extent of the speckles is much larger than the extent of the object. 

It is therefore possible for some data information to be truncated by the image detector 

when capturing real astronomical data [92]. This causes errors in the second-order spectra 

in techniques such as speckle interferometry [103] and the Knox-Thompson [99] method. 

The dominance of the phase distortion on the star's wavefront means that it is desirable to 

be able to estimate and compensate for this phase component. A common instrument for 

measuring this is a wavefront sensor, with the four main types being the Shack-Hartmann 

(SH) sensor, the curvature sensor, the shearing interferometer and the pyramid sensor. 

Fig. 1. 7 shows a typical frame of wavefront sensing data captured by a SH sensor at the 

Observatoire de Lyon in France. The estimation of the phase distortion from wavefront 

sensing data is discussed in detail in Chapter 8. 

Imaging through atmospheric turbulence is an active area of research, and there are three 

main approaches to this problem: real time adaptive optics (AO), computer post-processing, 

and hybrid techniques which are a combination of both. This thesis focuses on the latter 

two approaches. 

Computer post-processing 

In pure computer post-processing techniques, only the speckle images are used for recovering 

the intensity distribution of the object. The two main approaches in this category are blind 

deconvolution and bispectrum. 

The problem of blind deconvolution can be modelled accurately using Eq. (1.4), where 

f(x, y) is the object of interest, h(x, y) is the PSF describing the combined effects of the 

atmosphere and the imaging optics, and n(x, y) is the noise on the system. The captured 

image d(x, y) is the speckle image (Fig. 1.6(c)). 

Blind deconvolution is an ill-posed inverse problem where one wishes to find f(x, y), h(x, y) 

and n(x, y) when only d(x, y) is measured. In the absence of noise, blind deconvolution has 

been shown to be theoretically possible [107]. However, when noise is present, the problem 
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Figure 1.5: Block diagram illustrating two classes of methods for solving 
the astronomical imaging problem. 

becomes ill-conditioned. As a result, the quality of the solution depends strongly on the 

amount of prior information available. When the only prior information available is the 

noise statistics, the problem is one of maximum likelihood (ML). This however leads to the 

trivial solution where the object is estimated to be a delta function, and the PSF the data 

(or vice versa). The ML method is therefore insufficient to produce a meaningful solution in 

this case. One type of commonly used prior information is in, the form of multiple frames: 

(1.8) 

where k denotes the kth realisation of the PSF, the noise, and the data. Other forms of 

prior information, such as the compact nature and the positivity of the object are also used. 

Obviously, there are many forms of prior information that can be used to constrain the 

solution. The investigation of the feasibility and effectiveness of various forms of prior 

information is a major focus of this thesis. A strong constraint that can be imposed is 

the wavefront sensing data that is captured simultaneously with the speckle images, as this 

provides a good estimate for the phase distortion. This is discussed in Chapter 8. Another 

form of prior information that can be used for astronomical imaging is the Kolmogorov 
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(a) (b) (c) 

Figure 1.6: (a) A simulated binary star. (b,c) An image of the star after 
the degradation caused by atmospheric turbulence in the absence and 
presence of Poisson noise. The images are displayed on a gray scale 
where the white pixels have a value of 1, and the black pixels have a 

value of O. 
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Figure 1. 7: An example of a wavefront sensing data fram e. 
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statistics of the turbulence. The investigation into its feasibility is presented in Chapter 6. 

The bispectrum is an established technique for processing images formed with an incoherent 

imaging system [113]. The object is reconstructed in the Fourier domain, with the magni­

tude component obtained from speckle interferometry technique, and the phase component 

from triple correlation theory. This technique requires the use of multiple frames , and the 

survival of the phase information is attributed to the use of a four-dimensional ensemble 

quantity, called the bispectrum phase. Since most of the information is contained in several 
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dominant components in the bispectrum phase, it is common to use only these components 

and not the entire quantity. One such subset is the Knox-Thompson (KT) phase. 

Although the technique of bispectrum in itself is a complete solution to the problem of 

image restoration, it can also be used as a form of prior information [58,59, 72, 123~125]. 

In this thesis, a blind deconvolution algorithm with the KT phase as prior information is 

investigated. Since the KT phase of the ensemble PSF should equal to zero, the resultant 

KT phase must be attributed to the object. This property is used in a penalty term in the 

solution framework. The result of this investigation is presented in Chapter 6. 

Hybrid techniques 

The most frequently used hybrid technique for astronomical imaging is deconvolution from 

wavefront sensing (DWFS). It uses simultaneous speckle images and wavefront sensing data 

to recover the object distribution. This technique was first proposed by Fried [46] and later 

implemented by Primot et al. [135] in 1990. The retrieval of the object j(x, y) is an inverse 

problem, whose spectrum is recovered by: 

F(u, v) 
(D(u, v)H*(u, v)) 

(IH(u, v)12} + c 
(1.9) 

where c is a constant, and the angular brackets denote an ensemble quantity. The optical 

transfer function (OTF) H (u, v) is the autocorrelation of the generalised pupil function 

A(u, v): 

A(u, v) = S(u, v)exp{i¢(u, v)}. (1.10) 

S(u, v) is the magnitude and ¢(u, v) is the phase distortion. In its implementation, the 

phase ¢( u, v) is reconstructed using the wavefront sensing data which is also an inverse 

problem. Thus the method of DWFS comprises two inverse problems. 

There are two disadvantages in the conventional technique of DWFS. Firstly, the phase is 

estimated solely from wavefront sensing data, and phase information in the speckles is not 

utilised. An improved method is to estimate the phase from data in both the speckle and 

wavefront sensing channels in an iterative blind deconvolution framework. This is the topic 

of discussion in Chapter 8. 



Secondly, the correlation properties of the true phase ¢( u, v) and the reconstructed phase 

¢( u, v) are different [149]. This means that the magnitude of the object spectrum is not 

reconstructed correctly. The solution to this problem is the use of a reference star to 

obtain measurements for the denominator of Eq. (1.9) [149]. However, this does not com­

pletely remove the problem of inaccurate magnitude estimation; moreover reference star 

measurements are in practice very difficult to obtain. These problems can be overcome by a 

parameterised solution derived from the NASRIF algorithm [102]' the formulation of which 

is presented in Chapter 9. 
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Chapter 2 

Mathematical preliminaries 

This chapter introduces the general mathematical definitions and notations required for 

this thesis. However, theories that are specific to each subsequent chapter are introduced 

as required. Section 2.1 defines the notation used, including vectors, complex numbers, 

functions and coordinate spaces. It is convenient to assign special notation to commonly 

used functions; these are discussed in Section 2.2. Section 2.3 presents the theory of linear 

systems, and common operations on the variables such as convolution and correlation are 

defined. There are situations where the variables can be manipulated more easily in a 

different coordinate space. This is part of transform theory and is discussed in Section 

2.4. Many phenomena in the real world such as atmospheric turbulence and noise are not 

deterministic; therefore the theory of random processes is required and it is presented in 

Section 2.5. Section 2.6 deals with the properties of real world data. 

2.1 Notation 

2.1.1 Scalars, vectors and matrices 

A scalar is a real number denoted by x. A vector, denoted by the boldface letter x, has n 

elements (Xl, X2,'" ) xn). Physically, it can be interpreted as a point in an n-dimensional 

space. A matrix is an array of numbers which is of two or more dimensions and is usually 

denoted by a boldface uppercase letter. An example of a two-dimensional matrix of size 

15 
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m X n is denoted by: 

X= 
( 

XI,1 XI,n ) 

Xm,l xm,n' 

The row vectors in this matrix are the vectors in R n , where R denotes a real space and the 

superscript n defines the dimension of this real space. The row vectors are: 

(2.1) 

while the column vectors are the vectors in Rm and can be written in a similar manner. 

A vector x is a linear combination of vectors Xl) X2, .•• ) Xn if there exist scalars Cl, C2) ... ) Cn 

such that x = CIXI + C2X2 + ... + CnXn • A set of vectors {Xl, X2, ... ,xn } is linearly 

independent if the equation: 

(2.2) 

has only the trivial solution CI = C2 = ... = en = O. 

For an m x n matrix X, the range of X is: 

range(X) = {b E R m : b = Xa for some a ERn}; (2.3) 

the null space of X is: 

null(X) = {a ERn: Xa O}; (2.4) 

and the rank of X is: 

rank(X) = dim(range(X)) (2.5) 

where dim(·) indicates the dimension of a matrix. The trace of a square matrix is the sum 

of its diagonals. Mathematically, it is defined as: 

for an n x n matrix. 

n 

trace(X) L Xjj 

j=l 

(2.6) 



The transpose of a matrix XT transforms the row vectors into column vectors and vice 

versa. Therefore the transpose of an Tn X n matrix has size n x Tn. In the case where the 

original matrix is identical to its transpose, i.e. X = XT, the matrix is symmetric. 

The inverse X-l of a square matrix of size n x n is such that XX-1 = X-l X I where 

I is the identity matrix defined at the end of this section [101]. For a non-square matrix, 

a pseudo-inverse can be computed using the technique of singular value decomposition 

(SVD) [60]. For a matrix of size Tn X n, it can be decomposed into: 

(2.7) 

where U has the eigenvectors of XXT and V has the eigenvectors of XTX. A is a diagonal 

matrix containing the singular values of X, whose squares are the eigenvalues of XTX [162]. 

The pseudo-inverse of X, xt, is: 

(2.8) 

For any matrix, if an inverse exists, the matrix is nonsingular. Otherwise, the matrix is 

singular. The inverse and the pseudo-inverse are one way of solving an inverse problem. 

Consider a system denoted by Xa = b, where a and b are the unknown and measured 

vectors respectively, and X is the matrix which maps a onto b. The estimate of a can be 

found by calculating X-l b or Xtb. The inverse or the pseudo-inverse thus provides one of 

the simplest solutions to such an inverse problem. 

The large singular values in A correspond to significant amounts of information being en­

coded in them; conversely small singular values signify that they only contain very little 

information. A problem arises when A is inverted, leading to the amplification of small 

singular values. 

The eigenvalue is related to the eigenvector. For a square matrix X of size n x n, the 

scalar A is an eigenvalue of X if there exists a non-zero column vector b in R n such that 

Xb = Ab [40]. When all the eigenvalues of a square matrix are positive (and not equal to 

zero), this matrix is positive definite and its invertibility is guaranteed. If all the eigenvalues 

are greater than or equal to zero, the matrix is positive semidefinite. 

A Toeplitz matrix T is one whose entries are constant along each diagonal and arises in many 

applications [60]. Formally, T E R nxn is Toeplitz ifthere exist scalars L n+1,' .. ,to, . .. ,tn-l 



such that Xi,j = tj-i for all i and j, with i and j being the row and column indices: 

An example of a Toeplitz matrix is the point spread function matrix H in Eq. (1.5). 

A commonly used special matrix is the identity matrix I. The identity matrix is square and 

has the value 1 along the main diagonal, and 0 for all other entries. The identity matrix is 

symmetric and Toeplitz. 

Basis functions and orthogonality 

A set of vectors S = {x 1, X2, • .. ,xn } in a vector space X is a basis for X if 

1. S is linearly independent and 

2. S spans X. 

Basis functions are used commonly in image processing. The Fourier transform is a ubiq­

uitous example, while the Zernike basis functions [131] are used to represent atmospheric 

turbulence. Two vectors Xl and X2 are said to be orthogonal if xi X2 = o. 

2.1.2 Complex numbers 

A complex number is one which has a real and an imaginary part. Let us denote a complex 

number by z x + iy, where i Then the real part of z is iR{ z} = x and its 

imaginary part is ~{z} y. It is convenient to represent any associated value of z on the 

x-y plane, also called the z plane (Fig. 2.1). It is also possible to denote a complex number 

in polar form where: 

() arctan (;). (2.9) 
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Figure 2.1: The z-plane. 
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2.1.3 Functions 
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(2.10) 

The first usage of the term 'function' was by Leibniz in 1673 to describe the dependence of 

one quantity on another. However, Leonard Euler was the first person to denote functions 

by letters of the alphabet [5]. If the letter f is used to denote a function, then the expression: 

z = f(x) (2.11) 

means that z is dependent on x. When extended to two-dimensional (2D) spaces, the 

notation: 

z = f(x,y) (2.12) 

can be used. This notation is valid for real numbers and complex numbers. For example, 

the above equation can be used to describe a real function z = 2x + y, or a complex function 

z = x + iy. The most common usage of functions in imaging is the coordinate space which 

is the topic of discussion in the next section. 
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Figure 2.2: (a) Cartesian or rectangular coordinate system. (b) Cylindri­
cal coordinate system. (c) Spherical coordinate system. 

2.1.4 Coordinate space 

The three commonly used coordinate systems are the Cartesian or rectangular system, the 

cylindrical system, and the spherical system. Since a point in three-dimensional space can 

be specified by three parameters, all these systems are three-parameter systems, depicted in 

Fig. 2.2. The rectangular coordinate system consists of three orthogonal planes intersecting 

at the origin. This is denoted by (x, y, z) and is the most commonly used system in image 

processing; the image is represented in the two-dimensional x-y plane, while z is often used 

to describe distances such as the focal length of a lens. Although the light waves that 

radiate from a point source are spherical, when they reach the imaging plane after a large 

propagation distance, they are essentially planar. It is therefore justified to employ the 

Cartesian coordinates in image processing. 

In the cylindrical system [137], the coordinate surfaces are firstly a set of circular cylinders r, 

secondly a set of planes passing through the axis ¢, and thirdly the distance from the origin 

along the axis z. In spherical coordinates [137], the three parameters are the distance from 

the origin r, the angle about the azimuthal axis ¢, and the polar angle e. The cylindrical 

and spherical systems are not used in this thesis. 
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2.2 Special functions 

Dirac delta function 

The Dirac delta function, or the unit impulse, is denoted by o(x, y). It is defined as having 

zero amplitude everywhere except at the origin (x,y) (0,0), where it is infinitely large 

and contains unit volume under its curve [78]: 

(o+ 0+ 
1 Jo- 10- o(x, y)dxdy. (2.13) 

A two-dimensional (2D) delta function is defined as: 

o(x,y) = {oo x = o,~ 
o otherwIse 

o 

Intuitively, the delta function can be viewed as the limiting form of a pulse of unit volume 

as the duration ofthe pulse approaches zero. Fig. 2.3(a) shows a representation of a delta 

function. 

Sampling function 

The sampling function, or the Dirac comb, consists of an infinite sequence of uniformly 

spaced delta functions. This two-dimensional function is defined as: 

00 00 

comb{x, y) L L o(x mXo, y - nYo) (2.14) 
m::=-oon::=-oo 

where Xo and Yo are the sampling intervals in the x- and y- directions. It is shown in 

2.3(b). This function is usually called the ideal sampling function and is ideal for 

the case of point sampling. However in real instruments, this ideal sampling is physically 

unrealisable. Moreover as discussed in Section 1.3.1, area sampling is the process adopted 

by real instruments, not point sampling. Nevertheless, this sampling fUIlction is widely used 

in signal processing literature for analysing systems. In Section 2.6.1, the area sampling of 

a function is discussed. 

Rectangle function 

The rectangle function, also known as the rect function, is defined as: 

{ 
1 Ixl < 1 I I < 1 

t( ) - - 2' Y - 2 rec x,y -
o otherwise. 
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,. 

-1 

(a) (b) 

Figure 2.3: (a) Two-dimensional Dirac delta function. 
dimensional Dirac comb or sampling function. 

(b) Two-

The 2D rect function is depicted in Fig. 2.4(a) and can be separated into two 1D functions. 

This function is useful for describing a square aperture in an imaging system (see Chapter 

4). 

Sinc function 

The 2D sine function (Fig. 2.4(b)) is defined as: 

sinc(x, y) 
sin( ny) 

--'-----'-
nx ny 

sinc{x)sinc{y) 

and can be separated into two 1D functions. There exists a Fourier transform relationship 

between the sine and the rect functions. This Fourier transform pair is therefore useful 

for investigating diffraction effects on an imaging system with a square aperture such as a 

Shack-Hartmann lenslet array. 

Sign function 

The sign function is defined as: 

sgn{x) 

and is shown in Fig. 2.5. 

x>O 

x=O { ~ 
-1 x < 0 
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(a) (b) 

Figure 2.4: (a) Two-dimensional rect function . (b) Two-dimensional sinc 
function. 

I 

I 
i 

I 

Figure 2.5: Sign function 

Circle function 

The circle function shown in Fig. 2.6 is defined as: 

{
I y'x2 + y2 ::; 1 

circ(x, y) = 0 
otherwise. 

23 

Alternatively, due to the circular symmetry of this function, it can be defined with one 

variable T alone: 

{
I r < 1 

circ(r') = -
o otherwise. 

This function is useful for describing a circular aperture of an imaging system. The circle 

function has a Fourier trallsform relationship with the Bessel function which is discussed in 

Section 2.4.3. As a result of this relationship, this Fourier transform pair is useful for the 

investigation of diffraction effects at a circular aperture which is discussed in Chapter 4. 

Gaussian function 

The Gaussian function is a commonly encountered function in many physical systems. A 
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-, 
, , 

Figure 2.6: Circle function. 

0.' 

(a) (b) 

Figure 2.7: (a,b) One and two-dimensiona,1 Gaussian functions. 

Gaussian function is a smooth function specified with two parameters: the mean f..L , and the 

standard deviation a. In one dimension, it is defined as: 

1 {(X - f..LX)2} 
G(x) =..;21r exp - 2 

27rax 2ax 
(2.15) 

for all x. In two dimensions, it is a separable function defined as: 

G() 1 {(X-f..LX)2} { (Y-f..Ly)2} x, y = exp - exp - . 
27raxay 2a~ 2a~ 

(2.16) 

Examples of a 1D and 2D function are shown in Figs. 2.7(a) and 2.7(b). 

The Gaussian function is versatile and has wide applications in image processing. It can 

be used as a model of an object, as well as a probability density functon for random noise, 

the latter of which is described in further detail in Section 2.5.2. It should be pointed out 

that because the Fourier transform of a Gaussian function is also a Gaussian function , it is 

compact in both the spatial and frequency domains. 
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2.3 Linear systems 

The theory of linear systems provides models for many physical processes. Although the 

property of linearity is an assumption, it is a good approximation for most applications. 

It has the advantage of being mathematically tractible and provides a means for analysing 

complex processes. 

The process of image degradation is modelled by a linear system. Let the input signal be 

f(x,y), and the output signal be g(x,y). Then the transformation which maps f onto 9 is 

H: 

g(x,y) H{f(x,y)}. (2.17) 

One of the most important properties of a linear system is superposition. This states that 

if the input to a system is a sum of a number of individual signals, then the output is the 

sum of the outputs of the respective input signals as if these signals were acting alone. This 

can be illustrated mathematically as: 

where Cl and C2 are arbitrary constants. 

CI H {fl(X,y)} +C2H {f2(X,y)} 

= clg1(X,y) + c2g2(X,y) (2.18) 

The response of a linear system can be characterised by examining its impulse response, i.e. 

its response to a Dirac delta function. In a 2D system, it is called the point spread function 

(PSF). In a shift-variant system, the PSF can be defined as: 

h(x,y;~,rJ) = H{8(x,y;e,rJ)} (2.19) 

where the PSF has a different effect on the input depending on its position. Nevertheless, 

in most image processing applications, it is sufficient to assume that the system is shift­

invariant, and the PSF is written accordingly as: 

h(x,Yie,rJ)=h(x-e,y 71). (2.20) 

A linear system with a shift-invariant property is called a Linear Shift-Invariant (LSI) 

system, and is the characteristic of an the systems examined and modelled in this thesis. In 

astronomical imaging this implies that the field of view (FOV) of the telescope is sufficiently 

narrow that the portion of the atmosphere through which the object is imaged is shift­

invariant. 
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2.3.1 Convolution 

The transformation of a signal by a LSI system can be denoted using the convolution 

operation. For a continuous signal, it is defined as [4]: 

For a discrete signal (with finite extent), the convolution is represented as [8,87]: 

g(x,y) 
M/2-1 N/2-1 

I: I: f(k, l)h(x - k, y -l) 
k=-M/21=-N/2 

f(x, y) 0 h(x, y) 

(2.21) 

(2.22) 

for an input signal f of size M x N, and 0 denotes a two-dimensional convolution oper­

ation. The convolution operation has many useful properties, including the commutative, 

distributive and associative properties. The result of the convolution operation, g(x, y), is 

in general smoother than either of the two inputs. This smoothing or lowpass filtering effect 

is characteristic of all real imaging systems. 

2.3.2 Correlation 

The cross-correlation operation is defined as [8,87]: 

g(x,y) f(x, y) 0 h( -x, -y) 

f(x,y) 0h(x,y) (2.23) 

where 0 denotes the correlation operation. It has the same properties as the convolution 

operation except for the commutative property. If the correlation is performed on a quantity 

with itself, then it is known as autocorrelation. 

The cross-correlation of two signals is useful in determining the similarity between them 

[181]. A cross-correlation value of unity implies that the two signals are identical. A cross­

correlation value of almost unity indicates a close match between the signals. If the cross­

correlation is of a very small value or zero, then there is little or no similarity between the two 

signals. This operation forms a fundamental component of iterative (blind) deconvolution 

algorithms. 
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2.4 Transform theory 

Transform theory describes the process of taking a function and manipulating it in such a 

way that operations are more easily performed on it. Consider a simple example, where 

a page of text is upside-down and is difficult to read. The transformation of rotation (by 

180°) makes it much easier to read without altering the contents of the page. 

A more formal definition of transform theory is the process of taking a function which 

is expandable on a set of basis functions, and expressing it using a different set of basis 

functions without altering the information content. 

The need for performing transforms is two-fold. Firstly, the manipulation of a function 

may be simplified when expressed using a different set of basis functions. For example, a 

convolution operation in the spatial domain is computationally intensive. By transforming 

the quantities into the Fourier domain, the convolution operation becomes a multiplication 

which is easier to perform. Secondly, certain features in the signal are more easily detected 

after transformation. 

In this section, transforms that are relevant to this thesis are discussed. These include the 

Fourier transform, the Fourier-Bessel transform, and the Hankel transform. 

2.4.1 Fourier transform 

The Fourier transform (FT) is very important in image processing, especially image restora­

tion, because it describes many physical processes in an imaging system. For instance, the 

wavefront at the aperture and that at the focal plane are related by the Fourier transform. 

The Fourier transform is also an ideal tool for analysing linear systems because its basis 

functions, which are a set of complex exponentials, are also the eigenvectors of LSI systems. 

In this section, the Fourier transform is defined and some of its properties are discussed. 

For a more detailed treatment, the reader should consult the books by Papoulis [132] and 

Bracewell [14]. 
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The two-dimensional Fourier transform of a complex variable f(x,y) is defined as [78]: 

J{f(x, y)} i: i: f(x, y)exp{ -i21f(ux + vy)}dxdy 

F(u, v) (2.24) 

where (u, v) are appropriately normalised coordinates in the frequency domain [61], and 

J{-} is the Fourier transform operator. The Fourier transform of f, F, is also called the 

spectrum of f. The inverse Fourier transform (1FT) is defined as [78]: 

J- 1{F(u, v)} i: i: F(u, v)exp{i21f{ux + vy)}dudv 

f(x, y). (2.25) 

The notation 

f(x, y) F(u, v) (2.26) 

indicates that f(x, y) and F(u, v) are a Fourier transform pair and this relationship is 

umque. 

The Fourier transform has many useful properties, some 9f which are listed below. 

Separability 

A two-dimensional Fourier transform of f(x, y) i: i: f(x, y)exp{ -i21f(ux + vy)}dxdy 

can be separated into two one-dimensional FTs in the x- and y- directions: 

i: (i: f(x, y)exp{ -i21fUX }dx ) exp{ -i21fvy}dy. 

Superposition 

If fl(x,y) Fl(U,V) and h(x,y) F2(U,V), then 

ctfl(x,y) +c2h(x,y) ~ qFl(U,V) + C2F2(U, v) 

where Cl and C2 are arbitrary constants. 

Time scaling 

If f(x,y) F(u,v), then 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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where a is a scaling constant. This property states that if the function in the spatial domain 

is expanded by a factor of a, then its Fourier transform is compressed correspondingly by 

a factor of a. This property is often associated with the sampling of a signaL For example, 

if a is reduced from 1 to 0.5, then the sampling in the spatial domain is twice as dense in 

each dimension, and the bandwidth of the spectrum is expanded by a factor of two. 

Duality 

Iff(x,y) F(u,v), then 

Time and frequency shifting 

If f(x, y) F(u, v), then 

F(x, y) ~ f( -u, -v). 

f(x - Xa, Y YO) F(u, v )exp{ -i21r(t/,xa + vya)} 

(2.31) 

(2.32) 

where Xo and Yo are shifts in the x- and y-directions. This means that shifting an image 

in the spatial domain does not alter the magnitude of the Fourier transform, but introduces 

a linear phase shift. 

Alternatively, if the shift is introduced in the frequency domain, then the exponential factor 

is present in the spatial domain: 

exp{i21r(uox + voY)}f(x,y) ~ F(u uo,V va). (2.33) 

Conjugation 

If f(x, y) ~ F(u, v), then 

j*(x,y) F*(-u, -v) (2.34) 

where the conjugation operation is denoted by *. 

Convolution and correlation 

If h(x, y) ~ F1(u, v) and h(x, y) ~ F2(u, v), then 

h(x,y) 0 h(x,y) (2.35) 

The convolution of two signals in the spatial domain transforms into the multiplication of 

the Fourier transforms of the individual signals in the frequency domain, an operation which 
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is easier and faster to manipulate. This property is used frequently in this thesis. As for 

the correlation of two signals: 

h(x,y) ® h(x,y) ~ F1(u,v)F2(u,v). (2.36) 

2.4.2 Discrete Fourier transform, the fast Fourier transform, and the 

fastest Fourier transform in the West 

The discrete Fourier transform (DFT) is required to implement the Fourier transform dig­

itally, where discretisation must be performed. The two-dimensional N -point DFT of 

f(x, y) is defined as [78J 

F( ) -~ ~~f( ) {-i21r(UX+VY)} u, v - N D D x, y exp N 
x=o y=o 

(2.37) 

while the corresponding inverse DFT is 

N-IN-l { } 
f (x, y) = ~ ~ ~ F( u, v)exp -'-----=----''-'- (2.38) 

where N is the number of samples in one dimension. The assumption made when performing 

a DFT is that the underlying signal is periodic, which can introduce the problem of spectral 

leakage. One useful application of the DFT is its ability to diagonalise circulant matrices, 

which are approximations to Toeplitz matrices such as the convolution matrix H in Eq. 

(1.5) [30J. This enables the fast implementation of multiplications such as Hf = d. 

The fast Fourier transform (FFT) is the efficient implementation of the DFT and has 

been studied extensively [33J. The fastest algorithms are those that employ the 'divide and 

conquer' strategy [78J and break down the computation into many small DFT steps. This is 

achieved by diagonal ising the transformation matrix and exploiting its symmetry, enabling 

a fast implementation of matrix multiplication. Whilst the DFT operation on a complex 

signal is of order N2, the FFT is of order Nln(N). The Cooley-Tukey and the split-radix 

algorithms are examples of FFT implementations. 

Recently, an adaptive software architecture for the FFT has been developed [48J. This 

is called the fastest Fourier transform in the West (FFTW) with a C subroutine library 

for computing the DFT [49J. This has been shown to have superior performance to many 
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existing FFT implementations on various platforms. The major difference between the 

FFTW and existing implementations is that the former is adaptively optimised and does 

not require the array size to be a power of 2. FFTW has been incorporated in Matlab 

6 [117], the language in which most of the algorithms in this thesis are developed. 

2.4.3 Fourier-Bessel transform and Hankel transform 

A special case of the Fourier transform of a function with circular symmetry is called 

the Fourier-Bessel transform, or the Hankel transform of zero order. The Fourier-Bessel 

transform of a function f{r) is defined as [61]: 

(2.39) 

where r = V x2 + y2 and p = vu2 + v2 are the radii in the spatial and frequency domains 

respectively. Similarly, the inverse Fourier transform, or the inverse Fourier-Bessel transform 

of a circularly symmetric function is: 

(2.40) 

Thus, for circularly symmetric functions, there is no difference between the forward and 

inverse transform kernels. 

The function Jo (.) is the zeroth order Bessel function, and the standard definition of a 

Bessel function for all real orders p is [35]: 

00 (-1 )Pxp+2k , 
Jp(x) - I: 2P+2kk!r[p + k + 1]' p:f: -1, -2, -3, ... 

k=O 

The Gamma function r[n] is defined as [35]: 

r[n] = 10
00 

tn
-

1 exp{ -t}dt, n > 0 

(2.41) 

(2.42) 

(2.43) 

for positive values of n. For the negative values of n, the Gamma function is defined via 

the equation: 

r[n + 1] nr[n]. (2.44) 
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(a) (b) 

Figure 2.8: An example of (a) the circle function and (b) its Fourier-Bessel 
transform. 

An example of the application of the Fourier-Bessel transform is the Fourier transform of 

the circle function (defined in Section 2.2). The Fourier-Bessel transform pair is: 

. () --' J1 (27rp) CIrc r ,- --'---'-'--
p 

(2.45 ) 

where J1 is the Bessel function of the first kind, order one [61]. In a physical sense, while 

the circle function describes a circular aperture, its Bessel transform describes the complex 

wavefront at the focal plane of the system, and is useful for investigating the PSF of a 

circular aperture. An example of the circle function and its Fourier-Bessel transform are 

shown in Figs. 2.8(a) and 2.8(b). 

2.5 Statistics and random processes 

Deterministic signals are those that can be modelled precisely as specified functions. How­

ever, many real world signals are not deterministic but random in nature. They cannot 

be predicted precisely in advance, but can be described by certain statistical properties. A 

ubiquitous example of a random signal is thermal noise in the circuits of an image-acquiring 

instrument [4], which can be sufficiently described by a zero-mean Gaussian process with a 

uniform power spectrum. 

The statistical characterisation of random signals is known as probability theory [78] and 

is discussed ill this section. Other aspects of random signals relevant to this thesis are also 

presented. 
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2.5.1 Probability theory 

Probability theory in its simplest form can be explained by a random experiment. Such an 

experiment has an outcome that is subject to chance and cannot be repeated. However, if 

a large number of trials are performed, then an average pattern of the outcome is observed. 

The sample space S contains all the possible outcomes of an experiment, and a particular 

outcome of an experiment is called a sample point s. 

Mathematically, probability theory can be defined by a set of axioms [78]: 

1. The probability of the sample space is unity: P(S) = 1. 

2. The probability of an event A is between zero and unity: 0 :::; P(A) :::; 1. 

3. If the events A and B are two mutually exclusive events, then P(A + B) = P(A) + 
P(B). 

Conditional probability 

The conditional probability of B given A is the probability of event B occuring given that 

event A has occured already. Provided that A has nonzero probability, then the conditional 

probability P(BIA) is: 

P(BIA) = P(AB) 
P(A) . (2.46) 

In many image processing applications, the conditional probability is usually unavailable. 

However, applying Bayes' rule allows this to be written as [4,160]: 

P(BIA) = P(AIB)P(B) 
P(A) 

(2.47) 

where each of the three terms on the right-hand side can be calculated more easily. In 

the special case where the events A and B are statistically independent i.e. P(AB) = 

P(A)P(B), then P(BIA) = P(B). Bayes' rule is of considerable importance in solving 

inverse problems in image processing. The term P(AIB) corresponds to the consistency 

between the data and the reconstruction, and P(B) is the prior probability of the object 

to be reconstructed. P(A) is the prior probability of the data, which in the case of image 
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restoration is equal to 1. The application of Bayes' rule in image restoration is discussed 

further in Section 3.3.2. 

2.5.2 Random variables 

A random variable (RV) is a possible outcome of an experiment whose range is a set of 

real numbers. If the outcome of an experiment is 5, then the associated RV is X (s ). A 

more general definition is to consider a random variable and the probability of the event 

X ~ x. The cumulative distribution function (CDF), or simply the distribution function, 

is defined as: 

Fx(x) = P(X ~ x). (2.48) 

There are many situations in image processing involving more than one random variable. 

In this case, the joint distribution function for the RV s X and Y is: 

Fx,yix, y) = P{X ~ x, Y ~ y). (2.49) 

An important property of the CDF is that its derivative gives the probability density func­

tion (PDF) of the random variable(s). In two dimensions, the joint PDF is: 

fj2 Fx,y(x, y) 
8x8y 

ix,Y{x, y). (2.50) 

Common forms of PDFs in image processing include the Gaussian PDF [4], the Poisson 

PDP [101,158]' the Gibbs PDP [73] and the Markov random field [53]. The Gaussian PDF 

has the same form as Eq. (2.15) and is repeated here for completeness. For a variable x it 

is defined by [4]: 

(2.51) 

with the mean J.t and the variance a~. ax is the standard deviation. The Poisson PDF is 

defined by [101,158]: 

p(x) 
.xx 

, exp{ -A} 
x. 

where the mean and the variance are both equal to A. 

(2.52) 
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2.5.3 Statistical quantities 

This section defines the statistical quantities that are relevant to this thesis. 

Mean 

The mean, or expected value, of the random variable X is [78]: 

~x = E{X} i: xfx{x)dx (2.53) 

where E{·} is the expectation operator. In more general terms, let us define a function of 

X, g{X), whose output Y is also a random variable. Then the PDF of Y can be written 

as [78]: 

E{g{X)} = i: g{x)fx(x)dx. (2.54) 

Moments 

The n-th moment of the probability distribution of the random variable X is defined as [78J: 

(2.55) 

The most commonly used moments are the first and second moments, also known as the 

mean and the mean-square value of X. The cel;ltral moment, on the other hand, takes into 

account the mean of the process Ji'X: 

(2.56) 

In the case where n = 2, the central moment is also called the variance a~. The variance 

essentially describes the variation of the samples about its mean. In a zero-mean process, 

the variance and the mean-square value are identical. 

J oint moments 

For two random variables X and Y, the joint moment is defined by [78]: 

(2.57) 

with j and k being positive integers. The most important joint moment is the correlation 

where j = k 1. This can be calculated using the Fourier transform as discussed in 

Section 2.4.1. The correlation between two RVs is called the cross-correlation, while the 
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correlation of a RV with itself is termed autocorrelation. The covariance corresponds to the 

mean-removed correlation where: 

cov{XY} = E{(X - E{X})(Y E{Y})}. (2.58) 

Similarly, the cross-covariance describes the covariance of two RVs and the auto covariance 

is the covariance between a RV and itself. The auto covariance characterises any statistical 

relationship between different samples of a RV, and can be used as a form of prior informa­

tion in the estimation of a RV. The application of covariances to inverse problems in image 

processing is discussed in Chapters 5, 6 and 8. 

2.6 Handling real world data 

In order to process real world data on a digital computer, several operations must first be 

performed on the data. This section discusses these processes including sampling, quan­

tisation, and the associated practical problems. The characteristics of real world signals, 

such as them having finite energy, are also presented. In processing real astronomical data, 

there are other factors that have to be taken into account. These are discussed in Chapters 

4 and 8. 

2.6.1 Sampling and aliasing 

The sampling process is inherent to digital image processing where a real world, analogue 

signal is converted into a discrete sequence of samples. The process of area sampling is 

discussed here where the signal is convolved with the point spread function of the detector 

before sampling by the Dirac comb defined in Section 2.2. The sampled image fs(x, y) 

of the continuous image f{x, y) is defined as: 

f(x,y) 0 hC(x,y) x comb(x,y) 
00 00 

(i(x,y) 0 rect(x,y)) L L 6(x mXo,y - nYo). (2.59) 
m=-oon=-oo 
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hC(x, y) describes the point spread function of a detector cell with uniform sensitivity. In 

the Fourier domain, the comb function is written as [4]: 

;J{ comb(x, V)} I: I: m~oo n~ J(x - mXo, y nYo)exp{ -i21f(ux + vy)}dxdy 

(2.60) 

and the Fourier transform of the signal can be written as F(u, v). Then using the convolution­

multiplication property of the Fourier transform, the FT of the sampled signal is: 

;J{fs(x,y)} = F(u,v) x ;J{hC(x,y)} 0;J{comb(x,y)} 

41f2 f f F(u _ 21fm 
XoYo m=-oon=oo Xo 

21fn 
v - sinc(u 

Yo 

Fs(u, v). 

21fm 
Xo ,v 

21fn) 
Yo 

(2.61) 

Since the sampling process does not record every point of the original signal, there is infor­

mation loss in the process. However, provided that the samples are taken sufficiently close, 

it is possible to recover the signal exactly. This is called the Nyquist criterion and states 

that the sampling rate must be at least twice that of the highest frequency component of 

the signal [9]. Mathematically it is expressed as [85]: 

Xo = 
2fll 

1 

D 

2>'fl 
(2.62) 

where fll is the highest frequency component of the data and Xo is the sampling rate. 

The second equation relates to a practical imaging situation, where D is the diameter of 

the aperture, fz is the focal length of the optics, and >. is the wavelength of the optical 

wavefront. 

Fig. 2.9 illustrates the phenomenon of aliasing. (This is the same as Fig. 1.4 and is 

reproduced here for completeness.) Fig. 2.9(a) is the spectrum of a 1D bandlimited signal, 

and Fig. 2.9(b) shows the spectrum of the Nyquist sampled signaL In order to retrieve the 

signal spectrum, a window can be used to lowpass filter the desired portion of the replicated 

spectrum. However, if the signal is sampled beneath the Nyquist rate, some of the high 

frequency components are shifted and added to the existing low frequency components. As 

a result, the separation of these frequency components is difficult. 
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Au 
F(u) 

a1m ~ u 
fH 2fH 

(a) (b) (c) 

Figure 2.9: Illustrating the problem of aliasing. (a) Spectrum of a one­
dimensional band-limited continuous signal. (b) Spectrum of tile crit­
ically sampled signal. (c) Spectrum of an undersampled signal. The 
grey areas indicate the higher frequency components being shifted to 
overlap with the lower frequency components. 

U 

Another example illustrating the effect of aliasing is to consider two sinewaves at 1 rad/s 

and rad/s. To meet the Nyquist criterion, they must be sampled at at least 2 rad/s 

and 22 rad/s respectively. Fig. 2.10 shows the effect of sampling both signals at 10 rad/s: 

the sample points are denoted by the symbol '0' and the samples for both signals coincide. 

Generally, the low frequency signal is reconstructed from these samples, and the information 

regarding the high frequency signal is lost. 

Figure 2.10: The aliasing phenomenon. Two sinewaves of 1 rad/s and 11 
rad/s produce identical sample values when sampled at 10 rad/s. 

2.6.2 Quantisation 

After the signal has been sampled, the sampled values are usually stored by a digital in­

strument. Since the instrument can only take on a discrete number of values, the sampled 
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Figure 2.11: (a) A sine wave and its quantised version. (b) Associated 
quantisation error. 
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values must be quantised. Quantisation is therefore defined as the conversion of an analogue 

number to a digital number where the possible values are predetermined by the configura­

tion of the instrument. The device which performs quantisation is called an analogue to 

digital converter (ADC). 

The process of quantisation differs from that of sampling in the sense that a range of 

possible amplitudes are converted to a single digital number within the computer. It is 

a many-to-one mapping where information is lost. However, if the signal is sampled by a 

digital instrument, then the two processes are analogous. 

In a quantisation process, the amplitude of the analogue signal is compared to a set of 

decision levels. Each sample is then assigned a number which is closest to the analogue 

value. The process of quantisation is characterised by two variables: the step size .6., and 

the number of steps. In a gray-scale image, it is common to use 8-bits (with 28 = 256 levels) 

to represent the image. 

The major problem associated with uniform quantisation is the quantisation noise, or quan­

tisation error. Fig. 2.11(a) shows a sine wave and its quantised version using 17 levels. The 

difference between the two signals is shown in Fig. 2.11 (b ). This error is approximately 

uniformly distributed and has a variance of .6.2 /12 [78]. 
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2.6.3 Noise on the detector 

The corruption of the measurements by noise is inevitable. There are two major sources 

of noise in a photoelectronic system. Firstly, there is random thermal noise as a result of 

the resistive circuit elements. This noise process is randomly distributed about zero, and 

can be described by a Gaussian PDF (see Section 2.5.2). It is therefore often referred to as 

white Gaussian noise. Other terminologies that are used interchangeably include read noise 

and thermal noise. 

The second source of noise arises from the statisical nature of light and is particularly 

relevant at low light levels. Due to the small number of photons, this noise process is 

usually modelled by a Poisson PDF as defined in Section 2.5.2. As the light level increases, 

the Poisson noise process can be approximated by the Gaussian noise process. 

2.6.4 Finite energy, bandlimited images and compactness 

Real world signals have certain characteristics that are important in image processing. Since 

the signals can only have finite amplitude, this implies that they can only have finite energy 

also. The energy of a signal f(x, y) is: 

Ef i: i: If(x,y)1 2dxdy. (2.63) 

Parseval's theorem states that the energy of a signal in the image domain is the same as 

that in the Fourier domain [160]: i:i: If(x,yWdxdy = i:i: IF(u,vWdudv (2.64) 

where IF( u, v W is also known as the power spectrum. This property is crucial in the design 

of image processing algorithms, because it ensures that an error which has a small energy 

in the image domain also has a small energy in the frequency domain. A common measure 

of the quality of an image is the signal-to-noise ratio (SNR) , defined as the ratio between 

the energy of the signal f(x, y) to that of the noise n(x, y): 

SNR = 10 loglO {En} dB. (2.65) 

An image with a finite frequency content is called a bandlimited image. In reality, all 

images are bandlimited because they do not have infinite resolution. A signal which is finite 
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Support 

Figure 2.12: The support of an object in the image domain. 

in extent in the image domain is said to be compact. The extent of such an object can 

be defined by a support, which is the smallest rectangle that encloses the entire object. 

An example is shown in Fig. 2.12. The support of an object has been used as an a 

priori constraint in many image restoration algorithms [90,102,105,123,168,183]; these are 

discussed further in Chapter 6. 

2.6.5 Positivity 

The intensity or light emitted from an object must be positive; however when these values 

are recorded by an instrument, the read noise on the detector can result in a negative value 

being recorded. Nevertheless, the prior knowledge that intensity values must be positive can 

be used when reconstructing the object from the measurements. Enforcing positivity in a 

reconstruction increases the computational complexity, but reduces the possible number of 

solutions to the problem, and is a common constraint used in image restoration algorithms. 

This constraint is used in a number of algorithms investigated in this thesis. 
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Chapter 3 

Inverse problems: • an overVIew 

The ultimate goals of modelling a physical system are to both understand its workings 

and predict its behaviour. These systems range from an electrical circuit, atmospheric 

turbulence, the human mind, the stock market, to the universe itself. In order to achieve 

this goal, we must create a model of the system and in this process, an approximation is 

inevitable since we can never model a real system perfectly. The quality and the accuracy 

of a model to the real world system are difficult to assess. In general, if a model can predict 

what happens in the real world, then it is a good model. Usually, a model is used until it 

breaks down, or fails to predict the behaviour of the real system; then a better model must 

be devised. For example, as long ago as 340 B.C., the Greek philosopher Aristotle proposed 

that the Earth was the centre of the universe. Ptolemy developed this model further, which 

was reasonably accurate for describing the movements of the planets. Although he did realise 

that there was a flaw in the model, it remained the best model available until 1514 A.D. 

when Copernicus postulated the idea of the Earth and the planets orbiting the Sun. Many 

years later, with much controversy, this model was finally accepted, as it provided a more 

consistent description of the real system compared with the astronomical measurements 

taken. 

In this chapter, we formalise the process of modelling real world systems through the inves­

tigation of inverse problems. Inverse problems are defined in Section 3.1 and the feasibility 

of solving such problems are examined in Section 3.2. An overview of the techniques for 

solving inverse problems is given in Section 3.3. Methods devised for dealing with real world 
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systems, where the ideal properties attributed to theoretical systems no longer hold, are 

discussed in Section 3.4. 

3.1 What exactly are inverse problems? 

Any real system has an infinite number of parameters, but the amount of measurable data 

is finite. As a result, only finite models can be used. Consider the situation depicted 

in Fig. 3.1, where the relationship between a real world system, a model of the system, 

and the data (or measurements) is illustrated. From our available data, we would like to 

infer a description of the real system via a solution of an inverse problem (dashed line). 

Unfortunately, this is not possible, because the real world system is imperfectly known and 

can never be defined by a finite number of measurements. As a result, we devise a finite 

model of the real system, and from the measurements, we infer the model parameters. 

This is the inverse problem that we solve. On the other hand, the forward problem is the 

prediction of the data values given the model parameters, and a good understanding of the 

forward problem facilitates solving the inverse problem. 

Since a real world system has an infinite amount of information, and that only a finite 

amount of it is measurable, there is always a loss of information in the process. This leads 

to the question: is the data available sufficient for determining a solution via the model? 

And if so, is the solution unique? Consider a simple example: a + b 6. There are two 

unknowns in the system, and only one data point which is their sum. This is analogous 

to the problem of aliasing, where two different frequency components of a data set sum to 

form the same frequency measurement. It is obvious that there are an infinite number of 

frequency pairs that are consistent with the data. 

In order to find a solution to this problem, extra information is required. For example, 

the probability distribution of the values of a and b might be known. In this case, we 

can find the most likely values of a and b consistent with the observation. Sometimes, the 

physical limitation of a system can be used to restrict the solution set, an example of which 

in astronomical imaging is the aperture of the telescope. Since the physical dimensions 

of the aperture cut out all the light outside it, it is reasonable to assume that the image 

formed at the telescope is from the light captured within the aperture only. It should be 

emphasised that, although in many situations, there exists an infinite number of solutions 
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Model: Forward problem 

Finite 
Inverse problem 

Figure 3.1: A depiction of the relationship between the real world and 
the model we use to approximate the real world. 
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to an inverse problem, often these solutions are very similar; and for practical purposes, 

they are essentially the same. It is when such a representative solution for the problem is 

possible, that inverse problems can be viewed as solvable. 

Once it is established that there is a representative solution to an inverse problem, the next 

issue is the quality of the solution. Consider a linear problem characterised by 

d=Hf, (3.1) 

where d is the measurement, f is the unknown to solve for, and H is the matrix describing 

the transformation. Firstly, the solution to this problem should be stable. This means that 

small changes in the data values d should not produce large changes in the solution for f. 

This is important because in a real system, there are always random errors on the data due 

to the presence of noise, and it is only possible to find a representative solution if this noise 

is not amplified excessively when estimating f. Secondly, the solution should be meaningfuL 

For example, if the solution to a problem does not depend on the data at all, then even 

though the uniqueness and stability requirements are met, it gives no information about 

the system at alL (In fact, the system is so stable that no matter what happens to the data, 

the solution remains the same!) In other words, the solution must still be influenced by the 

data. A balance must be achieved between these often conflicting requirements. A solution 

which fulfils these criteria is called a well-posed solution, and the corresponding problem is 

called a well-posed problem. 

These ideas can be expressed mathematically as follows [68,69]. Consider the same system 

as described by Eq. (3.1), where f and d belong to respective Hilbert spaces HI and H 2 , 
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and that H is a bounded linear operator. This problem is defined to be well-posed if: 

(1) for every element d E H2 there exists a solution in the space HI; 

(2) the solution is unique; 

(3) the problem is stable on all spaces (HI. H 2), i.e. the solution depends continuously 

on the data; and that small perturbations in the data do not cause large changes in the 

solution. 

Otherwise the problem is ill-posed. 

It is a well-posed problem that we would like to solve, but many systems are ill-posed. 

In order to deal with these problems, they must be regularised first. Katsaggelos defined 

regularisation as 'the analysis of an ill-posed problem via an analysis of an associated well­

posed problem, whose solution yields meaningful answers and approximations to the given 

ill-posed problem' [95]. Essentially, the application of regularisation should either reduce 

the number of possible solutions, and/or stabilise the solution. The restriction of an object 

to have only positive intensity values is one example of reducing the solution set, while 

assuming that the object is smooth is one way of stabilising the solution. Ultimately, the 

objective of using regularisation is to combine data information and prior information to 

achieve a smooth solution which remains faithful to the data. It should be clarified that 

the term smooth does not imply flat and broad; instead it implies that the noise is not 

amplified. This is especially true for astronomical imaging where the object may be point 

sources. 

3.2 Are inverse problems possible? 

Consider an image of the binary star Castor captured by a charge-coupled device (CCD) 

camera as shown in Fig. 3.2(a). This is one of a series of images captured. The object 

has been degraded by the effect of the atmosphere and the optics, and insufficient sampling 

was employed in capturing the data. As a consequence it is impossible to distinguish the 

binary star in the data. By applying inverse problem techniques, a clear binary object (Fig. 

3.2(b)) is recovered. 

At first glance, it seems impossible to achieve the reconstruction. In order to prove the 

feasibility of such an inverse problem, let us first examine a noiseless case. Let f(x, y) be 

the object of interest of size M x M, hk(X, y) be the kth realisation of the point spread 
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Figure 3.2: (a) A sample frame of the binary star Castor. The binary 
star cannot be distinguished. (b) The application of inverse problem 
techniques has reconstructed a binary star. 

function, each of size N x N, and dk(x, y) be the kth convolution: 
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(3.2) 

Each of the K convolutions is therefore of size (M + N - 1)2. In the inverse problem of 

blind deconvolution, where f and h are unknown, there are a total of M2 + K N 2 unknowns. 

On the other hand, the number of known variables is 

K(M + N - 1)2 ::::;; K(M + N)2 

KM2 + KN2 + 2KMN 

> M2 +KN2 V K. (3.3) 

From this simple analysis, it appears that this inverse problem is possible, because there 

are more data points than unknowns. 

Since it is easier to determine the number of unknowns compared to the number of measure­

ments, instead of classifying a problem to be well-posed or ill-posed, often linear problems 

are defined as either overdetermined or underdetermined. An overdetermined system is 

one which has more measurements than unknowns, such as the example above; while the 

converse is true for an underdetermined system. An exactly determined system is when the 

number of unknowns equals the number of measurements; this does not usually happen in 

real life but is a useful means for analysing associated problems. 

Returning to the simple analysis above: although the number of unknowns is less than 

the number of measurements, this analysis is deceptive because the noise is not taken into 
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account. When noise is present, the measurements with values below the noise floor are 

not representative, and the number of measurements is reduced as a result. Moreover, it is 

possible that not all measurements are independent. In this case, a meaningful solution is 

only possible if some measures are taken to ensure that the problem is not ill-posed. 

In view of real world systems, where the presence of noise is inevitable, the feasibility of 

an inverse problem must be re-evaluated. In this case even in an overdetermined system, 

regularisation may need to be included in order to obtain a good solution. On the other 

hand, it is also possible for an underdetermined system to have a solution. This can be 

achieved by employing prior information in the reconstruction, such as the aliasing example 

mentioned earlier on in this chapter, or by parameterising a solution. If the object we wish 

to reconstruct has N unknowns, but is essentially smooth and can be represented by fewer 

parameters p « N, then a solution can be obtained. An example is the parameterisation of 

the denominator in the DWFS framework to obtain an object intensity distribution, which 

is discussed in Chapter 9. 

Sometimes, only a partial model can be reconstructed. For example, the reconstruction of 

an image is of lower-resolution than desired due to the lack of data. This is another example 

of a solution obtained from an underdetermined system, and illustrates the concept of a 

representative solution. 

A more rigorous approach to determining the feasibility of the inverse problem discussed 

above is to use the concept of zero sheets [107]. It has been shown that for a convolution 

with a dimension greater than unity, blind deconvolution on a noiseless frame of data is 

possible in the absence of any prior information. This method can be summarised as follows. 

For a two-dimensional object f(x, y), there exist a corresponding Fourier transform F(u, v) 

and a Z-transform .1'((,1') [127]. Assuming that all the quantities in all these spaces have 

compact support, then there exists a zero map of .1'((, 1') which completely characterises 

f(x, y) to within a complex multiplicative constant. In other words, for any K, .1'((,1') is 

zero on a surface in 2K -dimensional Z space. This surface is called the zero sheet and is 

of dimension 2K 2. The recovery of the object f(x, y) given its zero sheet is achieved 

by firstly evaluating the Fourier spectrum F(u,v) point-by-point, and then taking an 1FT. 

An alternative evaluation can be obtained via the method of Curtis et at. [28]. Although 

this means of analysing the inverse problems produces a number of theoretical results, the 

presence of noise causes difficulties for such an analytic approach. In practice, a statistical 
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approach is better suited to real world data. 

3.3 Classes of solution to inverse problems 

Most of the existing methods for solving inverse problems can be classified into one of the 

three categories of algorithms: maximum likelihood (ML), maximum a posteriori (MAP), 

and maximum entropy (ME) methods. In this section, these three categories are defined, 

and the relationship between them is explained. 

3.3.1 Maximum likelihood methods 

If we know that our individual errors and fluctuations 

follow the magic bell-shaped curve exactly, 

then the resulting estimates are known to have 

almost all the nice properties that people have been able to think oJ. 

- J.W. Tukey, 1965. 

As early as 1816, the method of maximum likelihood was already proposed, but was not 

known by this name [70]. The first item of literature that recorded the maximum likelihood 

method was the paper by Fisher in 1912 [37]. His postulation is as follows. Let f be a 

function involving arbitrary elements '!91 ) '!92 , ... , '!9n and that x is the abscissa. If f is a 

function of unit area, then p = fox is the probability of an observation falling within the 

range ox. Since ox is independent of the underlying function we are trying to estimate, the 

probability of any particular set of '!9's is proportional to where 

n 

logP = I:logf, (3.4) 

with n being the number of observations. This means that the most probable set of values 

for the '!9's will make P a maximum. Essentially, the maximum likelihood approach is used 

when we wish to infer the underlying function when only a set of data is given, and that 

no prior information about the function is available. 

From a more pragmatic point of view, the maximum likelihood method is essentially a 
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'best-fit' method. Consider a system described by: 

d = Hf+n (3.5) 

where f is the object of interest, H is the point spread function matrix, n is the noise on 

the system, and d is the noisy measurement. Given d and H, we wish to find an estimate 

of f. If we assume no information about the object, the best we can do is to minimise some 

metric of the noise on the data, for example the square of the L2 norm: 

(3.6) 

where the circumflex denotes the estimate of the quantity. This makes sense because it 

utilises the information available and assumes as little as possible about the unknowns. It 

can also be viewed as a procedure of ensuring that the object estimate is as consistent as 

possible with the observed data. 

If we assume the statistics of the noise, we can formalise this reasoning to try and estimate 

the most likely noise distribution. In other words, we wish to maximise the probability 

P(dlf). Let us assume the covariance of the noise to be K nn , then the expression to be 

maximised is: 

(3.7) 

To simplify this expression, the logarithm can be taken without affecting the location of 

the maximum of the metric. Since maximising Eq. (3.7) is equivalent to minimising the 

negative of it, the expression to be minimised is: 

E = (d Hf)TK~~(d - Hf) 

dTK-1d dTK-1Hf - fTHTK-1d + fTHTK-1Hf nn nn nn nn . (3.8) 

In order to find the minimum, we can differentiate this expression with respect to f and 

equate it to zero: 

BE 
Bf 

o. 

This can be rearranged to give an estimate of f: 

(3.9) 

(3.10) 
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This is called the maximum likelihood estimate, the minimum-variance unbiased estimate, 

or the Gauss-Markov estimate [115]. It is desirable to be able to obtain a solution in closed 

form such as Eq. (3.10), however in practical situations, an iterative solution is a more 

realistic approach. The iterative form of Eq. (3.10) is [4]: 

(3.11) 

where E{-} denotes the expectation operator. The second term of Eq. (3.11) is in fact a 

matched filtering operation. This becomes apparent if we let Knn I; then multiplying 

(d - Hf) by HT is equivalent to correlating the former with H. 

It should be pointed out that in the limiting case where the statistics of the noise is unknown, 

the covariance matrix Knn is usually assumed to be an identity matrix, in which case the 

maximum likelihood solution simplifies to a least-squares or pseudoinverse solution. This 

means that the least-squares solution can be viewed as a special case in the maximum 

likelihood framework. 

The pseudo inverse solution also led to an important result derived by Hunt (1972) [84]. 

He showed that if H is a circulant matrix, then it can be decomposed by the DFT, thus 

conceptually linking the algebraic and Fourier domain solutions to the restoration problem 

[71]. 

The above expressions are valid for a system described by Eq. (3.5) with Gaussian statistics. 

If the system is dominated by Poisson statistics, then the probability P(dlf) is given by [78]: 

A d k 

P(dlf) = k! exp{ -d}, k = 0,1, ... (3.12) 

and the metric to be minimised is: 

E LHf dln[Hf]. (3.13) 

For the derivation of this equation, the reader is referred to the book by Snyder and Miller 

[158]. It should be pointed out that due to the nonlinearity involved in the minimisation, a 

closed form solution is not available, and an iterative procedure is necessary for obtaining 

a solution. 

The ML estimator is also associated with the expectation-maximisation (EM) method, 

which was first proposed by Dempster et al [3l]. The basic idea is to infer a 'complete 
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data set' from an 'incomplete data set' via a two-step procedure: the expectation step, and 

the maximisation step. Despite the mathematically involved derivations, the EM algorithm 

is essentially a procedure for obtaining the maximum likelihood formulation for Poisson 

statistics. A popular application of the EM method is positron emission tomography [96, 

156]. 

3.3.2 Maximum a posteriori methods 

In the maximum likelihood estimate, no information was available regarding the object to 

be estimated. However, if such information is available, it is intuitively reasonable to include 

it in the solution. This is the basic idea of a maximum a posteriori (MAP) solution. 

An alternative approach is to consider an exactly determined maximum likelihood solution 

for a real system. It is obvious that there is noise on the system, however the maximum 

likelihood solution implies that the mostly likely situation is when there is no noise (provided 

that the noise is zero-mean). From a practical viewpoint, this paradox means that the 

noise on the system is manifested as part of the object reconstruction which is undesirable. 

Therefore, if prior knowledge about the object is available, it can be used to differentiate 

between an object reconstruction that is consistent with the prior information, and one that 

is corrupted by the noise. 

The following political example illustrates the application of the MAP method. Consider 

a hypothetical situation, where New Zealand was about to have a referendum on the issue 

of lowering the legal drinking age from 20 to 18. Suppose that at this date, a general 

election had just taken place, and that the Labour party had won, with the proportion 

of voters voting for them at 52%, and that the National party had taken the remaining 

48% of the votes. (This situation disregards all the other parties for simplicity only.) With 

the numerous opinion polls conducted at the time, it can be taken that 85% of Labour 

supporters and 55% of National supporters intended to vote 'Yes', with the remainder of 

the population voting 'No'. Suppose that we met a person who intended to vote 'Yes'. 

Then given all the information above, what is the probability of the person being a Labour 
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supporter? This problem can be solved by Bayes' theorem, where: 

P(LabourIYes) 
P(YeslLabour )P(Labour) 

P(YesILabour)P{Labour) + P(YesINational)P(National) 
0.85 x 0.52 

0.85 x 0.52 + 0.55 x 0.48 
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- 0.63. (3.14) 

This is a simple demonstration of a Bayesian estimator, and illustrates how a measurement 

can be used indirectly provided it is related to the desired quantity. The key issue is that 

we must know the prior probabilities, which, although are simple to obtain for political 

leanings, are very difficult in the case of objects. 

In a more general inverse problem, consider the situation described by Eq. (3.5). The MAP 

estimate of f, f, is one which maximises the a posteriori probability P(fld): 

P(f~ld) = P(dlf)P(f) mF mtx P(d) , (3.15) 

where P(dlf) is the conditional a priori probability, and P(f) and P(d) are the prior 

probabilities. To simplify this expression, the logarithm can be taken without affecting the 

position of the maximum. This results in: 

m!1x log[ P{ f Id)] 
f 

m!1xlog[P(dlf)] +log[P(f)]. 
f 

Note that the term P(d) has been discarded, as it is independent of f. 

(3.16) 

The first term in Eq. (3.16) is in fact the ML estimator which describes the consistency 

between the observed data and the object. In other words, the ML estimator is when the 

prior probability distribution is the same as the posterior probability distribution, where: 

(3.17) 

The second term in the equation expresses the prior probability, or simply the prior, of the 

object. This can be a frequency distribution of f, which is usually unavailable; alternatively, 

it can be any rea,8onalileaSsumption about the object. Obviously, the choice of prior depends 

- on the problem. Examples of prior information used for astronomical imaging are a major 

topic of discussion throughout this thesis. 

It should be emphasised that, in obtaining a solution via the MAP framework, a balance 

must be achieved between the two terms in Eq. (3.16). If the weighting on the first term is 
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too high, then the object estimate will fit to the noise, and a noisy reconstruction results. 

On the other hand, if the weighting of the second term is too high, the solution will be 

too smooth, obscuring any features in the reconstruction. Fig. 3.3 illustrates this concept. 

A binary object is shown in Fig. 3.3(a), and the image of the binary star distorted by 

atmospheric turbulence and corrupted by noise is shown in Fig. 3.3(b). A Wiener filter is 

used to reconstruct the object and the prior information is the signal-to-noise ratio. When 

too much weight is put on the prior, the reconstruction is too smooth (Fig. 3.3(c)); on the 

other hand, insufficient prior weighting results in a noisy reconstruction (Fig. 3.3( d)). The 

best reconstruction with the optimal weighting is shown in Fig. 3.3(e). 

Although there are algorithms for finding the optimal weighting between the consistency 

measure and the prior term, more often than not, the method of trial and error is employed. 

Nevertheless, it should be pointed out that there is a range of values for the weighting that 

produce a similar reconstruction, and provided the result is not unduly sensitive to the 

assumptions made, the result is justified. 

3.3.3 Maximum entropy methods 

Both the maximum likelihood and the maximum a posteriori methods are linear recon­

struction schemes. A different approach to the problem of object reconstruction is to apply 

non-linear methods, one of which is the maximum entropy method. 

The concept of applying maximum entropy (ME) to image restoration was introduced in the 

1970s. Although all the variations of the methods involve estimating unmeasured Fourier 

coefficients, there exist various views of the workings of the ME method. Ables [1] described 

ME as a maximally non-committal technique with regard to the unmeasured data, while 

Gull and Daniell [66,67] defined ME to give the 'most probable' solution consistent with 

the data. Jaynes [89] explained that ME is useful for describing a class of problems where 

orthodox statistics fail to account for the prior information available, while Andrews and 

Hunt [4] had taken a combinatorial approach to the problem. Meanwhile, Hogb~m [79] and 

Subrahmanya [164, 165] treated ME as a penalty term in the restoration framework. As 

there are many different views regarding the maximum entropy approach, in this thesis, the 

two most widely accepted views are defined and discussed. The first approach is that of 

Jaynes, and Andrews and Hunt, where the problem formulation involves the maximisation 
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of: 

(a) (b) 

(c) (d) (e) 

Figure 3.3: A demonstration of the importance of weighting the prior term 
correctly. (a) A binary object. (b) Image of the binary star distorted 
by atmospheric turbulence and corrupted by noise. (c) Reconstruction 
with too high a weighting on the prior. (d) Reconstruction with too low 
a weighting on the prior. (e) Reconstruction with the optimal weighting 
011 the prior. 

_fT In(f). 

55 

(3.18) 

Secondly, there is a group of 'maximum entropy priors' which is used as a penalty term (or 

prior probability) in a reconstruction. This definition encompasses the function described 

in Eq. (3.18), as well as functions such as f1/2 and In(f) [129]. For clarification, the first 

definition is referred to as the ME method, while the second definition is called the ME 

priors. 

ME method 

The maximum entropy method can be interpreted as the method which gives a solution 

with the most disorder. In other words, it favours the solution which is most likely to 

have produced the observed measurements by assuming as little as possible. It is also the 



56 CHAPTER 3. INVERSE PROBLEMS: AN OVERVIEW 

solution which allows for the incorporation of prior information that does not conform to 

the traditional prior described by frequency distributions [89], which is by far the most 

commonly encountered in practice. However, only testable information can be incorporated 

mathematically into the problem formulation. This means that there is a procedure which 

can determine unambiguously whether the information agrees with the prior. For example, 

the statement 'the mean value of the parameter fJ in a set of measurements is 2.56' is 

testable, while the statement 'the crowd was indifferent when the value of fJ is 675' is not 

easily testable, even though it is information about the parameter we are trying to estimate. 

The formal definition of the maximum entropy method can be derived from a combinatorial 

approach [4]. Consider the situation where an object is captured by a CCD camera; this 

is depicted mathematically by Eq. (3.5). It is assumed that there are M2 elements in the 

object distribution, and that a total number of P units of energy are allocated among the 

M2 elements of the object distribution: 

(3.19) 

As for the noise, let the values of nj be a random variable about a positive mean, nj = 
Nj - B, with B being a positive number, and Nj being another random variable. It is also 

assumed that the number of noise particles is finite, ~~21 Nj No. Furthermore; it is 

assumed that the object and noise particles are distributed so that they are identical but 

distinguishable, and that any particle is equally likely to occupy any of the M2 elements. 

The noise and the object are statistically independent. This situation is one of complete 

ignorance [4,89]. 

In order to find the object and noise distributions which lead to the observed image values 

d, we can employ the concept that since the object and noise particles are equally likely to 

occur in any of the M2 elements, the object and noise distribution is the one that can be 

formed from hand nj in the maximum number of ways, provided that the image formation 

constraint stated in Eq. (3.5) is met. 

It can be shown from a combinatorial consideration that the maximum number of ways in 

which an object can be formed from a fixed number P of distinguishable particles is: 

w - P! 
f - nMZ f,I' 

j=l J' 

(3.20) 



3.3. CLASSES OF SOLUTION TO INVERSE PROBLEMS 57 

and similarly, the number of ways the noise can be formed is: 

No! 
Wn = M2 • 

ITj=l nj! 
(3.21 ) 

From this, it can be deduced that the maximum number of ways the object and noise 

particles can be formed is: 

(3.22) 

subject to the image formation process. As before, we can take the logarithm of Eq. (3.22) 

to give: 

M2 M2 

In WfWn = InP! + InNo! - Llnfj! - Llnnj!. (3.23) 
j=l j=l 

The first two terms are constants and can be ignored in the maximisation. Applying Stir­

ling's approximation to the logarithm of a factorial, where: 

Ink! c:::' kInk, 

the optimisation problem can be formulated as follows. 

max 
f,n 

subject to 

and 

M2 ~ ~ M2 ~ A - 2: j =l fj In fj - 2: j =l nj In nj 

d=i0h+n 

(3.24) 

(3.25) 

This can be solved either via a one-step process or recursively [4]. Although the above 

analysis is intuitively satisfying, it provides few clues as to how the ME method actually 

performs when applied to image processing problems. The following section gives a more 

practical approach to the problem. 

ME priors 

The ME method has been analysed formally by many authors. However, since it is a non­

linear technique derived from many different disciplines of science, many prevailing views 

exist on this method. In order to examine the characteristics and quantify the properties 

of the ME priors, Nityananda and Narayan [129] took a pragmatic approach to the prob­

lem. They noted that there are many entropy priors that can be viewed under the same 

framework, and examined the performance of the priors in terms of resolution and noise 

sensitivity. 
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To understand the relationship between these entropies, or entropy priors, let us first define 

the quantity J(x, y) such that its known Fourier coefficients are PM,N: 

f f J(x,y) exp{ -i21r(Mx + Ny)}dxdy = PM,N E K, (3.26) 

where K is the set of known values. Then the aim of an ME restoration is to maximise a 

quantity which is the integral of a function b(J(x, y)): 

E(J) f f b(J(x, y))dxdy. (3.27) 

The quality ofthe reconstruction using an ME prior is determined by two parameters: RME, 

which measures the compression of the baseline relative to the peaks (when compared to a 

bandlimited function), and n, which indicates how far this flattening effect extends upwards 

from the baseline. RME is defined in terms of the curvature of the function J(x, y): 

b" (Jmin) 
b"(Jmax) , 

(3.28) 

while the value of n is in the order of 101 . It should be noted that positivity is enforced if 

n ~ O. A small n signifies a 'soft' prior, and produces a solution with a very flat baseline 

but relatively wide peaks, an example of which is the commonly used form of In(J). As 

n increases, the prior gets 'harder'. The peaks in the reconstruction become sharper and 

the resolution increases, however, the baseline starts to have ripples in it. The entropy In J 
is 'harder' than In(J) , while - exp( - J In(RME)) is the hardest of all. Table 3.1 lists a 

family of entropy priors from the softest to the hardest prior. The baseline flattening and 

peak sharpening properties of the priors go through a gradation according to the order in 

Table 3.1. 

It should be noted that although the two parameters RME and n describe the behaviour of 

the family of ME priors, they are only model parameters and are not guaranteed to predict 

the behaviour of the algorithm accurately at all times. In this case, numerical simulations 

are needed to analyse the performance of the algorithm. 

3.3.4 Relationship between the three methods 

There exists a very close relationship between the maximum likelihood estimator (MLE), 

the maximum a posteriori (MAP) estimator, and the maximum entropy (ME) method. The 

relationship is illustrated by the Venn diagram in Fig. 3.4. 
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ME priors I 

f3/2 

-flnf 
f1/2 

lnf 

-1/f2 

-exp{ -flnRME} 

Table 3.1: Different forms of the ME priors. The prior in the top row 
is the 'softest' prior which produces a solution with a flat baseline and 
wide peaks. The prior in the last row is the 'hardest' prior, meaning 
that it allows better resolution but introduces ripples in the baseline. 

ME 

Figure 3.4: Venn diagram illustrating the relationship between the maxi­
mum a posteriori, the maximum likelihood, and the maximum entropy 
methods. 

Since the MLE estimates the most likely function in the absence of prior information, it is a 

subset of the MAP estimator. In image processing, the usage of the MLE is most prevalent 

in situations described by Poisson statistics [96,156]; whereas the MAP estimator tends to 

be used when the scenario is governed by Gaussian statistics. There is also a 'grey-area' 

between the ML and MAP formulations. For instance, Schulz proposed a penalised maxi­

mum likelihood framework for astronomical blind deconvolution [154], which is essentially 

a MAP estimator. 

The MAP estimator and the ME method are related under certain circumstances [171]. 

Consider the ME restoration defined by Andrews and Hunt as in Eq. (3.25). The solution 

to this problem is given by: 

(3.29) 

where>. is the Lagrange multiplier. It should be pointed out that this solution also corre-
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sponds to a constrained least squares solution. 

To arrive at a MAP solution in the form of Eq. (3.29), the probability distributions P(n) 

and P(f) are required. Assuming that the noise is a zero-mean Gaussian distribution, 

(3.30) 

where Cl is a constant and Knn is the noise covariance matrix. In the case where the noise is 

stationary and uncorrelated, this matrix is an identity matrix (721, where (72 is the variance 

of the noise process. With a judicious choice of P(f), where 

P(f) = C2 exp{ _f3fT Inf}, (3.31) 

C2 being another constant, it leads to the solution 

A 1 T A 

f=exp{-l+ f3(72H (d Hf)} (3.32) 

which is equivalent to Eq. (3.29) except for the multiplicative constants. Therefore, al-

though the methods of ME and MAP have been derived from different fundamental assump­

tions, they are actually very similar when certain probability distributions are considered. 

Since the MLE is a subset of the MAP estimator, and the latter is equivalent to the ME 

method for certain situations, it is fair to say that the MLE is also related to the ME method. 

However, this is the extent of the equivalence. It should be pointed out that in Frieden's 

paper, where he stated that 'maximum likelihood implies maximum entropy' [47], used a 

different definition of maximum likelihood to that in the other literature, where maximum 

likelihood is used in conjunction with the likelihood function derived from a parametric 

description of an underlying probability function [176J. 

It is intuitive that certain classes of solutions would perform better than others under 

different conditions. An interesting example is the state of complete ignorance. The question 

is: what prior distribution describes the state of complete ignorance? To this question, 

Laplace replied, 'when the probability of a simple event is unknown, we may suppose all 

values between 0 and 1 as equally likely'. This point of view was shared by Bayes [89]. 

However, this does not describe many practical situations. Suppose a student finds a jar 

of crystals in a laboratory, and wishes to know whether they are soluble in water. If the 

student is able to dissolve one crystal, then it can be inferred that all the crystals are soluble. 

This means that the prior distribution should have greater weight at the end points 1J = 0, 1, 

which can be realised by using a maximum entropy framework. 
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3.4 Regularisation 

At the beginning of the 20th century, pure mathematicians such as Hadamard [68,69] 

stated that physical situations only lead to well-posed problems, and that ill-posed prob­

lems are mathematical anomalies. It was not until the mid-60s that 'well-posed exten­

sions', or regularisation methods were introduced to ill-posed problems. For example, in 

1963, Tikhonov [169] proposed that the solution should have 'regular' properties, while 

Franklin [41] suggested the use of a priori statistics in the model in 1970. 

According to Tikhonov [170], the regularisation method consists of finding regularisation 

operators that operate On the data, and determining the regularisation parameter from 

information pertaining to the problem. The regularisation operator must depend contin­

uously on the data, and that as it approaches zero (or as the noise approaches zero), the 

regularised solution must approach the true solution. Many concepts have been proposed 

for regularising the ill-posed solution. These include the restriction of the data; the use of 

regularisation operators, and well-posed stochastic extensions of ill-posed problems. 

3.4.1 Condition number 

To determine whether a system requires regularisation (or how much regularisation is 

needed), one can examine the condition number of a matrix. The condition number of 

the matrix H, cond(H), is defined as [95]: 

cond(H) = 
J1.r 

(3.33) 

where J1.1, ..• ,J1.n are the singular values of H, r is the rank of H, and that J1.l 2 J1.2 2 
... 2 J1.r > J},r+1 •.. = J1.n = O. If the value of cond(H) is small, then a small change in 

d does not produce a large change in f, i.e. the system is stable. As a result, only a small 

amount of regularisation is needed. However, if the condition number is large, then a small 

perturbation in the data produces a large perturbation in the solution. Such a matrix is 

called an ill-conditioned matrix, and the associated system is an ill-posed system. In this 

case, it is crucial that regularisation is included in the solution. 
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3.4.2 Forms of regularisation 

There are many well-established regularisation methods, and a review of these methods is 

given below. Consider an imaging system 

(3.34) 

where f (x, y) is the unknown, and k denotes the kth realisation of the respective quantities. 

The unregularised solution to the problem is obtained by solving for the maximum likelihood 

solution with the error metric: 

E(j(x, y)) = ~ 'I)j(x, y) 0 hk(X, y) dk(X,y))2. (3.35) 
k X,Y 

We call the term to be minimised E(j(x, y)) the error function, or the objective function. It 

should be noted that although the ML solution associated with Gaussian statistics is used 

here, the discussion on regularisation can be generalised to different noise statistics. When 

regularisation is included in the solution, the error function is modified to: 

E(j(x, y)) = ~ ~(j(x, y) 0 hk(x, y) - dk(X, y))2 + A x regularisation term (3.36) 
k X,Y 

where A is the Lagrange multiplier and determines the amount of regularisation in the er­

ror function. This type of regularisation, where an extra term is added to the metric, is 

called explicit regularisation. Implicit regularisation is also possible, but here the regular­

isation is not obvious from the error metric. One example is the termination of iterations, 

where an iterative algorithm is terminated before complete convergence to prevent noise 

amplification [104]. However, the point at which the algorithm should be terminated is 

not well-defined, and user input may be required. Moreover, it is difficult to analyse its 

performance analytically. As a result, it is preferable to use explicit regularisation in an 

algorithm. Several types of explicit regularisation are discussed below. 

Energy and smoothness constraints 

Both of these constraints modify the error function to the form: 

(3.37) 
k X,y X,Y 

where c(x, y) is the regularisation kernel. With the energy constraint, also known as the 

Tikhonov-Miller regularisation, the kernel is simply the identity matrix. As for the smooth-
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ness constraint (or the Laplacian), the kernel is essentially a high-pass filter: 

-0.25 

1 

-0.25 

63 

This kernel ensures continuity in the reconstruction and is more suited to truncated images 

compared to the energy constraint. 

It is important to achieve a balance between the consistency error and the regularisation 

term (first and second terms in Eq. (3.37) respectively), as discussed in Section 3.3.2. 

Positivity and support 

In incoherent imaging (defined in Chapter 4), it is the intensity values that are observed. 

Since the intensity values must be positive, it is reasonable to enforce the reconstructed 

values to be positive. When the object is of finite extent, it is also possible to define 

a support that it must be enclosed in. There are two ways of implementing these two 

constraints. Firstly, they can be treated as a regularisation term [105]: 

E = A L If(x, y)12 (3.38) 

OJ 

where nj denotes the points where f(x, y) violates the positivity or support constraints, i.e. 

the points where f is negative or outside the support. This is essentially a penalty method, 

which is also called a method of 'loose' constraints, and is a linear method. An alternative 

approach is to use a projection based method [183], where the prior information is expressed 

through constraint sets. Basically, this method involves setting the negative pixels or pixels 

outside the support to zero after each iteration and is a non-linear method. Positivity can 

also be enforced by parameterisation where f(x, y) = 'ljJ2(x, y) [157,168]. This however 

distorts the error surface and a unique solution cannot be guaranteed. This problem is 

overcome by the quadratic programming method [94] which preserves the unimodality of a 

parabolic error surface. This is the method adopted for enforcing positivity in this thesis. 

Total variation 

In images which contain both smooth areas and sharp edges, it is desirable to use a prior that 

can preserve both characteristics. In this case, the total variation prior can be used [21,185]. 

This involves the minimisation of: 

E = A L l\7f(x,y)1 (3.39) 
X,Y 
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where \7 is the gradient operator defined as: 

\7f(x,y) 
.... af(x, y) ... af(x, y) 
x ax + y ay (3.40) 

and -: is a direction vector. 

Entropy constraint 

As discussed in Section 3.3.3, a commonly used form of the maximum entropy prior is 

-fln(f). 

Statistical priors 

If the statistics of the unknown object are available, it can be incorporated into the problem 

formulation via a covariance matrix. An example is the estimation of the atmospheric point 

spread function, which is characterised by Kolmogorov statistics [147]. If the unknown that 

we are solving for is f, and its associated covariance matrix is Kif, then the regularisation 

term is: 

(3.41) 

The application of Kolmogorov statistics to astronomical blind deconvolution has been 

investigated, the results of which are included in Chapter 6. 

Multiple frames 

use of multiple frames adopts a different approach to that specified by Eq. (3.36). In­

stead of adding an extra term to the objective function, using multiple frames provides more 

data information, and reduces the number of unknowns relative to the known quantities. 

the case of single-frame blind deconvolution, the symmetry of Eq. (3.34) means that the 

estimates of j (x, y) and h( x, y) can be reversed. There is also a possibilty of obtaining the 

trivial solution where the object is estimated to be a delta function, and the PSF the data 

(or vice versa). When multiple frames are used, the problem of the reversal of the estimates 

is eliminated, and the possibility of the trivial solution is reduced. 

Others 

This section has given an overview of the regularisation operators that can be used. Of 

course, the operators are not limited to the list mentioned here. In fact, in a reconstruction, 

the operators used need not conform to any standard structure; as long as the assumption 

is reasonable, it is a valid form of operator. 
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3.5 Summary 

This chapter examined the topic of inverse problems. An inverse problem is the deduction 

of the underlying real function from measured data through a model of the physical process 

which produced the measurements. Inverse problems occur frequently in reality, and many 

solutions have been proposed to solve these problems, a review of which has been given. 

In solving an inverse problem, only a finite amount of information can be measured to 

essentially describe a system which has an infinite number of variables. The presence of 

noise is also inherent to any measurement. As a result, many inverse problems are ill­

conditioned, and regularisation must be employed to achieve a meaningful solution to the 

problem. Common forms of regularisation have been presented in this chapter. 

Examples of inverse problems include interpolation and almost all problems in astronomical 

imaging. Some of these problems are addressed in the subsequent chapters in this thesis. 
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Chapter 4 

Imaging through turbulence 

When an object is imaged, its wavefront is degraded by many elements before it is finally 

recorded. These degradations include the lenses in the optical system, the CCD array, 

the imaging medium and the noise. All these non-ideal components affect the wavefront 

differently. A good understanding of these processes facilitates solving the associated inverse 

problems. 

One of the fundamental theories in imaging is that of light propagation! which is divided 

into geometrical optics and Fourier optics. Geometrical optics employs simple geometrical 

relationships to predict the propagation of light. Fourier optics provides a more accurate 

model of light propagation which also accounts for the diffraction effects introduced by an 

imaging system. Although diffraction effects are not included in the theory of geometrical 

optics, corrections can be made to the approximation after the process of light propagation. 

These topics are discussed in Section 4.1. 

The phenomenon of diffraction poses as an upper limit to an imaging system. However, 

diffraction-limited imaging is only realisable if appropriate sampling is employed in the 

focal plane. The relationship between diffraction, sampling, and the resolution of an optical 

system is examined in Section 4.2. Although the resolution of the captured images is limited 

by diffraction! a class of post-processing methods known as superresolution algorithms can 

be applied to the images to exceed this limit, a brief overview of which is also given in this 

section. 

67 
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In a real system, the upper limit of diffraction-limited imaging is often not reached due to 

the aberrations on the incoming wavefront. Further distortions are introduced on the image 

as a result. The quantification of the performance of an aberrated imaging system, as well 

as other parameters which characterise such systems are discussed in Section 4.3. 

When capturing astronomical images from ground, it is inevitable that the wavefront prop­

agates through the Earth's turbulent atmosphere. The characterisation of such a process 

is essential for solving the inverse problem of reconstructing the star's intensity distribu­

tion from the captured images. The process of imaging through atmospheric turbulence is 

presented in Section 4.4. 

It is important to be able to perform simulations to verify the theory and the performance 

of the algorithms. However the ultimate objective is to apply the algorithms on real world 

data. Section 4.5 deals with the practical issues associated with handling real astronomical 

data. In Section 4.6, a review of the existing algorithms on solving astronomical inverse 

problems is given. 

4.1 Optics theory 

Optics deals with the study of light and is of utmost importance in the understanding of 

wavefront propagation in a system. Optics theory is encountered in many systems, such 

as telescopes and microscopes, and there exist numerous branches of optics: geometrical 

optics, Fourier optics and quantum optics [32]. In this section, the theory of geometrical 

and Fourier optics which is relevant to this thesis is discussed. 

It is however necessary to firstly introduce the concept of light rays and a wavefront. Fig. 4.1 

shows a point source from which light rays diverge. A wavefront is the surface perpendicular 

to the direction of light propagation, and is spherical in this illustration. 
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Point source 

Figure 4.1: Illustration of an object: a point from which rays of light 
diverge. 

4.1.1 Geometrical optics 

Fundamental laws of geometrical optics 

69 

Geometrical optics is the study of the propagation of light using simple geometrical rela­

tionships [32]. There are four basic laws of geometrical optics. The first law is the law of 

rectilinear propagation, meaning that in an isotropic, homogeneous medium, light travels in 

straight lines. When light encounters a surface between two media, reflection, or refraction, 

or both phenomena occur. These phenomena are the second and the third laws respectively. 

Reflection is illustrated in Fig. 4.2, where a light ray is reflected off a mirror surface. The 

size of the angle of arrival 01 is the same as that of the angle of departure O2• An example 

of refraction is shown in Fig. 4.3 where the light ray travels from medium 1 to medium 2 

with respective refractive indices of nl and n2. The refractive index describes the speed of 

light in a particular medium relative to its speed in vacuum c which is equal to 3 X 108ms-1• 

The angles 01 and (h are related to the refractive indices by Snell's Law: 

sin O2 

sin 01 
(4.1) 

For instance, atmospheric turbulence can be viewed as a collection of lenslets with different 

refractive indices. The fourth law of geometric optics is the law of reversibility. This 

law states that if the direction of a light ray is reversed, it traces exactly the same path 

backwards. 
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Figure 4.2: An illustration of reflection. 

Figure 4.3: An illustration of refraction. 

Lenses and image formation 

The most important components of optical imaging and optical data processing are lenses. 

Lenses come in many shapes, the most common of which is the converging, or double-convex 

lens. The discussion that follows is presented from the point of view of using such a lens, 

but this does not restrict the application of the theory to other lenses. 

As shown in 4.1, the point source is a point from which rays of light diverge. To 

form an image of such an object, a lens must be used so that the spherical wavefront of the 

object converges on a point. This is illustrated in Fig. 4.4 [91]. Two approximations are 

employed here: the thin lens approximation, which states that there is negligible translation 

of the light ray within the lens in the direction other than that of light propagation, and 

the paraxial approximation, which states that only portions of the wavefront that lie near 

the lens axis are considered. These approximations are valid for a variety of circumstances. 

For instance, a telescope can be modelled as a thin lens. The properties of a lens can be 

combined into a single parameter called the focal length 11 where: 

(n (4.2) 

and and R2 are the curvature of the lens surface on the left-hand and right-hand sides 

respectively. n is the refractive index of the lens. The distance di behind the lens at which 
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Figure 4.4: Image formation using a thin lens. 

the image forms is defined by the thin lens equation as 

111 
-+---=0. 
do di It 

(4.3) 

In the case where do is infinite, for example, when imaging a star, di = fl. A useful 

property of a converging lens is that there exists a Fourier transform relationship between 

the wavefront at the lens and the image at the focal plane [61]. This is useful in analysing 

image formation in an optical system. 

In astronomical imaging, the major distortion on a wavefront from a star is the phase 

distortion introduced by the Earth's atmosphere. One way of correcting for this distortion 

is to use an adaptive optics system. If a single turbulent layer is situated at distance do 

above ground as in Fig. 4.4, then a deformable mirror (DM) can be placed at a distance 

di behind the lens, called the conjugate plane, to cancel the effect of the phase distortion. 

The corrected wavefront is then reflected off the mirror to be captured by an imaging 

device. This concept is not only limited to astronomical imaging, but can also be used for 

applications such as retinal imaging [112,122]. 

General imaging system 

A general imaging system is shown in Fig. 4.5. The point at which the wavefront of the 

object enters the system of imaging elements is called the entrance pupil, while the point 

at which the wavefront leaves the imaging elements is called the exit pupil. Obviously, 
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Figure 4.5: A general imaging system. 

the resolution of the image is dependent on the size of the smaller of the two pupils (or 

apertures) . 

The system of imaging elements depicted as a black box in Fig. 4.5 may be only a lens, 

or it may comprise several components. In astronomical imaging, a typical configuration of 

the imaging elements includes an aperture with a central obscuration, a high-speed shutter 

and converging lenses. If both speckle images and wavefront sensing images are captured, 

a beam splitter and more lenses are also used. 

4.1.2 Fourier optics 

Diffraction has been defined by Sommerfeld [159] as 'any deviation of light rays from recti­

linear paths which cannot be interpreted as reflection or refraction'. Indeed, there are many 

situations where the theory of geometrical optics is insufficient in describing the properties 

of light, and it is due to diffraction effects which are inherent to all optical systems. In this 

case, Fourier optics must be used to describe essentially the wave nature of light. Neverthe­

less, it should be pointed out that because the theory of geometrical optics is a sufficiently 

close approximation to Fourier optics that the diffraction effects can be taken into account 

after image formation via a convolution operation with a point spread function determined 

by diffraction from the aperture. 
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Diffraction 

Any monochromatic optical wave u(P, t) at position and time t can be expressed as 

u(P, t) iR{U(P)exp{ -i27rlJt}} (4.4) 

where lJ is the optical frequency and iR{.} denotes the real part. u(P, t) must satisfy the 

scalar wave equation 

(4.5) 

where c is the speed of light in a vacuum, and \72 is the Laplacian operator 

82 (j2 82 
02_ 
v - 8x2 + + 8z2' (4.6) 

If the time dependence is removed, and u(P) is expressed as a complex function U(P) 

IU(P)I exp{ -iU}, then U(P) must also obey the Helmholtz equation [61] (\72 + k2)U = 0 

where k is the wave number defined as 

and ,\ is the wavelength. 

k = 27r 
,\ 

(4.7) 

The diffraction problem is illustrated in Fig. 4.6. Consider a finite aperture in an infinite 

opaque screen, which is taken to be planar and adopts a Cartesian coordinate system 

(Xl, yd. The observation plane is a distance z away from and parallel to the aperture 

plane, with the coordinate system (xo, yo). Using the Helmholtz equation and applying 

Green's theorem with a judicious choice of Green's function [163] results in the Rayleigh­

Sommerfeld formula which describes the wavefront at the observation plane [61J: 

1 100 100 
exp{ ikrod U(XO,Yo) = ~ U(xl,yd cos(O)dxldYl' 

z/\ -00 -00 rOl 
(4.8) 

o is the angle formed by the direction of rOl with the z-axis. 

as 

where 

(4.8) can also be written 

(4.9) 

. _ 1 exp{ ikrOl} 
h(xo, Yo, XI, Yl) - .\ cos(O). (4.10) 

z/\ rOl 

It should be noted that Eq. (4.9) is the Huygens-Fresnel principle. Physically, it means that 

the optical field at any point in the observation plane can be expressed as the superposition 

of many spherical wavefronts originating from the aperture plane. 
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Aperture 

Observation region 

Figure 4.6: Diffraction geometry. 

Fresnel diffraction 

The Huygens-Fresnel principle can be simplified under certain circumstances for easier 

mathematical manipulation. These approximations, which are usually made when deal­

ing with propagating wavefronts, are called the Fresnel and Fraunhofer approximations. 

It is firstly assumed that the observation distance z between the aperture and observation 

plane is much greater than the maximum linear dimension of the aperture. Moreover, only a 

finite region about the z-axis in the observation plane is of interest. These assumptions mean 

that the angle fJ is negligibly small such that cos(fJ) S::! 1. The actual distance 1'01 between 

the points can also be approximated by z. However the 1'01 term in the exponential cannot 

be approximated by z. This is because the small difference between 1'01 and z can introduce 

large errors when multiplied by k which is large, and can generate phase errors that are 

much greater than 21r radians. 

However, the term 1'01 in the exponential can be simplified by the Fresnel approximations. 

The geometric distance between the points (xo, YO) and (x}, yd is 

1'01 = 

(4.11) 

Using the binomial expansion where 

~ 1 12 
V 1 + b = 1 + 2b - gb + ... Ibl < 1 (4.12) 



and approximating Eq. (4.11) with the first two terms results in 

rv [1 1 (xo - Xl)2 1 (YO - Yl)2] "'01 = Z + - + - . 
2 Z 2 Z 

(4.13) 

This assumption allows h to be written as 

exp{ ikz } { ik 
h(xo, Yo; Xl, yt) = iAZ exp 2z [(xo ( 4.14) 

When the distance z is sufficiently large for the assumption to be accurate, the observer is 

said to be in the region of Fresnel diffraction, where 

(4.15) 

Essentially, the Fresnel approximation has replaced the spherical wavefronts with quadratic 

wavefronts. This is intuitively reasonable because the region around the turning point of 

a parabola closely approximates a sphere. Obviously, the validity of the approximation 

depends on the relative sizes of the apertures, the observation region, and the distance z. 

It is interesting to note that the superposition integral can be written in two alternative 

forms. Firstly, U(xo, YO) can be viewed as a convolution between U(Xl, Yl) and the weighting 

h, giving the expression: 

(4.16) 

Alternatively, the quadratic terms in the exponent can be expanded to give: 

This means that the function U(xo, YO) can be found from a Fourier transform of 

(4.18) 
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Fraunhofer diffraction 

The Fraunhofer, or far field approximation is made when the spherical waves have travelled 

so far that they have become almost planar and can be approximated by plane waves. The 

observer is said to be in the Fraunhofer region if the condition 

Z » k(xi +2Yi )max (4.19) 

is met. Effectively, the quadratic phase factor in the integral in Eq. (4.17) is approximately 

unity over the entire aperture, and the field at U(xo, YO) is a Fourier transform of the 

aperture distribution itself: 

exp{ikz} {. k (2 2)} 
U(XOJ YO) = iAZ exp z 2z Xo + Yo 

x 1: 1: U(XIJ YI)exp { - i~: (XOXI + YOYI) }dXldY1 ' 
(4.20) 

With a change of variables of: 

x Xo 

Y = Yo 
Xl 

U 
AZ 

v 
AZ 

, (4.21) 

Eq. (4.20) can be written as 

U(x, y) = Cl 1: 1: U(AZU, AZV) exp{ -i21r(xu + vy)}dudv, (4.22) 

with CI being the exponential scalars. This clearly illustrates the Fourier transform rela-

tionship between the wavefronts at the aperture and image planes. 

When imaging stellar objects, the Fraunhofer approximation can be employed, as the wave­

fronts from the stars have travelled lightyears to reach the surface of the Earth and can be 

considered planar. 

Angular spectrum 

A slightly different approach to diffraction theory is to Fourier analyse a complex field and 

examine what is called the angular spectrum. Through this analysis, it is found that the 



field amplitude at any point is a sum of contributing plane waves, including the phase shifts 

introd uced by propagation. 

Consider a complex wavefront in a Cartesian coordinate system (x, y, z). The wavefront is 

at the plane z ° and is denoted by U(x, y, 0). Its two-dimensional Fourier transform is 

given by: 

Ao(fx,fy) = i:i: U(x,y,0)exp{-i27r(fxx+fyy)}dxdy. ( 4.23) 

For a unit-amplitude plane wave propagating with direction cosines (a, 13, I), its wavefront 

is denoted by: 

B (x, y, z) = exp { i 2; (ax + f3y + I z) } (4.24) 

where I }1- a2 - 132 • Therefore at z 0, the complex exponential in Eq. (4.23) can 

be viewed as a plane wave propagating with direction cosines: 

a = ),fx 

13 = ),fy 

I }1 - (),fX)2 - (),fy)2. ( 4.25) 

Because the complex amplitude of the plane wave component is simply Ao(fx, fy)dfxdfy 

evaluated at (f X = aj)', fy 13 j)'), the quantity: 

Ao(~,~) = i:i: U(x,y,o)exp { -i27r(~x+ ~Y) }dXdY ( 4.26) 

is called the angular spectrum of the wavefront U(x, y, 0). 

If the wavefront is propagated for a distance z, the angular spectrum is modified to: . 

(4.27) 

The relationship between the angular spectra before and after propagation is [61]: 

Az(~, ~,z) Ao(~,~) exp {i2; }1- a2 - f32Z}. (4.28) 

For the wavefront propagation considered in this thesis, a? + 132 < 1, meaning that the 

propagation over a distance z has simply introduced a relative phase change in different 

components of the angular spectrum. 
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If the aperture has a transmittance function t(x, y) on the z 0 plane, then the resultant 

angular spectrum is the convolution of the incident angular spectrum with the Fomier 

transform of the transmittance function T(a/>.,(3/>.). This is denoted by: 

(4.29) 

From a practical viewpoint, the Fourier transform of the apertme function T( 01./ >., (3/>') 

is analogous to a point spread function, which ha., the effect of broadening the angular 

spectrum of the incident wavefront. The smaller the aperture is, the more spreading it 

introduces to the angular spectrum. This is a direct manifestation of the scaling property 

of the Fomier transform as discussed in Chapter 2. 

One application of the angular spectrum is the propagation of the wavefront from the back of 

the lenslet array in a Shack-Hartmann wavefront sensor to the detector plane. This is used 

in the forward modelling of the wavefront sensor for a myopic deconvolution scheme [146]. 

Diffraction at an aperture 

Simple geometrical optics predicts that an image of a point object is also a point. When 

diffraction effects are taken into account, it is found that the image is spread, resulting in 

a Fraunhofer diffraction-limited pattern. The pattern depends on the shape of the aper­

ture, and here the two most common apertures: the square and the circular apertures, are 

investigated. 

To facilitate the discussion, let us first introduce the generalised pupil function A (u, v) 

defined mathematically as: 

( ) { 
P(u,v)exp{i¢(u,v)} 

A u,v = 
o 

inside aperture 

outside aperture 

where P( u, v) is the pupil function: 

P(u,v) = { ~ inside aperture 

outside aperture 

The pupil function describes a diffraction-limited pupil for imaging an object, while the 

generalised pupil function accounts for any wavefront aberrations in the exit pupil. The 
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pupil phase ¢( u, v) is a function of the overall wavefront aberration <J) defined in Section 

4.3.3. For notational convenience, the coordinates (Azu, AZv) are shortened to (u, v) when 

there is no confusion. 

Recall the Fourier transform relationship between the aperture and the observation plane 

in Eq. (4.22). The simplest form of U(u, v) is the pupil function P(u, v). Applying the 

Fourier transform relationship to this results in the system image response h(x, y): 

h(x, y) = ;J{P(u, v)}. (4.30) 

In an aberrated system, the pupil function is replaced by the generalised pupil function. It 

should be clarified that h(x, y) is the wavefront on the image plane, and h(x, y) Ih(x, y)12 

is an intensity distribution which defines the point spread function (PSF). The Fourier 

transform of the PSF is called the optical transfer function (OTF). 

We are now in a position to examine the diffraction patterns at the aperture. Consider first 

a rectangular aperture described by: 

P(u,v) rect(u)rect(v). (4.31) 

Recalling that the aperture plane and the image plane have a direct Fourier transform 

relationship, the pattern observed at the focal plane is: 

h(x,y) sinc(x)sinc(y). (4.32) 

The intensity pattern observed is 

( 4.33) 

and is shown in Fig. 4.7(a). This pattern decays at a rate proportional to the reciprocal of 

the square of the distance from the origin. A situation where this pattern can be observed 

is when a Shack-Hartmann (SH) sensor is used to image a point source at or above the 

Nyquist rate. Each lens let in the SH sensor is square due to the need to configure them 

into an array. In order to Nyquist sample this intensity pattern, two samples are required 

across the main lobe of the spot [17]. 

Now consider the diffracting aperture to be circular with radius a. Then the pupil function 

in the absence of aberrations is: 

P(u,v) ~ { ~ u2 + v2 :::; a2 

otherwise. 



80 CHAPTER 4. IMAGING THROUGH TURBULENCE 

-50 

(a) (b) 

Figure 4.7: (a) Fraunhofer diffraction pattern of a square aperture. (b) 
Fraunhofer diffraction pattern of a circular aperture. 

Due to its circular symmetry, it can be expressed as: 

() {
I p~a 

p p = 
, 0 otherwise 

which is also equal to the circle function circ(p/a). Instead of taking a Fourier transform, 

a Hankel transform can be used and this results in the diffraction pattern described by: 

h,(r) = .h(2anr) 
ar 

(4.34) 

where J1 is the first order Bessel function of the first kind. The intensity pattern observed 

at the focal plane is the square of the above expression, denoted by: 

( 4.35) 

This pattern is called the Airy disk and is shown in Fig. 4.7(b) . The main difference 

between the Airy disk and the diffraction pattern of a square aperture is that the zero­

crossings of the former are not equally spaced: the further away from the origin, the closer 

the zero-crossings are (Table 4.1). The Airy disk is useful for characterising the resolution 

limit of a system and is discussed in the next section. 

4.2 Resolution, sampling and superresolution 

The resolution of an image captured at the image plane is limited by the diffraction effects 

introduced at the aperture. However, this upper limit is only reached if sufficient sampling 
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r ( Jr(!~1rrl) 2 I max or min I 
0 1 max 

3.833 0 min 

5.136 0.0175 max 

7.016 0 min 

8.417 0.0042 max 

10.174 0 mm 

Table 4.1: The first few maxima and minima of tile Airy disk. 

is employed. The two topics of resolution and sampling are therefore closely linked, but are 

seldom addressed together. This section examines the relationship between them. 

Although the resolution of the captured image is limited by diffraction effects, post-processing 

methods called superresolution methods can be applied to exceed this limit in the recon­

struction. The feasibility of superresolution is examined, and an overview of the existing 

methods is presented. 

4.2.1 Resolution and sampling 

A common criterion for resolution comparison is the ability to resolve two closely spaced 

point sources. One of the most established criteria is Rayleigh's resolution criterion, where 

two point sources of equal strength are 'barely resolved' if the centre of the Airy disk of one 

point source falls on the first zero of the Airy disk ofthe other point source [61]. Although 

this criterion is somewhat arbitrary, for historical purposes, it is still used as a benchmark 

f01" resolution comparison. 

Fig 4.8 illustrates Rayleigh's resolution criterion for a circular aperture, where the peak­

to-saddle ratio is 0.735 [13]. It should be noted that the peak-to-saddle ratio changes for 

different apertures. The angular resolution of an image according to Rayleigh's criterion 

is [61]: 

( 4.36) 

where D is the diameter of the aperture and oX is the wavelength. This corresponds to a 
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Figure 4.8: Intensity pattern of two point sources imaged through a cir­
cular aperture which just meet Rayleigh's resolution criterion. 

(circular) aperture with no central obscuration. For an aperture with a central obscuration 

(which is the case for most telescopes), also known as an annular aperture, the angular 

resolution is in fact improved [13,161]. This is reasonable considering that the obscuration 

essentially acts as a highpass filter. For instance, for an obscuration with a diameter equal 

to half of the telescope diameter, the resolving power is increased to AID. 

In astronomical imaging, angular resolution is defined as simply AID. However, whether 

this arose as a convenient approximation to 1.22AI D, or to account for the effect of the 

central obscuration is unclear. Assuming the definition of AID, for a I-metre telescope 

imaging at 500nm, an angular resolution of 

A 
D 
5 X 10-7 rad 

2.86 X 10-50 

0.1 arcsec (4.37) 

is achievable in the absence of atmospheric turbulence. Nevertheless, this resolution is only 

easily attainable if the Nyquist criterion is also satisfied (Subsection 2.6.1). The Nyquist 

sampling rate is essentially the arc length (since the angle is very small) which subtends 

the angle Aj2D, and should match the pixel size of the camera. A realistic pixel size is 

approximately 1O/bm x 10/bm. Finally the focal length of the lens can be determined, which 

is simply the ratio of the pixel size to the angular resolution A/2D in radians for a Nyquist 

sampled system. 
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4.2.2 Superresolution 

Superresolution is commonly referred to as the phenomenon of extending the object spec­

trum beyond the optical cutoff frequency. Whether superresolution is achievable was a topic 

of discussion for a long time, and its feasibility was only accepted recently. This can be 

proved by analytic continuation [61], the essence of which is as follows. Firstly, the two­

dimensional Fourier transform of a spatially-bounded object is an analytic function in the 

u-v plane. Secondly, if any analytic function in the u-v plane is known exactly in an arbi­

trarily small but finite region of that plane, then the entire function can be found uniquely 

by means of analytic continuation. 

There exists much literature on superresolution [44,54,85,86,114,118,119,139,155-157,179]. 

One of the earliest superresolution algorithms was proposed by Gerchberg [54]. Basically, 

the object is projected between the spatial and the frequency domains, and constraints 

derived from prior knowledge are imposed in each domain. Although this seems ad hoc, the 

algorithm is shown to be convergent. Walsh and Delaney [179] modified this algorithm and 

proposed a non-iterative solution to superresolution by solving a set of linear equations. 

A superresolution algorithm for Poisson statistics was proposed independently by Richard­

son [139], Lucy [114], and Shepp and Vardi [156]. Richardson and Lucy took a Bayesian 

approach to the problem, while Shepp and Vardi derived the algorithm via an expectation­

maximisation (or maximum likelihood) framework. 

Hunt and Sementilli [86] extended these algorithms to the Poisson MAP (PMAP) method 

which used the idea of supersampling, allowing the object and the PSF to be on a finer grid 

than the data. This explicit implementation of superresolution ensures that there is 'room' 

for the higher frequency content. Gerwe et al, [55] also employed supersampling to process 

adaptive optics compensated imagery. 

Hunt [85] provided a different perspective on this topic, stating that superresolution and 

interpolation are linked in a simple manner: if the frequency content of the data increases, 

the sampling grid must be more finely spaced. As a result, algorithms which use interlacing 

or image registration techniques can also be viewed in the framework of superresolution 

[2,22,57,73-75,109]. 
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Fried [44] also viewed supel'l'esolution differently from most of the existing literature. He 

defined it as the recovery of spatial frequency components where the OTF is zero, regardless 

of the components being above or beneath the optical cutoff of the instrument. Although 

for astronomical imaging, the OTF is usually non-zero everywhere, this is not so for non­

regular baseline interferometry. In Fried's paper, this phenomenon was demonstrated on 

the CLEAN algorithm [79], with the key to the success of superresolution being the small 

extent of the object. It is interesting to point out that the CLEAN algorithm is very similar 

to a modified Richardson-Lucy algorithm [106], which as discussed above has the ability to 

superresol ve. 

Although it is now generally accepted that superresolution is achievable, the standard for 

comparing different algorithms is not unified. For example, the definition of resolution is 

not standardised. As discussed in the previous subsection, it is unclear whether A/Dis used 

to account for the effect of the central obscuration, or is just a convenient approximation 

to the exact value. This introduces a possibility of misinterpreting the frequency content of 

the reconstruction and the extent of superresolution. 

In image processing, the resolution of the image is limited by the optics and the CCD 

sampling. While it is reasonable to define superresolution as overcoming the limits imposed 

by the optics when the optics is the main limiting factor, it is necessary to reconsider this 

definition when the CCD sampling poses as the major limitation. Therefore, in this thesis, 

the term 'supel'l'esolution' is used to describe the situation when the frequency limit imposed 

by the major limiting factor is overcome. Practical algorithms where superresolution is 

achieved are discussed in Chapters 5 and 7. 

4.3 Characterising an optical system 

4.3.1 Coherent and incoherent imaging 

In this thesis, all the images dealt with are formed assuming incoherent imaging. However, it 

should be pointed out that this is not the case for all imaging systems, and here a distinction 

is made between coherent and incoherent imaging. 

Coherent illumination implies that the optical field is perfectly correlated or deterministic. 
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This means that all the object points have a fixed phase relationship with respect to each 

other. In coherent illumination, the response of each object point can be added on a complex 

amplitude basis. It is therefore said to be linear in complex amplitude. An example of a 

coherent light source is a laser. 

The transfer function of a coherent system is the Fourier transform of the space-invariant 

impulse response: 

H(u, v) = .J{h(x, y)}. (4.38) 

The impulse response is also a function of the pupil function (Eq. (4.30)). This leads to: 

H(u, v) .J{.J{P(u, v)}} 

P(-u, -v). 

This means that the coherent transfer function is the rotated pupil function. 

(4.39) 

In the case of incoherent imaging, each object point is assumed to be statistically indepen­

dent of each other. As a result, the summation of the responses from the object points 

is performed on an intensity basis. Incoherent imaging is therefore said to be linear in 

intensity. Self-luminous objects such as stars, and objects illuminated by thermal light are 

examples of incoherent light sources. 

The incoherent transfer function is once again the Fourier transform of the corresponding 

impulse response. However, due to the property oflinearity in intensity, the transfer function 

IS: 

H(u,v) J{lh(x,y)1 2
} i:i: P(u',v')P(u' +u,v' +v)du'dv' 

P(u, v) 0 P(u, v) (4.40) 

where 0 denotes a correlation. This means that the incoherent transfer function is the 

autocorrelation of the (generalised) pupil function. 

Resolution of coherent and incoherent imaging 

It is of interest to determine whether coherent or incoherent imaging provides a better 

resolution. Of course, for astronomical imaging all light waves concerned are incoherent. 



86 CHAPTER 4. IMAGING THROUGH TURBULENCE 

However, in areas such as microscopy, a choice can be made as to what light source is used. 

For a coherent imaging system, the cutoff frequency is related to Eq. (4.39). Since the 

pupil function P takes on the value of either one or zero, the same is true for the coherent 

transfer function. In the absence of aberrations, there exists a finite passband where all 

frequency components are transmitted unaltered. This frequency limit is denoted by 

D 
fa = (4.41 ) 

where D is the diameter of a circular aperture or the width of a square aperture, and di is 

the distance between the lens and the image plane as defined in Section 4.1.1. 

Since the transfer function of an incoherent imaging system is the correlation of the pupil 

function as in Eq. (4.40), the cutoff frequency occurs at 2fo. However, this does not imply 

that an incoherent imaging system has twice the resolving power of a coherent system [61J. 

In fact, the two cutoff frequencies cannot be compared directly because the coherent system 

frequency cutoff is defined for image amplitude, while that for the incoherent system is 

used for image intensity. The resolution of the two imaging systems therefore cannot be 

compared directly; the performance of the systems depends strongly on the structure of the 

function to be imaged, particularly its phase distribution. 

Nevertheless, it should be pointed out that the effects of coherent and incoherent imaging 

do have similarities if the impulse responses h(x, y) and Ih(x, y)12 are examined. Consider 

the simple case of h(x, y) being a sinc function; then the mainlobes in the two cases are not 

very different. The degree of blurring introduced by each function to an object is therefore 

similar. 

4.3.2 Parameters for measuring image quality 

There are many parameters that can be measured to determine the quality of an opti­

cal system. A popular parameter used in astronomical imaging is the full width at half 

maximum (FWHM) which measures the width of an intensity peak at half its maximum 

intensity [143J. However, a parameter that is more commonly used is the Strehl ratio, which 

compares the ratio of the peak PSF values for a system, with and without aberrations. It 

\ 



4.3. CHARACTERISING AN OPTICAL SYSTEM 

,0.' 

:0.' 

0.6 1 

Figure 4.9: The Strehl ratio is the ratio of the peak of the PSF in the 
presence of aberrations, to that in a diffraction-limited system. 

is illustrated in Fig. 4.9 and is mathematically defined as: 

S hI max(h(x, Y)actual) 
tre = . 

max(h(x, Y)diffraction-limited) 

87 

( 4.42) 

The Strehl ratio is always between 0 and 1. In a real optical system, it is impossible to 

obtain a Strehl ratio of 1. A Strehl ratio of 0.8 or greater is effectively diffraction-limited, 

and is known as Marechal's criterion, 

One drawback of the Strehl ratio is its inability to differentiate between a broad and a 

narrow PSF as shown in Fig. 4.10; the dashed line is a diffraction-limited PSF, while the 

solid line is a Gaussian, both of which have the same Strehl ratio. Nevertheless, the Strehl 

ratio is a commonly used performance measure for different optical systems. 

A phenomenon closely linked to the Strehl ratio is the core and halo of a point source. 

A point source reconstructed from Shack-Hartmann wavefront sensing data comprises two 

terms: a Core which is essentially the main lobe of the diffraction-limited pattern, and a 

halo whose width is generally of the order of the seeing disk diameter. A more detailed 

discussion is included in Section 4.4.2. 

4.3.3 Wavefront aberrations 

The diffraction limit poses as an upper bound to the quality of an image. However, in many 

cases, this limit is not reached because of the presence of aberrations. Aberrations can arise 

due to defects in the optical system such as the limited resolution of a deformable mirror in 

an adaptive optics system or the misalignment of the components; or from a spatially and 
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Figure 4.10: The Strehl ratio cannot differentiate between a broad PSF 
(solid line) and a narrow PSF (dashed line). 
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Figure 4.11: The geometry of wavefront and ray aberrations. 

temporally varying imaging medium such as the turbulent atmosphere of the Earth when 

imaging a star. Aberrations are classified into two broad categories: chromatic aberrations 

and monochromatic aberrations. Whilst the former are affected by the wavelength of the 

light, the latter are not. In this thesis, only monochromatic aberrations are of interest. 

Consider the optical system described by Fig. 4.11. The ideal spherical wavefront is denoted 

by S. In the absenee of aberrations, a point Po which is also denoted by Q is mapped onto 

the point Pt on the observation plane. When aberrations are present, the wavefront is no 

longer spherical. The distorted wavefront is denoted by S' and the corresponding point Po, 

now denoted by Q, is mapped onto Pi on the observation plane. The distance between Pi and 

Pt is called the ray aberration. The path length between Q and Q, points on the ideal and 

aberrated wavefronts respectively, is called the wavefront aberration if> if> (Xl, Yl; Xo, Yo) 

where (Xl, Yl) corresponds to the object plane, and (xo, YO) refers to the image plane. 
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By converting <[> into polar coordinates, and fixing one of the variables, the wavefront 

aberration can be expressed in terms of p = -Ix5 + Y5, () tan-1(yo/xo) and y where y is 

the position of the object in the field of view [13]. This gives: 

<[>(p,(),y) - alp2 + a2PY cos( ()) 

+ b1p4 spherical aberration 

+ b2p3y cos( ()) coma 

+ b3P2y2 cos2 (()) astigmatism 

+ b4p2y2 field curvature 

+ b5py3 cos(()) distortion 

+ other higher order terms (4.43) 

where all a2 and bll ... , b5 are constants. These five terms are known as the primary or 

Seidel aberrations. 

Spherical aberration, coma and astigmatism prevent the formation of point images. Spheri­

cal aberration causes the rays near the optical axis to be focused in a different location from 

those passing near the edge of the lens, meaning that there is no real focus in the system, 

while coma produces a comet-like asymmetric blur. On the other hand, field curvature 

and distortion allow point images to be formed, but the relative positions of the points are 

altered. 

4.3.4 Zernike polynomials 

Zernike polynomials were initially proposed for describing the aberrations of an optical 

telescope [13]; their application to atmospheric turbulence was later proposed by Fried [42] 

and extended by Noll [131]. 

Zernike polynomials are a set of basis functions defined on the unit circle. As a result, they 

are usually defined in polar coordinates as the product of radial and angular terms. Using 

the ordering scheme of Noll the Zernike polynomials are defined as: 

Zevenj(P, ()) 

Zoddj (p, ()) 

Zj(p) 

yin + 1 R:;:(p)v'2 cos(m()), m =1= 0 

yin + 1R:;:(p)v'2sin(m()), m =1= 0 

R~(p), m 0, (4.44) 
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where 

(n-m)/2 

Rr;:(p) = L 
8=0 

(-l)S(n s)! n-2s 

s![(n + m)/2 - s]![(n m)/2 - slIP . 
(4.45) 

Here n is the radial order and m is the azimuthal order, both of which are non-negative 

integers where m ~ nand n Iml = even. The index j is a mode ordering number and is 

a function of nand m. 

Zernike polynomials are useful for expanding a wavefront over a circular aperture. The 

expansion of such a wavefront </>(Rp, 0), where R is the radius of the aperture, is given by 

where the coefficients aj are 

</>( Rp, 0) = L aj Zj (p, 0), 
j 

and W(p) is a unit volume weighting function 

W{p) 
p~l 

p>l 

(4.46) 

(4.47) 

The first mode of the Zernike polynomials is piston. Since this does not affect the formation 

of and cannot be measured from images formed at the telescope, it is not included in the 

analysis of atmospheric turbulence. The dominant modes are the second and the third 

modes as they cause approximately 90% of the degradation to the wavefront [42]. These 

correspond to tip and tilt, and produce random motion of the images in the image plane, but 

do not affect the spatial resolution of the image. One application that utilises this property 

is the Shack-Hartmann (SH) wavefront sensor. The displacement of the image captured 

by a lenslet in a SH sensor is directly proportional to the mean slope (or the tip and tilt 

components) over that lenslet or subaperture. When this concept is extended to the entire 

aperture across all the lenslets, an estimate of the wavefront can be calculated. A more 

detailed discussion on wavefront reconstruction from wavefront sensing data is presented in 

Chapter 8. 
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4.4 Imaging through atmospheric turbulence 

Light propagates from the stellar object of interest to ground through the turbulent at­

mosphere, and the image formed is captured by a ground-based telescope. In order to 

study the inverse problem of recovering the object distribution from the collected image 

data, it is essential to understand firstly the characteristics of the distortions introduced by 

the atmosphere on the propagating wavefront. 

The distortion of the atmosphere is not deterministic in nature. It can be thought of as 

a collection of lenslets with different and time-varying refractive indices. Mathematically, 

it can be sufficiently modelled using Kolmogorov statistics. Because the structure of the 

atmosphere changes in the order of milliseconds, in order to freeze its effects, telescopic 

images must be captured within this time frame. Such images are called short-exposure 

images. On the other hand, images captured over an extended period of time, where 

the effects of the atmophere are averaged, are called long-exposure images. Both types 

of images are used in object reconstruction algorithms. Short-exposure images are used in 

blind deconvolution and deconvolution from wavefront sensing (DWFS), while long-exposure 

images are used for real-time compensation of adaptive optics imagery as well as calibrating 

an optical system. 

4.4.1 Short and long exposure images 

Short exposure images are captured within milliseconds and the atmospheric turbulence 

is essentially 'frozen'. On the other hand, a long exposure image is an average of a large 

number of independent realisations ofthe atmosphere. Fig. 4.12 compares a short exposure 

image, a long exposure image, and a diffraction-limited image for a circular aperture with 

Djro 10. The long exposure image is the sum of 1000 short exposure images. The short 

exposure image has a speckly appearance (hence the term speckle image) and contains some 

high resolution information, while the long exposure image has very little high frequency 

information. 

Fig. 4.13 (reproduced with the permission of the author [93]) examines the relationship 

between the ensemble OTFs and PSFs for a circular aperture for short and long exposure 

images under different imaging conditions (Djro = 0.1,1,2 and 10). These are compared 
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(a) (b) (e) 

Figure 4.12: Simulated images of a single star through a circular aperture 
with D Iro = 10. (a) Short exposure image. (b) Long exposure image. 
(C) Diffraction-limited image. 

with the corresponding diffraction-limited quantities. Short exposure images retain some 

high frequency information, therefore the ensemble OTFs and PSFs do not deviate much 

from the diffraction-limited quantities when seeing is good. The degradation is only clear 

when D Iro = 10. On the ot.her hand, the long exposure OTFs do not have much high 

frequency informat ion, and as a result , the corresponding PSFs are smoother and broader. 

4.4.2 Core and halo structure 

As int.roduced in Sect ion 4.3.2, a point source reconstructed with t.he use of Shack-Hartmann 

wavefront sensing data results in a st.ructure comprising two components, the core and the 

halo. This is a direct result of the inability of the SH-WFS to reconstruct certain high 

frequency components, causing aliasing in the reconstruction. In this subsect.ion, the core 

and halo structure of the reconstruction of a point source is examined more closely, and 

several observations are made. 

Fig. 4.14(a) shows the centre portion of a diffraction-limited image of a point. source under 

noiseless conditions. The image is shown on a log scale to highlight the core structure which 

is clearly visible. Most of t.he energy is concentrated in the core. The maximum value of 

the core is -3.3008 on the log scale. Since the core is a narrow compact structure in the 

image plane, it contains much high frequency information in the Fourier domain. 

Figs. 4.14(b) , 4.14(c) and 4.14(d) show the images of a point source in the presence of 
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Figure 4.13: Typical OTFs and PSFs for a circular aperture. (a) 
Diffraction-limited OTF, (b) diffraction-limitedPSF, (c) family of short 
exposure OTFs, (d) family of short exposure PSFs, (e) family of long 
exposure OTFs and (f) family of long exposure PSFs. The family of 
curves correspond to D Iro 0.1 (solid), 1 (dashed), 2 (dashed-dotted) 
and 10 (dotted). 
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Figure 4.14: (a) Centre portion of a diffraction-limited image of a point 
source. Note the prominent core structure. (b,c,d,e) Centre portions of 
the ima.ge of a point source in the presence of atmospheric turbulence 
with D /1'0 = 1,2, 4 and 8. All images are displayed on a logarithmic 
scale. 

atmospheric turbulence with D /r'o = 1,2 and 4. The core is still visible in each case, 

although the halo starts to dominate. The respective maxima of the cores are -3.5650, 

-3.9656 and -4.3229. For D fro == 8 (Fig. 4.14(e)), the core structure is no longer visible: 

the halo is the sole component of the image. The maximum in this image is -5.4646. 

The effect of the atmospheric turbulence on the image can be compensated by measuring a 
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simultaneous frame of Shack-Hartmann wavefront sensing data and using it to estimate the 

phase distortion (see Chapter 8 for the theory of phase estimation from wavefront sensing 

data). A lenslet array of size 16 x 16 is used here. For the case of D Iro = 8, this corresponds 

to a dlro of 0.5 where d is the subaperture diameter. The point source image is retrieved 

using a simple Wiener filter. Figs. 4.15(a) and 4.15(b) show the reconstructed point source 

images for Dlro = 8 using 100 and 200 Zernike polynomials respectively in the phase 

reconstruction. The maxima in each case are -3.4640 and -3.4930. 

In both cases, the core structure is reconstructed, with little difference between the max­

imum values. The retrieval of the core structure means that most of the high frequency 

information is present in the reconstruction. However, the halo is still visible. This leads 

to three important results. Firstly, because the SH-WFS is unable to reconstruct some of 

the high frequency components in the phase, they are aliased and are reflected as the halo 

structure. The inability of the SH-WFS to reconstruct high frequency components is due 

to the finite number of subapertures in the WFS, leading to only a finite number of Zernike 

weights being reconstructed [111]. secondTy, once the core is reconstructed, an increase in 

the number of Zernike polynomials does not improve the reconstruction. Finally, although 

the level of the halo is lowered, it is difficult to reduce it significantly. These problems affect 

the methods of deconvolution from wavefront sensing (DWFS) and adaptive optics (AO). 

As a result, it is desirable to apply post-processing techniques to improve the resolution 

and the visual quality of the image. A class of algorithms known as myopic deconvolution 

has been proposed for post-processing AO imagery [24,27,51,126] and is briefly discussed 

in Chapter 8. A proposed solution motivated by these problems in DWFS is presented in 

Chapter 9. 

4.4.3 Wavefront statistics and structure functions 

When the wavefront of the stellar object propagates to ground, the distortion on the wave­

front is predominantly a phase component. However, the intensity of the wavefront is also 

distorted due to the propagation. This intensity distortion, also called scintillation, can be 

seen as the twinkling of the star when observed from ground by the naked eye. It should be 

noted that because the scintillation is small compared to the phase distortion, it is usually 

assumed constant in many algorithms. In this section, the statistics of the phase distortion 

and the scintillation are discussed; their application in image reconstruction algorithms is 
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Figure 4.15: Reconstruction of the point source image for the case of 
Djro = 8 with a 16 x 16 SH lenslet array using (a) 100 and (b) 200 
Zernike polynomials in the phase reconstruction. In each case, the core 
is retrieved, but the halo is sti11 present. 

presented in Chapter 6. 

For simplicity, it is assumed that the wavefront is a monochromatic plane wave at wavelength 

A, propagating from a star at the zenith, towards a ground-based observer. Following the 

thin screen approximation, the layer of turbulence is confined between height hand h + !:::"h . 

The complex wavefront at height h + !:::,.h is Ah+L'l.h = 1. At h, the complex wavefront is: 

( 4.48) 

where the modulus IAh(u,v)1 = 1 because it has not been propagated, and (h(u,v) is the 

phase distortion introduced by the turbulence. According to Roddier [140], the covariance 

C(1J.l,Vl,U2,V2) of the complex field is 

C(1J.l,VI,1J.2,V2) = (Ah(Ul,vdAf:.(Ul-U2,VI-V2)) 
1 

exp{ - 2Dq,(U1, VI, u2, V2)} ( 4.49) 

where (-) represents an ensemble measurement, and Dq,(Ul, u2, VI, '02) is the two-dimensional 

horizontal structure function defined as 

D ( ) _ 6 88 (J(U 1 - U2)2 + (VI - V2)2) 5/3 
¢ Ul,U2,Vl,V2 - . , 

ro 
( 4.50) 

with ro being the effective diameter of the telescope [147]. It should be noted that the phase 

covariance has a Fourier transform relationship with its power spectrum, denoted by: 

Wq,(f) = 0.38'\ -2 j-11/31°° dhC~(h)(cos 7r '\hj2)2 (4.51) 
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where 1 is the spatial frequency with dimension radian- 1 and C'Jv(h) is the refractive index 

structure constant with a dependence on height. 

Even though the covariance in Eq. (4.49) is that of the complex field, it is usually taken to be 

the phase covariance because the intensity fluctuations are comparatively small. However, 

this expression cannot be used directly to describe the phase because its DC term is infinite. 

By confining the calculation over a finite region and removing the mean of the phase, Wallner 

showed that the covariance of the mean-removed phase Cp is [178] 

(4.52) 

where WA is the finite region of the aperture. 

power spectrum of the scintillation is defined by Roddier as [140] 

W(f) 3.9 x 10-2 k2 1-11/ 3 1000 

dhC'Jv(h)(sin 7r Ah12)2 (4.53) 

and the scintillation cova.riance is the inverse Fourier transform of Eq. (4.53). One point 

of interest is that the exponent -11/3 in both Eqs. (4.51) and (4.53) is a characteristic 

of Kolmogorov statistics. The effect of non-Kolmogorov statistics can be investigated by 

altering this exponent [93]. 

Since C(UI' VI, U2, V2) is a random complex field, an alternative to calculating the intensity 

and phase covariances is to find the covariances of its real and imaginary parts. It is 

reasonable to assume that both these quantities have the same form due to the random 

nature of the complex field. In fact, these covariance expressions are defined by Eq. (4.49) 

[140]. Fig. 4.16 shows the covariances of the scintillation, phase, and real and imaginru'y 

parts for a complex field of size 16 x 16. When using these covariances, the two-dimensional 

quantities of the complex field are vectorised to size 256 x 1. It should be emphasised 

that the phase covariance corresponds to Eq. (4.52) and is calculated analytically; on the 

other hand, the covariances of the real and imaginary parts are described by Eq. (4.49). 

These covariance structures have been generatecl assuming a turbulent layer at 5km above 

ground, and a telescope aperture with diameter D = 1m. The effective diameter of the 
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telescope ro, also known as Fried's parameter, is set to 0.25m here. The covariances of the 

scintillation and the real and imaginary parts are symmetric Toeplitz matrices, while t.he 

phase covariance is a symmetric block Toeplitz matrix. 

A common parameter for describing the severity of atmospheric turbulence is D /,ro, where 

t.he larger the value, the more turbulent the atmosphere. When D < ro, the resolving power 

is limited by the telescope; whereas when D > ro , it is limited by the atmosphere [140]. Due 

to this characteristic, the configuration of a Shack-Hart.mann wavefront sensor is usually 

designed to have approximately D Ira == lover each lens let to optimise between the accuracy 

of the wavefront slope calculation and the severity of the turbulence that can be measured. 
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Figure 4.16: The covariances of the (a.) scintillation, (b) phase, a,nd (c) 
real and (d) imaginary parts for a complex field of size 16 x 16. When 
using these covariances, the two-dimensiona.l quantities of the complex 
field are vectorised to size 256 x 1. The severity of the atmospheric 
turbulence simulated for these quantities corresponds to D Ira = 4, A 
black pixel has a value of 0, and a white pixel has a vall1e of 1 . 
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4.5 Dealing with real astronomical data 

In general, when one performs simulations to test a theory or idea, many aspects that 

are present in the real world are ignored temporarily to simplify the situation. This is 

the correct approach because it isolates the factor that is being investigated, and a direct 

relationship can be identified between the cause and the effect. The aspects that are usually 

ignored include noise and other linear and non-linear effects that affect the observed data. 

However, we do not live in an ideal world. In order to handle real data obtained using real 

instruments, the effects of noise and those imposed on the data by the instruments must be 

taken into account. 

In astronomical imaging, the wavefront at the aperture of the telescope undergoes several 

stages of distortion introduced by the data-capturing process. Before the data can be used, 

the distortions must be corrected. This section discusses the main elements involved in 

processing the raw data captured by the telescope to a usable form. 

4.5.1 Data-capturing process 

The real data for this thesis was captured at the Observatoire de Lyon, France during a 

collaborative research visit. This section therefore discusses the data-capturing process of 

the SPID (SPeckle Image by Deconvolution) instrument developed at the observatory [3J. 

The SPID instrument has four modules: interface, wavefront sensor, imaging and calibration 

(Fig. 4.17). The interface module allows the instrument to be installed to any telescope by 

collimating the beam from the telescope and making an image of the pupil. The wavefront 

sensor (WFS) is a Shack-Hartmann sensor, with 5 interchangeable arrays oflenslets (9 X 9, 

14 X 14, 20 X 20, 28 x 28, 40 X 40). The wavefront sensing data is captured on a CCD 

camera running at video rate. The imaging module consists of two channels at two spectral 

bandwidths, producing four realisations of any speckle image captured on the CP40 photon­

counting detector. The bandwidths range between 400nm and 720nm, and the two channels 

correspond to the blue and sections of the spectrum. This set-up is used to overcome 

the problem of the photon-counting hole [167J. Both the shutters on the wavefront sensing 

channel and the data channels can take on six different speeds ranging from 2ms to 20ms. 

To minimise the human interface during an observation run, the instrument is as automated 
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as possible, requiring only several input parameters from the user prior to data-capturing. 

The calibration module consists of a square grid of point sources for calibrating the CP40 

detectors, a reference wavefront for calibrating the wavefront sensor, and a binary source 

at a fixed distance on a rotatable platform to calibrate the scaling between the two CP40 

channels and the CCD camera. For a more detailed discussion of the SPID instrument and 

the associated software, the reader is referred to Ref. [3]. 

From telescope 

(
2 Independent) 

channels 

Figure 4.17: Block diagram ofthe raw-data collection of the SPID instru­
ment at the Observatoire de Lyon, and the processing steps required to 
convert this data into a usable form. 

After the raw data has been captured by the CP40 and CCD cameras, the distortions 

introduced by the non-ideal effects must be compensated for before the data is in a usable 

form. Although it is a general rule that the data should not be manipulated in order to 

avoid information loss, in this case it is necessary to perform some pre-processing steps. 

There are two main reasons for this. Firstly, the raw data is extremely noisy so that it is 

difficult to extract useful information without dealing with the noise initially. This becomes 

apparent by examining the sample speckle image and wavefront sensing data frame in Figs. 
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4.18(a) and 4.18(b). Secondly, there is a strong deterministic distortion in the data channels. 

Although it is possible to incorporate this into the model for the calculations, it is easier to 

correct for this distortion before other processing is performed. These pre-processing steps 

are illustrated in Fig. 4.17 and are discussed in further detail in the following sections. 

(a) (b) 

Figure 4.18: (a) A sample speckle image and (b) a sample wavefront 
sensing data frame captured at the telescope. These images represent 
the raw data captured, and as a result no pre-processing has been per­
formed. It can be seen that the data frames are very noisy. 

Background removal 

A background is always present on the CP40 and the CCD cameras due to thermal noise, 

even when the cameras have been cooled with liquid nitrogen. This background mea­

surement must be recorded prior to data-capturing so that the bias it introduces can be 

subtracted from the astronomical data. A different background measurement is needed 

before each observing run. 

Deinterlacing 

Each CP40 channel has 576 x 384 interlaced pixels, each of size 16.8JLm (vertical) x9.2JLm 

(horizontal). The deinterlacing operation involves taking every second pixel in the vertical 

direction, thus producing two frames corresponding to the odd and even columns of the 
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captured data, each of size 288 x 384 pixels. For further details, the reader is referred to 

Ref. [38]. 

Photon detection 

The CP40 photon-counting detector captures four realisations of the speckle image at two 

spectral bandwidths. Each of the four images is corrupted by noise and the presence of ions. 

The noise component is a combination of Poisson and Gaussian processes. The Poisson noise 

is a result of the random fluctuations of the number of photons on the detector surface, 

whereas the Gaussian noise arises from the random thermal motion of the electrons in 

the circuit elements [4,19]. The ions present in the atmosphere produce very bright spots 

compared to a photon. Although the arrival of photons is a statistical process, to distinguish 

the photon events from the ions and the noise components, three deterministic steps must 

be performed. Firstly, a basic thresholding procedure selects the points that are between the 

upper and lower thresholds. These thresholds can be determined from the data. Secondly, 

the potential photon events must be a maximum over a 3 x 3 patch, and that no negative 

values must be adjacent to such a maximum because such an occurrence implies a very low 

probability of a photon event. Finally, the potential photon events are centroided over 3 x 

3 pixels to improve the accuracy of their position to a subpixellevel. The accuracy of the 

centroiding operation is examined in Chapter 7. 

One of the intrinsic problems of a photon-counting detector is that it is unable to distinguish 

between overlapping photon events. This defect is particularly relevant when computing an 

image correlation for speckle interferometry techniques. This problem is overcome by using 

more than one realisation of the speckle, hence the four channels used by the camera [167]. 

Dewarping 

Due to the use of a photo-cathode in the CP40 photon-counting detector, an electric field 

is present, resulting in a warped image being captured. This is illustrated by imaging a 

square grid of point sources, the result of which is shown in Fig. 4.19. The fact that 

the image should be a square grid provides a way of dewarping the CP40 channels using 

a least-squares estimate [115]. If the Cartesian coordinates of the n warped points are 
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denoted as (Xi, Yi), i = 1. " n, and the expected location of the corresponding points are 

(Hi, Vi), i = 1 ... n, then a third order relationship between these two sets of points is: 

Ui 0.0 + o.lXi + o,2Yi + a3 xJ + 0AXiY'i + asyl + a6 X{ + o,7 x lYi + a8x;iyl + o,gy( 

Vi bo + b1Xi + b2Yi + b3 x l + b4XiYi + bSYT + b6x{ + b7xTYi + bSXiY; + bgy{ (4.54) 

where aj and bj for j = O ... 9 are the row and column coefficients respectively. Using these 

coefficients, the photon-counting images of astronomical subjects can be corrected. Fig. 

4.20( a) shows the points corresponding to the peaks of each of the spots in Fig. 4.19. Fig. 

4.20(b) shows the grid of regular points for the warped points to be mapped onto, and Fig. 

4.20( c) illustrates the dewarped points. The row and column coefficients that produced this 

transformation are listed in Table 4.2. 

Although the warping of the CP40 channels is different for each observing run, the variation 

is small. This means that even for subsequent observing runs, the first set of coefficients that 

was computed can be used as a rough correction, while a second application of dewarping 

can be used to take into account the small variations between observing runs . 

Figure 4.19: An image recorded by the blue channel (odd) of the CP40 
camera when a regular grid of point sources is imaged. 

Scaling and resampling between CP40 and WFS channels 

During an observing run, data such as the image of the aperture is captured in the aperture 

plane by the wavefront sensing CCD, while the photon-counting images are captured on 

the image plane by the CP40 camera. These two cameras have the same number of pixels, 
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Figure 4.20: (a) Warped image of a square grid of point sources on a 
CP40 channel. (b) A regular grid of points to map the warped points 
onto. (c) Corresponding dewarped image. 

but the sampling in each domain is different. Moreover, the alignment between the two 

channels is affected by the dewarping operation. As a result, one of the two sets of images 

must be resampled before they can be used simultaneously. This is an example of image 

rectification as defined in Chapter 1. This is discussed in further detail in Chapter 8, where 

resampling is performed before the wavefront sensing data is used as a constraint in a blind 

deconvolution framework. 
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• Row coefficients ao - a9 

12.3 X 101 

7.51 X 10-1 

2.43 X 10-2 

9.02 X 10-4 
1.21 X 10-4 
1.55 X 10-4 

8.54 X 10-7 

2.40 X 10-8 

1.40 X 10-6 

3.02 X 10-7 

Column coefficients bo - bg 

8.49 X 101 

-7.03 X 10-2 

9.45 X 10-1 

9.52 X 10-5 

8.41 X 10-4 

7.84 X 10-5 

-7.82 X 10-8 

-1.49 X 10-6 

-3.99 X 10-8 

-9.71 X 10-7 

Table 4.2: The row and column coefficients for dewarping the CP40 chan­
nels. 

4.6 An overview on existing methods 

105 

The ability to image a distortion-free astronomical object from ground-based telescopes 

is an active area of research. The three main approaches to this problem are real time 

adaptive optics (AO), computer post-processing methods such as blind deconvolution and 

bispectrum, and hybrid methods such as deconvolution from wavefront sensing (DWFS). 

This section provides a brief overview of each approach. 

4.6.1 Computer post-processing 

Blind deconvolution 

Blind deconvolution is the process of retrieving both the object of interest and the point 

spread function simultaneously when only the convolution of these quantities is measured. 

Mathematically, it is denoted by: 

(4.55) 

where f(x,y) is the object, hk(X,y) is the PSF, nk(x,y) is the noise, and dk(X,y) is the 

measured data. The subscript k denotes the kth realisation of the respective quantities. Due 

to the ill-posed nature of the problem, the quality of the reconstruction depends on the prior 

information and constraints available. Fig. 4.18(a) shows a typical frame of data captured 

at the Observatoire de Lyon. The object of observation is the binary star Castor. Due to 
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Figure 4.21: The reconstruction of Castor using multiframe blind decon­
volution with prior information. 

the noise and the low light level, it is impossible to distinguish any useful information by 

inspecting a single frame of image. 

By applying a multiframe blind deconvolution algorithm and using an additional constraint 

(in the form of wavefront sensing data), it is possible to reconstruct the binary object shown 

in Fig. 4.21. This algorithm is discussed in Chapter 8. There are many other forms of prior 

information and constraints that can be used in blind deconvolution. A detailed review is 

given in Chapter 6, where the application of two new forms of prior is also investigated. 

Bispectrum 

The technique of bispectrum was first proposed by Lohmann et ai. [113]. It uses the phase 

closure characteristic and therefore enables the retrieval of both the magnitude and the 

phase of the object spectrum without the use of a reference star under certain circumstances. 

Although it is a robust technique, its mathematical complexity means that it is not as 

popular as the blind deconvolution technique. In Chapter 6, a blind deconvolution algorithm 

which combines elements of the bispectrurn technique is investigated. 

4.6.2 Adaptive optics 

Adaptive optics (AO) is a means of sensing the aberrations induced by the atmosphere 

and partially correcting for it in real time. Fig. 4.22 illustrates an AO system. The 
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incident wavefront is sensed by the wavefront sensor (WFS), and the computer calculates 

the commands for the actuators to change the deformable mirror (DM) in such a way that 

the distorting effect of the atmospheric turbulence on the incoming wavefront is minimised. 

If an adaptive optics imaging system works perfectly, then diffraction-limited imaging is 

possible. However, this is impossible to achieve because the measurements do not have 

infinite precision [147]: the finite signal and measurement noise in the WFS, the finite 

spatial sampling of the WFS, the finite degrees of freedom in the DM, and the finite temporal 

response of the AO system all contribute to the fact that only partial correction is possible. 

Wavefront 
sensor ('NFSI 

Pupil 

~====~ ColllmaHng lens 

~_=Z:!I Image plane detector 

'----+I Computer to control 1--___ -' 
actuator commands 

Figure 4.22: A simple illustration of an adaptive optics imaging system. 

Another problem suffered by AO systems is low light levels. Using the object of interest 

to acquire wavefront sensing measurements, known as self-referenced adaptive optics, is 

sometimes difficult because the object is dim. One solution to this problem is to use a 

reference star to provide the wavefront sensing measurements. There are two types of 

reference stars: a natural reference star, and an artificial guide star. The latter is a concept 

first proposed by Foy and Labeyrie [39] in 1985. Here, a laser beam is focused at the centre 

of the field of view of the telescope at a finite altitude above ground. When the light is 

scattered by the atmosphere, some of this light is directed back towards the telescope and 

is used for wavefront sensing. 
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However, the use of a natural guide star and an artificial guide star introduces the problems 

of angular and focus anisoplanatism [45] respectively. Angular anisoplanatism (Fig. 4.23 (a) ) 

arises from the wavefront of the natural guide star propagating through slightly different 

regions of the atmosphere to the telescope than the wavefront of the object. On the other 

hand, focus anisoplanatism is the result of the artificial guide star being at a finite altitude, 

compared with the object which is effectively infinitely far from the telescope (Fig. 4.23(b)). 

Both the problems of anisoplanatism and finite measurements contribute significantly to 

the performance of the adaptive optics system. It is therefore usual to employ some post­

processing techniques on the partially compensated images to improve their quality. 

In this thesis, the techniques and performance of adaptive optics systems are not examined; 

for further details the reader is referred to Ref. [147]. However, because the technique 

of adaptive optics suffers from similar problems to deconvolution from wavefront sensing 

(discussed next), some of the techniques proposed in this thesis are also applicable to AO 

imagery. 

Object Guldestar Object 

* o * Guldestar 

Wavefront 

sensor f':NW~FS:!.-) -7f-+==~ 

I ~'------7f-'-4--J"", 

Image plane detector Image plane detector 

(a) (b) 

Figure 4.23: (a) The use of a natural guide star suffers from angular 
anisoplanatism. (b) TIle use of an artificial guide star suffers from 
focus anisoplanatism. 
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4.6.3 Hybrid technique: deconvolution from wavefront sensing 

Deconvolution from wavefront sensing (DWFS) is a hybrid imaging technique which com­

bines the elements of adaptive optics and post-detection image processing to obtain high 

resolution images through atmospheric turbulence. In addition to speckle images, the tech­

nique of DWFS uses simultaneous wavefront sensing images to estimate the optical transfer 

functions in a post-processing step. This technique was first proposed by Fried [46] and 

later implemented by Primot et al. [135]. Fig. 4.24 shows a block diagram of the DWFS 

method. 

Distorted 
~wavefront 

Telescope aperture with central obscuration 

High speed shutter 

Filter lens 

Shack-Hartmann 
wavefront sensor +--------+i:Computer 

Slope measurements 

Figure 4.24: Block diagram of the DWFS method. 

The basic formulation of a DWFS estimator is: 

F(u, v) 
(D(u, v)H*(u, v)) 

(IH(u,v)1 2) + c 

Object 
estimate 

( 4.56) 

where the object distribution can be found by taking the inverse Fourier transform of 

F(u, v). This is essentially a vector Wiener filter [133,150]. Fig. 4.25 illustrates an example 

of applying DWFS. The object of interest is a binary star and it is imaged in the presence 

of Poisson noise in the image channel and Gaussian noise in the WFS channel. Fig. 4.25(a) 

shows a sample frame of simulated speckle image, and Fig. 4.25(b) shows one realisation of 

a wavefront sensing image. The reconstruction of the object using DWFS with 2000 frames 

is shown in Fig. 4.25(c). 
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(a) (b) 

(c) 

Figure 4.25: An example illustrating the method of DWFS. (a) Sample 
frame of a speckle image of a simulated binary star. (b) Sample frame 
of wavefront sensing da.ta. (c) Object reconstruction using 2000 frames 
of data,. 

The method of DWFS is simple to implement. However, the use of the Shack-Hartmann 

wavefront sensor means that the magnitude of the object spectrum cannot be reconstructed 

accurately. A possible solution is to use reference star measurements in addition to images 

of the object of interest [149]. However, this does not completely remove the magnitude 

problem and suffers from other difficulties associated with a guide star as discussed in 

the previous section. In Chapter 9, an alternative solution based on parameterisation is 

proposed. 



Chapter 5 

Interpolation and superresolution 

Interpolation and superresolution can be viewed as being complementary to each other. 

Interpolation describes the increase in sampling rate in the spatial domain, while super­

resolution depicts the extension of the meaningful frequency content of an image. This 

interpretation is supported by the observation that if the frequency content of the data 

increases, the sampling grid must be more finely spaced [85]. In this chapter, the problem 

of interpolation is developed from a statistical point of view. The results are interpreted in 

terms of the frequency content of the reconstruction. 

5.1 Introduction 

Many images captured by charge-coupled device (CCD) cameras, scanners, and satellites are 

of a lower resolution than desired because the pixel size must be large enough to minimise 

the amount of read noise. The data is often aliased and interpolation is required to recover 

some high frequency information. 

In remote sensing, the images are often captured by different sources and are seldom aligned 

with each other. In order to compare the images directly, it is convenient to res ample the 

measurements onto the same set of coordinates. Instead of using a geometric transformation, 

which gives rise to the problem of non-rectangular and skewed pixels, the data can be 

interpolated onto a finer grid and then downsampled (or decimated) onto the desired set of 
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rectangular coordinates. 

Astronomical imaging also calls for the need for interpolation. When simultaneous speckle 

images and wavefront sensing data are captured, the sampling rates between the data sets 

may not match. This is the case with the data captured at the Observatoire de Lyon, which 

is used in this thesis. It is therefore necessary to perform interpolation on the wavefront 

sensing data in order to match the sampling rate of the speckle images. This is discussed 

in further detail in Chapter 8. 

Since the need for interpolation arises in many occasions, there are many methods devised 

for it. These include the common linear interpolator, the sinc and its windowed counterpart, 

polynomial interpolators [98] and splines [81]. 

Interpolation is an inverse problem as it deduces the underlying high-resolution object from 

a set of low-resolution measurements by assuming certain characteristics about the image­

acquisition instrument. These assumptions form the model of the system, a key component 

of which is the sampling process. A property of many interpolation schemes is collocation, 

where the original sample values are preserved. Whilst this would be optimal for a noise­

free point-sampled image, it is clearly not optimal for noisy data or CCD images where a 

cell integrates over an area to produce a sample. In fact, it has been shown that a better 

interpolation result is produced when the sampling process is modelled correctly [182]. Fig. 

5.1 illustrates the processes of area and point sampling. In Fig. 5.1(a), a section of a 

standard test image in Matlab [117] is shown. Figs. 5.1(b) and 5.1(c) illustrate the images 

using area and point sampling respectively. The resolution of the sampled images is a 

quarter of the original image. It can be seen that the area-sampled image has a smoother 

appearance. Fig. 5.1(d) shows the respective spectra. The solid line is the true spectrum. 

The spectrum of the area-sampled image, shown as a dash-dotted line, is closer to the true 

quantity than the spectrum of the point-sampled image (dotted line). 

Another issue associated with sampling is the sensitivity and the fill factor of the sensors 

in an instrument. The fill factor is the proportion of a CCD cell that is sensitive to light. 

If the cell is of dimensions Xo x Yo (Fig. 5.2), and the sensitive area is of dimensions a x b, 

then the fill factor is 

a b 
X 

Xo Yo 
(5.1) 

If a = Xo and b Yo, then the sensors are butted. In real instruments, the sensors are 
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not butted and do not have uniform sensitivity. However, the model complexity increases 

significantly if these characteristics are to be incorporated. As a result, 

not used in the model in many interpolation schemes. 

factors are 

When performing interpolation, often some statistical information is known or can be ex­

tracted from the measured data. For example, the direct simulation of atmospheric phase 

distortion is only practical for an array of size 32 x 32, which is insufficient for many 

processes [76]. By using a weighted least squares approach for interpolation together with 

randomisation according to the known statistics of the turbulence, a small phase screen is 

interpolated with the correct statistics. Although the application of statistical information 

seems reasonable, it is seldom used in many common interpolation schemes. 

In view of the many existing interpolation methods which neither account for the nature 

of the sampling process nor incorporate statistical information in the reconstruction, in 

this chapter an optimal Bayesian interpolator is sought as a solution to these problems. 

This interpolator is optimal in the sense that it is linear, unbiased, and has minimum 

variance [97]. Classical interpolators such as the sinc and bilinear interpolators are shown 

to be a subset of the family of derived optimal interpolators. 

5.2 Instrument sampling process 

The data we wish to capture is continuous, but it must be discretised to be processed 

digitally. As a result, the high resolution object of size M x M is denoted by f(x, V), 

while the low resolution image of the same scene is denoted by d( x, y) (size N x N). Here 

N = MfR, R is the ratio between the sampling rates of f(x,y) and d(x,y), and is 

an integer greater than 1. The relationship between the high and low resolution data can 

then be expressed as: 

d = Hf+n (5.2) 

where f, d and n are lexicographically ordered vectors of the unknown high resolution data, 

the measured low resolution samples, and additive noise values, respectively. All of these 

vectors are assumed to be stationary random processes, and the noise in this system is 

assumed to be zero-mean white Gaussian noise. H is a matrix describing the sampling 

process, which is the transformation from the high resolution data to the low resolution 
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Figure 5.1: (a) A section of a stanc/;lrd test image in Matlab . It is down­
sampled by a factor offGur llsing (b) area sampling cwd (c) point sam­
pling. (d) The solid line is the spectmm of the true image. The spectra 
of the fll'CCL- fwd point-sa,mpled images arc shown as dash-dotted and 
dotted lines respectively on a logarithmic scale. The area-sampled im­
age is ;1 closer representation of the true image. 

data. The inverse problem here is to find f when d is measured. This is an underdetermined 

problem because there are fewer data points than unknowns, It should be noted that since 

R can be made arbitrarily high , the reconstructed data can approach continuous data in 

the absence of noise. 

Two possible sampling processes are examined here. Firstly, we consider area-sampling 

which is the process t.hat. models CCD data acquisition. To first order, the CCD array can 

be modelled as a square grid of light-sensitive elements with no spaces between them, with 

uniform sensitivity across each cell. This means that a low resolution sample is produced 

by averaging R2 samples. On the other hand, in point-sampling, only every Rtlt sample is 



r 1· ... ·· ..... . Xo 0< 

l~ 
-Yo -

Figure 5.2: A CCD cell witb dimensions Xo X Yo. Tbe sensitive area is 
of dimensions a X b. III tbis case sbown lwre, a < Xo and b < Yo; tbe 
sensor cells in tile array are tberefore not butted. 

taken in each direction. This is the assumption employed in most interpolation schemes. 

For example, assuming that the high resolution data is of size 8 X 8 and that the low 

resolution data is sampled at half the resolution of the high resolution data (i.e., R = 2), 

area-sampling is represented by 

[ 
Ba 0 1 0 
o Ba 

o [Ba 0 1 
o Ba 

where each block Ba is 

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 "4 "4 4 4 

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 
Ba= 4 4 "4 4 

0 0 0 1 1 0 0 0 0 1 1 0 0 0 "4 4 0 0 4 4 

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 
"4 "4 4 4 

Similarly, for a situation with the same dimensions, point-sampling can be expressed as 

Bp 0 0 0 0 0 0 0 

0 0 Bp 0 0 0 0 0 
Hp= 

0 0 0 0 Bp 0 0 0 

0 0 0 0 0 0 Bp 0 
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where each block Bp is 

1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 
Bp= 

0 0 0 0 1 0 0 0 

0 0 0 0 0 a 1 0 

Examples of an area-sampled and a point-sampled image are shown in Figs. 5.1(b) and 

5.1(c). 

When the data-acquisition process of the image-capturing instrument is taken into account, 

Eq. (5.2) ensures that the high resolution samples would generate low resolution samples 

that are consistent with the data gathered. 

5.3 Optimal interpolation 

Following Eq. (5.2), the linear estimate f of f can be defined as: 

f 8 0ptd (5.3) 

where 8 0pt is the optimal interpolator. The simplest solution is the least squares estimator 

[115] where 

(5.4) 

However, this solution assumes that no knowledge about the underlying high resolution 

object is available, which is not the case. 

In order to utilise all the available information, the optimal interpolator is defined as the 

best linear unbiased estimator (BLUE) with minimum variance for the high-resolution data. 

The autocovariance for the high-resolution data is defined as E{ffT} Kff, and the auto­

covariance of the noise on the measured low-resolution data is E{nnT } = K nn , where E{·} 

denotes the expectation operator. The data and the noise are assumed to be uncorrelated, 

i.e., E{nfT} = O. The optimal interpolator that minimises E{llf f112} is given by [97,115]: 

(5.5) 

which is essentially a solution to an underdetermined inverse problem, with the prior infor­

mation expressed in terms of K ff and Knn. 
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Equivalently, the criterion of optimality can be viewed as a Bayes estimation problem asso­

ciated with Eq. (5.2) where we find f such that the a posteriori probability is maximised. 

Applying Bayes rule, we have 

p(fA 1d) = P(dlf)P(f) 
mix mr P(d) . (5.6) 

Assuming that both f and n are multivariate Gaussian processes, their respective probabil­

ities are 

P(f) 

P(n) (5.7) 

Substituting Eq. (5.7) into (5.6), taking the log and discarding terms that are not a 

function of f, the expression we wish to maximise is 

lnP(fld) (5.8) 

which again leads to (5.5) for the optimal interpolator [4]. 

There are a number of issues associated with the solution of Eq. (5.5). Firstly, for the inverse 

to exist, (HK IfHT + Knn) must be of full rank. In practice, the invertibility is guaranteed 

because KIf is a positive semidefinite auto covariance matrix and as a consequence HKIfHT 

is positive definite. Provided the noise on each CCD element is independent, the noise 

autocovariance Knn takes the form of a diagonal matrix. This ensures the bracketed term 

in equation Eq. (5.5) is positive definite and easily invertible. 

Secondly, the uniqueness of the solution can be shown by using Eq. (5.8). If we only 

consider the first quadratic term, the solution to the problem is not unique because H is 

not of full rank, and consequently multiple solutions exist. However, together with the prior 

term fTKjj 1£, uniqueness is ensured because the covariance KIf is of full rank and positive 

semidefinite. 

It should be noted that the low resolution data is not zero-mean (because it is captured on 

a CCD), while the auto covariance by definition is a zero-mean statistic. For interpolation 

this is not a problem, since in the initial model assumption, f is assumed to be a stationary 

random process. This means that the vector f is a set of random fluctuations about a 

constant mean. As a result, the interpolation is performed as though the data is zero-mean 
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plus a constant bias, and the interpolated image is thus a zero-mean process with an additive 

constant [4]. 

In the presence of noise, an exact fit of the interpolated values to the data is often unde­

sirable. From Eq. (5.5), we see that the noise process is incorporated in the design of the 

estimator. In the extreme case when the sample is very noisy, the term Knn dominates 

the solution. This leads to the seemingly surprising result that the optimal interpolator 

tends to zero as the noise increases. In practice, it means that the data is so noisy that any 

conventionally interpolated value is dominated by noise, and it is best not to interpolate 

at all. This demonstrates the balance between the weighting on the data and the prior 

information, a property common to many inverse problems. In this case, the noise may be 

such that the resolution of the existing samples should be reduced by smoothing. 

Most image-capturing instruments do not meet the Nyquist sampling criterion. This means 

that different frequencies of f can be aliased to the same frequency in d. However, different 

frequency components in the high resolution data correspond to different values in the au­

to covariance matrix K ff' and as a result, a meaningful separation of the alia.'led frequencies 

can be made by the optimal interpolator in Eq. (5.5). 

In summary, the main advantages of the optimal interpolator over the existing techniques 

are as follows. The sampling process and the statistics of the data and the noise are modelled 

and incorporated in the interpolator. The explicit inclusion of the noise term in the interpo­

lator means that a balance can be achieved between the fidelity of the interpolated image to 

the measured data, and the amount of noise present on the data. The optimal interpolator 

can also partially overcome the problem of aliasing, since although two frequencies may 

produce identical samples, they are not equally probable. 

5.3.1 Application of the optimal interpolator to geostatistics 

The optimal interpolator has wide applications, one of which is for interpolating geostatis­

tical data. Geostatistics is an area in which a limitation on the available samples results in 

a need for interpolation. The existing technique for this is known as kriging [25,88,177]. 

Despite the popularity of kriging, it has two main disadvantages. Firstly, the sampled points 

are assumed to be noise-free, and collocation is used. As a result, no weighting is assigned 
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to the quality of the samples. Moreover, the invertibility of the solution is not guaranteed. 

The second problem is that a different covariance matrix is calculated for each point of 

interpolation, and the process of kriging is slow. An improvement is to use a generic 

covariance model, such as the Markov model, to describe the underlying statistics of the 

data. In this way, the covariance matrix only needs to be calculated once. Although this 

may not be as exact as the model used in kriging, the proposed method will be much faster. 

Finally, it should be noted that in kriging, the samples are usually irregular. However if 

regular samples were taken, the optimal interpolator can be applied directly to the data. 

5.4 Autocovariances of the high-resolution data and the noise 

The statistical interpolator relies on the knowledge of the autocovariance Kif of the high 

resolution samples. Obviously, this information may not be available with real world data, 

but it is clear that certain assumptions are more realistic than others. For comparison, sev­

eral typical autocovariance models are selected for interpolation. The performance of these 

models is compared with that of the actual auto covariance extracted from real experimental 

data in the next section. 

Since the power spectrum is the Fourier transform of the autocovariance (assuming zero­

mean data), several models of autocovariances can be selected according to the different 

assumptions in the frequency domain. A white spectrum which assumes that all frequencies 

are equally likely results in a delta function for the autocovariance: 

K~(x, y) = o(x, y). 

This is equivalent to the smoothness constraint in smoothing splines [138,152,173], where 

Eq. (5.8) is maximised with Kif as a diagonal matrix. The sinc autocovariance corresponds 

to band-limited data with a uniform power spectrum and can be expressed as: 

The Gaussian autocovariance, 
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(a) (b) (c) 

Figure 5.3: Autocovariance matrices for the (a) sinc, (b) Gaussian, and 
(c) Markov covariance models. The correlation c for the Markov model 
is 0.5 here. The images a,re shown on a gray scale with the white pixels 
equal to 1 and the black pixels equal to O. 

models extreme smoothness and continuity, a characteris tic of certain images [88]. However, 

Goovaerts [63] suggests that the Gaussian model may suffer from numerical instabilities and 

artifacts in interpolation, and recommends the use of a Markov model: 

K~[arkOv(x, y) = cV(x
2+y 2 ), 

where c is the correlation between adjacent pixels. The autocovariallce matrices K ff are 

constructed from these basic representations. Fig. 5.3 shows the matrices for the sinc, 

Gaussian and Markov autocovariances. The value of c is set to 0.5. The delta autocovariallce 

matrix is not shown because it is simply an identity matrix. 

The autocovariance of the noise is dependent on the correlation between the noise samples. 

According to Andrews and Hunt [4], there are two noise processes associated with image 

detection wi th a photoelectronic system: random thermal noise sources in the electronic 

circuits, and random fluctuations of the number of photons on the detector surface. The 

former is adequately described by a zero-mean Gaussian process with a white spectrum. 

The noise emissions of the latter are independent of spatial position on t.he photoactive 

surface, meaning that the corresponding noise process is spatially uncorrelated with a white 

spectrum, Therefore it is assumed that the overall detection noise is uncorrelated. 

The autocovariance of the noise is also a function of the variance of the quantisation process 

used in digital processing. In the case of uniform quantisation, it can be assumed that the 

CCD sampler has 8 bits, and the images are captured on a gray scale with 256 levels. This 

leads to a quantisation step size 6. of 1, with the variance of the noise being 6.2 /12 [78]. 
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Since the noise is uncorrelated, the auto covariance is 

6,2 
Knn = 121, 

121 

where I is the identity matrix. The actual noise variance is likely to be higher from the 

contribution of sensor noise. On the other hand, a non-uniform quantisation procedure 

results in image-dependent noise. In this case, the variance is larger at locations with 

more photons, and smaller at locations with fewer photons. This means that the optimal 

interpolator can no longer be applied globally to the data; instead, a different interpolator 

is required for each point of interpolation. This increases the computational complexity 

substantially. However, non-uniform quantisation is usually only found in CMOS cameras, 

and the assumption of linear quantisation is valid in most cases. 

5.5 Experimental results 

This section presents experimental results obtained using two sets of real data: images 

acquired by a commercial scanner, and images taken using a SPOT remote-sensing orbiting 

satellite [20]. These data sets are chosen because the images are available at two resolutions, 

providing a ground truth for assessing the performance of the interpolators. Fig. 5.4( a) and 

(b) show the scanned images at two different resolutions, while Fig. 5.4(c) and (d) show 

the SPOT images. The optimal interpolator is directly applicable to the data acquired 

from the scanner, whereas the SPOT data requires pre-processing to overcome practical 

problems such as spectral mismatch and the misalignment of the low- and high-resolution 

data. These issues have been dealt within the paper by Bretschneider et al. [15J; here the 

investigation is confined to the application of the optimal interpolator to the data. 

The results obtained using the proposed interpolator are compared to the performance 

of the cubic spline interpolator [117, 172] and the bilinear interpolator as these are the 

most commonly used interpolators. Before the comparison can be made, it is necessary 

to generate the interpolating kernels under different noise, autocovariance and sampling 

assumptions. This is addressed in the following subsection. 
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(c) (d) 

Figure 5.4: The two sets of data used to evalua.te the performance of 
the optimal interpolator. (a,b) High and low resolution data from the 
scanner, (c,d) High a.nd low resolution SPOT farm data. 

5.5.1 Interpolating kernels under different assumptions 

The characteristics of the interpolating kernels formed from the different sampling, aut.oco­

variance and noise assumptions are examined. Fig. 5.5(a) shows the high-resolution portrait 

(192 x 128) acquired with a commercial scanner. This is the same as Fig. 5.4(a) and is 

shown here for completeness. A 32 x 32 section is extracted (boxed area) and the cross­

section of the auto covariance calculated from this section is shown in Fig. 5.5(b). Using the 

actual autocovariance from Fig. 5.5(b) and modelled autocovariances, the cross-section of 

the interpolating kernels formed are shown in Fig. 5.6. The left- and right-hand columns 

contain kernels produced by an area-sampling and point-sampling assumption respectively. 
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Figure 5.5: Portrait data from which the autocovariance is extracted 
for comparison with the modelled autocovariances in Fig. 5.6. (a) 
Large high-resolution data. The boxed area is the extracted section, 
size 32x32. (b) Cross-section of the autocovariance calculated from the 
boxed area, plotted over 64 points. 
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The solid lines represent the kernels obtained when no noise is present and the dash-dotted 

lines are kernels formed in the presence of 8-bit quantisation noise. Fig . 5.6(a) and (b) show 

the kernels generated using the actual auto covariance of the scanned high resolution data. 

It can be seen that under a noiseless assumption, the Markov kernels in (c) and (d) are the 

best model of the true kernels. When noise is present , the Markov kernels tend to spread 

out more than the true kernels, thus attenuating high frequencies to a larger extent than 

the true kernels in the reconstruction. Nevertheless, it should be noted that this spreading 

behaviour does not apply to all kernels; for example, the noisy and noiseless kernels are 

almost identical for the delta point-sampled model (Fig. 5.6(j)). Therefore, whether the 

noise has a significant effect on the interpolator depends on the underlying statistics of the 

Image. 

It is interesting to note that variations of the statistical interpolator approach classical in­

terpolators. Three of the shown point-sampling interpolators (Fig. 5.6(b), (d) and (j)) are 

similar to the bilinear interpolator, with the delta-point interpolator being identical to it. 

On the other hand , the white point-sampling kernel (Fig. 5.6(h)) is a sinc interpolator. The 

bilinear interpolator is used extensively for its computational convenience, but it can also be 

justified statistically under a wide range of circumstances. By contrast, the sinc interpolator 

corresponds to interpolation according to the Nyquist criterion, but in practice does not 

perform well as an interpolator because it introduces ringing in the reconstructed signal. 

This is not unexpected statistically because the assumptions that lead to this interpolator 
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Figure 5.6: Interpolating kernels under different assumptions. Only the 
cross-sections are shown here. The solid lines are formed assuming 
no noise is present, and the dashdot lines are for the assumption of 
8-bit quantisation noise. All kernels are plotted over 32 points. (a) 
Autocovariance from actual high-resolution data, area sampling, (b) 
Autocovariance from actual high-resolution data, point sampling, (c) 
Markov area, (d) Markov point, (e) Gaussian area, (1) Gaussian point, 
(g) White area, (h) White point, (i) Delta area, (j) Delta point. 
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are unrealistic and rarely found in images despite its use as a standard interpolator. In sum­

mary, classical interpolators can be viewed within the framework of statistical interpolators, 

and are optimal under particular sampling and statistical assumptions. 

It should be noted that in Fig. 5.6, all the interpolators are represented as convolutional 

kernels. The impulse response of the spline function, the cardinal spline, can also be viewed 

as a convolution. This means that prior information and the sampling-process model can be 

incorporated into spline interpolators. In particular, smoothing splines can be incorporated 

in the framework presented here [172]. 

5.5.2 Ensemble results 

The two data sets are shown in Fig. 5.4. Each of the high-resolution images (Fig. 5.4(a) and 

(c)) is of 192 x 128, and is divided into twenty-four 32 x 32 images. Correspondingly, the 

low-resolution images (Fig. 5.4(b) and (d)) are ofhalfthe resolution of the high-resolution 

images (i.e. R=2, size 96 x 64), and are each divided into twenty-four 16 x 16 images. 

As a result, for each set of data, there are twenty-four sub-images to be interpolated and 

compared. This ensures that the statistics between the sub-images of each set of data are 

very similar. 

Each low-resolution sub-image is interpolated by the optimal interpolator under different 

noise and covariance assumptions, and the normalised MSE is calculated with 8 pixels 

removed from the edges to eliminate the influence of edge effects. The correlation c between 

adjacent pixels in the Markov model was estimated from the low-resolution data to be 0.5. 

The ensemble results for the portrait and SPOT farm images are tabulated in Tables 5.1 

and 5.2 respectively. The MSE and the variance for the cubic-spline interpolated result are 

2.35 x 10-5 and 1.59 x 10-9 respectively for the portrait. For the SPOT farm image, the 

corresponding values are 8.41 x 10-6 and 4.04 x 10-11 • 

From these results, several conclusions can be drawn. In all cases, the area-based interpola­

tors perform better than their point-based counterparts, confirming that better modelling 

of the data-acquisition process improves the results. The best results are produced by the 

extracted-area and Markov-area interpolators, which are essentially comparable in terms 

of mean-squared error. However, the extracted-point interpolator does not perform as well 
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Kernel assumption 
Noise variance 

0 0.04 0.0833 0.16 

extracted, area 1.94 x 10-5 1.82 X 10- 5 1.76 X 10- 5 1.74 X 10-5 

extracted, point 8.77 x 10-5 8.74 X 10-5 8.74 X 10- 5 8.72 X 10-5 

, area 1.95 x 10-5 1.81 X 10-5 1.74 X 10- 5 1.70 x 
Markov, point 2.76 x 10- 5 2.75 X 10-5 2.74 X 10-5 2.74 x 

sine, area 2.56 x 10-5 2.55 X 10-5 

sine, point 8.32 x 10-4 8.32 X 10-4 

white, area 2.43 x 10-5 

white, point 6.63 x 10-3 6.19 X 10-3 

Gaussian, area 2.12 x 10-5 1.79 X 10-5 

Gaussian, point 2.42 x 10-5 2.30 X 10- 5 

Table 5.1: Mean squared error values for the portrait data set. The 
variances range from 7.64x 10-10 to 3.72x 10-6 . The MSE for the cubic­
spline interpolated result is 2.35 x 10-5 with a variance of 1.59 x 1O-~. 
The noise variance of 0.0833 corresponds to 8-bit quantisation noise. 

Kernel assumption 
Noise variance 

0 0.04 0.0833 0.16 

extracted, area 5.64 x 10-6 6.28 X 10-6 6.33 X 10-6 5.42 X 10-6 

~t,oct"d,~ 1.83 x 10' 1.83 x 10-' 1.83 X 10-4 1.83 X 10-4 

Markov, 6. ~ x 10 6 6.24 X 10-6 6.34 x 10 6 

Markov, point 8.88 x 10-6 8.91 X 10-6 8.94 X 10-6 8.99 X 10-6 

sine, area 6.43 x 10-6 6.50 X 10-6 6.44 X 10-6 6.45 X 10-6 

sine, point 6.83 x 10-4 6.83 X 10-4 6.83 X 10-4 6.83 X 10-4 

white, area 7.07 x 10-6 7.08 X 10-6 7.08 X 10-6 7.08 X 10-6 

white, point 5.58 x 10 3 5.58 X 10-3 5.58 X 10-3 5.58 X 10- 3 

Gaussian, area 6.28 x 10-6 6.25 X 10- 6 6.25 X 10- 6 6.27 X 10- 6 

Gaussian, point 6.28 x 10-6 6.90 X 10-6 6.91 X 10-6 6.93 X 10-6 

Table 5.2: Mean squared error values for the SPOT farm data set. The 
variances range from 1.47 x 10-11 to 3.69 X 10-8 • The MSE for the cubic­
spline interpolated result is 8.41 x 10-6 with a variance of 4.04 x 10-11 . 

The noise variance of 0.0833 corresponds to 8-bit quantisation noise. 
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as the Markov-point interpolator. This is probably because by using the one-parameter 

Markov model, we have emphasised the low-frequency components in the reconstruction, 

thus excessively smoothing the solution. This appears to have compensated for the incorrect 

data-acquisition process used, and has led to a somewhat better reconstruction than the 

extracted-point result in terms of MSE. The Gaussian auto covariance model also exhibits 

this smoothing property, demonstrated by the comparable results obtained using both the 

area and point interpolators. The white and sinc interpolators performed poorly due to the 

unrealistic auto covariance assumptions discussed earlier. 

Four noise variance assumptions have been investigated; the case where no noise is present 

while unrealistic is included for completeness. While 8-bit quantisation noise is a realistic 

minimum, it is appropriate to assume a higher noise variance to allow for the contribution 

of sensor noise. best optimal interpolators (extracted-area and Markov-area) are con­

sistently better than the cubic spline interpolator, confirming the benefits of the Bayesian 

approach. 

5.5.3 Superresolution 

Since interpolation can be viewed as being complementary to superresolution, the frequency 

content of an interpolated image should be examined. The high-resolution scanner data is 

used again, but the ratio R between the resolutions of the high and low resolution data is 

set to 5. Only one-dimensional interpolation is considered for the convenience of displaying 

the ensemble average spectrum. The extracted-area, Markov-area and white-point (conven­

tional sinc) interpolators are used to interpolate the data. The results are shown in Fig. 5.7. 

In Fig. 5.7 (a), the ensemble spectra of the data of both resolutions are shown. sampling 

frequency of the high resolution data, is, is 5 times that of the corresponding low resolution 

data. The spectral peak at 0.125 is in the original spectrum is seen to have aliased into the 

low resolution spectrum at 0.075 is. In Fig. 5.7(b), the extracted-area, Markov-area and 

white-point reconstructions are shown as dashed, solid and dash-dotted respectively. 

The spectral peak at 0.125 is is seen to be partially restored by the extracted-area and the 

Markov-area interpolators. The meaningful frequency content of the interpolated signal has 

also been extended, illustrating the phenomenon of superresolution. On the other hand, 

the reconstruction from the use of white-point kernel (conventional sinc interpolator) 

has not restored the high resolution spectrum correctly. 
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Figure 5.7: Ensemble spectra of the scanned and interpolated data. All 
the spectra have a logarithmic vertical scale. (a) Ensemble spectra of 
the scanned data. The high and low resolution spectra are represented 
by solid and dash-dotted lines respectively. The spectral peak at 0.125 
is has aliased into the low resolution spectrum at 0.075 is. (b) The 
solid line is the interpolation using a Markov-area kernel. The peak 
at 0.125 is is partially restored. A similar result is obtained using the 
extracted-area kernel shown as the dashed line. The dash-dotted line 
is the reconstruction using a white-point kernel. This reconstruction is 
less representative of the true high resolution data. 

From this experiment, it is shown that provided the sampling and statistical assumptions 

are representative of the data, the statistical interpolator is capable of partially restoring 

aliased sampled signals and achieving superresolution. 

5.6 Summary 

It has been demonstrated that a framework of optimal interpolators is derivable from a 

Bayesian statistical basis, and provides a direct solution to the inverse problem of inter­

polation. In contrast to traditional interpolators, the sampling process is included in the 



system model and prior information in the form of autocovariances is included. The solution 

presented is optimal in terms of linearity, unbiased ness and variance minimisation. 

Classical interpolators such as the bilinear and the sinc functions are shown to be derivable 

in the proposed framework. Thus interpolators usually chosen for computational simplicity 

such as the bilinear may in fact be optimal under certain assumptions. Finally, the prob­

lem of aliasing is dealt with directly using this Bayesian framework. The phenomenon of 

superresolution, where the meaningful frequency content of the reconstruction is extended 

beyond the instrument cutoff, is also demonstrated. 

application of the optimal interpolator is not restricted to images; for example, the 

kriging technique in geostatistics will also benefit from the proposed method. 

An extension to the proposed interpolator in terms of resolution improvement is to model 

the CCD cell sensitivity and to utilise multiple frames of data. One way of implementing 

this is to use an iterative blind deconvolution framework and is the topic of discussion in 

Chapter 7, 
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Chapter 6 

Blind deconvolution: review and 

feasibility study 

In astronomical imaging, the ultimate goal is to reconstruct the object distribution. Since 

the principal degradation introduced by the atmosphere on an object is a phase distortion, 

this must be estimated and compensated for. Depending on the data captured, the phase 

or equivalently the point spread function is estimated using different approaches. 

When only speckle images are available, iterative blind deconvolution is used to solve the 

problem. On the other hand, if wavefront sensing data is captured simultaneously, then 

myopic deconvolution and hybrid methods such as deconvolution from wavefront sensing 

(DWFS) can be applied. The focus of this chapter is the technique of blind deconvolution; 

the simultaneous application of wavefront sensing data in object reconstruction is addressed 

in Chapter 8, and the technique of DWFS is examined in Chapter 9. 

6.1 Introduction 

In an astronomical blind deconvolution problem, we wish to find both the object and the 

point spread function (PSF) when only their convolution Le. the speckle image is measured. 

This is an ill-posed inverse problem, and as a result, the feasibility and the quality of the 

131 
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solution depend heavily on the form and amount of prior information available. 

There are three areas where prior information can be included: the noise statistics, the 

object, and the PSF. When the only prior information available is the noise statistics, the 

blind deconvolution problem is one of maximum likelihood (ML). In this case, the object 

and the PSF are reconstructed to best fit the data according to the assumed noise model, 

with the two most common choices being the Poisson and Gaussian models. Unfortunately, 

knowledge of the noise model alone is insufficient to produce a meaningful solution, because 

the likelihood is always maximised by a trivial solution where the object is estimated to be a 

delta function, and the PSF the data (or vice versa). This implies that the situation where 

no noise is present on the data is the most likely solution, which contradicts the reality that 

noise is always present in a system. It is therefore essential to include prior information 

about the object and the PSF to obtain a meaningful reconstruction. 

Although it is generally true that in solving such an inverse problem, it is desirable to 

incorporate as much information into the framework as possible, one important issue that 

must be addressed is the tradeoff between the potential accuracy of the solution and the 

ease of which it can be obtained. If a solution is possibly very accurate but the model of 

the system is very complex, then the gain of the accuracy must be weighed against the 

computational complexity and more importantly whether a solution can be found. This is 

the reason behind the popularity of linear models, which may lack accuracy but guarantee a 

unique solution and facilitate the analysis of the algorithm's behaviour. More complicated 

models usually have multimodal cost functions, meaning that stagnation of the algorithm 

in sub-optimal solutions is possible. 

In this chapter, iterative blind deconvolution (IBD) of astronomical images is reviewed, 

and two forms of prior information are investigated. Firstly, since the PSF is a function 

of the atmospheric turbulence, it is reasonable to constrain the reconstructed PSF to obey 

the statistics of the atmosphere. Secondly, the Knox-Thompson (KT) phase which is a 

subset of the bispectrum phase is used to constrain the PSF. This is considered because 

the bispectrum technique alone is able to reconstruct the object phase by the phase closure 

property, where the atmospheric phase contribution is eliminated while the phase informa­

tion of the object is preserved [7]. The combination of the phase closure property with blind 

deconvolution has the potential to produce reconstructions of good quality. 
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It should be pointed out that studies performed in this chapter are only used to ascertain 

the feasibility of these approaches. A more comprehensive investigation is required to 

completely characterise the performance of these approaches. 

6.2 Astronomical setting and mathematical preliminaries 

The wavefront of a star propagates undisturbed for lightyears through the vacuum of space, 

until it reaches the Earth's atmosphere where phase distortions are introduced. When the 

wavefront subsequently propagates to ground, the principal effect is one of phase distortion, 

but its intensity is also distorted with a severity that depends on the distance of propagation 

[140]. The intensity image observed at the image plane of the telescope is modelled by 

f(x,y) 0hk{X,y) +nk(X,y) 

9k(X, y) + nk(X, y) (6.1) 

where f(x, y) is the stellar object of interest, hk(X, y) is a space-invariant point spread 

function (PSF) which accounts for the effects of the atmosphere, 9k{X, y) is the noise-free 

image, nk(x, y) is the noise, and dk(x, y) is a short exposure image. The subscript k denotes 

the kth realisation of the respective quantities in the K frames captured. The objective of 

blind deconvolution is to find both f(x, y) and hk(X, y) when only dk(X, y) is available. Fig. 

6.1 displays the relevant quantities with a simulated binary star and atmospheric turbulence 

with D Iro = 5. 

Many methods have been proposed for solving the problem of astronomical blind deconvo­

lution. The majority of these methods employ a maximum a posteriod (MAP) framework, 

and differ mainly in the form of prior information used. The MAP framework is presented 

in the following subsection, and the common forms of prior information are discussed. 

The remainder of the chapter is structured as follows. Section 6.3 gives an overview of 

the existing algorithms. The application of Kolmogorov statistics as prior information is 

investigated in Section 6.4, while using the bispectrum phase as a constraint is examined in 

Section 6.5. Conclusions are drawn in Section 6.6. 
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Figure 6.1: Th e releva.nt qua.ntities in the model for blind deconvolution. 

6.2.1 General solution in a MAP framework 

The MAP solution to blind deconvolution is denoted by [97] 

ITl~LX P(j(.'E, V), hk(X, y)ldk(x, V)) 
J,h" 

(6.2) 

where the a. posteriori probability is maximised. By applying Bayes' rule , taking the log­

arithms and discarding terms that are not a function of i(x, y) or hk(.'E, y) result in the 

log-likelihood equation 

11,l~X log[P(j( x, V), hdx, y)ldk(x, V))] 
j' ,h,. 

+ log[P(j( x,y)) ] 

+ log[P(hk(x , V))]· 

The blind deconvolution solution is found by maximising this quantity. 

(6.3) 

The first term of Eq. (6.3) is the consistency measure. It ensures that the estimat.es are 
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consistent with the data and directly relates to the noise model assumption. The second and 

third terms describe the likelihoods of the object and the PSF according to the presumed 

statistical models or prior information. A balance must be achieved between these three 

terms for a good solution. 

In photoelectronic systems for image detection, the noise depends on two processes: the 

random fluctuations of the number of photons on the detector surface, and the random 

thermal sources in the circuits. Depending on the light level, there are two common noise 

models that encompass these contributing factors. 

For high light levels, the Gaussian noise model sufficiently describes the noise process, and 

the noise is independent of the signal. In this case, the first term of Eq. (6.3) corresponds 

to 

E '. _ 1"" [dk(X, y) y(x, y)j2 
con-GaussIan - 2 L....J L....J 0'2 

k x,Y k 

(6.4) 

where 

(6.5) 

and O'~ is the noise variance which is assumed constant over the image. In order to update 

j( X, y) and hk (x, y), it is necessary to calculate the gradient of Econ-Gaussian with respect to 

these quantities: 

DEcon-Gaussian _ "dk(X,y) - ydx,y) h*( ) 
D j( x, y) ~ O'~ k x, Y 

_ dk(X, y) - ydx, y) fA*( ) (6.6) 
y) O'~ X,y . 

The object and PSF estimates can be updated using the method of steepest descent or 

conjugate gradient, the details of which are included in Appendix A. 

Under low light conditions, it is more appropriate to use the Poisson noise model where the 

noise is dependent on the signal. The corresponding error term is [158]: 

Econ-Poisson = L L dk(X, y) 10g[Yk(x, y)] - Yk(X, y). (6.7) 
k x,y 

The update of the quantities j(x, y) and hk(X, y) is achieved by the formulation first pro­

posed by Richardson and Lucy [114,139]. The object estimate is updated by: 

'+1 Aq ("dk(X,y) Aq ) r (x,y) f(x,y) L....JAq( )®hk(x,y) 
k 9k x, Y 

(6.8) 
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where q denotes the iteration. This is the multiplicative form of the Richardson-Lucy (RL) 

update. It is important to note that because the new object estimate is a multiplication 

of the old object estimate with the update (the bracketed term in Eq. (6.8)), the use of a 

positive starting estimate ensures object positivity for subsequent iterations. 

For many optimisation problems, it is convenient to express the update to the object es­

timate in terms of its effect on the error metric, or a gradient. This allows standard opti­

misation techniques such as steepest descent and conjugate gradient to be used, as well as 

providing a means for comparing different algorithms. 

The additive form of the RL update is derived as follows: 

f~q( )("dk(X,y) 'q( )) 'q( ) x, y L.t ,q ( ) ® hk x, y - f x, Y 
k 9k x, Y 

'q (" dk(X,y) 'q ) f(x,y) L.t,q( )®hk(x,y) 1 
k 9k x, y 

f'q( )("dk(X,y) 9%(X,y) ®h'q( )) 
x,y L.t ,q() kX'Y· 

k 9k x, Y 
(6.9) 

In other words, the object estimate can be updated by: 

jq+1(X, y) = jq(x, y) + jq(x, y) (L dk(X, ~1( 9~(X' y) ® h%(x, y)) 
k 9k X,y 

(6.10) 

where the bracketed term is aEcon-Poisson/ ajq(x, y). The RL update is essentially a steepest 

descent search with a fixed step and a search direction modified by jq(x, y). The term 

jq(x, y) has been interpreted by several authors as a preconditioner [23,26]. However, this 

is not true because the convergence of the solution is not always improved by its use [93]. 

Instead, the speed of convergence can be accelerated by increasing the standard RL step 

size from 1 and using conjugate gradient minimisation [10,11,80,96]. 

It should be pointed out that the gradient in Eq. (6.10) is very similar to those in 

(6.6). The difference lies in the value of the denominator, but in both cases the function of 

the denominator can be viewed as representing the assumed variance of the noise. In the 

Gaussian model, this is independent of j(x,y) and h(x,y), while in the Poisson model it is 

equal to the convolution of j(x, y) and h(x, y). This nonlinearity makes the optimisation 

of j(x, y) and It(x, y) more difficult for the Poisson modeL However, the Poisson model 

does have an advantage despite the nonlinearity as it produces a photometrically linear 

restoration over a dynamic range of at least six stellar magnitudes [157]. 
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Nevertheless, the Gaussian noise model is by far the more common of the two models. This 

is because the Poisson noise model is very sensitive to errors. For example, a small offset 

in the background level or the presence of any Gaussian noise can only be explained by the 

Poisson model as the presence of a signal. This can lead to errors in the reconstruction [106]. 

By contrast, the Gaussian noise model is more robust to the fluctuations in the signal. As 

a result, the Gaussian noise model is more popular in practice than the Poisson noise 

model. A combination of the Gaussian and Poisson noise models is also used in some 

algorithms [52,106]. 

6.2.2 Astronomical object prior information 

There exist many possible forms of prior information for an astronomical object. However, 

in order to maximise the scientific value of the data, it is important to minimise the number 

of assumptions made about the object. Since the light from an astronomical image is 

incoherent and cannot be negative, it is usual to constrain the object to be positive. It is 

also reasonable to constrain the solution to conserve light because the number of photons can 

be measured. If it is assumed that the object is unchanging, the temporal variation of the 

atmosphere can be used to obtain an ensemble of differently blurred images. This is called 

the multi-frame constraint. When only one frame is available, I.e. k = I, the symmetry of 

(6.1) with respect to the object and the PSF raises a possibility that the reconstructions 

of f(x, y) and hk(X, y) are interchanged. A multi-frame constraint eliminates this problem, 

as well as significantly increasing the amount of information available to estimate a solution. 

The effect of noise due to low light levels in short exposure images is also reduced by using 

multiple frames of data [140]. However, the trivial solution is still a possibility for the 

object. 

A support constraint can be applied when the extent of the object is confined to a certain 

area. Although this provides theoretical justification for the uniqueness of the solution, 

there are difficulties in applying this constraint to diffuse extended objects because they do 

not have well-defined edges. 

Other possible choices of prior information include the maximum entropy prior [129] (dis­

cussed in Chapter 3) and many ad hoc priors, which are primarily used to ensure the 

uniqueness of the solution. However) the extent of the effect of these priors may not be 
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obvious. example, the maximum entropy prior does not only enforce positivity, but 

also controls the peak widths and the flatness of the baseline. Caution therefore must be 

exercised when using these priors. 

6.2.3 Astronomical PSF prior information 

Some of the constraints imposed on the object are also applicable to the PSF. 'rhese include 

the positivity, conservation of light and multi-frame constraints. Similarly, a support con­

straint is difficult to apply to an astronomical because the extent of a speckle image 

cannot be determined easily. However, if a support constraint must be used, it should be 

determined from the SNR of the data, meaning that only data with a level above the noise 

floor should be inside the support. 

The fact that the optical instrument has a finite aperture imposes a bandlimit constraint 

on the optical transfer function (OTF) [90]. This is a linear constraint and is easily im­

plemented. The process of incoherent imaging which is inherent to astronomical imaging 

forces the PSF to be an inverse Fourier transform of an autocorrelation [154]. This enforces 

positivity of the PSF, as well as a bandlimit and conjugate symmetry of the OTF. 

The incoherent imaging constraint is made even more powerful by the knowledge that the 

PSF is produced by an optical instrument aberrated by atmospheric turbulence. This is 

used in two of the most successful algorithms [90,154]. However, the gain in the power of 

constraining the solution is accompanied by an increase in nonlinearity and computational 

complexity. 

Other forms of prior information on the PSF include the MEM and anisotropic regularisation 

(as discussed in Chapter 3). Again, it should be noted that there is a danger in making 

physically unjustifiable ass.umptions, as errors in the PSF are reflected in errors in the 

estimated object. 
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6.2.4 Prior information for partially corrected systems 

The prior information discussed in the previous two subsections is used commonly for iter­

ative blind deconvolution algorithms where only a minimal amount of information is known 

about the object and the PSF. 

In an adaptive optics (AO) system, both the object and the PSF are compensated in real 

time. However, due to the limitations of the AO equipment such as the degrees of freedom 

in the deformable mirror and the number of actuators, as well as the time-evolving nature 

of the atmosphere, the compensation is not exact and a residual error remains. As a result, 

the object and the PSF are only partially compensated. It is therefore usual to apply 

post-processing techniques to improve the image quality. It is common to employ blind 

deconvolution algorithms for this purpose, but since very good starting estimates and prior 

information are available, this procedure is termed myopic deconvolution [24,27,51,126]. 

The prior information used includes the power spectral density of the respective quantities, 

as well as parameterisation of the object. These are discussed in further detail in Section 

6.3.2 and Chapter 8. 

6.3 Review of existing blind deconvolution algorithms 

Since the advocacy of iterative blind deconvolution by Ayers and Dainty in 1988 [6], this 

problem has been addressed by many authors in the context of both general and astro­

nomical blind deconvolution: Kundur and Hatzinakos [102], You and Kaveh [184], Chan 

and Wong [21], Yang et at. [183], Fish et al. [36], McCallum [120], Schulz [154]' Conan et 

al. [27], Fusco et at. [51], Mugnier et at. [126], Christou et al. [24], Lane [105], Law and 

Lane [110], Thiebaut and Conan [168]' Jefferies and Christou [90], Sheppard et at. [157], 

Miura et al. [123], and many others. These authors all adopt the approach of applying 

prior information; the difference between the methods is primarily the different forms of 

prior information used. Table 6.1 summarises the assumptions made by these authors in 

terms of the noise model, the object and the point spread function. The relative ease of 

implementation of the commonly used priors and their ability to constrain the solution are 

illustrated in Fig. 6.2. 

Although not all the algorithms are specifically proposed for astronomical applications, they 



140 CHAPTER 6. BLIND DECONVOLUTION: REVIEW AND FEASIBILITY STUDY 

Weak 
constraint./-······················ .. · .. ·········· .. ··· ....................... \ 

I Conservation of light I 

Increase in 
abililyto 
constrain 
solution 

I I 

i ! i Bandlimit I Support I 
I Positivity I 
i 1 
I I I Multiframe I 
i Incoherent imaging ! 
I I 
! i I Piecewise smoothness I Total variation i 
I I i Statistical priors j 
I I I I • Parameterisation (phase) . 

Powerful t. ) 
constraint ....................................................................... . 

Easy 
implementation 

Increase In 
ease of 

Implementation 

DIfficult 
implementation 

Figure 6.2: An illustration of the relationship between the ease of imple­
mentation and the ability to constrain a solution for some commonly 
used priors. In general, the more difficult the implementation, the more 
powerful the constraint is. 

are included here for completeness. Section 6.3.1 discusses the general blind deconvolution 

algorithms, while Section 6.3.2 presents the methods specific to astronomical imaging. 

6.3.1 General blind deconvolution algorithms 

In Kundur and Hatzinakos' NASRlF [102] (nonnegativity and support constraint recursive 

inverse filtering) scheme, the inverse of the PSF (instead of the PSF) is estimated and is 

expressed as essentially a highpass filter. The filter coefficients are constrained to be greater 

than or equal to zero and must sum to unity. Other constraints imposed are the positivity 

and support for the object, and that the PSF and its inverse are positive and absolutely 

summable. The main advantage of this algorithm is that because explicit knowledge of 

the PSF is not required, the object estimate is simply a weighted linear sum of the data, 

resulting in easy implementation and analysis. Uniqueness of the solution is ensured by the 

convexity of the cost function. However, one problem with this algorithm is that the filter 

size is variable, making an optimal size difficult to obtain. This algorithm also suffers from 

the lack of regularisation, and visual inspection is sometimes required for termination. This 

problem has been addressed by Ng et al. [128] who employ eigenvalue truncation and total 
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variation to alleviate the problem. 

You and Kaveh's method [184] employs anisotropic regularisation which assumes piecewise 

smoothness on both the object and the PSF) and is suitable for reconstructing functions 

with sharp transitions. However, this algorithm suffers from local minima due to a non­

quadratic cost function. The termination of iterations is also sometimes :required, which is 

essentially a form of implicit regularisation. The total variation (TV) method proposed by 

Chan and Wong (21] is similar to You and Kaveh's method as it also utilises anisotropic 

regularisation. 

Yang et al. [183] proposed a projection-based algorithm, where the prior knowledge of pos­

itivity and support of the object and PSF is expressed through convex sets (POeS). In a 

later paper by Law and Lane [110], it was pointed out that the PSF used in demonstrating 

the algorithm was a truncated Gaussian and presented many ambiguous solutions to the 

problem investigated. This is because a Gaussian PSF can be represented as the convolu­

tion of two smaller Gaussians which introduces multiple solutions to the problem. Results 

presented in Ref. [110] also showed no significant advantage of the projection-based method 

over a statistical approach for a more realistic example. This technique was therefore not 

considered further. 

Fish et al. [36] used a Richardson-Lucy based algorithm and addressed the semiblind de­

convolution situation where only the several parameters that characterise the PSF are esti­

mated. As with Yang et al., a Gaussian PSF was used to demonstrate the algorithm which 

introduced ambiguity in the solution. 

McCallum (120] proposed the application of simulated annealing to blind deconvolution. 

The technique of simulated annealing was originally devised for calculating state functions 

in statistical mechanics [121]. It has the advantage of being able to overcome the local 

minima in multimodal cost functions. Positivity and support are also enforced. However, 

this algorithm is extremely computationally intensive for even a single frame, and is not 

suitable for use for multiframe blind deconvolution. 



142 CHAPTER 6. BLIND DECONVOLUTION: REVIEW AND FEASIBILITY STUDY 

6.3.2 Astronomical blind deconvolution algorithms 

Schulz [154] proposed two algorithms to bias the solution away from the trivial solution. 

These have been proposed specifically for multiframe blind deconvolution in the presence 

of Poisson noise. The first method, the penalised maximum likelihood (ML+) algorithm, 

uses an ad hoc prior on the object: 

p(f(x, y)) = -,8 L log[l - f(x, y)] (6.11) 
x,y 

where ,8 is the weighting of the prior, and the object estimate must be normalised to 

have unit energy. As noted earlier, a trivial solution when using multiple frames for blind 

deconvolution can only take the form of the object being a delta function, and the PSF 

the data, but not vice versa. By forcing the object estimate away from a delta function, 

this prior greatly reduces the possibility of the trivial solution. However, since the object 

estimate is strongly biased away from a point source, care should be taken to ensure that 

the underlying object is not actually a point source or close to a point source. Such an 

occasion can arise when a bright star has a faint companion. This prior also favours objects 

that are flat and smooth, which must be taken into account when using this prior. 

Schulz's second method, the expectation-maximisation Richardson-Lucy (EM-RL) algo­

rithm, parameterises the PSF to arise from the phase errors distributed over an aperture. 

This powerful prior has been shown to be very successful in constraining the solution. Pos­

tivity of the PSF is guaranteed by the phase parameterisation, while positivity of the object 

is enforced by initialising the RL algorithm with a positive estimate. 

Lane [105] proposed an algorithm which incorporates the object and PSF constraints into 

the error metric, thus reformulating the problem to one of unconstrained minimisation. 

These constraints include positivity and support. In a later paper by Law and Lane [110]' 

the issues associated with weighting the terms in the error metric, and the derivation of the 

algorithm from a maximum likelihood framework were addressed. 

Jefferies and Christou [90] extended Lane's algorithm by using additional constraints such 

as the bandlimit constraint on the PSF. Thiebaut and Conan [168] noted that it is necessary 

to enforce the positivity and support constraints strongly for good results in Lane's method. 

As a result, they proposed a technique which strictly enforces the positivity and support 

constraints by reparameterising f(x,y) and h(x,y). The PSF is also constrained to arise 
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from the optical instrument. A problem with reparameterisation is that it distorts an error 

surface, resulting in one which may have local minima [94]. A unique solution is therefore 

not guaranteed. Johnston and Lane [94J proposed a quadratic programming technique 

to overcome this problem, ensuring positivity as well as preserving the unimodality for a 

parabolic error surface. 

Sheppard et al. [157] extended the work by Thh~baut and Conan [168] and proposed 

a multiframe blind deconvolution algorithm based on the Bayesian maximum likelihood 

Richardson-Lucy framework (PMAP). Strict positivity, bandwidth and conservation of light 

constraints are applied to the PSF through nonlinear reparmeterisation. A strict positivity 

constraint is also applied on the object via the reparameterisation j(x, y) = tj;2(x, y). This 

is required because the application of the conjugate-gradient method on data with Pois­

son noise statistics results in negative values in the estimate if positivity is not enforced 

explicitly. 

Miura et al. [123] proposed an algorithm constraining the Knox-Thompson (KT) spectral 

phases of the object estimate to fit the measured ones. Other constraints used are posi­

tivity, support, multiframe, PSF parameterisation, and conservation of light. This method 

is shown to be robust against the trivial solution even in low light levels. Unlike most 

algorithms, the object and the PSFs are estimated alternately with different error metrics: 

the error metric for the object is based on the difference between the measured and the 

estimated KT phases, while the PSF error metric is the negative of the log-likelihood based 

on the Poisson noise modeL Since it is unlikely that the local minima in both error met­

rics coincide, this scheme is more robust compared to single-error metric schemes where 

stagnation in local minima is a problem. 

A class of blind deconvolution algorithms, called myopic deconvolution methods, has re­

cently been proposed as a result of the need to post-process adaptive optics imagery. Good 

prior knowledge of the PSF and the object is available, which can be used as starting esti­

mates for a blind deconvolution algorithm. Conan et al. [27] were the first to address this 

problem. They used the mean and the power spectral density (PSD) of the object spec­

trum, the OTF and the noise spectrum to constrain the solution. The PSD of the object is 

a function of the photon level, the cutoff frequency and the mean image, while the PSD of 

the OTF is estimated from either control-loop data (in an adaptive optics system) or from 

reference star measurements. The images are assumed to have Poisson noise statistics. 
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Fusco et ai. [51] extended this approach to the case when the object is known to be made 

up of point sources. In this case, the object estimation only involves the retrieval of their 

respective locations and magnitudes which greatly reduces the number of unknowns in the 

system. Mugnier et ai. [126] further developed this algorithm to incorporate wavefront 

sensing data captured simultaneously with the speckle images to constrain the phase and 

the PSF. This method has produced good results on both simulated and experimental data. 

Christou et al. [24] also proposed the concept of myopic deconvolution alongside Conan et 

aI. The average of the centroided data image is used to initialise the object, while the initial 

PSF is the average of the centroided images of a bright point source. Other constraints such 

as positivity, a bandlimit on the PSF, and a speckle holography constraint are used. The 

success of this algorithm has been demonstrated on simulated and experimental data. 

It should be pointed out that the myopic deconvolution schemes deal specifically with 

astronomical imaging data, and in general the initial estimates are of very good quality. 

It is of course possible to apply these methods to a blind deconvolution problem, but the 

performance may not be as good due to the greater number of initial unknowns. 

6.3.3 Proposed investigations 

In this chapter, two different forms of prior information for astronomical imaging are pro­

posed. Firstly, since the PSF and hence the complex aperture are directly related to the 

atmosphere, it is reasonable to constrain the latter to obey Kolmogorov statistics. This is 

compared with Schulz's algorithm where the PSF is constrained to arise from the phase 

errors distributed over an aperture [154]. Secondly, the property of phase closure which 

has been used in the well-established technique of bispectrum [113] is used as a constraint 

on the PSF in a blind deconvolution framework. The respective theories and feasibility 

investigations are presented in the following sections. 

6.4 Using Kolmogorov statistics 

As discussed in Chapter 4, the distortions introduced by atmospheric turbulence on a propa­

gating wavefront can be described by Kolmogorov statistics [147]. Using a different notation 
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Assumptions 
Method 

Noise Object Point Spread Function 

Kundur & Hatzinakos G +ve, support IEhl < 00, IEh-11 < 00 

You & Raveh G +ve, piecewise smoothness +ve, light, piecewise smoothness 

Chan & Wong G +ve, piecewise smoothness +ve, light, sym, piecewise smoothness 

Yang et aI. G +ve, support +ve, support 

Fish et aI. P +ve, light +ve, light, semiblind 

McCallum G +ve, support +ve, support 

Schul lIH P prior, +ve, light +ve, light, multi 

Schulz phase param P +ve, light +ve, light, incoherent imaging, multi, param 

Lane G loose +ve and support loose +ve and support 

Jefferies & Christou G +ve, support, Fourier modulus +ve, support, bandlimit, multi 

Thh§baut & Conan G +ve and support by param +ve and light by param, incoherent imaging 

Sheppard et aI. P +ve by param +ve, light and bandlimit by param, multi 

Miura et aI. P +ve, support, RT phase, light +ve, multi, phase by Zernike polynomials 

Conan et aI. * P PSD, +ve PSD 

Fusco et aI.' G number of stars PSD 

Mugnier et al.- G edge-preservation statistics 

pro~ G +ve +ve, bandlimit 

P +ve, light statistics, +ve, light, multi 

PI' .1' II l' +ve +ve, multi, phase closure 

Table 6.1: Summary ofthe assumptions made on the noise model, the ob­
ject, and the PSF of existing iterative blind deconvolution techniques. 
P Poisson, G = Gaussian, +ve positivity, light = conservation 
of light, param = parameterisation, multi = multiframe, sym cen­
tl'Osymmetric, PSD = powel' spectral density, KT = Knox-Thompson, 
* = myopic deconvolution. The two pl'Oposed methods are included at 
the bottom of the table for comparison. 
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here, the wavefront at the complex aperture is denoted by: 

(6.12) 

where Xk( u, v) and ¢k( u, v) are respectively the log-amplitude and the phase of the complex 

wavefront. W(u, v) is the aperture weighting function and is assumed to be constant. It is 

therefore not included in the subsequent equations. On expanding Eq. (6.12), the expression 

becomes the familiar equation describing the complex aperture: 

(6.13) 

where Sk( u, v) = exp{Xk( u, v)} is the magnitude of the wavefront. The scintillation S~ (u, v) 

is the intensity distortion which arises from the wavefront propagating through the at­

mosphere. The optical transfer function (OTF) is the autocorrelation of the generalised 

pupil function: 

and has a Fourier transform relationship with the PSF: 

Hk(U, v) = i: .l: hk(X, y) exp{ -i27f(ux + vy)}dxdy. (6.15) 

Similarly, the generalised pupil function Ak (u, v) forms a Fourier transform pair with the 

complex image ak(x,y) at the focal plane of the telescope where ak(x,y) ~ Ak(U,V). The 

relationship between the PSF and the complex image ak(x, y) can therefore be expressed 

as: 

(6.16) 

It is also possible to express the complex wavefront by its real and imaginary parts, where 

(6.17) 

The corresponding complex image ak(x, y) at the image plane of the telescope is therefore 

related to the PSF by 

(6.18) 

There are two alternatives for incorporating the prior information into the framework: by 

using the statistics of the scintillation and the phase, or by the statistics of the real and 

imaginary parts of the complex aperture. 
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Under the assumption of weak turbulence, the log-amplitude Xk(U, v) and the phase distor­

tions cPk (u, v) are correlated. The cross-correlation is expressed as [100,166]: 

(6.19) 

where C~ (h) is the vertical profile of the refractive-index structure characteristic, h is the 

height of the turbulence, Jo is the zeroth-order Bessel function of the first kind, k = 21T I >. is 

the wave number, >. is the wavelength of the light, and p and p are the horizontal distances 

in the spatial and frequency domains respectively. As a result of this cross-correlation, 

the scintillation and the phase are not independent and it is difficult to incorporate prior 

information of these quantities. 

On the other hand, the real and imaginary parts of the complex wavefront are uncorrelated. 

As a result, the prior information on the complex wavefront can be incorporated via these 

quantities. Two further simplifications are possible according to Roddier [140]. Firstly the 

covariance of a complex field at ground level is unaltered by propagation and is equivalent 

to that at height h. Secondly, because the scintillation is small compared to the phase 

distortion, the former can be assumed to be constant. As a consequence, the covariance of 

the real and imaginary parts of the complex wavefront at the aperture is: 

(6.20) 

where D</> is the phase structure function. This is the same as Eq. (4.49) and is reproduced 

here for completeness. It should be pointed out that the simplifications above have made 

the solution easier to obtain, without much sacrifice 

are therefore justified. 

its accuracy. The simplifications 

The implementation of this method requires the definition of an error metric and their 

gradients. The error to be minimised is: 

(6.21) 

Since a direct relation..."lhip exists between the PSF hk(x, y) and the real and imaginary parts 

of the complex aperture Ak(U, v), Eq. (6.21) can be written as: 

Econ-Poisson + 'YA E 1R{A} + 'YAE!;s{A}' (6.22) 

The necessary gradient calculation for updating j(x,y) is shown in Eq. (6.9). By using 

a positive starting estimate for j(x, y) in a Richardson-Lucy framework, its subsequent 
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estimates are also guaranteed to be positive. In this algorithm, the constraint of light 

conservation is also applied to the object. 

The gradients necessary for updating the real and imaginary parts of the complex aperture 

are: 

8 Econ-Poisson 

(11" v)} 

(11" V)} 
(6.23) 

where 

8Econ-Poisson = 2 (dk(X, y) 9k(X, y) fA*( )) A ( ) 

8 ' A () x,y akX,Y· 
ak 9k x,y 

(6.24) 

The prior information regarding the complex wavefront is expressed as a function of covari­

ances and is incorporated in the gradient calculation. The log-likelihood of the prior for the 

real part of the complex field is: 

log[P (3({.fh (11" v)} ) 1 (6.25) 

where 3({ Ad is the lexicographically ordered vector of the real part of the complex wave­

front, and K is the two-dimensional covariance matrix constructed using the covariance C. 

structure of K is shown in Fig. 4.16(c). To maximise this likelihood, the derivative is 

taken to give: 

(6.26) 

where U[·] is the operator which reorders the vector into a two-dimensional quantity. The 

prior for the imaginary part of the complex aperture is obtained in a similar manner. 

6.4.1 Feasibility investigation 

The simulations performed to test the feasibility of the algorithm are as follows. The object 

is a binary star with a brightness ratio of 1.25 and a separation of 3.61 pixels. Assuming 

a telescope with a diameter of 1m and that the wavelength of the light is 650nm, this 

separation corresponds to 0.59 arcsec. The phase distortions introduced at the turbulent 
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I No. 
Proposed Schulz's method 

photons 
Success rate I Mean Variance Success rate Mean Variance 

i 
50 10% 1.129 0.206 14 % 1.014 0.113 

500 73 % 1.279 0.060 54 % 1.295 0.068 

5000 98 % 1.295 0.004 90 % 1.277 0.034 

Table 6.2: Results of blind deconvolution with Kolmogorov statistics prior 
compared to Schulz's phase parameterisation method with an ensemble 
of 100 trials. 
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layer are modelled using the method of Harding et al. [76] where D Iro 4. The phase 

screens are of size 16 x 16. The data is assumed to have Poisson statistics, where the total 

number of photons in each frame is set to either 50, 500 or 5000. 2 frames of data are used in 

each of the 100 trials. The starting estimates of the phase are obtained by extracting the tip 

and tilt components from the speckle images and forming corresponding PSF estimates. The 

initial estimate of the object is uniform. The results of reconstructing the object using the 

proposed method, and those obtained using Schulz's phase parameterisation algorithm [154] 

are tabulated in Table 6.2. The success rate indicates whether a binary star with a correct 

separation is reconstructed, and the corresponding means and variances are calculated using 

only the successful trials. 

For the photon levels of 5000 and 500, the proposed algorithm performs better than Schulz's 

algorithm in terms of both success rate and robustness. For the photon level of 50, both 

algorithms perform badly, although Schulz's algorithm has a higher success rate than the 

proposed method. It should be pointed out that reconstructions are relatively insensitive 

to the weighting of the prior fA at high photon levels (5000 and 500). As the number of 

photons decreases, more emphasis on the prior information is needed to obtain a solution. 

For the data with 5000 photons per frame, fA = 1 X 10-4 • When there are only 50 photons 

per frame, fA has to be increased up to 0.2. 

6.4.2 Summary and future work 

In this section, the feasibility of using Kolmogorov statistics as prior information for the 

PSF in a blind deconvolution solution is investigated. From the simulations performed, it 

is shown that this approach is feasible and produces promising results at relatively high 
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light levels. However, a more thorough investigation is necessary in order to completely 

characterise the performance of this method. The factors to take into consideration include 

the use of more data frames, varying the severity of the atmospheric turbulence to reflect 

the characteristics of real data, and dealing with the effect of scintillation on the data. The 

ultimate goal is of course to test the algorithm on real data. 

6.5 The technique of bispectrum for blind deconvolution 

One of the first methods proposed for astronomical imaging which used the concept of phase 

closure was the speckle interferometry technique suggested by Labeyrie [103] in 1970. The 

modulus of the object spectrum is retrieved by: 

IF(u, v)1 ( 
(ID(u, vW) ) 1/2 

(IH(u,v)1 2 ) + constant 
(6.27) 

This approach is superior to techniques which use only one frame of data because frequencies 

up to the diffraction limit are preserved when the second moment is used in the calculations 

[147]. Although the atmospheric phase is eliminated and phase closure is achieved by this 

technique, the phase information of the object is not preserved. Consequently the object 

distribution in the spatial domain cannot be recovered. 

In 1983, Lohmann et al. [113] proposed a speckle masking, or bispectrum technique to 

reconstruct the object. The correlation of three instead of two quantities means that the 

wavefronts with Kolmogorov statistics average to zero over a large ensemble. As a result, 

phase closure is achieved and phase preservation is possible. Consequently, both the phase 

and the magnitude of the object spectrum can be recovered. 

This technique is divided into two main sections: triple correlation theory, and object 

reconstruction. Since only the former is used in the proposed blind deconvolution scheme, 

this latter is not discussed here. For details on the complete bispectrum technique, the 

reader is referred to Ref. [113]. 
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6.5.1 Bispectrum, or triple correlation theory 

The two-dimensional intensity distribution of the kth speckle image in the absence of noise 

is defined as: 

(6.28) 

where x is a two-dimensional vector in the spatial domain and is adopted in this section to 

simplify the notation. j(x) is the object of interest, and hk{X) is the combined PSF of the 

atmosphere and the telescope. 

The triple correlation of a speckle image is defined as: 

(d(3)(X,XI)) = ([d(x)d(x + Xl)] ® d(x)) 

(/ d{x")d(x" + xl)d(X" + x)dx") (6.29) 

where the angular brackets denote an ensemble average over many statistically indepen­

dent frames, and the superscript (3) denotes a triple correlation quantity. Essentially, this 

equation means that each speckle image ddx) is multiplied by a shifted version of itself 

ddx + Xl) to produce a product mask. This mask is then cross-correlated with dk(X) to 

form the triple correlation. Finally the ensemble average of the triple correlation is taken 

over many frames. In the Fourier domain, an equivalent quantity called the bispectrum or 

the triple product can be calculated: 

(6.30) 

where U and v are two-dimensional coordinates in the frequency domain. Dk(U), Dk{V) 

and Dd -u - v) are identical Fourier transforms of dk{x) indexed differently. It should 

be pointed out that the bispectrum of a two-dimensional quantity is a four-dimensional 

function. It is because of this extension into four-dimensional space that phase information 

can survive. 

In speckle masking, the relationship between the object and image bispectra is: 

(6.31) 

It has been shown [113] that the masking transfer function (H(3)) is real and greater than 

zero up to the telescope cutoff frequency. Due to this property, the phase of the complex 

bispectrum of the object is identical to the phase of the average bispectrum of the speckle 



152 CHAPTER 6. BLIND DECONVOLUTION: REVIEW AND FEASIBILITY STUDY 

images. This is a direct result of the theory of phase closure presented in the following 

section. 

The bispectrum technique proposed by Lohmann et al. [113] firstly calculates the object 

bispectrum, from which the object spectrum is then unravelled. The modulus of the object 

spectrum is calculated as in speckle interferometry [103], while a recursive relationship is 

used to estimate the object spectrum phase. These quantities are then combined, whose 

inverse Fourier transform yields the object distribution in the focal plane. Although this 

has been proven to be an effective method, the fact that the object bispectrum estimation 

is not updated means that an error in this quantity can manifest as an error in the object 

reconstruction. 

In the proposed method, the bispectrum phase of the PSF is used as a penalty term. This 

quantity is updated at every iteration, reducing the possibility of error propagation as 

in the original method. Moreover, the formulation which incoporates a data consistency 

measurement as well as this penalty term ensures that a balance is achieved between the 

fidelity to the measured data and the prior information. 

6.5.2 Phase closure 

The property that the average phase of the bispectrum of the PSF is zero is due to the 

phase closure characteristic. Essentially, phase closure can be defined as the simultaneous 

preservation of the object phase and elimination of the undesirable phase component which 

is the atmospheric phase in this case. Based on the work of F. RoddieI' [141], let the 

atmosphere be modelled by a distribution of seeing cells of diameter ro in frequency space. 

wavefront phase is assumed to be constant across each seeing cell, and the complex 

amplitude in the cells is assumed to be uncorrelated. 

Consider two seeing cells in the telescope pupil, separated by a vector AU, with A being 

the optical wavelength. If a point source is imaged through the pupil with two apertures 

corresponding to the two seeing cells, a fringe pattern with a narrow frequency bandwidth 

is produced. The major component D(u) at the frequency u is produced by contributions 

of all pairs of points with a separation Au (Fig. 6.3( a)). For frequencies less than ro / A, the 

average of the major component is non-zero. However, for frequencies greater than ro / A, 
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(a) (b) 

(e) (d) 

Figure 6.3: The illustration of phase closure. (a) Imaging a point source 
through two sub-apertures. (b) Extending the idea to auto-correlation. 
Phase closure is achieved here. (c) Phase closure is achieved in the 
bispectrum technique. (d) Phase closure is achieved in the Knox­
Thompson method for certain frequencies. 
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the average of the major component tends to zero because the phase difference iI>A - iI>B, 

mod 21f, between the two apertures is an evenly-distributed zero-mean process. As a result, 

the Fourier component performs a random walk in the complex plane and averages to zero. 

The phase and the magnitude in this case are: 

arg{D(u)} ¢(u) + (iI>A iI>B) 

(D(u)) =1= 0, U < TO/ A 

(D(u)) - 0, U > TO/ A (6.32) 

where ¢(u) is the Fourier phase at frequency u. 

If the same analysis is applied to the autocorrelation technique (Fig. 6.3(b)), the phase and 



154 CHAPTER 6. BLIND DECONVOLUTION: REVIEW AND FEASIBILITY STUDY 

the magnitude are: 

arg{D(u)D( -u)} 

(D(u)D( -u)) 

¢(u) + (<PA. <PB) + ¢(-u) + (<PB - <PA) = 0 

(ID(u)12) :f- O. (6.33) 

Although phase closure is achieved, the phase information of the object is not preserved. 

This is the principle employed in speckle interferometry, and as a result the object phase 

cannot be reconstructed. 

In speckle masking, the number of seeing cells is increased to three (Fig. 6.3(c)). The phase 

and magnitude are: 

arg{D(u)D(Dou)D(-u Dou)} = ¢(u) + (<PA - <PB) + 
+ ¢(Dou) + (<PB <Pc) + ¢( -u - Dou) + (<Pc - <PA) (6.34) 

= ¢(u) cp(u + Dou) + cp(Dou) (6.35) 

respectively. Here, phase closure is achieved as the effect of the atmospheric phase is elim­

inated, and both the object phase and magnitude information is preserved for frequencies 

up to the cutoff frequency of the telescope. 

However, the calculation of the full bispectrum is computationally intensive. For a complex 

wavefront of size N x N, the bispectrum is a quantity of size N4. When multiple frames are 

used, which is usually in the order of 102 , it is apparent that the computational requirement 

of this technique becomes impractical. 

A simplification of the bispectrum technique is the Knox-Thompson (KT) method [99] 

where only two seeing cells are used. As a consequence, the vector Dou in Fig. 6.3(c) must 

be restricted to lie within the seeing cell as shown in Fig. 6.3(d) to ensure that phase closure 

is achieved. This corresponds to the constraint ofthe frequency u being less than rajA. The 

phase is therefore: 

arg{D(u)D(-u Dou)} = ¢(u) + (<PA <PB) 

+¢( -u - Dou) + (<PB <PA) (6.36) 

¢(u) - ¢(u + Dou) (6.37) 

while the magnitude (D(u)D( -u Dou)) is non-zero. 
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The implementation of the KT simplification is achieved by letting each ofthe two-dimensional 

frequency variables u and v be written as (Ul' U2) and (Vb V2) respectively. Then in­

stead of using all the combinations of these four variables to calculate the bispectrum 

Di3\UI, VI, 'U2, V2), only the two planes which contribute most significantly to this quantity 

are used. These two planes correspond to 'U2 0, V2 = 1 and U2 = 1, V2 = O. 

difference between Eqs. (6.36) and (6.37), and Eqs. (6.34) and (6.35) is that in the 

KT technique, the term ¢(6.u) is absent. This is directly related to the fact that only a 

double instead of a triple product is used. To illustrate its significance, let the system of 

two seeing cells be extended to three and let u be made greater that ro/A. The phase of 

the system according to an autocorrelation operation is now: 

arg{D(u)D( -u - 6.u)} = ¢(u) + (<p A - <PH) 

+¢(-u - 6.u) + (<Pc - <PA) 

= ¢(u) ¢(u + 6.u) <PH + <Pc 

(6.38) 

(6.39) 

and clearly the atmospheric phase contribution is not closed. Therefore, the main difference 

between the bispectrum and the KT techniques is that the latter uses an autocorrelation 

calculation while the former uses a triple product. As a result, the KT method can only 

estimate correctly the lower frequency components due to the constraint imposed on 6.u, 

whereas the bispectrum method can estimate frequencies up to the diffraction limit. 

6.5.3 Bispectrum usage in object reconstruction 

Since Lohmann et ai. proposed the application of bispectrum in astronomy, many algorithms 

had been devised to reconstruct the object distribution using this information. In the 

past ten years, the least-squares approach was popular. This section briefly outlines these 

techniques. 

Haniff [72] proposed a method which minimises the modulo 21f phase difference between 

the measured and the estimated object bispectrum phases. The measured phase is that 

reconstructed from speckle images, while the estimated phase is that calculated using the 

spectrum of the object estimate. This provided an advantage over algorithms which required 

bispectrum phase-unwrapping. However, the modulus of the object spectrum required 

reference star measurements to be calculated. 
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The reconstruction of an object using bispectrum information, without the need of a ref­

erence star, was first proposed by Glindemann et aI. [59]. In this paper, the special case 

of a binary star was considered because it can be parameterised by two variables (bright­

ness ratio and separation) in both the object and bispectrum domains. This technique was 

later extended for use with an arbitrary object [58]. As with Haniff [72], the error to be 

minimised was the object bispectrum phase difference between the measured and estimated 

phases. Since the object is directly related to the estimated phase, the former can be re­

constructed directly via the error metric, without employing the procedure of Lohmann et 

at. A positivity constraint was also incorporated according to a proposal by Lane [105J. 

Miura et at. [124,125] proposed two similar techniques, minimising respectively the differ­

ence between the estimated KT and hispectrum phases with the corresponding measured 

phases. In many of these techniques, not all the subplanes of the bispectrum are used in 

the reconstruction due to heavy computational requirements. Usually, only a small number 

of subplanes with high SNR are used. 

However, it is only recently that the use of the KT phase has been incorporated into the blind 

deconvolution problem [123J. Similar to the previous techniques, the object is reconstructed 

by minimising the error between the measured KT phase and the estimated one. At the 

same time, the PSF is parameterised using Zernike polynomials and the associated error 

metric is the negative of the log-likelihood based on the Poisson noise model. Since it is 

unlikely that the local minima in both error metrics coincide, this scheme is more robust 

compared to single-error metric schemes where stagnation in local minima is a problem. 

In all the algorithms above, the bispectrum or KT phase is reconstructed first. It is then used 

as the reference with which the estimated quantities are compared. Although the KT phase 

and especially the bispectrum phase are robust to noise, the calculation of such quantities 

means that the data has been processed. The error in reconstructing the bispectrum (or 

KT) phase is therefore reflected directly in the object reconstruction. This data processing, 

although justified for certain circumstances, such as in Chapter 8 where computational 

time is a major concern, is not necessary in this application. In the proposed method, 

the statistical distribution of the KT phase is used as prior information. The iterative 

framework means that the object and the KT phase are updated simultaneously, removing 

the reliance of the solution on an accurate KT reconstruction initially. 

It should be noted that in the application of the bispectrum method to real data, the 
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telescope aberrations should be calibrated and compensated for. This can be achieved 

by measuring the effect of imaging an artificial point source through the optical system. 

However, this procedure is not performed here since simulated data is used. 

6.5.4 Using the phase closure property as a prior 

The application of the phase closure property to blind deconvolution is investigated in this 

section. Since the phase of the average of the PSF bispectrum should be zero, the entire 

phase component in the bispectrum domain can be attributed to the object. The KT 

approximation is used here to simplify the implementation. 

Let the KT phase of the PSF be tt;(UI,VI,U2,V2). Then the associated error metric for this 

prior can be defined as the deviation of this term from zero, represented mathematically as: 

(6.40) 

for the 10-plane, where U2 = UI + ~ and V2 = VI, and 

E = 0: "" 1tt;(UI, VI, UI, VI + ~)12 
~ (J2 (6.41) 

Ul,Vl 

for the aI-plane, where U2 = UI and V2 = VI +~. The value of ~ is 1, and 0: is the 

weighting of the prior. The variance (J2 represents the distribution of phase information [7] 

and has been used to weight error metrics in other algorithms using bispectrum information 

[58,72,125]. Since this prior information is used to constrain the solution of the PSF, this 

must be incorporated in the gradient calculation for updating the PSF. In other words, 

we wish to quantify the effect on the error when the PSF is perturbed. This calculation 

requires the application of the chain rule, and is more easily performed in the frequency 

domain: 

oE(u, v) 

oH(u, v) 
oE(u,v) Ott;(Ul,Vl,U2,V2) OH(3}(UI,Vl,U2,V2) 

O/'l,(UI,Vl,U2,V2) x OH(3)(Ul,Vl,U2,V2) x oH(u,v) . 
(6.42) 

It should be noted that U and v are generic one-dimensional frequency variables. The 

differentiation of each of the three terms is shown below. 

Term 1: 

oE(u,v) = 20:tt;(Ul,Vl,U2,V2) 
Ott;(UI,VI,U2,V2) (J2 

(6.43) 
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Term 2: 

8~(Ul,Vl,U2,V2) 1 

8H(3) (Ul' VI, U2) V2) iH(3) (Ul' V1, U2, V2) 
(6.44) 

Term 3: 

Applying the chain rule to the first term of this equation gives: 

( 6.46) 

The implementation of the two terms is straightforward. However, the third term 

is difficult to deal with in its present form. Since the KT approximation is used in the 

algorithm, it is easier to perform a substitution first before evaluating the differentiation at 

different possibilities of (u, v). For plane-la, U2 = Ul + tJ. and V2 = VI, and the quantity 

H(3) (UI, v!, U2, V2) is written as: 

). (6.47) 

Differentiating this with respect to H(u, v) and evaluating the expression at (u, v) = (Ul' VI), 

(u,v) = (Ul +tJ.,Vl) and (u,v) (-2Ul-tJ.,-2vl) give: 

8H(3) 

8H 
H (u + tJ., V )H* (2u + tJ., 2v) + H (u tJ., V )H* (2u tJ., 2v) 

+H* :!!.)H* , 2 

Following the same differentiation and evaluation process, the result is: 

H(u, v + tJ.)H*(2u, 2v + tJ.) + H(u, v - tJ.)H*(2u, 2v - tJ.) 

( Yo ~)H*(:!!: 2' 2 2' 

(6.48) 

(6.50) 
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After the gradient calculations have been performed in the frequency domain, the product 

aE/aH is taken to the spatial domain using the inverse Fourier transform. This is then 

incorporated with the gradient calculation based on the Richardson-Lucy (RL) framework 

to update the PSF. It should be noted that the additive form of the RL method is used. 

6.5.5 Feasibility investigation 

The simulations to test the feasibility of using the bispectrum/KT prior for blind deconvo­

lution are as follows. The binary object has a brightness ratio of 1.25 and a separation of 

3.61 pixels. Using a I-metre telescope imaging at 650nm means that this separation corre­

sponds to 0.59 arcsec. 500 phase screens of size 16 x 16 and D /r'o 4 are generated using 

the method of Harding et al. [76]. The data is assumed to have Poisson noise statistics, and 

the photon level of each data frame is set to either 5000, 2000 or 500. The noiseless case is 

also investigated. A total of 100 trials are performed for each set of parameters. The first 

200 phase screens are used for trials with 2 frames of data each, while all the phase screens 

are used for the case with 5 frames per triaL 

The results of the proposed method are compared to those obtained using Schulz's phase 

parameterisation and penalised maximum likelihood technique (ML+). The results are 

tabulated in Tables 6.3, 6.4 and 6.5. The success rate describes the percentage of the re­

constructions where a binary star is formed. The other parameters are calculated using 

the successful trials. For Schulz's penalised maximum likelihood method and the proposed 

method, the weighting of the prior information, denoted by (3 and a respectively, are opti­

mised to produce the best results. 

In general, the success rate for all methods decreases as the amount of Poisson noise in­

creases. The performance with 5 frames of data is consistently better than that with 2 

frames of data as expected. Out of the three methods, Schulz's phase parameterisation 

method produced the most consistent results and the highest success rate. Although the 

proposed method is comparable to Schulz's ML+ method under the conditions where either 

no noise or 5000 photons per frame are present, its performance deteriorates under low light 

conditions, and it is preferrable to use Schulz's ML+ method. 
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! No. photons 
Success rate Ratio mean Ratio variance Separation mean Separation variance 

2 frames 

I 
Noiseless 97 1.25 0.0018 3.59 9.33 X 10-4 

5000 96 1.27 0.0102 3.60 0.0010 

2000 87 1.32 0.0286 3.61 7.24 X 10-4 

500 41 1.32 0.0018 3.59 0.0070 

5 frames 

Noiseless 100 1.24 8.69 X 10-4 3.59 3.89 X 10-4 

5000 1.26 0.0051 3.59 5.72 X 10-4 

2000 H 1.33 0.0175 3.60 8.02 X 10-4 

500 70 1.44 0.103 = 3.60 0.0015 

Table 6.3: Results using Schulz's phase parameterisation method. The 
binary star has an intensity ratio of 1.25 and a separation of 3.61 pixels. 

No. photons Success rate Ratio mean Ratio variance Separation mean Separation val'ianee 

2 frames 

Noiseless 90 -l 1.26 0.0076 3.58 0.0024 

5000 84 1.34 0.0530 3.59 0.0044 

2000 53 1.44 0.177 3.57 0.0158 

500 27 1.33 ro;w 3.53 0.0356 

5 frames 

Noiseless 96 1.29 0.0387 3.57 0.0086 

5000 88 1.37 0.0632 3.57 0.0037 

2000 74 1.30 0.112 3.55 0.0137 

500 43 1.17 0.131 3.60 0.0353 

Table 6.4: Results using Schulz's penalised maximum likelihood method. 
f3 takes on a value between 0 and 1, and is used to determine the 
weighting of the prior term. binary star has an intensity ratio of 
1.25 and a separation of 3.61 pixels. 
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No. photons Success rate Ratio mean Ratio variance Separation mean Separation variance a 

2 frames 

Noiseless 98 1.26 4.39 X 10-4 3.60 2.92 X 10-4 0.001 

5000 81 1.42 0.0153 3.61 1.50 X 10-4 0.001 

2000 30 1.49 0.0968 3.59 0.0134 0.1 

I 
500 1 0.71 - 3.14 - 0.1 

5 frames 

Noiseless 100 1.25 7.69 X 10-5 3.60 5.46 X 10-5 0.001 

5000 II 92 1.47 0.0104 3.60 1.67 X 10-4 

2000 46 l¥o=t 0.137 3.61 0.0043 

500 3 I 1.10 0.361 3.60 0.0142 

Table 6.5: Results of the proposed method using tIle phase closure prop­
erty as prior information. a is the weighting of the prior term. The 
binary star has an intensity ratio of 1.25 and a separation of 3.61 pixels. 

6.5.6 Summary and future work 

This section investigated the feasibility of applying a constraint on the PSF using the 

Knox-Thompson (a subset of the bispectrum) phase in a blind deconvolution framework. 

On comparing this method with Schulz's phase parameterisation and penalised maximum 

likelihood algorithms, the proposed method has worse performance for blind deconvolution. 

One of the main reasons for this is that the KT prior is a statistical prior that relies on 

ensemble statistics, and the minimum number of frames of data required to make this prior 

valid is not known. From the simulation results, using 5 frames of data is obviously insuffi­

cient. Nevertheless, the performance of using 5 frames is better than the performance using 

2 frames, illustrated by the increased success rate in Table 6.5. This indicates that as the 

number of frames increases, the performance of the prior improves. Although simulations 

have not been performed on more frames of data, from the preliminary results, it is shown 

that the KT prior can be potentially useful if a larger ensemble of frames is used. 

6.6 Summary 

In this chapter, a comprehensive review on iterative blind deconvolution was presented. 

The general MAP framework adopted by most algorithms was discussed, and the common 

0.01 

0.1 

0.1 
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forms of prior information used in these algorithms were listed. 

The feasibility of two forms of prior information on the PSF was investigated: the applica­

tion of Kolmogorov statistics, and the use of the phase closure property. The former has 

produced some promising results, and a further investigation is worthwhile. Although the 

latter does not produce comparable results to existing algorithms when a small number 

of frames is processed, the performance does improve with a greater ensemble, indicating 

that the statistical prior requires more data frames to be able to constrain the solution 

effectively. 

The blind deconvolution algorithms presented in this chapter deal with the case where 

the speckle images are the only data captured. If more information is available, such as 

simultaneous wavefront sensing data, it can be used to provide a stronger constraint on the 

solution. This is discussed in the following chapters. 



Chapter 7 

Centroid estimation from multiple 

undersampled images 

As discussed in Chapter 6, the goal in astronomical imaging is to reconstruct the object from 

the measured images at the telescope. Since the dominant effect of atmospheric turbulence 

on the object is a phase distortion, this distortion must be estimated for the reconstruction 

of the object. 

While the technique of blind deconvolution is used to estimate the point spread function 

and the object simultaneously when only speckle images are captured, the availability of 

wavefront sensing data allows the phase to be estimated differently. In this case, the astro­

nomical imaging problem can be viewed as a two-level inverse problem involving the phase 

estimation from wavefront sensing data and ultimately the reconstruction of the object. 

To understand the advantage of using wavefront sensing data in phase estimation, consider 

the case where the phase is to be estimated from the speckle images. Theoretically, the mean 

tip and tilt components of this distortion can be estimated from the centroid of a speckle 

image. Although this removes most of the energy introduced by the phase distortion, the 

resolution required is not achieved because the higher order Zernike coefficients cannot be 

estimated. Moreover, because the speckle image is captured by a photon-counting camera, 

the resultant image is very noisy (Fig. 4.18(a)) and the error in the tip and tilt estimation 

is large. The estimation of the pha..'>e from a speckle image is therefore underdetermined 

163 
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and ill-conditioned, and is a very difficult problem. 

In order to improve the conditioning of the problem, more measurements are required 

to estimate the unknowns. This is achieved by subdividing the aperture and is physically 

realised by a Shack-Hartmann wavefront sensor (SH-WFS). A SH-WFS is a two-dimensional 

array of lenslets across the aperture. Each lenslet produces an image, which is centroided to 

produce the local tip and tilt components. These local measurements are then combined to 

estimate the overall wavefront phase distortion. By increasing the number of measurements, 

the problem is better conditioned and a solution can be found more easily. 

In this chapter, the primary focus is on the inverse problem of reconstructing the phase from 

wavefront sensing measurements. Specifically, the accuracy of the centroid calculation is 

examined as it directly affects the quality of the phase reconstruction. Since the commonly 

used method which calculates the centre of gravity is nO.t optimal [174], a new method 

for centroid calculation is proposed and is realised via a multiframe blind deconvolution 

framework. 

The theory of reconstructing the wavefront from centroid measurements is not required in 

the understanding of this chapter and is therefore deferred until Chapter 8 where it is more 

appropriate. 

7.1 Centroid estimation using a Shack-Hartmann sensor 

Phase estimation using a Shack-Hartmann wavefront sensor (SH-WFS) is a common ap­

proach as the SH-WFS can be used for both compact and extended objects. In a Shack­

Hartmann sensor the aperture is subdivided into an array oflenslets (Fig. 7.1(a)), producing 

an array of spots that are usually captured on a CCD camera in an open-loop system. Fig. 

7.1(b) shows a typical data frame captured by a SH sensor. Not all the spots are formed by 

fully illuminated lenslets due to the geometry of the aperture. The displacement of a spot 

from the point corresponding to the centre of the lenslet is used to produce the average 

slope of the wavefront over the respective lenslet. These local slopes are then combined to 

reconstruct the phase across the entire aperture. 

For a single lenslet, the mean slope is directly proportional to the displacement of the spot 
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Figure 7.1: (a) An illustration of the Shack-Hartmann lenslet array. (b) 
A typical frame of wavefront sensing data captured at the Observatoire 
de Lyon. (c) relationship between the slope of the wavefront and 
the displacement of the spot on the detector plane over a single lenslet. 
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in the focal plane (Fig. 7.l(c)). The estimation of a spot's displacement is performed by 

calculating the centre of gravity (or centroid) over a fixed window. For a data frame d(x, V), 

the centroids in the x- and y- directions, x and fj, are calculated by [101]: 

x - 2::: xd(x, y) 
2::: d(x, y) 

2::: yd(x, y) 
2::: d(x, y) . 

(7.1) 

Although this is the most common centroid estimator, it has many associated problems; 

these are discussed in the next subsection. 
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Figure 7.2: Sample data frame to illustrate the problems with the cen­
troiding operation. 

7.1.1 Problems with the traditional centroid estimator 

There are three principal problems in the traditional estimation of the centroid. The first 

is a bias introduced by the finite pixel size of the CCD cell, and the finite window size 

used. As an example, consider the estimation of the centroid of the data shown in Fig. 

7.2. The centre of the array has the largest numerical value of 0.3068 and if this is used 

as the centre of a 3 x 3 window, indicated by a solid line in 7.2, the centroid is 

(3.2284,2.7803) corresponding to the row and column values respectively. If a 5 x 5 window 

is used (area enclosed by the dashed line), the centroid is (3.1062,2.8261). If the 3 x 3 

window is instead centred around 0.2968 (shaded area) the result is (3.1856,2.3235). The 

inconsistency of the centroid position illustrates the problem caused by finite pixel and 

window sizes. These problems can be ameliorated by using a very large window with very 

small pixels to completely encompass and finely sample the spot. 

It should be pointed out that this first problem is unique to the use of Shack-Hartmann 

wavefront sensing data in an open-loop. In a closed-loop adaptive optics system, the motion 

of the spot position between consecutive frames is small; it is thus simpler to determine the 

location of an appropriate centroiding mask. As a consequence, for closed-loop operation 

it is usual to use one quad-cell per sub-aperture, and the spot is approximately centred on 

the intersection of the four elements of the quad-cell by the adaptive optics. However, in an 

open-loop situation, the motion introduced by uncompensated atmospheric turbulence is 

much larger and it is necessary to employ larger arrays of detectors to locate the centroid. 

The second problem is readout noise in the detector. Since the effect of the noise increases 

with a decreasing pixel size, it is desirable to use large pixels. As a result of the conflict-
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ing requirements to overcome the first two problems, a compromise must be reached for 

determining the size and number of pixels used. This is particularly relevant for open-loop 

operation, where the spot position is ill-defined. 

The final problem arises when compensating for the bias introduced by read noise. The 

CCD has a mean level reading which must be subtracted before the centroid is calculated; 

otherwise the resulting centroid estimate is biased towards zero. After this post-processing 

step, it is possible for the images to have negative values. The presence of negative values 

again affects the centroid calculation. In fact, it has been shown [174J that even in the 

absence of read noise, centroiding is sub-optimal and a superior performance can be obtained 

by a maximum a posteriori (MAP) approach. 

In view of the practical and theoretical problems of centroiding, and the conflicting require­

ments for overcoming these problems, a model-fitting procedure is proposed as opposed to 

the traditional centroiding operation. This means that if a model of the spot is available, 

it can be used to identify the location of a spot in a noisy data frame to subpixel accuracy. 

Unlike traditional centroiding, this method does not have any of the associated problems 

discussed above. 

A model-fitting procedure is used instead of cross-correlation because the data frames are 

undersampled. Since some high-frequency components have aliased into the low-frequency 

spectrum, Parseval's theorem no longer holds and the energy in the data spot and the 

model spot cannot be normalised against each other. In this case, the operation of cross­

correlation produces incorrect results. This becomes apparent if we examine an object 

f(x, y) and the model m(x, V). The maximisation of the cross-correlation between these 

functions is equivalent to minimising the mean-squared error (MSE) E{(m(x, y) - f(x, y))2}. 

The expansion of this expression leads to 

E{ m(x, y)2 - 2m(x, y)f(x, y) + f(x, y)2}. (7.2) 

While the first term is a constant, and the second term represents the cross-correlation, the 

last term is not a constant when the data is undersarnpled. Since the minimisation of the 

MSE over a varying function is not meaningful, the cross-correlation operation cannot be 

applied. 

There are also other approaches to the problem of centroid estimation, one of which utilises 

a tilt transition probability function estimated from reference star measurements as a form 
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Figure 7.3: The aliasing of a spot. (a) Cross-section of a difIraction­
limited spot. (b) The spot sampled at 80% of the Nyquist rate. (c) The 
spot sampled at 60% of the Nyquist rate. 

of prior information to predict the tilt between consecutive frames of data [16]. This has 

been shown to produce better results than the traditional centroid estimator, but requires 

reference star measurements, which are not needed in the proposed framework. Sallberg et 

al. [151] used a MAP framework for centroid estimation, incorporating prior information 

such as the light level, the relative spot size, and statistical knowledge of the slopes over 

the subapertures. The proposed approach differs from this in the sense that the spot size 

is retrieved directly from the data rather than estimated, and the undersampling and non­

uniform sensitivity of the CCD are taken into account. 

Another consequence of the data frames being undersampled is that the spot is severely 

aliased. The aliasing of the spot is illustrated in Fig. 7.3. Fig. 7.3(a) shows the cross­

section of a Nyquist sampled spot using a rectangular aperture. It is only shown up to 

30% of the diffraction limit for clarity. Fig. 7.3(b) illustrates the effect of sampling at 

80% of the Nyquist rate. The first sidelobe is no longer visible, but some high frequency 

information is preserved. Once again, it is shown up to 30% of the cutoff frequency. Fig. 

7 .3( c) is the corresponding spot sampled at 60% of the Nyquist rate. It is apparent that 

the diffraction-limited spot structure is lost. As a result, the model sought must be found 

at a higher resolution initially. In the model-fitting procedure, this high-resolution model 

is then downsampled according to the optics and the CCD sampling. 
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7.1.2 Obtaining a high-resolution model 

One way of obtaining a high-resolution model is to use multiple frames of low-resolution 

data that are subpixelly displaced with respect to each other, and interlace them to produce 

the high-resolution model. This concept was first realised algorithmically by Huang and 

Tsay [82], who demonstrated the ability to reconstruct one high-resolution object from 

several downsampled noisy images based on the spatial aliasing effect. Other analyses on 

first and higher order aliasing elimination have also been performed, demonstrating the 

feasibility of such an approach [22,109]. 

There now exist many techniques which utilise the concept of uncontrolled microscanning 

where random subpixel shifts between data frames are exploited for resolution improvement 

[2,57,73,153]. Gillette et al. [57] used a procedure where the shifts between the data frames 

are estimated first, followed by the reconstruction of the high-resolution object. Schuler and 

Scribner [153] estimated the registrations based on the concept of optical flow, and restored 

the object using a Wiener filter. Alam et al. [2] also employed optical flow in registration 

estimation, but restored the object with a modified EM algorithm. Although this removes 

the need for recursive registration estimation, the errors in estimating the shifts result in 

errors in the object reconstruction. As a result, this approach is not adopted in this thesis. 

Gerwe et al. [55] and Green and Hunt [65] utilised a slightly different multiframe approach 

called supersampling. The key point is that the reconstructions are upsampled onto a 

finer grid than the measured data, allowing for a 'greater degree of superresolution' [65]. 

However, the data frames are not registered with respect to each other, and it is therefore 

not appropriate for the application to the problem at hand. 

One of the best methods to date which employ uncontrolled microscanning is that proposed 

by Hardie et al. [73], who used an iterative MAP framework for jointly estimating the 

registrations and the high-resolution object. This removes the danger of error propagtion 

present in some of the other algorithms. However, one drawback of this algorithm is its 

reliance on the knowledge of the PSF of the optics, which is not always available. In this 

chapter, an improvement to this existing algorithm is proposed and is applied to wavefront 

sensing data. The PSF of optics, as well as the CCD structure are also estimated. This 

removes the need for making an assumption about the PSF, which can also lead to errors 

in the reconstruction. 
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In Hardie's original method, the displacements between the low-resolution images are pro­

vided by the uncontrolled motion of the camera mounted on an aeroplane. In astronomical 

imaging, the dominant effect of atmospheric turbulence over individuallenslets is the ran­

dom motion of the image. In both situations, the low-resolution data frames are randomly 

displaced with respect to each other. This motion can effectively be used to increase the 

sampling rate of the data. 

The technique discussed in this chapter was developed when dealing with astronomical data; 

however, it can also be used with other images. The derivation is based on a statistical 

assumption where the high-resolution object is assumed to be continuous. There exists 

another family of deterministic algorithms (stemmed from surveying techniques) where 

different assumptions are employed in the reconstruction [50]. In this thesis, the discussion 

is restricted to the former set of techniques. 

7.2 Improving centroid accuracy: blind deconvolution 

The blind deconvolution procedure is derived from Hardie's method where a sequence of 

images is processed via a MAP framework to simultaneously estimate the underlying object 

and the registrations between the data frames. When applied to wavefront sensing data, the 

registrations are equivalent to centroid positions, while the object is analogous to the model 

we are looking for. In this investigation, the existing algorithm is extended to estimate the 

point spread function of the optics and the CCD structure. 

The observation model is defined as: 

dk(X, y) = sk{f(X, y) 0 hC(x, y) 0 hO(x, yn + nk(x, y) 

9k(X, y) + nk(x, y). (7.3) 

where !(x, y) is the original undegTaded object of size M x M, hC(x, y) is the PSF of the 

CCD cell structure, and hO(x, y) is the PSF of the optics. These are referred to as the 

CCD-PSF and optics-PSF respectively, and are unknown quantities. The notation Sk{'} is 

the subsampling operation for the kth frame and models the undersampling of the CCD. 

9k(X, y) is the kth noiseless low-resolution frame of size N x N, and nk(x, y) represents 

the kth realisation of the independent and identically distributed (i.i.d.) Gaussian noise 

samples. dk(X, y) is the kth measured noisy low-resolution frame. A key point in this model 
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is that the image is modelled at a resolution higher than the data captured, enabling the 

algorithm to deal with data sampled beneath the Nyquist rate. It is also assumed that 

each low-resolution frame can be expressed as a linear weighted sum of the corresponding 

high-resolution pixels. 

Similar to the statistical interpolation scheme in Chapter 5, the ratio R between the size 

of the high- and low-resolution images is MIN and is an integer greater than 1. However, 

unlike statistical interpolation, the value of R also determines the allowable step size for the 

registration process, and is directly linked to the location of the centroid positions of the 

spot. The larger the value of R, the smaller the step size can be. As a result, R cannot be 

determined simply by the sampling rate of the data, but is predominantly decided by the 

desired precision for the centroid estimation. 

Although R can be made arbitrarily large, there is an upper limit for a reasonable value 

for it, due to two reasons. Firstly, the noise on the spot introduces uncertainty to the 

centroid position, posing as a fundamental limit to the accuracy. Secondly, due to the 

implementation of a systematic search over an area of R2 pixels, an increase in R also 

increases the computational complexity. All these factors should be taken into account 

when selecting the value of R. 

In the blind deconvolution formulation described by Eq. (7.3), the object f(x, y) usually 

represents a scene. Initially, the problem can be simplified if f(x,y) is a point source. This 

reduces the equation to: 

(7.4) 

Therefore the PSFs and the registrations are to be estimated simultaneously when only 

dk(X, y) is measured. This corresponds to the inversion of Eq. (7.4) and can be solved via 

a MAP framework, defined mathematically as [97]: 

(7.5) 

This involves the minimisation of the sum of three error functions: the consistency error 

Econ , and the errors corresponding to the optics-PSF prior (Eo) and the CCD-PSF prior 

(Ee). These are represented as: 

(7.6) 



172 CHAPTER 7. CENTROID ESTIMATION FROM MULTIPLE UNDERSAMPLED IMAGES 

where 

k x,v 

x,v 

(7.7) 
x,v 

The parameters Ao and Ac are the weightings of the optics-PSF prior and the CCD-PSF 

prior respectively. They determine the balance between the fidelity of the reconstruction to 

the measured data, and the consistency with the prior information available regarding the 

unknowns. The kernel function c(x, y) is the Laplacian and is the prior used in the original 

algorithm by Hardie et al. As discussed in Section 3.4, this prior is essentially a high­

pass filter and ensures continuity in the reconstruction. A maximum entropy (ME) prior, 

discussed in Chapter 3, is used for the CCD-PSF which also inherently enforces positivity. 

If the atmospheric turbulence is assumed to follow Kolmogorov statistics, then the centroid 

positions should obey a Gaussian distribution [43,62]. This is a form of prior information 

for the registration process, and is used in limiting the search window for the registration 

parameters. However, no other explicit prior is used as in the case of the PSFs. 

It should be pointed out that priors used in the algorithm are reasonable given the physical 

situation; however, other priors can also be used. 

The gradient of Econ with respect to the optics-PSF hP(x, y) is 

(7.8) 

where 0 denotes the correlation operation. Its minimisation with respect to the CCD-PSF 

hC(x, y) is obtained from Eq. (7.8) by reversing the roles of hO(x, y) and hC(x, y). The 

gradients for updating the prior terms are: 

(x, y) 
(7.9) 

The method of steepest descent is used to update these variables, the implementation of 

which is included in Appendix A. Positivity of the optics-PSF is enforced using the method 
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of Johnston and Lane [94], while the ME prior inherently enforces positivity on the CCD­

PSF. 

Due to the discrete model used, the minimisation of the error metric with respect to the 

registration parameters is achieved by a systematic search instead of a gradient calculation. 

The search is performed on a per-frame basis, and a shift of up to five low-resolution pixels 

is allowed. The set of registrations that produces the lowest error corresponds to the best 

estimate of the registrations for the next iteration. 

7.3 Simulation results 

In this section, simulations using a point source as an object are performed to demonstrate 

'the feasibility of the technique, as well as retrieving models of the optics-PSF and CCD 

structure. The procedure is then extended to the blind deconvolution of a more complicated 

astronomical object, and is demonstrated on real data in the next section. 

data used for the simulation is generated to approximate the real data. A 20 x 20 

Shack-Hartmann lenslet array is used, and the telescope is assumed to have a diameter 

of I-metre. The ideal optics-PSF was generated assuming a constant magnitude at the 

aperture and is shown in Fig. 7.4(a). The effect of the atmosphere within the lenslets was 

modelled by 1000 phase screens with Kolmogorov statistics [76] and D Iro = l. This value 

of D Iro is chosen as it represents the traditional region of operation for a Shack-Hartmann 

wavefront sensor. The variance of the mean slope per lenslet has a value of 0.27 when 

expressed in terms of pixels, which is again representative of the real data. 

The data frames were generated from 9 X 9 phase screens, and were sampled at 60% of the 

Nyquist rate, resulting in simulated data in an 11 x 11 pixel array. The centre portion of 

size 5 x 5 is used for blind deconvolution to be compatible with the dimensions of the real 

data used. Fig. 7.4(b) shows the CCD-PSF, which is assumed to be a Gaussian-shaped 

function. Although the use of a Gaussian can cause ambiguities in a blind deconvolution 

solution as discussed in Section 6.3.1, this is chosen here because this function best models 

the sensitivity of a CCD cell. Moreover, as shown in Section 7.4, the CCD-PSF retrieved 

from experimental data is approximately Gaussian. Fig. 7.4(c) illustrates the centre portion 

of a typical data frame. It can be seen that it is severely aliased. 
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Figure 7.4: Simulation data. (a) Optics-PSF. (b) CCD-PSF. (c) Centre 
portion of a typical simulated data frame with no noise. Note that the 
sampling rate in (a) and (b) is 9 times that of (c). The data frame has 
a range between 0 and 1. 

The initial optics-PSF estimate was generated by averaging the data frames and then con­

volving with a uniform array. The convolution operation is used to provide a smoother 

starting estimate. The initial CCD-PSF estimate is uniform. The initial displacements 

were set t.o zero. The weightings of Ao = 0.01 and Ac = 0.001 were found t.o be appropriate 

for this simulation. A value of R = 9 is chosen here, meaning that the centroid estimation is 

accurate to one-ninth of a low-resolution pixel. It should be pointed out that since the data 

is sampled at 60% of the Nyquist rate, a value of R = 9 means that the reconstruction is 

allowed to have more than 5 times the frequency content of a Nyquist sampled image. This 

is however not true in this case because the object to be recovered is a diffraction-limited 

spot, the frequency content of which is limited by the diffraction limit. Sampling more finely 

than the Nyquist rate does not improve the resolution of a diffraction-limited spot. Even 

in the case where the object is not a diffraction-limited pattern, the theoretical resolution 

improvement is not achievable in reality due to the noise inherent to the captured data. 

It is assumed that the wavefront sensing data was captured with sufficient light , and the 

dominant noise component is read noise. As a consequence, in the simulations, the noise­

less case and the cases where 30dB and 15dB white Gaussian read noise is present are 

investigated. This assumption reflect.s the noise on the real data captured. 

Figs. 7.5( a) and 7.5(b) show the reconstructed optics-PSF and CCD-PSF in the noiseless 

case; Figs. 7.5(c) and 7.5(d) show the reconstructions in the presence of 30dB noise, and 

Figs. 7.5(e) and 7.5(f) show the reconstructions when 15dB noise is present. The optics-
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PSF and the CCD-PSF reconstructed well in all cases, although some degradation of the 

sidelobe estimate is evident in the optics-PSF. 

(a) (b) 

'l . 
o . . 

80 . """ <$ .~ 
40 ~ 80 

(c) (d) 

80 
40 

(e) (f) 

Figure 7.5: Simulation results. (a) Noiseless case: optics-PSF. (b) Noise­
less case: CCD-PSF. (c) 30dB noise: optics-PSF. (d) 30dB noise: CCD­
PSF. (e) 15dB noise: optics-PSF. (f) 15dB noise: CCD-PSF. 

The centroid positions are calculated using two methods: firstly by traditional centroiding, 

where wiudow sizes of 3 x 3 and 5 x 5 are both tested, and secondly by blind deconvolution. 

The per-frame mean-squared error (MSE) values and the variances of the error distribution 

are tabulated in Table 7.1. All the methods produced unbiased zero-mean distributions for 
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the centroid positions. 

Several observations can be made from these results. When no noise is present, using a 

5 x 5 window for centroiding has better performance than using a 3 x 3 window. However, 

the converse is true in the presence of noise, illustrating the detrimental effect of noise with 

a larger window size. In the noiseless case, blind deconvolution did not produce the best 

result. This is because the blind deconvolution algorithm estimates the displacements in 

discrete steps, and this can result in a residual error of up to half a step. As stated earlier, 

this problem can be ameliorated by using a smaller step which corresponds to increasing R, 

with a tradeoff of higher computational complexity. In the noisy cases where this error is 

not significant, blind deconvolution has superior performance to the centroiding operation. 

Although blind deconvolution is superior to performing centroiding on the data, it is compu­

tationally intensive. For a 20 x 20 lenslet array, there are up to 400 spots that require blind 

deconvolution and centroid estimation. As a result, the blind deconvolution approach is not 

practical to be used as a routine procedure. An alternative approach is to use the optics­

PSF and CCD-PSF estimated from a set of data, and produce a combined high-resolution 

model by convolving these quantities. This is expressed as: 

h
A 

overall (X, Y) h
A 

O( ) 0 h
A 

C( ) X,Y' X,Y· (7.10) 

This model can then be used to estimate the centroid positions of the remainder of the 

spots. 

The validity of this approach is tested by simulations. The reconstructions of the optics­

PSF and CCD-PSF in all cases (Fig. 7.5) are convolved to produce overall high-resolution 

models. These models were then approximated by Gaussian functions, and the centroid 

positions, still in steps of one-ninth of a low-resolution pixel, are calculated assuming these 

Gaussian models. The results are tabulated in Table 7.2. performance is equivalent to 

blind deconvolution at a significantly reduced computational requirement. 

It should be pointed out that the data frames used in this simulation correspond to the 

images formed by a fully illuminated lenslet in the lens let array. When applied to real 

data, the blind deconvolution procedure enables more complicated models to be developed 

for partially illuminated lenslets. For a given WFS configuration, the blind deconvolution 

procedure needs to be performed only once; this means that once the model is retrieved, it 

can be used for all the frames captured with this particular WFS set-up. 
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The traditional centroiding operation has been shown to be equivalent to fitting a Gaussian 

of variable width to the data [174]. However, this can lead to substantial errors especially 

when dealing with extended objects, which is in fact a common occurrence. By using a 

fixed Gaussian model, it is ensured that the spot position is identified correctly especially 

for the case of an extended object. Fig. 7.6(a) illustrates the case for a point source. The 

solid line is the measured data, and the dash-dotted line is the result of fitting a variable 

width Gaussian to this data. The location of the spot is slightly biased towards the right­

hand side where it is dominated by noise. By using a fixed width Gaussian and performing 

model-fitting, the correct spot location can be found, shown by a dotted line. Fig. 7.6(b) 

shows the case for a binary object where the model is made up of two Gaussians. It is 

apparent that the variable width Gaussian introduces substantial error, and the method of 

model-fitting gives superior results. 

Finally, since the algorithm reconstructs the object spectrum beyond the limit set by the 

data sampling, it is important to consider the frequency content of the reconstructions. The 

ensemble average spectra of the initial and reconstructed optics-PSFs are shown in Fig. 7.7 

as solid and dash-dotted lines respectively. It can be seen that the frequency content of 

the reconstructed optics-PSF has been boosted in the region which is normally aliased by 

the inadequate sampling. It should be pointed out that the high-frequency content of the 

initial optics-PSF is caused by the blockiness of the data frames, and does not represent 

meaningful frequency content. 

This section has proven the feasibility of the blind deconvolution framework, and has shown 

that the application of multiple frames of low-resolution data can result in a reconstruction 

of the object of an improved resolution. The need for the knowledge of the PSF is also 

removed. So far, only a point source has been used in the simulation which does not 

demonstrate the full potential of the method. In the following section, this technique is 

demonstrated on real data including an extended astronomical object. 

7.4 Results using experimental data 

The experimental data was collected with the Shack-Hartmann wavefront sensor of the SPID 

instrument [3] attached to a 1-metre telescope. The telescope is located at the Observatoire 

de Lyon, which suffers from severe turbulence due to its low altitude. Fig. 7.8 shows the 
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I 
Centroiding 3 x 3 Centroiding 5 x 5 Blind deconvolution 

Noise 
MSE Var MSE Var MSE Var 

i Noiseless 1.000 x 10-3 1.048 X 10-9 1.252 X 10- 4 1.235 X 10-10 2.593 X 10-4 2.593 X 10-10 

i 

30dB 7.400 x 10-3 7.441 X 10-9 4.250 X 10-2 i 4.255 X 10-8 5.100 X 10-3 5.147 x 10-9 

15dB 3.380 x 10-2 3.380 x 10-8 2.500 X 10-1 2.501 x 10 .260 X 10-2 2.145 X 10-8 

Table 7.1: R.esults demonstrating the accuracy of the centroiding meth­
ods. Traditional centroiding are performed using a 3 x 3 and a 5 x 5 
window. These results are compared to the blind deconvolution method. 
MSE mean-squared error per frame in wavefront sensing camera pix­
els. Var = variance of the error distribution. 

Model-fitting 
Noise 

MSE Var 

Noiseless 0 0 

30dB 5.000 x 10-3 5.004 X 10-9 

15dB 2.180 x 10-2 2.172 X 10-8 

Table 7.2: R.esu1ts of calculating centroids with model-fitting. MSE = 

mean-squared error per frame in wavefront sensing camera pixels. Var 
= variance of the error distribution. 
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(a) (b) 

Figure 7.6: The demonstration of the difference between using a variable 
and a fixed widtJl Gaussian in locating a spot for (a) a point source and 
(b) a binary object. In each case, the solid line represents the measured 
data. The dash-dotted and dotted lines correspond to fitting a variable 
and a Exed width Gaussian to the data respectively. 

Normalised frequency 
0,25f8 

Figure 7.7: The frequency content of the optics-PSF reconstruction has 
been boosted. Solid: spectrum of Erst optics-PSF estimate. Dash­
dotted: spectrum of final optics-PSF estimate. 
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cross-section of the optical transfer function (OTF) of the telescope. There is a significant 

attenuation of the middle frequency range due to the large secondary mirror. 
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Figure 7.8: Cross-section of the optica.i transfer function of th e telescope. 

Figure 7.9: A typical spot captured by the wavefront sensing camera. A 
grayscale is used where a white pixel has the highest value, and a. black 
pixel has the smallest value. 

7.4.1 Reconstructing a point source 

The object of observation (Pollux) is an unresolvable star of magnitude 1.2 imaged at 690nm 

and the exposure time of 2ms was chosen to ensure the turbulence was effectively frozen. 

The 20 x 20 array of lenslets was used to form wavefront sensing images . A typical image 

of a spot is shown in Fig. 7.9. 

As with the simulated case, the initial estimation of the optics-PSF is the average of the 

data frames smoothed by a uniform array, while the first CCD-PSF estimate is uniform. 

The initial displacements are set to zero. 1000 frames are used in the reconstruction. In 
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(a) (b) (c) (d) 

Figure 7.10: Results using wavefront sensing data of Pollux captured 
at the Observatoire de Lyon. (a) Optics-PSF. (b) CCD-PSF. (c ,d) 
Histogram of the row and column displacements. Each integer value 
along the horizontal axis represents one-ninth of a pixel of the CCD 
camera. 
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order to reduce the computational load, each spot is 'centred' initially so that the pixel with 

the highest value is the middle pixel in the array. It should be pointed out that in many 

cases, there are two or more pixels that were of very similar values . The value of R is once 

again set to 9, while the weightings Ao a nd Ac are set to 0.05 and 0.005 respectively. These 

values are found to be appropriate for this set of data. 

Fig. 7.10(a) shows the reconst.ruction of the optics-PSF where a diffraction pattern of a 

rectangular aperture is clearly visible. This is comparable to the ideal optics-PSF shown in 

Fig. 7.4(a). The fact that the sidelobes are higher is attributable to the higher order aberra­

tions inherent in the WFS used to capture the data. Fig. 7.10(b) shows the reconstruction 

of the CCD-PSF. The magnitude is not uniform as assumed in many algorithms: there is 

a peak at. the centre, with a decrease in magnitude towards the edges. Fig. 7.10(c) and 

7.10(d) show the histograms of the row and column displacements. Each integer value along 

the horizontal axis represents one-ninth of a pixel of the CCD camera. These histograms 

show approxima tely Gaussian distributions, which are reasonable considering that the at­

mospheric turbulence call be modelled by Kolmogorov statistics, whose centroid positions 

are known to follow a Gaussian distribution [43 , 62]. 

In the case presented here, the object was a point source, and the optics-PSF and CCD-PSF 

are reconstructed as the diffraction-limited pat tern of a square aperture and a Gaussian­

shaped fUllction respectively. Although this substantiates the feasibility of the blind decon­

volution algorithm on real point source data, it is often more common (and interesting) to 
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observe extended objects. The extension of the blind deconvolution procedure to the binary 

star Castor is now examined. 

7.4.2 Reconstructing a binary star 

The wavefront sensing images of the binary star were captured using a x 14 Shack­

Hartmann lenslet array with an exposure time of 3.2ms. In the blind deconvolution pro­

cedure, the initial estimate of the optics-PSF hO(x, y) is a diffraction-limited pattern of a 

square aperture. The sampling rate is chosen to match that of this particular SH array 

configuration, where the images are sampled at 62.5% of the Nyquist rate. The initial es­

timate of the CCD-PSF hC(x, y) is the same as that previously retrieved with the Pollux 

data. These two quantities are then convolved to provide the overall-PSF of the system as 

in Eq. (7.10), and Eq. (7.3) can be rewritten as: 

(7.11) 

Both j (x, y) and Jioverall (x, y) were then updated in the full blind deconvolution procedure 

where the former represents the stellar object of interest. Because the first estimate of the 

overall-PSF is good, there was little change to it throughout the iterative procedure. 

Fig. 7.11(a) shows a typical frame of the WFS data. 7.11(b) shows the reconstruction 

of j(x, y) which is clearly a binary object. The intensity of the brighter star is 2.4 times 

that of the dimmer star which is comparable to the widely accepted value of 2.1. The 

separation of the reconstructed binary star is found to be 145 pixels. When a conversion of 

0.0248 arcseconds per pixel (calculated from the system parameters including the telescope 

diameter, the focal length and the wavelength of the light) is applied, the separation is 

found to be 3.6 arcseconds. Although it is reasonable compared to the generally accepted 

value of 3.1 arcseconds, the accuracy of the calculated value can be improved by calibrating 

the image capturing system with a known binary instead of using the system parameters 

for a theoretical calculation. 

Fig. 7.11(c) and 7.11(d) display histograms of the row and column displacements. Each 

integer value along the horizontal axis represents one-ninth of a pixel of the CCD camera. 

The pre-processing on the data of Pollux, where the highest-valued pixel was shifted to be 

the centre pixel of each frame, was not performed on the Castor frames initially. As a result, 
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Figure 7.11: Results using wavefront sensing data of Castor. (a) Typical 
data frame. (b) Reconstruction of the binary object. (c,d) Histogram 
of the row and column displacements. Each integer value along the 
horizontal axis represents one-ninth of a pixel of the CCD camera. 

the estimated displacements have a larger range than those of Pollux. It should be noted 

that whether the highest-valued pixel was shifted to be the centre pixel has not affected the 

reconstruction of the model in the blind deconvolution algorithm. Therefore, the fact that 

no explicit prior is used for the displacements is justified. 

7.5 Demonstration of improvement by phase and object re­

construction 

Ultimately the objective of improving the centroid estimates is to provide better wavefront 

sensing reconstructions. The wavefront sensing data used to demonstrate this was the same 

as that described in Section 7.4 (collected by observing Pollux and Castor), but in this case, 

images of the entire lenslet array are used. The centroids of the wavefront sensing data 

are calculated using two methods. Firstly, the model extracted from blind deconvolution 

in Section 7.4 is applied. This involves the downsampling of the high-resolution model 

retrieved with blind deconvolution, and identifying its occurrence in t.he noisy data frames 

to subpixel accuracy. The shifts are not restricted to a fixed step size here. Secondly, the 

method of traditional centroiding is used. In each case, the phase is reconstructed using 

200 Zernike polynomials [147] and the object distribution is reconstructed. Here, only the 

end result is examined for comparison; the theory regarding the reconstruction of the phase 

from wavefront sensing data is detailed in Chapter 8. 
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( a) (b) 

Figure 7.12: Reconstructions from wavefront sensing data of Pollux with 
a 20 x 20 Shack-Hartmann lenslet array. (a) Cross-section of the image 
using model-fitting. (b) Phase reconstruction using model-fitting. The 
circle denotes 24% of the diffraction limit. 

The phase reconstruction of Pollux using model-fitting has a Strehl ratio of 41%, compared 

to a Strehl ratio of 35% when traditonal centroiding is used. The cross-section of the recon­

structed image using model-fitting is shown in Fig. 7.12(a), while the phase reconstruction 

is shown in Fig. 7.12(b) with the circle denoting 24% of the diffraction limit of the telescope. 

The reconstructions using traditional centroiding are not shown here because there is little 

visual difference from Fig. 7.12(a) and 7.12(b). 

For a point source, there is only a slight improvement in performance, because using model­

fitting to find the centroids provides only a small advantage. However, for an ex tended 

object like Castor, the improvement in performance is significant. Fig. 7.13(a) shows the 

object reconstruction using traditional centroiding. Comparing this to Fig. 7.13(b), where 

the object is reconstructed using model-fitting, it can be seen that the latter is clearly 

a binary object (with a separation of 3.5 arcseconds), while the former reconstruction is 

ambiguous. Fig. 7.13(c) and 7.13(d) show the phase reconstructions of the two methods 

respectively. The circle denotes 24% of the diffraction limit. The stripes in the centre 

portion in Fig. 7.13(d) are more uniform than those in Fig. 7.13(c), demonstrating a better 

phase reconstruction. 



7.6. SUMMARY 

(a) (b) 

(c) (d) 

Figure 7.13: Reconstructions from wavefront sensing data of Castor with 
a 14 x 14 Shack-Hartmann lenslet array (a) Reconstruction of the 
image using traditional centroiding. (b) Reconstruction of the image 
using model-fitting. In (a) and (b), only the centre portions of size 
280 x 280 have been shown for clarity (c) Phase reconstruction using 
traditional centroiding. The circle denotes 24% of the diffraction limit. 
(el) Phase reconstruction using model-fitting. 

7.6 Summary 
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Object reconstruction from simultaneous wavefront sensing data and speckle images is a 

two-level inverse problem. The reconstruction of the object relies on the phase estimation, 

which in turn is dependent OIl the wavefront sensing measurements. 

In this chapter, the second problem of phase reconstruction from wavefront sensing mea­

surements was addressed. Specifically, the accuracy of the existing centroid estimator was 

examined, and an improved method was proposed. This method retrieves the model of the 

spot using a blind deconvolution framework, and performs model-fitting to locate the cen­

troid of the spots. The results on both simulated and real data show that the model-fitting 

procedure produces superior results to those of the traditional centroiding method. 
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The blind deconvolution procedure, although computationally intensive, needs to be per­

formed only once for a given wavefront sensor configuration. Once the model is retrieved, 

the model-fitting procedure can be carried out efficiently. 

The multiframe blind deconvolution procedure proposed here is not limited to astronomical 

data processing. It is a general technique for resolution improvement, and can be applied 

to other images. 



Chapter 8 

J oint application of WFS data and 

speckle images in IBD 

In Chapter 7, the problem of astronomical object reconstruction was viewed as a two­

level inverse problem: firstly the phase is reconstructed from centroid measurements, and 

secondly the object is reconstructed with the estimated phase. This two-level structure is 

adopted by the methods of deconvolution from wavefront sensing and adaptive optics where 

the phase estimation precedes the object reconstruction. However, information regarding 

the phase is not only present in the wavefront sensing images, but is also intrinsic to the 

speckle images. Therefore if simultaneous wavefront sensing data and speckle images are 

available, the phase estimate can be made jointly using both sets of data, improving the 

accuracy and fidelity of the reconstruction. 

The method proposed in this chapter is to pose the problem as one of blind deconvolution, 

and include the wavefront sensing data as a form of additional constraint. Whilst the 

estimation of the phase from intensity (speckle images) in a blind deconvolution (BD) 

framework is highly non-linear, the wavefront sensing data provides a sufficiently strong 

constraint in the proposed formulation that the initial solution is close to the true solution 

and as a result, the non-linearity is removed [175]. 

The concept of using simultaneous speckle images and wavefront sensing data is not new; 

a similar approach has been used by several authors [24,27,51,126], whose algorithms 

187 
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were primarily developed in response to the need for the post-processing of adaptive optics 

imagery. These are called myopic deconvolution methods. Strong constraints as well as 

good quality prior information such as the power spectral density (PSD) of the PSF, and 

the number of stars in a cluster are used in these algorithms. 

The algorithm proposed by Mugnier et al. [126] is very similar to the algorithm proposed 

here. However, a direct comparison of the performance of the two algorithms is difficult 

without any quantitative parameters. Specifically, the issue of the number of photons 

required in the speckle images to guarantee a good solution needs to be addressed. As 

a comparison, Mugnier used 10 frames with 67500 photons per frame in the processing, 

whereas 300 frames with an average of 120 photons per frame are used here. While the 

number of frames used can be varied experimentally, the light level depends on the size of 

the telescope. This illustrates the importance of the ability to obtain a solution from images 

with very few photons. In this chapter, a suggestion as to how a quantitative comparison 

can be performed is discussed. 

Another joint application of wavefront sensing data and speckle images was proposed by 

Roggemann et al. [145,146J. Here, the entire Shack-Hartmann (SH) image is processed 

together with the entire speckle image formed by the same aberration. This formulation 

allows the SH sensor to operate above its usual range of D Iro = 1 per lenslet, and large 

aberrations can be estimated. This approach to the problem is beyond the scope of this 

thesis; here the operation of the SH sensor is restricted to its usual range of D Iro = 1 per 

lenslet. 

This chapter is structured as follows. Section 8.1 presents the theory of reconstructing a 

phase from wavefront sensing measurements. The proposed method is discussed in Section 

8.2. Section 8.3 examines the implementation issues when dealing with real data, and 

results on experimental data are included in Section 8.4. A suggestion for performance 

quantification is presented in Section 8.5, and conclusions are drawn in Section 8.6. 

8.1 The processing of wavefront sensing data 

One common approach of measuring the atmospheric phase distortion is to use a wavefront 

sensor (WFS). There are three main types of WFSs: the Shack-Hartmann (SH) WFS and 
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the shearing interferometer which are sensitive to the slope of the wavefront phase [147], and 

the curvature wavefront sensor [142]. Since the real data used in this thesis was captured 

by the SH-WFS, the other types of WFSs are not discussed. 

The SH sensor comprises a square array of lens lets which segments the aperture into smaller 

sections called subapertures. A typical frame captured by a SH-WFS is shown in Fig. 8.1(a). 

Basically, the displacement of a spot from the point corresponding to the centre of a lenslet 

is used to produce the average or mean slope of the wavefront over the respective lenslet. 

These local slopes are then combined to reconstruct the phase across the entire aperture. 

Fig. 8.1(b) illustrates the relationship between the slope of the incoming wavefront over a 

subaperture and the displacement of the spot in the detector plane. The wavefront slope 

s = t::..¢ld is represented by: 

s = klxsl 
II 

(8.1) 

where k = 21r I A is the wavenumber, and it is the focal length of the subaperture lens. The 

spot location, Xs (xs, Ys), is found by computing the centroid (or centre of gravity) of the 

spot on the detector plane as in Eq. (7.1). 

The application of this concept is illustrated in Fig. 8.2. A binary object in Fig. 8.2(a) is 

imaged through atmospheric turbulence described by a simulated phase screen with D Iro = 

8 (Fig. 8.2(b)). The image measured by the wavefront sensor is shown in Fig. 8.2(c). By 

measuring the centroid of the spot in each lenslet, the mean slope over each sub aperture 

is found, which are then combined to form the overall phase estimate (Fig. 8.2(d)). The 

object reconstruction obtained using this phase estimate is shown in Fig. 8.2(e). Here, it is 

assumed that a simultaneous speckle image is captured, so that a Wiener filter can be used 

to provide the reconstruction: 

j(x,y) ~-1{ D(u,v)H*(u,v) } 
IH( u, v)12 + const . 

(8.2) 

Here D( u, v) and H (u, v) are the spectra of the data and the PSF respectively. A diffraction­

limited image of the object is shown in Fig. 8.2(f) for comparison. In the case where 

multiple frames of wavefront sensing data and simultaneous speckle images are available, 

this procedure can be extended to a vector Wiener filter, where 

j(x y) - ~-1{ (D(u,v)H*(u,v)) } 
) - (IH(u, v)12) + const 

(8.3) 

and (-) denotes an ensemble quantity. This is essentially the concept of deconvolution from 

wavefront sensing (DWFS) which is discussed in detail in Chapter 9. 
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(a) (b) 

Figure 8.1: (a) A typical frame of wavefront sensing data. (b) The re­
lationship between tl1e slope of the wavefront and the displacement of 
the spot on the detector plane. 

A more rigorous, mathematical approach to finding the wavefront slope over a subaperture 

can be obtained by computing its average wavefront phase gradient [186]: 

S(j) = ! Wsj(u, v)\lcP(u, v)dudv (8.4) 

where s(j) is the wavefront slope ofthe lh subaperture, \lcP(u" v) is the spatial gradient of 

cP(u, v), and Wsj(u, v) is the weighting function of the lh subaperture. 

When noise is taken into account in the SH-WFS data, the slope measurement is: 

Sm(j) = s(j) + SnU) 

! Wsj(u, v)\lcP(u, v)dudv + SnU) 

= -! \lWsj(u, v)cP(u, v)dudv + SnU) (8.5) 

where the last equation is obtained by integrating the first term by parts [178J. Sn(j) is 

the random variable describing the combined effects of photon and read noise in the lh 

subaperture, and sm(j) is the measurement of the corresponding subaperture. The phase 

and the sensor noise are assumed to be independent. 
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Figure 8.2: A demonstration of the phase reconstruction from Shack­
Hartmann wavefront sensing data. (a) The simulated binary star. (b) 
A phase screen with D Iro = 8. Note that an aperture with a central 
obscuration is imposed. (c) The wavefront sensing image. (d) Phase 
reconstruction. (e) Object reconstruction. (f) The diffraction-limited 
image of the object for comparison. 
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B.1.1 Phase reconstruction 

The reconstruction of a wavefront phase is most conveniently expressed as a weighted sum 

of a set of basis functions, an appropriate choice of which is the Zernike basis functions. A 

phase estimate ¢( u, v) can therefore be written as: 

N 

¢(u, v) = L CiZi(U, v) (8.6) 
i=l 

when the first N modes of the Zernike bases excluding piston are used. The weights Ci are 

obtained by 

2N 

Ci L Mij8j, 
j::::l 

(8.7) 

or, in vector notation c = Ms. c = (q, C2, . .. ,CN) is the vector of the weights, and 

S (81182, ... , 82N)T is the vector of the slope measurements. It should be pointed out 

that a wavefront sensor with N subapertures provides 2N measurements from the row and 

column displacements. The ordering of the slope measurements adopted in this thesis is: 

81 8~(1), 

82 8~(1), 

83 = 8~(2), 

8~(2), 

8~(N), 

8~(N). 

In other words, the row and column slope measurements are interlaced. 

(8.8) 

The matrix M is the reconstruction matrix which maps the slope measurements to the 

weights of the bases. A common choice of M is derived from the least squares solution, where 

the difference between a set of noise-free wavefront sensor slopes and the corresponding set 

of slopes made up from Zernike basis functions is minimised. This error is expressed as: 

6. = s 8c (8.9) 
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where the elements of e, eji, are: 

as ° 

eJoi J (8.10) 
Oci' 

e is called the interaction matrix [108] since it defines the relationship between the centroid 

measurements and the Zernike weights. In a least squares formulation, the squared error 

to be minimised is t:::.T t:::.. By differentiating this with respect to Ci and equating it to zero, 

the optimal set of weights copt is: 

copt = (eTe)-leT s 

and the direct result is that M = (eT 8)-leT . 

(8.11) 

The least squares solution provides a good estimation of the weights for the Zernike basis 

functions, and this method is commonly used. However, the effects arising from non-zero 

correlations between WFS measurements are not accounted for [144]. In this case, prior 

information can be introduced into the solution in the form of a covariance matrix. 

The covariance matrix of the Zernike polynomial coefficients, K zz , is given by: 

(8.12) 

where a is a vector of coefficients for the Zernike modes. For the ith row and the jth column 

of the covariance matrix, the entry is [147]: 

aiaj 0.0072(~)5/3( _1)(ni+nj -2m;)/2[(ni + l)(nj + 1)F/27f8/30m;mj 

r(14/3)r[(ni + nj 5/3)/2] 
x r[{ni _ nj + 17/3)/2]r[(nj ni + 17/3)/2]r[(ni + nj + 23/3)/2] (8.13) 

for i j even. For i j odd: 

(8.14) 

Following the same notation in Chapter 4, mi and ni in the above equations are the az­

imuthal and radial orders associated with the ith Zernike polynomial respectively, and mj 

and nj are those of the lh Zernike polynomial. The Gamma function r[.] is defined in 

Section 2.4.3. When the covariance of the Zernike polynomials is incorporated into the 

framework, the least squares solution is modified to a minimum variance solution: 

M (8.15) 

where Knn is an identity matrix due to the Gaussian nature of the noise. Both of these 

formulations are used in this thesis. The least squares solution is used for calibrating any 

scaling factors, while the prior information is incorporated in the reconstructions. 
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8.1.2 Inadequacies in using WFS data alone 

Using the wavefront sensing data and speckle images in a Wiener filter to reconstruct the 

object is easy to implement. However, one problem is that since the PSF estimate is made 

solely from data measured in the wavefront sensor channel, any information regarding the 

PSF contained in the speckle image channel is not used. Another deficiency is that it is 

not possible to estimate the PSF exactly, which causes a bias problem [149]. This error in 

estimating the PSF is reflected in the object reconstruction. 

One solution to this problem is to use both the wavefront sensing data and the speckle 

images to estimate the PSF. This can be achieved in a blind deconvolution framework, using 

the wavefront sensing data as a constraint on the solution, ensuring that the wavefront 

estimate is made jointly from the data that is present in the image and the wavefront 

sensing measurements. This also removes the common problem of the trivial solution in 

blind deconvolution, where the object is estimated to be a point source, and the PSF the 

data. 

8.2 An improved method for object and PSF reconstruction 

When solving an inverse problem, a common approach is to firstly obtain a good model 

of the system. The object estimate is then put through this degradataion model, and the 

estimated data is compared to the actual data observed. The discrepancy is used to update 

the estimate of the object. Prior information can also be included in the framework in order 

to regularise the solution. This is essentially the maximum a posteriori (MAP) framework. 

In the proposed blind deconvolution problem, the two sets of data are the wavefront sensing 

images and the speckle images. In the previous section, the forward model of the wavefront 

sensing images was presented, where the phase ¢( u, v) is expanded onto a set of Zernike 

bases, whose weights are linearly related to the centroid measurements of the wavefront 

sensing image. The forward model for the speckle images is denoted by the convolution op­

eration as in Eq. (6.1); and the relationship between the PSF, the phase and the generalised 

pupil function is detailed in Section 6.4. 

The solution to the associated inverse problem is illustrated diagrammatically in 8.3. 
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Figure 8.3: A block diagram illustrating the inverse problem solution 
when bOtll speckle images and wavefront sensing data are used in the 
reconstruction. 

Mathematically, the solution is posed as a problem in a MAP framework: 

rry~;xp(j(x, y), hk(X, y)ldk(X, y)). 
f,hk 
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(8.16) 

It should be pointed out that because the phase ¢( u, v) has a direct relationship with the 

PSF, and the phase can be expanded with a set of Zernike weights, it is equivalent to write 

the MAP solution as: 

(8.17) 

The application of Bayes' rule and other mathematical simplifications lead to the log­

likelihood equation: 

+ log[P(j(x, y))] 

+ log[P(Ck)]' (8.18) 

The first term is the consistency between the estimates and the observed data, while the 

other terms are for the inclusion of prior information or regularisation. 

The consistency term consists of two components: 

Econ = Especkle + rcEcentroid, (8.19) 

where 

Especkle = L L[j(x, y) 0 hk(x, y) - dk(X, yW (8.20) 
k x,y 
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assuming white Gaussian noise, and 

Ecentroid = L)Sk skf· 

k 

(8.21) 

The scalar TC determines the weighting between each of the consistency terms. Especkle 

constrains the estimates of f and h to be consistent with the data, while Ecentroid ensures 

that the centroid estimates are close to Sk. 

It should be pointed out that while in Especkle, the quantity used for comparison is the 

measured data dk(x, y), it is not so in Ecentroid. Instead, a good estimate of the centroids, 

Sk, which can be obtained by the model-fitting procedure discussed in Chapter 7, is used 

for comparison. This is done to compromise between the complexity of the model and the 

speed of obtaining a solution. Optimally, one can update the phase estimate and project 

it through the wavefront sensor model to obtain estimates of the wavefront sensing images, 

and compare them to the measured images. However, this adds extra computational re­

quirements to the algorithm, which is already computationally intensive (see Section 8.3.3). 

As a result, this compromise is reached between speed and accuracy. 

The necessary gradient calculation for updating the object !(x, y) is: 

8Econ ~ A A A 

--;::-- = L- 2[f(x, y) 0 hk(x, y) dk(x, y)]® hk(X, y) 
y) k 

while the calculations for updating the weights Ck are 

8Econ 

8Ck 

The first term 8Especkle/8ck is: 

where [168]: 

8Especkle + 8Ecentroid 

8 ~ TC 8~ 
Ck Ck 

8Especkle A ) A ( ) 

8A( )=2[f(x,Y0hk x,y 
ak x,y 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

The term 8¢k(U,V)/8ck is obtained by expanding the gradient 8Especkle/8¢k(U,V), which 

is a two-dimensional array the same size as ¢k(U, v), onto the set of Zernike bases. The 

second term 8Ecentroid/8ck is: 

8Ecentroid 

8Ck 
(8.26) 
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Both the estimates of the object and the weights are updated using the method of steepest 

descent, the formulation of which is included in Appendix A. 

8.2.1 Prior information for the object and the phase 

The prior information enforced on the object estimate includes positivity, implemented 

using the method of Johnston and Lane [94], and Tikhonov-Miller (TM) regularisation. 

The corresponding error term is written as: 

Ef = If L j(x, y)2 

and its gradient with respect to j(x, y) is: 

BEl 

Bj(x, y) 

x,y 

(8.27) 

(8.28) 

The prior for the Zernike weights is the covariance matrix of the Zernike coefficients. The 

calculation of the entries in the covariance matrix has been discussed in Section 8.1.1. The 

error term corresponding to this prior is: 

E 1 "~TK-l~ 
c = 2'z L..t ck zz Ck 

k 

where Kzz denotes the covariance matrix. Its gradient with respect to Ck is: 

8.3 Implementation issues for experimental data 

(8.29) 

(8.30) 

The use of experimental data has several implementation issues which are discussed in the 

following subsections. These include the centroiding operation, the calibration between the 

wavefront sensing and the speckle image cameras, and the speed and memory requirements. 

8.3.1 Centroiding operation 

The aim of the centroiding operation is to calculate the movement of a spot from the 

position corresponding to the centre of the lenslet. The accuracy of the traditional centroid 



198 CHAPTER 8. JOINT APPLICATION OF WFS DATA AND SPECKLE IMAGES IN IBD 

(a) (b) 

Figure 8.4: (a) An illustration of the aperture of a telescope with central 
obscuration. (b) The projection of a typical frame of wavefront sensing 
data captured at the Observatoire de Lyon. The corresponding two­
dimensional image was shown in Fig. 8.1 (a). 

estimator has been discussed in Chapter 7. Here two implementation issues are addressed. 

Firstly, because the aperture of a telescope is usually circular with a central obscuration, it is 

inevitable that some of the subapertures are not fully illuminated. In a simulation, it is usual 

to include the sub apertures that have more than 50% illumination in the reconstruction. 

8.4(a) shows an example of an 8 x 8 lens let array, where 40 out of the 64 subapertures 

can used. However, when dealing with real data, a different criterion must be used 

for including or excluding spots. It is common to use a threshold, whose value can be 

determined by examining the data. Fig. 8.4{b) shows a projection of a real wavefront 

sensing data frame (Fig. 8.1(a)). The threshold in this case is set to 20, a value found by 

comparison with the noise floor. 

Another problem encountered is that when centroiding each spot, it is necessary to find 

reference coordinates for the spots. In order to circumvent this problem in real data, a long 

exposure wavefront sensing image can be taken. The positions of the spots in this image 

approximate the centres of the lenslets. This is a valid operation because the movement 

of the spot produced by atmospheric turbulence follows a zero-mean Gaussian distribution 

when observed over a long period of time [43,62]. Although fixed telescope aberrations 

do not affect the location of the centroids, they cause a systematic error which should be 

calibrated initially so that it can be subtracted from the estimated phase. This is discussed 

in the next subsection. 
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8.3.2 Calibration between the WFS and CP40 cameras 

As discussed in Section 6.4, there exists a Fourier transform relationship between the PSF 

and the OTF. However, the relationship is not direct in the case of the data captured at the 

Observatoire de Lyon. This is because the wavefront sensing data and the speckle images 

are captured on cameras with the same number of pixels, yet one represents samples in the 

frequency domain, and the other in the spatial domain. This means that the sampling rates 

are not necessarily compatible. Moreover, the two cameras were not aligned with respect 

to each other during the observing run; as a result the wavefront sensing data frames are 

rotated with respect to the speckle images. It is therefore essential to calibrate and resample 

one set of data for the Fourier transform relationship to hold. 

There are two alternatives for compensating for this problem. In the first method, most of 

the correction is performed in the spatial domain. Let the complex aperture be denoted by: 

A(u,v) = S(u,v) exp{iep¢(u, v)} (8.31) 

where S(u, v) is the aperture shown in Fig. 8.5(a). This is obtained by averaging an 

ensemble of images of the aperture on the telescope. Note the presence of the supports for 

the secondary mirror (or 'spider') in the figure. ¢( u, v) represents a phase reconstructed 

from a frame of wavefront sensing data. However, in order to illustrate the process, a simple 

phase screen with a tip, tilt and defocus (Zernike modes 2, 3 and 4) is used for ¢( u, v) in 

this section (Fig. 8.5(b)). cp is the scaling for the phase screen and must be calibrated 

experimentally. For the data captured here, cp is approximately 34. 

Taking a direct Fourier transform of the autocorrelation of A( u, v) gives an incorrect PSF 

as shown in Fig. 8.6(a). Only the centre 160 x 160 pixels are shown for clarity. The 

factors that must be compensated for include the rotation, the non-square pixels (the pixels 

are slightly wider in the vertical direction), and the sampling. By interpolating this PSF 

on a different grid, a corrected PSF is obtained as shown in Fig. 8.6(b). Note that this 

is rotated by approximately 900
, and appears slightly larger because of the difl:'erence in 

sampling rate. Similar to the scaling of the phase cp ) these parameters have been obtained 

from an optimisation procedure using the captured data. 

However, this method is computationally intensive. This is especially significant in a re­

cursive blind deconvolution framework, where each frame of PSF must be generated in 
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(a) (b) 

Figure 8 .5: (a) The telsecope aperture obtained by averaging a.n ensemble 
of images (131 x 131 pixels). (b) The phase screen used in this section for 
illustration purposes. It is made up of tip, tilt and defocus components. 

(a) (b) 

Figure 8.6: Calibrating between th e WFS and the image cha.nnels in the 
image plane. (a) The initial, uncompensated PSF. (b) Tl1e compensa ted 
PSF. 

each iteration. In order to improve the speed performance of the algorithm, an alternative 

method is devised. 

The second method performs the correction in the frequency domain so that a direct Fourier 

transform can be t aken to form the PSF. This is achieved by expanding the phase ¢(v" v) 

over a compensated set of Zernike polynomials . This requires the generation of a new set of 

Zernike bases with the sampling, pixel size and rotation taken into account. The aperture 

must also be resampled to match the Zernike bases (Fig. 8.7) . Although the new set of 
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Figure 8.7: The resampled and rotated aperture (121 x 123 pixels). 

Zernike bases has a non-square number of pixels , it is still defined on a unit circle, except 

that each basis is sampled slightly more finely in one direction. The resultant PSF is the 

same as that in Fig. 8.6(b) within rounding errors. 

It is important to note that in this blind deconvolution framework , two sets of Zernike 

polynomials are used. The first set is the resampled set used for the representation of the 

phase in the aperture. The second set is the reference (with a square number of pixels) 

used for generating the interaction matrix 8, which is then used to find the weights of the 

Zernike polynomials from the centroid measurements. A question one might ask is that, can 

the weights, reconstructed using the second set of Zernike polynomials, be used to generate 

a phase screen using the first set of polynomials? The answer is that this is not a problem 

or a contradiction , because the weights are invariant regardless of the basis functions used. 

The final calibration that must be performed is the incorporation of the fixed telescope 

aberra tion into the reconstruction. This aberra tion is characterised by modes 4 to 15 of the 

Zernike bases, the coefficients of which are listed in Table 8.1. Once again, these parameters 

are optimised in an iterative procedure on the real data. 

8.3.3 Speed and memory requirements 

For any recursive algorithm, it is important to consider the speed and memory requirements 

for computer implementation. In this blind deconvolution problem, there are 300 data 

frames and 300 PSFs (each of size 512 x 512) to be processed. As a result , the speed and 

memory requirements must be examined. 
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Zernike mode I coefficient 

Z4 (defocus) -0.0040 

Z5 (astigmatism) 0.0005 

Z6 (astigmatism) -0.0060 

Z7 (coma) 0.0039 

Z8 (coma) -0.0058 

Zg -0.0039 

ZlO -0.0032 

Zil (spherical aberration) -0.0016 

Z12 -0.0033 

Z13 0.0012 

Z14 -0.0036 

Z15 -0.0001 

Table 8.1: The characterisation of the fixed telescope aberrations using 
Zernike polynomials for the telescope at the Observatoire de Lyon. 

To reduce the memory requirement of the data frames, it is observed that each frame has 

only approximately 120 photons, embedded in a 512 x 512 array. It is therefore possible to 

store them as sparse arrays in Matlab [117] which reduces the memory storage significantly. 

Since it is possible to initialise the phase estimates with reconstructions from the wavefront 

sensing data, their good quality means that there is little change to them during the course 

of the iteration. Therefore instead of calculating each quantity as required, as performed in a 

blind deconvolution framework, a simplification to a deconvolution problem is possible. By 

generating and saving the PSFs in memory, and accessing them slice by slice when needed 

reduces the memory requirement without much loss in the quality of the reconstruction. The 

speed is also improved by 26%. However, because the PSF data still amounts to 600MB, 

its access from hard disk is still relatively time-consuming. 

In the next section, experimental results using both the blind and non-blind deconvolution 

approaches are presented. 
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8.4 Results using experimental data 

The experimental data was collected with the SPID instrument [3J attached to a I-metre 

telescope at the Observatoire de Lyon. The object of observation (Castor) is a binary star. 

The wavefront sensing data was captured using a 14 x 14 Shack-Hartmann lenslet array with 

an exposure time of 3.2ms, while the speckle images used in this processing were captured 

at a wavelength in the band 620 627nm. 

Out of the 2500 frames captured, every 5th frame up to a total of 300 frames are used in the 

reconstruction. Consecutive frames are not used in order to reduce the temporal correlation 

between frames. The average number of photons per speckle image is 120, an example of 

which is shown in Fig. 4.18{a). This low light level renders it impossible to distinguish any 

features of the astronomical object. For the wavefront sensing data, the centroid estimates 

are calculated using the model-fitting procedure proposed in Chapter 7, thus providing a 

good quality estimate of the Zernike weights. 

Two initial estimates for the object are tested: a zero start, and a uniform start. The 

weightings TC and TJ are found experimentally and take on the values of TC 1 x 10-5 and 

TJ 1 x 10-4 respectively. Although these values seem ad hoc, a good initial guess can 

be achieved by scaling them such that each of the error terms has approximately the same 

energy. The application of a prior for the weights in the form of the Kolmogorov covariance 

matrix is found to be unnecessary in this case because the starting estimates of the weights 

are good and consequently they are already sufficiently regularised. 

The brightness ratio and the separation of the two stars of the binary are used to determine 

the quality of the reconstructions. To calculate these parameters, a support for each star 

is firstly identified in the reconstruction. The centre point of the support for each star 

is then used for calculating both the brightness ratio and the separation. Although this 

approach may introduce an error, it is the best approach given the noisy nature of the 

reconstructions. Figs. 8.8{a) and 8.8(b) show the reconstruction of Castor using a zero start 

and a uniform start in a blind deconvolution framework. The brightness ratio of the two 

stars are 2.4 and 2.3 in the respective reconstruction, which is in close agreement with the 

widely accepted value of 2.1. The separations between the two stars are both approximately 

3.2 arcsec. Although this value is slightly lower than the reference value of 3.6 arcsec, they 

are still comparable. Moreover, as discussed in Section 7.4.2, this separation is dependent 
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on computed values from the optics which have margins of error. A more accurate method 

is to calibrate the arcsecond-per-pixel value from a known binary. Another possible source 

of error is that the reconstructions are still a convolution of the underlying object with 

the telescope PSF [168]. This can be overcome by applying another blind deconvolution 

procedure on the reconstructions in Fig. 8.8. 

To improve the speed of the algorithm, a non-blind alternative is also investigated, with 

the results shown in Fig. 8.8(c) and 8.8(d) for a zero start and uniform start respectively. 

The brightness ratios and separations are both 2.1 and 3.1 arcsec respectively. These are 

different from but compatible with the blind deconvolution simulations. 

The brightness ratios obtained using blind deconvolution are higher than those retrieved 

from the deconvolution method because complete convergence had not been achieved (due 

to the heavy computational requirement). The error metric was however decreasing slowly 

at this point. As the algorithms proceeded, the brightness ratios were approaching the ref­

erence value of 2.1, indicating that this value would eventually be reached if the algorithms 

were allowed to proceed further. This observation is supported by the findings in Ref. [175] 

which state that if the initial phase estimate is close to the true phase, which is the situation 

at hand, then uniqueness of the solution is guaranteed. 

In all the reconstructions, although a binary star is clearly visible, each star is not smooth. 

This can be due to the insufficient regularisation of the object. One solution is to increase 

the value of the weighting If. This will give a smoother and slightly broader reconstruction. 

Another approach is to use a different form of regularisation instead of the Tikhonov-Miller 

regularisation used here. One possibility is the Laplacian kernel. 

The blind deconvolution and the deconvolution methods achieved different but compatible 

results. This shows that because the Zernike weights were reconstructed accurately initially, 

there is only a small variation to their values throughout the course of the iteration. As a 

result, a non-blind formulation can be used for the object reconstruction when the speed of 

convergence is an issue. It should also be pointed out that the algorithm is robust to the 

starting estimate of j (x, y). 

Although no quantitative comparison can be made between the results achieved in this 

section and those shown in the paper by Mugnier et at., it must be pointed out that here, the 
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(a) (b) 

(c) (d) 

Figure 8.8: The reconstruction of Castor with (a) a zero-start and (b) 
a uniform start in a blind deconvolution framework. (c) and (d) are 
the corresponding reconstructions in a non-blind ll'amework. The non­
blind deconvolution is performed to speed up the iterative algorithm. 
The frames are of size 512 x 512. 

205 
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300 frames of speckle images have an average of 120 photons per frame, while in Mugnier's 

paper, 10 speckle images with 67500 photons per frame were used. While the number of 

frames is easily controlled experimentally, the light level is dependent on the size of the 

telescope. It is therefore important to be able to reconstruct an object under low light 

levels. 

8.4.1 Comparison with DWFS 

The results from the proposed algorithm are also compared to the conventional deconvolu­

tion from wavefront sensing (DWFS) method. Since no reference star measurements were 

taken, the estimates of the PSFs were computed using wavefront sensing measurements of 

the binary star Castor. Fig. 8.9 shows the object reconstruction using the same 300 data 

frames. The binary star is not clearly visible, and the reconstruction is very noisy with 

negative values present in the background. The visual quality of results using the proposed 

method is clearly superior to that of DWFS. 

x 10""" 
4~ 

2 

o 

Figure 8.9: A comparisoIl with the result of DWFS. 
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8.5 Quantification of performance 

The feasibility of using wavefront sensing data in a blind deconvolution framework has been 

demonstrated. The next step is to quantify the performance of the algorithm. Specifi­

cally, the amount of information gained in the phase reconstruction by the joint processing 

of speckle images and WFS data is of considerable interest. The analysis has not been 

performed here, but suggestions on how this can be achieved are proposed. 

Since blind deconvolution is recursive and involves two unknowns, it is difficult to charac­

terise its performance analytically; instead simulations are performed. The parameters to 

consider include the photon levels, the number of frames, the SNR of the wavefront sensing 

data and the degree of undersampling in the WFS data. It is important to obtain a lower 

bound on the photon level required in the speckle images, and a range of values down to 1 

photon per frame should be investigated. The undersampling factor is of particular interest 

regarding the SPID camera because the sampling rate can be as low as 60% of the Nyquist 

rate. 

There are three metrics that can be used to assess the quality of the phase reconstruction. 

Firstly, the aperture averaged RMS residual phase error [147J for each phase reconstruction 

can be compared at different photon levels and different values of D/ro. Secondly, the 

aperture averaged RMS residual phase error for individual Zernike modes can be examined. 

It is known that the Shack-Hartmann WFS is insensitive to certain Zernike modes [111J. 

This metric examines whether the estimation of the phase from simultaneous speckles and 

WFS frames can ameliorate this problem. Finally, the metric proposed in Eq. (8.19) can 

also be used. These metrics have not been applied to the investigation in this section 

because ensemble trials are needed to produce a meaningful result, and in its current form, 

the algorithm is too computationally intensive for this purpose. 

The quality of the object reconstruction can be assessed by standard image metrics such 

as the mean-squared error if the ground truth is available as in the case of simulated data. 

For experimental data such as a binary star, the mean and variance of the separation and 

intensity ratio of an ensemble can be used. 
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8.6 Summary 

In this chapter, a blind deconvolution framework which incorporates simultaneous wavefront 

sensing data as a constraint was investigated. This ensures that the estimate of the PSFs 

is made jointly from both sets of data, which is superior to the PSF estimation from WFS 

data alone in DWFS, and from the speckle images alone in blind deconvolution. The good 

initial estimate of the PSF is also an advantage in this algorithm. 

This algorithm has been demonstrated on real data. Both a blind deconvolution and a 

deconvolution scheme were tested. The need for the latter arises due to the heavy compu­

tational requirement of the algorithm. These schemes produced different but comparable 

results, indicating that the deconvolution method can be used if the speed of convergence 

is an issue. 

Several improvements can be made to the proposed algorithm. As discussed in Section 

8.2, the measured wavefront sensing data is not used in the algorithm unaltered. Instead, 

the centroid values are calculated using the model-fitting procedure proposed in Chapter 

7, and used as the reference values in the algorithm. This is performed to reduce the 

computational requirements. However, it is worthwhile to investigate the performance of 

the optimal solution which uses an additional consistency term: 

Econ-WFS = L L[dk,WFS(X, y) - dk,WFS(X, y)]2 (8.32) 
k X,Y 

where dk,WFS(X, y) is a function of both the projection of the phase estimate through the 

WFS model PH! F S{ ¢k (U, v)} and the object estimate j (x, y). This formulation is consistent 

with the way the speckle images are handled. 

The existing computational requirement of the algorithm is large even though optimisation 

of the Matlab code h3.'> been performed. Using a different language such as C could improve 

the speed of the algorithm. 



Chapter 9 

Post-processing of partially 

compensated imagery 

A Shack-Hartmann wavefront sensor (SH-WFS) is one of the main components in the 

techniques of deconvolution from wavefront sensing (DWFS) and adaptive optics (AO) 

for reconstructing the phase. Although the phase reconstruction is smoother than the true 

phase, a good overall object phase is nevertheless achievable, supported by the results in 

Chapters 7 and 8 (see Figs. 7.12 and 7.13). However, the small error in estimating the 

phase affects the accuracy of the magnitude of the object spectrum. Consequently, the 

object estimate is incorrect. 

Roggemann et al. recognised this problem with the magnitude estimation in DWFS and 

proposed the use of reference star measurements in addition to the measurements of the 

object [149]. T'his was proposed because in general the reference information used in the 

denominator in Eq. (9.3) has a higher SNR than the object information used in the numer­

ator [29,62,148], meaning that the dominant source of errors in DWFS is in the numerator. 

However, as long as the estimation of Hobj(U, v) in the numerator is not accurate, the 

magnitude of the object still cannot be reconstructed accurately. 

In this chapter an alternative solution based on recursive inverse filtering is proposed. The 

first advantage is that the reliance on reference star measurements is removed. Secondly, 

the effect of the inaccuracies in the numerator and the denominator is addressed collectively 

209 
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by the recursive inverse filter, offering the potential to overcome the problem of estimating 

the object magnitude. 

The problem addressed in this chapter is also present in adaptive optics (AO) when the 

Shack-Hartmann WFS is used. As a result, the solution proposed here is also applicable 

to AO imagery with simple modifications. Although simulations are not performed on AO 

images specifically, it is believed that such post-processing will also improve the quality of 

the images. 

This chapter is structured as follows. Section 9.1 discusses the problems with conventional 

DWFS, and Section 9.2 outlines the steps involved in simulating DWFS data. The proposed 

parameterised filter is based OIl the NASRIF algorithm [102] which is presented in Section 

9.3. Its adaptation to the problem of DWFS is addressed in Section 9.4. Section 9.5 

presents simulation results using both the N ASRIF and the adapted approach. Results 

obtained using conventional DWFS are used as a comparison. Conclusions are drawn in 

Section 9.6. 

9.1 Problems with conventional DWFS 

Deconvolution from wavefront sensing (DWFS) is a hybrid imaging technique which com­

bines elements of adaptive optics and post-detection image processing to obtain high reso­

lution images through atmospheric turbulence. In addition to speckle images, the technique 

of DWFS also utilises simultaneous wavefront sensing images, and the vector Wiener fil­

ter [133,150] is used to recover the object distribution. This technique was first proposed 

by Fried [46] and later extended by Primot et al. [135J. Fig. 9.1 shows a block diagram 

of the DWFS method [147J, and illustrates how the light of the distorted wavefront enters 

the aperture of the telescope and is split by the beam splitter. A proportion of the light is 

used to form a speckle image, while the rest of the light is directed to a Shack-Hartmann 

wavefront sensor (SH-vVFS) where the measurements are used to estimate the instanta­

neous point spread function (PSF) in a post-processing step. The mathematical model of 

the system is detailed in Sections 6.2, 6.4 and 8.1. 

The solution to DWFS proposed by Primot et al. [135] is a vector Wiener filter over an 
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Figure 9.1: Block diagram of the DWFS method. 
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(9.1) 

This formulation is superior to applying the Wiener filter to individual frames before av­

eraging because the division operation causes problems at the locations where the OTF is 

zero [135,180]. The SNR of the estimator is also improved by the averaging operation [147]. 

c can be a frequency-dependent function which attenuates the noisy high-frequency compo­

nents of F(u,v) [147]; it is however set to a constant value here to simplify the algorithm. 

A problem with this estimator arises from the different correlation properties of the true 

atmospheric phase ¢k(U,V) and the estimated phase ¢>k(U,V). Recall that the OTF H(u,v) 

is an autocorrelation ofthe complex aperture (Eq. (6.14)). Therefore any error in estimating 

the phase manifests as an error in the OTF reconstruction. By rewriting Eq. (9.1) as 

F~ ( ) = F( ) (H(u, v)H*(u, v)} u,v u,v~ , 
(IH(u,v)l2) + c 

(9.2) 

it is apparent that if the reconstructed OTF H(u,v) does not equal the true OTF H(u,v), 

the denominator of Eq. (9.1) is biased and does not provide object spectrum estimates 

F(u, v) with the proper amplitudes [149]. 
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Figure 9.2: An illustration of the effect of the phase error on the magni­
tude error in estimating H (u, v). 
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Figure 9.3: The effect of individual phase errors on the overall magnitude 
error. In the absence of individual phase errors, the overall magnitude 
is 50000. This value is reduced significiantly as the individual phase 
errors increase. 

Another interpretation of how the magnitude problem arises is to view the individual el­

ements of the ensemble in the numerator of Eq. (9.1) as vectors as shown in Fig. 9.2. 

In the absence of phase errors, the overall magnitude is estimated correctly. When errors 

are present in estimating the individual phases, averaging over a large ensemble eventually 

produces the correct overall phase, but not a correct magnitude. Fig. 9.3 quantifies the 

effect of the phase error on the magnitude error using 50000 frames. The phase error is 

modelled simply as a zero-mean Gaussian random variable with a standard deviation vary­

ing from 0 to 90 degrees. As the individual phase error increases, the magnitude error also 

increases. This error is significant and is directly linked to the core and halo structure in 

the reconstruction of a point source (Section 4.4.2). 

Roggemann et al. [149] recognised this problem and proposed a solution which uses a ref­

erence star to obtain the quantities in the denominator. Eq. (9.1) can therefore be written 
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(9.3) 

This was proposed because the reference information in general has a higher SNR than 

the object information in the numerator [29,62,148], thus the dominant source of errors in 

DWFS is in the numerator. However, as long as the estimation of Hobj(U, v) in the numer­

ator is not accurate, the magnitude of the object still cannot be estimated correctly. This 

approach also imposes the need for measuring a reference star which introduces problems 

such as anisoplanatism (as discussed in Chapter 4) and a reduction in valuable observa­

tion time. Furthermore, it cannot be guaranteed that the atmospheric properties remain 

unchanged between the measurement of the reference star and the object of interest. 

In view of the existing problems, the approach of estimating the object using a parameterised 

linear inverse filter in an iterative framework is investigated in this chapter. In this approach, 

the phase of the object is assumed to be reconstructed accurately, and the filter is used to 

correct for the inaccuracies of the magnitude as a result of both the denominator and the 

numerator collectively. This removes the need for a reference star. In fact, the recursive 

filter proves to be substantially independent of observed data and traditional atmospheric 

parameters (such as TO) that the need for their measurement and estimation is removed. 

The parameterised approach also offers the advantage of regularisation and significantly 

reduces the number of variables to be estimated. An existing algorithm which can act 

as a tool for the parameterisation is the NASRIF (Nonnegativity And Support constraint 

Recursive Inverse Filtering) algorithm first proposed by Kundur and Hatzinakos [102]. The 

linearity of this algorithm results in easy implementation and analysis. 

Two variations of this approach are investigated. Firstly, the direct application of the 

NASRIF method is examined. This is essentially a pixel-based parameterisation of the 

reconstruction filter. Secondly, a global parameterisation is used to approximate the overall 

shape of the term (IH(u, v)12). This approach has the advantage of strongly regularising 

the solution, a point which has IlOt been dealt with in the original NASRIF algorithm. 

It should be emphasised that the global parameterised filter is used to provide a starting 

solution that is close to the true solutioIl; the filter is then updated iteratively in the course 

of the algorithm to solve the problem. 
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9.2 Simulating DWFS 

The motivation for simulating DWFS is to generate the quantities in the numerator of Eq. 

(9.1), and to facilitate the investigation of the shape of (IH(u,v)i2) in the denominator for 

parameterisation. A simulation is preferrable to an analytic evaluation because the latter 

involves a four-dimensional integral which cannot be evaluated in closed form [147]. 

The simulation procedure is adapted from that in Ref. [147], a block diagram of which 

is shown in Fig. 9.4. A phase screen of a specified D Iro is generated using the method 

of Harding et al. [76]. The strength of the atmospheric turbulence used here includes 

D Iro 20,15,8 and 5. The aperture (with or without the central obscuration, also referred 

to as circular and annular apertures) is then imposed on the phase screen, resulting in the 

complex wavefront. 

For the generation of speckle images d(x, y), the PSF is firstly generated from the complex 

wavefront, which is then convolved with the object and corrupted with Poisson noise. The 

noise levels are set to either 5000 or 100 photons per frame. While the former is optimistic 

for real data, the latter is representative of images captured at a telescope. rrhe noiseless 

case is also investigated. 

To generate wavefront sensing data for a reference star, the complex wavefront is put through 

a 16 x 16 Shack-Hartmann wavefront sensor. It is then corrupted with 15dB of Gaussian 

noise which reflects the noise level of real data. The noiseless case is also investigated for 

comparison. The centroids are calculated, which are used to reconstruct the phase ¢( u, v) 

using 200 Zernike polynomials. The estimate of the PSF href(x, y) is then found from this 

reconstructed phase. The wavefront sensing data for the object is generated in a similar 

manner: the noiseless WFS data is convolved with the object before the noise corruption 

process. The reconstructed PSF is called hobj(x, y). This process is repeated, and the 

relevant quantities are accumulated. A total of 2000 frames are used. The quantities 

generated using this method are used throughout this chapter. 

The assumptions made in this simulation are as follows. Firstly, Nyquist sampling is em­

ployed. Secondly, it is assumed that Poisson noise is the dominant noise source in the 

speckle images, and Gaussian noise is the dominant noise in the WFS data. This is a 

valid assumption when compared to the characteristics of the real data processed in this 
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Figure 9.4: Block diagram for simulating DWFS. 
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thesis. For instance in Chapter 7, the WFS data has a sufficiently high light level that the 

assumption of Gaussian noise modelled the situation well. 

Finally, it should be pointed out that the phase screens used to generate the reference star 

data are the same as those used for the object. This is not realistic for experimental data, 

but was done to ensure the best performance of the existing method of DWFS. 

9.3 The N ASRIF algorithm 

The NASR1F algorithm is an image restoration procedure involving the filtering of the 

blurred image to obtain the original object. The principal advantages of this algorithm 
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are that explicit knowledge of the PSF is not required, and that the object estimate is a 

weighted linear sum of the data. This results in easy implementation and analysis. The 

convex cost function used also ensures the uniqueness of the solution provided that certain 

constraints are met. 

This method enforces positivity and support constraints for the object, however there are 

few constraints on the PSF. In its originally proposed form the PSF and its inverse are only 

required to be absolutely summable. The inverse filter coefficients must be greater than 

(or equal to) zero, and must sum to unity. The object estimate j(x, y) is obtained by the 

convolution of the measurements m(x, y) and the inverse filter hinv(X, y) to be estimated: 

j(x,y) m(x,y) 0 hinv(X,y) (9.4) 

where hinv(X, y) is an approximation to the inverse of the PSF h-1(x, y). To fulfil the 

constraints on the quantities, the error metric to be minimised is: 

E = L p(:r;, y) [1 - sgn~j(x, y))] Sj(x, y) + L p(x, y)[l Sj(x, y)] 
x~ x~ 

+ 'Y [L hinv (x, y) - 1]2 (g. 5) 
X,Y 

where the sign function sgn(·) was defined in Section 2.2 and Sj(x, y) is the support of the 

object. The three terms of the error metric penalise respectively the negative pixels within 

the support, the non-zero pixels outside the support, and the deviation of the sum of the 

filter coefficients from one. This error metric adopts a slightly different notation from that 

in Ref. [102]' but they are mathematically equivalent. 

To obtain an object estimate, the filter hinv(X, y) is updated using a conjugate gradient 

procedure until a pre-defined criterion is met. In the original paper, it was pointed out that 

because the problem is not regularised, visual inspection is sometimes required for termi­

nating the algorithm. Although this is a valid form of regularisation, in a later paper by Ng 

et al. [128]' eigenvalue truncation and total variation are used to improve the regularisation 

of the problem. 

The major disadvantage ofthis algorithm is that the PSF is insufficiently constrained. Even 

if constraints on the PSF are available, they cannot be easily converted to constraints on 

the inverse of the PSF. The fact that the inverse filter hinv(X, y) does not have a specified 

size means that the quality and the computational complexity of the solution are dependent 
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on the filter size. The size of this optimal filter must be found by experimentation. The 

object estimate is also relatively sensitive to the support size. This can be overcome by a 

support-finding algorithm as in the original paper, however it is computationally intensive 

and a more deterministic approach would be preferrable. 

The implementation of the NASRIF algorithm requires the calculation of the derivative of 

the error metric in Eq. (9.5) with respect to the filter hinv(X, y): 

A DE = 2{ ~[1 sgn(j(x, y) )]/(x, y) }Sf(X, y) ® m(x, y) 
Dhinv(X,y) 

+2j(x, y)[1 Sf(x, y)] ® m(x, y) 

{[2:x,y hinv(X,y)]-1 }. (9.6) 

The centre portion of this quantity (of the same size as hinv (x, y)) is used to update the filter 

using a conjugate gradient procedure, the implementation of which is detailed in Appendix 

A. 

9.4 Applying NASRIF to DWFS 

The NASRIF algorithm can be applied to DWFS by firstly rewriting Eq. (9.3) in the spatial 

domain: 

j(x, y) = (d(x, y) ® hobj(x, y)) 0 J-1
{ (IH

re
f(u,l

v
)l2) + c} 

= (d(x, y) ® hObj (x, y)) 0 hinv (x, y) (9.7) 

where J-1 is the inverse Fourier transform operation. Here m(x, y) (d(x, y) ® kobj(x, y)) 

which is equivalent to the numerator in the Fourier domain formulation. The quantity 

1/ (IHref( u, v) 12) + c is called the Fourier filter. The inverse Fourier transform of the Fourier 

filter is called the spatial filter, denoted by hinv(X, y). 

The significance is that since Eq. (9.7) takes the same form as Eq. (9.4), the spatial filter can 

be represented by an arbitrary inverse filter hinv(X, y), and a standard optimisation technique 

can be used to find j(x, y). This solution is essentially a pixel-based parameterisation 

approach to the problem of magnitude estimation in DWFS. 

The essence of this approach is that the object phase is assumed to be reconstructed ac­

curately by the numerator; the only source of error is in the magnitude estimation of the 
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object. By using a recursive inverse filter which is capable of compensating for the magni­

tude errors, a fully compensated estimate can be obtained. 

Since the inverse filter of the N ASRIF algorithm is usually of a much smaller size than the 

dimension of the quantity to be parameterised, the number of unknowns in the solution is 

reduced significantly. This is supported by the compactness of the spatial filter as shown 

in Section 9.4.1. 

9A.1 Global parameterisation 

Whilst the NASRIF algorithm parameterises the solution to DWFS in terms of pixels, an 

alternative of the filter hinv(X, y) can be derived by globally parameterising the Fourier 

filter or the spatial filter. Once again, the parameters can be updated iteratively to give an 

estimate of the object. Here, because the entire Fourier (or spatial) filter is parameterised 

with a small number of parameters: the effective degrees of freedom of the filter is reduced 

and the solution is regularised. 

To test whether the Fourier filter or the spatial filter can be parameterised, the quantities 

in the denominator of Eq. (9.3) are examined. Fig. 9.5 illustrates the Fourier filters for 

a telescope. Only the cross-section is shown here because these functions are essentially 

radially symmetric. The strength of the atmospheric turbulence investigated are D Iro = 
20,15,8 and 5, corresponding to the solid, dashed, dash-dotted and dotted lines respectively. 

The top and bottom rows show the Fourier filters in the absence and presence of a central 

obscuration in the telescope aperture respectively. The effect of the presence of spiders 

(support for the secondary mirror) is assumed to be negligible and is not investigated here. 

The left-hand column illustrates the ideal case where no noise is present on the wavefront 

sensor. In the right-hand column, 15dB white Gaussian noise is present on the WFS. It 

can be seen that in the presence of an obscuration, the central frequency components are 

significantly attenuated. In general, the filter becomes broader as D Iro decreases. In all 

cases the filters are smooth functions and are comparatively easy to parameterise. 

The corresponding spatial filters are shown in Fig. 9.6. Only the centre portion is shown 

because the filters are compact. Although the Fourier filter shapes are different for different 

parameters, the spatial filters are all essentially high-pass filters. 
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(a) (b) 

(c) (d) 

Figure 9.5: Fourier filter shapes for D Iro 20,15,8 and 5, represented by 
solid, dashed, dash-dotted and dotted lines. (a) No central obscuration, 
ideal case with no noise on the WFS. (b) No central obscuration, 15dB 
noise on WFS. (c) With central obscuration, ideal case WitJl no noise 
on the WFS. (d) With central obscuration, 15dB noise on WFS. 
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Since the filter in the absence of the central obscuration can be considered as a subset of the 

filter when the obscuration is present, the filter is parameterised based on the latter. The 

Fourier filter instead of the spatial filter is chosen to be parameterised because its shape 

appears to be more well-defined and mathematically tractible. Since the Fourier transform 

is a linear operation, the parameterisation can easily be transformed between the Fourier 

and the spatial domains. 

The proposed parameterisation of the Fourier filter is a 10-parameter radially symmetric 
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Figure 9.6: Spatial filter shapes for D Iro = 20,15,8 and 5, represented 
by solid, dashed, dash-dotted and dotted lines. These correspond to 
the Fourier filters shown in Fig. 9.5. Only the centre portions are 
shown here. (a) No central obscuration, ideal case with no noise on 
the WFS. (b) No central obscuration, 15dB noise on WFS. (c) With 
central obscuration, ideal case with no noise on tIle WFS. (d) With 
central obscuration, 15dB noise on WFS. 

function: 

J{hinv(r)}(p) Kl- K2exp{-K3(p2)} 

- K4 exp{ K 5(/)} 0 [circ(K6(p2)) - K 7circ(K8(p2))] Kg exp{ -KlO(p2)} (9.8) 

where p = and circ(·) is the circle function defined in Section 2.2. The spatial 

filter model is the inverse Fourier transform of the Fourier filter model: 

(9.9) 
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where J1 is the Bessel function of the first kind, order 1, and r = J x2 + y2. It is important 

to note that the parameters K1 to KlO in the Fourier filter are different but are uniquely 

related to the parameters k1 to klO in the spatial filter. Moreover, the parameterisation 

presented here is only one of many possibilities, and other models can be used. A question 

that could be raised here is whether the parameterisation should include parameters that 

describe atmospheric properties, such as rD. In Fig. 9.5, it is shown that the shape of 

the Fourier filter does alter with a different ro, but this is adequately described by the 

parameterisation in Eq. (9.9). Moreover, as verified with simulations in Section 9.5, the 

fact that atmospheric parameters are not used in the parameterisation does not affect the 

solution. This is advantageous because it removes the need to estimate such parameters 

and makes the processing more generic. 

The following comparison examines whether the parameterisation is a good approximation 

to the actual functions. The case corresponding to D Iro 15 is used because this gives 

approximately D Iro = 1 per lenslet for the 16 x 16 Shack-Hartmann array used here, and 

is representative of real seeing conditions. 15dB noise is assumed on the WFS. 

In Fig. 9.7(a), the cross-section of the actual Fourier filter and its parameterisation are 

shown as dash-dotted and solid lines respectively. This is for the case where no central 

obscuration is present in the aperture. Fig. 9.7(b) shows the corresponding quantities for 

an aperture with a central obscuration. The parameters K1 to KlO and c for each case are 

tabulated in Table 9.1. The corresponding spatial filters are shown in Figs. 9.7(c) and 9.7(d) 

respectively. It can be seen that there is good agreement between the parameterisations and 

the true functions, especially in the spatial domain. This means that the starting estimate 

of the object is close to the true solution. During the course of the algorithm, the filter is 

updated iteratively to find the solution. 

Common to all parameterisation problems, there exists a tradeoff between the complexity 

of the parameterisation, and the actual degrees of freedom of the underlying function. It 

is generally accepted that there is a danger in overparameterising a function, where the 

number of parameters used is greater than the function's realistic degrees of freedom. In 

this application, the choice of ten parameters was found appropriate. 
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Parameters No central obscuration With central obscuration 

Kl 100 100 

K2 62 75 
i K3 0.006 0.004 

K4 0.005 0.016 

K5 0.0035 0.004 

K6 0.36 0.38 

K7 -0.7666 0.3 

K8 0.0781 0.2 

i Kg 30 15 
• 

i KlO 2.4 x10-4 5 x 10-4 
I 

c 0.01 0.01 

Table 9.1: Parameters for the Fourier filter for a telescope aperture in the 
absence and presence of a central obscuration. These correspond to the 
plots in Fig. 9.7( a) and (b). 
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Figure 9.7: Comparison between the parameterisations and the true func­
tions for D/ro = 15. (a,b) Fourier filters (dash-dotted lines) and their 
parameterisations (solid lines) in the absence and presence of a central 
obscuration. (c,d) Corresponding spatial filters in (a) and (b). 

9.4.2 Gradient calculations 
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In order to optimise the filter coefficients of hinv(X,y) to obtain an object estimate j(x,y) 

for the global parameterisation, the gradients of the cost function with respect to the filter 

parameters are required. These are calculated via the chain rule: 

8E 8hinv(X, y) 
8hinv(X, y) 8ki 

i = 1 ... 10. (9.10) 
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The first term is shown in 

coefficients are as follows: 

(9.6). The differentiation of the filter with respect to its 10 

8hinv(X, y) 
8k1 

8hinv 
8k2 

8hinv(X, y) 
8k3 

8hinv(X, y) 
8k4 

8hinv(X, y) 
8k5 

8hinv(X, y) 
8k6 

8hinv(X, y) 
8k7 

8hinv(X, y) 
8k8 

8kg 

8hinv(X, y) 
8klO 

1 

r 

L k2r2 exp{ -k3r2 } 
r 

= L kgr2 exp{ -klOr2} (9.11) 
r 

where Jo and J2 are the first order Bessel functions of the zeroth and second kinds respec­

tively. The filter parameters are updated with the method of steepest descent [116] with a 

line search routine. 

9.5 Simulations and results 

This section presents the results to compare the DWFS technique to a parameterised solu­

tion, the latter of which is divided into global and pixel-based (NASRlF) parameterisations. 

2000 frames are used in generating the relevant quantities according to the procedure in 

Section 9.2. Same as the other investigations in this chapter, the values of D Iro are 20, 15,8 

and 5. The three noise levels in the speckle images are the noiseless case, and the cases 

where each of the 2000 frames has 5000 or 100 photons. For the wavefront sensing data, 

the noiseless situation and the presence of 15dB white Gaussian noise are investigated. It 
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should be noted that the object and the reference star measurements are generated using 

the same complex fields. This presents the best-case scenario where the usual problems of 

using a reference star such as anisoplanatism (147] are not present, and allows the DWFS 

method to be compared under the most favourable circumstances. 

9.5.1 Reconstructing a binary object 

The binary object to be reconstructed has a separation of 10 pixels and a intensity ratio of 

1.25. Assuming the mean wavelength of the incoming wavefront is 650nm and the telescope 

is of I-metre diameter, each pixel in the focal plane corresponds to 0.067 arCsec in a Nyquist 

sampled system, and angular resolutions of 0.164 and 0.132 arcsec are achievable for a 

circular and an annular aperture respectively. According to Rayleigh's resolution criterion, . 
the angular resolution of a circular aperture is 1.22>../D. However, the presence of a central 

obscuration acts as a highpass filter and increases the angular resolution [13]. For an annular 

aperture with a central obscuration of diameter OAD (which is the case simulated here), 

the resolving power is approximately 0.98>"/ D, i.e. about 20% higher than its circular 

counterpart. . 

Fig. 9.8 shows the numerator quantities (d(x, y) (9 hobj (x, y)) for the different parameters 

in the absence of a central obscuration in the aperture. Only the centre portions are shown 

here for clarity. The respective quantities in the presence of the obscuration are not shown 

as they are very similar to those in Fig. 9.8. The four rows correspond to D fro = 20,15,8 

and 5; while the three columns represent the noiseless case and the cases with 5000 and 100 

photons per frame. In all cases, the binary object is visible when no noise is present. In 

the presence of noise, the binary object is not visibJe for D I TO = 20 and 15. It can be seen 

that there is a broad halo over the object for all cases. 

Simulations with a circular aperture 

The results of applying the method of DWFS are tabulated in Table 9.2. Table 9.3 shows the 

global parameterisation results, while Table 9.1 has the results using the original NASRIF 

algorithm. These tables correspond to the case where no central obscuration is present 'on 

the aperture. 
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(a) (b) (e) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (I) 

Figure 9.8: Th e numerator quantities (d(x, y) ® hobj(x , y)) [or (a) D Iro = 

20, Ilospeckle noise; (b) Dlro = 20, 5000 photons per speckle im age; (c) 
D Iro = 20, 100 photons per speck le image; (d) D Iro = 15, no speckle 
noise; (e) D Iro = 15, 5000 photons pcr speckle image; (f) D Iro = 15, 
100 photons per speckle image; (g) Dlro = 8, no speckle noise; (h) 
D /ro = 8, 5000 photons per speckle image; (i) D /ro = 8, 100 photons 
per speckle irrJ<lge: (j) D /ro = 5, no speckle noise: (k) D /TO = 5, 5000 
photons p er speckle image; (1) D /TO :::: 5, 100 photons per speckle image. 
Only the centre portions have been shown [or clarity. 
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Parameters Noiseless 5000 photons 100 photons 

D/ro 20 

Separation 9.99 I 9.01 -
Intensity 1.23 1.06 -

D/ro = 15 

Separation 9.99 I 9.97 9.97 

Intensity 1.24 1.18 1.16 

D/ro = 8 

Separation 10.00 10.00 10.00 

Intensity 1.25 1.26 1.22 

D/ro = 5 

Separation 10.00 10.00 10.00 

I .Intensity 1.25 1.25 1.24 

Table 9.2: Simulation results for the DWFS metllOd. The object is a 
binary star with a separation of 10 pixels and an intensity ratio of 1.25. 
No central obscuration is present in the aperture. 
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Fig. 9.9 shows an example of the reconstructions. Here D Iro = 15 and each of the frames 

has 100 photons. Fig. 9.9(a) shows the diffraction-limited object (in the absence of a central 

obscuration) for comparison. Only the centre portions have been shown for clarity. It is 

apparent that the visual difference between the methods is not significant. 

On examining the tabulated results) it is shown that all the results are comparable to each 

other in terms of separation and intensity ratio, and none of the methods succeeded in 

reconstructing a binary star with D Iro 20 and the photon noise level of 100 photons per 

frame. The fact that the methods based on parameterisation have comparable performance 

to the DWFS method is important because the need of a reference star measurement and its 

associated problems can be removed with little loss of accuracy in the solution. Moreover, 

the independence of the parameterisations from atmospheric parameters removes the need to 

estimate such parameters. This validates the initial assumption of not incorporating them 

into the model, which also has the advantage of reducing a possible source of modelling 

error. 

phase screens used for the generation of the reference star measurements are also 1,lsed 

to generate the data for the binary star in order to optimise the performance of DWFS. In 



228 CHAPTER 9. POST-PROCESSING OF PARTIALLY COMPENSATED n.IAGERY 

I 

Parameters Noiseless 5000 photons 100 photons 

D/ro = 20 

Separation 9.99 9.00 -
Intensity 1.23 1.04 -

Iterations 5 500 -

! Total time (s) 9.06 X 103 7.48 X 105 -
D/ro = 15 

Separation 9.99 9.97 9.96 

Intensity 1.23 1.14 1.12 

Iterations 313 500 500 

Total time (s) 4.18 X 105 7.46 X 105 1.06 X 106 

D/ro = 8 

Separation 9.97 9.96 9.97 

Intensity 1.22 1.21 1.19 

Iterations 2 2 2 

Total time (s) 2.38 X 103 2.50 X 103 3.47 X 103 

D/ro 5 

Separation 10.00 10.00 10.00 

Intensity 1.25 1.25 1.24 

i 
Iterations 2 2 2 

Total time (8) 5.04 X 103 3.57 X 103 3.56 X 103 

Table 9.3: Simulation results for the method of global parameterisation. 
The object is a binary star with a separation of 1 0 pixels and an intensity 
ratio of 1.25. A support of 31 X 36 is used. No central obscuration is 
present in the aperture. 

reality, the use of a reference star for DWFS introduces problems such as anisoplanatism 

and its performance would deteriorate. On the other hand, the parameterised methods do 

not rely on reference star measurements, and as a consequence the performance of these 

approaches is not affected. 

The global parameterisation method produces more consistent results compared to the 

NASRIF algorithm. This is because the latter is sensitive to the filter and support sizes. 

Although good reconstructions have been obtained, an exhaustive search is required to 

find the optimal filter and support sizes which produce the best result. This has not been 



Parameters Noiseless 5000 photons 100 photons 

D/ro = 20 

Separation 9.98 9.01 -

Intensity 1.05 1.01 -

Iterations 55 302 -

Total time (s) 4.40 X 103 2.37 X 104 -
Filter size 5 5 -

D/ro 15 

Separation 

00 
9.02 9.95 

~ .. 1.10 1.10 

300 1500 

Total time (8) 2.54 X 105 2.48 X 104 1.21 X 105 

Filter size 5 9 5 

D/ro 8 

Separation 9.97 9.99 9.99 

Intensity 1.16 1.26 1.22 

Iterations 500 7263 13903 

Total time (s) 4.00 X 104 3.01 X 105 5.61 X 105 

Filter size 5 5 5 

D/ro 5 

Separation 10.00 9.99 9.99 

Intensity 1.25 1.22 1.17 

Iterations 19838 20000 20000 

. Total time (s) 5.20 X 105 8.26 X 105 7.19 X 105 

Filter size 5 5 5 I 

Table 9.4: Simulation results for tIle original NASRIF method. The object 
is a binary star with a separation of 10 pixels and an intensity ratio of 
1.25. TIle support used here is of size 31 X 36. No central obscuration 
is present in the aperture. 
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performed in this set of simulations. 

The variation in the per-iteration time for the parameterised methods is due to the line 

search process as well as the different speeds of the processors in different computers. Al­

though each iteration of the NASRIF method takes less time than the global parameteri­

sation method, many more iterations are required for convergence. However, it should be 

noted that the initial filter estimate of the global parameterisation is close to the true solu­

tion, whereas for the NASRIF algorithm, the best starting estimate of the filter is a uniform 

function so as not to bias the solution. This partially accounts for the greater number of 

iterations required for the NASRIF algorithm. For both methods, early termination of the 

algorithm is sometimes necessary, as the visual result has obviously converged, but the error 

metric is still decreasing gradually. 

The convexity of the cost function in the NASRIF algorithm only applies when all the 

filter coefficients are greater than or equal to zero [102]. In the reconstructions here, this 

criterion is not met because the filters are highpass. As a result of this, the cost function 

is no longer unimodal, and stagnation of the algorithm can occur. However, this' can 

be overcome algorithmically by using a partial conjugate gradient (instead of a conjugate 

gradient) procedure, where the gradient is reset every 10 iterations. This also speeds up 

the convergence of the algorithm. 

An important point must be made regarding the support of the object estimate. Since pixels 

outside the support are forced to be zero, the support size determines the distribution of 

the noise. This means that if a tight support is used, the noise is concentrated within the 

support. In this case, it is better to trade off the tightness of the support with the noise 

level in the reconstruction. 

Simulations with an annular aperture 

The simulations have also been performed assuming that the telescope aperture has a central 

obscuration, resulting in an annular aperture. Fig. 9.10(a) shows the diffraction-limited 

image of the binary star. It can be seen that there is a ring around the core of each of the 

point sources. For clarity, the corresponding cross-section is shown in Fig. 9.1O(b). 
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(a) (b) 

(c) (d) 

Figure 9.9: Comparison between the true object and the object recon­
structions using different methods. The true object is a binary with a 
separation of 10 pixels and intensity ratio 1.25. Here Dlro = 15 and 
each fram e has 100 photons. (a) Diffraction-limited object. (b) Recon­
stl'uction with DWFS. (c) Reconstruction with global paramterisation. 
(d) Reconstruction with NASRIF, or pixel-based param eterised filter. 
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The reconstructions using the three methods produced similar tabula ted results to Tables 

9.2, 9.3 and 9.4, and are not produced here . As discussed earlier, due to the increased 

resolving power with an annular aperture, the frequency content of the reconstructions 

is higher than that using the circular aperture. This is particularly noticeable for the 

noiseless case at all values of D Ira when using the global parameterisation method . These 

reconstruct ions are shown in Fig. 9.11. It should be pointed out that there is a halo over 

the object in Fig. 9.11{c) , which could be attributed to the algorithm not having completely 

converged . The DWFS method also produced such reconstructions for all noiseless cases and 

for D /"0 = 5. The N ASRIF method managed to recover some high-frequency information 

for the case of D ITo = 5 at different noise levels , but the results are not as good as those of 

the other two methods . These reconstructions are shown in Fig. 9.12 wi th the corresponding 
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0.1,--------------; 

0.08 

30 

(a) (b) 

Figure 9.10: (a) Diffraction-limited image of a binary star imaged through 
an annular aperture. Its cross-section is shown in (b) for clarity. 

The attainment of almost diffraction-limited reconstructions using the post-processing method 

of global parameterisation is significant since it offers an alternative to observing a r:.efer­

ence star for DWFS. As discussed earlier, the DWFS data has been genera ted assuming 

the most favourable conditions ; the performance of DWFS is therefore likely to deteriora te 

when these fac tors are taken into account. Valuable observation time is also saved as a 

result. 

The NASRIF method did not manage to produce results comparable to the global para me­

terisation method is attributable to two factors . Firstly, the N ASRIF method is sensitive 

to the filter and support sizes. Since these parameters were not optimised but were fixed 

for all reconstructions to red uce the computational complexity, the performance may have 

been sub-optimal. Secondly, the global parameterisation method is well-regula rised and has 

been designed to suit the problem of DWFS specifically, whereas the N ASRIF method is a 

generic method. It is therefore believed that if the fil ter and support sizes were optimised 

in the NASRIF method, its performance can be improved. The optimisation of the support 

size would a lso further improve the performance of the global parameterisa tion method. 
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(a) (b) 

(c) (d) 

Figure 9.11: The reconstruction of the binary star in the presence of 
an annular aperture. Near diffraction-limited features are visible using 
the global parameterisation method for the noiseless cases. The figures 
correspond to D /TO being (a) 20, (b) 15, (c) 8 and (d) 5. 
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(a) 

(b) 

(c) 

Figure 9.12: The reconstruction of the binary star in the presence of 
an annular aperture. Some high-frequency information has been re­
covered using the pixel-ba.sed parameteTisation (NASRIF method), but 
the difhaction limit is not reached. The reconstructions conespond to 
D Fa = 5 for (a) no Poisson noise, (b) 5000 photons per frame, and 
(c) 100 photons per frame. The corresponding filters are shown in the 
right-hand column. 
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9.5.2 Reconstructing an extended object 

The algorithms are also tested with a simulated extended object under the same noise 

conditions. Fig. 9.13(a) shows the original satellite object, while Fig. 9.13(b) shows the 

diffraction-limited image when using a circular aperture. 

The results of applying the DWFS method , the global parameterisation method and the 

origillal N ASRIF method are tabulated in Tables 9.5, 9.6 and 9.7 respectively. The nor­

malised mean-squared error (MSE) is calculated with reference to the true object. The 

reconstructions are shown in Figs. 9.14, 9.15 and 9.16. Both the numerical and visual 

results must be interpreted together to provide a correct conclusion. 

The global parameterisation produced the lowest MSE values. However , on examination of 

the reconstructions, the DWFS method has superior results for the cases of D Iro = 20 and 

15. The lower MSE values for the global parameterisation reconstructions can be attributed 

to the fact that they are smoother and more spreadout, meaning that the error is distributed. 

On the other hand , the error for the DWFS reconstructions is more concentrated, resulting 

in a higher MSE value. For the cases where D Iro = 8 and 5, the two methods produced 

visually comparable reconstructions. The N ASRIF method failed to match the performance 

of the other two algorithms. Once again, this is mainly due to its reliance on the knowledge 

of the optimal filter and support sizes, which are not available here. 

(a) (b) 

Figure 9.13: The simulated extended object. (a) The original object and 
(b) the diffraction-limited image. 
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Parameters 
Noiseless 5000 photons 100 photons 

D/ro = 20 

MSE 5.68 X 10-4 4.49 X 10-4 4.54 X 10-4 

c 1 X 10-5 1 X 10-2 1 X 10-1 

• D/ro = 15 

MSE 5.73 X 10-4 5.01 X 10-4 5.62 X 10-4 

c 1 X 10-5 1 X 10-2 5 X 10-2 

D/ro = 8 

MSE 5.11 X 10-4 5.42 X 10-4 5.66 X 10-4 

c -3 1 X 10-2 5 X 10-2 

D/ro 5 

MSE 5.67 X 10-4 5.21 X 10-4 5.14 X 10-4 

c 1 X 10-3 1 X 10-2 1 X 10-1 

Table 9.5: Normalised mean-squared errors (MSE) for the DWFS method 
on the extended object. No central obscuration is present in the aper­
ture. 
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I 

Parameters Noiseless 5000 photons 100 photons 

D/ro = 20 

MSE 4.01 X 10-4 4.19 X 10-4 4.81 X 10-4 

Iterations 2 2 3 

i Total time (s) 4.54 X 103 4.53 X 103 6.79 X 103 

Support 106 X 121 106 X 121 106 X 121 

D/ro = 15 

MSE 3.67 X 10-4 3.79 X 10-4 3.67 X 10-4 
I 

! 
Iterations 2 3 3 

Total time (s) 4.03 X 103 7.16 X 103 6.94 X 103 

Support 96 X 111 106 X 121 106 X 121 

D/ro = 8 

MSE 3.09 X 10-4 2.99 X 10-4 4.13 X 10-4 

I 
Iterations 3 4 5 

i Total time (8) 7.31 X 103 9.92 X 103 1.25 X 104 

! Support 106 X 121 106 X 121 106 X 121 

i D/ro = 5 

! MSE 1.81 X 10-4 2.78 X 10-4 3.53 X 10-4 

Iterations 3 3 3 

• Total time (8) 6.47 X 103 6.11 X 103 6.15 X 103 

I 
Support 91 X 95 96 X 111 96 X 111 

Table 9.6: Normalised mean-squared errors (MSE) for the global para­
meterisation method on the extended object. No central obscuration is 
present in the aperture. 
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Parameters Noiseless 5000 photons 100 photons 

nlTo 20 

I MSE 9.14 X 10-4 5.28 X 10-4 4.84 X 10-4 

Iterations 15240 20000 20000 

I Total time (s) 5.18 X 105 7.56 X 105 6.29 X 105 

nlTo 15 

MSE 3.60 X 10-4 3.84 X 10-4 4.10 X 10-4 

Iterations 11060 20000 I 20000 

Total time (8) 8.14 X 104 7.62 X 105 8.73 X 105 

nlTo 8 

MSE 2.48 X 10-4 2.84 X 10-4 3.53 X 10-4 

Iterations 11300 20000 20000 

Total time (s) 4.81 X 105 9.07 X 105 7.10 X 105 

nlTo 5 

MSE 1.62 X 10-4 2.07 X 10-4 2.52 X 10-4 

Iterations 48100 40000 38500 

Total time (8) 1.69 X 106 2.76 X 106 1.61 X 106 

Table 9.7: Normalised mean-squared errors (MSE) for the NASRIF 
method on the extended object. No central obscuration is present in 
the aperture. The iilter size is 9 X 9 and the support is 96 X 111 for all 
the reconstructions. 
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( a) (b) (c) 

(d) (e) ( f) 

(g) (h) (i) 

(j) (k) (1 ) 

Figure 9.14: Reconstructions of the satellite using the method of DWFS. 
A circular aperture is present at the telescope. The four rows correspond 
to D Iro = 20, 15,8 and 5. The three columns correspond to the noiseless 
case and the cases when 5000 photons and 100 photons are present in 
each data frame. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (I) 

Figure 9.15: Reconstructions of the satellite using the global parameter­
isation method. A circular aperture is present at the telescope. Th e 
four rows correspond to D Iro = 20,15,8 and 5. The three columns 
correspond to the noiseless case and the cases when 5000 photons and 
100 photons are present in each data frame. 
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(a) (b) (c) 

(d) ( e) (f) 

(g) (h) (i) 

(j) (k) (I) 

Figure 9.16: Reconstructions of the satellite using the NASRIF method. 
A circular aperture is present at the telescope. The four rows correspond 
to D Iro = 20,15,8 and 5. The three columns correspond to the noiseless 
case and the cases when 5000 photons and 100 photons are present in 
each data frame. 
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9.5.3 A comment on processing experimental data 

The pixel-based parameterisation has been applied to experimental data of the binary star 

Castor. Preliminary results indicate that in order to obtain a solution of good quality, the 

quantity m(x, y) should be initialised to the DWFS solution. It is also observed that this 

post-processing reduces the effect of noise on the reconstructions, and seems to improve the 

magnitude estimation of the object. However, further trials are required to fully characterise 

the performance of the algorithm on real data. 

9.5.4 Other possible solutions 

It should be pointed out that since the problem of solving DWFS by parameterisation is 

essentially a highpass filtering operation, it is also possible to apply other highpass filters 

(HPFs) to this problem. The simplest HPF is the Laplacian, denoted by: 

( 

0 -0.25 0 ) 
-0.25 1 -0.25 

o -0.25 0 

This provides a very simple solution, but in general, the reconstruction will violate known 

constraints such as positivity and to a lesser extent the support. The reconstruction also 

suffers from ringing artifacts. Therefore, non-recursive ad hoc HPFs should be avoided if 

possible. 

9.6 Summary 

The techniques of DWFS and adaptive optics (AO) both utilise the Shack-Hartmann wave­

front sensor for estimating the phase. However, the small errors in the reconstruction of 

the individual phases lead to a magnitude error in the object spectrum. Roggemann et 

al. [149J recognised this problem and proposed a technique to combine a set of reference 

star mea."lurements together with the original measurements to produce the estimate of the 

object. However, the inaccuracy in the OTF in the numerator still prevents the accurate 

estimation of the magnitude of the object. Moreover, the use of a reference star suffers from 

problems such as anisoplanatism and reduces the amount of observation time. 
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In this chapter, a parameterised inverse filter was proposed as a solution to DWFS in order to 

remove the need for a reference star and potentially overcome the magnitude problem. This 

approach was considered because the object phase can be accurately reconstructed but not 

the magnitude. Since this problem arises from both the inaccuracies in the denominator 

and the numerator, it can be addressed collectively by the filter. Moreover, the filter's 

independence from observed data and atmospheric parameters means that they do not 

need to be measured or estimated. 

Two parameterised filters were implemented and tested: the NASRIF algorithm, and a 

global parameterisation approach. Both of these approaches have produced comparable 

results to DWFS when applied to a compact object such as a binary star imaged through 

a circular aperture. When an annular aperture is present on the telescope, the resolving 

power is increased and almost diffraction-limited features are reconstructed by the methods 

of DWFS and global parameterisation. The comparable performance between the global 

parameterisation method and DWFS is significant. This is because the data for DWFS here 

has been generated under the most favourable conditions, and the algorithm's performance 

is likely to deteriorate when factors such as anisoplanatism are taken into account. This 

means that the global parameterisation method will probably be superior to DWFS when 

used with real data. The reliance on reference star measurements is also removed. 

The DWFS method produced the best results at high levels of atmospheric turbulence for 

an extended object, but for lower levels of turbulence, the global parameterisation method 

produced comparable results without the reliance on a reference star. On the other hand, 

the NASRIF method failed to match the performance of either of the other two algorithms. 

The parameterised filters can also be used to post-process adaptive optics (AO) imagery 

which suffers from the problems with using the Shack-Hartmann wavefront sensor. The 

parameterisation of the AO OTF draws on certain aspects of the existing myopic deconvo­

lution techniques. For example, a mean PSF can be retrieved from the data accumulated 

by the AO control system during the acquisition [27,51], which can then be used as an 

initial OTF parameterisation. Alternatively, a pixel-based parameterisation which does not 

require any knowledge of the PSF is also possible. 
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Chapter 10 

Conclusions and future work 

This chapter presents a conclusion to the research performed in this thesis. Possible im­

provement to the research, as well as ideas for future work are discussed. 

10.1 Conclusions 

The major focus of this thesis is to propose solutions for the inverse problems in image 

processing, with a particular application in astronomical imaging. Images acquired by 

any data-capturing instrument suffer from the distortions introduced by the optics, the 

sensor cells and the noise. The resolution of the captured images is therefore limited by 

these factors. A turbulent imaging medium also introduces degradations to the signals 

before they are captured. In astronomical imaging, it is the atmosphere which distorts the 

wavefronts of the light of the objects, severely limiting the resolution of the images captured 

by ground-based telescopes. 

All the problems investigated in this thesis are inverse problems, and the key to the success 

of solving them is the correct modelling of the physical processes which give rise to the 

corresponding forward problems. However, because the actual system has an infinite amount 

of information, but the model used to approximate it can only have a finite amount of 

information, it is inevitable that information is lost. As a result, prior knowledge must be 

included in order to arrive at a meaningful solution. 
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The inverse problem of interpolation was investigated in Chapter 5. The ubiquity of the 

need for interpolation has resulted in many existing methods for this problem. However, 

most of these methods do not account for the sampling process of the instrument or take 

into account the statistics of the underlying object. The optimal Bayesian interpolator 

proposed in this chapter overcomes these problems. Existing interpolators were shown to 

be a subset of the framework of optimal interpolators under particular noise and sampling 

assumptions. 

Since the effect of the atmosphere on the incoming wavefront of a star is predominantly 

a phase component, in order to reconstruct the object distribution, this phase distortion 

must be estimated or compensated for. When only speckle images are available, both the 

object and the phase must be estimated in a blind deconvolution framework. A review 

of the existing iterative blind deconvolution (IBD) algorithms in Chapter 6 indicated that 

strong priors such as phase parameterisation and statistical distributions provide a better 

constraint on the solution. Following this trend, the application of two new priors was 

investigated. Firstly, Kolmogorov statistics were used to constrain the atmospheric PSF. 

Simulations showed that this approach has the potential to out-perform Schulz's phase 

parameterisation algorithm, and a further investigation would be worthwhile. Secondly, 

the phase closure property used in the bispectrum technique was incorporated as a form 

of prior information in IBD. Preliminary results showed that this approach is not effective 

with a small ensemble, but enhanced performance was observed with an increased number 

of frames. Further simulations involving large ensembles should be performed to investigate 

this. 

When Shack-Hartmann wavefront sensing data is available, it can be used to estimate the 

phase. The quality of this estimate depends intrinsically On the accuracy in locating the 

spots in the wavefront sensing data frames, and the popular method of calculating the 

centre of gravity is suboptimal and suffers from many problems. An improved model-fitting 

procedure based on blind deconvolution has been demonstrated on real data in Chapter 7. 

In methods such as deconvolution from wavefront sensing (DWFS), the estimate ofthe phase 

is made solely from the wavefront sensing data, even though some information regarding 

the phase is present in the speckle images. Chapter 8 examined the use of both wavefront 

sensing data and speckle images for the estimation of the phase. The solution was posed as 

one of blind deconvolution, with the wavefront sensing data as a form of prior information. 
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Results on experimental data have demonstrated the success of this approach. 

The hybrid method Of DWFS suffers from a bias problem because the magnitude of the 

object spectrum cannot be accurately estimated. Roggemann et al. [149] proposed the use of 

reference star measurements to overcome this problem. However, this does not completely 

compensate for the inaccurate magnitude and relies on reference star measurements which 

suffer from other difficulties. In Chapter 9, a parameterised solution which has the potential 

to overcome these problems is proposed and investigated. It has been shown on simulated 

data to have comparable performance to DWFS, without the need of a reference star. Since 

adaptive optics (AO) imagery suffers from similar problems, the proposed method can also 

be used to post-process AO imagery. 

10.2 Future work 

In Chapter 6, the phase closure property employed in the bispectrum technique was used 

as prior information in blind deconvolution. Its performance was inferior to Schulz's phase 

parameterisation method when two frames were used for the reconstruction, but it did 

show improvement when the number of frames was increased to five. Therefore the first 

improvement to be made is to use a larger ensemble. Analysis into the minimum amount 

of information required for successful blind deconvolution should be performed. The con­

tributing factors include the photon levels in addition to the ensemble size. Secondly, a 

comparison between the bispectrum technique and the blind deconvolution method is of 

considerable interest. This is because the former is a proven robust technique, while the 

latter is known to be severely ill-conditioned. The important question to be answered is 

whether incorporating the phase closure prior in a blind deconvolution framework provides 

all the necessary information to guarantee a solution. 

The blind deconvolution algorithm in Chapter 7 used a maximum entropy (ME) prior for the 

PSF corresponding to the CCD sensitivity. Good results were produced when processing 

wavefront sensing data. Nevertheless, as discussed in Chapter 3, the ME prior controls 

the peak width and the baseline flatness, as well as enforcing positivity. It is therefore 

a strong constraint on the PSF. It is of interest to investigate the performance of other 

forms of priors in the blind deconvolution framework, such as centrosymmetricity and the 

smoothness constraint. A different data set (such a..<; aerial photographs) should also be 
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used to validate the generality of the method. 

It is known that phase reconstruction with the use of a Shack-Hartmann wavefront sensor 

(SH-WFS) suffers from the inability of the WFS to estimate certain Zernike modes. Since 

the phase information is available in both the WFS channel and the image channel, in 

Chapter 8 the joint application of both sets of data for pha...<;e estimation was investigated. 

Results using experimental data have proven the validity of this approach. The next step is 

to quantify whether the blind Zernike modes can be eliminated, as well as the information 

gain in terms of photon levels, number of frames, the SNR of the wavefront sensing data, 

and the degree of under sampling in the data. Since adaptive optics (AO) imagery involving 

the use of a Shack-Hartmann sensor suffers from similar problems, this technique should 

also be tested on AO imagery. 

The expansion of a Kolmogorov phase screen using Zernike basis functions and Kahrunen­

Loewe basis functions for a Shack-Hartmann wavefront sensor has been compared [108]. It 

was shown that the latter is superior for phase reconstruction in terms of residual phase 

variance. Cannon [18] extended this work and derived a set of Kahrunen-Loeve basis func­

tions for an annular aperture. The next logical step is to investigate the use of this set of 

basis functions in a blind/myopic deconvolution framework, which should lead to a better 

phase reconstruction. 

For very large telescopes (in the order of metres) at sites with good seeing, high-resolution 

imaging is possible. However, the use of a Shack-Hartmann (SH) sensor for imaging the 

reference star has problems with estimating some high frequency components due to the 

subdivision of the aperture. The pyramid wavefront sensor proposed in 1996 [136] is shown 

to perform better than a SH sensor in the vicinity of diffraction-limited imaging [34] as 

it is only limited by the diffraction effects of the telescope aperture. This calls for an 

investigation of myopic deconvolution using simultaneous pyramid sensing data and speckle 

images. 

In a phase screen with Kolmogorov statistics, about 90% of the energy is concentrated 

in the second and third Zernike modes (tip and tilt), whose Zernike coefficients are large 

compared to the other modes. This large range of unknowns that must be estimated in the 

algorithm in Chapter 8 results in a slow convergence in a blind deconvolution framework. 

On the other hand, the convergence of the object seems to be achieved much faster. Other 



10.2. FUTURE WORK 249 

algorithms which suffer from this problem of imbalance of convergence rate have benefitted 

from multiple iterations for the slower-converging unknown [12]. The application of this 

technique to the blind deconvolution problem in Chapter 8 should be investigated. 

The most commonly used noise models are the Gaussian and the Poisson models. However, 

many physical situations cannot be described accurately by either of these models, but 

is a combination of the two processes. One example is a speckle image captured at a 

telescope. It is corrupted by both Poisson noise due to the low light level, as well as Gaussian 

noise due to the thermal activity of the CCD elements. As a result, the application of a 

combination of the Gaussian and Poisson noise models should be investigated. This is 

particularly relevant for blind deconvolution problems which are ill-conditioned and would 

benefit from an improved model of the system. There are two possible ways of achieving 

this: a weighted Gaussian model, which is a linearisation of the non-linear problem, and the 

exact model, where both the Gaussian and the Poisson PDFs are used [130]. A comparison 

of their performance, and an investigation of the tradeoff between the accuracy and the 

computational complexity of the models should be performed. 

The presence of a central obscuration in a telescope is for practical purposes. However, it 

has inherently performed some highpass filtering on the incoming wavefront, resulting in a 

higher resolving power for the telescope compared to one with no central obscuration. It 

is of interest to investigate whether there are other practical configurations of the aperture 

that would result in a fundamental resolution improvement. 
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Appendix A 

Optimisation approaches 

In many unconstrained minimisation problem, an analytic solution is not possible due to 

the ill-posed nature and non-linearity of the problem. As a result, the problem must be 

solved iteratively by defining a cost function E to be minimised. To solve the problem, 

one starts at an initial estimate of the solution, and determines the direction and the step 

size in which the estimate has to move to minimise the cost function. A new estimate is 

obtained and this process is repeated until a minimum of the cost function is found. The 

important issues with iterative minimisation problems are global convergence, the speed at 

which it converges, and to a lesser extent the ease of implementation. 

In this appendix, the methods of steepest descent, optimal steepest descent and conjugate 

gradient are presented. These methods are discussed in the context of two-dimensional 

image processing applications, although the theory is obviously extendable for other uses. 

A.1 The method of steepest descent 

The method of steepest descent is the simplest and most commonly used minimisation 

procedure. It is often used as a standard of reference with which other algorithms are 

compared. 
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Let the system be modelled as: 

d(x,y) f(x,y) 0h(x,y) +n(x,y) (A.1) 

where f(x, y) is the unknown object, h(x, y) is the point spread function, n(x, y) is the noise 

on the system and d(x,y) the measured data. The associated cost function is E(j(x,y)). 

At the qth iteration, jq(x, y) is updated by: 

jq(x, y) - aq DE(!q(x, y)) 
Dfq(x, y) 

(A.2) 

where DE(jq(x, y))/Djq(x, y) is the gradient. We denote it by sq(x, y). The step size aq 

is a nonnegative scalar at the qth iteration which minimises E(jq(x,y) aqsq(x,y)). The 

value of aq can be found by standard line search techniques such as the bisection search, 

Golden section search or Brent's method [116,134]. 

If the cost function to be minimised is quadratic it can be expressed as: 

(A.3) 

or 

E(f) = ~ IIHf - dl1 2 (A.4) 

using lexicographical notation. Here, Q = HTH and b = HT d. The minimisation of each 

of these error functions is equivalent to solving Qf b for f. In this case, the optimal step 

size for aq can be calculated as [116]: 

(A.5) 

This method is shown to converge globally [116]. However, a drawback is its slow conver­

gence and as a result, other methods such as the conjugate gradient algorithm have been 

developed to overcome this problem. 

A.2 The conjugate gradient algorithm 

The conjugate gradient method is one of the most used minimisation routine because of 

its effectiveness in dealing with most objective functions, and its relative ease of imple­

mentation. The main difference between the conjugate gradient method and the method 
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of steepest descent is the selection of the direction of movement of the current estimate. 

At iteration q in the conjugate gradient method, the current negative gradient vector is 

evaluated, which is then added to a linear combination of the previous direction vectors to 

generate a new conjugate direction vector along which the current estimate should move. 

One major advantage of the conjugate gradient method is that for an n-dimensional func­

tion, convergence to the minimum is achieved in n or fewer steps. 

The conjugate gradient algorithm is described here. Starting with fO and yO = b - Qfo 

- SO, the algorithm requires the following steps: 

fq+l f q + aqyq 

aq (sq)T yq 

(yq)TQyq 
yq+l _Sq+l + {3qyq 

{3q 
(sq+l)TQyq 

(yq)TQyq 
(A.6) 

where sq = Qfq - b. Here sq is the gradient, yq is the search direction and {3q is the update 

of the search direction. 

The conjugate gradient algorithm can be extended to solve non-quadratic problems by the 

use of line search methods. In this case, Q does not need to be calculated. One of these 

methods is the Fletcher-Reeves method, which uses a standard line search procedure (such 

as the golden section search) to calculate a q while the value of {3q is obtained using 

Alternatively, the Polak-Ribiere method can be used to find {3q where 

(sq+l sqfsq+l 

(sq)Tsq 

Experimental results seem to favour the latter method. 

(A.7) 

(A.8) 

A.3 Partial conjugate gradient and optimal steepest descent 

There are situations in which a full conjugate gradient procedure is not suitable, and a 

partial conjugate gradient method is preferrable. This means that the gradient is reset 
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to be a function of only the current variables every n iterations. The need for this can 

arise from a multimodal cost function stagnating in a local minimum. If n = 1, then the 

conjugate gradient method is reduced to an optimal steepest descent method. 
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