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Abstract Modern society is highly dependent on a reliable
electricity supply. During explosive volcanic eruptions,
tephra contamination of power networks (systems) can com-
promise the reliability of supply. Outages can have signifi-
cant cascading impacts for other critical infrastructure
sectors and for society as a whole. This paper summarises
known impacts to power systems following tephra falls
since 1980. The main impacts are (1) supply outages from
insulator flashover caused by tephra contamination, (2) dis-
ruption of generation facilities, (3) controlled outages during
tephra cleaning, (4) abrasion and corrosion of exposed
equipment and (5) line (conductor) breakage due to tephra
loading. Of these impacts, insulator flashover is the most
common disruption. The review highlights multiple instan-
ces of electric power systems exhibiting tolerance to tephra
falls, suggesting that failure thresholds exist and should be
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identified to avoid future unplanned interruptions. To ad-
dress this need, we have produced a fragility function that
quantifies the likelihood of insulator flashover at different
thicknesses of tephra. Finally, based on our review of case
studies, potential mitigation strategies are summarised.
Specifically, avoiding tephra-induced insulator flashover
by cleaning key facilities such as generation sites and trans-
mission and distribution substations is of critical importance
in maintaining the integrity of an electric power system.

Keywords Volcanic ash - Eruption - Electricity -
Generation - Transmission - Distribution - Substation

Introduction

Electricity is the ‘life blood” of modern society (Lawrence
1988). Increasing demand for electricity has been driven by
population growth and increasing use of electrically pow-
ered technologies. Electricity supply is arguably the most
essential contemporary infrastructure, especially consider-
ing the dependencies of other infrastructure groups on elec-
tric power to maintain functionality (Fig. 1). Given that 9 %
of the world’s population is estimated to live within 100 km
of a historically active volcano (Horwell and Baxter 2006),
and many of these areas are experiencing significant popu-
lation and economic growth, their exposure and vulnerabil-
ity to the impacts of volcanic hazards is increasing (Johnston
et al. 2000). Effective disaster risk reduction and infrastruc-
ture management thus makes it imperative that system oper-
ators understand the potential impacts from natural disasters
and take the necessary precautions to avoid unintended
interruptions.

Although pyroclastic flows and surges, sector collapses,
lahars and ballistic blocks are the most destructive and
dangerous of explosive eruption products (Baxter 1990;
Hansell et al. 2006; GFDRR 2011), tephra fall is the most
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Fig. 1 Schematic diagram illustrating some of the interdependencies
between critical infrastructure systems (adapted from Rinaldi et al.
2001)

widespread volcanic phenomenon. Tephra is the product of
explosive volcanic eruptions and is composed of pulverised
fragments of rock, minerals and glass (SiO,). Fine-grained
tephra (defined here as <2 mm particle diameter), also
known as volcanic ash (Rose and Durant 2009), can be
dispersed large distances by winds. Even in small eruptions,
thousands of square kilometres may be impacted by tephra
falls (Johnston et al. 2000). Extensive, above-ground, corri-
dor systems of electrical apparatus used in power genera-
tion, transformation, transmission, and distribution often
stretch hundreds to thousands of kilometres, making them
highly exposed to such tephra falls. This high level of
exposure emphasises the need to understand the vulnerabil-
ities of power systems in both proximal and distal locations.

Tephra can cause disruption to electricity generation and
supply in the following ways (adapted from Wilson et al. 2009):

1. High-voltage (HV) insulators (porcelain, glass or com-
posite) are electrical hardware designed to mechanically
support and electrically isolate energized lines or appara-
tus from earthed (bonded with the ground) structures such
as steel towers or wooden poles. During humid conditions
such as light rain, fog, or mist, wet deposits of tephra on
insulators can initiate a leakage current (small amount of
current flow across the insulator surface) that, if sufficient
current is achieved, can cause ‘flashover’ (the unintended
electrical discharge around or over the surface of an
insulator). If the resulting short-circuit current is high
enough to trip the circuit breaker, then disruption of
service will occur. The presence of leakage current is due
to the electrical conductivity of the wet tephra, which is
influenced by (1) moisture content, (2) soluble salt content,
(3) compaction and, to a lesser extent, (4) grain size (refer
to Wardman et al. 2012b for further information). Tephra-
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induced flashover on or across power transformer insula-
tion (bushings) can burn, etch or crack the insulation irrep-
arably and potentially damage the internal components
(e.g. windings) of the transformer.

2. Controlled outages of vulnerable nodes (e.g. generation
facilities and/or substations) or circuits until tephra fall has
subsided or for offline (de-energised) cleaning of equipment.

3. The hardness and angularity of tephra make it highly
abrasive. Tephra can accelerate normal wear by eroding
and scouring metallic apparatus, particularly moving
parts such as water and wind turbines at generation sites
and cooling fans on power transformers.

4. The high bulk density of some tephra deposits can cause
line breakage due to tephra loading. This is most haz-
ardous when the tephra and/or the lines are wet and
usually following at least 10 mm of tephra fall. Fine-
grained tephra adheres to lines and structures (e.g.
wooden poles and steel towers) most readily. Tephra
may also load overhanging vegetation, causing it to fall
onto lines which can bridge (make contact between)
phases (lines) or cause line breakage and/or damage to
structures. Snow and ice accumulation on lines and
overhanging vegetation further exacerbates the risk.

5. Tephra ingress can block air intakes causing a reduction
of air intake quality and quantity for turbines and cool-
ing and heating, ventilation and air conditioning
(HVAC) systems at generation sites and substations.
This may lead to a reduction in efficiency, precautionary
shut-down (to avoid damage), damage or even failure.
Tephra could potentially abrade, clog and corrode ther-
mal turbines and control systems following ingestion,
although these impacts have not been recorded.

In this paper, we provide an overview of the recorded
impacts to power systems from volcanic eruptions since
1980 (Table 1). We have compiled data from existing liter-
ature, personal communications with system operators dur-
ing meetings and semi-structured interviews, and field
observations from around the world to summarise electricity
system performance following tephra falls and successful
mitigation strategies. Given the lack of existing data, we
have developed a fragility function that provides an estimate
for the likelihood of insulator flashover at different thick-
nesses of wet or dry tephra. This study ultimately aims to
inform the volcanological, hazard mitigation and electrical
engineering communities of the potential adverse impacts
arising from tephra contamination and provide best-practise
and impact-specific mitigation advice.

Research context

Over the past 15 years, our international research group led
by the University of Canterbury and GNS Science, New
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Table 1 General information on

the nine volcanoes used as case Volcano Country Year(s) of case ~ Volcano type VEI  Tephra composition

studies within this paper (data study eruption

compiled from Siebert and

Simkin 2002) Mt St Helens USA. 1980 Stratovolcano 5 Dacite
Redoubt USA. 1989/1990 Stratovolcano 3 Andesite
Rabaul Papua New Guinea 1994 Caldera 4 Andesite
Soufriére Hills ~ Montserrat (UK) 1995-2011 Stratovolcano 3 Andesite
Ruapehu New Zealand 1995/1996 Stratovolcano 3 Basaltic-Andesite
Chaitén Chile 2008 Caldera 4 Rhyolite
Pacaya Guatemala 2010 Scoria Cone 3 Basalt
Tungurahua Ecuador 1999-2010 Stratovolcano 3 Andesite
Shinmoe-dake Japan 2011 Shield 3 Andesite

Zealand has aimed to undertake a sustained and systematic
approach to volcanic impact assessment in critical infra-
structure (e.g. electricity; see Wilson et al. 2012 for more
information). Meetings and interviews were carried out with
infrastructure managers, and operations and maintenance
staff at affected facilities. The interviews followed an exten-
sive group of prompt questions that were used to steer the
conversation, and touched upon the main topics of interest
for research, including the general impacts of tephra fall on
the sector, actions taken in response to tephra fall, tephra
clean-up operations, emergency management plans and in-
terdependency issues. Interviews were semi-structured in
nature to allow for more open exploration and discussion
around the various topics that were brought up in conversa-
tion (refer to Electronic supplementary material).

Critical components of a power system

The basic function of a power system is to supply custom-
ers, both major and minor, with electrical energy as eco-
nomically as possible and with an acceptable degree of
reliability and quality (Billinton and Allan 1988). There
are four main components of the modern electric power
industry: (1) generation, (2) transmission (e.g. >110 kV by
USA standards), (3) sub-transmission (e.g. 33 to 110 kV)
and (4) distribution (e.g. <33 kV), as illustrated in Fig. 2.
Generation sites transform the stored energy present in fossil
(oil, coal, natural gas, etc.), nuclear and renewable (geother-
mal fluids, wind, solar or water) fuels into electric energy. A
typical alternating current generator produces a voltage of
around 11 to 25 kV. This voltage is increased by a step-up
transformer (increase in voltage, decrease in current) to
facilitate the transmission of power over large distances.
The transmitted power then passes through a ‘switchyard’
which is a facility dedicated to feeding power to different
sections of the system (voltage is neither increased nor
decreased at switchyards). Once the power reaches a sub-
station located on the edge of a town or city, the voltage is
reduced for integration into a sub-transmission system

where power is fed to many distribution substations (e.g.
within cities). At the distribution substation, the voltage is
reduced again and the power fed into a localised system of
overhead or underground ‘distribution’ lines. Large indus-
trial plants and factories are usually supplied directly by a
sub-transmission line or dedicated distribution line. Before
residential consumption, however, the line voltage is re-
duced to ~400/220 V (depending on the system used) by
distribution transformers that are commonly mounted on
distribution poles or in ground placed kiosks.

For this review, we have simplified the components of
modern electricity systems into (a) generation facilities, (b)
transmission and distribution components (insulators, lines,
towers, poles, low-voltage transformers (e.g. <33 kV), etc.),
and (c) substations and switchyards.

Direct impacts to power systems
Case studies

The following section summarises impacts from tephra falls
to the three aforementioned components of a power system
using impact assessment case studies carried out on nine
eruptions (refer to Table 1 for more detail): Mt. St. Helens,
USA (1980); Redoubt, USA (1989/1990); Rabaul, Papua
New Guinea (1994); Ruapehu, New Zealand (1995/1996);
Tungurahua, Ecuador (1999-2010); Chaitén, Chile (2008);
Soufriere Hills, Montserrat (1995-2011); Pacaya,
Guatemala (2010) and Shinmoe-dake, Japan (2011). The
review has been organised by impact type within each sector
of the modern power system.

Ideally, we would have provided information on the
physical (e.g. grain size distributions, particle morphology,
etc.), chemical (e.g. bulk rock chemistry, soluble salt con-
tent, etc.) and electrical properties (e.g. conductivity) of the
tephras found at specific impact sites for each of the erup-
tions. This would allow analysis of tephra properties most
likely to lead to power system impacts. However,
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Fig. 2 An example of a modern electric power system. Electric energy
is generated at a power station (e.g. 13 kV). From here, the voltage is
increased (current decreased) and the energy transmitted at 400 kV via
extra-high voltage (EHV) transmission lines to a 400/220 kV EHV
substation. The energy is then transmitted to a HV substation where the
voltage is reduced to 66 kV. Sub-transmission lines connect the HV
substations to many distribution substations located within cities,

assembling this information is extremely challenging be-
cause (1) information on tephra properties at the specific
locations where power systems have been impacted is rarely
reported by power system personnel. Consequentially, we
rely on tephra studies by other volcanological authors who
have not collected tephra samples at the sites of affected
power systems or analysed tephra for electrical properties;
(2) some explosive eruptions examined within this study
have durations of months to years, making it difficult to
sample any one tephra deposit (e.g. Soufriére Hills and
Tungurahua); (3) tephra samples rapidly leach and immedi-
ate weathering following deposition makes it hard, if not
impossible, to retrospectively sample representative tephra
from specific impact sites; and (4) the exact dates and
specific locations of impact(s) on long, expansive power
system assets are, in most cases, unknown. Previous work
done by Wardman et al. (2012b) has shown that variables
such as moisture content, soluble salt content, grain size,
bulk density and composition are key controls on the elec-
trical conductivity of volcanic ash. To avoid broad assump-
tions about the electrical properties of the tephras in the
following case studies, and in the absence of site-specific
data, tephra thickness has been estimated from isopach maps
and used here where available.
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where the voltage is reduced to 11 kV and the energy finally distributed
either directly to industrial plants or factories or to local residential and
commercial zones. Distribution transformers (ground or pole mounted)
reduce the voltage from 11 kV to ~400/220 V (depending on the
system used) for use in homes, shopping centres and other local loads
(adapted from Karady 2007)

Generation
Accelerated wear at hydroelectric power sites

The 1995/1996 eruption of Mt. Ruapehu deposited roughly
7.6 million cubic metres of tephra on the Rangipo hydro-
electric power (HEP) catchment (Meredith 2007). This
caused high levels of suspended tephra in the Tongariro
River. In the 7 months following the initial eruption, an
estimated 5 t of tephra had passed through the system and
approximately 15 years worth of normal wear had been
experienced by the turbines (Meredith 2007). Pitting and
accelerated erosion were experienced by all generation
equipment that came in contact with the tephra-laden water.

Approximately 1 year after the eruption, the 120 MW
plant halted operations to carry out repairs to its two turbines
and all auxiliary components, causing an estimated loss of
generation in excess of NZ§$12 million (Johnston et al.
2000). To combat the effects of erosion and pitting, a pro-
tective coating was applied to turbine components—runner
blades, labyrinth seals, wear rings, band seal, cheek plates
and wicket gates. A hard coating (tungsten carbide powder)
was applied to those components considered most critical to
the system (e.g. crown, blades and band seal) while a soft
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coating (polyurethane) was applied to most of the other parts
of the runner. As of 2007, the repaired turbines had been
operating efficiently with minimal wear (Meredith 2007).

The 156 MW Agoyan HEP faciility, located 5 km east of
the city of Bafos in Ecuador, is the second most important
generation facility in the country (Hall et al. 1999). Since the
onset of intermittent volcanic activity from Tungurahua vol-
cano in 1999, very little tephra has fallen at the dam site, and
on the few occasions when tephra has fallen at Agoyan, the
dam has operated normally. However, during October 1999
and August 2006, large volumes of tephra fall (>100 mm) fell
on Bailos and the local municipality deemed the community
risk too great for people to remain in the town. The heavy
amount of tephra fall resulted in the evacuation of Bafios
residents and closure of local utilities, including the dam.

However, while the dam turbines, generators and control
house are located in a zone of low-frequency tephra fallout,
the Pastaza catchment of the dam is often exposed to sig-
nificant tephra fall, leading to significant suspended solids
in the water and occasionally lahar hazards, which are more
threatening to the Agoyan HEP than direct tephra fall
(Sword-Daniels et al. 2011). Intake mechanisms such as
wicket gates, turbine covers and blades are particularly at
risk of abrasion from the tephra-laden water. Severe pitting
and scouring of the metallic components (Fig. 3) have
accelerated their degradation, and four turbines have been
replaced in the last 21 years.

To reduce the impacts from the intake of highly turbid
water, Agoyan has a specially designed floodgate system in
place so that the intake flow can be diverted away from
generation components and directly flushed out into the
river (Fig. 3, inset). When there is heavy rain, causing an
increased risk of tephra-laden floodwaters and lahars, the
dam operators monitor water levels and turbidity, and acti-
vate the protective bypass system as required.

Fig. 3 A severely abraded
turbine that was removed from
service at the Agoyan
hydroelectric power plant,
which is sited 5 km east of
Tungurahua volcano. Tephra-
laden water filtering through the
turbines has necessitated the
replacement of four turbines in
21 years. Bottom inset: The
Agoyan Dam and its (orange)
floodgates are designed to let
highly turbid water bypass the
turbines so as to avoid acceler-
ated wear of generation
components

Tephra-induced insulator flashover

At Futaleufu (HEP) dam, Argentina (86 km from Chaitén
volcano), major faults (flashovers) occurred on circuit
breaker columns at the facility’s control station following
50-100 mm of very fine-grained (<0.1 mm diameter) rhyo-
litic tephra fall from the 2008 Chaitén eruption (Wilson et al.
2011). Flashovers also occurred across HV insulators on the
240 kV transmissions lines adjacent to the station, following
light rain (estimated at 2 mm/hour) on 6 May 2008. The
intense heat and severity of the arc during flashovers caused
several of the insulators to explode and their metal pins to
fuse, requiring total replacement of the insulators.

To avoid build-up from further tephra falls and wind remo-
bilisation of tephra deposits, insulators were cleaned at the
powerhouse and on the incoming transmission lines every
10 days for several months. The fine-grained tephra did not
wash off easily having formed a cement-like paste following
wetting and drying, even when high-pressure water blasters
were used. Generation at the HEP dam was unaffected by the
tephra fall or tephra-laden water and remained in-service for
the duration the eruption. However, when adjacent transmis-
sion lines were disrupted due to tephra-induced insulator
flashover, generation ceased (Wilson et al. 2011).

Tephra ingress

On the Caribbean island of Montserrat, intermittent tephra
falls from Soufriére Hills volcano at the Montserrat Ultilities
Limited generation yard (located 9 km northwest of the
volcano) have to be regularly washed away with water to
prevent tephra ingress (e.g. via wind mobilization) into the
diesel generators. Tephra fall events occur more often in
active phases of dome growth, of which there have been five
since the onset of the eruption in 1995. Tephra is carried to
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the west by the prevailing wind, but occasionally northwest
to the inhabited areas, where it can affect the generation
yard. Air intake filters are changed more frequently using
high-pressure water blasters every day during and after
tephra fall events (Sword-Daniels 2010).

Controlled shut-down

Following tephra fall during the 2011 eruption of Shinmoe-
dake, the Kytshii Electric Power Company (KEPC) initiated
a controlled shut-down of the Nojiri and the Mizonokuchi
HEPs to avoid tephra ingress into their turbines. KEPC
initiated a mudflow (lahar) monitoring programme that cul-
minated in a precautionary shut-down of these plants fol-
lowing heavy rainfall on 10 February. The shut-down
effectively avoided tephra impacts, and the shut-down and
restart procedures were carried out without problems.

Transmission and distribution system components
Tephra-induced insulator flashover

The 1980 Mt. St. Helens eruptions deposited tephra over
much of northwestern USA, in particular Washington State.
The Bonneville Power Administration (BPA) transmits bulk
electrical energy across the Pacific Northwest and experi-
enced several tephra-related outages during the eruption.
BPA reported that by 28 May 1980 (10 days after the initial
eruption), approximately 25 momentary and 25 sustained
outages had been recorded (up to 7h and 40 min) mainly on

115 kV and lower voltage systems serving customer utilities
(Blong 1984). A summary of the flashover incidents
reported by Nellis and Hendrix (1980) is provided in
Table 2.

Redoubt volcano, located on the west side of Cook Inlet
in Alaska, erupted explosively on 20 separate occasions
between December 1989 and April 1990 (Miller and
Chouet 1994). In December 1989, power outages resulting
from insulator flashover occurred in the Twin City area,
Kenai, after receiving ~6 mm of tephra in conjunction with
rain (Johnston 1997a).

Falls of tephra and mud from the Ruapehu eruption on 25
September 1995 caused flashovers on Transpower’s HV
(220 kV) lines located near the base of the volcano
(~15 km from the vent). Approximately 3 mm of fine-
grained (particles typically <250 pm diameter), wet tephra
coated the towers, conductors (220 kV) and glass insulators
east (downwind) of the volcano (Transpower 1995; Cronin
et al. 2003). Strain insulators, which are oriented horizon-
tally to anchor the ends of a line segment, flashed over. This
caused voltage fluctuations and problems for electrical
equipment throughout the North Island. For example, fluc-
tuations in supply tripped the emergency power at
Wellington Hospital causing non-essential supplies to be
shed (Johnston et al. 2000). In addition, Transpower’s auto-
mated reclose system, which recloses (reconnects) a circuit
after a fault has occurred, had to be operated manually
during the 1995-1996 eruptions because of the repeated
tephra-induced flashovers with every auto-reclose attempt
(Wilson et al. 2009).

Table 2 Flashovers on the Bonneville Power Administration system following the 1980 Mt. St. Helens eruption

Date of Date(s) Tephra Line(s) Explanation Comments

tephra of impact received kV)

fallout (mm)

18 May 18-25 May <12 <500 Momentary outage on BPA’s Lower Tephra from the 18 May eruption fell
Monumental-Hanford 500 kV line dry and did not cause immediate
and numerous flashover-related issues. Flashovers occurred when
outages reported by customer utilities. 7-12 mm rain was received over

the 1-week period following the
initial 18 May fallout.

18 May 18-25 May <12 <115 Numerous outages mainly on 115 kV Some incidents initiated by tephra
or lower voltage systems serving loading on trees which caused
customer utilities. branches to make contact with

energised lines.

25 May 26 May <12 500 Paul Allston 500 kV line trip-out due Evidence of flashover across a jumper
to suspected tephra contamination. string found during a post 25

May survey.

25 May 27 May 6-9 69 Phase-to-phase (line to line) flashover One insulator exploded from the
between two 69 kV porcelain flashover while the other insulator
post-type insulators. suffered severe burn marks from the arc.

25 May 2 June <12 500 Circuits on both Paul Allston 500 kV Flashovers occurred during light rain.

lines experienced flashover from
suspected tephra contamination.
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Following the May 2008 Chaitén eruption, a 68-km
stretch of 33 kV line to Futaleufu township, Chile (75 km
from the volcano) was coated with fine-grained (<0.1 mm
particle diameter) rhyolitic tephra of 20 to >300 mm in
depth in some areas between 2 and 8 May 2008. Local
linesmen reported that 10-20 % of the ceramic insulators
suffered flashovers after light misty rain between 6 and 9
May 2008. Following inspections, the lines company decid-
ed to replace all insulators on the affected stretch of line, as
it was too laborious to clean or assess damage to each
insulator. Many of the insulators that had suffered flashover
were cracked and exhibited burn marks at the base where it
screwed onto the supporting metal pin (Fig. 4). Distribution
transformers on the circuit were also reported to have suf-
fered flashover damage.

Empresa Electrica de Guatemala (EEGSA) is a distribu-
tion supply (<69 kV) company that provides electricity to
three of Guatemala’s 22 administrative departments.
EEGSA reported numerous tephra-related flashovers fol-
lowing the May 2010 eruption of Pacaya. Rain during the
eruption added to the risk of tephra contamination of HV
equipment, and several faults (flashovers) occurred follow-
ing 20-30 mm of coarse-grained tephra fall in Guatemala
City. Specifically, there were six 69 kV circuits that endured
continual flashovers despite several attempts to re-close the
circuits. Of these, Guadelupe lines 1, 2 and 3 were
particularly problematic. On 28 May 2010 (the day after
the eruption), a 25.88-MW load was shed from a 69 kV
circuit causing a 2-h long outage (Wardman et al.
2012a). Despite several reports of flashovers on the
system, no burning or physical damage of transmission
equipment was noted; thus, no replacement or repair of
equipment was required.

Insulator tracking and corrosion

Leakage current or ‘tracking” across contaminated HV insu-
lators causes burning and etching of the insulator surface.
This compromises the operational performance of an insu-
lator and, in the case of composite polymers, can reduce the
rate of hydrophobic (water repellent) recovery and therefore

Fig. 4 a Fine-grained tephra
adhered to the underside of a 33
kV porcelain insulator in Futa-
leufu, Chile following the 2008
Chaitén eruption. b Underside
of a 3 kV porcelain insulator
that suffered tephra-induced
flashover following the 2008
Chaitén eruption. Note the
brown burn mark (centre right)
from the high intensity arc dur-
ing flashover

the dielectric (insulating) properties of the material (Gutman
et al. 2011).

September 2009 to March 2010 was a period of particu-
larly frequent tephra fall in the inhabited northwestern areas
of Montserrat from the current Soufriére Hills eruption.
During this time, a series of tephra falls caused flashovers,
tracking and burning of distribution equipment (e.g. insula-
tors, surge arrestors and bushings on pole-mounted trans-
formers) throughout the villages closest to the volcano
(Sword-Daniels 2010). Remobilisation of the tephra on
Montserrat has also been a problem since the onset of the
eruption in 1995, especially in and around the Belham
Valley area. Tracking along insulators due to remobilised
(and likely leached) deposits has also been observed, sug-
gesting that epiclastic (reworked) tephra may be sufficiently
conductive to initiate flashovers and tracking possibly
months after deposition.

Corrosion impacts are typically latent effects that are not
noticed on Montserrat for several months after a tephra fall.
As of 2011, accelerated corrosion of transformer boxes at
Isles Bay Hill (located approximately 5 km WNW from
Soufriére Hills volcano) has required construction of addi-
tional wooden housing to shield the transformers from teph-
ra contamination (despite the transformers being designed to
operate outdoors and withstand inclement weather condi-
tions). When tephra is very fine-grained (e.g. <0.1 mm
particle diameter), it can penetrate the low-voltage (e.g.
<11 kV) ground and pole-mounted transformer boxes and
is able to build up around the terminals. This has been
known to cause the crutch (terminal) of the cables to burn
out and/or deteriorate rapidly due to tracking across its
surface.

During the January 2011 eruption of Shinmoe-dake, there
were no reports of leakage current on KEPC’s 66- or 6 kV
distribution systems. However, the smaller 220- and 110-V
distribution systems experienced some reports of leakage
current and flashovers. KEPC reported that from the begin-
ning of the eruption until 24 May, there were 54 public
reports of corona discharge (electricity leakage with a char-
acteristic crackling or arcing sound) and 29 public reports of
flashover disruption of lines from the local transformer to
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the customer. The majority of these reported impacts oc-
curred at connection points or where the line had been
scratched or abraded on the insulator’s jacket cover. Over
half of the reports occurred between 7 and 10 February 2011
during a period of light misty rain.

Line breakage

Following a volcano-seismic crisis in 1983—1984, both
Tavurvur and Vulcan volcanoes erupted on 19 September
1994, leaving much of the town of Rabaul (17,000 residents)
covered in heavy tephra fall, with 2-3 m covering the south-
eastern suburbs (Blong and McKee 1995; SMEC International
1999). PNG Power, Ltd. (called PNG Electricity Commission
(ELCOM) until 2002) is the primary generator and provider of
electricity in Papua New Guinea. ELCOM’s power supply was
shut-down as a precaution at the start of the 1994 Rabaul
eruption (Carlson 1998). The Rabaul Power Station suffered
little damage from tephra fall; however, the station was decom-
missioned and the diesel generators removed due to the exten-
sive damage to the surrounding areas (SMEC International
1999). Falling trees and buildings damaged large sections of
the distribution system, including some power transformers.
The same stretch of line that was affected by tephra-
induced flashovers between 2 and 8 May in Futaleufu,
during the 2008 Chaitén eruption, was impacted again fol-
lowing heavy snowfall on 18 May 2008. The snow, together
with the tephra, on lines and poles created a significant load,
causing lines to break and poles to collapse. The 6-mm lines
were described as looking like ‘20-mm tubes’ with the
tephra and snow accumulation. In addition, tephra and snow
laden branches collapsed onto lines resulting in further

Fig. 5 a High-pressure de-
energised washing of a power
transformer bushing at a sub-
station in Ecuador following the
2010 eruption of Tungurahua. b
A linesman cleans tephra from a
de-energised 220 kV strain
(horizontally strung) insulator
located ~15 km from Ruapehu,
New Zealand. C Linesmen
cleaning de-energised insulators
at a Guayaquil, Ecuador sub-
station after 1-2 mm of fine-
grained tephra fell following the
2010 Tungurahua eruption. d
Hand-cleaning tephra from a
de-energised 220 kV strain in-
sulator after the 25 September
1995 Ruapehu eruption. Photo
credits: a Transelectric, b
Transpower, ¢ Transelectric, d
Transpower
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damage. In total, approximately 20 km of line and poles
required replacement.

Controlled outage

Following contamination of Transpower’s HV system dur-
ing the 1995/1996 Ruapehu eruption, affected circuits were
de-energised and cleaning of 18 towers (and insulators) was
undertaken on 27 September 1995 by four crews each con-
sisting of four men (Transpower 1995) (Fig. 5). Three
strings of insulators were found to have superficial damage
(e.g. etching and burning) on their glazed surfaces as a result
of flashovers. However, these insulators were not replaced,
as, upon visual inspection, it was determined that they had
not endured sufficient damage (e.g. cracking or puncturing
of the discs) to affect their dielectric strength.

Approximately 50 mm of tephra fall was received in
Esquel, Argentina (110 km from the volcano) over the month
of May following the 2008 Chaitén eruption. In this time, the
local municipal utility provider reported no damage to the four
electricity distribution systems it manages: 132 kV, 33 kV,
220 V and a three-phase 360 V. However, several shutdowns
of the power supply were scheduled to allow cleaning of
power transformers, after it was found that tephra accumula-
tion was creating the potential for flashovers.

Substations and switchyards

Tephra-induced flashover

Several EEGSA substations received >100 mm of coarse-
grained (>1.5 mm particle diameter) tephra fall out during
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the 27 May 2010 Pacaya eruption, particularly those sub-
stations located south of Guatemala City closest to the
volcano. The EEGSA substations that received the most
tephra fall were scheduled for extensive offline cleaning
on 29-30 May 2010. However, the arrival of tropical storm
Agatha on 29 May 2010 hindered the cleaning procedure
and large amounts of tephra remained on substation equip-
ment during the early hours of the storm. The combination
of tephra contamination, together with heavy rain from the
storm, caused further faulting (flashovers) on the system,
with several interruptions occurring throughout the event
(Wardman et al. 2012a).

With the passing of Agatha, it was found that the rains had
sufficiently cleaned all substation equipment and none but the
Laguna substation (located ~5 km from the vent), which
received >300 mm of lapilli-sized tephra, required further
cleaning. The power transformers were described by
EEGSA staff as being the most problematic and difficult
apparatus to wash free of tephra because of the intricate array
of cooling fins and sensitive components vulnerable to further
damage from abrasion or water/tephra ingress. As a preven-
tive measure, tephra was cleaned from transformer radiator
fins to allow sufficient heat transfer and cooling of the
apparatus.

Tephra ingress

Transformer sheds within KEPC substations have open-
veined windows that allowed ingress of tephra to the build-
ings during the 2011 Shinmoe-dake eruption. Windows
were blocked off at the time of the eruption, but the sheds
became too hot several months later in summer, requiring
filters to be fitted over the windows. At Miyazaki Power
Centre, 48 windows required blocking and later filtering
across 14 buildings. At Miyakonojo, 33 windows required
blocking and later filtering across 10 buildings.

Decrease in resistivity of substation/switchyard surface rock

In addition to transmission and distribution system compo-
nents, tephra from the 18 May 1980 Mt. St. Helens eruption
covered surface rock in substation areas causing a major
decrease in the ground resistance once wetted by rainfall.
This had significant ramifications for step and touch poten-
tials (voltages) present at affected BPA substations. Step
potential is the difference in surface voltage between two
points 1 m apart (the step distance) under rated fault con-
ditions, while the touch potential is the difference between
the earthing grid voltage and the surface voltage at a point
where someone standing on the surface can touch something
that is bonded to the earthing grid. A decrease in resistivity
of substation gravel means an increase in current passing
through the body due to the step and touch potentials and a

heightened risk of electrical shock or electrocution. This
was identified as a serious danger for technicians entering
the area and required de-energising and isolation of equip-
ment before cleaning and/or repair (Buck and Connelly
1980; Nellis and Hendrix 1980; Sarkinen and Wiitala
1981; Rogers 1982).

Controlled outage

After each of the 1995/1996 Ruapehu tephra falls, electricity
generation, transmission and distribution companies rou-
tinely cleaned tephra from affected substations. On 17
June 1996, power supply was disrupted in parts of Rotorua
city after a powerful flashover occurred across an 11 kV
ground mounted distribution transformer bushing at a local
substation, caused by tephra and water contamination from a
resident hosing tephra from the roof of a neighbouring
building (Johnston 1997b). Thus, there was a focussed effort
to make sure that all of the 11 kV bus bars and insulation at
substations were clear and free of any tephra before power
was restored (Bebbington et al. 2008).

Guatemala’s Empresa de Transporte y Control de Energia
Electrica manages two large (230 kV) substations that were
affected by the 2010 Pacaya eruption. These stations (Guate
Sur and Guate Este) required offline cleaning shortly before
the arrival of tropical storm Agatha. Cleaning involved the
sweeping and brushing of tephra from substation apparatus
and surrounding yards. Substation equipment was subse-
quently washed using high-pressure water blasters.

The city of Guayaquil (Ecuador) received 1-2 mm of
very fine-grained (<0.1 mm particle diameter) tephra during
the May 2010 eruption of Tungurahua, a rare event for the
city. The tephra fell during dry conditions, and no instances
of flashover were reported. As a precaution, however, sub-
stations critical to the continual supply of electricity to
Guayaquil were cleaned to prevent tephra-induced failure
of HV equipment. To avoid permanent damage to the power
transformers from overheating or tephra-induced flashovers,
each of the three transformer banks at the Pasquales substa-
tion had to be taken offline individually while associated
sections of the yard were cleaned. The substation was re-
energised once drying of substation equipment (following
high pressure water washing) was complete. While remobi-
lization of the tephra was an inconvenience to substation
workers for about a month following the initial tephra fall,
no further cleaning of equipment was required and no faults
(unintended interruptions of supply) were reported (Sword-
Daniels et al. 2011).

Tephra falls from the 2011 Shinmoe-dake eruption
caused no direct impacts to KEPC’s transmission lines or
substations. However, on 1 February 2011, KEPC shut-
down (de-energised) some transmission substations for
cleaning. KEPC developed a special hot-stick (insulated
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pole, usually made of fibreglass) with a compressed air line
attached for live-line (energised) cleaning of tephra-
contaminated equipment. A specially designed hot-stick
connected to a high pressure water line was also developed
(based on the design used for live-line cleaning of sea salt
contamination), but due to the uncertain conductivity and
therefore flashover potential of the tephra at the time, they
took the precaution of only cleaning when de-energised. The
Takaharu, Hirose and Sadowara substations were de-
energised while tephra was wiped by hand from surfaces
with a soft rag where practical and high-pressure water
blasters were used to wash apparatus (e.g. power transform-
ers, insulators, circuit breakers, arresters, bus bars, etc.).
There were some benefits from rain cleaning, but rainfall
intensities conducive to cleaning were unclear.

Fig. 6 Summary of impacts a

Analysis of impacts

The generation, transmission and distribution, and substa-
tion components of a modern power system are vulnerable
to different and specific tephra-induced impacts, depending
on the equipment at each phase of power delivery. A sum-
mary of the tephra impacts on the main components of
modern power systems is illustrated in Fig. 6.

We have chosen to use tephra thickness as the most
appropriate indicator of tephra hazard intensity when ana-
lysing impacts to power systems. We selected it on the basis
of its utility for gauging the accumulation of tephra in the
field (important for rapid damage assessment), its common
use in tephra dispersal models (e.g. Connor et al. 2001;
Bonadonna et al. 2005), and its ease of application
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compared to other quantitative methods (e.g. the non-
soluble deposit density, a procedure used by electrical engi-
neers (e.g. Sundararajan and Gorur 1996)). Whilst there are
limitations with this approach (e.g. grainsize is a key control
of tephra adherence potential, composition is a key control
on abrasion, soluble salt load and water holding capacity
both influence conductivity, etc.), we found that no other
parameter was more suitable. Thus, the following section
identifies the most vulnerable system components and,
where possible, suggests critical tephra thicknesses for each
sector of the modern power system.

Generation

The most common disruptor of power at generation sites is
controlled shut-down of HEP turbines to avoid accelerated
wear of submerged components such as runner blades,
labyrinth seals, wear rings, band seals, cheek plates and
wicket gates. Even HEPs designed to cope with large vol-
umes of sediment, such as the Agoyan Dam in Ecuador,
favour bypass of tephra-laden waters over continued opera-
tion of the plant, which involves the risk of damaging their
turbines.

Critical tephra thicknesses for generation sites are diffi-
cult to identify since every dam is designed differently and
the exposure of each component to tephra may not be the
same as the nominal thickness. For example, at an HEP, the
turbines are exposed to suspended tephra in the intake
waters, the amount of which is a function of catchment size,
flow rate, rainfall, etc., not just tephra thickness experienced
in a general area. In light of this, further research should
focus on critical turbidity levels rather than tephra thickness
before shut-down of a generation facility must occur.

Insulator flashover at generation yards containing step-up
transformers can cause cascading impacts, as was seen in
Futaleufu, Argentina following the 2008 eruption of
Chaitén. If power cannot be transmitted from a generation
site due to contamination and subsequent flashover on trans-
formation equipment (e.g. insulators and bushings), then the
generated power cannot be transmitted to other sections of
the system.

We are unaware of any direct tephra impacts to thermal
power plants. However, we highlight that tephra fall is a
hazard that could cause generation disruption or shut-down
due to blockage of generator air intakes (e.g. as is avoided in
Montserrat and was prevented in Japan following the 2011
Shinmoe-dake eruption) and off-site power resources (e.g.
emergency lines or generators for back-up power). This is a
significant knowledge gap that warrants further research.
Similarly, some generation sites rely on HVAC systems to
keep sensitive electrical equipment at a maintained temper-
ature (e.g. switching equipment and data centres). HVAC
systems are vulnerable to tephra damage (e.g. abrasion of

moving parts such as fans), corrosion, and arcing of internal
electrical components, and air filter blockage, especially if
air intakes are horizontal surfaces, although these impacts
have not been recorded.

Transmission and distribution

According to our analysis, transmission and distribution
systems are most vulnerable to insulator flashover from
tephra contamination. Insulator flashover can occur with
tephra thicknesses as thin as 3 mm (Ruapehu 1995/1996)
provided the tephra is of sufficient conductivity.
Additionally, if tephra is not cleaned from insulators imme-
diately following fallout then, with subsequent adsorption of
moisture (e.g. mist, fog, light rain, etc.), tephra will adhere
strongly (i.e. cement) to all surfaces (making cleaning diffi-
cult) and cause latent effects such as corrosion and tracking
(as experienced on Montserrat).

Line breakage due to tephra loading was observed fol-
lowing several of the case study eruptions (Mt. St. Helens
1980, Rabaul 1994 and Chaiten 2008). Tephra adherence to
lines is highest during wet and freezing conditions, although
this is a rarely observed impact (Fig. 6b). Many power
companies are liable for maintaining acceptable clearance
distances between trees and power lines on both public and
privately owned property. Provided these distances are
maintained, then the power system should undergo no issues
with tephra contamination of nearby vegetation.

Substations and switchyards

Immediate cleaning of substation equipment has been used as
either a reactive or proactive measure against tephra-induced
flashover in several of the case studies presented (Mt. St. Helens
1980, Redoubt 1989, Ruapehu 1995/1996, Tungurahua 2010,
Shinmoe-dake 2011). Tephra thicknesses received at substa-
tions during each of these eruptions have been wide-ranging
(refer to Fig. 6c¢); however, cleaning has commenced with
tephra deposits as thin as 1 mm (Guayaquil, Ecuador following
the 2010 eruption of Tungurahua). In every instance where
cleaning of substations has taken place, insulator flashover has
been avoided and power companies have been successful in
maintaining power supply. This highlights the critical impor-
tance of substations to the integrity of a power system.

No existing literature or research has documented
impacts at switchyards. The lack of sensitive apparatus such
as power transformers means that tephra contamination at
switchyards will have a lower probability of disrupting
power supply. This suggests that switchyards are less vulner-
able to tephra-induced impacts than substations; however,
more research is needed to verify this claim.

The only evidence of reduction in substation gravel re-
sistivity comes from BPA reports following the 1980 Mt. St.
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Helens eruption. However, field data collected from CELEC
EP (Ecuador) and EEGSA (Guatemala) suggest that replace-
ment of contaminated substation gravel is not required so long
as the tephra and gravel mixture displays a resistivity value
>3,000 Q2m, as prescribed by IEEE Standard 80 (2000).

Tolerance

Instances of tolerance to tephra contamination have been
noted in nearly every case study but are drastically under-
reported. From the data, it appears that many substation
components mentioned in this paper such as disconnect
switches, bus bars, circuit breakers, capacitors and metering
transformers (voltage and current transformers used to mon-
itor power quality) are less vulnerable to tephra fall than
other apparatus highlighted in this study (e.g. power trans-
formers). However, the lack of data does not mean that these
components are completely tolerant to tephra-induced
impacts but rather implies that further investigation is need-
ed to quantify their vulnerability to tephra hazards.

Probabilistic assessment of insulator flashover

Our review has shown that tephra-induced insulator flashover
can occur in all sections of a modern power system and is the
most common impact from tephra contamination. Factors
contributing to tephra-induced flashover are shown in Fig. 7.
Given the interdependencies between electrical, volcanologi-
cal and environmental factors that influence tephra-induced
insulator flashover potential, it is difficult to make a reliable
prediction whether flashover will occur during a particular
tephra fall. However, from the case studies summarised here,
simple probabilistic analysis can be undertaken to produce a
function that estimates the likelihood of a flashover occurring
causing system disruption.

We have used an event tree to conceptually illustrate the
sequence of events required for tephra-induced insulator

flashover to occur (Fig. 8). Each branch of the tree leads
from a necessary prior event to a more specific outcome
(e.g. from an eruption to a tephra fall). Several of the events
are controlled by external factors, such as conditions at the
volcano (eruption style), environmental conditions (wind
direction and precipitation), design of the power system,
prior contamination of system components, etc. Such infor-
mation requires input at the time of risk assessment for a
particular scenario. However, considering the lack of quan-
tified data for events 3-5 (Fig. 8), our compiled review
dataset of flashovers and tolerances allows us to create a
fragility function that estimates the conditional probability
of a flashover occurring for different tephra thicknesses.
This simple, first-order approach is designed to aid system
operators in assessing the allowable accumulations of tephra
before initiating mitigation strategies.

In this instance, the limitations in the available data (dis-
cussed below) mean that we have chosen to only consider one
type of impact (flashover across one cylindrical insulator or
insulator string), the tephra thickness at the time of flashover
and the presence of moisture in the tephra upon flashover. By
choosing to simplify in this manner, we focus only on the
significant factors that dictate whether flashover will occur.
However, this approach does not account for other influences
such as detailed environmental conditions, prior contamina-
tion (e.g. salt spray), and insulator model, composition and
orientation as these are, in most cases, unknown.

Derivation of the fragility curve

Fragility functions give the conditional probability of exceed-
ing a specific damage state as a function of the intensity of the
hazard present (e.g. tephra thickness). They are typically
based on empirical observations of a particular system’s or
component’s performance at varying levels of hazard intensi-
ty. For the purpose of this study, fragility functions can be
defined as mathematical algorithms that relate the intensity of

Fig. 7 Flow chart illustrating
the many variables influencing
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Fig. 8 Event tree showing the
sequence leading up to tephra-
induced flashover. At present,
values for the likelihood of each
event occurring at each node are
not available to hazard manag-
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a hazard (e.g. tephra fall) with a certain degree of loss or
damage (e.g. 0-100 %). Few studies in the field of volcanic
hazards have utilised fragility functions, mainly due to the
lack of quantitative damage or loss data. Limited examples
include estimating the collapse probability of residential
buildings from tephra (e.g. Blong 2003; Spence et al. 2005)
and predicting building damage from pyroclastic flows (e.g.
Baxter et al. 2005). While fragility functions have been used
sparingly in probabilistic volcanic risk analysis, their useful-
ness has been demonstrated in other disciplines, notably in
earthquake engineering to determine the probability of build-
ing failure at different ground shaking intensities (e.g.
Rossetto and Elnashai 2003; Akkar et al. 2005; Porter et al.
2007).
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We can assume that because insulator flashover is a
mutually exclusive event and HV insulators are designed
to prevent the transfer of electricity from transmission and
distribution equipment to earthed (bonded with the ground)
apparatus, insulator flashover can be considered a 100 %
failure in performance. Conversely, instances of tolerance
signify 0 % failure (Fig. 9).

As this is the first study of its kind to create a fragility
function for HV insulation exposed to tephra fall, and given
our limited binary dataset, we have selected a logarithmic
function to provide an estimate for the probability of flash-
over across a single cylindrical insulator or insulator string
at different thicknesses of either wet or dry tephra. After
plotting the data, a line of best fit was applied and the
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Fig. 9 Logarithmic fragility curves showing the probability of tephra
induced flashover as a function of wet or dry tephra thicknesses. Data
are derived from systems that have either experienced flashover or
exhibited tolerance to tephra fall, or both. Insulator flashover is con-
sidered a 100 % failure in performance while instances of tolerance
signify 0 % failure. However, these data have only been added to this

figure as a guide (i.e. they are not plotted); rather, the blue and red
fragility curves (wet and dry tephra, respectively) estimate the proba-
bility of flashover based on the discrete end member data points. Two
anomalous wet samples at 2 and 300 mm (not shown) represent the
only two recorded instances where wet tephra did not cause insulator
flashover

@ Springer



Bull Volcanol

resulting curves are presented in Fig. 9. Results suggest that
dry tephra will not cause flashover but increasing thick-
nesses of wet tephra on insulators will increase the likeli-
hood of flashover. The generated curves and data trends
agree with our observations from existing literature and
experiences in the field.

There are limitations to this approach. Perhaps, the most
significant is the limited available dataset. Despite our best
efforts, the field data do not acknowledge the many instan-
ces of tolerance on a power system during a single flashover
event. For example, one insulator string may flashover
while many dozens of strings that received similar accumu-
lations of tephra elsewhere on the same circuit exhibit
tolerance (do not fail). Furthermore, the data often do not
indicate whether some of the flashovers occurred during the
tephra fall or some time after the initial fallout (with subse-
quent rains or humid conditions). These are limitations of
the retrospective, qualitative data collection methods
employed. Nevertheless, the proposed model is intended to
be a basic tool for volcanic risk assessment and serves as the
basis for future analogue laboratory tests where more robust
data can be collected to refine the model.

Mitigation

Measures taken by power system operators in the aforemen-
tioned case studies to manage the risk of tephra impacts
have been largely reactive. That is, operators did not specif-
ically strengthen or design their power systems to mitigate
tephra fall hazards. Throughout our research, we found that
system operators were largely unaware of the potential
issues arising from tephra contamination and, in many
cases, were surprised at the onset of problems. Warnings
from volcanic scientists were either unavailable or unheed-
ed, creating a lack of situation awareness. This highlights
the need for system protocols that emphasise partnership
and knowledge transfer between volcanic scientists and
system operators. With the start of tephra fall, the majority
of power system operators focussed on protecting the criti-
cal components of the system. It is clear from their actions
that generation sites and substations are the most important
nodes of a transmission and/or distribution system.

Mitigating the risk

Mitigation actions immediately prior to, during and after
tephra fall have two basic purposes: (1) preventing or limiting
tephra entering systems or enclosures, and (2) effective and
efficient removal of tephra to prevent or reduce damage.
Maintaining system infrastructure in a good state of repair
and in clean condition is considered the best practise for long-
term mitigation of tephra fall hazards (Wilson et al. 2009).
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There are four strategies to manage the risk of power
system impacts from tephra fall hazards (adapted from AS/
NZS ISO-31000 (2009)):

1. Avoid the risk by deciding not to start/continue with the
activity that gives rise to the risk.

2. Remove the risk source.

Change the likelihood.

4. Retain the risk by informed decision.

w

The following sections provide some key mitigation
strategies according to each of the four risk management
principles. In most cases, the suggestions addressed herein
consider the range of known tephra impacts and are based
on our current knowledge. Ideally, they should be verified
through trial before implementation. Further information on
the application of these methods can be found in Table 3.

Avoiding the risk
De-energising/shutting-down until tephra fall has subsided

The most effective method of preventing tephra-induced
impacts is to avoid the risk altogether by shutting down,
closing off and/or sealing off equipment until the tephra is
removed from the immediate environment. However, in
many cases, this is not practical or acceptable. For example,
de-energising a critical substation (e.g. one that provides the
only feed to an area) to possibly avoid several thousand
dollars of damage to a particular piece of equipment may
disrupt service resulting in losses of millions of dollars.
Conversely, if a system operator chooses to retain supply
during heavy tephra fall and a power transformer suffers
damage, then both service and component losses will be
incurred. Thus, it can be safer to de-energise, clean contam-
inated apparatus and bear service losses than to continue
operating with an unquantified risk. However, the decision
to de-energise will also depend on the importance of the
circuit(s) or apparatus in providing power to other critical
infrastructure (e.g. emergency supply to nuclear facilities,
other crucial nodes of the system, water supply, primary
industry, etc.). In all instances, communication of decision
making should be made to clients as rapidly and openly as
possible to enable them to plan for disruptions.

The difficulty noted in making these decisions highlights
the need for further quantification of system component
vulnerability so that decisions made by system operators to
mitigate tephra impacts are effectively informed.

Land-use planning
Removing the risk source (the volcano) is not a feasible

option. However, power companies can revise their land-use
planning to re-route circuits and stations so that they do not
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Bull Volcanol

lie proximal to or in the typical downwind path of a volcano.
Whilst this is an extreme and potentially expensive measure,
it is an effective one that has particular relevance for areas
that endure frequent tephra falls such as those near
Tungurahua or Soufriére Hills.

Removing the risk source
Live-line cleaning

Live-line maintenance is a method used by linesmen to
clean and/or repair power lines without disrupting power
to parts of the system and is an effective way to remove
tephra (the risk source) from power apparatus. No official
cleaning guide or standard exists which outlines the most
appropriate methods to clean tephra from power system
components; however, the methods employed by CELEC
EP following the 2010 Tungurahua eruption or KEPC dur-
ing the 2011 Shinmoe-dake eruption demonstrate the effec-
tiveness of simple techniques and routine practises that can
be easily adopted by any electricity company looking to
mitigate tephra-induced impacts at substations. For live-
line cleaning, an appropriate procedure is as follows (refer
to IEEE Standard 957 (2005) for further information on safe
and effective live-line cleaning practises):

1. All cleaning personnel should be required to wear a
facemask and eye protection in addition to any personal
protection equipment required by the power company.

2. Compressed air cleaning (with or without a non-
abrasive component) can be used to remove initial large
amounts (e.g. >3 mm) of tephra. If using compressed air
alone, then a pressure of 210 kPa or less (<30 psi)
should be applied to avoid a sandblasting effect on
glazed ceramic surfaces such as insulators and bushings
and other sensitive equipment. Care should also be
taken to avoid blowing tephra into other parts of the
substation or onto lines that have already been cleaned.

3. A set of insulated tools for wiping, brushing and wash-
ing tephra from energised equipment should be devised
(e.g. as outlined in IEEE Standard 957 (2005)).

a. For example, hot-sticks (designed appropriately for the
component’s rated voltage) fitted with brush heads or
rags (typically made of burlap) work well for ‘hot-
wiping’ tephra from substation equipment (e.g. insula-
tors, bushings, switches, busbars, circuit breakers, etc.).

4. Depending on how strongly the tephra has adhered to

equipment, low-, medium- or high-pressure (e.g. 1,400—

7,000 kPa) water blasting should be used to thoroughly

rinse away any residual tephra. If the tephra has become

heavily cemented to insulators, then soft-media blasting
may be an effective alternative (refer to Table 3 for more
information).

5. A routine and continuous cleaning programme should
be maintained until the threat of airborne tephra con-
tamination is over (including that of remobilised tephra
deposits).

Offline cleaning

For de-energised cleaning, the following procedure has been
adapted from methods employed by Transpower (New
Zealand), CELEC EP (Ecuador) and KEPC (Japan) and
from those outlined in IEEE Standard 957 (2005):

1. All substation equipment must be de-energised and
earthed prior to cleaning.

2. All cleaning personnel should be required to wear a
facemask and eye protection in addition to any personal
protection equipment required by the power company.

3. Depending on the state of the tephra (e.g. wet or dry),
transformer bushings and radiator fins should be
cleaned by hand using soft rags followed by high-
pressure washing (see Fig. 5a).

4. Insulators, bus bars, circuit breakers, metering trans-
formers and other critical apparatus should be cleaned
by hand in a similar procedure as that used for trans-
formers. Extra care should be taken to ensure that all
surfaces are cleaned, including the undersides of insu-
lators. Additional materials, such as wet or paraffin-
soaked cloths, steel brushes or steel wool, may be
needed for insulators with strongly adhered tephra
deposits.

5. If tephra deposits are strongly cemented to ceramic
surfaces (insulators and bushings), then a mild (and
inert) solvent or detergent (e.g. OMYA brand products)
can be applied and wiped clean using soft brushes, rags,
paper towels or non-abrasive nylon pads. Steel wool can
also be used when other cleaning tools are ineffective;
however, caution should be exercised to avoid abrading
ceramic surfaces and remove all metal particles left by
the steel wool. No solvents should be applied to poly-
mer insulators unless advised by the manufacturer.

6. CELEC EP noted that contacts on disconnect switches
(electrodes) are especially difficult to clean and may
require scrubbing with a rough sponge or nylon pad to
remove the contact grease in which tephra becomes
embedded.

7. The substation can be re-energised once all substation
equipment has been dried using soft rags.

The above methods can be easily adapted for transmis-
sion and distribution lines and insulation. Alternative clean-
ing methods for transmission and distribution system
components (energised and de-energised) are provided in
Table 3.

@ Springer
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Changing the likelihood
System redundancy

The probability of two or more independent faults taking
place on a power system simultaneously is very low (Berizzi
et al. 2000). However, to account for this low-risk (but high
consequence) event, power systems are often designed to
withstand loss of individual lines or elements such as power
transformers. When a power system adopts this approach, it
is said to be ‘N-1 secure’ because it can cope with losing any
one of its N components and continue to carry the demand
load. N-1 secure systems reduce the likelihood of tephra-
induced disruption to power supply but, however, do not
consider the far-reaching effects of tephra that can cause
numerous faults over hundreds of square kilometres of
assets.

Insulator modification

HV insulators designed to operate in polluted conditions
come in a range of different shapes and sizes and are con-
structed from several different materials (IEC-60815 2008).
Depending on the climatic and pollution patterns at a given
site, insulator materials (e.g. ceramic versus polymer) and
profiles (e.g. standard versus aerodynamic or fog-type)
should be carefully chosen to accommodate the local con-
ditions. Adapting the types of insulators used in volcano-
proximal zones could reduce the likelihood of flashover,
minimize the effects of tracking and leakage current, and
ultimately improve system reliability.

A logical way to improve insulator contamination perfor-
mance is to increase the number of insulators (or length of a
single insulator) on a line or substation. Contamination
flashover performance tends to scale linearly with creepage
distance, so adding three new discs to a string of ten iden-
tical ones can improve the flashover strength by 30 %
(Farzaneh and Chisholm 2009). However, this approach is
not without limitations, including a loss in acceptable line
clearance distance and the difficulties in changing intricate
types of insulators such as those found at substations.

Retaining the risk by informed decision
Doing ‘nothing’

In the case of minor tephra falls, it may be more economical
for power companies to retain the risk by leaving small
deposits (e.g. <3 mm) on insulators, lines and structures to
be cleaned naturally by rain and wind action. The informed
decision to leave tephra on power hardware should depend
on the electrical conductivity of the tephra, a factor that is
largely influenced by the amount of ionic content in the

@ Springer

form of soluble salts present on the tephra’s surface (refer
to Wardman et al. 2012b for more information). In the case
of substations, however, heightened attention to these facil-
ities with only small accumulations of tephra (e.g. 1 mm in
the case of the 2010 Tungurahua eruption) suggests that
immediate cleaning is essential to ensuring the safe and
reliable provision of electricity to society.

Real-time pollution monitoring

Real-time pollution monitoring can provide some indication
of contaminated conditions on energised insulators. For
example, analysis of leakage current and/or partial discharge
on contaminated insulators can warn system operators of
critical pollution levels prior to flashover (Farzaneh and
Chisholm 2009).

The resistivity (conductivity) analysis developed by
Wardman et al. (2012b) is a rapid field method that can be
used to measure the electrical properties of tephra in space
and time. If conductivity values are known before substan-
tial deposits of tephra can accumulate (e.g. >1 mm), then
tephra fall forecasts can be combined to provide an early
indication of which facilities and sections of lines may be at
the greatest risk of impacts, such as insulator flashover.

Use of the fragility model to forecast flashover

When opting to retain the risk, there is significant uncertain-
ty about failure thresholds. Our fragility model comprises
impact data from various different eruptions and thus a
range of different tephra falls. The fragility function there-
fore accounts for the many variations in electrical conduc-
tivity (and therefore flashover potential) present in each
case-study tephra. When used in combination with real-
time pollution monitoring and the resistivity analysis devel-
oped by Wardman et al. (2012b), a more robust indicator of
tephra-induced flashover is produced. The addition of near-
real-time information provided by volcanic scientists such
as tephra fall dispersal (isopach maps) and fall rates will
further strengthen power system operator decision support.

Response plan

Heightened operational readiness, efficient monitoring and
impact assessment of any disruption or damage are key
elements of good risk mitigation practise. Response plans
should include procedures to monitor warnings from volca-
no observatories (including notification of eruptions and
potential tephra falls), reducing or shutting down operations,
and accelerated maintenance and tephra-clean-up opera-
tions, including access to filters and cleaning/disposal
equipment.
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Based on the lessons learned from our review, the fol-
lowing response plan will aid power system operators in
preparing for and mitigating impacts from tephra fall
hazards:

1. Secure the health and safety of staff. Goggles and masks
are essential for protection, but so are safe operating
procedures, as horizontal surfaces (e.g. roads and lad-
ders) can become very slippery.

2. System operators should maintain situation awareness
by actively monitoring warnings and advice from local
volcano observatories or relevant agencies to obtain the
most up-to-date scientific alert levels, eruption warn-
ings, tephra fall maps and forecasts. Operators should
establish and maintain these connections during non-
crisis periods.

3. Prepare a system for cleaning equipment before, during
and after (e.g. for remobilised deposits) the event. This
should include an estimate of the number of people and
equipment required which can be predetermined by the
magnitude of the tephra fall. When problems arise (e.g.
notification of leakage current or corona discharge), a
rapid response can be made.

4. Monitor the volcanological information from hazard
scientists/agencies (e.g. tephra fall forecasts, isopach
maps, fall rates, etc.), the power dynamics of the system
(e.g. voltage fluctuations, leakage current, etc.) and the
conductivity of the tephra (by equivalent salt deposit
density (ESDD) analysis or via the conductivity method
proposed by Wardman et al. 2012b). Based on these
observations, make informed decisions on whether to
continue supplying power to vulnerable sections of the
system.

5. Implement a mitigation strategy (as detailed in Table 3)
if the benefits of maintaining power supply outweigh
the financial consequences of de-energising all or part
of the system.

Future directions

There is need for comprehensive standardised documenta-
tion of tephra-induced impacts and cases where preventative
measures have been employed and subsequent success in
maintaining constant supply during and/or after a volcanic
eruption has been achieved. Knowledge of tephra fall
impacts and mitigation is very limited, so any systematic
assessment from technical experts is extremely valuable. In
particular, it would be useful to know the percentage of
adverse impact occurrence on the system as a whole. For
example, in order to better define fragility functions, we
must know what percentage of insulators flash over on a
given stretch of line that receives similar thicknesses of

tephra fall. Identification of those components most often
affected by tephra contamination together with further de-
velopment of cleaning and mitigation strategies will un-
doubtedly strengthen the resilience of electric power
systems.

Further research is needed to design power systems that
are resilient to tephra fall hazards. Proactive and reactive
response plans, cleaning methods, volcanic and electrical
monitoring techniques, and mitigation strategies must be
furthered and synthesised to provide adequate decision sup-
port for system operators. Additionally, tephra samples
intended for electrical analyses such as conductivity and
ESDD should be collected from specific impact sites to
ensure accurate representation of the electrical properties
that have contributed to the impact. These are vital first
steps in working towards providing reliable power supply
to society during tephra falls.

Conclusions

We have identified the key sources of risk, areas of impacts,
events and their causes, and their potential consequences for
power systems exposed to tephra fall. The following con-
clusions can be drawn from this study:

1. Case studies from around the world highlight the vul-
nerability of power systems to tephra fall hazards and
emphasise the need for more robust planning and miti-
gation strategies against tephra contamination. Tephra
can disrupt power supply in the following ways:

a. Tephra-induced flashover on HV insulators or trans-
former bushings.

Controlled outages for tephra cleaning.

c. Accelerated wear of HEP turbines (e.g. runner
blades, labyrinth seals, wear rings, band seals, cheek
plates and wicket gates) and moving components at
generation and substation facilities (e.g. transformer
fans).

d. Tephra ingress into HVAC systems which can block
intakes causing reduction of functionality or failure
of sensitive electronic equipment such as switching
and data acquisition systems.

e. Line breakage, bridged phases, and damage to tow-
ers and poles due to tephra loading directly onto
structures or by causing vegetation to fall onto lines.

f. Deterioration of apparatus due to corrosion and deg-
radation of insulation from burning and etching
caused by ‘tracking’ and leakage current (initiated
by conductive deposits of tephra).

2. The most common cause of power generation, transmis-
sion or distribution interruption arises from tephra-
induced insulator flashover. Dry tephra will not cause
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flashover. Once the tephra becomes wet, however, the
likelihood of insulator flashover increases significantly,
prompting immediate evasive action from power system
operators.

3. We have developed a fragility function for estimating
the probability of flashover across an insulator at a
range of dry or wet tephra thicknesses. Whilst it has a
number of limitations, our model represents a first-order
approach to probabilistically estimating the thickness of
wet tephra required to cause tephra-induced insulator
flashover.

4. We propose a number of untried but potential mitigation
strategies to be used during and after a tephra fall. The
most effective mitigation strategy against tephra impacts
is shutting down substation and generation facilities
until the tephra has been effectively removed from the
immediate area.

a. There are no guidelines for cleaning tephra from
insulators or other exposed electrical infrastructure.
This is a key knowledge gap.

5. Substations and generation sites have many critical
components and, as a whole, represent microsystems
within a larger power system. Future work should there-
fore look to quantify the vulnerability of all outdoor
components involved in providing power supply to
society.

6. Detailed and standardised reporting of power system
failure and resiliency during or following tephra fall is
crucial to improving our understanding of the processes
of tephra-induced impacts and enhance the effectiveness
of methods used within probabilistic volcanic risk
assessment.
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