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Abstract

This thesis considers issues in surface reconstruction such as identifying approxi-

mation methods that work well for certain applications and developing efficient methods

to compute and manipulate these approximations.

The first part of the thesis illustrates a new fast evaluation scheme to efficiently

calculate thin-plate splines in two dimensions. In the fast multipole method scheme,

exponential expansions/approximations are used as an intermediate step in converting

far field series to local polynomial approximations. The contributions here are extending

the scheme to the thin-plate spline and a new error analysis. The error analysis covers

the practically important case where truncated series are used throughout, and through

off line computation of error constants gives sharp error bounds.

In the second part of this thesis, we investigates fitting a surface to an object using

blobby models as a coarse level approximation. The aim is to achieve a given quality

of approximation with relatively few parameters. This process involves an optimization

procedure where a number of blobs (ellipses or ellipsoids) are separately fitted to a

cloud of points. Then the optimized blobs are combined to yield an implicit surface

approximating the cloud of points. The results for our test cases in 2 and 3 dimensions

are very encouraging. For many applications, the coarse level blobby model itself will be

sufficient. For example adding texture on top of the blobby surface can give a surprisingly

realistic image.

The last part of the thesis describes a method to reconstruct surfaces with known

discontinuities. We fit a surface to the data points by performing a scattered data in-

terpolation using compactly supported RBFs with respect to a geodesic distance. Tech-

niques from computational geometry such as the visibility graph are used to compute the

shortest Euclidean distance between two points, avoiding any obstacles. Results have

shown that discontinuities on the surface were clearly reconstructed, and the “across

fault” influence is suitably small.
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Chapter 1

Overview

1.1 Background of Surface Reconstruction

Surface reconstruction is one of the significant applications of scattered data interpola-

tion and approximation (Lewis et al., 2010). This area of research is motivated by its

many applications to different fields such as applied mathematics, geology, engineering,

biology and etc. In practice, it is very much related to the subject of computational

geometry and object modeling where curve, surface, solid or object representation is to

be sought from a given finite set of data. The obtained mathematical representation is

often studied and the reconstructed object is placed in computer graphics environment

for viewing, printing, or further manipulation. Such work in seeking good representa-

tion and construction techniques is classified as a major branch of CAGD - Computer

Aided Geometric Design. The term CAGD was first used by R. E. Barnhill and R. F.

Riesenfeld as the title of a symposium organized at University of Utah in 1974. Surfaces

reconstruction in CAGD has since then become a popular topic for research. Earlier

applications of reconstructed surfaces were mainly in manufacturing aircraft, ships and

cars. S. A. Coons and P. Bézier has pioneered methods of merging classical drawing or

drafting a surface with computational techniques. More on history and early develop-

ment in this area of CAGD can be found in the surveys by Barnhill (1985) and Farin

(2002a).

Reconstructing a surface from a finite set of point data is sometimes known

as surface fitting. Various surface reconstruction or surface fitting techniques exist,

(Söderkvist, 1999; Chivate and Jablokow, 1995; Turk and O’Brien, 2002; Weiss et al.,

2002; Carr et al., 2003), the choice of technique heavily depends on the application and

the format of input data. A major part of work in this thesis focused on seeking ap-

1



2 CHAPTER 1. OVERVIEW

proximation based surface reconstruction methods for certain applications of scattered

data fitting. By scattered data we mean irregularly spaced and randomly distributed

unorganized data points in contrast to points on a grid. Let us briefly review some of

the well known techniques for this problem.

1.2 Surface Representations

Scattered data sets that are obtained from 3D scanners have become common nowadays.

In fitting surfaces to such data, a continuous surface representation is desirable. The

fitted surface is required to approximate each data point within some tolerance. It is also

essential to be predictable, meaning that it should curve when necessary, but nowhere

else. Other than that, the fitted surface is also expected to reasonably describe regions

where no data is available. Criteria that determine the choice of surfaces representation

include accuracy, conciseness, local support, affine invariance and guaranteed levels of

parametric on geometric continuity, to name a few. Generally, surface representations for

scattered data sets can be divided into two categories, explicit or implicit. Explicit sur-

face representation includes parametric surfaces, subdivision surfaces and triangulated

surfaces (Cohen et al., 1980; Pratt, 1985; Hoppe et al., 1994; Hagen et al., 1996).

Generally, parametric surfaces can be represented in terms of two parameters u and

v. Boundary representation of such a surface consists of three parametric functions, x =

x(u, v), y = y(u, v) and z = z(u, v). Examples of parametric surfaces are Bézier surfaces

(Lodha and Warren (1990) and Farin (2002b, Chap. 14 - 17)), B-splines surfaces (Milroy

et al., 1995; Eck and Hoppe, 1996; Shi et al., 2004) and nonuniform rational B-spline

surfaces (NURBS) (Piegl, 1991; Ma and Kruth, 1998; Leal et al., 2010; Brujic et al.,

2010). Parametric surfaces have the advantage of locating points correctly on a surface.

It is also possible to describe complex shape by partitioning a surface into piecewise

parametric surface patches. Figure 1.2 shows an example of a parametric patch.

Bézier surfaces were independently developed and applied in car manufacturing

industry in the late 1950s by P. Bézier and J. de Casteljau (Barnhill, 1985). Such a

surface can be defined in a generic form of

P (u, v) =
m∑

i=0

n∑
j=0

Pi,jBi,m(u)Bj,n(v) (1.1)

where Pi,j are an (m+1)× (n+1) array of control points. Bi,m(u) and Bj,n(v) represent

the Bernstein polynomials of degrees m and n in the variables u and v, respectively. It is

clear that each term is obtained from a control point and the product of two univariate



1.2. SURFACE REPRESENTATIONS 3

P00

P10

P01

P11
P

n

Pv

Pu

u

v

z

y

x

Figure 1.1: Parametric surface patch.

Bernstein polynomials. Therefore each product forms a basis function of the surface.

A Bézier surface does not pass through the control points in general except for the

boundary or end control points. It remains within the convex hull of the control points.

Instead of Bernstein polynomials, B-splines surfaces uses piecewise polynomials as

their basis functions defined over a knot vector. Generally, a B-spline surface P of order

k in the u direction and order l in the v direction is a bivariate vector-valued piecewise

function of the form

P (u, v) =
m∑

i=0

n∑
j=0

Pi,jNi,k(u)Nj,l(v) (1.2)

where the Pi,j form the control net and Ni,k(u) and Nj,l(v) are the normalised B-spline

functions defined on the knot vectors:

U = {u1, u2, . . . um+k} and V = {v1, v2, . . . vn+l}.

In the case of uniform B-splines, the knots are equidistant. If the knots are not equidis-

tant, non-uniform splines are used. NURBS has become a popular choice of surface

form in the industry nowadays (Farin, 2002a). Using rational polynomials as their basis
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functions, a NURBS surface patch can be defined as:

P (u, v) =

m∑
i=0

n∑
j=0

Pi,jwi,jNi,k(u)Nj,l(v)

m∑
i=0

n∑
j=0

wi,jNi,k(u)Nj,l(v)

(1.3)

where the Pi,j, Ni,k(u) and Nj,l(v) are as given previously and wi,j are the weights. More

theoretical details on NURBS can be found in Farin (2002b, Chap. 17).

There exist a number of algorithms to reconstruct a parametric surface. See Chi-

vate and Jablokow (1995), Vida et al. (1994), Lim and Haron (2012) and references

therein. Most of these involve techniques such as parametrization, optimization and

least-squares approach (Liu and Wang, 2008; Weiss et al., 2002). Efficiency of these

algorithms are guaranteed when the data to be fitted is gridded (Piegl, 1991). If the

data is scattered, sometimes a suitable fitting algorithm can be applied after converting

scattered data to gridded data. The major drawback with parametric surfaces is extrap-

olation. It is sometimes desirable to be able to extend the surfaces outside the boundary

of the data points. Another important issue is the smoothness (Du and Schmitt, 1990;

Ma and Peng, 1995) of the surface. The term related to the smoothness of a surface is

called geometric continuity (Farin, 2002b, Chap 11.). A surface can be defined as having

Gn continuity where n is the order of smoothness. For example G1 continuity means

the tangent plane varies continuously with position on the surface. In particular, the

tangent planes from two adjacent patches must be coplanar along their join. Assembling

the patches together with certain level of continuity is a difficult task (Vida et al., 1994).

Liu and Hoschek (1989) reported sufficient conditions for G1 continuity in blending dif-

ferent types of parametric patches together such as rectangular and triangular patches.

In some cases, even high order smoothness (parametric as well as geometric continuity)

is required, see Hartmann (2001).

As we are interested in scattered data sets, it is reasonable to use implicit rather

than explicit representation for the reconstructed surface. An implicit description of a

surface is an equation satisfied by all points in the surface. In other words, an implicit

surface can be defined by a continuous scalar-valued function over the domain R3. It

is an infinite surface and not bounded by the bounding box of the data points. The

advantage of this is no additional work is required for computing intersections. Implicit

representations are well known to have topological flexibility. It is also very efficient in

checking if a point is on, inside or outside an implicit surface.

Substantial techniques (Bloomenthal et al., 1997; Zhao et al., 2000; Tobor et al.,
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2004b; Ye et al., 2010) have been proposed to reconstruct an implicit surface from scat-

tered data (these techniques are sometimes called meshless methods). In the last decade,

methods based on Radial Basis Functions (RBFs) for fitting a surface to unorganized

points are relatively popular in CAGD (Savchenko et al., 1995; Turk and O’Brien, 2002;

Carr et al., 2003; Morse et al., 2005). A surface that is reconstructed using RBFs is

globally smooth. Much theory has been developed regarding RBF approximation. A

particularly important property is the poisedness of interpolation problems. That is the

associated system of linear equations is invertible under very weak conditions as detailed

in Micchelli (1986) and Cheney and Light (2000).

Let us now define the surface reconstruction problem as a scattered data interpo-

lation problem. Given a set of distinct data points x = {x1, x2, · · · xN} ∈ Rd and a set

of function values f = (f1, f2, · · · fN), we intend to find an interpolant function s such

that

s(xi) = fi, 1 ≤ i ≤ N. (1.4)

Using appropriate RBFs, we can write the interpolation function in this form:

s(x) = p(x) +
N∑

i=1

λi φ
(|x− xi|

)
(1.5)

where p is a polynomial of low degree and the basic function φ is a real valued function on

[0,∞). The λi’s and the xi’s are the weights and centers of RBFs. Micchelli (1986) has

shown that the above interpolation system is invertible whenever φ
(|x− xi|

)
is strictly

conditionally positive definite of some order k and {xi} is unisolvent with respect to the

polynomials of total degree at most k− 1. Below is a treatment based on Beatson et al.

(2001b), showing that the interpolation system has a unique solution.

We consider the multivariate interpolation problem as: Given m points in Rd and

a function Φ : Rd × Rd → R, find a function of the form

s(x) = p(x) +
m∑

i=1

λiΦ(x, xi) (1.6)

where p(x) ∈ πd
k−1, the space of polynomials of total degree k − 1 in d variables, taking

specified values at the points xi. In Rd we usually take Φ(x, y) = φ(|x− y|). Let us now

give the definition of a strictly conditionally positive definite function.

Definition 1.2.1. A symmetric function Φ : Rd × Rd → R is strictly conditionally

positive definite of order k on Rd if for all sets X = {x1, x2, . . . , xm} ⊂ Rd of distinct
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points, and all vectors λ ∈ Rm satisfying the orthogonality conditions

m∑
i=1

λiq(xi) = 0 (1.7)

for all q ∈ πd
k−1, the quadratic form

λT Aλ =
m∑

i,j=1

λiλjΦ(xi, xj),

is positive whenever λ 6= 0.

A set of distinct points X = {x1, x2, . . . , xm} ⊂ Rd is said to be unisolvent for

polynomials of degree k − 1 (order k) if the only polynomial in πd
k−1 that has the value

zero at all the points is the zero polynomial.

Lemma 1.2.2. Let Φ be a strictly conditionally positive definite function of order k and

X = {x1, x2, . . . , xm} ⊂ Rd be unisolvent for polynomials of degree k − 1. Then given

any m values (f1, f2, . . . , fm) there is a unique function of the form (1.6) satisfying the

orthogonality conditions (1.7) and the interpolation conditions

s(xi) = fi 1 ≤ i ≤ m. (1.8)

Proof. The statement of the lemma is equivalent to saying the system

[
A P

P T O

] [
λ

c

]
=

[
f

O

]
(1.9)

has a unique solution, where

Ai,j = Φ(xi, xj), i, j = 1, 2, . . . ,m

and

Pi,j = pj(xi), i = 1, 2, . . . , m, j = 1, 2, . . . , `,

where {pj}`
j=1 is some basis for πd

k−1 and c are scalars c1, c2, . . . c`. Now let Q be an

m × (m − `) matrix whose columns span the orthogonal complement of the column

space of P . This implies in particular that Q has full rank. Then any λ ∈ Rm satisfying

P T λ = 0 can be uniquely expressed in the form λ = Qγ where γ ∈ Rm−`. Thus when

we write λ = Qγ the constraints on λ are automatically satisfied and we only need to

solve the unconstrained system

A(Qγ) + Pc = f.
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Premultiplying by QT gives

(QT AQ)γ = QT f (1.10)

(note we have used QT P = 0). Observe that for any u ∈ Rm−` with u 6= 0,

uT QT AQu = (Qu)T A(Qu) > 0

since Q has full rank and Φ is strictly conditionally positive definite of order k. Hence

QT AQ is strictly positive definite symmetric matrix. Therefore Equation (1.10) uniquely

specifies γ and λ = Qγ. Note also that Equation (1.10) can be rewritten as

0 = QT (f − AQγ) = QT (f − Aλ).

Hence f − Aλ is in the column space of P and there is a unique c such that

Pc = f − Aλ.

Thus there is a unique interpolant with parameters λ = Qγ and c as was to be proven.

Despite all the favourable characteristics of RBFs, one drawback is that they have

been computationally expensive to evaluate and fit, and therefore can appear infeasible

for large scale (more than a few tens of thousands of data points) computation. To rem-

edy this problem, the use of fast multipole methods and other hierarchical schemes allow

fast evaluation and fitting of RBFs (see Beatson and Greengard (1997)). Mathematical

analysis and techniques to increase computational efficiency for fast multipole related

methods were reported in Beatson and Newsam (1992); Beatson et al. (1999); Cherrie

et al. (2002); Beatson et al. (2001a).

1.3 Themes of Thesis

This thesis emphasises on two issues in surface reconstruction. The first issue that we

look into is to develop efficient methods to compute and manipulate these approxima-

tions. In particular, we analyze and present a faster evaluation scheme for thin-plate

splines in two dimensions. The new feature of the method is that exponential approxi-

mations are used as an intermediate step in obtaining local polynomial approximations.

Second, we intend to identify approximation methods that work well for certain

applications. In regards to this, a suitable method for reconstructing smooth objects

is proposed. The two stage process involves fitting blobby primitives to a set of points
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sampled from a surface and blending them together to obtain an implicit representation

describing the surface of the object. Besides, we also investigated a method to recon-

struct surfaces with known faults or barriers. This idea is motivated by geophysical

phenomena such as fault lines on earth surface. We incorporated techniques from com-

putational geometry such as the visibility graph, and methods for solving the shortest

distance problem in our method. Both methods that we propose have been applied

successfully to test cases.

The outline of this thesis is as follows. The first chapter in the thesis illustrates

a new fast evaluation scheme to efficiently calculate thin-plate splines in two dimen-

sions. We have adopted the idea by Hrycak and Rokhlin (1998) in using exponential

approximation as an intermediate representation. In the fast multipole method scheme,

exponential expansions/approximations are used as an intermediate step in converting

far field series to local polynomial approximations. The contributions here are extending

the scheme to the thin-plate spline and a new error analysis. The error analysis covers

the practically important case where truncated series are used throughout, and through

off line computation of error constants gives sharp error bounds.

In Chapter 3− 5, we present a method to reconstruct a surface of an object using

blobby models as a coarse level approximation. The method is rather simple and easy to

apply. It involves optimization and a blending process to give the final implicit surface.

Both reconstruction of a blobby curve in two dimensions and a blobby surface in three

dimensions are reported. We also give the corresponding reconstruction algorithms in

two schemes, one being user-initiated and the other being fully automated.

Chapter 6 − 8 describe a method in fitting a surface to data points with known

discontinuities. We performed a scattered data interpolation using compactly supported

RBFs with respect to a geodesic distance. A visibility graph based technique is used

to compute the shortest Euclidean distance between two points, avoiding any obstacles.

Results have shown that discontinuities on the surface were clearly reconstructed, and

the “across fault” influence is suitably small.



Chapter 2

Faster Fast Evaluation

In this chapter, we present a new method for fast evaluation of thin-plate splines in two

dimensions.

2.1 Introduction

Radial basis functions (RBFs) on Rd are functions of the form

s(·) = p(·) +
N∑

i=1

λiΦ(· − xi). (2.1)

Here, Φ, the basic function, is a fixed function mapping Rd → R, and p is a low de-

gree polynomial. The points {xi} are called the centers. Initially these functions were

studied for their beautiful theory. More recently they have become a standard tool in

many applications. Examples are surface reconstruction, uses in medicine such as in

the custom manufacture of artificial limbs and of cranial protheses, use in modelling

acquifers, and use in mineral exploration software such as the Leapfrog package. For all

these applications there is one immediate drawback in the form given in equation (2.1).

Namely, algorithms not taking advantage of the special properties of a particular Φ

will require O(N) arithmetic operations for evaluation of s at a single extra point x.

Further, non–specialised methods for fitting such an RBF s to N pieces of data, for

example by interpolation, will require O(N3) arithmetic operations. Fortunately, the

use of fast algorithms, see for example Beatson and Newsam (1992), or of compactly

supported kernels, see Wendland (2005), reduces the incremental cost of a single extra

evaluation dramatically, for example to O(1) operations, ignoring the cost of finding the

panel containing the evaluation point. Also, numerical experiments show that iterative

9
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fitting methods employing these fast algorithms to compute matrix–vector products,

typically solve interpolation problems with N nodes in O(N(log N)2) operations, rather

than O(N3). In this work, we present an improved fast evaluation method for thin-plate

splines in two dimensions. The new feature of the method is that exponential approxi-

mations are used as an intermediate step in obtaining local polynomial approximations.

This intermediate exponential approximation idea was first used by Hrycak and Rokhlin

(1998) in their method for fast evaluation of two dimensional potentials.

In this chapter, intermediate exponential approximations will be used in a fast

multipole method for the thin-plate spline. The error analysis given is new and differs

from that in Hrycak and Rokhlin (1998).

2.2 Hrycak and Rokhlin’s improved fast multipole

method

The fast multipole method (FMM) is listed as one of the top ten algorithms of the

century (Dongarra and Sullivan, 2000). It is developed for achieving fast products of

large-scale matrices with vectors. Hrycak and Rokhlin (1998) developed a fast multipole

method for potentials
1

z − t
employing, as an intermediate representation, exponential

approximations of the form

1

z − t
≈

L∑

`=1

w` e−x`(z−t), z, t ∈ C, (2.2)

where w` and x` are specified coefficients, t ∈ Q, z ∈ R0, and Q and R0 are sets specified

as follows. Figure 2.2 shows the partitioning used when the panel size h equals 1. In

the diagram, Q is the region [−1
2

, 1
2
] × [−1

2
, 1

2
], and R0 is the region consisting of the

rectangle [3
2
, 7

2
] × [−7

2
, 7

2
] minus the squares [3

2
, 5

2
] × [5

2
, 7

2
] and [3

2
, 5

2
] × [−7

2
,−5

2
]. Region

Rr is obtained from region R0 by rotating anti-clockwise by rπ/2 radians.

In this case, most translation operators are diagonal. This is different from previ-

ous implementation of FMM using Laurent (multipole) and Taylor expansions for the

potential field (Greengard and Rokhlin, 1987). The exponential approximations give

impressively high accuracy for the number of terms L. The numerical tool for finding

the exponential approximation formulas is using finite quadratures for integrals of the

form
1

z − t
=

∫ ∞

0

e−x(z−t)dx,
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Figure 2.1: The domains Q, R0, R1, R2 and R3
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developed by Yarvin and Rokhlin (1998). The integrals were approximated by expression

of the form ∫ ∞

0

e−x(z−t)dx ≈
L∑

`=1

w` e−x`(z−t),

where w` and x` are chosen to give low approximation error. In our work, the potential

1

z − t
is considered as an initial step to obtain approximations for the thin plate spline

because the exponential approximation to
1

z − t
leads to the exponential approxima-

tions to Log(z − t). Further details will be given in Section 2.4.

In algorithm 1 below, we briefly outline a generic fast multipole method which

consists of two stages: a setup stage and an evaluation stage. The reader who is not fa-

miliar with these algorithms will find more detailed descriptions in Beatson and Newsam

(1992); Beatson and Greengard (1997).

Algorithm 1 A fast multipole procedure for evaluation of s(x) =
∑N

i=1 λiΦ(x− xi)

SETUP: Given the centers and weights {(xi, λi)}
• Step 1: Construct a tree which at each new level creates child panels by splitting

parent panels, assigning the centers xi belonging to the parent to the appropriate
children. In R2 the tree is often chosen to be a quadtree (see Figure 2.2).

• Step 2: Starting at the leaf nodes work up the tree constructing for each panel, T ,
a truncated far field expansion which approximates the influence of the panel, at
points far from the panel. In many cases it is efficient to calculate the truncated
far field expansion of a parent panel indirectly by merging the expansions of its
children, rather than directly from the centers an weights {xi, λi)}.

• Step 3: Work down the tree level by level (see Figure 2.3). At level ` and work-
ing on panel T , first recenter the polynomial approximation associated with the
parent of T , and then add to this polynomials obtained by approximating far field
approximations impacting on panel T . These far field approximations arise from
the up to 27 well separated panels on the interaction list of T . See Figure 2.4.

EVALUATION: Given a point x at which to evaluate s(x).

• Step 1: Find the panel T containing x.

• Step 2: Evaluate s(x) by using the local polynomial approximation summarising
the influence of all the panels far away from T to approximate the far field, and
evaluating the near field directly. See Figure 2.4 for illustration of far field and
near field panels.

In the case of the potential
∑N

i=1 λi/(z − zi), Hrycak and Rokhlin (1998) use ex-
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Level 0 Level 1 Level 2 Level 3

Figure 2.2: Example of a quadtree in two dimensions. Taking a square as an initial
parent, repeatedly subdivide each parent panel into four equally sized child panels.

Figure 2.3: Tree of panels: each node at level ` refers to a square panel of area 4−`.

X

Figure 2.4: The interaction list of panel T . The interaction list of T is all panels at the
same level, whose influence has not been accounted for at a coarser level. Let T (red) be
the panel containing x. Boxes in grey are considered far away (or well separated) from
T and boxes in white are near neighbors of T .

ponential approximations to improve step 3 of the setup stage of Algorithm 1. They

do this by first converting far field approximations to exponential approximations, and

then approximating these exponential approximations by local Taylor polynomials. The

procedure can be anticipated to be an improvement for at least three reasons. First, the

exponential approximations have relatively few terms for the given accuracy. Second,
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recentering exponentials e−x`z to the center, t, of a target panel is a ‘diagonal’ operation,

since e−x`z = e−x`te−x`(z−t). Third, Taylor series approximations about t to the function

of exponential type
∑L

`=1 a` e−x`(z−t) will converge very much faster than Taylor series

approximations about t to the Laurent expansions
∑K

k=1 bk z−k. The singularity in the

Laurent expansion implies the radius of convergence of the Taylor series is |t|. The

convergence or divergence of the Taylor series at various radii leads to the following con-

clusions. The coefficients {cn} of the Taylor series of the Laurent expansion will decay

as O(
(|t| − ε)−n

)
but not as O(

(|t|+ ε)−n
)

for all small positive ε. More precisely,

lim sup
n→∞

1
n
√
|cn|

= |t|.

On the other hand, the coefficients {dn} of the Taylor series of the entire function will

decay as O(R−n) for every R > 0. More precisely, Boas (Boas, 1954, Theorem 2.2.2)

shows that the coefficients {dn} of the Taylor series of any non trivial combination of

exponentials will decay so that

lim sup
n→∞

n log n

− log(|dn|) = 1.

2.3 Laurent-like expansion of a thin-plate spline

In this section we discuss the mathematics underlying the formulation of the far field

series for a panel, as needed in step 2 of Algorithm 1.

We define the multipole coefficients as

ak =
1

k!

J∑
j=1

λjz
k
j and bk =

1

k!

J∑
j=1

λj z̄jz
k
j where k ≥ 0. (2.3)

Write Ak, Bk, α, β and γ for the multipole coefficients defined in the multipole expansion

of the biharmonic given by Beatson and Newsam (1992). Then the relationships between

the coefficients there and those here are (assuming all the weights λj are real),

a0 = α, a1 = β, b0 = β = a1, b1 = γ = B0, (2.4)

ak+1 =




−A0, k = 0,

1

(k − 1)!
Ak, k > 0,

(2.5)
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and

bk+1 =





B0, k = 0,

− 1

(k − 1)!
Bk, k > 0.

(2.6)

The change in notation here will simplify certain formulas in the exponential expansion

sections 2.4 and 2.5. The approximation of a thin-plate spline by a far field / Laurent

series is described by

Lemma 2.3.1. (Beatson and Newsam, 1992, Lemma 2) Suppose J centers zj, j =

1, · · · , J, with |zj| ≤ r and J corresponding real coefficients λj are given. Then, whenever

|z| > r the thin-plate spline associated with this cluster of centers,

s(z) =
J∑

j=1

λj φj(z) =
J∑

j=1

λj|z − zj|2 log |z − zj|, (2.7)

is alternatively given by the expansion

s(z) =
[
a0|z|2 − 2 Re

{
ā1z

}
+ b1

]
log |z|+ Re

{ ∞∑

k=0

η(k)(ak+1 z̄ − bk+1)z
−k

}
, (2.8)

where

ak =
1

k!

J∑
j=1

λj zk
j , bk =

1

k!

J∑
j=1

λj z̄j zk
j , k ≥ 0, (2.9)

and

η(k) =





−1, k = 0,

(k − 1) ! , k ≥ 1.
(2.10)

Furthermore, defining

M =
J∑

j=1

|λj| and c =
∣∣∣z
r

∣∣∣, (2.11)

then for any K ≥ 1 and |z| > r,

∣∣∣∣∣s(z)−
([

a0|z|2 − 2 Re
{
ā1z

}
+ b1

]
log |z|+ Re

{
K∑

k=0

η(k)(ak+1 z̄ − bk+1)z
−k

})∣∣∣∣∣

≤ Mr2

(K + 1)(K + 2)

(
c + 1

c− 1

)(
1

c

)K

. (2.12)

The following lemma enables the shifting of the center of a Laurent-like series

approximation to a thin-plate spline. The lemma enables calculation of the multipole

coefficents corresponding to a panel indirectly from those of its children, rather than
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directly from its centers and weights. This can lead to a considerable saving of compute

time when short truncated series summarise the influence of panels containing many

thousands of centers.

Lemma 2.3.2. (Beatson and Newsam, 1992, Lemma 3) Let

s(z) =
[
a0|z − t|2 − 2 Re

{
ā1(z − t)

}
+ b1

]
log |z − t|

+ Re

{ ∞∑

k=0

η(k)
[
ak+1 (z̄ − t̄)− bk+1

]
(z − t)−k

}
, (2.13)

be the Laurent-like expansion about t of the thin-plate spline, s, associated with J centers

zj and corresponding real coefficients λj. Suppose that all the centers are located in a

disk radius R about t. Then for all |z| > R + |t|,

s(z) =
[
â0|z|2 − 2 Re

{
â1z

}
+ b̂1

]
log |z|+ Re

{ ∞∑

k=0

η(k)(âk+1 z̄ − b̂k+1)z
−k

}
, (2.14)

where

âk =





a0 , k = 0,

a0 t + a1 , k = 1,

â1 tk−1

(k − 1)!
− a0 tk

(k − 2)!k
+

k−1∑
j=1

aj+1 tk−j−1

(k − j − 1)!
, k ≥ 2.

(2.15)

and

b̂k =





a0t̄ + b0 , k = 0,

a0|t|2 + 2 Re
{
b0 t

}
+ b1, k = 1,

− b̂0 tk

(k − 2)!k
+

b̂1 tk−1

(k − 1)!
+

k−1∑
j=1

(
t̄ aj+1 + bj+1

)
tk−j−1

(k − j − 1)!
, k ≥ 2.

(2.16)

Furthermore, the coefficients β, γ, {âk} and {b̂k} of the shifted expansion are the same as

those obtained if the thin-plate spline is directly expanded about 0 using lemma (2.3.1).
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Hence, the error bound

∣∣∣∣∣s(z)−
([

a0|z|2 − 2 Re
{
β̄z

}
+ γ

]
log |z|+ Re

{
K∑

k=0

η(k)(âk+1 z̄ − b̂k+1)z
−k

})∣∣∣∣∣

≤ Mu2

(K + 1)(K + 2)

(
c + 1

c− 1

)(
1

c

)K

. (2.17)

holds where

u = max
1≤i≤J

|zi| ≤ R + |t| and c =
∣∣∣z
u

∣∣∣ (2.18)

Proof. As in the statement of the lemma any coefficient with a ̂ on top, is a coefficient of

the shifted expansion. This lemma follows from translating the formulas given in Beatson

and Newsam (1992, Lemma 3), to be in terms of the new multipole coefficients introduced

at the beginning of this section.

α̂ = α =⇒ â0 = a0

β̂ = αt + β =⇒ â1 = a0t + a1

β̂ = αt + β =⇒ b̂0 = a0t + b0

Â0 = −αt + A0 =⇒ â1 = a0t + a1

γ̂ = γ + 2Re{βt}+ α|t|2 =⇒ b̂1 = b1 + 2Re{b0 t}+ a0|t|2.

Also

Âk =
β̂tk

k
− αtk+1

k + 1
+

k∑
j=1

Aj

(
k − 1

j − 1

)
tk−j, k ≥ 1,

implies

(k − 1)! âk+1 =
â1t

k

k
− a0t

k+1

k + 1
+

k∑
j=1

(j − 1)! aj+1

(
k − 1

j − 1

)
tk−j

=⇒ âk+1 =
â1t

k

k!
− a0t

k+1

(k − 1)! (k + 1)
+

k∑
j=1

aj+1t
k−j

(k − j)!
, k ≥ 1,

=⇒ âk =
â1t

k−1

(k − 1)!
− a0t

k

(k − 2)! k
+

k−1∑
j=1

aj+1t
k−j−1

(k − j − 1)!
, k ≥ 2.

Finally,

B̂k =
β̂tk+1

k + 1
− γ̂tk

k
+

k∑
j=1

(
Bj − Ajt

) (
k − 1

j − 1

)
tk−j, k ≥ 1,
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implies

−(k − 1)! b̂k+1 =
b̂0t

k+1

k + 1
− b̂1t

k

k
+

k∑
j=1

(j − 1)! (bj+1 + aj+1t)

(
k − 1

j − 1

)
tk−j

=⇒ b̂k+1 =
b̂1t

k

k!
− b̂0t

k+1

(k − 1)! (k + 1)
+

k∑
j=1

(
bj+1 + aj+1t

)
tk−j

(k − j)!
, k ≥ 1,

=⇒ b̂k =
b̂1t

k−1

(k − 1)!
− b̂0t

k

(k − 2)! k
+

k−1∑
j=1

(
bj+1 + aj+1 t

)
tk−j−1

(k − j − 1)!
, k ≥ 2.

2.4 Exponential approximation of thin-plate

splines

This section develops an exponential approximation of thin-plate splines
∑J

j=1 λj|z −
zj|2 log |z−zj| based upon the ‘quadrature formulas’ for approximation of potentials the

form
J∑

j=1

λj

z − zj

, given by Hrycak and Rokhlin (1998).

Hrycak and Rokhlin (1998) give approximation formulas of the form

1

z − t
≈

L∑

`=1

w` ex`(z−t), t ∈ Q, z ∈ R0, (2.19)

which have relatively high accuracy for the number of nodes L. The quadrature nodes

and weights are listed in Hrycak and Rokhlin (1998) and are available at the URL

http://www.netlib.org/pdes/multipole/pwts4.f. The following table summarizes

the performance of these quadratures such that

∣∣∣∣∣
1

z − t
−

L∑

`=1

w` ex`(z−t)

∣∣∣∣∣ < ε (2.20)

for all t ∈ Q, z ∈ R0.

L 8 10 16 33

ε 10−3 10−4 10−7 10−15

Table 2.1: Performance of different quadrature formulas.
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2.4.1 An exponential approximation of Log(z-t)

The exponential approximations to the function 1/(z − t) developed by Hrycak and

Rokhlin (1998) leads to exponential approximations to Log(z − t). Let U be a simply

connected region within C\(−∞, 0]. Then Log(u) =

∫ u

1

1

v
dv, where Log is the principal

branch of the complex logarithm, and the path integral is over a path not touching the

branch cut. Suppose that the quadrature formula (2.19) has absolute error bounded

above by ε when t ∈ Q and z ∈ R0. Then

Log(u) =

∫ u

1

1

v
dv ≈

∫ u

1

L∑

`=1

w` e−x`v dv =
L∑

`=1

w`

x`

e−x` −
L∑

`=1

w`

x`

e−x` u (2.21)

and

∣∣∣∣∣Log(u)−
{

L∑

`=1

w`

x`

e−x` −
L∑

`=1

w`

x`

e−x` u

}∣∣∣∣∣ =

∣∣∣∣∣
∫ u

1

1

v
−

L∑

`=1

w` e−x`v dv

∣∣∣∣∣ ≤ εL, (2.22)

where L is the maximum length of minimal path in R0 −Q from 1 to u.

2.4.2 An exponential approximation of (y-s)Log(y-s)

Integration by parts gives us the formula

v Log(v) =

∫ v

1

Log(u) du + v − 1 (2.23)
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for v in the right half plane. Therefore

(y − s) Log(y − s) =

∫ y−s

1

Log(u) du + (y − s)− 1

≈
∫ y−s

1

(
L∑

`=1

w`

x`

e−x` −
L∑

`=1

w`

x`

e−x`u

)
du + (y − s)− 1

=
L∑

`=1

w`

x`

e−x` u

∣∣∣∣
y−s

u=1

−
L∑

`=1

w`

−x2
`

e−x`u

∣∣∣∣
y−s

u=1

+(y − s)− 1

=
L∑

`=1

w`

x`

e−x`(y − s− 1) + (y − s)− 1 +
L∑

`=1

w`

x2
`

(
e−x`(y−s) − e−x`

)

= α y − α s− α +
L∑

`=1

w`

x2
`

ex`s e−x`y −
L∑

`=1

w`

x2
`

e−x`

= α y − α s− (α + β) +
L∑

`=1

w`

x2
`

ex`s e−x`y, (2.24)

where α =
L∑

`=1

w`

x`

e−x` + 1 and β =
L∑

`=1

w`

x2
`

e−x` .

2.4.3 Exponential approximation of biharmonic RBFs

Using the approximation for (y − s) Log(y − s) derived above, an approximation of a

single thin-plate source at t ∈ Q with weight 1, and y ∈ R0, is

Φ(y − t) = |y − t|2 log |y − t|

= Re

{
(ȳ − t̄)(y − t) Log(y − t)

}

≈ Re

{
(ȳ − t̄)

[
α y − α t− (α + β) +

L∑

`=1

w`

x2
`

ex` t e−x`y

]}

= α
[
|y|2 + |t|2 − 2 Re(t̄y)

]
− (α + β) Re

{
ȳ − t̄

}

+ Re

{[
ȳ

L∑

`=1

w`

x2
`

ex`t +
L∑

`=1

w`

x2
`

ex`t(−t̄ )

]
e−x`y

}

= α
[
|y|2 + |t|2 − 2 Re(t̄y)

]
− (α + β) Re

{
ȳ − t̄

}

+ Re

{ L∑

`=1

[
ȳc′` − d′`

]
e−x`y

}
, (2.25)
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where

c′` =
w`

x2
`

ex`t and d′` =
w`

x2
`

t̄ ex`t .

Using (2.25), an exponential approximation of the thin-plate spline, corresponding to a

cluster of sources and weights
{

(zj, λj) : 1 6 j 6 J
}
⊂ Q × R, and evaluation points

z ∈ R0, is

s(z) =
J∑

j=1

λj |z − zj|2 log |z − zj|

= Re

{ J∑
j=1

λj(z̄ − z̄j)(z − zj) Log(z − zj)

}

≈ α

[
J∑

j=1

λj|z|2 +
J∑

j=1

λj|zj|2 − 2 Re

{ J∑
j=1

λj z̄jz

}]

− (α + β) Re

{ J∑
j=1

λjz −
J∑

j=1

λjzj

}
+ Re

{ L∑

`=1

[
z̄c` − d`

]
e−x`z

}

= Re

{
γ2|z|2 + γ1z + γ0

}
+ Re

{ L∑

`=1

[
z̄c`,∞ − d`,∞

]
e−x`z

}
, (2.26)

where

γ2 = α a0 , γ1 = −2α b0 − (α + β) a0 γ0 = α b1 + (α + β) a1 , (2.27)

c`,∞ =
w`

x2
`

J∑
j=1

λj ex`zj and d`,∞ =
w`

x2
`

J∑
j=1

λj z̄j ex`zj . (2.28)

Note that

J∑
j=1

λj ex` zj =
J∑

j=1

λj

∞∑

k=0

(x`zj)
k

k!
=

∞∑

k=0

xk
`

1

k!

J∑
j=1

λj zk
j =

∞∑

k=0

xk
` ak , (2.29a)

J∑
j=1

λj z̄j ex`zj =
J∑

j=1

λj z̄j

∞∑

k=0

(x`zj)
k

k!
=

∞∑

k=0

xk
`

1

k!

J∑
j=1

λj z̄j zk
j =

∞∑

k=0

xk
` bk , (2.29b)

where ak and bk are the multipole coefficients as defined in (2.3). The expressions on

the right of (2.29) are not directly applicable in a multipole code as they require the

calculation of infinitely many multipole coefficents for each source panel. Therefore, we

consider calculating approximations c`,K and d`,K to c`,∞ and d`,∞ by truncating the
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series in (2.29). We define

c`,K =
w`

x2
`

K∑

k=0

xk
` ak ≈ w`

x2
`

∞∑

k=0

xk
` ak = c`,∞ and d`,K =

w`

x2
`

K∑

k=0

xk
` bk ≈ d`∞, (2.30)

which leads to an exponential approximation to s(z) of the form

ΨL,K(z) := Re

{
γ2|z|2 + γ1z + γ0

}
+ Re

{ L∑

`=1

[
z̄c`,K − d`,K

]
e−x`z

}
. (2.31)

2.5 Exponential approximations of thin-plate

spline in scaled and rotated settings

The purpose of this section is to develop the expansions and error estimates underlying

step 3 of Algorithm 1, when exponential expansions are used as an intermediate step in

converting far field series to local approximations.

In step 3, at level ` in the tree, all the panels are squares of size h × h, and the

panels in the level above are all 2h×2h. The first part of step 3 at level ` is to sweep over

all the panels initializing the local polynomial approximation by shifting the polynomial

approximation of its parent, for example by using the complete Horner scheme. Next, in

a sweep regarding every level ` panel in turn as a source, and shifting the origin so that

it becomes the panel hQ, exponential approximations are calculated for the regions hR0,

hR1, hR2 and hR3. Finally, the exponential approximation holding in hRr is converted

to a Taylor polynomial approximation in each h × h target subpanel, T , within hRr.

It is clear from this discussion that exponential expansions and error bounds, relevant

when the source panel is hQ and the target regions are hR0, hR1, hR2 and hR3, are

needed.

Fundamental to the error estimates to be given below is the maximum error in

approximating over R0, a single thin-plate source with centre t ∈ Q and weight unity.

That is

εL,K := max
t∈Q

max
z∈R0

∣∣|z − t|2 log |z − t| −ΨL,K,t(z)
∣∣ , (2.32)

where ΨL,K,t is the approximation ΨL,K given in (2.31), when the cluster of sources

reduces to a single source at t, with weight unity. εL,∞ can be bounded by analyzing the

steps made in deriving the approximation in section 2.4. However, tighter estimates of

εL,∞ can be found numerically, for example by maximising the error in approximating a
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single source, with t and z restricted to very fine grids.

In an implementation of this fast evaluation method considerable computational

savings can be achieved by deriving the exponential expansions for a panel from the

coefficients of a short truncated Laurent expansion, rather than directly from the (possi-

bly millions of) centers and weights, {(zj, λj)}, associated with the panel. Surprisingly,

error analysis for these truncated exponential expansions is not discussed in Hrycak and

Rokhlin (1998). It is important to note that in such an implementation the relevant

error constants are the εL,K , with K finite, rather than the εL,∞. Fortunately, the of-

fline computation strategy discussed for computation of εL,∞, can also be applied to the

practically important case of computing εL,K with K finite. Such computations were

carried out giving the results listed in Table 2.2. The error constants in the table were

calculated offline using a mesh size of 1/512. The computations were performed using

the Nvidia CUDA parallel computing environment. The error constants for L = 33 have

L εL,L−2 εL,L εL,∞

8 3.5948(−4) 3.5438(−4) 3.5389(−4)

10 3.9052(−5) 3.9048(−5) 3.9048(−5)

16 1.3322(−7) 2.8925(−8) 2.8925(−8)

33 8.3176(−14) 1.5761(−14) 3.8698(−17)

Table 2.2: Error constants, εL,K , for exponential approximation of thin-plate splines
with various values of L and K.

been computed in quadrule precision. If the L = 33 error computations are carried out

in double precision then we see numbers like 3.13(−13) due to roundoff. Error estimates

for the exponential approximation of thin-plate splines in the case of scaled and rotated

domains are given in the Theorem below. Note the level dependent factor h2 in the error

estimates.

Theorem 2.5.1. Consider the thin plate spline,

s(z) =
J∑

j=1

λj |z − zj|2 log |z − zj| , (2.33)

associated with a cluster of centers z1, . . . , zJ . Suppose that εL,K is defined as in (2.32).

Then for all {(zj, λj) : 1 ≤ j ≤ J} ⊂ hQ× R and z ∈ hRr, 0 ≤ r ≤ 3,

∣∣∣s(z)−ΨL,K,h,r(ω)
∣∣∣ ≤ h2 εL,K

J∑
j=1

|λj| (2.34)
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where ω = z/h and the truncated series expansion of (2.33),

ΨL,K,h,r(ω) = Re
{
γ2,h,r|ω|2 + γ1,h,r ω + γ0,h,r

}

+ Re

{ L∑

`=1

[
ω̄ c`,K,h,r − d`,K,h,r

]
e−x`(−i)rω

}
, (2.35)

c`,K,h,r =
h2 w`

x2
`

K∑

k=0

xk
` (−i)r(k−1) ak

hk
, d`,K,h,r =

h2 w`

x2
`

K∑

k=0

xk
` (−i)r(k−1) bk

hk+1
, (2.36)

γ2,h,r = (α + log h) h2 a0, γ1,h,r = − (α + β) h2 (−i)r a0 − 2 (α + log h) h b0,

and γ0,h,r = (α + log h) b1 + (α + β) h (−i)r a1. (2.37)

Proof. Let {(zj, λj) : 1 ≤ j ≤ J} ⊂ hQ × R and z ∈ hRr, 0 ≤ r ≤ 3. Define

ωj = zj/h and ω = z/h. Then, from the definition of εL,K , and considering sources

{((−i)rωj , λj)} ⊂ Q× R and an evaluation point (−i)rω ∈ R0,

∣∣∣∣∣
J∑

j=1

λj|ω − ωj|2 log |ω − ωj| −ΨL,K,r((−i)rω)

∣∣∣∣∣ ≤ εL,K

J∑
j=1

|λj|, (2.38)

where ΨL,K,r is ΨL,K calculated using the (−i)rωj’s rather than the zj’s.

Note that

J∑
j=1

λj|z − zj|2 log |z − zj| = h2 log(h)
J∑

j=1

λj|ω − ωj|2

+ h2

J∑
j=1

λj|ω − ωj|2 log |(−i)r(ω − ωj)| . (2.39)

Therefore, the original thin-plate spline becomes after scaling and rotating z and the

zj’s, a quadratic polynomial plus h2 times a new thin-plate spline. This new thin-plate

spline has sources and evaluation point in the standard (Q,R0), geometry. Therefore,

define

ΨL,K,h,r(ω) = h2 log(h)
J∑

j=1

λj|ω − ωj|2 + h2ΨL,K,r((−i)rω), (2.40)

which amounts to approximating the quadratic polynomial part above exactly and the

TPS in standard geometry with ΨL,K,r. Then from (2.38) the error estimate (2.34) holds.

It remains to show that the approximation (2.40) can be rewritten in the form

given in the statement of the Theorem.
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Explicitly, from (2.30), (2.27) and using a hat “̂ ” to indicate an expression

calculated from the (−i)rωj’s, rather than the zj’s

ΨL,K,r((−i)rω) = Re
{
γ̂2|ω|2 + γ̂1(−i)rω + γ̂0

}

+ Re

{
L∑

`=1

[
ir ω ĉ`,K − d̂`,K

]
e−x`(−i)rω

}
, (2.41)

where

ĉ`,K =
w`

x2
`

K∑

k=0

xk
` âk, d̂`,K =

w`

x2
`

K∑

k=0

xk
` b̂k,

âk =
(−i)rk

k!

J∑
j=1

λj ωk
j = (−i)rkh−kak ,

b̂k =
(−i)r(k−1)

k!

J∑
j=1

λjω̄j ωk
j = (−i)r(k−1) h−(k+1)bk ,

and the ak, bk are multipole coefficients for the unscaled and unrotated sources

{(zj, λj)}J
j=1. Also,

γ̂2 = α â0 = αa0

γ̂1 = −2 α b̂0 − (α + β) â0 = −2 α
ir b0

h
− (α + β)a0

γ̂0 = α b̂1 + (α + β) â1 = α
b1

h2
+ (α + β)

(−i)r a1

h
.

Therefore from (2.40) and (2.41)

ΨL,K,h,r(ω) = h2 log(h)
J∑

j=1

λj Re
{|ω|2 − 2ωωj + |ωj|2

}
+ h2Re

{
γ̂2|ω|2 + γ̂1(−i)rω + γ̂0

}

+ h2Re

{
L∑

`=1

[
ir ω ĉ`,K − d̂`,K

]
e−x`(−i)rω

}

= log(h) Re
{
h2 a0|ω|2 − 2 hb0 ω + b1

}
+ h2 Re

{
γ̂2|ω|2 + γ̂1(−i)rω + γ̂0

}

+ h2 Re

{
L∑

`=1

[
ω irĉ`,K − d̂`,K

]
e−x`(−i)rω

}

= Re
{
γ2,h,r|ω|2 + γ1,h,r ω + γ0,h,r

}
+ Re

{
L∑

`=1

[ω̄ c`,K,h,r − d`,K,h,r] e
−x`(−i)rω

}
,
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as required.

2.6 Converting exponential expansions into

polynomial approximations

This subsection concerns converting exponential approximations into Taylor polynomial

approximations.

The original exponential approximation approximates the influence of sources in

hQ throughout one of the target regions hRr. In terms of the scaled variable, ω = z/h, it

approximates the influence of sources in Q throughout one of the regions Rr. A Taylor

polynomial approximation will be formed for each of the 1 × 1 subsquares of Rr, see

Figure 2.2. The piecewise polynomial approximation obtained will (in a single target

square) be of the form

ΥL,K,q,r,h(u) = Re

{
hq+1u

q+1 +

q∑
j=0

(ū gj + hj) uj

}
≈ ΨL,K,h,r(ω) ≈ s(z), (2.42)

where u = ω−t = (z−ht)/h, and t is the center of one of the subsquares of Rr. This will

give O (|u|q+2) order approximation to ΨL,K,h,r(u + t), and can therefore be identified as

the Taylor polynomial in two real variables.

Explicitly, within the target square with center t,

ΨL,K,h,r(ω) = ΨL,K,h,r(u + t)

= Re
{
γ2,h,r|u + t|2 + γ1,h,r(u + t) + γ0,h,r

}
(2.43)

+ Re

{ L∑

`=1

[
(ū + t̄) c`,K,h,r − d`,K,h,r

]
e−x`(−i)rt e−x`(−i)ru

}
. (2.44)

Expanding all the terms involving u on the right of (2.44) and neglecting those which

are O(|u|q+2) as |u| → 0, we obtain the required approximation ΥL,K,q,h,r(u) of the form
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(2.42), with coefficients

gj =





L∑

`=1

c`,K,h,r e−x` (−i)rt , j = 0,

γ2,h,r +
L∑

`=1

c`,K,h,r (−x`)(−i)r e−x` (−i)rt, j = 1,

L∑

`=1

c`,K,h,r
(−x`)

j(−i)rj

j !
e−x` (−i)rt, j ≥ 2,

(2.45)

and

hj =





γ2,h,r|t|2 + γ1,h,rt + γ0,h,r +
L∑

`=1

[
t̄ c`,K,h,r − d`,K,h,r

]
e−x` (−i)rt , j = 0,

2 γ2,h,r t̄ + γ1,h,r +
L∑

`=1

[
t̄ c`,K,h,r − d`,K,h,r

]
(−x`)(−i)r e−x` (−i)rt, j = 1,

L∑

`=1

[
t̄ c`,K,h,r − d`,K,h,r

] (−x`)
j(−i)rje−x` (−i)rt

j !
, j ≥ 2.

(2.46)

Fundamental to the error estimates to be given below is the maximum error in

approximating over R0, a single thinplate source with centre v ∈ Q, and weight unity.

That is

εL,K,q := max
v∈Q

max
z∈R0

∣∣|z − v|2 log |z − v| −ΥL,K,q,v(z)
∣∣ , (2.47)

where ΥL,K,q,v is the piecewise polynomial approximation in R0 to this single source

generated by the procedure described in the previous paragraph with r = 0, h = 1 and

series length parameters L, K, and q. The approximation is piecewise polynomial as

the local polynomial changes as the 1 × 1 target subsquare with center t in region R0

changes. We estimate the error constants εL,K,q numerically, by maximizing the error

over very fine grids with spacing 1/512.

Theorem 2.6.1. Suppose that εL,K,q is defined as in (2.47). Then for all {(zj, λj) : 1 ≤
j ≤ J} ⊂ hQ× R and z ∈ hRr, 0 ≤ r ≤ 3,

∣∣∣s(z)−ΥL,K,q,h,r(ω)
∣∣∣ ≤ h2 εL,K,q

J∑
j=1

|λj|, (2.48)

where ω = z/h, and ΥL,K,q,r,h is a piecewise polynomial which has the form given in

(2.42) in each h × h subsquare in hRr. Equations (2.45) and (2.46) specify the coeffi-

cients {gj} and {hj} of each polynomial piece in terms of the approximation ΦL,K,h,r of

Theorem 2.5.1.
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Proof. The proof of this Theorem is along similar lines to that of Theorem 2.5.1.

Let {(zj, λj) : 1 ≤ j ≤ J} ⊂ hQ×R and z ∈ hRr, 0 ≤ r ≤ 3. Define ωj = zj/h and

ω = z/h. Then, from the definition of εL,K,q, and considering sources {((−i)rωj , λj)} ⊂
Q× R and an evaluation point (−i)rω ∈ R0,

∣∣∣∣∣
J∑

j=1

λj|ω − ωj|2 log |ω − ωj| −ΥL,K,r((−i)rω)

∣∣∣∣∣ ≤ εL,K,q

J∑
j=1

|λj|, (2.49)

where ΥL,K,q,r is ΥL,K,q calculated using the (−i)rωj’s rather than the zj’s.

Recall, equation (2.39) showing how the original thinplate spline becomes after

scaling and rotating z and the zj’s, a quadratic polynomial plus h2 times a new thinplate

spline. This new thinplate spline has sources and evaluation point in the standard

(Q,R0), geometry. Therefore, define

ΥL,K,q,r,h(ω) = h2 log(h)
J∑

j=1

λj|ω − ωj|2 + h2ΥL,K,q,r((−i)rω), (2.50)

which amounts to approximating the quadratic polynomial part on the right of (2.39)

exactly, and the TPS in standard geometry with ΥL,K,q,r. Then from (2.49) the error

estimate (2.48) holds.

It remains only to show that the approximation ΥL,K,q,r,h can be rewritten in the

form given in (2.42). The details of these calculations are omitted.

Values of the error constants εL,K,q for various choices of L, K and q are given in

Table 2.3 below. In the corresponding computer code an acceptable maximum error, η,

for the influence of a single source panel, S, on a single target panel, T , at the same level,

is determined. Then, whenever the influence of a source panel S is to be approximated

by a polynomial in Step 3 of Algorithm 1, L,K, and q are determined as the first choice

from the table such that

h2εL,K,q

∑
i:zi∈S

|λi| < η.

Besides calculating the error constant, we also recorded some timings and compare

our method (EEFM) with the NFFT method by Potts et al. (2004), which is an algorithm

based on fast Fourier transform at nonequispaced knots. The timings and the relative

errors achieved were tabulated in Table 2.4, 2.5 and 2.6. These numerical experiments

were conducted via evaluating the algorithm with the number of sources (N), and the
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L K q εL,K,q L K q εL,K,q

2 2 2 9.495(−1) 17 17 17 9.946(−9)

3 3 2 2.832(−1) 18 18 18 4.141(−9)

4 4 2 5.056(−2) 19 19 19 1.771(−9)

5 5 3 2.051(−2) 20 20 20 7.615(−10)

6 6 4 6.755(−3) 21 21 21 3.155(−10)

7 7 5 1.909(−3) 22 22 22 1.356(−10)

8 8 6 3.564(−4) 23 23 23 6.012(−11)

9 9 7 1.193(−4) 24 24 24 2.611(−11)

10 10 8 3.907(−5) 25 25 25 1.114(−11)

11 11 10 8.844(−6) 26 26 26 4.801(−12)

12 12 10 4.028(−6) 27 27 27 2.179(−12)

13 13 12 6.680(−7) 28 28 28 9.304(−13)

14 14 14 1.965(−7) 29 29 29 4.246(−13)

15 15 14 1.131(−7) 30 30 30 3.091(−13)

16 16 16 2.899(−8)

Table 2.3: Error constants, εL,K,q, for exponential approximation of thin plate splines
with various values of L, K and q.

number of evaluation points equal to
(
1 +

√
bNc

)2

, a number usually slightly larger

than N . The weights λi were all set equal to 1. The times taken by the algorithm

are consistent with an approximate order N overall execution time. The order constant

depending on the required relative precision.

All the timings shown are the smallest seen in 5 runs on an unloaded machine. The

code is single threaded and ran on an otherwise unloaded machine with a 3.4GHz Intel

I7-2600K CPU. In the tables the notation r.stu(−v) indicates the number r.stu× 10−v.

We expect to be able to improve our implementation further for a moderate further

increase in speed.

We show the performance of both algorithms by calculating the speed up factor

(i.e. direct time/algorithm time) for various different N ’s and different target relative

precisions. These are presented in Table 2.7. Figure 2.5 shows the comparison of per-

formance for both algorithm at different precisions. Note that our method generally

outperformed the NFFT method. Also, for large N , our method can be dramatically

faster than direct evaluation. Over 200 times faster for N = 64, 000 and almost 1000

times faster for N = 256, 000.
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rel. err. EEFM < 1.0E−4
rel. err. EEFM < 1.0E−8
rel. err. EEFM < 1.0E−12
rel. err. NFFT < 1.0E−4
rel. err. NFFT < 1.0E−8
re. err. NFFT < 1.0E−12

Figure 2.5: Comparison of the speed up factor for EEFM and NFFT computations at
various approximate precisions.
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2.7 Exploiting rotational symmetry

2.7.1 Exploiting symmetry in forming exponential series

In this section, we will show how the coefficients c`,K,h,r and d`,K,h,r of the four different

exponential approximations corresponding to a single source panel can be calculated

efficiently. Saving operations in this way is discussed in Hrycak and Rokhlin (1998).

Recall that c`,K,h,r =
h2 w`

x2
`

K∑

k=0

(x`

h

)k

(−i)r(k−1) ak, as defined in equation (2.36)

of Theorem 2.5.1. Let us define the notation
K∑

k=j, 4

f(k) to mean the sum of f(k) over

indices k such that j ≤ k ≤ K and k = j (mod 4). Since (−i)k is four periodic, it follows

that

c`,K,h,r =
h2 w`

x2
`

ir
K∑

k=0

(x`

h

)k (
(−i)k

)r
ak

=
h2 w`

x2
`

[
ir

K∑

k=0, 4

(x`

h

)k

ak +
K∑

k=1, 4

(x`

h

)k

ak

+ (−i)r

K∑

k=2, 4

(x`

h

)k

ak + (−1)r

K∑

k=3, 4

(x`

h

)k

ak

]

=
h2 w`

x2
`

[
irf0,` + f1,` + (−i)rf2,` + (−1)rf3,`

]
,

where fj,` =
K∑

k=j,4

(x`

h

)k

ak. This allows efficient computation of the coefficients c`,K,h,r,

for 0 ≤ r ≤ 3, simultaneously. This way, one can first compute fj,` for 0 ≤ j ≤ 3. Then

coefficients c`,K,h,r for 0 ≤ r ≤ 3 can be computed by fixed code without computing ir,

(i)r and (−1)r. Similarly, d`,K,h,r can also be computed by the same technique,

d`,K,h,r =
hw`

x2
`

ir
K∑

k=0

(x`

h

)k (
(−i)k

)r
bk

=
hw`

x2
`

[
ir

K∑

k=0, 4

(x`

h

)k

bk +
K∑

k=1, 4

(x`

h

)k

bk

+ (−i)r

K∑

k=2, 4

(x`

h

)k

bk + (−1)r

K∑

k=3, 4

(x`

h

)k

bk

]
.
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2.7.2 Exploiting symmetry in recentering polynomials

In this subsection, we discuss how to recenter the polynomial approximation correspond-

ing to a parent panel efficiently to the centers of the children. The approach taken is

via the complete Horner scheme and differs from that discussed in Hrycak and Rokhlin

(1998).

The complete Horner scheme for expressing a polynomial p(z) =
K∑

k=0

akz
k expanded

about 0, as a polynomial
K∑

k=0

bk(z−t)k expanded about t, is given in the algorithm below.

Algorithm 2 The complete Horner scheme

for j = 0 to K − 1 do
for k = K − j − 1 to K − 1 do

ak := ak + tak+1

end for
end for

In this pseudo code, the final ak’s are the desired coefficients bk. As written,

this scheme takes
(K + 1)K

2
complex multiplications and

(K + 1)K

2
complex additions.

However if t is one of 1, i,−1 or −i then, all the multiplications can be avoided and the

arithmetic work reduces to
(K + 1)K

2
complex additions.

For example in the particular case t = i, Algorithm 2 can be recoded

as

for j = 0 to K − 1 do

for k = K − j − 1 to K − 1 do

Re(ak) := Re(ak)− Im(ak+1)

Im(ak) := Im(ak) + Re(ak+1)

end for

end for

This observation can be exploited to enable efficient recentering of the polynomial

of a parent panel to the centers of the four children.

As in Figure 2.6, we first make the change of variable w =
4

1 + i
z = (2 − 2i) z

obtaining from p(z) a polynomial

q(w) =
K∑

k=0

bkw
k.
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Figure 2.6: The z−plane represents the parent domain level `, and v−plane represents
the child domain level ` + 1.
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This change of variable is accomplished in O(K) floating point operations. Then in the

w−plane setting, we recenter q to be expressed about 1 , i ,−1 and − i . This recentering

is accomplished with the efficient, no multiplication, forms of complete Horner previously

discussed.

Finally we make another change of variable v =

(
1 + i

2

)
w in the “child” polyno-

mials. This rotates and scales, see Figure 2.6, so that the “child” polynomials are scaled

for 1× 1 panels centered at
1 + i

2
,
i− 1

2
,
−1− i

2
and

1− i

2
.

This strategy achieves a considerable lessening of the overall work, replacing

2K(K + 1) complex multiplications occuring in four “ordinary” complete Horner’s, by

O(5K) complex multiplications occuring in the scaling and rotating.

2.8 An alternative Exponential Expansions for TPS

In this section, we present an alternative exponential expansions to approximate

|z− t|2 log |z− t|. Instead of using the exponential approximation to (z− t) log |z− t|, we

use the one approximating log |z− t|, and simply multiply it by |z− t|2. The expansions

obtained can also be written in separated form where term being expressed as a product

of stuff depending on a source and stuff depending on the evaluation point. Such series

can be summed over a cluster of sources retaining the same basic form. The series ob-

tained appear to be less advantageous for numerical computations than the exponential

series of equation (2.31) as they contain more terms. We include them for the sake of

completeness.

Recall from Section 2.4, Equation (2.21), we have

Log(z − t) ≈
L∑

`=1

w`

x`

e−x` −
L∑

`=1

w`

x`

e−x` (z−t) (2.51)

with a suitable error bound. Therefore, an approximation of a single thin-plate source
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at t ∈ Q with weight 1 and z ∈ R0 is

|z − t|2 log |z − t| = Re
{
|z − t|2 Log |z − t|

}

≈ Re

{
(z̄ − t̄)(z − t)

[
L∑

`=1

w`

x`

e−x` −
L∑

`=1

w`

x`

e−x` (z−t)

]}

=
[
|z|2 − 2 Re(t̄z) + |t|2

] L∑

`=1

w`

x`

e−x`

−
(
|z|2 + |t|2

)
Re

{
L∑

`=1

w`

x`

ex`t e−x`z

}

+ Re

{
(
t̄z + z̄t

) L∑

`=1

w`

x`

ex`t e−x`z

}
. (2.52)

For a cluster of sources {zj}J
j=1 where zj ∈ Q is associated with weight λj ∈ R, the

corresponding approximation is

s(z) =
J∑

j=1

λj|z − zj|2 log |z − zj|

=

[
J∑

j=1

λj|z|2 − 2 Re

(
J∑

j=1

λj z̄jz

)
+

J∑
j=1

λj|zj|2
]

L∑

`=1

w`

x`

e−x`

+ Re

{
−|z|2

J∑
j=1

λj

L∑

`=1

w`

x`

ex`zj e−x`z −
J∑

j=1

λj|zj|2
L∑

`=1

w`

x`

ex`zj e−x`z

+ z̄

J∑
j=1

λj

L∑

`=1

w`

x`

zj ex`zj e−x`z + z

J∑
j=1

λj

L∑

`=1

w`

x`

z̄j ex`zj e−x`z

}
. (2.53)

Note that ex` zj =
∞∑

k=0

(x`zj)
k

k!
and truncating the series on the right above at
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k = K, the approximation becomes

s(z) ≈
[

J∑
j=1

λj|z|2 − 2 Re

(
J∑

j=1

λj z̄jz

)
+

J∑
j=1

λj|zj|2
]

L∑

`=1

w`

x`

e−x`

+ Re

{
−|z|2

L∑

`=1

w`

x`

(
J∑

j=1

K∑

k=0

λjz
k
j

k!
xk

`

)
e−x`z −

L∑

`=1

w`

x`

(
J∑

j=1

K∑

k=0

λjz
k+1
j

k!
z̄jx

k
`

)
e−x`z

+ z̄

L∑

`=1

w`

x`

(
J∑

j=1

K∑

k=0

λjz
k+1
j

k!
xk

`

)
e−x`z + z

L∑

`=1

w`

x`

(
J∑

j=1

K∑

k=0

λjz
k
j

k!
z̄jx

k
`

)
e−x`z

}

=
[
a0|z|2 − 2 Re(b0z) + b1

]
A

+ Re

{
−|z|2

L∑

`=1

w`

x`

(
K∑

k=0

ak xk
`

)
e−x`z −

L∑

`=1

w`

x`

(
K∑

k=0

(k + 1) bk+1 xk
`

)
e−x`z

+ z̄

L∑

`=1

w`

x`

(
K∑

k=0

(k + 1) ak+1 xk
`

)
e−x`z + z

L∑

`=1

w`

x`

(
K∑

k=0

bk xk
`

)
e−x`z

}

=
[
a0|z|2 − 2 Re(b0z) + b1

]
A

+ Re

{
L∑

`=1

(
|z|2 c`,K + z̄ d`,K + z e`,K + f`,K

)
e−x`z

}
(2.54)

where

A =
L∑

`=1

w`

x`

e−x` , ak =
1

k!

J∑
j=1

λjz
k
j , bk =

1

k!

J∑
j=1

λj z̄jz
k
j ,

c`,K = −w`

x`

K∑

k=0

ak xk
` , d`,K =

w`

x`

K∑

k=0

(k + 1) ak+1 xk
` ,

e`,K =
w`

x`

K∑

k=0

bk xk
` , and f`,K = −w`

x`

K∑

k=0

(k + 1) bk+1 xk
` . (2.55)



Chapter 3

Reconstruction with Blobby Shapes

The wide spread adoption of 3D scanning devices has enabled the acquisition of many

large data sets or cloud of points. A cloud of points refers to a collection of points

assume to be on or very near to a surface. These can represent a variety of objects.

For example, points obtain from the laser scan of sculptures, body parts, and machine

parts, through to the interiors of mines. For various applications, it is required to

convert the point clouds into a “water tight” surface, meaning that no holes should be

allowed in the surface. This process is classified into the research area called surface

reconstruction. Much attention has been paid by researchers in this area as a main part

of reverse engineering of shapes, which aims to create physical models of existing objects

for further utilization.

Various reconstruction strategies and methods were reported in the litera-

ture (Hoppe et al., 1992; Amenta et al., 1998; Zhao et al., 2000; Duan et al., 2004;

Ye et al., 2010). Most of them were designed for a specific type of problem, based on

the important aspects listed below:

• Prior knowledge of the physical model. If the topology or geometric in-

formation of the point clouds is known, a more specific and efficient method to

reconstruct the shape may be used. This is particularly important for methods

that involve segmentation and fitting primitives to the point clouds (Attene et al.,

2006; Liu et al., 2006). Prior knowledge is indeed useful for achieving better accu-

racy in reconstructing shapes from point clouds. Unfortunately, this is not common

in practical situations such as recovery of biological shapes or when multiple view

point range data is used. Calibration, accuracy, and accessibility in acquiring use-

able data also add to the difficulty in making prior assumptions of the physical

model (Varady et al., 1997).

41
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• Fitting algorithms. Interpolation and approximation are the two main tech-

niques in fitting a surface to point clouds. One would use an interpolation method

if there is no appreciable noise in the point cloud, that means the reconstructed

surface passes exactly through each point in the cloud. Related work can be found

in (Franke and Nielson, 1991; Alfeld, 1989; Ohtake et al., 2005). However, if the

point cloud is noisy (contains measurement errors) or incomplete (lack of samples

in certain regions), approximating the surface will be more appropriate. There

exist many fitting solutions to this problem which include fitting of subdivision

surfaces (Hoppe et al., 1994; Cheng et al., 2007), parametric surfaces (Floater and

Reimers, 2001; Hormann, 2003), Splines Functions (B-splines and NURBS) (Forsey

and Wong, 1998; Farin, 2002b) and Radial Basis Functions (RBFs) (Carr et al.,

2003; Tobor et al., 2004a).

• Performance: accuracy, speed and user interactivity. The trade-off between

accuracy (how well the surface is fitted) and speed (computational costs: time and

memory) has always been an issue of research. With increasing availability of high

speed computers and improved algorithms (Zhou et al., 2008; Mullen et al., 2010;

?), one can wisely choose a robust method to achieve desired quality with low cost.

This decision is usually motivated by the application of the reconstructed surface.

Another interesting issue is whether the process can be controlled by the user, or is

fully automatic (Hoppe et al., 1992; Attene and Spagnuolo, 2000). An automatic

algorithm is used in cases where a complete (very dense with no noise) point cloud

is given and much information of the physical model is known in advance. On the

other hand, algorithms that enable user input to make intelligent decisions along

the process are often needed. A user interactive environment is especially useful

in a segmenting shape or surface and extracting part of shape to be reconstructed

or discarded (Sharf et al., 2007; Gregory et al., 1999).

• Application of the reconstructed surface. Medical diagnosis (You et al.,

2008; Liu et al., 2008; Carr et al., 1997; Lorensen and Cline, 1987), and object and

image morphing techniques (Gregory et al., 1999; Jin et al., 2005) in computer

visualization and animation (Liu et al., 2007) are among the many applications

nowadays. By knowing the end use of the reconstructed surface, one can then

choose a suitable method or algorithm, which enhance the efficiency of the surface

reconstruction process.

The motivation of this work is to identify the basic structure of an object by blobby

model representation. Blobby representation is ideal for modeling smooth objects with

large curved surfaces that exist in most organic objects. Here we present a method to

approximate the shape of a given cloud of points with a low parameter model



3.1. PREVIOUS WORK 43

• using ellipses in two dimensional space (2D)

• using ellipsoids in three dimensional space (3D).

Our aim is to find a very efficient coarse level approximation for an hierarchical implicit

curve (2D), or surface (3D), model. Here by efficient we mean a coarse level approxi-

mation that reproduces the overall shape of the underlying object while being very fast

to evaluate. The speed of evaluation of the coarse level approximation is critical as it

will be used for every function evaluation occurring in rendering the surface. Extensive

computational experience with implicit radial basis function models (see e.g. Carr et al.

(2001)) and hierarchical radial basis function models (Langton, 2009, Chap. 7), indicates

to us that the current method easily outperforms radial basis function models for this

application.

Suitable objective functions and heuristics have been developed which work well

on our test cases, particularly in fitting the outline of a hand in 2D and 3D. The 2-

stage process involves initialization and optimization of blobs (ellipses or ellipsoids)

approximating parts of a point cloud. After that an implicit blobby model is fitted

by combining all the optimized blobs through least squares fitting to all the data. We

present both user-initialized and automatic algorithms for blob identification in the first

stage. The user-initialized algorithm enables a user to visualize and identify regions for

blobs to be optimized. This is very straight forward and efficiency is guaranteed. In

the automatic algorithm, the parts approximated by different blobs are not identified

explicitly and will usually overlap. We will demonstrate our algorithm in detail later.

We will also provide solutions to some drawbacks that arise in our method.

3.1 Previous work

A good general overview on various methods used in surface reconstruction prior to

1999 can be found in Söderkvist (1999). Since we are focusing on blobby model shape

reconstruction, we only review related research; particularly those reported recently.

By the word related, we mean all these works share a common core idea with our

work: the process of reconstructing the surface. They all constructed an implicit surface

with steps using blobs in fitting primitives or decomposition, employed a field function,

and extract the isosurface from the implicit function to represent the shape. However,

detailed techniques and approach used are quite different.

Muraki (1991) is the first to automatically generate a “Blobby Model” for a given

set of range data, using spherical primitives. Without segmenting range data, the proce-

dure of fitting the primitives is done by “selection and division” of the primitives sequence
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and minimizing the energy function. The proposed selection method that examines all

primitives at each step is claimed to consume much computational time.

Bischoff and Kobbelt (2002a) presented a technique in fitting ellipsoids to the

volume bounded in a given mesh. They first decompose the original mesh into a set

of ellipsoids until they completely fill up the interior of the mesh. This results in an

initial mesh which they later refine using a robust transmission technique (Bischoff

and Kobbelt, 2002b) by inserting sample points from the original mesh. The robust

transmission of geometric objects in the ellipsoidal decomposition guarantees a good

approximation even if some parts of the data get lost during transmission.

Simari and Singh (2005) restructured and re-meshed polygon meshes using ellip-

soidal based segmentation. Their algorithm allows fitting the ellipsoids to a given mesh

by surface or volume enclosed orientation. They also take “negative ellipsoids” as prim-

itives to capture bowl-shaped concavities. The shape of the model is then obtained by

smoothing segmentation boundaries.

Jin et al. (2005) proposed an automatic algorithm for approximating polygonal

meshes with blobby objects based on the application of 3D liquid morphing. They

constructed a medial axis sphere-tree of the given mesh and used the spheres as initial

blobs to approximate the object’s shape. Once the sphere representation is achieved, an

isosurface of the object can be generated employing field functions in the blobby model.

An implicit representation of the object is constructed through minimizing the distance

between the isosurface of blobs and the given mesh. This work is then extended by

Liu et al. (2007) to reconstruct a blobby model using ellipsoidal blobs. They employed

a modified scheme of Bischoff and Kobbelt (2002a) in the ellipsoidal decomposition

process. Their main contributions are applying the ellipsoidal blobby model in geometry

data reduction and giving two geometric-based schemes for cloud animation.



Chapter 4

Fitting Ellipses in 2D

Curve reconstruction in 2D can be defined as the problem of connecting a given set of

points sampled from a smooth curve, in the order they appear on that curve. While

much attention has been focused on developing algorithms for surface reconstruction in

3D, there is still substantial interest for similar work in 2D (Wang et al., 2010; Kumar

et al., 2004; Lee, 2000; Dey and Kumar, 1999). This problem is assumed to be simpler as

it is often be regarded as a special case of the surface reconstruction problem. However,

the importance of understanding and solving the problem in 2D should not be underes-

timated. The problem is worth studying as it is fundamental to ensuring the feasibility

of extending the algorithm to higher dimensions.

Here, we introduce a method to reconstruct the curve of an ordered point cloud

using blobby model representation. We would like to describe the shape or outline

formed by some scattered data points in a plane. In 2D ellipses are a good choice of

primitive for capturing the curvature properties. More formally, given a set of scattered

data points in the plane, (xi, yi) where i = 1, 2, · · · , N , we aim to approximate part of

the shape of the scattered points by an ellipse.

Let us now look at some basic properties of an ellipse and how we exploit them in

our method. Generally, an arbitrarily oriented ellipse with major and minor semi axes,

a and b can be defined as

(x− c)TA(x− c) = 1 (4.1)

where x = (x, y) are points on the ellipse, c = (xc, yc) is the center of the ellipse and

A is a symmetric positive definite matrix that specifies the size and orientation of the

45
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ellipse. A can be decomposed as A = QDQT where the eigenvalues of A are given by

D =

[
σ1 0

0 σ2

]
(4.2)

and the columns of Q are the corresponding eigenvectors. These eigenvalues are the

inverse square of the length of the major and minor semi axes, a and b, i.e.

a =
1√
σ1

and b =
1√
σ2

. (4.3)

Q represents the rotation matrix,

Q =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
(4.4)

where θ is the angle of rotation of the ellipse counter clockwise from the x-axis, see

Figure 4.1.

In the first stage of our method, ellipses are fitted inside the point clouds inde-

pendently of each other. Therefore, we set up the fitting problem as a constrained

optimization problem of the form

minimize f(z) such that lb ≤ z ≤ ub, (4.5)

subject to additional nonlinear constraints preventing points from lying inside the fitted

ellipse. The problem’s decision variables are z =
[
xc yc a b θ

]T

and the objective

function f(z), and constraint functions will now be specified.

x

y

(xc, yc)

θ

a
b

Figure 4.1: Parameters of an ellipse used in the constrained optimization step.

Here, we set xc, yc, a, b, and θ as the 5 parameters to be optimized, see Figure 4.1.
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Since we are fitting an ellipse inside the point cloud, we need an objective function so

that the growing ellipse is bounded by the point cloud.

Let us define the offset of a point xi from the ellipse as

ρi = (xi − c)TA(xi − c)− 1. (4.6)

Then,

ρi =





> 0, if xi lies outside the ellipse;

= 0, if xi is on the ellipse;

< 0, if xi lies inside the ellipse.

(4.7)

Therefore, to encourage points outside to be on the ellipse, we set our objective

function as

f
(
z
)

=
N∑

i=1

[
ρi

]2

+

K +
[
ρi

]2

+

(4.8)

for some K > 0 and
[
ρi

]
+

= max
(
ρi, 0

)
. The constraints consist of simple bounds on

the decision variables

xmin ≤ xc ≤ xmax ,

ymin ≤ yc ≤ ymax ,

`min ≤ a, b ≤ `max ,

0 ≤ θ ≤ π ,

together with the nonlinear constraints ci = −ρi ≤ 0, ∀ i = 1, 2, · · · , N , which are

designed to prevent any data point from lying inside the optimized ellipse.

Several ellipses are fitted using the optimization procedure described in the last

three paragraphs. Once this forming ellipses phase is finished, we need a method to

blend these ellipses to describe the shape of the scattered data points. Each optimized

ellipse now takes the form of equation (4.1) for some symmetric matrix A and center c.

The left hand side of equation (4.1) is a positive definite quadratic form. The square root

of a quadratic form is suitable for representing a single ellipse, but not for combining

several ellipses. The difficulty with the root quadratic form is that it becomes larger

as one moves further away from the ellipse’s center. In a linear combination of such

functions the distant ellipses’ root quadratic forms can swamp those of closer ellipses.

To avoid this effect we need a function which is negligible (and preferably zero) far from

an ellipse.
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To this end we introduce the sigmoidal function φ(s)

φ(s) =





2, if t ≤ 0;

2− t3

3h3 , if 0 < t ≤ h;

2−
(

1
3 + t− h

h
+

(t− h)2

h2 − 2(t− h)3

3h3

)
, if h < t ≤ 2h;

(3h− t)3

3h3 , if 2h < t ≤ 3h;

0, otherwise

(4.9)

where

s =
√

(x− c)TA(x− c) and t = s−
(

1− 3

2
h

)
.

We have chosen this particular sigmoidal function φ(s) because it is identically zero when

s

φ(s)

2

1

0
11− 3

2
h 1 + 3

2
h

Figure 4.2: The sigmoidal function φ(s)

the distance function s is large, meaning that this particular φ makes no contribution

far outside its ellipse. Being a combination of cubic B-splines, φ(s) is relatively easy to

calculate. Note that, φ(s) equals 2 for small s and decreases monotonically as s increases

through the interval
[
1− 3

2
h, 1 + 3

2
h
]
, as is shown in Figure 4.2. A single ellipse can be

recovered from φ(s) via the equation φ(s) = 1. Different ellipses give rise to different

distance functions sj. Applying the sigmoidal function we define

ψ(x) =
∑

j

λjφ(sj(x)), (4.10)

where

sj(x) =
√

(x− cj)TAj(x− cj). (4.11)
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(a) Reconstructed curve for a single ellipse (b) Reconstructed curve for two intersected
ellipses

Figure 4.3: Plot of ψ(x) for one and two ellipses. The contour ψ(x) = 1 approximating
the ellipse(s) is also shown.

The curve corresponding to the combined ellipses is given by ψ(x) = 1 (see Figure

4.3). The λj’s are chosen to optimize the fit of ψ(x) = 1 to the data points. This is

done by performing a least squares solution of the system

ψ(xi) =
∑

j

λjφ(sj(xi)) ≈ 1, for all i, (4.12)

where xi is the ith data point. This system is usually overdetermined as the number of

ellipses is small compared to the number of data points.

4.1 Algorithm

As described earlier, our proposed method begins with the optimization which requires

an initial estimate of the parameters. In this section, we present both user-initialized

and automatic initialization algorithms for the optimization step. Prototype implemen-

tations of our algorithms were written in Matlab.

For user-initialized algorithm, a graphical interface tool in Matlab, ginput.m is

used. It enables the user to interactively specify some initial parameters, in this case

centers of the ellipses. Then the optimization procedure optimizes the ellipses, followed

by the process of blending the ellipses together, see Algorithm 3.

The algorithm is direct and very efficient with user input information. However,
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Algorithm 3 User-initialized algorithm for coarse level approximation in 2D.

Input: List of data points and user input initial parameters.
Output: Reconstructed curve.
1: User approximates centers of ellipses via a graphical interface tool.
2: Solve constrained optimization problems to obtain ellipses for gross features.
3: Construct for each ellipse a sigmoidal function φ(s) where s is the square root of a

quadratic which has the function value of 1 on the ellipse.
4: Fit by least squares ψ(x) =

∑
j λjφ(sj) ≈ 1 to all the data points.

5: Extract the contour implicitly defined by ψ(x) = 1.

there are cases where user interaction might not be applicable, for example when a larger

number of data points is involved. Therefore we investigate and set up an automatic

algorithm to identify potential centers of ellipses to be optimized one by one. We first aim

to optimize the largest inscribed ellipse. This can be done by generating the midpoints

of some randomly chosen pairs of data points. Then, choose the midpoint that has

the largest distance from its nearest data point to be optimized as the largest inscribed

ellipse. A kd-tree (De Berg et al., 2008) structure is constructed for finding the nearest

point of any point in the given data set.

Once we have identified the first ellipse, subsequent ellipses are added to be opti-

mized by updating the implicit function ψ(x). We make use of equation (4.12) to pick

out potential centers of ellipses. Note that any data point on the implicit curve will

return a value 1. Therefore we can locate data points that are far away from the first

ellipse, and we denote these data points as an uncovered region. To insert an ellipse for

optimization in this region, we identify one far away data point xfar and its neighboring

data points. We fit a best line to this cluster of points and return the inward normal

n in of the line. n in indicates a good direction to estimate the center of an ellipse in this

region. Hence we define

x∗ = xfar + k dn in, (4.13)

where x∗ is the estimated center from xfar, d is the distance from xfar to its closest

point and k is some parameter with 1 < k < 2.

After each optimization step, we calculate the residual sum of squares (RSS),

RSS =
N∑

i=1

(ψ(xi)− 1)2 , (4.14)

for all data points. The process of updating the implicit function ψ(x) = 1 and inserting

an ellipse is repeated until the change in RSS due to adding a new ellipse becomes

insignificant, in this case less than 1.
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Algorithm 4 Automatic algorithm for coarse level approximation in 2D.

Input: List of data points and their corresponding inward normals.
Output: Reconstructed curve.
1: Generate 20 midpoints from randomly paired data points.
2: Find closest data point for every midpoint using kd-tree.
3: Take midpoint with largest distance to its closest point be the initial center.
4: Solve constrained optimization problem to obtain the first ellipse.
5: Repeat
6: Identify xfar in the uncovered region.
7: Estimate center of ellipse with x∗ = xfar + k dn in.
8: Solve constrained optimization problem to obtain ellipse in the uncovered region.
9: Construct for each ellipse a sigmoidal function φ(s) where s is square root of a

quadratic which has the function value of 1 on the ellipse.
10: Determine the λj’s by least squares fitting ψ(x) :

∑
j λjφ(sj(x)) ≈ 1 to all the

data points.
11: Calculate RSS.
12: IF RSS significant, include current ellipse.
13: Until RSS insignificant.
14: Extract the contour implicitly defined by ψ(x) = 1.

4.2 2D Results and Discussion

Figure 4.4 shows the process of coarsely reconstructing the curve of a hand using ellipses,

with user initialization. The point cloud of a hand in 2D contains 151 vertices as shown

in Figure 4.4(a). The user can visualize the point cloud and interactively specifies initial

values for ellipse centers. The estimated centers are shown in Figure 4.4(b). At the

same time, the number of ellipses to be optimized is determined by the user. Then the

optimization procedure optimizes the ellipses. The six optimized ellipses are shown in

Figure 4.4(c) together with the estimated centers and original point cloud. In the process

of blending the ellipses together, the parameter we used in equation (4.9) is h = 0.6.

Figure 4.4(d) shows the extracted contour of the implicit function, ψ(x) at 1. The curve

of a hand describing the point cloud is clearly reconstructed.

In the optimization steps, the method used was fmincon.m active set method which

is a sequential quadrature programming method employing a quasi-Newton (BFGS)

approximation to the Hessian of the Lagrangian. It has global convergence to a local

minimizer or stationary point of the problem, because an exact penalty function is

employed (Han, 1977; Powell, 1978a,b).

Each optimization performed halted when the relevant stopping conditions were

satisfied. The method halted when the constraint violations and the changes in the

predicted or actual function values between successive iterations were less than 1.0×10−6.



52 CHAPTER 4. FITTING ELLIPSES IN 2D

The algorithm stopped if either the predicted or actual changes in the objective function

fell below 1.0× 10−6. but with different output messages on termination. If fmincon.m

stopped because the predicted change in the objective function is less than 1.0 × 10−6

and constraints are satisfied to within 1.0× 10−6, then fmincon.m returns the message

“Local minimum possible. Constraints satisfied.” If optimization completed because

the objective function is non-decreasing in feasible directions, to within 1.0× 10−6, and

constraints are satisfied to within 1.0×10−6, then fmincon.m returns the message “Local

minimum found that satisfies the constraints.”

In general, the optimization problems have multiple local minima. As evidence of

this, the various ellipse optimizations for the hand gave 1 ellipse per finger, and one for

the hand’s palm. Hence, the method will converge to a local minimizer or stationary

point with different minimizers or stationary points being located from different initial

points.

0 4 8 12 16

0

4

8

12

16

(a) Point cloud of a hand
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(d) Reconstructed curve

Figure 4.4: User-initialized curve reconstruction of a hand using ellipses.

The automatic curve reconstruction process is shown in Figure 4.5. For the same



4.2. 2D RESULTS AND DISCUSSION 53

point cloud in 2D, our proposed method managed to estimate the center of the largest

inscribed ellipse (marked as red star) and the optimized largest inscribed ellipse is shown

in Figure 4.5(b). Figures 4.5(c) to 4.5(h) show the progressive steps in adding ellipses

for optimization. In each step, the implicit curve ψ(x) = 1 is updated (marked as red

curve) and xfar is identified (marked as the red circle). The estimated center, x∗ can

then be calculated using equation (4.13) with parameter k = 1.7. The corresponding

optimized ellipse is marked as green curve. Note that the estimated center (marked as

red star) can be quite far from the optimized center (marked as green star) for an ellipse.

This implies that accurate initial estimation to optimized an ellipse is not needed. A

total of seven ellipses were optimized, then the algorithm terminated (see Figure 4.5(i)).

Note that the algorithm terminates when the last added ellipse no longer improves the

reconstructed curve in describing the point cloud. Therefore we can regard the last

added ellipse as a redundant ellipse. The redundant ellipse is removed when blending all

the ellipses together where the parameter we used in equation (4.9) is h = 0.6. Figure

4.5(j) shows the extracted contour of the implicit function, ψ(x) at 1. The curve of the

hand is clearly reconstructed.

We note that different initial estimates can produce slightly different final ap-

proximated curves. However the algorithm is reasonably robust as most of the results

capture the geometry of the data points. In terms of accuracy of the approximation, we

can quantify the error in the final approximation by using the residual sum of squares,

that is RSS =
∑N

i=1 (ψ(xi)− 1)2. The idea is similar with detecting a far away point (a

point in the uncovered region) from the approximated curve described in the automatic

algorithm. If a point xi is far away from the approximated curve, the value of ψ(xi) will

not be 1 or close to 1. Therefore, we can use RSS as a phantom for the error in the

approximation to measure the discrepancy between the points and the approximation.

For example, Table 4.1 shows the RSS at each step in the automatic algorithm shown

in Figure 4.5. In that case the iteration was stopped when adding a new ellipse changed

the RSS by less than 1.

Number of
inserted ellipses

1 2 3 4 5 6 7

RSS 87.78 69.02 51.85 37.80 25.44 7.87 7.37

Table 4.1: RSS in the automatic algorithm shown in Figure 4.5.

In the test cases we have considered, our proposed algorithm produces a qualita-

tively correct blobby curve approximation to the given input data set.
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(i) 7 optimized ellipses when the automatic algo-
rithm terminated
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(j) Reconstructed curve

Figure 4.5: Automatic curve reconstruction of a hand using ellipses.
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Chapter 5

Fitting Ellipsoids in 3D

In this section, we extend our proposed algorithm in 2D to obtain a coarse shape ap-

proximation of a point cloud in three dimensional (3D) space.

Given a set of scattered data points in 3D, (xi, yi, zi) where i = 1, 2, · · · , N , we aim

to fit the shape of the scattered points by some ellipsoids. Therefore, let the equation

of an ellipsoid be

(x− c)TA(x− c) = 1

where x = (x, y, z) is a point on the ellipsoid, c = (xc, yc, zc) is the center of the ellipsoid

and A is a 3 by 3 symmetric positive definite matrix. A has spectral decomposition

A = QDQT where

D =




σ1 0 0

0 σ2 0

0 0 σ3




are the eigenvalues of A and Q is a 3 × 3 rotation matrix. These eigenvalues give

information about the radii of the ellipsoid, where

a =
1√
σ1

, b =
1√
σ2

, c =
1√
σ3

(5.1)

as shown in Figure 5.1. Note that a, b and c are all positive real numbers that determine

the shape of the ellipsoid.

To describe the orientation of an ellipsoid, we need a suitable representation for

the rotation matrix, Q. In 2D, only a single parameter is required to determine the

rotation of an ellipse, that is the angle of rotation, θ. It becomes more complicated in

3D as 3D rotations are not commutative, and more parameters are involved. There are

many ways to represent a 3× 3 rotation matrix. In our work we use Rodrigues’ formula

57
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x

z

y

a

c

b

(xc, yc, zc)

Figure 5.1: Some of the parameters of an ellipsoid used in the constrained optimization
step.

for the rotation matrix in exponential representation (see Ma et al. (2004, chap. 2)). It

is simpler and more intuitive.

Other choices such as a special orthogonal matrix, Euler angles, or quaternion

representation have disadvantages in the optimization procedure. For example, a 3 × 3

special orthogonal rotation matrix R contains nine entries which will significantly in-

crease the number of parameters to be optimized. Furthermore, it must also satisfy the

constraint RT R = I and the determinant of R must be 1. In using Euler angle represen-

tations for a rotation matrix, there are several different conventions can be used. This

representation includes bounds that must be dealt with such as defining the reference

frame and line of nodes, conditioning the signs and ranges of angles. Quaternions is

another rotation representation that is relatively easier to work with than matrices. It

is a generalization of the complex numbers. Nevertheless, it consists of four parameters,

which is one parameter extra compared to the exponential representation that we used.

Let us now give some details on the expression of a rotation matrix in exponential

form.

Lemma 5.0.1. Given w ∈ R3, let ŵ be the skew symmetric matrix

ŵ =




0 −w3 w2

w3 0 −w1

−w2 w1 0


 . (5.2)

Then Q = eŵ is a rotation about axis w through ‖w‖ =
√

w2
1 + w2

2 + w2
3 radians.

Proof. To show that Q is a rotation matrix, we recall that any rotation matrix can be

characterized as an orthogonal matrix with determinant 1. Since ŵ is a skew symmetric
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matrix, ŵT = −ŵ. Therefore,

QQT = eŵ(eŵ)T

=

(
I + ŵ +

ŵ2

2!
+ . . .

)(
I + ŵT +

(ŵT )2

2!
+ . . .

)

=

(
I + ŵ +

ŵ2

2!
+ . . .

)(
I − ŵ +

(−ŵ)2

2!
+ . . .

)

= eŵe−ŵ

= I.

Hence, matrix Q is orthogonal and the determinant is either +1 or −1. Now consider

Q(t) = etŵ where 0 ≤ t ≤ 1. Then Q(0) = e0 = I and det (Q(0)) = 1. Since det (Q(t)) =

±1 for all t from above, and det (Q(t)) is a continuous function of t, it follows that

det (Q(t)) = 1 for all t. That is Q(1) = eŵ is a rotation.

Also, since ŵw = 0, it follows that

Qw = eŵw =

(
I + ŵ +

ŵ2

2!
+ · · ·

)
w = w.

Hence the axis of the rotation Q is w.

Note that the angle of rotation, θ, for any rotation matrix R in R3 can be expressed

in terms of the trace of R as

θ = cos−1

(
tr(R)− 1

2

)
.

Also, the trace of a square matrix is the sum of the eigenvalues, or more generally

tr(Ak) =
n∑

i=1

λk
i

where A is a n× n matrix and λ1, λ2, . . . λn are the eigenvalues of A.
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Then the eigenvalues of ŵ can be found as follows,

|ŵ − λI| =

∣∣∣∣∣∣∣

−λ −w3 w2

w3 −λ −w1

−w2 w1 −λ

∣∣∣∣∣∣∣

= −λ (λ2 + w2
1)− w3 (λw3 − w1w2)− w2 (w1w3 + λw2)

= −λ (λ2 + w2
1 + w2

2 + w2
3)

= −λ (λ2 + ‖w‖2).

Therefore, the eigenvalues of ŵ are

λ1 = 0, λ2 = ‖w‖i and λ3 = −‖w‖i.

Hence, tr
(
ŵ 2k

)
= (−1)k 2 ‖w‖2k and

tr(Q) = tr

(
I + ŵ +

ŵ2

2!
+

ŵ3

3!
+ · · ·

)

= tr(I) + tr(ŵ) +
tr(ŵ2)

2!
+

tr(ŵ3)

3!
+ · · ·

= 3 + 0 +
−2‖w‖2

2!
+ 0 +

2‖w‖4

4!
+ 0 +

−2‖w‖6

6!
+ . . .

= 1 + 2

(
1− ‖w‖2

2!
+
‖w‖4

4!
− ‖w‖6

6!
+ · · ·

)

= 1 + 2 cos(‖w‖)

It is clear that the angle of rotation for Q is ‖w‖.

The matrix exponential of ŵ,

eŵ = I + ŵ +
ŵ2

2!
+

ŵ3

3!
+ · · · (5.3)

is alternatively given by the Rodrigues formula

eŵ = I +
ŵ

‖w‖ sin(‖w‖) +
ŵ2

‖w‖2
(1− cos(‖w‖)) . (5.4)

To avoid loss of significance when ‖w‖ is small, we rewrite equation (5.4) by applying a
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half angle formula obtaining

eŵ = I +
ŵ

‖w‖ sin(‖w‖) + 2 sin2

(‖w‖
2

)
ŵ2

‖w‖2
. (5.5)

It is clear from equation (5.5) that

lim
‖w‖→0

eŵ = I.

We therefore define the rotation matrix as,

Q = eŵ =





I +
ŵ

‖w‖ sin(‖w‖) + 2 sin2

(‖w‖
2

)
ŵ2

‖w‖2
, wT w > 0

I, otherwise.

(5.6)

Using this definition, the optimizer can adjust w without constraint. This is a stable

way of evaluating the rotation matrix.

In fitting an ellipsoid, the same optimization procedure in 2D is used with minor

modifications. We now have 9 parameters to be optimized, 3 to indicate the ellipsoids

center, 3 to represent the lengths of the semi axes, and 3 to represent its orientation, i.e.

z =
[
xc yc zc a b c w1 w2 w3

]T

. The objective function in the constrained

optimization remains unchanged, i.e.

min f
(
z
)

=
N∑

i=1

[
ρi

]2

+

K +
[
ρi

]2

+

(5.7)

for some K > 0 and
[
ρi

]
+

= max
(
ρi, 0

)
where

ρi = (xi − c)TA(xi − c)− 1. (5.8)

The constraints consist of simple bounds on the decision variables

xmin ≤ xc ≤ xmax ,

ymin ≤ yc ≤ ymax ,

zmin ≤ zc ≤ zmax ,

`min ≤ a, b, c ≤ `max ,

−∞ ≤ w1, w2, w3 ≤ +∞ ,

together with the nonlinear constraints ci = −ρi ≤ 0, which prevent any data point from

lying inside the optimized ellipsoid.
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5.1 Algorithm

For the 3D case, we also developed user-initialized and automatic methods in identifying

the initial ellipsoids for coarse level approximation. In this section, both algorithms are

presented. The former algorithm is designed such that the user can select the region

or cluster of points to be fitted by a single ellipsoid. This can be done by using a

software tool called rbb3select (Kotliarov, 2005). We have developed a graphical user

interface incorporating this tool. It allows user to interactively rotate the point cloud

and select some cluster of points. Each cluster of points is then recorded for optimization

in isolation. Based on the selected clusters of points, the number of ellipsoids, and the

ellipsoids’ initial center are determined. Here, we take the center of each cluster of data

points to be the initial centers. The optimized ellipsoids are then blended together to

form a shape that approximates the point cloud. The detailed algorithm is given in

Algorithm 5.

Algorithm 5 User-initialized algorithm for coarse level approximation in 3D.

Input: List of data points and user selected clusters of points.
Output: Reconstructed shape.
1: User selects cluster of points using rbb3select.
2: Initial centers are determined based on cluster of points.
3: Solve constrained optimization problems to obtain ellipsoids for gross features.
4: Construct for each ellipsoid a sigmoidal function φ(s) where s is square root of a

quadratic which has the function value of 1 on the ellipsoid.
5: Fit by least squares ψ(x) =

∑
j λjφ(sj) ≈ 1 to all the data points.

6: Extract the isosurface implicitly defined by ψ(x) = 1.

For automatic initialization in 3D, a similar procedure proposed for the 2D case

is used. To begin the fitting process, a small number of ellipsoids will be optimized

randomly. This can be done by randomly choosing a few data points. For each such

random point, xrand, we form an initial center of an ellipsoid by using a modified version

of equation (4.13),

x∗ = xrand + k dn in, (5.9)

based on these random data points. Note that x∗ is the estimated center from xrand,

n in is the inward point normal at xrand and d is the distance from xrand to its closest

data point and k is some parameter with 1 < k < 2.

With these initial centers, ellipsoids are optimized. The first ellipsoid is then se-

lected by choosing the largest ellipsoid among them. After that, the process of updating

the implicit function ψ, identifying a poorly fitted region and inserting subsequent el-

lipsoids for optimization in that region is applied. The detailed algorithm is given in
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Algorithm 6.

Algorithm 6 Automatic algorithm for coarse level approximation in 3D.

Input: List of data points and their corresponding point normals.
Output: Reconstructed shape.
1: Randomly identify five data points, xrand.
2: Estimate center of ellipsoid with x∗ = xrand + k dn in.
3: Solve constrained optimization problem to obtain random ellipsoids.
4: Choose the largest ellipsoid to be the first ellipsoid.
5: Repeat
6: Identify xfar in the uncovered region.
7: Estimate center of ellipsoid with x∗ = xfar + k dn in.
8: Solve constrained optimization problem to obtain ellipsoid in the uncovered region.
9: Construct for each ellipsoid a sigmoidal function φ(s) where s is square root of a

quadratic which has the function value of 1 on the ellipsoid.
10: Determine the λj’s by least squares fitting ψ(x) :

∑
j λjφ(sj(x)) ≈ 1 to all the

data points.
11: Calculate RSS.
12: IF RSS significant, include current ellipsoid.
13: Until RSS insignificant.
14: Extract the isosurface implicitly defined by ψ(x) = 1.

5.2 3D Results and Discussion

The 3D hand model used in our test case contains 1905 data points shown in Figure 5.3.

It is a heavily downsampled version of the 57, 126 point laser scan supplied to us by Brent

Price of Applied Research Associates New Zealand Limited. Even the original data set

contains significant holes (see Figure 5.2), particularly on sides of the fingers and the

thumb, and at the wrist. The downsampled data set also has holes at the fingertips.

Since our optimization algorithm is designed such that any ellipsoid will grow within

the data points, ellipsoids may grow through the holes. This problem usually does not

occur in the user-initialized algorithm where ellipsoid is optimized within a cluster of

data points selected by the user. Therefore, the simple bound constraints are adjusted

accordingly to prevent the center of ellipsoid from moving too far from the initial center.

Note that the size of ellipsoid is also bounded by the range of the selected cluster of

data points. However in the automatic algorithm, the constraints are bounded by the

range of the data set allowing the flexibility of growing an ellipsoid. The trade off is

some ellipsoids may grow through the holes or even outside the point cloud, for example

in between fingers.

Figure 5.4 shows the process of a user-initialized shape reconstruction. In this case,

the user selected 8 clusters of points to be optimized as ellipsoids. These clusters are
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(a)

(b)

Figure 5.2: Original data set of a hand with 57, 126 laser scan points.
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Figure 5.3: Downsampled data set of a hand (1905 data points).
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Figure 5.4: User-initialized shape reconstruction of a hand using ellipsoids.
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highlighted with different colours as shown in Figure 5.4(b). Figure 5.4(c) shows all the

optimized ellipsoids with the data points. The final isosurface generated by blending all

ellipsoids with h = 0.7 is shown in Figure 5.4(d).

−50 0 50 100 150−150

−100

−50

0

50

100

−20
0

20

x

y

z

(a) Point cloud of a hand

−50 0 50 100 150−150

−100

−50

0

50

100

−20
0

20

x

y

z

(b) First optimized ellipsoid
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(c) 15 optimized ellipsoids (d) Reconstructed shape

Figure 5.5: Automatic shape reconstruction of a hand using ellipsoids.

Figure 5.5 shows an example of reconstructing the shape of a hand automatically.

The first optimized ellipsoid shown in Figure 5.5(b) has some part of it growing outside

the data range. The back of the wrist has no data points, hence this ellipsoid is allowed

to grow through the hole. The final 15 optimized ellipsoids are shown in Figure 5.5(c)

using the parameter value k = 1.3 in equation (4.13). However, we are only interested
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in recovering the coarse surface of the approximation within the data range. In regards

to that, our final implicit surface is not affected by ellipsoids that partly grow outside

the data range. Figure 5.5(d) shows the isosurface of ψ corresponding to ψ(x) = 1 with

h = 0.6.

To show the consistency of our automatic algorithm, we will show a few examples

using the same point cloud. In our experience ellipsoids that grow totally outside the

data do not improve the model. These were therefore detected and removed, increasing

the simplicity of the model. Detecting such ellipsoids is easily done by comparing normals

to the ellipsoids and data normals at data points lying on the ellipsoid. As shown in all

the examples, the coarse shape of a hand can be successfully reconstructed.
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Figure 5.6: 3D hand automatic reconstruction, example 1 and 2.
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Example 3
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Example 4
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Figure 5.7: 3D hand automatic reconstruction, example 3 and 4.
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5.3 Conclusions and Future Directions

We have demonstrated a method to approximate a given point cloud with an implicit

blobby representation. Our work focused on coarse level approximation with relatively

few parameters. The results (Ong et al., 2011) show that the reconstructed curves and

shapes can describe the original point clouds successfully in both 2D and 3D.

At this stage, we do not report any timing as the approximation is at a coarse

level. In the future, we hope to combine the current method and other methods such

as implicit radial basis function models or hierarchical radial basis function models for

fine level approximation in 3D. Only then, comparison of timing between methods or

algorithms for large scale data sets such as the Stanford bunny would be meaningful.

For simple blobby object reconstruction, our proposed method will be sufficient.

However, we need to look into cases where the given data points are incomplete or sparse.

We would like to be able to detect sparse regions or missing data points (holes in the

surface) and fill the holes with smooth surface.

In addition, we would also like to add ‘negative ellipses or ellipsoids’ as fitting

primitives in our method to capture wavy curvature such as a bowl or crescent moon

shape.





Chapter 6

Surface Fitting with Discontinuities

6.1 Introduction

Surface fitting or surface reconstruction is a fast growing research area motivated by its

many applications in different fields (Farin, 2002b; Carr et al., 1997). In mathematical

description, the problem of surface fitting is to find a function that represents the surface

based on some given information about the surface (data points and data values). Given

a set of data x = {x1, x2, · · · xN} and the data values fi = f(xi), 1 ≤ i ≤ N , we need

to find a function s that satisfies s(xi) = fi, 1 ≤ i ≤ N . This is equivalent to the

problem of scattered data interpolation, where a continuous real valued function of two

or more independent variables that interpolates the given data values is sought.

An early survey of method for scattered data interpolation is due to Schumaker

(1982). In a recent book, Wendland (2005) provides a thorough description of the

concept of scattered data interpolation and approximation. It also covers relevant topics

such as multivariate approximation theory and radial basis function theory. Numerous

methods with many variants have been investigated and reported for this problem (Weiss

et al., 2002; Amidror, 2002; Franke and Nielson, 1991; Alfeld, 1989). In particular, we are

interested in methods that uses radial basis functions (Buhmann, 2000, 2003) as a tool

to interpolate the scattered data. We shall give more details on radial basis function

and discuss some related concepts such as positive definite and compactly supported

functions later in this chapter.

Now let us get back to the motivation of this work. We are interested in fitting a

surface in the presence of obstacles or barriers. Suppose we are given a set of scattered

data with some obstacles or barriers whose location are known a priori. We intend to fit

this set of data with a surface showing clearly the discontinuity across the barriers. Note

73
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that the data from two sides of the barrier are from two different parts of the surfaces.

See Figure 6.1(b) for an example of a smooth surface with discontinuity.
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Figure 6.1: Example of a smooth surface (a) and a surface with discontinuity (b).

The method we proposed here is very suitable for fitting geophysical data in the

presence of faults. Geophysical data analysis is an essential part of earth sciences and

geophysics related research including environmental modeling. Raw geophysical data

often need substantial treatment before they can be used for further analysis. This is due

to noise during data collection and the data recorded are generally irregularly sampled.

El Abbass et al. (1990) has made a comparison of various algorithms in surface fitting

for geophysical data. They have chosen five commonly used methods to investigate

and concluded with the suitability and limitations of each method according to the

distribution of data and quality of interpolation required. Interpolation and smooth

surface fitting of geophysical data using continuous global surfaces can be found in

Billings et al. (2002a,b). They have shown a method that is computationally efficient

especially on large scale data sets (Beatson et al., 2001b).

Surprisingly, there is not much literature available specifically on surface fitting

with known obstacles. Flöry (2009) has demonstrated a method that fits a surface

to an unordered point cloud in the presence of obstacles (known geometric primitives

such as sphere, cylinder, and cube). They first solved the fitting problem iteratively as

an optimization problem. They then derived constraints to the optimization from the

obstacles and reconstruct a B-spline surface avoiding these obstacles.

Some other relevant work is fitting a set of scattered data while detecting or pre-

serving discontinuities. This approach is more like a technique to identify and distinguish

between noise and discontinuity in the data. Eric et al. (1985) suggested a method that

is able to correctly detect discontinuities in the data set provided the existing noise in

the data set has relatively small amplitude compared to the discontinuity. The method
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of detecting discontinuities is by using a local statistical analysis on the residuals (differ-

ence between the actual and approximated value) of the data. Sinha and Schunck (1992)

proposed a two-stage algorithm for reconstructing a surface from scattered data while

preserving discontinuities. The first stage uses a robust regression local approximation

to remove outliers and grid the data from the scattered data. The second stage follows

by using the gridded data that contains discontinuities to construct a piecewise smooth

surface using a weighted bicubic splines approximation.

6.1.1 Problem Statement

In our work, we investigate a method to interpolate a surface from scattered data that

includes faults or barriers. Note that physical attributes such as height (or depth) will

be discontinuous across the faults.

We approximate a real valued function f by a function s, given the set of values

f = (f1, f2, · · · fN) at the distinct data points x = {x1, x2, · · · xN} ∈ Rd. One simple way

is to use radial basis functions to interpolate a function with N data points by using N

radial basis functions centered at these data points. Radial basis functions (Buhmann,

2000, 2003) can be viewed as circularly-symmetric functions centered at a given point.

Thus, the interpolant function becomes

s(x) =
N∑

i=1

λi φ
(‖x− xi‖

)
, (6.1)

where each xi is a known distinct data point (center) and λi is the weight of the radial

basis function located at that point. Here, ‖x−xi‖ is a metric and φ : [0,∞) → R. The

weights (coefficients) λi can be found from the interpolation conditions

s(xi) = fi, 1 ≤ i ≤ N, (6.2)

which lead to the requirement that the interpolation matrix A be positive definite, where

A =




φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xN‖)
φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − xN‖)

...
...

. . .
...

φ(‖xN − x1‖) φ(‖xN − x2‖) · · · φ(‖xN − xN‖)




. (6.3)

For settings such as Rd with the usual Euclidean distance, there is some beauti-

ful theory identifying classes of strictly and conditionally positive definite functions φ.
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Interpolation problems corresponding to such φ’s are guaranteed to be poised, that is

have a unique solution (Micchelli, 1986; Buhmann, 2003; Wendland, 2005). Unfortu-

nately, in our setting, conditions implying φ is strictly positive definite have not been

identified. Nevertheless, in practice we have not had problems with singularity of ma-

trices. Moreover, we can always replace interpolation by least squares approximation if

necessary.

In the cases when the radial basis function used is only conditionally positive defi-

nite, for example the thin-plate splines, it is necessary to include a low degree polynomial

p(x) to ensure the poisedness of the interpolation. Hence, the interpolant functions be-

comes:

s(x) =
N∑

i=1

λi φ
(‖x− xi‖

)
+ p(x). (6.4)

The weights (coefficients) λi, must satisfy Equation (6.2). Further, the side conditions

N∑
i=1

λi p̂(xi) = 0, (6.5)

for all polynomials p̂ of degree at most k − 1 are imposed on the coefficients. Let

{p1, p2, · · · p`} be a basis for polynomials of degree at most k−1 and let c = {c1, c2, · · · c`}
be the coefficients that give p̂ in terms of this basis. Then Equation (6.2) and (6.5) may

be written in matrix form as

(
A P

P T 0

)(
λ

c

)
=

(
f

0

)
(6.6)

where A is as defined in Equation (6.3), λ = (λ1, λ2, . . . , λN)T and P = pij = pj(xi), for

all 1 ≤ i ≤ N , and 1 ≤ j ≤ `. Hence, solving the linear system (6.6) determines c and

λ.

Similarly, in the case of no polynomial part, the parameters λ of the interpolant

are given by solving

Aλ = f. (6.7)

In the context of our problem, we replace the Euclidean norm ‖·‖ in Equation (6.1)

by the ‘actual’ Euclidean distance, that is the Euclidean distance between two points

avoiding the faults. Let us now define the interpolant functions,

s(x) =
N∑

i=1

λi φ
(
d(x, xi)

)
, x ∈ Rd, (6.8)
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where λi is a real valued weight and d(x, xi) denotes the geodesic distance (shortest

distance) from x to xi not crossing the faults. Using this distance is intuitively reasonable

and gives the desired result in test cases shown later in Chapter 8.

Definition 6.1.1. Shortest distance metric

The shortest distance, r = d(a, b) is a metric such that for all a, b, c ∈ R2,

1. d(a, b) ≥ 0 and d(a, b) = 0 if and only if a = b

2. d(a, b) = d(b, a)

3. d(a, b) ≤ d(a, c) + d(c, b)

6.1.2 Using Compactly Supported Radial Basis Functions

The usefulness of radial basis functions for interpolation or approximation is now well

established, see for example Powell (1987), Carr et al. (2001), Wang and Liu (2002) and

Buhmann (2003). Some of the well known and commonly used types of radial basis

functions are given in Table 6.1.

Thin plane splines φ(r) = r2 log(r)

Gaussians φ(r) = e−α r2

Multiquadrics φ(r) =
√

α2 + r2

Inverse Multiquadrics φ(r) =
1√

α2 + r2

Inverse Quadrics φ(r) =
1

1 + r2

Polyharmonic splines φ(r) = rk, with k = 1, 3, 5, . . . , when d is odd

φ(r) = rk log(r), with k = 2, 4, 6, . . . , when d is even

Table 6.1: Types of radial basis functions where r = ‖x − xi‖ and α is a positive
parameter.

These radial basis functions are globally supported and conditionally positive def-

inite. As mentioned earlier in this chapter, a positive definite radial basis function is

desired to ensure the well-posedness of the problem (there exists a unique solution to the

problem if and only if the interpolation matrix A is non-singular, see Buhmann (2003)).

Therefore it is natural to restrict the choices of φ in Equation (6.8) to locally supported

positive definite radial basis functions.
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One family of locally (compactly) supported radial basis functions which are

strictly positive definite was developed by Wendland (1995, 1999). He has solved the

minimum degree polynomial solution for compactly supported functions which has the

general form of

φ(r) =





(1− r)pp(r) 0 ≤ r < 1,

0 otherwise,
(6.9)

where p represents a univariate polynomial. A function of the form of Equation (6.9)

is a positive definite function on Rd (See Wendland (2005, Theorem 6.2)). He also

derived various compactly supported functions based on the smoothness (continuity, Ck)

and space dimension (d) where the function is positive definite (See Table 6.2). More

compactly supported functions were proposed (Wu, 1995; Wong et al., 2002; De Boer

et al., 2007) based on Wendland functions. A comparison of their behaviors can be

found in Menandro et al. (2010).

Positive Definite Function Smoothness (Ck)

R φ(r) = (1− r) C0

R φ(r) = (1− r)3(3r + 1) C2

R φ(r) = (1− r)5(8r2 + 5r + 1) C4

R3 φ(r) = (1− r)2 C0

R3 φ(r) = (1− r)4(4r + 1) C2

R3 φ(r) = (1− r)6(35r2 + 18r + 3) C4

R3 φ(r) = (1− r)8(32r3 + 25r2 + 8r + 1) C6

R5 φ(r) = (1− r)3 C0

R5 φ(r) = (1− r)5(5r + 1) C2

R5 φ(r) = (1− r)7(16r2 + 7r + 1) C4

Table 6.2: Wendland functions (Wendland, 2005).

The functions given in Table 6.2 have radius of support 0 ≤ r ≤ 1. If a different

radius of support is needed, scaling the support of φ can be easily done by φ(r/α)

where α is the desired radius of support. Schaback (1995), Floater and Iske (1996), and

Morse et al. (2005) are works that apply compactly supported radial basis functions

to interpolate surfaces from scattered data. Morse et al. (2005) emphasized that the

local nature of compactly supported radial basis functions has increased computational

efficiency on large data set due to the sparse interpolation matrix generated by these

functions.
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In the next chapter, we will describe the method we used to compute d(a, b), the

geodesic distance (shortest distance) between two given points a and b without crossing

some given obstacles. This lead us to the shortest path problem, a common topic in

motion planning (Latombe, 1999). Here, we consider faults or barriers as obstacles in

R2 that are simply line segments that can be disjoint or connected. The technique of

using the visibility graph to solve the shortest path problem will also be described in

detail in the next chapter.





Chapter 7

Shortest Path Problems

This chapter considers shortest path problems. It reviews the literature and particularly

the visibility graph approach of Overmars and Welzl (1988) and Alt and Welzl (1988).

Some extensions are made to make the method applicable to polygonal boundaries with

nodes not in a general position.

Computing the shortest path between two nodes is a fundamental problem in

computational geometry. It is also a well-known and natural problem in network op-

timization (route or path planning) that has many applications including operations

research, real road networks in transportation (Zhan and Noon, 1998; Jacob et al., 1999;

Gonzalez et al., 2007), geographic information systems (GIS), routing in data networks,

industrial automation, and motion planning in robotics (Latombe, 1999; Choset et al.,

2005; Siciliano et al., 2009).

The basic form of the problem is: Given a collection of obstacles in a specified do-

main or environment, find a shortest path avoiding obstacles between two given nodes.

This path is also known as the optimal collision-free path or geodesic path. More com-

plicated problems can be classified according to some parameters, such as

• Dimension: two dimensions (plane), three dimensions (space), or higher dimen-

sion?

• Input geometry: complete geometry of the problem (information of the obstacles

and environment) is known or unknown?

• Path Constraints: Is there any restriction on the path between the nodes? Are

there nodes that must be visited along the path?

• Static or dynamic environment: Are the obstacles movable?

81
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The type of shortest path problem usually determines the design of the algorithm

and the technique used to solve the problem efficiently. There exists a large body

of literature on shortest path algorithms (Guibas et al., 1987; Gallo and Pallottino,

1988; Mitchell, 1991; Ahuja et al., 1990; Kapoor et al., 1997; Hershberger and Suri,

1999). Time and storage complexity of these algorithms haven often been analyzed and

reported. An optimal algorithm is often desired for practical implementation on real-life

problems. Though this area has been well and widely studied, there still exist several

open problems and implementation issues like robustness, see the survey by Mitchell

(2000).

At this stage, we will give details of our shortest path problem, define some notation

and basic terminologies, and review some papers that are relevant to our work. We are

interested in computing the shortest Euclidean distance between two given nodes in a

plane, avoiding segment type obstacles or barriers. Generally, there are two approaches

to solve a shortest path problem with multiple obstacles in a plane: the shortest path

map method and the visibility graph method. The first approach builds a subdivision of

the plane for a given source point. This produces a map with multiple regions where all

the points in a specific region will have the same path sequence in their shortest path to

the source point. Mitchell (1993) uses some advanced range searching data structures to

compute the shortest path map and published an O(n5/3+ε) time and space algorithm.

He later improved the running time to O(n3/2+ε) for any fixed ε > 0 (Mitchell, 1996).

Hershberger and Suri (1999) developed an optimal algorithm which runs in the worst-

case time O(n log n) and O(n log n) space. Their algorithm, based on the implementation

of wavefront propagation among polygonal obstacles, has significantly improved the time

complexity of previously published algorithms. However, the algorithm appears to be

rather complicated and it is difficult for us to implement in our application.

In our work, we use the second approach where we first construct a visibility graph

based on the set of obstacles, the source node and the goal node. Then the shortest path

between the nodes can be obtained by Dijkstra’s algorithm on this graph (Dijkstra, 1959;

Cormen et al., 2001).

Before we go into the details on the visibility graph method, let us now define the

notation and terminology used throughout the rest of the thesis.

• Nodes (V ): A set of points or vertices of obstacles ( vertices of polygonal obstacles

or endpoints of line segment obstacles), source node, and goal node.

• Edges (E): A set of line segments or arcs connecting two mutually visible nodes,

which can be either directed or not. Weighted edges refer to edges with values or

weights attached to them. The weight can be duration, costs, or length, depending
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on the objective of the problem.

• Visibility Graph (V G): A graph V G consists of a set of nodes V and a set of edges

E. It can be written as V G = (V, E). It is also known as a roadmap or network.

• A path in V G is a sequence of edges, such that consecutive edges share a common

node, and each node belongs to at most two edges on the path.

• The total cost of a path in V G is the sum of the costs of the edges on the path.

• A shortest path between two nodes P and Q, denoted by SP (P, Q), is a path

connecting P and Q that has the minimum cost, assuming such a path exists.

• The shortest distance between P and Q, denoted by d(P,Q), is the length of

SP (P,Q), or infinity if no path exists.

Here we give the basic idea of solving the shortest path problem using the visibility

graph method (De Berg et al., 2008, Chap. 13 and 15). Given a set of obstacles S, a

source node P and a goal node Q (see example in Figure 7.1), we can compute the

shortest collision-free path from P to Q that does not intersect any of the obstacle edges

as follows.

Step 1 Construct the visibility graph V G given S, P , and Q where every edge v1v2, has

the Euclidean length of the segment d(v1, v2) as the weight.

Step 2 Use Dijkstra’s algorithm to compute shortest path between P and Q.

Figures 7.1(a) and 7.1(b) show examples of visibility graphs for segments and

polygonal obstacles. Figures 7.1(c) and 7.1(d) show the corresponding shortest paths

from P to Q avoiding the obstacles. The shortest path consists of the source and goal

nodes linked by a set of edges. The following lemma gives the description of a shortest

path for polygonal obstacles.

Lemma 7.0.2. (De Berg et al., 2008, Lemma 15.1) A shortest path between two nodes

that avoids a set S of polygonal obstacles is a polygonal path whose connecting nodes are

nodes of the obstacles S.

From Lemma 7.0.2, a shortest path is linked by a sequence of edges connecting the

source and goal nodes. Each of these edges does not intersect the interior of any obstacles

and the endpoints of the edges must be mutually visible. Note that the endpoints of a

segment of an obstacle are always visible to each other. This leads us to the definition

of a visibility graph. The definition of a visibility graph is well described in Choset et al.

(2005, Sec. 5.1.1). Here, we give a simple version of the definition.
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Q

P

(a) Visibility graph for segment obstacles

Q

P

(b) Visibility graph for polygonal obstacles

Q

P

(c) Shortest Path for (a)

Q

P

(d) Shortest Path for (b)

Figure 7.1: The thin dashed gray lines represent the edges of the visibility graph for the
problem. The thick dashed green lines represent the shortest path from P to Q.
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Definition 7.0.3. Visibility Graph

The visibility graph of a source node (P ), goal node (Q), and the obstacle set S is a

graph whose nodes are P , Q, and the obstacle nodes. Nodes v1 and v2 are joined by an

edge if v1 and v2 are either mutually visible or if v1v2 is an edge of some obstacle.

Using the visibility graph method to solve shortest path problems is well stud-

ied (Ghosh, 2007; O’Rourke, 1987). Let S be an obstacle set consisting of a set of edges

and n be the total number of endpoints of edges in S. Then, the total number of nodes

in the visibility graph is n + 2, when the source and goal nodes are not obstacle nodes.

The number of edges of the visibility graph of S is therefore bounded by

(
n + 2

2

)
. The

direct method for constructing the visibility graph, is by checking whether the segment

connecting two nodes intersects any segments of an obstacle. For a particular node v,

there are O(n2) checks to determine which nodes are visible from v. This straightforward

(naive) method takes O(n3) time and it is the first algorithm given by Lozano-Pérez and

Wesley (1979). They also showed that, by using Dijkstra’s shortest graph path algo-

rithm, the shortest path problem for polygonal obstacles can be solved in O(n2) time.

Lee (1978) and Sharir and Schorr (1986) designed the first efficient algorithm that runs

in O(n2 log n) time and takes O(n2) storage space. Later Asano et al. (1986) and Welzl

(1985) developed an O(n2) time algorithm for this problem which is worst-case opti-

mal since the largest possible size of a visibility graph can be O(n2). Edelsbrunner and

Guibas (1989) then improved the working storage to O(n) by using the technique of

topologically sweeping an arrangement of lines that allows all nodes to be visited in a

consistent ordering.

If the visibility graph is sparse, for example, when there are many densely arranged

obstacles, the number of edges (|E|) in the visibility graph may be much smaller than

its worst-case size of O(n2). Therefore, output-sensitive algorithms that depend on |E|,
the size of the visibility graph have been developed. Hershberger (1987) presented an

O(|E|) algorithm for constructing the visibility graph of a simple polygon. Sudarshan

and Pandu Rangan (1990) proposed an O(|E| log2 n) algorithm for computing sparse

visibility graph of a polygon with holes that needs O(n) storage space. At the same

time, Ghosh and Mount (1991) published an algorithm that takes O(|E|+ n log n) time

and O(|E|+n) storage space for the same problem. Although the algorithm is claimed to

be optimal in time, the authors remarked on the high complexity of its implementation

due to the technique used in locating the visible segments through fast traversal of the

enhanced visibility graph. Overmars and Welzl (1988) also gave an output-sensitive

algorithm that computes the visibility graph for a set of disjoint polygonal obstacles.

It runs in O(|E| log n) time and uses O(n) storage space. This algorithm is relatively

simpler to implement and runs efficiently, although it is not optimal. More efficient
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algorithms are known for special cases such as parallel line segment obstacles, rectangular

obstacles, or when the triangulation of the obstacle space is given (Lee and Preparata,

1984; Storer and Reif, 1994; Guibas et al., 1987; Henzinger et al., 1997; Kapoor et al.,

1997).

We have described the shortest path problems and given some background on how

the visibility graph is used to solve this problem. In our work, we applied the idea in

Overmars and Welzl (1988) to construct the visibility graph. Some modifications were

needed to adapt their algorithm to our somewhat different problem. In the subsequent

sections, we will give their algorithm and explain the method clearly. We will also

highlight the changes we have made in the procedure.

The rest of the chapter is organized as follows. In Section 7.1 we illustrate the

technique for sorting all other nodes by counter-clockwise order around a node. This

rotation tree method is first proposed by Welzl (1985), then presented in detail in Over-

mars and Welzl (1988). In Section 7.2 we describe how the visibility graph for disjoint

segment obstacles is constructed using the rotation tree technique. In Section 7.3 we

extend the method to construct the visibility graph for disjoint polygonal obstacles. We

then describe a shortest path algorithm, Dijkstra’s algorithm, in the last section of this

chapter.

7.1 Rotation Trees

In this section we present Overmars and Welzl’s technique (1988) for sorting the order

of other nodes by angle around a particular node. We will show that the sorted angular

orders for all nodes can be computed in O(n2) time. Based on this, the slopes of all

segments between a node and all other nodes can be given in the sorted angular order

around that node. We will then show that the visibility of this node can be computed

in O(n) time.

Edelsbrunner and Guibas (1989) have solved the problem by using dualization

and topologically sweeping method in optimal O(n2) time and O(n) storage. However,

Overmars and Welzl (1988) proposed a rather simple method with the same complexity

without using dualization. The core idea of their method is to maintain a tree on the

set of nodes during one rotational or angular sweep and report for each node p, all the

nodes to the right of p in counter clockwise order.

Let S be a finite set of disjoint line segments in the plane and V denote the finite

set of endpoints of the line segments in S. It should be noted that, the nodes in V are

assumed to be in general position, that is,
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1. no lines through pairs of nodes in V are parallel,

2. no three nodes in V are collinear,

3. no vertical line contains two nodes in V .

p6

p2

p5

p1

p3

p4

*p−∞

*p∞

Figure 7.2: Example configuration of nodes and obstacles.

Here, we define two nodes p∞ = (x∗, +∞) and p−∞ = (x∗,−∞) where x∗ is an

x-coordinate larger than that of all nodes in V . For illustration purposes, see Figure 7.2.

Next, we give a formal definition for a rotation tree.

Definition 7.1.1. (Overmars and Welzl, 1988, Sec. 2) For a direction d between −π/2

and π/2, the rotation tree RTd following direction d is an ordered tree with node set

V ∪{p∞, p−∞} where every node p (except p∞) has exactly one outgoing edge. If q is the

first node encountered when looking in direction d from p, and rotating counter clockwise,

then this outgoing edge is pq.

For any direction d, since q is the first node encountered from p, the slope of the

directed line edge pq cannot be smaller than d. A sub-tree in RTd is a set of connected

edges (ordered by slope) starting from a node growing to the right, such that the slope

of any edge is always larger than the slope of the previous edge. This means that the

left most edge is the edge with the smallest slope in a sub-tree. p∞ is always the root of

the rotation tree and no edge in the tree has the slope larger than π/2. See Figure 7.3

for an example. Note that all sub-trees are directed towards the root.

The idea used here is similar to any sweep line algorithm that uses a horizontal

or vertical line moving in a fixed direction to sweep the plane. The difference here
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d = −

π

2

d =
π

2
d

Figure 7.3: A rotation tree following direction d with 3 maximal sub-trees.

is a direction line is rotating to sweep the plane. The rotational sweep is started for

d = −π/2, a direction pointing downward (negative y direction). Then, d is increased

while updating the rotation tree RTd until d = π/2 (the sweep proceeds in counter

clockwise direction). During the sweeping process, RTd is updated by removing and

inserting an edge when determining the next correct node in the tree. By correct, we

mean, for a given direction d, q is the next correct node for p if q and p satisfy the

definition in Definition 7.1.1. At the end of the process, all edges will be detected and

reported.

Here, we give some notations on the rotation tree structure before we further

describe the procedure. A rotation tree consists of a set of nodes and edges that has the

following properties:

• The top most node in the tree is assigned as root node and has no parent.

• Each node has zero or more sons but has at most one parent.

• A leaf node is a terminal node that has no sons.

• Nodes with the same parent are siblings.

Refer to Figure 7.4, A is the root node that has two sons B and C. B is the parent of

D and E. F , G and H are siblings and also sons of C. Leaf nodes of this example are

D, E, F , G and H. The directed arrows in Figure 7.4 show the relationship between

nodes, used in the data structure of the algorithm. Note for example, edge AC is

bidirectional meaning that A has a right most son C and C has A as its parent. Edge

AB is unidirectional meaning that B has A as its parent but B is not the right most

son of A.

The basic properties of a rotation tree are as follows.
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A

B

D E

C

F G H

Figure 7.4: A rotation tree structure.

Property 7.1.2. Basic properties (Overmars and Welzl, 1988, Property 1)

1. p∞ is the root of the tree.

2. The left most edge of a set of connecting edges has the smallest slope.

3. For every edge pq, −π
2
≤ slope(pq) ≤ π

2
.

4. If pq and qr are edges then slope(qr) ≥ slope(pq).

Therefore, the path from a node in the tree to the root rode is a convex curve of

increasing slope.

Property 7.1.3. Order Property (Overmars and Welzl, 1988, Property 2)

Let p, q, and r be nodes in the tree where pq is an edge. Let this setting be the current

state of the tree. If slope(pq) ≤ slope(pr) ≤ π/2, then either r lies on the path from p to

the root or it is in a left sub-tree of this path. That means r precedes p in the previous

state of the tree. On the other hand, r succeeds p in the previous state of the tree if

−π/2 ≤ slope(pr) ≤ slope(pq) in the current state of the tree.

If we remove an edge pq from the tree, the next node in counterclockwise order

around p, z can be found on the path from p to the root node or in a left subtree of this

path.

Property 7.1.4. Cone Property (Overmars and Welzl, 1988, Property 3)

Let pq and rs be edges in the tree such that slope(pq) ≤ slope(pr) ≤ slope(rs). Then no

node in V lies in the cone which is the intersection of the open halfplane to the right of

rs and the closed halfplane to the left of pr.

With the above properties of a rotation tree, we give two lemmas that determine

the procedure of rotational sweeping.
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Lemma 7.1.5. (Overmars and Welzl, 1988, Lemma 2.1)

Let RT be a rotation tree on V and let pq be the right most left leaf-edge in RT . If pq

is replaced by pz where z is the next node after q, in counter clockwise order around p,

then the resulting tree is a rotation tree.

A chain in a rotation tree can be defined as a sequence of edges E0, E1, E2, . . . , Ei

such that Ej+1 starts where Ej ends and all edges except for Ei are the right most

incoming edges of their endpoint.

Lemma 7.1.6. (Overmars and Welzl, 1988, Lemma 2.2)

Let RT be a rotation tree on V and let pq be the left most edge of q (q 6= p∞). Let r be

the parent of q and let z′ be the left brother of q, provided it exists. Then the next node

z around p (after q) is the tangent (from the right) from p to the chain ending in z′r,

or, if z′ does not exist, z = r.

At any stage of the rotational sweep, the edge of the right most leaf in the tree

that is left most son of its parent is determined and replaced.

7.1.1 Data structures and algorithm

The detailed algorithm will be presented in this section. Before that, we describe the data

structure and present a few functions with their descriptions that can be implemented

in O(1) time. For each node in V , six fields are stored in the data structure. They are

the x and y coordinates of the nodes and four pointers to its parent, left brother, right

brother and its right most son.

The following functions manipulating these data structures are needed. More detail

is given here than in the published papers.

• RightBrother(p):

Returns the right brother of p.

(NULL if p has no right brother, i.e. p is the right most son of its parent)

• LeftBrother(p):

Returns the left brother of p.

(NULL if p has no left brother, i.e. p is the left most son of its parent)

• Parent(p):

Returns the parent of p.

(NULL if p has no parent, i.e. p is a root node)
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• RightMostSon(p):

Returns the right most son of p.

(NULL if p has no son, i.e. p is a leaf node)

• AddRightMost(p, q):

Inserts p as right most son to q.

Side effects:

– if RightMostSon(q) not NULL then

t := RightMostSon(q);

LeftBrother(p) := t ;

RightBrother(t) := p ;

else

LeftBrother(p) :=NULL;

end

– RightMostSon(q) := p ;

– Parent(p) := q ;

– RightMostSon(p) := NULL;

– RightBrother(p) := NULL;

• AddLeftOf(p, q):

Inserts p as left brother of q.

Side effects:

– if LeftBrother(q) not NULL then

t := LeftBrother(q);

LeftBrother(p) := t ;

RightBrother(t) := p ;

else

LeftBrother(p) := NULL;

end

– LeftBrother(q) := p ;

– Parent(p) := Parent(q);

– RightBrother(p) := q ;

– RightMostSon(p) := NULL;

• Remove(p):

Removes p from the tree.

Side effects:
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– if RightBrother(p) not NULL then

t := RightBrother(p);

LeftBrother(t) := NULL;

else

RightMostSon(Parent(p)) := NULL;

end

– Parent(p) := NULL;

– LeftBrother(p) := NULL;

– RightBrother(p) := NULL;

– RightMostSon(p) := NULL;

• Sort(V ):

Returns the set of nodes in V , sorted in decreasing x coordinate order. In the case

of equal x coordinates, sort them by decreasing y coordinate.

• LeftTurn(p, q, r):

For r = p∞, returns true when p lies on the left of q or when both p and q lie on

the same vertical line and p is below q, i.e. p is after q in Sort(V ).

For r 6= p∞, returns true if r lies to the left of the directed line pq.

Returns false if r lies on or to the right of the directed line pq.

(Note that at any stage of the procedure, LeftTurn will not be called whenever

p = p∞ or p−∞, q = p∞ or p−∞, and r = p−∞)

In this algorithm, we need a data structure to store all the nodes that are left

most sons of their parents and process the right most node first. In this case, the stack

data structure is used where the element can be stored and retrieved in a last-in, first-

out manner (Cormen et al., 2001). The usual operations such as Pop, Push, Top,

InitStack, and EmptyStack are incorporated in the algorithm.

Algorithm 7 below summarizes the rotational plane sweep method. First, the set

of nodes is sorted by decreasing x-coordinate. Lines 2− 5 build the initial rotation tree

when d = −π/2. At this stage, p−∞ has p∞ as its parent and every node in V has p−∞
as its parent. The left most son of p−∞ is the node in V with the largest x coordinate

and the right most son of p−∞ is the node with smallest x coordinate. To begin the

loop, the stack is initialized and the first node in the sorted list is pushed into the stack.

The first node is the right most node in V and the left most leaf in the initial rotation

tree. While the stack is not empty, Lines 7 − 33 form the main loop that determines

the node to be removed from the stack and inserted in the tree. Lines 8 − 10 assign p

as the current node to be considered, pr as the right brother of p and q as the parent of
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Algorithm 7 VisibleEdgeRotTree: Constructing visible edges using rotational plane
sweep method for sorting pairs of nodes in counter clockwise order.

Input: V which contains (n− 2) segment endpoints, source node vs and goal node vg.
Output: All visible edges between nodes in V or(

n
2

)
pairs of nodes sorted by the slope of their connecting lines when Lines 11−13

are commented out.
1: Sort(V );
2: AddRightMost(p−∞, p∞);
3: for i = 1 to n do
4: AddRightMost(pi, p−∞);
5: end for
6: InitStack; Push(p1);
7: while NOT EmptyStack do
8: p := Pop;
9: pr := RightBrother(p);

10: q := Parent(p);
11: if q 6= p−∞ then
12: Visible(p, q);
13: end if
14: z := LeftBrother(q);
15: Remove(p);
16: if z = NULL or NOT LeftTurn(p, z,Parent(z)) then
17: AddLeftOf(p, q);
18: else
19: while RightMostSon(z) 6= NULL AND LeftTurn(p,RightMostSon(z), z)

do
20: z := RightMostSon(z);
21: end while
22: AddRightMost(p, z);
23: if z = Top then
24: z := Pop;
25: end if
26: end if
27: if LeftBrother(p) = NULL AND Parent(p) 6= p∞ then
28: Push(p);
29: end if
30: if pr 6= NULL then
31: Push(pr);
32: end if
33: end while

p. The directed line pq will be passed into the function Visible(p, q) which will decide

whether q is visible to p and report it as an visible edge if they are mutually visible. We

will describe this function in the next section.

To update the tree, there are two cases to consider. In the first case, if there is no
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node on the left of q or on the left of the directed pq, then p is added as a son to the

parent of its parent q. p will now be the left brother of q (Lines 16 − 17). Otherwise,

the loop will walk along the chain to find the next correct node, z, that is the tangent

node from p. When z is found, p is added to be the right most son of z (Lines 19− 22).

Lines 23− 25 check if z is on the stack. Since z is now the parent of p, it is no longer a

leaf node. Therefore it should be removed from the stack. Lastly, the stack is adapted

where p is pushed into the stack if p does not have a left brother (Lines 27 − 29). If p

has a right brother pr, pr should be pushed into the stack too (Lines 30− 32).

A step-by-step illustration of updating the rotation tree based on the

configuration in Figure 7.2 is given in Appendix A.

The correctness of the algorithm follows from Lemmas 7.1.5 and 7.1.6. The fol-

lowing theorem summarize this result. The proof given is a much more detailed version

of that outlined by Overmars and Welzl (1988).

Theorem 7.1.7. (Overmars and Welzl, 1988, Theorem 2.3)

Given a set of n nodes in the plane, we can, for each node p, sort the other nodes by

angle around p in O(n2) time.

Proof. Since there are n nodes, we will have exactly

(
n

2

)
distinct edges to consider the

visibility of. Let us first define a connection between two nodes, p and q 6= p−∞ to be

an actual edge, and a connection between a node p and the phantom node p−∞ to be a

phantom edge.

Firstly, consider the number of passes through the main while loop.

We claim that in Algorithm 7, the main while loop (Lines 7 − 33) is performed

once for each actual edge, and once for each phantom edge.

To justify this, we count the number of passes through the main loop by considering

the output edges, pq where q is the parent of p in the rotation tree (Line 12). Note that

the rotation tree is updated by sweeping the plane with a direction line d with angles

[−π
2
, π

2
]. At the initial stage of the rotation tree, p−∞ is assigned to be the parent for

every node. These phantom edges (pp−∞) have angles −π
2

and are considered first in

the loop. By the end of these initial n passes, the parent of each node p will no longer

be p−∞.

Then, the actual edges are considered in groups with the same parent. Within a

group they are considered in order of increasing slope from −π
2

to π
2
. In the algorithm,

once edge pq is considered, p is moved to the left of q in the rotation tree and therefore

pq is not considered again in lines 8− 12. Therefore, there are at most

(
n

2

)
+ n passes
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through the main loop. Excluding the work in the inner while loop (Lines 19 − 21),

each pass through the main loop requires O(1) work. So the total work done excluding

the work in the inner while loop (Lines 19− 21) is O(n2).

Now consider the work of all passes through the inner while loop (Lines 19− 21).

Once the actual edge pq is considered, the rotation tree will be updated such that

the next edges to be processed are in order of increasing slope. More precisely, there

are two cases to consider here. First, if there is no node on the left of pq (meaning that

there is no node on the left of q in the rotation tree), p will be moved to be on the left

of q and execution continues at line 27. In the second ‘else’ case where there exists a

node on the left of pq, the inner while loop (Lines 19 − 21) is executed. The loop will

walk along the chain, that is the subtree to the left of q in the rotation tree to search for

the node that is tangent to p. When the node is found, p will be added as right most

son of this node and become part of the chain. This chain is on the left of q. Thus, p

will be moved to be on the left of q in both cases.

Note that nodes that are on the right of p will never move back to the left of p

while updating the rotation tree. Hence when pq is considered, it will never be considered

again because p is moved and q is now on the right of p in the rotation tree.

p∞

z1

z2

.

.

.

zm−1

zm

q

p pr

(a)

p∞

z1

z2

.

.

.

zm−1

zm

p

q

pr

(b)

Figure 7.5: Once edge pq is considered in this setting, shown in (a), p is then moved to
the left of q, as shown in (b).

To count the work done in lines 16 − 26, we consider the k−th pass through the

main while loop. Suppose in the corresponding execution of lines 19− 21, we generate

z1, z2, . . . , zm in turn by calling LeftTurn(p,RightmostSon(z), z) for 1 ≤ i < m to

search for the node that is tangent to p, that is zm. (See Figure 7.5(a).) Then, p will be

added as the right most son of zm and become part of the chain that contains zm. (See
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Figure 7.5(b).) Therefore edges p z1, p z2, . . . , p zm−1 will not be considered again in any

passes because when p zm is considered later, p will be moved to the left and never will

be added as a son of z1, z2, . . . or zm−1.

In this pass, the work in the inner while loop (Lines 19−21) is O(1)+Cf(k) where

C is a constant and f(k) is m− 1 if m, the number of zi’s generated in the inner while

loop, is greater than 1, and 0 otherwise. Since edges p z1, p z2, . . . , p zm−1 are considered

at most once in the execution of the inner while part of the algorithm, and the sum of

f(k) is bounded by the total number of distinct edges, which is

(
n

2

)
, the total work in

the inner while loop over all passes through the main loop is O(n2).

Therefore, combining the two counts above, the total work of the algorithm is

O(n2).
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7.2 Visibility Graph Construction for Disjoint

Segment Obstacles

In this section, we will present a method for constructing the visibility graph between

two nodes of a set of line segment obstacles. Let S be the finite set of line segment

obstacles and V be the finite set of n nodes which are the endpoints of the segment

obstacles. We obtain

(
n

2

)
line segments sorted by slope in counter clockwise order

using the method described in the previous section. Let D = {di}, where 1 ≤ i ≤ (
n
2

)

be the set of sorted slopes, hereafter denoted as the set of finite directions. Now we have

to identify those line segments that are also a visible edge.

Following the method in Overmars and Welzl (1988), let Visd(p) be the vision

of p in direction d. That means Visd(p) is the first obstacle segment hit by the ray

emanating from p in direction d. For any direction d = [−π/2, π/2], we denote d− be

the direction immediately preceding d, and d+ be the direction immediately succeeding

d. To initialize the structure, we set d0 = −π/2. Thus, we can determine Visd0(p) for

each node in V , which gives the obstacle segment immediately below it. For example,

the table in Figure 7.6 shows the initial vision for each node in the configuration. If

there is no such segment, Visd0(p) = 0.

In the context of our problem, we omit the assumption of all nodes in V must be

in general position. In other words, we allow nodes to be collinear and any vertical line

can intersect more than one node. Moreover, set V not only contains the endpoints of

segment obstacles, but also the source and goal nodes. Thus, we have to modify the

definition of Visd0(p) to cater for this problem. If the ray emanating from p in the

vertical downward direction hits an endpoint q of a segment Si,

Visd0(p) =





Visd0(r), if segment Si is vertical and

r is the lower endpoint of segment Si;

Visd0(q), if q is the right endpoint of segment Si;

i, if q is the left endpoint of segment Si.

(7.1)

See Figure 7.7 for an example.

It requires O(n2) time to compute initial Visd(p) for d = −π/2 since we scan

through each segment obstacle for every node in V . Recall that the rotational plane

sweep algorithm will returns pairs of nodes sorted by slope of their connecting line in

counter clockwise order. These pairs of nodes will be passed into the function Visi-

ble(p, q) to determine their visibility. Let p and q be the two nodes to be considered,
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d = −

π

2

S1

S3

S2

p5

p1
p3

p6

p4

p2

p p1 p2 p3 p4 p5 p6

Visd0(p) 0 1 1 3 0 0

Figure 7.6: The initial structure for Visd(p). The entries 1 and 3 denote the obstacle
segments S1 and S3.

d = −

π

2

S1

S3

S2

p7

p2
p4

p8

p6

p1

p3

p5

p p1 p2 p3 p4 p5 p6 p7 p8

Visd0(p) 0 0 1 1 2 3 0 0

Figure 7.7: The modified initial structure for Visd(p). The entries 1, 2 and 3 denote the
obstacle segments S1, S2 and S3.
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we will report pq as a visible edge only if p and q are mutually visible. In the function,

Visd(p) will be updated while d sweeps in counter clockwise order from d = −π/2. At

the beginning, Visd(p) remain unchanged until we sweep through the first detected pair

of nodes. We will now show all the possible cases to determine if q is visible to p.

• Case (1): If p and q are endpoints of the same line segment in S, then they are

visible to each other. The vision of p remains unchanged. See Figure 7.8(a).

• Case (2): If q is an endpoint of Visd(p), then q must be succeeding the other

endpoint of Visd(p) in counter clockwise order. p and q are visible to each other.

Thus, the vision of p will now be the vision of q (see Figure 7.8(b)).

• Case (3): If q lies in front of Visd(p) from p, then pq does not intersect Visd(p).

Hence, p and q are mutually visible. If q is the endpoint of a line segment in S,

the vision of p will now be that segment of q (see Figure 7.8(c)). If q is the source

or goal node (without segment), the vision of p remains unchanged.

• Case (4): If q lies behind Visd(p) from p, then pq intersects Visd(p). Thus, p and

q are not visible to each other. In this case, the vision of p remains unchanged (see

Figure 7.8(d)).

Cases (1), (2) and (3) imply that pq is a visible edge for the visibility graph. Here,

we define some operations used in the Visible(p, q) function. These operations can all

be performed in O(1) time. Then, function Visible(p, q) will be given. Note that this

function is the modified version of function Handle(p, q), given in Overmars and Welzl

(1988).

• Segment(p):

Returns the index of segment which p is an endpoint of.

(NULL if p is the source or goal node)

• Other(p):

Returns the other endpoint of Segment(p).

(NULL if p is the source or goal node)

• Before(p, q, Si):

Returns true if q lies before segment Si from the position of p.

(Note that Before(p, q, Si) is always true when Visd(p) = 0, i.e. Si = 0.)

• Report(p, q):

Report pq as an edge of the visibility graph, V G.
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Figure 7.8: Rotational sweep transitions in counter clockwise order: cases determining
the visibility of p and q. The densely dashed gray line d− denotes the direction im-
mediately preceding d (blue dotted line), and loosely dashed gray line, d+ denotes the
direction immediately succeeding d.

Algorithm 8 Function Visible(p, q)

1: if q = Other(p) then
2: Report(p, q);
3: else if Segment(q)=Visd−(p) then
4: Visd+(p) := Visd−(q);
5: Report(p, q);
6: else if Before(p, q,Visd−(p)) then
7: if Segment(q) not NULL then
8: Visd+(p) := Segment(q);
9: end if

10: Report(p, q);
11: end if
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Here, we give two lemmas that show the correctness of the method.

Lemma 7.2.1. (Ghosh, 2007, Lemma 5.3.1)

Let d− be the direction of of q from p and d+ be the next direction after d− in counter

clockwise order around p. If q is an endpoint of Visd−(p) provided Visd−(p) exists, then

Visd+(p) = Visd−(q).

Lemma 7.2.2. (Ghosh, 2007, Lemma 5.3.2)

Let D = {d1, d2, . . . , dn} be the set of n directions. The order of rotation for the directions

in D can be computed in O(n2) time.

The proofs of Lemma 7.2.1 and Lemma 7.2.2 are given in Ghosh (2007). These

lemmas were also given by Welzl (1985). These lemmas gives the following theorem.

Theorem 7.2.3. (Overmars and Welzl, 1988, Theorem 3.1)

The visibility graph of a set S of disjoint segment obstacles with n segments in total can

be computed in O(n2) time and O(n) working storage.

Hence, given a set S of line segments as obstacles, a source node (vs) and a goal

node (vg), the visibility graph (V G) can be constructed via:

• initialize Visd0(p) for all p ∈ V

• V G=VisibleEdgeRotTree(S, vs, vg).



102 CHAPTER 7. SHORTEST PATH PROBLEMS

7.3 Visibility Graph Construction for Polygonal

Obstacles

The visibility graph for a set of polygonal obstacles can be constructed by an algorithm

similar to that given in Section 7.2. The difference is that the vision function Visd(p) and

the visibility function Visible(p, q) must be changed. Here we outline the construction

as given by Alt and Welzl (1988). The main procedure remains the same. We need to

first initialize Visd(p) for every node in V . Then process every sorted pair of nodes and

determine their visibility.

Let S be the finite set of segments of polygonal obstacles and V be the finite set

of nodes which are the endpoints of the segments. The vision of a node p, Visd(p) in a

given direction d is defined as follows.

1. If the ray emanating from p in direction d does not intersect any obstacles, then

Visd(p) = 0.

2. If the ray emanating from p in direction d enters the obstacle of which p is a node,

then Visd(p) = −1.

3. If the ray emanating from p in direction d first intersects Si, a segment of another

obstacle, then Visd(p) = i.

We initialize Visd(p) for all p in V at d0 = −π/2 to begin the algorithm. Again, we

need extra definition for Visd(p) in order to consider nodes that are not in the general

position. If the ray emanating from p in the vertical downward direction hits an obstacle

node q, then q must be an endpoint of two connecting segments Si and Sj in counter

clockwise order. Therefore,

Visd0(p) =





Visd0(q), if q is the right endpoint of both segments Si and Sj;

(See Figure 7.9(a).)

i, otherwise. (See Figure 7.9(b) and (c).)

(7.2)

Note that segment Si must be the nearest segment to node p. For example, see Fig-

ure 7.10.

Similar to the method of constructing the visibility graph for disjoint segment

obstacles, we will process the pairs of nodes (p, q), obtained from the rotational plane

sweep algorithm. To distinguish the current function from the previous function (for

disjoint segment obstacles), we name it as VisiblePolygonal(p, q). Let us now define
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Figure 7.9: Cases for Visd(p) when q is an obstacle node.
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Figure 7.10: The initial structure for Visd(p) with polygonal obstacles. The entries 2
and 3 in the table denote segment S2 and S3.
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some notation and operations used in the VisiblePolygonal(p, q) function which we will

describe later. If p is a node of any polygonal obstacle, then p is a node connecting two

segments of that polygonal obstacle, see Figure 7.11.

• SegIn(p):

Looking in counter clockwise order around p, SegIn(p) is the first segment en-

countered before entering the obstacle of which p is a node.

SegIn(p) returns the index of this segment.

(NULL if p is the source or goal node)

• SegOut(p):

Looking in counter clockwise order around p, SegOut(p) is the last segment en-

countered before exiting the obstacle of which p is a node.

SegOut(p) returns the index of this segment.

(NULL if p is the source or goal node)

For example, let the polygonal obstacle consists of line segments S1, S2, S3, S4 and

S5, in counter clockwise order (Figure 7.11). Then SegIn(p) = 1 and SegOut(p) = 5

where 1 and 5 are the index of segment S1 and S5.

S5

p4

S4

p3

S3

p2

S2
p1

S1

S
eg
In
(p
)

SegOut(p)

p

Figure 7.11: SegIn(p) and SegOut(p) of node p in a polygon.

• OtherSegIn(p):

Returns the other endpoint of SegIn(p) that is not p.

(NULL if p is the source or goal node)

• OtherSegOut(p):

Returns the other endpoint of SegOut(p) that is not p.

(NULL if p is the source or goal node)
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• Before(p, q, Si):

Returns true if q lies before segment Si from the position of p.

(Note that Before(p, q, s) is always true when Si = 0, i.e. Visd(p) = 0.

• Report(p, q):

Report pq as an edge of the visibility graph, V G.

Let p and q be the two nodes to be considered, we will report pq as a visible edge

only if p and q are mutually visible. In the algorithm, Visd(p) will be updated while d

sweeps from −π/2 to π/2. Here, we will describe all the cases to determine if q is visible

to p.

• Case (1): If Visd−(p) = −1 and q is OtherSegOut(p), then pq is a line segment

in S. In this case, q is the other endpoint of SegOut(p). Thus, p and q are visible

to each other. However, the vision of p changes according to the configuration of

the obstacle. We look at the current vision of q and there are two possibilities as

follows:

Visd+(p) =





SegOut(q), if Visd−(q) = −1;

Visd−(q), otherwise.

See Figure 7.12(a) and 7.12(b) for illustration.

• Case (2): If Visd−(p) = Si and q is an endpoint of Visd−(p), then pq does not

intersect Si but meets Si at q (see Figure 7.12(c) and 7.12(d)). Hence, p and q are

visible to each other. Similar to Case (1), there the vision of p changes as follows:

Visd+(p) =





SegOut(q), if Visd−(q) = −1;

Visd−(q), otherwise.

• Case (3): If q is OtherSegIn(p), that means pq is a line segment in S. They are

therefore visible to each other. Since pq is SegIn(p), the vision of p now changes

to −1 (see Figure 7.12(e)).

• Case (4): If Visd−(p) 6= −1 and q lies in front of Si from p, then pq does not

intersect Si. p and q are visible to each other. The vision of p changes to be

SegOut(q). See Figure 7.12(g).

• Case (5): If Visd−(p) = −1 and q is not OtherSegOut(p), then q must be one

of the obstacle nodes not immediately succeeding p. Therefore, p and q are not

visible to each other. The ray emanating from p to q still within its obstacle. The

vision of p remains unchanged (see Figure 7.12(f)).
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• Case (6): If Visd−(p) 6= −1 and q lies behind Si from p, then pq intersects Si

where i = Visd−(p). Thus, q is not visible to p. However, the vision of p remains

unchanged (see Figure 7.12(h)).

Cases (1) to (4) imply that pq is a visible edge for the visibility graph. Here,

we will give the function for VisiblePolygonal(p, q). Note that operations such as Se-

gIn(p), SegOut(p), OtherSegIn(p), OtherSegOut(p) and Before(p, q, s) can all be

performed in O(1) time.

Algorithm 9 Function VisiblePolygonal(p, q)

1: if Visd1(p) = −1 AND q = OtherSegOut(p) then
2: if Visd1(q) = −1 then
3: Visd2(p) := SegOut(q);
4: else
5: Visd2(p) := Visd1(q);
6: end if
7: Report(p, q);
8: else if Visd1(p) 6= −1 AND q is an endpoint of Visd1(p) then
9: if Visd1(q) = −1 then

10: Visd2(p) := SegOut(q);
11: else
12: Visd2(p) := Visd1(q);
13: end if
14: Report(p, q);
15: else if q = OtherSegIn(p) then
16: Visd2(p) := −1;
17: Report(p, q);
18: else if Visd1(p) 6= −1 AND Before(p, q,Visd1(p)) then
19: Visd2(p) := SegOut(q);
20: Report(p, q);
21: end if

Hence, given a finite set S of polygonal line segments as obstacles, a source node

(vs) and a goal node (vg), the visibility graph (V G) can be constructed via:

• initialize Visd0(p) for all p ∈ V

• V G=VisibleEdgeRotTree(S, vs, vg) with Line 12 of Algorithm 7 replaced by Visi-

blePolygonal(p, q) (see Algorithms 7 and 9).

Following Theorem 7.2.3, we give the following theorem:

Theorem 7.3.1. The visibility graph of a set S of disjoint polygonal obstacles with n

segments in total can be computed in O(n2) time and O(n) working storage.
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Figure 7.12: Rotational sweep transitions in counter clockwise order: cases determining
the visibility of p and q for polygonal obstacles configuration. The densely dashed gray
line d− denotes the direction immediately preceding d (blue dotted line), and loosely
dashed gray line, d+ denotes the direction immediately succeeding d.
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7.4 Dijkstra’s Algorithm

In this section, we will describe a shortest path algorithm used in our problem. There

are numerous algorithms available for finding shortest paths efficiently (Champandard,

2002). These algorithms are also known as path planning algorithms which can be

constructed based on a weighted graph. Recall that a graph, G = (V,E) always consists

of a set of nodes, V and a set of edges, E. Let us now give the definition of a weighted

graph and its shortest path weight.

Definition 7.4.1. Weighted Graph

A weighted graph is a graph, G = (V, E) in which each edge, vivj, is assigned a real

value, w(vivj), called the weight of vivj.

Definition 7.4.2. Shortest Path Weight

Given a weighted graph, G = (V, E) with weight function w, the weight of the path

P = 〈v1, v2, . . . vk〉 is the sum of the weights of its subsequent edges:

w(P ) =
k−1∑
i=1

w(vivi+1).

A shortest path weight from v1 to vj is defined as:

MinDist(vj) =





min{w(P )}, if there is a path P from v1 to vj;

∞, otherwise.

From the above definitions, a shortest path between two nodes in a weighted graph

is a path between the nodes which minimizes the sum of weights of the path edges. A

typical weighted graph can be viewed as a road map (see Figure 7.13). Nodes in the

graph represent cities or intersections and edges represent roads connecting the cities.

The weight of edges can be distance, time or cost involved in traveling between the

cities. Hence, a shortest path problem can now be modeled as: How to compute a

shortest route (distance) from one city to another?

Generally, shortest path algorithms can be categorized into three major variants:

• Single-Source Shortest Path

This algorithm finds a shortest path from a specified source node to all other nodes.

Dijkstra’s algorithm (Dijkstra, 1959) is one of the most popular and celebrated

algorithms for solving the single-source shortest path problem. It is widely used in

the fields of computer science and operations research. The main constraint of this
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Figure 7.13: Example of a weighted graph.

algorithm is that all the edge weights must be positive. In the case where negative

weighted edges may be involved, the Bellman-Ford algorithm can be used.

• Single-pair Shortest Path

This algorithm finds a shortest path between a specified source and goal (desti-

nation) node. This problem can be solved with the single-source shortest path

algorithm where the algorithm is terminated when a shortest path from the source

to the goal node is found. This is the approach we have used.

• All-pairs Shortest Path

This algorithm finds a shortest path from each node to every other node. Clearly,

this algorithm is computationally more expensive. One can solve this problem

by performing a single-source algorithm, once for every node as the source node.

However this is often impractical to implement. For example, using Dijkstra’s

algorithm to solve the problem gives an O(n3) running time. If the Bellman-Ford

algorithm is used (for a graph with some negative weights), the time complexity

can be O(n4) (Cormen et al., 2001).

In our problem, we will use the constructed visibility graph (demonstrated in the

previous section) to form a shortest path problem. We represent the visibility graph as a

weighted graph where the weight of each edge is the distance between the nodes of that

edge. Since the weight cannot be negative, it is natural to use Dijkstra’s algorithm to

solve the shortest path problem. In the next section, we will give a detailed description

of Dijkstra’s algorithm.
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7.4.1 Description and algorithm

Dijkstra (1959) has proposed two solutions for graph search problems. They are the

minimum weight spanning tree algorithm and the shortest path algorithm. Dijkstra’s

algorithm for solving the shortest path problem is a greedy algorithm that is often

applied by itself or as a subroutine in another algorithm.

The algorithm works by updating two sets of array: the pending (unvisited) list,

Q and a shortest distance list, MinDist. Q denotes the list of nodes that have not been

considered or visited. MinDist denotes a shortest distance of a node from the source

node (see Definition 7.4.2). For example, let the source node be vs. MinDist(vg) returns

the value which is a shortest distance from vs to vg. The algorithm repeatedly considers

nodes in the Q list and update its MinDist from the source node. The algorithm will

be terminated when Q list is empty.

• Step 1 : Initialization - Each node is assigned a shortest distance value, zero for

the source node and infinity for all other nodes. All nodes are marked as unvisited

and stored in the Q list. Set the source node as the current node to consider.

• Step 2 : For the current node, detect all its unvisited neighboring nodes and cal-

culate their tentative MinDist. For example, let vi be the current node with

MinDist(vi) = 10 and has an unvisited neighboring node vj with w(vivj) = 5.

Then, a possible total distance from vi to vj is 10 + 5 = 15. If this value is less

than the previously recorded value of MinDist(vj), then MinDist(vj) should be

updated.

• Step 3 : When MinDist for all the unvisited neighboring nodes of the current node

have been updated, the current node is marked as visited. It is removed from the

Q list and will not be selected again. MinDist of the current node is therefore

final and optimal.

• Step 4 : Select the node in Q list with least MinDist to be the current node

(ExtractMin(Q)). Repeat Step 2 and 3.

• Step 5 : The process is continued until the Q list is empty. An empty Q list implies

that all nodes are visited and considered. At this stage, MinDist at each node is

final and optimal.

Next, we will give the detailed algorithm used in our problem. Note that the goal

node is given and the algorithm is terminated once the goal node has been considered.

Lines 11 − 13 of Algorithm 10 should be removed if a shortest path to all other nodes

from the source node is desired.
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Algorithm 10 Dijkstra(G, vs, vg)

Input: G = (V,E), source node vs and goal node vg.
Output: MinDist(vg).
1: Initialize
2: V := {V, vs, vg};
3: Q := V \ {vs};
4: for all vi ∈ V do
5: MinDist(vi) := ∞;
6: end for
7: MinDist(vs) := 0;
8: while Q 6= ∅ do
9: u := ExtractMin(Q);

10: Remove u from Q;
11: if u = vg then
12: Break;
13: end if
14: for t, each unvisited neighbor of u do
15: temp := MinDist(u) + w(ut);
16: if temp < MinDist(t) then
17: MinDist(t) := temp;
18: end if
19: end for
20: end while

Theorem 7.4.3. Correctness of Dijkstra’s algorithm (Cormen et al., 2001, Theorem

24.6)

Given a weighted graph G = (V,E) with nonnegative edge weights and a source node vs,

Dijkstra’s algorithm terminates with a shortest distance (MinDist(v)) from vs for all

nodes v ∈ V .

A thorough treatment of Dijkstra’s algorithm is given in Cormen et al. (2001,

Chap. 24).

7.4.2 Example of Dijkstra’s algorithm

Here we will give a step-by-step illustration of Dijkstra’s algorithm based on the example

of Figure 7.13. This is a weighted graph with 6 nodes, V = {A,B, C, D, E, F}. The

procedure of finding a shortest distance from node A to F will be shown. Let the weight

for each edge be the distance between the two nodes. For example, w(BE) = 15 implies

that the distance between B and E is 15. Let the source node be A. In the initial

step, MinDist of A is set to 0 and for the rest of the nodes, MinDist is set to infinity.

Further description at each step will be given in the caption of each sub-figure. In the
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illustrations, the value of MinDist is labeled beside each nodes and will be updated

at each step. Unvisited nodes in Q are marked with yellow circle and visited nodes

are marked with red square. In each step, red dashed lines represent edges connected

to a visited node. These edges should not be considered in the subsequent step. For

more animations (demos with Java applet) of Dijkstra’s algorithm, the reader is referred

to Pryor et al. (2007) and Ikeda (2000).

7.4.3 Complexity of Dijkstra’s algorithm

In this section, we discuss the complexity of Dijkstra’s algorithm which often relies on

the following constants:

• n = |V |, the number of nodes in the graph,

• m = |E|, the number of edges in the graph,

• C, the maximum absolute value of an edge.

The performance of Dijkstra’s algorithm mainly depends on the data structure

implemented for Q (Cormen et al., 2001). Recall that Q is a min priority queue that

should maintain the node with the least MinDist to be selected and removed. A direct

and simple implementation of a priority queue is to store the nodes in Q using an ordinary

array. ExtractMin(Q) runs a linear search through all the nodes in Q. Therefore each

ExtractMin operation takes O(n) time. A total time in the while loop takes O(n2)

time. Since there are m number of edges to be checked in the for loop, this gives a

O(n2 + m) = O(n2) total running time of the algorithm with array implementation.

If the given graph is sparse, a binary heap can be used for a more efficient im-

plementation of Q. In this case, the binary heap can be built in O(n) time. The

ExtractMin operations take O(log n) time and there are n such operations. With bi-

nary heap implementation, the checking steps in the for loop takes O(m log n) time.

Hence the algorithm requires a total running time of O((n + m) log n).
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(a) This is the initial step where MinDist of
all nodes are assigned a value ‘∞’ except for
the source node. The MinDist from the source
node to itself is 0. At this stage, all nodes are
unvisited.
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(b) Starting at the source node A, consider
all its unvisited neighboring nodes, B, C and
D. MinDist of these nodes are updated where
MinDist(B) = 7, MinDist(C) = 9 and
MinDist(D) = 14.
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(c) Since all the neighboring nodes of A have
been considered, A is marked as visited and it
is deleted from Q list. A will not be considered
again in the later stage and MinDist(A) is now
final. The node with the least MinDist value
in Q, B is selected to be considered next. Note
that the edge between A and B is not available
as A is already visited.
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(d) B is the current node to consider. Its
unvisited neighboring nodes are C and E.
MinDist(C) is checked and the value 9 retained
since 9 < 17. MinDist(E) is updated to 22.
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(e) Since all the neighboring nodes of B have
been considered, B is marked as visited and it
is deleted from Q list. MinDist(B) = 7 is now
final.
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(f) The next node in Q list to be considered is
C. Since A and B are visited nodes, the edge
connecting them to C is not available.
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(g) Consider all the unvisited neighboring
nodes of C, D and E. MinDist(D) is updated
to 11 since 11 < 14. MinDist(E) is updated to
20 since 20 < 22.
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(h) Since all the neighboring nodes of C have
been considered, C is marked as visited and it
is deleted from Q list. MinDist(C) = 9 is now
final.
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(i) The next node in Q list to be considered is
D. F is the only unvisited neighboring node of
D. MinDist(F ) is updated to 20.
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(j) D is now marked as visited and it is deleted
from Q list. MinDist(D) = 11 is now final. At
this stage, Q = {E, F} are the unvisited nodes.
Both MinDist(E) and MinDist(F ) have the
same value 20. So, either one can be selected
for consideration.
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(k) Let E be the node to be considered. The
only unvisited neighboring node of E is F .
MinDist(F ) remains the same since 20 < 26.
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(l) E is now marked as visited and
MinDist(E) = 20 is now final.
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(m) The last node in the Q list is F . F
has no unvisited neighboring node. Therefore,
MinDist(F ) = 20 now final. F is deleted from
Q list and the algorithm terminates when Q is
empty. A shortest distance from A to F is 20
with the shortest path ACDF . As indicated
earlier, a shortest distances from A to all other
nodes (value of MinDist) are also found at the
end of the algorithm. For instance, a shortest
distance from A to D is 11.

Figure 7.14: Dijkstra’s algorithm illustrations.



Chapter 8

Test Cases

In this chapter, we will present several test cases with different configurations of faults

and centers. We will show that the application of the shortest path problem to scattered

data geodesic interpolation gives expected results. The approximations used were all of

the kernel based form

s(x) = p(x) +
N∑

i=1

λi φ
(
ρ(x, xi)

)
, (8.1)

where ρ is some metric for R2, p is a polynomial, and φ : [0,∞) → R. We performed

the interpolation in MATLAB using both geodesic shortest distance d(a, b) and direct

Euclidean distance r = ‖a − b‖2. Direct Euclidean distance will give an interpolation

that does not take faults into account. Test cases were of two types. One considered

disjoint segments as faults and the other considered connected segments as faults. The

interpolant s (solution) of each test case will be illustrated in Figures 8.1 to 8.10.

8.1 Disjoint Segments as Faults

All the test cases were carried out on a [0, 100]× [0, 100] regular uniform grid (evaluation

points) with N interpolation points (centers). For interpolation, we choose the basis

function φ(r) = (1− r)4(4r + 1) which is positive definite on R3 and has C2 continuity.

The support of φ can be scaled to adapt the interpolation to scattered data of different

densities. We set the radius of support of φ to be R = 50, hence r = t/R, denotes

the scaled distance. There are two main computations in our algorithm. The first

computation calculates the coefficients λ by solving the interpolation equations

s(xi) = f(xi), 1 ≤ i ≤ N. (8.2)

117
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In the case of no polynomial part, these equations can be rewritten as a linear system




φ11 φ12 · · · φ1N

φ21 φ22 · · · φ2N

...
...

. . .
...

φN1 φN2 · · · φNN







λ1

λ2

...

λN




=




f(x1)

f(x2)
...

f(xN)




(8.3)

or

Aλ = f. (8.4)

Note that the φij’s are defined by

φij =





φ(d(xi, xj)/R), for geodesic shortest distance,

φ(‖xi − xj‖2/R), for direct Euclidean distance.
(8.5)

The second computation evaluates the interpolant s at evaluation points using the

previously obtained coefficients λ. Algorithm 11 describes the process of computing the

interpolant s for a given set of faults, we call it geodesic interpolation.

Figures 8.1 to 8.4 show the results for four different configurations using disjoint

segments to represent faults. In each case, the original input data is shown in subfigure

(a). The input data consists of faults (segment endpoints), interpolation points and their

respective point values or heights. Subfigures (b) and (d) show the contour lines and

surface plot of the geodesic interpolant s using shortest distance not crossing the faults.

It can be seen that, the faults were reproduced and clearly visible. There is no direct

influence of data values across the faults. Indeed the geodesic interpolant is discontinuous

across the faults but smooth elsewhere. Further, the influence of data values decays

with geodesic distance as evaluation points move around corners of the faults. They

were compared to those interpolated using direct Euclidean distance (without faults) as

shown in subfigures (c) and (e). For interpolation using direct Euclidean distance, both

Lines 6, 7 and 19, 20 are replaced with d(vs, vg) = ‖vs − vg‖2.

With four different configurations, we have shown that the method we described

in Section 7.1.1 and 7.2 works well without any restriction on the position of data points

and segment endpoints. Note that the method given in Overmars and Welzl (1988)

assumed that all segment endpoints must be in general position as stated in Section 7.1.

For example, Test case (i) consists of two segments and they are parallel (see Figure 8.1).

Test case (iii) consists of segments that are vertical and parallel. Moreover, three or more

endpoints of the segments are collinear too (see Figure 8.3).
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Algorithm 11 Geodesic Interpolation

Input: Interpolation data, (xi, fi) for 1 ≤ i ≤ N ,
Segments S = {S1, S2, . . . , Sm}, and φ, type of basis function.

Output: Interpolant s(x).
1: Compute matrix A:
2: Initialize Visd0(xi) for 1 ≤ i ≤ N
3: for 1 ≤ i ≤ N do
4: for 1 ≤ j ≤ N do
5: vs = xi ; vg = xj ;
6: V G=VisibleEdgeRotTree(S, vs, vg);
7: d(vs, vg) =Dijkstra(V G, vs, vg);
8: φij = φ(d(vs, vg)/R);
9: end for

10: end for
11: A=[φij] for 1 ≤ i, j ≤ N
12: λ = A \ f ;
13: Define evaluation points xij on grid 0 ≤ i, j ≤ 100
14: for 0 ≤ i, j ≤ 100 do
15: vs = xij ;
16: sij = 0;
17: for 0 ≤ k ≤ N do
18: vg = xk ;
19: V G=VisibleEdgeRotTree(S, vs, vg);
20: d(vs, vg) =Dijkstra(V G, vs, vg);
21: φk = φ(d(vs, vg)/R);
22: sij = sij + λk φk ;
23: end for
24: end for
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(b) Contour lines of interpolant s without
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(c) Surface plot (X-Y view) of interpolant s
with faults.
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(d) Surface plot (X-Y view) of interpolant s
without faults.

Figure 8.1: Test Case (i).
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(b) Contour lines of interpolant s without
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(c) Surface plot (X-Y view) of interpolant s
with faults.
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(d) Surface plot (X-Y view) of interpolant s
without faults.

Figure 8.2: Test Case (ii).
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(b) Contour lines of interpolant s without
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(c) Surface plot (X-Y view) of interpolant s
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(d) Surface plot (X-Y view) of interpolant s
without faults.

Figure 8.3: Test Case (iii).
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(c) Surface plot (X-Y view) of interpolant s
with faults.

0 20 40 60 80 100
0

20

40

60

80

100  

 

−5 0 5 10 15 20

(d) Surface plot (X-Y view) of interpolant s
without faults.

Figure 8.4: Test Case (iv).
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8.2 Connected Segments as Faults

Earlier in Section 7.3, we have given a method to construct the visibility graph of

polygonal obstacles. In this section, we will describe how the method is applied to

perform interpolation with connected segments as faults. Reasonably, a set of connected

segments can be viewed as a simple polygon with no area or area ≈ 0 (see Figure 8.5).

Figure 8.5: A set of connected segments represented by a narrow polygon.

In other words, we will have m narrow polygons for a set of m connected seg-

ments. Figure 8.6(a) shows an example of two sets of connected segments. With this

setting, constructing the visibility graph for these connected segments is equivalent to

constructing the visibility graph for polygonal obstacles. Hence Algorithm 11 can be

used to perform geodesic interpolation for connected segments as faults, with changes

made on Lines 6 and 19 (constructing the visibility graph). Refer to Algorithm 7 Visi-

bleEdgeRotTree, Line 12 is replaced by routine VisiblePolygonal (Algorithm 9).

Figures 8.6 to 8.10 show the result of five different configurations using connected

segments as faults. Comparisons between interpolation using shortest distance avoiding

and crossing the faults are presented. We again observe that, discontinuities across the

faults are significant.

For a specified configuration, we also carried out interpolation using the same basis

function φ(r) = (1− r)4(4r + 1) with varying support radius R. The results are shown

in Figure 8.11. When R is small, the basis functions are too localized and generally the

interpolation is a poor approximation in between data points (see Figure 8.11(b)). It is

clear that the quality of approximation can be improved by increasing the support.

For comparison purposes, we show interpolated surfaces of the same configuration

using Wendland functions of smoothness C0, C2, and C4, at R = 50, see Figures 8.12(a)−
(c). Figure 8.12(a) clearly shows C0 peaks of the interpolant. Moreover, the Gaussian,
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φ(r) = e−αr2
is positive definite on every Rd for all positive parameters α. Therefore,

we interested to see the behavior of interpolant when using Gaussian as basis function,

see Figure 8.12(d)− (f). These calculations are carried out with different values of the

scale parameter α. If the parameter is large, the Gaussian becomes sharply peaked.

This observation is similar to the case for Wendland function when a smaller radius of

support was used.
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(c) Surface plot (X-Y view) of interpolant s
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(d) Surface plot (X-Y view) of interpolant
s without faults.

Figure 8.6: Test Case (v).
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(b) Contour lines of interpolant s without
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(c) Surface plot (X-Y view) of interpolant s
with faults.
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(d) Surface plot (X-Y view) of interpolant s
without faults.

Figure 8.7: Test Case (vi).
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(b) Contour lines of interpolant s without
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(c) Surface plot (X-Y view) of interpolant s
with faults.
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(d) Surface plot (X-Y view) of interpolant s
without faults.

Figure 8.8: Test Case (vii).
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(b) Contour lines of interpolant s without
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(c) Surface plot (X-Y view) of interpolant s
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(d) Surface plot (X-Y view) of interpolant s
without faults.

Figure 8.9: Test Case (viii).
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(d) Surface plot (X-Y view) of interpolant s
without faults.

Figure 8.10: Test Case (ix).
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Figure 8.11: Subfigure (a) shows a given configuration of centers and faults. Subfigures
(b) − (d) show the contour lines of interpolant s at different radius of support (R) and
the corresponding surface plot are shown in subfigures (e)− (g).
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Figure 8.12: Subfigures (a) − (c) show surface plots of interpolant s using different
Wendland functions of C0, C2 and C4 smoothness respectively. Subfigures (d) − (f)
show surface plots of interpolant s using Gaussian function at different scale parameter.



8.3. CONCLUSIONS AND FUTURE DIRECTIONS 133

8.3 Conclusions and Future Directions

We have described a method that fits a surface to scattered data with the presence

of obstacles. This method involves constructing the visibility graph and solving the

shortest path problem for the graph. As observed in various test cases presented in the

last section, the results showed correct behaviour. The faults are clearly reproduced,

and the cross fault influence is small.

Although the results are as expected, we admit that there are drawbacks in our

method. The current implementation is in MATLAB and the algorithm is by no means

optimal. For even reasonably small problems, the compute time is so large as to preclude

the use of this method as a standard approach. To ensure its practicality, we suggest a

few possible way to optimize and improve the current method.

• Implementing the current method in C will be our next task. We are interested in

recording some timings for this implementation in C. Based on our experience in

MATLAB, more time is required to construct the visibility graph than to solve

the shortest path problem using Dijkstra’s algorithm. We shall investigate further

on this matter.

• For visibility graph construction, while much effort has been made to derive the

complexity (lower bound and worst-case optimal) of an algorithm, no timings have

been reported in the literature to date. Besides, we are likely to get advantage from

more efficient algorithms such as output sensitive algorithms. These algorithms are

much faster when the obstacles are formed by many configurations of line segments

because the visibility graph constructed will be sparse (less edges).

The main issue in our current method is the large number of visibility graphs gen-

erated in the interpolation process. For all evaluation points, part of the visibility

graph is generated and used repeatedly. One way to avoid this redundancy is to

pre-compute and store part of the visibility graph for later usage.

• For solving the shortest path problem, improvement can be done by using a Fi-

bonacci heap based priority queue to efficiently extract the closest unvisited node

in Dijkstra’s algorithm. Various other techniques to speed-up Dijkstra’s algorithm

are known, see for example Wagner and Willhalm (2007).

Also, we are interested in applying the bidirectional (Luby and Ragde, 1989) search

speed-up technique to our case. Instead of carrying out a unidirectional search from

the source node towards the goal node (original Dijkstra’s algorithm), the bidirec-

tional search carries out two searches simultaneously: one search from the source
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node and another search from the goal node (backward search). The algorithm

can then be terminated when one node has been assigned to be a visited node

by both searches. In a complete directed graph with n nodes, Luby and Ragde

(1989)’s bidirectional search algorithm has the expected running time O(
√

n log n)

with the condition where the adjacency lists at each node are sorted by length and

the length of each edge is chosen independently from the exponential distribution.

In the problem at hand, it is reasonable to expect that with a bidirectional ap-

proach some work associated with a source will not need to be redone when only

the target changes.

• I believe that the examples given show the approach to interpolation with obstacles

detailed in these 3 chapters works. The approach has passed the “proof of concept”

stage. The obstacle is the massive computational cost. For this reason, I am

interested in exploring massively parallel implementations of the shortest path

algorithm (Singh and Khare, 2012), for example using NVIDIA’s CUDA (Mart́ın

et al., 2009; Harish and Narayanan, 2007) to solve shortest path problem. The

work of Madduri et al. (2007) using multithread parallel computer also shows a

remarkable speedup.



Appendix A

Rotation tree illustrations

Here we illustrate the operations of Algorithm 7 based on the example in Figure A.1. The

rotation tree is updated at each step. To begin the process, all the nodes are sorted by

Sort(V ) that gives V = {p1, p2, p3, p4, p5, p6}. When the tree is initialized at d = −π/2,

p−∞ has p∞ as its parent and every node in V has p−∞ as its parent (see Figure A.2(a)).

The subsequent steps of updating the rotation tree is shown in Figure A.2. At the end

of the process, all the nodes have p∞ as their parent. All sons of p∞ are arranged in

increasing x-coordinate order from left to right. The node with smallest x-coordinate is

the left most node.

p6

p2

p5

p1

p3

p4

*p−∞

*p∞

Figure A.1: Example
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and q = p3. The visibil-
ity of pq is determined and
recorded.
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(i) At this step, p = p6 and
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(j) At this step, p = p4 and
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(k) At this step, p = p5 and
q = p2.
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(l) At this step, p = p4 and
q = p1.
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(n) At this step, p = p2 and
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(p) At this step, p = p3

and q = p1.

p∞

p4

p5

p2

p6 p3

p1 p−∞
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(t) At this step, p = p6 and q =
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(u) At this step, p = p6 and q =
p5.
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(v) The final step of the rotation tree.

Figure A.2: Illustration of the rotational plane sweep procedure, showing the updated
rotation tree at each step.
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