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Abstract—Individualized models of respiratory mechanics may 
help to reduce potential harmful effects of ventilation therapy by 
predicting the outcome of certain ventilator settings. The 
underlying models are commonly identified by iterative error-
mapping methods, such as the Levenberg-Marquardt Algorithm, 
requiring initial estimates for the patient specific parameters. 
The quality of the initial estimates has a significant influence on 
identification efficiency and results. An iterative integral-based 
parameter identification method was applied to a linear 2nd order 
respiratory mechanics model. The method was compared to the 
Levenberg-Marquardt Algorithm using clinical data from 13 
Acute Respiratory Distress Syndrome (ARDS) patients. The 
Iterative Integral-Based Method converged to the Levenberg-
Marquardt solution two times faster and was independent of 
initial estimates. These investigations reveal that the Iterative 
Integral-Based Method is beneficial with respect to computing 
time, operator independence and robustness. 
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I.  INTRODUCTION 
Non-adapted ventilator settings risk severe side effects in 

intensive care patients during ventilation therapy [1]. To find 
optimal, patient-specific ventilator settings, mathematical 
models of respiratory mechanics could be used to predict the 
outcome of specific ventilator configurations, and support the 
evaluation of protective lung ventilator settings [2-3]. To obtain 
optimal predications directly at the bedside requires robust and 
fast identification methods for the underlying model 
parameters. However, bedside data for parameter identification 
are generally restricted to measurements of airway pressure and 
flow rate. Hence, models must be as simple as possible, while 
capturing all necessary dynamics to be identifiable with the 
limited available measurement set. 

Various parameter identification methods are available to 
minimize the least square error (LSE) between measured 
samples and model simulations. In higher order models, 
parameter identification is commonly performed by iterative 
error-mapping LSE methods [4-6]. These methods require 
initial estimation of variable model parameters and iterate 
towards LSE by approaching the minimum on the error 
surface. However, efficiency and quality of the solution can be 
highly sensitive to the initial guesses. Accurate initial 

parameter values can significantly reduce the incidence of 
spurious, non-optimal solutions [6]. 

This paper presents the Iterative Integral-Based Method 
(IIM) for parameter identification [7]. The IIM was originally 
developed for parameter identification of glucose-insulin 
models [8] and this paper adopts the method to a model of 
respiratory mechanics. The IIM creates a convex relaxation, 
and is thus comparatively simple to apply, requires 
comparatively minimal computing time, and does not require 
initial parameter values estimates [7-8].  

II. MODEL & METHODOLOGY 

A. Data 
Measurement sets of thirteen mechanically ventilated 

patients were selected from a previous ARDS (Acute 
Respiratory Distress Syndrome) – Study [9], where SCASS-
Maneuvers (Static Compliance Automated Single Step) were 
performed. The maneuver consists of airway occlusions within 
the inspiration phase of a breathing cycle. An occlusion of the 
airways is initiated when a randomized inspiration volume is 
reached and lasts for five seconds. The measurement set 
consisted of flow rate and airway opening pressure signals 
sampled at 125 Hz. For each patient, three breathing cycles 
were selected. The study was approved by local ethics 
committees. Informed consent was obtained from patients or 
their legally authorized representative. 

B. Model 
The Inhomogeneity Model (IHM) represents two different 

alveolar regions represented by two compliances (C1 and C2 in 
mL/mbar) with their own local airway (R1 and R2 in 
mbar∙s/mL) connected to the airway opening. 

 

Figure 1.  Electrical analog of the Inhomogeneity Model. paw corresponds to 
the airway opening pressure, 𝑉̇ stands for the flow rate, R1, C1 and R2, C2 

represent two different alveolar regions. 
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This model assumes parallel ventilation inhomogeneity in the 
lung described by the two time constants τ1 = R1·C1 and 
τ2 = R2·C2. The presence of ventilation inhomogeneity could 
have a significant effect on the dynamic nature of lung 
mechanics since it enables redistribution processes between 
these two compartments (Pendelluft) [10-11]. The IHM is 
depicted as an electrical analog in Fig. 1 and the mathematical 
description is presented in state-space representation in (1). 𝑉̇ 
is the a-priori known flow rate (mL/s) representing the model 
input and paw is the measured airway pressure (mbar) being the 
model output. 
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where pC1 and pC2 (mbar) are state-signals and correspond to 
the pressure components generated by the volumes stored in 
the compartments with the compliance C1 and C2 (mL/mbar).  

C. Parameter Identification 
Structural Identifiability: As a fundamental prerequisite for 

successful parameter identification a-priori structural 
identifiability of the parameteric model is required [12]. This 
necessary criterion states that under ideal conditions of noise-
free observations and error-free model structure, the unknown 
parameters of the postulated model can be uniquely recovered 
from known input-output signals. Therefore, the underlying 
model was tested for structural identifiability using DAISY 
[12]. Given the state-space equations, DAISY computes the 
input-output relation polynomial: 

 𝐴 = (𝐶1𝐶2𝑅1𝑅2)𝑉 + (𝐶1𝑅1 + 𝐶2𝑅2)𝑉̈ + 𝑉̇ − (𝐶1𝐶2(𝑅1 + 𝑅2))𝑝̈𝑎𝑤 −
(𝐶1+𝐶2)𝑝̇𝑎𝑤  (2) 

By extracting the coefficients of the input-output 
polynomial the exhaustive summary was constructed. A range 
set was calculated by evaluating the coefficients at symbolic 
parameter values P = [α, β, γ, δ]. Solving the given system of 
nonlinear equations lead to the Gröbner basis of the IHM: 

 �
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Equation (3) shows the model has two global minima. 
According to DAISY, the model is not globally, but locally 
identifiable. Due to the symmetric model structure the two 
possible solutions have mirrored parameter values of the two 
branches. As there is no mathematical distinction between the 
two model branches, the two solutions are interchangeable and 
thus enable structural identifiability of the IHM.  

Note that even if structural identifiablitiy is proven, the 
model might still be non-identifiable if the information content 
of the data is too low. Structural identifiability also does not 
prevent error-mapping methods from being caught in local 
minima. Hence, it is a necessary, but not sufficient, condition 
to guarantee successful parameter identification. 

Iterative Integral Based Method: This parameter 
identification method is based on the input-output relation, 
derived in (2), which was rearranged and integrated twice to 
obtain an equation in terms of paw: 
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The coefficients in (4) were represented by new variables: 
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yielding to:  

 𝑝𝑎𝑤 = 𝐴𝑉̇ + 𝐵𝑉 + 𝐶 ∫𝑉𝑑𝑡 + 𝐷 ∫𝑝𝑎𝑤𝑑𝑡 (6) 

Equation (6) can be rewritten as an over-defined matrix 
system (7), where the lef-hand-side represents the measured 
pressure samples (paw,meas). The integrals of paw in the right-
hand-side (RHS) refer to the simulated model output, which is 
currently unknown. The initial iteration represents paw using 
paw,meas, allowing the values of A-D in (5) to be calculated. 
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Using the estimated coefficients A–D from (7) the 
simulated model output paw can be calculated by (6) and 
substituted into the RHS of (7) in subsequent iterations. 
Equation (7) is solved again in terms of linear least squares. 
This process is repeated with re-simulated paw until a 
convergence criterion is fulfilled. The convergence tolerance 
for the residuals and parameter values were set to 10-6 for IIM 
and LMA. Finally, the patient-specific parameters R1, C1, R2 
and C2 are regained by solving (5) by substitution leading to 1 
of 2 possible solutions due to model symmetry.  
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D. Evaluation 
The IIM was applied to the 39 data sets and verified by the 

commonly used Levenberg-Marquardt Algorithm (LMA). To 
provide appropriate initial values for the LMA, the median of 
each parameter over all patients identified by the IIM were 
used as initial values for the LMA (R1 = 0.218 mbar∙s/mL, C1 
= 10.51 mL/mbar, R2 = 0.015 mbar∙s/mL, C2 = 22.89 
mL/mbar).  

Finally, the resulting parameter values, Sum of Squared 
Error (SSE) and the Coefficient of Determination (CD) were 
compared. The CD is a measure for the goodness-of-fit of the 



 

 

model, and takes a value from 1, which corresponds to a 
perfect fit, to 0, which means the model has no relation to the 
data whatsoever [10]. 

 𝑆𝑆𝐸 = ∑�𝑝𝑎𝑤,𝑚𝑒𝑎𝑠 − 𝑝𝑎𝑤�
2
 (9) 

 𝐶𝐷 = 1 − 𝑆𝑆𝐸
∑(𝑝𝑎𝑤−𝑝̅𝑎𝑤,𝑚𝑒𝑎𝑠)2

 (10) 

III. RESULTS 
The LMA converged to physiological plausible solutions in 

36 out of 39 data sets and required a median of 5 iterations 
[IQR: 4-6] iterations and 0.30 ms [IQR: 0.25-0.36] per data set 
on a standard desktop PC (Intel Core 2 Duo, 2.80 GHz). The 
IIM found solutions with the same SSE as the LMA requiring a 
median of 14 iterations [IQR: 12-16] and 0.14 ms [IQR: 0.12-
0.16]. Importantly, the IIM also returned physiological 
plausible values in those 3 data sets where the LMA converged 
to non-physiological negative values. The identified parameter 
values of both methods differ by median 1.37 % [IQR: 0.56-
4.78]. The correlation of the parameters for which the LMA 
successfully converged are shown in Fig. 3.  

TABLE I.  RESULTING PARAMETER SETS OF LMA AND IIM 
PARAMETER IDENTIFICATION 

Parameter 
Set 1 Set 2 

LMA IIM LMA IIM 

R1 (mbar·s/mL) 0.276 0.272 0.096 0.084 

C1 (mL/mbar) 6.818 6.843 30.03 32.02 

R2 (mbar·s/mL) 0.008 0.008 0.042 0.044 

C2 (mL/mbar) 16.37 16.37 19.72 17.40 

SSE (mbar2) 539.17 539.23 3039.78 3043.76 

CD 0.993 0.993 0.944 0.944 

 

Exemplar parameter sets of parameter identification 
processes using the IIM and the LMA are shown in Table I. 
The corresponding pressure responses of the IIM solutions 
(Table I, Set 1 and Set 2) are illustrated in Fig. 2a and 2b. 

IV. DISCUSSION 
In general, the resulting parameters of the IIM were 

consistently plausible and in accordance to the parameter 
values that were found by the LMA. The LMA was provided 
with the same initial values for all data sets, being the median 
parameter values over all patients. Nevertheless, the LMA 
iterated to negative parameter values in all three data sets of 
one patient. Hence, the population derived initial values started 
the convergence at an unsuitable position on the error plane for 
this participant’s test data.  

To achieve successful parameter identification using error-
mapping methods patient-specific initial values could be 
derived hierarchically by identifying simpler models first [6]. 

The IIM was a factor 2x faster than the LMA, and found 
consistently physiological values. The IIM took advantage of  

(a)  

(b)  

Figure 2.  Measured flow rate and airway pressure and simulated pressure of 
the IHM. (Parameter values according to (a) Set 1 and (b) Set 2 Table I). 

the mathematical structure of the model and did not require 
any initial values. The double integration in the derivation of 
the input-output relation (4) avoided the noise-amplifying 
effect of differentiation and assures numerical stability. 

The minor differences in the resulting parameter of the IIM 
and LMA could be related to the amount of noise within the 
data. In data sets with low CD values (< 0.95), higher variance 
in the resulting parameters was found than in data sets with 
high CD values. The noise is related to cardiogenic-distortions 
and additional non-linear effects in respiratory mechanics, such 
as alveolar recruitment and distention effects or turbulent flow. 
This situation is illustrated in (Figure 2b) where the IHM is not 
sufficient to reproduce the characteristics during inspiration. 
Thus the IIM is better suited to typical, noisy patient data. 

In this paper, the underlying dynamic effects in respiratory 
mechanics, captured in measured flow rate and airway pressure 
were assigned to inhomogeneity (Pendelluft) effects. The same 
measured characteristics could be assigned to viscoelastic 
tissue properties or time-depending recruitment according to 
Bates [13]. Therefore, different or additional measurements are 
necessary to distinct between these effects.  

V. CONCLUSION 
The IIM operates without the common initial value problem 

of LMA and provides robust parameter identification for 2nd 
order linear models of respiratory mechanics. The evaluation 
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(c)  (d)  
Figure 3.  Correlation of the IHM parameter values (R1, C1, R2, C2) identified by the Levenberg-Marquardt Algorithm (LMA) and by the Iterative Integral-Based 

Method (IIM) of 36 data sets. 

presented shows that the IIM also seems superior to 
error-mapping methods with respect to efficiency and thus 
shows potential to be implemented in real-time, patient-
specific ventilation management. 
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