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The Minimal Model is often used to characterize participant responses to glucose by fitting model 
simulations to measured data. Although the model has met significant success defining test responses of 
normo-glucose tolerant (NGT) participants, the model has experienced practical identifiability issues 
with insulin resistant (IR) individuals.  

A previous investigation of practical model identifiability hypothesized that Minimal Model 
identifiability of IR individuals would be improved if a bolus impulse response was followed by a 
sustained period of mild hypoglycemia. In this investigation, an in-silico Monte Carlo analysis is 
undertaken to observe the effect of incorporating a clamp-like period to the end of an intravenous glucose 
tolerance test (IVGTT-EIC) protocol. N=100 virtual patient responses to the IVGTT-EIC and frequently 
sampled IVGTT (FS-IVGTT) protocols are defined. Minimal Model parameter values are identified for 
each test includeing measurement error M=500 times. The robustness of model parameters from the two 
protocols is assessed via paired coefficient of variation (CV). 

The CV values for the Minimal Model parameters derived from the proposed IVGTT-EIC protocol were 
significantly lower than the CV values from the FS-IVGTT. In particular, median CV(%) for Minimal 
Model parameters SG, p2, p3 and VG derived from IVGTT-EIC data was: 3.8%, 16.8%, 8.7% and 2.2%, 
respectively, compared to 9.3%, 43.0%, 36.0% and 2.9% respectively for the FS-IVGTT. 

Minimal Model simulation of FS-IVGTT data is a well established method of measuring insulin 
sensitivity. However, the proposed IVGTT-EIC protocol significantly improved the identifiability of the 
Minimal Model over the FS-IVGTT. The success of the proposed protocol validates the utility of the 
graphical structural model identifiability analysis for defining robust clinical protocols. 

Insulin sensitivity, Minimal Model, Structural identifiability, pharmaco-dynamics, Monte Carlo analysis, 
Botnia clamp. 

 

1. INTRODUCTION 

The Minimal Model is a well known representation of the 
fundamental insulin/glucose pharmaco dynamics (Bergman et 
al. 1979; Bergman et al. 1981; Caumo and Cobelli 1993; 
Cobelli et al. 1986). The model has successfully 
characterized responses to the frequently sampled 
intravenous glucose tolerance test (FS-IVGTT). However, it 
has experienced issues when applied without Bayesian 
methods certain cases. Notably, the model suffers practical 
identifiability issues when fit to dynamic test results of 
insulin resistant (IR) participants (Caumo et al. 1999; Cobelli 
et al. 1999; Pillonetto et al. 2003; Pillonetto et al. 2002; Quon 
et al. 1994). The model is defined: 
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where: G is the plasma glucose [mmol·L-1], I is the measured 
insulin [mU·L-1], X is the insulin action [min-1], PX is the 
exogenous input, VG is the glucose distribution volume [L], 
the subscript ‘0’ denotes the basal concentrations, and SG 
(glucose sensitivity) [min-1], SI (insulin sensitivity) [L·mU-

1·min-1], p2 [min-1] and p3 [L·mU-1·min-2] characterize the 
participant response.  

Docherty et al. hypothesized that the reduced identifiability 
of the Minimal Model was due to the reduced distinction in 
the parameter roles in model simulation for IR participants 
(Docherty et al. 2011). In particular, the G-G0 term in 
Equation 1 would often become negative in the later stages of 
the test for normo-glucose tolerant (NGT) participants, but 
would seldom become negative for IR patients. This result 
occurred because IR participants often failed to return to 
basal glucose concentrations at the end of a test. Thus, the 
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integral of the SG coefficient (G-G0) would show a curve 
over time for NGT participants, but be relatively linear for IR 
participants. The co-efficient of X (G) must always be 
positive. Hence, the integral always increases over time and 
is relatively similar between IR and NGT participants. Thus, 
it was concluded that the previously observed reduction in 
Minimal Model identifiability in IR participants was due to 
the increased distinction between the integrals of the 
coefficients of X and SG in NGT participants. 

Docherty et al. hypothesized that a potential remedy for this 
impaired identifiability was to include a period of mild 
hypoglycemia (plasma glucose ~ 4 mmol.L-1) at the end of 
each IVGTT test (Docherty et al. 2011). It was suspected that 
this would increase the curvature of the integral of G-G0. 
This effect could be achieved via a hyper-physiological 
insulin infusion with feedback glucose control similar to the 
hyperinsulinaemic clamp (EIC). This research evaluates such 
a protocol (denoted IVGTT-EIC) in-silico using a Monte 
Carlo methodology.  

2. METHODOLOGY 

An in-silico Monte Carlo analysis is done to measure the 
effects of altering a typical FS-IVGTT protocol on Minimal 
Model parameter robustness. The steps of the Monte Carlo 
analysis are defined: 

1.  Define 100 virtual participant parameter sets 
using previously published ranges (Bergman et 
al. 1981). 

2.  Simulate an FS-IVGTT response and an IVGTT-
EIC response for each virtual participant 

3.  Sample each in-silico test responses and add 
assay error 500 times. 

4.  Identify the model parameters in each test 
response. Thus, 50000 parameter identification 
processes are undertaken for each protocol. 

5.  Measure the intra-participant identified 
parameter robustness with coefficients of 
variation (CV). A comparison of the coefficients 
of variation across the two tests is made. 

2.1 Test protocols 

Both the FS-IVGTT and the IVGTT-EIC use a 20g glucose 
bolus administered at t = 0 minutes. Both protocols will be 
sampled at 5-minutes intervals between t = -10 and 180 
minutes and both tests will measure glucose and insulin 
levels in each sample. The IVGTT-EIC will differ from the 
FS-IVGTT by the administration of an 80 mU/min infusion 
of insulin between t = 61 and 180 minutes. Glycaemic control 
is used during the IVGTT-EIC to maintain the participants 
glucose level at 4 mmol·L-1. The FS-IVGTT does not involve 
glycaemic control. Figure 1 shows a model simulation of a 
virtual IR participant’s response to the FS-IVGTT and 
IVGTT-EIC protocols. 
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Figure 1. A typical IR participant response to the FS-IVGTT 
and the IVGTT-EIC protocols 

2.2 Virtual patient responses 

Participant characteristics were defined within ranges 
identified by Bergman et al. (Bergman et al. 1981). In this 
analysis, parameter values were purposefully skewed towards 
IR and used the distributions and relationships defined in 
Equations 4-7. 
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where: R(x1,x2) is a randomly generated value on the evenly 
distributed range (x1, x2) and N(μ,σ) is a randomly generated 
value with a mean μ and standard deviation of σ. 

Each virtual participant response incorporated a stepwise 
endogenous insulin secretion response (UN) comprising of a 
pre-bolus basal period, a first phase and a second phase. The 
basal period was defined between t = -10 and 0 and had the 
post hepatic value 2+R(0,2) mU.L-1.min-1 The first phase 
response was defined between t = 0 and 5 and had the post-



 
 

     

 

hepatic value of 15+R(0,15) mU.L-1.min-1 (Lotz et al. 2010; 
Lotz et al. 2009; McAuley et al. 2011). The second phase test 
response was defined as 2+R(0,3) mU.L-1.min-1 and was 
sustained until the end of the FS-IVGTT protocol or ten 
minutes after the insulin infusion of the IVGTT-EIC protocol 
(Argoud et al. 1987; Liljenquist et al. 1978). 

The insulin response to the test stimulus was defined: 
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where: n is the clearance rate of insulin [min-1], UN is the 
endogenous insulin production [mU.L-1.min-1], UX is the rate 
of exogenous insulin infusion [mU.min-1] and VP is the 
insulin distribution volume [L]. VP, n, I0 and G0 are defined: 
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The participant’s I, X and G responses to the test responses 
were defined with the analytical solutions to the model 
equations (Equations 1, 2 and 8), defined: 

0 0
0

0

( )

t t
tndt ndt

X
N

P

UI t e I e U dt
V

−  ∫ ∫   = + +     
∫

  13 

( )
2 2

0 0
3 0

0

( ) ( )

t t
tp dt p dt

X t p e e I t I dt
−∫ ∫

= −∫
  14 

0 0

( ) ( )

0 0
0

( )( )

t t

G GtS X t dt S X t dt
X

G
G

P tG t e G e S G dt
V

− + + ∫ ∫   = + +     
∫

      
      15 

The time-variant value of PX(t) that is required for feedback 
glucose control in the IVGTT-EIC is calculated using an 
iterative method. The virtual patient response to the IVGTT-
EIC protocol is simulated with Equations 13 – 15 and no 
feedback control. Equation 16 is then used to update the PX(t) 
profile between the first minute when the glucose 
concentration goes below 4 mmol·L-1 and the end of the 
clinical protocol (τ):  

0( ) max(0, ( ( ) ) ( ) ( ))X G GP S G G X G Vτ τ τ τ= − +  16 

where: 
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Equations 15 and 16 are iterated until G(t=180) > 
3.98mmol.L-1. This methodology for finding PX(t) is possible 
in-silico but would not be possible clinically. Hence this 
feedback control mechanism is only possible in silico. 

2.3 Test response sampling and Minimal Model evaluation 

The glucose and insulin responses from each virtual 
participant is ‘sampled’ at 5 minute intervals from t = -10 to t 
= 180 minutes. This yields a total of 39 glucose and insulin 
data points from each participant, for each protocol. The 
minute-wise PX(t) profile from the IVGTT-EIC is recorded 
for each virtual participant.  

Thirty-nine values were drawn from the distribution N(1, 
0.02). The noise free glucose ‘samples’ were multiplied by 
these values to mimic measurement error. Likewise 39 values 
were drawn from the distribution N(1, 0.04) were multiplied 
with the insulin ‘samples’ to produce a noisy insulin data set. 
The same ‘noise’ was multiplied with both the FS-IVGTT 
and IVGTT-EIC data to provide ‘paired’ noise across the 
protocols. 

Minimal Model parameters were identified using the 
MATLABTM Levenberg-Marquardt (Levenberg 1944; 
Marquardt 1963) parameter identification program, 
lsqnonlin.m with default settings and the noisy insulin and 
glucose data sets. I(t) was defined as a linear interpolation of 
the noisy I data. The Levenberg-Marquardt method 
minimized squared error between the measured G data and 
the modeled simulation by optimizing the parameter set [SG, 
p2, p3, VG]. 

After 500 Monte Carlo runs with different measurement 
errors, the coefficient of variation (CV, standard deviation 
divided by mean) in each parameter for each of the 100 
participant data sets is calculated for each protocol. The 
efficacy of the proposed IVGTT-EIC protocol will be 
assessed by the CV values of the model parameters. If the CV 
values of the IVGTT-EIC are significantly lower than those 
of the FS-IVGTT it may be concluded that the additional 
hyper-insulinaemic period enhanced the Minimal Model 
identifiability.  

3. RESULTS 

Table 1 summarizes the outcomes of the paired noise Monte 
Carlo experiment. The CV values of the Minimal Model 
parameters identified via the proposed IVGTT-EIC protocol 
were significantly lower than the CV values derived via a 
standard FS-IVGTT protocol (p<<0.00001 for all model 
parameters according to the Wilcoxon ranksum and 
Kolmogorov-Smirnov tests).  

Note that SG and VG were comparatively robust to 
measurement error. The CV of SI was less than the CV of its 
constituent parameters (p2 and p3). This result implies that 
the SI metric is slightly more robust to the susceptibility of p2 
and p3 to measurement noise.  



 
 

     

 

Table 1. Coefficients of variation (%) for the Minimal 
Model parameters identified from a standard FS-IVGTT 

and the proposed IVGTT-EIC 

 FS-IVGTT IVGTT-EIC 
 Q1 Q2 Q3 Q1 Q2 Q3 

SG   5.4 9.3 16.0 2.8 3.8 6.4 
p2 32.2 43.0 51.9 10.6 16.8 39.3 
p3 25.9 36.0 42.8 7.3 8.7 13.4 

VG 2.3 2.9 3.3 1.9 2.2 2.8 
SI 11.4 25.0 42.0 4.1 8.2 28.8 

 
Figure 2 shows a direct comparison of the CV values for the 
model parameters identified with the two protocols and the 
cumulative distribution of CV. As the investigation used 
‘paired’ measurement error a direct comparison is possible. 
The cumulative distribution curve intersections with the 
quartile lines are presented in Table 1. 

Figure 3 shows the distribution of SG and SI CV values as a 
function of their parent values. A log-relationship was used to 
define the regression lines as log(CV) residuals were 
relatively evenly distributed. Note that the predominant 
improvement in parameter stability was achieved by the 
IVGTT-EIC protocol for the IR range of participants. 

4. DISCUSSION 

This investigation shows that a period of sustained, mild 
hypoglycemia at the end of an IVGTT protocol can improve 
Minimal Model identifiability. Docherty et al. showed a 
similar outcome with a comparatively simplistic model 
(Docherty et al. 2011) and predicted this outcome for the 
Minimal Model. In particular, Figure 3 shows that the most 
significant improvement in CV values was found for the IR 
participants. These results further validate the original 
hypothesis.  

The Monte Carlo investigation enabled the application of 
equal noise to the model responses of both protocols. Thus, 
the evaluation of the model parameter robustness could be 
paired and the protocol comparison is more direct. Figure 2 
shows that the proposed method provides more robust values 
in terms of VG and p3 for each case and in the other 
parameters in the significant proportion of cases.  

The proposed IVGTT-EIC protocol is very clinically 
intensive and would be arduous to undertake and perform. 
However, when reasonable Minimal Model parameter values 
are desired, protocols of greater duration are often 
undertaken, albeit with a reduced sampling rate in the later 
stages of the test. The sampling rate of the proposed IVGTT-
EIC is not reducible as a relatively frequent sampling is 
required for feedback control of the EIC portion of the test.  

The Botnia clamp (Tripathy et al. 2003) uses a similar 
clinical protocol to the proposed IVGTT-EIC and is used to 
characterize both first phase insulin secretion and insulin 
sensitivity. The initial dynamic period of the Botnia clamp is 

used to assess insulin secretion while the clamp period is 
used to measure insulin sensitivity. This protocol is distinct 
from the proposed protocol as euglycaemia is the clamp 
target rather than mild hypoglycemia (~4mmol·L-1). With  
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Figure 2. Coefficients of variation from the established FS-
IVGTT and the proposed IVGTT-EIC protocols (n = 100) 
(1:1 line and quartiles dotted) 
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Figure 3. CV as a function of the parent values of SG (top) 
and SI (bottom) (* units of SG ×10-2 min-1, units of SI ×10-4 
L·mU-1·min-1) 

respect to model identifiability, euglycaemia may not 
produce the dynamics necessary to improve model 
identifiability. In particular, there will be no downward curve 
in the integral of the SG coefficient that is required to 
improve Minimal Model identifiability. Thus, according the 
hypothesis, the period of mild hypoglycemia is required to 
improve minimal model identifiability. 

The validity of the outcomes of this analysis must be 
interpreted with recognition of the in-silico nature of the 
analysis. The virtual patients were defined with parameter 
values ranges that were clinically derived (ref Bergman 1980) 
(Bergman et al. 1981). Equation 6 defined p3 as a vague 
function of p2 to ensure a reasonable range of SI values. This 

equation was derived as a best-guess estimate. Some studies 
have found a relationship between SG and SI (Cobelli et al. 
1999; Erichsen et al. 2004), and a relationship between VG 
and SI may be inferred by obesity effects on SI (Ahrén and 
Pacini 2005; Bergman et al. 1981). This investigation used no 
such relationships for lack of exact data. Thus, if a closer SG-
SI relation exists in actual participants, the inter-parameter 
tradeoff could increase the CV values measured in this 
analysis. However, the relative CV values across the FS-
IVGTT and IVGTT-EIC protocols would not likely change, 
with the IVGTT-EIC still providing the more stable results. 

The glycaemic control period of the IVGTT-EIC was 
modeled idealistically, and this degree of control might not 
be possible in a clinical setting. In clinical practice, 
maintaining reasonable glucose levels via discrete glucose 
measurements is difficult. In the proposed protocol, the 
glucose must be reduced from a mild hyperglycemic state to 
a mild hypoglycemic state, and then maintained stable. Even 
achieving a reasonable level of control in such conditions 
would be difficult. This concern is purely clinical and would 
be very difficult to assess in-silico. Furthermore, the effect of 
imperfect glucose stability on parameter robustness has not 
yet been investigated.  

The findings of this analysis imply that a clinical pilot of the 
proposed protocol is potentially warranted. However, it 
would be very difficult to assess the robustness of the model 
parameters without repeating the protocol. Furthermore, 
confirming the comparative robustness of the FS-IVGTT and 
IVGTT-EIC would require multiple tests. Hence, direct 
clinical validation would be very expensive and clinically 
burdensome to undertake. In contrast, a less statistically 
conclusive study design may involve single IVGTT-EIC tests 
with a reduced incidence of SI=0 in IR participants 
considered a positive outcome. 

5. CONCLUSIONS 

Overall, this analysis confirms the predictions of the integral 
based model identifiability methodology and demonstrates 
the methods ability to define clinical protocols that produce 
robust model estimates. The IVGTT-EIC protocol was 
proposed using the identifiability method to increase Minimal 
Model parameter robustness for IR participants.  

While the proposed protocol demonstrated a definite 
improvement in Minimal Model parameter robustness over 
an established FS-IVGTT protocol, the clinical application of 
the protocol may be difficult. In particular, the protocol 
requires a period of mild hypoglycemia, which may be 
difficult to achieve with feedback control based on discrete 
glucose measurements.  
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