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Abstract: A model-based insulin sensitivity parameter (SI) is often used in glucose-insulin system 

models to define the glycaemic response to insulin. As a parameter identified from clinical data, insulin 

sensitivity can be affected by blood glucose (BG) sensor error and measurement timing error, which can 

subsequently impact analyses or glycaemic variability during control. This study assesses the impact of 

both measurement timing and BG sensor errors on identified values of SI and its hour-to-hour variability 

within the ICING-type glucose-insulin system models. 

Retrospective clinical data was used from 270 patients of the Christchurch Hospital intensive care unit 

(ICU). An error model was created for the Arkray Super-Glucocard II glucometer used in Christchurch 

from manufacturer supplied data. Timing error was estimated from recent, computerised clinical data. 

Monte Carlo analysis was used to quantify the impact of these random errors by identifying SI profiles 

from data incorporating errors and comparing them to the ‘true’ SI profile (without additional errors) at 

each patient hour. To consolidate comparisons over the n = 100 Monte Carlo simulations, the width of 

the interquartile range (IQR) was used for percentage difference from the true SI level and for percentage 

hour-to-hour variability. 

The results of the study show that timing errors in isolation have little clinically significant impact on 

identified SI level or variability. The clinical impact of changes to SI level induced by combined sensor 

and timing errors is likely to be limited during glycaemic control. Identified values of SI were typically 

within 12% of the true value when influenced by both sources of error. In contrast, for variability, 95
% 

of 

patient hours had an IQR of 34.9%, indicating that for half the simulations the hour-to-hour variability of 

SI was within ±17.5%.  

The results of this study indicate that the impact of sensor or timing errors on SI level is unlikely to be 

clinically significant. The effects are probably overshadowed by physiological factors arising from the 

critical condition of the patients or other under-modelled or un-modelled dynamics. In contrast, the 

impact of errors on hour-to-hour SI variability is more pronounced and may impact the way the SI 

parameter is utilised for control and analysis 
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1. INTRODUCTION 

Physiological glucose-insulin system models typically rely on 

some form of insulin sensitivity parameter to characterise the 

patient-specific glycaemic response to exogenous insulin (Lin 

et al., 2011, Hovorka et al., 2008). This model-based insulin 

sensitivity parameter (SI) is identified for some period of time 

using blood glucose (BG) concentration and insulin and 

nutrition administration data. Errors in blood glucose 

concentration and measurement timing can thus affect the 

identified values of SI. 

In the busy intensive care unit (ICU) environment, BG 

measurements are rarely taken and recorded at an exact, 

scheduled time. Sensor errors add uncertainty to the 

measured BG concentration. Both errors propagate through to 

SI during parameter identification, which in turn may impact 

subsequent analyses or glycaemic variability during control. 

Typical point-of-care glucometers have measurement errors 

in the range 2-10% (Abbott, 2010, Arkray, 2007, Roche, 

2007, Roche, 2008, Solnica et al., 2003). The glucometer 

used in the Christchurch Hospital ICU (Super-Glucocard II, 

Arkray Inc., Japan) typically has an error of less than 10% 

(Arkray, 2007). The uncertainty in BG concentration 

resulting from sensor error impacts the identified values of SI 

through altering the glucose flux that must be balanced by the 

insulin-mediated glucose disposal term in the glucose-insulin 

system model. 

The objective of this investigation was to assess the impact of 

both measurement timing and sensor errors on identified 
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values of SI and its hour-to-hour variability. Specifically, the 

SI parameter from a glucose-insulin system model similar to 

that described by Lin et al. (2011) was investigated with 

patient data from the Christchurch Hospital ICU. 

 

2. SUBJECTS AND METHODS 

2.1 Patients 

This study was conducted as retrospective analyses of data 

from 270 patients admitted to the Christchurch Hospital ICU 

between 2005 and 2007. All patients were on the SPRINT 

protocol for at least 24 hours (Chase et al., 2008). Table 1 

shows a summary of the cohort details. The Upper South 

Regional Ethics Committee, New Zealand granted approval 

for the audit, analysis and publication of this data. 

 

Table 1. Cohort details summary. Data are shown as median 

[interquartile range] where appropriate. 

N 270 

Age (years) 65 [49-73] 

Gender (M/F) 165/105 

Operative/Non-Operative 104/166 

Hospital mortality (%) 27% 

APACHE II score 19 [16-25] 

APACHE II ROD (%) 30 [17-53] 

Diabetic status (T1DM/T2DM) 10/34 

ICU length of stay (hrs) 160 [77-346] 

 

2.2 Model-based insulin sensitivity 

The glucose-insulin system model used in this study was an 

enhanced version of the ICING model described by Lin et al. 

(2011), with a new endogenous insulin secretion sub-model 

(7) derived from data not yet published. The model is defined 

below in (1)-(7). Model parameters, rates and constants were 

generally as described in Lin et al. (2011), except for nI, nC  

and VI which have been adjusted to 0.06 min
-1

, 0.06 min
-1

 and 

4.0 L, respectively. These changes were made based on an 

analysis of results from several microdialysis studies and the 

population parameters from Van Cauter et al. (1992). 

Endogenous insulin secretion was modelled as a function of 

BG. Sub-model parameters, umin and umax are 16.7 mU.min
-1

 

and 266.7 mU.min
-1

, respectively. For non-diabetic patients, 

k1 and k2 take the values 14.9 mU.L.mmol
-1

.min
-1

 and -49.9 

mU.min
-1

. 

The model was implemented in MATLAB (2011b, Natick, 

MA), and a value of SI identified each hour for every patient 

using clinical BG, insulin and nutrition records. The 

parameter identification was performed using an integral 

method that ensured the global optimum value was located 

(Hann et al., 2005). Hour-to-hour SI variability is defined in 

(8). 
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The model-based insulin sensitivity parameter (SI) has been 

shown to correlate well with the insulin sensitivity index 

(ISI) determined by the gold-standard euglycaemic-

hyperinsulinaemic clamp (r >0.90) (Lotz et al., 2008).  
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2.3 BG sensor error 

The point-of-care glucometer used in the Christchurch 

Hospital ICU is the Arkray  Super-Glucocard II (Arkray Inc., 

Japan). Sensor bias was determined from the correlation data 

reported for the glucometer test strips, (Arkray, 2007) and 

was therefore known at all BG concentrations. Precision was 

reported as a coefficient of variation (CV) at three BG 

concentrations, 4.3, 6.9 and 21.0 mmol/L. For this analysis, 

the CV was linearly interpolated for BG concentrations 

within the reported range and held constant outside this 

range. These data were used to construct an additive error 

model for the glucometer used in this investigation. Table 2 

presents the bias and precision components for a range of 

glycaemia. 

  

Table 2. Error components of the Arkray Super-Glucocard II 

glucometer (Arkray, 2007). 

Blood 
glucose 
(mmol/L) 

2.0 4.3 6.9 10.0 21.0 30.0 

Bias (%) +7.9 +2.1 +0.2 -0.8 -2.0 -2.3 

Precision, 
CV (%) 

3.5 3.5 2.8 2.8 2.7 2.7 



 

 

     

The data used in the study was collected by trained clinical 

staff, minimising the potential for additional error through 

device misuse (Bergenstal, 2008). Blood samples tested were 

typically arterial, although, when an arterial line was not 

present, capillary blood was used.  

 

2.4 Timing error 

Measurements and interventions during the SPRINT protocol 

were 1 or 2-hourly and intended to be taken on the hour. 

These measurements were recorded by hand and attributed to 

the nearest hour on the standard paper 24-hour charts used in 

the Christchurch Hospital ICU. Hence, any discrepancies 

between the actual measurement time and the ‘nearest hour’ 

were lost. 

Recent pilot trials of the STAR (Stochastic TARgeted) 

protocol at Christchurch Hospital ICU (Evans et al., 2011) 

provide data to generate a timing error model (1651 

measurements on 20 patients). The STAR protocol is 

implemented on a tablet computer, thus the exact time when 

BG measurements are entered is recorded and can be 

compared to the written records. Using the discrepancies 

between scheduled and actual BG measurements, a model of 

timing error can be generated and applied to data from the 

SPRINT protocol. Although the STAR protocol differs from 

SPRINT, particularly with its computerised interface, it is 

used by the same clinical staff, in the same unit. Hence, it 

may be assumed that timing errors in making measurements 

will be similar. 

Timing errors were limited to a maximum of 20 minutes. The 

empirical error distributions are shown in Figure 1. Errors 

from these distributions were applied additively to the 

SPRINT data by randomly sampling from the error vectors. 

The errors were applied to both the measurement and 

intervention timing. Thus, the measurements and 

interventions remained synchronised, as they would in the 

hospital.  

 

 

Figure 1. Timing error models based on data from the STAR 

pilot trials (Evans et al., 2011). Errors from 1- and 2 hour 

measurements are shown on the left and right, respectively. 

 

 

2.5 Analyses 

To assess the effects of random timing and sensor errors on 

SI, Monte Carlo simulations were performed.  The SI profile 

of each patient in the cohort was refitted n = 100 times with 

randomly sampled errors applied to the observed timing and 

BG concentrations. The SI profiles identified without 

additional random errors were considered the ‘true’ profiles, 

and the Monte Carlo profiles were compared to these to 

assess the impact each of the sources of error, both 

individually and combined. Comparisons of both SI level and 

hour-to-hour variability were made. 

To facilitate comparisons when timing errors were applied, SI 

was identified in 60-minute intervals, rather than between BG 

measurements. This use of fixed, 60-minute fitting intervals 

is consistent with the methodology used for glycaemic 

control by the STAR protocol. 

To analyse the impact of errors on the identified SI level, the 

variation induced by the simulated errors at each hour was 

assessed across the Monte Carlo simulations. To characterise 

the distribution of percentage differences in SI level at each 

hour, between the true and simulated profiles, the width of 

the interquartile range (IQR) was used. Figure 2 illustrates 

the methodology for SI level comparisons between the n = 

100 Monte Carlo simulations and the true data.  

 

 

Figure 2. SI level comparison method for the Monte Carlo 

simulations with added sensor and timing error. The width of 

the interquartile range of differences was used to characterise 

the variability in level induced by the errors. 
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This analysis method resulted in one ‘IQR width’ per patient 

hour. For the 270 patient SPRINT cohort, there were 

approximately 43,000 hours of data. These 43,000 IQR 

widths were presented as cumulative distributions to show 

the overall effect of the errors on the cohort. 

The hour-to-hour variability of simulated data could not be 

compared to the true variability using ratios, as the centre of 

the variability distribution for any given patient was 

approximately zero. Therefore, many values were close to 

zero, causing comparison ratios to approach zero or infinity, 

providing an effectively meaningless metric. To quantify the 

variability of hour-to-hour variability caused by the errors, 

the width of the IQR across the simulations for each hour was 

used. This method relies on the assumption that the median 

value across the simulations for each hour is close to zero. 

A link to the actual variability is provided by the distribution 

of ‘∆Median SI.’ For any given hour, this metric is defined as 

the difference between the median hour-to-hour variability 

(%), across the n simulations, and the actual value (%). 

Typically, the distribution was tightly centred about zero, 

justifying the use of simulation IQR width without explicit 

reference to the actual variability. 

 

3. RESULTS & DISCUSSION 

3.1 Timing error 

Figure 3 shows the impact of timing errors on identified SI 

level (left panel) and variability (right panels). For 95% of 

hours, the IQR width of SI level was less than 12.4%. Thus, 

for those 40,000 hours, half the simulations resulted in SI 

values within approximately ±6.2% of the true value, 

assuming a symmetrical distribution. Similarly, for 

variability, 95% of hours had an IQR width of hour-to-hour 

changes of less than 17.8%, or ±8.9% about the simulation 

median. The top right panel of Figure 3 shows the simulation 

median was typically very close to the true value for 

variability, justifying the assumptions made. 

 

Figure 3. The impact of timing error on SI level (left panel) 

and hour-to-hour variability (right panels), determined by 

Monte Carlo simulation. The panels on the right show the 

location of the median simulated hour-to-hour variability, 

compared to the actual (top) and the variability about that 

median (bottom).  

 

These results show that typical timing errors in isolation have 

relatively small impact on the level and variability of SI. With 

a median absolute difference between the simulated and 

actual measurement intervals of 9 minutes and using bolus 

insulin delivery, this result is not too surprising. Unlike 

infused insulin, bolus delivery ensures that the entire 

prescribed dose is always administered, regardless of the time 

between measurements. In addition, timing discrepancies 

only affect the later parts of the interstitial insulin profile, 

where concentrations are lowest and thus contribute least to 

the area under the curve used in fitting the SI parameter 

(Hann et al., 2005). 

 

3.2 BG sensor error 

Figure 4 shows the impact of BG sensor errors on SI level 

(left panel) and variability (right panels). The variability 

induced in both SI level and variability is greater than that 

due to timing error. The increases at the median values for 

level and variability compared to timing error of Figure 3 

were 4.9% and 2.2%, respectively (p = 0, Wilcoxon rank-sum 

test). However, with so many data points, a statistically 

significant difference is almost guaranteed.  

 

Figure 4. The impact of BG sensor error on SI level (left 

panel) and hour-to-hour variability (right panels), determined 

by Monte Carlo simulation. The panels on the right show the 

location of the median simulated hour-to-hour variability, 

compared to the actual (top) and the variability about that 

median (bottom). 

 

The non-zero minimum width of SI level IQR evident in the 

left panel of Figure 4 is the result of the sensor bias. This 

minimum width of 2.7% was not present with the zero-mean 

timing error simulations of Figure 3, or if the bias is set to 

zero (results not shown). 

 

3.3 Combined measurement error 

Figure 5 shows the impact of the combined timing and BG 

sensor errors on SI level (left panel) and variability (right 

panels). The previous two sections have characterised the 

individual contributions of timing and sensor error. This 

analysis combines them, simulating errors seen in the real, 

clinical situation.  
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For 95% of hours, the IQR width of SI level was less than 

23.9%. Thus, assuming a symmetrical distribution, half the 

simulations resulted in SI values within approximately ±12% 

of the true value. Similarly for variability, the 95
th

 percentile 

was 34.9%, indicating that for half the simulations the hour-

to-hour variability of SI was within ±17.5%. 

 

Figure 5. The impact of combined timing and BG sensor 

error on SI level (left panel) and hour-to-hour variability 

(right panels), determined by Monte Carlo simulation. The 

panels on the right show the location of the median simulated 

hour-to-hour variability, compared to the actual (top) and the 

variability about that median (bottom). 

 

3.4 Implications of results 

The clinical impact during glycaemic control of changes to SI 

level induced by sensor and timing errors is likely to be 

limited. Identified values of SI were typically within 12% of 

the true value when influenced by both sources of error. In 

contrast, changes in SI greater than 20% were seen with 

glucocorticoid treatment (Pretty et al., 2010) and improving 

patient condition over the first 18 hours of ICU stay (Pretty et 

al., 2012).  

A second, potentially clinically significant, impact is on 

analytical use of SI as a marker of injury or change in state.  

Much of the true hour-to-hour change of this SPRINT cohort 

was smaller than the variability induced by sensor and timing 

errors. The IQR of true hour-to-hour variability across the 

entire cohort was -9.7% to 13.9% and 63% of all values lay 

in the range ±17.5%. Thus, short-term changes in SI may be a 

result of measurement timing or sensor errors rather than a 

true physiological phenomenon. Hence, using changes in SI 

level as a diagnostic must be done with caution, potentially 

looking at longer-term trends, where the effects of random 

errors may be cancelled by averaging over time. 

In the context of the STAR protocol, the increase in hour-to-

hour variability may be clinically significant. STAR uses a 

stochastic model of expected SI hour-to-hour variability to 

forecast the results of potential interventions and avoid 

hypoglycaemia. The relatively large, ±17.5%, range of hour-

to-hour variability about the median caused by errors, 

suggests that a significant proportion of this expected 

variability may be dominated by these errors, rather than 

physiological variability. Hence, to reduce the impact of 

these errors, the 5-95 range of the stochastic model should be 

used. SI values at these more extreme percentiles are less 

likely to be influenced by random sensor or timing errors. 

 

3.5 Potential for reducing error 

There is no effective way to reduce the impact of these errors 

as they are random and apply equally to all patients. The only 

available option is to reduce the magnitude of the errors. The 

timing error distribution shown in Figure 1 shows that more 

than 85% of measurements are within 10 minutes of the 

scheduled time, which is a very good result in a busy ICU 

environment. In contrast, BG sensor errors can be reduced 

with better, more accurate, but likely more expensive 

equipment.  

To compare the impact of sensor errors from glucometers 

with a state of the art blood gas analyser (BGA), an error 

model was developed for the Bayer RapidLab 860 (Bayer 

Diagnostics, Tarrytown, NY) (2004, Peet et al., 2002). Errors 

for this BGA consist of very little bias (≤ 0.06 mmol/L) and 

CV in the range 1.7%-4.9%, depending on BG concentration. 

The RapidLab 860 is used in the Christchurch Hospital 

Neonatal ICU (Le Compte, 2009), and thus represents a 

realistic option for the adult ICU in Christchurch. An n = 50 

run Monte Carlo simulation was performed with both timing 

and BG sensor errors from the BGA for a basic comparison. 

The results show only a minor improvement by using the 

BGA.  The 95
th

 percentile of IQR widths reduced from 23.9% 

to 21.0% and from 34.9% to 30.2% for level and variability, 

respectively. These results appear surprising, but are probably 

due to the relatively low reported errors of the glucometer. 

Data for the error model was taken from the manufacturer’s 

data-sheet (Arkray, 2007). However, a published report 

(Solnica and Naskalski, 2005) failed to recreate these results, 

possibly due to user error, sample type, abnormal hematocrit 

or interfering substances (Bergenstal, 2008).  

 

4. CONCLUSION 

The objective of this study was to assess and quantify the 

impact of typical timing and BG sensor errors on the level 

and variability of model-based SI. Specifically, the variability 

of level and the variability of SI hour-to-hour variability were 

investigated under the influence of these sources of error, 

both separately and combined. Measurement timing errors 

were shown to have a relatively small impact on the SI 

parameter. The BG concentration errors of the Arkray 

glucometer had a larger effect on SI and tended to dominate 

the combined analysis. 

The results of this study indicate that the impact of errors on 

SI level is unlikely to be clinically significant and probably 

overshadowed by physiological or therapy factors arising 

from the critical condition of the patients. In contrast, the 

impact of errors on hour-to-hour SI variability is more 

pronounced and may impact the way the SI parameter is 

utilised for control and analysis. 
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This analysis indicated that for a given SI level, variability 

induced by errors might dominate the IQR of the probability 

density function describing SI for the subsequent hour. 

Hence, to avoid inadvertently basing control decisions on this 

artificial variability, the 5-95 percentile range of the 

stochastic model should be used. In addition, using changes 

in SI level as a diagnostic must be done with caution, 

potentially looking at longer-term trends, where the effects of 

random errors may be cancelled by averaging over time. 

Given the random nature of these errors, the only feasible 

method of mitigation is to use BG sensors with smaller 

errors. However, a comparison with results from a state of the 

art, clinical blood gas analyser showed that the limited 

improvement in performance probably doesn’t justify the 

significantly increased cost of the device. However, 

understanding the effect of sensor and timing errors on SI 

allows their impact to be taken into account when using the 

parameter for control and analysis. 
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