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ABSTRAcr 

Mechanisms of brood reduction were studied in Fiordland crested 

penguins (Eudyptes pachyrhynchus) on Open Bay Islands from July through 

October 1989. I quantified behavioural and environmental causes of egg and 

chick loss at the time of laying, during incubation, and after hatching to evaluate 

hypotheses advanced to explain the unique patterns of hatching asynchrony and 

egg dimorphism in eudyptid penguins. 

Although first eggs experienced lower survival than second eggs and most 

losses occurred during the laying interval, aggression between adult penguins did 

not appear to contribute to egg loss at any time. Similarly, egg mortality was not 

influenced by the effects of nest crowding or cover, or by the degree of intra­

clutch egg dimorphism. 

temperatures were measured throughout the incubation period with 

thermocouples implanted in preserved eggs. Recorded temperatures increased 

markedly after the laying of the second natural but did not differ between 

eggs of different sizes within a nest. First eggs were not consistently incubated in 

the anterior nest position and that position did not confer a thermal disadvantage. 

However, first eggs hatched later than second eggs. Retarded brood patch 

development may contribute to lower egg temperatures during the laying intervaL 

Chicks from larger, second-laid eggs were larger at hatching, and grew 

more rapidly than their siblings. Overt aggression between feeding chicks was not 

observed and begging and feeding rates appeared to be similar. Nonetheless, 

large chicks experienced higher survival to the creche stage. Intra-clutch egg 

dimorphism was negatively correlated with the number of days two chicks 

survived in the same nest, but there was no relationship between survival and 

hatching asynchrony. 
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CHAPTER 1: 

GENERAL INTRODUCTION 

The effects of hatching asynchrony and egg-size dimorphism have been 

widely studied for many of the avian species in which they are known to occur. 

Both are most often regarded as mechanisms by which birds can adjust their 

reproductive effort to match prevailing environmental conditions (Slagsvold et al. 

1984), particularly for those species that breed in variable or unpredictable 

habitats. Hatching asynchrony, the more extensively studied of the two 

phenomena, was first suggested to be an adaptation for bringing the size of the 

brood into closer adjustment with the available food supply (Lack 1947; 1954), a 

hypothesis that forms the basis of the theory of brood reduction (Ricklefs 1965). 

A fundamental assumption of this theory is that the mortality that results from 

competitive asymmetries between siblings, commonly termed brood reduction as 

well, is dependent on both size of the brood (Mock and Parker 1986) and 

availability of food (Skagen 1988). 

From studies in which observed patterns did not fit those predicted by 

brood reduction theory, several competing and complementary hypotheses have 

emerged. The most prevalent of these, the nest-failure hypothesis (Hussel 1972; 

Clark and Wilson 1981; Bancroft 1985) suggests that hatching asynchrony allows 

some offspring to fledge before others, reducing the length of time that the entire 

brood is at risk to predation. A gradient of increasing egg-size within clutches, 

common in the passerine birds to which the model has been applied, is proposed 

to offset the costs of hatching asynchrony so that all chicks may be reared (Howe 

1976). Mortality of last-hatched chicks is therefore a consequence of the benefits 

gained by hatching asynchrony and not an adaptation per se. Richter (1982, but 

see Clark and Wilson 1985; Russel 1985a, 1985b) debated the validity of the nest­

failure hypothesis, arguing that the loss of younger chicks represents a greater cost 

than is gained by increased survival for the rest of the brood. Nonetheless, 

Richter conceded that the hypothesis provides a better explanation for certain 

biological situations than does traditional brood reduction theory. Others 

(Bengtsson and Ryden 1983; Magrath 1988) reiterated the suggestion that the two 
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hypotheses provide complementary explanations for the existence of asynchronous 

hatching and are not mutually exclusive as had been assumed previously. 

In species that exhibit overt aggression among siblings, asynchronous 

hatching may create natural asymmetries within broods that act to reduce wasteful 

sibling competition (Hahn 1981). This idea is an extension of the sibling rivalry 

reduction hypothesis (Hamilton 1964) and differs from Lack's brood reduction 

explanation in that it could be expected to operate regardless of food supply. 

Manipulation of hatch asynchrony in cattle egrets (Bubulcus ibis) lessened 

parental efficiency and provided some evidence for the value of eliminating 

wasteful sibling competition (Mock and Ploger 1987). However, the theory has 

not been widely tested. 

Another explanation of hatching asynchrony is that it functions to reduce 

the peak load demands of a growing brood (HusseI1972; Fujioka 1985a). 

However, this theory does not explain why the pattern should so often result in 

higher mortality for last-hatched young. Furthermore, the peak load 

requirements, for even a reduced brood, generally occur long after brood 

reduction has taken place (Shaw 1985; Anderson 1989). 

Finally, asynchronous hatching may be merely a consequence of 

physiological circumstances. example, it may result from the necessity of 

some species to cover the prior to completion of the clutch to protect them 

from extreme temperatures (Wynne-Edwards 1952; O'Connor 1984; Shaw 1985) 

or predation (Amundsen and Stokland 1988), although there is little empirical 

evidence to support these suggestions. Alternatively, Mead and Morton (1985) 

proposed that birds are constrained to begin incubation before the clutch is 

complete because the same hormones responsible for the cessation of ovulation 

also cause incubation behaviour to commence. Because the last egg is still in the 

oviduct at the start of incubation, eggs are incubated and hatched asynchronously. 

This hypothesis has not been tested experimentally and does not explain the 

existence of asynchronous hatching in species that commence incubation before 

the laying of the penultimate egg, or those in which the male bird is the first to 

incubate. 

The effects of egg-size dimorphism are generally considered to be less 

important than those of hatching asynchrony (e.g. Stokland and Amundsen 1988), 

partially because patterns of dimorphism vary considerably among bird groups. 

For most passerine species, last-laid eggs tend to be somewhat larger than the 
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for many of the non-passerine 

variation. Slagsvold et ai, (1984) 

categorized the former group as having adopted a "brood-survival strategy" where 

the larger size of the final egg compensates for the disadvantage of hatching 

asynchrony and increases the likelihood that the youngest chick will fledge. The 

"brood-reduction strategy" adopted by the latter group allows for efficient 

mortality of the last-hatched chick if conditions are such that the entire brood 

cannot be raised. Slagsvold et al. identified one anomalous group, the crested 

penguins, which appeared not to fit either pattern. 

IMPETUS FOR 

Members of the genus Eudyptes differ from other non-passerine birds with 

regular intra-clutch egg dimorphism in that the second of two eggs laid is also the 

larger. Other penguin species lay a clutch of either one egg (Aptenodytes), or two 

eggs in which the second is the same size or smaller than the first. Furthermore, 

despite a laying interval of three to six days, the second egg of eudyptid penguins 

often hatches first (Gwynn 1953; Williams 1981a; in press), adding hatching 

asynchrony to the disadvantage inherent to first eggs. Presumably as a 

consequence of the size disparities at hatching, first eggs seldom produce 

chicks and crested penguins do not appear to two chicks from a single clutch 

(Gwynn 1953; Warham 1975), Extreme egg-size dimorphism is a final unusual 

characteristic of this penguin genus. Second eggs are 2(}' 70% larger than first eggs 

(Warham 1975; Lamey in press); the greatest egg-size dimorphism reported for 

any bird group (Williams 1981c). 

Wynne-Edwards (1962) considered the exceptional pattern of egg 

dimorphism in crested penguins to have an equivalent purpose to hatching 

asynchrony in other bird groups, Lack (1968) suggested that the first egg may 

have insurance value in some species, but is apparently functionless in others. 

Recently. Johnson et ai. (1987) reiterated the uncertainty over the function of egg 

dimorphism in crested penguins and reviewed some of the hypotheses that have 

been proposed to explain its origin. These authors pointed out that little work has 

addressed the problem specifically, despite considerable past interest in it, and 

considered that more quantitative data were needed before competing hypotheses 

could be evaluated adequately. 
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Warham (1963; 1971; 1972a; 1972b; 1974a; 1974b; 1975) compiled 

considerable descriptive information on aspects of breeding biology and 

behaviour of five of the six species of crested penguins, building on the previous 

work of Gywnn (1953), Downes (1955) and Downes et aI. (1959) all of which was 

concerned primarily with the sixth species, the macaroni penguin (Eudyptes 

chrysolophus). Published studies directed specifically at patterns of egg 

dimorphism and hatching asynchrony have focused exclusively on two species - the 

macaroni and rockhopper (E. chrysocome) penguins. The other four species 

include the royal (E. schlege/i); Snares (E. robustus), Fiordland (E. pachyrhynchus), 

and erect-crested (Eo sclateri) penguins, all of which are endemic to New Zealand 

waters. Of these, only the Fiordland crested penguin breeds on the New Zealand 

mainland whereas the other three species are breeding residents on the Snares 

(robustus), Macquarie (schlegeli), Campbel~ Antipodes and Bounty Islands 

(sclateri). 

OBJECTIVES STUDY 

The present study investigated aspects of breeding biology and behaviour 

of Fiordland crested penguins to evaluate the mechanisms responsible for 

mortality of and chicks. Although it can argued that combined losses 

are appropriately termed (offspring reduction' (Williams 1981c), I have followed 

the convention of terming both types of offspring mortality brood reduction 

(Lamey in press). Specific objectives of the study 1) to examine behavioural 

and environmental factors that could contribute to brood reduction at the time of 

laying, during incubation, and after hatching and, 2) to determine the effect of 

these factors on the survival of eggs and chicks. To this end, three aspects of 

breeding biology and behaviour were assessed and each is the subject of one of 

the chapters that follow. 

1. Incubation behaviour and egg loss 

I used periods of continuous behavioural observations to investigate the 

hypothesis that first-laid eggs are more vulnerable to displacement or predation. 

Egg loss was quantified and related to the degree of crowding and cover among 

nests. 
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Egg temperature and brood formation 

Data on laying intervals, intra-clutch egg dimorphism, temperature and 

position, brood patch development and hatching intervals were collected and used 

to evaluate various hypotheses as to why first eggs appear to take longer to 

develop. I compared my results with those obtained for other species and 

assessed their relevance to broader patterns of avian brood reduction. 

3. Chick growth and competition 

Variation in hatchling size and growth was compared among chicks from 

first and second eggs raised together and raised singly. In addition, I monitored 

interactions between siblings and the behaviour of parents during feeding, and 

estimated the effect of these behaviours on chick growth and survivaL The 

reproductive success of breeding adults was compared. 

THE STUDY ANIMAL 

Fiordland crested penguins are probably the most asocial of the Eudyptes 

genus, nesting in caves and under vegetation along the rugged coast of Fiordland, 

South Island, New Zealand, and on Stewart and Solander Islands. breeding 

habitat, biology, and behaviour have been extensively described by Warham 

(1974a) who, with Grau (1982, formation) and van Heezik (1989, diet), 

provide the only published studies on this species. Fiordland penguins differ from 

their congeners in two important ways; they exhibit the least egg dimorphism 

among the crested penguins, and they often hatch both eggs. These 

characteristics, combined with the relatively accessible breeding areas, make them 

ideal subjects for studying the effects of egg dimorphism and hatching asynchrony. 

THE STUDY SITE 

I conducted field work on Taumaka, the larger of the Open Bay Islands 

(430 50'S and 1680 53'E) between 13 July and 19 October 1989. Vegetation on the 

island is described by Burrows (1972) and consists mostly of kiekie (Freycinetia 
banksii), an epiphytic vine that grows, in the absence of supporting vegetation, in 
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dense tangles two to three metres high. north-west side of the island is 

bordered by gently sloping reefs of limestone on which southern fur seals 

(Arctocephalus forsteri) breed. The south-east side of the island faces the New 

Zealand mainland and terminates in steep cliffs. Fiordland crested penguins nest 

primarily under the kiekie or among caves and ledges at the interface of the reefs 

and vegetation. A few individuals were also seen in caves along the cliff edges. 

Penguins reached the breeding areas by well-established routes through the seal 

colonies and, although fur seals are a natural predator of penguins in the water, 

they appeared to provide no obstacle on land. Little blue penguins (Eudyptula 

minor) nested in caves and crevices behind Fiordland penguin nests, but I did not 

observe any hostile interactions between the two species. 
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CHAPTER 2: 

INCUBATION BEHAVIOUR AND EGG LOSS 

INTRODUCTION 

Warham (1975) proposed two hypotheses to explain egg dimorphism in 

crested penguins and most of the recent work concerning Eudyptes has 

concentrated on these, or variations of these, explanations. The first hypothesis 

states that egg dimorphism serves to compensate for high frequencies of egg loss 

prior to hatching. Crested penguins guard, but do not incubate the first egg until 

the second is laid (Warham 1975; A Williams 1980a) and it is during the laying 

interval, when territories are established and aggression rates are high, that first 

eggs may be most vulnerable to displacement or predation. Warham (1975) 

suggested that high losses of first eggs are actually a consequence of selection 

favouring aggressive males. second explanation of egg dimorphism, that it 

provides a mechanism to ensure that only one chick is reared when both eggs 

hatch, is a variation of the brood reduction theory put forth by Lack (1954) and 

applied to crested penguins by Wynne-Edwards (1962). 

The quantitative data available support the existence of some form of 

brood reduction in eudyptid penguins. Macaroni penguins invariably lose one of 

the two eggs laid before hatching (Williams 1980a; Mougin 1984; T. Williams 

1989). Although twins are common within broods of rockhopper, Snares and 

Fiordland penguins (Lamey in press), it does not appear that any of the eudyptids 

raise two chicks. Observations on Fiordland penguins (Warham 1974), 

rockhoppers (Williams 1980a) and Snares penguins (Lamey in press) indicate that 

starvation shortly after hatching is the common fate of the smaller chick. 

However, an underlying assumption of the brood reduction theory is that offspring 

number is adjusted to environmental conditions (Lack 1854). Because crested 

penguins never appear to raise two chicks, brood reduction seems an insufficient 

explanation of egg dimorphism in this genus. 
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Johnson et aI. (1987) reiterated the suggestion that inter-male aggression 

favours egg dimorphism and proposed that selection for aggression results from 

competition for centrally located or sheltered nest sites. They reasoned that the 

first egg is smaller because it represents a smaner investment that is almost 

invariably lost. Recent work by Williams (1989) on Macaroni penguins does not 

support this hypothesis. Peak aggression rates did not coincide with maximum 

loss of first eggs, and neither displacement nor predation of eggs appeared to 

result from fights. However, macaroni penguins represent an extreme in crested 

penguins; they exhibit the most marked egg dimorphism of any species (Williams 

1981c) and they nest in open, crowded colonies (Williams 1980a) where 

aggression rates are high (Williams 1989). Johnson and Bednarz (1989) 

contended that these may not be the conditions under which egg dimorphism 

evolved and, until similar data are available for other eudyptids, their aggression 

hypothesis cannot be fairly discarded. 

In this chapter, I present information on incubation behaviour, egg loss, 

and attributes of crowding and cover in a colony of Fiordland penguins. This 

species provides an ideal contrast to Williams' (1989) study because it represents 

an opposite extreme within the genus. In Fiordland crested penguins, egg 

dimorphism is least pronounced, the species is the social nester, habitually 

nesting in loose aggregations dense cover (Warham 1975), and aggression 

rates are relatively low. 

I observed incubation behaviour and measured attributes of nest crowding 

and cover of Fiordland crested penguins on Taumaka, the larger of the Open Bay 

Islands. Adult birds were captured, measured (weight, flipper length, and bill 

length, width and depth), marked (Wella hair dye applied with a blunt 

paintbrush), and banded (standard aluminium flipper bands) between 14-26 July 

1989. Birds were sexed by bill measurements (Warham 1975) and sexing was 

confirmed by observations of nesting behaviour. Late arrivals to the breeding 

colony, that had not been banded previously, were marked without handling by 

using a paint brush inserted in the end of a 1.5 m pole. Except to take brood 

patch measurements (Chapter 3), adult penguins were not handled after egg 
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laying began. My movement among the birds was always slow and methodical and 

most birds allowed close approach without leaving their nests. 

Egg loss 

I continued to visit 46 nests daily throughout the incubation period to 

determine the timing and causes of egg loss. I ceased visiting several nests that 

may have been affected by my presence including ten nests for which my 

disturbance may have caused egg losses through predation by weka (Gallirallus 

australis), five nests occupied by 'flighty' penguins, intolerant of daily checks, and 

approximately 25 nests located in areas that were particularly vulnerable to weka 

predation. 

I removed eggs from nests on the days they were laid, measured them to 

the nearest 0.1 mm with vernier calipers, weighed them to the nearest 2 g with 

Pesola spring balances, and marked them with coloured indelible ink for 

subsequent identification. During daily checks, incubating birds were lifted gently 

with a stick to determine the presence and position of the eggs. Lost eggs were 

categorized as: 

a) displaced, when they were found intact near the nest, 

b) "wekked," when their shells were found empty with a 

longitudinal opening characteristic of weka predation or, 

c) missing, when the egg remains were not found. 

Addled, rotten or abandoned eggs were not considered lost because these fates 

did not pertain to the hypotheses tested. I compared egg size within nests with the 

ratio of length x (breadth)2 for second and first eggs, respectively (Warham 1975). 

Incubation behaviour 

To determine the effects of incubation behaviour on egg survival, I 

monitored the behaviour of incubating birds at 17 nests, observing between one 

and seven nests simultaneously. Observation periods were distributed 

approximately equally between morning and afternoon sampling and were usually 

of 30 minute or two hours duration, depending on the number of nests observed. 

During each period, I remained stationary at one of several vantage points and 

did not approach the nesting areas. I did not attempt to quantify aggression or 
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other behaviours before eggs were laid, or after the second week of incubation. 

There was no indication that my presence influenced the behaviour of the birds. 

Focal animal, all occurrance sampling (Altmann 1974) was used to record 

the position and duration of incubation behaviours. When both members of a 

pair were present, I recorded only the posture of that bird incubating or protecting 

the egg. However, aggressive behaviour was recorded for any penguin in the 

vicinity of the nest areas. Sex of incubating birds was also recorded when possible, 

but in some cases bird orielltationmade this impossible to identify. Comfort 

behaviours (e.g. preening, stretching, etc.) of less than two minutes duration were 

not recorded as they were unlikely to affect the incubation regime of the egg. 

Postures were categorized as: 

a) standing off the nest, 

b) standing on the nest with the egg partially exposed, 

c) hunched on the nest with the egg completely covered, and 

d) lying prone on the nest covering the egg. 

Incubation intensity (Derksen 1977) was evaluated by comparing the amount of 

time spent in the latter two positions, which allow effective incubation, with time 

spent in standing positions, during which eggs were afforded less protection. Time 

spent in each position was measured in nest-hours, equivalent to one hour 

per nest observed. Observation was divided equally between nests containing only 

the egg and those containing both eggs. One at which a second natural 

was never laid, was considered to contain two after the mean laying 

interval of 4 days (Chapter 3). of the incubation period were numbered 

sequentially with the laying of the first egg designated as day O. 

Crowding and cover 

Measurements of crowding and cover were taken at 43 nests that occurred 

in similar surroundings (caves and ledges) and compared with egg survivaL I 

assessed crowding with an index, C, that provides a linear measure of visual and 

spacial contact and was calculated as: 

C ::::. In[(D1 + D2 + D3)/(v + 1)] 

where D1, D2, and D3 are the qistance in dm to the nearest three nests at which 

eggs were laid, and v is the number of neighbouring nests within visual contact. 

For nests with nearest neighbours at distances greater than 10 m, C was calculated 

using a maximum distance value (D1 + D2 + D3) of 30 m. Thus, indexed values 

ranged from a minimum of < 1 to a maximum of 30 and could be plotted linearly. 
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Cover was measured categorically with nests described by type; open for 

those that occurred on ledges or in large caves, and closed for those in small rock 

cavities. Nests were further designated by position as being peripheral or central 

within a sub-colony. All nests were divided into two survival categories; those that 

lost one or both eggs to displacement or predation, and those that lost no eggs. 

Statistical tests 

Unless otherwise indicated, statistical tests were performed on contigency 

tables with G-tests of independence Of, when expected frequencies were based on 

hypotheses extrinsic to the sampled data, by G·tests of goodness of fit (Sakal and 

Rohlf 1981). Interaction effects between parameters of cover were tested by G­

tests of goodness of fit after fitting log-linear models (Everitt and Dunn 1983; 

Wilkinson 1988). Statistical tests in this and the following chapters were 

performed with SYSTAT. Significance was set a,tp 0.05. 

incubation intensity of both sexes through the laying 

interval, but did not change appreciably after the ", .. ,_,-"",,,,, was laid 2.1). 

Total time spent standing either on or off the nest was much higher, and time 

spent incubating in a hunched or prone position much lower, before the second 

egg was laid (Table 28.07, df =: 3,p < 0.001). Females spent a IT.,.""..,,.'" 

proportion of time in standing positions than did males (Fig. = 8.92, = 3, 

p 0.03) indicating that they were generally less tenacious. 

In 85 nest-hours of observation after egg·laying commenced, I saw a single 

aggressive interaction between nesting birds. This consisted of a sneeze, a 

common behaviour when the birds were approached by me or by penguins that 

were not their mates, and did not escalate into a fight. However, high levels of 

fighting did occur while nest sites were being established early in the season and 

continued at reduced levels among non-breeding birds throughout incubation and 

chick rearing periods. Fights among non-breeders seldom involved breeding pairs 

and it is unlikely that squabbles markedly heightened the risk of displacement or 

predation of eggs at any time. 
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Figure 2.1. The percentage of time spent by Fiordland crested penguins in each of 
four incubation positions on successive days after egg-laying. Observations were 
taken from 17 nests containing only the first egg (left) or both eggs (right). 
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Table Hours spent by penguins in each incubation position on nests containing 
only the first egg and on nests containing both eggs. 

Incubating position 

Standing off nest 

Standing on nest 

Hunched on nest 

Prone on nest 

c 
o 
(j) 

o 
0.. 

...c 
u 

80 

60 

o 40 
Q) 

c 
Q) 

E 20 
+-' 

o 
+-' o 
I-

first eggs 

8.6 

8.8 

14.5 

10.6 

Total 42.5 

males, n 47.2 hours 

females, n 28.9 hours 

Standing, 
off nest 

Standing 
over egg 

Hunched 

both eggs 

0 

1 

11.1 

30.4 

42.5 

Prone 

Figure 2.2. The percentage of time spent in each incubation position for male and 
female penguins from 17 nests during the first 16 days of the incubation period. 
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A total of 23 eggs was lost from 51 nests monitored, and almost all of these 

were the first laid (Table 2.2; G := 10.63, df 1, P < 0.01). Missing eggs 

accounted for the greatest loss (G := 5.024, df 2,p = 0.05). Most likely, these 

eggs were taken by weka, although they may have been displaced initially. For the 

15 first eggs and one second egg for which dates of loss could be determined, most 

loss occurred in the first week of the incubation period (Table G = 11.69, df 

:= 4,p < 0.005). The single second egg was lost in the second week. I witnessed 

the loss of one egg when a two day old first egg was pierced by a weka while both 

parents stood dozing beside the nest. At the sound of the shell breaking, both 

birds awoke and drove off the weka but the damaged egg was not recovered from 

where it had rolled during the struggle. 

Table Fate and number of first and second eggs lost. 

Cause first eggs second eggs 

"WekkedU 

Displaced 

Missing 

Total 

6 

4 

9 

19 

, 

o 
o 
4 

4 

Table Timing of first 
daily until hatching. 

loss in 46 nests of Fiordlandcrested penguins checked 

Week after laying 

1 !befOre second egg laid) 
on the day second egg laid) 
after second laid) 

Number of eggs 

5 
3 
1 

2 1 

3 1 

4 1 

5 3 

Total 15 
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Egg survival was not influenced by crowding (independent Hest, t 0.006, 

df ::= 41,p > 0.9) or nest type (n == 43, G == 0.425, df == 1,p == 0.51). However, 

survival of eggs was higher for peripheral than central nests (n == 43, 3.96, df 

== 1, p < 0.05). Sequential elimination of interaction parameters from log-linear 

models (Table 2.4) indicated that there were no higher-order interactions 

between egg survival and the two attributes of cover. 

Lastly, intra-clutch egg dimorphism was slightly greater for nests of low 

survival (mean 1.24, sd == 0.144, range == 1.09-1.63, n == 12) than for those with 

high survival (mean 1.18, sd == 0.089, range 0.88-1.35, n = 24), but these 

differences were not significant (independent t-test, t :::: 1.55,p :::::: 0.13). 

Table 2.4. Significance of interaction effects in log-linear models of cover and 
survival. A == survival, B nest position, and C == nest type. Each G statistic is a 
measure of the variance in the complete model explained by the dropped term. 

Model Parameters included (dropped) df 

1 AB,AC, A,B,C (ABC) 1 0.79 (ns) 

2 AB, 2 0.82 (ns) 

3 (AC) 3 1.24 (ns) 

4 A, (AB) 4 5.20 (ns) 

DISCUSSION 

Patterns of incubation intensity in Fiordland crested penguins appear to be 

similar to those recorded for macaroni penguins (Williams 1989) and confirm the 

qualitative reports by earlier authors that eudyptid penguins do not commence 

incubation until the second eggis laid (Gywnn 1953; Downes 1955; Warham 

1975; Williams 1980a; Mougin 1984). Females tended to incubate with less 

intensity than males and, in Fiordland penguins, this may reflect the general 

tendency for males to take the first incubation shift. However, a similar sex bias 
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was also apparent in the incubation positions of macaroni penguins (Williams 

1989), a species in which the first incubation stint is normally undertaken by the 

female. In general, females tend to be more timid than males, and differences in 

tenacity between the two sexes may only mean that females take longer to settle 

into regular incubation patterns. 

Neither sex incubated first eggs consistently during the laying interval and, 

on at least one occasion, lack of attention to the egg resulted in predation. High 

egg losses early in the incubation period is further evidence that first eggs are at 

greater risk to diplacementor predation during the laying interval. However, 

there was no indication that losses were enhanced by aggressive behaviour among 

nesting birds of either sex. Aggression among breeding birds peaked before egg 

laying commenced and, although it continued at reduced levels among non­

breeders throughout the breeding season, it did not appear to contribute to egg 

loss. These results are in agreement with those of Williams (1989) and contradict 

the hypothesis that inter-male aggression and resultant egg loss is a major 

selective pressure favouring egg dimorphism (Warham 1975; Johnson et al. 1987; 

Johnson and Bednarz 1989). 

Despite the lack of empirical evidence, there remains some intuitive 

support that aggression rates are somehow linked to egg dimorphism and survival. 

Egg loss is considerably more severe in macaroni than Fiordland penguins and 

corresponds to greater egg dimorphis~ more crowded colonies and higher rates 

of aggression. these differences occur between species, the same gradient may 

also occur within them. The results of this study do not support such a suggestion. 

Egg survival was not significantly affected by dimorphism or the degree of 

nest crowding, although it was somewhat higher for peripheral than for central 

nests. Aggression was not observed at any nest and therefore its potential effects 

on egg survival cannot be evaluated. Although it appears that variation in 

aggressive behaviour does not correspond to variation in egg loss, a closer 

examination of gradients between and within species is needed. 

An alternative explanation of high egg loss early in the incubation period is 

that successful laying of second eggs is causally related to the loss of first eggs 

(Williams 1989). Thus, first eggs may function as insurance in rare instances when 

a second egg is not laid or is laid and immediately lost. However, this hypothesis 

implies that unneeded first eggs are deliberately ejected from the nest when 

second eggs are laid; a notion that lacks substantiation (Warham 1975; Johnson 

and Bednarz 1989) despite repeated suggestions of its occurrence (Richdale 1941; 



Gwynn 1953; Downes 1955; Downes et aI. 1959; 

1968; Mougin 1984). 
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If egg loss occurs over a greater portion of the incubation period, as is 

typical of rockhopper, Snares and Fiordland penguins, the hypothesis that first 

eggs are valuable as insurance seems more plausible. Lack (1968) suggested that 

first eggs of rockhopper penguins retained until hatching could effectively function 

as a reserve when second eggs failed to hatch, but could envisage no function for 

first eggs in the remaining Eudyptes species. However, he clearly believed that 

first eggs did not normally hatch in any of the six eudyptid species except 

rockhopper penguins. Although it is unclear how long two chicks may survive, 

both eggs are known to hatch in some broods of Fiordland (Warham 1974a; this 

study), Snares (Warham 1974b; Lamey in press), and royal penguins (Warham 

1971) in addition to rockhoppers (Gwynn 1953). Macaroni penguins do not 

produce two chicks (Gwynn 1953; Downes 1955; Williams 1980a; Mougin 1984; 

Williams 1989), but similar data are not available for erect-crested penguins. 

Thus, it appears that the insurance value of first eggs differs among species of 

Eudyptes. First eggs are potentially valuable for at least four species, but without 

knowing the hatching patterns of the common eudyptid ancestor, it is impossible 

to determine what is the primitive condition. 

Johnson aL (1987) suggested that the """H"''''' of first could serve 

signal to other pairs that the nest site is occupied. During my study, many 

courting pairs were apparently displaced from nest sites by other individuals, but 

always before were laid. At the same time, breeding females incubating 

alone on the nest were often courted by nonbreeding males, or pecked and 

harassed by pairs attempting to establish a nest at the same site. Similar 

interactions were never observed when the typically more aggressive males were 

incubating. Warham (1963) reported the same behaviour among rockhopper 

He also noted that males were intolerant of any approach by other 

birds, whereas females were submissive and occasionally receptive to the advances 

of nonbreeding males. Therefore, it seems likely that birds display greater site 

tenacity after eggs are laid. Increased territoriality may be associated with a 

greater investment in the nest site, but it is likely that it is the behaviour of 

resident birds, rather than the presence of an egg that successfully repels 

intruders. 

In conclusion, the results of this study indicate that incubation tenacity in 

Fiordland crested penguins increases after second eggs are laid, and that egg loss 
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consists disproportionately of first eggs early in the incubation period. There was 

no evidence, however, that egg loss was increased by aggressive behaviour of 

nesting birds. Suggestions that first eggs function as insurance against immediate 

loss of second eggs, or to signal occupation of the nest site were not supported. 
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FORMATION 

Although the selective forces responsible for the origin of egg dimorphism 

in Eudyptes penguins continue to be debated, most authors agree that the 

proximate effect of differential egg size is a halving of the number of offspring 

produced. This understanding has generated observation of, and experimentation 

with, specific mechanisms by which first eggs and chicks are disadvantaged. 

Differences in survival are directed by the effects of hatching asynchrony and egg 

dimorphism, but may also be influenced by such factors as the behaviour of 

incubating parents, surface area to volume ratios of 

in metabolism between first and second eggs, 

and inherent differences 

In rockhopper and Snares crested penguins, second hatch slightly 

before first eggs despite having been laid several days later (Gwynn 1953; 

Williams 1981a; Brown 1988; Lamey press), indicating that they develop more 

quickly. Lack (1968) proposed that this occurs because the second egg is 

incubated immediately after laying whereas the first egg cools down for several 

days. The observations of Burger and Williams (1979) indicated that first eggs of 

rockhopper penguins were maintained at lower and more varied temperatures 

throughout the incubation period and the authors ascribed these differences to 

the incubating behaviour of the adults. First eggs were found significantly more 

often in the anterior nest position where the semi-prone posture often adopted by 

incubating parents afforded the egg less consistent heating and caused it to take 

longer to develop. Embryonic development in Adelie penguins (Pygoscelis 

ade/iae) was retarded by sub~normal incubation temperatures (Weinrich and 

Baker 1978) and lower temperatues were reported for an artificial egg when it was 

in the anterior nest position (Derksen 1977). 
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Burger and Williams (1979) conceded that, because surface area to volume 

ratios are greater for first eggs, they would be expected to heat and cool more 

quickly and so could explain the greater variance associated with temperatures 

taken from them. However, they argued, it could not explain the lower mean 

temperatures. In addition to the effects caused by differential positioning of eggs 

within a nest, Williams (1981c) suggested that differences in the time required for 

first and second eggs to develop could be due to differences in egg content that 

affect the rate of embryonic development. Second eggs of rockbopper and 

macaroni penguins contain proportionately more albumen than first eggs 

(Williams et aI. 1982) and so do those of Fiordland crested penguins (Grau 1982). 

In order to evaluate the suggestions of Williams (1981c) further, Brown 

(1988) measured temperatures and embryonic metabolism of first and second 

eggs of macaroni and rockbopper penguins. Second eggs were incubated at 

slightly, but not significantly, higher temperatures than first eggs and had higher 

mean embryonic oxygen consumption rates on equivalent days of incubation. 

Differences in temperatures of the two egg types were insufficient to account for 

differences in the length of the incubation period, and Brown concluded that 

second eggs had inherently higher embryonic metabolism that allowed them to 

hatch sooner. 

In both studies concerning egg temperatures of crested penguins (Burger 

and Williams 1979; Brown 1988) lower incubation temperatures were reported in 

the first week of the incubation period. addition to the parental behaviour 

effects discussed in Chapter 2, a further limiting constraint may be that of brood 

patch development. In most passerines, defeathering occurs several days before 

egg laying and effective incubation can commence immediately the are laid 

(Jones 1971). However, among several non-passerines, patch formation is delayed 

for several days and results in less effective initial incubation. Little attention has 

been directed at the timing and stimulation of brood patch formation in crested 

penguins and its potential implications for the development of first and second 

eggs. 

In this chapter, I present data on egg dimorphism and hatching dates for 

first and second eggs in a population of Fiordland crested penguins. In addition, 

patterns of egg position and temperature, and brood patch develpment are shown. 

Results are compared with those obtained for other species of crested penguins 

and the relative importance of each attribute is assessed. 
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METHODS 

Egg laying and hatching 

Nests were visited daily throughout the laying and incubation period (1~30 

August, 1989) to determine the laying and hatching dates of first and second eggs. 

When possible, I measured and marked eggs on the day they were laid (see 

Chapter 2). Many nests were. discovered after they contained an egg or eggs but, 

because reversals in the usual egg-size order are possible, I only used data from 

those nests for which the laying order was known. Laying and hatching intervals 

and indices of egg dimorphism (Chapter 2) were calculated. 

Brood patch formation 

Brood patch measurements were taken at intervals corresponding to the 

first, second and third weeks of the incubation period as measured from the laying 

of the first egg. I collected 17 observations from 12 individuals; eight from 

females and nine from males. Brood patch area was estimated as half the product 

of length and width at the widest point of defeathered skin. Temperature was 

taken by folding the vascularized skin around an electronic probe thermometer 

accurate to 0.01 °C in a manner similar to that described by Y om-Tov et ai. 

(1986). Body temperature was measured with a clinical thermometer accurate to 

1°C, inserted 4 cm into the cloaca and held in place for 1 minute before a reading 

was made. All measurements were taken as quickly as possible but handling 

appeared to cause increasing stress to incubating birds as the season progressed. 

For this reason, no data were collected after the third week of the incubation 

period. 

Exertion has considerable effects on penguin body temperature (Farner 

1958) and restrained penguins were invariably excited when measurements were 

taken. They also constricted their stomach muscles which made measurement 

difficult. Because the errors introduced by these factors seemed to be relatively. 

constant, the data have comparative value, although they almost certainly indicate 

body and brood patch temperatures that are more variable than normal and 

estimates of brood patch size are almost certainly underestimated. 
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Egg position and temperature 

Egg position was determined during daily visits whenever it was possible to 

do so without disturbing the incubating bird. Eggs are generally incubated one in 

front of the other and were recorded as being either posterior or anterior in the 

nest, relative to the orientation of the incubating parent. Because it appeared that 

different birds exhibited different preferences for egg position, these observations 

were not grouped between nests. Instead, the frequency with which first eggs 

appeared in the anterior position in each nest was counted from ten observations. 

The number of nests in each ofthe resulting categories was then compared to a 

binomial distribution. To obtain equal sample sizes, nests from which less than 

ten observations were made were excluded from the analyses and, when more 

than ten were taken, ten were selected using a random number generator. 

Egg temperatures were measured with 36-gauge copper-constantan 

thermocouple wire, accurate to ± O.l°C, and attached to a micrologger (21X 

Campbell Scientific Inc., Logan, Utah, U.S.A) with 13-gauge extension wire. 

Transmitters and thermistors have been used extensively to measure incubation 

temperatures of penguin eggs (Eklund and Charlton 1959; Frost et al. 1976; 

Derksen 1977; Burger and Williams 1979; Bucher et al. 1986; Haftorn 1986; Yom­

Tov et al. 1986; Brown 1988) and, because it would not have been necessary to 

attach external wires to the eggs, I initially intended to use transmitters to 

measure egg temperatures in this study. However, electrical difficulties with the 

transmitters and calibration problems with the plaster eggs in which they were 

implanted meant that this technique had to be abandoned. Instead, 

thermocouple eggs were constructed in the field from materials brought in case an 

alternative method was needed. Although thermocouples do not appear to have 

been used to measure penguin egg temperatures since the studies of Farner 

(1958) and Spellerberg (1969), the method has been employed recently to 

measure egg temperatures of other birds (eg. Barret 1980; Williams and Ricklefs 

1984; Bergstrom 1989; Weathers and Sullivan 1989). 

I inserted thermocouples into the center of six domestic duck eggs that 

approximated penguin eggs in size, and injected 1 cc of formalin per egg. A single 

hole of approximately 1 mm diameter was drilled in the small end of each egg to 

accommodate the wire and the hole was then sealed with putty (Prestik, Bostick 

Products NZ Ltd.). To reduce force on the wires that might cause a shift in 

thermocouple position, I split the wires where they emerged from the egg, taped 

them with small pieces of electrical tape along either side of the egg and rejoined 
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them at the opposite pole. A 30 cm long leader enabled the egg to be moved 

easily within the nest and was connected to 34 m of extension wire which was 

pegged in place at roughly 60 em intervals. Soon after the trials began, I collected 

four abandoned penguin eggs and substituted them for the duck eggs. Calibration 

trials indicated that the penguin and duck eggs gained and lost heat at similar 

rates so all temperature records were used in subsequent statistical tests. To 

reduce the likelihood that systematic biases, inherent to individual eggs, were 

consistently recorded for eggs of a given type, one medium sized penguin egg was 

used alternately as the first (small) and second (large) natural egg in the majority 

of the trials. 

Nest temperatures were measured with 24-gauge thermocouple wire 

placed beneath the eggs in the nest. Thermocouples were not anchored in place 

as this would have neccesitated removing the incubating bird; consequently, wires 

were sometimes displaced to the top of the eggs or to the periphery of the nest. 

Nest temperature measurements may, therefore 'be more variable than natural 

conditions in the bottom of the nest. Shaded ambient air temperature was 

measured with thermocouple wire 2 em above the ground near the cave mouth. 

Temperature trials were conducted by rotation of experimental nests in a 

single cave inhabited by seven pairs of penguins. Natural eggs were replaced with 

thermocouple in each nest for periods of approximately hours at intervals 

of five or more days. During these trials, natural were incubated in a 

styrofoam box with a hot water bottle Of, more usually, by a neighbouring bird. 

Generally, only one nest contained thermocouple eggs at a given time and these 

were selected to correspond, as closely as possible, to the dimensions of the 

natural eggs from that nest. Thermocouple eggs were always substitued in the 

number and position in which they were found, i.e., only OIle egg was substitued 

during the laying interval and two eggs were placed in the same anterior-posterior 

positions that the natural eggs occupied. Second eggs were laid in six nests; the 

seventh never contained a second egg and was used to monitor the incubation 

regime in a single-egg nest. 

There was no indication that the thermocouple wires restricted movement 

of the birds or eggs within a nest, and all but one of the 13 eggs from nests 

involved in the temperature measurement study hatched, indicating that the 

manipulations had no effect on egg viability. The failed egg had been pierced by a 

weka and gradually rotted in the nest. 
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Complete temperature records consisted of shaded ambient, nest and egg 

temperatures recorded by the data logger every ten minutes for the duration (21-

24 hours) of each trial. The first hour was eliminated from the resulting record to 

allow birds to resettle. Means were calculated from the shortened records and 

used in subsequent statistical analyses. 

The position of thermocouple eggs within nests was recorded twice during 

each trial that involved two eggs; once in the morning after the trial had started 

and again before the eggs were removed in the afternoon. position 

observations were discounted if there was evidence that the penguins changed 

position or orientation as I approached. The timing of these visits was noted and 

later compared with the appropriate temperature record. 

In addition to the natural nests monitored, two temperature trials were 

conducted with a single egg at a nest occupied by a non-breeding pair that had 

courted and established a nest site, but had not laid eggs of their own. I gave 

them the abandoned egg of another pair as an experiment in cross-fostering. The 

female penguin developed a full brood patch and incubated the egg continuously 

for consecutive days. this time, the mate she had courted previously 

never returned to the nest site and the egg was finally abandoned. The pair were 

known to have bred successfully in 1988 and both later in the 1989 

breeding season and continued to court at a different site. Egg abandonment 

was observed at the nests of naturally incubating birds whose mates did 

not return near the end of the incubation period. 

Statistical tests 

Paired comparison tests of egg size and weight, indices of egg dimorphism 

and hatching dates were performed using dependent t-tests (Wilkinson 1988). 

Means, standard deviation, sample size and range are given in the text, or as 

separate tables. Brood patch measurements were grouped by period - weeks one, 

two and three - and tested by one-way ANOV As. For all ANOV As and 

independent t-tests, homogeneity of variance was tested with Bartlett's test or, 

when sample sizes were less than 10, by Box's small sample F-approximation 

(Sokal and Rohlf 1981; Wilkinson 1988). Heteroscedasticity in brood patch area 

data was corrected with a square-root transformation before the ANOVA was 

performed. Subsequent comparisons among means in some ANOV As were 

completed with the Tukey-Kramer procedure to allow for unequal sample sizes. 
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temperature measurements were grouped according to the following 

schedule determined by the age of the first egg when the trial began: 

period 1 == 5-8 days 

period 2 := 10-14 days 

period 3 . == 18-21 days 

period 4 

period 5 

== 26-28 days 

:= 31-33 days 

Three-way ANOV As were performed on means of data from those trials 

that involved two eggs using egg status (first or second), nest number (one to six) 

and period (one to five) as main effects. The design was unbalanced due to some 

empty cells; hence interaction terms could not be modelled (Wilkinson 1988). 

Variance within trials was therefore tested separately and reported graphically. 

Other statistical tests are described in the results section. 

RESULTS 

nests were visited daily. laying commenced on 1 August 

1989, peaked approximately 12 days later, and was completed on August. The 

mean interval the laying of first and second within nests was 4.28 ± 

0.71 days (range n ::: 46). First-laid eggs were "AU .......... (length x breadth) 

and lighter than second (Table 3.1; dependent t > 11.0, df == 53,p < 

0.00 for each attribute measured). There was a single case where the first egg was 

larger (by 14%) heavier (by 11%) than the second. Mean dimorphism 

within nests was 1.19 ± 0.11 (range::: 0.88-1.63, n 54). This values, calculated 

from linear measures using the formula length x breadth2 (Warham 1975), did not 

diff~r from that calculated from weight (mean == 1.18 ± 0.09, range:: 0.90-1.38, n 

== 54; dependent t-test, t 0.730,p == 0.47). 

Hatching occurred between 6 and 30 September. laying to hatching 

intervals were 37.1 ± 1.57 days (range == 35-41, n ::: 21) and 32.1 ± 1.12 days 

(range == 30-35, n ::: 30) for first and second eggs, respectively. In nests where . 

both eggs hatched, first eggs hatched 0.63 ± 0.90 days later than second eggs 

(range == 0-3, n ::: 19; dependent t-test, t ::: 3.08,p == 0.007). 



Table 3.1. Linear dimensions and weights of first and second 
crested penguin nests on Open Bay Island. 

Measurement 

First eggs: 
length (mm) 
breadth (mm) 
weight (g) 

Second eggs: 
length (mm) 
breadth (mm) 
weight (g) 

mean 

67.3 
51.1 
98.9 

70.9 
54.2 

116.6 

SD 

2.81 
2.08 
9.06 

2.53 
1.63 
9.92 
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from 54 Fiordland 

range 

62.2-73.0 
42.8-54.4 
75~118 

65.9-78.0 
49.9-58.4 
93-140 

Development of the brood patch appeared to start after the laying of the 

first egg and continued for several days. Brood patch area increased during the 

three periods measured (Table 3.2; one-way ANOV A, F = 18.67, df ::: 2,14,p < 
0.01) with significant differences occurring between the first and second, and first 

and third periods (Tukey-Kramer method,p < 0.01 for each). Similarly, brood 

patch temperature increased through the incubation period (one-way ANOV A, F 

:::: 7.97, df == 2,13,p =: 0.005), significantly so between the first and second, and 

first and third periods method, p == 0.008 and p 0.012 

respectively). variation body temperature was not significant (single-

way ANOVA, F =: 7.974, df 2,13,p 0.09). 

Table Measurements of brood patch area, brood patch temperature and body 
temperature taken from Fiordland crested penguins during the first three weeks 
of the incubation period. Brood patch (bp) area is calculated as 1/2 length x width 
at the widest point. 

Measurement 

Week 1: 
bp area (cm2) 
bp temp.eC) 
body temp.eC) 

Week 2: 
bp area (cm2) 
bp temp.eC) 
body temp.(OC) 

Week 3:. 2 
bp area (cm ) 
bp temp.eC) 
body temp.eC) 

mean 

0.57 
34.9 
36.9 

12.2 
37.3 
38.5 

21.2 
37.8 
38.7 

SD 

0.58 
0.42 
1.12 

7.92 
1.38 
1.32 

7.69 
0.44 
1.16 

range n 

0.0-1.4 5 
34.4-35.4 4 
35.7-38.4 5 

2.8-23.6 9 
35.5-38.6 9 
35.7-40.0 8 

16.0-30.0 3 
37.5-38.3 3 
38.0-40.0 3 
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The distribution of frequencies with which first eggs were found in the 

anterior position in 32 nests did not differ from that predicted by a binomial 

distribution (Fig. 3.1; G test of goodness of fit, G := 13.87, df 9,p > 0.10). 

Although first eggs occurred anteriorly with much greater frequency in some nests 

(causing a slight trend to the right), second eggs were more often anterior in 

others. Parodoxically, the same data tested using the traditional chi-squared 

method in which all observations were lumped and compared to an expected ratio 

of 1:1 (Burger and Williams 1979), yielded highly significant results (x2 = 11.00, 

df = 1,p < 0.001). 

Twenty-three individual temperature trials were carried out on nests 

containing two eggs. Mean egg temperature did not differ between small and 

large eggs (32.74 ± 2.59, range = 21.6-35.7 and 32.76 ± 2.42, range = 24.0-36.0, 

respectively), but differed significantly between intervals in the incubation period, 

and between nests (Table 3.3). The elimination of a single outlying trial, 

conducted one day after the second egg was laid 'in the nest concerned, negated 
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.D 3 E 
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0 1 2 3 4 5 6 7 8 9 10 

num of observations with fi 9 anterior 

Figure 3.1. The frequency distribution of 32 nests for which egg position was 
recorded (heavy line) plotted against a binomial distribution (thin line). For each 
nest, the number of times the first egg was found in the anterior position was 
determined from 10 observations. 
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Table 3.3. Three-way analyses of variance of egl?? temperatures from 23 trials on 
nests containing two eggs. (a) induding the outlIer depicted in Figure 2; (b) without 
the outlier. Interaction effects could not be modeled because of the high 
proportion of empty cells 

(a)ANOVAI 

Source sum of squares df mean square 

Egg 0.026 1 0.026 
Period 84.795 4 21.199 
Nest 63.045 5 12.609 

Error 119.795 3 53.423 

(b)ANOVA 

Source sum of squares df mean square' 

Egg 0.038 1 0.038 
Period 27.024 4 6.756 
Nest 4.931 5 0.986 

Error 36.63 33 1.110 

any significance in rI1Ti'"".,."".,.,I",o.", between nests, but 

not affect the lack of of differences between 

F-ratio 

0.008 
6.193 
3.684 

F-ratio 

0.035 
6.086 
0.888 

two 

p 

0.931 
0.001 
0.009 

p 

0.854 
0.001 
0.500 

and did 

types. 

Fluctuations in the temperature of both eggs were observed in each of the trials 

conducted, but there appeared to be no regular pattern to these oscillations (Fig. 

3.2). No consistent differences in temperatures between eggs within a nest were 

recorded. Coefficients of variation indicated that temperature fluctuations were 

slightly, but not significantly, higher for first eggs (dependent t-test, t == 1.997, df 

=: 22, p := 0.58). 

Mean incubation temperatures increased steadily (Fig. 3.3a) and exhibited 

less short-term variability (Fig. 3.3b) as the laying interval progressed. In most 

nests, marked increases in mean temperatures and smaller temperature 

fluctuations were observed after the second egg was laid. Figure 3.4 depicts 

results of representative trials, taken from the same nest using the same artificial 

egg, in the weeks before and after the second natural egg was laid. The nest that 



(]) 
L 

:::J 
-+-' 
o 
L 
(]) 

0.. 

40 

35 

25 

20 

15 

10 

large egg 
.----- sma II eg g 
............ ambient 

, 
II 
I' 
I' 

'. ,i " I \, ,. 
" I \' 

'" / 
'. / 

'. 

I 
I 

I 

I 

I 

,-----.., 
I , 

" , . , , , 
'~_ .".1 

,. . , , , , , 

30 

\ ,. '"' "", .. 'I 

\ I \; \ 

5+-~~~-.~~--~~~~~~~-,~--~~~~~~~~ 

o 2 4 6 8 10 12 14 1 6 18 20 22 

Hours since trial began 

Figure 3.2. Temperature record from a representative trial indicating the 
fluctuations characteristic of small and eggs. Means and standard deviations 
calculated for this trial, made on 28 August 1989 when the natural of the nest 
were and 9 days old, were 31.3 ± 3.01 °C (small egg), 30.8 ± 1.51 (large 
egg), and 10.8 ± 0040 °C (ambient air). 

contained only a single exhibited slightly higher mean temperatures (34.75 ± 

1.71, range = 32.2=35.0, n = 4), although this was not tested statistically. 

Results from the two trials conducted at the nest occupied by non~breeding 

penguins indicated that presence of an egg can induce brood patch formation 

and incubation behaviour (Plate 3.1). Although the mean egg temperatures 

recorded in these trials were similar to those in natural nests at the same stage 

within the incubation period, they were more variable (Fig. 3.5). 

Observations of egg position during trials, combined with temperature 

measurements, indicated that the posterior position did not confer a thermal 

advantage. The temperature of anterior eggs (mean:::: 33.52 ± 2.37, range 

26.1-36.9, n :::: 31) was actually slightly higher than that of posterior eggs (mean :::: 

32.85 ± 2.04, range:::: 27.9-36.6, n :::: 31), although differences were not significant 
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Figure 3.3. Mean temperatures (A) and coefficients of variation (B) obtained in 
31 temperature trials conducted on small and large eggs in two-egg nests, and on a 
single egg in the nest that contained only one natural egg. 
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Figure 3.4. Temperatures recorded in representative trials conducted with the 
same thermocouple egg in the same nest before and after the second natural egg 
was laid. Means and standard deviation were 21.1 ± 2.93 °C (before) and 32.5 ± 
1.88 °C (after). Records were made 2 and 8 days after the first natural egg was 
laid. 

Plate 3.1. Brood patch development of a non-breeding, female penguin, 21 days 
after receiving an abandoned egg. 
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(dependent t-test, t == 1.85, p =: 0.075). In 18 of these 31 observations, the small 

egg was in the anterior position. 

Mean ambient temperature increased very slightly during the five weeks 

over which temperature trials were conducted and the observed increase in mean 

nest temperature appeared to correspond with this (Fig. 3.6). Because 

thermocouples were sometimes displaced in nests, no effort was made to test 

these results statistically. Nonetheless, the values recorded give an indication of 

considerable temperature variation within the immediate environs of the nest. 

DISCUSSION 

Intra-nest egg dimorphism in the Open Bay Islands population of 

Fiordland crested penguins was similar to the value of 1.17 reported previously for 

mainland birds (Warham 1974) and is representative of the lowest degree of 

dimorphism among the crested penguins. Values for the other five species range 

from 1.29 for Snares crested to 1.71 for macaroni penguins (Warham 1975). The 

relatively low dimorphism in Fiordland penguin is important in a 

consideration of the factors that contribute to, and result from, disparity in 

sizes because the in dimorphism also reflect a gradient in selective 

pressures, or the direction of evolutionary pf()ce:ss~~s 

If, as Williams and Burger (1979) suggested, incubating rockhopper 

penguins treat the second preferentially, by placing it more often in the 

posterior nest position, then eggs must be distinguishable by some external 

criteria. Because size is the only obvious and consistent difference between first 

and second eggs, it is most likely to be the criterion used. In general, there is a 

tendency for larger eggs to elicit more effective incubation behaviour (Drent 

1975) but among Fiordland penguins the sizes of first and second eggs overlap 

considerably and differences within a nest are usually slight. No regular pattern of 

first eggs occurring in the anterior position emerged in this study and may indicate 

that the dimorphism exhibited is not sufficient to elicit the behavioural responses 

necessary. It is possible that preferential treatment of second eggs increases with 

egg dimorphism and that the behaviour is most advanced in macaroni penguins . 

where first eggs seldom even remain in the nest (Gwynn 1953; Williams 1980a; 

Mougin 1984; Williams 1989). 
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An alternative explanation for the disparity between the egg position 

results of this study and those of Burger and Williams (1979) is that differences in 

observed patterns can be attributed to differences in the interpretation of the data 

collected. In Burger and Williams' study, the first egg was observed in the 

anterior position on 139 (63.2%) of 220 occasions, but the authors do not indicate 

how many nests were examined nor the number of observations per nest. The 

value of 63.2% is somewhat higher than the 56.8% (331/582 observations, first 

egg anterior) obtained in my study, but the proportion of nests exhibiting the same 

pattern in Burger and Williams' study cannot be assessed. Furthermore, the 

likelihood of finding a significant difference in egg position preference with the 

chi-squared statistic increases with sample size. Elsewhere, Williams (1981a) 

reported that first eggs of macaroni penguins substituted for second eggs, in nests 

in which natural first eggs were already lost, exhibited a longer incubation period 

than natural second eggs. These results imply that differences in incubation 

period were due to inherent characteristics of first and second eggs and not to 

diffential treatment by incubating parents. Although it is possible that the 

pre{~rential pattern of incubation depicted by Burger and Williams exists among 

crested penguins, I suspect it is less universal than they have suggested. 

Regardless of the position of eggs within a nest, the results of my study 

indicate that first and second eggs are exposed to equivalent thermal 

environments. Although small eggs can be expected to heat and cool more 

quickly than large eggs - and this may account for the slightly higher coefficients of 

variation associated with mean temperatures of small eggs throughout the 

incubation period - they were not consistently incubated at lower temperatures. 

Results of the egg position data, together with the temperature records, further 

dispel suggestions that the anterior position subjects eggs to a thermal 

disadvantage. Nonetheless, there is evidence that the anterior egg can be more 

exposed to ambient conditions when the incubating penguin adopts an upright or 

semi-prone posture (Derksen 1977), and the proportion of time spent in different 

postures may vary among species. 

Haftorn (1986) found that macaroni penguins incubate in an upright 

position considerably more often late in the incubation period (43% of the 

observed time by weeks four to five) than do Fiordland penguins (approximately 

15% of the observed time ~YJ~ second week; see Chapter 2). Haftorn also 

\. noted that chins trap (Pygoscelsis antarctica) and Ad6lie penguins spend much 

. more time prone than do macaronis and suggested that the discrepancy may be a 
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consequence of the number of eggs incubated. Late in the incubation period, the 

nests of most macaroni penguins contain only the second of two eggs laid, whereas 

chins trap, Ad6lie and Fiordland crested penguins usually retain both eggs to 

hatching. One egg may be incubated adequately in an upright posture, whereas 

two may not As the proportion of time spent incubating in an upright posture 

increases, the thermal advantage of the posterior nest position may also increase. 

This could be tested by monitoring the incubation behaviour and egg 

temperatures of species with higher indices of egg dimorphism - the macaroni, 

royal and erect-crested penguins. 

Two additional considerations undoubtedly contributed to lower 

temperatures recorded from preserved than living eggs used in the present study. 

The first is the central position of thermocouple placement, used to ensure that 

subsequent orientation of the egg in the nest would not influence the temperature 

recorded (e.g. Lill1979; Evans 1989). In live eggs the embryo is located on the 

outer surface of the yolk sphere and maintains its position closest to the brood 

patch by rotation in the shell or, when the extraembryonic membranes have fused, 

by weight asymmetries (Drent 1975). Hence, the thermal environment of the 

embryo is somewhat enhanced compared to that of the centre of the egg. 

Presumably, these differences are less important as development progresses 

there is no reason to that the effects of thermocouple placement differ 

between small and second consideration, that of thermogenesis, 

may affect the temperature of the two egg types After approximately 

10 days of development, internal egg temperature above that of the 

surrounding air as a result of embryonic heat production (Drent 1975; Weinrich 

and Baker 1978). It is possible that larger embryos enhance their own thermal 

environment more effectively, and hence speed development, through the 

production of more heat. Because insertion of thermocouples and preservative 

killed the developing embryos in the eggs used to monitor incubation 

temperature, the relative effects of thermogenesis could not be assessed. 

Brown (1988) found that the daily rate of embryonic oxygen consumption, 

a measure of embryonic metabolism, was greater for second than first eggs of 

macaroni and rockhopper penguins and suggested this as evidence that first eggs 

require a longer period of embryonic development. However, Bucher et aI. (1986) 

advise caution in interpreting rates of metabolism of penguin embryos. In their 

study, metabolic rates obtained from emperor penguins (Aptenodytes forsteri) were 

highly variable, even over short periods of time. Bucher et aI. attributed much of 
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this variability, and that reported by previous to differences in the 

activity of embyros rather than to differences in the energetic costs of 

maintenance and growth. Thus, it seems that the role of embryonic metabolism in 

the development of first and second eggs of Eudyptes penguins requires further 

study. 

The nature of egg content may also contribute to differences in the 

subsequent survival of chicks from large and small eggs (Nisbet 1978; Williams 

1981c; Brown 1988). First eggs of macaroni, rockhopper (Williams et al. 1982) 

and Fiordland penguins (Grau 1982) contain proportionately less albumen than 

second eggs. Similar differences in albumen proportion were reported for large 

compared to small eggs of many species of petrels (Warham 1983), and for large 

and small representatives within the normal range of first eggs of common terns 

(Sterna hirundo, Nisbet 1978). However, these differences did not exist between 

first, second and third-laid eggs of similar size, indicating that differences in 

albumen proportion are a function of egg size and not laying order. Because 

approximately two thirds of the protein available to a developing embryo is 

contained in the albumen (Romanoff and Romanoff 1949; Nisbet 1978), second 

eggs of eudyptid penguins may have a disproportionate developmental advantage 

through having more nutrient reserves available. 

A final contributor to differences first and second 

eggs, and one that to have a large effect in this study, was the timing of 

brood patch formation. Brood patch development did not begin until the first egg 

was laid and incubation temperatures were low until after the of the 

second. Some of differences are attributable to changes in behaviour (see 

Chapter 2); mean incubation temperature increased with increases in time spent 

in incubating postures. However, maximum egg temperatures, a useful indication 

of the stage of brood patch development (Haftorn 1981). attained during the 

laying interval were also lower than they were later and suggest that delayed 

brood patch vascularization and defeathering inhibits initial incubation. Farner 

(1958) found maximum incubation temperatures were not reached for up to two 

weeks in yellow-eyed penguins (Megadyptes antipodes) and considered that 

retarded brood patch formation contributed to the long incubation period of these 

birds. Nonetheless, defeathering begins several days before egg laying in most 

other bird species (Drent 1975) and begs an important question. Why is brood 

patch formation delayed if it causes a lengthening of the incubation period and, 

presumably, increased costs of reproduction? The question is particularly 



39 

relevant to penguins as they are already constrained to temporally limited 

breeding seasons (Williams 1981c; Mougin 1984) and must fast for the entire time 

spent ashore. 

The development of a full brood patch and maintenance of incubation 

behaviour by a non-breeding penguin suggests that the stimulus provided by an 

egg elicits physiological and behavioural changes. The act of incubation in many 

birds seems to stimulate prolactin release (Jones 1971; Jamieson et aI. 1987) and 

prolactin levels are causally linked to the initiation of brood patch formation and 

incubation behaviour (Etches et aI. 1979; Lea et aI. 1981). If brood patch 

development is dependent on stimuli provided by the act of incubation, it follows 

that it cannot commence until an egg has been laid. Such a constraint, possibly 

overcome in other birds by the stimuli provided by the nest cup, presence of a 

mate, or by hormonal activity induced by changing daylength, may be useful to 

penguins because of the relative costs of egg production and brood patch 

formation. In relation to body size, penguin eggs represent a small investment 

(Lack 1968) and brood patch formation, with the necessary loss of insulative 

dermal fat and the defeathering of external insulation, may actually be more 

costly. it may be energetically prudent to delay brood patch formation until 

the potential for breeding success has been ensured through the laying of an 

Although delayed brood patch formation in penguins might be expected to 

lengthen the incubation period, there is little evidence to suggest that it 

differentially affects within a clutch. Except for Aptenodytes, all penguins lay 

two-egg clutches and incubation commences immediately all but Eudyptes. 

Furthermore, first eggs tend to hatch slightly before second (Lamey press 

and references therein). Retarded development of first eggs in eudyptid penguins 

is more likely to be caused by low intensity of incubation behaviour during the 

laying interval if, as Lack (1968) suggested, they are handicapped by several days 

of cooling. 
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CHAPTER 

....... .11.. ... , ............ GROWfH AND COMPETITION 

INTRODUCTION 

In most bird species that exhibit brood reduction, offspring losses occur 

after eggs have hatched. The effects of egg dimorphism and hatching asynchrony 

then operate on chick size and development to produce competitive asymmetries 

within broods. However, a more proximate cause of brood reduction is the 

unequal allocation of food resources generated by these asymmetries. 

Much of the work concerning patterns of food allocation mediated by 

differences in chick has directed at bird species in which one or more 

members of the brood invariably perishes the obligate brood reductionists. 

many of these species, chicks from smaller, last hatched eggs grow more slowly 

than their siblings the harrier Circus cyaneus, Pi cozzi 1980; cattle egret 

Bubulcus ibis, Fujioka 1984; little egret garzetta, Inoue 1985; American 

white pelican Pelecanus erythrorhynchos, Evans and McMahon 1987). Small chicks 

are consistently excluded from feeds as a direct result of aggressive interference, 

or intimidation (Nuechterlein 1981) by a larger sibling, and death may result from 

the combined effects of starvation and siblicide (see Ingram 1959; O'Connor 1978; 

Cooper 1980; Edwards and Collopy 1983; Mock 1984a; Fujioka 1985b; 

Drummond 1987; and Simmons 1988 for reviews of chick aggression and 

siblicide ). 

Because both offspring produced in a clutch are seldom, if ever, raised to 

independence, Eudyptes species can be considered obligate brood reductionists. 

However, unlike many other bird species, sibling aggression does not appear to 

facilitate brood reduction (Lamey in press). When two eggs hatch, the fate of the 

smaller chick is almost always starvation, although the behaviour of its parents 

and sibling are likely to influence that process. Nonetheless, disparities in growth 
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.' 
and aggressive interactions between eudyptid siblings have received little 

attention to date, possibly because both chicks are found in few nests, even a few 

days after hatching. Some Eudyptes species seldom retain both eggs to hatching 

(see Chapters 2 and 3) and the disappearance or death of the smaller chick in 

those species where both eggs hatch is rapid. Thus, there is little opportunity to 

address the role of sibling aggression in brood reduction because there are few 

nests in which aggression can be observed. 

Fiordland crested penguins provide an unusual opportunity to study 

eudyptid chick interactions because the effects of egg dimorphism and hatching 

asynchrony are relatively slight (Chapter 2). As a result, the time siblings coexist 

may be longer than in other species. In this chapter, I present data on the growth 

of Fiordland penguin chicks raised together and singly. and quantify rates of 

begging and fe~ding within nests. In addition, mild forms of aggression are 

described and their importance assessed. Chick survival from first and second 

eggs and the reproductive success of pairs that hatched two or one egg are 

compared. 

I measured the body weight, foot length, flipper length and culmen length, 

depth and width of chicks within 24 hours of hatching. Bill measurements were 

not used for subsequent comparisons because they were highly variable and 

difficult to obtain, and because there appeared to be little difference between bill 

size of small and large chicks (Le., bill size was not a good indicator of body size). 

To facilitate individual recognition within nests, chicks from first and second eggs 

were designated as A and respectively, and marked on the breast and neck with 

randomly assigned red or blue indelible marking pen. Initially, newly hatched 

chicks were also web-tagged to provide permanent identification, but this was . 

found to cause web tearing in some individuals. Later chicks were not web-tagged 

until they were 10 days old. Between 21-24 November, I returned to the study site 

to remove tags from fledging chicks and replaced them with standard adult flipper 

bands. 
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Chick growth was monitored in two=chick nests by repeating the size 

measurements taken at hatching approximately every two days until one chick 

died or disappeared. Chicks raised singly were measured at hatching and on at 

least one other occasion, usually when about six days old. Initially. measurements 

were placed into one of four categories, A and B chicks raised together, and A 

and B chicks raised singly. for comparisons of growth. However, preliminary 

analyses indicated that the growth rates of A and B chicks raised singly did not 

differ and so they were lumped together for subsequent analyses .. Growth 

parameters of weight, foot length, and flipper length were regressed separately on 

chick age. 

Sibling interactions 

Nests containing two chicks were observed from stationary watch points 

from late afternoon through dusk (4-6 h) to monitor interactions between siblings. 

Recorded observations focused on a single nest at a given time and were limited 

to those taken while a feeding parent was present. Interactions at other times 

were minimal and I considered them to have had only a peripheral bearing on the 

distribution of food between chicks. During feeding periods, only two activities 

were quantified; begging and feeding. Nests were observed continuously at these 

times, but tallies were made by the one=zero method (Altmann 1974; Martin and 

Bateson 1986) at 60 second intervals. Thus, for comparative purposes, continuous 

begging was recorded as having occurred once minute. To use of 

observations from the nest with reversed and hatchling dimorphism, begging 

and feeding rates were compared for chicks from small and large eggs instead of 

by laying order. Mild forms of aggression were also observed and these are 

described qualitatively. 

Chick survival 

Chick survival, defined as survival to the creche stage (the time when 

chicks are left unguarded by day while both parents forage) was compared for 

chicks from first and second eggs. For nests within which two chicks hatched, the 

length of time both chicks survived was compared with intra-nest egg dimorphism 

and hatching asynchrony (Chapter 3). Reproductive success (defined as the 

percentage of chicks per nest that entered the creche stage) of pairs that hatched 
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two chicks was compared with that of pairs that hatched only one. Deserted nests 

were not included in calcuations of reproductive success or chick survivaL 

Statistical tests 

Hatchling size and rates of begging and feeding were compared within 

nests by dependent t-tests. Regression coefficients of growth for the three chick 

types were compared by analyses of covariance with age as the covariate. Survival 

was compared amongnests by G-tests of goodness of fit and by t-tests of 

correlation coefficients. 

RESULTS 

Both eggs hatched in 21 of the 63 nests monitored. Only the second egg 

hatched in an additional 11 nests, only the first egg in one nest, and one egg 

hatched in a single-egg nest. In nests that hatched two chicks, those from second 

eggs were heavier and larger at hatching than those from first eggs (Table 4.1; 

dependent t-tests, df == 19, weight: t -7.47, P < 0.001, foot: t -3.96, P = 0.001, 

flipper: t "" -2.874, P 0,01). However, nest in which the usual 

dimorphism was reversed (Chapter 3) also had chick reversed. 

The slopes of all regression lines of chick growth (weight, foot, flipper), 

Table 4.1. Hatch weight, foot length and flipper length of chicks from first eggs (A) 
and second eggs (B) of 20 Fiordland crested penguin nests on Open Bay Islands. 

mean SD range 

Weight (g) ~A) 68.55 6.78 57-84 
B) 87.05 12.10 72-117 

Foot (rom) ~A) 32.70 2.45 29-4 
B) 35.45 2.19 33-41 

Flipper (rom) ~A) 30.60 2.76 28-38 
B) 32.60 1.82 29-35 
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compared separately for each chick type (A and B chicks raised together and 

chicks raised singly), differed significantly from 0 (;2 > 0.503, t > 7. 79, p < 0.001 

for each). Weight gain was greater for second-egg (B) chicks and those raised 

singly in a nest than for first-egg (A) chicks (Fig. 4.1; ANCOV A, F 4.930,p:::: 

0.008). In some nests, differences were particularly pronounced. For example, 

many A chicks starved in the nest and weighed less when they died than when they 

hatched. In other nests, size differences between the chicks remained slight for 

several days. Foot and flipper length differed slightly, but not significantly, among 

the three groups and tended to be greatest for chicks raised singly (Fig. 4.2 and 

4.3; F :::: 3.585, p := 0.03 and F := 1.206, p ::::: 0.302, respectively). Size 

measurements of chicks that eventually starved appeared to increase 

disproportionately with weight. 

Although I spent considerable time observing nests (97.6 hours), feeding 

was seldom seen (22.6 hours with a feeding parent present). Females began to 

return close to dusk and continued until well after dark when chick behaviour was 

impossible to observe without artificial light. Most observations involved nests 

with very young chicks and consequently, size asymmetries were not well 

developed. Two periods included the nest in which egg dimorphism was reversed. 

Begging rates of small chicks, expressed as number of begs per minute 

(Fig. 4.4; 0.2 ± 0.13, range::::: 0-0.4) did not differ from those of large chicks (0.2 

± 0.16, range::::: 0.080-0.64; dependent t-test, t -0.508, df == lO,p 0.623). 

However, feeding rates appeared to be slightly lower for small chicks (0.04 ± 0.04, 

range == 0-0.12) than for large chicks (0.06 ± 0.043, range:::: 0-0.13) although 

these differences were also not significant (dependent Hest, t :; -0.917, df := 10,p 

:= 0.381). 

I was rarely able to record a complete feeding sequence because 

observation periods seldom included an entire feeding period i.e., a female 

returned before the observation period began, or darkness intervened before it 

concluded. Often, large chicks appeared to dominate early in a feeding session 

but when they became satiated, the smaller sibling was able to beg and feed 

freely. Sometimes it appeared that meals became progressively smaller as the 

feeding period advanced. Thus, the begging and feeding rates observed may not 

accurately reflect the actual distribution of food between chicks during entire 

feeds. 
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Overt aggression between siblings, such as has been described for many 

brood reductionist species (see Simmons 1988 for a recent review), was not 

observed during feeding periods or at any other time. Nonetheless, considerable 

shoving, "flopping" and jockeying for advantageous nest positions accompanied 

most activity while a feeding parent was present. Flopping, the most common of 

these behaviours, was characterized by one chick dropping its head and neck over 

that of its sibling. Often this act was carried out by very young chicks with poor 

motor coordination and before their eyes were open. Although it did not 

constitute overt aggression, flopping by one chick often resulted in the bill of the 

other chick being pushed out of line with that of the feeding parent. Older chicks 

often prevented a smaller sibling from feeding by occupying a central position 

between the feet of the parent and by extending each flipper so as to inhibit close 

approach by the sibling (Plate 4.1). At other times, large chicks held a posterior 

position relative to their sibling, and from there were able to intercept food that 

otherwise would have gone to the sibling. Although it sometimes appeared that 

parents selectively fed the smaller chick, and at other times selectively ignored its 

begging, no regular pattern of feeding preference was observed. Asymmetries in 

chick growth seemed to result primarily from differential feeding rates facilitated 

by consistent exclusion of the smaller chick. 

Plate 4.1. E~clusion of the smaller chick by its sibling during a feeding period 
whe~ the chICks were 10 days old. The weights of the chicks, taken two days 
preVIOUS to the photo, were 505 g (large chick) and 179 g (small chick). 
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Chicks from second eggs experienced greater survival (Fig. 4.5; G == 9.765, 

df == 1,p < 0.01). Of 17 chicks that successfully creched from nests that initially 

contained two chicks, 14 were the larger chicks from second eggs. The three A 

, chicks that creched successfully, included the one in the nest with reversed egg 

dimorphism, one in which the B chick appeared to suffer from some degenerative 

condition, and one in which the chick disappeared when it was three days old. 
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4.5. Survival of Fiordland crested penguin chicks from first and second 
eggs on Open Bay Islands. 

Egg dimorphism was negatively correlated with the number of days two 

chicks survived in the same nest (rZ == 0.294; t == -2.50, df == l6,p == 0.025). 

However, no relationship was found between hatching asynchrony (measured in 

days) and the number of days two chicks survived (r2 0.001; t -0.109, df =: i6, 

p 0.915). The reproductive success of pairs that hatched two chicks (17 chicks 

from 21 nests or 81.0%) was greater than that for pairs that hatched a single chick 

(5 chicks from 12 nests or 41.7%; G =: -7.706, df :::: l,p < 0.01). 
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DISCUSSION 

On Open Bay Islands, the larger eggs within clutches of Fiordland crested 

penguins produced larger hatchlings than small eggs. The same relationship has 

been reported for a wide range of bird species (Schifferli 1973; Nolan and 

Thompson 1978; Ricklefs et al. 1978; Ankney 1980; Furness 1983; Richter 1984; 

Ricklefs 1984a; Quinn and Morris 1986), although it has not been clear whether 

observed differences were due primarily to larger body size at hatching or to 

greater yolk reserves imparted to the chicks from large eggs (Ricklefs et al. 1978; 

Bancroft 1984). In my study, measurements of body size at hatching exhibited a 

greater overlap between chicks from first and second eggs than did hatchling 

weight, and may indicate that yolk reserves accounted for some of the weight 

differences recorded. Extra apportionment of yolk is valuable in providing 

increased resistance to starvation (Ankney 1980) and could be particularly 

important in the period immediately after hatching. Considerable chick loss in 

Adelie penguins (Pygoscelis adeliae) resulted from starvation after one member of 

a pair was late in relieving its brooding mate (Davis 1982a). In one nest observed 

in this study, the female of the pair returned to provide the first feed three days 

after her eggs hatched. chick from the smaller egg died after the first day but 

that from the larger survived for the three days without food, possibly indicating 

that chicks from second eggs are less likely to starve. 

Differences in chick growth were more pronounced when considered in 

terrns of weight rather than foot and flipper length. In addition, heterogeneity of 

slopes for regression equations of weight and age were increased by the tendency 

of starving chicks to lose weight before they died, whereas there was no 

corresponding decrease in linear measurements. Although large or first-hatched 

chicks do not necessarily grow more rapidly than their siblings "(Ricklefs 1984b; 

O'Connor 1975; Haydock and Ligon 1986), such a relationship has been found in 

many bird species (see introduction in addition to Schifferli 1973; Ricklefs et al. 

1978; Williams 1980c; Herbert and Barclay 1986). 

Ultimately, chicks from larger eggs were more likely to survive. This 

pattern has been reported repeatedly (Parsons 1970; Davis 1975; Gochfield 1977; 

Lundberg and Vaisanen 1979; Quinn and Morris 1986), although some authors 

reported that hatchling size and growth do not necessarily affect post-fledgling 

survival (O'Connor 1975; Ankney 1980). Among obligate brood reductionist 

species, it is rarely likely that the competitive disadvantages of smaller hatchling 
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size and slower initial growth will be overcome subsequently to result in successful 

fledging. Nevertheless, two such cases occurred in this study, once when the 

larger sibling disappeared, possibly through predation, and once when it appeared 

to suffer from some degenerative condition. Both times, the smaller sibling grew 

rapidly only after the demise of the larger one. Preferential feeding, such as that 

reported by Ferguson and Sealy (1983) for disadvantaged offspring of horned 

grebes (Podiceps auritus), is a means by which smaller siblings could be 

compensated for disparities in size. but was not observed in this study. 

Conversely, others have reported that preferential feeding favours larger offspring 

(Bengtsson and Ryden 1983; Braun and Hunt 1983; Horsfall 1984; Inoue 1985; 

Skagen 1987) and this may be true of eudyptid penguins (Williams 1981d). 

Differences in growth of chicks within nests undoubtedly relate to the 

competitive advantage generated by the larger size of one hatchling which is, in 

turn, a result of egg dimorphism and hatching asynchrony. In my study. egg 

dimorphism was more causally linked to the death of the smaller chick than was 

the degree of hatching asynchrony, although manipulation of hatching can 

exaggerate asymmetries between Adelie penguin chicks (Davis and McCaffrey 

1989). Anecdotal evidence of the importance of egg dimorphism was provided by 

the nest with reversed egg dimorphism in which the chick from the first~laid egg 

dominated its sibling. Although hatching asynchrony has been considered to be 

the most important proximate factor influencing hatchling size many species 

(see for example, Howe 1976; Stokland and Amundsen 1988), I believe egg~size 

dimorphism accounts for the greatest part of the variation in crested penguins. 

Food allocation, as opposed to the absolute amount of food delivered, 

results in differential chick growth (WerschkuI1979), and begging behaviour is a 

means by which chicks may regulate parental feeding efforts (Henderson 1975; 

Harper 1986). Despite differences in size and growth, chicks from small and large 

eggs appeared to beg and feed at similar rates. However, my results need to be 

interpreted cautiously as they may have been confounded by the effects of 

satiation and the timing of the observations. In most nests, chicks from large eggs 

clearly received most of the food as indicated by the increasing differences in 

weight and size of siblings. Although overt aggression was not observed, large 

chicks used various displacement behaviours to exclude their smaller sibling from 

feeding. Groves (1984) reported similar results for American black oystercatchers 

(Haematopus bachmani) where dominance hierarchies were based on weight and 

heavier chicks controlled access to parental feeding. The ability to secure and 



maintain advantageous nest positions is a non-aggressive means of dominance 

(Ryden and Bengtsson 1980; Greig-Smith 1985) that was often observed on Open 

Bay Islands. 

Because sibling aggression is so widespread among the obligate brood 

reductionists, one may ask why aggression is not exhibited by crested penguins. 

Two explanations may be found in the semi-altricial nature of penguin hatchlings 

(Nice 1962; Williams 1980d) and their inherent inability to injure one another, 

and the type of food and the method of its delivery used by parents. Mock (1984b; 

1985) described how sibling aggression was much more pronounced in great 

egrets (Casmerodius albus) than great blue herons (Ardea herodias), and 

hypothesized that this was related to the smaller and more easily monopolized 

food delivered to the egret chicks. In general, aggression rates were higher in 

both species when it was possible to monopolize and defend the prey. Prey 

delivery in crested penguins is by regurgitation directly into the mouth of a 

recipient chick (Warham 1975) and, except by interception, there is little 

opportunity to redirect food once feeding of an individual has begun. Particularly 

if fighting is energetically costly (Ploger and Mock 1986), aggressive behaviour 

between siblings may have no advantage beyond that necessary to obtain the most 

favourable nest position. 

Another potential explanation for the lack of aggression among crested 

penguins siblings may relate to other of their social structure. Following 

the guard stage, young chicks are left alone by day while both parents forage to 

meet the increasing food demands of their offspring. At these times, chicks gather 

in large groups or creches, a behaviour that reduces vulnerability to the predation 

that is common in colonies of most penguin species (Spurr 1975; Davis 1982b). 

On Open Bay Islands, I repeatedly observed chicks of various sizes huddling 

together to form small creches in the vicinity of weka (Gallirallus australis) - a 

flightless rail that occasionally preyed upon creched chicks. Often small chicks, 

crouching against cave walls where creches tended to be formed, were protected 

by larger chicks that could successfully ward off weka attacks. Rather than ascribe 

an altruistic function to this arrangement, I suspect the positioning resulted from 

the smaller chicks' ability to crawl into the smaller spaces available against the. 

rocks. Nonetheless, creche formation undoubtedly resulted in reduced risk of 

predation, particularly for smaller chicks. The tendency to form creches appeared 

to be well developed in the population and chicks travelled several metres from 

relatively isolated nests to join creches in more populated areas. Creche=forming 
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may result in a behavioural paradox for obligate brood reductionist species: if 

creche behaviour is beneficial to individuals, and if selection for this trait requires 

some degree of cooperation between chicks, then it is possible that concomitant 

selection for aggressive behaviour between siblings carmot occur. 

The extreme infrequency with which first eggs of crested penguins result in 

successfully creched chicks begs the question as to why two eggs are produced at 

all. For avian species that exhibit brood reduction, O'Cormor (1978, but see 

Howe 1978) described conditions under which senior siblings, parents, and even 

junior siblings could benefit from the death of the smallest (junior) sibling. 

O'Cormor's theory drew on the concepts of kin selection and inclusive fitness 

(Hamilton 1964) and supports the notion that brood reduction is an adaptive 

response to limited or unpredictable food resources. In extreme situations, the 

youngest sibling, ultimately doomed to starvation, may maximise its fitness by 

dying relatively early so that the energy invested in it can be charmelled into 

siblings more likely to survive. In so doing, a measure of inclusive fitness is 

conferred on it. Conversely, if conditions are more favourable and all offspring 

can be raised, then older siblings maximise their inclusive fitness by allowing the 

younger one to survive (Mock and Parker 1986). In obligate brood reductionist 

species, such as crested penguins, environmental conditions may be regarded as 

being perpetually severe, favouring the loss of the smaller sibling. However, 

premature death of the larger chick removes selection for loss of the smaller one. 

The results of this study indicate that loss of the large chick is frequent enough 

that parents retaining both eggs to hatching experience significantly higher 

reproductive success than do those which retain only one. Therefore, the 

'insurance' value (Lack 1968; Warham 1975) of eudyptid penguins' second egg 

may be substantial enough to warrant its retention even if two chicks are never 

raised from a single brood. 
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CHAPTERS: 

GENERAL DISCUSSION 

The exceptional patterns of egg dimorphism and hatching asynchrony 

among crested penguins most likely result from several of the behavioural, 

morphological and physiological factors on which selection pressures may act. 

Some of these factors were evaluated in Fiordland crested penguins on Open Bay 

Islands. Here, I will review the major conclusions of each of the preceding 

chapters and assess their importance to an understanding of the phenomenon of 

brood reduction in birds, especially eudyptid penguins. Lastly, I will propose an 

evolutionary scenario by which current patterns of egg and chick loss in Eudyptes 

may have come about and ways in which these patterns may continue to change. 

In Chapter 2, the behaviour of incubating penguins was quantified and 

related to egg loss prior to hatching. Previous authors (Warham Johnson et 

aI, 1987; Johnson and 1989) have suggested that behaviour 

between nesting male penguins is responsible for a substantial portion of early egg 

loss that consists disproportionately of first-laid eggs, My do not support this 

hypothesis. Aggression between breeding penguins was almost entirely limited to 

the period before laying commenced and I did not observe aggression 

contributing to displacement or predation of eggs on any occasion. Nonetheless, 

the behaviour of incubating birds changed markedly after the second egg was laid 

and provided some evidence that first eggs were more vulnerable during the 

laying interval than either egg was afterwards. Significantly more first eggs were 

lost than second eggs and most losses occurred in the first week of the incubation 

period. Egg survival· did not appear to be influenced by the effects of nest 

crowding or cover, or by the degree of intra-clutch dimorphism. 

In Chapter 3, I examined the incubation regimes of first and second eggs to 

determine why first eggs require a longer period to develop. Temperature trials, 

conducted throughout the incubation period, indicated that egg temperatures 

increased after the second egg was laid, but subsequently did not differ between 

small and large eggs. Contrary to the findings of Burger and Williams (1979), first 



56 

eggs were not incubated more often in the anterior nest position and eggs in that 

position did not have lower temperatures. Incubation temperatures during the 

laying interval were likely to be limited by brood patch development which did not 

commence until the second egg was laid. A non-breeding penguin developed a 

full brood patch after receiving an abandoned egg, suggesting that the act of 

incubation is an important stimulant for the initiation of brood patch 

development. I proposed that foregoing brood patch formation with the 

production of the first egg may be beneficial to penguins as it would enable them 

to avoid costly defeathering and vascularization when successful breeding could 

not be realized, Le., for young, inexperienced birds that court and establish a nest 

site, but do not produce any offspring. 

Although first and second eggs appeared to be exposed to equivalent 

thermal environments after the completion of the laying interval, first eggs 

hatched significantly later than second eggs. Factors additional to those measured 

that would affect the length of embryonic development were discussed and 

evaluated qualitatively. 

In Chapter 4, I addressed the role of sibling competition in chick growth 

and survival. Chicks from second (except for one nest with reversed egg 

dimorphism) were larger and heavier at hatching their siblings. Weight gain 

of singly raised chicks and chicks from second eggs was greater than for chicks 

from first eggs, but growth rates of feet flippers did not differ significantly. 

Interestingly, observed begging and feeding rates of small and large chicks were· 

similar, although large chicks clearly received more food overalL 

aggression was not observed although large chicks dominated their siblings by 

non-aggressive means. Chicks from second eggs experienced considerably higher 

survival to the creche stage, and no siblings coexisted longer than 16 days. Intra­

clutch egg dimorphism was negatively correlated with the number of days two 

chicks survived, but there was no relationship between s~val and hatching 

asynchrony. On Open Bay Islands, penguin pairs that hatched both eggs raised 

proportionately more chicks than pairs that hatched only one egg, a finding that 

suggests first eggs provide valuable insurance against failure of the larger egg or 

chick to develop. 

The results of this study provide some empirical evidence with which to 

assess several of the hypotheses advanced to explain the origin and adaptive 
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values of the brood reduction phenomenon in avian species. The brood reduction 

hypothesis (Lack 1947; 1954) has been the most prevalent of these explanations, 

but because initial brood size and the number of offspring reared by crested 

penguins do not vary, Lack's theory of brood reduction is unlikely to apply to 

species of Eudyptes. In this study, as in the reports of others, there was no 

indication that the number of chicks that could be raised from each clutch was 

limited by temporary food shortages. Artificially twinned rockhopper penguin 

chicks of equal size survived for longer periods than siblings in natural nests, but 

did not receive enough food for both chicks to fledge (Williams 1981d). 

Therefore, it is probable that limited food delivery, rather than competition 

between siblings, constrains members of the genus to the production of a single 

chick per brood. For crested penguins, as for all obligate brood reductionist 

species, Lack's explanation of brood reduction may have applied historically, but 

changing food type or availability has removed plasticity in the number of 

offspring that may be raised. In species for which offspring loss is mediated by 

chick aggression, the effects of temporary food abundance may be overridden by 

selection for siblicide that has operated during years of more typical food 

availability (Mock et aI. 1987). In sum, traditional brood reduction theory does 

not appear to apply to eudyptid penguins at present, but may well have had some 

historic influence. 

nest-failure hypothesis of hatching asynchrony and chick loss (Hussel 

1972; Clark and Wilson 1981) is also unlikely to apply to because 

of the low predation rates and very long nestling periods common to all penguins. 

Eudyptid penguin chicks do not fledge until they are approximately days old 

(Warham 1975) and the shortening of this period for the older sibling through one 

or more days of hatching asynchrony does not provide a plausible explanation for 

the existence of the trait. Furthermore, young penguin chicks are considerably 

more vulnerable to land predators than older chicks (Spurr 1975; Davis 1982b; 

this study). 

An extension of the nest-failure hypothesis predicts that hatching 

asynchrony may also increase parental survival (Magrath 1988). 

dimorphism and hatching asynchrony operate to create asymmetries within 

Eudyptes broods to ensure that only one chick can be reared, parents may benefit 

from the reduced costs of providing enough food for a single chick. However, an 

hypothesis that predicts increased survival for parents that raise one chick, implies 

that other pairs are capable of raising two chicks, a condition that does not occur 
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in eudyptid penguins. For the same reason, hypotheses that asynchronous 

hatching serves to eliminate wasteful sibling rivalry (Hamilton 1964; Hahn 1981; 

Ploger and Mock 1986) or reduce peak load requirements of the brood (Hussel 

1972) cannot currently apply to crested penguins. 

Suggestions that asynchronous hatching can be a consequence of 

physiological characteristics (Mead and Morton 1985) were anecdotally supported 

by this study. The development of a full brood patch by a non-breeding penguin 

provided with an abandoned egg, combined with observations that brood patch 

development did not commence until the second egg was laid, may indicate that 

patch formation is contingent upon successful breeding. Because needless 

defeathering and vascularization would be particularly costly to penguins in their 

cold-water environment, it is conceivable that the disadvantages of asynchronous 

hatching are offset by the benefits of delaying brood patch formation until the 

potential for raising young is ensured. However, this explanation does not 

account for the reduction in clutch or brood that'invariably occurs subsequently in 

all the eudyptid species. 

Hypotheses put forth as specific explanations for the unique pattern of egg 

dimorphism in Eudyptes were also evaluated. In general, these were not 

supported. the results of this study, and that of Williams (1989), it does not 

appear that dimorphism is driven by compensation for high loss resulting 

from the behaviour of incubating adults (Warham Johnson et al. 

1987). Similarly, there is no evidence that first eggs function to signal nest site 

occupation, or enhance laying synchrony (Johnson et al. 1987; Johnson and 

Bednarz 1989). 

The hypothesis that egg loss, and compensatory egg dimorphism, results 

from the inability of crested penguins to adequately cover two eggs, is suggested 

by the semi-prone incubating posture characteristic of macaroni penguins 

(Haftorn 1986). However, both eggs are known to hatch in several species of 

eudyptid penguins (Gywnn 1953; Warham 1971; 1974a; 1974b; Lamey in press; 
this study), negating the possibility that members of the genus are unable to 

incubate two eggs effectively. 

Warham (1975) attempted to determine if crested penguin egg dimorphism 

was a precursor to the slight sexual dimorphism characteristic of adult penguins of 

the genus. Although the results were inconclusive, it seems extremely unlikely 

that small eggs produce females and large eggs males. Neither an abundance of 
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male birds, nor exceptional mortality of males has been reported from natural 

populations (Warham 1975), and the extreme infrequency with which first eggs 

result in fledged chicks in some eudyptid species points to the impossibility of a 

link between laying order and sex of the embryo, 

The most plausible hypotheses concerning Eudyptes egg dimorphism and 

hatching asynchrony, are those that promote insurance as a function of the first 

egg. Lack (1968) suggested that the first egg functioned as a reserve in eudyptid 

species that hatched both eggs, in case the second egg failed to hatch. 

Interestingly, he did not predict that the unusual pattern of hatching asynchrony 

and egg dimorphism in crested penguins provided a mechanism for efficient chick 

mortality equivalent to the function of asynchronous hatching described for other 

bird species (Lack 1947; 1954; 1968). Nonetheless, variations of the brood 

reduction hypothesis have been referred to repeatedly as explanations of hatching 

asynchrony and egg dimorphism in Eudyptes (Wynne~Edwards 1962; Warham 

1975; Slagsvold et aI. 1984; Johnson et al. 1987; Johnson and Bednarz 1989). 

Warham (1975) discounted the insurance function of eudyptid first eggs 

because egg loss in many species occurred before the insurance value of a 

replacement chick could be realized. Conversely, Williams (1989) suggested that 

first eggs were valuable as insurance only against immediate losses of second 

or in cases in which second were not laid. Williams also proposed that the 

laying of the second was causally linked to the loss of the first. This suggestion 

implies deliberate ejection first eggs; a behaviour not supported by empirical 

evidence (Chapter 2). 

In this study, the heightened reproductive success of pairs that hatched 

both eggs underlines the considerable insurance value of first eggs. For Fiordland 

crested penguins on Open Bay Islands, it was clearly advantageous to lay and 

hatch two eggs even though no pairs succeeded in raising both chicks. However, 

an equivalent insurance value is unlikely to exist among macaroni penguins in 

which the first egg rarely survives the first week of the incubation period. To date, 

there is not a single report of a fledged chick arising from the first egg of a 

macaroni penguin (Williams 1989), belying any insurance value whatsoever of first 

eggs in that species. Thus, insurance hypotheses also do not account for the full 

variation in patterns of egg and chick loss in crested penguins. 

THE LIBRARY 
UJIIIVERSITY OFCANTERBUFh 

CHR1STCHUR(i;H~ N.z 



60 

Eudyptid penguins are a closely related bird group (Livezey 1989) and the 

principle of parsimony dictates that the unique characteristics of egg dimorphism 

and hatching asynchrony common to the genus have evolved only once. 

Therefore, inter~specific variation in those characteristics, and in the nature of egg 

and chick loss, probably represent evolutionary processes that are still taking 

place. Ancestral penguins of the Eocene through Miocene epochs inhabited 

waters of comparatively high temperatures (Simpson 1975) more typical of those 

found at present~day tropical latitudes. Most likely, these differences in habitat 

were accompanied by associated differences in breeding ecology and physiology,. 

and current patterns of egg dimorphism and hatching asynchrony may have 

evolved to track changes in the environment of ancestral penguins. 

Willliams (1981c) speculated that ancestral Eudyptes were inshore-foraging 

species, faced with an unpredictable and variable food supply comparable to that 

of extant penguins that forage close to shore (Boersma 1976; Croxall and Prince 

1980). further predicted that historic patterrn; of dimorphism and hatching 

asynchrony in eudyptid penguins were the reverse of current patterns which 

allowed for adjustment of brood size to the available food resources by the usual 

brood reduction means (sensu 1954; Ricklefs 1965; O'Connor 1978). 

ancestral eudyptid stock moved from inshore to offshore foraging areas, food 

predictability increased, but with a commmensurate in the frequency 

with which chicks could following to a more seasonal climate, 

in the duration of the chick period. Williams hypothesized that a gradual 

reversal in egg dimorphism and hatching asynchrony allowed eudyptid penguins to 

halve the number of offspring produced to better match the changing conditions. 

In short, his theory predicted that Eudyptes ancestors were initially adapted to an 

unstable and unpredictable food source, but experienced a transitional period of 

relative food abundance in which the mechanisms that allowed for efficient brood 

reduction were eliminated. Continued changes in habitat and climate forced the 

evolution of a mechanism by which reproductive output could be realigned with 

the available resources; hence a halving in the number of chicks produced. 

Mougin (1984) independently advanced an hypothesis similar to that of 

Williams (1981c) to explain the current pattern of egg dimorphism and hatching 

asynchrony in crested penguins. His theory differed in that it did not invoke a 

reversal in egg dimorphism from the eudyptid ancestral stock, but instead 

suggested that the warm-water ancestor laid two eggs of equal size, similar to the 

pattern of the extant yellow-eyed penguin (Megadyptes antipodes). Megadyptes is 
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the dosest living relative of Eudyptes (Zusi 1975; Livezy 1989) and its breeding 

areas overlap with those of Fiordland and erect-crested penguins. In addition to 

an increase in food availability and a reduction in the chick rearing period, 

Mougin suggested that adaptation to cold waters by ancestral penguins included 

an increase in body size. Thus, the penguins currently adapted to the coldest 

environments could be expected to exhibit the greatest egg dimorphism and 

largest body size. Some evidence supports such a relationship. Clutches of 

Aptenodytes, the largest of the extant penguins, consist of a single egg and A. 

Jorsten breeds under the coldest conditions of any penguin species. Furthermore, 

macaroni and erect-crested penguins exhibit the greatest egg dimorphism and are 

among the largest of the eudyptid penguins. Although Warham (1975) stated that 

there was no regular increase in egg dimorphism with body size within the genus, 

current patterns may have been modified by other selective pressures and a slight 

trend to increasing egg dimorphism among the larger Eudyptes seems evident (Fig. 

5.1). 
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Figure 5.1. Egg dimorphism regressed on bill length (as an indication of body 
size) of male and female eudyptid penguins. All bill lengths and indices of egg 
dimorphism (lb2 large / IbZ small, chapter 2) for rockhopper (R), Fiordland (F), 
Snares (S), erect-crested (E), and macaroni (M) penguins are by Warham (1975). 
Species labels are given for males only. Horizontally adjacent symbols represent 
females of the same species. The re,&ression line is indicative of a trend only and 
does not statistically differ from 0 (r- = 0.204, t = 1.601,p 0.14) 

'I< The index of egg dimorphism for the royal penguin (Ry) was estimated from the 
mean egg weights given by Soucek (in Gywnn 1953; Warham 1971), and is 
comparable to indices calculated with Warham's (1975) method (Chapter 3). 
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An explanation as to why brood reduction has evolved in Eudyptes answers 

only one of two pertinent questions (Johnson et aI. 1987); it does not explain why 

it is the first egg that is smaller. I suspect brood reduction involves the first egg, 

rather than the second, because of the physiological constraints of brood patch 

development and a long laying interval. If brood patch development and, 

possibly, incubation behaviour, is stimulated by the presence of an egg, first eggs 

cannot be incubated effectively, immediately after laying. The longer incubation 

period of first eggs may reflect, among other things, the effects of cooling during 

the laying interval. Furthermore, the reduced protection of non-incubating 

postures adopted during the laying interval (Chapter 2) may heighten the 

vulnerability of first eggs to predation. 

The long laying interval, characteristic of all penguins that lay two eggs 

(Williams 1981e), may also disadvantage first eggs. Although egg losses do not 

appear to be caused by the aggressive behaviour of adults (Williams 1989; this 

study), first eggs were lost at much greater frequencies than second eggs in both 

studies, and most occurred during the 3-6 day laying intervaL Williams (1981d) 

speculated that penguins have long laying intervals because they have relatively 

heavy eggshells consisting of disproportionately large amounts of phosphorus, and 

because of the extra time required for the mobilization and deposition of calcium. 

Astheimer (1985) discounted hypotheses argued that neither shell 

weight nor calcium demand penguins could considered extraordinary. 

Instead, she proposed that long laying intervals in penguins other seabirds 

were a result of delayed initiation of yolk deposition. By extending the period of 

yolk formation, more time is provided for the synthesis and storage of albumen 

and shell membrane material (Grau 1984), possibly reducing the depletion of lipid 

and protein reserves (Astheimer 1985). A long period of yolk formation could be 

valuable to penguins or, as there is some evidence that lags between the yolk 

formation of successive eggs was characteristic of ancient birds (Grau 1984), may 

be a remnant of phylogeny. Nonetheless, eudyptid penguins are constrained by a 

long laying interval which appears to affect the survival of first-laid eggs. 

If, as Mougin (1984) suggested, Eudyptes ancestors laid a clutch of two 

equal-sized eggs, it seems likely that selection for brood reduction would favour a 

decrease in the size of the first, rather than the second, egg. Patterns of egg 

dimorphism and hatching asynchrony in crested penguins can therefore be seen as 

an example of convergent evolution, having an equivalent function to other brood 

reductionist species, but arising through separate evolutionary processes. 
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