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Abstract 
Amyloid fibrils are an insoluble, highly ordered, fibrous protein structure, which have 
increasingly been recognised as having bionanotechnology applications. Their ability to self-
assemble allows a bottom-up approach to material design. Their nanometre dimensions 
affords them a high surface-to-volume ratio and their proteinaceous building blocks from 
which they are assembled allow for decoration with biomolecules and chemicals through 
amino acid residues. Amyloid fibrils are therefore a potential nanoscaffold for 
immobilisation of biomolecules.   

Immobilisation offers a solution to the problems associated with the use of enzymes in in 
vitro applications, by increasing their stability, reusability, and in some cases, enhancing 
catalytic activity. Nanosupports offer a high surface-to-volume ratio compared to classical 
planar 2-D supports, potentially affording them dramatic increases in immobilisation 
capacity. 

To investigate the potential of amyloid fibrils as a novel nanoscaffold, organophosphate 
hydrolase (OPH), cytochrome P450BM3 (P450BM3), green fluorescent protein (GFP), tobacco 
etch virus protease (TEV), and glucose oxidase (GOD) were immobilised in solution to the 
model amyloid fibril forming protein, bovine insulin. Covalently immobilised OPH was 
found to have a ~300 % increase in relative thermostability at 40 and 50 °C. P450BM3 was not 
successfully immobilised in its active state, most likely due to unfolding of the enzyme on 
the amyloid fibril surface. Covalently immobilised GFP retained full fluorescence and acted 
as a fluorescent protein tag. TEV was shown to have a physical interaction with the 
nanoscaffold and retain activity. GOD was immobilised and retained activity. Although not 
all proteins retained activity, a range of different protein structures were successfully 
immobilised onto the insulin amyloid fibril nanoscaffold. Attachment to the crystallin 
amyloid fibril nanoscaffold remains a work in progress due to the complexities associated 
with post-translational modifications of these fibrils. Crystallin amyloid fibrils were 
assembled on a surface for the first time. Their surface assembled structure was found to 
resemble spherulites, not previously seen before with crystallin amyloid fibrils. 

Bovine insulin amyloid fibrils were assembled on the surface of glass beads to increase the 
available surface area for biomolecule immobilisation. The surface assembled bovine insulin 
nanoscaffold was first functionalised with GOD, demonstrating that the nanoscaffold 
provides more surface area for biomolecule immobilisation, although in this case the 
increase was limited due to high non-specific binding of GOD to the unmodified glass 
surface. GFP was successfully employed as a fluorescent protein tag to assess the degree of 
nanoscaffold coverage, confirming the nanoscaffold affords the glass bead a greater surface 
area. Moreover, a reusable immobilised TEV protease-bead system was developed that was 
able to sequentially cleave the poly-histidine tags of three different proteins.  

In conclusion, bovine insulin amyloid fibrils have been shown to be a versatile nanoscaffold 
for the immobilisation of a range of biomolecules. The surface characteristics of the 
nanoscaffold allows for both covalent and physical immobilisation of biomolecules. Thus, 
amyloid fibrils have exciting potential in the creation of novel bionanotechnologies. 
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Chapter One 

1 Introduction 

The aim of this thesis is to investigate the potential of amyloid fibrils as a 

nanoscaffold for the immobilisation of biomolecules with applications in 

biotechnology. Amyloid fibrils possess many features which make them ideal 

candidates for use in bionanomaterials. These include: their nanometre size, giving 

rise to a high surface to volume ratio; the ability to self-assemble; the potential to be 

manufactured from waste materials; and the chemical functionality arising from their 

amino acid composition. 

Enzymes are remarkable biocatalysts that can undertake a variety of complex 

chemical reactions at a range of pHs and temperatures. The use of enzymes at an 

industrial level is hampered with problems of cost, stability, and reusability. 

Immobilising enzymes to an amyloid fibril nanoscaffold may overcome some of the 

limitations of the enzymes. Creating a functional bionanomaterial incorporating 

enzymatically active amyloid fibrils is the goal of this research. 

This chapter will provide background information on amyloid fibrils and the 

properties that make them useful for bionanotechnology. It will also explore the 

potential of industrially useful biocatalysts, and uses of immobilised enzymes in 

biotechnology. 
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1.1 Amyloid fibril formation 

Amyloid fibrils are a type of highly ordered, insoluble, self-assembling protein 

nanofibre, most notably associated with protein misfolding diseases such as 

Creutzfeldt-Jakob, Huntington’s, Parkinson’s, Alzheimer’s and type II diabetes 

(Chiti & Dobson 2006; Harrison et al. 2007; Pedersen & Otzen 2008). The defining 

characteristics of amyloid proteins will be discussed in detail in section 1.2. Whilst 

associated with 25 human diseases, natural functional amyloid is seen throughout 

nature in all domains of life (Coustou et al. 1997; Vidal et al. 1998; Iconomidou et 

al. 2000; Chapman et al. 2002; Fowler et al. 2005; Sabate et al. 2010).  

Escherichia coli (E. coli) produce surface proteins called curli, which have been 

found to be amyloid-like (Chapman et al. 2002). This functional amyloid is involved 

in promoting colonisation of surfaces and in the formation of biofilms (Vidal et al. 

1998). Filamentous fungi such as Neurospora crassa produce hydrophobin proteins 

which can form amyloid-like structures called rodlets (Mackay et al. 2001). The 

hydrophobins self-assemble into amphipathic monolayers on the surface of fungal 

spores and fruiting bodies at air/water interfaces (Wösten et al. 1999). This allows 

hyphae to penetrate the growth media and gives spores a water-repellent coating to 

enable aerial dispersion (Wösten et al. 1999; Beever & Dempsey 1978). Silkmoths 

produce chorion proteins which can self-assemble into amyloid fibrils (Iconomidou 

et al. 2000). These amyloid fibrils act as a protective shell around the ooctye and 

embryo. Melanosomes are cellular organelles found in the mammalian cells, 

melanocytes, and retinal pigment epithelium, located in the skin and eyes, 

respectively (Marks & Seabra 2001; Hearing 2000). An amyloid-like forming 

protein, Pmel17, is found in melanosomes and is required to polymerise into amyloid 

structures for the manufacture of mature melanin (Fowler et al. 2005). Melanin 

protects cells against toxins, UV radiation, and is required in pigmentation. 
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1.1.1 Protein folding and misfolding 

Proteins are synthesised at the ribosome where the polypeptide chain elongates and 

starts folding into a thermodynamically stable structure as defined by the amino acid 

sequence and the particular environment of the protein (Luheshi & Dobson 2009). 

Protein folding is tightly controlled by the cellular protein quality control systems 

which include chaperones and proteolytic systems (Koga et al. 2011). Chaperones 

help to increase the rate of folding for proteins and ensure correct folding (Hartl & 

Hayer-Hartl 2002). The ubiquitin system on the other hand, works to degrade surplus 

or damaged proteins by breakdown in the proteasome to limit the misfolding of 

proteins (Hershko & Ciechanover 1998; Glickman & Ciechanover 2002; Ron & 

Walter 2007). The energy that the cell puts into ensuring correctly folded and 

functional proteins illustrates how important protein folding is, as misfolded proteins 

can cause disease (Koga et al. 2011). 

For a protein to fold into its native conformation it must pass through a number of 

intermediately folded states as shown in Figure 1.1 (Tyedmers et al. 2010). The 

kinetics of this process are governed by the environment (protein concentration, pH, 

temperature, pressure, ionic composition) in which the protein is found (Hamada & 

Dobson 2002). For amyloid fibrils to form from natively folded globular proteins, a 

partial unfolding event needs to occur (Uversky et al. 2002; Dobson 1999). Partial 

unfolding can be induced outside the cell by high temperatures, high pressure, low 

pH or organic solvents (Brange et al. 1997). Amyloid fibrils can also form from 

intrinsically disordered proteins, for example Κ-casein, allowing them to adopt an 

ordered folded form (Koudelka et al. 2012). 
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Figure 1.1 The process of protein folding. Taken from Tyedmers et al. (2010). 

The different conformational states that a protein can adopt are proposed to be driven 

not only by the environmental conditions the protein is found in, but also by entropy 

(Mishra & Winter 2008; Jahn & Radford 2008). This process can be illustrated by an 

energy landscape (Figure 1.2), which conceptualises the folding process by taking 

into account the energy and entropy of all of the protein conformations. Energy 

landscapes are generally funnel like, where at the high energy, high entropy surface 

of the funnel there are numerous unfolded conformations the polypeptide can adopt. 

The polypeptide moves down the energy gradient via a series of partially folded 

intermediates to reach an energetically favourable native state (Onuchic & Wolynes 

2004; Wolynes 2005).  
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Figure 1.2 A schematic energy landscape of protein folding and 
aggregation/amyloid fibril formation. Taken from Mishra & Winter 
(2008).  

Changes in environmental conditions or polypeptide sequence can influence the 

topography of the funnel, creating an increase or decrease in the number of energy 

minima (Mishra & Winter 2008; Jahn & Radford 2005). Changes in the topography 

can result in the accumulation of partially folded intermediates at the additional 

energy minima. Under normal protein folding conditions, these states would be 

transient however; upon perturbation of the physiochemical conditions, these 

partially folded intermediates can accumulate resulting in non-natural intermolecular 

interactions. This can result in folding pathways in which the polypeptide chain has 

access to entropically lower energy states such as amorphous aggregates or amyloid 

fibrils (Jahn & Radford 2008).  

1.1.2 Amyloid fibrils - A generic protein structure? 

It is widely thought that amyloid fibril formation is a universal property of most, if 

not all proteins (Chiti et al. 1999). The lack of sequence similarity of the known 

amyloid-forming proteins and the existence of non-disease forming amyloid proteins 

which are beneficial to organisms (section 1.1) suggests that the amyloid structure is 

possibly a generic protein fold of all polypeptide chains (Nerelius et al. 2010). 

However, specific sequences are also known to promote or reduce the tendency of 

the protein to adopt the amyloid form (Giraldo 2007; Nerelius et al. 2010). 
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Amyloid fibril formation is thought to occur through a nucleated-polymerisation 

mechanism (Liang et al. 2010). Examining the time-course of the transition of 

peptides and proteins into amyloid fibrils using techniques such as Thioflavin T 

(ThT) fluorescence and light scattering, generally shows a pronounced lag phase, 

followed by an exponential growth phase (Naiki et al. 1997; Serio et al. 2000; 

Uversky et al. 2002; Beck et al. 2004). The observed lag phase is thought to be due 

to the formation of nuclei. Once formed, fibril growth proceeds rapidly through the 

association of monomers or oligomers. Schmit et al. (2011) have developed a theory 

to describe the nucleation process. They hypothesised that there are three states of 

equilibrium for amyloid peptides: the monomer, oligomer, and the fibril (Figure 

1.3). As with other nucleation dependent mechanisms this equilibrium can be shifted 

with the addition of preformed fibrils or ‘seeds’ where the lag phase can be 

shortened or eliminated completely (Naiki et al. 1997; Serio et al. 2000). 

 

Figure 1.3 A model process of amyloid fibril formation via a nucleated growth 
mechanism. Taken from Schmit et al. (2011). “(State A) Isolated 
peptide monomers in solution. (State B) Oligomeric assembly of a few 
peptide chains. (State C) Nucleus of β-sheet structure. The peptide 
backbone runs perpendicular to the fibre axis. (State D) Postcritical 
nucleus structure showing more β-structure. (State E) A protofilament 
is a single long thread of β-structure consisting of a β-sandwich and 
two face-to-face β-sheet planes. (State F) The full fibril, a bundle of 
protofilaments shown here to contain p = 2 protofilament threads.”  
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1.2 Amyloid fibril structure 

Identifying the atomic-level structure of amyloid fibrils has been a goal of numerous 

research groups worldwide. These elusive atomic structures have been extremely 

difficult to determine because of the non-crystalline and insoluble nature of amyloid 

fibrils. The first atomic-level structural model of an amyloid-like cross-β spine, 

which is a signature of all amyloid fibrils, was only published in 2005 (Nelson et al. 

2005). This X-ray crystal structure came from a yeast prion-derived peptide. The 

crystal structure of the entire amyloid forming protein has yet to be achieved. Other 

techniques have been used to gain an understanding of the structure of amyloid 

fibrils including cryo-electron microscopy (cryo-EM), X-ray fibre diffraction, 

transmission electron microscopy (TEM), atomic force microscopy (AFM), and most 

recently, solid-state nuclear magnetic resonance (ssNMR). 

The first structures of amyloid fibrils came from TEM, X-ray fibre diffraction, and 

later AFM (Chiti & Dobson 2006). These techniques gave vital information about 

the size, unbranched morphology, the presence of a core structure made up of 

protofilaments and the repeating nature of the characteristic cross-β spine (section 

1.1) (Sunde & Blake 1997; Serpell et al. 2000; Serpell & Smith 2000). More recently 

cryo-EM, together with 3D reconstruction software, have provided highly detailed 

models of amyloid fibrils at resolutions of up to 8 Å (Figure 1.4) (Schmidt et al. 

2009). Mass-per-length measurements have allowed for the number of peptides (~ 

2.5) per cross-β repeat per protofilament for the Aβ(1-42) and Aβ(1-40) peptide 

fibrils to be modelled (Schmidt et al. 2009).  
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Figure 1.4 Side views of reconstructions of Aβ1-42 and Aβ1-40 amyloid fibrils. Taken 
from Schmidt et al. (2009). 

Since the first atomic level structure of amyloid-like fibrils in 2005 (Nelson et al. 

2005), X-ray crystallography has provided a great deal of knowledge about the 

structure of peptide derived amyloid fibrils. When these structures are used in 

combination with ssNMR (Tycko 2011), a detailed understanding of amyloid 

structures was elucidated. Supplementation of ssNMR data with constraints from 

lower resolution structures, such as those from electron microscopy, makes it 

possible to develop full molecular models for amyloid fibrils (Tycko 2011). 

ssNMR has shown that whilst amyloid fibrils and amyloid-like fibrils all share the 

common cross-β structure, the way in which polypeptide chains adopt the β-sheet 

structure can be variable. For example, amylin fibrils are comprised of parallel β-

sheets, whilst the Aβ11-25 fibrils are comprised of antiparallel β-sheets (Tycko 2006). 

A new high resolution structural model of mature Aβ1-40 amyloid fibrils (Figure 1.5) 

obtained using ssNMR, highlights the polymorphism of amyloid fibrils by having a 

different fold for the mature fibrils (Bertini et al. 2011). This model was obtained 

using highly homogeneous isotopically-labelled amyloid fibrils which generated a 

very accurate model compared other models which used heterogeneous samples. 
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Figure 1.5 Structural model of mature Aβ1-40 amyloid fibrils. Taken from Bertini et 
al. (2011). 

Structural polymorphisms occur not only between different amyloid forming 

proteins, but within the same amyloid forming protein are diverse. A single 

structural model is unlikely to be accurate for all amyloid forming proteins. This 

needs to be taken into account when producing amyloid structures for use in 

nanotechnology. Changing the conditions under which the amyloid fibrils are formed 

can result in structural diversity and therefore non-reproducibility. However, 

polymorphism could also be advantageous in that the morphology of amyloid 

forming proteins could be tailored to suit particular applications (Rao et al. 2011). 

1.2.1 Defining characteristics 

The generally recognised criteria of amyloid or amyloid like fibrils include: the 

binding of the histological dyes Congo red (CR) and ThT; fibrillar morphology by 

AFM, and TEM; and β-sheet secondary structure as measured by Fourier transform 

infrared (FTIR) spectroscopy and X-ray fibre diffraction (Nilsson 2004; Hatters & 

Griffin 2011; Gras et al. 2011; Gras & Squires 2011). X-ray fibre diffraction is the 

‘gold standard’ method for amyloid fibril characterisation, where the amyloid 

structures give characteristic diffraction patterns (Figure 1.6) with ~4.7 Å 

meridional reflections and ~10 Å equatorial reflections (Eanes & Glenner 1968). 

This diffraction pattern reflects the highly ordered repeating structural units within 

the fibrils corresponding to a structure containing a cross-β spine, with β-strands 

perpendicular to the fibrils axis (Kirschner et al. 1986; Sunde & Blake 1997; Sunde 

et al. 1997).  



Introduction  10 
 

 

Figure 1.6 X-ray fibre diffraction pattern of semi hydrated MetO-apoA-1 fibrils. 
Figure taken from Wong et al. (2010). Meridional reflections of 4.64 
and 3.57 Ǻ are shown with the white arrows. An equatorial reflection 
of 9.94 Ǻ is shown by the outlined arrows. 

CR is a widely used diazo dye used to test for the presence of amyloid fibrils (Howie 

& Brewer 2009). The structure of CR is shown in Figure 1.7. Once stained with CR, 

the dye binds perpendicular to the fibril axis and so when viewed under cross-

polarised light an apple-green birefringence is observed (Westermark et al. 1999; 

Nilsson 2004; Hatters & Griffin 2011). 

 

Figure 1.7  The structure of Congo red (Nilsson 2004). 

ThT is a benzothiazole dye that selectively binds to amyloid fibrils and has a 

structure as shown in Figure 1.8. Amyloid fibrils can be detected using ThT through 

excitation at 450 nm and recording the emission at 485 nm (LeVine III 1999). ThT is 

thought to bind to the cavities running parallel to the fibril axis, between the 

protofilaments of the amyloid fibrils (Groenning 2010). Other fluorescent dyes such 

as amino derivatives of benzanthrone are being investigated as potential amyloid-

binding dyes because they can potentially offer greater sensitivity and lower 

background protein fluorescence (Gorbenko et al. 2010). 
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Figure 1.8  The structure of Thioflavin T (Biancalana & Koide 2010). 

TEM is one of the most effective ways of distinguishing amyloid fibrils from other 

types of protein aggregates because of their fibrillar morphology (Nilsson 2004). 

Under the TEM amyloid fibrils generally have an unbranched twisted appearance 

with dimensions of 6-20 nm wide and up to several microns in length (Goldsbury et 

al. 2011). 

In this thesis, the histological dye ThT was used extensively as well as TEM, and 

SEM. ThT was chosen because it is widely used to test for the presence of amyloid 

fibrils and because it is known to work reliably with the model amyloid forming 

protein, insulin (section 1.3) (Groenning et al. 2007).  

1.3 Bovine insulin – a model amyloid forming protein 

Bovine insulin in its native form is a ~5.7 kDa protein composed of two polypeptide 

chains connected by two inter-chain and one intra-chain disulfide bonds (Figure 1.9) 

(Baker et al. 1988). Insulin is a small, globular, predominantly α-helical protein that 

exists as a hexamer at physiological pH (Baker et al. 1988). The role of this anabolic 

hormone protein is to regulate the metabolism of carbohydrates and fats in the body 

(Saltiel & Kahn 2001). 

 

Figure 1.9 Primary structure of bovine insulin. Adapted from Hong & Fink 
(2005). 
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Bovine insulin is commonly used as a model amyloid-forming protein because it 

readily forms amyloid fibrils in vitro at high temperatures and low pH, but also 

because it is extremely well characterised (Waugh 1946; Ortiz et al. 2007). Many 

other conditions influence the formation of amyloid fibrils from bovine insulin, for 

example, insulin concentration, salt concentration, seeding, agitation and the 

presence/concentration of ThT (Nielsen et al. 2001). Insulin is also studied because 

it can cause amyloidosis in patients with type II diabetes by amyloid formation 

during the production, storage and transport of insulin (Nielsen et al. 2001; Nayak et 

al. 2009). 

Bovine insulin was therefore selected as the model amyloid forming protein for this 

research because the protocols for ThT staining, high throughput 96 well 

spectrophotometer experiments, TEM and SEM are very well established. The 

amino acid sequence of bovine insulin is known (Figure 1.9). There is one lysine 

residue and two N-terminal residues per insulin molecule that can be potentially 

available for protein-protein cross-linking using the homo-bifunctional cross-linker 

glutaraldehyde (Shi 2006). 

1.4 Crystallin proteins – the industrially relevant amyloid 
forming protein 

Crystallins constitute about 90 % of the proteins in vertebrate eye lenses 

(Bloemendal 1977). α-, β-, and γ-crystallins are the main structural proteins (Meehan 

et al. 2004). The function of the lens is to focus the light onto the retina of the eye. 

This requires transparency and stability from the lens proteins which is gained from 

the β-sheet rich secondary structure of the crystallins (Harding 1991). The crystallin 

proteins contained within the lens fibre cells are kept for the entire life of a 

vertebrate and therefore need to be extremely stable. The stability is in part provided 

by the β-sheet rich structure of the crystallins, as well as the intrinsic chaperone 

ability of the α-crystallins (Reddy et al. 2002; Horwitz 2003; Ecroyd & Carver 

2009). 
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α-Crystallin is a member of the small heat-shock protein (sHSP) family in which the 

‘α-crystallin domain’ has a consensus sequence common to all members of the sHSP 

super family (de Jong et al. 1998). Jakob et al. (1993) demonstrated that sHSP can 

act as chaperones by investigating the unfolding and refolding of citrate synthase and 

α-glucosidase. The chaperone activity of α-crystallin has also now been well 

established in vitro, demonstrating the ability to inhibit amyloid fibrillation of many 

different amyloid forming proteins (Ecroyd & Carver 2009). These proteins include: 

α-synuclein (Rekas et al. 2007; Wang et al. 2008; Rekas et al. 2004), β2-

microglobulin (Raman et al. 2005), κ-casein (Ecroyd et al. 2007; Ecroyd & Carver 

2008), ccβ-Trp peptide (Ecroyd et al. 2007), apoC-II protein (Hatters et al. 2001) 

and Aβ (Shammas et al. 2011). 

With the progression of age, older proteins undergo major post-translational 

modifications and in normal aging there is known to be an increase in the ‘high 

molecular weight’ protein fraction (Derham & Harding 1999; Meehan et al. 2004). 

These changes can occur in the lens without compromising the transparency of the 

lens. The protein aggregation that occurs in the centre of the lens is, for the most 

part, controlled, but when uncontrolled aggregation takes place cataract can occur, 

interfering with vision (Meehan et al. 2004; Horwitz 2003). α-Crystallin’s chaperone 

ability comes into play by selectively binding partially unfolded proteins and 

controlling the non-specific aggregation (Horwitz 2003). 

Crystallin proteins make an ideal candidate for the economic production of amyloid 

fibrils on an industrial scale (Garvey et al. 2009). Crystallin proteins can be sourced 

from eye lenses which are waste products from marine and agricultural industries. 

They exist in high concentration and have known ability to form amyloid fibrils both 

in vivo and in vitro (Garvey et al. 2009; Ecroyd & Carver 2009). Recently, Healy et 

al. (2012) have shown that a variety of protein nanofibre structures can be formed 

from crude mixtures of fish lens crystallins. 
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1.5 Enzymes as biocatalysts  

Enzymes, which have been optimised by evolution, exhibit major advantages over 

classical chemical catalysts. Advantages include an extremely high level of catalytic 

efficiency and a range of specificities including substrate specificity, regio-

specificity and even stereo-specificity (Krajewska 2004). Their remarkable 

properties stem from their primary amino acid sequence and the resulting three 

dimensional structures that a particular enzyme adopts (Rubenwolf et al. 2011). 

There is enormous interest in the use of enzymes in an industrial setting. Enzymes, 

unlike many traditional chemical catalysts, can work in mild processing (low 

pressure, temperature, aqueous medium) conditions, and produce high yields of 

desired products. They are thought of as ‘green chemistry’ (Fernandez-Lafuente 

2009), as they are energy efficient, environmentally benign, biodegradable, and are 

capable of functioning at low temperatures (Krajewska 2004; Sheldon & Rantwijk 

2004). 

Enzymes are used in many industries, ranging from the production of high value 

pharmaceuticals, to the manufacture of commodity chemicals such as fructose and 

aspartic acids (Aleksey 2001). When an enzyme cannot be found to catalyse the 

reaction of choice, in silico enzyme design provides a method to develop entirely 

new enzymes with completely unique catalytic reactions can be created. Sigel et al. 

(2010) showed this by the de novo computational design of an enzyme capable of 

catalysing Diels-Alder reactions, a reaction that has not been found in naturally 

occurring enzymes (Siegel et al. 2010). This provides the possibility of creating 

enzymes to undertake potentially any reaction of choice. 
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Whilst there are numerous advantages in utilising enzymes as biocatalysts, there are 

also some disadvantages which need to be overcome for their practical use. Firstly, 

the use of enzymes generally requires isolation and purification to homogeneity, 

which can be time consuming and expensive. Once enzymes are isolated from their 

natural cellular environment, there stability is typically reduced (Fágáin 1995). This 

is due to enzymes naturally possessing optimal catalytic activity under relatively 

mild conditions, for example, mild temperatures, pH and usually in aqueous media 

(Tran & Balkus 2011). Because many enzymes are soluble in an aqueous 

environment, they may require separation from the product after the enzymatic 

reaction has taken place (D’Souza 1999). Enzymes are also very sensitive to trace 

levels of certain chemicals which can inactivate or inhibit their activity. Inhibition 

can also occur from side and end products of the enzyme’s own reaction (Krajewska 

2004). Many of the problems associated with enzymes are currently being addressed 

by enzyme engineering, and immobilisation of the enzymes onto insoluble supports 

(Cao 2005a; Keasling 2008). 

1.5.1 Enzyme engineering 

Enzyme engineering is the process of altering the natural amino sequence of an 

enzyme to suit a combination of altered catalytic function, increased stability and 

optimal catalytic activity (Quin & Schmidt-Dannert 2011). There are two main 

approaches to engineering enzymes, directed evolution, and rational design (Quin & 

Schmidt-Dannert 2011). Directed evolution is based on the process of natural 

evolution selection. Large mutant libraries are generated, which are then monitored 

for changes in thermostability, substrate specificity, or increases in catalysis, using 

high-throughput methods (Labrou 2010). Error-prone polymerase chain reaction 

(PCR) is the most commonly used method to make these libraries (Parajuli & 

Williams 2011). This method uses the Taq polymerase, which lacks 3’-5’ 

exonuclease proofreading activity, and so can randomly insert mutations along the 

sequence. Ni et al. (2011) recently used error-prone PCR to improve the specific 

activity of an arginine deaminase ~20 fold, and shift the pH optimum. Arginine 

deaminase is a potential anti-cancer agent for inhibiting arginine-auxotrophic 

tumors.  
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The rational design of enzymes is based on making informed changes to the enzyme 

by studying the enzyme’s structure and/or catalytic mechanism, then applying 

computational design to make selective mutations to enhance the properties of the 

enzyme (Lutz 2010). This method generates much smaller mutant libraries, but, does 

rely on prior knowledge of the enzyme’s, structure or catalytic mechanism. Saab-

Rincón et al. (2012) used a combination of rational design and random mutagenesis 

to change a triosephosphate isomerase to a thiamin phosphate synthase. This 

example worked well because both enzymes share the same (α/β)8 barrel fold. The 

generated enzyme had a Km similar to a native thiamin phosphate synthase, but with 

a kcat four orders of magnitude lower (Saab-Rincón et al. 2012). 

Other examples of enzymes that have undergone successful enzyme engineering 

include members of the cytochrome P450 (P450) family of enzymes. This family of 

enzymes catalyse a very large diversity of reactions ranging from carbon 

hydroxylation to dealkylation and C-C bond cleavage (Urlacher & Eiben 2006). 

Substrate size also varies, ranging from ethylene (Mw 28) to cyclosporin A (Mw 

1201) (Isin & Guengerich 2007). The large diversity in reactions catalysed, and 

substrate range, has made them attractive biocatalysts (Gideon 2011). These unique 

features of P450s have meant that they been subjected to both directed evolution and 

rational design. Li et al. (2001) generated a triple mutant of cytochrome P450BM3 

(P450BM3) using directed evolution that afforded it the ability to oxidise polycyclic 

aromatic hydrocarbons, instead of the native long-chain fatty acid substrates (Li et 

al. 2001). Dietrich et al. (2009) altered the regioselectivity of cytochrome P450BM3 

using rational design, so that the fatty acid substrates were hydroxylated in a 

stereospecific manner (Dietrich et al. 2009). P450BM3 will be discussed in detail in 

section 2.3. 

1.5.2 Enzyme immobilisation 

Immobilisation of enzymes is the other major method of improving the properties of 

biocatalysts. Immobilisation can be used on any natural or engineered enzyme to 

further stabilise an enzyme, thus, enzyme engineering and immobilisation can be 

used in tandem. Table 1.1 is a selected list of industrially important enzymes which 

are used in their immobilised form. The products produced from these immobilised 

enzymes are commercially important products, such as high-fructose corn syrup.  
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Table 1.1 Selection of important immobilised enzymes used in industry. Adapted 
from Krajewska (2004). 

Enzyme (EC number) Substrate Product 
Aminoacylase (3.5.1.14) 
 

D,L-Amino acids 
 

L-Amino acids (methionine, alanine, 
phenylalanine, tryptophan, valine) 

Aspartate ammonia-lyase 
(4.3.1.1) 

Ammonia + 
fumaric acid 

L-Aspartic acid (used for production 
of synthetic sweetener aspartame) 

β-Galactosidase (3.2.1.23) 
 

Lactose 
 

Glucose and galactose (lactose-free 
milk and whey) 

Glucoamylase (3.2.1.3) Starch D-Glucose 
Glucose isomerase (5.3.1.5) Glucose Fructose (high-fructose corn syrup) 
Hydantoinase (3.5.2.2) 
 

D,L-Amino acid 
hydantoins 

D,L-Amino acids 
 

Invertase (3.2.1.26) 
 

Sucrose 
 

Glucose/fructose mixture (invert 
sugar) 

Lipase (3.1.1.3) Triglycerides Cocoa butter substitutes 
Nitrile hydratase (4.2.1.84) Acrylonitrile Acrylamide 

 
Adiponitrile 5-Cyanovaleramide 

 
3-Cyanopyridine Nicotinamide 

Papain (3.4.22.2) Proteins Removal of “chill haze” in beers 
Penicillin amidase 
(3.5.1.11) 
 

Penicillins G and 
V 
 

6-Aminopenicillanic acid (precursor 
of semi-synthetic penicillins, e.g. 
ampicillin) 

Raffinase (3.2.1.22) 
 

Raffinose 
 

Galactose and sucrose (raffinose-free 
solutions) 

Thermolysin (3.4.24.27) Peptides Aspartame 
β-Tyrosinase (4.1.99.2) Pyrocatechol L-3,4-dihydroxyphenylalanine 

Enzyme immobilisation overcomes many of the limitations of enzymes because it 

confers not only stability, but allows the separation and reuse of the biocatalyst to 

improve the economic viability of the process (Polizzi et al. 2007). Immobilising 

enzymes also allows for their use in multienzyme cascades (Sheldon 2007). Crestini 

et al. (2011) provide a good example of an immobilised multienzyme cascade, in 

which laccase and horseradish peroxidase were co-immobilised in a layer-by-layer 

coating process for the oxidation of lignin. A range of enzymes will be investigated 

as immobilised biocatalysts in this thesis, including, organophosphate hydrolase 

(OPH), P450BM3, glucose oxidase (GOD), and tobacco etch virus (TEV) protease. 
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Immobilising enzymes started around the second half of the last century when the 

advantages of separation and reusability were the main driving force of the research 

(Silman & Katchalski 1966). Enzyme immobilisation is generally a process of trial 

and error to retain enzymatic activity, stability and selectivity, and is often called an 

art as much as a science (Cao 2005b). When planning the immobilising of an 

enzyme there are many factors to be considered, as shown in Table 1.2 (Cao 2005a). 

All of these factors can influence the outcome of enzyme immobilisation and need to 

be considered when selecting appropriate immobilisation conditions. 

Table 1.2 Factors to be taken into consideration when planning the 
immobilisation of an enzyme. Adapted from Hanefeld et al. (2009). 

Immobilisation technique Factors to be taken into account 
General 
 
 
 
 
 

Additives in the enzyme preparation that might interfere 
Stability of the enzyme under immobilisation conditions 
Stability of the carrier 
Protein leaching 
Non-specific carrier-substrate interactions 
Cost and availability of the carrier 

Adsorption  
- Hydrophobic carrier 

 
 

Presence of hydrophobic regions on the enzyme 
Ionic strength of the immobilisation buffer to favour 
protein adsorption 

- Hydrophilic carrier Presence of hydrophilic regions on enzyme/glycosylation 
- Ionic interactions 

 
 

pI of the enzyme 
Charged residues on the enzyme surface 
pH and ionic strength of the immobilisation buffer 

Cross-linking 
 
 
 
 

Location of the enzyme’s residues needed for linking 
pH of the immobilisation step suitable for nucleophilic 
attack 
Conformational flexibility required by the enzyme’s 
catalytic activity 

Entrapment/encapsulation 
 

Size of the enzyme 
Synthesis conditions of the polymer 

There are a range of methods to immobilise enzymes. There are three generally 

recognised categories: adsorption, entrapment/encapsulation and cross-linking, as 

shown in Figure 1.10 (Sheldon 2007; Moehlenbrock & Minteer 2011). 

 

 



Introduction  19 
 

 

Figure 1.10 Schematics of three main types of enzyme immobilisation: (A) physical 
adsorption, (B) entrapment/encapsulation, and (C) cross-linking. 
Adapted from Spahn & Minteer (2008). 

1.5.3 Adsorption enzyme immobilisation 

Adsorption is where the enzyme is accumulated on a solid surface by either 

hydrophobic, van der Waals or ionic interactions (Spahn & Minteer 2008). This 

method is the simplest of the immobilisation methods because it generally only 

requires bathing the chosen support in a solution of enzyme for a given period of 

time to allow the adsorption to occur (Hanefeld et al. 2009). The benefits of the 

adsorption method are that the physical nature of the carrier can be modified so the 

enzyme can be recovered if needed and it can allow for very high retention of 

enzyme activity because there is no chemical modification (Sharma & Yamazaki 

1984). Because of the simplicity of the adsorption method there is a tendency to lose 

immobilised enzyme through leaching. This can be caused by changes in ionic 

strength and pH (Moehlenbrock & Minteer 2011). Chloroperoxidase was recently 

immobilised via the adsorption method onto nanostructured silica with promising 

results (Águila et al. 2011). The adsorbed enzyme showed improvements in turnover 

numbers of up to 54,000 times higher than the free enzyme and because they used 

nanostructured silica with nanopores, the leaching of the enzyme was minimal.  
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1.5.4 Entrapment/encapsulation enzyme immobilisation 

Entrapment and encapsulation differ slightly from each other but are under the same 

branch of immobilisation. Entrapment of an enzyme refers to an enzyme within the 

confines of a matrix, whereas encapsulation refers to the formation of a membrane-

like physical barrier around the enzyme (Cao 2005a). 

Entrapment is another simple immobilisation technique whereby the enzyme 

solution and the matrix solution are mixed together before a solidification (e.g. 

cross-linking, polymerisation or gelation) process occurs to immobilise the enzyme 

in the insoluble matrix (Sheldon 2007). Benefits are simplicity, ability to co-

immobilise more than one enzyme, and stabilisation via confinement effects (Cao 

2005a). Depending on whether cross-linking is used during the immobilisation 

procedure, enzyme leakage can be problematic as well as the possibility of severe 

limitations on diffusion of substrates and products because of the enzyme 

confinement (D’Urso & Fortier 1996). Mushroom tyrosinase exhibits rapid 

inactivation, therefore it was investigated whether entrapment of the enzyme would 

increase its stability (Jahangiri et al. 2012). The tyrosinase was immobilised within 

sol-gels and hybrid silica sol-gels but showed no activity, and was therefore 

immobilised within cross-linked polyacrylamide, where it retained ~25 % of its 

activity. This highlights the downfalls of entrapment due to diffusional limitations 

and the need to optimise the immobilisation media. 
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Encapsulation works on the principle of having enzymes inside a carrier with pore 

sizes smaller than the enzyme so that only substrates and products can diffuse in and 

out, but the enzyme cannot (Jen et al. 1996). Again, this is a mild immobilisation 

method allowing the enzyme to remain chemically unmodified and therefore 

potentially avoiding deactivation. It also permits the immobilisation of more than 

one enzyme at a time (Cousineau & Chang 1977). This method can suffer from the 

substrate/product diffusional problems, depending on the pore size of the membrane. 

A good example of enzyme encapsulation is the work of Wu et al. (2011) in which 

they emulsified solutions of a lipase A, lipase B, and a benzaldehyde lyase inside 

hydrophobic SiO2 for use in organic media. This showed that the enzymes remained 

active, but the activity was lowered because of diffusion problems. This example 

demonstrates the potential of encapsulation because it allows the use of enzymes in 

environments where they would normally be fully inactivated. 

1.5.5 Cross-linking enzyme immobilisation 

Cross-linking is where the enzyme is immobilised to a support via a covalent bond 

(Betancor et al. 2006). This covalent bond provides the most stable type of 

immobilisation compared to the other non-covalent and adsorption methods 

(Zaborsky 1973). The covalent bond formation typically occurs between amino acid 

residues found on the surface of the enzyme and active functional groups found on 

the support (Twyman 2005). Cross-linking of enzymes is widely used because it 

generally results in an increase in enzyme stability and very low enzyme leakage 

(Spahn & Minteer 2008). The gain in stability is associated with the decrease in 

movement of the enzyme due to the buttressing effect of the multipoint covalent 

attachment (Sheldon 2007). The buttressing effect can have negative side effects 

because it commonly results in some loss of enzymatic activity due to the 

conformation restrictions (Sheldon 2007). Loss of activity can also be due to the 

uncontrolled reaction of essential active site residues with the cross-linking reagent 

or if cross-linked enzyme aggregates have formed, diffusional effects can again 

come into play (Cao 2005a). 
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Typically used supports for cross-linking enzymes include Eupergit C and Eupergit 

C 250 L. These contain reactive epoxy groups available for the cross-linking of 

enzymes through their amine and thio groups (Boller et al. 2002). Others include 

Sepabeads®, which can be functionalised with either epoxy or amino groups (Basso 

et al. 2007), and agarose and glyoxyl agarose (Mateo et al. 2007). 

In this thesis two types of enzyme immobilisation were used, cross-linking and 

adsorption. Cross-linking was selected because of the potential increase in thermal 

stability and low enzyme leakage from the amyloid fibrils. Adsorption was 

employed when cross-linking induced inactivation, or if a strong interaction between 

the enzyme and amyloid fibrils was observed. 

1.6 Nanosupports for enzyme immobilisation 

There are many different types of nanosupports that have been used to immobilise 

enzymes, including, nanoporous media, nanoparticles, carbon nanotubes, and 

nanofibres (Kim et al. 2008). Each of these nanosupports has benefits and limitations 

depending on the applications to which they are applied. Nanosupports offer 

advantages because they possess very large surface area, permitting greater enzyme 

loading per unit mass of material compared to conventional materials (Ping 2006).  

1.6.1 Nanoporous media 

Nanoporous media are materials with pore sizes ranging in size from 2-50 nm (Kim 

et al. 2008). Nanoporous media has been investigated as a nanosupport because of 

their controlled porosity and high surface area. Adsorption of enzymes into 

nanoporous media has been the main method of enzyme immobilisation, but this 

method suffered from the serious drawback of enzyme leaching from the media 

(Kim et al. 2008). Pore size also has major consequences for enzymatic adsorption 

and activity. Depending on the size of the enzyme, it may or may not be able to enter 

the pores, and if it does enter the pores, then diffusional effects can play a part in 

lowering the activity of the material (Kim et al. 2006). A well used example of a 

nanoporous material is mesoporous silica developed by Mobil research group (Beck 

et al. 1992). 
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1.6.2 Nanoparticles 

There are a huge number of different types of nanoparticles: ranging from metals 

such as gold; magnetic nanoparticles using iron and silica; and polymers such as 

polystyrene (Ping 2006). Nanoparticles overcome the diffusional limitations of 

nanoporous media and still provide the large surface area for enzyme 

immobilisation, but they are disadvantaged by dispersion in reaction media, and 

problems with recovery after the reaction due to their size and distribution (Jia et al. 

2002).  

1.6.3 Carbon nanotubes 

Carbon nanotubes have attracted a lot of attention as a nanoscaffold because of their 

nanometre size, high electrical conductivity, chemical stability, and exceptional 

mechanical strength (Wang & Lin 2008). Single-walled carbon nanotubes (SWNTs) 

have been shown to increase the stabilisation of immobilised enzymes over flat 

surfaces due to their curvature (Asuri et al. 2006). The curvature of the SWNTs is 

thought to stop unfavourable lateral protein-protein interactions and therefore can 

afford the immobilised enzymes greater activity and stability.  

All manner of enzyme immobilisation methods have been used to immobilise 

enzymes to carbon nanotubes. Non-covalent immobilisation methods such as 

physical adsorption have been the main focus of the immobilisation methods so as to 

limit the disruption to the enzyme structure and activity (Feng & Ji 2011). For 

example, Nejadnik et al. (2011) used 3-D scaffolds of carbon nanotubes for the 

immobilisation of GOD via physical adsorption for use in analytical sensing of 

glucose. Whilst this method does preserve the integrity of the immobilised enzymes, 

it does suffer the problem of enzyme leaching and the lack of reusability over time 

(Wang & Lin 2008).  
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Covalent enzyme immobilisation has also been achieved with carbon nanotubes, but 

this method requires chemical derivitisation of the surface first (Tasis et al. 2006). 

Bogner et al. (2010) created a glucose powered bio-fuel-cell by covalently 

immobilising glucose dehydrogenase and bilirubin oxidase using 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) to multi-walled carbon nanotubes which 

had been oxidised to yield surface carboxyl groups. The immobilised enzymes gave 

an operation time of more than four hours showing the potential of enzymes 

covalently immobilised to carbon nanotubes. 

1.6.4 Protein nanofibres 

Protein nanofibres such as amyloid fibrils offer an exciting alternative to the 

currently used nanoscaffolds for enzyme immobilisation. They offer the large 

surface area from their nanometre size range (Waterhouse & Gerrard 2004), intrinsic 

side chain chemistry from their amino acid composition (Fágáin 1995), strength 

comparable to steel (Smith et al. 2006), a protein environment beneficial to enzyme 

stability and activity (Wang 2006), and the ability to self-assemble providing a 

bottom-up approach to material design (Gras 2007). Amyloid fibrils will be used as 

the nanoscaffold for enzyme immobilisation in this thesis. 

1.7 Amyloid fibrils in bionanotechnology 

Amyloid fibril containing bionanomaterials have potential applications in a wide 

range of fields, including biosensing and bioremediation (Gras 2007; Waterhouse & 

Gerrard 2004). Amyloid fibrils are highly suited to incorporation within biomaterials 

because of their ability to self-assemble, their high surface to volume ratio, and their 

nanoscaffold capability (Gras et al. 2008; Scanlon & Aggeli 2008). Amyloid fibrils 

can act as a nanoscaffold by the addition of functional groups through the side chain 

chemistry gained from an amino acid such as lysine, which will be discussed in 

detail in section 3.3 (Fágáin 1995). 
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The self-assembling nature of amyloid fibrils allows for the potential of bottom-up 

approaches to the design of novel materials (Gras 2007; Paparcone et al. 2011). 

Bottom-up material design offers potential for the delicate fine-tuning of a material, 

and in the case of protein structures such as amyloid fibrils, there is the potential to 

make single amino acid substitutions one at a time via mutagenesis until the material 

has the desired properties (Hauser & Zhang 2010). 

Nature employs the bottom-up design approach to solve the problems of assembling 

highly sophisticated molecular machines and structures in the form of enzymes and 

protein structures such as microtubules and microfilaments (Seeman 2002). 

Mimicking nature on the nanoscale may provide a means of designing ‘smart’ self-

assembling materials, and amyloid fibrils fulfil these requirements (Zhang 2003; Tu 

& Tirrell 2004; Knowles & Buehler 2011). The potential use of amyloid fibrils in 

bionanotechnology has only recently been recognised (Gras 2007; MacPhee & 

Dobson 2000; MacPhee & Woolfson 2004). In the past ten years amyloid fibrils 

have been explored for a multitude of different bionanotechnology applications, 

some of which are summarised by Table 1.3 (Waterhouse & Gerrard 2004). 
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Table 1.3  Summary of papers utilising amyloid fibrils in bionanotechnology 

Amyloid fibril forming protein Technology Reference 
ApoA1 
 

Glutathione S-transferase 
(GST) fusion 

(Guglielmi et al. 2009)  
 

Insulin Cell adhesion (Sakono et al. 2011) 
Insulin & α-lactalbumin 
 

Coaggregation with 
hyrolases 

(Kim et al. 2012) 
 

Insulin 
 

Hybrid bioinorganic 
fibrils 

(Tang et al. 2010) 
 

Insulin Nanocomposite (Rao et al. 2012) 
Insulin 
 

Nanoscaffold for glucose 
oxidase immobilisation  

(Pilkington et al. 2010) 
 

Insulin 
 

Phosphorescent amyloid-
like protein fibrils 

(Rizzo et al. 2010) 
 

Insulin Surface assembly (Ha & Park 2005) 
N-terminal & middle region of 
Sup35p 

Conducting nanowires 
 

(Scheibel et al. 2003) 
 

α-synuclein 
 

Amyloid hydrogel for 
enzyme entrapment 

(Bhak et al. 2010) 
 

Transthyretin (TTR) 
 

Biological cell adhesion 
sequence fusion 

(Gras et al. 2008) 
 

TTR105-115-cycloRGDfK 
 

Cell adhesion 
 

(Bongiovanni et al. 
2011) 

Tandem repeat of the SH3 
domain 

b-Type cytochrome fusion 
 

(Baldwin et al. 2006) 
 

Ure2 prion protein Barnase fusion (Baxa et al. 2002) 
Ure2 prion protein 
 

Carbonic anhydrase 
fusion 

(Baxa et al. 2002) 
 

Ure2 prion protein GFP fusion (Baxa et al. 2002) 
Ure2 prion protein GST fusion (Baxa et al. 2002) 

Of the few available research papers utilising amyloid fibrils to create self-

assembling structures with enzymatic activity, the enzymatically active amyloid 

fibrils are based around fusing the gene of a particular enzyme with an amyloid 

forming component peptide (Figure 1.11) (Woolfson & Mahmoud 2010). The 

amyloid forming peptide component can either be derived from the sequence of an 

amyloid forming protein such as transthyretin (Gras et al. 2008), or can be a 

synthesised peptide (Channon & MacPhee 2008).  
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Figure 1.11 Formation of functional amyloid fibrils by: (top) gene fusion of an 
amyloid forming peptide/protein sequence with a functional 
enzyme/protein sequence, or (bottom) enzyme immobilisation post- 
amyloid formation. 

Baxa et al. (2002) fused the URE2 prion domain with four proteins, carbonic 

anhydrase, barnase, GST, and GFP. The four proteins were chosen to create amyloid 

fusions because of their small substrates, to minimise the possible steric hindrance 

from the aggregates formed. Subsequent activity assays revealed that only the GST 

and GFP amyloid fusion aggregates retained significant activity, ~80 % and ~ 130 

%, respectively. By contrast, the barnase and carbonic anhydrase amyloid fusion 

aggregates had minimal activity. The reduction in barnase and carbonic anhydrase 

activity was surmised to be from diffusional limitations because both of these 

enzymes are near-diffusion-limited enzymes (Jönsson & Wennerström 1978; Day et 

al. 1992). 
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Guglielmi et al. (2009) created a similar amyloid fusion protein with GST, but, 

instead of the URE2 prion domain, they used a 93 residue polypeptide derived from 

the amyloidogenic domain of apolipoprotein A-I. In this research the amyloid fusion 

enzyme had to be incubated for 3 weeks to generate amyloid fibrils. This is an 

extremely long time if this technology were to be used industrially. The resulting 

GST amyloid fusion aggregates were again shown to be active and were able to be 

stored for up to two weeks without loss of activity. 

Baldwin et al. (2006) generated a b-type cytochrome amyloid fusion by constructing 

a gene which has a cytochrome domain and an amyloid forming domain derived 

from a tandem repeat of a SH3 domain. The fusion amyloid fibrils were shown to be 

able to bind metalloporphyrins and from TEM experiments it was estimated that the 

density of metalloporphyrins was 2.6 per nm. The authors reason that at this 

concentration rapid electron transfer would be able to occur and that this technology 

could be used to create self-assembling molecular wires.  

Gras et al. (2008) and Bongiovanni et al. (2011) use an 11 amino acid sequence 

corresponding to residues 105-115 from the amyloidogenic protein transthyretin as 

the amyloid forming component of their fusion peptides for the creation of 

functional amyloid fibrils for cell adhesion. Gras et al. (2008) fused a biological cell 

adhesion sequence (RGD) to the amyloid forming component and created amyloid 

fibrils capable of promoting cell adhesion, whereas, Bongiovanni et al. (2011) fused 

a cycloRGDfk peptide to target mammalian cell surface αvβ3 integrin receptors, and 

again showed that the fusion amyloid fibrils were capable of promoting cell adhesion 

and spreading. Peptide synthesis was used in the creation of both the fusion peptides, 

demonstrating the applications of being able to modify one amino acid at a time to 

create a desired sequence. 
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The above examples create fusion proteins, either at the gene level, or synthetically 

using standard solid phase peptide synthesis chemistry. The fusion method could 

have great potential when creating small peptide fusion amyloid fibrils such as the 

TTR105-115-RGD amyloid fibrils because they can be completely synthetically made. 

The gene level fusion amyloid fibrils would be more difficult to produce because of 

the molecular biology involved in creating the genes, but with many companies now 

specialising in these methods, these problems are becoming less of a hindrance. The 

major obstacle for the gene based fusions could be in the protein growth and 

purification because of the intrinsic aggregation potential of the gene product, 

therefore, the bacterial host may produce low yields. Generating gene based fusions 

could also be time consuming if the active enzyme component of the fusion amyloid 

fibrils turns out to have a low activity or be inactivated, as was the case for the 

barnase and carbonic anhydrase (Baxa et al. 2002). 

Immobilising enzymes post amyloid formation is an alternative method of creating 

nanostructures with enzymatic activity (Figure 1.11). Pilkington et al. (2010) proved 

this to be a valid approach when immobilising glucose oxidase to insulin amyloid 

fibrils by cross-linking with glutaraldehyde. Recently, Kim et al. (2012) immobilised 

an SGNH esterase to insulin and α-lactalbumin amyloid fibrils by first coaggregating 

the amyloid fibrils and enzyme using high concentrations of ammonium sulfate, 

followed by cross-linking with glutaraldehyde. This method also proved successful, 

but adds an extra step to the immobilisation procedure. The advantages of post-

assembly modification include the opportunity to create a more general material that 

can be readily modified with any desired enzyme or other decoration (Woolfson & 

Mahmoud 2010). Immobilising enzymes post amyloid formation is the method used 

to create functional amyloid fibrils in this thesis, with a long term aim to develop a 

commercially scalable process. 
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1.8 Functionalising surfaces for enzyme immobilisation 

Most surfaces require some type of modification before enzymes can be immobilised 

to them. The type of modification depends on what type of immobilisation method 

will be used and what the starting surface chemistry is. For example, the surface of 

gold is readily functionalised with alkanethiols to create an environment beneficial to 

enzyme adsorption (Halling et al. 2005), or gold surfaces can be functionalised with 

aminoethanethiol for the covalent immobilisation of enzymes (Stine et al. 2011). 

The use of nanoscaffolds such as carbon nanotubes or amyloid fibrils for enzyme 

immobilisation provides a large surface area for enzyme immobilisation, but due to 

their size, can still be difficult to handle and recover from reaction media. Modifying 

surfaces by assembling amyloid fibrils could provide an easy method for the 

handling and recovery of the nanoscaffold, whilst retaining the benefits of an 

increase in surface area (Ha & Park 2005). Carbon nanotubes can also be self-

assembled on surfaces such as gold, but, the surface used for the self-assembly must 

be able to tolerate high temperature (>700 °C) because of the process used to create 

the nanotubes (Lin et al. 2010). The high temperatures required for the manufacture 

of carbon nanotubes place limitations on the choice of surfaces available for self-

assembly. Amyloid fibrils on the other hand, can be assembled at lower 

temperatures, for example, 60 °C for bovine insulin (Nielsen et al. 2001). The lower 

amyloid fibril assembly temperatures potentially allows more surfaces to be 

modified because the process is not limited by the self-assembly temperature. The 

functionalisation of surfaces with amyloid fibrils will be discussed in detail in 

chapters three and five. Bovine insulin and fish eye lens crystallin amyloid fibrils 

will be used in this thesis to functionalise glass and cellulose surfaces. The surface 

assembled insulin amyloid fibrils will then be used to immobilise biomolecules, 

creating active bionanomaterials. 

1.9 Thesis objectives 

This introduction has given an overview of amyloid fibrils and their defining 

characteristics. It has also introduced the use of enzymes as biocatalysts and how 

they can be immobilised to insoluble supports using different techniques. 
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The initial part of this thesis investigates the potential of the model amyloid forming 

protein, bovine insulin, to act as a nanoscaffold for the immobilisation of a range of 

biotechnologically important biomolecules, to establish whether the simple 

methodology developed by Pilkington et al. (2010) is applicable to a wider range of 

biomolecules.  

Amyloid fibrils are then assembled on glass and cellulose surfaces to create 

materials with surface assembled nanoscaffolds. These surfaces are characterised by 

a range of methods, then the surface assembled insulin amyloid fibril nanoscaffold is 

functionalised with biotechnologically important biocatalysts for the generation of 

active bionanomaterials. 
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Chapter Two 

2 Purification and characterisation of proteins 

2.1 Introduction 

The biomolecules employed in this thesis were organophosphate hydrolase, 

cytochrome P450BM3, glucose oxidase, green fluorescent protein, and tobacco etch 

virus protease. All of the above proteins required recombinant expression and 

purification, apart from glucose oxidase, which was purchased commerically as a 

lyophilised powder from Sigma-Aldrich. 

The proteins purified ranged in size from ~27-175 kDa, included monomeric and 

dimeric quaternary structures, and are made up of a hydrolase, hydroxylase, oxido-

reductase and a cysteine protease. Utilising a diverse range of proteins was an 

important requirement in this research to be able to stringently test amyloid fibrils as 

a versatile nanoscaffold for biomolecule immobilisation. The results of the 

biomolecule immobilisation to the amyloid fibril nanoscaffold will be covered in 

chapters three and five. 

2.2 Organophosphate hydrolase (OPH) 

OPH (EC number 3.1.8.1) catalyses the hydrolysis of organophosphates (OP), 

including the pesticide, paraoxon and the nerve agents Soman, Sarin and VX (Dumas 

et al. 1989; Hill et al. 2003). OP are among the most toxic compounds synthesised to 

date (Mulchandani et al. 1998a). Their toxicity to humans relates to their ability to 

irreversibly inhibit acetylcholinesterase, a key enzyme required for a proper 

functioning nervous system (Ghanem & Raushel 2005). 
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Accidental exposure to OP pesticide compounds is responsible for an estimated 

200,000 deaths annually in developing countries (Eddleston 2000). There is also 

evidence to suggest that chronic exposure to OP pesticides can cause long-term 

health problems (De Silva et al. 2006). Additionally, OP remain potential chemical 

warfare agents (Rebmann et al. 2009), thus methods to eliminate OP from the 

environment, and decontaminate in the event of a chemical attack, are urgently 

needed. 

OPH is a homodimer with a ‘TIM’ (α/β8)-barrel structure containing a binuclear 

metal binding site located at the C-terminus (Benning et al. 1994; Yang et al. 2003). 

OPH natively contains two zinc ions linked by a bridging hydroxide ion and the side-

chain oxygens of a carboxylated Lys169 (Omburo et al. 1992). The reaction 

mechanism of OPH has been extensively studied and the proposed mechanism by 

Kim et al. (2008) as supported by crystallography using a bound product analogue, 

and density function theory, show strong evidence that the bridging hydroxide acts as 

a direct nucleophile for the hydrolysis of organophosphates (Kim et al. 2008). The 

zinc ions can be replaced with nickel, cobalt, manganese and cadmium, with 

Co2+/Co2+-OPH giving the highest activity, whilst Zn2+/Zn2+-OPH being the most 

stable (Rochu et al. 2004). Due to the stability problems associated with 

recombinantly expressed proteins the Zn2+/Zn2+-OPH was used in this research.  

OPH was used in this research because it is an enzyme that has enormous potential 

applications in the bioremediation, biosensing and detoxification of OP warfare 

agents and pesticides (Ghanem & Raushel 2005; Yair et al. 2008; Mulchandani et al. 

1998b). The problem with OPH is that it suffers from stability and reusability issues 

for use in industrial applications (Kanugula et al. 2011), and could therefore 

potentially benefit from being immobilised to an amyloid fibril nanoscaffold.  
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In this thesis the S5 mutant of OPH is used. The S5 mutant contains three active 

point mutants, R319S, K185R, D208G, and four silent mutations (Roodveldt & 

Tawfik 2005). The S5 mutant was chosen because of the 20-fold increase in 

functional expression it provides compared to the wild-type enzyme. The increase in 

functional expression was found to be because of stabilisation of the apo-enzyme. 

The S5 mutant was a kind gift from Dan Tawfik, Weizmann Institute. 

2.2.1 OPH purification  

E. coli XL-1 blue competent cells were transformed (section 7.3.4) with the pMAL-

c2x plasmid containing the gene for S5-OPH for amplification. Once it was 

established via restriction digest (section 7.3.3) that the correct construct was present 

(Figure 2.1), E. coli BL21 (DE3) star competent cells were transformed (section 

7.3.5) with the pMAL-c2x plasmid for overexpression of the recombinant protein. 

 
Figure 2.1 Agarose gel of the restriction digest of pMAL-c2x-S5 by Hind III, Eco 

RI, and Eco RV. L – ladder, lane 1 – digest fragments. The arrows are 
pointing to the digest bands which are of the predicted 1 kb, 1.9 ka, and 
5 ka sizes for the pMAL-c2x-S5 plasmid. 
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Purification was based on the methods of Roodveldt & Tawfik (2005) which took 

advantage of the C-terminal maltose binding protein (MBP) (section 7.4.2). MBP is a 

fusion protein which is highly soluble and acts as a molecular chaperone 

accumulating the fusion protein in the periplasm (Kapust & Waugh 1999; Nikaido 

1994). MBP allows an easy one-step affinity chromatography purification method 

using an amylose resin (Hennig & Schäfer 1998). Initially it was decided not to 

cleave the MBP from OPH because it had previously been shown that the fusion 

enzyme had similar activity to the wild type enzyme, and the MBP offered more 

potential binding sites for immobilisation to the amyloid fibril scaffold (section 4.3) 

(Roodveldt & Tawfik 2005). 

Figure 2.2 shows an SDS-PAGE gel of the purification procedure, with the eluted 

OPH (~77 kDa) the major protein in the extract. The average quantity of OPH 

attained from each litre was ~30 mg. The specific activity of the protein was 0.013 

µmol/sec/mg for the hydrolysis of paraoxon, measured by monitoring the initial rate 

of reaction as discussed in sections 2.2.2 and 7.9.1. 

 
Figure 2.2 SDS-PAGE gel of a typical OPH preparation. L – ladder, lane 1 – 

crude cell free extract, lane 2 – wash fraction, lane 3 – eluted protein.  
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Cleavage of the MBP used factor Xa protease. The cleavage reaction was carried out 

as stated in the Novagen® factor Xa kit instructions (section 7.4.3). Figure 2.3 

shows the cleavage of the MBP-OPH fusion protein. The expected Mw of OPH-MBP 

is ~77 kDa, and once cleaved, MBP has an expected Mw of ~42 kDa, and OPH has 

an expected Mw of ~35 kDa. The SDS-PAGE gel shows that full cleavage of the 

MBP-OPH fusion protein occurs (lanes 5 and 6). Lane 1 is the cleavage control 

reaction that is done to ensure the factor Xa is active. Factor Xa is active if the 

control protein with a Mw ~53 kDa is cleaved into two bands of Mw ~17 kDa and ~35 

kDa. These two bands are faintly visible in lane one. The control OPH solution (lane 

2) shows that there is already a small amount of cleavage occurring in the protein 

solution in the absence of factor Xa. This could be attributed to a small amount of 

protease present. The protein band at ~40 kDa is regularly seen when using a MBP 

tag (Nallamsetty et al. 2005), and is thought to be a proteolytic MBP product due to 

the elution with MBP from the amylose column (lane 7). 

 
Figure 2.3 SDS-PAGE gel showing the cleavage of OPH-MBP. L – ladder, lane 1 

– cleavage control reaction from factor Xa kit, lane 2 – OPH-MBP pre 
cleavage, lane 3 – OPH and MBP post cleavage, lane 4 – peak one 
(Factor Xa) from purification with the amylose column, lane 5 – peak 
two (OPH) from purification with the amylose column, lane 6 – OPH 
after using Xarrest™ agarose to bind Factor Xa, lane 7 – eluted MBP 
from amylose column. 
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2.2.2 OPH characterisation 

The substrate specificity of OPH is very broad. The best substrate identified thus far 

is paraoxon, which OPH can catalyse at rates approaching the limits of diffusion 

(Caldwell et al. 1991). The hydrolysis of paraoxon is shown in Figure 2.4. The 

enzymatic hydrolysis of paraoxon to form diethyl phosphate and p-nitrophenol can 

be assayed by monitoring the absorbance of p-nitrophenol at 405 nm (section 7.9.1) 

(Donarski et al. 1989). This assay was routinely used in this research for the accurate 

measurement of initial rates of samples containing OPH. 

 
Figure 2.4 The hydrolysis of paraoxon to diethyl phosphate and p-nitrophenol, as 

catalysed by OPH. Adapted from Donarski et al. (1989). 

Table 2.1 shows the published and experimentally determined kinetic parameters for 

wild-type OPH, S5-OPH-MBP, and S5-OPH. The experimental steady-state kinetic 

parameters were investigated by measurement of initial rates at varied paraoxon 

concentration, using the paraoxon assay described in section 7.9.1 (Dumas et al. 

1989). The resulting data were analysed by non-linear curve fitting using the 

EnzFitter program (Biosoft, Cambrige), allowing determination of Km and kcat values. 

The published and experimental data correspond nicely, and show that the MBP 

fusion tag does not have any significant effect on the catalytic properties of OPH. 

Because the MPB was not hindering the activity of OPH, it was initially not cleaved 

from OPH. 
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Table 2.1 Literature and experimental kinetic values for OPH hydrolysis of 
paraoxon. 

Sample Km (µM) kcat (s-1) 
Wild-type OPHa 35 2280 
S5-MPB-OPHb 54 ± 6 2150 ± 217 
S5-MPB-OPH experimental 39 ± 5 2310 ± 146 
S5-OPH experimental 98 ± 25 3465 ± 579 
a Kinetic parameters for wild-type were determined by Hong & Raushel (1999) 
b Kinetic parameters for S5-MBP-OPH were determined by Roodveldt & Tawfik 
(2005) 

The thermostability of MBP-OPH and OPH was determined by differential scanning 

fluorimetry (DSF) (section 7.2.7). As can be seen in Table 2.2 the Tm (°C) of the 

cleaved OPH was 2 °C higher than the MBP-OPH fusion protein. This information 

will be relevant when OPH is immobilised to amyloid fibrils and tested for changes 

in the thermostability of immobilised and in-solution OPH (section 4.4). 

Table 2.2 Melting temperature of OPH-MBP and OPH using DSF. The melting 
temperature was determined as the point of maximum inflection of the -
dRFU/dT curve. Each sample was measured in triplicate and the error 
is the standard deviation of the mean. 

Sample Tm (°C) error 
MBP-OPH 51.8 ± 0.3 

OPH 53.8 ± 0.3 

2.3 Cytochrome P450BM3 (P450BM3) 

Cytochrome P450s (EC number 1.14.14.1) are a hugely diverse super family found 

throughout all classes of life. P450s derive their name from the absorption maximum 

at 450 nm due to a Fe(II)-CO complex and an axial ligation with the cysteine thiolate 

of the enzyme (Omura & Sato 1964; Guengerich 1991). 
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Collectively, P450s catalyse a very diverse range of chemical reactions (Guengerich 

2001). They recognise a broad range of both endogenous and exogenous substrates, 

such as steroid hormones in mammals, and herbicides in plants (Whitehouse et al. 

2012). The substrate specificity of any given P450 largely depends on its primary 

function. For example, a P450 involved in steroid anabolism will have strict substrate 

specificity, whilst one that is involved in the oxidation of xenobiotics will have a 

broad substrate specificity, to protect an organism from as many different 

xenobiotics as possible (Guengerich 1991). 

NAD(P)H + H+ + O2 +RH → NADP+ + H2O + ROH    (1) 

Collectively, P450s catalyse the reaction shown in reaction 1. This reaction uses 

molecular oxygen to incorporate one oxygen atom onto a substrate (R) and reduces 

the second oxygen to a water molecule (Furge & Guengerich 2006). The two 

electrons required are supplied by NAD(P)H via an electron transfer partner. There 

are two classes of P450s. The first class is the bacterial/mitochondrial P450s, which 

acquire the electrons required for the reaction from a NADH-dependent FAD-

containing reductase via an iron-sulfur cluster of the [2Fe-2S] type. The second class 

are the microsomal P450s, which accept electrons from a microsomal NADPH-

cytochrome P450 reductase (CPR), which contains FAD and FMN (McLean et al. 

2005). There are non-microsomal examples of class two P450s such as P450BM3 from 

Bacillus megaterium. P450BM3 is a P450 fusion protein, containing both a CPR 

domain and oxygenase domain on the same polypeptide sequence and therefore is 

placed in the second class (Yun et al. 2007).  
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P450BM3 is a 119 kDa fatty acid hydroxylase derived from Bacillus megaterium. It 

catalyses the sub-terminal hydroxylation of medium and long-chain fatty acids at the 

ω-1, ω-2 and ω-3 (Schwaneberg et al. 1999). P450BM3 is a class two P450, containing 

both its reductase, and oxygenase domains on the same polypeptide. This fusion of 

the domains is accredited with affording the enzyme with the highest kcat (285 s-1, 

determined for NADPH oxidation) for the oxidation of arachidonic acid, out of any 

of the P450s discovered thus far (Noble et al. 1999). P450BM3 also has the highest 

recombinant expression levels for any P450 reported for E. coli (12500 nmol L-1) 

(Pflug et al. 2007). Combining these features with the large body of research already 

undertaken, make P450BM3 one of the more attractive P450s for potential research 

applications (Munro et al. 2002). 

Whilst the native reactions catalysed by P450BM3 are not of any real research or 

commercial benefit, it has provided a very exciting template enzyme for the creation 

of variants that can catalyse more interesting chemical reactions (Julsing et al. 2008). 

One of the major uses of mutant P450BM3 is in the creation of pharmaceutical 

metabolites to study the potential breakdown-products created from pharmaceuticals 

metabolised in humans (Vottero et al. 2011; van Vugt-Lussenburg et al. 2007). Kille 

et al. (2011) also created a mutant P450BM3 capable of the regio- and stereo-selective 

oxidative hydroxylation of testosterone, a substrate not accepted by wild-type 

P450BM3, a reaction that is very difficult to achieve by conventional synthetic organic 

chemistry (Newhouse & Baran 2011). 

P450BM3 was selected for use in this research, because of the potential applications of 

the enzyme in a range of biocatalytic applications, including: xenobiotic metabolism, 

pharmaceutical and chemical synthesis, and chemical detoxification (Gillam 2008). 

P450BM3 is also the ‘model’ P450, being the most studied of the enzyme family, 

therefore is the logical choice when trying to employ any P450s for research 

purposes (Munro et al. 2002). Again, like OPH, P450BM3 suffers from stability and 

reusability issues so could potentially benefit from immobilisation to an amyloid 

fibril nanoscaffold (Maurer et al. 2003). 
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2.3.1 P450BM3 purification  

E. coli BL21 (DE3) star competent cells were transformed with the pET28-BM3 

plasmid containing the P450BM3 gene for protein overexpression (section 7.3.5). The 

protocol employed for the purification of P450BM3 was modified from the procedure 

published by Maurer et al. (2003) (section 7.5). The purification used a one step 

procedure, taking advantage of the poly-histidine tag, using nickel affinity 

chromatography. The protocol in section 7.5.2 resulted in the production of 

reasonably homogenous P450BM3, as judged by SDS-PAGE (Figure 2.5). The 

protein band at ~119 kDa is the full P450BM3 fusion, containing both the oxygenase 

and reductase domains. The protein band at ~55 kDa may be the oxygenase domain 

of P450BM3 (Miles et al. 1992) that has been subjected to proteolytic cleavage. The 

poly-histidine tag is located on the oxygenase domain of P450 BM3, and this could 

explain why the domain eluted with the full length poly-histidine tagged P450BM3. 

The yield for each purification was ~40 mg/L of culture, as judged by the NanoDrop 

(section 7.2.2).  

To monitor the enzymatic activity of P450BM3 a modified method based on Neeli et 

al. (2005) was used (section 7.9.2). Enzymatic activity of P450BM3 toward the 

substrate lauric acid, was monitored by the rate of oxidation of NADPH (ε340 = 6220 

M-1 cm-1) (scheme 1), which strongly absorbs at 340 nm. Near saturating 

concentrations of NADPH (160 µM) and lauric acid (500 µM) were used in 

conjunction with ~45 nM of P450BM3 to determine the initial rate of reaction. The 

initial rate of reaction for the purified protein was determined to be 0.79 µM 

NADPH/s-1 with a specific activity of 0.014 µmol s-1mg-1. 
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Figure 2.5 SDS-PAGE gel of a typical P450BM3 preparation. L – ladder, lane 1 – 

crude cell free extract, lane 2 – flow through when loading on the 
nickel affinity column, lane 3 – eluted protein. 

2.3.2 P450BM3 characterisation 

P450BM3 secondary structure was characterised by circular dichroism (CD) 

spectroscopy to ensure correctly folded protein (section 7.2.15). The CD spectrum of 

purified P450BM3 is shown in Figure 2.6, demonstrating that P450BM3 does have a 

folded secondary structure in solution and that there is a double minima at 

approximately 208 and 222 nm, characteristic of a predominantly α-helical structure, 

and consistent with the literature (Munro et al. 1995). 
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Figure 2.6 Circular dichroism spectroscopy of P450BM3 (□) and buffer control (■). 

The measurements were the average of three scans of each sample. 

2.4 Green fluorescent protein (GFP) 

GFP from the jelly fish Aequorea victoria is a 238 amino acid, 27 kDa monomeric 

protein with intrinsic fluorescence (Prasher et al. 1992; Yang et al. 1996). The 

intrinsic fluorescence is derived from the primary amino acid sequence, through the 

cyclisation of a serine-dehydrotyrosine-glycine tri-peptide, to create a natural 

chromophore (Cody et al. 1993). GFP was used in this research to act as a 

fluorescent protein tag, to aid in the visualisation of the amyloid fibril nanoscaffold. 

The biological function of GFP is thought to be a light induced electron donor 

(Bogdanov et al. 2009). GFP is co-expressed with aequorin, a protein that produces 

calcium triggered blue chemiluminescence, which can subsequently be absorbed by 

GFP and released as green fluorescent light (Morise et al. 1974). Wild-type GFP has 

an absorbance/excitation maximum at 398 nm with a smaller peak at 470 nm, and a 

fluorescence emission spectrum maximum at 509 nm, with a shoulder at 540 nm 

(Morise et al. 1974). 
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In this research, a red-shifted GFP mutant, enhanced GFP (eGFP), was used. eGFP 

contains two mutations in the chromophore region, F64L, and S65T, which give it a 

single absorbance/excitation peak at 488 nm and the same fluorescence emission 

spectrum maximum at 509 nm, but with a ~35 fold increase in the fluorescent 

intensity (Cormack et al. 1996). The mutations also give eGFP a much greater 

folding efficiency when produced recombinantly in E. coli.  

2.4.1 Purification and characterisation of GFP 

E. coli DH5α containing the pGEM GFP plasmid showed good expression levels of 

GFP, therefore this bacterium was used for the growth and recombinant expression 

of GFP. There was no fusion tag present to aid in purification, therefore, one step 

ion-exchange chromatography based on the methods of Yang et al. (1996) (section 

7.6.2) was used. Figure 2.7 shows a typical GFP purification analysed by SDS-

PAGE. As can be seen in lane 1, most of the GFP was in the insoluble crude extract, 

but the yield (~7 mg/L culture) and purity of GFP (lane 8) was enough for the 

applications needed in this thesis. 

 
Figure 2.7 SDS-PAGE gel of a typical GFP preparation. L – ladder, lane 1 – 

insoluble crude extract, lane 2 – soluble crude cell free extract, lanes 3-
7 – wash fractions, lane 8 – pooled fluorescent eluted fractions.  
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GFP is intrinsically fluorescent, therefore, only eluted fractions that displayed 

fluorescence were pooled, giving a good protein yield (~7 mg/L culture) for a single 

step ion-exchange chromatography purification. The intrinsic fluorescence allows for 

easy characterisation of GFP due to only correctly folded protein retaining 

fluorescence. Thus, the purified GFP was correctly folded. 

2.5 Tobacco etch virus (TEV) protease 

TEV protease (EC number 3.4.22.44) recognises the linear epitope sequence E-Xaa-

Xaa-Y-Xaa-Q-(G/S), with cleavage occurring between the Q and the G/S amino acid 

residues (Stols et al. 2002). The optimal recognition site of TEV protease was shown 

to be ENLYFQG (Kapust et al. 2002), which is the sequence present in all of the 

cleavable His-tagged proteins used in this research.  

The S219V TEV protease with an N-terminal poly histidine tag was used in this 

research. This mutant stops self-cleavage which produces a truncated enzyme with 

greatly reduced activity. The mutation also increases the catalytic efficiency and has 

a MBP to aid in solubilising the protein in E. coli (Kapust et al. 2001; Blommel & 

Fox 2007). TEV protease was used in this research as an example of a commercially 

relevant biomolecule that could benefit enormously from immobilisation to an 

amyloid fibril nanoscaffold. TEV protease could benefit from immobilisation due to 

its instability outside of the cellular environment (Puhl et al. 2009), and so that it 

could potentially be reused multiple times, saving on production costs. 
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2.5.1 Purification and characterisation of TEV protease 

TEV protease purification was based on the methods of Blommel & Fox (2007). This 

method (section 7.7.2) took advantage of the N-terminal poly-histidine tag, by using 

nickel affinity chromatography purification, followed by a self-cleaving step, to 

cleave the MBP, then another nickel affinity purification. The purification procedure 

can be seen in Figure 2.8, and shows the protocol resulted in homogenous pure TEV 

protease. The predicted mass of the TEV protease-MBP fusion is ~69 kDa, ~27 kDa 

for TEV protease and ~42 kDa for MBP. From the gel in Figure 2.8, it can be seen 

that the self-cleavage of the MBP by TEV protease occurs very rapidly inside the 

cell, because there is virtually no TEV protease-MBP fusion protein present in the 

crude cell free extract (lane 2) and therefore this step could be bypassed in 

subsequent purifications. The yield for each purification was ~10 mg per litre of 

culture. 

 
Figure 2.8 SDS-PAGE gel of a typical MBP-TEV protease preparation. L – 

ladder, lane 1 – insoluble crude extract, lane 2 – crude cell free extract, 
lane 3 – eluted TEV protease, lane 4 – MBP cleaving, lane 5 - flow 
through when loading the nickel affinity column with the cleaved 
protein, lane 6 – eluted cleaved TEV protease, lane 7 – desalted TEV 
protease. 
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For the characterisation of TEV protease, a cleavage control reaction was undertaken 

to assess the activity of the purified TEV protease for its ability to cleave the poly-

histidine tag from wild-type E. coli dihydrodipicolinate synthase (DHDPS). DHDPS 

is an enzyme that is readily available in our laboratory, which has been shown 

previously to contain a cleavable poly-histidine tag. As can be seen in Figure 2.9, the 

purified TEV protease does show the ability to cleave the poly-histidine tag of the 

DHDPS. The cleavage reaction was only run for 2 hours with a 1:100 TEV protease 

to DHDPS ratio, to ensure that cleavage could occur. Subsequent cleavage reactions 

were generally run overnight with more TEV protease in the reaction. 

 
Figure 2.9 Poly-histidine tag cleavage of wild-type E. coli DHDPS by TEV 

protease. L – ladder, lane 1 – DHDPS pre cleavage, lane 2 – DHDPS 
post cleavage with TEV protease for 2 hours at 4 °C. 

2.6 Glucose oxidase (GOD) 

Glucose oxidase (GOD) (EC 1.1.3.4) from Aspergillus niger, is an oxido-reductase 

enzyme that catalyses the oxidation of β-D-glucose and oxygen to form hydrogen 

peroxide and glucono-1,5-lactone, which spontaneously hydrolyses to gluconic acid 

(Figure 2.10) (Fuglsang et al. 1995; Leskovac et al. 2005). GOD is a homodimeric 

glycoprotein with a molecular weight of ~130-175 kDa depending on the 

carbohydrate content of the carbohydrate shell (Kalisz et al. 1997). Each dimer 

contains a strongly bound flavin adenine dinucleotide (FAD) as a cofactor for the 

reaction (Wohlfahrt et al. 1999). 
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GOD was selected as the model enzyme for immobilisation to the surface assembled 

amyloid fibrils because Pilkington et al. (2010) had previous shown that GOD can be 

immobilised to insulin amyloid fibrils in solution. GOD was also used because it is 

extremely stable under a variety of condition (Wilson & Turner 1992), can be 

purchased commercially, and has many commercial applications (Bankar et al. 

2009). In addition, numerous research groups utilise GOD as the model enzyme for 

immobilisation (Shi et al. 2011). 

 
Figure 2.10 The reaction catalysed by GOD. The oxidation of glucose by molecular 

oxygen to glucono-1,5-lactone, which spontaneously hydrolyses to 
gluconic acid. During the oxidation reaction, FAD is reduced to 
FADH2 and molecular oxygen is reduced to hydrogen peroxide. 
Adapted from Witt et al. (2000) and Leskovac et al. (2005). 

2.6.1 GOD characterisation 

The GOD catalysed reaction can be monitored using a fluorescent coupled assay 

containing horseradish peroxidase (HRP) and Resorufin (Figure 2.11) (section 7.9.3) 

(Zhang et al. 2004). This method was routinely used to monitor GOD activity. 
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Figure 2.11 GOD and HRP fluorescent coupled assay to monitor the reaction 

catalysed by GOD, adapted from Mohanty et al. (1997). 

Employing the fluorescent coupled assay, a standard curve was created (Figure 2.12) 

using between 1 and 21 mU of GOD, as stated in the Invitrogen Amplex® red 

glucose/glucose oxidase assay kit (Invitrogen 2006). 1 U is defined as the ability to 

oxidise 1.0 μM of β-D-glucose to D-gluconolactone and H2O2 per min at pH 5.1 at 

35 °C, equivalent to an O2 uptake of 22.4 μL per min.  

The coupled assay has a 1:1 stoichiometry. It is extremely sensitive so samples had 

to be diluted by ~10,000 to be in the correct range of the standard curve. The coupled 

assay is a continuous reaction, therefore an incubation time of 4 min was selected, as 

this generated a very accurate standard curve, and allowed the assay to be performed 

on many samples quickly. 
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Figure 2.12 Glucose oxidase standard curve. Each sample contained the 

appropriate concentration of glucose oxidase, 0.1 U/mL horse radish 
peroxidase, 50 mM D-glucose, 50 μM Amplex® red and was incubated 
for 4 min. The average of 3 replicates of each sample was used and the 
error is the standard deviation of the mean.  

2.7 Summary 

The proteins OPH, P450BM3, GFP, and TEV protease have been overexpressed in E. 

coli and purified to the required purity for this research. The characterisation of the 

proteins used different approaches depending on which protein was being 

characterised, and what was relevant to the experimental process needed to 

demonstrate the immobilisation of the protein on the amyloid fibril nanoscaffold. All 

of the biomolecules mentioned in this chapter will be immobilised to insulin amyloid 

fibrils in solution (chapter 4), and GOD, GFP, and TEV protease will be immobilised 

to surface assembled insulin amyloid fibrils as described in chapter 5. 
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Chapter Three 

3 Characterisation of amyloid fibril nanoscaffolds 

3.1 Introduction 

Many different supports exist for enzyme immobilisation, as outlined in chapter one, 

and the aim of this thesis was to investigate the ability of amyloid fibrils to act as a 

biomolecule nanoscaffold. The intrinsic features of amyloid fibrils such as their 

nanometre size, chemical functionality arising from amino acid side chains and the 

ability to self-assemble, make amyloid fibrils an ideal candidate as a nanoscaffold.  

This chapter will explore the use of bovine insulin and fish eye lens crystallin 

proteins as building blocks for amyloid fibril nanoscaffolds in solution, and 

assembled on glass and cellulose surfaces. To realise the full potential of amyloid 

fibrils as a nanoscaffold, easy methods to collect, reuse, and functionalise them are 

needed. Surface assembly of the nanoscaffolds was therefore investigated. The 

characterisation of the amyloid fibril nanoscaffolds in this research used the methods: 

fluorescein isothiocyanate fluorescence (FITC), ThT fluorescence, CD, TEM, SEM, 

and FTIR. Investigations into the functionalisation of the solution and surface 

assembled amyloid fibril nanoscaffolds with a range of biomolecules will be covered 

in chapters four and five. 
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3.2 Solution assembled amyloid fibril nanoscaffold 

characterisation 

3.2.1 Bovine insulin 

The routine self-assembly of bovine insulin amyloid fibrils (section 7.10.1) was 

based on an in-house method modified from Nielsen et al. (2001). This method relies 

on the fact that insulin can form amyloid fibrils at pH 1.6 and high (60 °C) 

temperature (Waugh 1946; Ortiz et al. 2007). The formation of bovine insulin 

amyloid fibrils can be detected by monitoring the increase in ThT fluorescence upon 

binding to the forming amyloid fibrils (section 7.2.8). ThT is thought to bind to 

cavities running parallel to the fibril axis of the amyloid fibrils (section 1.2.1) 

(Groenning 2010). The time-course monitoring of the formation of bovine insulin 

amyloid fibrils using ThT is shown in Figure 3.1. As can be seen, there is a 

pronounced lag phase preceding an exponential growth phase, characteristic of 

amyloid fibril formation occurring by a nucleated growth mechanism (Schmit et al. 

2011). 

 
Figure 3.1 Time course profile of 5.8 mg/mL bovine insulin (□) dissolved in 25 

mM HCl, 100 mM NaCl, pH 1.6 amyloid fibril formation and a buffer 
control (■) at 60 °C, as monitored by ThT fluorescence. Each sample 
was measured in triplicate, and the error bars are the standard 
deviation of the mean. 
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This transition from a predominantly α-helical protein to a β-sheet protein structure 

can also be characterised by CD (section 7.2.15) (Bouchard et al. 2000). Figure 3.2 

shows the change in secondary structure for the native insulin protein and the 

resulting insulin amyloid fibrils formed at pH 1.6 and heating at 60 °C. The CD 

spectrum confirms that native insulin has a predominantly α-helical structure in 

solution with double minima present at approximately 208 and 222 nm (Greenfield 

& Fasman 1969), and that the insulin amyloid fibrils have a β-sheet rich structure 

characterised by a minimum at 216 nm (Greenfield & Fasman 1969), which is in 

agreement with previous studies (Bouchard et al. 2000). 

 
Figure 3.2 CD spectroscopy of 0.2 mg/mL native insulin (□) in 20 mM NaPi, and 

0.2 mg/mL insulin amyloid fibrils (■) in 20 mM NaPi. The 
measurements were based on triplicate scans of each sample. 

The formed amyloid fibrils can be characterised by negatively staining with uranyl 

acetate and viewing using TEM (section 7.2.11) (Whittingham et al. 2002). An 

electron micrograph of bovine insulin amyloid fibrils is shown in Figure 3.3. As can 

be seen, the bovine insulin amyloid fibrils have the characteristic unbranched, 

twisted, fibrillar morphology that is diagnostic of amyloid fibrils (Nilsson 2004). 
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Figure 3.3 Representative TEM micrograph of 1.45 mg/mL insulin amyloid fibrils 

viewed at 89,000 x magnification. The scale bar = 200 nm. 

FITC (Figure 3.4) is an isothiocyanate derivative of fluorescein. FITC can react and 

form a stable product with amine nucleophiles such as the ε- and N-terminal amine 

groups of proteins (Jobbágy & Király 1966). FITC has an excitation absorbance 

maximum at 494 nm, and an emission wavelength of 520 nm (Hermanson 1996). 

FITC was used in this research to estimate the number of potential amino binding 

sites for biomolecule immobilisation. FITC has previously been used for the 

fluorescent labelling of β-amyloid peptides (Fülöp et al. 2001), therefore should be 

applicable to insulin amyloid fibrils. 

 
Figure 3.4  Structure of FITC (Hermanson 1996). 
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Estimation of the number of bound FITC molecules to the insulin amyloid fibrils was 

based on the methods of Thermo Scientific (2011), and used the assumption that the 

extinction coefficient for insulin fibrils is the same as insulin (ε280 = 5800 M-1cm-1). 

The extinction coefficient used for FITC was ε494 = 68000 M-1cm-1. Three 1 mg/mL 

(0.17 mM) solutions of insulin amyloid fibrils were formed (section 7.10.1), 

followed by centrifugation to pellet the amyloid fibrils. The supernatants were then 

discarded, and the pellets resuspended in 1 mL of FITC (2.6 mM) (section 7.10.4), 

followed by incubation at 25 °C for 1 hour. The solutions were then centrifuged, the 

pellet washed and resuspended in FITC buffer, followed by centrifugation. The 

washing steps were done five times to ensure only FITC bound to the amyloid fibrils 

was present. The concentration of insulin amyloid fibrils was determined, and bound 

FITC concentration was then determined. These parameters were then put into 

equation 1 to work out the ratio of dye to amyloid fibrils. The average number of 

moles dye per mole of amyloid fibrils was 1.3 ± 0.2, meaning that ~1 in 3 amine 

groups had bound FITC. 

𝑀𝑜𝑙𝑒𝑠 𝑑𝑦𝑒 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 =  𝐴𝑚𝑎𝑥 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
68000 × 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑐.

 × 𝑑𝑖𝑙.𝑓𝑎𝑐𝑡𝑜𝑟   (1) 

 

Employing the techniques of ThT binding, CD, and TEM, the routinely 

manufactured bovine insulin amyloid fibrils were thus shown to have the 

characteristic features of amyloid fibrils: ThT binding, a β-sheet secondary structure, 

and an unbranched and fibrillar morphology. Binding of FITC to the bovine insulin 

amyloid fibrils estimated that 1 in 3 amine groups of the amyloid fibrils are 

potentially available for biomolecule immobilisation. The estimate of the available 

amine groups will ensure that an excess of cross-linker will be present in the 

immobilisation conditions to maximise immobilisation of biomolecules to the bovine 

insulin amyloid fibrils. 
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3.2.2 Fish lens crystallins 

The manufacture of amyloid fibrils from the crude protein source, fish eye lenses, 

used in-house methods modified from Garvey et al. (2009) (section 7.9.5). Crystallin 

amyloid fibrils were harder to characterise because of their native β-sheet secondary 

structure. The method used for the manufacture of the crystallin amyloid fibrils had 

previously been shown to produce validated amyloid fibrils via X-ray fibre 

diffraction (Garvey et al. 2009; Healy et al. 2012). The β-sheet crystallin structure 

meant that the protein natively bound ThT and therefore the formation of amyloid 

fibrils could not be monitored by an increase in ThT fluorescence (Meehan et al. 

2007). Because of the native structure, CD could not be used either. Therefore, TEM 

(section 7.2.11) was the main method with which the crystallin amyloid fibrils were 

characterised. Figure 3.5 shows a representative micrograph of crystallin amyloid 

fibrils viewed using TEM.  

 
Figure 3.5 Representative TEM of crystallin amyloid fibrils viewed at 89,000 x 

magnification. The scale bar = 200 nm. 
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Like the insulin amyloid fibrils, the crystallin amyloid fibrils have a characteristic 

unbranched, twisted, fibrillar morphology. The morphology of the crystallin amyloid 

fibrils differs slightly though, being wider (18 nm ± 3 compared to 12 nm ± 2) and 

considerably longer. This is apparent in Figure 3.6, which is a micrograph of the 

crystallin amyloid fibrils at 14,000 x magnification. As can be seen, the crystallin 

amyloid fibrils are very long, with some being >10 µm in length compared to an 

average of ~2 µm for bovine insulin amyloid fibrils (Domigan et al. 2012). The 

crystallin amyloid fibrils also seem to have a tendency to come together and form 

much larger bundle-type structures with a twisted morphology (Healy et al. 2012). 

The longer length of the crystallin amyloid fibrils could prove to be beneficial for 

surface assembly (section 3.4.3), by providing even more active surface area for 

potential biomolecule immobilisation. 

 
Figure 3.6 Representative TEM micrograph of crystallin amyloid fibrils viewed at 

14,000 x magnification. The scale bar = 1 µm. 
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3.3 Surface assembled amyloid fibril nanoscaffold 

characterisation 

The method to assemble the amyloid fibril nanoscaffold relies on the fact that 

amyloid fibril formation occurs by a nucleated growth mechanism (Schmit et al. 

2011). With this in mind, the surface assembly process is based around covalent 

immobilisation of seed amyloid fibrils to the surfaces, from which mature amyloid 

fibrils can assemble (Ha & Park 2005). 

Amyloid fibrils have previously been incorporated into materials to create 

bionanomaterials, but not by self-assembly on surfaces with the view to be 

functionalised with biomolecules. Oppenheim et al. (2010) created a lysozyme 

amyloid fibril-elastomer composite containing a 10 % amyloid fibril filling ratio 

which was shown to be a minimum of 2 times stiffer than a carbon nanotube-

elastomer composition with the same fill ratio. Rao et al. (2012) incorporated pre-

manufactured insulin amyloid fibrils into poly (vinyl alcohol) (PVOH), creating a 

bionanocomposite. The mechanical properties of the resulting bionanocomposite 

were evaluated, and a PVOH film containing 0.6 % w/w insulin amyloid fibrils was 

15 % stiffer than the control. Pilkington et al. (2010) extended the creation of bovine 

insulin amyloid fibril-PVOH bionanocomposites by incorporating GOD 

functionalised bovine insulin amyloid fibrils into PVOH (Pilkington et al. 2010). The 

bionanocomposite was shown to retain GOD activity, and be able to function as an 

antimicrobial material by inhibiting the growth of E. coli when supplemented with 

glucose. The creation of bionanocomposite materials with amyloid fibrils has shown 

that amyloid fibrils can provide benefits to the materials in terms of increases in 

mechanical strength and by acting as a scaffold for enzyme immobilisation. 

Complementing amyloid fibril bionanocomposites with amyloid fibril surface 

assembly could create new nanomaterials with enhanced mechanical properties and 

large increases in surface area for biomolecule immobilisation. 
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The self-assembly of insulin amyloid fibrils on glass surfaces has shown to be 

possible via the covalent attachment of amyloid seeds to the glass surface (Ha & 

Park 2005). The covalently attached seeds provide the base to which mature amyloid 

fibrils assemble. Surface assembled amyloid fibrils offer many potential applications 

for highly active surfaces by increasing the surface area of the surface to which the 

amyloid fibrils are assembled. Assembling the amyloid fibrils on surfaces could also 

provide a method of collecting the amyloid fibrils, and potentially allow for a 

bottom-up approach to functional bionanomaterial design (Williams et al. 2010). 

Glass (SiO2) was chosen as a model surface because bovine insulin amyloid fibrils 

have previously been self-assembled from the surface of micro cover glasses (Ha & 

Park 2005), and because the transparency of glass allows for spectrophotometric 

assays to be used. Initially glass microscope slides were used for the surface 

assembly of bovine insulin amyloid fibrils, but this method only allowed one sample 

at a time to be analysed. Therefore, 5 mm glass beads (Figure 3.7) were used in a 96 

well sample plate to allow for high throughput sample analysis. 

 
Figure 3.7 5 mm diameter borosilicate glass beads. The scale bar = 3 cm. The 

image was taken from sigmaaldrich.com. 
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To ensure the glass beads did not interfere with ThT fluorescence measurements, a 

solution of mature insulin amyloid fibrils was produced (section 7.10.1), and the 

fluorescence was measured with and without a glass bead in the wells of the 96 well 

plate (section 7.12.5). Table 3.1 shows that glass beads placed in an insulin amyloid 

fibril/ThT solution decreases the ThT fluorescence by ~15 %. This confirms the glass 

beads only hinder ThT fluorescence slightly, and that ThT fluorescence measurements 

in the 96 well plates will be able to be used for verification of surface assembled insulin 

amyloid fibrils. 

Table 3.1 ThT fluorescence of samples with and without glass beads. 
Measurements are the average of three replicates of each sample and 
the error is the standard deviation of the mean. 

Bead Fibrils ThT (RFU) Error 
+ - 198 2 
- - 187 1 
+ + 1764 17 
- + 2090 82 

Figure 3.8 provides an overview of the surface assembled amyloid fibril process. 

First, the surface is chemically derivatised to yield an aminated surface which 

amyloid seeds can be covalently attached to through their ε-amino lysine or N-

terminal α-amino groups (Brady & Jordaan 2009). As stated in section 1.1.2, amyloid 

fibril formation proceeds via a nucleated growth mechanism which allows the 

assembly of mature amyloid fibrils from the covalently bound amyloid seeds when 

the seeded surface is placed in a solution of native protein, and heated at low pH. 

 
Figure 3.8 Overview of the amyloid fibril surface assembly process. First the 

surface is chemically derivatised, covalent binding of the seeds can 
then occur, followed by assembly of the mature amyloid fibrils from the 
bound seeds. 
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3-aminopropyltriethoxysilane (APTS) is an organo-functional silane that has a non-

hydrolysable amino group, and three ethoxy groups which can react with the 

hydroxyl groups of glass and cellulose, and can undergo a condensation reaction with 

itself to create an aminated surface coating (Howarter & Youngblood 2006). The 

chemical derivation of glass and cellulose with APTS (Figure 3.9), and subsequent 

activation with N, N’ – disuccinimidyl carbonate (DSC), is a straight forward 

procedure allowing the covalent immobilisation of proteins through amide coupling 

chemistry (Morpurgo et al. 1999). This surface chemistry is readily applicable to 

other types of materials such as polyesters, polyamides and polycarbonates, where 

silanes have been used as coatings for many different applications (Howarter & 

Youngblood 2007). 

 
Figure 3.9 Reaction scheme of APTS hydrolysis, followed by condensation (top). 

Reaction scheme of APTS hydrolysis, followed by condensation to a 
surface containing hydroxyl groups such as glass or cellulose (bottom). 
Adapted from Howarter & Youngblood (2006). 

Two cellulose based materials, cotton, and 20 μm microcrystalline cellulose powder, 

were used in this research. Cellulose is the most abundant natural polymer on earth, 

therefore, cellulose is an inexhaustible environmentally friendly resource for the 

manufacture of products (Klemm et al. 2005; Kim et al. 2006). Cellulose based 

materials have wide use in industry including: clothing, coatings, films, membranes, 

building materials, pharmaceuticals, and foodstuffs (Klemm et al. 2005). 
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The aim of template directed amyloid fibril growth from surfaces is to increase the 

available surface area for enzyme immobilisation, and to create an environment that 

is advantageous towards enzyme activity and stability. The use of other nanosupports 

such as nanoparticles, nanotubes, electrospun nanofibers and nanoporous matrices 

(section 1.6) have shown the ability to increase the available surface area for enzyme 

immobilisation, whilst lowering mass transfer resistance (Jia et al. 2002; Wang 

2006). Template directed amyloid fibril growth allows the creation of self-

assembling nanomaterials, provides a means to collect amyloid fibrils, and if the 

surface assembled amyloid fibrils are functionalised with biomolecules, the 

biomolecules can be easily reused due to their surface attachment. 

3.4 Silicon oxide (glass) surfaces 

5 mm diameter borosilicate glass beads (Figure 3.7) were utilised for the majority of 

the research into surface assembly. Glass beads were chosen because of their ability 

to fit into the wells of a 96 well plate for use in a plate reader. The plate reader 

allows for high throughput of multiple samples with triplicates of each sample to 

ensure accuracy and reproducibility of results. 

3.4.1 Derivatisation of glass surfaces 

The reaction between APTS and a glass surface (Figure 3.9) (section 7.12.1) firstly 

involves a hydrolysis and condensation step of APTS, followed by a hydrolysis and 

condensation step with the glass surface. The reaction produces an aminated surface 

that can then be activated with DSC via the formation of a succinimido carbamate to 

yield a surface that is able to spontaneously react with proteins through their ε -

amino group of lysine residues and the N-terminal α-amino group (Nimura et al. 

1986; Hermanson 2008; Edwards et al. 2011). 

3.4.2 Template directed self-assembly of insulin amyloid fibrils 

The first step in template directed amyloid fibril growth is the covalent 

immobilisation of the template to the surface of the glass bead. The template directed 

self-assembly is illustrated in Figure 3.10.  
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Figure 3.10 Schematic of a possible mechanism for the template directed self-

assembly of insulin and crystallin amyloid fibrils on surfaces. Adapted 
from Ha & Park (2005).  

Ha & Park (2005) used insulin seeds as their template for the surface assembly of 

insulin amyloid fibrils. The seeds were created by incubating a fresh solution of 

insulin and heating it until the end of the lag phase, which is characteristic of a 

nucleated-polymerisation mechanism (section 1.1.2). The protein species formed just 

before the exponential growth phase are classed as seeds if they are able to eliminate 

the lag phase in a fresh solution of the same amyloid forming protein (Jarrett & 

Lansbury 1992). In this research insulin amyloid fragments were used as the template 

for the surface assembly of insulin amyloid fibrils. Fragments are mature amyloid 

fibrils that have been fragmented usually by mechanical means to produce shorter 

amyloid fibrils (Xue et al. 2009). Insulin amyloid fibril fragments were produced by 

a freeze-fracture method (section 7.10.2), whereby mature insulin amyloid fibrils 

were subjected to freezing at -20 °C overnight, then thawing (Domigan et al. 2012). 

The thawed amyloid fibril samples were then assessed for the presence of fragments 

using TEM (section 7.2.11) before use as a template. Figure 3.11 shows the electron 

micrographs of mature insulin amyloid fibrils before freezing (A), and after freezing 

(B). As can be seen, the freeze-fracture method yields shorter (40 nm ± 17) 

fragmented amyloid fibrils than the mature control sample (207 nm ± 66), 

confirming the method can produce amyloid fragments.  
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Figure 3.11 Representative TEM micrographs of insulin amyloid fibrils. A – Pre 

freezing, B – post freezing. The scale bar represents 1 μm. 

Insulin amyloid fragments were chosen over insulin amyloid seeds (section 7.10.3) 

because fragments seeded the formation of mature amyloid fibrils faster than seeds 

(Figure 3.12). Fragmentation of the amyloid fibrils also gave more reproducible 

template directed amyloid fibril formation. This was because the incubation time to 

produce seeds before the exponential growth phase occurred varied between 

repetitions. Figure 3.12 shows that when insulin amyloid fragments or fragments 

buffer exchanged into 50 mM HEPES pH 9 are added at 5 % v/v, both fragment 

types induce amyloid fibril formation faster, starting from time 0 when incubated at 

60 °C. Insulin seeds added at 5 % v/v induced amyloid fibril formation at ~40 min, 

only slightly faster than not adding seeds. The fragments were buffer exchanged into 

50 mM HEPES pH 9 to allow the amide coupling chemistry to proceed (Hermanson 

2008). Figure 3.12 shows that exchanging the buffer had almost no consequence on 

the ability of the fragments to seed the formation of insulin amyloid fibrils. 
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Figure 3.12 Time course profile of insulin (1 mg/mL) amyloid fibril formation at 60 

°C with either 5 % insulin seeds (■), 5 % insulin fragments (■), 5 % 
insulin fragments buffer exchanged (■), or insulin only (■), as 
monitored by ThT fluorescence. Measurements are the average of 3 
replicates of each sample and the error is the standard deviation of the 
mean.  

The surface-activated glass beads were placed in a solution of buffer exchanged 

insulin amyloid fragments to covalently bond them to the glass surface via the amide 

coupling chemistry (Hermanson 2008). The beads with the covalently bound insulin 

amyloid fragments were then placed into a solution containing dissolved insulin at 

pH 1.6. By heating the insulin solution at 50 °C for 5 hours, insulin amyloid fibrils 

will self-assemble from the surface bound fragments (section 7.12.2). This process 

was monitored using ThT fluorescence in the 96 well plate reader (Figure 3.13) 

(section 7.2.8). As can be seen, the glass beads which had been seeded with the 

fragments, then amyloid fibrils assembled, had the shortest lag phase for amyloid 

fibril formation. This implies that by seeding the surface of the glass beads with the 

fragments, template directed amyloid fibril assembly can occur. The slower amyloid 

formation seen with the beads can be attributed to the lower amyloid formation 

temperature of 50 °C, and because the native insulin has to interact with surface 

immobilised amyloid seeds slowing the formation process due to diffusion. 



Characterisation of amyloid fibril nanoscaffolds 87 

 
Figure 3.13 Time course profile of template directed assembly of 1 mg/mL insulin 

amyloid fibrils in 25 mM HCl, 100 mM NaCl, pH 1.6 at 50 °C for 5 
hours, as monitored by ThT fluorescence. (■) – seeded with fragments, 
fibrils assembled, (■) – not seeded, fibrils assembled, (■) – seeded, no 
fibrils, (■) (behind ■) – not seeded, no fibrils. Measurements are the 
average of 3 replicates of each sample and the error is the standard 
deviation of the mean.  

The beads which are not seeded with fragments still show mature amyloid fibrils are 

produced, but, after washing the beads and testing ThT fluorescence (Table 3.2), 

only the beads which were seeded with fragments retain significant fluorescence, 

compared to the control without fragments or amyloid fibrils. This implies that only 

the seeded beads have the template directed amyloid fibrils present and that the 

fibrils formed in the non-seeded sample were free in solution. 

Table 3.2 ThT fluorescence of 1 mg/mL insulin amyloid fibril samples assembled 
on glass beads after washing to remove amyloid fibrils from the 
solution phase. Measurements are the average of 3 replicates of each 
sample and the error is the standard deviation of the mean.  

Sample ThT (RFU) Error 
Not seeded, no fibril 207 17 
Not seeded, fibrils 228 19 
Seeded, no fibrils 218 18 
Seeded, fibrils 1145 228 
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Experimentation was carried out to ensure full surface derivatisation was necessary for 

maximum surface assembly of the insulin amyloid fibrils. This was achieved by 

measuring ThT fluorescence (section 7.2.9) on a variety of controls (Table 3.3). As 

shown by sample 9, the beads which had the full surface derivatisation, seeded with 

fragments, and mature amyloid fibrils assembled, did indeed have the highest ThT 

fluorescence and therefore the most surface assembled insulin amyloid fibrils. Sample 

1, which is identical to sample 9 but without surface derivatisation, also shows a 

relatively high ThT fluorescence, suggesting there could be a relatively strong intrinsic 

association between the glass beads and the amyloid fragments. 

Table 3.3 ThT fluorescence (RFU) of glass bead controls with or without 1 
mg/mL insulin fibrils assembled. Measurements are the average of 3 
replicates of each sample and the error is the standard deviation of the 
mean. 

Sample APTS DSC Seeded Fibrils ThT Error 
1 - - + + 1054 151 
2 - - + - 545 32 
3 - - - + 535 61 
4 - - - - 612 156 
5 + - + + 594 170 
6 + - + - 278 12 
7 + - - + 310 32 
8 + - - - 296 31 
9 + + + + 1513 238 
10 + + + - 301 10 
11 + + - + 293 17 
12 + + - - 275 24 
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3.4.3 Template directed self-assembly of crystallin amyloid fibrils 

Insulin amyloid fibrils are relatively short, therefore if crystallin amyloid fibrils, 

which were shown to be much longer (section 3.2.2), were able to be assembled on a 

surface, a larger surface area would result, and may allow for greater biomolecule 

immobilisation. The same protocol for the derivatisation of the glass beads (section 

7.12.1) used with the insulin template directed amyloid self-assembly was used for 

the crystallin template directed amyloid self-assembly. Crude crystallin amyloid 

fibrils were prepared as in section 7.10.5, and verified by TEM (section 7.2.11). 

Initially, production of crystallin fragments by the freeze-thaw method implemented 

with the insulin amyloid fibrils was trialled. TEM revealed that the freeze-thaw 

method did not produce fragmented crystallin amyloid fibrils, therefore another 

method for the production of the fragments was needed. Freeze-thawing of proteins 

has long been known to induce denaturation of proteins (Chang et al. 1996), hence 

the inability of freeze-thawing to fracture the crystallin amyloid fibrils was 

unexpected, and could be due to the fibril forming buffer containing 10 % 

trifluoroethanol, because other alcohols such as ethanol are known cyroprotectants 

(Arakawa et al. 2001). Sonication has previously been shown to cause the 

fragmentation of insulin amyloid fibrils (Huang et al. 2009), and was therefore 

investigated as a method to produce crystallin amyloid fibril fragments. Mature 

crystallin amyloid fibrils were subjected to a range of sonication times (0-60 sec) 

(section 7.10.6). The resulting solutions were assessed for fragmentation by TEM, 

and found that a sonication time of 10 sec was needed to fragment the crystallin 

amyloid fibrils. Figure 3.14 shows the before and after sonication electron 

micrographs of the crystallin amyloid fibrils. As can be seen, the sonication 

successfully fragmented the crystallin amyloid fibrils. Analysing the average length 

of the control crystallin amyloid fibrils (755 nm ± 200) versus the sonicated 

crystallin amyloid fragments (75 nm ± 48) revealed the extent of the fragmentation. 

The fragments were then covalently immobilised to the surface of the glass beads 

using the same method as for the insulin fragments, and subsequently used to seed 

the growth of crystallin amyloid fibrils (section 7.12.3).  
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Figure 3.14  Representative TEM micrographs of crystallin amyloid fibrils. A – Pre 

sonication, B – post sonication. The scale bar represents 1 μm. 

For the formation of the template directed crystallin amyloid fibrils, glass beads with 

covalently bound crystallin were placed in a solution of crystallin protein extracted 

from fish eye lenses (section 7.10.5), and heated for 24 h at 80 °C. The beads were 

then left in the crystallin solution at room temperature for at least 2 days. As it had 

previously been shown that ThT could not be used to detect crystallin amyloid fibrils 

(section 3.2.2), SEM (section 7.2.12) was therefore used as an alternative method to 

investigate the presence of crystallin amyloid fibrils on the surface of the glass beads. 

SEM was previously attempted on the surface assembled insulin amyloid fibrils but, 

no amyloid structures were able to be seen. This was probably due to the gold 

coating needed for SEM being too thick and making the insulin amyloid fibrils not 

viewable.  



Characterisation of amyloid fibril nanoscaffolds 91 

The crystallin amyloid fibrils were able to be viewed with SEM because of their 

larger size, and tendency to bundle together to form larger structures (Healy et al. 

2012). Figure 3.15 shows electron micrographs of the surface of the four template 

directed crystallin amyloid fibril glass bead samples. As can be seen, the blank glass 

bead (B) surface appears relatively smooth, whilst seeded only (C) and fibrils only 

(A) both have a more crater-like surface. The only bead sample (D) which had 

amyloid fibril structures on the surface were the beads which had been seeded with 

crystallin amyloid fibril fragments, then crystallin amyloid fibrils assembled from the 

surface bound fragments. The surface assembled crystallin amyloid fibrils appear as 

spherulitic structures very similar to those previously seen with amyloid β fibril 

surface assembly (Ban et al. 2006). The coverage of the crystallin amyloid fibrils on 

the glass surface is reasonably regular, although fine-tuning of the crystallin seeding 

and assembly process may be able to increase the density and distribution of the 

amyloid fibrils to provide more surface area. The electron micrograph results provide 

evidence that crystallin amyloid fibrils can be assembled on the surface of glass 

beads, and that the surface needs to be seeded for surface assembled amyloid fibril 

formation to occur. This is thought to be the first time that crystallin amyloid fibrils 

have been assembled from a surface, and provides a proof of principle for the surface 

assembly of crystallin amyloid fibrils. It is also thought to be the first time that 

crystallin amyloid fibrils have been shown to form spherulitic structures. 
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Figure 3.15 Representative SEM micrographs of the surface of glass beads. A – Not 

seeded, plus crystallin fibrils, B – not seeded, no fibrils (blank), C – 
seeded, no fibrils, D – seeded, plus crystallin fibrils. The scale bar = 1 
μm. 

3.5 Cellulose based surfaces 

Cellulose is manufactured by plants, bacteria and a group of animals called tunicates 

via the condensation polymerisation of glucose (Klemm & Heinze 1998). The native 

state of cellulose in plant cell walls is of a crystalline nature, held together by 

hydrogen bonding (Kamel 2008). The structure of cellulose is shown in Figure 3.16 

(A) and consists of long chains of anhydro-D-glucopyranose units, with each 

cellulose molecule containing three hydroxyl groups (Klemm et al. 2005).  
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Figure 3.16 Chemical structure of cellulose (A) (Klemm et al. 2005), and glass (B) 

(Howarter & Youngblood 2006). 

Cellulose is used in many different applications, but due to its relative inertness and 

insolubility in water, chemical modifications to the surface are often required before 

cellulose can be used (Doheny et al. 1999). Chemical modification of cellulose is 

employed to change the properties of cellulose to suit desired applications. There are 

many different types of chemical modifications that are applied to cellulose 

including: esterifications, etherifications, ionic and radical grafting, acetylation, 

deoxyhalogenation, and oxidation (Kamel 2008). Pahimanolis et al. (2011) used 

click-chemistry to functionalise the surface of nanofibrillated cellulose via the 

etherification of 1-azido-2,3-epoxypropane introducing reactive azide groups, which 

were subsequently reacted with propargyl amine using copper catalysed azide-alkyne 

cycloaddition, creating a pH-responsive material.  

Many enzymes have been immobilised to cellulose based materials such as: 

glucoamylase (Bryjak et al. 2007), and invertase (Bryjak et al. 2008). In most cases 

of enzyme immobilisation, the cellulose surfaces are first functionalised to yield an 

active amine group, to which the enzyme can covalently bind to. Recently, Edwards 

et al. (2011) immobilised lysozyme to cotton, first by functionalising the cotton with 

APTS, then activating the amine group with a carbodiimide. This method is similar 

to how the amyloid fibril fragments will be covalently bound to cellulose based 

materials in this research, and how they were attached to the glass bead surface.  
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The surface chemistry used on the glass is readily adaptable to cellulose because of 

the similar surface chemistry in the form of the hydroxyl groups (Figure 3.16) 

(Aslam & Dent 1998). Silanes have been extensively used to treat cellulose based 

materials not only for enzyme immobilisation but also, for example, to change 

properties such as the wettability and hydrophobicity of the material (Abdelmouleh 

et al. 2004; Yu et al. 2007). The application of APTS and the subsequent template 

directed amyloid fibril self-assembly was therefore expected to be applicable to 

cellulose based materials.  

Two types of cellulose material were used in this research: unbleached, untreated, 

starched cotton; and 20 μm microcrystalline cellulose powder. Cotton was selected 

as a material to investigate the ability to assemble insulin amyloid fibrils because of 

its wide use in many industries, including the textile industry (Klemm et al. 2005). 

The potential to create cotton materials with increased surface area that may 

subsequently be able to be functionalised with biomolecules, could provide a new 

type of surface treatment for the creation of bionanomaterials. Microcrystalline 

cellulose was utilised to aid in the analysis of surface chemistry when the cotton 

fibres were too large. The dry weight of cotton is made up of ~95 % cellulose (Kim 

& Triplett 2001), therefore a direct comparison can be made between cotton and 

microcrystalline cellulose. 

3.5.1 Derivatisation and analysis of cellulose surfaces 

The derivatisation of the microcrystalline cellulose (section 7.14.2) and the cotton 

(section 7.14.1) used very similar methods as were used on the glass beads (section 

3.4.1). The surface chemistry of the cotton and glass beads was not able to be 

analysed with FTIR because of their size not been compatible with the 

spectrophotomer. Microcrystalline cellulose was used because of the similarities of 

the surface chemistry present in the form of hydroxyl groups. In-depth analysis of the 

surface derivatisation of cellulose using FTIR was possible because of the size of the 

microcrystalline cellulose used.  
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FTIR (section 7.2.9) is a technique commonly used when studying chemical 

treatments of cellulose based materials (Yang et al. 1987). FTIR was used to assess 

whether APTS surface derivatisation had been successful in modifying the surface of 

the cellulose, and to confirm the presence of the template directed insulin amyloid 

fibrils on the microcrystalline cellulose. FTIR can be used to assess differences in 

secondary structure of proteins by the amide I peptide band (~1600-1700 cm-1) 

arising from the carbonyl vibrations (Arrondo et al. 1993). 

The 20 µm microcrystalline cellulose samples were treated with APTS (section 

7.14.2) using the same protocol as with the glass beads (section 3.4.1). The samples 

were then analysed by FTIR. Figure 3.17 shows the FTIR spectra of the cellulose 

with and without treatment of APTS, and also pre-heating and post-heating at 110 °C 

of APTS cellulose. Heating at 110 °C causes the condensation reaction to proceed, 

therefore, a reduction in the number of hydroxyl groups should be seen. The 

appearance of a peak at ~ 1575 cm-1 in the APTS treated cellulose samples is 

indicative of an amine group which arises from the amine moiety in APTS (Chiang 

et al. 1980), confirming APTS is present on the cellulose. Chiang et al. (1980) were 

able to analyse APTS on the surface of glass because the glass was a fine powder 

glass, similar in size to the microcrystalline cellulose. 
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Figure 3.17 FTIR of untreated cellulose powder (black), cellulose treated with 

APTS pre-heating (green), and cellulose treated with APTS post-
heating (red). The arrow points towards the amide peak 1575 cm. 
Measurements are the average of 40 scans of each sample.  

To investigate whether the condensation reaction between APTS and cellulose took 

place after heating of the sample, subtraction spectra corresponding to the cellulose 

samples treated with APTS, before and after heating were analysed. Figure 3.18 

shows a peak around 1017 cm-1 on the FTIR spectrum of the pre-heated sample, 

which was attributed to Si-OH groups (Abdelmouleh et al. 2004). This peak 

decreases after heating and a new peak around 1035 cm-1 increases, characteristic of 

Si-O-Si groups (Lu et al. 2008). These peak assignments are in accordance with the 

literature (Chiang et al. 1980), confirming APTS has successfully derivatised the 

surface of the cellulose.  
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Figure 3.18 FTIR subtraction spectra of cellulose powder treated with APTS pre-

heating (black) and post-heating (red). The baseline of the cellulose 
powder only has been subtracted from the two samples. Measurements 
are the average of 40 scans of each sample.  

3.5.2 Template directed self-assembly of insulin amyloid fibrils on cellulose 

surfaces 

An almost identical method to that used on the glass beads for template directed self-

assembly of insulin amyloid fibrils was used for the cellulose surfaces (section 7.14.3 

and 7.14.4). When using the microcrystalline cellulose, extra care was needed when 

washing the cellulose due to its size and the possibility of decanting the cellulose 

during the wash steps. The cotton also required extra drying because of the 

absorptive nature of cotton. 
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To assess the presence of insulin amyloid fibrils on the surface of the cellulose based 

materials, ThT fluorescence of the materials was investigated. ThT fluorescence of 

the microcrystalline cellulose samples used the 96 well plate reader (section 7.2.8). 

This method proved unsuitable due to the extreme high background fluorescence of 

the cellulose only sample. ThT has been shown to bind to cellulose (Raj & Ramaraj 

2001) and the fact that microcrystalline cellulose was used may have increased the 

background fluorescence due to its high binding capacity compared to the cotton 

material. A surface fluorescence spectrophotometer was used to assess the ThT 

fluorescence of the cotton samples (section 7.2.9). The cotton samples were placed 

between two microscope cover slips and the surface fluorescence measured at an 

angle of 90 °. Figure 3.19 shows the ThT fluorescence of the template directed 

insulin amyloid fibril cotton samples. As can be seen, the cotton samples which had 

been seeded with insulin amyloid fragments, then mature insulin amyloid fibrils 

assembled had the highest ThT fluorescence. This confirms for the first time that 

template directed insulin amyloid fibril formation can occur on cellulose based 

materials as well as glass surfaces.  
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Figure 3.19 ThT fluorescence of cotton samples. (■) – Seeded and fibrils 

assembled, (■) – Seeded and fibrils not assembled, (■) – Not seeded, 
and fibrils assembled, (■) – Not seeded and fibrils not assembled. 
Measurements are the average of 3 replicates of each sample and the 
error is the standard deviation of the mean.  

Because the ThT assay could not be used on the microcrystalline cellulose, FTIR was 

employed to monitor the insulin amyloid fibril secondary structure. FTIR requires 

dried samples to minimise background noise from H2O, therefore the surface 

assembled microcrystalline cellulose samples were first thoroughly dried at 37 °C for 

1 week. Figure 3.20 shows the second derivative FTIR spectrum of cellulose powder 

which had either been seeded with insulin fragments or not seeded, then mature 

amyloid fibrils assembled or not assembled. There is the appearance of a shoulder at 

about ~1630 cm-1 in the samples that contain amyloid fibrils, which reveals the 

presence of a parallel β-sheet hydrogen bond networks (Bouchard et al. 2000). The 

sample that was not seeded, but had amyloid fibrils assembled also has the ~1630 

cm-1 shoulder, therefore must contain amyloid structures as well.  This result would 

agree with results previously seen in which insulin amyloid fibril formation was 

monitored in solution by FTIR (Bouchard et al. 2000). This provides good evidence 

that insulin amyloid fibrils can be assembled on the surface of microcrystalline 

cellulose.  
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Figure 3.20  FTIR of APTS treated cellulose powder. All spectra had their second 

derivative taken. (Black) is not seeded and no fibrils assembled, (red) is 
seeded, no fibrils assembled, (green) is not seeded, but fibrils 
assembled, and (blue) is seeded, and fibrils assembled. The arrows 
point to the shoulder corresponding to the presence of a β-sheet 
secondary protein structure. Measurements are the average of 40 scans 
of each sample. 
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3.6 Summary 

Bovine insulin and fish eye lens crystallin amyloid fibrils have been successfully 

manufactured and characterised in solution. Both the solution assembled amyloid 

fibrils showed the unbranched, twisted, fibrillar morphology, characteristic of 

amyloid fibrils. The crystallin amyloid fibrils were slightly wider and considerably 

longer than the insulin amyloid fibrils. Highly reproducible template directed self-

assembly of bovine insulin amyloid fibrils was shown to be possible on the surface 

of glass beads, and for the first time the methodology was shown to be applicable to 

crystallin amyloid fibrils. This could imply that surface assembly may be applicable 

to any amyloid forming protein. The surface assembled crystallin amyloid fibrils had 

a spherulite appearance when viewed with SEM. This is thought to be the first time a 

spherulite structure has been seen for crystallin amyloid fibrils. Template directed 

self-assembly of bovine insulin amyloid fibrils has also been confirmed on cellulose 

based surfaces for the first time. Demonstrating surface assembly of insulin amyloid 

fibrils on cellulose based materials suggests that they could be assembled on other 

surfaces as well, although more work is needed to establish if insulin amyloid fibril 

surface assembly is a property of other surfaces. 
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Chapter Four 

4 Amyloid fibrils as a biomolecule nanoscaffold in 

solution 

4.1 Introduction 

This chapter will explore the use of bovine insulin and fish eye lens crystallin protein 

nanoscaffolds in solution, to which the enzymes purified and characterised in chapter 

two will be immobilised using the model cross-linker glutaraldehyde. Specifically, 

OPH was thoroughly investigated to determine immobilisation conditions that can 

then potentially be applied to P450BM3, GFP, TEV protease and GOD. The diversity 

of biomolecule immobilisation should help with understanding if insulin amyloid 

fibrils can act as a versatile nanoscaffold. 

4.2 Glutaraldehyde cross-linking 

Glutaraldehyde (GA) is a homo-bifunctional cross-linking agent containing two 

aldehyde groups on a five carbon chain (Figure 4.1). GA is the most commonly used 

example of bis-aldehydes with uses in microscopy, cytochemistry, leather tanning, 

enzyme technology and chemical sterilisation (Migneault et al. 2004). In this 

research, GA was used for the cross-linking of enzymes to amyloid fibrils. 

 
Figure 4.1  Structure of glutaraldehyde (Whipple & Ruta 1974). 
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GA is known to react with several functional groups of proteins, including, amine, 

thiol, phenol and imidazole moieties (Habeeb & Hiramoto 1968). The most reactive 

species towards GA are the ε-amino groups, followed by the α-amino groups, which 

correspond to the primary amino group present in lysine residues, and the N-terminal 

amino group present in proteins, respectively (Migneault et al. 2004). Lysine was the 

target for cross-linking using GA because it is reactive towards GA, and, is a 

common amino acid which is frequently located on the protein surface (Brady & 

Jordaan 2009). The mechanism by which GA reacts with the amino groups of 

proteins is still under debate. One possible mechanism is via the formation of a 

pyridinium cross-link, as shown in Figure 4.2 (Hermanson 1996; Meade et al. 2003). 

 
Figure 4.2 Proposed mechanism for formation of pyridinium cross-links. Adapted 

from Meade et al. (2003). 

GA is one of the most commonly used and studied cross-linking agents for 

immobilising enzymes. Other typical bifunctional cross-linkers used include: 

dimethyl suberimidate, disuccinimidyl tartrate, disuccinimidyl carbonate (DSC), N-

hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropryl) carbodiimide 

(EDC) (Moehlenbrock & Minteer 2011). GA was selected as the cross-linking agent 

for enzyme immobilisation in this research because it is simple to use, cheap, and 

highly reactive towards proteins. NHS in combination with EDC was also 

investigated as an alternative cross-linking method in preliminary studies, but the 

process was more difficult and did not produce cross-linked protein products as 

easily, therefore they were not used.  
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Because GA is extremely reactive towards proteins, there can be problems of 

creating large, often poorly defined protein aggregates if the reaction is not 

completed in a controlled way (Stratis 1969). When trying to cross-link two proteins 

using GA, the cross-linking targets are the same on both proteins, therefore, it can be 

very difficult to control the intra- and intermolecular cross-linking (Hermanson 

1996). A two-step immobilisation protocol that first reacts the GA with one of the 

proteins, creating one activated protein, then adding the second protein, can be used 

to very good effect. This protocol limits the intramolecular cross-linking, and 

maximises the intermolecular cross-linking (Hermanson 1996). The concentration of 

GA present can also have a major influence on the cross-linking reaction, therefore, 

the procedure needs to be thoroughly investigated to achieve optimised conjugation. 

Although there are recognised shortcomings of homo-bifunctional cross-linkers, they 

work very well for many applications. 

4.3 Organophosphate hydrolase immobilisation method 

development 

OPH was recombinantly overexpressed and purified as outlined in chapter two. The 

immobilisation procedure to cross-link OPH to the amyloid fibrils used a two-step 

procedure. First, the GA was reacted with the amyloid fibrils to create an activated 

nanoscaffold, secondly, the OPH was added to create the functionalised amyloid 

fibrils. A two step procedure was used to limit OPH-OPH cross-linking and 

maximise the amount of OPH cross-linked to the amyloid fibrils. The specifics of the 

procedure required thorough investigation in preliminary experiments, to optimise 

the desired cross-linking. 
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Figure 4.3 shows the surface of the OPH and MBP crystal structures with the lysine 

residues highlighted in pink, to illustrate the lysine residues theoretically available 

for cross-linking with GA. There is no crystal structure of the OPH-MBP fusion 

protein, therefore the two structures are shown individually. Because it was shown in 

chapter two that the activity of the OPH-MBP fusion protein has very similar 

catalytic constants as the wild-type OPH, and because the MBP has many potential 

lysine residues available for cross-linking, it was initially decided to keep the MBP 

tag attached to the OPH. 

 
Figure 4.3 Crystal structures of A – OPH (PDB 1EZ2) (Benning et al. 2000), and 

B – MBP (PDB 3MBP) (Quiocho et al. 1997) showing the surface with 
the lysine residues coloured in pink. 

OPH has previously been immobilised to a wide range of matrices including trityl 

agarose (Caldwell & Raushel 1991), polyurethane (Havens & Rase 1993), 

polyethylene glycol (Andreopoulos et al. 1999), silicone (Gill & Ballesteros 2000), 

carbon nanotubes (Borkar et al. 2010; Pedrosa et al. 2010) and gelatin pads 

(Kanugula et al. 2011). A variety of immobilisation techniques have been applied to 

OPH, for example, cross-linked enzyme aggregates (Laothanachareon et al. 2008), 

sol-gel encapsulation (Frančič et al. 2011), and self-assembly into hydrogels by 

fusion with an α-helical leucine zipper domain (Lu et al. 2010). The inspiration for 

the majority of research into OPH is for the creation of biosensors for detection of 

OP and/or chemical detoxification of OP. As stated in section 2.2, there is a need for 

a cheap, reliable, and reusable method for the bioremediation of OP and their 

chemical detoxification (Kanugula et al. 2011). Thus, immobilisation of OPH to an 

amyloid fibril nanoscaffold could provide a cheap and effective method to enhance 

the stability and reusability of OPH. 
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4.3.1 OPH cross-linking method development 

Different concentrations of GA were initially investigated to determine what effect 

GA concentration had on the activity of OPH. A starting concentration of 7.6 mg/mL 

of OPH was used in the experiments because this was the concentration of the eluted 

protein after purification. At this protein concentration, the lysine concentration of 

the OPH-MBP fusion corresponds to 3.65 mM. Table 4.1 shows with increasing 

concentrations of GA, there is a progressive drop in the activity of OPH when 

compared to an OPH sample with no GA.  

Table 4.1 Activity of OPH when cross-linked to another OPH molecule for 1 hour 
at 37 °C with different concentrations of GA. % Activity is the initial 
rate of reaction compared against the 0 mM GA sample. All reactions 
were carried out in triplicate and the error is the standard deviation of 
the mean. 

Final conc. of GA (mM) % Activity Error 
0 100 ± 12 

2.5 83 ± 7 
3.75 79 ± 11 

5 82 ± 5 
10 51 ± 5 
15 40 ± 2 
20 35 ± 2 
25 35 ± 6 

The same samples were also investigated by SDS-PAGE (Figure 4.4), which shows 

that when using the lowest final concentration of 2.5 mM GA, almost all of the OPH 

has been cross-linked to another OPH molecule, because there is only a faint protein 

band at ~ 77 kDa compared to the control (lane 1). At final concentrations of 15 mM 

or higher, very large OPH aggregates had formed, which were unable to enter the 

polyacrylamide gel, shown by the lack of visible protein bands in the gel (lanes 6, 7 

and 8). The presence of large aggregates corresponds well with the activity drop 

shown in Table 4.1 suggesting that these aggregated structures are inactive. The 

inactivity could be caused by cross-linking of lysine 169 in the active site, which is 

known to bridge the two metal ions required for catalysis (Aubert et al. 2004), or by 

restriction of the active site binding pocket which would not allow the substrate to 

bind.  
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Figure 4.4 SDS-PAGE gel of OPH cross-linked to itself using different final 

concentrations of GA for 1 hour at 37 °C. L – ladder, 1 – 0 mM GA, 2 – 
2.5 mM GA, 3 – 3.75 mM GA, 4 – 5 mM GA, 5 – 10 mM GA, 6 – 15 
mM GA, 7 – 20 mM GA, 8 – 25 mM GA. 

From the results in Table 4.1 and Figure 4.4, 2.5 mM GA was selected as the final 

concentration cross-linker to use when cross-linking OPH. Using 2.5 mM GA with 

7.6 mg/mL OPH means there are ~1.5 times more potential amino groups to react 

than there is GA, potentially therefore all of the GA will react with the OPH.  

OPH was cross-linked to another OPH molecule over time to evaluate the time 

required for cross-linking to occur (Figure 4.5). As can be seen, at time 0 some 

cross-linking has already occurred, indicating that GA cross-linking occurs very 

quickly under the chosen conditions. 1 hour was selected as the time for the cross-

linking reaction because at 60 mins a good amount of OPH-OPH cross-linking had 

occurred, whilst not creating many larger order aggregates. 
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Figure 4.5 SDS-PAGE gel of OPH cross-linked to itself using over time using 2.5 

mM GA at 4 °C. L – ladder, 1 – 0 mins, 2 – 30 mins, 3 – 60 mins, 4 – 90 
mins, 5 – 120 mins, 6 – no GA. 

Once the cross-linking time was selected, cross-linking temperature was investigated. 

As can be seen in Figure 4.6, 37 °C (lane 5) was the temperature that gave the most 

cross-linking, as judged by SDS-PAGE. The 37 °C cross-linked OPH was run on a 

size exclusion chromatography column (section 7.2.16) to detect the difference in 

elution volume compared to non-cross-linked OPH, and to recover the cross-linked 

OPH fractions for activity testing to investigate the effect of cross-linking on activity. 

 
Figure 4.6 SDS-PAGE gel of OPH cross-linked to itself at different temperatures 

using 2.5 mM GA. L- ladder, 1 – no GA, 2 – 1 °C, 3 – 4 °C, 4 – 25 °C, 
5 – 37 °C. 
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Figure 4.7 shows the difference in elution peaks between cross-linked and non-

cross-linked OPH. The cross-linked OPH sample displays a new peak at ~11 mL, 

indicating the presence of larger OPH species. The cross-linked OPH peaks were 

collected and initial rates investigated (section 7.9.1) to explore if the cross-linked 

OPH had altered specific activity. The specific activity was 0.000138 and 0.000134 

AUs-1/mAU for the ~11 mL and ~ 13 mL peaks, respectively. This confirms that 

cross-linking does not hinder the activity of OPH significantly. This was a positive 

result for the potential immobilisation of OPH to insulin amyloid fibrils because 

OPH was predicted to retain activity when cross-linked to the amyloid fibrils. 

 
Figure 4.7 Size exclusion chromatography showing OPH (■), and OPH cross-

linked to itself using a final concentration of 2.5 mM GA, for 1 hour at 
37 °C (■). The activity of different elution samples of the OPH cross-
linked to itself sample is given by (■). 

From the experiments in this section it was decided to use a final concentration of 2.5 

mM GA, for 1 hour, at 37 °C as the cross-linking conditions to immobilise OPH to 

the insulin amyloid fibrils. To stop the reaction from continuing after 1 hour, 2-

amino-2-hydroxymethyl-propane-1,3-diol (tris) was added to quench any unreacted 

GA. Tris contains a primary amine and therefore can react with any unreacted GA. 



Amyloid fibrils as a biomolecule nanoscaffold in solution 115 
 

4.3.2 Insulin amyloid fibril cross-linking method development 

The effect of insulin amyloid fibrils in solution with the OPH and the consequence 

on activity (section 7.9.1) was first investigated. Figure 4.8 shows that with 

increasing concentrations of insulin amyloid fibrils there is a decrease in OPH 

activity. This result was not ideal, but it was decided to use a starting concentration 

of 5.8 mg/mL (~1 mM) of the insulin amyloid fibrils because this is the 

concentration used to form the insulin amyloid fibrils via the in-house method. A 

starting concentration of 5.8 mg/mL insulin amyloid fibrils gives a final 

concentration of 1.9 mg/mL insulin fibrils in the immobilisation reaction because all 

parts of the reaction (GA, OPH, and fibrils) are added in a 1:1:1 v/v ratio. At a 

concentration of 1.9 mg/mL insulin amyloid fibrils, OPH retains the majority its 

activity, and from the FITC amine binding results (section 3.2.1), will provide ~0.3 

mM amine groups for cross-linking with GA. There is no crystal structure of bovine 

insulin amyloid fibrils, it is therefore being assumed that some of the lysine residues 

and N-terminal residues are available on the surface of the amyloid fibrils for cross-

linking because FITC was able to bind to them. The loss in OPH activity when 

incubated with insulin amyloid fibrils implies there could be an intrinsic association 

between OPH and the insulin amyloid fibrils. This interaction could have a positive 

benefit because there may not be the need for a cross-linking reagent. 
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Figure 4.8 Initial rates of OPH when incubated with different final concentrations 

of insulin amyloid fibrils. Each sample was measured in triplicate and 
the error bars represent the standard deviation of the mean.  

Insulin amyloid fibrils were then tested as an immobilisation scaffold for OPH by 

cross-linking with GA. After the cross-linking method development, the 

immobilisation conditions chosen were: a starting concentration of 5.8 mg/mL 

bovine insulin amyloid fibrils; with a starting concentration of 7.5 mM GA; and a 

starting concentration of 7.6 mg/mL OPH; incubated for 1 hour at 37 °C and 

quenched with an equal part of 100 mM tris (section 7.11.1). OPH was cross-linked 

to the insulin amyloid fibrils with GA and the sample, with controls, were evaluated 

with native PAGE. Figure 4.9 shows that when OPH is immobilised to the insulin 

amyloid fibrils using GA (lane 5), the OPH bands, when compared to the OPH only 

control (lane 3) and OPH cross-linked to OPH with GA (lane 4), cannot be seen. This 

is due to insulin amyloid fibrils being large and insoluble, and therefore not able to 

enter the polyacrylamide gel, as shown by the insulin amyloid fibril controls (lanes 1 

and 2). Thus, if OPH has been successfully immobilised to the insulin amyloid 

fibrils, the immobilised OPH cannot enter the polyacrylamide gel. The samples 

containing OPH were loaded with one lane between each sample, to minimise cross 

contamination. The native PAGE gel in Figure 4.9, therefore provides evidence that 

OPH can be immobilised to insulin amyloid fibrils using GA.  
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Figure 4.9 Native PAGE gel of cross-linking OPH (7.6 mg/mL) to insulin amyloid 

fibril (5.8 mg/mL) samples. L – ladder, 1 – fibrils, 2 – fibrils + GA, 3 – 
OPH, 4 – OPH + GA, 5 – OPH + GA + fibrils, 6 – OPH + fibrils. 

The immobilised OPH samples were also investigated using SDS-PAGE (Figure 

4.10). Figure 4.10 shows the sample that contains OPH immobilised to the insulin 

amyloid fibrils with GA (lane 3), only has a very faint protein band present in the 

gel, compared to the controls, implying that the OPH has been successfully 

covalently immobilised to the insulin amyloid fibrils and cannot enter the gel. 

 
Figure 4.10 SDS-PAGE gel of cross-linking OPH (7.6 mg/mL) to insulin amyloid 

fibril (5.8 mg/mL) samples. L – ladder, 1 – OPH, 2 – OPH + GA, 3 – 
OPH + GA + fibrils, 4 – OPH + fibrils, 5 – fibrils, 6 – fibrils + GA. 
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ThT fluorescence (section 7.2.8) was used in combination with centrifugation to 

demonstrate that insulin amyloid fibrils could be collected using centrifugation. 

Figure 4.11 shows that upon centrifugation the fluorescence of the supernatant 

compared to the initial fluorescence of the insulin amyloid fibril solution drops to 

about the level of the blank solution, containing ThT only. This confirms that 

centrifugation can be used to collect insulin amyloid fibrils. 

 
Figure 4.11 ThT fluorescence of insulin amyloid fibril samples pre- (initial) and 

post-centrifugation (supernatant), compared against a blank solution 
containing ThT only. All measurements were carried out in triplicate 
and the errors bars represent the standard deviation of the mean. 
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4.3.3 Crystallin amyloid fibril cross-linking method development 

Crystallin proteins extracted from fish eye lenses were used in the manufacture of 

crystallin amyloid fibrils (section 7.10.5). Amyloid fibril formation was confirmed 

by TEM (section 3.2.2) (section 7.2.11). Initially OPH was cross-linked to the 

crystallin amyloid fibrils at a range of GA concentrations and pHs, and the samples 

analysed by SDS-PAGE (Figure 4.12). The ε-amino group of lysine has a pKa of > 

9.5 (Migneault et al. 2004), and therefore a more alkaline pH results in more cross-

linking occurring with GA due to the ε-amino groups being deprotonated. OPH runs 

as a single protein band at ~77 kDa in a SDS-PAGE gel. This protein band is only 

noticeably visible in lane 1 containing the lowest GA concentration (2.5 mM) and the 

lowest pH (7). Protein bands larger than ~77 kDa means that OPH has been cross-

linked to one or more other OPH molecules. The trend of the gel is that with 

increased GA concentration and increasing pH, larger OPH species are formed. The 

gel showed very different results from when OPH was immobilised to insulin 

amyloid fibrils using GA (section 4.3.2), suggesting that no immobilisation to the 

crystallin amyloid fibrils was occurring, and that only OPH cross-linked to other 

OPH molecules was observed. The cross-linking results look similar to the results 

when OPH is cross-linked to another molecule of OPH in the absence of insulin 

amyloid fibrils, using GA (section 4.3.1). 
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Figure 4.12 SDS-PAGE gel of OPH cross-linked to crystallin amyloid fibrils (final 

concentration 1.9 mg/mL) at pHs 7, 8, and 9, and final concentrations 
of 2.5, 5, 10, and 20 mM GA. L – ladder, 1 – 2.5 mM GA, pH 7, 2 – 5 
mM GA, pH 7, 3 – 10 mM GA, pH 7, 4 – 20 mM GA, pH 7, 5 - 2.5 mM 
GA, pH 8, 6 – 5 mM GA, pH 8, 7 – 10 mM GA, pH 8, 8 – 20 mM GA, 
pH 8, 9 – 2.5 mM GA, pH 9, 10 – 5 mM GA, pH 9, 11 – 10 mM GA, pH 
9, 12 – 20 mM GA, pH 9. 

It was decided to use 2.5 mM GA, a cross-linking pH of 9, at 37 °C for 1 hour, 

because of the success of these parameters with insulin amyloid fibrils. The OPH 

immobilisation samples were analysed using SDS-PAGE, as shown in Figure 4.13. 

This gel confirms that no cross-linking of OPH to the crystallin amyloid fibrils was 

occurring. The sample containing OPH, GA and crystallin fibrils (lane 4) has very 

similar protein bands compared to the OPH and GA only (lane 2) sample, implying 

that OPH is not being covalently immobilised to the crystallin amyloid fibrils. In-

house attempts to immobilise other enzymes to the crystallin amyloid fibrils using 

GA were tried, but successful immobilisation conditions could not be found 

(Personal comm. Roberts 2010). Initial in-house results have found the crystallin 

proteins that form the crystallin amyloid fibrils are glycosylated (Personal comm. 

Domigan 2012), which may be inhibiting the GA cross-linking reaction. Research to 

immobilisation biomolecules to crystallin amyloid fibrils was therefore discontinued, 

and more research is needed to be able to immobilise biomolecules to the crystallin 

amyloid fibrils. 
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Figure 4.13 SDS-PAGE gel of cross-linking OPH to crystallin amyloid fibril 

samples with the in-house method. L – ladder, 1 – OPH, 2 – OPH + 
GA, 3 – OPH + fibrils, 4 – OPH + GA + fibrils.  
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4.4 Characterisation of OPH immobilised to insulin amyloid 

fibrils 

Once reproducible conditions to immobilise OPH to the insulin amyloid fibrils were 

established (section 7.11.1), the immobilised OPH was investigated using the p-

nitrophenol activity assay (section 7.9.1), centrifugation to assay the amount of OPH 

immobilised, thermostability assays, SDS-PAGE, and TEM.1 It is known that by 

covalently immobilising enzymes to insoluble supports, an increase in the 

thermostability is common because of the buttressing effect imparted from the 

support and cross-linker (Sheldon 2007). This buttressing can also have negative 

effects on the activity of an enzyme because enzymes often require some flexibility 

for their catalytic activity and therefore any conformational restriction can impair the 

activity of the enzyme (Halling et al. 2005). Covalently immobilising multimeric 

enzymes like OPH can also cause problems because if only one of the monomers is 

covalently bound to the support, there is a chance that the other monomer could 

dissociate (Brady & Jordaan 2009). 

OPH, despite being a multimeric enzyme, has the advantage of very high catalytic 

activity over other enzymes. OPH catalyses the reaction of paraoxon to form diethyl 

phosphate and p-nitrophenol with a kcat/Km value of 108 M-1s-1, which is close to the 

diffusion-controlled limit (Chen et al. 2007). This extreme efficiency suggests that if 

there is some loss in the activity of OPH when it is immobilised, it is likely to remain 

an efficient catalyst. 

                                                 

 

1 This work was published in Biotechnology Progess (2011). Raynes, J. K., Pearce, F. G., Meade, S. 
J., Gerrard, J. A., 2011. Immobilization of organophosphate hydrolase on an amyloid fibril 
nanoscaffold: Towards bioremediation and chemical detoxification. Biotechnology Progress, 27(2), 
pp.360-367. 
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Initially, there were problems of OPH inactivation after the immobilisation reaction. 

This turned out to be a pH problem because of the low pH HCl buffer the amyloid 

fibrils are formed in. This was solved by increasing the OPH buffer concentration to 

offset the low pH. Another problem was the development of OPH initial rates that 

were higher when immobilised to the amyloid fibrils, than the non-immobilised 

OPH. Preliminary results looked very promising, but OPH is a metallo enzyme 

requiring Zn2+, and bovine insulin natively has Zn2+ associated with it, therefore it 

was found there was not enough Zn2+ in the OPH buffer, and the Zn2+ from the 

insulin amyloid fibrils was activating apo-OPH. In this research the S5-OPH mutant 

was used, and as stated in section 2.2, this mutation stabilises the apo form of the 

protein, therefore, the use of S5-OPH could have created as excess of apo-OPH 

during the purification.  

With these issues resolved, OPH was immobilised to the insulin amyloid fibrils using 

the established protocol, and the activity of the immobilised samples were 

investigated using the p-nitrophenol assay (section 7.9.1). Figure 4.14 shows the 

initial rates of the immobilised OPH samples. When OPH is cross-linked to another 

molecule of OPH using GA, it loses some activity, as previously seen in section 

4.3.1. OPH also loses some activity when in solution with insulin amyloid fibrils 

without any GA, as previously seen in section 4.3.2. The interesting result is that 

when OPH is immobilised to the insulin amyloid fibrils using GA, it loses about the 

same amount of activity as when OPH is cross-linked to another OPH molecule. This 

implies that either OPH has only been cross-linked to another OPH molecule, or that 

when OPH is immobilised to the insulin amyloid fibrils, it loses the same amount of 

activity because of the restriction on protein conformation from GA. To assess which 

process was occurring, centrifugation was used to investigate whether OPH activity 

was associated with the amyloid fibrils, or if OPH was only cross-linked to another 

molecule in solution. 
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Figure 4.14 Initial activity using the p-nitrophenol assay of immobilised OPH 

samples. 1 – OPH, 2 – OPH + GA, 3 – OPH + fibrils, 4 – OPH + GA 
+ fibrils. All measurements were carried out in triplicate and the errors 
bars represent the standard deviation of the mean. 

To measure if and how much OPH was being immobilised to the insulin amyloid 

fibrils, activity testing was conducted on the immobilised OPH samples pre- and 

post-centrifugation. Testing the activity of the immobilised OPH solutions pre- and 

post-centrifugation gave the relative amount of OPH activity that was immobilised to 

the insulin amyloid fibrils. Figure 4.15 shows the relative activity pre- and post-

centrifugation of the immobilised OPH samples at pH 7. As can be seen, the sample 

which had the most OPH activity (~40 %) associated with the insulin amyloid fibrils 

was sample 4, containing OPH immobilised to insulin amyloid fibrils with GA. This 

provides good evidence that GA can be used to covalently immobilise OPH to 

insulin amyloid fibrils.  
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Figure 4.15 Relative activity of OPH samples immobilised at pH 7 pre- (■) and 

post-centrifugation (■).1 – OPH, 2 – OPH + GA, 3 – OPH + fibrils, 4 
– OPH + GA + fibrils. Each sample had three replicates and the error 
bars represent the standard deviation of the mean. 

Thermostability of enzymes is one of the major obstacles hindering their use in 

industry (Cao et al. 2003). OPH has a melting temperature of ~51.8 °C (section 

2.2.2), which is comparatively low compared to other industrially relevant enzymes 

like glucose isomerase with an optimal temperature from 60-80 °C (Bhosale et al. 

1996). As stated in section 1.5.5, covalent cross-linking of enzymes can result in an 

increase in stability due to restriction of enzyme movement from the buttressing 

effect from the cross-links (Spahn & Minteer 2008). The thermostability of the 

immobilised OPH was investigated to assess if the insulin amyloid nanoscaffold can 

impart extra stability to OPH. 
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 Thermostability of the immobilised OPH samples was investigated at 30, 40, and 50 

°C, and at cross-linking pHs of 7, 8, and 9. OPH was buffer exchanged into the 

desired buffer containing 100 mM HEPES pH 7, 8, or 9 for the cross-linking 

reaction. HEPES was chosen because of its wide (pH 6.8-8.2) buffering range, so 

that the each immobilisation sample contained the same chemical composition 

(Sigma-Aldrich 2012). pH 9 is slightly outside of the HEPES buffering range, but 

when OPH in 100 mM HEPES pH 9 was used in the cross-linking reaction, the 

reaction maintained a pH very close to 9. Once OPH had been immobilised to the 

insulin amyloid fibrils, samples were incubated at the appropriate temperature for a 

set amount of time before being place on ice, and the activity of the OPH sample 

tested. The activity of all individual samples at time zero were given an activity of 

100 %, and subsequent measurements were compared relative to this measurement.  

Figure 4.16 shows the relative activity of the immobilised OPH samples. There are 

two general trends present: At 40 and 50 °C, and all immobilisation pHs, the sample 

which retains the greatest relative activity during the thermostability experiment is 

the sample where OPH is covalently immobilised to the insulin amyloid fibrils using 

GA. The covalently immobilised OPH retains ~25 % of its relative activity, 

compared to 5-10 % for the OPH control. The samples containing OPH cross-linked 

to another molecule of OPH using GA retained about the same amount of activity as 

the OPH control, implying it is not the GA providing the increase in thermostability, 

and therefore, is most likely due to the OPH been covalently immobilised to the 

insulin amyloid fibrils. Interestingly, the samples which have OPH and insulin 

amyloid fibrils but no GA, also have an increase in thermostability, implying insulin 

amyloid fibrils bestow some gain in stability, probably due to OPH being adsorbed to 

the insulin amyloid fibrils. The second trend is that at 30 °C and all immobilisation 

pHs, the results are completely opposite to the 40 and 50 °C results. The OPH 

control samples actually show an increase in the relative activity after incubation for 

3 days. The 30 °C thermostability experiment was repeated to ensure the result was 

reproducible. Therefore, it was decided to investigate the 30 °C results further by 

SDS-PAGE (appendix 1). 
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Figure 4.16 Thermostability testing of immobilised OPH samples using relative 
activity from the p-nitrophenol assay. The relative activity was taken as 
100 % activity from time zero for each sample, pH, and temperature. 
(■) – OPH, (■) – OPH + GA, (■) – OPH + insulin amyloid fibrils, (■) 
– OPH + GA + insulin amyloid fibrils. Each sample had three 
replicates and the error bars represent the standard deviation of the 
mean. 
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Once OPH had been immobilised to the insulin amyloid fibrils, TEM was used to 

investigate the change in the morphology of the prepared amyloid fibrils. Figure 

4.17 shows that upon immobilisation of OPH to the insulin amyloid fibrils using GA 

the morphology of the amyloid fibrils appear wider (~10 nm) and less well defined. 

This could be due to the amyloid fibrils been covered with OPH, because the short 

side-to-side distance of OPH is ~5 nm, or because the amyloid fibrils have been 

cross-linked together. However, the large surface area nanoscaffold remained intact.  

 
Figure 4.17 TEM micrographs of A – insulin amyloid fibrils, B – OPH immobilised 

to insulin amyloid fibrils with GA. The scale bars = 200 nm. Each 
micrograph is representative of the overall sample. 

This section confirms that OPH can be immobilised to insulin amyloid fibrils using 

GA, and that insulin amyloid fibrils could potentially be used as a new type of 

nanoscaffold for enzyme immobilisation. Upon OPH immobilisation to the 

nanoscaffold, OPH loses ~35 % of its activity, which is equivalent to when OPH is 

cross-linked to another molecule of OPH using GA. The loss in activity is probably 

due to GA cross-linking hindering the natural movement of the enzyme, or due to 

diffusion effects, because OPH catalyses paraoxon near the limits of diffusion. A loss 

in activity due to diffusional effects with amyloid fibrils has been reported before 

with barnase and carbonic anhydrase, which are both also near-diffusion-limited 

enzymes (Baxa et al. 2002).  
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Covalently immobilised OPH showed a significant (~300 %) increase in the relative 

thermostability at 40 and 50 °C, compared to free OPH, and OPH cross-linked to 

itself using GA. The thermostability at 30 °C after three days free OPH started to 

show an increase in activity, compared to the immobilised OPH which lost activity. 

This was due to protease activity cleaving the MBP from the MBP-OPH fusion. OPH 

without the MBP has a higher catalytic efficiency and this caused the increase in 

activity to be seen (Refer appendix 1). Interestingly, there seems to be an intrinsic 

association between OPH and insulin amyloid fibrils, shown by a drop in activity 

when in solution together, centrifugation of some OPH activity when collecting the 

amyloid fibrils, and from the slight increase in thermostability at 40 and 50 °C. The 

morphology of the insulin amyloid fibrils changes to be wider and less well defined 

when OPH is immobilised to them using GA, which is consistent with OPH covering 

the surface of the amyloid fibrils. 

4.5 Cytochrome P450BM3 immobilisation method development 

P450BM3 was recombinantly overexpressed and purified as outlined in chapter two. 

The immobilisation procedure to cross-link P450BM3 to the insulin amyloid fibrils 

used the same two-step protocol as used with OPH. Figure 4.18 shows the crystal 

structure of the surface of P450BM3 with the lysine residues highlighted in pink to 

show the theoretically available lysine residues for cross-linking using GA.  

 
Figure 4.18 Crystal structure of P450BM3 (PDB 1BVY) (Sevrioukova et al. 1999) 

showing the surface with the lysine residues coloured in pink. 
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Research into P450BM3 immobilisation has used a number of methods and matrices 

including: entrapment in a sol-gel with the view to produce fine chemicals (Maurer et 

al. 2003), entrapment in polypyrrole for use as an electrochemical enzyme to bypass 

the need for NADPH (Holtmann et al. 2009), mesoporous silicates for an arachidonic 

acid biosensor (Weber et al. 2010; Giovannozzi et al. 2011), and DEAE-650S anion 

media entrapped in k-carrageenan to investigate the use of Zn/Co(III) as a cofactor 

instead of NADPH (Zhao et al. 2011).  

The main area of interest in studying P450BM3 is to use mutants of the enzyme to 

produce fine chemicals because of the potential reactions that it can catalyse 

(Whitehouse et al. 2012). P450BM3 is a difficult enzyme to immobilise because of its 

reliance on NADPH co-factors from its reductase domain, which can be easily 

hindered with immobilisation (Weber et al. 2010). Therefore, immobilisation on an 

amyloid fibril nanoscaffold may provide a support that is beneficial towards P450BM3 

activity and stability. 

4.5.1 P450BM3 cross-linking method development 

Based on the results obtained from the OPH cross-linking method development, final 

concentrations of 2.5, 5, and 7.5 mM GA were initially investigated to ascertain if 

P450BM3 could be cross-linked to another molecule of P450BM3, and what effect the 

cross-linking had on the activity of the enzyme. Table 4.2 shows that <2.5 mM 

concentrations of GA, P450BM3 is inactivated.  

Table 4.2 Initial rates of P450BM3 when cross-linked intramolecularly for 1 hour 
at 4 °C with different concentrations of GA. - = rate was below 
measurable rates. All reactions were carried out in triplicate and the 
error is the standard deviation of the mean. 

Final conc. of GA (mM) Rate (AU/s) Error 
0 0.0126 ± 0.0015 

2.5 - - 
5 - - 

7.5 - - 
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Cross-linked P450BM3 samples were analysed by CD spectroscopy (section 7.2.15) to 

determine if GA was altering the secondary structure of the enzyme, consequently 

inactivating it. Figure 4.19 shows the CD spectra of the P450BM3 cross-linked samples 

with different concentrations of GA. The result show GA is not affecting secondary 

structure, therefore, GA must be inactivating the enzyme by another means, possibly via 

interaction with arginine 47 at the mouth of the active site, which has been shown to 

play a significant role in the stabilisation of the lauric acid carboxylate group (Noble et 

al. 1999).  

 
Figure 4.19 CD spectroscopy of P450BM3 (0.2 mg/mL) cross-linked using different 

concentrations of GA, at 37 °C for 1 hour. (■) – Buffer control, (■) – 
2.5 mM GA, (■) – 5 mM, (■) – 7.5 mM GA, (■) – 10 mM GA. The 
measurements were the average of three scans of each sample. 

Figure 4.20 shows the interaction of P450BM3 with 2.5 mM GA over time. As can be 

seen, there is a progressive loss in the activity of P450BM3, confirming GA does 

inactivate the enzyme. Thus it was investigated whether P450BM3 could be 

immobilised to insulin amyloid fibrils by physical adsorption without any cross-

linker, to preserve the activity of the enzyme.  
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Figure 4.20 Follow the initial rates of intramolecularly cross-linked P450BM3 using 

2.5 mM GA over time. (■) – Control with no GA, (■) – with 2.5 mM 
GA. Each sample had three replicates and the error bars represent the 
standard deviation of the mean. 

4.5.2 P450BM3 cross-linking to insulin amyloid fibrils 

From the results of immobilising OPH to the insulin amyloid fibrils, a starting 

concentration of 5.8 mg/mL insulin amyloid fibrils was used for the immobilisation 

of P450BM3. Initially, the immobilised P450BM3 samples were investigated to see 

what effect insulin amyloid fibrils had on the activity of the enzyme (section 7.11.3). 

Table 4.3 indicates that when P450BM3 is in solution with insulin amyloid fibrils 

without any cross-linker (sample 2) it loses ~80 % activity, when P450BM3 is cross-

linked to another molecule of P450BM3 (sample 4) it loses ~98 % activity, and when 

P450BM3 is cross-linked to the insulin amyloid fibrils using GA (sample 3) it loses 

activity. 
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Table 4.3 Initial rates of immobilised P450BM3 samples when cross-linked for 1 
hour at 4 °C. N/A = rate was below measurable rates. All reactions 
were carried out in triplicate and the error is the standard deviation of 
the mean. 

Sample Rate (AU/s) Error 
P450 only 0.013 ± 0.001 
P450 + fibrils 0.003 ± 0.0003 
P450 + GA + fibrils - - 
P450 + GA 0.0003 0 

An experiment to examine the interaction between the insulin amyloid fibrils and 

P450BM3 over time was conducted. Figure 4.21 confirms that when P450BM3 is in 

solution with insulin amyloid fibrils it loses activity over time. This result implies 

there is a strong intrinsic association between P450BM3 and the insulin amyloid 

fibrils. The association whilst strong, has negative consequences for the activity of 

the enzyme. The loss in activity could be from diffusional effects, the amyloid fibrils 

interacting or blocking the active site, an interaction between the substrate and the 

amyloid fibrils, or unfolding of the enzyme on the amyloid fibrils. 

 
Figure 4.21 Follow the initial rates of P450BM3 in solution with insulin amyloid 

fibrils over time. (■) – Control with no fibrils, (■) – with fibrils. Each 
sample had three replicates and the error bars represent the standard 
deviation of the mean. 
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The association between P450BM3 and insulin amyloid fibrils was also investigated 

by SDS- and native PAGE (sections 7.2.3 and 7.2.4) to decipher the covalent and 

physical interactions occurring between P450BM3 and the insulin amyloid fibrils. 

Figure 4.22 shows the SDS- and native PAGE gels of the immobilised P450BM3 

samples. When P450BM3 was covalently immobilised to the insulin amyloid fibrils 

using GA (lanes 3 and 7), the P450BM3 protein bands completely disappear, implying 

all of the enzyme is immobilised to the insulin amyloid fibrils which are trapped in 

the top of the gel due to their size. Interestingly, when P450BM3 was in solution with 

the insulin amyloid fibrils without any cross-linker (lanes 4 and 8), the P450BM3 

protein band is still visible in the SDS-PAGE gel but not in the native PAGE gel. 

This confirms that P450BM3 does have a strong intrinsic interaction with the insulin 

amyloid fibrils, and that the interaction is a physical interaction that is lost upon the 

heating and denaturing conditions present in SDS-PAGE.  

 
Figure 4.22 SDS-PAGE (A) and native PAGE (B) gels of immobilised P450 BM3 

samples cross-linked for 1 hour at 4 °C. L – ladder, 1 – P450 BM3, 2 – 
P450 BM3 + GA, 3 – P450 BM3 + GA + fibrils, 4 – P450 BM3 + fibrils, 
BSA – bovine serum albumin, 5 – P450 BM3, 6 – P450 BM3 + GA, 7 – 
P450 BM3 + GA + fibrils, 8 – P450 BM3 + fibrils. 
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The intrinsic association was also confirmed via centrifugation. P450BM3 is a 

coloured protein due to the bound iron protoporphyrin (Meunier et al. 2004) and 

therefore, if there is an intrinsic association between P450BM3 and the insulin amyloid 

fibrils, the colour (protein) would be pelleted with the amyloid fibrils. This is what is 

seen in Figure 4.23, which shows that only the samples with insulin amyloid fibrils 

can pellet the colour (protein). 

 

Figure 4.23 Photos of the P450BM3 immobilised samples post-centrifugation. The 
samples from left to right are: P450BM3, P450BM3 + GA, P450BM3 + 
fibrils, P450BM3 + GA + fibrils. 

Because of the near complete inactivation of P450BM3 with GA and insulin amyloid 

fibrils, investigating the characteristics of the immobilised enzyme on the 

nanoscaffold was not carried out. Evidently not all proteins are able to be simply 

immobilised to the nanoscaffold. Previous research showed that P450BM3 was not 

able to be immobilised to a number of commercial hydrophobic matrices, that 

covalent attachment to Eupergit (section 1.5.5) resulted in loss of activity, and anion 

exchanges immobilised P450BM3, but they also bound the substrates and so were not 

suitable for immobilisation (Maurer et al. 2003). The problems encountered with 

immobilising P450BM3 to a wide range of matrices, illustrates the difficulties in 

immobilising P450BM3 whilst retaining activity. The loss in activity could be from 

diffusional effects, the amyloid fibrils interacting or blocking the active site, an 

interaction between the substrate and the amyloid fibrils, or most likely, the 

unfolding of the enzyme on the amyloid fibril surface. 
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4.6 Green fluorescent protein immobilisation 

GFP was recombinantly overexpressed and purified as outlined in chapter two. 

Figure 4.24 shows the crystal structure of GFP showing the surface of the protein 

with the lysine residues highlighted in pink, which are theoretically available for 

cross-linking with GA. 

 
Figure 4.24 Crystal structure of GFP (PDB 2Y0G) (Royant & Noirclerc-Savoye 

2011) showing the surface with the lysine residues coloured in pink. 

GFP is one of the most widely used proteins in biochemistry and cell biology. Its 

uses can be split into two general categories, passive and active. The passive 

applications are its use as a reporter gene, cell marker, and most importantly as a 

fusion tag, where it is genetically fused to a host protein, to monitor the localisation 

and fate of the particular protein (Tsien 1998). As discussed in chapter one, GFP has 

previously been used as a fusion tag with a URE2 prion domain to create fluorescent 

amyloid fibrils (Baxa et al. 2002), but it had never been immobilised to the surface of 

amyloid fibrils using a cross-linker. 

The active applications of GFP can be as a pH sensor, where GFP mutants are used 

as a sensor for cellular compartment pHs, but the most common active application 

uses fluorescent resonance energy transfer (FRET) between GFPs of two different 

colours. FRET works by having two fluorophores in close proximity (<100 Ǻ apart), 

where the emission spectrum of one fluorophore, overlaps with the excitation 

spectrum of the second fluorophore (Stryer 1978). Therefore, if there is a change in 

distance between the two fluorophores, for example, from protease action, a change 

in the colour of the fluorescence is seen (Ross et al. 2011).  
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GFP has been immobilised to a range of scaffolds including: benzophenone-

terminated boron-doped diamond (Marcon et al. 2009), polyethylene terephthalate 

SiO2 composite (Katranidis et al. 2011) and patterned PEG hydrogels (Kolodziej et 

al. 2011). In all three examples, GFP was used to test new methods of surface protein 

immobilisation because of the high stability and fluorescence of the protein, allowing 

the use of confocal microscopy to detect if immobilisation was successful (Katranidis 

et al. 2011). GFP was used in this research because of its stability and intrinsic 

fluorescence, to fluorescently tag the insulin amyloid fibril nanoscaffold for 

visualisation. 

4.6.1 GFP immobilisation method development 

GFP immobilisation to the insulin amyloid fibrils used the same protocol (section 

4.3) as used with OPH. GFP (~5 mg/mL) was immobilised to the insulin amyloid 

fibrils using a final concentration of 2.5 mM GA, a final concentration of 1.9 mg/mL 

insulin amyloid fibrils, for 1 hour at 37 °C (section 7.11.4). The resulting 

immobilised GFP samples were analysed by native PAGE (section 7.2.4). Native 

page was used because GFP could retain its intrinsic fluorescence and therefore 

allow the visualisation of the immobilised samples. Figure 4.25 shows the native 

PAGE gel of the immobilised GFP samples when excited by UV light and 

photographed. As can be seen, GFP does retain fluorescence whilst in the gel, and 

when GFP is cross-linked to another molecule of GFP (lane 2), it still retains 

fluorescence. When GFP is immobilised to the insulin amyloid fibrils using GA (lane 

4), most of the fluorescence is trapped in the top of the gel, indicating that it is 

covalently bound to the insulin amyloid fibrils, which cannot enter the gel due to 

their size. Lane 3 shows that GFP does not get physically adsorbed to the insulin 

amyloid fibrils without a cross-linker, because there is no fluorescence in the top of 

the gel and the protein band corresponding to native GFP is the same as the control 

(lane 1). 
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Figure 4.25 Native PAGE gel of GFP samples. Lane 1 – GFP, lane 2 – GFP + GA, 

lane 3 – GFP + fibrils, lane 4 – GFP + GA + fibrils. The arrow is 
pointing to the GFP bound to the fibrils. 

The native PAGE gel provides very strong evidence that GFP can be covalently 

immobilised to insulin amyloid fibrils, and that it retains fluorescence upon 

immobilisation. GFP can therefore be utilised as a protein immobilisation tag to 

examine the covalent immobilisation ability of the insulin amyloid fibril 

nanoscaffold. 

4.7 Tobacco etch virus protease 

TEV protease was recombinantly overexpressed and purified as outlined in chapter 

two. Figure 4.26 shows the surface of the protein in the crystal structure with the 

lysine residues highlighted in pink, which are theoretically available for cross-linking 

with GA. It has previously been predicted that of the 14 lysine residues in the TEV 

protease sequence, 12 of them are exposed and should be available for cross-linking 

(Puhl et al. 2009).  
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Figure 4.26 Crystal structure of TEV protease (PDB 1LVM) (Phan 2002) showing 

the surface with the lysine residues coloured in pink. 

The main use of TEV protease is the cleavage of affinity tags used for purification of 

recombinantly expressed proteins. Tags are fused with proteins of interest, generally 

to assist with purification, but they can also act to increase yields, protect them from 

intracellular proteolysis and in the case of the maltose binding protein, aid in 

solubility (Fox & Waugh 2003; Waugh 2005). Whilst there are huge benefits of tags, 

their incorporation on a protein of interest can hinder the activity of the tagged 

protein. Therefore, it is generally advised to remove the tags (Tropea et al. 2009). 

The main advantage of TEV protease compared to other proteases, such as Factor 

Xa, and thrombin, is that it is extremely selective for its recognition site, thus its 

accuracy ensures the protein is not cleaved incorrectly, inactivating the protein 

(Jenny et al. 2003). 

TEV protease is a prime candidate for immobilisation, because not only is it 

reasonably difficult to purify recombinantly (Puhl et al. 2009), but immobilisation 

will allow for the reuse of the protease (Cao et al. 2003). The general in-solution 

cleavage conditions for TEV protease are at ~1-100 w/w ratio of the target protein 

(Waugh 2010). Once the reaction has taken place, the TEV protease generally needs 

to be separated from the cleaved target protein. If using the poly-histidine tagged 

TEV protease, Ni-affinity chromatography can be used, but it requires removing 

DTT and EDTA (both are present in the TEV protease storage buffer) from the 

buffer, therefore the buffer would need to be dialysed first (Waugh 2010). 

Immobilisation could solve this problem, allowing for the simple separation of TEV 

protease from the target protein. 
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Waugh et al. (2010) stated “On-column (TEV protease) cleavage is possible but 

comparatively inefficient,” and Puhl et al. (2009) covalently immobilised TEV protease 

to two insoluble supports, thiolsulfinate agarose and glutaraldehyde agarose, in which 

immobilised TEV protease only retained 0 or 30 % activity, respectively, compared to 

the enzyme in solution. The inactivation of the TEV protease was thought to be due to 

binding of the thiol group of a cysteine in the active site, and the GA interacting with 

lysine amino acid residues located near the substrate binding site. Recently, Miladi et al. 

(2012) immobilised TEV protease containing a Streptag II affinity sequence via affinity 

immobilisation on a strepavidin-agarose matrix, with a retained activity of ~81 %. This 

is a very good retention of activity, but examining their data closely the immobilised 

TEV protease has <10 % catalytic efficiency compared to the solution TEV protease. 

Immobilised TEV protease could prove to be extremely useful, but it is clearly a difficult 

protein to immobilise. Immobilising TEV protease to surface assembled insulin amyloid 

fibrils could provide a solution to the inactivation immobilisation problems and loss of 

catalytic efficiency seen with the other TEV protease immobilisation methods, because it 

could allow for a large enzyme loading and create a beneficial environment for TEV 

protease to remain active.  

4.7.1 TEV protease functionalisation of surface assembled insulin amyloid 

fibrils 

TEV protease immobilisation used the same protocol as used for OPH (section 4.3). 

TEV protease was immobilised at the concentration that it was purified at (1.2 

mg/mL), with a final concentration of 2.5 mM GA, and a final concentration of 1.9 

mg/mL insulin amyloid fibrils (section 7.11.5). The immobilised TEV protease 

samples were analysed by SDS- and native PAGE (sections 7.2.3 and 7.2.4) to 

establish if TEV protease was immobilised to the insulin amyloid fibrils. Figure 4.27 

shows when TEV protease is cross-linked to another molecule of TEV protease (lane 

2) the protein band at ~27 kDa completely disappears compared to the control (lane 

1) containing TEV protease only. This is also the result when TEV protease is 

immobilised to the insulin amyloid fibrils using GA (lane 3), suggesting either the 

TEV protease is covalently bound to the amyloid fibrils or it has created a large 

protein aggregate that could not enter the gel to be visible. 
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Figure 4.27 SDS-PAGE gel of immobilised TEV protease samples. L – ladder, lane 

1 – TEV protease, lane 2 – TEV protease + GA, lane 3 –TEV protease 
+ GA + fibrils, lane 4 – TEV protease + fibrils. 

The same samples used in the SDS-PAGE were also analysed by native PAGE 

(Figure 4.28) The native PAGE gel shows very similar results to the SDS-PAGE gel. 

The TEV protease protein band in the TEV protease + fibrils sample (lane 4) appears 

to be slightly fainter than the control in lane 1, implying a small amount of TEV 

protease may bind to the insulin amyloid fibrils without any cross-linker. 

 
Figure 4.28 Native PAGE gel of immobilised TEV protease samples. BSA – bovine 

serum albumin, lane 1 – TEV protease, lane 2 – TEV protease + GA, 
lane 3 –TEV protease + GA + fibrils, Lane 4 - TEV protease + fibrils. 
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The immobilised TEV protease samples were tested for protease activity to examine 

any changes in activity arising from either GA or the insulin amyloid fibrils. 10 µL 

of the immobilised TEV protease samples (~0.03 mg/mL TEV protease) were mixed 

with 90 µL of 1 mg/mL dihydrodipicolinate synthase (Y107W mutant) known to 

contain a cleavable TEV protease recognition sequence between its poly-histidine 

purification tag and the enzyme. The samples were then left over night at 4 °C, and 

analysed for protease cleavage by SDS-PAGE. As can be seen in Figure 4.29, the 

samples containing cross-linking of TEV protease to another TEV protease molecule 

using GA (lane 3), and cross-linking TEV protease to insulin amyloid fibrils using 

GA (lane 5), showed a complete loss of protease activity to cleave the poly-histidine 

tag of the DHDPS. Only the TEV protease immobilised samples that did not contain 

GA (lanes 2 and 4) still showed the ability to cleave the DHDPS poly-histidine tag. 

The sample containing TEV protease and the insulin amyloid fibrils but no cross-

linker (lane 4) showed slightly less cleavage of DHDPS as shown by the fainter 

protein band corresponding to the cleaved DHDPS. This suggests that TEV protease 

may be interacting with the insulin amyloid fibrils as seen in the native PAGE gel of 

Figure 4.28. 

 
Figure 4.29 Cleavage of E. coli DHDPS by TEV protease samples. L – Ladder, 1 – 

DHDPS only, 2 – DHDPS with TEV protease, 3 – DHDPS with TEV 
protease + GA, 4 – DHDPS with TEV protease + fibrils, 5 – DHDPS 
with TEV protease + GA + fibrils. 
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The GA inactivation could be due to the cross-linker binding to the lysine residues 

K141, K147, K215 or K220, which are all located near the substrate binding site 

(Puhl et al. 2009). Because of the GA inactivation, and because of the possible 

intrinsic association between TEV protease and the insulin amyloid fibrils without 

any cross-linker, when it is attempted to immobilise TEV protease to the surface 

assembled insulin amyloid fibrils in chapter five, this intrinsic association will be 

optimised as the immobilisation technique. 

4.8 Glucose oxidase immobilisation and characterisation 

GOD was purchased commerically from Sigma Aldrich. Figure 4.30 shows the 

crystal structure of GOD showing the surface of the enzyme with the lysine residues 

highlighted in pink. Previous research has shown that of the 24 lysine residues on the 

surface of the GOD dimer, 5 are potentially available for cross-linking due to the 

presence of glycosylation (Baszkin et al. 1997). The method to immobilise GOD to 

the insulin amyloid fibrils was based on the methods of (Pilkington et al. 2010), who 

showed that GOD can be covalently immobilised to insulin amyloid fibrils using GA. 

 
Figure 4.30 Crystal structure of GOD (PDB 1CF3) (Wohlfahrt et al. 1999) showing 

the surface with the lysine residues coloured in pink. 
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GOD is an extremely important enzyme, worth billions of dollars annually due to its 

commercial use in the chemical, food, beverage and biotechnology industries 

(Newman & Turner 2005; Bodade et al. 2010). The largest industrial use of GOD is 

as a glucose biosensor to monitor the concentration of blood glucose in people with 

diabetes (Cui et al. 2001), other uses include: the food and beverage industry to 

monitor, for example, the sucrose content in soybean grains, by using GOD in 

combination with an invertase enzyme (Teixeira et al. 2012); the production of 

gluconic acid, which can be used as an acidity regulator or bleach in food 

manufacturing (Bankar et al. 2009); as an anti-microbial, using the production of 

H2O2, in products such as tooth paste (Hannig et al. 2010), and anti-microbial wound 

dressings (Bang et al. 2003); or as a bleaching agent for cotton fabrics (Saravanan et 

al. 2012). 

GOD has been immobilised to many different supports, some recent examples being 

a cellulose–tin oxide (SnO2) hybrid nanocomposite (Mahadeva & Kim 2011), and 

multifunctional carbon nanotubes (Wang et al. 2011), as well as all manner of other 

possible supports. The large range of supports that GOD has been immobilised to, in 

conjunction with its enzyme stability, and high catalytic turnover rate (Bankar et al. 

2009), make GOD an ideal model enzyme for immobilisation (Wilson & Turner 

1992). 
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4.8.1 GOD immobilisation method development 

GOD immobilisation was based on the methods of Pilkington et al. (2010) and used 

the two step protocol employed with OPH (section 4.3). The GOD (2 mg/mL) 

immobilised samples were cross-linked using a final concentration of 50 mM GA, 

with a final concentration of 1.9 mg/mL insulin amyloid fibrils for 1 hour at 25 °C 

(section 7.11.6). The samples were then investigated for covalent immobilisation by 

SDS-PAGE. Figure 4.31 shows the GOD only sample (lane 1) runs as a ~55-60 kDa 

protein band, and when GOD is cross-linked to another molecule of GOD with GA 

(lane 2) there is a decrease in the protein band at ~55-60 kDa, and the appearance of 

a new larger protein band at ~160 kDa, indicating cross-linking. When GOD was 

immobilised to the insulin amyloid fibrils using GA (lane 3), there is a decrease in 

the protein band intensity at ~ 55-60 and ~160 kDa, compared to the controls (lanes 1 

and 2). The lower band intensity is due to the GOD immobilised to the insulin 

amyloid fibrils, which cannot enter the gel due to their size. This provides evidence 

that some GOD has been successfully covalently immobilised to the amyloid fibrils.  

 
Figure 4.31 SDS-PAGE gel of GOD immobilisation using GA. L – ladder, Lane 1 – 

GOD only, Lane 2 – GOD + GA, Lane 3 – GOD + GA + fibrils, Lane 4 
– GOD + fibrils, Lane 5 – fibrils + GA, Lane 6 – fibrils only. 
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To establish how much GOD activity was associated with the amyloid fibrils, the 

samples from Figure 4.31 were assayed for initial activity using the Amplex red 

assay (sections 2.6.1 and 7.9.3). The samples were then centrifuged to collect the 

amyloid fibrils, and the supernatant retested for GOD activity. Figure 4.32 shows 

that ~20 % of the GOD activity can be centrifuged down without any fibrils present. 

When GOD is immobilised to the insulin amyloid fibrils with GA, ~20 % more GOD 

activity is centrifuged with the insulin amyloid fibrils. This provides evidence that 

there is ~20 % of the GOD activity immobilised to the amyloid fibrils. This is in 

good agreement with the SDS PAGE gel of Figure 4.31 that shows some GOD 

activity is immobilised to the amyloid fibrils. The results in Figure 4.32 also 

demonstrate that when GOD is cross-linked to another molecule of GOD using GA, 

the activity of the enzyme is almost completely preserved, implying that GA does not 

inhibit activity. Although, considering that GA has a 100 M excess over GOD in the 

immobilisation reaction, the glycosylation of the enzyme must be having a 

significant impact on immobilisation. 

 
Figure 4.32 Activity of immobilised GOD samples using the Amplex red assay. 

Black bars = initial GOD activity, red points = GOD activity in the 
supernatant after centrifugation. 1 – blank, 2 – GOD only, 3 – GOD + 
GA, 4 – GOD + GA + fibrils, 5 – GOD + fibrils, 6 – fibrils + GA, 7 – 
fibrils only. The average of 3 replicates of each sample was used and 
the error is the standard deviation of the mean.  
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4.9 Summary 

The immobilisation of a range of biomolecules that differ in size, tertiary structure, 

quaternary structure, catalytic activity, and substrate recognition, has shown insulin 

amyloid fibrils can act as a versatile nanoscaffold. The degree of immobilisation, and 

retained catalytic activity post-immobilisation differed between biomolecules, 

indicating immobilisation of individual biomolecules needs to be optimised. 

OPH was for the first time successfully immobilised to the insulin amyloid fibril 

nanoscaffold and comprehensively characterised. The OPH immobilised to the 

insulin amyloid fibril nanoscaffold displayed a significantly higher thermostability. 

The OPH immobilisation results formed the basis of the protocols to immobilise all 

subsequent enzymes and proteins. Crystallin amyloid fibrils were not shown to be 

able to be functionalised with OPH using the established methods, and therefore 

require further investigation to be used as a nanoscaffold.  

P450BM3 was completely inactivated by GA, so physical adsorption was used to 

immobilise P450BM3 to the insulin amyloid fibrils. The physical interaction was 

shown to be strong between the insulin amyloid fibrils and the enzyme, but 

physisorption caused almost complete inactivation. This was probably due to 

unfolding of P450BM3 on the amyloid fibril surface. This result confirms that not any 

two enzymes share identical properties for immobilisation, and that a high starting 

catalytic activity helps tremendously when trying to immobilise enzymes to insoluble 

supports.  

GFP was for the first time successfully covalently immobilised to the insulin amyloid 

fibril nanoscaffold, and showed the ability to retain its intrinsic fluorescence when 

immobilised. GFP provides a convenient method for tagging insulin amyloid fibrils 

allowing easy visualisation which can be exploited for future amyloid fibril research, 

for example by tagging amyloid fibrils to monitor their circulation post-injection in 

animal models for research into amyloid disease. 
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TEV protease has previously only been immobilised to three different supports, with 

varied success. TEV protease was for the first time immobilised to the insulin 

amyloid fibril nanoscaffold via physical adsorption. Physical adsorption was used 

because GA was shown to completely inactive the protease. Insulin amyloid fibrils 

provide a new nanosupport for the immobilisation of TEV protease, which could 

allow for the reuse of the enzyme, saving on production costs for recombinantly 

expressed poly-histidine tagged proteins. 

The model immobilisation enzyme GOD was shown to be able to be covalently 

immobilised to the insulin amyloid fibril nanoscaffold and retain activity, as 

previously reported. Immobilisation of GOD to the solution insulin amyloid fibrils 

will provided the framework for testing the immobilisation of GOD to surface 

assembled insulin amyloid fibrils. 
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Chapter Five 

5 Amyloid fibrils as a surface assembled 

biomolecule nanoscaffold 

5.1 Introduction 

This chapter combines the experimental approaches of the previous two chapters to 

investigate the creation of materials with functionalised surface assembled insulin 

amyloid fibrils. Enzymes have been immobilised to many different surfaces (section 

1.6) for a wide range of techniques including: surface plasmon resonance (SPR) 

(Homola 2008), protein microarrays (Rusmini et al. 2007), and quartz crystal 

microbalance (QCM) sensors. Enzymes have also been immobilised to surfaces to 

generate enzymatically active materials for the purposes of chemical 

decontamination (Havens & Rase 1993; Gill & Ballesteros 2000) and the 

manufacture of antimicrobial packaging (Vartiainen et al. 2005). GOD was recently 

immobilised to an electrospun nanofibrous PVOH extract for the production of a 

novel food packaging material to aid in food preservation (Ge et al. 2012), and 

lysozyme has been immobilised to cotton material to create an antimicrobial material 

with potential uses in wound dressings and antimicrobial wipes (Edwards et al. 

2011).  
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In the above examples, the enzymes are immobilised directly to the surface, therefore 

an increase in surface area could prove beneficial for many immobilised enzyme 

applications. Increasing surface area enables a higher enzyme immobilisation 

capacity, which, if applied to techniques such as SPR, protein micro arrays, and 

QCM, could result in a device with greater sensitivity. Assembling amyloid fibrils on 

a surface leads to an increase in surface area because of their nanometre dimensions 

which afford a high surface to volume ratio (Gras et al. 2008). As stated in section 

3.3, assembling amyloid fibrils on surfaces could also potentially allow for a bottom-

up approach to functional bionanomaterial design (Scanlon & Aggeli 2008; Williams 

et al. 2010). The proteinaceous building blocks of the nanoscaffold may also offer a 

beneficial environment for protein immobilisation, resulting in an increase in 

stability and activity of the immobilised enzyme.  

An overview of the process to create the functional self-assembling bionanomaterials 

is shown in Figure 5.1. First the material surface is derivatised to allow binding of 

the amyloid template, followed by self-assembly of the amyloid fibrils, then the 

surface assembled amyloid fibrils are functionalised with biomolecules. Two 

biomolecule immobilisation methods were used, physical adsorption, and covalent 

cross-linking, depending on which biomolecule was being immobilised. The 

immobilisation method adopted depended on whether the covalent cross-linker GA 

inhibited enzymatic activity, or if there was a strong physical adsorption of the 

biomolecule to the surface assembled amyloid fibrils.  
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Figure 5.1 Overview of the functional bionanomaterial manufacturing process. 

Firstly, glass beads or cellulose based materials are chemically 
derivatised with APTS and DSC to yield an activated surface that can 
then covalently bind amyloid seeds. Surface assembly of mature 
amyloid fibrils can then occur by immersion in native amyloid forming 
protein and heating at low pH. The surface assembled amyloid fibrils 
are then decorated with biomolecules by either physical adsorption or 
covalent coupling, depending on the biomolecule. 

Initially GOD was immobilised to the surface assembled insulin amyloid fibrils due 

to its stability and use as a model enzyme for immobilisation (Shi et al. 2011). GFP 

was immobilised as a fluorescent tag to aid in the visualisation of the surface 

assembled amyloid fibrils, and to try and establish the coverage of surface assembled 

insulin amyloid fibrils. TEV protease was immobilised to the surface assembled 

amyloid fibrils to create a reusable TEV protease nanomaterial bead system with 

potential commercial applications. Initial GFP immobilisation trials were 

investigated on cotton surface assembled insulin amyloid fibrils as a potential 

manufacturing route to create enzymatically functional cotton. 
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5.2 Glucose oxidase immobilisation 

GOD was used as the model enzyme for immobilisation on to the surface assembled 

insulin amyloid fibrils because of its robustness, tolerating pHs between 2 and 8, and 

because it is still active at up to ~ 62 °C (Wilson & Turner 1992; Gouda et al. 2003). 

The Amplex red assay (sections 2.6.1 and 7.12.6) enables high throughput 

characterisation of GOD samples using a 96 well plate reader, allowing for 

optimisation of the immobilisation conditions on the surface assembled insulin 

amyloid fibrils. Optimising the surface immobilisation conditions first with GOD 

provided a starting protocol for the subsequent immobilisation of GFP and TEV 

protease. 

5.2.1 Method development and characterisation of GOD functionalised 

surface assembled insulin amyloid fibrils 

The method development for the immobilisation of GOD to the surface assembled 

insulin amyloid fibrils was based on in-house methodology developed by Roberts 

(2010), in which initial GOD immobilisation experiments were carried out on glass 

microscope slides. This initial work concluded that GA was not needed when 

immobilising GOD to surface assembled insulin amyloid fibrils, therefore GA was 

omitted from the immobilisation protocol (Personal comm. Roberts 2010). It is 

thought that GA is not needed because a physical interaction may be occurring 

between the glass surface, GOD, and the surface assembled insulin amyloid fibrils. 

This interaction could aid in the adsorption of the enzyme to the surface. The GOD 

immobilisation results produced with the glass slides were not very reproducible. 

Therefore GOD immobilisation to surface assembled insulin amyloid fibrils on glass 

beads was attempted to increase the reproducibility. Experimental reproducibility 

will allow a firm conclusion to be drawn on whether surface assembled insulin 

amyloid fibrils enable an increase in immobilised GOD. 
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Initial GOD immobilisation experiments investigated the requirement of the 

individual surface treatments outlined in Figure 5.1. The derivatisation of the glass 

beads, subsequent seeding of the surface, and self-assembly of the insulin amyloid 

fibrils was carried out, as described in section 3.4 (section 7.12.1 and 7.12.2). The 

bead samples were then immersed in a 1 mg/mL solution of GOD or GOD buffer and 

incubated for 1 hour at 37 °C (section 7.13.1). The samples were thoroughly washed 

in dH2O before their activity and ThT fluorescence was measured. Table 5.1 shows 

the amount of GOD activity of each immobilisation sample using the Amplex red 

assay (sections 2.6.1 and 7.12.6), and investigates the presence of amyloid fibril 

structures with ThT (section 7.12.5). The sample that showed the most GOD activity 

and highest ThT fluorescence is sample 17, which had all of the treatments. This 

result suggests the surface assembled amyloid fibrils enabled more GOD to be 

immobilised, but samples 9, 11, 19, and 20 also have relatively high GOD activity. 

This result indicates a strong interaction between GOD and the glass surface, because 

the ThT fluorescence of these samples is low, implying there are not amyloid 

structures present on the surface that are aiding in immobilisation. 
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Table 5.1 Activity (RFU) of immobilised GOD glass bead samples using the 
Amplex red assay (Amp) and ThT) fluorescence (ThT) (RFU). APTS – 
APTS surface derivitisation, DSC – activation of surface, Seed – seeded 
with insulin fragments, Fibril – insulin amyloid fibrils assembled, GOD 
– GOD immobilised. Each sample had six replicated, three for the 
Amplex red assay, and three for the ThT assay. The errors represent the 
standard deviation of the mean.   

Sample APTS DSC Seed Fibril GOD Amp A. Error ThT T. Error 
1 - - + + + 8300 1700 600 200 
2 - - + - + 1600 100 600 100 
3 - - - + + 1000 200 400 200 
4 - - - - + 1400 100 500 100 
5 - - + + - 800 - 1100 200 
6 - - + - - 800 - 500 - 
7 - - - + - 700 - 500 100 
8 - - - - - 800 - 600 200 
9 + - + + + 10000 500 500 100 

10 + - + - + 8000 2400 300 - 
11 + - - + + 10500 900 300 - 
12 + - - - + 8600 500 300 - 
13 + - + + - 800 - 600 200 
14 + - + - - 800 100 300 - 
15 + - - + - 800 - 300 - 
16 + - - - - 900 - 300 - 
17 + + + + + 13000 800 1600 300 
18 + + + - + 9000 400 300 - 
19 + + - + + 10600 400 300 - 
20 + + - - + 10700 300 300 - 
21 + + + + - 900 - 1500 200 
22 + + + - - 900 - 300 - 
23 + + - + - 800 100 300 - 
24 + + - - - 900 - 300 - 

To try and impede the direct adhesion of GOD to the glass surface,, bovine serum 

albumin (BSA) was investigated as a blocking agent. Lowering the background GOD 

activity will enable the influence of the amyloid fibrils on the amount of GOD 

immobilised to be deciphered. BSA is a commonly used protein for blocking excess 

reactive sites on surfaces (Huang et al. 2003). For the glass beads, a 2 % BSA 

solution for 2 hours was used to block unreacted activated amino groups after the 

surface assembly of the insulin amyloid fibrils (section 7.12.4). 
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Shown in Table 5.2 are the controls employing BSA as a blocking agent. Comparing 

the eight samples, four of which were blocked with BSA, and four which were not 

blocked, BSA blocking is lowering the amount of GOD being immobilised to all of 

the samples. As seen in Table 5.1, the beads with all of the treatment conditions have 

the highest GOD activity (samples 1 and 5). This could be due to the presence of the 

surface assembled insulin amyloid fibrils, but the background GOD activity of the 

controls is still relatively high, implying non-specific binding is still occurring. BSA 

is having an effect on the non-specific binding of GOD to the glass. Comparing 

samples 4 and 8, for which the glass surface is activated, but not seeded or amyloid 

fibrils assembled, the decrease in bound GOD activity is ~60 % less when BSA is 

used for blocking. This result is expected because the surface chemistry on the glass 

reacts with the same amine groups in both BSA, and the amyloid fragments. 

Table 5.2 Activity (RFU) using Amplex red fluorescence (Amp) of immobilised 
GOD glass bead samples. All of the glass beads had their surface 
derivatised by APTS and DSC. Seed – seeded with insulin fragments, 
Fibrils – insulin amyloid fibrils assembled, BSA – blocked with BSA for 
2 hours, GOD – GOD immobilised. Each sample had three replicates. 
The error represents the standard deviation of the mean. 

Sample APTS DSC Seed Fibril BSA GOD Amp A. error 
1 + + + + + + 1873 153 
2 + + + - + + 1220 127 
3 + + - + + + 1488 361 
4 + + - - + + 1158 81 
5 + + + + - + 4377 621 
6 + + + - - + 2989 115 
7 + + - + - + 2667 74 
8 + + - - - + 3092 767 

To try to lower the background GOD activity more, an extensive washing step was 

undertaken. The glass bead samples were placed in a small (~7 mm diameter) 

column with GOD buffer (50 mM sodium phosphate, pH 7.4) flowing over the beads 

for ~18 hours. Washing the beads for a long period of time will wash the loosely 

bound GOD, leaving only the strongly bound GOD. The bead samples were then 

analysed for GOD activity by the Amplex red assay, and the ThT assay to ensure the 

washing step did not remove any of the surface assembled insulin amyloid fibrils. 
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As can be seen in Table 5.3, the extensive washing step produced very similar 

results to samples 1-4 in Table 5.2, indicating that the GOD in all of the samples in 

strongly bound. The beads in sample 1 which have all of the treatment conditions 

have the highest GOD activity and the highest ThT fluorescence, again suggesting 

that the presence of the surface assembled insulin amyloid fibrils is allowing for 

more GOD to be immobilised. This suggests, for GOD immobilisation to activated 

glass beads, there is little advantage in using the nanoscaffold due to the high affinity 

of GOD to the glass surface. 

Table 5.3 Activity (RFU) of immobilised GOD glass bead samples using the 
Amplex red assay (Amp) and ThT fluorescence (ThT) (RFU). APTS – 
APTS surface derivitisation, DSC – activation of surface, Seed – seeded 
with insulin fragments, Fibril – insulin amyloid fibrils assembled, BSA 
– block with BSA for 2 hours, GOD – GOD immobilised. Each sample 
had six replicated, three for the Amplex red assay, and three for the 
ThT assay. The errors represent the standard deviation of the mean. 

Sample APTS DSC Seed Fibril BSA GOD Amp A. error ThT T. error 
1 + + + + + + 2251 73 1287 117 
2 + + + - + + 1407 142 402 85 
3 + + - + + + 1551 117 403 9 
4 + + - - + + 1384 73 364 14 

Surface assembly of bovine insulin amyloid fibrils on glass beads, and subsequent 

immobilisation with GOD, revealed the presence of the nanoscaffold afforded little 

advantage when immobilising GOD. The high non-specific binding of GOD to the glass 

surface hinders any potentially positive effects of the nanoscaffold from being observed. 

ThT fluorescence demonstrated that amyloid fibril structures were present on the 

surface, thus the increases that were seen could be due to the amyloid fibril 

nanoscaffold. Although the increase in GOD activity was not as expected, the result, 

and the established immobilisation protocol, provided the framework to test the 

immobilisation of the other biomolecules, GFP and TEV protease. 
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5.3 Green fluorescent protein immobilisation 

GFP was employed to fluorescently tag the surface assembled insulin amyloid fibrils, 

to analyse their coverage on the surface of the bead. Confocal laser scanning 

microscopy (CLSM) was used to assess the surface coverage of the GFP 

immobilisation because the microscope can excite GFP at 488 nm, inducing 

fluorescence, and capture images of the glass bead samples. The curvature of the 

glass bead surface creates problems with acquiring in-focus images of the entire 

surface by standard light microscope. CLSM offers a solution to curved surfaces, 

because it allows in-focus images to be acquired at multiple depths (Pawley 2006). 

The multiple images can be subsequently reconstructed, providing an in-focus image 

of an entire curved surface. The reconstructed images can be quantitatively analysed 

by pixel density calculations if the gain of the microscope is kept constant for all 

images (Piston et al. 1998). Quantitative pixel density calculations allow images to 

be directly compared by providing valuable information on the amount of 

fluorescence of each image.  

5.3.1 GFP functionalisation and characterisation of surface assembled insulin 

amyloid fibrils 

GFP surface immobilisation was based around the method developed for 

immobilising GFP to the solution insulin amyloid fibril (section 4.6.1). All of the 

bead samples were first immersed in a solution containing 2.5 mM GA for 1 hour, 

then washed thoroughly and placed in a 1 mg/mL solution of GFP for 1 hour, before 

being thoroughly washed again (section 7.13.2). The resulting immobilised GFP 

samples were investigated for fluorescence in a plate reader (section 7.12.7), and 

imaged using CLSM (section 7.2.13). As can be seen in Figure 5.2, the beads which 

were seeded, the amyloid fibrils assembled, and GFP immobilised (sample 4), had 

the highest GFP fluorescence detected in the plate reader. This confirms the presence 

of the surface assembled insulin amyloid fibrils enables more GFP to be immobilised 

to the glass surface. The background level of GFP absorption to the control glass 

beads is much lower than for GOD, presumably due to the different surface 

characteristics of each biomolecule. 
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Figure 5.2 GFP fluorescence in a 96 well plate fluorescence spectrophotomer 

using an excitation and emission of 488 nm and 509 nm, respectively. 
Sample 1 – bead not seeded, no fibrils, GFP immobilised, sample 2 – 
bead not seeded, fibrils assembled, GFP immobilised, sample 3 – bead 
seeded, no fibrils, GFP immobilised, sample 4 – bead seeded, fibrils 
assembled, GFP immobilised. Each sample had three replicates, and 
the error bars represent the standard deviation of the mean. 

The immobilised GFP samples were then analysed using CLSM. Each bead was 

mounted on a glass bottomed culture dish with ~200 µL of 50 mM NaPi, pH 7.4 

buffer to hold the bead in position, and viewed using a 10 X objective lens (section 

7.2.13). The lens was focused on the midpoint of the surface of the bead and 40 in-

focus sections were imaged towards the halfway point of the bead. This technique 

allowed the entire surface of half the bead to be reconstructed by stacking the images 

on top of each other using the Leica LAS AF Lite 2.4.1 software. Quantitative 

analysis on the reconstructed images was undertaken to compare the amount of GFP 

immobilised to the different bead samples (section 7.2.14) (Piston et al. 1998). As 

can be seen in Figure 5.3, the mean pixel values of the glass beads which were 

seeded, insulin amyloid fibrils assembled, and then GFP immobilised gave the 

highest fluorescence (sample 4). This indicates that the presence of the amyloid 

fibrils on the surface of the beads allows for a higher loading of GFP, presumably 

because there is an increase in the available surface area for GFP immobilisation. 

The fluorescence of sample 3 was also relatively high, implying that there was some 

mature insulin amyloid fibrils physisorbed to the surface of the glass beads, even 

without seeds present. This result is very similar to the result seen in Figure 5.2 

using the plate reader fluorescent spectrophotomer. 



Amyloid fibrils as a surface assembled biomolecule nanoscaffold 165 

 
Figure 5.3 Quantitative mean pixel value analysis of confocal images. Sample 1 – 

bead not seeded, no fibrils, GFP immobilised, sample 2 – bead not 
seeded, fibrils assembled, GFP immobilised, sample 3 – bead seeded, 
no fibrils, GFP immobilised, sample 4 – bead seeded, fibrils assembled, 
GFP immobilised. Each sample had six replicates, three from two 
independent experiments. The error bars represent the standard 
deviation of the mean. 

One representative image of each sample from Figure 5.3 is shown in Figure 5.4. As 

can be seen, the mean pixel values correlate well to the images, with only samples 3 

and 4 showing any significant fluorescence. The images confirm that when the beads 

are seeded, fibrils assembled and GFP immobilised (sample 4), the greatest amount 

of GFP is immobilised. The images show that the coverage of GFP functionalised 

amyloid fibrils on the bead surface was reasonably complete. Given that that the 

beads are handled extensively with tweezers throughout the immobilisation process, 

this is a testament to the resilience of the amyloid fibril nanoscaffold. Future work 

should investigate optimisation of the surface coverage using GFP fluorescence. 

Immobilising GFP to the surface assembled amyloid fibrils enabled visualisation of 

the functionalised amyloid fibrils by confocal microscopy, and investigation into the 

coverage of the amyloid fibril on the bead surfaces. 
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Figure 5.4 Representative confocal images of GFP on bead samples. Sample 1 – 

bead not seeded, no fibrils, GFP immobilised, sample 2 – bead not 
seeded, fibrils assembled, GFP immobilised, sample 3 – bead seeded, 
no fibrils, GFP immobilised, sample 4 – bead seeded, fibrils assembled, 
GFP immobilised. The microscope gain was set at 400 for all of the 
samples. The scale bar = 500 µm. 

5.4 Tobacco etch virus protease 

Following the successful immobilisation of TEV protease to the solution insulin 

amyloid fibrils (section 4.8.1), it was decided to try and create a reusable TEV 

protease bionanomaterial by immobilising TEV protease to the surface assembled 

insulin amyloid fibrils. By immobilising TEV protease to the surface assembled 

insulin amyloid fibrils, it was anticipated that the TEV protease-glass beads would be 

easily reused by simply washing the beads between cleavage reactions. As stated in 

section 4.8, TEV protease is not normally recoverable after it has completed its 

cleavage reaction. Therefore, if TEV protease can be immobilised to a solid support, 

whilst retaining activity, a reusable system will be created that saves on production 

costs.  
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TEV protease has recently been immobilised to a strepavidin-agarose matrix (Miladi 

et al. 2012) (section 4.8) The increase in surface area arising from the surface 

assembled insulin amyloid fibrils and the proteinaceous nature of the nanoscaffold 

could however, allow a higher TEV protease loading and better catalytic efficiency. 

It has already been shown that TEV protease can be physically adsorbed to insulin 

amyloid fibrils (section 4.81), and that in the immobilised form it retains protease 

activity, thus TEV protease was physically adsorbed to the surface assembled insulin 

amyloid fibrils.  

5.4.1 TEV protease functionalisation and characterisation of surface 

assembled insulin amyloid fibrils 

A similar method to immobilising TEV protease to the solution insulin amyloid 

fibrils was used for the immobilisation of TEV protease to the surface assembled 

insulin amyloid fibrils. The method assembled the insulin amyloid fibrils on the 

surface of glass beads, as described in sections 3.4.1 and 7.12.2. The beads were then 

immersed in a 1 mg/mL solution of TEV protease for 2 hours at 4 °C, and thoroughly 

washed (section 7.13.3). To assess the amount of TEV protease immobilised to the 

different bead samples, the pre-bead immersion and post-bead immersion TEV 

protease solutions were analysed by SDS-PAGE. This is due to the reduction in the 

amount of TEV protease in solution, if immobilisation is occurring. Figure 5.5 

shows the SDS-PAGE gel of the pre-bead immersion TEV protease solution (lane 1), 

and post-bead immersion TEV protease immobilised solutions, which clearly shows 

that some TEV protease is being immobilised to all of the bead samples, as evident 

by the fainter TEV protease protein bands. From the gel it appears that all bead 

samples, whether they have been seeded or not, or had amyloid fibrils assembled, 

immobilised about the same amount of TEV protease. 
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Figure 5.5 SDS-PAGE gel showing the amount of TEV protease in the pre-bead 

immersion and post-bead immersion TEV protease solutions. L – 
ladder, 1 – pre-bead immersion, 2 – post-bead immersion with a bead 
that was seeded, no fibril assembled, and TEV protease immobilised, 3 
– post-bead immersion with a bead that was seeded, fibril assembled, 
and TEV protease immobilised, 4 – post- immersion with a bead that 
was not seeded, no fibril assembled, and TEV protease immobilised, 5 – 
post-immersion with a bead that was not seeded, fibrils assembled, and 
TEV protease immobilised. The same amount of protein was loaded in 
each lane. 

The TEV protease functionalised surface assembled amyloid fibrils were initially 

tested for their ability to cleave the poly-histidine tag of wild-type E. coli DHDPS. 

The immobilised TEV protease bead samples were put in a 1 mg/mL solution of 

wild-type E. coli DHDPS, and were incubated for 18 hours at 4 °C (section 7.13.4). 

A fraction of each of the DHDPS solutions was carefully pipetted off without 

touching the glass beads, and the fractions analysed for poly-histidine tag cleavage 

by SDS-PAGE. As can be seen in Figure 5.6, all of the bead samples displayed the 

ability to cleave the poly-histidine tag of the DHDPS, but the immobilised TEV 

protease bead which showed the highest activity was the bead which was seeded, 

amyloid fibrils assembled, and TEV protease immobilised (lane 4). Furthermore, the 

bead sample from lane 4 actually showed as much activity as the control cleavage 

reaction (lane 3), verifying that the amyloid fibril immobilised TEV protease must 

retain most, if not all of its catalytic activity. The slight cleavage activity seen by the 

other bead samples could be due to the non-specific physisorption of TEV protease 

to the glass surface as seen in Figure 5.5, when investigating the amount of TEV 

protease being immobilised to the surface assembled amyloid fibrils. However, in 

contrast to the results with GOD, the nanoscaffold affords a clear advantage. 
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Figure 5.6 SDS-PAGE gel of E. coli DHDPS cleavage by immobilised TEV bead 

samples. L – Ladder, 1 – DHDPS only control, 2 – TEV only control, 3 
– solution TEV DHDPS cleavage control, 4 – bead (seeded + fibrils + 
TEV) DHDPS cleavage, 5 – bead (seeded + TEV) DHDPS cleavage, 6 
– bead (fibrils + TEV) DHDPS cleavage, 7 – bead (TEV only) DHDPS 
cleavage.  

The TEV protease functionalised surface assembled amyloid fibrils were then tested 

for their ability to be reused sequentially, cleaving a different poly-histidine tagged 

protein on each day (section 7.13.4). It was decided to cleave a different protein each 

day, so that if there was any substantial contamination from a previous day’s protein 

cleavage, a protein band corresponding to the previous days cleavage reaction would 

be visible on the SDS-PAGE gel. The cleavage reactions were setup as for Figure 

5.6, but after each 18 hour cleavage reaction, the beads were thoroughly washed in 

dH2O before being placed in the next cleavable protein solution. This procedure was 

repeated until immobilised TEV protease activity had ceased. 
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Figure 5.7 shows the sequential poly-histidine tag cleavage of T. maritima DHDPR, 

A. thaliana DHDPR, human peroxiredoxin 3 (PRX3), and E. coli DHDPS Y107W 

by TEV protease functionalised surface assembled amyloid fibril samples. On day 

one of the cleavage reactions, all of the bead samples showed some cleavage activity, 

with the SDS-PAGE gel showing very similar results as Figure 5.6. Again, the bead 

which was seeded, amyloid fibrils assembled, and TEV protease immobilised (lane 

4) showed the highest TEV protease activity. The cleavage on day two had a very 

similar trend, but this time the amount of cleavage by the bead sample which was 

seeded, amyloid fibrils assembled, and TEV protease immobilised (lane 4), was 

much more pronounced compared to the other bead samples. By day three, the only 

bead sample retaining TEV protease activity was the bead sample which was seeded, 

amyloid fibrils assembled, and TEV protease immobilised (lane 4). This provides 

evidence that the presence of the surface assembled amyloid fibrils present protect 

TEV protease activity on the bead sample. By day four all of immobilised TEV bead 

samples showed no TEV protease activity. The control TEV protease reaction (lane 

3) showed that the protein is cleavable, therefore the reason for no cleavage activity 

by the immobilised TEV protease beads samples could be due to inactivation of the 

immobilised TEV protease, or leaching of the immobilised TEV protease over time, 

which is known to be a problem when immobilising enzymes by physical adsorption 

(section 1.5.3). 

 
Figure 5.7 SDS-PAGE gels of poly-histidine tag cleavage by TEV protease 

immobilised to bead samples. For all gels the lanes contain: L – 
Ladder, 1 – protein control, 2 – TEV protease only control, 3 – solution 
TEV protease protein cleavage control, 4 – bead (seeded + fibrils + 
TEV protease) protein cleavage, 5 – bead (seeded + TEV protease) 
protein cleavage, 6 – bead (fibrils + TEV protease) protein cleavage, 7 
– bead (TEV protease only) protein cleavage. 
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Functionalisation of the surface assembled insulin amyloid fibrils with TEV protease 

showed that the glass beads which were seeded and amyloid fibrils assembled, 

retained the most activity. This result was the similar to the results obtained when 

immobilising GOD and GFP, implying that the presence of the amyloid fibrils on the 

surface of the glass beads is allowing for a greater amount of enzyme to be 

immobilised. The catalytic activity of the immobilised TEV protease was preserved 

over three uses, with three different poly-histidine tagged proteins. Considering the 

immobilised TEV protease beads as a commercial proof-of-concept system, the 

results are promising taking into account that one 5 mm bead was used per reaction. 

Further optimisation of the surface amyloid fibril assembly and the enzyme 

immobilisation conditions could increase the enzymatic activity, reusability and 

storage life of the immobilised TEV protease bead system, and optimisation of this 

technology towards smaller micro glass beads packed into a column could potentially 

increase the specific enzyme activity exponentially.  

5.5 Summary 

This chapter has shown that surface assembled bovine insulin amyloid fibrils can be 

functionalised with a variety of biomolecules: GOD, GFP, and TEV protease. The 

evidence presented in this chapter shows that surface assembled insulin amyloid 

fibrils are providing a larger surface area and/or a biomolecule friendly environment 

that allows for a greater amount of biomolecule immobilisation or enhanced catalytic 

activity.  In all cases of biomolecule immobilisation, the glass bead surface that was 

seeded, insulin amyloid fibrils assembled, and the particular biomolecule 

immobilised, had the greatest activity or fluorescence, although GOD immobilisation 

was confounded by the high affinity of the enzyme to the unmodified glass surface.  
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Improvements to the amount of biomolecule immobilisation could be gained by 

optimising the amyloid fibril surface coverage. GFP was shown to be an excellent 

tool for investigating surface coverage and immobilisation. Future optimisation of 

amyloid fibril surface assembly can use GFP immobilisation and subsequent analysis 

by CLSM to quantify increases in surface assembled insulin amyloid fibrils. The 

results illustrate that surface assembled insulin amyloid fibrils are a useful 

nanoscaffold, but their utility as a nanoscaffold depends on the biomolecule being 

immobilised.  

Major steps have been taken in the characterisation and use of amyloid fibrils for 

bionanotechnology purposes, and a proof of principle reusable TEV protease-

amyloid fibril bead system has been developed that has possible future commercial 

applications. This demonstrates the commercial potential of amyloid fibrils as a 

nanoscaffold. Initial research into the creation of GFP functionalised surface 

assembled insulin amyloid fibrils on cotton was commenced, but analysis of the 

cotton material proved more difficult than the glass beads, therefore future work is 

needed to transfer the technology to the cotton system. 
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Chapter Six 

6 Summary and conclusions 

6.1 Introduction 

The aim of this research was to investigate amyloid fibrils as a nanoscaffold for the 

immobilisation of biomolecules with applications in biotechnology. This was 

achieved by immobilising a diverse range of biomolecules to insulin amyloid fibrils 

in solution, and subsequently characterising their immobilised forms. Insulin and 

crystallin amyloid fibrils were also assembled on the surface of glass beads, cotton, 

and microcrystalline cellulose, to increase their surface area. Active glass beads were 

then created by immobilising biomolecules to the surface assembled insulin amyloid 

fibrils on the glass beads. 

With the advent of new technologies to create designer, stable enzymes (Quin & 

Schmidt-Dannert 2011), there is increasing interest in the industrial use of enzymes 

for a wide variety of applications. Enzymes are being pursued as a green chemistry 

alternative to traditional chemical catalysts, because they function in mild processing 

conditions such as low pressure, temperature, and aqueous media, whilst producing 

high yields, usually in a substrate specific, regio-specific, and stereo-specific manner. 

The use of enzymes in industrial settings is currently hampered by their instability 

outside of the cellular environment, and production costs. Immobilisation of enzymes 

has the ability to overcome these limitations by increasing their stability and 

reusability. As outlined in section 1.5.2, there are numerous immobilised enzymes 

currently in industrial use for the production of high value commodities. Immobilised 

enzymes also have uses in biosensing, for example, glucose oxidase is used to 

measure blood glucose concentration (Bankar et al. 2009), and chemical 

detoxification (Kanugula et al. 2011). 
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Recently there has been increased interest in utilising nanosupports to immobilise 

enzymes due to their large surface area, allowing for a higher specific activity, less 

diffusional resistance, and increases in stability by immobilisation on or in a support 

of similar dimensions to enzymes (Ansari & Husain 2012). Therefore, the potential 

uses of novel nanosupports such as amyloid fibrils have gathered interest. This is due 

their intrinsic ability to self-assemble, allowing a bottom-up approach to material 

design. They also have high surface to volume ratio, gained from their nanometre 

dimensions. Additionally, it is also possible to modify them with chemicals and 

biomolecules through amino acid side chain residues. 

6.2 Characterisation of solution and surface assembled amyloid 

fibrils 

Bovine insulin and crystallin amyloid fibrils were first formed in solution, and were 

found to have characteristic fibrillar morphology when viewed by TEM. The 

crystallin amyloid fibrils were ~6 nm wider, and considerably longer than the insulin 

amyloid fibrils. FITC was used to estimate the number of amino groups available for 

covalent biomolecule immobilisation on the bovine insulin amyloid fibrils. Bovine 

insulin has three amino groups for immobilisation of biomolecules. Derivitisation 

with FITC suggested ~1/3 of the amino groups in bovine insulin amyloid fibrils are 

available for biomolecule immobilisation. This result was subsequently used to 

ensure an excess of biomolecules was present in the immobilisation reaction to 

maximise immobilisation. 
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Insulin and crystallin amyloid fibrils were assembled on the surface of 5 mm glass 

beads. The surface assembly method used amyloid fragments as the template from 

which to assemble amyloid fibrils. By utilising fibril fragments instead of previously 

reported amyloid fibril seeds, a highly reproducible amyloid fibril surface assembly 

method was developed. This is the first time that crystallin amyloid fibrils have been 

assembled from a surface. Characterising the surface assembled crystallin amyloid 

fibrils by SEM revealed amyloid spherulite structures with a similar morphology to 

amyloid β fibril spherulites (Ban et al. 2006). Spherulites are thought to be a 

common architectural feature of amyloid fibrils (Ban et al. 2006), and this is the first 

observation of amyloid spherulite structure formation by crystallins on surfaces. 

Insulin amyloid fibrils were assembled on the surface of cotton, and microcrystalline 

cellulose for the first time, and characterised by ThT and FTIR, respectively. The 

move from the model glass surface, to cellulose based materials represents a step 

towards realising the industrial potential of amyloid. Cellulose based materials are 

widely used in industry, and have been used in applications in which a range of 

enzymes have been immobilised to them. For example, lysozyme was recently 

immobilised on cotton to manufacture an antimicrobial material (Edwards et al. 

2011). Surface assembly of amyloid fibrils could generate cellulose based materials 

with increased surface area allowing increased enzyme immobilisation, thus 

increasing the material’s specific activity. 

6.3 Immobilisation of biomolecules to solution amyloid fibrils 

The biomolecules used for immobilisation ranged in size from ~27-175 kDa, and 

included a range of tertiary structures, monomeric and dimeric quaternary structures, 

and included a hydrolase, hydroxylase, oxido-reductase, a cysteine protease, and a 

fluorescent protein. By immobilising a diverse range of biomolecules, the generic 

versatility of amyloid fibrils as a nanoscaffold for biomolecule immobilisation was 

assessed. 
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OPH has potential applications in the decontamination and chemical detoxification 

of organophosphates such as VX, Sarin, Soman, and paraoxon (Mulchandani et al. 

1998), but instability and productions costs inhibit its widespread use. Thus, OPH 

was covalently immobilised to insulin amyloid fibrils with GA. Immobilised OPH 

was shown to retain catalytic activity, and showed a ~300 % increase in relative 

thermostability at 40 and 50 °C. This result is promising for future implementation of 

OPH as a reusable immobilised biocatalyst. An example of an application of this 

technology could be in its use in a fixed bed reactor or filter, for the elimination of 

organophosphates from the environment, or in the creation of self protective 

materials, for decontamination in the event of a chemical attack. 

Immobilisation of OPH was also attempted with the crystallin amyloid fibrils. It was 

predicted that more OPH would be immobilised due to increased length, and 

therefore larger surface-to-volume ratio. Methods to successfully immobilise OPH to 

the crystallin amyloid fibrils were not established, probably due to the glycosylation 

of the crystallins. Work is underway to develop new strategies to immobilise 

biomolecules on the crystallin amyloid fibril nanoscaffold. Two methods being 

investigated are the use of chemistry that is compatible with amino acids other than 

lysine residues, and the enzymatic deglycosylation of post-transcriptional 

modifications. 
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Collectively, cytochrome P450 enzymes catalyse a suite of chemical reactions, many 

of which are difficult to achieve by conventional chemical catalysis (Julsing et al. 

2008). Like OPH, many cytochrome P450s are unstable outside their natural cellular 

environment, and therefore immobilisation has been used to increase their stability 

and reusability. P450BM3 has been shown to have the greatest potential for industrial 

applications due to its catalytic self-sufficiency, affording it the highest known 

catalytic efficiency of the P450s; however, in the past it has proven difficult to 

immobilise. P450BM3 was immobilised to insulin amyloid fibrils. Covalent 

immobilisation with GA was initially attempted, but the cross-linker was found to 

inactivate the enzyme, probably due to interaction with arginine 47. Physical 

adsorption was therefore used to immobilise P450BM3. The physical interaction of 

P450BM3 to the insulin amyloid fibrils was found to be very strong by native-PAGE 

and centrifugation experiments. However, the interaction with the amyloid fibrils 

caused an almost complete loss in enzymatic activity, possibly due to unfolding of 

the enzyme on the surface of the insulin amyloid fibrils. Further investigation is 

required to ascertain whether the lack of activity stems from unfavourable 

interactions of the enzyme or substrate/product with the nanoscaffold. Previous 

studies by Maurer et al. (2003) exhibited similar results, in that upon immobilisation 

of P450BM3 to the anion exchanges DEAE and SuperQ, activity was lost.  
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GFP is extensively used in biochemistry and cell biology as a fluorescent reporter 

molecule for applications including: gene reporting, cell marking, and as a protein 

fusion tag (Tsien 1998). GFP was covalently immobilised to the insulin amyloid 

fibrils with GA to function as a fluorescent tag. GFP was shown to be immobilised to 

the insulin amyloid fibrils and retained fluorescence when characterised by native 

PAGE. This is the first time that GFP has been covalently immobilised to insulin 

amyloid fibrils, demonstrating a quick and convenient method for determining 

biomolecule immobilisation. GFP works well as a fluorescent tag because it does not 

rely on substrate binding for activity, but excitation at 495 nm. The lack of a 

chemical substrate enables functionality in non-natural conditions and it is therefore 

highly suited to immobilisation. GFP could be used to assess the immobilisation 

potential of other types of amyloid fibrils, allowing for optimisation of the 

immobilisation conditions by examining the degree of immobilised fluorescence. For 

example in the optimisation of biomolecule immobilisation to crystallin amyloid 

fibrils.  

TEV protease in solution is a one-time use enzyme for poly-histidine tag cleavage 

that has low stability, and is therefore a good candidate for immobilisation. Initial 

GA immobilisation to the insulin amyloid fibrils showed the cross-linker inhibited 

TEV protease activity. Immobilisation to insulin amyloid fibrils therefore relied on 

physisorption. TEV protease displayed some physical interaction to the insulin 

amyloid fibrils as determined by native PAGE, and the immobilised TEV protease 

was shown to retain activity by cleaving a poly-histidine tag from his-tagged 

proteins. This is first time that TEV protease has been immobilised to insulin 

amyloid fibrils, or any protein based support, and represents a step in utilising this 

experimentally important protease in an immobilised form. 

GOD is an industrially important enzyme with uses as a biosensor and antimicrobial 

agent. It is an extremely stable enzyme under a variety of conditions, thus is a 

typically used model enzyme for immobilisation. GOD was immobilised to insulin 

amyloid fibrils using GA, as previously described by Pilkington et al. (2010). The 

immobilised enzyme was shown to retain full activity. The immobilisation of GOD 

to the nanoscaffold in solution provided the framework for the immobilisation to the 

surface assembled amyloid fibril nanoscaffold.  



Summary and conclusions  181 
 

By immobilising a range of biomolecules, insulin amyloid fibrils have been shown to 

be a versatile nanosupport that can impart significant increases in stability to some 

biomolecules. The degree of immobilisation, and retained activity differed between 

biomolecules. Whilst insulin amyloid fibrils proved to be a versatile nanoscaffold, 

individual biomolecule immobilisation needs optimisation to ensure activity post-

immobilisation. Methods to immobilise biomolecules to crystallin amyloid fibrils 

were not established due to glycosylation. The immobilisation methods developed in 

this research can be used as a starting point for the immobilisation of any 

biomolecule to insulin, and possibly other types of amyloid fibrils for the creation of 

functional nanomaterials.  

6.4 Creation of bionanomaterials with immobilised biomolecules 

The successful assembly of bovine insulin amyloid fibrils on the surface of glass 

beads enabled immobilisation of GOD, GFP, and TEV protease. This method of first 

assembling the nanoscaffold on the surface of glass beads, followed by biomolecule 

immobilisation has not been investigated before. GOD was immobilised to the 

surface assembled insulin amyloid fibrils first, to establish immobilisation protocols 

for GFP and TEV protease. GOD was shown to be immobilised on the surface 

assembled insulin amyloid fibrils. The results of the experiments demonstrated that 

surface assembled insulin amyloid fibrils increased the surface area of the glass 

beads, enabling a small increase in net GOD activity. Only a small gain in 

immobilised GOD was observed due to the high non-specific binding of GOD to the 

unmodified glass surface. This could be improved by further optimisation of 

blocking and washing steps to help decrease the background non-specific adsorption. 
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GFP was successfully immobilised to surface assembled insulin amyloid using GA. 

The surface immobilised GFP samples were analysed for fluorescence in order to 

investigate the effect of the nanoscaffold on the surface of the glass beads. 

Fluorescence of the bead samples monitored in a plate reader showed that the glass 

beads with the surface assembled insulin amyloid fibrils had significantly more 

immobilised fluorescence. This result was also confirmed via quantitative imaging 

with CLSM. The images obtained by microscopy showed a reasonably complete 

surface coverage of the GFP functionalised surface assembled nanoscaffold. GFP 

was shown to be an excellent fluorescent tag for surface assembled amyloid fibrils, 

and in the future could be used in the optimisation of surface assembly of amyloid 

fibrils by enabling quantitative analysis of the amount of surface assembly. 

TEV protease was successfully immobilised to surface assembled insulin amyloid 

fibrils by physical adsorption. The resulting functionalised glass beads successfully 

cleaved the poly-histidine tag of several proteins as efficiently as the solution TEV 

protease control cleavage reaction. This demonstrates that TEV protease is fully 

active when immobilised on the surface assembled insulin amyloid fibrils. 

Reusability testing of the surface immobilised TEV protease glass beads suggests 

this technology may provide a convenient and reusable protease system that may 

have commercial potential, as many labs utilise polyhistidine tags for recombinant 

protein purification. Testing additional TEV protease immobilisation conditions 

could yield increases in specific activity, whilst utilising micro beads with surface 

assembled amyloid fibrils in a fixed column could streamline protein purification. 

This research has shown that insulin amyloid fibrils can act as a versatile 

nanoscaffold by increasing the surface area for biomolecule immobilisation. The 

intrinsic surface chemistry of the insulin amyloid fibrils enabled decoration with 

biomolecules by covalent and physical immobilisation. Functionalised surface 

assembled amyloid fibrils show promise as a novel nanosupport for the creation of 

functional bionanomaterials, for example, active surface coatings for the production 

of fine chemicals, chemical detoxification, or biosensing. 
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6.5 Future work 

Due to their length and stability, crystallin amyloid fibrils may provide improved 

biomolecule immobilisation over insulin amyloid fibrils. Methods to optimise 

immobilisation of biomolecules to the crystallin amyloid fibrils are being actively 

explored. Deglycosylation of the crystallins may enable immobilisation chemistry to 

occur. This could be monitored using FITC binding. Amino acids other than lysine, 

for example cysteine, could be investigated as potential immobilisation targets. 

Further optimisation of the surface assembly of amyloid fibrils to generate maximum 

surface coverage, and therefore overall surface area, could potentially enable for 

improved biomolecule immobilisation. The increases in surface coverage could be 

monitored by the immobilisation and subsequent quantification of GFP fluorescence. 

Surface assembly and functionalisation of amyloid fibrils on other surfaces could 

lead to the creation of many new functional materials. For example, amyloid fibrils 

have been used as a nanocomposite and combining functional amyloid 

nanocomposites with functional surface assembled amyloid fibrils has the potential 

to produce highly active and unique materials.  
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Chapter Seven 

7 Experimental 

7.1 Materials 

Unless otherwise stated, chemicals were purchased from Sigma-Aldrich or 

Invitrogen. Barracuda were purchased from the Lyttelton fish market, Christchurch, 

New Zealand. 

7.2 Biochemistry general methods 

Unless otherwise stated, enzymes were manipulated on ice or at 4 °C. pH 

measurements were made using a Denver Instrument Ultra Basic 10 benchtop meter 

fitted with a high performance tris electrode.  

Centrifugation was performed in an Eppendorf 5810R on a small scale (< 2 mL) 

using an F-45-30-11. For medium and large scale centrifugation a Thermo Scientific 

Sorvall RC6 plus centrifuge was used with either a SS-34 or FiberLite F10-6x500y 

rotor, respectively.  

Polyacrylamide gel electrophoresis was routinely run using a NuPAGE system from 

Invitrogen. Enzymes assays used an Agilent 8453 UV-visible spectrophotometer 

fitted with a circulating water bath, a Varian Cary 100 UV-vis spectrophotometer 

fitted with a Peltier temperature controller and a Peltier thermostattable multicell 

holder, or a Labtech FLUOstar OPTIMA plate reader. 
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7.2.1 Standard Bradford assay for determining protein concentration 

This assay is based on the Bradford dye-binding procedure (Bradford 1976), and uses 

the Bio-Rad protein assay reagent. 800 μL of appropriately diluted protein solution 

was added to 200 μL of Bio-Rad protein assay reagent, mixed thoroughly and 

incubated at room temperature for 5 min exactly. The absorbance of the solutions 

was measured at 595 nm against a blank consisting of 800 μL of H2O and 200 μL of 

Bio-Rad protein assay reagent. Protein concentrations were calculated from a 

standard curve prepared using BSA. 

7.2.2 NanoDrop protein determination 

Three μL of protein solution was pipetted onto a Thermo Fisher Scientific NanoDrop 

1000 after being blanked against the appropriate buffer. Absorbance measurements 

were carried out at in triplicate at 280 nm. Proteins absorb light at 280 nm due to 

aromatic amino acids, such as tryptophan and tyrosine. The number of aromatic 

residues in a protein’s sequence gives rise to the extinction coefficient of a protein, 

which was predicted using the web-based program “ExPASy” (Gasteiger et al. 

2003). Using Beer’s law, the known extinction coefficient, and the absorbance of the 

solution, the concentration of protein can be calculated. 
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7.2.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis  

Electrophoresis tank buffer 50 mM MOPS 

Coomassie Blue stain  1 % w/v Coomassie blue 

     50 % v/v methanol 

     10 % v/v glacial acetic acid 

Destain    5 % v/v methanol 

     10 % v/v glacial acetic acid 

Sample buffer   Invitrogen NuPAGE® LDS Sample Buffer (4x) 

Reducing agent   Invitrogen NuPAGE® Reducing Agent (10x) 

Regular analysis of protein samples used precast Invitrogen NuPAGE® 4-12 % Bis-

tris gels with 10, 1.0 mm wide wells. Samples were mixed with sample buffer and 

reducing agent to give a total of ~5 ng/μL of protein. Samples were then incubated at 

90 °C for 4 min and then briefly centrifuged before being loaded into the gel. An 

Invitrogen Novex Sharp pre-stained protein standard was also loaded into the gel. 

Electrophoresis was carried out at room temperature at a constant voltage of 200 V 

for ~50 min. The gel was then immersed in stain and microwaved for ~30 sec before 

standing on a Bio-Rad Ultra Rocker for 10 min. The gel was then immersed in 

destain and microwaved for 1 min before the addition of 1 piece of tissue paper and 

place on the Bio-Rad Ultra Rocker until appropriately destained. The gel was viewed 

and photographed using a SYNGENE GelDoc. 
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7.2.4 Native polyacrylamide gel electrophoresis 

Electrophoresis tank buffer 250 mM tris.base  

1.92 M glycine 

Coomassie Blue stain  1 % w/v Coomassie blue 

     50 % v/v methanol 

     10 % v/v glacial acetic acid 

Destain    5 % v/v methanol 

     10 % v/v glacial acetic acid 

Sample buffer (2x)   126 mM tris.HCl 

     20 % glycerol 

     0.005 % bromophenol blue 

Regular analysis of protein samples used precast Invitrogen Novex® 10 % tris-

glycine gels with 10, 1.5 mm wide wells. Samples were mixed with sample buffer 

and dH2O to give a total of ~5 ng/μL of protein. Samples were then loaded into a 4 

°C gel. Electrophoresis was carried out at 4 °C at a constant voltage of 135 V for 

~120 min. The gel was then immersed in stain and microwaved for ~30 sec before 

standing on a Bio-Rad Ultra Rocker for 10 min. The gel was then immersed in 

destain and microwaved for 1 min before the addition of 1 piece of tissue paper and 

place on the Bio-Rad Ultra Rocker until appropriately destained. The gel was viewed 

and photographed using a SYNGENE GelDoc. 
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7.2.5 Buffer exchange of proteins 

Desalting of proteins into the required buffers was routinely carried out using either a 

5 mL HiTrap™ Desalting column or 12000 MWCO dialysis tubing stored in 0.1 % 

sodium azide. When using the desalting column, the column was first equilibrated 

with 4 column volumes of the desired buffer before loading of the sample. The 

sample was then eluted with desired buffer and fractions collected. The fractions 

containing the protein were then pooled. When using the dialysis tubing, the tubing 

was first thoroughly washed with dH2O before the sample was placed in the tubing. 

The tubing was then placed in ~2 L of the desired buffer and left gently stirring at 4 

°C over night. 

7.2.6 Sonication of cultured cells 

Cell disruption used a Sonics Vibracell Model CV33. The total running time was 5 

min with the amplitude set at 100 %. The pulse was set for 3.0 sec on and 9.9 sec off. 

All samples were sonicated in a cooling bath of iced water. 

7.2.7 Differential scanning fluorimetry (DSF) 

Based on methods developed by Ericsson et al. (2006), protein melting temperature 

was investigated using a Bio-Rad® iQ5 real-time PCR machine. 80 μL of 0.5 mg/mL 

protein sample was mixed with 20 μL of 50x SYPRO® Orange dye. 25 μL of this 

protein/dye mix was placed into a 96-well thin-wall PCR plate (Bio-Rad) with 

triplicates of each sample being used. The plate was sealed with a Bio-Rad® 

Microseal® ‘B’ Film and heated from 20 °C to 80 °C in 0.5 °C increments with a 

dwell time of 10 seconds. The excitation and emission wavelengths were 490 and 

575 nm, respectively. The melting temperature was determined as the point of 

maximum inflection of the -dRFU/dT curve.  
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7.2.8 Plate reader Thioflavin T (ThT) assay 

ThT (2.5 mM) was made up in ThT buffer containing 50 mM tris-base, 100 mM 

NaCl, pH 7.5. This was filtered and stored in the dark for up to a maximum of two 

days. ThT fluorescence was measured using a BMG Labtech FLUOstar Optima plate 

reader with excitation/emission filters of 450 and 485 nm, respectively (LeVine III 

1999). Samples had a total volume of 200 μL containing 25 μM ThT. Three 

replicates of each sample were measured. 

7.2.9 Surface Thioflavin T (ThT) assay 

Cotton samples were first immersed in a solution of 25 μM ThT in 50 mM tris-Base, 

100 mM NaCl, pH 7.5 for 5 min before being rinsed 3 times in dH2O. The cotton 

samples were then placed between two microscope cover slips and sellotaped 

together. The sample was then mounted on the sample holder with only the centre of 

the sample been viewed. ThT fluorescence was measured using a Fluorolog-3 

spectrophotometer, model FL3-22, Horiba Jobin Yvon with 2 nm slits at an 

excitation of 450 nm with emission from 460-600 nm. 

7.2.10 Fourier transform infrared spectroscopy (FTIR) 

FTIR used a PerkinElmer® Spectrum One FT-IR spectrophotomer with diffuse 

reflectance sampling. Background measurements containing dry KBr only were used 

to blank the machine. Each sample was scanned 40 times at a resolution of 4 cm-1. 

All samples were dried at 37 °C for at least 2 days before been analysed. Cotton 

samples were finely cut up and ground with KBr and placed in the sample holder. 

Cellulose powder was mixed with dry KBr and ground before being placed in the 

sample holder. Data were analysed using Spekwin32 (Menges 2010). 
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7.2.11 Transmission electron microscopy (TEM) 

Insulin and crystallin amyloid fibrils (1.45 mg/mL) were negatively stained with 

filtered 1 % uranyl acetate on Formvar-coated copper grids (200 mesh) and washed 

twice with nanopure H2O based on the method of Whittingham et al. (2002). 

Samples were viewed at 89,000 x magnification on a Morgagni 268D TEM (FEI 

Company, Oregon, USA) operating at 80 kV, fitted with a 40 μm objective aperture. 

Micrographs were representative of 3 images chosen as being an overall 

representation of the entire sample. Images were analysed using ImageTool (Wilcox 

et al. 2002). 

7.2.12 Scanning transmission electron microscopy (SEM) 

Air dried samples were first prepared by high vacuum evaporation with gold. The 

samples were then viewed using a JEOL JSM-7000F high resolution field emission 

scanning electron microscope. 

7.2.13 Confocal laser scanning microscopy 

Beads were mounted in small Petri dishes and viewed using a Leica Microsystems 

TCS SP5 confocal microscope with a Leica HCX PL 10x lens. An excitation of 488 

nm and emission detection of 509 nm was used. The gain was adjusted to suit the 

most fluorescent sample and kept the same for all subsequent samples. 

7.2.14 Quantitative confocal Imaging 

Firstly, the confocal microscope gain was set to a level where the brightest sample 

was not being overexposed (section 7.2.13), then all the samples were imaged (Piston 

et al. 1998). The mean pixel value for each image was assessed using the Leica LAS 

AF Lite 2.4.1 software. The samples were always measured in triplicate. 

7.2.15 Circular dichroism spectroscopy 

CD spectra were recorded on a Jasco J-815 spectrophotomer in 20 mM phosphate 

buffer, pH 8.0 in a 2 mm pathlength quartz cell. The slit bandwidth used was 1 nm 

with a step size of 0.5 nm. 
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7.2.16 Size exclusion chromatography 

Gel-filtration was performed using a pre-packed HiLoad Superdex 16/60 column 

(GE healthcare) connected to a UPC-900 ÄKTA FPLC from GE healthcare at 4 °C. 

The column was pre-equilibrated with 20 mM tris.HCl, 150 nM NaCl, pH 8.0. and 

samples were run on the column and collected. 

7.3 Molecular biology methods 

The pMAL-c2x/S5 and wild-type organophosphate hydrolase plasmids were a kind 

gift from Dan Tawfik, Weizmann Institute. The CYP450BM3 plasmid was a kind 

gift from Vlada Urlacher, Institute of Technical Biochemistry, University of 

Stuttgart. The E. coli DH5α eGFP containing bacterium was a kind gift from Arvind 

Varsani, University of Canterbury. 

7.3.1 Bacterial strains 

Three bacterial strains obtained from laboratory stocks were routinely used in this 

study:  

- E. coli XL-1 Blue (genotype – recA1, endA1, gyrA96, thi-1, hsdR17, supE44, 

relA1, lac) 

- E. coli BL21 (DE3) star (F-, ompT, hsdSB, (rB
-mB

-), gal, dcm, rne131). 

- E. coli DH5α (fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 

recA1 relA1 endA1 thi-1 hsdR17). 
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7.3.2 Plasmid preparation by alkaline lysis 

Solution 1  50 mM glucose, 25 mM tris-HCl pH 8.0, 10 mM 
EDTA 

Solution 2    1 % (w/v) SDS, 0.2 M NaOH 

Solution 3  5 M potassium acetate, 11.5 % (v/v) glacial acetic 
acid 

Plasmid preparation was based on the methods of Sambrook et al. (1989). 1.5 mL of 

an overnight culture produced from a single colony was placed in an Eppendorf tube, 

centrifuged (10000 rpm, 5 min, 4 °C), and the supernatant removed by aspiration. 

The pellet was resuspended in 300 µL solution 1 via vortexing and chilled on ice. 

After 5 min, 300 µL of solution 2 was added, mixed by gentle inversion, and chilled 

on ice. After 10 min, 300 µL of solution 3 was then added, mixed by gentle inversion 

until a white precipitate formed, and chilled on ice. The preparation was then 

centrifuged (10000 rpm, 5 min, 4 °C), the supernatant carefully transferred to a clean 

Eppendorf tube, and the pellets discarded. 

The DNA was precipitated by addition of 650 µL isopropanol, mixed by inversion, 

and allowed to stand at room temperature for 2 min. After centrifugation (10000 rpm, 

5 min, 4 °C) and discarding the supernatant, the pellet was rinsed with 1 mL 70 % 

ethanol, centrifuged (10000 rpm, 2 min, 4 °C), and the supernatant discarded. The 

pellet was allowed to dry for at least 10 mins, before resuspension in 80 µL dH2O, 

and left at 37 °C for 30 min. The plasmids were identified by restriction digest 

(section 7.3.3) with agarose gel electrophoresis (section 7.3.10), and concentration 

determined at 280 nm by NanoDrop (section 7.2.2). 

7.3.3 Restriction digests of plasmids 

Restriction digests were performed in 10 µL volumes. Typically, ~1 µg of plasmid 

DNA (2.5 to 5 µL) was digested with the appropriate restriction enzyme and 

corresponding restriction buffer. Restriction products were then analysed by agarose 

gel electrophoresis (section 7.3.10). 
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7.3.4 Transformation of E. coli XL-1 Blue 

The transformation protocol was based on the Stratagene XL-1 Blue competent cell 

manual (Stratagene 2004). A 100 μL aliquot of E. coli XL-1 Blue competent cells 

was thawed on ice, and 1 μL of DNA was added and incubated on ice for 30 min. 

The cells were then heat shocked at 42 °C for 45 seconds, and incubated on ice for 2 

min. 900 μL of preheated (37 °C) SOC medium was added to the tube and incubated 

at 37 °C with shaking at 200 rpm for 1 hour. Less than or equal to 200 μL of the 

transformation mixture was then plated on LB agar containing the appropriate 

antibiotics (section 7.3.7). From these plates, 5-10 potential transformant colonies 

were selected and grown in 10 mL LB cultures containing the appropriate antibiotic 

and a glycerol stock culture was made and stored at -80 °C (section 7.3.9). 

7.3.5 Transformation of E. coli BL21 (DE3) Star 

The transformation protocol was based on the Stratagene BL21 (DE3) Star 

competent cell manual (Stratagene 2010). A 100 μL aliquot of E. coli BL21 (DE3) 

Star competent cells was thawed on ice, and 1 μL of DNA was added and incubated 

on ice for 30 min. The cells were then heat shocked at 42 °C for 45 seconds, and 

incubated on ice for 2 min. Preheated (37 °C) SOC (900 μL) medium was added to 

the tube and incubated at 37 °C with shaking at 200 rpm for 1 hour. ≤ 200 μL of the 

transformation mixture was then plated on LB agar containing the appropriate 

antibiotics (section 7.3.7). From these plates, 5-10 potential transformant colonies 

were selected and grown in 10 mL LB cultures containing the appropriate antibiotic 

and a glycerol stock culture was made and stored at -80 °C (section 7.3.9). 

7.3.6 Antibiotics 

Stock solutions of antibiotics were prepared and used at the appropriate 

concentrations as defined in Table 7.1. Stock solutions were made with the 

appropriate solvent, sterilised by passing through a 0.2 μm filter, and stored at -20 

°C. 
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Table 7.1  Antibiotic concentrations used for bacterial selection 

Antibiotic Abbreviation Solvent 
[Stock]  
mg/mL 

[Working]  
μg/mL 

Ampicillin Amp dH2O 100 100 
Chloramphenicol Cam EtOH 30 30 
Kanamycin Kan dH2O 30 30 

7.3.7 Media and plate preparation 

Luria-Bertani medium (LB) 

LB base was supplied in powered form. LB base (20 g) was added to 1 L of water, 

the pH was adjusted to 7.0 by the addition of NaOH, and the medium autoclaved. 

ZYM-5052 auto-induction medium 

The manufacture of ZYM-5052 media was based on the methods developed by 

Studier (2005). Tryptone (10 g) and 5 g yeast extract were added to 960 mL of water 

and autoclaved. After autoclaving, 20 mL 50 x 5052 stock (25 % glycerol, 2.5 % 

glucose, and 10 % lactose), 20 mL 50 x M stock (1.25 M Na2HPO4, 1.25 M KH2PO4, 

2.5 M NH4Cl, and 0.25 M Na2SO4), 1 mL 2 M MgSO4, 200 μL trace metals (50 mM 

FeCl2, 20 mM CaCl2, 10 mM each of MnCl2 and ZnSO4, 2 mM each of CoCl2, 

CuCl2, NiCl2, NaMoO4, Na2SeO3, H3BO3 in ~60 mM HCl) solution and 1 mL 

antibiotics were added to give a final concentration of either 30 μg/mL kan or 100 

μg/mL amp were added. 

Super optimal broth (SOB) medium 

To prepare SOB, 10 g tryptone, 2.5 yeast extract, and 0.25 g NaCl were dissolved in 

480 mL dH2O. Ten millilitres of 250 mM KCl was added and the solution pH 

adjusted to 7.0 with concentrated NaOH. The SOB was aliquoted and autoclaved. 

One molar glucose was added under sterile conditions just prior to use, giving a final 

concentration of 20 mM. 
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Agar plate preparation 

LB base (20 g/L) and 15 g/L agar were added to water and autoclaved. This was 

stored at room temperature until required. The LB agar was melted in the microwave 

(~2 min for 100 mL) and allowed to cool to ~50 °C before being supplemented with 

antibiotics (30 μg/mL kan or 100 μg/mL amp), and poured into sterile Petri dishes in 

a biohazard flow hood. The plates were allowed to cool before use. Plates were 

stored sealed at 4 °C for up to 4 weeks. 

7.3.8 Bacterial cultures 

All equipment and media used for the culture of bacteria were sterilised by 

autoclaving at 121 °C for 20 min. Standard aseptic technique was maintained 

throughout the manipulation of bacterial cultures. 

Agar plates containing appropriate selective antibiotics were streaked with a bacterial 

strain from a glycerol freezer stock, or a fresh single colony, using a flame-sterilised 

wire loop. The plates were incubated at 37 °C for ~12 hours, and a single colony 

selected using a flame-sterilised wire loop to inoculate a 10 mL culture medium 

containing appropriate selective antibiotics. These starter cultures were grown 

overnight at 37 °C, with shaking at 200 rpm, and subsequently used to inoculate 

larger cultures. 

7.3.9 Bacterial strain storage 

Glycerol freezer stocks were used to store all bacterial strains. The stocks were 

prepared by mixing 700 μL of an overnight culture grown from a single colony, with 

300 μL of 50 % sterile glycerol in a sterile 1.5 mL screw-top cryo-storage tube, to 

give a final concentration of 15 % glycerol. The prepared glycerol stocks were then 

stored at -80 °C. 
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7.3.10 Agarose gel electrophoresis 

Loading dye   Bioline Crystal 5x DNA loading buffer 

TAE buffer    40 mM tris-acetate pH 8.0, 1 mM EDTA 

Ladder    Bioline Hyperladder™  

One % w/v agarose was mixed with 40 mL of TAE buffer and microwaved for 1 

min. The agarose was left to cool to ~50 °C before 3 μL of 10000x concentrate 

Invitrogen SYBR® Safe DNA gel stain was added and poured into a gel casting tray. 

The gel was allowed to set for ~30 min before the well comb was removed and the 

casting tray transferred to a gel tank containing TAE buffer. The DNA samples in 

loading dye and the DNA ladder were then loaded. Electrophoresis was performed at 

120 V for ~1 hour and visualised under UV light using a SYNGENE GelDoc. 

7.4 Overexpression and purification organophosphate hydrolase 

Lysis buffer  50 mM tris pH 8.5, 10 mM NaHCO3, 5 mM ZnCl2 

Column buffer 1   50 mM tris pH 8.0, 0.25 M NaCl 

Column buffer 2   50 mM tris pH 8.0, 0.25 M NaCl, 10 mM maltose 

7.4.1 Growth of E. coli BL21(DE3) star-pMAL-c2x/S5 

Plasmid pMAL-c2x/S5 was transformed into E. coli BL21 (DE3) star competent 

cells (section 7.3.5) for protein overexpression. The transformed cells where then 

used to inoculate solid LB-agar plates containing 100 μg/mL amp, which were grown 

overnight at 37 ºC.  

A single colony was used to inoculate a 10 mL LB culture containing 100 μg/mL 

amp and grown overnight at 37 ºC, with shaking, at 250 rpm. 1 mL of the overnight 

culture was then used to inoculate 1 L of ZYM-5052 auto-induction media 

containing 100 μg/mL amp (Studier 2005). This was grown, with shaking, at 250 

rpm at 37 ºC for 4 hours and then overnight at 30 ºC.  
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7.4.2 Cell disruption and protein purification 

Protein purification took advantage of the C-terminal maltose binding protein as 

previously described Roodveldt & Tawfik (2005). Cells were harvested by 

centrifugation, resuspended in lysis buffer and disrupted by sonication (section 

7.2.6). The cellular debris was centrifuged and the supernatant was passed through an 

amylose column (BioLabs®) equilibrated with column buffer 1, and the column 

subsequently washed with 5 column volumes of the same buffer. The fusion protein 

was eluted with column buffer 2, and fractions containing protein as evaluated with 

Bio-Rad protein assay reagent, were pooled.  

The purified protein was then desalted (section 7.2.5) into the desired buffer 

containing either, 100 mM sodium phosphate, pH 8.0, or 100 mM HEPES pH 7, 8 or 

9. The protein was purified to homogeneity with a band of expected size, ~76 kDa, 

as judged by SDS-PAGE (section 7.2.3). The concentration of the purified protein 

was verified using a NanoDrop ND1000 spectrometer (section 7.2.2), using an 

extinction coefficient of 0.8462. The yield for each purification was ~100 mg per 

litre of culture. 

7.4.3 Maltose binding protein cleavage  

Cleavage of the maltose binding protein from the OPH-MBP fusion protein exploited 

the serine protease cleavage site located between the MBP and the OPH. Factor Xa 

(Novagen®), a serine protease was added to the fusion protein at a concentration of 

one unit Factor Xa to 50 μg OPH-MBP fusion protein and incubated overnight at 4 

ºC. Following cleavage, OPH was separated from MBP via an amylose column. 

Factor Xa was captured using Xarrest™ Agarose at a concentration of 100 μL (50 % 

slurry) resin per 4 U of enzyme. Non-cleaved and cleaved samples were analyzed 

using SDS-PAGE to verify cleavage had occurred, with cleaved mixtures showing 

the expected bands of 35 and 42 kDa for the OPH and MBP, respectively.  
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7.4.4 OPH temperature stability assay 

OPH in either pH 7, 8, or 9, 100 mM HEPES underwent the immobilisation reaction 

(sections 7.11.1 and 7.11.2), and were diluted 1:50 in paraoxon assay buffer 

containing 5 mM ZnCl2 for 1 hour to saturate the sample with zinc ions, known to be 

required for OPH activity (Vanhooke et al. 1996). Samples were incubated in 

temperature-controlled water baths for the appropriate time. The temperatures used 

were 30, 40, 45, and 50 °C. After preliminary range finding experiments, at 30 °C, 

readings were taken at time 0, 3, 5, and 7 days; at 40 °C, readings were taken at time 

0, 2, 4, and 6 hours; at 45 °C, readings were taken at time 0, 5, 20, and 120 min; and 

at 50 °C, readings were taken at time 0, 20, 40, and 60 min. Samples were then 

stored on ice before testing the activity using the paraoxon assay. An initial activity 

reading was taken for each sample and this was used as the 100 % value. Subsequent 

activity readings were measured as a percentage of the initial reading. 

7.5 Overexpression and purification of cytochrome P450 BM3 

Buffer A    20 mM sodium phosphate pH 8.0, 0.5 M NaCl, 

30 mM imidazole 

Buffer B    20 mM sodium phosphate pH 8.0, 0.5 M NaCl, 

300 mM imidazole 

7.5.1 Growth of E. coli BL21 (DE3) star-pET28-BM3  

Plasmid pET28-BM3 was transformed into E. coli BL21 (DE3) star competent cells 

for protein overexpression. The transformed cells were then used to inoculate solid 

LB-agar plates containing 30 μg/mL kan, which were grown overnight at 37 ºC. A 

single colony was used to inoculate a 10 mL LB broth containing 30 μg/mL kan and 

grown overnight at 37 ºC, with shaking, at 250 rpm. One millilitre of the overnight 

culture was then used to inoculate 1 L of ZYM-5052 auto-induction media 

containing 30 μg/mL kan (Studier 2005). This was grown, with shaking, at 250 rpm 

at 37 ºC for 4 hours then overnight at 30 ºC. 
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7.5.2 Cell disruption and protein purification 

Protein purification took advantage of the N-terminal poly-6-histidine tag as 

previously described Pflug et al. (2007). Cells were harvested by centrifugation, 

resuspended in buffer A, and disrupted by sonication (section 7.2.6). The cellular 

debris was centrifuged and the supernatant was passed through a 5 mL HisTrap™ 

Fast Flow column previously equilibrated with buffer A. The column was then 

washed with 5 column volumes of buffer A. The protein was eluted with buffer B, 

and the fractions containing protein pooled, as determined by Bio-Rad protein assay 

reagent. The purified protein was then desalted (section 7.2.5) into 100 mM HEPES 

pH 8. The protein was purified to homogeneity with a band of expected size, ~119 

kDa, as judged by SDS-PAGE (section 7.2.3). The concentration of the purified 

protein was verified using a NanoDrop ND1000 spectrometer (section 7.2.2), using 

an extinction coefficient of 1. The yield for each purification was ~40 mg per litre of 

culture. 

7.6 Overexpression and purification of enhanced green 

fluorescent protein 

Buffer A    50 mM tris pH 7.0 

Buffer B    50 mM tris, 1 M NaCl pH 7.0 

7.6.1 Growth of E. coli DH5α eGFP 

The growth and purification of GFP was based around the methods of Yang et al. 

(1996). The E. coli DH5α bacterium routinely showed good eGFP protein expression 

levels therefore this bacterial strain was used for protein expression. 1 mL of culture 

containing E. coli DH5α eGFP was transferred to 1 L of LB media containing 100 

μg/mL amp. This was grown overnight at 30 °C, with shaking at 250 rpm. 
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7.6.2 Cell disruption and protein purification 

Cells were harvested by centrifugation, resuspended in buffer A and disrupted by 

sonication (section 7.2.6). The cellular debris was centrifuged and the supernatant 

was passed over a Superdex 16/10 high performance ion exchange column 

equilibrated with buffer A. The column was subsequently washed with 10 column 

volumes of buffer A. The proteins were eluted using a gradient of 0-100 % of buffer 

B over 35 min running at 2.5 mL/min. The fractions which fluoresced under UV 

light were pooled. The GFP was then buffer exchanged into 50 mM sodium 

phosphate pH 8.0 (section 7.2.5). The protein concentration was determined using 

the 96 well plate reader by using ε488 = 55000 M-1cm-1. The yield for each 

purification was ~7 mg per litre of culture. 

7.7 Overexpression and purification of tobacco etch virus 

protease 

Buffer A 50 mM sodium phosphate, 100 mM NaCl, 10 % 
glycerol, 25 mM imidazole, pH 8.0 

Buffer B 50 mM sodium phosphate, 100 mM NaCl, 10 % 
glycerol, 200 mM imidazole, pH 8.0 

Storage buffer 25 mM sodium phosphate, pH 8.0, 200 mM NaCl, 
10 % glycerol, 2 mM EDTA, 10 mM DTT 

7.7.1 Growth of E. coli BL21-RIL pRK793  

The growth and purification of TEV MBP-His7-pR5 was based around the methods 

of Blommel & Fox (2007). One loop of culture was taken from the -80 °C glycerol 

stock culture, plated on a solid LB-agar plate containing 100 μg/mL amp and 30 

μg/mL cam and grown overnight at 37 °C. A single colony was used to inoculate a 

10 mL LB culture containing 100 μg/mL amp and 30 μg/mL cam and grown 

overnight at 37 ºC, with shaking, at 250 rpm. One millilitre of the overnight culture 

was then used to inoculate 1 L of ZYM-5052 auto-induction media containing 100 

μg/mL amp and 30 μg/mL cam (Studier 2005). This was grown, with shaking, at 250 

rpm at 37 ºC for 5 hours and then overnight at 26 ºC. 
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7.7.2 Cell disruption and protein purification of BL21-RIL pRK793 MBP-

His7-pR5 

Protein purification took advantage of the N-terminal poly-7-histidine tag. Cells were 

harvested by centrifugation, resuspended in buffer A and disrupted by sonication 

(section 7.2.6). The cellular debris was centrifuged and the supernatant was passed 

through a 5 mL HisTrap™ Fast Flow column equilibrated with buffer A. The column 

was then washed with 5 column volumes of buffer A. The protein was eluted with 

buffer B, the fractions containing protein as determined by Bio-Rad protein assay 

reagent. The pooled fractions were then allowed to stand at 4 °C for 2 hours to allow 

the self-cleavage of the N-terminal MBP. The protein was then diluted 10x with 

buffer A to lower the imidazole concentration. The diluted protein was then reapplied 

to the His column which had been equilibrated with buffer A. The column was 

washed with 5 column volumes of buffer A to wash the cleaved MBP. The protein 

was then eluted with buffer B, and the fractions containing protein as judged by Bio-

Rad protein assay reagent, were pooled, and EDTA and DTT added to a final 

concentration of 1 mM. The purified protein was then desalted (section 7.2.5) into 

storage buffer, flash frozen with liquid nitrogen and stored at -80 ºC. The protein was 

purified to homogeneity with a band of expected size, ~28 kDa, as judged by SDS-

PAGE (section 7.2.3). The concentration of the purified protein was verified using 

the standard Bradford method (section 7.2.1). The yield for each purification was 

~10 mg per litre of culture. 

7.8 Glucose oxidase  

Lyophilised powdered (~75 %) GOD was purchased from Sigma-Aldrich. The 

powder contained 136000 U/g where 1 U will oxidise 1.0 μM of β-D-glucose to D-

gluconolactone and H2O2 per min at pH 5.1 at 35 °C, equivalent to an O2 uptake of 

22.4 μL per min. 
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7.9 Enzymatic activity assays 

7.9.1 OPH paraoxon assay 

OPH initial rates assays were based on the methods of McLoughlin et al. (2005). 

Initial rates were calculated by monitoring the release of p-nitrophenol at 405 nm 

from the substrate paraoxon using an Agilent 8453 UV-visible spectrophotometer. 

Assays (1 mL) contained 100 mM MOPS, pH 7.0, 1 % MeOH, 0.1 mM paraoxon, 

and a final concentration of ~0.38 μg/mL OPH. Assays were initiated by the addition 

of paraoxon and kept at a constant temperature of 30 °C using a circulating water 

bath. All assays were repeated in triplicate and typically had an error of less than 5 % 

calculated using the standard deviation of the mean. 

7.9.2 CYP450BM3 sodium laurate assay 

NADPH-dependent sodium laurate oxidation was based on the methods of (Munro et 

al. 1995). Initial rates were calculated by monitoring the decrease in NADPH at 340 

nm. Assays (1 mL) contained 20 mM MOPS, 100 mM KCl, pH 7.4, 0.5 mM sodium 

laurate, 0.2 mM NADPH and a final concentration of ~5 μg/mL P450BM3. Assays 

were initiated by the addition of sodium laurate and kept at a constant temperature of 

30 °C using a circulating water bath. All assays were repeated in triplicate and 

typically had an error of less than 5 % calculated using the standard deviation of the 

mean. 
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7.9.3 GOD Amplex red assay 

GOD activity was measure using an Amplex red assay from Invitrogen. The method 

was based on the method from Invitrogen (2006). In this coupled assay glucose 

oxidase reacts with D-glucose to form D-gluconolactone and H2O2. Because 

horseradish peroxidase (HRP) is also present in the reaction mixture, the H2O2 can 

then react with the Amplex red reagent in a 1:1 stoichiometry generating the 

fluorescent oxidation product resorufine. Samples for the assay contained 20 μM 

Amplex Red, 0.04 U HRP and 20 mM D-glucose in 50 mM sodium phosphate pH 

7.4 buffer and were incubated for 4 min before fluorescence measurement. 

Fluorescence was measured with a Labtech FLUOstar OPTIMA plate reader using 

excitation at 560-10 nm and fluorescence detection at 590 nm with the gain set at 

880.  

7.10 Amyloid fibril formation 

Bovine insulin obtained from Sigma-Aldrich, and barracuda crystallin proteins were 

used for the formation of amyloid fibrils. 

7.10.1 Insulin amyloid fibril formation 

Insulin amyloid fibrils were formed using in-house methods modified from Nielsen 

et al. (2001). Bovine insulin dissolved at a concentration of 5.8 mg/mL (1 mM) in 

amyloid fibril incubation buffer containing 25 mM HCl, 100 mM NaCl, pH 1.6. The 

insulin solution was then incubated at 60 ºC for at least 24 hours. Formation of 

insulin amyloid fibrils was assessed by the ThT assay and TEM (sections 7.2.8 and 

7.2.11). 
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7.10.2 Insulin fragment formation 

Bovine insulin amyloid fibrils were formed at 1 mg/mL (section 7.10.1). The mature 

amyloid fibrils were then frozen overnight to create amyloid fibril fragments. TEM 

(section 7.2.11) was used to confirm that fragments had been successfully produced. 

The fibril fragments were thawed, centrifuged at 14500 rpm using an Eppendorf 

MiniSpin plus centrifuge and resuspended in 50 mM HEPES pH 9. 

7.10.3 Insulin seed formation 

Bovine insulin (1 mg/mL) was incubated at 60 °C for 80 min. The sample was then 

tested for ThT fluorescence (section 7.2.8) to ensure amyloid formation had not 

occurred. The seeds were then dialysed (section 7.2.5) for ~ 15 hours into 50 mM 

HEPES pH 9. 

7.10.4 Fluorescein isothiocyanate immobilisation 

Fluorescein isothiocyanate (FITC) was dissolved in 100 mM HCO3
- pH 9.0 at a 

concentration of 2.6 mM. 1 mg/mL insulin amyloid fibrils (section 7.10.1) were 

centrifuged, the supernatant discarded and replaced with 1 mL of FITC solution and 

incubated for 1 hour at 25 °C. The solution was then centrifuged, the pellet washed 

and resuspended in FITC buffer, followed by centrifugation at 14500 rpm using an 

Eppendorf MiniSpin plus centrifuge. The washing steps were done five times. The 

FITC concentration was then estimated using ε494 = 68000 M-1cm-1 at an emission 

wavelength of 525 nm. 
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7.10.5 Crystallin amyloid fibril formation 

Crystallin amyloid fibrils were formed using in-house methods modified from 

Garvey et al. (2009). Crystallin proteins were extracted from barracuda eye lenses in 

a buffer containing 50 mM tris, pH 7.5, 1 mM DTT and 5 mM EDTA, using an 

IKA® Ultra Turrax® Tube disperser with Tube ST-20. After homogenisation was 

complete, the sample was centrifuged for 30 minutes at 12000 x g, the supernatant 

collected and protein concentration estimated using the NanoDrop (section 7.2.2) 

with an extinction coefficient of 1. Crude crystallin proteins were diluted to 5.8 

mg/mL in preheated to 80 ºC, 10 % trifluoroethanol, pH 4 and then incubated at 80 

ºC for 1 hour. The sample was then centrifuged at 12000 x g for 10 min and the 

supernatant collected and heated overnight at 80 ºC. The sample was then left at 

room temperature for at least two days for the amyloid fibrils to assemble. The 

samples were then analysed for amyloid fibrils using TEM (section 7.2.11). 

7.10.6 Crystallin amyloid fragment formation 

Formed crystallin amyloid fibrils (section 7.10.5) were first centrifuged and then 

buffer exchanged into 50 mM sodium phosphate pH 7.0 buffer before being 

subjected to sonication for a 0-60 sec pulse, amplitude 20 %, using a microtip. The 

fragments were verified using TEM (section 7.2.11). 
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7.11 Solution amyloid fibril enzyme immobilisation 

OPH was the first enzyme to be immobilised to the insulin amyloid fibrils. The 

immobilisation methods developed OPH formed the basis of the immobilisation 

methods for all subsequent enzyme immobilisation. Two immobilisation methods 

were used, cross-linking with GA, and physical adsorption, depending whether GA 

inactivated the enzyme being immobilised. When GA was used, a two-step 

immobilisation protocol was implemented where the amyloid fibrils were first mixed 

with the GA, then the enzyme was added (Hermanson 1996). In all of the 

immobilisation reactions, the components of the immobilisation reaction were added 

in equal parts. A typical immobilisation reaction contained 50 μL of each 

component. 

7.11.1 Organophosphate hydrolase immobilisation to insulin amyloid fibrils 

Insulin amyloid fibrils (5.8 mg/mL) (section 7.10.1) were mixed with 7.5 mM GA 

and incubated for 5 min at room temperature to activate the lysine residues and N-

terminal residues of the amyloid fibrils. OPH (7.6 mg/mL) (section 7.4) was then 

added and the reaction incubated at 37 °C for 1 hour. To quench the reaction 100 

mM tris pH 8.0 was added to the immobilisation mixture. 

7.11.2 Organophosphate hydrolase immobilisation to crystallin amyloid fibrils 

Crystallin amyloid fibrils (5.8 mg/mL) (section 7.10.5) were mixed with 7.5 mM GA 

and incubated for 5 min at room temperature to activate the lysine residues and N-

terminal residues of the amyloid fibrils. OPH (7.6 mg/mL) (section 7.4) was then 

added and the reaction incubated at 37 °C for 1 hour. To quench the reaction 100 

mM tris pH 8.0 was added to the immobilisation mixture. 
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7.11.3 Cytochrome P450BM3 immobilisation to insulin amyloid fibrils 

Insulin amyloid fibrils (5.8 mg/mL) (section 7.10.1) were mixed with 7.5 mM GA 

and incubated for 5 min at room temperature to activate the lysine residues and N-

terminal residues of the amyloid fibrils. P450 (section 7.5) (5 mg/mL) was then 

added and the reaction incubated at 4 °C for 1 hour. To quench the reaction 100 mM 

tris pH 8.0 was added to the immobilisation mixture. 

7.11.4 Green fluorescent protein immobilisation to insulin amyloid fibrils 

Insulin amyloid fibrils (5.8 mg/mL) (section 7.10.1) were mixed with 7.5 mM GA 

and incubated for 5 min at room temperature to activate the lysine residues and N-

terminal residues of the amyloid fibrils. GFP (5 mg/mL) (section 7.6) was then added 

and the reaction incubated at 37 °C for 1 hour. To quench the reaction 100 mM tris 

pH 8.0 was added to the immobilisation mixture. 

7.11.5 Tobacco etch virus protease immobilisation to insulin amyloid fibrils 

Insulin amyloid fibrils (5.8 mg/mL) (section 7.10.1) were mixed with ~1 mg/mL 

TEV (section 7.7) and incubated for 1 hour at 4 °C. GA was not used because it 

deactivated the enzyme. 

7.11.6 Glucose oxidase immobilisation to insulin amyloid fibrils 

The immobilisation of GOD (section 7.8) was based on the methods of Pilkington et 

al. (2010). 5.8 mg/mL insulin amyloid fibrils (section 7.10.1) were mixed with 150 

mM GA and incubated for 5 min at room temperature to activate the lysine residues 

and N-terminal residues of the amyloid fibrils. GOD (2 mg/mL) was then added and 

incubated for 1 hour at 25 °C. To quench the reaction 100 mM tris pH 8.0 was added 

to the immobilisation mixture. 
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7.12 Glass Beads  

Five millimetre diameter borosilicate glass beads purchased from Sigma-Aldrich 

were used as a model surface for the template directed growth of insulin amyloid 

fibrils. The methods used were modified from Ha & Park (2005). Five millimetre 

glass beads were preferred over cut glass microscope slides because it allowed for 

the use of a 96 well plate spectrophotometer. 

7.12.1 Glass bead surface activation 

Glass beads were cleaned overnight in a piranha solution of 70 % H2SO4, 30 % H2O2 

followed by rinsing in dH2O. The beads were then treated with a 3 % APTS solution 

in ethanol/water (95:5 v/v) for 1 hour, immersed in 99.9 % ethanol and cured at 110 

°C for 1 hour. The beads were allowed to cool then washed in 95 % ethanol followed 

by treatment with 20 mM DSC in a 50 mM NaHCO3 pH 8.5 for 3 hours. The beads 

were then rinsed with dH2O and left to dry prior to use. 

7.12.2 Glass bead template directed insulin amyloid fibril assembly 

Surface activated glass beads (section 7.12.1) were immersed in a solution of 1 

mg/mL insulin fragments or seeds at room temperature (sections 7.10.2 and 7.10.3) 

for 30 min. The beads were then rinsed twice with dH2O before being immersed in 

incubation buffer containing 1 mg/mL insulin for 5 hours at 50 °C. The beads were 

then rinsed twice in dH2O. 

7.12.3 Glass bead template directed crystallin amyloid fibril assembly 

Surface activated glass beads (section 7.12.1) were immersed in a solution of 5.8 

mg/mL crystallin fragments at room temperature (section 7.10.6) for 30 min. The 

beads were then rinsed twice with dH2O before being immersed in incubation buffer 

containing 5.8 mg/mL crystallin for 24 hours at 80 °C. The beads were then left at 

room temperature for at least 2 days before rinsing twice in dH2O. 
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7.12.4 Glass bead blocking with BSA 

After surface assembly of insulin amyloid fibrils (section 7.12.2) the excess active 

groups on the surface of the beads were blocked with 2 % BSA in 50 mM sodium 

phosphate pH 7.4 for 2 hours. The beads were then rinsed trice in dH2O.  

7.12.5 ThT assay on glass beads 

Each bead was placed into a well of a 96 well plate and immersed with 200 μL of 

ThT solution containing 25 μM ThT. ThT fluorescence was measured using a BMG 

Labtech FLUOstar Optima plate reader with excitation/emission filters of 450 and 

485 nm, respectively (LeVine III 1999). All samples had three replicates. 

7.12.6 Amplex red assay on glass beads 

Glass bead immobilised GOD activity was measured with the Amplex red assay 

from Invitrogen. The method was based on the method from Invitrogen (2006). Each 

bead was placed into a well of a 96 well plate and immersed with 150 μL of 50 mM 

sodium phosphate, pH 7.4 containing 20 μM Amplex Red, 0.04 U HRP, 20 mM D-

glucose, and incubated for 4 min, before fluorescence measurement. Fluorescence 

was measured with a Labtech FLUOstar OPTIMA plate reader using excitation at 

560-10 nm and fluorescence detection at 590 nm with the gain set at 880. All 

samples had three replicates. 

7.12.7 Plate reader GFP assay 

GFP immobilised to glass beads (section 7.13.2) were immersed in 200 μL of 50 mM 

sodium phosphate pH 8.0, and fluorescence measured using a BMG Labtech 

FLUOstar Optima plate reader with excitation/emission filters of 495 and 525 nm, 

respectively (Chalfie et al. 1994). Three replicates of each sample were measured.  
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7.13 Surface assembled insulin amyloid fibril enzyme 

immobilisation 

7.13.1 GOD immobilisation on surface assembled insulin amyloid fibrils 

Glass beads with surface assembled insulin amyloid fibrils (section 7.12.2) were 

immersed in a solution containing 1 mg/mL GOD (section 7.8) for 1 hour at room 

temperature. The glass beads were then placed in a small ~7 mm diameter column, 

and 50 mM sodium phosphate, pH 7.4, flowed over the beads over night. This 

thorough washing was done to achieve a low background fluorescence, because of 

the strong physical adsorption of GOD to the glass surface. 

7.13.2 GFP on surface assembled insulin amyloid fibrils 

Glass beads with surface assembled insulin amyloid fibrils (section 7.12.2) were first 

immersed in a solution of 5 mM GA to activate the lysine residues and N-terminal 

residues of the amyloid fibrils before the addition of ~5 mg/mL GFP for 1 hour at 

room temperature. The beads were then rinsed 3 times in dH2O. The GFP beads were 

stored at 4 °C. The beads were assessed for GFP fluorescence by either confocal 

microscopy (section 7.2.13) or in the BMG Labtech FLUOstar Optima plate reader 

(section 7.12.7) 

7.13.3 TEV protease immobilisation on surface assembled insulin amyloid 

fibrils 

TEV protease (section 7.7) from the -80 °C stock was thawed on ice before being 

used. Glass beads with surface assembled insulin amyloid fibrils (section 7.12.2) 

were immersed in the TEV protease for 2 hours before being rinsed 4 times with 

dH2O. The beads were stored at 4 °C until needed. 
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7.13.4 Surface immobilised TEV poly-histidine tagged enzyme cleavage 

Wild type E. coli DHDPS, Y107W E. coli DHDPS, wild type T. maritima DHDPR, 

wild type A. Thaliana DHDPR, and wild type human peroxiredoxin 3 were the 

cleavable poly-histidine tagged enzymes used in the cleavage experiments. All of the 

enzymes were obtained from purified frozen laboratory stocks. All of the enzymes 

were diluted to ~1 mg/mL with TEV storage buffer prior to use. 

Glass beads with surface assembled amyloid fibrils and immobilised TEV protease 

(section 7.13.3) were covered with 150 μL of one of the poly-histidine tagged 

enzymes containing a TEV protease cleavage site. The cleavage reaction was carried 

out over night (~18 hours) at 4 °C to allow cleavage of the poly-histidine tags. The 

supernatant (20 μL) was carefully pipetted off and assessed for cleavage with SDS-

PAGE (section 7.2.3). The beads where then washed 5 times in dH2O ready for 

reuse, with another enzyme containing a cleavable poly-histidine tag. 

7.14 Cellulose based materials 

Unbleached, untreated, starched cotton was purchased from Haralds in Christchurch, 

New Zealand. 20 μm microcrystalline cellulose powder was purchased from Sigma-

Aldrich. 

7.14.1 Cotton surface activation 

Cotton was cut into 25 mm2 segments and boiled in dH2O for 30 min to remove 

starch. The cotton was then rinsed 3 times in dH2O. The cotton was then treated with 

a 3 % APTS solution in ethanol/water (95:5, v/v) for 1 hour, immersed in 99.9 % 

ethanol and cured at 110 °C for 1 hour. The cotton was allowed to cool, then washed 

in 95 % ethanol followed by treatment with 20 mM DSC in a 50 mM NaHCO3 pH 

8.5 for 3 hours. The cotton was then rinsed with dH2O and left to dry prior to use. 
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7.14.2 Cellulose surface activation 

Microcrystalline cellulose powder was treated with a 3 % APTS solution in 

ethanol/water (95:5 v/v) for 1 hour, immersed in 99.9 % ethanol and cured at 110 °C 

for 1 hour. The cellulose were allowed to cool then washed in 95 % ethanol followed 

by treatment with 20 mM DSC in a 50 mM NaHCO3 pH 8.5 for 3 hours. The 

cellulose was then rinsed with dH2O and left to dry prior to use. 

7.14.3 Cotton template directed insulin amyloid fibril assembly 

Surface activated cotton (section 7.14.1) was immersed in a solution of 1 mg/mL 

insulin fragments at room temperature (section 7.10.2) for 30 min. The cotton was 

then rinsed twice with dH2O before being immersed in incubation buffer containing 

1 mg/mL insulin for 5 hours at 50 °C. The cotton was then rinsed twice in dH2O.  

7.14.4 Cellulose powder template directed insulin amyloid fibril assembly 

Surface activated cellulose powder (section 7.14.2) was immersed in a solution of 1 

mg/mL insulin fragments at room temperature (section 7.10.2) for 30 min. The 

cellulose was then washed with dH2O, collected with gentle (500 x g) centrifugation 

after which the supernatant was discarded. This process was repeated five times. The 

cellulose was then immersed in incubation buffer containing 1 mg/mL insulin for 5 

hours at 50 °C. The cellulose was then washed with dH2O and collected with gentle 

centrifugation and the supernatant discarded. This process was repeated five times. 

The cellulose was then allowed to dry.  
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Appendix 1 

Analysis of thermostability of OPH-MBP at 30 °C 
 

Figure 1 shows the SDS-PAGE results for the OPH control from the 30 °C 

thermostability experiment. As can be seen in days 3, 5, and 7 there is the appearance 

of two new protein bands (red box) in the gel at ~42 and ~35 kDa. These protein 

bands correspond to free MBP and free OPH, respectively, suggesting proteolysis of 

the OPH-MBP fusion protein. The melting temperature of free OPH (section 2.2.2) 

was found to be ~2 °C higher than OPH-MBP, and the Kcat (section 2.2.2) of free 

OPH was found to be ~1000 s-1 higher, therefore, if proteolysis of OPH-MBP was 

occurring, the corresponding free OPH would have a higher activity and 

thermostability, and the trends in Figure 1 would be seen at 30 °C. The reason this 

trend is only seen at 30 °C could be that the protease cleaving OPH-MBP may not be 

active at higher temperatures, or there may not be sufficient time for proteolysis to 

occur at the higher temperatures. 

 

Figure 1 SDS-PAGE gels of the OPH control sample in the 30 °C 
thermostability testing. In each gel L – ladder, lane 1 – pH 7 
immobilisation, lane 2 – pH 8 immobilisation, lane 3 – pH 9 
immobilisation. The red box shows the appearance of new protein 
bands. 
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