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Abstract 

Soil microbial function and stability may affect many other ecosystem functions, including 

soil carbon storage, nutrient cycling and plant productivity. However, the drivers of soil 

microbial stability itself are little understood. This thesis therefore aimed to develop a 

method and indices capable of quantifying soil microbial stability in terms of the resistance 

(amount of change caused by a disturbance), and resilience (rate of recovery) of the soil 

microbial community to a model disturbance, and to determine the role of three potential 

drivers of soil microbial function arid stability: diversity, composition and soil resources. 

Initially, soil microbial stability and soil resources were measured during three 

chronosequences to assess whether stability changes in a natural environment and whether 

resources are an important driver of these changes. Although soil resources were 

frequently related to resistance and resilience, the direction and strength of correlations 

depended on the response variable and chronosequence considered. This suggested a factor 

related to soil resources, which varied across chronosequences, was a stronger driver of 

soil microbial stability than resources themselves. Two potential factors were plant species 

composition and diversity. A glasshouse experiment that tested these factors was harvested 

at 4 times throughout a 16-month period. Plant species composition, but not diversity, 

proved to be a strong driver of soil microbial function and stability. As different plant 

species may alter soil microbial function and stability by depositing different carbon 

substrates, a further experiment manipulated the composition and diversity of carbon 

substrates added to a base soil. The composition, and sometimes the diversity, of added 

substrates affected the soil microbial community, its function and stability. Diversity 

effects saturated at low levels and depended on which substrates were added. The overall 

conclusion from this set of experiments was that the strongest drivers of soil microbial 

function and stability seemed to be the composition of plant and soil microbial 

communities as well as soil resources. 
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Chapter 1: Drivers of ecosystem function and stability 

The organisms within the earth's ecosystems are responsible for maintaining our planet's 

atmosphere, water quality, and soil fertility, providing us with the essentials of human life: 

drinking water, food, and shelter. Preservation of these vital ecosystem functions or 

services requires an understanding of their drivers and mechanisms. Of these, the drivers 

and mechanisms of biogeochemical cycling are some of the most important, involving the 

recycling of elements essential to life (e.g. carbon (C), nitrogen (N), oxygen). Plants and 

soil microbes form the base of the biological component of this recycling. 

The combined function of plants and soil microbes is essential for the maintenance of 

aboveground and belowground food webs, atmospheric quality and soil fertility. The end 

result of these combined functions can be measured by ecosystem properties such as plant 

biomass and productivity, nutrient retention, and decomposition of organic matter. Plant 

and soil microbial function are inextricably linked (Naeem et al. 2000, Wardle 2002). 

Plants contribute organic matter to the soil via litter and root exudates. This organic matter 

is decomposed by soil microbes, providing them with C and energy for maintenance and 

biomass production (Swift et al. 1979, Bremer and van Kessel 1990, Waldrop et al. 2000). 

Soil microbes convert the nutrients bound up in organic matter into inorganic forms, which 

can then be taken up by plants and used in photosynthesis and plant biomass production 

(Grays ton et al. 1996) . The rate of decomposition, and therefore the rate of nutrient release 

and plant growth, is determined in part by the quality and amount of resources returned to 

soil by plants (Swift et aL 1979). The rate of decomposition has implications for soil C 

storage and therefore the global C budget the faster and more complete the 

decomposition, the less C will be stored in soil (Catovsky et aL 2002). The ways in which 

plants and microbes interact, and the drivers behind those interactions, therefore have 

major implications for ecosystem services. 
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Chapter 1: Introduction 

The delivery of ecosystem services can be disrupted by disturbances. A disturbance can be 

defined as any discrete event that causes a change in a response variable. Traditionally, 

disturbance has been measured as a reduction in biomass, such as may occur during 

drought, windstorms or ealthquakes (Grime 1979). However, the definition of a 

disturbance can be expanded to include an increase in a response variable (White and 

Pickett 1985), such as may occur when nutrients are added to an ecosystem. The types, 

magnitudes and frequency of disturbances experienced by many ecosystems have been 

significantly altered by human activity. The response of ecosystems to disturbance has 

therefore become a major focus of ecological and conservation research. These ecosystem 

responses can be considered as indicative of ecosystem stability. Ecological stability can 

be divided into two parts: resistance (the amount of change caused by a disturbance) and 

resilience (the rate of recovery from a disturbance) (Pimm 1984). An ecosystem can be 

resistant but not resilient and vice versa (e.g. Herbert et al. 1999), both resistant and 

resilient (e.g. Kaufman 1982), or neither (e.g. Rejmankova et al. 1999), depending on the 

disturbance and response variables considered (Harrison 1979). This wide range of 

context-dependent responses in resistance and resilience suggests that many different 

factors may drive ecosystem stability. This thesis focuses on diversity, composition, and 

soil resources as potential drivers of ecosystem function and stability. 

1.1 Diversity as a driver of ecosystem function and stability 

The loss of species diversity has increased dramatically in recent years, partly due to 

human-induced changes in land use (Dfaz and Cabido 2001). This has raised the issue of 

whether diversity will affect ecosystem function and stability (Sankaran and McNaughton 

1999). Early modelling studies regarding diversity and ecosystem function looked 

primarily at stability. These studies came up with two opposing viewpoints, one that 

suggested that diversity should stability (e.g. MacArthur 1955), and one that 

suggested the opposite (May 1972). This dichotomy was resolved to some extent by the 

realisation that the two viewpoints come from different perspectives: a more diverse 

system may have a more stable average biomass precisely because the species abundances 
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within it fluctuate, as one species may compensate for the reduction in biomass of another 

(McNaughton 1977, Tilman 1996). 

More recently, studies have focused on other measures of ecosystem function such as plant 

biomass production, nutrient retention and decomposition (e.g. Naeem et al. 1994, He et al. 

2002, Hedlund et al. 2003). Many of the findings and issues highlighted by this literature 

are also of relevance to understanding stability. Several hypotheses have been proposed to 

describe the shape of the relationship between ecosystem function and diversity, of which 

the four main ones (Johnson et al. 1996) are presented here. The first of these, described 

above, is that diversity will increase ecosystem functioning, and stability (MacArthur 

1955) in a linear manner (Johnson et al. 1996). The second is the rivet hypothesis, which 

was proposed by Ehlrich and Ehlrich (1981). This uses the analogy of an aeroplane held 

together by rivets. As rivets (Le. species) are removed beyond a threshold number, the 

chance of the aeroplane (i.e. ecosystem) collapsing increases. This suggests that some 

species may be lost without any noticeable. effect on ecosystem function, while others are 

critical. The redundancy hypothesis (Walker 1992) is similar to the rivet hypothesis, but 

focuses more on which species can or cannot be lost without any change in ecosystem 

function (Lawton 1994). It also incorporates the idea that species within functional groups 

can compensate for the loss of other species from within the same group (Walker 1992, 

Johnson et al. 1996). The fourth hypothesis is termed the idiosyncratic hypothesis (Lawton 

1994). This proposes that the effect of species on ecosystem function will depend on which 

species is removed (i.e. species composition), so that there may be no predictable 

relationship between diversity and ecosystem function. This hypothesis and the 

redundancy hypothesis are similar to the keystone species concept, all of which suggest 

that some species have a disproportionately large effect on ecosystem functions, while 

others are largely red.undant (Walker 1992, Lawton and Brown 1993). 

Most studies that have manipulated species or functional group diversity have used plant 

species. Several recent studies have claimed that plant biomass, productivity and/or 

nutrient retention increases with plant species diversity (Tilman et al. 1997a, Hooper and 

Vitousek 1998, Symstad et al. 1998), although there are exceptions (Hooper and Vitousek 

1997, Wardle et al. 2003). Some studies have also found positive effects of diversity on 

some aspects of the stability of plant (Frank and McNaughton 1991, Tilman and Downing 
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Chapter 1: Introduction 

1994, Tilman 1996), aquatic (McGrady-Steed et aI. 1997), and microbial (Naeem and Li 

1997) communities. There are very few studies that have directly manipulated soil 

microbial diversity. This is partly because the soil system is extremely diverse, witb 

several thousand species of bacteria estimated to be in 1 g of soil (Torsvik et a1. 1994). It 

has also been estimated that only 1 % of species are culturable (Degens and Harris 1997). It 

is therefore difficult both to grow representative species to add to the soil, and to produce a 

diversity gradient that is grounded in ecological reality. Studies that have attempted to do 

so have found that soil microbial functions such as decomposition, nitrification and 

stability show the full range of responses - positive, negative and neutral to changes in 

diversity (Griffiths et al. 2000, Degens et al. 2001, Griffiths et al. 2001b). 

Because of the difficulty of manipulating soil microbial diversity directly, most studies 

have investigated how the diversity of other organisms or factors, which may indirectly 

alter soil microbial diversity, affeCt soil microbes and their function. The most common of 

these factors have been plant and litter diversity, although tbe number of studies 

manipulating soil faunal diversity are increasing. Increases in substrate diversity such as 

occurs when plant species and litter are mixed have been predicted to increase the diversity 

of the microbial community by creating more niches (Grayston et a1. 1998, Ettema and 

Wardle 2002), and to reduce nutrient recycling by increasing the chance of containing a 

recalcitrant substrate (Lore au 2001). However, studies that have varied plant and litter 

diversity have again reported the full range of positive, negative and neutral effects on 

decomposition (Briones and Ineson 1996, Nilsson et al. 1999, Spehn et al. 2000a), soil 

microbial activity and biomass (Wardle et a!. 1997a, Spehn et a1. 2000a, Gastine et al. 

2003), and soil microbial community structure and diversity (Stephan et al. 2000, Wardle 

et al. 2003). Studies manipulating soil faunal diversity have also found variable results, 

with some studies showing no effect of diversity on soil microbial biomass (Laakso and 

SeUila 1999, Liiri et al. 2002), while others show inconsistent effects (Mikola and Setlila 

1998c). In terms of ecosystem processes, one study found no effect of faunal diversity on 

nutrient mineralisation (Laakso and Setala 1999), while others have found a positive effect 

on C mineralisation (Mikola and Setalli 1998b), and plant N uptake (Liiri et a1. 2002). In 

combination these plant and microbial diversity studies support the diversity-function, 

redundant and idiosyncratic hypotheses, depending on the type of system and the response 

variable measured. 
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1.1.1 Facilitation, complementarity and the sampling effect 

Where significant effects of diversity on ecosystem function and stability have been found, 

three main mechanisms have been used to explain the results: facilitation, 

complementarity, and the sampling effect. Facilitation takes place when one species 

enhances the contribution made to an ecosystem function by another species (Connell and 

Slatyer 1977, Chapin et al. 1994), such as the fertiliser effect that legumes can have on 

other species' biomass (e.g. Symstad et al. 1998, Hector et al. 1999). Facilitation could also 

occur if one species reduces the effect of a disturbance on another species, thereby 

increasing the stability of aggregate community properties (e.g. Mulder et al. 2001). 

Complementarity occurs when two or more species vary in their resource requirements, 

spatially, temporally, or simply by using different forms of a resource (Tilman et al. 1997b, 

Tilman et al. 2001). For example, when two or more plant species differ in the type of N 

they use, growing them together should result in a higher use of resources and therefore 

higher plant community productivity (Hooper and Vitousek 1997, Hooper 1998), 

Complementarity can also increase stability; when different species grow optimally under 

different conditions, one species can compensate for reductions in the growth of another 

species if the conditions change (McNaughton 1977, Tilman 1996). This mechanism is one 

of the components of the insurance hypothesis (Yachi and Loreau 1999), and suggests that 

although species may be redundant in the current environment, they may not be so when 

that environment changes. 

The final mechanism, called tbe sampling effect, originated as a criticism of experimental 

design. The sampling effect can be defined as the greater probability that more diverse 

mixtures will include a species that has a disproportion ally high contribution to the 

ecosystem function measured (Aarssen 1997, Huston 1997, Tilman et al. 1997b). Where 

this species is able to dominate, this will result in a higher value for the ecosystem function 

measured than the mixtures that do not contain this species (Lore au and Hector 2001, 

Tilman et al. 2001). This change in ecosystem function is through an effect of species 

composition rather than the result of increases in the number of species; the biomass of a 

productive species in monoculture could be just as high as the biomass of a more diverse 
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Chapter 1: Introduetion 

community containing it. This logic has also been applied to the increased probability that 

more diverse mixtures will contain small groups of species that are facilitative or 

complementary (Huston and McBride 2002); here both diversity and composition playa 

role in increasing ecosystem function. 

For the sampling effect to operate in nature, community assembly and species loss must be 

random. There is some argument over whether communities are assembled at random, and 

therefore whether the sampling effect is a true mechanism behind diversity effects or an 

artefact of experimental design (Wardle 1999, Loreau et al. 2001). This disagreement has 

led to a need to be able to distinguish the sampling effect from facilitation and 

complementarity effects. This requires knowledge of how each species that occurs in a 

mixture behaves in monoculture, and in mixtures of lower diversity (Garnier et al. 1997b, 

Loreau 1998). Many studies that have claimed to provide evidence of diversity affecting 

function have failed to do this adequately, and re-analysis of their data has suggested that 

the sampling effect, rather than facilitation or complementarity, is the primary mechanism 

behind the reported diversity effects (e.g. van der Heijden et al. 1998 vs Wardle 1999; 

Hector et al. 1999 vs Huston et al. 2000; Pfisterer and Schmid 2002 vs Wardle and Grime 

2003). Diversity studies that control explicitly for sampling effects (i.e. composition) tend 

to find that facilitation and complementarity are only occasionally important (e.g. Hooper 

and Vitousek 1997, Nilsson et al. 1999, Wardle et at 2000). There is therefore still a 

significant debate regarding the importance of diversity in ecosystem function and 

stability. 

Most research on diversity has focused on aboveground systems and aquatic systems. The 

number of studies on the effect of aboveground diversity on belowground biomass, activity 

and some functions (e.g. decomposition) is increasing (e.g. Hector et al. 2000, Gastine et 

al. 2003, Hedlund et al. 2003), but there is still very little information on how above or 

belowground diversity affects belowground stability (Griffiths et al. 2000, Wardle et al. 

Griffiths et al. 2001a). Studies that examine this question in the opposite direction, 

i.e. how does soil microbial diversity affect aboveground function, are also rare. 
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1.2 Species composition as a driver of ecosystem function and 

stability 

Inherent in the conceptual basis of the sampling effect is the idea that species composition 

can be an important driver of ecosystem function and stability. In his discussion of 

diversity effects, Grime (1998) advanced the idea that the traits of the dominant 

autotrophic species will determine many ecosystem functions at any point in time. The 

dominant species contributes the most to biomass, and therefore its traits will have the 

greatest impact on the ecosystem function measured (Grime 1998). Species traits have 

been suggested as more important than diversity as a driver of resistance and resilience in 

aquatic (Sousa 1980), and plant systems (Leps et al. 1982, MacGillivray et al. 1995). Soil 

community composition may also result in differences in stability. For example, fungi and 

bacteria vary in their ability to cope with different disturbances (Orchard et al. 1992, Allen 

et al. 1999, Griffiths et al. 1999). Studies that look at the interaction between plants and 

soil microbes have also found strong effects of the dominant plant species on soil microbial 

communities (Vinton and Burke 1995, Bardgett et al. 1999b), their function (Berendse 

1993, Wardle et al. 1998), and stability (Wardle et al. 2000). 

Leps et al. (1982) and MacGillivray et al. (1995) extended theory on species composition 

effects on stability to incorporate specific traits based on the life history strategies 

described by Grime (1979, 2001). They suggested that plants adapted to nutrient stress (i.e. 

stress tolerators) should have characteristics that also infer a high degree of resistance (i.e. 

a high level of defence), but a low level of resilience (slow growth rate). In contrast, 

ruderal species have a fast growth rate, and therefore should recover quickly, but have a 

low level of defence and therefore low resistance (MacGillivray et al. 1995). MacGillivray 

et al. tested their hypothesis by quantifying the stress tolerance of a range of plant species, 

and subjecting them to fire, drought and freezing disturbances. The response of the 

biomass of the plants to the disturbances supported their hypothesis, with stress tolerant" 

species showing a high resistance but low resilience. Plant life history strategies may also 

have implications for soil microbial function and stability. For example, plants that grow in 

low nutrient areas (and therefore are presumably stress tolerant) often produce low quality 
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litter that is difficult to decompose (Gartner and Cardon 2004), which can result in a 

resource-poor environment for soil microbes (Berendse 1993, Wardle et al. 1997b, 

Berendse 1998). 

Soil microbes themselves have been divided into two groups that differ in their growth 

rate: r-selected or zymogenous microbial species, which have similar characteristics to 

ruderal species, and K-selected or autochthonous species, which are similar to stress­

tolerators (Grime 1979, Gerson and Chet 1981). Therefore, the type of relationship 

between stress tolerance and stability that has been proposed for plants may also apply to 

soil microbes. There is some experimental evidence for this. It is thought that during a 

wetting-drying event, the r-selected, active organisms are killed by the disturbance (i.e. 

have low resistance), and the dormant or slower-growing, K-selected organisms survive 

(i.e. have high resistance) (Bottner 1985, Cortez 1989). The relationship between stress 

tolerance and stability is also partially supported by another study, which found that 

Pseudomonas putida coped better with osmotic and oxidative stress if it had been growing 

in C-starved conditions, but found no difference in its resistance or resilience to heat (Gu 

and Mazzola 2001). 

Many studies have examined how plant or litter composition affects soil microbial function 

(e.g. Bardgeu and Shine 1999, Nilson et al. 1999, Porazinska et al. 2003) but few studies 

have looked at how these factors affect soil microbial stability. It is also unclear what role 

soil microbial composition has in determining soil microbial stability, and whether r- and 

K-selection or nutrient stress tolerance are important drivers behind composition effects. 

Studies of how soil microbial community composition affects plant function are also rare. 

1.3 Soil resources as a driver of ecosystem function and stability 

Another factor suggested as a driver of ecosystem function and stability is resources. It is 

well known that plant and microbial function are strongly tied to soil resources. For 

example, the addition of N to soil usually results in higher plant growth (Tilman 1987, 
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Jonasson et al. 1999). The same can be applied to soil microbes; C and N addition can 

increase or decrease soil microbial activity and biomass (Wardle 1992, Jonasson et al. 

1996a) and the decomposition of organic matter (Fog 1988, Dalenberg and Jager 1989, Wu 

et at 1993, Hobbie and Vitousek 2000). Plant and soil microbial responses to changes in 

resource availability can also interact. For example, the addition of C to soil can enhance 

microbial demand for nutrients, reducing nutrient availability to plants and therefore 

reducing their growth (Rutherford and Juma 1992, Jonasson et aL 1996b). Alternatively, 

increases in nutrient availability to plants can result in increased biomass and increased 

litter production (Tilman 1987). This may result in increases in standing litter and 

immobilisation of nutrients in that litter, eventually reducing productivity (Knops et al. 

2001). 

It was evident from the study of MacGillivray et al. (1995) that there may be a link 

between nutrient availability and the resistance and resilience of plant biomass. Several 

other models and theorists have suggested that ecosystem stability may depend on nutrient 

and resource availability. DeAngelis (1980, 1989,1992) presented models of ecosystems 

that included plants and soil with or without herbivores and carnivores. His results 

suggested that resilience should increase as the supply rate of limiting resources increases 

(DeAngelis 1980, DeAngelis et at 1989, De Angelis 1992). If a system is limited by a 

particular resource, its supply will also limit the rate at which that system can rebuild 

biomass after a disturbance. Experimental tests of this are few and only involve plant and 

aquatic communities, but are generally consistent with this model (Steinman et at 1991, 

Biggs et al. 1999, Herbert et al. 1999). 

Other evidence from a variety of sources support the hypothesis that resources may be an 

important determinant of soil microbial stability. Higher productivity has been predicted to 

increase resilience (Moore et al. 1993), and found to decrease the resistance of species 

composition (Jenkins et aL 1992). Wardle (1998) conducted a meta-analysis to explore the 

relationship between temporal variability of the soil microbial biomass and various 

indicators of disturbance, land use, and soil resources. The variables that explained the 

most variation were pH, total C and total N, all of which had a negative effect on temporal 

variability. As a more resistant system will be less temporally variable, this suggests that 

higher soil resources may also increase resistance (Wardle 1998). This conclusion is 
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supported by several other studies that suggest that organic C can act as a reservoir of 

nutrients in disturbed systems (O'Neill 1976, De Angelis 1992). Another study predicted 

that Nand C mineralisation of a C-limited system should be stable when either Cor N is 

added (Bosatta and Berendse 1984). However, if the system is initially N limited, C and N 

mineralisation will only be stable under certain circumstances, and may oscillate during the 

system's recovery (Bosatta and Berendse 1984). Despite the implications of these 

theoretical studies, there have been very few empirical studies that examine how resources 

alter stability, and none of these include soil microbial stability. 

1.4 Succession: links with potential driving factors 

The above discussion revolves around three potential drivers of ecosystem function and 

stability: species diversity, species composition, and resource availability. These drivers all 

interact and may have a role in primary plant succession. Primary plant succession refers to 

the development of a plant community on a previously uncolonised surface (Walker and 

del Moral 2003), such as occurs after deglaciation or a volcanic eruption. It usually 

involves a build-up of organic matter (eg: Insam and Haselwandter 1989, de Kovel et al. 

2000) and plant biomass towards a maximal, climax point (Odum 1969). In some 

successions, resources begin to decline after the climax phase, resulting in a decrease in 

organic matter (Crews et al. 1995) and potentially plant biomass. It has also been suggested 

that resistance should increase with time (Odum 1969), while resilience should decrease 

(Grime 1979). 

1.4.1 Succession and species composition and diversity 

By definition, the composition and diversity of plant species change during succession. 

These changes can be described in terms of r- and K-selection, and in terms of Grime's life 

history strategies (Grime 1979, Huston and Smith 1987). The factors that influence 

succession tend to change with time. Initially, the primary driver is disturbance, as an open 
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environment is less buffered against changes in temperature, moisture and wind than a 

vegetated one (Bazzaz 1979). Therefore, early colonisers tend to have the traits of r­

selected, or ruderal, species (Huston and Smith 1987), with a high reproductive and growth 

rate, and high quality litter (Grime 1979). As succession continues, competition and then 

stress become more important as shading increases and nutrients are lost from the soil 

(Grime 1979). Later species therefore tend to be competitors, followed by species that have 

the traits of K-selected, or stress-tolerant, species, and have slower growth rates and lower 

quality litter (Odum 1969, Grime 1979, Huston and Smith 1987). This change in species 

composition as succession proceeds may result in differences in stability, with ruderals 

showing high resilience and stress tolerators showing high resistance (Leps et al. 1982, 

MacGillivray et al. 1995). This change may also affect soil microbial community 

composition and function, by altering the amount and quality of organic matter returned to 

the soil. There have been few detailed studies on how soil microbial composition changes 

during plant succession. However, it appears that soil microbial activity and biomass 

increase, at least during early succession (Insam and Haselwandter 1989, Wardle and 

Ghani 1995, Bardgett et al. 1999a). The system also tends to shift from a bacterial­

dominated system to a fungal-dominated one (Allen et al. 1999, Ohtonen et al. 1999), 

possibly reflecting a reduction in nutrient availability (Bardgett et al. 1999a). 

Early theories suggested that plant diversity should increase with time (Odum 1969). 

However, if other theories are combined a more complex story appears. During succession, 

the system shifts from disturbance to competition to stress controlled. After a disturbance, 

diversity increases as plants begin to colonise. However, if there are no further 

disturbances, competitive exclusion may reduce diversity (Conne111978, Huston and 

Smith 1987). Increases in stress towards the end of succession may increase diversity 

again, as competitive interactions, and therefore competitive exclusion, become less 

important (Grime 2001). This range of scenarios may explain why changes in plant species 

richness over time show variable patterns across studies (e.g. Crews et al. 1995, Berendse 

et al. 1998, Bellingham et al. 2001). Changes in plant species diversity will also affect the 

diversity of substrates within soil, with potential flow-on effects to soil microbial diversity 

(Ettema and Wardle 2002). There have been no direct studies on how substrate diversity 

affects soil microbial diversity during succession, but some studies have found that soil 
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microbial diversity shows variable trends with time (Bardgett et al. 1999a, Schipper et al. 

2001). 

1.4.2 Succession and soil resources 

Soil resources change significantly during primary plant succession. Soil C and N 

increases as plants colonise new surfaces and grow (Chapin et al. 1994, De Kovel et al. 

2000, Schipper et al. 2001). Both of these resources are of biological origin (McLaren and 

Cameron 1990, Catovsky et al. 2002), therefore their availability and rate of increase in 

soil during succession will be determined by the types of plants that colonise, and the rate 

of nutrient cycling (Berendse 1990, Mao et al. 1992, Cote et aL 2000). For example, plants 

that produce poor quality litter will result in a faster build up of soil C than plants that 

produce high quality litter, as poor quality litter takes longer to decompose (Swift et al. 

1979). Concurrent with this increase in C and N is a decrease in pH (e.g. Chapin et al. 

1994, De Kovel et al. 2000), as acids within organic matter are one of the main sources of 

H+ ions (McLaren and Cameron 1990). 

The primary source of phosphorus (P) is from the rocks, or parent material, that the system 

develops on rw alker and Syers 1976). Over time, the total amount of P and especially its 

availability declines. This is due to two main processes, leaching and occlusion (Walker 

and Syers 1976). Occlusion refers to the binding of P ions to clays in such a way that they 

cannot be released again (McLaren and Cameron 1990). As P is lost from the parent 

material or is bound in unavailable inorganic fonns, its availability becomes more reliant 

on recycling through organic matter. 

The different processes involved in regulating C, Nand P availability across successional 

gradients has lead to the suggestion that early succession is primarily Nand C limited, and 

late succession is primarily P limited (Scheu 1990, Crews et al. 1995). These changes in 

resources have been suggested as important drivers of plant succession (Tilman 1987, De 

Kovel et al. 2000). Overall, primary plant succession incorporates changes in plant and soil 

microbial composition and diversity, and soil resources. Successional gradients therefore 
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provide ideal systems to test how these factors influence ecosystem function and stability. 

However, few studies have extended these ideas to soil microbial function or stability. 

1.5 Thesis aims and objectives 

Tbe above discussion identifies a large gap in our current knowledge as to what factors 

control soil microbial function and stability, and how soil microbial function and stability 

interact with plant composition, diversity and function. My research aims to contribute to 

filling this gap. The primary goals of my research were to determine which factors chive 

soil microbial resistance and resilience, and to explore the link between plant and soil 

microbial function. This research is presented in four chapters, each written as a journal 

article. Each chapter containing experimental work is introduced with an abstract and a 

flow diagram describing the links between the concepts examined in that chapter. 

My first objective was to develop a technique that was capable of distinguishing the 

resistance and resilience of soil microbial activity, biomass and mineral N contents. I chose 

to use a wetting-drying event for this, as it involves both a negative (drying) and a positive 

disturbance (the release of nutrients when dry soil is rewet) (Birch 1958, Birch 1959, 

Turner and Haygarth 2001), and is an important driver of soil microbial turnover, and 

therefore the release of nutrients for plant uptake (Fierer and Schimel 2002). The method 

was tested with three different soils. Part of this data is presented in Chapter 2. To compare 

different soils statistically it is necessary to summarise the response of the soil community 

to a disturbance into a single number. I therefore developed two indices that quantify 

resistance and resilience respectively; this is presented in Chapter 2. This chapter has been 

published in Soil Biology and Biochemistry. 

My second objective was to test my method further by detel1nining whether soil microbial 

resistance and resilience change in a natural environment: during primary plant succession. 

Several potential factors that may control soil microbial stability undergo change during 

succession, including plant and microbial diversity and composition, and soil resources. I 
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focused on changes in soil resources as these may be important drivers of changes in plant 

species composition and diversity during succession, and because they reflect changes in 

plant litter quality and quantity. I measured soil microbial resistance and resilience to a 

wetting-drying event during three primary plant successions, and related this to soil 

resources and time within each succession. These data and results are presented in Chapter 

3. This manuscript has been submitted for publication in Oikos. 

The results from this experiment depended on which succession was measured. This 

suggested that some factor that differed between each succession was a stronger driver of 

soil microbial resistance and resilience than soil resources. Given the strong link between 

plant and soil microbial function it seems likely that plant community properties may be 

this driver. I used a glasshouse experiment in which the composition and diversity of plant 

species were manipulated to determine the effect of plant communities on soil microbial 

stability and function (decomposition) in different seasons and at different stages of plant 

community development. Plants may affect soil microbial function and stability by altering 

either soil resources or the soil microbial community; therefore I measured several 

variables that represented changes in these factors. The experiment focuses on the effect of 

plants on soil microbes, and is presented in Chapter 4. This manuscript has been submitted 

for publication in Plant and Soil. 

The results from this experiment also indicated context-dependent effects of plant species 

on soil microbial function and stability, but showed that the composition of the plants had a 

much greater role in determining soil microbial properties and function than plant 

diversity. One potential reason for this may be that plants vary considerably in the types of 

substrates they return to the soil, in their amount, quality and diversity (Vinton and Burke 

1995, Gastine et al. 2003). A large amount of research has been conducted on C:N ratios 

and the effect of different amounts of substrates, but very few studies have looked at the 

effects of the quality of C substrates, and none to date have explicitly varied substrate 

diversity. My fourth and final experiment therefore examined how C substrates and their 

diversity affected soil microbial stability and ecosystem function. I also measured the 

effect of the C substrates on soil microbial community structure and related this to 

measurements of ecosystem function and stability. Substrates can also alter soil resources, 

which may have flow-on effects to soil microbial function. I therefore measured some 
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aspects of soil chemistry. To examine the effect of soil microbes on plants, I looked at how 

soil communities that had adapted to the C substrate treatments affected plant growth. This 

research therefore completes the link between plant and soil microbial function. It is 

presented in Chapter 5. This manuscript will be submitted for publication to Oikas. 

The final chapter of this thesis discusses the likely importance of diversity, composition 

and soil resources in driving soil microbial function and stability, and the relationships 

between plant and soil microbial function. It will also examine how successful my 

approach was in assessing these interactions. 

15 





Chapter 2: New indices for quantifying the resistance 

and resilience of soil biota to exogenous disturbances 

2.1 Abstract 

The stability (resistance and resilience to disturbance) of a soil system is a key factor 

influencing ecosystem properties and processes. To compare the stability of different 

systems, it is necessary to have indices that provide a relative quantitative measure of both 

the resistance and resilience of a response variable in all possible scenarios. However, the 

indices currently in use are frequently unable to do this, or are difficult to interpret. Here 

we present new indices that avoid these problems. We compare our indices with previously 

published indices of stability, and test their performance by using a real data set. We show 

that our indices accurately represent the response of soil properties (e.g. soil microbial 

biomass) to a disturbance, and that they are capable of determining differences in stability 

between contrasting soils. 
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2.2 Introduction 

Ecological stability consists of two components: resistance (the amount of change caused 

by a disturbance, and resilience (the speed with which a system returns to its pre­

disturbance level following a disturbance) (Pimm 1984). A system's stability determines 

its ability to continue functioning under changing conditions, as might occur through either 

natural processes or human-driven disturbances. The stability of the soil community in 

particular affects its turnover rate and hence the ecosystem processes driven by the soil 

biota (Wardle and Parkinson 1990). There are therefore many situations where it is highly 

desirable to be able to quantify stability. Although several indices of both resistance and 

resilience have been used in the literature, most of these have problems that make 

interpretation difficl;Jlt, or they cannot be used in some situations. The purpose of this work 

is to present indices that we believe have advantages over previous indices when 

belowground systems are considered, and to assess their performance in comparison with 

other indices. 

The resistance and resilience of organisms or processes is best quantified by comparing 

their performance in the disturbed soil against that in an undisturbed soil (which can be 

thought of as a control) (Fig. 1). For an index of resistance or resilience to work properly, 

several criteria should be met. Firstly, the index should increase monotonically as 

resistance or resilience increases, so that it is easy to interpret. Secondly, the index should 

an identical value when the disturbed soil is the same relative distance away from the 

control, regardless of direction. This allows the resistance of soils to be compared without 

subjectively judging whether a soil that responds positively to a disturbance is more 

resistant than one that responds negati vely. Because the definition of resilience does not 

include direction, neither should the index of resilience. Thirdly, the index should be 

bounded for both positive and negative values and not tend to infinity, and it should be 

constructed in such a way that it is not possible for zero to appear in the denominator. This 

means that any response to the disturbance can be quantifIed by the indices, and that index 

values can be easily compared statistically. Finally, resistance should be standardised by an 

undisturbed control soil and resilience by the amount of change caused by the disturbance 

initially. 
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2.3 Resistance index 

The index that we propose for resistance (RS) is: 

where Do is the difference between the control (Co) and the disturbed soil (Po) at the end of 

the disturbance (to) (see Fig. 1). This index is standardised by the control soil, as this takes 

into account differences in the amount of change that a disturbance could cause. For 

example a soil variable that starts at 10 units can potentially decrease by 10 units, 

compared with a soil that starts at 5 units, which can only decrease by 5 units. A reduction 

of 5 units in soil A only results in a 50% reduction in the response variable, whereas a 

reduction of 5 units in soil B results in a 100% reduction in the response variable, which is 

a more severe response. Our index accommodates such differences. 

This index of resistance is bounded by -1 and +1, with a value of +1 showing that the 

disturbance had no effect (maximal resistance), and lower values showing stronger effects 

(less resistance) (Fig. 2a). If the value of the disturbed soil (Po) is between 0 and 2 x Co 

(i.e. IDol:::: Co), the index will give values between 0 and 1. An index value of 0 indicates 

either a 100% reduction or increase in the value of the disturbed soil. If, however, the value 

of Po is higher than 2 x Co (i.e. where IDol> Co), the index will give a negative value (Fig. 

2a). This may occur, for example, when a pulse of glucose is added to soil. 
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Fig, 1: An example of the resistance and resilience of a response variable to a disturbance. 

Here, a response variable can be any biotic or abiotic soil variable that responds to a 

disturbance. The upper line represents the undisturbed control soil (C) and the lower line 

represents the disturbed soil (P). For resistance (i.e. time 0 or to), the value for the control 

soil is Co; the value for the disturbed soil is Po; and Co - Po = Do. An example of the data 

used to show resilience is given at tx, with the value for the control soil as Ct, the value for 

the disturbed soil as Px and the difference between the two as D.t' Time x can be any time 

point beyond to. 
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Fig. 2: The distribution of values obtained from the indices under different scenarios. (a) 

Changes in the resistance index with changes in Do (i.e. Co - Po), when Co is fixed at 40. 

(b) Changes in the resilience index wi th changes in Dx (i.e. ~t - Px), when Cx is fixed at 40 

and Do at 20. See Fig. 1 for notation 
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2.4 Resilience index 

The index that we propose for resilience (RL) at time x is: 

1 

where Do is as above and Dx is the difference between the undisturbed control (ex) and the 

disturbed soil (Px) at the time point (tx) chosen to measure resilience (see Fig. 1). This 

index is standardised by the amount of change initially caused by the disturbance (Do), as 

this determines the state from which it has to recover. For example, consider two soils that 

have been disturbed; the value of the response variable of one soil has been reduced by 8 

units, while the other has been reduced by 2 units. Both soils show a 70% recovery in the 

response variable 3 days after the end of the disturbance. This means that their relative rate 

of recovery is the same, and the time required to reach full recovery if they continue at this 

rate will also be the same. Therefore, the index assigns identical values of resilience to 

them. 

This index ofresilience is also bounded by -1 and + 1 (Fig. 2b). A value of 1 at the time of 

measurement indicates full recovery (maximal resilience), and lower values indicate a 

slower rate of recovery. If the absolute value of Dx is between 0 and the absolute value of 

Do, the index will give values between 0 and 1. An index value of 0 indicates that the 

disturbed soil has either not recovered at all since the disturbance ended (i.e. Do = Dx), or 

that at txit is the same distance away from the control as it was when the disturbance ended 

at to, but in the opposite direction (i.e. if Do = 20, and Dx = -20, or vice versa, the index will 

give a value of 0). If the absolute value of Dx is higher than the absolute value of Do, the 

index will give a negative value (Fig. 2b). This might occur when the disturbance initially 

reduces the response variable being measured, but also increases substrate availability 

which subsequently causes a large increase in the response variable (e.g. Birch 1959, 

Bottner 1985). 

22 



2.5 Comparison with other indices 

Several indices of resistance and resilience have been suggested. The performance of our 

proposed indices and that of previous indices is shown in Table 1 and Table 2. Our index 

of resistance satisfies the five criteria described above. It is the only index that 

increases monotonically as resistance increases, and gives identical values for positive and 

negative effects that are of the same magnitude (Table 1). Although the reciprocal of the 

absolute of one of the other indices (i.e., that used by Sousa, 1980, Biggs et al. 1999, 

Herbert et al. 1999) would also result in this pattern, 100% resistance would become 

indefinable, as 0 would appear in the denominator. Our index of resistance also has an 

advantage over most of the other indices in that it remains bounded even when extreme 

values are encountered (e.g. when PQ is vastly in excess of Co, as might occur when a pulse 

of glucose is added to soil). 

Our index of resilience also satisfies the above criteria. In comparison with the other 

indices (Table 2), our index is the only one that shows a monotonic increase with an 

increase in resilience. While an index of resilience that does increase with increasing 

resilience could be derived from taking the reciprocal of one of the other indices (O'Neill 

1976), this would again result in problems of dividing by 0 when the values of Cx and Px 

are the same. Our index avoids such problems by being standardised in such a way as to 

ensure that 0 values cannot appear in the denominator. It also identical values for 

positive and negative effects that are of the same magnitude, giving it an advantage over 

most of the other indices (Steinman et al. 1991, Griffiths et al. 2001a). Finally, our index of 

resilience is the only one that is bounded even when extreme situations are considered, for. 

example, when the effects of the disturbance continue to cause changes in the response 

variable even after the disturbance has ended (i.e. when ICx - Pxl > ICo - Pol)· 
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Table 1: Comparison of the performance of different indices of resistance 

Values of parameters 

Po: 200 80 60 40 20 0 

Source Formula Co-Po: -160 -40 -20 0 20 40 

Griffiths et al. 

[Co - ~: )X100 3500 3800 3850 3900 3950 4000 
2000; 2001 

Kaufman 1982, 

MacGillivray et 
Po 

Co 
5 2 1.5 1 0.5 0 

al. 1995 

Sousa 1980, 

Biggs et al. 
Do x100 -400 -100 -50 0 50 100 

1999, Herbert et Co 

al. 1999 

Wardle et al. Do 
-0.8 -0.5 -0.33 0 1 00 

2000 Po 

Our index 2xIDoi 
1-

Co +IDol 
-0.6 0 0.33 1 0.33 0 

Indices calculated assuming that Co (the value of the response variable for the undisturbed control 

soil at the end of the disturbance) = 40. Po = the value of the response variable for the disturbed 

soil at the end of the disturbance. Do = Co - Po' See Fig. 1 for details. 
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Table 2: Comparison of the performance of different indices of resilience 

Source 

O'Neill 1976u 

Kaufman 1982 

Griffiths et al. 

2000;2001 

Sousa 1980, 

Tilman 1996\ 

Herbert et al. 1999 

Our index 

Formula 

Px: 200 

Cx - Px: -160 

Values parameters 

80 

-40 

60 

-20 

40 

o 
20 

20 

o 
40 

25.3 6.32 3.16 0 3.16 6.32 

5 2 1.5 1 0.5 0 

3500 3800 3850 3900 3950 4000 

-8 -2 -1 o 1 2 

-0.78 -0.33 0 1 o -0.33 

Indices calculated assuming that Co - Po = 20 and that the undisturbed, control soil 

C x 40. p.. value for the response variable in the disturbed soil at time x after the end of the 

disturbance. D x = C x - Px ' Other symbols are the same as in Tab Ie 1. See Fig. 1 for details. 

a For reasons of simplicity it was assumed that tx = 1 day after the end of the disturbance. 
b Tilman 1996 uses Co - Px rather than ex -Px (i.e. Dx) but we have combined this index with the 
index of Sousa 1980 and Herbert et al. 1999 as all three indices would give identical values under 
the conditions that we have defined. 
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2.6 Example using real data 

To illustrate the use of our indices with real data, we used a wetting-drying event as a 

model disturbance. Wetting-drying events are a common occurrence in soils (Kieft et al. 

1987, Fierer and Schimel 2002). They are recognised as one of the major drivers of soil 

microbial turnover and therefore have an impact on soil function (West et al. 1988a, 

Wardle and Parkinson 1990, Fierer and SchimeI2002). To illustrate the ability of the 

indices to distinguish between different soils, we used three soils with different 

characteristics. Two of the soils had low organic matter contents, and were of the same 

origin (pasture soil (C = 4.5%, N = 0.3%, pH = 5.2) from Lincoln, New Zealand (43 0 30' 

S)), but had been planted with either clover (Trifolium repens) or plantain (Plantago 

lanceolata) for a 15-month period. The third soil was a humus soil (C = 38%, N = 1.6%, 

pH = 3.7) formed under podocarp forest in the Westland province of New Zealand (43 0 20' 

S). As the pasture and humus soils have different abilities to hold water, we standardised 

the disturbance by air-drying each soil from 55% of its water holding capacity (WHC) to 

10% of its WHC, incubating it in that state for 18 h at 25°C and then returning it to 55% 

WHC. One hundred percent WHC was defined as the amount of water held in each soil 

after it had been saturated and then allowed to drain overnight. A control soil was 

maintained in the incubator at 55% WHC throughout the experiment. We measured 

substrate-induced respiration (SIR) (0.02 g glucose/g d.w.) (Anderson and Domsch 1978) 

over a 3 h time period every 12 h for 6 days and then every 24 h for a further 3 days in the 

case of the pasture soils. For the humus soils, SIR was measured every 12 h for 7 days to 

allow for the extra time required to dry the soil, and then at 24 h or longer intervals over 

the following 9 days. 

The disturbed soil subsample for both the clover and plantain soils showed an initial 

decrease in SIR relative to the control soil subsample (Fig. 3a, bat 24 h), but subsequently 

returned to, or near to, control levels in the next 4 days. The SIR of the humus soil did not 

on average decrease much following the disturbance when differences between the control 

and dried soil on day 0 are compared (Fig. 3c at 48 h), but took much longer to recover 

from it. We calculated resistance and resilience using our indices for each of these soils 
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Fig. 3: Response of SIR to air-drying from 55% water holding capacity (WHC) to 10% WHC for 

(a) soil that had been planted with plantain, (b) soil that had been planted with clover and (c) 

humus soiL The soil was returned to 55% WHC at 24 h after the initiation of the disturbance for the 

plantain and clover soils and at 48 h for the humus soil; this represents to. The dark line is the 

control soil (C) and the disturbed soil is the pale line (P). Vertical bars represent standard errors. 
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Table 3: Effect of tbe three different soils on tbe ability of SIR to resist and recover from a 

drying disturbance, as assessed by analysis of variance. 

Average index value 

Recovery time (b) Plantain Clover Humus F statistic P value 

72 0.60a 0.37ab -O.Olb 5.22 0.0255 

1081 0.70a 0.37ab 0.04b 5.76 0.0176 

144 0.80a 0.37ab -0.09b 7.74 0.0069 

2xlDoi 2xlDoi 
Resistance (recovery time;::: 0 h) was expressed as1- I I and resilience as I I I 1-1 

Co + Do Do + Dx 
(recovery times 72.108,144 h). See Fig. 1 for symbols in equations. Plantain and Clover refers 
to soils that had been planted with these plants for 15 months. Within each row, means associated 
with the same letters are not significantly different from each other at P :::: 0.05 according to the 
Least Significant Difference test. 
lKruskal-Wallis ANOVA used for analysis as variances were not homogenous, parametric 

ANOV A were used for the other analyses. 

0.9 MSE 
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(I.) 
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Fig. 4: Change in the resilience index for SIR of the three soils depicted in Fig. 3 over 

time. Black diamonds soil that had been planted with plantain, grey triangles = soil that 

bad been planted with clover, and dark squares = humus soil. 
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and compared them using ANOV A (Table 3). Resistance was not significantly different 

between soils at alpha 0.05, although the general trend showed that humus> clover> 

plantain. It should be noted that for the humus soil, the SIR value used for the control on 

day 0 (48 hours) was lower than its SIR values both before and after that time point. This 

suggests that it may be more accurate to use an average from several time points to 

quantify the SIR of the control soil. The resilience index showed that the rate of recovery 

of the soil microbial SIR in the plantain and clover soils was initially rapid, and then 

decreased (Fig. 4). It suggests that the SIR of the humus soil did not begin to show clear 

signs of recovery until 144 h after the disturbance (Fig. 4). The resilience index never 

reached 1 (full recovery) in any of the soils, despite the average SIR values suggesting full 

recovery in many instances. This is because all five replicates never showed full recovery 

at anyone time, resulting in an average index value of less than one at each measurement 

point. The resilience index was able to distinguish statistically between the resilience of the 

three soils at various time points. For example, at t = 72, 108 and 144 h, the resilience of 

the SIR of the plantain soil was different to that of the humus soil but not of the clover soil 

(Table 3). 

2.7 Conclusion 

We have shown that our indices give an accurate description of how a soil community 

responds to a disturbance, and that they can distinguish between different soils. We have 

used a disturbance involving drying soil as an example, but the indices could equally be 

applied to the response of soil biotic properties to other disturbances such as cultivation, 

pollution, pesticide addition, heating and freezing. For some of these disturbances the 

response of the soil community may be gradual (e.g. pesticide addition). This may make it 

difficult to predict the point where the difference between the control and disturbed soil 

will be the greatest, and therefore make it difficult to measure resistance accurately. In this 

situation it may be best to measure the response variable at several points during the 

disturbance, and apply the resistance index to the maximum recorded deviation between 

the control and disturbed soil. For all disturbances, it is important to precisely define the 
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disturbance used and the way that resistance or resilience was measured. It is also 

important to carefully consider the appropriateness of the response variables used. We 

envisage that these indices could be useful in studies that, for example, compare soils 

across fertility or disturbance gradients, or examine the role of changing environments and 

climates in ecosystem function. Response variables could include anything from diversity 

indices to soil respiration or soil chemical properties. The resilience index can be used to 

quantify resilience at either one or more specific time points after the end of the 

disturbance or to create a curve of relative recovery, as was presented here. The former has 

advantages if time is a limiting factor or for large-scale experiments, but requires some 

preliminary work to determine a suitable point of time for the measurement of resilience. 

Choosing a specific time point or points will not be meaningful when the system is likely 

to oscillate significantly during recovery. Neither will the two proposed indices be suitable 

where information is required on the direction of the community'S response to the 

disturbance. In conclusion, we have shown that our indices have several advantages over 

other indices, and that they function well with a real data set. We anticipate that these 

indices will enable different soils and different studies to be quantitatively compared more 

easily than is cUlTently possible. 
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Chapter 3: Context-dependent changes in the resistance 

and resilience of soil microbes to an experimental 

disturbance for three prinlary plant chronosequences 

3.1 Abstract 

The extrinsic factors that regulate soil microbial stability (resistance and resilience) are 

little understood, even though soil microbes are important drivers of ecosystem function 

and their stability is likely to affect soil carbon storage and plant nutrient availability. Soils 

were collected across three primary plant chronosequences (two in New Zealand and one 

in Hawaii) that differed in climate, parent material and time spans to test the following 

hypotheses: i) there is a trade-off between the resistance and resilience of key soil 

microbial response variables, ii) this trade-off is related to the relationship of soil microbial 

resistance and resilience to soil resources, iii) resources change predictably during different 

primary plant chronosequences, and iv) if the first three hypotheses hold and are consistent 

for all three chronosequences, then soil microbial resistance and resilience should change 

predictably during different primary plant chronosequences. Results showed that although 

there was a trade-off between resistance and resilience, the role of resources in determining 

this was unclear. Within each chronosequence, resources that were positively related to 

resistance were negatively related to resilience and vice versa, consistent with our second 

hypothesis. However, the direction and strength of correlations between stability and soil 

resources depended strongly on which soil microbial response variable was measured, and 

the chronosequence it was measured in. Total amounts of resources often showed 

consistent trends with ecosystem development for each chronosequence, but the way that 

resource quality changed varied between chronosequences. At least partly because of the 

variable nature of these relationships, the trajectory of resistance and resilience during 

ecosystem development varied considerably across chronosequences. Thus, although 

consistent trends were found within each chronosequence, the relationships 
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between the stability of different soil microbial response variables, resources and 

ecosystem development depended strongly on which chronosequence was considered. 

i) Is soil microbial resistance and resilience traded 

off? 

ii) Are soil resources a n 

tionships iv) Do the rela 

described in i) 

iii) result in a c 

change in stab 

, ii) and 

onsistent 

ility with 

time? 

important driver of sta 

Soil resources 

/ iii) Do resources change 

consistently with time? 

Primary plant chronosequences - 3 

examples 

bility? 

Fig. 5: Flow diagram of the relationships and hypotheses examined in Chapter 3. 
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3.2 Introduction 

Ecological stability describes how communities respond to disturbance and can be defined 

as consisting of two components: resistance (the amount of change caused by a 

disturbance), and resilience (the rate of recovery following a disturbance) (Pimm 1984). 

Most research to date has focused on the stability of plant (e.g. McNaughton 1977, Tilman 

1996) and aquatic (e.g. Sousa 1980, Steinmanet a1. 1990, Steinmanet a1. 1991) 

communities. However, soil microbes playa crucial role in ecosystem function by 

influencing the rate of organic matter decomposition and nutrient mineralisation, and 

therefore soil carbon (C) storage (Swift et a1. 1979) and plant productivity (Jonasson et a1. 

1996a). The ability of soil microbes to resist and recover from a disturbance that disrupts 

these processes may therefore have consequences for ecosystem functioning. For this 

reason, it is important to understand how soil microbes respond to disturbance, and the 

factors that control this response. 

A potential factor that may control soil microbial stability is the life history strategy of soil 

microbes within the soil microbial community. In plant communities, slow-growing 

species tend to be resistant but not resilient, and fast-growing species tend to be resilient 

but not resistant (Grime 2001). Soil microbes can also be divided into two groups with 

either fast or slow growth rates (Gerson and Chet 1981), suggesting that soil microbial 

resistance and resilience may be traded-off in a similar way to plants. One of the 

mechanisms that has been proposed to explain this trade-off for plants is adaptation to low 

belowground resources, as this tends to result in characteristics that confer high resistance, 

but low resilience (Leps et a1. 1982, MacGillivray et a1. 1995). Theories and empirical 

studies also suggest that the resources in the soil before the disturbance may have an 

impact on soil microbial stability. For example, it has been predicted that higher amounts 

of soil C increases resilience (DeAngelis et a1. 1989), and higher soil C and total nitrogen 

(N) increases resistance (Wardle 1998). The resilience of a soil system may also depend on 

pre-disturbance resource quality (Bosatta and Berendse 1984), and availability (Moore et 

a1. 1993). Therefore, the amount and quality of resources in soil before a disturbance may 

affect the resistance and resilience of the soil microbial community. 
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Ecosystem development provides an ideal framework to examine the effect of pre­

disturbance resources on soil microbial stability. Analysis of chronosequences, a series of 

soils that vary in their age but not in other soil forming factors (McLaren and Cameron 

1990), shows that the amount of resources in the soil tends to increase as the system builds 

up towards a climax phase (Crews et al. 1995, Berendse et al. 1998, Schlesinger et al. 

1998, De Kovel et al. 2000). If the system remains undisturbed for long enough, it can go 

into a retrogressive phase during which the amount of resources typically declines (e.g. 

Crews et al. 1995, Schipper et al. 2001). These changes in the amount of resources are 

often accompanied by changes in soil pH (Berendse et al. 1998, De Kovel et al. 2000, 

MeriHi et al. 2002) and the quality of resources as measured by the ratios of C:N, 

C:phosphorus (P) and N:P (Scheu 1990, Crews et al. 1995). If the stability of soil microbes 

is governed by resource quantity and quality in the predictable way suggested, and if 

resources change in a predictable way during ecosystem development, then soil microbial 

resistance and resilience should show predictable trends across different chronosequences. 

For the purposes of this study, a wetting-drying event on incubated soil samples was used 

as a model disturbance. Wetting-drying events are common disturbances in soils (Kieft et 

al. 1987, Fierer and Schime12002) and are one of the major drivers of soil microbial 

turnover (West et al. 1988a, Wardle and Parkinson 1990, Fierer and Schime12002). They 

generally result in the death of a portion of the soil microbial biomass and a flush of 

available C, N (Birch 1958, Birch 1959) and P (Turner and Haygarth 2001). This flush of 

C, Nand P can be lost from the system by leaching (Turner and Haygarth 2001) or taken 

up by plants and microbes (Bottner 1985). The ability of soil microbes to resist and recover 

from a wetting-drying event could therefore affect the total amount of resources stored in 

soil, and the predictability of plant nutrient supplies. 

We used soils from three primary plant chronosequences to examine whether the resistance 

and resilience of soil microbes to a wetting-drying event are traded-off, and whether this 

trade-off is related to changes in resource quantity and quality during ecosystem 

development. Specifically, we hypothesised that: i) soil microbial resistance and resilience 

to a wetting-drying event are negatively correlated along each chronosequence, ii) the 

trade-off in soil microbial resistance and resilience is related to changes in pre-disturbance 

resources during ecosystem development, iii) resource quantity and quality change 
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predictably during the three chronosequences in this study, and finally, iv) if there are 

consistent correlations between stability and resources, and resources change consistently 

during ecosystem development, there will also be a predictable change in soil microbial 

resistance and resilience with ecosystem development. 

3.3 Materials and Methods 

3.3.1 Soil and sites 

Three primary plant chronosequences were chosen for this study, two from the Westland 

area of New Zealand (Kokatahi and Franz Josef), and one from the Hawaiian archipelago 

(Table 4). Some basic soil characteristics are given in Table 5. 

The Kokatahi chronosequence consists of soils from landslides and floodplains in the 

Kokatahi Valley identified by Bellingham et at. (2001). This sequence covers early 

ecosystem development from colonisation to senescence of the primary coloniser 

Carmichaelia odorata. Five independent 50-m2 plots were selected for each stage which 

are as follows: A) Stage 1: at least one Carmichaelia odorata individual per plot but less 

than 5% vegetative cover, B) Stage 2: 20-40 individuals of C. odorata per plot, but less 

than 50% cover, C) Stage 3: > 50 individuals of C. odorata per plot, and D) Stage 4: at 

least one senescent C. odorata individual per plot, < 50 total individuals and < 50% cover 

C. odorata. Five soil samples (0 - 5 cm depth) were collected from each 50-m2 plot and 

pooled during March 2000. This chronosequence is relatively short, and represents the 

build up phase of ecosystem development only. Soil classifications were unavailable for 

the Kokatahi sequence. 

The Franz Josef sequence consists of a series of glacial terminal moraines deposited by the 

Franz Josef glacier during its retreat over the last 22, 000 years. The parent material is 

predominantly schist (Stevens 1968). The stage names, ages (as defined by Stevens 1968), 

vegetation (Wardle and Ghani 1995) and New Zealand soil classification (Richardson et aL 
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2004) were: A) Stage IV: Hokitika Recent soil, Carmichaelia grandiflora - Olearia 

avicenniaefolia shrubland, ca. 25 years, B) Stage VII: Hokitika Recent soil, Griselinia 

littoralis - O. avicenniaefolia short forest, 130 years, C) Stage X: Ikamatua Brown soil, 

Metrosideros umbellata - Weimnannia racemosa forest, 500 years, D) Upper Wombat: 

Waiuta Podzol, M. umbellata - W. racemosa - Dacrydiun1 cllpressinum Podocarpus 

totara - Prumnopitysferruginea forest, 5000 years, E) Mapourika: Waiuta Podzol, W. 

racemosa - D. cupressinum - P. ferruginea, 12,000 years, and F) Okarito: soil 

classification unavailable, Phyllocladus trichomanoides - Dacrydium colensoi -

Leptospermum scoparium - P. totm'a Coprosma spp., 22,000 years. For each of the six 

stages, three independent 20 x 20 m plots were sampled during March 2000. Five soil 

samples to 5 cm depth were collected per plot and pooled. This sequencc includes both the 

build up and retrogression phase of ecosystem development (Wardle and Ghani 1995). 

The Hawaiian chronosequence is the same as that used by Crews et al. (1995), Vitousek et 

al. (1995), and Harrington et al. (2001), and represents ecosystem development on volcanic 

tephra of different ages. All stages in this sequence were dominated by Metrosideros 

polymorpha. The stage names, ages, and soil classifications (Crews et al. 1995) were as 

follows: A) Thurston: Hydric Dystrandept, 300 years, B) Olaa: Typic Hydranept, 2,100 

years, C) Laupahoehoe: Typic Hydrandept, 20, 000 years, D) Kohola: Typic Placandept 

150, 000 years, E) Molokai: Petroferric Acrohumox, 1.4 x 106 years and F) Kokee: Plinthic 

Acrudox, 4.1 x 106 years. Four replicate 20 x 20 m plots were set up at each stage, and five 

soil samples taken from each to a depth of 5 cm, during June 2000. This sequence includes 

the build up and retrogression phase of ecosystem development. 

All soil samples were sieved to 4 mm and stored at 4°C until use. To determine changes in 

soil chemical properties across each chronosequence, the following was measured for each 

sample: pH (1:1 in water, based on the methods described by Mc Lean 1982), total C and 

N (using Leco, Laboratory Equipment Corporation, St Joseph, Michigan, U.S.A.), P and 

bicarbonate-extractable P (referred to as Olsen P) (Blackmore et al. 1987). The 

measurements of total C, Nand P were interpreted as indicators of resource quantity, and 

the ratios of these variables as indicators of resource quality. 
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3.3.2 The disturbance and stability measure used 

Stability was measured as the response (resistance and resilience) of the soil microbial 

community to a wetting-drying event and compared to an undisturbed control soil. 

Wetting-drying events involve two different disturbances: drying the soil, and then 

rewetting the dry soil (Kieft et al. 1987). For our purposes we have concentrated mainly on 

the response of the soil microbes to drying. However, we also calculated a relative measure 

of the resistance of soil microbes to rewetting dry soil based on measurements made in the 

6 h after the soil was rewet. 

To obtain a method that resulted in an equivalent drying disturbance across soils with 

different abilities to hold water, the water holding capacity (WHC) of each soil sample was 

determined, based on methods described in Saetre (1998). Water was added to soil in a tray 

until the soil was saturated. The soil and water were then placed in a container (8 cm in 

diameter, 12 cm in height) with a 1.5 cm diameter hole in the bottom covered by two 

layers of 2 mm mesh. The top of the container was sealed with plastic to reduce 

evaporation from the surface, and the soil was allowed to drain overnight in a 4°C fridge. 

The moisture content of the soil on a dry weight basis at this point was termed the water 

holding capacity (WHC) of the soil. Based on preliminary experiments, the drying soil 

disturbance was defined as drying the soil from 55% of its WHC to 10% of its WHC, and 

incubating it at 25°C in this condition overnight. The rewetting dry soil disturbance 

discussed above was defined as rewetting the soil from 10% WHC to 55% WHC. A 

relati ve measure of resilience to drying soil was defined as the amount of recovery that had 

occurred 3 days after the dried soil had been returned to 55% WHC, based on preliminary 

data (not presented) and the data presented in Chapter 2. 

Four response variables were used to measure the resistance and resilience of the soil 

microbial coriununity: basal respiration, substrate-induced respiration (SIR), glucose use 

and soil mineral N contents. In combination, these response variables were intended to 

give a summary of the soil microbial response to the wetting-drying event. 

Basal respiration was measured as described by Wardle (1993). A known quantity of soil 

was placed in a 130-ml airtight container, and incubated at 25°C. The amount of microbial 
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respiration was measured by taking 1-ml subsamples of head space at 1 and 3 h after 

capping the container, and injecting them into an infrared gas analyser (Wardle 1993). 

Basal respiration measured on dried soil and on rewet dry soil was interpreted as indicating 

the response of soil microbial activity to the changes in resource availability that occur 

during wetting-drying events. 

Substrate-induced respiration was measured as for basal respiration except the soil was 

amended with 0.02 g glucose/g dry weight before incubation (methods based on Anderson 

and Domsch 1978). When SIR is measured on wet soil, it gives an indication of the active 

microbial biomass (Anderson and Dornsch 1978). Therefore, SIR measurements made on 

rewet dry soil were interpreted as indicating the effect of drying on the soil microbial 

biomass. Substrate-induced respiration was also measured on dried soil. Because the added 

glucose remains undissolved in dry soil, itis largely unavailable for soil microbial 

metabolism (West and Sparling 1986). Any measurements of resistance or resilience that 

included SIR measured on dry soil were therefore interpreted as indicating the effect of 

drying or rewetting on the ability of disturbed organisms to respond to added substrates, 

rather than as an indication of biomass. To distinguish between these two measures using 

SIR, the latter measurement will be referred to in terms of the resistance and resilience of 

soil microbial glucose use from here onwards, and the former in terms of the resistance and 

resilience of SIR. 

Mineral N was measured using the methods described by Keeney and Nelson (1982). 

When soil is dried and rewet, there is usually a flush of mineral N. This N probably comes 

from two sources: the soil microbial biomass, either through the mineralisation of killed 

biomass or osmoregulants (Kieft et al. 1987), and from changes that can occur in organic 

matter, which allow increased decomposition and nutrient mineralisation (Birch 1959, 

Bottner 1985). Both sources are dependent on soil microbes actively mineralising organic 

N, and therefore mineral N measured on the dried and rewet soil was interpreted as 

indicating changes in soil microbial activity in response to the disturbance. 
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Resistance 

Each soil sample was adjusted by either adding water or air-drying to 55% WHC and 

allowed to equilibrate in a 25°C incubator overnight. This adjustment in most of the higher 

organic content soils required a change in moisture content equivalent to less than 10% 

WHC. It is therefore likely that these soils will have recovered from this initial moisture 

content adjustment before our drying disturbance was imposed. The moisture content of 

early successional soils with a high gravel component (especially for the Kokatahi 

sequence) was changed by up to 50% WHC. However, given that these soils should be 

adapted to fast wetting-drying events, an overnight equilibration period should be 

sufficient to allow them to adjust to their new moisture content. We therefore consider that 

the soil microbes in each soil will have recovered sufficiently after overnight equilibration 

for the initial change in moisture content not to affect their response to the disturbance 

used to quantify resistance and resilience. 

Subsamples of equilibrated soils were spread out on paper trays to air-dry at room 

temperature to 10% WHC over up to 2 days. After this, the soil that had remained at 55% 

WHC (the control soil (C) and the dried soil (the disturbed soil) were each divided into 

two subsamples, placed in 125-ml Erlenmeyer flasks, sealed with plastic film and 

incubated overnight at 25°C. This time point was defined as the end of the drying 

disturbance and termed time 0 or to. One flask containing control soil and one flask 

containing disturbed soil were then destructively harvested for the determination of 

resistance to the disturbance at to. Basal respiration, SIR and mineral N were measured on 

subsamples of the control soiL The disturbed soil was divided into two portions. 

Subsamples from the first portion were used to measure basal respiration, SIR and mineral 

N contents on dry soil. Subsamples from the second portion were used to measure basal 

respiration and SIR immediately after the dried soil had been returned to 55% WHC. 

Resistance was calculated using the index described in Chapter 2. 

To measure the effect of drying on the resistance of soil microbial response variables, Co 

was defined as the value of the control soil that had remained at 55% WHC throughout the 
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disturbance period. To measure the effect of rewetting dry soils on soil microbial response 

variables, Co was defined as the value of the dry soil before it was returned to 55% WHC. 

Resilience 

The remaining flask containing dry soil was returned to 55% WHC by adding the required 

amount of water with a syringe, incubated for a further three days (t3) and along with the 

other flask containing control soil, was used to measure soil microbial resilience to drying 

soil at t3. Basal respiration, SIR and mineral N contents were measured on subsamples 

from both flasks. Resilience was calculated as described in Chapter 2. As we only 

calculated resilience in relation to the drying disturbance, Cx was in all cases the soil that 

had remained at 55% WHC throughout the experiment. 

3.3.3 Data analysis 

Pearson's correlation coefficients were used to determine the relationship of soil microbial 

resistance and resilience to soil resources, and of resistance to resilience within each 

chronosequence. This was done for all response variables measured. Data were 

transformed as required using log and square root. Where data could not be transformed to 

a normal distribution, Spearman's Rank correlations were used instead. Trends during 

ecosystem development were analysed by regression. Normality was determined for each 

regression and residuals checked. Quadratic and linear models were fitted to the data, and 

the model of best fit was used. 

40 



3.4 Results 

3.4.1 Response of soils to the wetting-drying event 

Basal respiration and glucose use of soils from all three sequences were reduced by drying 

(Appendix I). Rewetting dry soil resulted in an increase in basal respiration in all soils. Soil 

microbial biomass, measured as SIR on rewet dry soil, was generally reduced by the 

disturbance, and the amount of mineral N in the soils was generally increased by drying. 

On day 3, basal respiration, glucose use and SIR had on average recovered to control 

levels, although there were some exceptions (Appendix I). However, the amount of 

mineral N in the soils had rarely recovered, and was often higher than it had been on day O. 

3.4.2 Relationships between soil microbial stability and resources 

There were negative correlations between resistance and resilience for nearly all soil 

microbial response variables at all three sequences (Table 6). The strongest of these 

relationships was between the resistance and resilience of SIR for all three sequences, and 

the resistance and resilience of basal respiration for the Franz Josef sequence. 

The nature of the relationship between the resistance of basal respiration to drying and soil 

resources varied across the different sequences (Table 7). The resistance of soils from the 

Kokatahi sequence showed a negative relationship to the ratios of C:N and C:P. In contrast, 

the resistance of basal respiration for the Franz Josef sequence was positively related to the 

ratios of C, Nand P. The resistance of basal respiration to drying for the Hawaii sequence 

was not significantly correlated with any of the soil resources measured (data not 

presented). However, the resistance of soil microbial SIR to drying was more strongly 

related to soil resources for the Hawaii sequence than for the other two sequences: 

resistance increased as total C, Nand P increased, but decreased as pH and the C:N ratio 

increased. The resistance of SIR for the Franz Josef sequence also decreased as the C:N 

ratio increased. The resistance of SIR for the Kokatahi sequence was negatively related to 

pH, but positively related to Olsen P. The relationship of the resistance of soil microbial 
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glucose use with resources was strongest for the Franz Josef sequence, with positive 

correlations between resistance and the ratios of resources, and a negative correlation with 

pH. In contrast to this, resistance showed a positive relationship with pH for the Hawaii 

sequence, as well as a positive relationship with Olsen P. There were no significant 

relationships between the resistance of glucose use and resources for the Kokatahi 

sequence (data not presented). The resistance of mineral N contents for soils from the 

Kokatahi sequence was largely unrelated to resources. However, soils from the Hawaii 

sequence showed an increase in resistance as total resources increased, and a decrease as 

pH increased. Soils from the Franz Josef sequence showed the opposite relationship 

between soil pH and the resistance of mineral N contents to that found for the Hawaii 

sequence. The resistance of mineral N contents was negatively related to the ratios of 

resources, and positively related to total P for the Franz Josef sequence. 

When resistance was expresscd as thc amount of change in soil microbial response 

variables caused by rewetting dry soil, the resistance of basal respiration during the 

Kokatahi sequence was strongly related to soil resources (Table 8). Correlations between 

resistance and total resources or the ratios of those resources were negativc, while the 

correlation between resistance and pH was positive. In contrast to this, the resistance of 

basal respiration to rewetting for the Franz Josef sequence was negatively related to pH 

and positively related to the ratios of soil resources and total C. Correlations between 

resistance and resources for the Hawaii sequence were generally not significant at P < 

0.05, except for pH which showed a positive relationship to resistance. Similar 

relationships between resistance and soil resources were found for the resistance of glueose 

use to rewetting dry soil for the Franz Josef and Hawaii sequenees. However, soils from 

the Kokatahi sequence showed no significant correlations (data not presented). The 

resistance of basal respiration and glucose use to drying and to rewetting dry soil showed 

similar relationships with resources within sequences. 

The resilience of soils to drying was less strongly related to resources than resistance was 

(Table 9). There were no significant correlations between resources and the resilience of 

the soil microbial response variables for the Kokatahi sequence at P < 0.05 (data not 

presented). For the soils from the Franz Josef sequence, the resilience of basal respiration 

increased with total P, and decreased as the ratios of C:P and N:P increased. For the 
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Hawaii sequence, the resilience of this response variable increased as pH increased, but 

decreased as total C increased. The resilience of soil microbial SIR for the Hawaii 

sequence decreased as the amount of some resources increased, hut increased as the ratios 

of the resources increased. The resilience of the soil microbial SIR for the Franz Josef 

sequence was only correlated with the C:N ratio. Only soil from the Hawaii sequence 

showed significant relationships between the resilience of glucose use and resources 

(Olsen P: r -0.4883, P < 0.05, pH: r = -0.4381, P < 0.05). The resilience of mineral N 

contents in soils from the Franz Josef sequence were correlated with all resources except 

total P and the C:N ratio at P < 0.05. The correlations between resilience and total C, N, 

Olsen P or the ratios of the resources were positive, while the correlation between 

resilience and pH was negative. In contrast, the resilience of soils from the Kokatahi and 

Hawaii sequences were not significantly related to soil resources at P < 0.05. 

3.4.3 Changes in soil microbial stability and resources during ecosystem 

development 

Changes in total resources during ecosystem development showed several significant 

patterns (Table 10), Total C increased during the Kokatahi sequence, and increased and 

then decreased during the Franz Josef and Hawaii sequences. Total N increased and total P 

remained constant throughout the Kokatahi chronosequence. Total N and total P both 

initially increased, but then decreased during the Franz Josef and Hawaii sequences. Soil 

pH tended to decrease during development for all sequences, but increased slightly towards 

the end of the Franz Josef sequence. Despite these relatively consistent trends in total 

resources and pH, the remaining variables showed some different trends for different 

sequences. Olsen P showed no change during the Hawaii sequence, a positive hump­

backed relationship during the Franz Josef sequence and an increase during the Kokatahi 

sequence. During both the Kokatahi and Franz Josef sequences, the ratios of C:P and N:P 

increased. However, these variables showed an initial decrease and then an increase during 

the Hawaii sequence. The C:N ratio showed different trends during development for each 

of the sequences, with no change for the Kokatahi sequence, an increase for the Franz 

Josef sequence, and a decrease followed by an increase for the Hawaii sequence. 
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The relationship of the resistance of soil response variables to drying with ecosystem 

development varied across sequences (Fig. 6). The resistance of mineral N contents to 

drying showed significant trends during development for all three chronosequences. 

However, the trend found for the Franz Josef sequence showed the opposite direction to 

that found for the other two sequences. The resistance of basal respiration and glucose use 

to drying only showed a significant trend for the Franz Josef sequence, where it increased 

with ecosystem development. The resistance of SIR to drying only showed a significant 

trend over time for the Hawaii sequence, where it initially increased and then decreased. 

Patterns of change over time in the resistance of soil microbial response variables were 

stronger for the rewetting dry soil disturbance than for the drying soil disturbance (Fig. 7). 

The resistance of basal respiration to rewetting dry soil decreased during the Kokatahi 

sequence, but there was no trend in the resistance of glucose use over time. The resistance 

of both basal respiration and glucose use to rewetting dry soil decreased during the Hawaii 

sequence. This decrease mainly occun-ed during the initial stages of the sequence. In 

contrast to this, the resistance of soil from the Franz Josef sequence for both response 

variables increased with time. 

The resilience of soils to drying did not change significantly during the Kokatahi sequence 

(data not presented). Soils from the Franz Josef sequence showed a decrease over time in 

the resilience of basal respiration, no change in the resilience of SIR, and an increase over 

time in the resilience of mineral N contents (Fig. 8). Soils from the Hawaii sequence also 

showed a decrease in the resilience of basal respiration over time, but a hump-backed 

change over time for the resilience of SIR (Fig. 8). 
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Table 4: Characteristics of the three chronosequences 

Kokatahi sequenceI
-- -Franz Josef sequence2 Hawaii sequence3 

Location West Coast, South Island of New Zealand West Cpast, South Island of New Zealand Hawaiian islands 

Grid references 42°57'S, 171°35'E 43°20'S, 170o lO'E 19°-22°N, 155°-l60oW 

Parent material Foliated schist Chlorite schist, biotite schist, gneiss Basalt tephra 

Mean Annual Rainfall 7000mm 3800 - 6000mm 2500mm 

Mean Annual temperature c.IO°C 11°C 16°C 

Elevation 41O-500m a.s.l. 50 210 m a.s.l. 1100 - 1200m a.s.l. 

1 Data from Bellingham et aI. (200 i)? Data from Stevens (1968) and Wardle arid Ghani (199S);.'Data from Crews et aI. (1995) 
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Table 5: Characteristics of the soils from each stage of each chronosequence. 

Kokatahi seguence 
~e % Carbon % Nitrogen EH WHC I 

1 0.2 (0.0) 0.01 (0.0) 5.6 (0.1) 22 (1) 

2 0.2 (0.0) 0.01 (0.0) 5.4 (0.0) 24 (1) 

3 14.5 (6.0) 0.8 (0.3) 4.7 (0.3) 209 (78) 

4 18,5 (1.6) 1.0 (0.1) 4.4 (0.1) 222 (20) 

Franz Josef seguence 
Age (~ears) % Carbon % Nitrogen EH WHC1 

55 3.2 (1.9) 0,2 (0.1) 5.3 (0.3) 61 (24) 

130 7.6 (1.7) 0.4 (0.1) 5.0 (0.2) 142 (22) 

500 33.7 (2.4) 1.3 (0.1) 3.7 (0.1) 512 (55) 

5000 38.4 (1.3) 1.6 (0.1) 3.7 (0.1) 490 (24) 

12000 35.5 (6.3) 1,0 (0.1) 3.8 (0.2) 466 (95) 

22000 13 (1.6) 0.5 (0,1) 4'.4 (0,1) 222 (30) 

Hawaii seguence 
Age (xears) % Carbon % Nitrogen EH WHC1 

300 47.5 (1.3) 1.9 (0.0) 3.4 (0.0) 506 (50) 

2100 37.3 (1.2) 1.6 (0.0) 4.2 (0.1) 563(15) 

20000 32.0 (3.9) 1.1 (0.1) 4.0 (0.1) 400 (38) 

150000 40,0 (2.1) 1.5 (O,O) 3.4(0.1) 510(24) 

1400000 46,0 (1.6) 2.0 (0,0) 3.6 (0.1) 580 (35) 

4100000 42.7 (3.5) 2.1 (0.2) 3.4 (0.1) 338 (19) 

J Water holding capacity, measured as the amount of water retained in a soil after it has been 
saturated and allowed to drain overnight; expressed as gravimetric water content. 

Table 6: Correlation coefficients between the resistance and resilience of soil microbial 

response variables to a drying disturbance for each sequence. 

Kokatahi Franz Josef Hawaii 

Basal Respiration -0.3352 -0.7870*** -0.1285 

Substrate-induced respiration -0.7656*** -0.8765*** -0.5881** 

Glucose use -0.5071* -0.4952* -0.3688t 

Mineral N contents 1.2 -0.5465* -0.4390t -0.5000* 

i Speannan rank correlation for the Franz Josef sequence, 2 log transformed for the Hawaii 
sequence 
tP < 0.1, * P < 0,05, ** P < om. *** P < 0.001 

46 



Table 7: Pearson correlation coefficients between soil resources and the resistance of soil microbial response variables to drying for each of 

the three chronosequences. 

Basal respiration resistance6 SIR2 resistance Glucose use resistance6 Mineral N contents resistance 

Kokatahi Kokatahi FJ 1 Hawaii5 FJ1 Hawaii Kokatahl FJ1 Hawaii 

Total -0.4453t 0.2738 0.3152 -0.3358 0.6455*** 0.4416t -0.0128 0.2964 -0.4613t 0.4964* 

Total N3 -0.3043 0.1912 0.3137 -0.1904 0.7832*** 0.3"380 -0.1736 0.3342 -0.3335 0.5634** 

Total p 3.5 -0.4015t -0.4595t 0.2165 0.2769 0.6501** -0.2390 -0.2281 0.0992 0.7152** 0.3576t 

Olsen p3,4 -0.3248 0.0101 0.4812* 0.1115 0.1319 0.2151 0.4368* 0.3880t -0.0215 -0.1221 

pH -0.0802 -0.4762* -0.4976* 0.3277 -0.4778* -0.6173** 0.4763* -0.3744 0.4881 * -0.8463*** 

C:Nratio -0.6185** 0.5061* 0.0696 -0.5838* -0.4748* 0.5433* 0.2509 0.1313 -0.7255** -0.3373 

C:P ratio3 -0.4526* 0.6833** 0.3323 -0.4525t -0.1700 0.5841 * 0.2071 0.3248 -0.8080*** -0.0055 

N:P ratio3 -0.2977 0.7389*** 0.2241 -0.3686 0.1040 0.6076** 0.1123 0.3323 -0.8679*** 0.2125 

I Franz Josef, 2 substrate-induced respiration. 3 Spearman rank transformed for the Kokatahi sequence,4]og transformed for the Franz Josef sequence, 5 log 
transformed for the Hawaii sequence. 6 Correlation coefficients between the resistance of basal respiration and resources for the Hawaii sequence, and 
between the resistance of soil microbial glucose use and resources for the Kokatahi sequence are not presented, as no correlations were statistically 
significant. 
tP < 0.1, * P < 0.05, ** P < 0.01. *** P < 0.001 
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Table 8: Pearson correlation coefficients between soil resources and the resistance of soil 

microbial response variables to rewetting dry soil for the three chronosequences 

Kokatahi2 Franz Josef Hawaii Franz Josef Hawaii4 

0.4973* -0.1071 0.5077* -0.2492 

TotalNl -0.8170*** 0.3856 0.2983 0.3494 -0.3666t 

Total p1•4 -0.5889** -0.1795 -0.3659t -0.2032 -0.3694t 

Olsen p1,3 ~0.8026*** 0.2542 . 0.1695 0.2016 0.2968 

pH 0.5845** -0.6537** 0.4372* -0.6270** 0.6179** 

C:N ratio -0.6692** 0.6511 ** 0.3963t 0.6392** 0.2948 

C:P ratio! -0.8830*** 0.6652** 0.2813 0.6040** 0.1691 

N:P ratio
l -0.8101 *** 0.6652** 0.1168 0.5587* 0.0400 

( Spearman rank correlation for the Kokatahi sequence, 2 log transformed for the Kokatahi 
sequence, 3 log transformed for the Franz Josef sequence, 4 log transformed for the Hawaii 
sequence. 5 Correlation coefficients between the resistance of soil microbial glucose use to 
rewetting dry soil for the Kokatahi sequence are not presented, as no correlations were statistically 
significant. 
tP < 0.1, * P < 0.05, ** P < 0.01. *** P < 0.001 
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Table 9: Pearson correlation coefficients between soil resources and the resilience of soil microbial response variables to drying for the three 

chronosequences3 

Basal respiration resilience SIR resilience Mineral N contents resilience 

Franz Josef Hawaii Franz Josef Hawaii Josef Hawaii 

Total C -0.0889 -0.4644* 0.3231 -0.2648 0.5825* 0.2485 

Total N -0.0384 -0.3832t 0.1855 -0.4413* 0.,5614* 0.2411 

Total p2 0.4864* -0.1493 -0.2092 -0.7031*** 0.1136 0.0610 

Olsen pI 0.2326 -0.1298 -0.0890 -0.2828 0.4745* 0.3834t 

pH 0.2886 0.4822* -0.2915 -0.0417 -0.6156** 0.3307 

C:Nratio -0.3273 0.0927 0.5219* 0.4332* 0.4113t -0.0789 

C:P ratio -0.5017* -0.1685 0.3763 0.5232** 0.5476* 0.0568 

N:Pratio -0.5681* -0.2543 0.2773 0.3954t 0.5846* 0.1877 

I Log transformed for the Franz Josef sequence, log sequence. 3 Correlations coefficients for the Kokatahi sequence are not 
presented, as no correlations were statistically significant at P < 0.05. 
tP<O.l, *P<0.05, **P<O.Ol. ***p <0.001 
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Table 10: Patterns in the change in soil resources over time for the three chronosequences 

Franz Hawaii 

Total C l RZ 0.6324*** 0.7729*** 0.5279*** 

Relationship +ve linear -ve quadratic -ve quadratic 

Total N2 R2 0.8112*** 0.8130*** 0.7006*** 

Relationship +ve log linear -ve quadratic -ve quadratic 

Total R2 0.2380* 0.6499*** 0.8957*** 

Relationship +ve log linear -ve quadratic -ve quadratic 

Olsen p2 R2 0.6991 *** 10.6376*** 0.0392 

Relationship +ve log linear -ve quadratic not significant 

pH R2 0.5737*** 0.8252*** 0.5366*** 

Relationship -ve linear +ve quadratic -ve linear 

C:N ratio R2 0.1353 0.4957** 0.5874*** 

Relationship not significant +ve linear +ve quadratic 

C:P ratio! R2 0.6753*** 0.7055*** 0.4522** 

Relationship +ve linear +ve linear +ve quadratic 

N:P ratio! R2 0.6995*** 0.7854*** 0.1359t 

Relationship +ve linear +ve linear +ve quadratic 

+ve ::::: positive, -ve::::: negative, 1 rank or 210g transformed at Kokatahi 
tP < 0.1, * P < 0,05, ** P < 0,01. *** P < 0,00 
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Kokatahl Franz Josef Hawaii 

Resistance of basal respiration to drying 
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Fig. 6: Changes in the resistance of soil microbial response variables to drying during 

ecosystem development for the three chronosequences. The best linear or quadratic 

regression describing patterns over time is presented. 
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Kokatahi Franz Josef Hawaii 

Resistance of basal respiration to rewettlng dry soil 
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Fig_ 7: Changes in the resistance of soil microbial response variables to rewetting dry soil 

during ecosystem development for the three sequences. The best linear or quadratic 

regression describing patterns over time is presented. 

52 



Franz Josef Hawaii 

Resilience of basal respiration to drying 
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8: Changes in the resilience of soil microbial response variables to drying soil during 

ecosystem development. The best linear or quadratic regression describing patterns over 

time is presented. The resilience of soils from the Kokatahi sequence are not presented as 

no significant patterns were found over time at P < 0.05. 

53 



Chapter 3: Succession 

3.5 Discussion 

3.5.1 Relationships between soil microbial stability and soil resources 

The stability of soil microbial activity, SIR and mineral N contents showed some 

consistent trends across the three sequences. Consistent with our first hypothesis, 

resistance and resilience were negatively correlated for nearly all response variables, for all 

three sequences (Table 6). This suggests that there may be subsets of the soil microbial 

community that have different life history strategies (Gerson and Chet 1981), and 

characteristics associated with resistance or resilience that are traded-off in a similar 

manner to that found in plant (Leps et a1. 1982, Huston and Smith 1987, Herbert et a1. 

1999) and aquatic (Sousa 1980) systems. This trade-off may be related to the active and 

dormant fraction of the soil microbial biomass. Bottner (1985) suggested that the active 

fraction is killed by drying, and that the dormant fraction survives. The active fraction may 

represent the fast-growing, r-selected part of the soil microbial biomass, which is less 

resistant to disturbances, but more resilient because of its fast growth rate. The dormant 

fraction may represent the slow-growing, K-selected part of the soil microbial biomass, 

which is resistant to disturbance but recovers slowly. 

We hypothesised that the trade-off in the resistance and resilience of the soil microbial 

community would be related to soil resources. Consistent with this, resources which 

showed a positive correlation with the resistance of a particular response variable often 

showed a negative correlation with the resilience of that variable, and vice versa (Table 7, 

9). However, the main mechanism underlying these relationships appeared to vary both 

within and between sequences. Firstly, the importance of resource quantity versus resource 

quality in driving resistance and resilience varied across the different sequences. Secondly, 

the stability of a given soil microbial response variable often showed a positive correlation 

with a resource for one sequence, but a negative correlation with the same resource for 

another sequence. Thirdly, the stability of several response variables did not show 

significant relationships to any of the resources measured (Table 7 - 9). Finally, the 

relationship between the resistance of different response variables to resources within 

sequences varied, with the resistance of SIR and mineral N contents to drying showing the 
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opposite relationship to resources to that of the resistance of basal respiration and glucose 

use to drying and rewetting. 

The different relationships of the resistance of SIR and mineral N contents and the 

resistance of basal respiration and glucose use with resources can be explained by 

examining what these variables mean in more detail. One of the sources of mineral N 

released by drying soil is probably from the N contained in the soil microbial biomass 

killed by the disturbance (Bottner 1985). Therefore, the more biomass lalled by the 

disturbance, the more N released, and the lower the resistance of SIR and mineral N 

contents. The resistance of basal respiration and glucose use measure different aspects of 

the activity of the soil microbial community in response to the disturbance, and were 

therefore related to resources in the same direction. It is logical that these two groups of 

response variables were related to resources in opposite directions. If a large proportion of 

the biomass is killed during a disturbance, more mineral N will be released, resulting in 

activity rates in dry soil that are closer to undisturbed soil rates. When soil is rewet, there is 

usually a large increase in resource availability (Birch 1959, Skopp et al. 1990). If il10st of 

the biomass survives the disturbance, it may be able to increase its activity to a greater 

extent in response to this increase in resources, than in soils where more of the biomass 

was killed. In combination, this suggests that the resistance of basal respiration and glucose 

use will be high when the resistance of SIR and mineral N contents is low in both dry and 

rewet dry soil, and vice versa, resulting in opposite correlations with resources. Our results 

are consistent with both aquatic (Steinman et al. 1990, Biggs et al. 1999) and plant 

(Herbert et al. 1999) studies, which have found that the type of relationship between 

resources and stability can depend on the response variable measured. 

None of the theoretical relationships of resistance and resilience to resources proposed by 

previous studies (e.g. Bosatta and Berendse 1984, Moore et al. 1993, MacGillivray et al. 

1995, Wardle 1998) were supported for all three sequences, and many were directly 

contradicted for at least one sequence. For example, it has been suggested that higher soil 

C and N contents should result in a soil microbial biomass with a higher resistance to 

disturbance (Wardle 1998). However, total C and N were significantly correlated with the 

resistance of SIR for the Hawaii sequence only, suggesting that these resources are only 

important for stability in some contexts. Overall, the nature of relationships between 
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stability and resources appeared to be highly variable, and to depend on the soil microbial 

response variable and sequence measured. 

3.5.2 Changes in soil resources and microbial stability during ecosystem 

development 

The second aspect of this study looked at how soil resources and soil microbial resistance 

and resilience change during ecosystem development, as represented by the three 

chronosequences. Although the direction of correlations between soil microbial stability 

and resources varied among the different sequences, there were consistent patterns within 

them and some consistent trends across them. Therefore, if resources change in a similar 

way during each sequence, there may be s<}me consistent patterns of change in resistance 

and resilience during ecosystem development, as hypothesised. The changes in total C and 

N generally followed the expected patterns of a build up during the relatively short 

Kokatahi sequence, and a build up and decline phase during the longer Hawaii and Franz 

Josef sequences. During all three sequences pH declined over time, although it began to 

increase again at the end of the Franz Josef sequence. These trends are consistent with 

results found by other studies at these and other sites (Crews et a1. 1995, Berendse et al. 

1998, Ohtonen et a1. 1999, Bellingham et a1. 2001). Despite the consistent changes in total 

resources during development across sequences, changes in the ratios of C, Nand P often 

changed differently during the development of different sequences (Table 10). This may be 

because different processes were operating within each sequence, or because they were 

operating at different rates. Climate, initial fertility, plant species traits, and parent material 

characteristics are likely to alter the rate of development of different soils (Walker and del 

Moral 2003), and potentially the rate of change of C, Nand P relative to each other. For 

example, the Kokatahi and Franz Josef sequences were colonised by N-fixing shrubs at the 

beginning of succession (Stevens 1968, Wardle and Ghani 1995, Bellingham et a1. 2001), 

rather than in mid-succession as occurred at the Hawaii sequence. This would have 

affected the rate of change of N relative to other soil resources. It is interesting to note that 

the C:N ratio of soils from the Hawaii sequence cbanged in the opposite direction during 

development to that found by Crews et a1. (1995) for the same sequence. This may be 

because the plots sampled by Crews et a1. (1995) in mid-succession did not contain Acacia 
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koa (a N-fixing tree), whereas ours did. This again highlights the impact that plants can 

have on soil resources, as well as the potential problem of spatial variation within stages of 

the same age during chronosequences (Walker and del Moral 2003). 

Given that the relationship of stability to resources and the change in resource quality 

during development was context-dependent, it is not surprising that there were few 

consistent relationships between stability and ecosystem development across sequences. 

Stability was occasionally related to the same resource in the same direction in more than 

one sequence. However, because these resources often changed differently during each 

sequence, the way that stability changed over time was also often different between 

sequences. For example, the C:N ratio showed a positive relationship to the resistance of 

basal respiration to rewetting dry soil, and the resilience of SIR for both the Hawaii and 

Franz Josef sequences, but the relationship between these stability variables and time were 

different for the two sequences. This is presumably because the C:N ratio showed a 

different relationship with time dUling the two sequences. However, some trends were still 

evident within sequences. Firstly, the trade-off between the resistance and resilience of 

some response vmiables was still apparent over time (Figs. 6, 8). Consistent with the 

variable cOlTelations of resources with stability at each sequence, the pattem of stability did 

not always follow the theoretical increase in resistance (Odum 1969) and decline in 

resilience with time that has been proposed in other empirical studies (McNaughton 1977, 

Sousa 1980, Grime et al. 2000). Secondly, the difference in the response of biomass- and 

activity-related response variables was still evident for the Franz Josef sequence; biomass­

related response variables decreased in resistance over time and activity-related response 

variables increased. The opposite pattern was found for resilience. Although the 

relationship of stability to resources and resources to time was often sufficient to predict 

how stability changed with time within sequences, there were also instances where there 

were correlations with resources but not with time and vice versa, suggesting that other 

factors may influence soil microbial stability. 
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Conclusion 

The role of resources in determining resistance and resilience depended on the sequence 

and response variables considered. The way that resources changed relative to each other 

over time also depended on the sequence. These two trends meant that there were few 

consistent patterns of resistance and resilience over time between the three sequences. 

There are many other factors that may influence the stability of soil microbes and which 

may have differed across the sequences. These include soil microbial community 

composition (Allen-Morley and Coleman 1989. Cortez 1989. Whitford 1989, Orchard et 

al. 1992), plant composition (Wardle et al. 2000), adaptation to disturbance (West et al. 

1988a, West et al. 1988b), soil texture and clay content (West et al. 1988a), substrate 

diversity (HmTIson 1979, Loreau 2001) and food web structure (De Angelis 1992, de 

Ruiter 1998). Overall, our data show that the interactions amongst soil microbial 

resistance, resilience, resources and time are complex, and depend on the specific situation 

examined, suggesting that soil microbial stability is not consistently driven by any single, 

dominant factor. 
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Chapter 4: Plant species composition, but not diversity, 

affects soil microbial resistance and resilience to a drying 

disturbance. 

4.1 Abstract 

Despite the strong link between the function of plant and soil microbial communities, few 

studies have looked at the effect of plant species composition and diversity on soil 

microbial resistance and resilience to' disturbance. We hypothesised that plant species 

composition would affect soil chemistry and soil microbial response variables, and that 

these in turn would affect soil microbial resistance and resilience to an experimentally 

imposed drying disturbance. The diversity of plant communities, the stage of community 

development and seasonal changes in moisture and temperatures can alter the effect of 

plants on the soil environment and therefore may also affect soil microbial resistance and 

resilience. We performed a glasshouse experiment that manipulated the composition and 

diversity of three common pasture plant species (Trifolium repens, Lalium perenne, and 

Plantago lanceolata) by growing them in monoculture, and in all the possible two and 

three-way combinations, along with an unplanted control soil. Experimental units were 

harvested at four different points over a 16-month period to determine the effect of plant 

community development and seasonal changes in temperature and moisture on treatment 

effects. Results showed that plant composition influenced the soil chemical variables 

measured, soil microbial response variables and soil microbial stability. The presence of 

plants generally reduced the resistance of soil microbes to the drying disturbance. Soils 

planted with T. repens showed a higher resistance and resilience than the soils planted 

with P. lanceolata, and a higher resistance than soils planted with L. perenne. We suggest 

that either differences in resource limitation or soil microbial community structure may be 

responsible for these results. Plant species diversity rarely affected soil microbial response 
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variables or their stability, despite some significant diversity effects on plant community 

biomass and soil nitrogen contents. The time of harvest also influenced treatment effects 

for most variables, suggesting that results can be altered by the stage of plant community 

development or by extrinsic environmental factors that varied with harvest timing. These 

results in combination show that soil microbial resistance and resilience was altered by the 

composition of the plant species present and the time of measurement, but was largely 

unrelated to plant species diversity. This supports the view that soil organisms, and their 

resistance and resilience to disturbance, are driven by the traits of the dominant plant 

species in a community, and therefore by plant community composition rather than species 

diversity. 

Plant community composition Harvest timing 

and di versity (seasonal and successional changes) 

Plant community properties 

III Biomass and NPP Soil resources 
III Plant development 
III Species dominance 

Soil microbial community Soil microbial resistance 

characteristics and resilience 

Fig. 9: Flow diagram of the relationships examined in Chapter 4 
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4.2 Introduction 

The stability (resistance and resilience) of ecosystems has become an important topic in 

current ecology. The resistance and resilience of plant (Leps et al. 1982, MacGillivray et 

al. 1995, Tilman 1996) and aquatic ecosystems (Sousa 1980, McGrady-Steed et al. 1997, 

Biggs et al. 1999) in response to disturbance has been well studied, but the factors that 

control the resistance and resilience of soil microbes have received less attention (Allen­

Morley and Coleman 1989, Wardle et al. 2000, Degens et al. 2001, Griffiths et al. 2001b). 

Because soil microbes are responsible for the conversion of organic matter into plant 

available nutrients (Yarie and Van Cleve 1996, Wardle 1998), their ability to resist and 

recover from disturbances may affect plant nutrient supplies and therefore have an 

influence on plant productivity. Their resistance and resilience may even regulate whole 

ecosystem stability (O'Neill 1976). 

Resistance and resilience may be driven by biotic factors such as species composition 

(Leps et al. 1982, MacGillivray et al. 1995), diversity (May 1972, McNaughton 1977) and 

food web structure (May 1972, De Angelis 1992, de Ruiter 1998). Extrinsic factors such as 

nutrient availability (Bosatta and Berendse 1984, De Angelis 1992, Moore et aI. 1993), pH 

(Wardle 1998) and the amount of detritus in a system (De Angelis et al. 1989) may also 

drive resistance and resilience. In soil, many of these potential driving factors can be 

altered by plant community composition, including the composition and structure of the. 

soil microbial community (Griffiths et al. 1992, Wardle and Nicholson 1996), and the 

chemical properties of the soil (Tilman and Wedin 1991, Hooper and Vitousek 1998, 

Gastine et al. 2003). It is therefore reasonable to predict that the presence of different plant 

species may result in soil communities with different abilities to resist and recover from 

disturbances. 

The effect of plant communities on soil properties may change when the number of plant 

species within them (i.e. their diversity) is increased. Some studies have suggested that 

increasing plant diversity can lead to increases in net plant uptake of soil nutrients (Tilman 

and Downing 1994, Tilman et al. 1997a, Hooper and Vitousek 1998), enhanced plant 

productivity (Naeem et al. 1994, Tilman and Downing 1994, Hector et al. 1999), and 
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ultimately increases in the amount of resources returned to the soil. Increased plant 

diversity may also alter the soil microbial community, by increasing the heterogeneity of 

resources (Ettema and Wardle 2002). Plant species diversity may therefore alter the effect 

of the plant community on soil properties and have an impact on soil microbial resistance 

and resilience. 

Interactions between different plant species, and the effect of species and communities on 

soil properties are unlikely to be static over time. As plant communities develop, the total 

biomass of the plant community will change, different plant species within a community 

may become dominant, and plants of the same species may invest energy into different 

tissues (e.g. reproductive vs. vegetative) and chemical constituents (e.g. defence 

compounds, phenolics, lignin). These will all result in variation over time in the amount 

and types of resources returned to the soil. These changes in the plant community may be 

closely linked to changes in season, and temporal shifts in temperatures and moisture 

availability. Changes in temperature and moisture can also affect soil resource availability 

and soil microbial communities directly, by changing soil process rates (Lomander et al. 

1998, Nedwell 1999) and the movement of dissolved organic matter and nutrients. 

Therefore, both the developmental stage of a plant community and fluctuations in 

environmental conditions may have an effect on soil chemical properties, the soil microbial 

community and potentially soil microbial resistance and resilience. 

We examined the effect of plant community composition, diversity and development on 

soil biotic and abiotic properties, and soil microbial resistance and resilience, using three 

common pasture plants (Trifolium repens, Latium perenne, and Plantago lanceolata) 

planted in all possible combinations. Specifically, we hypothesised that different plant 

species will create soils with different soil chemical and microbial properties, and that 

these differences would in tum affect soil microbial resistance and resilience to an 

experimentally imposed drying disturbance. We also hypothesised that the nature of these 

relationships may be altered by changes in plant species diversity, and may vary over time 

as a result of, for example, the developmental stage of the plant community and temporal 

variability in temperature and rainfall. 
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4.3 Materials and Methods 

4.3.1 Experimental design 

Model grassland plant communities of varying species composition and diversity were 

established to determine what effect plant species composition and diversity has on plant, 

soil and microbial properties and whether this effect varies over time as the plant 

communities develop and seasons change. We planted 192 square containers (height 32 

cm, width 21 cm) with 24 replicates of eight planting treatments. These consisted of: an 

unplanted control treatment (bare soi1), Trifolium repens (clover), Lolium perenne 

(ryegrass), and Plantago lanceolata (plantain) in monoculture, these three plant species in 

all possible pair-wise combinations (clover + ryegrass, clover + plantain, plantain + 

ryegrass), and all three plant species together. These three plant species are commonly 

found growing together in pasture systems, and represent three different functional groups 

(a N-fixer, a dieot and a monocot). Six replicates of each treatment were harvested at each 

of 3, 6, 11 and 16 months after planting to determine how the stage of plant community 

development and temporal variation in temperature and moisture affected soil properties. 

This design is based on a replacement series approach and has been shown to be capable of 

distinguishing between diversity and composition effects in plant communities (Hooper 

and Vitousek 1998, Wardle et al. 2000). If the performance of the more diverse 

communities was either significantly higher or significantly lower than the performance of 

all of the component species in monoculture, this was interpreted as an effect of diversity 

(Garnier et al. 1997). 

Soil was collected from under pasture at Lincoln, New Zealand (43 0 30' S) and 

homogenised by mechanical sieving to 4 mm. The soil contained 4% C, 0.32% N, and had 

a pH of 5.1. Containers were filled with soil to 17 cm depth (sufficient depth for 

unimpeded plant growth for the required time, but still easily manouverable) and placed 

outside at Lincoln. Clover, ryegrass and plantain seedlings were grown in vermiculite for 5 

weeks, and then planted out into designated containers on 19 February 2000. Six plants 

were planted in each container, giving three plants of each species for the pair-wise 

combinations and two plants of each species for the three-species treatment. Containers 
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were placed outside so that they would be exposed to natural variation in temperature, 

rainfall and daylight hours. 

Containers were weeded and watered as required. Plants were regularly clipped to 10 cm in 

height to maintain the desired plant species composition and to avoid containers becoming 

overgrown. One such clipping was performed 1 month before each harvest to standardise 

any changes in plant effects. All clipped plant biomass was sorted into species, dried for 48 

h at 60°C and weighed. For each harvest, this biomass was summed and added to the total 

biomass measured when each container was harvested to give an estimate of net primary 

productivity (NPP) for each plant community (Wardle et al. 2000). Reproductive parts 

were included in this biomass. All containers were sprayed with Dichlorvos Nuvan 1000 

EC Organo-Phosphate on 30 March 2000 to control an aphid infestation. 

4.3.2 Measurement of plant variables 

At each harvest, dead vegetation was removed and the remaining aboveground biomass 

was sorted into species and dried at 60°C for 48 h. The soil was homogenised, and 10 -

15% was removed for the extraction of roots, which were cleaned and dried at 60°C for 48 

h for determination of dry weight. The total weight of soil, its moisture content and the 

weight of the subsample were measured so that both the total amount of roots per container 

and roots per unit weight of soil could be calculated. The remaining soil was then sieved to 

4 mm and stored at 4°C for the remaining measurements. 

4.3.3 Measurement of baseline soil chemical and soil microbial variables 

For each soil sample, pH (1:1 in water,based on methods described by Mc Lean (1982»), 

the concentration of ammonium and nitrate (Keeney and Nelson 1982), and various soil 

microbial properties were measured. Basal respiration and substrate-induced respiration 

(SIR) was measured on each soil after it had been adjusted to 33% moisture content on a 

dry weight basis (MC), and allowed to equilibrate in a 25°C incubator for 2 days. Basal 

respiration was measured as described by Wardle (1993). Ten g dry weight (d.w.) of soil 
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was placed in a 130-ml airtight container, and incubated at 25°C. The rate of soil microbial 

respiration was measured by taking I-ml subsamples of headspace gas at 1 and 3 h after 

the container was capped, and injecting them into an infrared gas analyser (Wardle 1993). 

Substrate-induced respiration was measured based on the method described by Anderson 

and Domsch (1978). C02-C was measured as above, except that the soil was amended with 

0.02 g glucose/g d.w. before capping the airtight container. A relative measure of the 

metabolic quotient (qC02) was calculated as basal respiration divided by SIR (Anderson 

and Domsch 1985). The ability of soil microbes in each soil sample to decompose 

cellulose was measured by burying a weighed 3 x 1.5 cm strip of Whatman filter paper in a 

Petri dish containing 30 g d.w. of soil at 33% MC. The Petri dish was sealed and incubated 

at 25°C for 10 days, after which the cellulose paper was removed, cleaned, oven dried and 

weighed to determine mass loss. 

4.3.4 Soil microbial resistance and resilience 

To determine the effect of plant community composition, diversity and development on the 

resistance and resilience of the soil microbes, we used a wetting-drying event as a model 

disturbance. Wetting-drying events are common disturbances in soils (Kieft et al. 1987, 

Fierer and Schimel 2002) and are one of the major drivers of soil microbial turnover (West 

et al. 1988a, Fierer and Schimel 2002) and therefore nutrient availability. Wetting-drying 

events involve two disturbances: drying, and rewetting of the dried soil (Kieft et al. 1987). 

For this study we concentrated mainly on the response of the soil microbes to drying. 

However, a relative measure of the resistance of dry soil to rewetting was also calculated, 

based on measurements made in the 6 h immediately after rewetting. Based on preliminary 

experiments, the drying disturbance was defined as drying the soil from 33% MC to 6% 

MC, and the rewetting dry soil disturbance as adding water to bring soil at 6% MC back up 

to 33% Me. These moisture contents corresponded to 55% and 10% of water-holding 

capacity, where 100% water-holding capacity was measured as the amount of water 

retained in a soil following saturation and 18 h of drainage (Saetre 1998). 

Three response variables were used to measure the resistance and resilience of the soil 

microbial community: basal respiration, SIR, and glucose use. In combination, these 
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response variables were intended to give a summary of the soil microbial response to the 

wetting-drying event. Basal respiration measured on dried soil and on rewet dry soil was 

interpreted as indicating the response of soil microbial activity to the changes in resource 

availability that occur during wetting-drying events. Substrate-induced respiration 

measured on wet soil gives an indication of the active microbial biomass (Anderson and 

Domsch 1978). Therefore, SIR measurements made on rewet dry soil were interpreted as 

indicating the effect of drying on the soil microbial biomass. Substrate-induced respiration 

was also measured on dried soil. Because the added glucose remains undissolved in dry 

soil, it is largely unavailable for soil microbial metabolism (West and Sparling 1986). Any 

measures of resistance or resilience that included SIR measured on dry soil were therefore 

interpreted as indicating the effect of drying or rewetting on the ability of disturbed 

organisms to respond to added substrates, rather than as an indication of biomass. To 

distinguish between these two measures using SIR, the latter measurement will be referred 

to in terms of the resistance and resilience of soil microbial glucose use from here onwards, 

and the former in terms of the resistance and resilience of SIR. 

Each soil sample was adjusted to 33% MC (55% of water holding capacity) by air-drying 

or adding water, and allowed to equilibrate overnight in a 25°C incubator. The MC of 

unadjusted soils ranged from 13% to 40%, with approximately 75% being between 25 and 

35%. For most soils the change in moisture content will therefore have been relatively 

minor, and the time allowed for equilibration sufficient. For the soils with a comparatively 

low initial MC (about 10% of the samples), this adjustment may have resulted in a stronger 

microbial response. However, the strongest part of this response will take place within the 

time allowed for equilibration. As these soils were from a range of treatments and harvests, 

it is unlikely that they skew the overall results. We therefore consider that the soil microbes 

in each soil will have recovered sufficiently after overnight equilibration for the initial 

change in moisture content not to affect their response to the disturbance used to quantify 

resistance and resilience. 

Subsamples of equilibrated soils from each treatment were spread out on paper trays to air­

dry at room temperature to 6% MC. Three 10 g d.w. subsamples of air-dried soil and two 

10 g d.w. subsamples of the undisturbed soil at 33% MC were then placed in 125-mJ 

Erlenmeyer flasks, sealed with plastic and incubated at 25°C overnight. Resistance to 
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drying was determined after this incubation (time 0 or to); one flask containing dry soil was 

used to measure basal respiration and SIR in dry soil, and a further flask containing dry 

soil was used to measure these response variables immediately after the soil had been 

returned to 33% MC. The latter measurement was used to determine the resistance of the 

soil microbes to rewetting dry soil. One flask containing undisturbed soil at 33% MC was 

used to measure these response variables at this point. Resistance was calculated using the 

index described in Chapter 2. For the effect of drying on the resistance of soil microbial 

response variables, Co was defined as the value of the undisturbed soil for the appropriate 

response variable that had remained at 33% MC throughout the disturbance period. For the 

effect of rewetting dry soils, Co was defined as the value of the dry soil for the appropriate 

response variable. 

For resilience, the remaining flask with dry soil was rewet to 33% MC by adding the 

required amount of water with a syringe, and incubated for a further 3 days (t3) to allow 

some recovery. Basal respiration and SIR were measured on the control and disturbed soil 

samples as for resistance. Resilience was calculated using the index described in Chapter 2. 

We were only able to calculate resilience as the degree to which the rewetted soil 

recovered from the drying disturbance. Therefore, the undisturbed soil was in all 

calculations the soil that had remained at 33% MC throughout the incubation. 

4.3.5 Data analysis 

The effect of planting treatment on plant, soil chemical and microbial response variables 

and resistance and resilience was assessed using ANOVA with block and treatment as 

factors. As the addition or removal of the bare soil control treatment only made small 

differences to results of data analyses, we have presented the full ANOV A with all 8 

treatments. Where the overall treatment effect was significant, the least significant 

difference statistic was used to determine which treatments were significantly different to 

each other. Data were transformed as necessary to meet the assumptions of normality and 

homogeneity of variances. Potential mechanisms behind changes in soil abiotic and biotic 

properties were assessed by correlation analysis across all experimental units within each 

harvest. Pearson's correlation coefficient was used when the data were normal or could be 
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transfonned to a nonnal distribution, and Speannan Rank correlations were used when 

they could not. We perfonned stepwise multiple regression analyses to determine which 

combinations of variables explained the most variation in soil microbial response variables 

and resistance and resilience. Only variables that remained significant at P < 0.05 were 

retained. Initial explanatory variables for resistance and resilience included plant, soil 

chemical and microbial variables, and the ability of soil microbes to decompose cellulose. 

Explanatory variables for soil microbial basal respiration, SIR, qC02 and cellulose 

decomposition included plant and soil chemical variables. 

4.4 Results 

4.4.1 Characteristics of the different plant species in monoculture and in 

mixture 

For all harvests, plant species composition had an effect on plant biomass, in contrast to 

the rare effects of plant diversity (Table 11). In general, clover plants showed a high 

aboveground biomass (and corresponding high NPP), but a low below ground biomass 

(Table 11). Ryegrass and plantain plants showed the opposite trend. The timing of the 

harvest also had an influence on plant biomass, with root biomass peaking in the third 

harvest for all three plant species, but trends in shoot biomass showing variable trends over 

time for each plant species. Shoot biomass only responded to diversity in the third harvest, 

where the biomass in the three species mixture was significantly higher than that of all the 

three corresponding monocultures. NPP in two mixtures in harvest 3 (the clover + ryegrass 

and the all three species treatment) also responded positively to plant diversity. 

4.4.2 Effect of plants on soil chemical and microbial variables 

Plant species composition had an effect on the soil chemical and microbial variables 

measured, but plant diversity rarely had a significant effect, and then only for 
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measurements of soil chemistry (Table 12, 13). Soil planted with clover in monoculture 

showed the highest concentrations of ammonium and nitrate, followed by soil planted with 

ryegrass and then by soil planted with plantain (Table 12). Plant diversity had an effect on 

soil nitrogen (N) contents in the clover + ryegrass treatment in harvest 3 (nitrate 

concentration decreased), and the clover + ryegrass treatment in harvest 4 (ammonium 

concentration increased). The timing of the harvest also affected soil chemistry, with a 

peak in ammonium in the third harvest for the bare soil and monoculture treatments, but a 

peak in the fourth harvest for the mixtures. Soil pH was also affected by plant species 

composition, with soils planted with clover showing a lower pH than soils planted with 

ryegrass or plantain (Table 12). The presence of plants enhanced soil microbial basal 

respiration and SIR in all treatments (Table 13). In general, soils from under clover 

monocultures showed a lower basal respiration than that in soils from under ryegrass and 

plantain. Soils from under clover also tended to have a lower microbial metabolic quotient 

(qC02) than that under the monocultures of the other two plant species. There was no 

effect of plant diversity on soil microbial properties. Basal respiration and SIR tended to 

increase with time, but in some treatments declined in harvest 4. 

The presence of different plant species had positive, negative or neutral effects on the 

ability of soil microbes to decompose cellulose, but diversity had no significant impact 

(Fig. 10). For the first two harvests the soil from the clover monoculture supported a higher 

decomposition rate than the bare soil and soil from the other monocultures. In the last two 

harvests, the decomposition rate in soils planted with clover was the same as that of the 

bare soil. The presence of ryegrass had no effect on decomposition rate, while soils planted 

with plantain tended to show a low decomposition rate. 

4.4.3 The effect of plants on soil microbial resistance and resilience 

Soil microbial basal respiration and glucose use were reduced by the drying disturbance 

(Appendix IT). Soil microbial biomass (measured as SIR on rewet dry soil) was also 

reduced by the disturbance. Rewetting dry soil resulted in a large increase in basal 

respiration and glucose use. The basal respiration of most soils had recovered to close to 

control levels by day 3, but some were still higher than the control soil. Soil microbial 
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biomass and glucose use showed varying levels of recovery on day 3. In particular, soils 

that had been planted with plantain often showed a higher SIR on day 3 than the control 

soil, indicating an over-compensatory response (Appendix II). 

The resistance of the soil microbes to both soil drying and rewetting dry soil showed no 

significant treatment x harvest interactions, so data from all harvests were analysed 

together to test for overall effects of planting treatments (Fig. 11). In all treatments, soil 

microbial basal respiration and glucose use in dry soil was near to zero, and the index of 

resistance gave similar results for both response variables. Therefore, we have not 

presented the results for the resistance of glucose use to drying. The strength of plant 

composition effects on resistance depended on which soil microbial response variable was 

measured. In general, the presence of plants reduced the resistance of soil microbes 

compared to the bare soil, with the exception of the resistance of soil microbial SIR, which 

showed no treatment effects. The resistance of basal respiration to drying and rewetting dry 

soil was also the same in the clover monoculture and bare soil treatments. There was one 

significant di versity effect; the resistance of basal respiration to rewetting dry soil was 

lower in soil from the clover + rye grass treatment then in either of the corresponding 

monocultures. The effect of harvest timing on resistance depended on the microbial 

response variable measured. The resistance of basal respiration to either disturbance 

decreased in harvest 2, compared to the resistance of SIR to drying, which showed lower 

resistance in harvest 4, and the resistance of glucose use to rewetting dry soil, which 

showed higher resistance in harvests 2 and 3. 

The resilience of soil microbial basal respiration to drying did not respond to treatment or 

harvest timing (data not presented). The resilience of SIR to drying showed a transient 

effect of treatment only the first two harvests showed significant effects at P < 0.05 (Fig. 

12). The presence of different plant species had positive, negative or neutral effects on the 

resilience of this response variable, with soils from the clover and ryegrass monocultures 

showing the highest resilience. In harvest 1, soils from treatments containing plantain 

showed either the same or reduced resilience compared to the bare soil. In harvest 2, 

results were similar but stronger, with all treatments containing plantain having a low 

resilience and the clover, ryegrass and clover + ryegrass treatment having a relati vely high 

resilience. 
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The resilience of soil microbial glucose use to drying responded to the presence and 

composition of plant species, but not to plant diversity (Fig. 13). Plant composition effeets 

strengthened with time. Soil from the plantain mono culture showed a low resilience 

compared to the other monoeultures in all harvests. Soils from under the elover and 

ryegrass mono cultures had a similar resilience to the bare soil for most harvests, except for 

the third harvest where soil from the clover monoculture had a lower resilience. Resilience 

of the soil from the mixtures containing plantain tended to become more similar to the bare 

soils with time. 

4.4.4 Relationships of plant and soil chemical variables with soil microbial 

variables 

Plant and soil chemical variables were correlated with soil microbial variables and their 

resistance and resilience across treatments, but within harvest dates, to evaluate some of 

the potential drivers bchind treatment effects. Soil microbial variables were related to both 

plant and soil variables (Table 14). Increases in the concentration of mineral Nand 

decreases in pH were correlated with lower soil microbial basal respiration. The effects of 

plant shoot biomass were transient, but root mass (expressed on a per unit soil weight 

basis) had a positive relationship and the shoot:root ratio a negative relationship with basal 

respiration across all harvests. SIR was negatively related to nitrate concentration, but 

showed fewer significant relationships with ammonium concentration and pH than did 

basal respiration. Plant variables were only significantly correlated with SIR in the first 

two harvests. The metabolic quotient showed some significant relationships with plant and 

soil variables, but these varied across harvests. 

The ability of soil microbes to decompose cellulose showed some consistent relationships 

with plant and soil properties (Table 15). The initial relationship ofNPP and shoot biomass 

with decomposition was negative, but became positive by the last two harvests. A low root 

mass (expressed on a per unit soil weight basis) and a high shootroot ratio were associated 

with a faster decomposition rate. Higher concentrations of mineral N and a lower pH were 

also correlated with faster decomposition rates (Table 15). 
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The resistance of soil microbial response variables to drying and rewetting and the 

resilience of basal respiration were rarely significantly correlated with more than one soil 

or plant variable, so we have only presented multiple regression analyses for this data. 

However, the resilience of both SIR and glucose use to drying showed many significant 

correlations with plant, soil and microbial response variables (Table 16). The patterns 

found were similar for both of these measures of resilience. Relationships with plant 

variables were negative except for the shoot:root ratio, but the variables that were 

significant varied with time. Where significant, increases in mineral N were associated 

with an increase in resilience. In contrast, pH showed a negative relationship to resilience 

for both harvest 2 and 4. Basal respiration showed a negative correlation with resilience for 

harvest 1 and 4. The ability of the soil microbes to decompose cellulose also had a positive 

relationship with resilience. 

Despite the many significant correlations, multiple regression analyses showed that only 

one or two of these variables were important drivers (Table 17). The drivers of basal 

respiration varied among harvests, with shoot biomass and pH initially being important, 

followed by nitrate concentration for the later harvests. Multiple regressions explaining 

variation in SIR were more consistent across harvests, with root mass (expressed on a per 

unit soil weight basis) and pH showing a positive relationship with SIR in the first harvest 

and nitrate concentration explaining the most variation in the remaining three harvests. The 

metabolic quotient was also related most strongly to different variables in different 

harvests, but the shoot:root ratio became a more consistent explanatOlY variable towards 

the end of the experiment. Variation in the decomposition of cellulose was explained 

primarily by nitrate concentration, but plant variables were also important in some 

harvests. Multiple regressions rarely explained much of the variation in the resistance of 

soil microbial response variables, except for the last harvest where root mass (expressed on 

a per unit soil weight basis) and SIR appeared to be important drivers ofthe resistance of 

basal respiration to drying and rewetting dry soil (Table 17). The variation in the resilience 

of basal respiration to drying was also largely unaccounted for by our explanatory 
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Table 11: Effect of planting treatment on the means of plant shoot and root mass, the shoot root ratio and NPP for each harvest, as assessed by ANOV A 

with block and treatment as explanatory variables. and P = clover, ryegrass and plantain in monoculture respectively, CR = clover + ryegrass, CP = 
clover + plantain, RP = ryegrass + plantain and CRP ::::: all three plant species together. Means within a row followed by the same letter are not significantly 

different from each other at P ::::: 0.05. Numbers in bold indicate a significant effect of plant diversity. 

VARIABLE HARVEST C R P CR CP RP CRP 

Shoot mass 12.61e lS.27bc 19.3Sa 17.77ab 19.59a 18.14ab 17.61ab 3.37 0.0117 

(gd.w.) 21 22.6Sab 9.96d 16.22e 20.52be 26.l9a 12.83e 25.04ab 18.S2 <0.0001 

3 37.91b 16.90e 16.97e 43.01ab 41.24ab 16.70e 45.61a 48.14 < 0.0001 

4 23.72a lL03e 12.31e 20.4Sab 18.68b 10.84e 19.84ab 11.23 < 0.0001 

Root mass e 3.46e 16.l2ab 17.33a 12.0Sb 13.72ab . 16.79ab 16.0Sab 12.81 <0.0001 

(g d.w.) 21 6.82d 16.67bc 29.S0a 14.56e 2S.98a 20.91ab 2S.78ab 18.09 <0.0001 

31 12.10d 20.78e 32.30ab 2S.30be 3S.43a 30.87ab 27.64abc 8.S7 < 0.0001 

4 lO.13e 19.81ab 24.49a 17.83b 18.37b 21.92ab 24.5Sa 6.41 0.0002 

Shoot:root ratio 11 3.88a L02d 1.16ed 1.48be 1.9Sb U5ed 1.16ed 17.68 < 0.0001 

21 3.56a 0.60e 0.Sge 1.44b 1.03b 0.63e 1.14b 33.02 <0.0001 

31 3.40a 0.84d 0.Sge 1.89b 1.20e 0.57e I.79b 31.46 <0.0001 

41 2.S1a 0.56d 0.47d 1.20b 1.03be 0.S3d 0.82e 24.06 <0.0001 

ShootNPP 12.61b 17.68a 21.06a 19.88a 21.31a 20.43a 17.97a 3.83 0.00S9 

(gd.w.) 21 2S.51ab 11.87d 18.8Sbe 24.37ab 30.31a IS.1Sed 27.34a 11.39 < 0.0001 

31 72.20b 23.71e 27.33e 98.13a 83.08ab 27.46e . 93.82a 64.03 <0.0001 

41 60.66a 23.S6b 25.44b 77.90a 63.66a 29.27b 80.37a 28.13 < 0.0001 

1 Log transformed, 2 square root transformed 



Table 12: Effect of planting treatment on the means of soil chemical variables in each harvest as assessed bv Al'JOV A with block and 

treatment as explanatory variables. Codes as in Table 11, B = bare soil. Means within a row followed by the same letter are not 

different from each other at P 0.05. Numbers in bold indicate a significant effect 

VARIABLE HARVEST B C R P CR CP RP CRP F-statistic P-value 

Ammonium 1 0.11 0.66 0.64 0.25 1.02 0.67 0.58 0.62 1.57 0.1770 

(/lg Nat g d.w.- I
) 2 0.08e 2.14a 0.38be 0.15be 0.55b 0.08e 0.16be 0.08e 19.58 <0.0001 

31 1.22e 6.79a 4.42ab 0.84e 2.92b 0.71e 0.63e 1.31c 14.93 <0.0001 

4 0.03f 4.80bc 2.80de 0.17f 11.00a 3.l7ed UOef 6.02b 37.71 < 0.0001 

Nitrate 11 8.66bc 16.00a 7.35ed 0.96g 12.19ab 4.13ef 1.9Ifg 5.26dc 20.74 < 0.0001 

(/lg N03- g d.w:l
) 21 8.73a 11.04a 4.04b 0.74e 8.08a 0.62e 0.55e 0.67e 39.98 <0.0001 

31 S.40a 7.45a 6.83a 0.24d 3.60b 0.48ed 0.24d 0.95e 51.37 <0.0001 

41 lI-08e 33.39a 1O.80e 0.74e 21.08b 3.98d 1.27c 7.95c 37.13 <0.0001 

1 5.43d 5.30e 5.57abc 5.57abe 5.47ed 5.62a 5.5800 5.50bed 7.23 <0.0001 

2 5.22ed 4.98e 5.33be 5.47a 5. lOde 5.25e 5.38ab 5.27be 11.17 <0.0001 

3 5.27b 4.90e 5.45a 5.47a 5.07d 5.lOed 5.47a 5.17e 48.77 <0.0001 

4 5.27b 4.90d 5.50a 5.50a 5.07e 5.27b 5.55a 5.20b 27.96 < 0.0001 



Table 13: Effect of planting treatment on the means of soil microbial variables in each harvest as assessed by ANOVA with block and 

treatment as explanatory variables. Codes as in Table 11, B == bare soil. Means within a row followed by the same letter are not significantly 

different from each other at P == O.OS. 

VARIABLE Harvest B C R P CR CP RP CPR F-statistic P-value 

Basal Respiration 11 1.0Sd 1.3ge 1.6Sb l.92a l.S6be 2.01a 1.86a 1.94a 22.72 0.0000 

(f.Lg COz-C g d.w.· l h· l
) 2 0.94d 1.4 Ie L76ab 1.91a L56be 1.84a 1.83ab 1.7Sab 11.30 0.0000 

3 1.27d 2.33e 2.2Se 3.13a 2.61be 3.1Sa 3.07ab 3.0Sab 16.84 0.0000 

4 LIOe 1.70b 1.9Sab 2.2Sa 2.02ab 2.37a 2.34a 2.1Sa 7.88 0.0000 

SIR 11 3.61e 4.96d 6.04bc 6.36ab S.62e 7.06a 6.S7ab 7.04a 27.88 0.0000 

(f.Lg COrC g d.w: l h·l
) 2 3.47d 6.08e 6.S4bc 6.98abc 6.S4be 7.49ab 7.SSa 6.81abc 14.2S 0.0000 

3 4.2ge 11.33a 9.24b 12.90a 11.41a 12.32a 12.04a 12.30a 20.S9 0.0000 

3.67f 10.70cd 8.1Se 12.48abe 1O.26d 13.S1a I1.S8bcd 12.S9ab 64.83 0.0000 

qC02 1 0.30 0.28 0.27 0.30 0.28 0.28 0.28 0.27 1.01 0.4392 

2 0.27a 0.23b 0.27ab 0.27a 0.24be O.2Sabc 0.24abe 0.26abc 2.00 0.0832 

3 0.30a 0.2Oc 0.2Sb 0.24b 0.23bc 0.26b 0.2Sb 0.22bc S.07 O.OOOS 

42 0.30a 0.16e 0.24ab 0.18abe 0.20abc 0.18be 0.20abc O.17bc 8.6S 0.0000 

I Log transfonned, 1 rank transfonned. 



Table 14: Correlation coefficients of soil microbial variables with plant and soil chemical variables across all experimental units for each 

harvest (n = 42 and excludes the bare soil treatment). 

Substrate· induced respiration Metabolic quotient (qC02) 

(J.Lg CO2-C g d.w:1 h-I) (J.!-g CO2-C g d.w:! hOI) 

HI H2 H3 H4 

NPpl (g d.w.) 0.5409*** 0.1229 0.0683 0.0831 

Shoot(gd.w.) 0.5862*** -0.0647 -0.0850 -0.1772 0.5298*** 0.0520 0.0635 -0.0499 0.3176* -0.1723 -0.2269 

Roots" (g per g 0.5662*** 0.4735** 0.4018** 0.4195** 0.5854*** 0.3437* 0.2255 0.0588 0.2344 0.2540 0.3599* 

soil d.w. ) 

S:R2.3-0 -0.3611 * -0.4752** -0.3230* -0.3883* -0.4618** -0.2726t -0.0770 -0.0183 -0.0509 -0.3493* -0.4284** 

Ammonium3.5.7 -0.1508 -0.4311 ** -0.5802*** -0.2122 -0.0979 -0.1778 -0.4647** -0.1396 -0.0983 -0.3505* -0.3612* 

(J.Lg g d.w:!) 

Nitrate3
-6 -0.4650** -0.4704** -0.6218*** -0.4801** -0.4628** -0.4271 ** -0.4792** -0.4077** -0.2134 -0.1525 -0.3800** 

(J.Lg g d.w:]) 

pH 0.3425* 0.4702** 0.2136 0.3861 * 0.3862* 0.3204* -0.0270 0.0810 0.0959 0.2884t 0.3932* 

1 Net primary productivity, 2 shoot:root ratio. LOg trans fanned for 3 harvest 1 (HI), 4for harvest 2 (H2), 5 far harvest 3 (H3) and 6 for harvest 4 (H4). 7 

Speannan Rank Correlation Coefficient for harvest 2 . 
tP < 0.1, * P < 0.05, ** P < 0.01. *** P < 0.001 

-0.1494 

0.3733** 

-0.3902* 

0.0810 

-0.0695 

0.3258* 



Table 15: Conelation coefficients of decomposition with plant and soil chemical variables 

across all experimental units for each harvest (n = 42 and excludes the bare soil treatment). 

Decomposition of cellulose (% mass loss) 

HI H24 H35 H4 

NPpl (g d.w.) 0.0243 0.3160* 0.3608* 

Shoot (g d. w.) -0.4301 ** 0.0627 0.3800* 0.3961 ** 

Roots6 (g per g -0.6803*** '-0.6728*** -0.2522 -0.4449** 

soil d. w. -1) 

S:R2• 3-6 0.6389*** 0.6202*** 0.4470** 0.5613*** 

Ammonium3,5-7 0.2468 0.6365*** 0.4669** 0.6603*** 

(p,g g d.w:l) 

Nitrate3,{) 0.8265*** 0.7347*** 0.4483** 0.7541 *** 

(p,g g d. w.-1) 

pH -0.3943** -0.6498*** -0.4057*** -0.5829*** 

I Net primary productivity, 2 shoot:root ratio. Log transformed for 3 harvest 1 (HI), 4 for harvest 2 
(H2), 5 for harvest 3 (H3) and 6 for harvest 4 (H4). 7 Spearman Rank Conelation Coefficient for 
harvest 2. 
* p < 0.05, ** p < 0.01. *** P < 0.001 
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Table 16: Correlation coefficients of the resilience of soil microbial response variables with soil, plant and microbial variables across all 

experimental units Cn 42 and excludes the bare soil 

Resilience of glucose use to drying 

HI H2 H3 H41! 

NPpl (g d.w.) -0.4091 ** -0.1I03 0.0795 0.1245 -0.3789* -0.0469 0.0049 0.2686t 

Shoot (g d.w.) -0.3805* -0.1532 -0.0114 0.1681 -0.3606* -0.1283 -0.0416 0.2515 

Roots9 (g per g soil d.w. -1) -0.2295 -0.5909*** -0.2179 -0.5180*** -0.1248 -0.4972*** -0.1120 -0.5556*** 

S:R2.6-9 0.0638 0.3856* 0.0957 0.4959*** -0.0773 0.3320* 0.0522 0.5852*** 

Ammonium6•8-10 (Jlg g d.w: l) 0.0404 0.4392** 0.1131 0.1805 0.0606 0.4579** 0.1588 0.2816t 

Nitrate6-9 (Jlg g d.w:1
) 0.4477** 0.6622*** 0.1348 0.2935t 0.3915* 0.6690*** 0.1874 0.4622** 

pH -0.2050 -0.4431 ** -0.0486 -0.3337* -0.1179 -0.4259** 0.0162 -0.5410*** 

BR3 (Jlg COz-C g d.w.-1 h·1
) -0.3931 * -0.1721 0.0651 -0.3407* -0.3152* -0.1711 -0.0097 -0.3314* 

SIR4 (Jlg COz-C g d.w:I hoi) -0.3526* -0.1474 0.0988 0.1071 -0.2741 t -0.1428 -0.0558 0.0076 

qCOz -0.2324 -0.0926 -0.0125 -0.3950** -0.2157 -0.0966 0.0909 -0.4610** 

Decomposition abilitY·7,s 0.4853** 0.6726*** -0.0526 0.4826** 0.4299** 0.6976*** 0.1333 0.5062*** 

1 Net primary productivity, 2 shoot:root ratio, 3 basal respiration, 4 substrate-induced respiration, 5 % cellulose mass loss over 10 days. Log transformed 
6 for harvest 1 (HI), 7 for harvest 2 (m), gfor harvest 3 (H3) and 9 for harvest 4 (H4). 10 Spearman Rank Correlation Coefficient for harvest 2 and 11 for 
harvest 4. 
* p < 0.05, ** p < 0.01. *** P < 0.001 



Table 17: Relationships between soil microbial response variables and driving variables as assessed by stepwise multiple regression. The model presented 

represents the combination of variables that maximised R2. Only variables that remained significant in the model at P < 0.05 are included. 

Harvest 1 Harvest 2 Harvest 3 Harvest 4 

Model Model K Model R2 Model R2 

BR2 St (+); pH (+) 0.4620*** Amml (-); pH (+) 0.3075*** Nitle-) 0.3866*** Nit! (-) 0.2305** 

SIR2 Rt (+); pH (+) 0.4371 * Nit l 
(-) 0.1600** Nie (-) 0.2296* Nit! (-) 0.1662** 

qC02 St(+) 0.1009* Amm! (-) 0.1760** S:R!(-); 0.1835*** S:R1 (+) 0.1522* 

Decomposition 4 Nie (+); Rt(-) 0.7400*** Nie (+); S:R1 (+) 0.7360*** St(+); Amm! (+) 0.4178*** Nit! (+) 0.5687*** 

Resistance to drying of 

BR4•6 n.s. n.s. qC02 (-) 0.1407* Re (-), SIR (-) 0.3054*** 

SIR n.s. Rt (+) 0.1581 ** n.s. n.s. 

Resistance to rewetting dry soil of 

BR3 qC02 (+); NPP (-) 0.2761** Amm7 (+) 0.1007* S:R1 (+) 0.1101 * Rt' (-); SIR (-) 0.4261*** 

Glucose use6 n.s. n.s. n.s. n.s. 

Resilience to drying of 

BR NPP (-) 0.0944* n.s. n.s. n.s. 

SIR5 Lst (+) 0.2355** Nie (+); Rt(-) 0.5184*** n.s. Rtl (-); Lst (+) 0.3476*** 

Glucose use5 Lst (+) 0.1848** Nit!(+) 0.4643*** n.s. pH (-) 0.2145*** 

BR = basal respiration (fLg COTC g d.w:1 h'I), SIR:::: substrate-induced respiration (fLg COz-C g d.w:1 h'I), Lst = % cellulose mass lost, St = shoot biomass 
(g dry weight), Rt = roots (per unit soil weight), S:R = shootroot ratio, Nit nitrate concentration (fLg N03 g d.w:I

), Amm ammonium concentration 
(fLg NH/ g d.w:!). Log transformed! in Harvest 12, Harvest 23

, Harvest 34
, square root transformed in Harvest 25

, in Harvest , n = 417. 
< 0.1, * P < 0.05, ** P < 0.01. *** P < 0.001 
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Fig. 10: Effect of treatment and harvest timing on the ability of soil microbes to decompose 

a strip of cellulose paper over a lO-day period, as analysed by ANOV A. Data for harvest 2 

were square root transformed for analysis, and data for harvest 3 were log transfonned. 

Within each panel, bars topped with the same letter are not significantly different from 

each other at P < 0.05. B = bare soil, C = clover in monoculture, R = ryegrass in 

monoculture, P = plantain in monoculture, CR = clover + ryegrass, CP clover + plantain, 

RP = ryegrass + plantain, CRP = clover + ryegrass + plantain. 
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Fig. 11: Effect of treatment and harvest on the resistance of soil microbial parameters, as 

analysed by ANOV A. As there was no significant treatment x harvest interaction, data for 

all harvests were pooled. All resistance variables apart from the resistance of SIR were log 

transformed before analysis. Bars within each panel topped with the same lower-case letter 

are not significantly different from each other at P < 0.05. Codes as in Fig. 10. 
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Fig. 12: Effect of treatment and harvest timing on the resilience of SIR for harvests 1 and 2 

(harvests 3 and 4 did not show any significant responses to treatment (data not presented)) as 

analysed by ANOV A. Within each panel, bars with the same lower-case letter are not 

significantly different from each other at P < 0.05. Codes as in Fig. 10. 
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Fig. 13: Effect of treatment and harvest timing on the resilience of glucose use for each of the 

four harvests as analysed by ANOV A. Within each panel, bars topped with the same lower­

case letter are not significantly different from each other at P < 0.05. Codes as in Fig. 10. 
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variables. For the resilience of SIR and glucose use, however, nitrate concentration and 

root mass (expressed on a per unit soil weight basis), and decomposition ability appeared 

to be important drivers. 

4.5 Discussion 

Plant species composition had significant effects on soil chemical and soil microbial 

properties, and on the resistance and resilience of the soil microbial community. Although 

increasing plant diversity altered plant and soil chemical properties in some harvests and 

for some treatments, it did not have an impact on soil microbial properties. In contrast, the 

timing of the harvest did influence the effect of different plant species on soil and 

microbial properties, and the occurrence of plant diversity effects. 

4.5.1 Effect of plants on soil chemical and microbial properties 

Each plant species in monoculture produced a soil with distinctive chemical and soil 

microbial properties, supporting our first and second hypotheses. In comparison with the 

unplanted control, plant species were capable of exerting positive, negative or neutral 

effects on the soil chemical variables measured, depending on the context. This is 

consistent with the findings of previous studies (Tilman and Wedin 1991, Bardgett et aL 

1999b, Gastine et al. 2003). Although the presence of plant species enhanced soil microbial 

activity and SIR, the magnitude of this effect depended on the plant species. Similar results 

have been found in other studies (Bardgett et al. 1999b, Spehn et al. 2000a, Stephan et al. 

2000). The differences in soil biotic and abiotic properties between soils under different 

plant species were probably a result of differences in the amount and quality of resources 

that each plant species adds to (Porazinska et al. 2003) and removes from (Tilman and 

Wedin 1991) the soil. The differences in soil microbial response variables across different 

plant treatments appeared to be driven by both plant and soil chemical properties (Tables 

13, 14) (Swift et al. 1979, Wardle et al. 1999). 

83 



Chapter 4: Plant community effects 

4.5.2 Effect of plants on soil microbial resistance and resilience 

Despite the strong effect of plant species on soil microbial and chemical properties, the 

effects of plant species composition on soil microbial resistance and resilience were 

variable, and depended on which microbial response variable was considered. Studies in 

aquatic (Steinman et al. 1990, Biggs et al. 1999, Herbert et al. 1999) and forest (Herbert et 

al. 1999) systems have also found that the stability of different response variables can 

respond to the same variables or treatments in different ways depending on the context. 

However, there were some consistent trends. The composition of plant species had a 

significant effect on soil microbial resistance, and rcsulted in either no change or a 

decrease in resistance compared to the unplanted control soil. This is consistent with other 

studies (Wardle et al. 1999, Wardle et al. 2000). Most soil microbes in the unplanted soil 

treatment were probably inactive or growing only slowly because of a lack of resource 

input. It has been suggested that slower-growing organisms in soil survive drying while the 

actively growing ones are killed (Bottner 1985), which may explain the higher resistance 

found for the unplanted soils. Soils planted with clover consistently showed a higher 

resistance and resilience than soils planted with plantain, and a higher resistance than soils 

planted with ryegrass. This suggests that the different effects of each plant species on the 

soil environment and soil microbial community were sufficient to cause significant 

differences in soil microbial resistance and resilience. 

4.5.3 Potential drivers behind trends in resistance and resiHence 

The differences in resistance and resilience in soils from the different treatments may be 

the result of some soils being N limited, and others being carbon (C) limited. Our study 

provides several lines of evidence for this. Firstly, although the resistance of the soil 

microbial community was rarely strongly related to soil variables, SIR and root biomass 

were negatively correlated with the resistance of basal respiration for the final harvest 

(Table 17). Roots supply a large portion of the C used by soil microbes (Wheatley et al. 

1990), and the amount of soil microbial biomass is also generally related to the amount of 

C in the system (Wardle 1998). The negative correlation between these variables and the 

resistance of basal respiration may therefore indicate that low C availability (i.e. C 
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limitation) can lead to higher resistance. Secondly, the amount of mineral N in soils 

planted with clover and ryegrass indicated that these soils were probably more C limited 

than N limited, whereas in soils planted with plantain the reverse was true. This difference 

was also evident for soil microbial resilience, and sometimes resistance, with soils planted 

with clover or ryegrass showing a higher stability than soils planted with plantain. This 

suggests that soils that are C limited may be more resilient, and sometimes more resistant, 

than soils that are N limited. This interpretation was supported further by a positive 

correlation between soil nitrate concentrations and the resilience of SIR and glucose use 

(Table 17). These results are consistent with studies that suggest that higher inputs of 

nutrients (in our case N) can increase resilience (De Angelis 1992, Moore et a1. 1993, 

Herbert et at. 1999), and that communities limited by different resources may respond 

differently to the same disturbance (Bosatta and Berendse 1984, Huston 1997, Biggs et al. 

1999). 

The presence of different plant species may have resulted in soil microbial communities 

that differed in their responses to the drying disturbance. Although we did not directly 

measure soil microbial community composition, there were several indications that the soil 

biota did differ across treatments. The activity, SIR and qC02 of the different soils varied 

(Table 13), and the ability of the different soil communities to decompose cellulose 

differed across treatments. The subset of the soil micro flora that are capable of 

decomposing cellulose tend to be slower-growing K-selected organisms (Swift et al. 1979). 

As a result, the rate of cellulose mass loss may give an indication of the potential activity 

of organisms that are not measured by the short-term response measured by SIR. All of 

these indicators of soil microbial community composition were related to measures of soil 

microbial resistance and resilience at various times during the experiment (Table 17), 

supporting the suggestion that differences in soil microbial community composition may 

have had an impact on stability. Other studies involving plant (Leps et al. 1982, 

MacGillivray et al. 1995), aquatic (Sousa 1980), and soil (Allen-Morley and Coleman 

1989, de Ruiter 1998) communities have also suggested that the characteristics of the 

organisms within a community, and therefore community composition, will determine its 

resistance and resilience. 
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Chapter 4: Plant community effects 

4.5.4 Effect of plant diversity on soil microbial properties 

Although the effect of plant communities on shoot biomass, NPP and soil N values was 

altered by increasing plant diversity in some treatments and harvests, these changes rarely 

flowed through to soil microbial response variables or to resistance and resilience. In the 

one harvest where there was a significant effect, increased plant species diversity had a 

negative impact on the resistance of basal respiration (Fig. 11). It is possible that the soil 

microbial community was slow to respond to changes in plant diversity because the 

aboveground and belowground systems are only weakly coupled (Van der Putten et aL 

2000, Raffaelli et al. 2002), or simply because the magnitude of the effect of plant diversity 

on the soil environment was not sufficient to influence the soil microbial community. Plant 

diversity may also become stronger with time (Tilman et aL 2001). 

4.5.5 Effect of harvest timing on soil chemical and microbial properties 

Harvest timing significantly affected nearly all variables measured. Different variables 

explained the most variation in microbial response variables in different harvests (Table 

17). This suggests that the developmental stage of the plant community andlor external 

variation in temperature and moisture may serve as determinants of the nature of plant 

community effects on soil prope1ties, and therefore on the resistance and resilience of the 

soil microbial commlmity. This is consistent with other studies that have found both the 

direction and magnitude of soil responses to plant community characteristics to vary with 

time (Wedin and Tilman 1990, Wardle and Nicholson 1996). The one exception to this 

trend was the resistance of the soil microbes, which did not show any significant 

interactions between harvest and treatment, possibly because resistance was not strongly 

related to soil properties. Overall, this suggests that the results gained from studies on the 

effects of species composition and diversity will be context-dependent, and may vary 

according to temporal factors such as time of year or stage of plant community 

development. 
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4.5.6 Conclusion 

The presence of different plant species results in soils with different abiotic and biotic 

characteristics. These different characteristics in tum influence the ability of the soil 

microbes to resist and recover from disturbances. It seems likely that resource limitation or 

changes in soil microbial community structure in response to variation in the inputs of 

different plant species may be responsible for across-treatment differences. Increases in 

plant diversity rarely had any consequences for soil microbial properties, even when there 

was an increase in aboveground biomass and a change in mineral N in the soil due to 

diversity effects. However, the time of harvest did have a significant interactive effect with 

planting treatment for most of our response variables, indicating that there may be 

variation in results across studies simply because of differences in the timing of 

measurements. It thus appears that plant composition, rather than plant diversity, was the 

primary driver of soil microbial community characteristics and their resistance and 

resilience within harvests, but that the strength and direction of these relationships show 

significant temporal variation. 
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Chapter 5: Carbon substrate composition and diversity 

affect ecosystem functions and soil microbial stability 

5.1 Abstract 

Despite many studies suggesting that substrate quality is a major driver of litter 

decomposition, very few studies have examined the ecological role of specific substrates or 

combinations of substrates. Because carbon (C) substrate composition and diversity may 

affect their decomposition rate by altering soil chemistry and soil microbial community 

structure, they have the potential to affect other aspects of ecosystem function, such as the 

decomposition rate of other substrates, soil microbial stability (resistance and resilience) 

and plant growth. Eight C substrates that varied in their chemical complexity were added 

to a base soil on their own, in pairs, in fours and with all other substrates. Treatments were 

organised in such a way as to vary in the number of types of substrates (analogous to plant 

functional groups) as well as the number of C substrates. Carbon substrates were added to 

a base soil every 4 days for 92 days, and then the soil was analysed for changes in soil 

chemistry, soil microbial community structure and several aspects of ecosystem function. 

The decomposition rate of the added C substrates was affected by which combination of C 

substrates was added, but not by their diversity. Carbon substrate composition also affected 

the soil chemical variables measured, and soil microbial community structure and activity. 

These changes in soil and microbial characteristics resulted in differences in the ability of 

the soil microbes to decompose cellulose paper, soil microbial resistance and resilience to a 

drying disturbance, and plant growth. Carbon substrate diversity had variable effects, with 

a stronger influence on some aspects of soil chemistry and soil microbial community 

structure than others. Carbon substrate diversity also had variable effects on different 

measures of ecosystem function, with strong effects on plant growth, fewer effects on the 

decomposition of cellulose paper and rare effects on soil microbial stability. Where 

significant, these diversity effects saturated at low levels, were more common when at least 
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two substrate functional groups were added, and were idiosyncratic in nature, depending 

strongly on which combination of substrates was added. Overall, C substrate composition, 

and sometimes diversity, affected soil chemical variables and soil microbial community 

composition. These changes had flow-on effects to the decomposition of cellulose paper, 

soil microbial resistance and resilience, and plant growth, suggesting that the composition 

and diversity of substrates can be an important driver of ecosystem function. 

Decomposition rate of the 8 added carbon substrates 

Carbon substrate composition and diversity 

Soil microbial community 

characteristics: composition and diversity 

Aspects of ecosystem function: 

Resources 

., Decomposition of other substrates 

• Soil microbial stability 

• Plant growth and productivity 

Fig. 14: Flow diagram of hypotheses and interactions examined in Chapter 5 
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5.2 Introduction 

The decomposition of carbon (C) substrates by soil microbes is an important process that 

potentially affects nutrient mineralisation, plant productivity (Grayston et al. 1996), and C 

storage in soils (Catovsky et al. 2002). Decomposition may be driven by many factors, 

including temperature, moisture, nitrogen (N) contents and the chemical nature of the C 

substrates (Hector et a1. 2000, Gartner and Cardon 2004). Of these, the effect of the latter 

are the least understood, despite many studies invoking this factor as a possible driver of 

litter decomposition rates (Bardgett and Shine 1999, Nilsson et aI. 1999). Carbon 

substrates may have important effects on soil chemistry (Hector et aI. 2000, Magill and 

Aber 2000) and the soil community (Degens 1998b, Schutter and Dick 2001), and 

therefore may indirectly affect other aspects of ecosystem functioning. For example, the 

decomposition of substrates not previously encountered may be dictatcd by the soil 

environment and the activity and composition of the soil microbial community already 

present (Kourtev et aI. 2002). These factors may also alter the ability of the soil system to 

resist and recover from disturbances, and therefore their ability to maintain some level of 

function regardless of changes in the environment (De Angelis 1992, MacGillivray et a1. 

1995). Different C substrates can also alter the balance of N mineralisation and 

immobilisation, potentially affecting the availability of plant nutrients, and therefore plant 

nutrient acquisition and productivity (Lore au 2001). 

Although individual C substrates can undoubtedly affect the soil environment, the 

microbial community and therefore some aspects of ecosystem functioning, most natural C 

inputs, such as plant litter and rhizosphere exudates, contain more than one substrate. 

There is a high potential for C substrates to interact with each other, raising the possibility 

that mixing substrates (i.e. increasing substrate diversity) may have a non-additive effect 

on soil chemistry and microbial communities, and therefore on other aspects of ecosystem 

function driven by soil microbes. Studies to date have manipulated C substrate diversity 

indirectly only, by altering plant or litter diversity. Their results suggest that plant and litter 

diversity can have non-additive effects on litter decomposition (Wardle et al. 1997a, 

Hector et ai. 2000), soil chemistry (Briones and lneson 1996, Hooper and Vitousek 1998), 

and soil microbial activity and biomass (Christie et aI. 1974, Bardgett and Shine 1999). 
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Carbon substrate diversity has the potential to affect other aspects of soil microbial 

community structure and ecosystem functioning. fucreases in substrate diversity may 

create new niches for microbial growth, and therefore support a more diverse microbial 

community (Beare et al. 1995, Grayston et al. 1998), which in turn could influence organic 

matter decomposition, nutrient mineralisation and plant growth (Loreau 2001). 

Alternatively, the addition of a greater number of substrates may decrease overall 

decomposition rates, due to the increased chance of including substrates that inhibit 

decomposition (Loreau 2001). Substrate diversity has also been predicted to result in 

higher soil microbial resistance to disturbance, but to have no effect on recovery rates 

(Harrison 1979). This suggests that C substrates, and their diversity, may have a much 

greater role to play in ecosystem functioning than previously recognised. However, this has 

not been experimentally tested. 

We conducted an experiment in which C substrates were directly manipulated. C 

substrates were added to a base soil on their own and in mixtures of varying diversity over 

a 3-month period. Soils were analysed for changes in the soil environment, microbial 

activity and eommunity characteristics, and several aspects of ecosystem function. We 

proposed the following questions: is C substrate composition and diversity an important 

driver of C substrate decomposition rates? Does C substrate composition and diversity 

affect soil chemistry or soil microbial community structure? If so, does this then have 

implications for other aspects of ecosystem function such as decomposition, stability and 

plant growth? 

5.3 Materials and Methods 

5.3.1 Experimental design 

For this experiment eight C substrates were used, representing four types of chemicals that 

vary in their complexity and characteristics: simple sugars, polysaccharides, tannins and 

92 



fatty acids. Substrates within each chemical type should have similar effects on soil 

chemistry, soil microbial communities and be metabolised in a similar way by soil 

microbes. These chemical types are therefore analogous to the functional group concept 

used in plant systems, and will be called this from here onwards. Each substrate contained 

only C, hydrogen and oxygen to avoid the confounding effect of varying amounts of 

nutrients, such as N and phosphorus. A substrate diversity experiment was set up in which 

each C substrate was added to a base soil on its own, in two pair-wise combinations, in two 

four-way combinations and with all other C substrates (Table 18). An additional treatment 

remained unamended to serve as a control (termed the blank soil from here onwards). 

Treatments containing a mixture of substrates were organised in such a way that the 

number of functional groups as well as the number of substrates within them differed. 

Within this framework, combinations were randomly assigned without replacement, with 

the criterion that the four-way combinations contained the same substrates as two of the 

pair-wise combinations. Substrates were added so that the amount of C added to each soil 

was the same for each treatment, and mixtures contained equal proportions of C from each 

substrate. This design is conceptually analogous to experiments that have looked at plant 

and litter diversity in which species or functional groups are represented as monocuItures 

and as multiple species mixtures (Hooper and Vitousek 1998, Wardle et al. 2000). 

Mineral soil was collected from beneath pasture at Lincoln, New Zealand (43 0 30' S), 

mechanically sieved to 4 mm, and stored at 4°C until used. The soil contained 4% C, 

0.32% N and had a pH of 5.1. The experiment was set up with five replicate blocks of the 

22 treatments. Soil for each block was adjusted to 33% moisture content on a dry weight 

basis (MC) (equivalent to 55% water holding capacity) and incubated at 25°C for 4 days in 

the dark, re-sieved to 4 mm and then incubated for a further day before beginning the 

experiment. For each experimental unit, we placed 1100 g dry weight (d.w.) of pre­

incubated soil into rectangular containers (235mm x 375mm x 55mm), which were then 

enclosed in clear plastic bags to reduce moisture loss. Based on a preliminary experiment 

to determine the optimum amount and frequency of C addition, 0.0007 g C g soil d.w:!, 

was added to the base soil every 4 days over 92 days. Carbon substrates were added in 

powder form by shaking them through 0.05 mm sieves onto the soil sUlface, and then 

gently mixing the soil. The soils were incubated at 25°C throughout the experiment, and 

the moisture content of the soil in each container was maintained at 33%. 
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Table 18: Description of carbon substrate composition and the number of functional groups 

and substrates involved in each of the 22 treatments. 

Number of functional groups NumberofC 

Treatment C substrates added of C substrates substrates 

Blank No substrates 0 0 

Simple sugars 

A Glucose (Glu) I 1 

B Sucrose (Sue) 1 1 

Polysaccharides 

C Cellulose (Cell) 1 1 

D Starch (Star) 1 1 

Tannins 

E Gallic acid (Gall) 1 1 

F Tannic acid (Tan) 1 1 

Fatty acids 

G Stearic acid (Stear) 1 1 

H Palmitic acid (pal) 1 1 

AB Glu + Sue 1 2 

CD Cell + Star 1 2 

EF Gall + Tan 1 2 

GH Stear + Pal 1 2 

AC Glu + Cell 2 2 

BG Sue + Stear 2 2 

DE Star + Gall 2 2 

f<1I Tan + Pal 2 2 

ABGH Glu + Sue + Stear + Pal 2 4 

CDEF CelJ + Star + GalJ + Tan 2 4 

ACFH Glu + Cell + Tan + Pal 4 4 

BGDE Sue + Stear + Star + Gall 4 4 

ALL All substrates 4 8 
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The preliminary experiment involved adding three different amounts of glucose at three 

different frequencies to the pasture soil used in the current experiment, over a 3-month 

period (Table 19). Within each amount treatment, the mass of glucose added at each time 

point depended on the frequency of addition, but was the same over every 8-day cycle. For 

example, in treatment 4 (Table 19),0.027 g was added every 2 days to make a total of 

0.108 g glucose per 8-day cycle, and in treatment 7 (Table 19),0.54 g glucose was added 

every 4 days to also make a total of 0.108 g glucose per 8-day cycle. The basal respiration 

and substrate-induced respiration (SIR) of the soil microbes were measured in each 

treatment during one 8-day cycle after 1 (data not presented) and 3 months, and the 

coefficient of variation (CV) calculated. Results showed that the amount and frequency of 

addition did not alter the CV of SIR, but did have an effect on the CV of basal respiration 

(Fig. 15). Adding glucose every 2 days resulted in the most stable basal respiration, 

followed by treatments where glucose was added every 4 days at high and medium 

amounts, and then by the medium amount every 8 days treatment. Adding substrates every 

Table 19: Amounts and frequency of glucose addition used in the preliminary experiment 

designed to determine optimal C substrate addition rates. Amounts in brackets = g of 

glucose added at the frequency indicated in the second column. 

Frequency (days) g glucose added! 8 d 

Treatment 

1 0 0.000 (0) 

2 2 0.012 (0.003) 

3 2 0.036 (0.009) 

4 2 0.108 (0.027) 

5 4 0.012 (0.006) 

6 4 0.036 (0.018) 

7 4 0.108 (0.054) 

8 8 0.012 (0.012) 

9 8 0.036 (0.036) 

10 8 0.108 (0.108) 
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15: Effect of the addition of three different amounts of glucose at three different 

frequencies to a base soil on the coefficient of variation of soil microbial response 

variables over one 8-day cycle of addition. Low, medium and high correspond to the 

amount of glucose added, and 2, 4, and 8 days refers to the frequency of addition. See 

Table 19 for more details. 

96 



2 days was impractical for the current experiment, as this did not leave enough time to 

measure the soil microbial response to that C addition. Therefore, adding substrates every 

4 days was chosen as the optimal frequency of C addition. We chose to add the medium 

amount of substrate, as this resulted in a reasonably stable basal respiration, and, although 

not significantly different to the other treatments, a more stable SIR on average (Fig. 15). 

This should reduce the potential for variation in results caused by fluctuations in the 

activity and biomass of the soil microbial community. 

5.3.2 Soil chemical and microbial properties 

Basic soil and microbial measurements 

Each experimental unit was harvested 4 days after the final substrate addition. For each 

unit, total C, total N (Leco, Laboratory Equipment Corporation, St Joseph, Michigan, 

U.S.A), the C:N ratio, pH (Blackmore et al. 1987) and various soil microbial properties 

were measured. The percentage of added C respired from the soil during the experiment 

was calculated by comparing the difference between the expected total amount of carbon if 

none of the added carbon had been respired (initial soil C plus the 18.22 g C added per 

container over the 92 days) with the final amount of soil carbon, and then dividing by the 

total amount of C added. This gives an indication of the decomposition rate of the C 

substrates. Baseline basal respiration and substrate-induced respiration (SIR) 

measurements were made on soils at 33% MC following 2 days incubation at 25°C. Basal 

respiration was measured as described by Wardle (1993). Ten g d.w. of soil was placed in 

a l30-mI airtight container, and incubated at 25°C. The rate of soil microbial respiration 

was measured by taking 1-mI subsamples of headspace 1 and 4 h after capping the airtight 

container, and injecting them into an infrared gas analyser (Wardle 1993). Substrate­

induced respiration (SIR) was measured based on the method described by Anderson and 

Domsch (1978). This involved the same measurement as for basal respiration, except the 

soil was amended with 0.01 g glucose g soil d. w·1• before capping the airtight container. A 

relative measure of the soil microbial metabolic quotient (qC02) was calculated as basal 

respiration divided by SIR (Anderson and Domsch 1985). 
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Soil microbial catabolic activity and community structure 

The catabolic response profile (CRP) and phospholipid fatty acid (PLFA) methods were 

used to determine treatment effects on soil microbial community catabolic activity and 

structure. 

CRPs were measured for each experimental unit as described by Degens and Hams (1997) 

and Degens (1998b). Twenty-six organic compounds were used, added at 0.3 M for amino 

acids, amines and aromatics, 1.5 M for carbohydrates, and 2.0 M for carboxylic acids. 

These correspond to the same amount of compound added per g of soil as used by Degens 

and Hams (1997). The CRP compounds consisted of L-asparagine, L-arginine, L-cysteine, 

L-glutamic acid, DL-histidine, DL-tyrosine, N-methyl-D-glucamine, L-serine, D-glucosamine, 

L-glutamine, D-glucose, DL-mannose, L-ascorbic acid, citric acid, urocanic acid, Na-formate, 

D-gluconic acid, a-keto-glutaric acid, a-ketobutyric acid, DL-malic acid, quinic acid, 

malonic acid, oxalic acid, pantothenic acid, L-tartaric acid and tween-80. Each CRP 

compound was made up in solution, and the pH adjusted to 7 with the addition of either 

concentrated sulphuric acid or NaOH. Soil microbial respiration in response to each of 

these compounds was measured as for basal respiration, except that 1 ml of a CRP 

compound and 0.5 ml of water was added before the airtight container was capped. The 

control consisted of adding 1.5 ml of water. Respiration in response to the added 

compound over and above the response to added water was calculated by taking the 

difference between the respiration from samples amended with water only (CRP control 

soil) and samples amended with CRP compounds. These respiration values were then 

summed to form a measure of total CRP. The proportion of total CRP that was due to 

respiration in response to amino acids and amides, and to carboxylic acids was also 

calculated. These two measures will be termed propOltional amino acid use and 

propOltional carboxylic acid use from here onwards. 

PLFAs were measured for each experimental unit as described by Bligh and Dyer (1959), 

and as modified by White et al. (1979) and Bardgett et al. (1996). Lipids were extracted 

from 1.5 g of fresh soil using a mix of chloroform, methanol and citrate buffer (1:2:0.8 by 

volume), The supernatant from this was split into two phases by adding chloroform and 
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citrate buffer. The lower chloroform phase containing the lipids was recovered and 

evaporated under a stream of N gas. These lipids were re-suspended in chloroform, and 

then separated into neutral Hpids (eluted with chloroform), glycolipids (eluted with 

acetone), and phospholipids (eluted with methanol) by fractionation on silicic acid columns 

(Isolute; 500 mg silicic acid in 6-ml reservoirs). The phospholipids were retained and 

evaporated under a stream of N gas, and then mild alkaline methanolysis was performed to 

create methyl esters. These samples were also evaporated under N gas and stored at -20°C 

until analysis by gas chromatography (GC). 

After GC analysis, peaks were identified by calculating retention times relative to two 

added internal standards (Cl3 and C19) and comparing these with peaks from a bacterial 

methyl ester standard (Supeloc Bacterial Acid Methyl Esters CP Mix 47080-U). The 

abundance of individual fatty acids was calculated as relative nmoles per g of dry soil, and 

characterised using standard nomenclature (Tun lid et at. 1989). PLFAs used to represent 

bacteria were: cyclic fatty acids (cy-17:0, cy-19:0), branched fatty acids (i-1S:0, a-1S:0, i-

16:0, i-17:0) and 15:0. A relative measure of the fungal:bacterial ratio was calculated by 

dividing fungal PLFA (18:2009,12) by bacterial PLFA. All identified peaks were summed 

to form a measure of total PLF A. 

5.3.3 Aspects of ecosystem function 

For each harvested experimental unit, we considered three aspects of ecosystem function: 

decomposition, plant growth and soil microbial stability (resistance and resilience to a 

drying disturbance). 

Decomposition of cellulose paper 

The ability of soil microbes in each soil sample to decompose cellulose paper was 

measured by burying a weighed circle of What man filter paper (47-mm diameter) in a Petri 

dish containing 30 g d.w. of soil at 33% MC. The Petri dish was sealed and incubated at 
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25°C for 16 days, after which the filter paper was carefully removed, cleaned, oven dried, 

and weighed to determine mass loss. 

Soil microbial stability 

To determine the effect of C substrate composition and diversity on the resistance and 

resilience of the soil microflora, we used a wetting-drying event as a model disturbance 

based on the approach described in Chapter 2. Wetting-drying events are common 

disturbances in soils (Kieft et al. 1987, Fierer and Schime12002), and are one of the major 

drivers of soil microbial turnover (West et al. 1988a, Fierer and Schime12002), and 

therefore have an effect on nutrient availability. Wetting-drying events involve two 

disturbances: drying, and rewetting of the dried soil (Kieft et al. 1987). For our purposes 

we have concentrated mainly on the response of the soil microbes to drying. However, a 

relative measure of the resistance of dry soil to rewetting was also calculated based on 

measurements made in the 4 h immediately after rewetting. Based on preliminary 

experiments, the drying disturbance was defined as drying the soil from 33% MC to 6% 

MC, and the rewetting dry soil disturbance as adding water to bring soil at 6% MC back up 

to 33% MC. These moisture contents corresponded to 55% and 10% of the water-holding 

capacity of the base soil before the substrates were added, where 100% water-holding 

capacity was measured as the amount of water retained in the soil following saturation and 

18 h of drainage (Saetre 1998). 

Three response variables were used to measure the resistance and resilience of the soil 

microbial community: basal respiration, SIR, and glucose use. In combination, these 

response variables were intended to give a summary of the soil microbial response to the 

wetting-drying event. Basal respiration measured on dried soil and on rewet dry soil was 

interpreted as indicating the response of soil microbial activity to the changes in resource 

availability that occur during wetting-drying events. Substrate-induced respiration 

measured on wet soil gives an indication of the active microbial biomass (Anderson and 

Domsch 1978). Therefore, SIR measurements made on rewet dry soil were interpreted as 

indicating the effect of drying on the soil microbial biomass. Substrate-induced respiration 

was also measured on dried soil. Because the added glucose remains undissolved in dry 
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soil, it is largely unavailable for soil microbial metabolism (West and Sparling 1986). Any 

measures of resistance or resilience that included SIR measured on dry soil were therefore 

interpreted as indicating the effect of drying or rewetting on the ability of disturbed 

organisms to respond to added substrates, rather than as an indication of biomass. To 

distinguish between these two measures using SIR, the latter measurement will be referred 

to in terms of the resistance and resilience of soil microbial glucose use from here onwards, 

and the former in terms of the resistance and resilience of SIR. 

Soil from each experimental unit was adjusted to 33% MC and allowed to equilibrate 

overnight in a 25°C incubator. This adjustment was very minor as all soils were very close 

to 33% MC. After the soils were equilibrated, a 60-g d.w. subsample of each soil was 

spread out on paper trays to air-dry at room temperature to 6% MC. Six lO-g d. w. 

subsamples of air-dried soil and four lO-g d. w. subsamples of the non-dried soil were then 

placed in 130-ml Schott glass bottles, sealed with plastic and incubated at 25°C overnight. 

Resistance to drying was determined after this incubation (time 0 or to); two bottles 

containing dry soil were used to measure basal respiration and SIR in dry soil, and a 

further two bottles containing dry soil were used to measure these response variables 

immediately after the soil had been returned to 33% MC. The latter measurement was used 

to determine soil microbial resistance to rewetting dry soil. Two bottles containing 

undisturbed soil were used to measure basal respiration and SIR at this point. Resistance 

was calculated using the index presented in Chapter 2. 

To quantify the effect of drying on the resistance of soil microbial response variables, Co 

was defined as the value of the soil for the appropriate response variable that had remained 

undisturbed at 33% MC. To quantify the effect of rewetting dry soils on soil microbial 

response variables, Co was defined as the value of the dry soil for the appropriate response 

variable. 

The remaining two bottles with dry soil were rewet to 33% MC by adding the required 

amount of water with a syringe, and incubated for a further 3 days (t3) to allow some 

recovery; this gives a relative measure of resilience. Basal respiration and SIR were 

measured on the control and disturbed soil samples as for resistance. Resilience was 

calculated using the index described in Chapter 2. We were able to calculate resilience as 
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the degree to which the rewetted soil recovered from the drying disturbance only. 

Therefore, the undisturbed soil was the soil that had remained at 33% MC throughout the 

experiment. 

Plant growth 

To assess potential aboveground effects of treatments, seeds of mustard (Yates Mustard 

Quick Salad) were germinated and grown on wet filter paper for 6 days, and then three 

seedlings were planted into a 150-g d.w. subsample of soil from each experimental unit. 

Planted seedlings were maintained at 18"C with 16 h of daylight for 3 weeks, and were 

watered as required. At the end of the growth period, shoots were harvested and roots 

extracted from the soil. Both shoot and root biomass were dried at 60"C for 48 hand 

weighed. 

5.3.4 Data analysis 

The effect of treatments on soil chemical, soil microbial and ecosystem properties were 

determined using ANOV A with block and treatment as factors. The least significant 

difference test at P < 0.05 was used to determine differences between treatments where 

ANOV A indicated an overall treatment effect. Data were transformed as necessary to meet 

the assumptions of normality and homogeneity of variances. Principal component analysis 

was performed on the CRP and PLFA data to determine the effect of treatment on soil 

microbial community catabolism and structure. The proportion that each substrate or PLF A 

made up of total CRP or PLFA was used for this analysis to avoid confounding results with 

differences in biomass. The Shannon-Weiner index (H') was also calculated for each 

experimental unit for both PLFA and CRP data, to obtain relative measures of microbial 

diversity. For each treatment involving mixtures of substrates, we calculated expected 

values for each response variable based on the values obtained from the component 

substrates when added alone, i.e., 

102 



Expected value (E) = [t M i ] I S 

where M; is the value of the response variable when component substrates were added 

alone, and S is the number of substrates in the mixture. For each of the 13 multiple 

substrate treatments, this value was calculated separately for each replicate block. 

Wherever a response variable involved a calculation that included measurements of more 

than one component (resistance and resilience, qC02, the C:N ratio, shoot:root ratio, 

catabolic and PLFA diversity, proportional amino or carboxylic acid use), expected values 

were determined for each component and then the calculation applied to those values. For 

example, to calculate expected resistance and resilience values, the expected values for 

each response variable for the control and disturbed soils at to and t3 were determined first, 

and then these values were put into the resistance and resilience indices. For pH, values 

were transformed to give the concentration of Jr, the expected value formula applied and 

then logged to give an expected pH. Paired t-tests were used to determine whether 

expected and observed values for each mixed substrate treatment differed significantly at P 

< 0.05. To determine whether there were any overall patterns of change in the magnitude 

or direction of mixing effects between treatments as C substrate diversity increased, we 

performed ANOYA on the (O-E)/E ratio across all the mixed substrate treatments, where 

o is the observed value and E is the expected value. This ratio was not calculated for 

resistance and resilience, or for H', because the nature of these indices mean that dividing 

by E skews the results. For pH, (O-E) was used rather than (O-E)/E as pH is already on a 

log scale and so takes changes in magnitude into account. Effects of substrate diversity on 

CRP and PLFA principal component scores was analysed using ANOV A. If the plincipal 

component score of a mixture was significantly higher or lower than the score of all of its 

component substrates, this was interpreted as an effect of diversity. To evaluate whether 

the aspects of ecosystem function measured may be related to soil chemistry and soil 

microbial diversity and composition, we used Pearson Correlations, or Spearman Rank 

correlations where data were inherently non-normal. 
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5.4 Results 

Carbon substrate treatments had significant effects on all soil chemical, microbial 

community characteristics, and the aspects of ecosystem functioning measured (Table 20), 

except for the fungal:bacterial ratio, branched PLFA content, and catabolic and PLFA 

diversity (data not presented). The ma.f:,'11itude and direction of C substrate mixing effects 

were often different between treatments, but only for some response variables (Table 21). 

5.4.1 Soil chemical and microbial properties 

Carbon substrate composition and occasiopally diversity affected the amount of added C 

respired, as well as soil chemical and microbial variables. The amount of added C respired 

varied depending on which substrate was added (Table 22). Soils amended with fatty acids 

respired the least C, and those amended with sucrose, starch, or gallic acid respired the 

most. Carbon substrate diversity did not affect the amount of C respired, except in one 

treatment; the observed amount of added C respired from the BGDE treatment was lower 

than expected (P < 0.05). 

Total C and the C:N ratio were higher in all C substrate-amended treatments than the blank 

soil, and varied with C substrate composition (Table 22). The addition of C substrates 

increased soil pH, but to a lesser extent in the soils amended with a tannin than the other 

amended soils. The only soil chemical variable that responded to C substrate diversity was 

pH, with all mixtures containing a tannin showing a lower pH in the substrate mixtures 

than expected (Fig. 16). However, the magnitude of mixing effects did not show any 

obvious trends as diversity increased. 

Adding C substrates singly enhanced basal respiration and SIR compared to the blank soil, 

but the extent of this differed among substrates (Table 22). Adding C substrates from 

within the same functional group usually resulted in similar increases in both basal 

respiration and SIR, but there were some exceptions. Stearic acid-amended soils showed a 

higher basal respiration than pahnitic acid-amended soils, glucose-amended soils showed a 
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higher SIR than sucrose-amended soils, and gallic acid-amended soils showed a higher SIR 

than tannic acid-amended soils. Simple sugars stimulated SIR to the greatest extent. These 

differences in basal respiration and SIR resulted in soils with different qC02 values (Table 

22). Substrate diversity had variable effects on soil microbial variables. Basal respiration 

was unaffected by C substrate diversity (data not presented), but SIR of some treatments 

did respond to diversity, with two positive and one negative response (Fig. 17). Mixing 

substrates also had one sif,rnificant effect on qC02, which was lower than expected in the 

EF treatment at P < 0.05. The magnitude and direction of differences between observed 

and expected values did not vary in any consistent way between treatments for SIR. 

Carbon substrate composition and diversity had an effect on CRPs and PLFAs. Adding 

each C substrate alone enhanced the use of all groups of CRP compounds, compared to the 

blank soil (Table 23). However, proportional carboxylic acid use was lower and 

proportional amino acid use was higher in amended soils than in the blank soil. Soils 

amended with gallic acid or a fatty acid showed the highest proportional amino acid use, 

and soils amended with a sugar or a tannic acid showed the highest proportional carboxylic 

acid use. These results were reflected in the PCA, which separated all amended treatments 

from the blank soil, and several single C substrate treatments from each other (Fig. 18a). 

The first axis explained 30.6% of the variation, and second axis explained 18.4%. Total 

PLFAs increased in response to C substrate addition, but there were few effects of C 

substrate composition (Table 23). Soils amended with gallic and tannic acid showed a 

higher cyclic PLFA content than the other pure C substrate treatments. This was reflected 

in the PCA, which distinguished the tannin-amended soils from the other treatments (Fig. 

18b). The PCA scores of soils amended with single C substrates from the same functional 

group were not significantly different to each other, expect for glucose and sucrose on PC 

axis 1. Several treatments were not significantly different from the blank soil. PC axis 1 

and 2 explained 33.9 and 17.8% of the variation respectively. 

C substrate diversity altered CRPs in several treatments, and generally increased total use 

more than was expected based on the values of single substrate treatments (Fig. 19). 

Carbon substrate diversity resulted in several treatments showing a higher than expected 

proportional carboxylic acid use (Fig. 19). Proportional amino acid use was also lower than 

expected in several treatments (Treatments CDEF, and AIL). There were no 
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obvious trends in tbe magnitude of tbe difference between expected and observed values 

for total CRP or proportional carboxylic acid use. Catabolic diversity was generally 

unresponsive to increased C substrate diversity, except in two treatments (EF and ABGH), 

which had a lower catabolic diversity than expected. There were no significant effects of C 

substrate diversity on CRP PC scores (Fig. 18c). There were very few significant effects of 

C substrate diversity on PLFA data and none on PC scores (Fig. 18d). Total PLFA in 

treatment AC and branched PLF A contents in treatments FH and ACFH showed higher 

than expected values. In contrast, PLFA diversity in treatments EF and BG, and cyclic 

PLF A content in EF were lower than expected. 

5.4.2 Aspects of ecosystem function 

The addition of single C substrates generally reduced the decomposition of cellulose paper 

compared to the blank soil (Table 24). Soils amended with a simple sugar or 

polysacchmide tended to show a higher rate of cellulose paper decomposition than those 

amended with a tannin or fatty acid. Soils amended with C substrates from within the same 

functional group showed similar rates of cellulose paper decomposition, except that soils 

that had been amended with starch had a greater stimulatory effect than those that had been 

amended with cellulose. Substrate mixing reduced cellulose paper decomposition in some 

treatments (Fig. 20), although the magnitude and direction of mixing effects did not show 

any consistent trends as substrate diversity increased. Correlations between cellulose paper 

decomposition and soil microbial community activity and structure rarely explained more 

than 10% of the variation, except for proportional amino acid use (r = 0.2784, P < 0.001). 

Correlations with C (r = -0.5231, P < 0.001), and C:N ratios (r = -0.4868, P < 0.001) 

showed stronger relationships with cellulose paper decomposition. 

Basal respiration and glucose use were reduced by the drying disturbance (Appendix III). 

Soil microbial biomass, measured as SIR on rewet dry soil, was also reduced by the 

disturbance. Basal respiration and glucose use increased when the soil was rewet. Basal 

respiration was still higher than the control soil on day 3 for all soils, indicating that it had 

not fully recovered. The SIR and glucose use of soil from some treatments had recovered 

to control levels by day 3, but several others showed higher values than the control soils by 
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day 3, indicating an over-compensatory response. When these results were expressed as 

resistance and resilience, several treatment effects were apparent. 

The resistance and resilience of soil microbes to drying and rewetting soil was affected by 

C substrate composition and sometimes by C substrate mixing, but there were few 

consistent trends. Soils amended with C substrates from within the same functional group 

showed similar responses to the disturbance for most response variables (Table 24). 

Although the resistance and resilience of most soils amended with single C substrates were 

the same as for the blank soil, there was usually at least one treatment that was not. For 

example, the sucrose-amended soil had a higher resistance of basal respiration to drying, 

and glucose and gallic acid-amended soils showed a higher resilience of SIR than the blank 

soil (Table 24). There were also some differences between amended treatments. For 

example, the resistance of basal respiration to drying of sucrose-amended soil was higher 

than that of soils amended with polysaccharides or fatty acids, and soils amended with 

cellulose or palmitic acid tended to have lower resilience than some of the other 

treatments. 

Some treatments showed a significant difference between observed and expected values 

for some measures of soil microbial stability, indicating that mixing substrates can have a 

non-additive effect on stability. Treatment AB showed a lower resistance of glucose use to 

drying and rewetting than expected, and treatment AC showed a higher resistance of 

glucose use to drying than expected. Treatment CDEF showed a higher resistance of basal 

respiration, SIR, and glucose use to drying, and a lower resilience of basal respiration and 

SIR than expected (P < 0.05). 

There were several significant correlations between stability and soil chemical and 

microbial properties across experimental units, but most explained less than 10% of the 

variation. However, some measures of stability were more strongly correlated with 

community variables. The resistance of basal respiration to drying was correlated with 

basal respiration (r = -0.4124, P < 0.001), qC02 (r = -0.3953, P < 0.001), and the first PC 

axis of CRPs (r = 0.4165, P < 0.001). The resistance of basal respiration to drying was also 

related to the first PC axis of CRPs (r = 0.3764, P < 0.001), and the resilience of SIR and 

glucose use to drying were significantly correlated with qC02 (r = -0.4336, P < 0.001, and 
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r:= -0.3730, P < 0.001 respectively). The resilience of SIR was also correlated with SIR (r 

= 0.4009, P < 0.001). 

Carbon substrate composition and diversity had strong effects on plant growth. Adding C 

substrates reduced shoot and root growth in all amended treatments, and trends within 

chemical functional groups were similar (Table 24). Soils amended with gallic or tannic 

acid showed higher shoot and root growth than the soils amended with other substrates, but 

were still much lower than the blank soil. The shoot:root ratio was high in the blank, gallic 

acid-, and tannic acid- amended soils, but low in the other treatments. Increasing the 

diversity of added C substrates resulted in a lower shoot and root biomass, and shoot:root 

ratio than expected in several treatments (Fig. 21). All mixture treatments that resulted in 

non-additive effects on plant growth contained either gallic or tannic acid. The magnitude 

and direction of effects were not related to increasing C substrate diversity. 

Shoot and root growth were strongly correlated with pH (r = -0.5351, P < 0.001; r == 

-0.5297, P < 0.001 respectively), and basal respiration (1' = -0.4973, P < 0.001, and r = 
-0.5438, P < 0.001 respectively). Shoot and root growth were also correlated with the first 

(r = 0.3676, P < 0.001 and r = 0.4802, P < 0.001 respectively) and second (r = 0.3977, 

P< 0.001 and r:= 0.3145, P < 0.001 respectively) axes of the CRP PCA. Although other 

variables were significantly correlated with plant growth, they explained less than 10% of 

the variation. 
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Table 20: Effect of C substrate treatment and blocking on soil response variables for data from 

all 22 treatments, as shown by ANOV A 

Treatment Block 

Response Variable F P F P 

6.64 0.0000 8.45 0.0000 

Carbon (%) 11.25 0.0000 1.84 0,1288 

C:Nratio 8.15 0.0000 23.11 0.0000 

254.77 0.0000 6.14 0.0002 

Basal respiration4 (Ilg CO2 -C g-l h-!) 15.67 0.0000 2.7 0.0361 

Substrate induced respiration4 (Ilg CO2 -C g-I h-!) 78.96 0.0000 4.95 0.0012 

qC02
5 25.48 0.0000 0.75 0.5619 

Total CRPs l (Ilg CO2-C gO! h-I)4 130.15 0.0000 11.68 0.0000 

Proportional amino acid use 27.45 0.0000 1.66 0.1674 

Proportional carboxylic acid use 37.75 0.0000 1.96 0.1076 

PC axis 1 (CRPI) 36.53 0.0000 0.95 0.4400 

PC axis 2 (CRP1
) 94.63 0.0000 3.57 0.0097 

Total PLFA2 content (relative nmoles) 1.92 0,0198 2.77 0.0327 

Cyclic PLFA2 content (relative nmoles)4 2.17 0.0071 0,65 0.6255 

PC axis 1 (PLFA2
)6 2.44 0.0022 2,39 0.0577 

PC axis 2 (PLF A2
)6 2.15 0.0076 3.23 0.0162 

Cellulose paper decomposition (% mass loss) 8.61 0.0000 2.05 0.0945 

Resistance to drying of' 

Basal respiration6 2.15 0.0074 4.32 0.0032 

Substrate-induced respiration 1.8 0.0318 1.5 0.2091 

Glucose use5 1.75 0.0388 2.31 0.0644 

Resistance to rewetting of' 

Basal respiration6 1.82 0.0295 3.06 0.0295 

Glucose use6 2.03 0.0122 2.36 0.0597 

Resilience to drying of' 

Basal respiration 2.1 0.0094 1.56 0.1914 

Substrate-induced respiration 2.38 0.0028 1.93 0.1132 

Glucose Use 2.41 0.0025 0.85 0.4965 

Shoot biomass4 (g d.w.) 139.01 0.0000 7.86 0.0000 

Root biomass4 (g d.w.) 30.54 0.0000 4.76 0.0016 

Shoot:root rati04 5.85 0.0000 4.64 0.0020 

1 Catabolic response profile, 2 phospholipid fatty acid. 3 Does not include blank in analysis, 4 log 
transformed,5 square root transformed, 6 rank transformed. 
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Table 21: Effect of treatment and block on the response of variables to C substrate mixing 

for the 13 treatments containing more than one C substrate, as shown by ANOV A. 

Substrate mixing effects are expressed as (O-E)/E where 0 = observed values, and E = 
expected values based on the value of response variables when component C substrates 

were added singly to the soil. The effect of mixing on soil pH is expressed as (O-E). 

Treatment Block 

Response Variable F P F P 

% added C respired 1.74 0.0884 2.57 0.0498 

Carbon 1.86 0.0653 3.07 0.0249 

C:N ratio 1.29 0.2548 13.07 0.0000 

pH 22.80 0.0000 12.88 0.0000 

Basal respiration 0.38 0.9631 1.04 0.3961 

Substrate-induced respiration' 2.48 0.0132 2.90 0.0315 

qC02' 1.13 0.3565 0.47 0.7565 

Total catabolic response profile 5.63 0.0000 0.19 0.9428 

PropOltional amino add use 1.64 0.1130 2.88 0.0323 

Proportional carboxylic acid use2 3.48 0.0010 3.86 0.0084 

Total phospholipid fatty acid content 1.87 0.0631 4.11 0.0061 

Cyclic fatty acid contentl 1.28 0.2637 1.89 0.1271 

Branched fatty add content 1.38 0.2109 7.00 0.0002 

Fungal: bacterial ratio 0.89 0.5619 1.32 0.2754 

Cellulose decomposition 2.59 0.0100 2.25 0.0780 

Shoot biomass l 58.64 0.0000 3.92 0.0079 

Root biomass l 10.51 0.0000 3.00 0.0275 

Shoot:root ratio l 5.27 0.0000 5.54 0.0009 

'Log transformed, 2 rank transformed. 
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Table 22: Effects of pure C substrate treatments on soil chemical and microbial variables. 

Numbers within columns followed by the same letter are not significantly different at P < 

0.05. Lower-case letters are derived from LSD analysis on all 22 treatments where 

ANOV A showed a significant effect of treatment. Treatment codes are given in Table 18. 

Soil chemical variables Soil microbial variables 

Total C C:Nratio pH 

Treatment (%) (%) (flg co2-c g-I h-I) (flg COz-C g-I Iii) 

4.5cd 13.3b S.80ab 

B 86.3a 4.2e l3Ab S.79b 2.3de 40.9b O.07e 

C 64.& 4.6bc 14.0a S.82ab 3.9ab I5.lde 0.26bc 

D 81.1ab 4.3de B.2b S.83ab 3.9ab 17.Sd 0.22c 

E 84.5a 4.2e l3.Sb 5.53c 1.4f 27.Sc O.OSe 

F 65.5e 4.6be 14.1a 5.lSd 1.6ef l3.lef O.l3d 

G 60.0de 4.7ab 14.6a 5.81ab 4.7a 12.2f 0.38a 

H 52.ge 4.8a 14.5a 5.84a 3.4bc 1Ur 0.30b 

Blank N/A 3.88f 11.7e 4.96e 0.3g 1.9g 0.23e 

I The percentage of the C added over the duration of the experiment that was respired from the soil 
(does not include blank in the analysis), 2basal respiration, 3 substrate-induced respiration. 4Log 
transformed, 5 square root transformed. 
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Table 23: Effects of pure C substrate treatments on soil microbial catabolic response 

profiles and phospholipid fatty acid contents (PLFA). Numbers within columns followed 

by the same letter are not significantly different at P < 0.05. Lower case letters are derived 

from LSD analysis on all 22 treatments where ANOVA showed a significant effect of 

treatment. Treatment codes are given in Table 18. 

Catabolic Response Profile PLFA 

Total2 Proportional Proportional Total Cyclic2 

Treatment (~Ig CO2-C h·l) amino acid use COOHluse (rcl. nmo)cs) (reI. nmoles) 

A 257.5a 0.28cd 0.56c 136.5bc 18.9b 

B 257.la 0.28d 0.57c 170.2ab 18.7b 

C 107.2e 0.35b 0.51d 142.6ab 16.7b 

D 139.6cd 0.37bc 0.50de 156.8ab 18.4b 

E 228.8b 0.3a 0.56c 141.9ab 34.3a 

F 143.8c 0.31c 0.61b 153.6ab 37.3a 

G 106.0e 0.42a 0.47f 184.3a 17.9b 

H 128.1d 0.42a 0.48ef 168.0ab 15.6b 

Blank 44.3f O.16e O.77a 97.4c 16.2b 

I COOH = carboxylic acid. 2 Log transformed. 
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Table 24: Effects of pure C substrate treatments on measures of ecosystem function. Numbers within columns followed by the same letter are not 

significantly different at P < O.OS. Lower case letters are derived from LSD analysis on a1122 treatments where ANOV A showed a significant effect of 

treatment. Treatment codes are given in Table IS. 

Resistance to drying Resistance to rewetting Resilience to drying Plant growth 

Decomp! BR2.6 SIR3 BR2 SIR3 
Glucose Use Shoot4 

Roots
4 Shoot: root4 

Treatment (% mass loss) Glucose Use5 
(g d.w.) (gd.w.) ratio 

A 3S.Sbc O.OSabc 0.S4d 0.003ed -0.94abc -0.9Sbcd 0.49ab 0.34a 0.7Sabc O.04d 0.006ef 6.4b 

B 2S.6cd 0.06a 0.56cd O.004bcd -0.94ab -0.9Sbcd 0.53ab 0.04abcde 0.71abc O.04d 0.007def S.3b 

C 30.6cd 0.02cde 0.6Sabed 0.004bcd -0.97edef -0.9Sbcd -O.OSe -O.l9bcde 0.S4cde O.03d O.OOSf 6.6b 

D 49.2ab 0.01 de 0.77ab 0.002d -0.99f -0.99d 0.63a -0.26de O.5Sbcdc 0.04d 0.007cf 7.2b 

E 17.2de O.04abcd 0.66abcd 0.003ed -0.96bedef -0.99cd 0.46ab 0.34a 0.7Sab 0.29c 0.02Se lL7a 

F lO.Oef O.OSabc 0.62abcd O.OOSbcd -0.9Sabcdef -0.9Sabc 0.6Sa 0.27abe 0.79ab 0.53b 0.046b 1 L9a 

G 0.6f O.Ole O.5Sbcd 0.003abcd -0.9Sef -0.9Sabcd 0.S7a -O.OSabcde 0.S9bcde O.04d 0.OO8def S.Sb 

H 7.7ef 0.02ede 0.62abcd O.OOSbed -0.9Sdef -0.9Sbcd -0.04bc -0.30e 0.37e 0.04d O.009d 4.Sb 

Blank SS.Oa O.04bcde 0.62abcd O.OIla -O.S9abede -0.94ab 0.42ab -0.2Ied 0.47de 1.38a O.I2Ia IL9a 

IDecomposition of cellulose paper, 2 basal respiration, 3substrate-induced respiration. 4 Log transformed, 5 square root transformed, 6 rank transformed. 
Resistance and resilience values are calculated using the indices given in Chapter 2. 
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Fig. 16: Effect of carbon substrate mixtures on soil pH, as calculated by (a-E) where 0= 

observed values and E expected values based on the effects of component substrates 

when added alone. Bars topped with the same lower-case letter are not significantly 

different at P < 0.05 (Least significant differences test following ANOVA). Capital letters 

indicate substrates present in mixture (Table 18). Stars indicate that the observed values 

were different to the expected values, according to paired t-tests. *p < 0.05; **p < 0.01; 

*** P < 0.001. 
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Fig. 17: Effect of carbon substrate mixtures on soil microbial SIR, as calculated by (0-

E)/E where 0 observed values and E = expected values based on the effects of 

component substrates when added alone. Bars topped with the same lower-case letter are 

not significantly different at P < 0.05 (Least significant differences test following 

ANOVA). Capital letters indicate substrates present in mixture (Table 18). Stars indicate 

that the observed values were different to the expected values, according to paired t-tests. 

*p < 0.05; **p < 0.01; *** P < 0.001. 
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Fig. 18: Effect of C substrate identity and diversity on the principal component (PC) scores of 

catabolic response profiles (CRP) and phospholipid fatty acids (PLFA). a) and b) show PC 

scores for the pure C substrate treatments for CRP and PLFA respectively, and c) and d) show 

the scores for the 13 mixture treatments for CRP and PLFA respectively. PC axes for PLFA 

were rank transformed. The PC scores for the CRP of the blank soil (panel a) and c)) was 

(5.01, 8.09). Error bars are LSD (P < 0.05) for each axis, enol' bars in panel a) also apply to 

panel c); and enol' bars in panel b) also apply to panel d). In panel c) and d): circles = 1 

functional group, two C substrates; crosses = two functional groups, two C substrates; squares 

;:: two functional groups, four C substrates; triangles in c) and d) four functional groups, four 

C substrates; diamond;:: all eight substrates. Capital letters indicate substrates present in 

treatments (Table 18). 
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Fig. 19: Effect of carbon substrate mixtures on total catabolic response profile (Total CRP 

= sum of all responses to all added CRP compounds) and proportional carboxylic acid use 
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where 0 = observed values and E = expected values based on the effects of component 

substrates when added alone. Bars topped with the same letter are not significantly 

different at P < 0.05 (Least significant differences test following ANOV A). Capital letters 

indicate substrates present in mixture (Table 18). Stars indicate that the observed values 

were different to the expected values, according to paired t-tests. *p < 0.05; **p < 0.01; 

*** P < 0.00l. 
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Fig. 20: Effect of carbon substrate mixtures on the decomposition of cellulose, as 

calculated by (O-E)lE where 0 = observed values and E = expected values based on the 

effects of component substrates when added alone. Bars topped with the same lower-case 

letter are not significantly different at P < 0.05 (Least significant differences test following 

ANOVA). Capital letters indicate substrates present in mixture (Table 18). Stars indicate 

that the observed values were different to the expected values, according to paired t-tests. 

*p < 0.05; **p < 0.01; *** P < 0.001. 
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21: Effect of carbon substrate mixtures on plant variables, as calculated by (O-E)/E 

where 0 = observed values and E = expected values based on the effects of component 

substrates when added alone. Bars topped with the same lower-case letter are not 

significantly different at P < 0.05 (Least significant differences test following ANOV A). 

Capital letters indicate substrates present in mixture (Table 18). Stars indicate that the 

observed values were different to the expected values, according to paired t-tests. * P < 

0.05; **p < 0.01; *** P < 0.001. 
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5.S Discussion 

5.5.1 Carbon substrate composition: soil chemical and microbial properties 

Carbon substrate composition affected the amount of added C respired over the duration of 

the experiment, indicating that the chemical characteristics of substrates can be an 

important driver of decomposition rates. This variability in the amount of C respired 

resulted in different amounts of C remaining in the soil (Table 22), and suggests that C 

substrate composition may affect C storage in soils, at least in the short term (Catovsky et 

al. 2002). 

Carbon substrate composition affected some aspects of soil chemistry, such as pH and the 

C:N ratio, and soil microbial activity, SIR and the microbial metabolic quotient (qCOz) 

(Table 22). These results are consistent with other studies that have manipulated the types 

of substrate inputs to the soil by adding different chemicals (De gens 1998b), or by growing 

different plant species (Bardgett et al. 1999b, Wardle et aL 2003). We predicted that adding 

different C substrates would alter soil microbial community structure and catabolism. Both 

CRPs and soil PLFA contents were altered by C addition (Table 23), consistent with other 

studies (e.g. Degens 1998b, Grayston et al. 1998). However, C substrate composition had a 

much stronger effect on CRPs than on PLF As. This suggests that adding C substrates can 

alter the catabolic activity of the soil microbial community without large changes in 

microbial composition occurring, and that these two aspects of the soil community may be 

only weakly linked. 

5.5.2 Carbon substrate composition: aspects of ecosystem function 

The effect of C substrate composition on the aspects of ecosystem function measured was 

variable (Table 24). Decomposition of cellulose paper responded to C substrate 

composition. This is consistent with some studies that have examined how plant species, 

and therefore types of C inputs, affect decomposition (Spehn et aL 2000a), but not others 

(Wardle et al. 1999). Cellulose paper decomposition results did not appear to be strongly 
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correlated with components of the microbial community discriminated using CRPs or 

PLFAs, or to measures of microbial diversity. This is consistent with the study of 

(1998a), which found that the decomposition of straw was not always altered by 

differences in soil microbial community composition and diversity. However, this may be 

because the methods used in our study are biased towards bacteria (0vreas 2000), and so 

may not reliably measure the primary decomposers of cellulose, which are fungi (Hu and 

van Bruggen 1997). Cellulose paper decomposition was correlated with proportional 

amino acid use, and to C and the C:N ratio. This suggests that changes in soil microbial 

catabolic activity, N (Magill and Aber 2000), C, and energy availability (Clarholm 1985, 

Saetre 1998) caused by adding the C substrates may have been the primary drivers behind 

our results. 

Soil microbial stability was affected by C substrate composition but in a complex way. 

There were three relatively consistent trends (Table 24). Firstly, resistance was either the 

same or reduced in amended soils compared to the blank soil. Secondly, the stability of 

soils amended with a simple sugar were often different to soils amended with a 

polysaccharide, and thirdly, soils amended with palmitic acid tended to have comparatively 

low resilience. The complexity of the results suggests that different mechanisms were 

operating in different treatments, and for different response variables, consistent with other 

studies (Wardle et al. 1999, Griffiths et al. 2000). 

The resistance and resilience of most response variables were not strongly related to soil 

chemical variables, or to measures of CRPs, PLFAs and their diversity. Griffiths et al. 

(2000, 2001) also found few consistent relationships between microbial diversity and 

stability. However, the stability of some response variables in our study were correlated 

with components of the microbial community discriminated using PCA of CRPs, and to 

basal respiration and SIR. This suggests that the catabolic activity of soil microbes and 

their SIR may have an impact on the stability of some response variables, and is consistent 

witb results found by Degens et al. (2001). Other potential drivers that may explain the 

differences in stability include multi-trophic interactions among soil biota (de Ruiter 1998), 

and nutrient availability (De Angelis 1992, MacGillivray et al. 1995). 
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Plant growth was negatively affected by C substrate addition compared to the unamended 

soil (Table 24), suggesting that the addition of C substrates enhanced nutrient 

immobilisation and therefore reduced plant growth (Jonasson et al. 1996b, Baudoin et al. 

2003). This effect was less obvious for soils amended with gallic or tannic acid than for 

those amended with the other substrates. This may have been because tannins inhibited the 

growth of micro organisms that would otherwise have immobilised nutrients (Swift et al. 

1979), enhanced the availability of some nutrients, or reduced the activity of phytotoxic 

compounds (Hattenschwiler and Vitousek 2000). It is also possible that the addition of 

tannins resulted in a stronger priming effect on soil organic matter than the other 

substrates, enhancing nutrient mineralisation. Plant growth was also cOlTelated with the 

ordination score values derived from PCA of CRPs, and to basal respiration. This suggests 

that differences among treatments in the catabolic ability and activity of soil microbes may 

have affected nutrient mineralisation, and therefore plant growth. 

5.5.3 Carbon substrate diversity 

Carbon substrate diversity had variable effects on soil properties and the aspects of 

ecosystem functioning measured. However, there were several consistent trends. Firstly, 

non-additive effects of mixing C substrates generally required the presence of at least two 

chemical functional groups, with the exception of the EF treatment. Studies that have 

examined the effect of litter diversity on litter decomposition have also found greater 

effects when species belong to different, rather than the same, functional groups (Wardle et 

al. 1997a). Secondly, increasing diversity beyond two substrates (or functional groups of 

substrates) did not increase the effect of diversity. This supports several studies that have 

shown that diversity effects saturate at relatively low levels (Wardle et al. 1997a, Smith 

and Bradford 2003). Thirdly, the impacts of mixing C substrates on ecosystem functions 

were often neutral or negative, consistent with the predictions of the theoretical model of 

Loreau (2001). Fourthly, the occurrence of a significant diversity effect depended strongly 

on which substrates were mixed, suggesting that a particular combination of C substrates 

was required before non-additive effects were found. This supports both the idiosyncratic 

hypothesis of how diversity affects ecosystem function (Lawton 1994), and the view that 
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composition is of greater importance than diversity per se for soil microbes (Bardgett and 

Shine 1999, Wardle et al. 2003). 

Different effects of diversity were found for different response variables and functions. 

Carbon substrate diversity did not affect the amount of added C that was respired, with the 

exception of one treatment. This suggests that C substrate diversity may not affect C 

storage in soils, in contrast to the prediction of Catovsky et al. (2002) that plant diversity, 

and therefore probably substrate diversity, may have positive effects on soil C storage. It 

also suggests that differences in C substrate quality may not be an important factor 

influencing the non-additive effects of litter diversity on processes such as decomposition. 

The measured soil chemical variables, soil microbial activity, SIR and qC02 were also 

largely unaffected by C substrate diversity, consistent with several other studies that have 

considered the effects of plant diversity on these properties (Gastine et al. 2003, Wardle et 

aL 2003). The pH of soils that had been amended with a mixture containing a tannin were 

up to 0.2 units lower than expected (Fig. 16), although this may not be large enough to 

have an important biological impact. 

Carbon substrate diversity had a more consistent impact on CRPs. Treatments containing 

mixtures of substrates often had a higher than expected value of total CRP, a higher than 

expected proportional carboxylic acid use (Fig. 19) and a lower than expected proportional 

amino acid use. This suggests that mixing C substrates resulted in greater use of some CRP 

compounds than would have occurred when these C substrates were added singly. This 

could occur, for example, if adding a mix of substrates to soil enhanced the decomposition 

of substrates already in the soil (e.g. Wu et al. 1993), potentially enhancing overall 

catabolic activity. In contrast to this, PLFAs rarely responded to substrate diversity. C 

substrate diversity also rarely affected catabolic or PLFA diversity, and where it did, it had 

a negative effect. This contradicts the hypothesis that substrate diversity should increase 

microbial diversity (Grays ton et al. 1998). Other studies tbat have manipulated substrate 

diversity by altering plant diversity have also found few effects of diversity on soil 

microbial composition (Wardle et al. 2003, Hedlund et al. 2003, but see Schutter and Dick 

2001 with regard to substrate diversity). Overall, this suggests that mixing C substrates 

may have no effect on soil microbial community composition and diversity, but may still 
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have an effect on soil microbial catabolic activity and the types of C substrates 

metabolised. 

Carbon substrate diversity had occasional effects on soil microbial stability, more frequent 

effects on the decomposition of cellulose paper (Fig. 20), and impacts on plant 

growth (Fig. 21). These results are partially in agreement with several other studies that 

have found that increasing plant diversity has little or no effect on decomposition (Hector 

et a1. 2000, Spehn et a1. 2000a) or soil microbial stability (Wardle et a1. 1999, Wardle et a1. 

2000). However, where C substrate diversity effects were significant, they often had large 

effects on both the decomposition of cellulose paper and measures of soil microbial 

stability, suggesting that C substrate diversity may have important consequences for 

ecosystem processes in some contexts. Catabolic diversity was not related to cellulose 

paper decomposition, suggesting that high catabolic diversity does not necessarily increase 

the decomposition of all added substrates. Several of the significant effects of substrate 

diversity on microbial stability contradicted the predictions of Harrison (1979), who 

suggested that substrate diversity should increase the resistance of biomass, but have no 

effect on resilience. Our results showed both positive and negative effects of C substrate 

di versity on soil microbial resistance, and several significant effects on resilience. 

The effect of C substrate diversity on plant growth was context-dependent, with a negative 

effect on growth in some treatments. However, this only occurred when the soils had been 

amended with mixtures containing a tannin, suggesting that the sampling effect may have 

been the primary mechanism behind these diversity effects (Hooper and Vitousek 1997, 

Huston 1997). We predicted that C substrate diversity could have two contradictory 

effects. If C substrate diversity increases microbial diversity, and if this in tum increases 

decomposition and nutrient mineralisation, plant growth may increase (Loreau 2001). 

Alternatively, increasing substrate diversity increases the chance of including reca1citrant 

substrates that reduce decomposition, nutrient mineralisation and therefore plant growth 

(Loreau 2001). Our results do not support the first of these explanations. Carbon substrate 

diversity did not increase catabolic or PLFA diversity, had either no effect on or reduced 

the decomposition of other substrates as indicated by cellulose paper decomposition, and 

resulted in reduced rather than increased plant growth. The second of these explanations 

therefore seems more likely. Alternatively, the concentration of the tannins in mixture may 
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simply not have been sufficient to have the relatively positive effect they had in 

monoculture. 

5.5.4 Conclusion 

Carbon substrate composition, and sometimes diversity, was found to have a significant 

impact on the soil environment, and soil microbial activity and community structure. This 

in tum had flow-on effects to some aspects of ecosystem functioning. The eight C 

substrates showed different rates of decomposition, suggesting that differences in resource 

quality among substrates can play an important role in determining litter decomposition 

rates. Carbon substrate composition affected soil chemical properties and microbial 

community structure, which in tum strongly affected several aspects of ecosystem 

functioning. However, C substrate diversity had variable effects on the soil environment 

and microbial communities, with a strong impact on some response variables but not 

others. This was reflected in the various measures of ecosystem functioning, which were 

also sometimes responsive to C substrate diversity. Overall, C substrates, and mixtures of 

C substrates, were shown to be a significant driver of soil chemical properties, and soil 

microbial community structure and activity, and therefore of aboveground and 

below ground function. 
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Chapter 6: Assessing diversity, composition, and 

resources as drivers of ecosystem function and stability 

The primary goal of the research described in this thesis was to determine the factors that 

drive ecosystem function and ecological stability, with an emphasis on soil microbial 

stability and the interaction between plant and microbial function. This required the 

development of a method that could quantify the stability of the soil microbial community 

to a disturbance and the derivation of indices that could summarise this information. The 

approach used was presented in Chapter 2. The research presented in the middle chapters 

(3 5) of this thesis aimed to determine the role of three potential drivers of ecosystem 

function and stability: diversity, composition and soil resources. This final chapter will 

discuss the likely importance of these factors, and how successful my approach was in 

assessing this. 

6.1 Success of the stability measure 

6.1.1 Choice of disturbance 

To test how soil microbial stability responded to diversity, composition and resources, an 

assay capable of measuring the response of the soil microbes to a model disturbance was 

required. Theory and empirical evidence suggest that the type of disturbance will affect the 

response of the organisms measured (Steinman et al. 1990, Sankaran and McNaughton 

1999, Joergensen and Raubuch 2003). Disturbances can operate on both long and short­

term time scales. My research focused on a short-term disturbance and the short-term 

response to that disturbance. Short-term disturbances occur frequently in the soil 

environment, for example, through wet-dry and freeze-thaw cycles, or the input of labile 

organic matter. All of these disturbances affect soil microbial processes, including the 
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decomposition of organic matter and nutrient mineralisation (Birch 1964, Alon and 

Steinberger 1999, Herrmann and Witter 2002). These processes can have an impact on the 

amount of carbon (C) stored in the soil (Catovsky et al. 2002), and on plant growth and 

productivity (Grays ton et al. 1996, Jonasson et al. 1996a). Therefore, any disruption to soil 

microbial processes caused by short-term disturbances may have downstream effects on 

other ecosystem functions. The response of soil microbes to longer-term disturbances, such 

as those that occur at the whole plant level, may be a fruitful area for future research. 

The response of a system to a disturbance will depend on whether that disturbance is 

negative or positive. The wetting-drying event used as a disturbance here encompasses the 

soil microbial response to both negative and positive disturbances. Drying reduces the 

availability of water as well as the C and nutrients dissolved in that water (Lundquist et al. 

1999, Ilstedt et al. 2000, Liu et al. 2000). At the same time, demand for C and nutrients is 

greater (SchimeI1995, Liu et al. 2000), as soil microbes produce compatible solutes to 

mediate the effects of low water availability (Kieft et al. 1987). The response of the soil 

microbes to drying therefore quantifies the effect of a negative disturbance. When water is 

added to dry soil there is a positive effect of an increase in resource and water availability 

(Birch 1958, Skopp et al. 1990, Turner and Haygarth 2001), as well as a potentially 

negative effect of a rapid change in osmotic pressure (Kieft et al. 1987). The response of 

soil microbes to rewetting dry soil therefore represents the effect of a disturbance that can 

have positive andlor negative effects. 

The magnitude of a disturbance can have a fundamental effect on the response of the 

system (Conne111978, Zhang and Zak 1995). It is therefore impOltant to choose a 

disturbance that can be standardised across a range of soils. Wetting-drying events are 

ideal disturbances for this. Two approaches to drying could have been used in this 

research. Firstly, the soil could have been dried from a particular moisture content to a 

lower one, for example, from 100% to 10% moisture content on a dry weight basis (MC). 

However, the soils from the chronosequences (Chapter 3) varied considerably in their 

organic matter content, and therefore their water-holding capacity (WHC). At 100% MC, 

water may already be limiting in a soil with a high WHC, but in a soil with a low WHC, 

the same MC may result in an excess of water and anaerobic conditions. Drying soils down 

to 10% from 100% MC could therefore result in quite a different disturbance depending on 
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the soil; a high-WHC soil would experience drying from a relatively dry state to an even 

drier one, and a low-WHC soil would experience drying from a wet state to a dry one. This 

method therefore only works when the experiment deals with soils with the same or similar 

WHC, as in Chapters 4 and 5. A second approach is to dry the soil from a known WHC to 

a lower WHC. This allows differences in organic matter content and WHC to be taken into 

account, effectively standardising the disturbance across different soils. This approach was 

used in Chapter 3, and was successful in allowing the comparison of soil microbial 

responses from different soils. 

Defining the disturbance as a change in WHC means that it encompasses differences 

between soils in the time they take to dry and their water potential at 10% WHC. Although 

these factors will have been the same, or very similar, across treatments for the soil used in 

Chapter 4 and 5, they may have had an impact on the disturbance experienced by the soil 

microbes in the soils used in Chapter 3. Depending on WHC, soils took between several 

hours to 2 days to dry from 55% WHC to 10% WHC. This may have resulted in some soils 

retaining an active microbial community for longer dming drying than other soils, and 

therefore potentially using up more of the labile C as it was released by the drying process. 

This may explain some of the variation found in resistance and resilience across soils. The 

water potential of different soils at the same percentage of WHC can be different, resulting 

in varying availability of soil water to soil microbes (McLaren and Cameron 1990). 

Although this was unlikely to be important when the soils were wet, it is possible that the 

water in some solls was less available at 10% WHC than in others, effectively resulting in 

a harsher disturbance in terms of water availability. This may have been one of the reasons 

why soil microbes from different soils responded differently to the disturbance, and would 

be interesting to explore further in future research. 

6.1.2 Measurements of stability 

The way that ecological stability is defined and the response variables measured will 

determine the types of measurements made and their relevance to particular hypotheses. 

Stability has been defined in numerous different ways, including variability, persistence, 

constancy, resistance, and resilience (Pimm 1984, Grimm and Wissel 1997). It has also 
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been measured at numerous different levels, including for species composition (e.g. Biggs 

et al. 1999, Sankaran and McNaughton 1999), diversity (e.g. Degens et al. 2001), 

community biomass (e.g. Tilman 1996), and process rates (e.g. Joergensen and Raubach 

2003). Because different mechanisms can operate depending on the type of stability and 

response variables measured (e.g. Tilman 1996), many studies on stability are not 

comparable. This has lead to a great deal of confusion and the publication of earlier (Pimm 

1984), and more recent (Grimm and Wissel 1997) articles urging researchers to use 

consistent definitions and to specify the type and scale of the disturbance, and the reference 

state to which responses are compared. 

The definitions and response variables used to describe stability should be relevant to the 

primary goal of a study. The primary goal in this research was to detennine the role of 

several factors in driving belowground ecosystem functions and stability. Stability was 

therefore defined in terms of resistance and resilience, and was measured as the response 

of a combination of community aggregate properties and indicators of process rates to a 

wetting-drying event. Resistance and resilience give a detailed description of stability as 

they describe both the amount of change caused by the disturbance and the rate of recovery 

after the disturbance (Pimm 1984). Resistance and resilience have also been associated 

with trade-offs in life history strategies (Leps et al. 1982, MacGillivray et al. 1995), and 

therefore give some insight into the potential role of biotic composition in stability. The 

response variables used to quantify resistance and resilience measure community 

properties and processes that can affect ecosystem function, and are therefore relevant to 

the primary goals of this thesis. If the focus of this research had been to determine the 

mechanisms behind soil microbial stability, other factors such as trophic interactions and 

population fluctuations may have been useful measures. These factors have been shown to 

have an effect on community stability in other studies (e.g. McNaughton 1977, Tilman 

1996) and may be interesting to investigate further in future research. 

The ways that the response of variables to a disturbance are summarised will detennine 

how results are interpreted. Several different indices have been used in the literature, many 

of which are unable to quantify resistance and resilience accurately in all possible 

scenarios (Tables 1,2). The indices that were developed in Chapter 2 successfully 

overcame these problems. They also have an advantage over other indices in that they give 
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higher values for higher resistance or resilience, and so are easy to interpret. The three 

experiments in which the indices were used show that they were frequently capable of 

identifying differences between treatments (Chapter 4 and 5) and trends over 

environmental gradients (Chapter 3). If these indices become commonly used, they will 

contribute to increasing the ease with which studies can be compared, and they should help 

ensure the use of consistent terminology and precise descriptions of what is being 

measured. 

6.1.3 The timing of measurements 

The accuracy of measurements of resistance and resilience will be determined by their 

timing. If resistance is defined as the amount of change caused by a disturbance (Pimm 

1984), an accurate measurement of resistance requires knowing the point at which the 

difference between the value of the disturbed and undisturbed system (Do) is the highest. It 

is much easier to measure this when the disturbance has a negative effect on the system 

measured. Once the factor causing a decrease in the response variable has been removed, 

the system should begin to recover. The maximum Do should therefore be at the point 

where the disturbance ends. When a disturbance has a positive effect on a system, the 

maximum Do could occur at any point after the disturbance. For example, when glucose is 

added to soil, it may take several hours or days before the maximum respiration point is 

reached, and this may vary across different soils. 

The timing of most measurements of resistance in the research presented here dealt with 

the effect of drying, i.e. a negative disturbance, on soil microbial response variables. Due 

to time constraints, the resistance of basal respiration and glucose use to rewetting dry soil 

was measured as the response of the soil microbes only within the first few hours after 

rewetting. This measure may not have included the maximum deviation away from the 

control soil, and should therefore be viewed as a relative measure of the short-term 

response to rewetting dry soil rather than an absolute measure of resistance. The 

measurement of the resistance of SIR to drying should also be re-defined slightly. To 

obtain a reliable estimate of soil microbial biomass using SIR, the soil must be wet so that 

the added glucose is available (West and Sparling 1986). SIR was therefore measured after 
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the dry soil had been rewet, so that the measurement of the resistance of SIR to drying 

included the negative osmotic effect of rewetting dry soil, and any increase in biomass that 

occurred after this, but before SIR was measured. These changes are likely to be small and 

consistent across different soils, and therefore should not significantly alter the 

interpretation of the results. 

Measurements of resilience require some understanding of how soil is likely to respond to 

a disturbance. Resilience can be measured as the relative amount of recovery at a particular 

time point, or the curve of recovery can be followed in more detail with multiple 

measurements. In the research presented here, resilience was measured as the amount of 

recovery at a particular time point (3 days after the dry soil was returned to 55% WHC). 

This approach was chosen because it was not practical to measure a detailed recovery 

curve in the multi-treatment replicated experiments presented here, and because it allows 

the resilience of multiple soils to be compared easily. The timing of this measurement was 

based on preliminary experiments (not presented) and the data presented in Chapter 2. The 

experiment presented in Chapter 2 indicated three potential curves of recovery (Fig. 3, 

Chapter 2). The SIR of the clover soil had nearly recovered fully by day 3, the SIR of the 

humus soil took much longer to recover, and the SIR of the plantain soil showed an 

increase above the control soil at around day 3, followed by a decline back to control 

levels. Three days of recovery therefore gave the best representation of all of these 

recovery rates. Although dlis approach worked and was capable of distinguishing between 

the resilience of different soils, it may be worth exploring the shape of the recovery curve 

in more detail in future research. 

A similar argument can be applied to the measurement of control soils over time - Fig. 3, 

and in particular Fig. 3c, showed that there can be some variation in control values across 

time. If time had allowed, it may have been more accurate to use an average control value 

measured at several time points to quantify Co and Cx• However, the data presented in Fig. 

3 showed that variability among replicates is generally low, suggesting that this is unlikely 

to have made much difference to the research presented here. 

Overall, the approach used to determine the resistance and resilience of the soil microbial 

community was successful in identifying differences between treatments and trends over 
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time. As with any methodology, there were some limitations, especially in the timing of 

the measurements. However, as these limitations were taken into account when examining 

the data, the general interpretation of the results should be correct. 

6.2 Diversity as a driver of ecosystem function and stability 

Diversity has been proposed as an important driver of ecosystem function and stability 

(MaCArthur 1955, May 1972). Although there have been several studies on the role of 

plant and litter diversity in driving some belowground processes (e.g. Hector et al. 2000, 

Porazinska et al. 2003), little is understood about how diversity affects soil microbial 

stability. Two different approaches were used in the research presented here to determine 

the effect of diversity on soil microbial function and stability. Firstly, the diversity of 

factors that are likely to affect soil microbial function (plant species and C substrates) were 

manipulated. Secondly, the di versity of the soil microbial community itself was measured 

in the C substrate experiment and correlated with ecosystem functions and stability. This is 

not a direct measure of the effect of soil microbial diversity and therefore should be 

interpreted with caution, but can nevertheless give some indication of whether soil 

microbial diversity might be an important driver. 

6.2.1 Plant species and C substrate diversity 

The results presented in Chapters 4 and 5 showed that plant species and C substrate 

diversity effects were context-dependent. Plant diversity only had an impact on plant 

community biomass and mineral N contents, and then only in some harvests (Tables 11, 

12) and scarcely affected soil microbial properties (Table 13, Figs. 10 13). In contrast, C 

substrate diversity affected soil microbial community structure and several aspects of 

ecosystem function and stability (Figs. 17, 19 - 21). However, non-additive mixing effects 

only occurred in some treatments, and the extent to which this occurred varied with the 
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response variable measured. This suggests that plant diversity does not affect soil 

microbial function and stability, but that C substrate diversity can in some contexts. 

The plant diversity results were consistent with some studies, but not others. Plant diversity 

has been found to have a positive effect on plant biomass and nutrient retention in a 

number of studies (Tilman et al. 1997a, Symstad et al. 1998, Spehn et al. 2000b), but not 

others. Many other studies have found no or few effects of plant diversity on soil microbial 

community structure (Hedlund et al. 2003, Wardle et al. 2003), function (Spehn et al. 

2000a, Porazinska et al. 2003), and stability (Wardle et al. 1999, Wardle et al. 2000). My 

results deviate from some other studies in two ways. The increase in productivity due to 

increased diversity did not appear to be due to the facilitative effect that N-fixers (in this 

experiment, clover) often have on the biomass of other plant species (e.g. Hooper and 

Vitousek 1998, Hooper and Dukes 2004), as the biomass of ryegrass and plantain were 

reduced by competition with clover, but clover biomass was unaffected by competition 

with the other plant species. Soil mineral nitrogen (N) contents increased in harvest 4 

rather than decreasing, as usually reported in plant diversity experiments (Tilman et al. 

1997a, Hooper and Vitousek 1998). The lack of relationship between plant productivity 

and the soil microbial biomass is consistent with some studies (Groffman et al. 1996, 

Wardle et al. 1999), but not with others (Zak et al. 1994, Broughton and Gross 2000, 

Spehn et al. 2000a). It is possible that there was a lag effect, and that if the plant 

community experiment had continued for longer there would have been some effect of 

aboveground diversity on belowground properties, as suggested by some studies (Van der 

Putten et al. 2000, Raffaelli et al. 2002). The C substrate diversity results were largely 

consistent with other experiments that have mixed substrates. For example, litter-mixing 

studies often find idiosyncratic effects of diversity on the soil microbial biomass (Wardle 

et al. 1997a, Bardgett and Shine 1999) and plant growth (Nilsson et al. 1999). My results 

differ from some litter mixing studies (Briones and Ineson 1996, Wardle et al. 1997a, 

Bardgett and Shine 1999, Smith and Bradford 2003) in that the diversity of the C substrates 

did not affect their decomposition rate, with the exception of one treatment (Section 5.4.1). 

The main mechanism by which plants can affect soil microbes and their function is by the 

types and amounts of resources they return to the soil. Therefore, combining the results 

from the C substrate and plant species diversity study may suggest some ecological 
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explanations as to why there were no effects of plant species diversity on soil microbial 

response variables. Firstly, the C substrate experiment showed that the response of the soil 

microbes and ecosystem functions to substrates from within the same functional group was 

often similar. This suggests that the substrates deposited by each of the three plant species 

used in the plant community experiment may have been from within the same functional 

group, and were therefore too similar to induce a non-additive effect when the different 

plant species were grown together. Secondly, the C substrate experiment showed that non­

additive mixing effects occurred only for particular combinations of substrates. This 

suggests that the organic matter inputs of the three plant species to the soil may not have 

included substrates that interacted non-additively, that the concentration of those substrates 

were insufficient to have an effect, or that those substrates never came into contact with 

each other. Thirdly, the effect of C substrate mixing reached saturation at low di versity 

levels. Each plant species may have already deposited substrates into the soil that had a 

non-additive effect on soil microbial function and stability, but adding more substrates 

through the addition of more plant species did not increase the effect of diversity beyond 

that. 

There are two methodological reasons why diversity effects may have been more common 

in the C substrate experiment than in the plant community experiment. Firstly, it may be 

related to differences in scale between experiments. The C substrate experiment involved 

mixing substrates evenly throughout the soil, and measurements were then made on this 

soil. The primary selective force was C substrate quality, because most other driving 

factors, such as temperature, moisture, and C quantity, were kept constant. The soil 

measurements therefore quantify direct effects of one factor only, and that factor should 

have had an even effect on all parts of the soil. In contrast, the plant community 

experiment focused on the effect of the whole plant community on all of the soil in the 

containers in which the plants were grown. Plants can affect the oxygenation (McLaren 

and Cameron 1990), moisture content (Hooper and Vitousek 1998), and stmcture (Tisdall 

and Oades 1982) of the soil environment, and provide soil microbes with C substrates of 

different quality and quantity (Vinton and Burke 1995). These plant effects on soil 

microbes may be positive, neutral, or negative depending on context (van Veen et al. 1989, 

Wardle 2002). Because all of the soil was used, and homogenised by sieving, the average 

effect of all of these processes is measured, resulting in an increase in the chance of a net 
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neutral effect of plant diversity. Further, the C substrates added to the soil by plants are 

deposited in a highly localised way: litter is deposited on the soil surface, and root exudates 

are deposited primarily at root tips (Wardle 1992). Although litter is likely to be mixed in a 

natural system, an interaction between root exudates from different plant species requires 

their rhizospheres to interact in some way. It has been shown that the biomass of bacteria 

and fungi on the root surfaces of ryegrass and plantain are higher when these two plant 

species are grown together than when they are grown separately (Christie et al. 1974), 

suggesting that the rhizospheres of different plant species can interact. However, because 

all of the soil was used in my experiment, any significant effect of diversity caused by 

these localised interactions between multiple species may have been diluted by soil that 

has not been in direct contact with litter, leachate from that litter, or root exudates from 

more than one species. 

It seems likely from the evidence provided by the C substrate experiment and previous 

litter mixing studies that there can be non-additive effects of plant diversity at the 

microsites where those substrates are deposited, but that once the impact of plants is scaled 

up to the whole plant level, other factors can dilute or override these effects. This does not 

mean that non-additive effects due to substrate or litter mixing are unimportant; both of 

these have been shown to affect plant growth (Fig. 21, Nilsson et al. 1999), and this may 

have implications for competition and therefore plant community structure. 

The second potential methodological reason behind differences in the frequency of plant 

and C substrate diversity effects is the criteria used to determine whether or not there was a 

significant effect of diversity. The experimental design used in my research allows 

comparison between monocultures and mixtures of either plants or C substrates. This 

design allows discrimination of the sampling effect from complementarity and facilitation, 

and is therefore one of the more robust designs used in diversity studies (Hooper 1998). 

However, because the effect of plant intraspecific competition is not quantified in this 

design, the researcher has to assume that it is not occurring, and therefore that the biomass 

of the monoculture represents the total biomass that species would attain regardless of the 

number of plants. An effect of diversity therefore requires the value of the mixture to be 

either significantly higher or significantly lower than all component species in monoculture 

(Huston et al. 2000, Hooper and Dukes 2004). This principle is based on transgressive 
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overyielding, and is the most stringent test of diversity effects (Gamier et aL 1997a, Hector 

1998, Huston and McBride 2002, Hooper and Dukes 2004). In contrast to plants, litter and 

C substrates are inert and so there is no competition between them. This means that an 

expected value can be calculated based on the value of the single substrate treatments, and 

the proportion of each substrate in the mixture. Any deviation away from the expected 

value can be considered an effect of increasing diversity. It is therefore much easier to 

a significant effect of diversity. For example, imagine a system where the value of a 

mixture containing species A and B in equal proportions was 10, and that A and B in 

monoculture have a value of 6 and 20 respectively. If this were a plant experiment, the 

researcher would conclude, that there was no diversity effect based on the criteria of 

Huston et al. (2000) - the value of the mixture falls between the values of the 

monocultures. In contrast, if this were a litter diversity experiment, the researcher could 

legitimately conclude that there was a diversity effect, as the observed value is lower than 

the expected value of 13 «(Y2 x 6) + (Yz x 20) = 13). Both approaches are perfectly valid, 

but can result in different conclusions. 

6.2.2 Microbial diversity 

Soil microbial di versity, as measured by Shannon-Weiner indices calculated for the CRPs 

and PLFAs in the C substrate experiment, did not appear to be strongly related to 

ecosystem function. Catabolic diversity was significantly related to the decomposition of; 

cellulose paper (r = -0.2225, P < 0.05), the resistance of SIR (r = 0.1925, P < 0.05), and,to 

the shoot:root ratio (r = -0.2636, P < 0.01), but PLFA diversity was unrelated to any 

measure of ecosystem function at P < 0.05. The soil microbial community is extremely 

di verse, and a wide range of microbial species can decompose the same substrates. It has 

therefore heen suggested that most soil microbes are redundant, and that soil microbial 

diversity may only be important for processes that are performed by a few microbial 

species (so-called narrow processes), as more diverse communities are more likely to 

contain the species that can perform those processes (SchimeI1995). Cellulose can be 

decomposed only hy a subset of the microbial community (Swift et al. 1979, Hu and van 

Bruggen 1997), and therefore measures a narrower process than stability. However, 

increased microbial diversity was related to lower, rather than higher, decomposition rates. 
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Other studies that have measured the effect of soil microbial diversity on function have 

found variable results. Some studies have found no effect on soil processes (Griffiths et al. 

2001b), effects on some but not all soil processes (Griffiths et al. 2000), or effects on 

decomposition (Degens 1998a) and stability (Degens et al. 2001) in some contexts only. 

Where soil microbial species diversity can be controlled more easily, as in mycorrhizal 

studies, results have shown idiosyncratic (Jonsson et al. 2001) or positive effects on plant 

biomass (van der Heijden et al. 1998, but see Wardle 1999 on van der Heijden et al.'s 

interpretation). 

Overall, the results presented in this thesis and other studies suggest that diversity can 

affect plant community properties, but that it is not a strong driver of soil microbial 

function and stability. Plant diversity only had one significant effect on soil microbial 

properties. C substrate diversity effects were idiosyncratic, depended strongly on which 

combination of substrates were added, and saturated at low diversity levels. Microbial 

diversity was largely unrelated to function. These results therefore supported the 

idiosyncratic model of diversity function relationships, where the effect of an increase or 

decrease in species number depends on which component of a system is added or removed, 

rather than the number of components per se (Lawton 1994). For example, the removal of 

clover from a clover ryegrass mixture would not change the resistance of soil microbial 

basal respiration to drying, but the removal of ryegrass from that mixture would (Fig. 11). 

My results also supported the redundant taxa hypothesis, where some components of a 

system can be lost without any change in function, but others cannot (Walker 1992). For 

example, adding substrates from within the same functional group in the C substrate 

experiment often resulted in similar soil microbial responses (Table 22 - 24). The loss of 

one substrate from within a functional group may therefore have no effect on ecosystem 

function. In combination, this means that the effects of species loss are unpredictable, 

especially in the absence of knowledge on how each and every species contributes to 

ecosystem function and stability and how each species interacts with other components of 

the ecosystem (Mikola and SetiiUi 1998c). Obtaining this knowledge is an enormous task, 

suggesting that conservationists should focus on conserving the whole community rather 

than individual popUlations to ensure the maintenance of ecosystem function. The 

idiosyncratic nature of diversity effects on soil systems, and the presence of redundant 

components within the system, is consistent with many other studies that have concluded 
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that diversity per se is not a strong driver of soil microbial properties (Hooper and 

Vitousek 1997, Wardle et al. 1997b, Bardgett and Shine 1999, Korthals et al. 2001), and 

suggests that other factors may be more important. 

6.3 Composition as a driver of ecosystem function and stability 

The composition of communities has been suggested as an important driver of ecosystem 

function, especially the traits of the dominant species. As soil microbial and plant function 

are strongly linked, it seems likely that plant species composition may have an important 

impact on soil microbial function. On~ of the main mechanisms by which plants may affect 

soil microbes is by the composition of the substrates they deposit into the soil. Therefore, I 

manipulated both plant and C substrate composition to determine what effect these had on 

soil microbial function and stability, and in the C substrate experiment, whether this 

change in composition had an effect on plant growth. Although soil microbial composition 

was not directly manipulated, correlations between indicators of soil microbial community 

structure and ecosystem functions may show whether it is likely to be an important driver 

of function. 

6.3.1 Plant species and C substrate composition 

Both plant composition and C substrate composition had a strong effect on soil microbial 

community structure, function and stability. This supports the suggestion that there is a 

strong link between plant and microbial function, and that substrate quality is an important 

mechanism by which plants can affect soil processes. This is consistent with numerous 

other studies that have found strong effects of plants or substrates on soil microbial 

community structure (Bardgett et al. 1999b, Bardgett and Shine 1999), function (Spehn et 

al. 2000a), and stability (Wardle et al. 1999, Wardle et al. 2000). For example, many 

studies show that plant and litter composition can affect the soil microbial biomass 
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(Bardgett and Shine 1999, Wardle et al. 2003), and the decomposition of added substrates 

(Nilsson et al. 1999, Spehn et al. 2000a). 

The characteristics of the dominant plant(s) have been suggested as the primary driver of 

ecosystem function (Grime 1998). This was supported to some extent by the plant 

community experiment presented in Chapter 4, as plant traits and their effect on soil 

chemistry were found to be related to soil microbial properties and function (Table 17), 

consistent with other studies (e.g. Grayston et aL 1998, Wardle et al. 1998, Flachini et al. 

2003). However, this was not always related to how dominant that species was, as 

measured by aboveground biomass. For example, most of the biomass (68%) in the 

ryegrass + plantain treatment in harvest 3 was produced by plantain plants. However, the 

resilience of glucose use was much closer to that of the soil from the ryegrass monocuiture, 

than to the resilience of soil from the plant.ain monoculture. This suggests that the 

dominant plant from a microbial perspective may be different to the dominant plant from 

an aboveground perspective. This may be worth investigating further - which 

characteristics of plants are the primary drivers of soil microbial properties, and do 

dominant plants in a mixed species community have the greatest effect on soil microbial 

function? 

6.3.2 Soil microbial composition 

One of the main mechanisms by which plant species or substrate composition can affect 

soil microbes and their function is by altering soil microbial community structure. Soil 

microbial composition was measured directly in the C substrate diversity experiment 

(Chapter 5) and indirectly in the plant community experiment (Chapter 4). 

In the plant community experiment, the ability of soil microbes to decompose cellulose 

paper was used as an indirect measure of the slower-growing, K-selected portion of the soil 

microbial community. In that experiment, decomposition rate was strongly correlated with 

several measures of soil microbial stability. However, in the C substrate experiment, 

cellulose paper decomposition was not related to any measure of soil microbial stability or 

community structure. This suggests that cellulose paper decomposition is not driven by 
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species composition in all contexts, or that it is not a good indicator of species 

composition. It also suggests that at least part of the relationship between decomposition 

and stability in the plant community experiment may have been due to the relationship of 

decomposition with N availability (Table 15). 

When relationships between soil microbial composition and ecosystem functioning were 

evaluated, as was done in the C substrate diversity experiment (Chapter 5), results were 

variable. There were many significant correlations between variables derived from CRP 

analysis and measures of ecosystem function, but the variables derived from PLFA 

analysis were only occasionally related to ecosystem function, and then often weakly 

(Table 25). This suggests that the composition of the soil microbial community (PLFA 

data) may not have a large effect on function, but that its catabolic ability and activity may. 

The lack of relationship between composition and function may partly be because many 

species of soil microbes are capable of performing the same function (SchimeI1995). The 

metabolic state and catabolic ability of the soil microbial community may, however, affect 

their ability to decompose cellulose paper and cope with disturbances as both of these alter 

the substrates available in the soil. It also seems likely that the catabolic ability of the soil 

microbial community will affect nutrient mineralisation and immobilisation, and therefore 

plant growth. There may have been a stronger effect of composition on soil microbial 

function if the C substrate treatments had altered the fungal biomass or the fungal:bacterial 

ratio, as bacteria and fungi are often controlled by different factors (Mikola and SeUiHi 

1998b) and function differently (Allen et al. 1999, Ohtonen et al. 1999, Ley and Schmidt 

2002). Other studies have found that soil microbial species composition can be important 

for stability (Allen-Morley and Coleman 1989), decomposition (Barlocher and Corkum 

2003), enzyme activities (Waldrop et al. 2000), and plant growth (van Der Heijden et al. 

1998, Jonsson et al. 2001). However, the studies of Allen-Morley and Coleman (1989), and 

Barlocher and Corkum (2003) used communities with unrealistically low diversity levels, 

and the studies of van der Heijden et al. (1998) and Jonsson et al. (2001) dealt with the 

more direct effect of mycorrhizal species composition on plant growth, which may explain 

this difference. 
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Table 25: Correlation coefficients between soil microbial community variables, resources and ecosystem functions, using data from Chapter 5. 

Resistance to drying of: Resistance to rewetting of: Resilience to drying of: Plant growth 

Decomp! BR2 SIR Glucose Use! BR2 Glucose Use! BR SIR Glucose Use Shoot3 Roots3 
Shoot: root2 

CRPPCl 0.2834** 0.4165*** -0.2487** -0.0183 0.3764*** 0.0197 0.1772t 0.2835** 0.2054* 0.3676*** 0.4802*** 0.2931 ** 

CRPPC2 0.0653 -0.1955* 0.1533 0.2583** -0.1114 0.2646** -0.0766 -0.2812** -0.2586** 0.3977*** 0.3145*** 0.3228** 

P(AA use) -0.4082*** -0.3393*** 0.1493 -0.0319 -0.2945** -0.0677 -0.0939 -0.1264 -0.0734 -0.1769t -0.2983** -0.1887* 

P(COOH) 2 0.3371 *** 0.2996** -0.0346 0.1415 0.2772** 0.1628t 0.0898 0.0174 0.0043 0.3610*** 0.4656*** 0.2333* 

PLFA PCl -0.1684t -0.0513 -0.0408 0.0315 0.0498 0.0443 0.0540 -0.0658 -0.1665 -0.2609** -0.1420 -0.3064*** 

PLFA PC2 -0.0683 0.2399* 0.1012 -0.0326 0.2046* -0.0106 -0.1785t -0.0206 0.1171 0.1209 0.2527** -0.0398 

Cyclic -0.0694 0.1280 0.0846 -0.0396 0.0830 -0.0141 -0.1847t 0.0609 0.2037* 0.1896* 0.2229* 0.0809 

Branched -0.0292 -0.1050 -0.0968 -0.0899 -0.0203 -0.0496 -0.1289 0.1852t 0.1576 -0.0419 -0.1544 -0.0824 

C -0.5231 *** -0.0832 0.0479 -0.0367 -0.0591 -0.0678 -0.1175 -0.0050 0.0643 -0.2239* -0.1638t -0.3226*** 

C:Nratio -0.4868*** 0.1342 -0.0649 0.0075 0.1591t 0.0094 0.0006 0.1127 0.1155 -0.2656** -0.0841 -0.2540** 

N 0.0552 -0.2649** 0.1105 -0.0524 -0.2717** -0.0836 -0.1145 -0.1495 -0.0989 0.0891 -0.0655 -0.0467 

pH3 
-0.0254 -0.2816** -0.0412 -0.1474 -0.3079** -0.1327 -0.1066 -0.0890 -0.1950* -0.5351 *** -0.5297*** -0.3545*** 

BR = basal respiration, SIR = substrate-induced respiration, CRP PCl And PC2= Axis 1 and 2 from principal component analysis of catabolic response 
profiles, PLFA PCl and PC2 = axis 1 and 2 from principal component analysis of phospholipid fatty acids, P(AA use) = proportional amino acid use, 
P(COOH) = proportional carboxylic acid use, cyclic and branched = relative nmoles of cyclic and branched PLFA respectively. 
! Square root transformed, 2log transformed, 3 rank transformed. 
t p < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001 



There is, however, some indirect evidence that the composition of soil microbial 

communities at a broad scale may be important for soil microbial stability. Resistance and 

resilience are often traded-off, with resistant organisms showing low resilience and vice 

versa. This trade-off has been attributed to differences in life-history strategies in plant 

systems (Leps et al. 1982, MacGillivray et al. 1995). In particular, it has been proposed 

that plants with a ruderallife-history strategy tend to be resilient, whereas those with a 

stress-tolerant life-history strategy tend to be resistant (MacGillivray et al. 1995). This can 

be tested indirectly for soil microbes, using the data collected here, by correlating 

resistance and resilience. In all experiments, the resistance and resilience of the soil 

microbial SIR were negatively correlated (Tables 6, 26). This strongly suggests that the 

attributes of the soil community that result in high SIR resistance also result in low 

resilience and vice versa, and therefore that composition may be an important driver of soil 

microbial stability. Identifying what these characteristics are, and the role of disturbance, 

competition, and stress in selecting for them, may be an interesting topic for future 

research. 

Overall, these results suggest that soil microbial composition, along with the composition 

and traits of plant species, may play an important role in ecosystem function and stability. 

These results have several implications for management practices. The fact that C 

substrates can have important impacts on soil microbial function and stability suggests that 

the addition of other substrates such as fertilisers, pesticides or biocontrol agents may have 

downstream effects on soil microbial function and stability. Growing different plants, as in 

crop rotation systems, can enhance or reduce soil microbial function and stability 

(Vandermeer 1990). These changes in belowground function may have implications for 

future plant growth and productivity and C storage in soils, as shown in Chapter 5 (Table 

24, Fig. 21). It is also likely that the composition of higher trophic levels in both 

aboveground and belowground systems will affect soil microbial community structure, 

function and stability (e.g. Bardgett et al. 1998, Mikola 1998, Mikola and Set1iHi 1998a, 

Wardle et al. 2003). The stability of different components of a food web may have effects 

on other components of that foodweb (O'Neill 1976). These interactions may be worth 

further investigation and would increase our understanding of the role of composition in 

ecosystem function and stability. 
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Table 26: Correlation coefficients between the resistance and resilience of soil microbial 

response variables to a drying disturbance in the different experiments. BR = basal 

respiration, SIR = substrate-induced respiration. 

community expt 

variable Harvest 1 Harvest 2 Harvest 3 Harvest 4 expt 

BR1,.1-5 0.1093 -0.2410 -0.3759* 0.2822t 

SIR2 -0.5498*** -0.6234*** -0.6408*** -0.5687*** -0.6400*** 

Glucose use6,7 -0.1606 0.0285 0.0500 -0.0876 -0.1300 

1 Basal respiration, 2 substrate-induced respiration. 3 Rank transformed in harvest 2, 4 log 
transformed in harvest 3 and in the C substrate experiment, 5 square root transformed in harvest 4, 6 

square root transformed in harvest 3 and in the C substrate experiment, and 7 rank transformed in 
harvest 4. 
t p < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001 

6.4 Soil resources as a driver of ecosystem function and stability 

Soil resources are known to have a strong impact on both aboveground and belowground 

function. However, understanding of how resources affect stability is scarce, despite many 

models suggesting that it may be important. In Chapters 3 - 5, some aspects of soil 

resources were measured. In Chapter 5, it was clearly shown that C substrate quality, 

independently of nutrient contents, can have a strong influence on soil microbial function, 

and therefore may be one of the major drivers of decomposition rates and stability. Most 

theories on the relationship between resources and stability, however, focus on nutrient 

availability and the amount of resources, rather than C quality per se. Although the amount 

of C and nutrients was not directly manipulated in the research presented here, correlation 

analysis can be used to determine whether these resources may have been an important 

driver of soil microbial stability. Three of the main models on the relationship between 

resources and stability that can be tested here will be discussed in the following section. 

Trade-offs in the resistance and resilience of plant biomass may be due to trade-offs in 

characteristics associated with nutrient-stress tolerance (MacGillivray et al. 1995). Given 
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that there was a consistent trade-off in the resistance and resilience of the soil microbial 

biomass, nutrient-stress tolerance may be an important factor for soil microbial stability. 

Two of the measures of resources used in the research presented here can be used as 

indicators of nutrient stress. An increase in the C:N ratio of soil can be interpreted as a 

decrease in the availability of N relative to C, and therefore as an indication of increasing 

nutrient stress. The same reasoning applies to C:phosphorus (P) and N:P ratios (Sterner and 

Elser 2002). A second potential measure of nutrient stress is the amount of mineral Nand 

P in the system. The higher the concentration of available nutrients, the less limited by that 

nutrient a system should be. There was some evidence that nutrient stress as indicated by 

these two measures was related to the resistance and resilience of the soil microbial 

biomass in the predicted direction (Tables 7 - 9, 16). However, there were also several 

relationships between these indicators and the stability of SIR that were in the opposite 

direction to that predicted, or that showed no significant trends (Table 7 - 9, 25). Overall, 

this suggests that the traits associated with nutrient stress tolerance may have important 

impacts on soil microbial stability, but only in some contexts. 

Increases in organic C, N and pH may contribute to increasing the resistance of the soil 

microbial biomass (Wardle 1998), and increases in organic C may increase resilience 

(O'Neill 1976, DeAngelis et al. 1989, De Angelis 1992). However, the resilience of the soil 

microbial biomass was unrelated to total C (Tables 9, 25). The suggested relationship 

between the resistance of SIR and resources was supported by some results. For example, 

the resistance of SIR from the Hawaii sequence was correlated positively to total C and N 

(Table 7). Other results, however, contradicted it. For example, a negative rather than a 

positive relationship was found between pH and resistance at the Kokatahi and Hawaii 

sequences (Table 7). Wardle (1998) based his meta-analysis on the seasonal dynamics of 

the soil microbial biomass, which reflects changes in moisture and temperature over 

months or years. This suggests that the factors that control long and short-term changes in 

the soil microbial biomass may be different, or that C, N and pH are only important drivers 

in some contexts, and only for resistance. 

One last model on the relationship between resources and stability focused on the 

resilience of process rates, rather than the stability of biomass. The resilience of C and N 

mineralisation of soils in response to the addition of C or N may vary depending on 
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whether the soil is C or N limited (Bosatta and Berendse 1984). Carbon-limited soils were 

predicted to be stable under all circumstances. However, N-limited soils were predicted to 

be stable under certain circumstances only and may oscillate during recovery (Bosatta and 

Berendse 1984). My results can be used to test these hypotheses to some extent, as the 

resilience of basal respiration and mineral N contents should give an indication of the 

resilience of C and N mineralisation to the drying disturbance, and the disturbance results 

in the addition of C and N. Once again, there was some evidence that supported the model, 

and some that did not. The soil from the C substrate diversity experiment may have been 

primarily N limited by the end of the experiment, because the main C source (the C 

substrates that were added) contained no N. In contrast, the soils from the plant community 

experiment may have been more C limited, as the main source of C for the soil microbes 

was from plant inputs, at least some of which will have contained N. The average 

resilience of basal respiration in the plant community experiment (using the index 

described in Chapter 2) ranged between 0.65 and 0.74 across the four harvests, compared 

to 0.41 in the substrate diversity experiment, suggesting that the C substrate experiment 

soils did have a lower overall resilience than soils from the plant community experiment. 

However, correlations between C:N ratios and the resilience of basal respiration in this 

experiment and others, were not significant, or in the opposite direction to that predicted 

(Table 9, 25). As Bosatta and Berendse's model predicts that N-limited systems can be 

stable in some circumstances, these contradictory results may still fit their model. It 

appears that C and N limitation may playa role in the resilience of C and N mineralisation, 

but in some contexts only. 

These results suggest that soil resources may play an important role in soil microbial 

community properties and function. However, exactly what this role is depends on context, 

as has been suggested in previous studies (Moore et al. 1993, Biggs et al. 1999, Herbert et 

al. 1999). The context-dependent nature of resource effects on stability may be partly 

because soil resources co-vary with many other factors that may have a greater influence 

on function, resulting in significant correlations between resources and ecosystem function 

that do not correspond with cause and effect. Alternatively, resources may be important 

only in some situations. For example, bacteria are thought to be primarily top-down 

controlled, and fungi bottom-up controlled (Mikola and Setiilii 1998b), suggesting that 

resources may be an important driver only where the system is fungi-dominated. To 
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understand the role of soil resources in soil microbial function more fully requires 

experiments that directly manipulate the amount and quality of soil resources. 

Soil microbial stability and its relationship to resources and ecosystem development during 

the three chronosequences examined were highly context-dependent. From the results 

presented in Chapters 4 and 5, it seems that the most likely driver of this context­

dependency was the different composition of each chronosequence's plant and/or soil 

microbial communities, or the different C substrates that those communities deposited. 

Plant and microbial diversity rarely had any impact on soil microbial function or stability, 

suggesting that these factors are not important. Carbon substrate diversity did have an 

impact on ecosystem function in several treatments, but this depended on which 

combination of substrates was added, suggesting that composition was again an important 

driving force. Resources may also be an important dliver of soil microbial function and 

stability, but more experiments are required to determine exactly what their role is. It was 

clear that plants can affect soil microbial function and stability, and that soil microbial 

properties can also affect plant growth. 

6.5 Summary of important findings 

1. The resistance and resilience of the soil microbial SIR was negatively correlated 

2. Soil microbial function and stability was influenced by: 

• Soil resources 

• Plant species composition 

• Carbon substrate composition and diversity 

• Microbial community characteristics, especially its catabolic ability 

3. Soil microbial function and stability was not (or was rarely) affected by: 

8 Plant diversity 

It Soil microbial diversity 
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4. Plant growth can be affected by the type and diversity of C substrates added to a 

soil 
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Appendix I: Averages and standard errors (SE) of control and disturbed values for soil microbial and soil chemical variables at the end of the drying and 

disturbance (dav 0). and after three days of recovery (day 3), for the a) Kokatahi, b) Franz Josef and c) Hawaii chronosequences used in Chapter 

3. Control refers to measurements made on soil that remained at 55% water-holdmg ~upu~u.J UIIUUgIlUUl the measured time period, dry refers to 

measurements made on soil that had been dried from 55% WHC to 10% WHC, and rewet refers to measurements made on dry soil rewet from 10% WHC 

to 55% WHC. 

a) Kokatahi chronosequence 

Basal Respiration (,ug CO2-C g.I h·I) 

Day 3 

Control SE Dry SE Rewet SE Control SE Rewet SE 

0.31 0.07 0.13 0.03 0.23 0.08 0.33 0.09 0.28 0.05 

2 0.37 0.05 0.19 0.03 0.30 0.05 0.42 0.08 0.33 0.06 

3 9.03 3.29 3.10 0.70 18.00 5.11 7.75 2.17 9.02 2.78 

4 9.32 1.20 3.56 0.45 21.96 2.39 9.46 1.28 9.37 1.34 

Substrate-induced respiration (,ug COz-C h·I ) 

Day 3 

Control SE Dry SE Rewet SE Control SE Rewet SE 

1 0.47 0.11 0.10 0.03 0.48 0.15 0.52 0.10 0.58 0.18 

2 0.80 0.12 0.13 0.02 0.53 0.10 0.90 0.14 0.77 0.17 

3 44.51 15.68 10.07 4.21 36.46 11.18 36.91 14.42 38.63 9.33 

4 47.55 9.27 7.74 1.88 35.17 2.77 44.40 2.41 43.35 5.94 



Kokatahi chronosequence cont'd 

Soil mineral nitrogen contents 

Stage Day 0 Day 3 

Control SE Dry SE Control SE Rewet SE 

0.99 0.22 1.32 0.43 1.09 0.41 1.29 0.54 

2 1.34 0.43 1.29 0.67 1.44 0.58 1.33 0.39 

3 209.70 73.17 252.87 103.79 238.12 81.55 285.96 98.52 

4 153.21 19.03 180.56 17.14 176.27 26.98 252.59 25.93 

b)Fram chr-onosequence 

Basal Respiration (JLg go1 hOI) 

age 3 

(years) Control SE Dry SE Rewet SE Control SE Rewet SE 

55 2.83 1.14 0.63 0.34 8.84 4.81 2.72 1.20 2.99 1.34 

130 7.60 1.45 3.34 0.41 12.19 2.09 5.97 1.37 6.27 0.88 

500 14.79 2.67 9.04 2.21 26.30 3.26 13.84 0.32 19.80 2.60 

5,000 16.19 0.99 9.29 1.70 32.88 2.00 13.84 0.48 13.64 1.65 

12,000 12.16 2.16 9.70 1.45 25.64 3.39 10.35 1.23 12.87 1.88 

22,000 5.00 0.38 4.28 LOO 11.82 0.79 4.25 0.41 4.98 1.11 



Franz Josef chronosequence cont'd 

Substrate-induced respiration (/lg COrC g-t hot) 

age Day Day 3 

(years) Control SE Dry SE Rewet SE Control SE Rewet SE 

55 9.48 

130 40_84 3.82 9.79 2_75 30.71 2.81 38.89 K44 32.51 4.44 

500 65.64 12.34 23.09 8.78 45.67 5.02 74.92 9.17 51.87 9.03 

5,000 56.27 8.38 19.76 9.22 53.98 2.10 54.16 1.41 37.13 6.25 

12,000 58.14 8.41 21.74 5.59 57.87 20.97 52.81 1.98 45.49 6.12 

22,000 25.10 1.33 9.53 2.56 18.33 2.33 24.63 2.19 20.67 4.80 

Soil mineral nitrogen contents 

age Day Day 3 

(years) Control SE Dry SE Control SE Rewet SE 

55 48.76 23.84 46.65 21.89 51.99 24.98 63.32 25.84 

130 71.24 22.40 75.81 22.47 79.95 35.93 96.64 42.28 

500 18.09 7.23 90.10 12.14 11.97 7.15 118.16 24.21 

5,000 116.44 41.77 212.22 38.26 125.64 38.37 260.06 39.02 

8.31 3.90 57.36 10.56 11.52 8.21 95.12 28.74 

22,000 1.67 0.53 21.98 3.37 2.11 2.17 39.24 10.99 



c) Hawaii chronosequence 

Basal Respiration (p.g COz-C g.1 

age 

(years) Control SE Dry SE Rewet SE Control SE Rewet SE 

300 17.43369 2.2 9.03 2.11 24.82 3.55 12.94 1.65 13.15 1.39 

2100 19.25619 0.893 8.90 1.02 33.37 2.32 16.09 1.43 15.86 1.21 

20000 17.60725 2.333 4.88 1.59 49.70 6.77 13.57 0.60 14.71 1.78 

150000 16.73177 2.743 8.85 1.73 49.81 1.63 16.26 1.79 15.95 2.15 

1400000 19.88239 1.539 11.07 1.99 43.05 3.37 16.20 0.97 16.09 2.11 

4100000 11.54106 0.326 4.11 0.70 33.55 2.30 9.68 LIO 10.20 1.08 

Substrate-induced respiration (p.g COz-C g.l h·l ) 

age 

(years) Control SE Dry SE Rewet SE Control SE Rewet SE 

300 66.20 6.08 16.74 3.68 41.06 6.01 

2100 82.37 1.27 23.99 2.17 57.82 1.79 75.02 13.00 49.73 3.86 

20000 87.18 16.63 5.72 2.35 72.78 10.95 56.75 5.87 49.70 6.49 

150000 94.18 14.44 14.48 3.59 88.42 5.19 101.08 4.23 77.23 9.34 

1400000 90.76 9.95 24.76 6.81 82.62 2.44 71.13 9.42 64.41 7.08 

4100000 69.21 3.47 5.70 1.51 48.58 1.97 44.49 7.37 42.53 7.67 



Hawaii chronosequence cont'd 

Soil mineral nitrogen contents 

Site age Day 0 Day 3 

Control SE Dry SE Control SE Rewet SE 

6.31 1.30 0.57 54.49 3.87 

2100 10.47 1.58 62.52 3.56 5.77 1.04 83.02 7.27 

20000 138.62 20.34 180.47 33.34 157.52 24.82 275.16 38.02 

150000 95.78 18.25 161.14 22.85 104.47 19.95 213.96 28.42 

1400000 85.44 7.25 163.19 8.99 94.51 6.30 194.45 19.16 

4100000 35.79 6.75 51.07 6.76 33.31 8.30 123.99 15.46 



Appendix II: Averages and standard errors (SE) of control and disturbed values for soil microbial variables at the end ofthe drying and rewetting 

disturbance (day 0), and after three days of recovery (day 3), for a) Harvest 1, b) Harvest 2, c) Harvest 3 and d) Harvest 4 (Chapter 4). Control refers to 

measurements made on soil that remained at 55% water-holding capacity (WIlC) throughout the measured time period, dry refers to measurements made 

on soil that had been dried from 55% WHC to 10% WHC, and rewet refers to measurements made on dry soil rewet from 10% WHC to 55% WIle. 

a) Harvest 1 

Basal Respiration (pg C(h-C g-1 

Control SE Dry SE Rewet SE Control SE Rewet SE 

Bare 1.05 0.04 0.20 0.02 2.36 0.09 0.95 ,0.09 1.07 0.12 

C 1.39 0.08 0.16 0.05 2.86 0.16 1.25 0.12 1.44 0.10 

R 1.65 0.16 0.21 0.04 3.70 0.19 1.53 0.12 1.39 0.14 

P 1.92 0.15 0.23 0.06 4.24 0.46 1.65 0.14 1.97 0.14 

CR 1.56 0.17 0.13 0.04 3.34 0.16 1.49 0.17 1.48 0.13 

CP 2.01 0.16 0.17 0.04 4.47 0.32 1.43 0.11 1.84 0.13 

RP 1.86 0.12 0.22 0.06 4.43 0.25 1.47 0.08 1.78 0.15 

CRP 1.94 0.19 0.21 0.06 4.43 0.54 1.46 0.15 1.61 0.12 



Harvest 1 cont'd 

Substrate-induced respiration (p.g COz-C g01 h01) 

Day Day 

Control SE Dry SE Rewet SE Control SE Rewet SE 

Bare 3.61 0.25 0.11 0.02 3.29 0.10 

C 4.96 0.18 0.05 0.02 4.14 0.18 4.59 0.25 4.50 0.38 

R 6.04 0041 0.08 0.03 4.92 0.24 6.11 0.22 5.60 0.29 

P 6.36 0.12 0.09 0.04 5.13 0.18 6.40 0.06 7.83 0.31 

CR 5.62 0.24 0.07 0.04 4.58 0.39 5.50 0.08 5.54 0.22 

CP 7.06 0047 0.09 0.02 6.21 0049 6.88 0.56 7.96 0083 

RP 6.57 0.16 0.12 0.02 5.90 0.26 6.84 0.31 8.18 0043 

CRP 7.04 0048 0.06 0.03 6.21 0.51 6.80 0.63 7.25 0.82 



Harvest 2 

Basal Respiration (p.g COz-C g.l h·I ) 

Treatment Day 0 Day 3 

Control SE Dry SE Rewet SE Control SE Rewet SE 

Bare 0.94 0.07 0.05 0.02 2.12 0.12 0.64 0.15 0.92 0.06 

C 1.41 0.10 0.20 0.05 3.69 0.22 1.15 0.09 1.14 0.14 

R 1.76 0.10 0.15 0.05 3.54 0.20 1.28 0.17 1.49 0.18 

p 1.91 0.06 0.15 0.05 5.60 0.24 1.41 0.22 2.00 0.06 

CR 1.56 0.10 0.00 0.00 3.60 0.15 1.36 0.09 1.33 0.15 

CP 1.84 0.16 0.09 0.04 5.84 0.32 1.74 ,0.12 1.80 0.13 

RP 1.83 0.08 0.09 0.05 5.19 0.26 1.26 0.12 1.53 0.17 

CRP 1.75 0.07 0.07 0.02 4.73 0.20 1.35 0.11 1.42 0.26 



Harvest 2 coni'd 

Substrate-induced respiration (p,g COrC g.t h·I ) 

Day 3 

Control SE SE Rewet SE Control SE Rewet SE 

Bare 3.47 0.19 0.18 0.07 3.27 0.05 3.65 

C 6.08 0.34 0.16 0.05 5.48 0.27 5.66 0.18 5.40 0.17 

R 6.54 0.23 0.15 0.05 5.23 0.26 6.62 0.31 6.70 0.34 

p 6.98 0.28 0.16 0.08 6.42 0.36 6.87 0.30 9.17 0.39 

CR 6.54 0.30 0.18 0.05 5.31 0.24 6.40 0.24 6.19 0.36 

CP 7.49 0.61 0.16 0.07 7.18 0.24 7.88 0.47 9.62 0.32 

RP 7.55 0.33 0.22 0.04 6.83 0.24 7.27 0.68 9.11 0.79 

CRP 6.81 0.26 0.20 0.04 6.35 0.20 6.82 0.38 8.27 0.49 



c) Harvest 3 

Basal Respiration (p-g COz-C g.1 h·l
) 

Treatment 3 

Control SE Dry SE Rewet SE Control SE Rewet SE 

Bare 1.27 0.07 0.18 0.04 2.70 0.13 1.07 0.12 1.26 0.08 

C 2.33 0.24 0.31 0.07 5.70 0.23 2.14 0.10 1.86 0.23 

R 2.25 0.12 0.18 0.07 5.10 0.48 1.98 0.16 1.88 0.16 

P 3.13 0.25 0.31 0.06 9.14 0.57 2.83 0.16 3.44 0.13 

CR 2.61 0.05 0.27 0.05 6.44 0.32 2.41 .0.10 2.38 0.08 

CP 3.15 0.16 0.38 0.06 8.11 L05 2.59 0.14 3.08 0.18 

RP 3.07 0.18 0.24 0.07 7.35 0.29 2.87 0.19 2.77 0.16 

CRP 2.74 0.26 0.32 0.08 8.10 0.62 2.51 0.22 2.84 0.26 



Harvest 3 cont'd 

Substrate-induced respiration (/Lg COrC g-! 

Day 3 

Control SE Dry SE Rewet SE Control SE Rewet SE 

Bare 4.29 0.14 0.18 0.05 3.86 0.15 4.10 0.10 4.08 0.12 

C 11.33 0.68 0.42 0.09 9.39 0.52 10.98 0.63 9.37 0.80 

R 9.24 0.54 0.27 0.06 7.98 0.48 9.02 0.56 8.86 0.68 

P 12.90 0.51 0.35 0.13 10.48 0.24 13.74 0.26 16.82 0.65 

CR 11.41 0.23 0.20 0.04 9.60 0.18 11.32 0.30 10.71 0.39 

CP 12.32 0.37 0.37 0.14 10.14 1.04 12.29 0041 14.30 0.54 

RP 12.04 0.63 0.28 0.07 10.06 0.48 11.57 0.75 12.52 1.16 

CRP 12.30 1.25 0.45 0.13 11.45 0.72 12.88 1.47 15.16 1.59 



d) Harvest 4 

Basal Respiration (Ilg CO,z-C got hot) 

Day 3 

Control SE Dry SE Rewet SE Control SE Rewet SE 

Bare 1.10 0_17 0.18 0.04 2.13 0.12 0.06 

C 1.70 0.12 0.27 0.04 5.32 0.38 1.58 0.07 1.71 0.03 

R 1.95 0.17 0.24 0.03 4.82 0.26 1.57 0.22 1.95 0.12 

P 2.25 0.29 0.20 0.05 8.05 0.52 2.42 0.18 2.75 0.29 

CR 2.02 0.08 0.25 0.07 5.85 0.27 1.90 ,0.11 2.09 0.12 

CP 2.37 0.11 0.16 0.05 6.70 0.31 1.94 0.07 2.28 0.12 

RP 2.34 0.05 0.22 0.06 6.35 0.12 1.96 0.05 2.39 0.09 

CRP 2.15 0.10 0.15 0.06 6.05 0.28 1.94 0.08 1.77 0.23 



Harvest 4 cont'd 

Substrate-induced respiration (Jlg COz-C g-l h-1) 

Day 3 

Control SE Dry SE Rewet SE Control SE Rewet SE 

Bare 3.67 0.12 0.11 0.05 3.04 0.18 3.52 0.15 3.48 0.26 

C 10.70 0.39 0.13 0.05 8.53 0.60 9.54 0.46 9.58 0.41 

R 8.15 0.40 0.13 0.07 6.57 0.29 7.37 0.64 8.41 0.40 

P 12.48 0.87 0.24 0.04 9.47 0.75 12.58 0.66 14.93 1.43 

CR 10.26 0.79 0.15 0.02 9.05 0.33 10.64 0.15 10.86 0.20 

CP 13.51 0.49 0.18 0.06 11.01 0.48 12.86 0.45 12.81 0.59 

RP 11.58 0.36 0.25 0.10 9.23 0.28 11.02 0.31 12.05 0.49 

CRP 12.59 0.77 0.09 0.03 9.53 0.62 11.26 0.49 10.17 0.70 



Appendix ill: Averages and standard errors (SE) of control and disturbed values for a) basal respiration and b) substrate-induced respiration at the end of 

the and rewetting disturbance (day 0), and after three days of recovery (day 3), for the soils from the carbon substrate experiment (Chapter 5). 

Control refers to measurements made on soil that remained at 55% water-holding capacity (WHC) throughout the measured time period, dry refers to 

measurements made on soil that had been dried from 55% WHC to 10% WHC, and rewet refers to measurements made on drv soil rewet from 10% WHC 

to 55% WHe See Table 18 for treatment codes. 

a) Basal Respiration (flg 

Control SE Dry SE Rewet SE Control SE Rewet SE 

A 1.89 0.42 2.90 0.23 

B 2.30 0.41 0.21 0.01 8.21 1.12 2.07 0.11 2.76 0.20 

C 3.89 0.49 0.13 0.03 9.96 0.52 3.15 0.45 7.62 0.50 

D 3.92 0.40 0.08 0.03 11.29 1.06 2.73 0.27 3.79 0.58 

E 1.43 0.12 0.10 0.04 5.62 0.32 1.21 0.08 1.72 0.10 

F 1.63 0.23 0.13 0.05 5.85 0.25 1.71 0.05 1.98 0.10 

G 4.66 0.74 0.08 0.02 8.58 0.62 4.58 0.88 5.80 0.76 

H 3.38 0.37 0.11 0.04 9.55 0.68 3.10 0.27 5.37 0.66 

AB 2.71 0.10 0.21 0.08 10.33 0.46 1.98 0.17 2.73 0.20 

CD 3.87 0.17 0.06 0.01 11.82 0.82 3.12 0.37 6.45 0.69 

EF 1.67 0.02 0.18 0.03 4.37 0.65 1.30 0.17 1.71 0.11 

GH 3.77 0.38 0.18 0.05 8.98 1.27 3.51 0.36 5.46 0.54 



Basal respiration cont'd 

Day 
Control SE Dry SE Rewet SE Control SE Rewet SE 

AC 3.68 0.43 0.20 0.03 8.89 0.85 

BG 3.34 0.21 0.19 0.04 8.84 0.78 3.08 0.24 4.59 0.35 

DE 2.84 0.22 0.20 0.07 9.81 0.91 2.18 0.20 3.28 0.44 

FH 2.36 0.26 0.17 0.07 8.11 0.52 2.32 0.11 3.12 0.33 

ABGH 3.00 0.62 0.25 0.05 9.67 0.81 2.98 0.40 3.72 0.30 

CDEF 2.53 0.14 0.17 0.04 7.87 0.49 2.01 0.25 4.19 0.29 

ACFH 2.75 0.12 0.23 0.07 7.74 0.66 2.45 0.19 3.43 0.28 

BGDE 3.27 0.14 0.15 0.05 10.03 0.18 2.77 0.26 3.49 0.49 

ABCDEFGH 2.75 0.10 0.20 0.07 8.89 0.40 2.46 0.35 3.14 0.57 

0 0.34 0.10 0.04 0.02 1.05 0.19 0.33 0.03 0.47 0.05 



Substrate-induced respiration (p,g C~-C g"l 

Treatment 

Control SE Dry SE Rewet SE Control SE Rewet SE 

A 42.06 1.17 0.26 0.05 29.15 1.27 

B 35.91 6.10 0.27 0.02 31.25 1.86 37.58 4.99 46.99 3.10 

C 15.10 0.93 0.11 0.02 11.86 0.52 14.18 1.11 18.72 0.56 

D 17.48 0.53 0.07 0.Q3 15.86 1.13 20.70 3.62 20.34 1.56 

E 27.48 2.52 0.15 0.05 21.60 2.24 27.70 3.00 23.75 2.41 

F 13.07 1.14 0.12 0.03 9.64 0.59 12.85 1.07 13.58 0.71 

G 12.15 1.63 0.17 0.10 8.08 0.61 11.58 1.84 14.63 1.97 

H 11.25 0.66 0.11 0.05 10.07 1.64 9.31 1.04 14.73 1.04 

AB 43045 2.67 0.17 0.03 28.21 1.83 35.17 3.28 38.77 7.45 

CD 17.51 1.47 0.07 0.02 15.18 1.39 15.73 0.83 17.54 0.96 

EF 26.60 1.89 0.14 0.04 18.35 1.56 23.37 2.02 21.50 1.16 

GH 10.22 0.82 0.15 0.04 8.02 0.96 10.39 0.70 15.50 1.60 

AC 27.43 1.59 0.31 0.05 22.90 0.93 28.22 0.84 35.69 1.69 

BG 24.58 1.80 0.15 0.03 18.29 lAO 26.38 2.95 30.11 3.31 

DE 19.55 1.36 0.14 0.02 17.84 1.13 19.43 1.77 25.40 1.60 

FH 10.99 0.54 0.26 0.04 10.54 0.44 10.90 0.85 13.37 0.84 



Substrate-induced respiration cont'd 

Control SE Dry SE Rewet SE Control SE Rewet SE 

ABGH 28.20 1.55 0.18 0.08 20.40 0.91 27.65 2.67 32.57 3.19 

CDEF 15.58 0.92 0.18 0.03 14.82 0.21 14.85 0.77 19.05 1.66 

ACFH 21.68 0.41 0.23 0.10 22.52 5.07 21.59 L08 24.69 L05 

BGDE 24.50 1.19 0.16 0.05 21.24 0.99 22.82 1.75 28.34 2.90 

ABCDEFGH 21.72 1.61 0.08 0.03 18.65 1.41 20.67 1.47 27.40 1.29 

0 1.93 0.10 0.04 0.01 1.47 0.17 1.95 0.17 2.66 0.16 
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