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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctorate of Philosophy.Abstract 

Rumen Methanogen Effects of Different Diets in Pature Based Dairy Cows 

of South Island  

 

by 

Pavanpreet Kaur Benepal 

 

The South Island of New Zealand offers a novel medium for studying methanogen 

community because dairy cows are fed almost exclusively on pasture and yet have unusually 

high milk production due to high dry matter intakes from high quality pastures. This study 

was conducted to investigate the population structure and diurnal activity profiles of the 

resident methanogen community in pasture fed cows in this system, using the effect of 

various dietary supplementations. Since there are no current techniques available to 

satisfactorily measure actual methane production within the diurnal period in free grazing 

animals, molecular techniques were adapted and used for this research. Denaturing gradient 

gel electrophoresis (DGGE) was used for the intial screening of the populations. Similar to 

previous studies, Methanobrevibacter sp.was found to be the predominant methanogen. 

Though the supplements (grain, fat and monensin) used have previously been reported to alter 

rumen methanogen community, there were very few observed differences in the methanogen 

community structure detected with DGGE in the present experiment. It was concluded that 

this method is relatively insensitive in representing any smaller rumen methanogen shifts in 

response to dietary changes in these pasture based systems, possibly because these 

supplements did not act to eliminate methanogen groups, but to alter their activity, and this 

method was not suitable for assessing any changes within the diurnal period. 

qPCR and qRT-PCR targeting the mcrA gene were then used for highly specific 

quantification of methanogen quantity and gene expression. However, the available methods 

for extracting RNA from rumen samples were not satisfactory to yield the necessary high 

quality RNA from rumen samples with high quality forage diets. A highly effective method 

was developed by adaptation from two existing methods of Whitford et al., (1998) and 

Gambino et al., (2008) which could simultaneously extract RNA and DNA from the rumen 
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samples. It was demonstrated to be highly effective for mcrA cDNA (mRNA) detection, a 

critical requirement for assessing activity of methanogens in this study. 

The applicability of this qPCR and qRT-PCR technique to quantify changes in methanogen 

numbers and gene expression was then tested on pen fed, ruminally fistulated cattle where the 

diet was allocated either once or twice daily, and rumen samples were obtained every 4h for 

24h periods. mcrA gene expression, an indicator of methanogen activity, was significantly 

reduced (p≤0.05, t=4.90) in twice daily fed cattle, but no significant (p≤0.05) change in 

methanogen numbers was detected. A clear diurnal pattern of methanogen activity in forage 

fed cattle was established, which is the first report of its kind. This technique was then used in 

a cross over design experiment with ruminally fistulated cows grazing high quality pastures, 

and serial diurnal rumen sampling, comparing a treatment group of either an administered 

methanogen inhibitor or an unsupplemented control. The method detected a decrease in 

methanogen numbers in the treatment group after 15d of fish oil supplementation (p≤0.05, 

t=5.90) but the greatest effect was observed on methanogenesis activity (p≤0.05, t=7.90). 

There was a clear diurnal pattern of methanogen activity related to the grazing behaviour of 

animals, with a significant increase (p≤0.05, t=3.83) in mcrA expression observed after 8h 

post prandially. This understanding of diurnal methanogen activity adds significantly to the 

knowledge of enteric methane production, and may guide the future methane mitigation 

strategies using targeted supplementation strategies within the diurnal cycle to mitigate the 

short term production of methane in ruminants. 

 

Keywords: methane, DGGE, mcrA, qPCR, qRT-PCR, pasture, kale, fish oil, feeding 

frequency, diurnal pattern, grains, monensin, fat, grazing, rumen, gene expression, VFA, 

ruminants. 
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Chapter 1 

Introduction 

The increased demand for livestock products has led to a growth of the livestock sector. 

Production of milk has increased by 118% and of meat products by 298% over the last 25 

years (Steinfeld and Wassenar 2007). But the increased production is coupled with an 

increase in greenhouse gas (GHG) emissions. Agriculture was responsible for 10–12% of 

total global non-carbon dioxide GHG emissions in 2005 with a 17% increase in methane 

(CH4) and nitrous oxide (N2O) from 1990 to 2005 and both gases contributing equally to the 

increase (Smith et al. 2007). Methane is considered 23-25 times more powerful than carbon 

dioxide (CO2) in its global warming potential (Forster et al. 2007). The enteric methane 

fermentation from ruminants accounted for about 32% of total non-CO2 emissions from 

agriculture in 2005 (Grainger and Beauchemin 2011; Smith et al. 2007). It has been proposed 

that if methane emissions grow in direct proportion to projected increase in livestock 

numbers, then global methane emissions from livestock production are expected to increase 

60% by 2030 (FAO 2003; Grainger and Beauchemin 2011). The situation is even more 

sensitive for New Zealand (NZ) because it has an economy based upon agriculture which 

accounts for 48% of GHG emissions from NZ and methane emissions (mostly from 

ruminants) contributed 35% of GHG emissions from NZ in 2008 (Pinares-Patino et al. 2009).  

Though the methanogens produce methane, a significant GHG, yet their presence in 

gastrointestinal tract of ruminants is not without reason. The ruminant effectively utilises 

complex carbohydrates, present in the form of cell wall constituents, in a manner not possible 

for monogastrics, and this extends the range of environments from which they can produce 

meat, fibre or milk. This unique digestive ability of ruminants is due to the presence of 

various anaerobic microorganisms comprising bacteria, protozoa, fungi and archaea in their 

digestive tract, the majority of which are symbiotically associated (Hobson 1997). These 

microorganisms ferment complex plant constituents under anaerobic conditions and provide 

the host with energy sources in the form of volatile fatty acids (VFAs) (Peters et al. 1990). 

Along with VFAs, hydrogen (H2) and CO2 are the major end products of fermentation by 

rumen bacteria, fungi and protozoa (Martin et al. 2010). The H2 though, does not accumulate 

in the rumen because it is rapidly consumed by other microorganisms present in the rumen 

through the process called interspecies Hydrogen transfer (Moss et al. 2000). This benefits the 

growth and activity of H2  producing bacteria by removing excess H2 (substrate inhibition) 

and  ensures continued degradation of fibrous plant material (Hegarty and Gerdes 1999; 
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Klieve 2009). The methanogens are the most efficient H2 consumers in the rumen and reduce 

CO2 to form methane. But this methane produced in rumen also causes a loss of 2-12% of the 

digestible energy of animals which could otherwise be utilized by animal (Johnson and 

Johnson 1995). This is significant in the commercial animal production and thus there has 

been a considerable interest to mitigate methane production in ruminants.   

In the South Island (SI) of NZ, production system is different from other pasture based 

systems because it relies almost exclusively on a pasture based diet, but has a much higher 

production associated with this. In forage based systems, dry matter intake (DMI) is the 

critical factor for achieving high production because in other production systems such as the 

total mixed ration (TMR), any shortfalls in energy or protein can be managed by feeding the 

required amount of concentrates. In SI, the pasture is of an unusually high digestibility (mean 

monthly ME≈11-12 MJ/kg DM) with high crude protein (Gibbs and Laporte 2009), which 

supports high DMI by animals, and therefore high production per hectare.  

The high pasture quality is produced by a sophisticated management system where the pre 

and post grazing herbage mass is maintained from 3200 to 1450kg DM/ha (Gibbs and Laporte 

2009). This reduces the amount of leftover dead matter, ensuring availability of a higher 

quality pasture to animals and also increases pasture utilization (Lambert et al. 2004) by 

maintaining a higher stocking rate. North Canterbury in the South Island has the highest NZ 

average number of cows per hectare (3.31), followed by South Canterbury (3.20) and North 

Canterbury also has the largest average herd size (757). Along with this high stocking rate, the 

highest average production per dairy herd (285,412 kg of milk solids), per hectare (1,249kg) 

and per cow (377kg) were also recorded in North Canterbury (LIC 2011), South Island 

average herd sizes are increasing faster than North Island, likely due in part to increased 

profitability due to higher production.  

This pasture management system is almost always associated with a specific daily grazing 

management that uses a single allocation of pasture, and this in turn alters the intake patterns 

of the cows to a short period of daily intake in which they eat the bulk of their ration (Gibbs 

and Laporte 2009). This does change the rumen patterns of energy and protein metabolism, 

and so is likely to also alter methane production. In addition, the success of this pasture 

management system in producing high yields of energy dense swards has encouraged the 

export of this approach to other temperate pasture based systems internationally, including 

South America and Ireland. As a consequence, an increasing number of dairy cattle are raised 

under this system. 
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It has been observed that pasture based diet might have higher methane emissions per kg 

DMI, but when measured over unit of product produced, the net carbon emissions might 

actually be lower than TMR based systems (Nagel et al. 2003). Further, the quality of pasture 

is a major governing factor for optimum DMI and the resultant methane emissions (Benchaar 

et al. 2001; Boadi et al. 2004). It has been shown that at high intakes, methane production per 

kg DM of diet can be reduced by 20 to 40% (Johnson and Johnson 1995), and by increasing 

milk production the methane per kg milk produced can be decreased by ≥16% (O'Mara 2004). 

Thus, the South Island production system offers a novel medium for analysing the 

methanogen community in high producing animals supported by a higher DMI from high 

quality pastures. 

But no study of the rumen methanogen community in cattle, or the effects of the grazing 

system typically used on methanogen community structure or activity profiles within the 

diurnal cycle, has been conducted to date in this unique and fast growing system. A 

significant challenge is posed by the requirement to investigate the animals in actual grazing 

conditions because both the actual dynamics of rumen methanogens and any consequent 

mitigation strategies can only be satisfactorily studied under normal grazing conditions. 
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Chapter 2 

Review of Literature 

2.1 Techniques for studying methanogenesis 

In order to investigate methanogenesis and how the exaggerated diurnal pattern of rumen 

activity may open possible mitigation strategies in South Island pasture based systems, it is 

important to study the rumen methanogen community and the methanogenesis under actual 

grazing conditions. The techniques available for measuring methane production are discussed.   

2.1.1 Estimation techniques 

The techniques which have been developed for enteric methane emission measurement can be 

classified into direct and indirect measurements. The direct measurements include methane 

measurements through total or partial enclosure of animals while indirect methods include use 

of tracers or estimations based upon rumen fermentation characteristics (Pinares-Patino and 

Clark 2008). 

2.1.1.1  Respiration calorimetry 

This is a technique in which direct measurement of gas emissions from animals can be done. 

The animals are housed in closed chambers and samples of gas can be collected as per 

required interval. This method has been used for measuring methane emissions in ruminants 

across a range of studies (Denman et al. 2007; Kinsman et al. 1995; McCrabb and Hunter 

1999). Significant differences in methane emissions between control and 

Bromochloromethane supplemented animals (Denman et al. 2007) or ciliated and ciliate free 

cattle (Whitelaw et al. 1984) were detected using this technique. But a limitation of this 

technique is that the animals are kept in confined space and have to be fed manually which is 

similar to the stall fed animals but may not accurately imitate the pasture grazing systems. As 

it has been recognised (Pinares-Patino et al. 2007) that voluntary feed intake varies with the 

quality of pasture and manner of feeding (stall fed vs. grazing), which further effects other 

rumen parameters such as rumen fill, rate of fermentation and passage, the overall methane 

production from an animal in controlled conditions may be different as compared to the actual 

grazing conditions (Pinares-Patino et al. 2003a; c). Further, the extensive use of this technique 

is limited by the number of animals which could be analysed and the relative costs. 
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2.1.1.2 Sulphur hexafluoride (SF6) estimation technique 

The SF6 tracer technique was developed at Washington State University by Johnson and 

Johnson (1995). In this technique a known source of SF6 , a calibrated brass permeation tube 

of known weight, dimensions and SF6 release rate, is placed in the rumen  prior to the 

experiment (Ulyatt et al. 1999). The experimental animals are fitted with a halter which 

supports an inlet tube placed close to the nose and is connected through a capillary tube and 

valve to a PVC collection canister. The methane emission rate (QCH4) is calculated as: 

          QCH4 = QSF6  X  ([CH4 sample] – [CH4 ambient]) / ([SF6 sample] – [SF6 ambient])    

where, QSF6 is the calibrated rate of permeation from the SF6 tube and [CH4] and [SF6] are 

concentrations of methane and sulphur hexafluoride, respectively, in the collection yoke and 

background concentrations. 

 Many studies in pastoral systems of New Zealand, Australia and other countries have used 

this technique for methane production estimation (Cavanagh et al. 2008; Munger and Kreuzer 

2008) and there are some reports that this technique is broadly comparable to respiration 

calorimetry methods (Boadi and Wittenberg 2002; Grainger et al. 2007). It has been used for 

measuring methane emissions from ruminants for national inventory purposes using a large 

number of animals in actual grazing conditions (Cavanagh et al. 2008; Clark et al. 2008; 

Swainson et al. 2008). It has been able to show significant differences in methane emissions 

from animals fed fodder of varying digestibility (Chaves et al. 2006; DeRamus et al. 2003), or 

upon supplementations (Grainger et al. 2008; Jordan et al. 2006b). But some studies (Ulyatt 

et al. 1999; Wright et al. 2004) have found 2-3 fold variability in methane estimations using 

calorimetry and SF6 technique. Therefore, the reliability of this technique has been 

questioned. Also, the methane production estimation using this technique has been found to 

be dependent upon the permeation rate of the SF6 tube. It has been found to be higher for the 

tubes with higher permeation rates than those with lower permeation rates (Pinares-Patino and 

Clark 2008). Thus it is quite possible that animals with tubes having higher permeation rates 

would record higher methane production levels than those with lower permeation rate tubes. 

Researchers have even found differences between the pre-experimental and post-experimental 

permeation rates of the tubes (Pinares-Patino and Clark 2008).  

An important point to consider is that this technique does not account for the methane 

released through flatus. Normally the methane production from hindgut is about 13%, but  

there has been evidence to show that under cold conditions, a higher feed intake or intake of 

highly digestible fodder, where there is an increase in ruminal passage rate, hindgut may 
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account for up to 32% of the total methane production (Kennedy and Milligan 1978). 

Therefore this technique needs to be corrected for any dietary modifications. This is 

significant in the South Island Production system where animals have high DMI of highly 

digestible fodder. Grainger et al., (2007), found that the methane production rate from animals 

fed different diets actually depended upon the technique used for methane estimation i.e. 

chamber vs. SF6.  Williams et al., (2011) have reported that even the atmospheric 

concentration of methane can alter the methane production estimates. These shortcomings 

raise some serious issues regarding the use of this technique in studies where subtle 

differences over a diurnal period have to be estimated accurately.  

Importantly, the errors associated with this method necessitate large sample group numbers, 

and multiple day sampling. These requirements invalidate the use of the method for 

investigation of rumen methane production within the diurnal cycle.  

2.1.1.3 Inverse dispersion technique  

This technique was developed by Gao et al., (2011) to measure the methane from a herd of 

feedlot cattle. This technique was reported to be suitable for analysing the methane production 

pattern from a herd over a diurnal period. The diurnal pattern was reported to be related to the 

grazing pattern of animals. But this technique has its limitations. It is not possible to analyse 

individual methane productions from animals given different treatments in a herd 

measurement and cannot accurately measure the actual rumen methane production within the 

diurnal windows due to the characteristic lag between rumen methane production and its 

eructation. 

Another tunnel method (Lockyer 1997) has been used to measure methane emissions from 

sheep and calves. The animals are put in portable tunnels, and the emissions can then be 

measured from the enclosed atmospheric changes. The methane emissions can be measured 

from animals grazed on different types of pastures or under different treatments with a high 

degree of accuracy (Judd et al. 1999; Murray et al. 2001; Murray et al. 1999). This method 

however has its limitation in the ability to confine adult cattle under portable tunnels. While 

this method has been used for small ruminants, there are no extant cattle studies, and similar 

to the inverse dispersion technique, it also uses multiple animals and relies on eructated 

methane.  

2.1.1.4 In vitro technique 

This technique has been used extensively in understanding the methanogen community and its 

behaviour under modified environment. It can be performed by two ways. One method is 
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when the rumen contents are taken from the rumen and incubated for a period of 1-2 hours. 

The gas produced within that incubated sample is then analysed by Gas Chromatography 

(GC) in order to estimate the potential of methane production from that sample. Other method 

is through using a Rumen Simulation Technique (RUSITEC) (Czerkawski and Breckenridge 

1977; Durand et al. 1988). In this the rumen contents are collected and put in chambers where 

they can be incubated for a long period by simulating the rumen conditions. Simulation of 

rumen environment is achieved by adding buffers to maintain the pH. The chambers are 

equipped with gas collection apparatus and samples of gas can be collected and analysed by 

GC. The impact of external modifications such as addition of fats or other chemicals on 

different microbial communities inside the chambers can also be analysed (Dohme et al. 

2000; 2001; Dong et al. 1997; Machmuller et al. 1998; Neumann et al. 1999). This technique 

has provided valuable information to understand the impact of various mitigation options on 

the rumen methanogenic community (Dong et al. 1999; Durand et al. 1988; Hess et al. 2003; 

Newbold et al. 2005; Sliwinski et al. 2003; Wallace et al. 1981).  

Though this technique has provided good foundation information, it cannot possibly replicate 

actual rumen conditions. The samples drawn from rumen contents can only tell the potential 

of that sample for methane production but not the actual methane production at that time. 

Rumen has a very dynamic environment where there is a constant influx and outflow of 

various biological chemicals such as saliva, acids, enzymes, etc. along with rapid exchange of 

cations and anions (Wales et al. 2004). H2 which is the major end product of rumen 

fermentation is not allowed to accumulate and is being rapidly utilized for the fermentation to 

proceed continuously. This may not be the case in case of in vitro technique. There is every 

possibility that H2 may accumulate over time and may cause substrate inhibition thereby 

affecting the rate of fermentation. It may lower the pH and it has been reported that not all 

microorganisms function optimally at a lower pH (Russell and Wilson 1996). Further, as 

discussed in section 2.1.2, methanogens have proven difficult to culture in laboratory 

conditions because of their very specific requirements for substrates (Wolin et al. 1997). Thus 

it is possible that many organisms who have an active role to play in rumen methane 

production in an actual rumen environment may not be contributing significantly under in 

vitro conditions. This may have a significant impact on the conclusions which we can draw 

from such experiments. This technique therefore is limited towards its use for conducting 

studies in animals under actual grazing conditions. 

Since the methods commonly used to measure methane production are not suitable for 

analysing diurnal methane production in pasture based systems, an alternative approach could 
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be the use of molecular techniques. But before discussing the molecular techniques for 

studying methanogen community, it is important to understand the specific methanogen 

structure and biochemistry which form the basis for any molecular study. 

2.1.2 Structure and biochemistry of methanogens  

The methanogens are classified under a domain Archaea which has been defined as a separate 

domain from bacteria and eukaryotes based on the specific 16S ribosomal sequences (Schafer 

et al. 1999; Woese et al. 1978). Chemically, the archaea differ from bacteria by the presence 

of membrane lipids consisting of diether or tetraether linked isoprenoids (De Rosa and 

Gambacorta 1988) and lack of muramic acid containing peptidoglycans, though some species 

may have a pseudomuramic acid (Kandler and Hippe 1977). Another significant difference 

between the archaea and bacteria is in the structure of archaeal ribosomes. The subunit 

structure of archaeal ribosomes has a closer resemblance to the eukaryotes than the true 

bacteria and the transcription machinery i.e. the structure of DNA dependent RNA 

polymerase is also different (Schafer et al. 1999).  

Within this domain, archaea are highly diverse organisms (Boone et al. 1993). In addition to 

methanogens there are two other physiologically distinct groups of archaea; the 

thermoacidophiles and the halophiles which differ widely in their energy transducing 

mechanisms. Some rely on aerobic as well as anaerobic respiration while some halobacteria 

use photosynthetic processes for producing some of their energy (Lewalter and Muller 2006)  

The methanogens are an ubiquitous group of microbes and can exist in extreme conditions 

from highly thermophilic or mesophilic to as low as 2
◦
C temperatures, from non-saline to 

halophilic, strictly anaerobic to those having an ability to survive in aerobic and water 

conditions (Zinder 1993). Their distinct structural and functional characteristics e.g. the 

presence of specific membrane lipids which maintain a very low ion permeability of 

membranes and allow chemiosmotic charge separation under high temperature or at very low 

pH conditions help in the survival of methanogens in extreme conditions (Zinder 1993).   

Eight species of methanogens have so far been reported to be cultured from the rumen, 

namely: Methanobrevibacter ruminantium, Methanosarcina barkeri, Methanosarcina mazei, 

Methanobacterium formicicum, Methanobacterium bryantii, Methanobrevibacter olleyae, 

Methanobrevibacter millerae, and Methanomicrobium mobile (McAllister et al. 1996; Zhou 

et al. 2011). Only Methanobrevibacter ruminantium and Methanosarcina barkeri have been 

found at populations greater than 10
6
ml

-1
in rumen fluid and are thus the only two assumed to 

play a major role in rumen methanogenesis (Boadi et al. 2004; McAllister et al. 1996; Moss et 
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al. 2000; Ouwerkerk et al. 2008). Many uncultured species/ strains of methanogens have been 

isolated with culture independent techniques like 16S rRNA gene clone libraries and DNA 

sequence analysis (Klieve 2009; Klieve et al. 2009; Ouwerkerk et al. 2008; Wright et al. 

2008). These species owing to very specific requirements for particular substrates and 

physiological conditions are difficult to culture.  

Methanogens produce methane through a process called methanogenesis and use a very 

narrow range of substrates which include H2 and CO2 along with other substrates like  formate, 

acetate, methanol, methylamines, dimethylsulfide or some alcohols (Wolin et al. 1997) The 

formation of methane is a character unique to the methanogens. This ability is due to the 

presence of three coenzymes in methanogens which have not been found in other 

microorganisms namely, coenzyme F430, coenzyme M and a factor B. All of these coenzymes 

are involved in various oxidation and reduction processes during methane formation (Baker 

1999; Boadi et al. 2004). Methanogenesis can occur through 3 pathways (Boone et al. 1993):  

a. CO2- reducing  

b. Methylotrophic- by performing methyl group transfer  

c. Aceticlastic-by cleaving acetate and reducing the methyl group to methane while 

oxidizing carboxyl group to CO2   

The reactions during formation of methane from CO2 and H2, the major pathway for 

methanogenesis under anaerobic conditions in rumen (Hungate 1967; Hungate et al. 1970; 

Janssen 2010) and the aceticlastic pathway can broadly be depicted by the flow chart in 

Figure 2.1. 

The reduction of CO2 to methane proceeds via coenzyme bound intermediates methanofuran 

(MFR), tetrahydromethanopterin (H4MPT) and coenzyme M (H-S-CoM) which are 

subsequently reduced and oxidized along with specific electron carriers coenzyme F430 , the 

H-S-HTP (N-7-mercaptoheptanoyl-O-phospho-L-threonine) and the coenzyme F420 (Eirich et 

al. 1978; Thauer et al. 1993). 

The formation of methane from methanol is similar except that from methanol there is either 

direct formation of  methane through coenzyme M, or by the methanol oxidation to CO2 

through a pathway which initially proceeds in the opposite direction to the CO2 reduction 

pathway, before transfer of the methyl group to coenzyme-M, which is then reduced to 

methane (Ferry 1993). Thus, the last step in the formation of methane from all pathways 

proceeds through coenzyme M which is reduced by the methyl-CoM reductase (mcr) enzyme 
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and a cofactor F430 exclusive to the archaea which acts as a prosthetic group to the enzyme 

mcr (Thauer 1998). 
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Figure 2.1 Metabolic pathway of methanogenesis from CO2, H2 and acetate.  
 

MFR- methanofuran, H4MPT- tetrahydromethanopterin, HS-CoM-Coenzyme M, HS-HTP-N-7-
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It can thus be concluded that methanogens have highly conserved 16S ribosomal sequences 

which make them a distinct group from other microorganisms. Also, they are able to produce 
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through all pathways. These unique sequences can thus be targeted to perform culture 

independent molecular analysis of the methanogens.  

2.1.3 Molecular techniques 

The study of structure and function of microbial communities in their natural environment by 

using genomic techniques is often referred to as metagenomics. It involves molecular 

techniques targeting the conserved area of ribosomal RNA (rRNA) or rRNA gene which 

encodes this RNA and has made possible the study of earlier unidentified and uncultured 

microorganisms, thus improving upon our understanding of the microbial biodiversity and 

population dynamics (Firkins et al. 2007). This assumes greater significance in the study of 

methanogenesis because the methanogens are fastidiously anaerobic organisms and some are 

difficult to culture (Wright et al. 2008). Since the 16S ribosomal RNA (rRNA) and their 

encoding genes are conserved in archaea as well as other prokaryotes (Pace et al. 1986 ; 

Wheelis et al. 1992), their study has helped to classify and discover new species of microbes. 

A significant  number of species of the rumen methanogenic community have been 

determined using the conserved 16S rRNA gene (Ouwerkerk et al. 2008; Skillman et al. 

2006; Whitford et al. 2001; Wright et al. 2007; Wright et al. 2008; Yu et al. 2008c; Zhou et 

al. 2009; 2010; Zhou et al. 2011). 

The different molecular technologies have made it possible to understand the molecular 

mechanisms of methanogenesis and its potential impacts on enteric methane emissions (Guo 

et al. 2008; Hart et al. 2009; Mohammed et al. 2011). They present a direct way of estimating 

the effect of any mitigation strategy on methanogen populations or their methane producing 

activity and thus an indirect way of estimating the actual methane emissions(Hart et al. 2009; 

Popova et al. 2011).  

The methodology involves extraction of nucleic acids, amplification by polymerase chain 

reaction (PCR) using strain specific or group specific primers and then analysis of the PCR 

products using fingerprinting techniques such as denaturing gradient gel electrophoresis 

(DGGE) or temperature gradient gel electrophoresis (TGGE), restriction fragment length 

polymorphism (RFLP), single strand conformation polymorphism (SSCP) etc. Molecular 

techniques which have been used to study rumen molecular ecology are summarized (Deng et 

al. 2008) in figure 2.2 and are discussed below. 

2.1.3.1 DNA/RNA based techniques 

 The 16S rRNA/rDNA techniques are based upon extraction of nucleic acids, amplification, 

cloning and sequencing to classify the organisms based upon their phylogeny. The similarity 
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search can be performed online using many sequence databases available on the internet such 

as Basic Local Alignment Tool (BLAST) (http://www.ncbi.nlm.nih.gov/Blast) in GenBank 

(Benson et al. 2005; Madden et al. 1996). Based upon the knowledge of common sequences, 

group specific probes can be designed which are then used in hybridization techniques for 

amplifying/cloning and sequencing studies to study the activity and spatial distribution  of an 

organism or a group of microorganisms (Amann et al. 1992; Amann et al. 1995; Deng et al. 

2008).  
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Figure 2.2 Molecular schematics based on 16S rRNA/rRNA gene used to analyze 

rumen microbial ecosystem (Deng et al. 2008). 
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catalysed by a heat stable DNA polymerase such as the Taq DNA polymerase (Saiki et al. 

1988). Repetitive series of cycles involving template denaturation, primer annealing and 

extension of annealed primers by DNA polymerase results in exponential accumulation of a 

specific DNA fragment. The use of this technique allows for even trace amounts of genetic 

material to be amplified for further evaluation.  

This technique is being extensively used in ruminants as well as other ecological systems as 

the initial step for DNA amplification before creating clone libraries for phylogenetic 

analysis, studying the cultural diversity in a particular set of conditions through fingerprinting 

techniques such as DGGE, SSCP etc. (Hales et al. 1996; Hook et al. 2009; Kocherginskaya et 

al. 2001; Wanapat et al. 2009; Watanabe et al. 2004). However, the specificity of primer pairs 

is important. It has been reported that a same sample can give different predominant 

phylotypes with different primer pairs. As an example, in a study by Skillman et al., (2006), 

using same samples the primer pair 21f/958r amplified mostly Methanosphaera stadtmanae 

like sequences, while the primer pair Arch f364/Arch r1386 amplified mainly 

Methanobrevibacter sequences. It has also been found that while using universal archaeal 

primers, bacterial 16S rRNA gene sequences can also be amplified (Zhou et al. 2009; Zhou et 

al. 2011). However, after evaluations of different hypervariable regions of archaeal 16S rRNA 

genes for specificity in profiling of methanogens, it has been reported that the primers 344 F-

GC and 522R which target the V2V3 region of methanogens, cover the widest range of 

methanogen species in the PCR based denaturing gradient gel electrophoresis (DGGE) 

analysis (Ouwerkerk et al. 2008; Yu et al. 2008a).  

2.1.3.1.2 Denaturing gradient gel electrophoresis (DGGE) and single strand 

polymorphism confirmation (SSCP) 

DGGE is a genetic fingerprinting technique that is used to analyse complex microbial 

communities from a diverse range of environmental samples. It involves amplification of 

target DNA/cDNA through PCR using primers specific to the species of interest and then 

separation of amplified double stranded DNA fragments up to 500 base pairs (bp) in length 

using a denaturing gradient gel (Muyzer et al. 1993b). The denaturation is achieved in the gel 

through use of denaturing chemicals (urea, formamide) in the polyacrylamide gel, with the 

concentration of denaturants increasing from top to bottom of the gel. Since the PCR 

amplified fragments are similar in size, their separation is achieved by their discrete melting 

temperatures (Kocherginskaya et al. 2005). The melting temperature and hence the denaturing 

ability of a species specific sequence is governed by the ratio of guanine (G) and cytosine (C) 

composition to adenine (A) and thymine (T) component. Higher is the GC to AT ratio in a 

fragment, more able it is to remain intact in a denaturing gradient and can therefore travel 
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further down in a denaturing gradient. When a fragment reaches the point in the gel where it 

is denatured by the concentration of denaturants, it stops. This results in formation of banding 

patterns which vary with the community being studied. For a higher degree of resolution 

during analysis of  banding patterns in a DGGE gel, a GC clamp is attached to 5’ end of one 

of the primers during PCR amplification (Muyzer et al. 1996). The GC clamp prevents 

complete separation of two DNA strands in the gel thereby avoiding smeared bands. 

 The band patterns produced from amplification of conserved 16S rRNA gene (which encodes 

the rRNA) may reflect the community composition of the target organisms. By amplifying the 

16S rRNA, the active members of that community can be studied. This technique has been 

used widely for studying community molecular diversity of a wide variety of ecosystems 

including rumen microbes such as protozoa, bacteria and archaea. With this technique it is 

possible to do a rapid and simple monitoring of  microbial community structures (Cheng et al. 

2009) over a range of studies which may involve dietary and environmental patterns (Cheng 

et al. 2009; Hook et al. 2009; Wanapat et al. 2009; Watanabe et al. 2004). Specific bands 

showing variability amongst different diets or treatments can be isolated and identified by 

cloning and sequencing. This can help in establishing species-substrate linkages. With the use 

of cDNA as a template, it is also possible to visualise the active populations and patterns of 

their gene expression (Popova et al. 2011).  

This technique has been successfully used in earlier studies to detect changes in methanogen 

community after change in diets. There were altered  PCR-DGGE profiles of methanogens 

upon fat supplementation reported by Yu et al., (2008), with an  increased presence of M. 

stadtmanae while that of Methanobrevibacter sp AbM4 decreased. Similarly, Zhou et al., 

(2010) also observed a strong shift in the PCR-DGGE profiles of rumen methanogens from 

one that consisted primarily of M. ruminantium in cattle fed a growing diet (low cereal 

concentrate) to a mixture of different species in cattle fed a finishing diet (high cereal 

concentrate). In another study, DGGE was used to detect the effects of chloroform, a powerful 

inhibitor of methanogens (Knight et al. 2011).  

However, it has been suggested that DGGE profiling does not capture the full microbial 

diversity because only abundant populations are detected (Kocherginskaya et al. 2001) and is 

also subject to PCR bias. Klieve et al., (2007) also noted that that apparently intense bands 

might be misleading because of multiple sequences from potentially diverse species recovered 

per band due to difference of only a few base pairs. Also, some species may contain several 

copies of the same gene differing slightly in sequence and therefore, one species may produce 

several bands (Muyzer and Smalla 1998).  
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An alternative fingerprinting technique available is the single strand polymorphism 

confirmation (SSCP) which separates PCR amplicons having the same length but different 

nucleotide sequences on the basis of the conformation of single-stranded DNA (Schwieger 

and Tebbe 1998). In this technique, one type of strain or species would produce two bands, 

one for each strand of DNA. Thus it is quite possible that more than one species might be 

represented in one band and also that one species may present itself in multiple bands which 

are the same limitations as that of DGGE. Further, given the fact that one species would be 

presented in two bands, this technique may have more applicability in systems where the 

methanogen community to be analyzed is not very diverse. But as has been reported in many 

earlier studies that the methanogen community in rumen is very diverse with almost 25 bands 

exhibited in a single DGGE gel (Mohammed et al. 2011; Zhou et al. 2010), it may not be 

possible to apply SSCP for the rumen methanogen community profiling. Also, the animals in 

this study are fed on pasture based diets which are reported to have even higher diversity than 

concentrate based diets or the TMR systems (Ouwerkerk et al. 2008).  

Further, in a study to compare soil communities for a direct comparison between DGGE, 

SSCP and another technique terminal restriction length fragment polymorphism (TRLFP), it 

was found that there was no difference between these three techniques for obtaining the 

community profiling (Smalla et al. 2007). Thus, DGGE can offer a relatively simple and 

systematic approach for initial profiling and comparison and it is always possible to reduce 

the experimental errors with improvement in technology and protocol. To make it more 

sensitive, it has also been recommended that the bands should be verified by sequencing and 

any changes detected because of different treatments, should be verified by quantitative 

techniques such as real–time PCR (Firkins et al. 2008).  

2.1.3.1.3 Real –time PCR (qPCR) 

In the conventional PCR methods, the PCR products are quantified at the end of the PCR 

reaction whereas in quantitative or real-time PCR (qPCR), the detection and hence 

quantification of each amplicon is done at the end of each cycle during the phase of 

exponential amplification of products where theoretically each cycle results in doubling of the 

product (Denman and McSweeney 2005). There are different approaches for performing a 

quantitative PCR. The first step in the design of any assay generally involves the use of a 

fluorescent DNA binding dye e.g. SYBR
®
 Green which binds to the minor groove of double 

stranded DNA. The dye radiates higher fluorescence when bound to a double stranded DNA 

as compared to when it is in free solution. As the amplification reaction proceeds and more 

double stranded amplicons are produced, the amount of fluorescence detected also increases.  
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A more specific technique involves the use of specific oligonucleotide probe which is 

complementary to one strand of the amplicon e.g. the TaqMan
®
 assay. A flouorophore is 

attached to the 5’ end of the probe and a quencher to the 3’ end. The probe binds to the 

amplicon during each annealing step of the PCR. When the Taq polymerase extends from the 

primer which is bound to amplicon, it cleaves the 5’ end of the probe effectively separating 

the fluorophore from the quencher. This increases the amount of detected fluorescence.    

For quantification, the cycle at which fluorescence is detectable above the background level 

during exponential phase of amplification is termed the cycle threshold (CT). Quantification 

is either done directly by comparing and plotting against a standard curve generated using 

known quantities of similar DNA, or by comparison between the target gene and a ‘house-

keeping’ or ‘reference’ gene. Theoretically there is quantitative relation between the amount 

of starting material and the amount of amplicon at any given cycle within the exponential 

phase of amplification. As such a difference of a single CT value represents a twofold 

difference in starting material whereas a difference of 3.331 CT value represents a 10 fold 

difference in starting material. For direct quantification, the experimental value is plotted 

against the standard curve, and the starting concentration of that experimental sample can then 

be deduced. 

While TaqMan assay has the advantage of being highly specific in product amplification, 

needing minimum optimization and thus providing very robust assays, it is cost prohibitive 

for a smaller sample size. SYBR
®

 Green on the other hand is cost effective for lesser number 

of samples but it can give non-specific amplification. Because, it will bind indiscriminately to 

any double stranded product, it is very important to amplify only specific piece of DNA and 

exclude any non-specific product or substantial formation of primer dimers. To check 

specificity of amplified product, a melting or dissociation curve analysis should be performed 

at the end of reaction by slowly increasing the temperature from 60
◦
C to 95

◦
C which causes 

denaturation of products and loss of fluorescence signal. A single type of product will have 

same melting temperature but a different melting point of product depicts non-specific 

amplification. Enhanced sensitivity in a SYBR
®

 Green assay can further be achieved by care 

in designing of primers to eliminate any chances of secondary structure formation and 

ensuring the specificity of primers by initial amplification and examination on agarose gel, 

sequencing and optimisation of the reaction conditions (Denman and McSweeney 2005). 

The real-time PCR technique has been widely applied in the rumen microbial system for 

monitoring shifts in bacterial populations over dietary changes (Tajima et al. 2001a), after 

microbial manipulations (Klieve et al. 2003) and to monitor ciliate and fungal populations 



 17 

(Denman and McSweeney 2006; Ouwerkerk et al. 2002; Sylvester et al. 2004). This 

technique has also been used to study shifts in archaeal community in soil ecosystems, paddy 

fields (Luton et al. 2002; Watanabe et al. 2007) and rumen (Denman et al. 2007; Guo et al. 

2008).  

A limitation to use of this technique could be that the copy number of the target gene can 

differ among targeted methanogens (Zhou et al. 2011). As an example, the genome of 

Methanobrevibacter smithii contains two copies of 16S rRNA gene, while that of 

Methanosphaera stadtmanae possesses four (Klappenbach et al. 2001). Therefore it was 

suggested that in order to estimate the absolute number of methanogens present in a sample, 

an adjustment factor that considers the copy number in the cells must be considered (Zhou et 

al. 2011).  

Many recent studies have quantified total methanogens and different methanogen 

phylogenetic groups from varied samples by targeting the mcrA gene (Denman et al. 2007; 

Guo et al. 2008; Popova et al. 2011; Steinberg and Regan 2009) which is present only in 

methanogens and unlikely to have multiple copies (Springer et al. 1995; Steinberg and Regan 

2009). It has been suggested that using primers targeting methanogen specific genes such as 

mcrA instead of 16S rRNA will increase the specificity of amplified target (Luton et al. 2002; 

Zhou et al. 2011). 

2.1.3.1.4 Reverse transcriptase polymerase chain reaction (RT-PCR) and reverse 

transcriptase real-time PCR (RT-qPCR) 

The detection and analysis of RNA is an important aspect of most of molecular biology 

studies.  Generally, RNA is first converted to a complimentary DNA (cDNA) molecule by 

using reverse transcriptase enzyme. This cDNA is then used as a template for performing 

PCR. This combination of both the techniques is collectively referred to as RT-PCR. The 

cDNA from different samples over different treatments or time periods can also be subjected 

to quantification through quantitative (qPCR) when it is called reverse transcriptase 

quantitative PCR (qRT-PCR).  

In methanogen studies, RT-PCR has been used to create 16S rRNA libraries, quantification of 

gene activity in rumen, soil, paddy field and other ecological systems (Denman et al. 2007; 

Tajima et al. 2001b; Watanabe et al. 2007; Watanabe et al. 2009). It has also been used to 

perform an analysis of relative gene expression of methanogens through DGGE analysis of 

amplified mcrA mRNA (Popova et al. 2011).  

Previous studies have reported that total methanogens numbers are not necessarily correlated 

with total rRNA copies or methane production (Guo et al. 2008; Machmuller et al. 2003a). 
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Therefore, a 16S quantitative PCR is not a very sensitive method for detecting the 

methanogen dynamics relative to a mitigation strategy. But the sequence of the gene 

responsible for synthesis of mRNA complimentary to the mcr enzyme is known (Attwood and 

McSweeney 2008; Attwood et al. 2008). This specific mRNA can be thus be targeted for 

qRT-PCR to study the amount of mcr mRNA transcribed in the cell under given set of 

ecological conditions.  

The expression of mcrA gene has been used as an indicator of the methanogenic activity of 

methanogens population (Guo et al. 2008) and also as a phylogenetic marker to enumerate the 

methanogen population (Denman et al. 2007). Also analysis of the mcrA gene whose function 

is consistent in all methanogens, ensures the accurate investigation of any possible mitigation 

strategy because this technique allows the analysis of all methanogens which may fill the 

niche previously occupied by methanogens sensitive to an inhibitor (Attwood and 

McSweeney 2008).  This technique has in fact been applied by Guo et al (2008) in in vitro 

mixed rumen samples where a significant decrease in methane production and methanogenic 

activity upon the addition of tea saponins was found. The methane production was estimated 

by analyzing gas samples using gas chromatography and methanogen activity was estimated 

by performing qRT-PCR.  

But, this technique has not been extensively used in rumen methanogen studies and even less 

in in vivo conditions. Most of the studies have been done in in vitro only. A major limitation 

to the wider application of this technique is the requirement for high quality and quantity 

RNA (Fleige and Pfaffl 2006) which is even more challenging in rumen samples (Yu and 

Morrison 2004). It is further encumbered by the high cost of commercial kits available for 

RNA extraction. Therefore it is important to develop a reliable and economical method for 

extracting high quality RNA which would pave the way for wider application of this 

technique.  

2.1.3.1.5 Pyrosequencing 

This is a more recent technique which has the capacity to sequence the whole metagenome 

present in a sample using culture independent approaches (Brulc et al. 2010). It has been 

discussed that molecular fingerprinting techniques like DGGE can detect only abundant 

population and less predominant species may not be differentiated due to PCR bias 

(Kocherginskaya et al. 2001). The cloning techniques commonly used for sequencing may 

also not show the full diversity because of inability of cloning vector to bind to a certain kind 

of DNA fragments (Brulc et al. 2010). Pyrosequencing has been reported to eliminate all such 

limitations. Because several thousand species sequences can be obtained per sample, 
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microorganisms present below 0.1% of population can also be detected (Callaway et al. 

2010). It can be used to amplify the DNA of a particular community using specific primers or 

amplify the whole metagenome by nonspecific amplification (untargeted massive parallel 

sequencing) which can reduce the PCR bias (Ross et al. 2012). This technique has been used 

to study microbial diversity in a wide range of communities such as methanogen community 

in coal mines (Guo et al. 2012), bacteria and fungi in poultry aerosols (Nonnenmann et al. 

2010), rumen bacterial diversity in cattle  as well as pre-ruminant calves (Dowd et al. 2008; 

Li et al. 2012). It has also been used to identify changes in microbial diversity with change in 

diet composition (Callaway et al. 2010; de Menezes et al. 2011). It is also possible to analyse 

the relative proportion of a particular species under specific diet composition. Thus combining 

this technique with a quantitative analysis may play important role in understanding the inter-

species relationships in rumen which is a very complex and dynamic environment (Wright 

and Klieve 2011).  

However, at present the significant costs involved in this technique have limited wider 

application, but with development of the methodology it may become cost effective for use in 

large sample numbers.  

2.2 Factors affecting methanogenesis 

In order to measure the amount of methane produced from an animal in a production system, 

many factors need to be considered which may be animal, environment or diet related and 

they may exert their influence individually or upon interaction with other factors.   

2.2.1 Dietary factors 

2.2.1.1 Dry matter intake (DMI) 

Methane production is directly influenced by DMI. Molano and Clark (2008) reported a high 

correlation (r
2 

= 0.83) between DMI and methane production. But according to Johnson and 

Johnson (1995), when the DMI increases, the percentage of gross energy lost as methane 

decreases. It had earlier been reported by Blaxter (1967) that when feed intake is increased 

from maintenance to above maintenance level, the total production of methane increased but 

the amount of energy lost as methane per unit of feed consumed decreased by 12-30%. 

Similarly, the  increase in intake of forages from 54.6 to 77.21g DM/kg 
-0.75

,
 
decreased the 

methane production from 7% to 6.5% of the gross energy of diet (McAllister et al. 1996). 

They explained that an increased DMI causes an increase in the amount of organic matter 

degradation in the rumen along with an increase in fractional passage rate of solids and 

liquids. But if expressed as a percentage of dietary intake, the ruminal digestion decreases as 
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DMI increases (McAllister et al. 1996). The effect of diet composition is more pronounced at 

a higher level of feed intake and the effect of increased level of intake is greater with diets 

containing concentrates as compared to forages. This fact was substantiated by Benchaar et 

al., (2001) who reported  that increasing DMI from 9 to 17 kg/d decreased methane energy 

losses as % of GE intake by 9% for the 100% alf-alfa hay diet as compared to a reduction of 

23% on supplementation of hay with concentrates. 

2.2.1.2 Feed quality 

Ruminants having access to diets rich in cereal concentrate emit less methane compared to 

those on forage based diets (Chandramoni et al. 1999; Durand et al. 1988). This is because 

concentrates are a readily fermentable source of carbohydrates which cause an increased rate 

of fermentation and thereby shift the pattern of fermentation towards increased propionate 

production over methane as well as lower acetate: propionate ratio. Acetate and butyrate 

production results in a net release of H2 and favors methane production, while propionate 

formation is a competitive pathway to methanogenesis for H2 use in the rumen (Martin et al. 

2010). The feeding of highly soluble carbohydrates also decreases the rumen pH and this 

inhibits the activity of methanogens as well as protozoa  (McAllister et al. 1996; Station 1963; 

Tellier et al. 2004a; b; Yang et al. 2001b). Lowering pH can also kill protozoa, destroying the 

habitat of around 20% of methanogens (Stumm et al. 1982) or effect some species more than 

the other and alter the rumen microbial population (Cottle et al. 2011). In an in vitro 

experiment, Malik et al., (2010) reported an increase in total VFAs and decrease in protozoal 

numbers, acetate proportion and methane production upon including first cut lucerne fodder 

(high quality leguminous fodder) at 30% and 45% levels. The effects of a lower pH on 

altering the rumen microbial population will however need to be tested over a longer period of 

time in actual grazing conditions because of the ability of microorganisms to adapt themselves 

to their environment. 

Amongst the completely forage diets as is common in pasture fed animals, the quality and 

processing of forages effects the methane emissions (Benchaar et al. 2001). Dry and mature 

forages have a higher neutral detergent fibre (NDF) content and a lower concentration of 

soluble carbohydrates, which decrease the ruminal passage rate causing higher methane 

production per kg of DMI. Coarsely chopped fodders having a bigger particle size and a lower 

density also increase the rumen retention time and will invariably lead to higher methane 

production per kg of DMI. Feed particles having smaller particle size and higher density have 

a higher rumen clearance rate which leads to a shift in fermentation site to the large intestine 

where comparatively lower amount of methane is produced per the amount of feed fermented 



 21 

(Gibb et al. 1999; Heinrichs et al. 1999; Imamidoost and Cant 2005; Kaske et al. 1992; 

Krause and Combs 2003; Krause et al. 2003; Nishida et al. 2007; Soita et al. 2003) due to 

prevalence of microorganisms called reductive acetogens which may outcompete the 

methanogens to use H2 for reductive acetogenesis (Demeyer et al. 1989; Demeyer and Graeve 

1991; Fievez et al. 2001). Further, as discussed above in section 2.2.1.1, when the rumen 

retention is low, the DMI is also decreased and may cause decreased methane emission per 

unit of DMI but a lower DMI affects the production of animal. At higher rumen clearance, 

though DMI is also increased and methane emissions from animals increase but net methane 

emissions per unit of product produced are decreased. Replacement of a mature fibrous forage 

with an immature, highly digestible forage decreased methane production by 15% and the 

processing of forages caused 21% reduction  (Benchaar et al. 2001). It has been stated that 

differences in rumen retention time (RRT) change the number, composition, maintenance 

energy requirements and diversity of rumen microorganisms and their VFA production 

pattern (Cottle et al. 2011). Thus modifying RRT has been suggested as a way to affect the 

methane production and VFA production in rumen consequently affecting the energetic 

efficiency of animal (Cottle et al. 2011). 

The energy lost through methane is also higher from grass forages as compared to the 

leguminous forages per unit of product produced (McAllister et al. 1996). McCaughey et al., 

(1999) reported that on feeding an alfa-alfa and grass diet or a grass only diet over two 

different seasons, the DMI increased with the alfa-alfa and grass diet because of a higher 

digestibility and rate of passage with leguminous diets. When expressed as percentage of 

gross energy intake, the methane production decreased by nearly 10% in the alfa-alfa diet per 

unit of product (weight gain). McCaughey et al., (1999) had also found a significant 

difference in pasture quality and resulting DMI over different grazing periods and varying 

methane emissions accordingly. The methane emissions in August (spring) having better 

pasture quality were lower as compared to the July (winter) emissions numerically but they 

did not vary significantly. Similarly the methane emissions were 33% lower for silage based 

diets over the hay based diet (Benchaar et al. 2001). Therefore, we can conclude that diet 

composition as well as its processing plays a very important part in the amount of methane 

emission from an animal. 

2.2.2 Animal factors 

2.2.2.1 Species 

Differences in methane production between the ruminant species have been reported with 

cattle being the highest methane producers, followed by deer and then sheep. The New 
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Zealand National Inventory estimates for methane (CH4) yield in cattle are 21.6g CH4/kg 

DMI, 21.25g CH4/kg DMI in deer and 20.9g CH4/ kg DMI in sheep. The reasons for these 

differences could be attributed to the difference between digestive physiologies of these 

species as in their rate of digesta passage, microbial population, fermentation patterns, rumen 

environment etc., albeit all are ruminants. On the other hand, kangaroos produce negligible or 

very low amount of methane per unit of digestible DMI from same type of feed as fed to cows 

or sheep (Kempton et al. 1976; Ouwerkerk et al. 2005; Von Engelhardt et al. 1978).  

2.2.2.2 Age 

Methane production tends to increase with the age in ruminants. Significant differences have 

been reported between methane emissions between animals less than 1 year in age and the 

mature animals in cattle, sheep as well as deer. Knight et al., (2008) reported 8% less 

emissions from lambs than mature ewes (21.9 v. 23.8±0.95 g CH4/kg DMI). The emissions 

from lambs increased with age along with an increase in live weight and DMI. Similar results 

have been reported by Lassey et al., (1997) and Ulyatt et al., (2005) in sheep, by Cavanagh et 

al., (2004) in beef cattle and by Swainson et al., (2008) in deer. 

Since the microbial population establishes in the rumen of young lambs by first 3 weeks 

(Fonty et al. 1987; Joyce and Rattray 1970) and in calves the rumeno-reticulum is fully 

mature by first 11 weeks of life (Godfrey 1961a; b), it is suggested that the reasons for this 

variance in methane production cannot be assigned to the presence or absence of microbial 

population. These variations could be due to difference between digesta kinetics of the young 

and mature animals. The young animals have a high digesta passage rate (Okine et al. 1989; 

Pinares-Patino et al. 2003c) which causes decreased cellulose fermentation in rumen for a 

given DMI, a decreased supply of H2 and thus lower methane production in the rumen. The 

feed digestion shifts to large intestine where there is lower production of methane per unit of 

the feed fermented due to relative prevalence of reductive acetogens which may outcompete 

the methanogens in utilizing H2 for reductive acetogenesis (Demeyer et al. 1989; Demeyer 

and Graeve 1991; Fievez et al. 2001; Graeve and Demeyer 1988).  

2.2.2.3 Animal to animal variation 

Variations in methane emissions between animals feeding on same kind of diets have been 

reported by several workers (Ulyatt et al. 1999). Grainger et al., (2007) reported a 17.8% 

coefficient of variation (CV) between different animals in their methane emissions 

substantiating the previous studies where varied but significant CV in methane emissions 

between animals were found; Blaxter and Clapperton (1965) - 7-8%, Boadi and Wittenburg 

(2002) - 15.5% , Lassey et al., (1997) - 11.5% and McNaughton et al., (2005) - 25%.  
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But, other studies (Cavanagh et al. 2008; Pinares-Patino et al. 2003c; Vlaming et al. 2007) 

have reported that though there were differences between animals in methane emissions, the 

repeatability of the results was not very high. In fact the same animals changed ranking within 

the same experiment from low to high producing or vice-versa. Therefore, it was difficult to 

classify an animal as a low or high emitter in comparison to other animals over a limited 

period of time. A possible reason could also be the use of SF6 technique for measuring 

methane emissions which is prone to error (discussed earlier in section 2.1.1.2). 

The available literature suggests that these between animal variations could be accounted by 

an animal’s feed conversion efficiency or residual feed intake (RFI) i.e. differences in feed 

intake, digestion, metabolism, activity and thermoregulation can influence the DMI for a 

particular production level which is correlated with the amount of methane produced (Herd et 

al. 2004; Munger and Kreuzer 2008; Pinares-Patino et al. 2003b). Hegarty et al., (2007) 

found a significant relation between the RFI and the daily rate of methane production (MPR) 

and calculated a daily reduction in methane production of 13.38g with a reduction of 1 kg/day 

RFI at ad libitum feed intake.  Similar results of 24-28% lower methane production in animals 

having lower RFI  as compared to a medium or high RFI were reported by Nkrumah et al., 

(2006). Other factors e.g. a difference in feed intake, digestion, activity on day to day basis 

could also be responsible for within animal variations.  

2.2.2.4 Production status 

The energy requirement of an animal is influenced by its production status and is met by an 

increase or decrease in DMI. This may influence the net methane emissions from the animal 

e.g. it has been reported that dairy cows at the peak lactation emit ≈ 430g CH4/day and it can 

decrease to ≈ 250g CH4/ day as the milk yield declines (Cottle et al. 2011; Eckard et al. 

2009). A major contributor to this decline would be the decrease in DMI of animal in 

proportion to decreased production. 

2.2.3 Environmental factors 

2.2.3.1 Temperature 

Moss et al., (2001) found that methane production was higher at the lower temperature of 5
◦
C 

as compared to 24
◦
C of ambient temperature. They related this to an increased DMI leading to 

increase in substrate availability in rumen, an increase in microbial activity and a higher level 

of methane produced per kg of DM degraded (32.89 vs. 31.00 l/kg DMI). McGinn et al., 

(2008) also attributed the lower CH4 emissions in Australian feedlot animals as compared to 

Canadian animals, to a difference in the environmental temperature causing a heat stress and 
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thus a lower DMI.  Similarly, Von Keyserlingk and Mathison (1993) reported a 25% greater 

methane production in sheep managed at 4.7
◦
C over those managed at 21

◦
C. They attributed 

this increase in methane production to an 8% increase in DMI, and when expressed as 

percentage of digestible energy there still was 14% more production of methane in the cold 

conditions.   

In contrast, a 20% and 30% decrease in methane production in adult sheep was found by 

Graham et al., (1959) when temperature was decreased from 33
◦
C to 8

◦
C and by Kennedy and 

Milligan (1978), in cold adapted sheep, respectively. An increase in ruminal passage rate of 

fluid and particulate matter by 54% and 68% respectively, was also observed along with a 

higher level of feed intake under cold conditions thereby decreasing the apparent organic 

matter digestibility, which was assumed to be the reason behind a lower methane production. 

Okine et al., (1989) also reported a 29% decrease in methane emission when fractional 

passage rate was increased by 63%. Similarly, it has been stated that mature beef cows have 

an average methane production of ≈350g/ day in the tropics and ≈240g/ day in the temperate 

zones (Cottle et al. 2011; Eckard et al. 2009). 

Further, West (2003) reported a 0.85kg decrease in DMI with every one degree (
◦
C) increase 

in mean air temperature beyond the critical threshold and Fox and Tylutk (1998) concluded 

that lactating animals were more susceptible to heat stress than the cold temperatures in terms 

of effect on DMI. From the above reports it is hard to conclude the exact effect of temperature 

but it can safely be assumed that the effect of temperature manifests itself through an effect on 

the DMI. The animals may have a higher DMI at a comfortable temperature but as the 

temperature increases beyond the comfort level it may cause heat stress and result in 

decreased DMI. Therefore, while deciding on the effect of temperature on methane 

production, many more factors and their interaction with each other need to be considered. 

2.2.3.2 Season 

The effect of season on methane production is supposed to manifest itself through the change 

in pasture quality along with a change in ambient temperature. The production of methane 

during different seasons: spring- September, early summer-November, autumn or late 

summer-March and winter-June/July in both ewes and dairy cows was estimated by Ulyatt et 

al., (2002). The methane emissions varied significantly on DMI basis and were highest in 

September (22.4g/kg DMI) and June (20.2g/kg DMI) as compared to November (13.7g/kg 

DMI) and March (12.3g/kg DMI). As regards the pasture composition, the soluble sugars 

content was highest in September >November >March >June, the crude protein level was 

highest in September and March, the fat content differed less except being lowest in June, 
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whereas the NDF content as well as DM digestibility were highest in June >March 

>November >September. Thus, neither of these variations in pasture composition over 

different time periods could individually explain the variation in methane emissions.  

2.2.4 Physiological factors 

The optimum conditions for methanogenesis in rumen are a temperature of 39
◦
C, a redox 

potential below -300mV and a pH of 6-8 (Moss et al. 2000; Thauer et al. 1993; Zinder 1993) 

and a variation in these conditions may have a bearing on methane emissions. 

2.2.4.1 Ruminal pH 

The ruminal pH is normally maintained at 5.5-6.5. The pH is maintained through a 

combination of buffering agents introduced through saliva, ruminal epithelium, feed and 

water (e.g. bicarbonates, phosphates, etc.), along with an interplay of factors such as fluid 

dilution rate, the absorption and metabolism of VFAs and the rumen turnover rate (Wales et 

al. 2004). In general, the animals fed diets high in concentrate tend to have a lower ruminal 

pH as compared to the animals fed high fibre diets. This also leads to the prevalence of starch 

fermenting microbes over the fibre digesters because the cellulose digesting bacteria cannot 

function optimally below a pH of 5.8 (Russell 1998; Russell and Wilson 1996). There is also 

a decrease in acetate: propionate ratios because the starch fermenters tend to produce more 

propionic acid and the cellulose fermenters shift the fermentation towards more acetic acid 

and butyric acid production. The production of acetic acid tends to favour the production of 

methane because of production of more H2 during acetic acid formation. Methane production 

was highly correlated (r
2
 = 0.80) with acetate: propionate ratio at a pH range of 6.5-5.8 

(Russell 1998).  

Similarly, a high correlation between the acetate: propionate ratio and ruminal pH (r
2
=0.82) in 

vivo and also between the in vivo acetate: propionate ratio and in vitro production of methane 

(r
2
=0.78) was reported by Lana et al., (1998) when the steers were fed increasing amounts of 

concentrate and decreasing forage. Also, when the rumen fluid from cattle fed either forage or 

concentrate was incubated at decreasing pH values from 6.5 to 5.7, the methane production 

decreased from 48 to 7nmol mg protein
-1

 min
-1

 and from 14 to 2mol.mg protein
-1

 min
-1

, 

respectively. 

Kessel and Russell (1997a) based on in vitro experiments had also reported that methane 

production ceased at a pH below 6 and as the pH rose above 6, the methane production 

returned. Therefore, they concluded that methanogens are not killed by low pH, but resume 

their activity after suitable conditions are regained. With the decrease in pH, there is a 
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simultaneous decrease in methane production due to the inability of methanogens to actively 

produce methane below a pH of 5.5 (Muller et al. 1999; Schuldiner and Padan 1992). In order 

to regulate their intracellular pH according to the extracellular pH, the methanogens extrude 

Na+ ions out of the cell and cellular processes are driven by a low sodium gradient across the 

cellular membrane. The cellular stock of ATP is depleted and consequently methanogenesis is 

decreased (Muller et al. 1999; Schuldiner and Padan 1992). Recently Hook et al., (2011) 

found no significant change in methanogen numbers when the diets of dairy cows were 

switched from a high concentrate to roughage based diet. However, they reported a significant 

positive correlation between average pH and methanogen numbers (r
2
-0.97, P-0.018). 

Significantly, the reported pH range of Methanobrevibacter ruminantium is 5.5 to 7.0 and 

Methanosphaera stadtmanae was found to have a pH range and growth optima higher than 

other methanogens (Miller and Wolin 1985; Rea et al. 2007). It has been thus suggested that 

while Methanobrevibacter ruminantium is unlikely to be affected by pH fluctuations, the 

Methanosphaera stadtmanae methanogens may cease their activity at a low pH (Hook et al. 

2011). 

2.2.4.2 Redox potential 

The rapid fermentation of carbohydrates in the rumen creates a state of low redox due to the 

resulting reduced products. The H2 ions produced as a result of fermentation, VFA production 

and further absorption and metabolism in the rumen epithelium have to be disposed of rapidly 

for the fermentation to proceed uninterrupted. Marounek et al., (1991) found that an increase 

in redox potential in anaerobic batch cultures using rumen inoculate from cow as well as 

sheep decreased both the methane as well as VFA production. Methanogenesis and propionate 

production are the major means of reducing equivalent disposal in rumen and are competitive 

in nature (Hino and Russell 1985). For the strictly anaerobic methanogens to use H2 for 

reducing CO2, the redox potential should be ≤ -300 mV whereas the reductive acetogens can 

use H2 only at a higher redox potential (Fievez et al. 2001; Greening and Leedle 1989; Joblin 

1999). A higher redox favours the reductive acetogens and leads to more acid production 

which is beneficial to the animal in terms of energy production.  

Hungate (1966) had suggested that forages contribute natural reducing substances to the 

rumen environment and this conclusion was later supported by Males (1973) who found that 

the redox potential of rumen contents from sheep fed forage was much lower than from those 

fed a concentrate ration. The production of H2, CO2 and hence methane are also coupled with 

the deamination of reduced amino acids. An inhibition of methanogenesis led to the inhibition 

of bacterial hydrogenases due to an increased NADH/NAD ratio leading to the inhibition of 
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deamination and thus a decreased ammonia production in vitro (Hino and Russell 1985). Thus 

the reducing equivalent disposal and the ratio of NADH/NAD are important factors for 

fermentation and methanogenesis in the rumen. 

2.2.5 Biological factors 

Protozoal-methanogen interaction 

The protozoa associated methanogens have been reported to contribute nearly 37% of the 

rumen methane emissions (Finlay et al. 1994). Also, rumen fluid with a higher number of 

protozoa, tends to have a higher rate of methanogenesis (Klieve and Hegarty 1999). Morgavi 

et al., (2008) reported that the defaunation decreased methane emissions in sheep by ≈ 20%. 

Schonhusen et al., (2003) also found that methane production decreased by 30% in the 

absence of protozoa, though this was also accompanied by a decreased digestibility in calves 

at the time of weaning. These effects are due to the association of methanogens with protozoa 

especially the Holotrichs in the rumen. This is a symbiotic relation because protozoa rapidly 

ferment readily soluble sugars thereby acting as a ready source of H2 for the methanogens 

whereas the methanogens rapidly consume H2 and prevent its accumulation which could be 

inhibitory for the protozoan metabolism.  

The presence of protozoa in vitro also increased the amount of acetic and butyric acid relative 

to propionic acid and the main protozoon associated with this effect along with an increase in 

methane production was found to be Entodinium caudatum (Ranilla et al. 2007). Therefore 

the methanogens–protozoal interaction does play a part in ruminal methanogenesis and any 

effort to decrease methanogenesis has to be considered in conjunction with its effect on 

ruminal digestibility which has a bearing on its production performance.  

2.2.6 Conclusion 

To conclude, the rate of methane production at a given time depends on the interplay of a 

large number of external and internal factors working either in an inhibiting or in a 

stimulating fashion rendering it difficult to accurately correlate the methane production of an 

animal at a single unit of time to a single factor. However, after review of all factors affecting 

methane production, it can be concluded that their effect is manifested through an increase or 

decrease in DMI. The DMI is positively correlated with methane production. Since, for high 

production an optimum DMI is essential, choosing a methane mitigation strategy for a 

particular production system has to allow for either a high DMI or an increased feed/ fodder 

digestibility so that the production is not affected.  
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2.3 Mitigation opportunities for methane emissions 

It is evident from the previous discussion that methane is an inevitable product of rumen 

fermentation. It would be advantageous if the metabolic H2 which is converted into methane 

could be used in the synthesis of VFAs because methane has no nutritional value for the 

animal. The production of methane is actually a loss of energy to the animal accounting to 

about 2-12% of the dietary gross energy (Johnson and Ward 1996) which in turn effects the 

feed conversion efficiency. The exploration of ways to decrease methane emission from 

ruminants, because of the economic and environmental loss associated with it, has been going 

on for quite a while (Baker 1999; Bauchop 1967; Beauchemin et al. 2008; Beauchemin et al. 

2007; Bryant and Murray 1974; Grainger and Beauchemin 2011; Klieve and Hegarty 1999; 

Petrie et al. 2009).  

A recent review on enteric methane mitigation by Cottle et al., (2011) (figure 2.3), 

summarized the mitigation options being tested by researchers. Ruminant methane mitigation 

options may broadly be divided into: (i) modifications of the rumen microbial population or 

the gastrointestinal tract environment; (ii) selecting the animal; (iii) managing the livestock 

environment.  

As discussed earlier, methanogenesis in rumen is a means for using the free H2 in rumen and 

if H2 levels are not kept low, there may be inhibition of fermentation because of lack of 

reducing agents such as NAD
+
 which are important for carrying out the carbohydrate 

degradation and energy generation for microbes. This will in turn hinder forage digestion and 

VFA production. Therefore, any attempt to reduce methanogenesis must ensure that the H2 

produced inside rumen does not accumulate. It has thus been proposed that the mitigation 

techniques for reducing methanogenesis may involve (Benchaar et al. 2001; Johnson and 

Johnson 1995; McGinn et al. 2004): 

 Diverting H2 away from methane production by creating alternative H2 sinks e.g. 

biohydrogenation upon supplementation with lipids, shift towards reductive 

acetogenesis, etc.  

 Inhibiting H2 production inside rumen by decreasing the fermentation of organic 

matter in the rumen which may involve shifting the site of digestion from rumen to the 

intestine e.g. processing of forage, altering the composition or quality of feed offered.  
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 Directly inhibiting the methanogens to reduce the amount of methanogenesis e.g. 

through defaunation, antibiotics, ionophores, synthetic chemicals, natural compounds 

such as tannins, saponins, or through vaccination, etc.  

For ‘on-farm’ adoption of any mitigation strategy it is desirable that it should minimise 

any loss of digestible energy to animal and may have the added benefit of producing end 

products useful to the animal or farmer. Some of the more common or practically feasible 

strategies are discussed here. 

Figure 2.3 Potential options for reducing enteric methane emissions (adapted from 

Cottle et al., 2011). 
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2.3.1 Inhibiting methanogens 

2.3.1.1 Ionophore antibiotics 

Ionophore antibiotics are highly lipophillic substances and are commonly used in commercial 

beef and dairy cattle production. Monensin is the most commonly researched ionophore 

though others such as lasolacid, salinomycin, narasin, laidomycin are also used commercially 

and have been researched to some extent (Boadi et al. 2004; Guan et al. 2006; Lyle et al. 

1981; McGinn et al. 2004) . The mode of action of ionophores is multi fold with influence on 

both the rumen fermentation as well as animal physiology.  

A brief summary of the metabolic effects of ionophores on rumen fermentation as 

summarized by Bergen and Bates (1984) follows: 

 Shift in acetate-propionate ratio towards more propionate. 

 Some increase of lactate to propionate production via the acrylate pathway. 

 Decreased ruminal protein breakdown and deamination; lower ruminal ammonia-N. 

 Primary H
+ 

or formate producing, gram positive (Gram +ve) bacteria are inhibited. 

 Decrease in methane production primarily due to lower availability of H2 and formate,  

            and a depressed interspecies H2 transfer. 

 Depression of lactic acid production under acidosis inducing conditions. 

 Many gram negative (Gram –ve) bacteria survive especially succinate producers 

(source of propionate). 

 Some evidence for depressed rumen content turnover. 

 A mild inhibition of protozoa. 

 Decrease in rumen fluid viscosity in bloated animals. 

The ionophores exert these effects by disrupting the cellular metabolism of rumen bacteria 

mainly the Gram +ve bacteria which are mainly responsible for H2 producing reactions in the 

rumen. They increase the membrane permeability of cells leading to disruption of the Na
+
-H

+
 

antiporter system aside from the primary transport channels thereby affecting the ATP 

generating reactions and leading to depletion of intracellular ATP stores. The disruption of 

primary transport systems also interferes with the uptake of necessary cellular substrates 

further interfering in the cellular metabolism. The Gram -ve bacteria which are the main 

succinate and propionate producers are better adapted for survival under these conditions 

because they have capacity to generate ATP through electron transport chains which couple 

proton translocation with energy generation. This capacity for energy generation gives  Gram  
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-ve bacteria a selective advantage over Gram +ve bacteria which can account for the observed 

shifts in acetate: propionate ratio.  

Beauchemin et al., (2008) summarized the data on monensin treatments and have suggested 

that the efficacy of monensin in reducing methane emissions may be dose dependent and that 

the addition of monensin at a dose of <15-20 ppm had no effect on methane production per kg 

DMI in dairy cows but higher doses of 24-35 ppm reduced methane production by 3-8% in 

g/kg DMI in beef as well as dairy cows. 

The main problem associated with monensin administration is that it reduces methane 

production for a short time. Guan et al., (2006) reported that both monensin or lasolacid 

(another ionophore) administration decreased methane production by 30%, but over a short 

time period of 2 weeks and by 27% up to 4 weeks. On the basis of their experiments, they 

suggested that the effect of ionophores on decreasing methane emissions is related to their 

inhibitory effect on the rumen protozoa population particularly the Entodinium spp. which are 

symbiotically associated with the methanogens. Since the protozoa were able to adapt to 

monensin enriched diets after 4 weeks, this was responsible for the receding effects on 

methane production observed after prolonged use of ionophores. Since the ionophores don’t 

have a direct effect on methanogens but mediate through their suppressing effects on Gram 

+ve bacteria and protozoa, which also are effected by high concentrate diet, a significant 

influence of diet composition could be expected. Consequently, the adaptive responses were 

found to occur earlier in low concentrate diets as compared to high concentrate diets.  

The influence of diet composition was also supported by the experiments of Mbanzamihigo et 

al., (1996) in sheep fed a high grain diet where methane production rates were lower than the 

controls for at least 35 days and by Green et al., (1999) in dairy cows fed total mixed rations 

where monensin containing controlled release capsules (CRC) changed some rumen 

fermentation parameters e.g. a decreased acetate: propionate ratio, decreased butyrate and 

increased pH. In contrast, Waghorn et al., (2008) found that when CRC of monensin were 

administered in pasture fed dairy cows, there was no effect on methane production over a 

period of 75 days. No effects were found on rumen metabolites, DMI and milk production. 

An actual average release rate of 170 mg/day in comparison to the anticipated 320 mg/day 

could also have compounded this lack of efficacy.  Mutsvangwa et al., (2002) also reported 

no effect of monensin CRC on ruminal pH characters except reduced acetate: propionate ratio 

even in animals fed high grain diets.  In a similar study (Hook et al. 2009), when animals on a 

total mixed ration were fed monensin at the rate of 24mg/kg DMI over a long period of 6 

months, no change in amount or type of ruminal methanogens was detected. 
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These contrasting reports on monensin efficacy suggest that though monensin administration 

may be beneficial in grain based diets and for a short term period in pasture based diet, its 

long term efficacy is questionable and needs further thorough research.  

2.3.1.2 Defaunation 

Protozoa play an active role in ruminal fermentation and primarily produce acetate, butyrate 

and H2 as fermentation end products (Waghorn and Woodward 2004). Methanogens have 

been observed to be present either on the exterior surface of ruminal ciliate protozoa (Ohene-

Adjei et al. 2007; Vogels et al. 1980) or as endosymbionts within ciliates (Finlay et al. 1994). 

Protozoa provide a habitat for up to 20% of rumen methanogens (Stumm et al. 1982) and 

therefore McAllister and Newbold (2008) found the concentration of methanogens in whole 

rumen contents was nearly 1.5 folds less in defaunated  than faunated animals. The protozoa 

associated methanogens were  reported to be responsible for  9-25% (Newbold et al. 1995) or 

37% (Williams and Coleman 1992) of ruminal methane emissions and as a consequence, 

rumen fluid with high number of protozoa were reported to have higher rate of 

methanogenesis (Krumholz et al. 1983; Ushida et al. 1997). Since it has been reported that a 

high concentrate diet supports greater number of protozoa than a high forage diet, thus the 

effect of defaunation are also diet dependent (Moss et al. 2000; Ushida et al. 1987). 

Elimination of protozoa thus offers an opportunity to decrease methane production by indirect 

means i.e. by limiting amount of available H2 as well as disrupting the symbiotic relation 

between protozoa and associated methanogens. 

 The toxicity of chemicals used for defaunation poses a significant animal health problem 

(Williams and Coleman 1992). Saponin containing plants offer a natural means of 

defaunation. The saponins are glycosides which selectively interact with cholesterol present in 

membrane of protozoa but have no effect on prokaryotic bacteria (Cheeke 1998) and their 

effect on decreasing methanogenic activity in vitro has been reported (Guo et al. 2008). 

Unfortunately, the effect of defaunation on methanogenesis cannot be considered in isolation. 

As suggested by Coleman (1986), the protozoa might be responsible for up to 50% of the 

fibrolytic activity in rumen and defaunation has been shown to adversely affect fibre digestion 

in rumen (Jouany and Ushida 1998). On the other hand, the elimination of Entodinium 

caudatum have been shown to reduce methane emission from rumen with no adverse effect 

on feed digestion (Kumar et al. 2009; Ranilla et al. 2007). Scientists have also suggested that 

protozoa have a negative effect on animal productivity in that the engulfment and digestion of 

bacteria by protozoa significantly decreases the flow of microbial protein from rumen to small 

intestine (Jouany and Ushida 1998; Moss et al. 2000; Wallace and McPherson 1987).   
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To conclude, the use of defaunation to decrease methane production has to be balanced 

against the effects on fibre and protein metabolism which is further dependent on the ratio of 

concentrate to forage in diet.  

2.3.1.3 Chemical analogues 

Many synthetic chemicals analogues of coenzyme-M such as 2-bromoethanesulfonic acid 

(BES), bromochloromethane (BCM) have been found to have a direct inhibitory effect on the 

methanogens (McAllister and Newbold 2008). BES and BCM are reported to inhibit the 

coenzyme-M which is the enzyme involved in terminal step of methanogenesis. Since this 

enzyme is present only in methanogens, the usage of these methane analogues should not 

affect other ruminal bacteria and hence ruminal digestion or VFA production. Dong et al., 

(1999) observed that BES depressed methane production by 51% without significantly 

affecting organic matter digestibility and VFA concentrations in the artificial rumen through 

rumen simulation technique (RUSITEC) and recently in an in vitro study Lee et al., (2009) 

reported that BES at 5 mM inhibited methane production by more than 95% compared to the 

control, decreased the acetate to propionate ratio and did not affect the population of bacteria 

but reduced the population of total methanogens, especially the order Methanobacteriales 

(predominant population in rumen) and the order Methanomicrobiales, in a dose-dependent 

manner. However, the effect of BES addition has been reported to be transitory with methane 

emissions returning to pretreatment levels within a matter of days. A study in sheep showed 

that even though BES effectively depressed methane production, its effectiveness persisted 

for only 4 days even after regular infusion of the chemical (Immig et al. 1996), suggesting 

that adaptation of the methanogenic population occurred.  

The addition of BCM has been shown to have long term efficacy. It reduced percentage of 

gross energy (GE) lost as methane from 3.9 to 0.6% in feedlot steers (Tomkins and Hunter 

2004). Similarly, Denman et al., (2007) reported a 30% reduction in total methane emissions, 

an increase in propionate and other BCFAs upon feeding BCM to the animals for a period of 

28 days and a decrease in the incidence of Methanobrevibacter sp. in the clone library 

generated from BCM treatment. Recently a 50% decrease in methane emissions was reported 

after adding BCM for a period of 90 days to cattle fed grain based diets (Tomkins et al. 2009). 

Another halogenated compound, chloroform, has also been shown to decrease 

methanogenesis by acting upon mcr enzyme involved in the terminal step of methane 

production. But in a recent study rumen methanogens acquired resistance to even this 

compound after 1-2 weeks of daily administration and methane production recovered almost 

62% to the pre-treatment levels (Knight et al. 2011). Though, this compound was able to 
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change the community profile of methanogens seen through DGGE, but, even other bacteria 

such as the reductive acetogens were affected by this compound. Also, this compound has 

been shown to have hepatotoxic and carcinogenic effects (Knight et al. 2011).  

 Therefore, the usage of these chemicals in livestock industries has been banned on account of 

their potential residues in animal products and concerns for health hazards. 

2.3.1.4 Addition of lipids   

The supplementation of diets with lipids, which are not protected in the rumen, has been 

shown to reduce methane emissions from animals (Grainger and Beauchemin 2011; Grainger 

et al. 2008). Lipids are generally added to finishing diets on many farms around the world to 

increase the energy density of diets. Apart from their ability to reduce methane emissions by 

nearly 50% (Machmuller 2006), they have an added advantage of being perceived as a natural 

source of mitigation. Also, lipid addition reduces the dustiness of feed increasing its 

palatability, increases the absorption of fat soluble nutrients and can alter the composition of 

milk and meat products (Beauchemin et al. 2007). It has been recommended that the amount 

of fat added to diet should not exceed 6-7% otherwise it will affect the dietary digestibility 

and DMI, negating the advantages of increased energy density of diet. Based on 17 studies, 

Beauchemin et al., (2007) calculated that with every 1% addition of fat, the methane 

production (g/kg DMI) decreased by 5.6%. The level of added fat was able to explain 67% of 

the reduction in methane emissions relative to the control treatments. These results clearly set 

the lipid addition as an important mitigation option. The best type of lipids to be added to the 

diets, however, is a matter of question.  

Dietary lipids have been proposed to exert their effect on methane inhibition directly or 

indirectly by (i) decreasing ruminal organic fermentation, (ii) diverting H2 for 

biohydrogenation of the lipids containing unsaturated fatty acids (Czerkawski et al. 1966; 

Johnson and Johnson 1995), (iii) decreasing the ruminal bacteria and protozoa or a direct 

toxic effect on the methanogens, or a combination of these modes (Soliva et al. 2003). The 

effectiveness of long chain fatty acids (LCFA) in suppressing methane production has been 

thought to be proportional to their degree of unsaturation (Giger-Reverdin et al. 2003) which 

results in a greater partitioning of H2 between biohydrogenation and reduction of CO2. In 

contrast, as early as 1966 (Czerkawski et al. 1966) and in subsequent experiments thereon, a 

direct relation between the degree of unsaturation (number of double/ triple bonds) and the 

resulting decrease in methane production could not be demonstrated.  
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A direct toxic action of LCFA as well as medium chain fatty acids (MCFA) on methanogens, 

protozoa and bacteria has been ascribed as another reason for inhibition of methanogenesis 

(Hegarty 1999; Maczulak et al. 1981; Soliva et al. 2003).  Addition of C14:0 and C12:0 

directly affected the methanogen counts and simultaneously changed their population profile 

(Soliva et al. 2003). The mode of action for this direct toxic action has been suggested to be 

the adsorption of lipid particles onto the cellular surface, thereby increasing cellular 

permeability and interfering with cellular metabolism (Kabara 1978; Machmuller et al. 

2003b). Machmuller et al., (1998), reported a decrease in methane production by ruminants 

by nearly 58% with the addition of myristic acid (C14:0) to their diet. Also, Matsumoto et al., 

(1991) reported a suppression of rumen ciliates particularly by C12:0 and C10:0 and 

Galbraith et al., (1971) showed that some species of Gram +ve bacteria were inhibited by 

MCFA addition. The Gram –ve bacteria were found to be less sensitive, again suggesting a 

role of cell wall structure in lipid tolerance. Due to absence of peptidoglycan polymer in the 

methanogen cell walls, the adsorption of fatty acids onto the cell surface may be enhanced 

which may interfere with their cellular metabolism (Dohme et al. 2000). The relative 

differences within methanogens in their cell wall structure may also explain the change in 

population profile of methanogens upon lipid addition (Boone et al. 1993; Machmuller et al. 

2003b). Grainger and Beauchemin (2011) have recently summarized that type of fatty acid or 

nature of feeding e.g. as oilseed or liquid form does not have any effect on methane 

production though some seeds need to be processed before feeding for increasing digestibility.  

 But, Galbraith et al., (1971) had reported that for efficient adsorption, the fatty acids must be 

in solution and remain sufficiently lipophilic. To support this observation, the fats which have 

a lower melting temperature and are able to melt more efficiently at the rumen temperature 

e.g. coconut oil and palm kernel oil, which are particularly rich in lauric acid (C12:0), have 

been found to be more effective in methane suppression (Dohme et al. 2000). 

The lipid particles may also directly compete with the rumen microbes for adsorption onto the 

feed particles decreasing the overall digestibility of feed. This effect on digestibility was 

observed to be more pronounced in diets having low concentrate content as compared to diets 

with high concentrate amount. It has been suggested that feeding non-esterified fatty acids 

may be more beneficial in high pasture based diets than concentrate diets (Machmuller 2006). 

Also, the presence of high calcium in diets may decrease the lipid solubility by causing 

saponification and consequently decrease their inhibitory effects (Machmuller et al. 2003b).  

Numerous strategies involving addition of lipids having either LCFA or MCFA or varied 

concentrations of both have been tried by different researchers. Added fats having high 
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concentrations of MCFA (particularly C12:0 and C14:0) have been found to be more effective 

in reducing methane emissions. Based upon their sequential studies, Machmuller and Kreuzer 

(1999) reported that addition of coconut oil in animal diets at the rate of 3.5% and 7%, 

suppressed methane production by 28% and 73%, respectively, simultaneously reducing the 

ciliate protozoa counts by 88 and 97%, respectively. Further Dohme et al., (2000), upon 

investigations in RUSITEC with different fat sources having varied concentrations of MCFA 

reported that at a level of 5% addition, palm kernel oil and a genetically modified canola oil 

(having high concentrations of C12:0) were able to suppress methane production by 34% and 

20%, respectively, and also achieved significant reductions in methanogens and ciliate 

numbers. Significantly, it was found that C12:0 and C14:0 are the predominant fatty acids 

associated with methane reduction and a ratio of 2:1 for them was recommended to be the 

best. This ratio is nearly approachable in coconut oil which was found to be very effective in 

methane reduction (21%) and had lower effect on fibre digestibility. Reportedly, the C12:0 

has a larger impact on rumen fibre breakdown, but a combination with C14:0 decreases the 

level of C12:0 additions, thereby reducing the negative impact on fibre digestion. On the other 

hand, C14:0 has no effect on methane production independently but acts synergistically with 

C12:0 (Machmuller 2006). In spite of their obvious benefits, the MCFA are not routinely used 

for animal diets because of cost involved. 

Lipid sources containing long chain fatty acids (LCFA) such as animal fats (tallow), 

sunflower oil, canola oil, soybean oil and oilseeds (sunflower seeds, cottonseed cakes) have 

also been found to reduce methane emissions while being cheaper. Reportedly, sunflower oil 

and canola oil reduced methane emissions from cattle fed high forage diets by up to 22% of 

GE intake when added at 45 g/kg DM (Beauchemin and McGinn 2006; McGinn et al. 2004). 

During further research by Beauchemin et al., (2007), sunflower oil was found to decrease 

methane emissions by 14% while having a minimal effect on fibre digestibility as compared 

to tallow and sunflower seeds, which though reduced methane emissions by 14% and 33%, 

but unfortunately reduced fibre digestibility by 15% and 20%, respectively and digestible 

energy intake by 3% and 12%, respectively. In another recent study (Grainger et al. 2008), 

supplementation of whole cottonseeds in dairy cows reduced methane emissions by 12% 

while increasing milk fat and milk solids. The reduction in methane emissions with LCFA is 

suggested to be partly due to decreased fibre digestion (Beauchemin et al. 2007; McGinn et 

al. 2004) and decreased DMI (Jordan et al. 2006a), and a major reason has been reported to 

be the direct toxic effect of LCFA on methanogens and fibrolytic bacteria (Beauchemin et al. 

2007; Maczulak et al. 1981).  



 37 

The addition of fat sources containing poly unsaturated fatty acids (PUFA) such as linoleic 

acid (C18:2n-6, LA), linolenic acid (C18:3n-3, LNA), eicosapentaenoic acid (C20:5n-3, EPA) 

and docosahexaenoic acid (C22:6n-3, DHA), which have potential health benefits, may also 

alter the composition and percentage of fat in milk which is desirable in the commercial sector 

these days (Belenguer et al. 2010; Kim et al. 2008; Shingfield et al. 2010). This desirable 

change in the composition of fatty acids in animal products actually prompted the research 

into the effect of using fish oil as a dietary supplement. Fish oil contains substantial quantity 

of PUFA such as LA, EPA and DHA (Fievez et al. 2003). Addition of fish oil has been shown 

to prevent biohydrogenation of LA and LNA to stearic acid (C18:0) by certain Gram +ve 

rumen bacteria such as Butyrivibrio sp., and Clostridium sp., through a direct toxic effect on 

them (Kim et al. 2008). These species classified as group B bacteria (Kemp and Lander 1984) 

are responsible for most of the biohydrogenation in rumen and hydrogenate LA (C18:2n-6) 

and LNA (C18:3n-3) to stearic acid  (C18:0) whereas the group A bacteria hydrogenate these 

same PUFA into trans-11 18:1 (Huws et al. 2010). A DGGE analysis and qPCR of rumen 

fluid from steers fed fish oil at 0%, 1%, 2% or 3% of DMI showed a change in bacterial 

diversity as well as total DNA concentration upon inclusion of fish oil at 2% or 3% (Huws et 

al. 2010). However, the rate of decrease in biohydrogenation was found to be poorly 

correlated with actual DNA numbers of bacteria which may be due to its effect on 

unidentified species (Belenguer et al. 2010). 

Fievez et al., (2003) observed up to 80% reduction in methane production of batch cultures in 

vitro 48h after addition of fish oil with no decrease in VFA production while a parallel culture 

with soybean oil inclusion showed 17% lower VFA production. When fish oil at two 

concentrations of EPA (18.1% vs. 5.4%) and DHA (11.9% vs. 7.5%) was added to the diets of 

steers fed on hay/concentrate diets (65/35, w/w), the fish oil with higher PUFA concentrations 

reduced methanogenesis without decreasing neutral detergent fibre (NDF) digestibility and 

also increased the concentration of propionate.  

From the discussion above it can be deduced that PUFA present in fish oil have a toxic effect 

on methanogens as well as on protozoa and the gram +ve bacteria which provide H2 to 

methanogens. This results in a decrease in methanogenesis.  

To conclude, the efficacy of lipid addition in diets depends on the effective fatty acid 

concentration which is further dependent on the amount of lipid addition, composition of fatty 

acids, extent of esterification, mineral composition of diets, composition of diet available to 

the animal and initial rumen microbial community which further depends on the species and 

breed of host animal and feeding history (Machmuller 2006). In general a low amount (≈3%) 
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of added fat will have relatively low effects on digestibility depression while maintaining its 

beneficial effects. Secondly, the in vivo digestibility effects might be lower than the in vitro 

values because of a possible shift in fermentation to intestines and also the availability of 

excess H2 in rumen while incorporating some H2 into propionate may also shift the rumen 

fermentation towards reductive acetogenesis (Beauchemin et al. 2008; Dohme et al. 2000). 

Further, suppression of methanogens might aid in proliferation of reductive acetogens and 

thus a combination of two strategies might work for practical purposes. A judicious use of fats 

of the right quality and quantity combined with cost management may actually be a practical 

way of reducing methane emissions.  

Fish oil being liquid at room temperature and containing high concentrations of beneficial 

PUFA is a promising supplement for reducing methanogenesis and needs to be tested in 

animals reared on pasture based system. 

2.3.1.5 Vaccination 

Vaccination against methanogens has been researched as another mitigation approach. Almost 

8% reduction in methane production in sheep vaccinated against three methanogens was 

reported by Wright et al., (2004). Williams et al., (2009) evaluated a broader spectrum 

vaccine targeting 5 methanogen species in 32 sheep which covered nearly 52% of the species/ 

strains of methanogens found in Queensland, Australia. Specific IgG titres were detected in 

plasma, saliva and rumen fluid but there was no effect on methane production or the number 

of methanogens. The plausible reason for this could be that a large proportion of methanogens 

cannot be cultured in the laboratory and culturing is required before a vaccine can be made 

(Wright et al. 2006). Also other strains/ species of methanogens can replace the ecological 

niche left by the species targeted by the antibodies (Williams et al. 2009). Further, the highly 

diverse methanogenic community present in animals reared under different conditions 

(Wright et al. 2007) increases the challenge for developing a broad spectrum vaccine suitable 

under varied production and geographical conditions (McAllister and Newbold 2008). In 

practical situations a successful vaccination against methanogens has not yet been achieved 

(Martin et al. 2010). Recently, scientists have sequenced the entire genome of 

Methanobrevibacter ruminantium which is projected to be an important step towards 

identification of suitable immunological targets (Leahy et al. 2010). 
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2.3.2 Enhancing non-methanogens 

2.3.2.1 Reductive Acetogens  

The key to reducing methane emissions from the ruminants is to manage the H2 produced in 

the rumen as an end product of fermentation. One of the strategies for this is to provide 

alternative sinks for H2. As discussed above (section 2.3.1.4), lipids act as a sink by using H2 

for biohydrogenation. Another biological option is the promotion of reductive acetogens in 

the rumen. They use H2 to produce acetate through the process called reductive acetogenesis. 

This is a highly desirable alternative to methanogenesis because the acetate produced can act 

as an energy source for the animal. Reductive acetogenesis is undertaken by a broad range of 

genetically diverse bacteria and is an active pathway for the removal of H2 in a number of gut 

ecosystems such as in wood termites, kangaroos, rodents, humans and lambs just after birth 

(Joblin 1999; Klieve et al. 2009).  However, in the rumen, reductive acetogens are few and 

cannot compete effectively with methanogens for H2 ions, because they have a lower affinity 

for H2 or a higher redox potential than methanogens. Rumen methanogens have 10-100 times 

lower threshold values for H2 than reductive acetogens and thus keep the concentration of H2 

in rumen below the values necessary for reductive acetogens to survive (Fievez et al. 2001; 

Greening and Leedle 1989; Joblin 1999). Also, the negative change in Gibbs free energy 

(∆G
o
) is more favorable for methanogenesis than reductive acetogenesis (Cottle et al. 2011). 

Reductive Acetogenesis: 

4H + 2CO2   CH3COOH + 2H2O + H
+
  ∆G

o  
=  -8.8 kJ/mol 

    (Acetic acid) 

Methanogenesis: 

 

4H2 + CO2   CH4 + 2H2O    ∆G
o  

=  -67 kJ/mol 

 

∆G
o  

is the change in free energy of the reactions (Cottle et al. 2011). 

 

Studies have reported that the concentration of rumen reductive acetogens can vary from 

undetectable to 10
9
/g of rumen contents and the prevalence of these reductive acetogens 

depend on diet, animal age and time of sampling (Henderson et al. 2010). Microorganisms 

capable of producing acetate from H2 have been found to originate from many groups having 

very different phylogenetic lineages. At least 10 species of rumen bacteria capable of 

reductive acetogenesis have been identified including Acetitomaculum ruminis, Eubacterium 

limosum, Blautia schinkii, Blautia producta, Peptosteptococcus productus, (Henderson et al. 

2010; Joblin 1999). 
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Many of these reductive acetogens, however do not use H2 and CO2 as their sole energy 

source and can generate their energy from other substrates which means that they cannot out 

compete the methanogens (Cottle et al. 2011). Studies by Morvan et al., (1994) in the rumen 

of new born lambs revealed that rumen acetogenesis occurs in the first 24 h after birth, but is 

subsequently displaced by methanogenesis as the methanogens easily out compete the 

reductive acetogens at the low concentration of H2 normally encountered in the rumen. 

Further, some reductive acetogens may require a minimum population in their environment, 

and/or a minimum H2 threshold in order to compete successfully with methanogens (Joblin 

1999).  

As early as 1976, it was reported that kangaroos produce low amount of methane as compared 

to sheep per unit digestible DMI (Kempton et al. 1976; Von Engelhardt et al. 1978). 

Significantly, Ouwerkerk et al., (2005) found that the forestomach of kangaroos had high 

numbers of reductive acetogens but few methanogens. It can be deduced that reductive 

acetogens are able to compete very effectively with methanogens in the kangaroo forestomach 

and a possible but yet unsuccessful direction would be to promote reductive acetogenesis in 

rumen by simulating the conditions found in macropods inside the ruminants. 

 

A study by Fonty et al., (2007) has showed that in lambs which were kept methanogen free, 

reductive acetogenesis played a significant part in H2 removal, but once they were inoculated 

with methanogens, this contribution reverted back to the same level as other lambs having 

normal rumen populations. Thus, inhibition of methanogens remains to be shown under 

regular field conditions as to whether the existing rumen reductive acetogens will multiply to 

desirable population on their own or will have to be regularly inoculated. This may not be 

practical. In order to adopt reductive acetogens as alternative H2 sink in the mature ruminants, 

methanogens have to be inhibited first by vaccination, or by regular dietary supplementation 

with lipids or chemical analogues, to increase the partial pressure of H2 till the threshold 

desirable for reductive acetogens was reached. Previous attempts at inducing acetic acid 

production by inoculation with reductive acetogens have not been successful (Immig et al. 

1996; Nollet et al. 1998) and further research is required. 

2.3.2.2 Concentrate supplementation 

Increased supplementation of concentrates in ruminant diets has been shown to decrease 

methane production. This has been attributed to a decrease in acetic acid and a corresponding 

increase in propionic acid production (Demeyer and VanNevel 1975). Higher acetic acid 

levels have been shown to be associated with a higher methane production (Benchaar et al. 
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2001; Johnson and Johnson 1995). Decrease in methane production with decrease  in acetate 

production is also explained by the fact that starch fermenting bacteria produce less H2 

(Stewart and Bryant 1988).  Also, feeding soluble carbohydrates causes a decrease in rumen 

pH affecting the Gram +ve bacteria which are mainly responsible for H2 production thereby 

limiting the H2 supply to the methanogens. It can also have a direct effect on the pH sensitive 

methanogens. Further, feeding of highly soluble carbohydrates increases passage rate of feed 

particles out of rumen and reduces their ruminal digestion (Boadi et al. 2002; Leng 1993; 

Yang et al. 2001a). The enzymatic breakdown of starch to glucose followed by absorption of 

glucose in intestine is more beneficial for the animal than the process of fermentation and 

absorption of volatile fatty acids (Black 1971). In rumen, carbohydrate fermentation is 

associated with digestible energy losses comprising heat of fermentation loss (6%) and 

methane production loss (2-12%). Generally 0.35 mole of methane is produced per mole of 

fermented starch in the rumen whereas it is assumed that there is no loss of heat or methane 

production in small intestine (Channon and Rowe 2004; Hungate 1966). Black (1971) 

estimated that for concentrate diets, the net energy available to a lamb having no fermentation 

in rumen was 39% higher for maintenance and 22% higher for production than a lamb having 

normal rumen fermentation. Okine et al., (1989) observed a 30% decline in methane 

production when ruminal passage rate was increased by 54 to 68%. Similarly, Yan et al., 

(2000), found that increase in proportion of concentrate in diet decreased methane output 

when total digestible energy intake, dry matter intake and feeding level were kept constant.  

In another study (Chandramoni et al. 1999), a 30:70 ratio of roughage to concentrate was 

recommended for more protein and energy retention and less methane emissions. Yanez-Ruiz 

(2008) studied the effect of feeding two different diets; grass hay ad lib and hay: concentrate:: 

40:60, to weaning lambs and reported that the establishment of methanogens in the rumen and 

methane production were significantly lower in lambs fed hay and concentrate diet in the 

initial period of study but the differences diminished after they were grouped together and fed 

same kind of hay and roughage diet for 4 months.  

However, an analysis by Blaxter and Clapperton (1965) showed no relationship between feed 

quality (DE) content and energy loss to methane for concentrate-roughage mixtures fed at 

maintenance. This could in part be explained by a modelling analysis by Benchaar et al., 

(2001) where total VFA production increased as the proportion of concentrate in diet 

increased. The production of acetic acid increased initially with a decreasing forage to 

concentrate ratio of 50:50 and after that it declined for a ratio of 30:70 whereas the production 

of propionic acid increased linearly with increase in concentrate level. The methane 
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production expressed in Mcal d
-1

 also increased initially when the proportion of concentrate in 

diet was increased from 0 to 20% and it then declined with higher level of concentrate in diet. 

Further, it has been reported by Johnson and Johnson (1995) that when highly available 

carbohydrates are fed at limited intakes, high methane losses occur whereas at high intakes of 

highly digestible diets, low methane losses occur. The reported level of methane loss was 6-

7% of energy intake when forages were fed at maintenance whereas it was 2-3% when high 

grain concentrate were fed ad lib. 

In grazing steers, Boadi et al., (2002) studied the effect of grain supplementation  at a level of  

2, 4 and 4 kg d
-1

 of steam rolled barley grain in early, mid and late grazing season 

respectively. Steers fed on early pastures having high pasture quality had 44% and 29% lower 

energy loss as methane than when fed on mid or late grazing pastures. They concluded that in 

grazing animals, pasture quality has a significantly higher effect on methane production than 

grain supplementation. In low quality feeds, proper nutrient utilization has to be achieved by 

other nitrogen and mineral supplements for decreasing methane production (Leng 1993).  

To conclude, concentrate supplementation does offer a solution for methane mitigation in 

areas where low quality feed is used or when they are added at very high levels (˃50%) but 

the feasibility of supplementation in terms of cost and net farm GHG emissions has to be 

established on an individual basis. 

2.3.3 Management 

Since the present study targets cattle reared in South Island of New Zealand where pasture 

grazing is the main means feeding cattle during the milking season, this brief review on farm 

management targets strategies proposed for pasture management to achieve better production 

and net lower methane emissions.  

Pasture management 

Grazing beef or dairy animals have an added benefit in using land which may not be suitable 

for crops and producing commercial products (Buddle et al. 2011). As discussed by Boadi et 

al., (2004) there has been evidence that pasture based dairy farming systems can be as 

profitable as confinement systems (White et al. 2002). In grazing animals, achieving 

maximum DMI to achieve higher production is the most challenging aspect of nutritional 

management. It has been argued that net returns under managed intensive grazing are greater 

because of lower feeding costs associated with pasture forages (Boadi et al. 2004; Dartt et al. 

1999; Hanson et al. 1998). 
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A study by Harper et al., (1999) showed that animals lost  1.9- 2.2% of their feed energy to 

methane when fed on a highly digestible, high grain diet, as compared to 7.7 -8.4% loss of 

feed energy to methane when they received low quality, high fibre diets. Generally, the 

methane emission increases with increase in DMI (Molano and Clark 2008).  But at a higher 

level of DMI, the methane production per unit of product decreases with an increase in DMI 

(Johnson and Johnson 1995). The methane emissions per unit of DMI or per unit of 

commercial product can further be decreased by improving the quality of pasture. The effect 

of this improved pasture quality and a higher DMI towards decreasing methane emissions can 

be explained by an increased rumen passage rate and hence decreased ruminal digestion of 

high quality pasture (Buddle et al. 2011). As an example, a high passage and fermentation 

rate of lucerne silage (highly fermentable) as compared to grass silage (less fermentable) was 

observed by Dewhurst et al. (2003). Similarly, in an earlier study (McCaughey et al. 1999), 

DMI was high for cows grazing lucerne pastures than grass only pastures (11.4 vs. 9.7 kg 

DM/day; P < 0.018) and thus methane production was also high for lucerne pastures than 

grass only pastures (373.8 vs. 411.0 L CH4 /day; P < 0.008). But, the net amount of feed 

energy lost through methane was lower for cows grazing lucerne than grass only pastures (7.1 

vs. 9.5% of gross energy intake; P < 0.001).  

 

Pasture quality was confirmed as a critical factor in managing on farm methane emissions in 

an experiment by Robertson and Waghorn (2002) when cows grazing low quality pastures 

had significantly higher methane emissions (7% of GEI) compared to those receiving a TMR 

(6.3% of GEI), while there was no difference between the two feeding regimens when cows 

grazed high quality pastures. Amongst the grass based pastures, a highly digestible grass was 

found to produce less methane than highly fibrous grass by DeRamus et al., (2003). Their 

experiment actually showed that adopting best management practices for grazed farm animals 

could lead to a 22% annual reduction in methane as compared to general operating practices. 

 

In fact, adoption of better farm management practices for the pasture grazed animals is being 

considered a more realistic approach to methane mitigation (Beukes et al. 2010; Grainger and 

Beauchemin 2011; Waghorn and Hegarty 2011). These include selection of animals with high 

reproductive and production capabilities and culling of non-productive animals, good 

longevity to minimize replacement rate, attendance to animal health, use of improved forages 

and better grazing management to maximize pasture utilization and management of stocking 

rate to achieve high production/ha to which will decrease overall GHG emissions from farm. 

Using a typical pasture based New Zealand farm over different climate years to measure 
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whole farm GHG emissions, Beukes et al., (2010) used a mathematical model to illustrate that 

adopting better farm management strategies have the potential to decrease total farm GHG 

emissions by 27-32%. 

As has been stressed by Grainger and Beauchemin (2011), it is particularly important in case 

of pasture grazed animals to consider any mitigation strategy on a whole farm and life cycle 

assessment (LCA) basis because adopting farm practices such as higher pasture digestibility 

and high producing animals will increase DMI and methane emissions in g/day, but when 

considered from commercial point of view i.e. methane emissions/unit of product formed, 

these practices will actually lead to lower overall methane emissions. 

2.4 Summary 

Recent developments in molecular analysis have paved the way for studying microbial 

diversity across different geographical areas, species and production systems and many new 

species or strains of methanogens have been sequenced based upon their 16S rRNA 

sequences. It has been generally reported that Methanobrevibacter spp. are the predominant 

methanogens in rumen but within a change in diet, the diversity of methanogens within that 

community might change. Diet quality and the DMI are highly correlated with methane 

production but it has also been reported that with increase in diet quality and DMI, the net 

CH4 emissions decrease per unit of product. Thus the typical pasture system of South Island 

thus offers a novel opportunity to study methanogens in animals having high production from 

high DMI which is supported by very good quality pastures. Further, the general practice of 

giving fresh pasture breaks once daily encourages an exaggerated rumen diurnal pattern of pH 

and other parameters (e.g. VFA and NH3), which would make likely a similar diurnal pattern 

of methanogenesis.  Studying the methanogen ecology, quantity and expression of a typical 

South Island production system over a diurnal period is valuable to better understand 

methanogen community structure and activity. Techniques like respiration calorimetry, SF6 

technique and inverse dispersion technique are unsuitable to study methanogenesis over a 

diurnal period from individual animals on a large scale.  

Molecular fingerprinting techniques such as DGGE offer means of initial screening of 

microbial community. qPCR and qRT-PCR are useful and feasible techniques to analyse 

methanogen community numbers and activity across different supplements.  The development 

of mcrA primer which is highly specific for methanogens has increased the validity of these 

techniques. They can also be used to study the diurnal changes in methanogens and their 

expression under the influence of any external modifications to the rumen environment. But 
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the success of these techniques depends upon extraction of high quality and quantity RNA 

which might be a problem in the rumen contents from animals fed grass diets.  

While choosing a mitigation strategy, it is necessary to ensure that any H2 produced in rumen 

does not accumulate and is used up continuously for the fermentation to proceed continuously 

ensuring optimum feed utilization. Dietary strategies are the most researched at this point with 

addition of concentrates or fats being the most practical. Concentrates have the capability to 

reduce methane emissions but they are generally associated with overall higher carbon 

emissions, stressing on the need for developing alternate energy rich feed supplements. Fats 

have the capability of being successful mitigation agents provided they don’t interfere with 

digestion of feed. A low amount (≈3%) of added fat will have relatively low effects on 

digestibility depression while maintaining its beneficial effects. Suppression of methanogens 

might aid in proliferation of reductive acetogens (due to increased partial pressure of H2) and 

thus a combination of two strategies might work.  

Fish oil being liquid at room temperature and containing high concentrations of beneficial 

PUFA is a promising supplement for reducing methanogenesis. The ability of fish oil to be 

fed to animals in liquid form along with water makes it an easy option to consider for 

supplementation in a pasture system. It has been shown to decrease number of methanogens 

as well as methane production in earlier in vitro studies. Though some in vivo studies have 

also been done but they have been generally based upon concentrate diets. Therefore, 

concentrate addition and fat supplementation seem to be the most promising supplements for 

the pasture system under study.   

On this basis, this research was planned to achieve the following objectives: 

1. To describe the rumen methanogen community of South Island cattle grazing 

high quality forages.  

2. To develop a suitable method for determining changes in the rumen methanogen 

community and activity within the diurnal cycle. 

3. To study the effect of changed diets and management on the population diversity 

and activity of rumen methanogen in cattle within the diurnal period. 
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Chapter 3 

The Effect of Dietary Supplements on Rumen Methanogen 

Communities in Cattle Grazing High Quality Pastures 

The dynamics of methanogen population in animals are strongly dependent on numerous 

factors such as diet, species, physiology or production state of animal, and others. Due to the 

critical importance of methanogenesis in energy budgeting of ruminants as well as any 

perceived environmental consequences, many studies have been conducted to gain 

understanding about rumen methanogens under different geographical, climate or dietary 

conditions.   

Zhou et al., (2011), discussed that methanogens may be diverse in their phylogenetic 

relationships but they utilize similar energy generation pathways. These are the CO2 reduction 

pathway; the C1compound (e.g., methanol and methylamine) conversion pathway; or the 

acetate fermentation pathway. Also, each methanogen species has a substrate preference and 

most methanogens can use only one or two substrates (Zhou et al. 2011). Therefore, a 

particular diet might provide substrates which functionally determine the composition of 

methanogen population in that production system. As discussed in Chapter 1, the South Island 

(SI), New Zealand pasture production system is different than other TMR based or pasture 

based systems of the world in that it is based on very high quality pastures which support a 

high DMI and production. 

But no study has so far reported the rumen methanogen community structure or activity in 

this system. Studies of the diversity of the rumen methanogen community in different systems 

around the world have generally reported that Methanobrevibacter spp. are the predominant 

methanogens in both cattle and sheep (Mohammed et al. 2011; Ouwerkerk et al. 2008; Wright 

et al. 2008; Zhou et al. 2010). Other species like Methanosarcina barkeri, Methanosphaera 

stadtmanae and Methanobacterium species have also been detected (Boadi et al. 2004; 

McAllister et al. 1996; Moss et al. 2000; Ouwerkerk et al. 2008; Zhou et al. 2011). Similar 

studies in Australia have reported many novel methanogens (Klieve 2009; Klieve et al. 2009; 

Ouwerkerk et al. 2008; Wright et al. 2008). A better understanding of the methanogen 

community structure in a typical SI production system would be of significant benefit in 

future mitigation strategy development. 
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Most of the culture independent studies into rumen methanogen communities have been 

carried out using molecular fingerprinting technique DGGE or by cloning and sequencing 

analysis or a combination of these (Ouwerkerk et al. 2008; Wright et al. 2007; Wright et al. 

2008; Wright et al. 2006; Zhou et al. 2010). It is possible with DGGE to identify specific 

bands using cloning and sequencing analysis, and studies have been able to detect differences 

between DGGE community profiles upon different dietary supplementations (Mohammed et 

al. 2011; Zhou et al. 2009; 2010). In this study, the primers 344F-GC and 522R were used for 

PCR-DGGE analysis of methanogens targeting their V2V3 region which have been reported 

(Ouwerkerk et al. 2008; Yu et al. 2008) to cover the widest range of methanogen species as 

was desired for community analysis. 

Cereal concentrates, fat and ionophore supplementation are all extensively reported (Guan et 

al. 2006; Okine et al. 1989; Soliva et al. 2003) to alter methane production in ruminants in 

different production systems internationally. Therefore, these three different supplements 

were used to induce changes in the rumen methanogen community in cows grazing under a 

typical SI production system, in order to investigate the structure of this community.  

3.1 Materials and Methods 

3.1.1 Animals, diets and experimental design  

Three experiments were performed using 10 lactating, ruminally fistulated dairy cows divided 

randomly into 2 groups of 5 each. All three supplementation experiments were carried out 

with interval of at least 3 months between them to negate the effect of any previous 

supplementation. The cows were Holstein-Friesian Jersey cross with a December live weight 

of 470kg with average seasonal milk solids production of approximately 425kg, broadly 

approximating a daily pasture intake of 16-18kg DM. 

3.1.1.1 Feeding and treatment 

During each supplementation experiment, all the animals were grazed on ryegrass (Lolium 

perennes) and clover (Trifolium repens) pasture as control diet with a dry matter allowance of 

16-18kg DM/day along with free access to drinking water. The experiments were performed 

in a 5 x 5 crossover design. One group of 5 animals was considered as treatment group and 

supplemented with the respective treatment along with standard pasture allocation while the 

second group of 5 cows was managed as control group and fed their usual dry matter 

allowance. This feeding pattern was followed for 14 days in order to provide an adaptation 

period for the animals on the experimental diet before samples were collected from them over 

a period of 4 days. After the first collection period, all the animals were given their routine 
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pasture allocation of 21 days in order for them to arrive at their pre-trial status. After the 

stabilization period, the groups were switched and previous procedures repeated. 

Grain supplementation  

The treatment group was given 1.5kg of cracked barley grain twice daily (16% of DMI) along 

with their pasture allowance while the second group of cows was managed as control group 

and fed only the pasture allowance. 

Fat supplementation 

The treatment group were fed 300g (1.8% of DMI) of granulated palm oil fat (HyFat, Agri-

Feeds Pty Ltd., Mt Maunganui, NZ ) source along with their pasture allowance while the 

second group of cows was managed as control group and fed only the pasture allowance. 

Monensin supplementation 

Two pre-weighed tubes of Rumensin
TM

 (Elanco Pty Ltd., Auckland, NZ) were placed in the 

rumen of treatment group cows through rumen fistulas so as to release an approximate 600mg 

(37mg/kg DM) of monensin in the rumen of animal each day while the second group of cows 

was managed as control group and fed their usual pasture allowance.   

3.1.1.2 Sample collection 

The samples were collected from experimental and control animals once in the morning and 

once in the evening in order to observe any pre or post-prandial changes with an interval of 4 

days i.e. for the first sample collection, the samples were collected on the first day (Monday) 

in the afternoon at 3pm (6 hours after fresh pasture break) and on fifth day (Friday) in the 

morning at 9am (just before fresh pasture break) and for the second collection period similar 

pattern was repeated after an interval of 21 days.  

For sample collection, whole rumen contents were collected from the ventral sac of an 

animal’s rumen through the rumen fistula and were immediately aliquoted into 4 microtubes 

(1.7ml capacity) per one animal. They were immediately centrifuged at 13,200rpm for 5min. 

The supernatant was drained off and samples were stored on ice before being transported and 

stored in a -20
◦
C freezer for further processing.  

3.1.1.3 Processing of samples 

3.1.1.3.1 Extraction of genomic deoxyribonucleic acid (DNA) 

The genomic DNA was extracted from the samples by the standard bead beating method and 

phenol: chloroform precipitation method of Whitford et al., (2001) which is described in 

detail in appendix A.1. Briefly, 0.5g of whole rumen contents (WRC) stored at -20
◦
C were 

thawed and added to a bead beating tube containing 0.5g of 0.1mm zirconia beads (Daintree 
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Scientific, St. Helens, Tasmania) along with 700µl of TE buffer (pH 7.2, 10mM Tris-HCl, 

1Mm EDTA), 700µl of phenol (pH of phenol phase 6.7±0.2, Sigma-Aldrich, Auckland, New 

Zealand) and 20µl of 10% sodium dodecyl sulfate (SDS) solution. The samples in tubes were 

then subjected to three bead beatings of 2min each in a Mini-Beadbeater-8
TM

 (Biospec 

Products, BioLab, Auckland, New Zealand) with an intervening 2min interval on ice. This 

was followed by a chloroform extraction (700µl) at 10,000rpm for 10min at 4
◦
C. The 

supernatant was pipetted out into a fresh microtube and incubated with 20µl of 10mg/ml 

RNase enzyme (REF 10109134001, Roche Diagnostics GmbH, Mannheim, Germany) at 39
◦
C 

for 60min. After incubation 700µl of phenol was added and samples were centrifuged at 

13,200rpm for 10min at 4
◦
C. This was followed by a phenol: chloroform (350µl:350µl) 

extraction and a chloroform (700µl) extraction at 13,200rpm for 10min at 4
◦
C. To the clear 

supernatant from this extraction, 0.25 volume of 3M sodium acetate and 2.5 volume of 

absolute ethanol, were added to precipitate DNA and incubated at -20
◦
C for 1 hour. This was 

followed by centrifugation at 13,200rpm for 10min to pellet the DNA. The pelleted DNA was 

then washed with 1ml of 70% alcohol and then dried in a vacuum centrifuge at 60
◦
C. The 

pellets were then reconstituted in sterile distilled water and stored at -20
◦
C till further analysis. 

The extracted genomic DNA samples were quantified with spectrophotometry for estimating 

DNA concentrations (NanoDrop Technologies, Thermo Fisher Scientific, Auckland, New 

Zealand). Absorbance was recorded at 260/280 nm and 260/230 nm. They were analysed for 

integrity by gel electrophoresis procedure in 1% agarose gel. 

3.1.1.3.2 Gel electrophoresis 

The detailed protocol (Sambrook and Russell 2006) is described in appendix A.2. Briefly, gel 

electrophoresis was performed in 1% agarose gel containing ethidium bromide to check the 

integrity of extracted DNA as well as to check the size of amplified PCR products. 5µl of the 

standard, 1Kb ladder (Axygen, Raylab, Auckland, New Zealand) for genomic DNA or 100bp 

ladder (Axygen, Raylab, Auckland, New Zealand) for PCR products was loaded into the gel 

along with 5µl of sample mixed in loading buffer. The gel was run at 95V for 30min with 1X 

TBE as the running buffer. The gel was examined under UV light in Gel Doc
TM

 XR
+
 System 

(catalogue no.-170-8195, Bio-Rad, Auckland, New Zealand). 

3.1.1.3.3 Amplification of methanogenic archaeal rDNA fragments 

rDNA fragments of methanogenic archaea were PCR amplified from total DNA samples 

using two sets of methanogen specific primers in a nested PCR amplification in a Bio-Rad 

Thermocycler
TM

 (Auckland, New Zealand) according to the protocol described in Ouwerkerk 

et al (2008). The DNA samples were quantified and the amount of genetic material to be 
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added into the PCR mix was adjusted by suitable dilutions in sterile distilled water to achieve 

similar concentration in µg/ml.  

3.1.1.3.3.1 Methanogen 16S rDNA specific PCR 

In the first step, amplification was done with Taq polymerase (Qiagen, Biostrategy Ltd., 

Auckland, New Zealand) using 16S rDNA primers 46F: 5’ YTA AGC CAT GCR AGT 

(Ovreas et al. 1997)  and 1017R: 5’ GGC CAT GCA CCW CCT CTC (Barns et al. 1994). 

The protocol included initial denaturation at 95
◦
C for 3min followed by 30 cycles of 

denaturation at 95
◦
C for 45sec, annealing at 47.3

◦
C for 45sec and extension at 72

◦
C for 45sec 

with a final extension at 72
◦
C for 5min. 

Reaction setup 

The master mix was prepared for all the samples along with negative and positive controls 

according to the composition described in appendix A.3. A 50µl reaction was set up having 

1U/µl of Taq polymerase, 0.2mM of each dNTP, 2.5mM final concentration of MgCl2 and 

primer concentration of 0.2µM each. 49µl of master mix was allocated into 0.2ml PCR tubes 

along with 1µl (≈400ng/ µl) of respective DNA template. The products were checked for 

amplification on a 1% Agarose gel electrophoresis and compared with a standard 100 bp 

ladder (Axygen, Raylab, Auckland, New Zealand). 

3.1.1.3.3.2  Methanogen V2V3 PCR  

The amplified products from the 16S PCR reaction were then subjected to a second PCR 

reaction for amplifying the variable V2V3 regions by using specific methanogen primers 

344F-GC: 5’ CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG 

GAC GGG GHG CAG CAG GCG CGA (Raskin et al. 1994) and 522R: 5’ GWA TTA CCG 

CGG CKG CTG  (Amann et al. 1995). The reaction setup was the same as for 16S PCR 

except for different primers and is described in appendix A.3. The PCR reaction was 

performed using Taq Polymerase (Qiagen, Biostrategy Ltd., Auckland, New Zealand). The 

protocol included 20 cycles of denaturation at 94
◦
C for 30sec, annealing at 65

◦
C for 30sec 

with a 0.5
◦
C decrease in annealing temperature after every cycle and extension at 72

◦
C for 

30sec. This was followed by 15 cycles of denaturation at 94
◦
C for 30sec, annealing at 55

◦
C for 

30sec and extension at 72
◦
C for 30sec. In the end there was a final extension at 72

◦
C for 3min. 

The products were run on a 2% agarose-TBE gel to check for specific amplification and 

compared against a standard 100bp ladder (Axygen, Raylab, Auckland, New Zealand).  The 

products from this PCR were then analysed on DGGE gels.  
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Figure 3.1 Gel electrophoresis of methanogen 16S rDNA from different rumen 

samples amplified with 16S archael primers 46F and 1017R. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Gel electrophoresis of methanogen 16S rDNA from different rumen 

samples amplified with archael V2V3 primers 344F-GC and 522R. 
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3.1.1.3.4 Verification of PCR products 

The products from 16S archaeal PCR amplified with primers 46F and 1017R were analysed 

on 1% agarose gels and the bands obtained were compared against standard 100bp ladder 

where the sample bands ran close to the band in standard representing 900bp of the ladder as 

shown in figure 3.1. Similarly, the products from second archaeal V2V3 PCR with primers 

344F-GC and 522R were analysed on 2% agarose gels and the bands obtained were compared 

against standard 100 bp ladder where the bands ran close to the band of standard representing 

200 bp (expected product size 180bp) as shown in figure 3.2. 

Further, to confirm the specificity of primers, the products obtained from Archaeal V2V3 

PCR were cloned and sequenced using TOPO TA
TM

 Cloning kit (Invitrogen, Catalogue no. 

K4500-01, Life Technologies, Auckland, New Zealand) through chemical transformation 

using pCR 2.1-TOPO vectors according to manufacturer’s instructions. The protocol is 

described in appendix A.6.2. The sequences were subjected to BLAST
TM

 search of NCBI 

database (Altschul et al. 1990) and they showed 100% matches with the sequences of 

Methanobrevibacter sp., Methanosphaera stadtmanae and a few uncultured methanogens. No 

non-specific product was detected confirming the specificity of primers.  

3.1.1.3.5 Denaturing gradient gel electrophoresis (DGGE) 

DGGE was performed with a Dcode
TM

 Universal Mutation Detection System (Bio-Rad 

Laboratories, USA). Samples were amplified by PCR reaction (as in section 3.1.1.3.3) and 

analysed on polyacrylamide gels having 8% acrylamide with urea and formaldehyde as 

denaturants creating a gradient of denaturation from 30% to 60%. After assembling the 

parallel gradient gel sandwich, the glass plates were sealed with 8% acrylamide seal into 

which 30µl each of 10% ammonium persulphate and tetramethyl ethylene diamine (TEMED) 

were added. After the seal had set, 20ml each of the denaturing solutions were mixed with 

70µl each of 10% ammonium persulphate and TEMED and pored through a gradient maker 

into the sealed glass plates. The gradient was created such that the denaturation capacity in gel 

increased from top to bottom. Gel was allowed to set for at least one hour and samples were 

loaded into the wells of gel. The samples were run along with standards in 0.5X TAE Buffer 

at 100V for 18 hours and stained by silver staining (protocol described in appendix A.4) 

adapted from Kocherginskaya et al., (2005). Images of the gels were obtained by scanning on 

a flatbed scanner (Hewlett and Packard, New Zealand). 

Validation of PCR/DGGE 

Extracted DNA samples of two animals from two different experiments (grain and fat 

supplementation) i.e. 4 in total, were taken and PCR was performed on them in triplicate 
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(technical). These 12 PCR products were then subjected to DGGE and the band profile was 

compared. Appearance of identical band profiles amongst technical triplicates indicated 

absence of any PCR or DGGE induced anomalies.  

3.1.1.3.6 Identification of bands 

Based on the banding patterns observed in DGGE analysis, 12 bands were aseptically excised 

from the gels and DNA isolated from them using the method of Schweiger and Tebbe (1998) 

for polyacrylamide gel extraction. The extracted DNA was reamplified using primer pair 

344F-GC and 522R without a GC-clamp. The PCR product was then run on 2% agarose gel 

to check the size of product and was purified using AXYPREP
TM

 PCR cleanup kit 

(AXYGEN, Raylab, Auckland, New Zealand). The purified PCR products were cloned using 

a TOPO TA cloning kit (Invitrogen, Auckland, New Zealand) following the chemical 

transformation with pCR 2.1-TOPO vector and the transformants were screened on X-gal/LB 

medium containing ampicillin (100mg/ml). 10 colonies with inserts (white colonies) were 

randomly picked per band and grown overnight in LB broth containing ampicillin 

(100mg/ml). The plasmid DNA of the transformants containing insert was extracted using 

Escherichia coli (E.coli) plasmid mini prep procedure adapted from Birnboim and Doly 

(1979). Resriction enzyme digest was done with Eco R1 (20,000U/ml, R0101S, BioLabs, 

Auckland, New Zealand) to separate the inserts from plasmid and screened on a 2% agarose 

gel. The samples (plasmid mini-preps) with inserts were purified with AXYPREP
TM

 PCR 

cleanup kit (Axygen, Raylab, Auckland, New Zealand) and 3 plasmids per band were 

submitted for sequencing. Sequencing was done using ABI Big Dye Terminator v3.1 cycler 

(Applied Biosystems, Auckland, New Zealand). The sequence reaction was performed with 

10µl of solution containing 0.5µl of BigDye, 3.2pmol of M13 Forward 

(CGCCAGGGTTTTCCCAGTCACGAC), 2.0µl of 5X sequencing buffer, and 20ng of 

plasmid DNA as the template. DGGE was also performed on clones to compare them against 

the band requiring identification. The gene sequences obtained (180bp) were compared to the 

nucleotide databases for 100% match and identified through GenBank’s basic local alignment 

search tool (BLAST) (Altschul et al. 1990). Sequences were assembled using sequence 

analysis software SEQMAN and aligned by neighbor-joining clustal W method in 

MEGALIGN (Lasergene, DNASTAR) (Burland 2000). A phylogenetic tree was generated 

based upon similarity index through MEGALIGN and bootstrap analysis performed with 

resampling 1000 times. Out of 12 bands sequenced 6 generated single sequences and 6 

generated multiple sequences and they were labeled accordingly.  



 54 

3.2 Results 

3.2.1 Community identification from DGGE 

An average of 22-25 bands was obtained upon DGGE of all samples (figure 3.4). Out of these 

12 bands could be sequenced. Because the primers used to generate products from DGGE 

band stabbings were the same as had been used for performing PCR, the sequences obtained 

were of short size (180bp) and strong phylogenetic relations could not be obtained through 

bootstrap analysis at 1000 times resampling. 

 Phylogenetic analysis of the sequences obtained from these 12 major DGGE bands (figure 

3.3) indicated that most of the bands (8) represented sequences showing 100% identity match 

with Methanobrevibacter sp. along with 2 bands matching (100%) Methanosphaera 

stadtmanae and 1 band each were representing a species matching with order 

Methanobacteriales and family Methanobacteriacae. However, some bands showed presence 

of multiple sequences i.e. presence of more than 1 species in a single band. Some uncultured 

archaeon and uncultured methanogenic clones were also detected. The sequences were also 

compared with the bands obtained in standards for further confirmation of species identity. 

The band identification made through the limited phylogenetic analysis and comparison 

against standards was similar to the profile obtained by Mohammed et al., (2011) and Zhou et 

al., (2010) who had used similar primer pairs and a mix of pure cultures of different 

methanogen species as standards. 
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Figure 3.3 Phylogenetic analysis of sequences obtained from DGGE band stabbing. 
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U.- Uncultured  strain/ species 

Figure 3.4 Identification of DGGE Bands. 

 

3.2.1 DGGE profiling upon dietary modifications 

DGGE profiling was done to detect any changes in the methanogen community. Each animal 

was represented in 2 control samples i.e. control morning (pre-prandial) and control evening 

(post-prandial) and 2 treatment samples i.e. treatment morning (pre-prandial) and treatment 

evening (post-prandial). Figures 3.5 to 3.8 show the DGGE gels for grain supplementation 

experiment, figures 3.9 to 3.12 for fat supplementation experiment and figures 3.13 to 3.16 

for monensin supplementation experiment. 

 

Methanosphaera stadtmanae 

Methanobacteriacae  

Methanosphaera stadtmanae, U.archaeon clone 

FJ586752.1,  
Methanosphaera stadtmanae 

 
U. Methanobacteriales clone DQ402029 

U. Methanobrevibacter sp, 
U.archaeon clone PB15HM040973 

Methanobrevibacter sp. 

Methanobrevibacter smithii, 
U.methanogenic archaeon  

Methanobrevibacter sp. 

U. methanogenic archaeon FJ223824.1, 

Methanobrevibacter gottschalki 

Methanobrevibacter sp. 

U. Methanobrevibacter clone 
M18FJ919267.1,  
U. Archaeon EF467854.1 

M
et

h
a
n

o
b
re

vi
b
a
ct

er
 s

p
. 



 57 

3.2.1.1 Grain supplementation 

In figure 3.5, the gel analysed represents both the morning and afternoon sample collections 

for control and grain supplementation period of animals 624 and 399, respectively. 

Approximately, 25 bands were detected clearly in the gel.  For both the control as well as 

grain supplementation samples, no distinguishable difference was detected between the 

treatments. There was only a slight difference in the band intensity upon grain 

supplementation samples for animal 624 as highlighted in box ‘a’ of figure 3.5 and another 

difference in band intensity was detected in the morning sample of animal 399 upon grain 

supplementation as highlighted in the box ‘b’ of figure 3.5. The bands showing these changes 

represent Methanobrevibacter sp. indicating an effect of grain supplementation on this species 

in the two animals while no effect was observed on any other species. 

In figure 3.6, the gel analysed represents both the morning and afternoon sample collections 

for control and grain supplementation period of animals 589, 641 and 704, respectively. 

Approximately, 25 bands were visible in this gel. In this gel the band no.3 representing 

Methanosphaera stadtmanae showed some changes as highlighted by boxes ‘a’, ‘b’ and ‘c’. 

In box ‘a’ for the animal 589, the band was present in the control samples but absent in the 

treatment samples for both morning and evening sample collections whereas it was absent 

throughout in animal 641 as highlighted in box ‘b’ and was present in both control and 

treatment samples for both sample collection times in animal 704 as highlighted in box ‘c’. 

Similarly, the band no.8 representing Methanobrevibacter sp. also showed some changes in 

band intensity as being lighter in the control samples of both times than the treatment 

samples, for animal 589 as highlighted by box ‘d’; uniform in intensity for all samples of 

animal 641 (box ‘e’) and lighter in intensity for all samples of animal 704 (box ‘f’). 

In figure 3.7, the band representing Methanosphaera stadtmanae was detected in all samples 

of 3 animals except the control samples of animal 616 (box ‘d’). The band representing family 

Methanobacteriacae showed variable response in being totally absent in 616 (box ‘c’) and 

present in 715 (box ‘b’) except in control evening sample, whereas in 711 it was lighter in 

control and treatment evening sample but present in the treatment morning sample (box ‘a’). 

Further, the band no. 8 representing Methanobrevibacter sp. was very light or absent in 

animals 711 & 715 (box ‘g’) but was present in control samples of 616 and absent in the 

treatment samples (box ‘f’). Interestingly, in animal 616 the band for a species of order 

Methanobacteriales was present in control samples but it disappeared in the treatment samples 

(box ‘e’). No significant change in DGGE profile was detected in any sample of animal 619 

and 175 (figure 3.8). 
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Figure 3.5 DGGE  of animals 624 and 399. 
 

*Arrows and boxes represent changes detected in gels. L- ladder, CE- control evening (3pm), CM- control 

morning (9am), TE- treatment evening (3pm), TM- treatment morning (9am). 
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Figure 3.6 DGGE analysis of animals 589, 641 and 704. 
 

*Arrows and boxes represent changes detected in gels. L- ladder, CE- control evening (3pm), CM- control 

morning (9am), TE- treatment evening (3pm), TM- treatment morning (9am). 
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Figure 3.7 DGGE analysis of animals 711,715 and 616. 
 

*Arrows and boxes represent changes detected in gels. L- ladder, CE- control evening (3pm), CM- control 

morning (9am), TE- treatment evening (3pm), TM- treatment morning (9am). 
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Figure 3.8 DGGE analysis of animals 619 and 175. 
 

*L- ladder, CE- control evening (3pm), CM- control morning (9am), TE- treatment evening (3pm), TM- 

treatment morning (9am). 
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3.2.1.2 Fat supplementation  

In the DGGE gels for animals supplemented with fat, approximately 25 bands were detected. 

No difference in any banding pattern was observed for all 10 animals across both treatment 

and control periods at morning as well as evening times (figure 3.9 to figure 3.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 DGGE analysis of animals 616, 589 and 175. 
 

*L- ladder, CE- control evening (3pm), CM- control morning (9am), TE- treatment evening (3pm), TM- 

treatment morning (9am). 
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Figure 3.10 DGGE analysis of animals 715, 641 and 399.  
 

* L- ladder, CE- control evening (3pm), CM- control morning (9am), TE- treatment evening (3pm), TM- 

treatment morning (9am). 
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Figure 3.11 DGGE analysis of animals 704, 714 and 703. 
 

* L- ladder, CE- control evening (3pm), CM- control morning (9am), TE- treatment evening (3pm), TM- 

treatment morning (9am). 
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Figure 3.12 DGGE analysis of animal 720. 
 

* L- ladder, CE- control evening (3pm), CM- control morning (9am), TE- treatment evening (3pm), TM- 

treatment morning (9am). 

 

3.2.1.3 Monensin supplementation 

Similar to the grain and fat supplementation experiments 25 bands were detected in the 

monensin addition experiment. But no change in any band profile could be detected across 

any of the samples in all 10 animals (figure 3.13 to figure 3.16). 
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Figure 3.13 DGGE analysis of animals 589 and 175. 
 

* L- ladder, CE- control evening (3pm), CM- control morning (9am), TE- treatment evening (3pm), TM- 

treatment morning (9am). 
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Figure 3.14 DGGE analysis of animals 616 and 619. 
 

* L- ladder, CE- control evening (3pm), CM- control morning (9am), TE- treatment evening (3pm), TM- 

treatment morning (9am). 
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Figure 3.15 DGGE analysis of animals 714, 641 and 703. 
 

* L- ladder, CE- control evening (3pm), CM- control morning (9am), TE- treatment evening (3pm), TM- 

treatment morning (9am). 
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Figure 3.16 DGGE analysis of animals 711, 715 and 399. 
 

* L- ladder, CE- control evening (3pm), CM- control morning (9am), TE- treatment evening (3pm), TM- 

treatment morning (9am). 

 

3.3 Discussion 

Approximately, 22-25 major bands were detected across all experiments in all animals. The 

bands showing closest match (100%) to Methanosphaera stadtmanae and species from family 

Methanobacteriacae were detected in the upper domain of the gels suggesting that the DNA 

from these species has a comparatively higher A: T content whereas the bands closest to 
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Methanobrevibacter sp. occupied the lower domain of the gel suggesting presence of a higher 

G: C content in these species and more stability towards denaturation.  

The detection of between 22-25 bands in DGGE across all diets indicated that a very diverse 

methanogen population is present in pasture fed animals from South Island of New Zealand. 

A high diversity of methanogens in grazing cows of North Island, New Zealand had earlier 

been recognized by Skillman et al., (2006). Zhou et al., (2010) and Mohammed et al., (2011) 

using similar primer pairs, had also detected similar number of bands in their DGGE gels 

though the experimental animals were fed TMR based diets in their experiments. But in the 

experiment of Ouwerkerk et al., (2008) using the same protocol and primers, only 6-8 bands 

were detected for cattle fed tropical forages, and 3-4 bands for cattle fed on concentrate based 

diets. This may suggest a comparatively higher diversity of methanogens in cattle fed pastures 

of very high energy density and crude protein content. 

The identification of DGGE bands through phylogenetic analysis and comparison against 

standards in DGGE bands indicates that the genus Methanobrevibacter, a member of order 

Methanobacteriales is the most prevalent followed by Methanosphaera stadtmanae, a 

member of family Methanobacteriacae, which is in accord with many earlier bovine and ovine 

studies across the world over different diet constitutions (Ouwerkerk et al. 2008; Wright et al. 

2007; Wright et al. 2008; Wright et al. 2006; Zhou et al. 2010). Due to the relatively short 

size of sequences (190bp), identification to the species/ strain level could not be reported in 

some bands. But the results from the phylogenetic analysis and banding pattern of different 

species as obtained in the DGGE gels and compared  against standards, was  quite similar to 

other studies such as by Mohammed et al., (2011) and Zhou et al., (2010) in cattle where 

similar primer pairs had been used for PCR amplification and DGGE. Mohammed et al., 

(2011) had been able to compare the bands till species level because they had a bigger product 

size which was obtained by using a different reverse primer (915r) for sequencing the excised 

DGGE bands. Zhou et al., (2010) used similar primer pair for DGGE and sequencing and 

compared their products against a ladder created by mixing plasmids obtained from earlier 

identification experiments. Other studies have used different primer pairs for sequencing 

which give a larger product size in which it is possible to differentiate species having minor 

differences in sequences. 

The DGGE profiles were similar across all experiments in all animals suggesting presence of 

a similar methanogen community in all animals under all treatments. Further, it has been 

reported that methanogens are able to utilize only a very narrow range of substrates (Wolin et 

al. 1997) and thus the composition of a particular methanogen community is largely 
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dependent on the substrate availability (Ouwerkerk et al. 2008). Lower methanogen numbers 

in concentrate supplemented weaned lambs (Chandramoni et al. 1999) and a lower diversity 

of methanogens upon grain supplementation as compared to hay fed animals has been 

reported (Ouwerkerk et al. 2008).  Previous reports (Okine et al. 1989; Yan et al. 2000) have 

also reported a significant decrease in methane production upon concentrate supplementation. 

In the present grain supplementation experiment, some changes in band intensity or 

disappearance of bands were observed but no uniform pattern was detected upon 

supplementation amongst all the animals. The bands representing a species of 

Methanobrevibacter showed decreased intensity upon grain supplementation in five animals 

while in one animal the decreased intensity was observed in a different band or species of 

Methanobrevibacter. The bands representing Methanosphaera stadtmanae and family 

Methanobacteriacae were absent in some and present in some animals without any control or 

treatment effect, suggesting more effect of an animal to animal variation i.e. the variable 

banding pattern could be a result of varied animal response to a given treatment which may 

further be dependent on its relative feed efficiency for different substrates. 

In the present study no observed differences were present in grain supplemented cattle 

compared to the pasture only control group. One explanation could be the difference in level 

of grain supplementation, as a total of 3 kg of cracked barley grain was fed in this experiment 

(i.e.16% of the total DMI). Johnson and Johnson (1995) had reported an increase in methane 

production when grain concentrate was fed at maintenance levels as compared to a decrease 

when fed at ad lib levels. Also, an increase in methane production was measured in another 

study up to 20% concentrate addition which was followed by a decrease in methane 

production at higher levels of supplementation (Benchaar et al. 2001). Further, Boadi et al., 

(2002) had concluded that when animals were fed high quality pastures, the quality of pasture 

had more significant effect on methane production than lower input grain supplementation. It 

may be that the grain supplementation rate used in this experiment, although industry standard 

in the South island, was simply too low to induce any major methanogen community changes, 

such as the complete elimination of certain species. It is also possible that subtle changes may 

have occurred in the methanogen population but these were not picked up by DGGE. 

In another experiment, Zhou et al., (2009) had observed major pattern change from a 

community containing predominantly Methanobrevibacter ruminantium NT7 with the low-

energy diet to a community containing predominantly Methanobrevibacter smithii, 

Methanobrevibacter sp. AbM4, and/or M. ruminantium NT7 with the high-energy diet. Also, 

for each diet, the methanogenic PCR-DGGE pattern was strongly associated with the feed 
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efficiency of the host. The presence or absence of different bands in this experiment could 

have been due to differences in diet and feeding level of concentrates (74% concentrate with 

20% hay against 84% of concentrates with no hay).  

For the monensin trial, no changes in banding pattern across all the animals were detected 

suggesting that monensin had no strong effect on the diversity or quantity of methanogens. 

This is a similar result to Karnati et al., (2009) using continuous culture fermenters, where no 

response of monensin supplementation to the DGGE banding patterns was detected. The lack 

of DGGE banding response to monensin supplementation was also detected by Hook et al., 

(2009) in cows fed a total mixed ration along with 24mg of monensin premix/kg of diet DM, 

which is a lower daily rate of administration than in the current experiment. However, 

monensin has been found to exert an inhibitory action on methane production even if with 

short term use (Guan et al. 2006), suggesting the possibility that monensin does not always 

strongly reduce methanogen populations but may decrease or reduce the activity, which was 

not detected by DGGE in this experiment.  

Similarly, no effect on the methanogen community was observed upon palm oil granules fed 

at ≈2% of DMI though fats have been reported to exert a direct toxic effect on methanogens 

(Soliva et al. 2003) and decreasing their number. It is again possible that rather than a 

complete elimination of particular species, the effect is to reduce numbers and activity, which 

is not identified through DGGE.  

The technical limitations to the community profiling by DGGE such as presence of more than 

one species in a single band or a single species being expressed in multiple bands which was 

detected in the present study as well as previous studies (Klieve et al. 2007; Muyzer and 

Smalla 1998) could also have interfered in analysis of community profile through DGGE. 

Further, other studies have reported that methane production was not associated with 

methanogen diversity under the influence of inhibitors (Firkins and Yu 2006; Karnati et al. 

2009) and it had also been suggested that when the sensitive species of methanogens are 

inhibited other less sensitive populations may take up the ecological niches left vacant by the 

inhibited populations. Therefore, at a given time some populations may be more active over 

the other. It is difficult to quantify such an effect through DGGE. DGGE is a technique more 

suitable to defining the existence or absence of a given species through the presence or 

absence of relative bands and poorly indicates any changes in population numbers via the 

intensity of band. It does not provide any information on the relative methanogenesis activity. 

Also, any changes in the methanogen community if occurring might be effected at different 
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times in different animals depending upon their own grazing pattern, feed efficiency, 

metabolism, etc. and spot sampling may not be an accurate way of depicting these changes. 

Therefore, a significant observation from this experiment was that, in order to fully describe 

the effect of any mitigation agent in terms of its effect on methane production, a profile study 

of the methanogen community alone is not sufficient but also requires quantification of 

relative methanogen activity.  

 To conclude, in this study a diverse methanogen community was found in pasture fed 

animals. Methanobrevibacter sp. was found to be the predominant population in all animals 

irrespective of any treatment along with Methanosphaera stadtmanae and members of family 

Methanobacteriacae and order Methanobacteriales along with some uncultured archaea or 

methanogen species. Animal to animal variation was visible in the composition of 

methanogen community. It was also concluded that when animals are fed a high quality 

pasture, it may override the effect of any dietary supplementations at low level such as grain 

supplementation at 16% of DMI or fat supplementation at 2% of DMI on methanogen 

diversity as is the practice in South Island conditions. But this statement cannot be supported 

from DGGE analysis alone and thus it is important to combine any study on the effect of 

methane mitigation strategy with other quantitative and qualitative techniques where the 

actual contribution of methanogen populations to methane production over different time 

periods and feeding can be accounted for. 



 74 

Chapter 4 

Quantification of mcrA RNA and DNA of Rumen 

Methanogens in Cattle Fed High Quality Forages 

The identification of successful methane mitigation strategies requires accurate detection of 

its effect on methanogen community. An attempt to detect changes in the methanogen 

population by supplementing with methanogen inhibiting supplements had been done using 

DGGE as reported in Chapter 3. This technique, though, useful in initial screening of the 

populations could not depict any subtle changes in methanogen population within treatments. 

As it is possible that the supplements caused a change in the activity of methanogen 

population rather than a simple linear reduction in methanogen populations, there was a 

requirement for a methodology which was sensitive enough to estimate methanogen quantity 

and activity under the influence of rumen modification. 

As discussed in section 2.1 of Chapter 2, the techniques generally used to measure methane 

production such as respiration calorimetry, SF6 technique, inverse dispersion-laser technique, 

the tunnel method and in vitro technique are not suitable to measure rumen methanogenesis in 

individual animals under actual grazing conditions within a diurnal period. As an objective of 

this study was to characterise any diurnal variation in rumen methanogenesis or methanogen 

community structure in cattle grazing under the typical South Island production system, a 

more suitable methodology was required. Additionally, it is also possible that the methane 

emission at any given point in the diurnal cycle is a poor representative of methanogenesis at 

that time due to the size of the rumen and thus the lag period between the production of gas 

and its gathering at the oesophageal orifice for eructation. It has been suggested that 

performing qPCR and qRT-PCR targeting mcrA gene which is present exclusively in 

methanogens and is unlikely to have more than a single copy can provide a sensitive detection 

of methanogen numbers and activity at a particular time (Denman et al. 2007; Guo et al. 

2008; Luton et al. 2002). Thus, the qPCR and qRT-PCR techniques offered a viable approach 

to analyse the rumen methanogen population and activity. 

The efficient molecular analysis of any biological sample using these techniques relies 

heavily on the optimal qualitative as well as quantitative extraction of nucleic acids (DNA and 

RNA) (Fleige and Pfaffl 2006). In rumen, the efficient and unbiased extraction of undegraded 

nucleic acids is hampered by the relatively robust microbial cell walls and contamination of 

extracted material with proteins and phenolic compounds (Yu and Morrison 2004). Recently, 
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procedures have been reported for extracting RNA and DNA from rumen microbes that use 

commercial, column based kits for purifying the extracted nucleic acids. The use of these kits 

is limited by their cost, their ability to extract RNA and DNA efficiently from diverse 

samples, and the limitation of nucleic acid yield by the absorptive capacity of the column. The 

yield and quality of both RNA and DNA assumes greater significance in analysis where 

quantification has to be carried out (Fleige and Pfaffl 2006). In particular high quality RNA is 

required for reverse transcriptase quantitative polymerase chain reaction (qRT-PCR), the 

process used to quantify target gene expression and which requires the extracted RNA to be 

used in two linked enzymatic processes (reverse transcription and qPCR) (Fleige and Pfaffl 

2006; Popova et al. 2010). 

In order to analyze the methanogen DNA and RNA changes over the diurnal period, there was 

a requirement for a method that could yield high quality RNA from large numbers of trial 

samples, was simple, efficient, robust, inexpensive and could simultaneously extract DNA 

from the same sample. Also, existing methods, do not satisfactorily extract good quality and 

quantity RNA from rumen samples of kale fed cattle, perhaps due to higher concentration of 

some metabolites such as phenols which may interfere in the nucleic acid extraction. It was 

therefore important to overcome problems of low yield and poor RNA quality as well as 

denaturation of RNA extracted from rumen samples derived from kale fed animals along with 

the grass fed animals.  

After experimenting with different methods used for RNA extraction, a method was 

developed from modification of two existing methods for nucleic acid extraction, the 

conventional phenol: chloroform extraction method (Whitford et al. 1998) incorporated with 

few steps from the method of Gambino et al., (2008). In order to check the efficacy of this 

modified method, it was tested against two published methods for RNA yield and quality. 

This study compares our modified method with RNA extraction methods using commercially 

available RNA extraction kits from MOBIO
TM

 and the method of Kang et al., (2009) which 

also utilizes a commercial kit to extract RNA from whole rumen contents and rumen fluid in 

New Zealand Holstein Friesian cattle grazing two different diets. 

4.1 Materials and Methods 

4.1.1 Sample collection and preparation 

Two multiparous, ruminally fistulated Holstein Friesian crossbred cows (average 490kg) were 

used. They were first grazed on kale (Brassica oleracea) with barley straw for 40d at an 
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approximate daily intake of 10 and 2.5kg DM, respectively. They were then grazed for 40d on 

a mixed ryegrass (Lolium perenne) and white clover (Trifolium repens) pasture at a daily 

allocation of approximately 16kg DM. At day 40 and day 80 both whole rumen contents 

(WRC) and rumen fluid (RF) were collected from the rumen of both cows. 400g of WRC was 

collected from the ventral sac of the rumen via the fistulas, and 200g was placed in an ice bath 

for 5min, then aliquoted to microtubes. RF was obtained by squeezing the remaining 200g of 

WRC through four layers of cheese cloth, and then placed in an ice bath for 5min and 

aliquoted into microtubes. The microtubes were then centrifuged under refrigeration (4
◦
C) at 

13200rpm for 5min. The supernatant was discarded and pellet was resuspended in 500µl of 

RNA protectant (RNAprotect
®

 Bacteria Reagent, Qiagen, Bio-Strategy, Auckland, New 

Zealand) followed by incubation at room temperature for 5min, vortexing and finally 

centrifugation at 13200rpm for 10min. Supernatant was again discarded and tubes containing 

pellets were snap frozen under liquid nitrogen and stored at -80
◦
C for further analysis. 

4.1.2 RNA Extraction  

The modified method (method 1) was evolved as a combination of the conventional phenol 

and chloroform extraction (Whitford et al. 1998) and the incorporation of 5M lithium chloride 

(LiCl) solution for RNA precipitation as adapted from Gambino et al., (2008). The method is 

detailed in appendix A.7. Briefly, 0.5g of WRC or 200µl of RF were added to bead beating 

tubes containing 0.5g of 0.1mm zirconia beads (Daintree Scientific, St. Helens, Tasmania) 

along with 500µl of TE buffer (pH 7.2, 10mM Tris-HCl, 1mM EDTA), 500µl of phenol (pH 

of phenol phase 6.7±0.2, Sigma-Aldrich, Auckland, New Zealand) and 20% sodium dodecyl 

sulfate (SDS) solution. The samples were then subjected to three bead beatings of 2min each 

in a Mini-Beadbeater-8
TM

 (Biospec Products, BioLab, Auckland, New Zealand) with an 

intervening 2min interval on ice for all samples. In case of RF (200µl), the samples were 

treated the same way except that they were subjected to only two bead beatings of 2min each. 

This was followed by additional equal volume (700µl) phenol and chloroform extractions at 

4
◦
C. The RNA in aqueous supernatant was divided into two tubes (350µl each) and 

precipitated by addition of 2.5 volumes of 5M LiCl and incubation on ice for 30min followed 

by centrifugation at 13200rpm for 15min. The supernatant from this step was pooled and used 

for DNA precipitation facilitated by addition of equal volume (2ml) of isopropanol. 

Following precipitation the resulting pellet containing RNA was washed with 70% ethanol 

and air dried. Precipitated RNA from both tubes were reconstituted with 50µl of TE buffer 

(pH 7.2) and pooled to a net volume of 100µl. To remove contaminating DNA, the samples 

were treated with Turbo DNA-free
TM

 DNase (Ambion, Applied Biosystems, Auckland, New 
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Zealand). To remove DNase and any residual contaminants, RNA samples (volume made up 

to 500µl with TE buffer pH 7.2) were purified with an equal volume phenol and chloroform 

(250µl:250µl) followed by a chloroform (500µl) extraction in 1.5ml light Phase Lock Gel 

(light) tubes (5 PRIME, Eppendorf, Global Sciences, Auckland, New Zealand) to facilitate 

phase separation. The aqueous supernatant from this extraction was incubated at -20
◦
C for 1h 

after addition of 1/10
th

 volume of 3M sodium acetate (pH 5.4) and 2.5X volume of absolute 

ethanol. RNA was pelleted by centrifugation at 13200rpm for 15min and was washed in 70% 

alcohol. Pellet was air dried and reconstituted in TE buffer (pH 7.2) and stored at -80
◦
C until 

further analysis. In order to recover DNA, supernatant from LiCl2 precipitation was 

transferred to a 15ml tube and precipitated with equal volume (2ml) of cold isopropanol 

followed by incubation at -20
◦
C for 1h. DNA was pelleted by centrifugation at maximum 

speed (4000g) for 30min. The pellet containing DNA was reconstituted in 500µl of TE buffer 

(pH 7.2) and followed by further phenol and chloroform (250µl:250µl) extraction and a single 

chloroform only (500µl) extraction in 1.5ml Phase Lock gel (light) tubes. The remaining 

procedure for DNA purification is exactly as previously described for RNA.  

The second method (method 2) used for RNA extraction was the optimized method of Kang 

et al., (2009) which is a combination of enzymatic lysis, bead beating, TRIZOL
TM

 reagent 

(Invitrogen) and cold chloroform followed by precipitation with isopropanol. The 

contaminating DNA was removed with Turbo DNA-free
TM

 DNase. The DNA free RNA was 

then purified using column from the RNeasy mini kit from Qiagen
TM 

(Haldane, Germany) 

following instructions provided with the kit.  

The third method (method 3) examined as a possible alternative for obtaining RNA high in 

quantity and quality was using RNA PowerSoil
TM

 Total RNA Isolation Kit (MOBIO, 

GeneWorks, Auckland, New Zealand) kit which has been optimized for extraction of RNA 

from all kinds of soil including manure rich soils containing high humic acid and phenolic 

acid contents. 2g of WRC were used for RNA extraction from this method following the 

protocol provided with the kit. The only modification in accordance with the manufacturers’ 

suggestion was the addition of an extra chloroform (5ml) extraction of the supernatant 

obtained after bead beating to remove any excess protein that may contaminate the samples. 

4.1.3 RNA yield and integrity assessment 

The quantification of RNA extracted using the three methods was done using fluorometry 

(Qubit
TM

, Invitrogen, Auckland, New Zealand) and spectrophotometry (NanoDrop 

Technologies, Thermo Fisher Scientific, Auckland, New Zealand). Spectrophotometry was 
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used to calculate A260/A280 and A260/A230 ratios as indices of protein and phenolic compound 

contamination (Teare et al. 1997). Sample integrity was determined by analysis of RNA 

samples separated using denaturing agarose gel electrophoresis (Sambrook and Russell 2001) 

where an equal amount of RNA based upon fluorometric estimation was loaded into the gel 

(figure 4.1, appendix A.7). 

4.1.4 Reverse transcription and PCR amplification 

RNA samples were checked for DNA contamination by performing a PCR using archaeal 

344f-GC and 522r primers targeting archaeal V2V3 region (as described earlier in section 

3.1.1.1.3). Complementary DNA (cDNA) was synthesized from 1µg of RNA using reverse 

transcriptase enzyme (TaKaRa, BluePrint
TM

 RT reagent kit for Real Time, Norrie Biotech, 

Auckland, New Zealand).  A 20µl reaction was performed for the synthesis of cDNA from 

RNA as per manufacturers’ protocol. This included incubation with the reverse transcriptase 

enzyme at 37
◦
C for 15min. and inactivation of enzyme by heating at 85

◦
C for 5sec. The cDNA 

obtained was stored at -80
◦
C until further use. The synthesized cDNA from all extraction 

methods was  used in PCR amplification tests targeting the following gene targets: protozoal 

16S rRNA (V2V3 region) (Sylvester et al. 2004), bacterial universal 16S rRNA gene (Miller 

et al. 1995) and bacterial 16S rRNA (V2V3 region) (Muyzer et al. 1993a). A nested PCR 

approach was used to detect methanogen 16S rRNA (Barns et al. 1994; Ovreas et al. 1997) 

and the methanogen 16S rRNA (V2V3 region) (Amann et al. 1995; Raskin et al. 1994). PCR 

amplification conditions were optimized previously for each target. Primer sets are described 

in table 4.1. 

In order to test the quality of cDNA obtained from RNA extracted by different methods, 

quantitative reverse transcriptase PCR (qRT-PCR) reactions were setup containing undiluted,  

2 fold and 4 fold dilutions of the cDNA sample respectively using primers against mcrA 

(methanogen specific) gene. Primers mcr-f and mcr-r (Luton et al. 2002) were used to 

quantify the relative detection of mcrA transcript abundance. Similarly, to check any 

inhibition of LiCl in efficient synthesis of cDNA from RNA, serial dilutions of RNA (1, ½, 

¼) extracted from different methods were used to synthesize cDNA and quantified by qRT-

PCR. The estimation of mcrA transcript abundance in cDNA was done by real time PCR 

(qPCR) with SYBR Premix Ex Taq
TM 

- Perfect Real Time (TaKaRa, Norrie Biotech, 

Auckland, NZ) in Applied Biosystems 7000 Real-Time PCR system. A standard curve was 

prepared by serial dilution of cloned amplicon of Methanobrevibacter smithi and subjected to 

qPCR along with the test samples. Dissociation curve analysis was performed at the end of 

quantification to check for the specificity of products obtained. The CT values were then 
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extrapolated against the standard curve to obtain relative quantities of mcrA transcript in the 

starting material. A minimum reaction efficiency of 99-100% and R
2
 value of minimum 0.900 

was considered for analysis.  

 Table 4.1 Primer sets used for amplification of PCR cDNA. 
 

Amplification Primer  Sequence           Expected       Reference 
target  pair used          product          

        size 
 
Protozoal 316F        GCGCTTTCGWTGGTAGTGTATT             223 Sylvester et al., (2004) 
16SrRNA  539R-GC       CGCCCGCCGCGCGCGGCGGGCGGGGCGGGG 

V2V3          GCACGGGGGACTTGCCCTCYAATCGTWCT   
 

Bacterial               341f-GC          CGCCCGCCGCGCGCGGCGGGCGGGGCGGGG      200 Muyzer et al., (1993a) 
16SrRNA          GCA CGG GGGGCCTACGGGAGGCAGCAG 

(V2V3)  34r        ATTACCGCGGCTGCTGG 

 
Bacterial               27f        AGAGTTTGATCMTGGCTCAG    1470 Miller et al., (1995) 
16SrRNA                1494r        CCCCTACGGTTACCTTGTTACGAC  
(universal) 
    
Archaeal                46f        YTAAGCCATGCRAGT                                   970 Barns et al., (1994) 
 16SrRNA              1017r              GGCCATGCACCWCCTCTC     Ovreas et al., (1997) 

(universal) 
           
Archaeal               344f-GC          CGCCCGCCGCGCGCGGCGGGCGGGGCGGGG         180        Akarsubasi et al.,(2005) 
 16SrRNA         GCACGGGGGGACGGGGHGCAGCAGGCGCGA                                                                   
 (V2V3)                522r        GWA TTACCGCGGCKGCTG  
 
mcrA                 mcr-f        GGTGGTGTMGGATTCACACARTAYGCWACAGC   464-      Luton et al., (2002) 
(RT-qPCR)             mcr-r              TTCATTGCRTAGTTWGGRTAGTT   491 
 

4.2 Results and discussion 

Fluorometry and spectrophotometry estimates of nucleic acid recoveries and sample purity 

obtained with all three methods is presented in table 4.2. Maximum yield of RNA across all 

the samples in both diets was obtained with the modified method (method 1), followed by the 

method of Kang et al., (2009) (method 2), while the lowest yields were obtained using the 

MOBIO method (method 3). The absorbance ratios of 1.94- 2.1 (A260/A280) and 2.16-2.45 

(A260/A230) also suggest that RNA extracted using method 1 is clean. It has been reported that 

for a pure RNA the absorbance ratio of A260/A280 should be ≈2.0 and the A260/A230 ratio 

should be in the range of 2.0-2.2 (Anonymous 2012; Teare et al. 1997). The A260/A280 ratios 

between the other methods were lower but comparable, while the A260/A230 ratios were lower 

(1.10, 1.50) for other methods in comparison to the method 1 suggesting an interference from 

protein, phenol or other contaminants in these samples. 
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 The denaturing agarose gel electrophoresis (figure 4.1) revealed that RNA extracted using the 

method 1 and method 2 was visibly intact, showing the characteristic RNA subunits. No 

visibly intact RNA was observed for the method 3 and the results are therefore not shown in 

figure 4.1. 

Fluorometric quantification of RNA was used for loading samples in the gel because the dye 

binds specifically to RNA during fluorometry and reduces the possibility of error which can 

occur through spectrophotometry if the samples have significant phenol or trizol reagent 

contamination (Sambrook and Russell 2001). Though an equal amount of RNA (2µg) was 

loaded into all wells, the relative intensity of bands depicting RNA quantity was variable for 

the samples extracted with method 2 and none visible with the method 3. This could be due to 

the difference in amount of degraded RNA present in samples which would be registered by 

fluorometry (or spectrophotometry) irrespective of its quality. 

 Table 4.2 Total yield and purity of RNA extracted by different methods. 
 

Diet Method  Type of      Amount Total yield of       Total yield of              Absorbance 
   sample        of sample of RNA in µg      RNA in µg               ratio 
   used                     Spectrophotometry        Fluorometry             
                     (Nanodrop)                 (Qubit)          A260/A280 A260/A230 
  

Kale Method 1 RF*         200 µL       51.0            41.0           2.00 2.45 
 Method 2 RF         200 µL       6.0            5.58           2.06 1.50 
 Method 1 WRC**         500 mg       60.1            65.0           1.94 2.30 
 Method 2 WRC         500 mg       50.1            28.5            2.06 1.96 
 Method 3 WRC         2 g        11.7            19.0           1.89 1.58 
 
Grass Method 1 RF         200 µl       66.5             65.0            2.09 2.16 
 Method 2  RF         200 µl       6.4             6.42            2.06 1.10 
 Method 1 WRC          500 mg       67.7             70.0            2.12 2.19 
 Method 2 WRC         500 mg       28.6             22.5            2.03 1.80 
 Method 3 WRC         2 g        24.2             37.9            2.00 1.91 
 
*RF-Rumen Fluid, **WRC-Whole Rumen Contents. Method 1- Modified method, Method 2- Kang et al., 

2009, Method 3- MOBIO
TM

. 

The clear differences in comparative efficiency of these extraction methods may be explained 

by the requirement to lyse the relatively robust cell walls of rumen microorganisms. The 

rumen is a challenging environment for microorganisms, with significant flux of pH, redox, 

osmolarity, and temperature (Gibbs et al. 2007). The stable populations that inhabit the rumen 

are commonly characterized by physiological adaptations and a robust physical structure 

capable of withstanding this environment. Forage based diets in temperate systems typically 

have a higher K and P content that is reflected in the rumen environment, and there is some 
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evidence that these increased concentrations confer protection (e.g. H
+
 / K

+
 exchange to 

ameliorate impacts of low pH) to some populations (Dawson and Boling 1987). As a result, 

some cell lysis methods using chemical or enzymatic disruption of cell wall or reduced 

physical disruption alone may be less successful in extracting RNA. The high yields of RNA 

obtained using method 1 may be due to the combination of organic solvents, detergent and a 

vigorous physical disruption of cell walls using serial bead beating procedures. 

 

 

 

 

 

 

 

 

Figure 4.1 Denaturing gel electrophoresis of RNA obtained with different methods of 

extraction.   
Equal amounts of RNA (2µg) based upon fluorometric estimation was separated on a 1% denaturing 

agarose.gel. Method 1- modified method, method 2- Kang et al., (2009), RF-rumen fluid, WRC-whole 

rumen contents. 

 

Also, the specific ability of LiCl to precipitate intact RNA coupled with the use of phenol and 

chloroform extractions in phase lock gel (light) tubes promotes a more rigorous phase 

separation that may contribute to greater yields of clean and intact RNA. The repeated use of 

phenol and chloroform in method 1 may also be more effective in reducing protein 

contamination of samples, which may explain the improved purity of extracted RNA and 

DNA compared with the other methods (table 4.2).  

Method 2, though including a combination of chemical and enzymatic disruption of cell walls 

and a single bead beating step, did not obtain as high a yield of RNA as method 1. This may 

reflect the less vigorous physical disruption of the microbial cell wall. Method 2 also requires 

the use of a column for purifying extracted RNA, and these necessarily limit the RNA to that 

which may be bound on the column, a limitation not present with the phase lock tubes used at 

the comparable step in method 1. Method 3 similarly uses a less vigorous cell lysis procedure, 

which may explain the comparably lower yield of RNA, and the method also lacks suitable 

protection against RNases during column separation, which could increase RNA degradation. 
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The range of target genes included (table 4.1) for PCRs was suitable to assess bias towards 

particular subpopulations, which is undesirable for studies of the rumen microbial ecosystem. 

The bands obtained from agarose gel electrophoresis of the PCR products of cDNA for all 

three methods are presented in figure 4.2. For both universal 16S primers (general and 

archaeal), there was a marked increase in the quantity of product obtained from cDNA 

synthesized from RNA isolated using method 1. However, the yield of PCR amplicons 

generated using V2V3 primers (bacterial, archaeal and protozoal) commonly used in PCR-

DGGE analysis was broadly similar for cDNA from all methods (figure 4.2). No bias was 

observed with any of the three methods for V2V3 targeted amplifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 PCR amplification of cDNA obtained with different methods of extraction 

using different primer sets.  
Method 1- modified method, method 2- Kang et al., (2009), method 3-MOBIO

TM
 kit, RF-rumen fluid, 

WRC-whole rumen contents. (a) Protozoal 16S V2V3 primers (P-SSU-316f/539r-GC).  (b) Bacterial 16S 

V2V3 primers (341f-GC/534r). (c) Bacterial 16S universal primers (27f/1494r). (d) Archaeal 16S universal 

primers (47f/1017r). (e) Archaeal 16S V2V3 primers (344f-GC/522r).   
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The respective CT values of the serial dilutions of synthesized cDNA set up as a check for 

quality of RNA from method 1 and method 2 are displayed in figure 4.3 and figure 4.4. Since, 

very low amount of intact RNA was extracted using method 3; the cDNA was not used for 

dilution test. Dilution of cDNA produced the expected increase in CT values for method 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Amplification of diluted cDNA made from RNA extracted by the modified 

method (amplified with mcrA forward and reverse primers). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Amplification of diluted cDNA made from RNA extracted by the method 

of Kang et al., (2009) (amplified with mcrA forward and reverse primers). 
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their being little or no inhibitors of the PCR reaction present in cDNA samples prepared using 

method 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 mcrA transcript abundance in RNA samples extracted from rumen fluid 

of kale or grass fed animals using different methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 mcrA transcript abundance in RNA samples extracted from WRC of kale 

or grass fed animals using different methods. 
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from methods 1 and 2 were used to synthesize cDNA from all samples, the decrease in mcrA 

transcription abundance was consistent with decreasing concentrations for all the samples 

obtained from both extraction methods, suggesting no interference from LiCl in method 1. 

The mcrA transcript abundance from rumen fluid or WRC samples is displayed in figure 4.5 

and figure 4.6. A very large difference in mcrA transcript yield was observed between 

methods. Method 1 returned between 100 to 1700 fold increases in transcript abundance 

compared to other methods across both types of samples in both diets. The highest difference 

was found for the rumen fluid samples from kale based diets (1700 fold) and lowest for rumen 

fluid samples from grass based diets (100 fold). If the methods were extracting the target 

mRNA equally, a similar abundance of the selected target gene would be expected when 

compared to the proportion of target within a given amount of total RNA. This suggests 

method 1 is extracting greater amounts of mRNA. Also, the amount of mcrA gene expression 

obtained using method 2 was similar for all types of samples, whereas method 1 revealed 

differences amongst different diets and different type of samples. It was also able to show 

between animal variance for same diet and sample. This finding is of significant importance 

in the qRT-PCR analysis of methanogen expression where an accurate determination of the 

methanogen gene expression within a given sample is required.  

There are several possible explanations for these differences. The differing efficiency of the 

methods in extracting intact RNA could contribute these observed differences. Also, 

approximately 25% of methanogens are symbiotically attached with protozoa and many of the 

remainder are in close association (e.g. present on external surface of protozoa) (Moss et al. 

2000; Newbold et al. 1995). Less vigorous physical separation may not be sufficient to obtain 

the RNA from these protozoal associated methanogens, and this may also help explain the 

clear differences in transcript abundance. Another possible explanation could be a reduction 

of PCR inhibitors in prepared cDNA with method 1, as a consequence of more numerous 

phenol and chloroform washing procedures, which would then increase detection of transcript 

abundance. 

Comparison between methods of the time required for the procedures reveals the method 2 

was the quickest with about 4 hours required for RNA extraction, DNase treatment and 

purification from 8 samples. Method 3 required 7h for RNA extraction and 5h for DNase 

treatment and purification, while method 1 required 5h for RNA extraction, DNase treatment 

and purification, and 1h for DNA recovery if desired, a total of 6h. The DNA extracted 

simultaneously with method 1 from the samples reported here was also similarly examined 

for quality, quantity and wide representation of microbial diversity and found to be delivering 
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the expected standard (unpublished data). Because there are many efficient methods available 

for good quality DNA extraction, DNA comparison results are not included. 

4.3 Conclusions 

The modified method presented in this study, when compared to the existing methods of 

Kang et al., (2009) and the MOBIO method, was demonstrated to confer advantages in 

procedural simplicity during extraction, the use of less expensive and more readily available 

chemicals, and the high quality and yield of both RNA and DNA recovered simultaneously 

from rumen contents. It also proved more sensitive in detecting mcrA gene expression which 

was a crucial requirement for this study. These key advantages make the method suitable for 

future use in this expanding field of investigation into the structure, diversity and function of 

the rumen milieu. 
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Chapter 5 

Quantification of mcrA RNA and DNA of Rumen 

Methanogens in Cattle Fed High Quality Forages under 

Different Feeding Frequencies 

In New Zealand, grazing of perennial pastures is the main source of nutrients for animals. 

Constraint in the amount of dry matter intake (DMI) is the main limiting factor to achieving 

high production from animals in forage based systems. Consequently, production strategies 

are targeted towards improving the metabolisable energy (ME) content of pastures, forages 

and supplements (Buddle et al. 2011). The animals grazed on pastures are generally given 

fresh breaks once daily which is more practical than a smaller pasture break twice a day. As a 

result animals consume the majority of the daily allocation of fresh, high quality forages 

within the first few hours and are on low intake of lower quality DM or negligible feeding 

during the rest of period, which establishes a diurnal pattern in the animals (Gibbs and 

Laporte 2009). It has also been hypothesized that large variations in rumen fill due to these 

diurnal grazing patterns can influence rumen function and physiological parameters in 

comparison to more frequent grazing bouts (Wales et al. 2004). But sub-optimal rumen 

function has not been observed in these high energy intake production systems of New 

Zealand (Gibbs and Laporte 2009). However, different feeding patterns and corresponding 

rumen fill fluctuations may influence the microbial community (Weimer 1998). A prolonged 

availability of high quality fodder has been associated with high availability of readily soluble 

carbohydrates resulting in a linear decrease in pH, shift of fermentation and VFA production 

towards more propionate production than acetate production, though, without much change in 

the total VFA production (Lee et al. 2003). A low pH has been reported to stop the activity of 

methanogens (Kessel and Russell 1997a) and lower acetate to propionate ratio has often been 

associated with reduced methane production (Lana et al. 1998).   

 

An experiment was conducted to compare methanogen communities in cattle fed fresh forage 

once a day or twice a day to identify the effect of different feeding patterns on methanogen 

community profile, methanogen population number and methanogen activity.  As it is 

possible that the effect of any external rumen modification may cause only a shift in 

fermentation or methane production pattern, spot samples may be unable to give a clear 
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picture of the methanogen community. Thus samples were collected over a diurnal period at 

4h intervals.   

Since, the expression level of the mcrA gene has been reported to be proportional to the 

methane production, an estimation of mcrA specific mRNA out of the total pool of RNA can 

give an idea of the methanogen activity within a sample (Denman et al. 2007). Therefore, to 

investigate the effect of different feeding frequencies on methanogens, mcrA RNA/cDNA and 

mcrA DNA were quantified as indicators of methanogen activity and numbers, respectively. 

DGGE analysis was also performed on the 24h samples to compare the methanogen 

populations with their activity profiles over the diurnal period. 

5.1 Materials and methods 

5.1.1 Animals, diets and experimental design  

Four ruminally fistulated Holstein Friesian steers (370kg live weight) were randomly assigned 

to two groups of two steers each. One group was fed 7kg DM of freshly cut kale along with 

1.5kg DM of straw daily. The second group was allocated 3.5kg DM of freshly cut kale in the 

morning at 9am along with 0.75kg DM of straw and the remaining 3.5kg DM and 0.75kg 

straw at 3pm in the evening. Animals had free access to fresh water throughout the day. They 

were fed the respective diet for a 14d pre-trial period and then housed in pens for another 14d. 

After that they were kept in animal crates for another 7d period. After sample collection on 

day 35, the feeding pattern was switched over between two groups. 

 

At day 35 and day 70, WRC were collected from the rumen of all four steers every 4h over a 

24h period. Sample collection was done at 8.30am, 12.30pm, 4.30pm, 8.30pm, 12.30am and 

4.30am i.e. 0, 4, 8, 12, 16 and 20h after first feeding. 400g of WRC was collected from the 

ventral sac of the rumen via the fistulas, placed in an ice bath for 5min and then aliquoted to 

microtubes. The microtubes were then centrifuged under refrigeration (4
◦
C) at 13200rpm for 

5min. The supernatant was discarded and pellet was resuspended in 500µl of RNA protectant 

(RNAprotect
®
 Bacteria Reagent, Qiagen, Bio-Strategy, Auckland, New Zealand) followed by 

incubation at room temperature for 5min, vortexing at maximum speed and finally 

centrifugation at 13,200rpm for 10min. Supernatant was again discarded and tubes containing 

pellets were snap frozen under liquid nitrogen and stored at -80
◦
C until further analysis.  

5.1.2 Sample analysis 

Samples were taken out from -80
◦
C and RNA & DNA were extracted using the procedure 

described in section 4.1.2 (appendix A.7) and quantified with fluorometry (Qubit
TM

, 
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Invitrogen, Christchurch, New Zealand).  RNA was also treated with Turbo DNA-free
TM

 

DNase (Ambion, Applied Biosystems, Auckland, New Zealand) to remove any contaminating 

DNA. RNA samples were checked for DNA contamination by performing a PCR using 

archaeal 344f-GC and 522r primers targeting archaeal V2V3 region and using 1µl (≈300ng) 

of RNA as the template. Complementary DNA (cDNA) was synthesized from 1µg of RNA 

using Blue Print 
TM 

reverse transcriptase kit according to the manufacturers’ instructions 

(TaKaRa, Norrie Biotech, Auckland, New Zealand). 

5.1.2.1 PCR amplification for DGGE 

The cDNA & DNA were PCR amplified for DGGE using a nested PCR with universal 16S 

rRNA archaeal and archaeal 16SrRNA V2V3 primers 344f-GC and 522r (Akarsubasi et al. 

2005). The procedure followed was the same as described in section 3.1.1.3.3 and appendix 

A.3. 

5.1.2.2 Denaturing gradient gel electrophoresis (DGGE) analysis 

Both DNA and RNA extracted from samples collected every 4h during once a day vs. twice a 

day feeding were used for DGGE analysis. DGGE gels were constructed in such a way that 

any changes in methanogen community, its number and relative activity over 24h period for 

an animal could be detected from a single gel. One half of gel contained PCR amplified DNA 

samples and the other half contained PCR amplified cDNA (RNA) samples from 8.30am to 

4.30am (0 to 20h after first feeding) for the same animal. DGGE was performed for PCR 

product analysis as described earlier in section 3.1.1.3.5 and appendix A.4. 

5.1.2.3 qPCR/ qRT-PCR design and analysis 

Quantitative PCR (qPCR) or reverse transcriptase quantitative PCR (qRT-PCR) were 

performed on DNA/ cDNA obtained from rumen contents of animals to quantify the relative 

number of methanogens across different time periods (pre-prandial/ post-prandial) in animals 

fed once a day vs. twice a day. 20µl reactions were performed using 10µl (1X final 

concentration) of SYBR Premix Ex Taq
TM 

- Perfect Real Time (TaKaRa, Norrie Biotech, 

Auckland, NZ) containing Hot start Taq polymerase, MgCl2, dNTP mixture and SYBR 

Green, 0.4µl (1X) of ROX dye for background calibration (supplied with the kit), 0.4µl 

(0.2µM) each of mcrA forward (5’-GGTGGTGTMGGATTCACACARTAYGCWACAGC-

3’) and mcrA reverse (5’-TTCATTGCRTAGTTWGGRTAGTT-3’) primers , 0.8µl of sterile 

distilled water and 8µl (15-20ng) of DNA/cDNA template (concentration measured with 

Qubit, Invitrogen,Auckland, New Zealand) in Applied Biosystems 7000 Real-Time PCR 

system. The optimized reaction conditions involved initial denaturation for 10sec at 95
◦
C 

followed by 35 cycles of denaturation at 95
◦
C for 5sec, annealing at 60

◦
C for 10sec and 
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extension at 72
◦
C for 30sec. A standard curve was prepared by five point serial dilution of 

cloned amplicon of Methanobrevibacter smithi from a concentration of 1.87 x 10
-1

ng/µl to 

2.99 x 10
-4

ng/µl and subjected to qPCR along with the test samples. The CT values were then 

extrapolated against the standard curve to obtain relative quantities of mcrA DNA/ mcrA 

cDNA in the starting material. The measured values were expressed in pg/100ng of total DNA 

or RNA, because this would express the amount of target mcrA DNA or mRNA within a 

fixed amount of total DNA or RNA. The products were also checked for specificity by 

performing a dissociation curve analysis each time with the qPCR. The reaction efficacy was 

also checked each time and only the standard curve with a slope of -3.3 to -3.5 or a reaction 

efficiency between 95-100% along with a R
2
 value of between 0.90-0.99 was  considered for 

analysis. 

 

The amplification primers were tested for specificity by running the qPCR products in a 2% 

agarose gel containing ethidium bromide against a standard 100bp DNA ladder. The products 

matched the expected size of 414-438 bp. The bands were then excised and DNA isolated 

using gel extraction kit from Axygen
TM

 (Catalogue no. AP-GX-250). Purified products were 

then cloned and sequenced as described in appendix A.6. The sequences obtained were 

specific to those of methanogen species.  

5.1.3 Statistical analysis 

For each animal and variable, the data values were averaged for control (once a day feeding) 

and treated (twice a day feeding) separately, and the difference between control and treated 

was calculated. These differences were then statistically analysed using a two tailed paired 

samples t test in SPSS software (version 16.0, IBM SPSS statistics). The variables analysed 

were: mcrA gene expression, mcrA gene quantity within the diurnal period after treatment.  

5.2 Results 

5.2.1 PCR-DGGE  

Denaturing gradient gel electrophoresis (DGGE) was performed on PCR amplified products 

to determine community response to different feeding patterns. Approximately 21 to 25 bands 

were obtained upon DGGE analysis of DNA (DNA-PCR) and RNA (cDNA-PCR) samples 

obtained from whole rumen contents of experimented animals fed kale and silage once or 

twice a day. The bands obtained from DNA-PCR samples would indicate the relative 

contribution or proportion of a strain/ species in the methanogen community while the bands 

obtained from cDNA-PCR would indicate the relative activity of that strain/ species in the 
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population. When the animals were fed once a day, a predominant observation was the 

absence or lower intensity of some bands in DNA-PCR products and their considerable 

presence in cDNA-PCR products. As seen in figure 5.1 (animal no.1), the arrows ‘A’, ‘B’ and 

‘C’, indicate bands which are low in intensity or absent in DNA-PCR products but are 

significantly visible in cDNA-PCR products.  

The box ‘b1’ indicates a domain of the gel where bands are of low intensity in DNA-PCR 

products and considerably darker in cDNA-PCR products. As determined earlier by cloning 

and sequencing (section 3.2.2), arrow ‘A’ indicates band closest to Methanobacteriacae sp., 

arrow ‘B’ to Methanosphaera stadtmanae while the arrow ‘C’ is for band closest to 

Methanobrevibacter sp. The bands in box ‘b1’also represent different strains/ species closest 

to Methanobrevibacter sp. On the other hand, some bands mostly of Methanobrevibacter sp 

and one band of order Methanobacteriales were present in both DNA and cDNA samples and 

a similar DGGE profile was obtained when same animal was fed twice a day (figure 5.2). 

Further, during once a day feeding two strains/ species closest to Methanobrevibacter sp 

(arrows ‘D’ and ‘E’ in figure 5.1) showed comparative lower intensity for cDNA samples at 

12.30am and 4.30am i.e. 16h and 20h after feeding. This difference was not visible when the 

same animal was fed twice a day (figure 5.2). 

Similar to animal 1, a relative difference between respective band intensities of DNA and 

cDNA samples was observed for animal 2 and a lighter intensity of few bands was observed 

at 12.30am and 4.30am i.e. 16h and 20h after feeding (figure 5.3). This difference was again 

absent when the animal was fed twice a day (figure 5.4). Also, the relative intensity of few 

cDNA bands closest to Methanobrevibacter sp. was lower in twice a day fed animals (arrow 

‘A’ in figure 5.4) as compared to their intensity in once a day feeding. Further, among these 

three bands (figure 5.4), the intensity of band was highest at 12.30pm i.e. 4h after feeding. 

Similar to animals 1 and 2, a marked difference in intensity of few cDNA bands closest to 

Methanobrevibacter sp. than their respective DNA bands was observed in animals 3 and 4 

during both once a day and twice a day feeding (figure 5.5 to figure 5.8). A band representing 

a strain/ species closest to Methanobrevibacter marked by arrow ‘X' in all gels (figure 5.5 to 

5.8) was typically absent in DNA profile and appeared in cDNA profile of all animals. Thus it 

appears from all the DGGE gels that some strains/ species may account for a very small 

proportion in methanogen population but are relatively active members of the population.  

Further, a relative low intensity of bands at certain times may signify a relative lower 
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population or activity of these strains/ species at that time which is more predominant in 

animals fed once a day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 DGGE analysis of DNA- cDNA/RNA in animal 1 fed once a day. 
 

*Arrows or box in the figure indicate the site of changes detected in gels. 

Lane 1- standard, Lane 2- 8.30am, Lane 3- 12.30pm, Lane 4- 4.30pm, Lane 5- 8.30pm, Lane 6- 12.30am, 

Lane 7-  4.30am, Lane 8- standard, Lane 9- 8.30am, Lane 10-12.30pm, Lane 11- 4.30pm, Lane 12- 8.30pm, 

Lane 13- 12.30am, Lane 14- 4.30am, Lane 15- standard. 
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Figure 5.2 DGGE analysis of DNA- cDNA/RNA in animal 1 fed twice a day. 
 

*Arrows or box in the figure indicate the site of changes detected in gels. 

Lane 1- standard, Lane 2- 8.30am, Lane 3- 12.30pm, Lane 4- 4.30pm, Lane 5- 8.30pm, Lane 6- 12.30am, 

Lane 7-  4.30am, Lane 8- standard, Lane 9- 8.30am, Lane 10-12.30pm, Lane 11- 4.30pm, Lane 12- 8.30pm, 

Lane 13- 12.30am, Lane 14- 4.30am, Lane 15- standard. 
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Figure 5.3 DGGE analysis of DNA- cDNA/RNA in animal 2 fed once a day.  
 

*Arrows or box in the figure indicate the site of changes detected in gels. 

Lane 1- standard, Lane 2- 8.30am, Lane 3- 12.30pm, Lane 4- 4.30pm, Lane 5- 8.30pm, Lane 6- 12.30am, 

Lane 7-  4.30am, Lane 8- standard, Lane 9- 8.30am, Lane 10-12.30pm, Lane 11- 4.30pm, Lane 12- 8.30pm, 

Lane 13- 12.30am, Lane 14- 4.30am, Lane 15- standard. 
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Figure 5.4 DGGE analysis of DNA- cDNA/RNA in animal 2 fed twice a day.  
 

*Arrows or box in the figure indicate the site of changes detected in gels. 

Lane 1- standard, Lane 2- 8.30am, Lane 3- 12.30pm, Lane 4- 4.30pm, Lane 5- 8.30pm, Lane 6- 12.30am, 

Lane 7-  4.30am, Lane 8- standard, Lane 9- 8.30am, Lane 10-12.30pm, Lane 11- 4.30pm, Lane 12- 8.30pm, 

Lane 13- 12.30am, Lane 14- 4.30am, Lane 15- standard. 
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Figure 5.5 DGGE analysis of DNA- cDNA/RNA in animal 3 fed once a day.  
 

*Arrows or box in the figure indicate the site of changes detected in gels. 

Lane 1- standard, Lane 2- 8.30am, Lane 3- 12.30pm, Lane 4- 4.30pm, Lane 5- 8.30pm, Lane 6- 12.30am, 

Lane 7-  4.30am, Lane 8- standard, Lane 9- 8.30am, Lane 10-12.30pm, Lane 11- 4.30pm, Lane 12- 8.30pm, 

Lane 13- 12.30am, Lane 14- 4.30am, Lane 15- standard. 
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Figure 5.6 DGGE analysis of DNA- cDNA in animal 3 fed twice a day. 
 

*Arrows or box in the figure indicate the site of changes detected in gels.  

Lane 1- standard, Lane 2- 8.30am, Lane 3- 12.30pm, Lane 4- 4.30pm, Lane 5- 8.30pm, Lane 6- 12.30am, 

Lane 7-  4.30am, Lane 8- standard, Lane 9- 8.30am, Lane 10-12.30pm, Lane 11- 4.30pm, Lane 12- 8.30pm, 

Lane 13- 12.30am, Lane 14- 4.30am, Lane 15- standard. 
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Figure 5.7 DGGE analysis of DNA- cDNA in animal 4 fed once a day. 
 

*Arrows or box in the figure indicate the site of changes detected in gels. 

Lane 1- standard, Lane 2- 8.30am, Lane 3- 12.30pm, Lane 4- 4.30pm, Lane 5- 8.30pm, Lane 6- 12.30am, 

Lane 7-  4.30am, Lane 8- standard, Lane 9- 8.30am, Lane 10-12.30pm, Lane 11- 4.30pm, Lane 12- 8.30pm, 

Lane 13- 12.30am, Lane 14- 4.30am, Lane 15- standard. 
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Figure 5.8 DGGE analysis of DNA- cDNA in animal 4 fed twice a day. 
 

*Arrows or box in the figure indicate the site of changes detected in gels.  

Lane 1- standard, Lane 2- 8.30am, Lane 3- 12.30pm, Lane 4- 4.30pm, Lane 5- 8.30pm, Lane 6- 12.30am, 

Lane 7-  4.30am, Lane 8- standard, Lane 9- 8.30am, Lane 10-12.30pm, Lane 11- 4.30pm, Lane 12- 8.30pm, 

Lane 13- 12.30am, Lane 14- 4.30am, Lane 15- standard. 

5.2.2 qPCR/ qRT-PCR 

The average mcrA gene quantity varied diurnally in once a day fed animals (table 5.2, figure 

5.9). It was maximum (2.121pg/100ng of total DNA) at 8h (4.30pm) after feeding and 

minimum (0.527pg/100ng of total DNA) at 20h (4.30am) after feeding or just before the next 

feeding. In animals fed twice a day the maximum (1.095pg/100ng of total DNA) average 

mcrA gene quantity was again measured at 8h (4.30pm) after morning feeding and the 
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minimum (0.274pg/100ng of total DNA) was measured 16h (12.30am) after morning feeding 

(figure 5.3). The only significant (p≤0.05, t=4.299) change in average mcrA gene quantity 

was between the measurements at 8h and 16h after morning feeding in twice a day fed 

animals and there were no significant changes between the other times measured (table 5.3). 

The mean mcrA DNA values or the methanogen numbers as enumerated by real time PCR 

(qPCR) did not vary significantly (p≤0.05) between animals fed once a day or twice a day 

(figure 5.9, table 5.1). 

 

Table 5.1 mcrA gene quantity upon once vs. twice a day feeding. 
 

Time mcrA quantity upon once a day feeding 
(pg/100ng of total DNA) 

mcrA quantity upon twice a day feeding 
(pg/100ng of total DNA) 

Paired  t-test 

1 2 3 4 Mean 1 2 3 4 Mean LSD 
5% 

   t 
value 

8.30 
am 

0.332 2.769 1.124 0.974 1.300 0.386 0.528 0.811 0.254 0.495 1.604 1.59 

12.30 
pm 

0.946 2.188 0.854 0.628 1.154 0.161 0.658 1.026 0.908 0.688 1.362 1.09 

4.30 
pm 

1.824 3.445 1.484 1.731 2.121 0.101 1.038 1.859 1.381 1.095 2.015 1.62 

8.30 
pm 

0.552 1.301 0.366 0.250 0.617 0.053 0.553 0.716 0.137 0.365 0.762 1.06 

12.30 
am 

0.288 1.333 0.669 0.219 0.627 0.134 0.304 0.423 0.237 0.274 0.738 1.52 

4.30 
am 

0.445 0.924 0.560 0.180 0.527 0.041 0.254 0.621 0.400 0.329 0.654 0.96 

MAUC 0.800 2.022 0.843 0.681 1.087 0.132 0.589 0.948 0.598 0.567 1.102 1.50 

MAUC- Mean area under curve for 20h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5.9 mcrA gene quantity in animals fed once or twice a day. 
 

*Values plotted are average of data in table 5.1, over 20h diurnal period, error bars represent SE, n=4. 

Arrows on the time axis indicate time of feeding. 
 

Time 

8.30am 12.30pm 4.30pm 8.30pm 12.30am 4.30am 

m
c
rA

 g
e
n

e
 q

u
a
n

ti
ty

 
(p

g
/1

0
0
n

g
 o

f 
to

ta
l 

D
N

A
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

once a day 

twice a day



 101 

Table 5.2 Raw differences in mcrA gene quantity between times within once a day 

fed animals. 
 

Time 
(Time 1-Time 2) 

Raw differences between times within treatment (once a day) paired 
t- test 
 

1 2 3 4 Mean LSD 
(5%) 

t  value 

12.30pm-8.30am 0.614 -0.581 -0.270 -0.346 -0.146 0.833 0.58 

4.30pm-8.30am 1.492 0.676 0.360 0.757 0.821 0.762 3.43* 

8.30pm-8.30am 0.220 -1.467 -0.758 -0.724 -0.682 1.102 1.97 

12.30am-8.30am -0.044 -1.436 -0.455 -0.755 -0.672 0.933 2.29 

4.30am-8.30am 0.113 -1.844 -0.564 -0.794 -0.772 1.292 1.90 

4.30pm-12.30pm 0.878 1.257 0.630 1.102 0.967 0.435 7.08* 

8.30pm-12.30pm -0.394 -0.886 -0.487 -0.378 -0.536 0.379 4.51* 

12.30am-12.30pm -0.658 -0.855 -0.185 -0.409 -0.527 0.464 3.61* 

4.30am-12.30pm -0.501 -1.263 -0.294 -0.448 -0.626 0.690 2.89 

8.30pm-4.30pm -1.272 -2.143 -1.118 -1.481 -1.503 0.719 6.65* 

12.30am-4.30pm -1.536 -2.112 -0.815 -1.512 -1.494 0.844 5.63* 

4.30am-4.30pm -1.379 -2.520 -0.924 -1.551 -1.593 1.070 4.74* 

12.30am-8.30pm -0.264 0.031 0.302 -0.031 0.010 0.371 0.08 

4.30am-8.30pm -0.107 -0.377 0.194 -0.070 -0.090 0.371 0.77 

4.30am-12.30am 0.157 -0.408 -0.109 -0.039 -0.100 0.373 0.85 

* values are significant at p≤ 0.05, individual values are calculated by subtracting the value of time 2 from 

time 1, -ve value represents a decrease in gene quantity. 

 

 

 

 

Table 5.3 Raw differences in mcrA gene quantity between times within twice a day 

fed animals. 
 

Time 
(Time 1-Time 2) 

Raw differences between times within treatment (twice a day) paired 
t test 
 

1 2 3 4 Mean LSD 
(5%) 

t  value 

12.30pm-8.30am -0.225 0.130 0.216 0.653 0.194 0.574 1.07 

4.30pm-8.30am -0.285 0.511 1.048 1.127 0.600 1.035 1.85 

8.30pm-8.30am -0.333 0.025 -0.094 -0.118 -0.130 0.237 1.74 

12.30am-8.30am -0.252 -0.224 -0.387 -0.017 -0.220 0.243 2.88 

4.30am-8.30am -0.344 -0.274 -0.189 0.145 -0.165 0.345 1.53 

4.30pm-12.30pm -0.060 0.380 0.832 0.474 0.407 0.584 2.22 

8.30pm-12.30pm -0.108 -0.105 -0.310 -0.771 -0.323 0.499 2.06 

12.30am-12.30pm -0.027 -0.354 -0.603 -0.671 -0.414 0.464 2.84 

4.30am-12.30pm -0.119 -0.404 -0.405 -0.508 -0.359 0.266 4.29* 

8.30pm-4.30pm -0.048 -0.485 -1.142 -1.244 -0.730 0.900 2.58 

12.30am-4.30pm 0.033 -0.734 -1.435 -1.144 -0.820 1.014 2.58 

4.30am-4.30pm -0.060 -0.784 -1.237 -0.982 -0.766 0.805 3.03 

12.30am-8.30pm 0.081 -0.249 -0.293 0.100 -0.090 0.333 0.86 

4.30am-8.30pm -0.012 -0.299 -0.095 0.263 -0.036 0.370 0.31 

4.30am-12.30am -0.092 -0.050 0.198 0.163 0.055 0.234 0.74 

* values are significant at p≤ 0.05, individual values are calculated by subtracting the value of time 2 from 

time 1, -ve value represents a decrease in gene quantity. 
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Table 5.4 mcrA gene expression levels upon once vs. twice a day feeding. 
 

Time mcrA gene expression upon once a day 
feeding (pg/100ng of total RNA) 

mcrA gene expression upon twice a day 
feeding (pg/100ng of total RNA) 

Paired t test 

1 2 3 4 Mean 1 2 3 4 Mean LSD 
5% 

   t 
value 

8.30 
am 

0.332 2.769 1.124 0.974 1.300 0.386 0.528 0.811 0.254 0.495 0.244 1.34 

12.30 
pm 

0.946 2.188 0.854 0.628 1.154 0.161 0.658 1.026 0.908 0.688 0.257 3.60* 

4.30 
pm 

1.824 3.445 1.484 1.731 2.121 0.101 1.038 1.859 1.381 1.095 0.308 4.90* 

8.30 
pm 

0.552 1.301 0.366 0.250 0.617 0.053 0.553 0.716 0.137 0.365 0.253 2.89 

12.30 
am 

0.288 1.333 0.669 0.219 0.627 0.134 0.304 0.423 0.237 0.274 0.276 2.85 

4.30 
am 

0.445 0.924 0.560 0.180 0.527 0.041 0.254 0.621 0.400 0.329 0.140 0.62 

MAUC 0.254 0.346 0.435 0.421 0.364 0.113 0.073 0.081 0.144 0.103 0.140 5.92* 

*values are significant at p≤ 0.05. MAUC- Mean area under curve over 20h. 

 

 

 

Table 5.5 Raw differences in mcrA gene expression between times within once a day 

fed animals. 
 

Time 
(Time 1-Time 2) 

Raw differences between times within treatment (twice a day) paired 
t test 
 

1 2 3 4 Mean LSD 
(5%) 

t value 

12.30pm-8.30am 0.073 0.344 0.370 0.176 0.241 0.224 3.42* 

4.30pm-8.30am 0.574 0.482 0.708 0.207 0.493 0.337 4.65* 

8.30pm-8.30am -0.036 0.287 0.385 -0.039 0.149 0.349 1.36 

12.30am-8.30am -0.083 0.194 0.378 0.010 0.124 0.325 1.22 

4.30am-8.30am -0.024 -0.031 0.051 -0.175 -0.045 0.150 0.95 

4.30pm-12.30pm 0.501 0.138 0.338 0.031 0.252 0.333 2.41 

8.30pm-12.30pm -0.110 -0.057 0.015 -0.215 -0.092 0.154 1.99 

12.30am-12.30pm -0.156 -0.150 0.007 -0.166 -0.116 0.132 2.81 

4.30am-12.30pm -0.097 -0.375 -0.320 -0.351 -0.286 0.203 4.47* 

8.30pm-4.30pm -0.611 -0.195 -0.324 -0.246 -0.344 0.295 3.71* 

12.30am-4.30pm -0.657 -0.288 -0.331 -0.198 -0.368 0.319 3.68* 

4.30am-4.30pm -0.598 -0.513 -0.658 -0.382 -0.538 0.190 8.99* 

12.30am-8.30pm -0.047 -0.093 -0.007 0.049 -0.024 0.095 0.82 

4.30am-8.30pm 0.013 -0.317 -0.334 -0.136 -0.194 0.262 2.36 

4.30am-12.30am 0.059 -0.225 -0.327 -0.185 -0.169 0.261 2.07 

* values are significant at p≤ 0.05, individual values are calculated by subtracting the value of time 2 from 

time 1, -ve value represents a decrease in expression. 
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Table 5.6 Raw differences in mcrA gene expression between times within twice a day 

fed animals. 
 

Time 
(Time 1-Time 2) 

Raw differences between times within treatment (twice a day) paired 
t test 
 

1 2 3 4 Mean LSD 
(5%) 

t value 

12.30pm-8.30am 0.088 -0.010 0.062 0.075 0.054 0.069 2.47 

4.30pm-8.30am 0.037 -0.071 0.176 0.344 0.121 0.286 1.35 

8.30pm-8.30am 0.011 -0.039 0.032 0.088 0.023 0.084 0.87 

12.30am-8.30am -0.017 -0.073 0.024 -0.013 -0.020 0.064 0.99 

4.30am-8.30am 0.093 -0.007 0.015 0.023 0.031 0.069 1.43 

4.30pm-12.30pm -0.051 -0.062 0.114 0.269 0.068 0.249 0.86 

8.30pm-12.30pm -0.077 -0.030 -0.030 0.013 -0.031 0.058 1.67 

12.30am-12.30pm -0.105 -0.064 -0.038 -0.088 -0.074 0.046 5.07* 

4.30am-12.30pm 0.005 0.002 -0.046 -0.052 -0.023 0.049 1.49 

8.30pm-4.30pm -0.026 0.032 -0.144 -0.256 -0.098 0.204 1.54 

12.30am-4.30pm -0.054 -0.002 -0.152 -0.357 -0.141 0.249 1.81 

4.30am-4.30pm 0.056 0.064 -0.161 -0.321 -0.090 0.295 0.97 

12.30am-8.30pm -0.028 -0.034 -0.008 -0.101 -0.043 0.064 2.14 

4.30am-8.30pm 0.082 0.032 -0.017 -0.065 0.008 0.101 0.25 

4.30am-12.30am 0.110 0.066 -0.008 0.036 0.051 0.079 2.04 

* values are significant at p≤ 0.05, individual values are calculated by subtracting the value of time 2 from 

time 1, -ve value represents a decrease in expression. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 mcrA gene expression in animals fed once or twice a day. 
 

*Values plotted are average of data in table 5.4, over 20h diurnal period, error bars represent SE, n=4. 

Arrows on the time axis indicate time of feeding. 

 

The average mcrA gene expression (table 5.4, figure 5.10) values of all four animals varied 

diurnally in once a day fed animals with a maximum (2.121pg/100ng of total RNA) at 8h 

(4.30pm) after feeding and a minimum value (0.527pg/100ng of total RNA) measured at 20h 
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(4.30am) after feeding or just before the next feeding. When the animals were fed twice a day 

the mcrA gene expression ranged from a maximum expression (1.095pg/100ng of total RNA)  

at 8h (4.30pm) after feeding to a minimum  (0.274pg/100ng of total RNA) measured at 16h 

(12.30am) after feeding. Though there was a significant decrease in mean area under curve 

(MAUC) for 20h of mcrA gene expression for twice a day fed animals (p˂ 0.05, t= 5.922) 

than the once a day animals, this difference was significant only at 4h (12.30pm) and 8h 

(4.30pm) after morning feeding (table 5.4). The mean mcrA gene expression levels of all 4 

animals estimated every 4h over a 24h period when fed once a day or twice a day are given in 

table 5.4. 

 

On performing paired sample t test for the difference in means of mcrA gene expression 

across the time intervals in animals fed twice a day (table 5.6), apart from a significant 

difference between mcrA gene expression at 4h and 16h after morning feeding (p˂ 0.05, 

t=5.077), no significant changes in mean mcrA gene expression over the diurnal period could 

be detected. In contrast, when the animals were fed only once a day in the morning, marked 

differences were observed in mcrA gene expression levels across different time periods (table 

5.5). The difference between the mcrA expression levels at peak i.e. 8h after feeding and at 

lowest i.e. 20h after feeding or 4h before feeding was the most significant (p˂0.01, t=8.991). 

Thus, in once a day fed animals, the mcrA gene expression started increasing after feeding till 

8h and then it started decreasing to its lowest at 20h after feeding or just before next feeding 

(figure 5.10) while in twice a day fed animals it was the lowest at 16h after morning feeding.    

5.3 Discussion 

The DGGE profile revealed the presence of 22 to 24 bands and it could be deduced from 

phylogenetic analysis that Methanobrevibacter sp. was the predominant methanogen along 

with few strains/ species closest to Methanosphaera stadtmanae and a few uncultured 

archaeal species. This finding is consistent with the earlier experiment (Chapter 3) and of 

other studies (Hook et al. 2009; Whitford et al. 2001; Wright et al. 2007; Zhou et al. 2009; 

2010). A different feeding pattern may not necessarily be accompanied by a complete absence 

of an organism from the community (Hook et al. 2011). Accordingly, no effect of feeding 

frequency on DGGE profile was observed in this experiment on the presence or absence of 

bands. An interesting observation was the appearance of few bands phylogenetically closest to 

Methanobrevibacter sp. in the cDNA (RNA) samples while they were either absent or had 

very low intensity in corresponding DNA samples. This suggests that some strains/ species 

may not be of significant proportions in the DNA population but are actively participating in 
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methane production to warrant the appearance of corresponding bands in cDNA (RNA) 

profiles. It has also been suggested that organisms which might have been dormant earlier 

might become active under the influence of a new rumen physiological pattern or inhibitors 

and occupy the ecological niches left vacant by other populations (Attwood and McSweeney 

2008). The bands representing species closest to Methanosphaera stadtmanae also showed 

variable changes in different animals suggesting the influence of animal to animal variation. 

But, it is a limitation of the DGGE method that only bands from dominant populations appear 

in the profiles and community members with lower proportion may not be expressed 

(Kocherginskaya et al. 2001). Thus any changes happening in low proportion strains/species 

may not have been detected. Also, the relative increase or decrease in number and activity of 

particular populations between treatments or over the diurnal period could not be accurately 

gauged from DGGE analysis. A better insight into methanogen dynamics could thus be 

obtained upon estimation of their population numbers and activity through a real time PCR. 

The cDNA and DNA bands matching with Methanobrevibacter species decreased in intensity 

16h and 20h after morning feeding but no such change was detected in twice fed animals. A 

possible explanation for this could be establishment of more stable ruminal conditions upon 

feeding twice daily (Robles et al. 2007).  This may suggest that when fed twice a day there is 

a continuous supply of nutrients to the microbes, rumen fermentation is continuous ensuring 

regular availability of substrates to methanogens which does not lead to any major shift in 

methanogen numbers or activity whereas, when the same animals were fed only once a day, 

there would be dramatic shifts in rumen environment and thus the methanogen community. 

The bands showing lower intensity at 16h and 20h after morning feeding in once a day fed 

animals belonged to Methanobrevibacter sp., the predominant species of rumen which 

synthesizes methane through hydrogenotrophic pathway i.e. by reducing CO2 with molecular 

H2 (Miller et al. 1986; Mohammed et al. 2011). Thus, a decrease in rumen fermentation end 

products (CO2 and H2), could be a possible reason for the decreased mcrA gene expression 

after a prolonged period of starvation. But, a complete inhibition of methanogenesis did not 

occur, because many other Methanobrevibacter strains/ species as well as other species could 

still be active. 

For the qPCR assay a reference gene could not be used because a suitable gene which would 

have a consistent level of transcription across all the microbial communities has not been 

identified till yet. No indication of a suitable reference gene in earlier studies on methanogen 

community could be found (Denman et al. 2007; Guo et al. 2008). These studies also relied 

on the efficiency of standard curve to generate quantification data. Since the purpose of this 
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study was to measure changes between different times or treatments, extrapolation from a 

standard curve prepared by serial dilutions of a methanogen plasmid would serve the purpose. 

Though it was desirable to have a reference gene, it was believed that any technical variations 

during assay would be negated by the statistical significance of results from biological 

replicates. Another possible option could have been spiking the samples with a known amount 

of RNA before conversion to cDNA. It would have contributed to the synthesis efficiency but 

was less likely to contribute in overall estimations. Therefore, in order to account for any 

difference in RNA conversion to cDNA, estimation was done against a fixed amount of DNA 

or RNA which would negate the effects of any technical errors during nucleic acid processing. 

For the assay itself, it was highly desirable to use TaqMan assay against SYBR
®

 Green assay 

because of high specificity of the products obtained. But at this stage of experimentation, it 

was decided to use SYBR
®
 Green assay because a TaqMan probe may not be able to capture 

all the species/ strains of the methanogen community which was the main focus of 

experiment. The assay was further controlled by using highly specific primers, performing 

dissociation (melting) curve analysis after every reaction to rule out any non specific 

amplification, controlling the efficiency of reaction to a minimum of 95% and the technical 

variability with a minimum R
2
 of 0.900. The SYBR

®
 Green assay performed could be further 

developed for a TaqMan assay if the sample number is very large where it would be more 

time and cost effective. 

The transcription level of a gene has been associated with its expression in a physiological 

function. The expression level of mcrA gene has been reported to be proportional to the 

methane production (Denman et al. 2007) and estimation of mcrA specific mRNA out of the 

total pool of RNA can give an idea of the methanogen activity within a given sample. The 

RT-qPCR analysis revealed that a change in feeding frequency from once a day feeding to 

twice a day feeding caused a decrease in mcrA gene expression indicating a decreased 

methanogen activity (table 5.4, figure 5.10). Though there was no significant change in 

methanogen copy numbers, maximum difference in mcrA gene quantity between two feeding 

frequencies was observed at 8h after morning feed (table 5.1, figure 5.9). Also, the greatest 

difference in mcrA gene expression between two feeding managements was detected at 8h 

after morning feeding and the gene expression was generally lowest for both 8h and 4h before 

the morning feeding. For animals fed twice a day, gene expression differed only at 8h 

(4.30pm) after morning feed and ≈2h after evening feed, the methanogen numbers did not 

vary significantly between times (table 5.3, figure 5.10). In contrast, for once a day fed 

animals, the gene expression started increasing immediately after feeding and was on a 

relative high till about 12h after feeding from where it decreased gradually though 
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maintaining a numerical but not significant high over twice fed animals, to its lowest at 8h 

and 4h before morning feeding (table 5.1, figure 5.10). The methanogen numbers as revealed 

from mcrA DNA quantity though were not significantly different in once a day from twice fed 

animals but within the diurnal period they varied considerably in once a day fed animals being 

highest at 8h (4.30am) after feeding and lowest just before feeding (table 5.2, figure 5.9). 

Though these results could be compared with the DGGE analysis where few bands showed 

decreased intensity at 16h and 20h after once a day feeding and a constant intensity in twice a 

day feeding, but the subtle shifts in the gene expression or total population could not be 

detected from corresponding DGGE analysis. Further, it is evident that analysis of spot 

samples i.e. at a particular time within 24h would not have given an accurate representation of 

the methanogen community dynamics and a larger number of samples spread over the diurnal 

period provided better information about the shifts in methanogen population and their gene 

expression. 

The peak in gene expression observed after 8h of feeding could be explained by a small 

increase in methanogen population combined with an increase in substrate availability leading 

to an increased fermentation by rumen microbes. The increase in fermentation may lead to 

enhanced release of fermentation end products which can cause a spurt in methanogen 

population and activity.  

No significant changes were detected in numbers and gene expression over the diurnal period 

when animals were fed twice a day except a peak 8h after feeding (table 5.3 and table 5.6). 

The possible explanation for this could be that when animals were fed on kale twice a day 

there was a constant supply of readily fermentable carbohydrates which may have increased 

the H2 partial pressure or a decrease in the rumen pH. It has been reported earlier that a 

constant supply of water soluble carbohydrates can decrease the pH in vitro though no effect 

on VFA production was noted (Lee et al. 2003). A pH below 6 has been reported to reduce 

methane production in vitro and as the pH rose above 6, the methane production returned 

suggesting that methanogens are not automatically killed by low pH, although their activity is 

influenced (Kessel and Russell 1997a). 

 

In a parallel study with this experiment (Ruguho, unpublished data), the ruminal pH of the 

steers was measured over the 24h diurnal period and it was found that steers fed twice a day 

tended to have a comparatively lower pH than steers fed once day. Though the average pH 

was above 6 for most of the diurnal period, the period when rumen pH was 5.8-6.0, though a 

low proportion in the overall 24h period was comparatively greater for twice fed animals than 
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once a day fed animals. This may explain the difference in activity of methanogens. Since the 

rumen provides a more stable environment than an in vitro medium; the activity of 

methanogens can be expected to decrease, rather than ceasing completely. Robles et al., 

(2007) had reported that an increased feeding frequency provides more stable rumen 

conditions without any changes in the average rumen pH. But in a slight contrast to our study, 

they found that pH tended to be higher 12h after feeding when animals were fed twice daily. 

Since the animals were fed on high concentrate diets and the feeding interval was 12h as 

against 7h interval followed by 18h of no feeding in this study and a high forage diet, a 

different rumen pattern could be expected. The overall decrease in gene expression 8h or 4h 

before morning feeding could be due to the starvation effect which might occur on rumen 

microbes upon prolonged gaps in feeding. Kessel and Russell (1997b) had proposed that 

methanogens are more prone to starvation effect and a prolonged starvation for more than 12h 

could lead to almost complete inhibition of methanogenesis. Similarly, Khafipour et al., 

(2009) had also reported that the number of methanogens was lowest 15min prior to feeding. 

As discussed earlier, under the starvation conditions in rumen, methanogen activity may be 

reduced but there may not be any effect on the microorganisms because of rumen being a very 

dynamic environment.  

 

Further, when the rumen microbes, especially reductive acetogens, are subjected to extreme 

changes in rumen environment, they may not be able to cope with starvation effects which 

include very low partial pressure of H2 and may be dominated by the methanogens which are 

capable of surviving under extremely low H2 partial pressure (Fievez et al. 2001; Greening 

and Leedle 1989; Joblin 1999). In the scenario where animals are fed twice daily, there is 

more stable rumen environment and relatively continuous fermentation which raises the 

partial pressure of H2 (low pH). As a result of this increased H2 partial pressure, the reductive 

acetogens may become more active and compete with methanogens for H2 (Greening and 

Leedle 1989; Joblin 1999). The H2 may thus be channelled towards more VFA production. 

Methanogen activity would then be decreased for a similar DMI. Certain species such as 

Methanosphaera stadtmanae which have high requirements for pH and growth optima might 

be more effected than other species such as Methanobrevibacter ruminantium, which has a 

wider range of pH (5.5-7.0) for growth and activity. 

 

One limitation of this study was establishing the relationship between actual methane 

production and mcrA gene expression. Calculating methane production through respiratory 

chambers was outside of the ambit of this work, and the limitations of the SF6 technique mean 
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it is not sensitive enough to detect subtle changes within the diurnal period. Since no reliable 

and feasible alternative method for estimation of rumen methanogenesis within the diurnal 

24h cycle for forage fed cattle is available, a molecular analysis of the rumen milieu was the 

only reliable technique to estimate the effect of a feed management on rumen methanogenesis 

within the diurnal cycle. The mcrA gene expression and mcrA gene quantity have earlier been 

correlated with the actual methane production in some of the earlier studies (Denman et al. 

2007; Guo et al. 2008; Hook et al. 2011). 

5.4 Conclusion 

The development of modified method to extract DNA and RNA from the rumens of cows fed 

high quality forage has made possible the sensitive detection of changes in methanogen 

quantities and gene expression, and facilitated high sample number throughput. This enabled 

the use of serial rumen sampling across the diurnal period, and improved the analysis of the 

methanogen population dynamics compared to spot sampling protocols. While DGGE 

analysis provided an initial screening of the methanogen community and some important 

information regarding the effect of a long feeding gap on some methanogen community 

members, a comprehensive understanding of methanogen community dynamics could 

however be obtained only through quantitative real time and reverse transcriptase PCR. 

It was possible to conclude from this experiment that a diurnal pattern of methanogen activity 

is present in cattle fed high quality forages, and appears to be determined by their feeding 

pattern.  This is the first report of such a finding, and is a significant contribution to the study 

of rumen methanogen ecology. 

The applicability of this technique needs to be validated further in the pasture based systems 

through experimentation on animals under actual grazing conditions The ability to detect 

changes in methanogen population and gene expression over a diurnal period under grazing 

conditions would further validate the application of this technique to pasture based ruminants, 

which is the subject of the following chapter. 
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Chapter 6 

Quantification of Rumen mcrA mRNA and Methanogen DNA 

within the Diurnal Cycle in Cows Grazing High Quality 

Pastures.  

In the previous chapters, a reliable method of extracting and quantifying rumen methanogen 

mRNA/ DNA from cattle pen fed forages was developed and used to describe the diurnal 

variation in rumen methanogen numbers and their activity. However, to be of use in 

investigating the dynamics of methanogenesis in high intensity pasture based grazing systems, 

this method was required to be validated in cows grazing very high quality pasture under a 

typical South Island pasture management and grazing protocol. 

This experiment was planned to assess the use of the method developed in Chapter 4 in 

determining diurnal patterns of rumen methanogenesis in grazing cows on high quality 

pasture, using the effect of a proven methanogenic inhibitor (fish oil), as a treatment, and 

unsupplemented cows as controls. Since, it has been reported that fish oil can have a direct 

toxic effect on methanogens (Dong et al. 1997; Fievez et al. 2003), DGGE analysis was also 

performed on both DNA and RNA/ cDNA samples to investigate any changes in methanogen 

community profile.  

The supplementation of ruminant diets with fats has been proposed as a promising strategy to 

reduce rumen methane emissions (Grainger and Beauchemin 2011).  Fats are generally added 

in the finishing diets in many farm systems internationally in order to increase the energy 

density of diets. Considering the fact that addition of ionophores and synthetic analogues has 

been banned by many governments, fats offer a natural source of methane mitigation. Earlier 

reviews have concluded that the effect of fat supplementation on milk production is complex 

and depends upon the type of diet: pasture or TMR based, type of forage offered, total fat 

content of diet, physiological state and genetic merit of the animal (Garnsworthy 1997). 

Grainger and Beauchemin (2011) reported that in diets containing fat content less than 80g/kg 

DMI (8%), a 10g/kg increase in dietary fat decreased methane yield by 1g/kg DM intake in 

cattle. Based upon a statistical analysis, they also concluded that the effect of fat on methane 

production was more consistent with total dietary fat rather than amount of added fat.  

Dietary lipids have been proposed to exert their effect on methane inhibition by (i) decreasing 

ruminal organic fermentation, (ii) through diverting H2 towards biohydrogenation of the lipids 
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containing unsaturated fatty acids (Czerkawski et al. 1966; Johnson and Johnson 1995), (iii) 

indirectly through decreasing the ruminal bacteria and protozoa or (iv) a direct toxic effect on 

the methanogens, or a combination of these modes (Soliva et al. 2003). 

Grainger and Beauchemin (2011) concluded that the type of fatty acid or the formulation in 

which it is fed does not have any effect on methane production, though some oilseeds need to 

be processed before feeding to increase digestibility. But, Galbraith et al., (1971) had reported 

that for efficient adsorption, the fatty acids must be in solution and remain sufficiently 

lipophilic. To support this observation, the fats which have a lower melting temperature and 

are able to melt more efficiently at the rumen temperature e.g. coconut oil and palm kernel oil, 

which are particularly rich in lauric acid (C12:0), have been found to be more effective in 

methane suppression (Dohme et al. 2000). 

Osborne et al., (2007) have shown that it is possible to supplement fish oil to pasture fed dairy 

cows without decreasing feed or water intake relative to cows fed fish oil in the diet, and the 

low volume of oil required, enabled the cows to be fed at milking.  

Fish oil supplementation has also been reported to shift rumen fermentation towards 

propionate production at the expense of acetate and butyrate (Doreau and Chilliard 1997; 

Shingfield et al. 2010). It has already been discussed earlier (chapter 2) that a higher 

propionate production at the cost of acetate implies a decrease in H2 available for methane 

production. Further, the fish oil also contains substantial quantity of polyunsaturated fatty 

acids (PUFA) such as linoleic acid (C18:2n-6, LA), linolenic acid (C18:3n-3, LNA), 

eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), which 

have potential health benefits and its supplementation may alter the composition and 

percentage of unsaturated fat in milk, which is desirable to consumers (Kim et al. 2008).  

A DGGE analysis and qPCR of rumen fluid from steers fed fish oil at different levels of DMI 

has been shown to change bacterial diversity as well as total DNA concentration (Huws et al. 

2010). Its supplementation has been shown to cause a direct toxic effect on certain Gram +ve 

rumen bacteria which produce more H2 (Kim et al. 2008). Further, Fievez et al. (2003) 

observed up to 80% reduction in methane production of batch cultures in vitro, 48h after 

addition of fish oil and Petrie et al., (2009) reported a decrease in both daily and intake 

corrected methane emission of steers fed 50: 50:: hay: concentrate diet upon fish oil 

supplementation at 2% of DMI.  

For these reasons, fish oil was expected to greatly reduce rumen methanogenesis in pasture 

based cows grazed under the typical production system of the South Island. It was therefore 
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used as a treatment along with unsupplemented controls in this experiment to determine the 

efficacy of the method developed in Chapter 4, in quantifying the rumen mcrA mRNA and 

methanogen DNA within the diurnal cycle of this grazing system. 

6.1 Materials and methods 

6.1.1 Animals, diets and experimental design 

Six ruminally fistulated, non-lactating Holstein Friesian cows with an average liveweight of 

525kg were used in the experiment. They were strip grazed on a ryegrass (Lolium perennes) 

and white clover (Trifolium repens) pasture.  The cows were allocated 10kg DM/animal of 

pasture once daily, at 5pm. Plate meter reading of the pasture was done pre and post grazing 

to monitor the supply of pasture. In addition, 3kg DM/animal of a similar ryegrass and clover 

silage was allocated each day at 5pm. 

Experiment was conducted in a 3x3 crossover design. The six cows were randomly divided 

into two groups of three cows each. The treatment group cows were given 350ml of fish oil 

(United Fisheries, Christchurch, NZ) (2.7% of total DMI or 3.5% of pasture DMI) through the 

rumen canula via a tube guided into the reticulum to simulate oesophageal entry. The control 

group cows were administered an equal amount of water to maintain rumen volume and 

compensate for the time the fistula was opened. Cows had access to fresh water throughout 

the day. The fish oil or water supplementation was done at 5pm daily before giving the fresh 

pasture break to cows. First sample collection was done 72h after supplementation and the 

second sample collection was done on 15d of supplementation. The cows were then given a 

washout period of 21d grazing the same pasture and the treatments were then switched 

between groups.   

Samples of WRC were collected from the rumen of all six cows every 4h over a 24h period. 

Sample collection was done before the respective supplementation at 5pm, then at 9pm, 1am, 

5am, 9am and 1pm (0, 4, 8, 12, 16 and 20h after feeding). 400g of WRC were collected from 

the ventral sac of the rumen via the canula, placed in an ice bath for 5min for transportation 

and then aliquoted to microtubes. The samples were then processed as described earlier in 

section 5.1.1 and stored at -80
◦
C until further analysis. 

Spot samples of rumen fluid were also collected at 0h (5pm), 8h (1am) and 16h (9am) after 

the morning feeding on all four days of sample collection. The WRC samples were taken 

through rumen canula by hand from the ventral sac of rumen and squeezed through two layers 

of cheesecloth to collect rumen fluid in two vials for VFA and NH3 samples. Samples for 
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VFA were immediately placed on ice and 1ml of 6M sulphuric acid was added to samples for 

NH3 analysis (to prevent volatilisation by ensuring pH remained under 4). The samples were 

then immediately stored under -20
◦
C until further analysis. 

  

6.1.2 Sample analysis 

Samples were taken out from -80
◦
C and RNA & DNA were extracted using the procedure 

described in section 4.1.2 (appendix A.7) and quantified with fluorometry (Qubit
TM

 , 

Invitrogen, Christchurch, New Zealand).  RNA was also treated with Turbo DNA-free
TM

 

DNase (Ambion, Applied Biosystems, Auckland, New Zealand) to remove any contaminating 

DNA. RNA samples were checked for DNA contamination by performing a polymerase chain 

reaction (PCR) using archaeal 344f-GC and 522r primers targeting archaeal V2V3 region as 

described in section 3.1.1.1.3. Complementary DNA (cDNA) was synthesized from the RNA 

using TaKaRa Blue Print 
TM 

reverse transcriptase kit according to the manufacturers’ 

instructions (Norrie Biotech, Auckland, New Zealand). 

6.1.2.1 PCR amplification for DGGE 

The cDNA & DNA were PCR amplified for DGGE using Archaeal V2V3 primers 344f-GC 

and 522r (Akarsubasi et al. 2005) according to the procedure described earlier in section 

3.1.1.3.3. and appendix A.3. 

6.1.2.2 Denaturing gradient gel electrophoresis (DGGE) analysis 

In Chapter 5 it was reported that the most significant differences in methanogen numbers and 

activity through DNA and cDNA estimation could be found at 8h after feeding. Therefore for 

initial screening, DNA and cDNA extracted from samples collected at 1am (8h after feeding) 

from both treatment and control cows were used for DGGE analysis. For detecting any 

changes in composition of methanogen community, PCR-DNA samples from all six animals 

were subjected to DGGE and two gels were constructed. One gel contained both control and 

treatment samples after 72h and 15d of fish oil supplementation for three animals. For 

detecting the relative activity after 72h or 15d of fish oil supplementation, cDNA-PCR 

products from control and treatment samples of all six animals were run on one gel. One gel 

was for samples collected after 72h of supplementation and second gel was for samples 

collected after 15d of supplementation.  

DGGE was performed for PCR product analysis according to the procedure described earlier 

in section 3.1.1.3.5. and appendix A.4. 
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6.1.2.3 qPCR/ qRT-PCR design and analysis 

Quantitative PCR (qPCR) or reverse transcriptase quantitative PCR (qRT-PCR) were 

performed on DNA/ cDNA obtained from rumen contents of cows to enumerate the number 

of methanogens across different time periods (pre-prandial/ post-prandial) in cows 

supplemented with fish oil against control group cows. The remaining procedure was 

described earlier in section 5.1.2.3. 

6.1.2.4 VFA and ammonia analysis 

The concentration of VFAs in the sampled rumen fluid was measured by thawing the frozen 

vials then vortexing, inverting and removing 2ml for sub-sample analysis. These were then 

centrifuged at 13000rpm for 30min at 4
o
C. From each of these sub-samples, 500µl of the 

supernatant was placed into a 1.5ml centrifuge tube and 100µl of internal standard, 200µl of 

metaphosphoric acid and 200µl of deionised water (dH2O) were added. Samples were then 

vortexed and placed at 4
o
C for 30min. They were then centrifuged at 13,000rpm for 15min 

and filtered through a 0.45µm nylon syringe filter and placed into tubes ready for injection 

into the high performance liquid chromatography (HPLC) machine (Hewlett Packard 1100 

Series, HPLC system) (Chen and Lifschlth 1989). 

The frozen acidified samples for ammonia analysis were thawed out over night at 4
o
C and 

maintained at this temperature or below throughout the extraction protocol. Samples were 

vortexed and inverted to ensure homogeneity and subsamples were removed into 2ml 

centrifuge tubes. They were centrifuged at 13000rpm in a refrigerated bench-top centrifuge 

set at 4
o
C for 30min. After centrifugation, samples were filtered through a 0.45µl syringe top 

filter placed into a 2ml syringe. A 1000µl (1ml) aliquot was then added to 9ml of deionised 

sterilised water (sdH2O). All samples were then analysed for ammonia concentration via Flow 

Injection Analyser (FIA) analysis immediately following the dilution process as described by 

Blakemore et al., (1987). Samples of fish oil used for supplementation in both parts of 

experiment were also analysed for their fatty acid composition (appendix B, table B.5). 

6.1.3 Statistical analysis 

For each animal and variable, the data values were averaged for control and treated (fish oil 

supplemented) separately, and the difference between control and treated was calculated. 

These differences were then statistically analysed using a two tailed paired samples t test 

using SPSS software (version 16.0, IBM SPSS statistics). The variables analysed were: mcrA 

gene expression, mcrA gene quantity, VFA and ammonia concentration (mmol/L) over days 

after treatment and within the diurnal period after treatment. 
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The animal no.5 was inappetant at the third day (72h) of fish oil supplementation, and the 

yields of nucleic acid from these samples were precipitously reduced, and were omitted for 

72h treatment and the corresponding 72h control period from the statistical analysis of qPCR 

and qRT-PCR. 

6.2 Results 

6.2.1 PCR-DGGE 

Approximately 21 to 23 bands were obtained upon DGGE analysis of DNA (DNA-PCR) and 

RNA (cDNA-PCR) samples obtained from whole rumen contents of control and fish oil 

supplemented (treatment) animals. Except for minor changes in several bands in animals 1, 2 

and 3, no major changes were observed between control and fish oil treatments. These bands 

represent species closest to Methanosphaera stadtmanae and family Methanobacteriacae in 

all three animals (figure 6.1, box ‘B-1’). Two bands having closest match to 

Methanobrevibacter sp. (figure 6.1, arrow ‘A’ & ‘B’) were also absent in animals 2 and 3 

with fish oil supplementation. No similar changes were detected in animals 4, 5 and 6 (figure 

6.2).  

Similarly, the cDNA DGGE demonstrated a variable response to fish oil supplementation. In 

the samples collected after 72hr of fish oil supplementation, only animals 1 and 2 showed 

some changes (figure 6.3). The band relating to species matching closest with 

Methanobrevibacter sp. (arrow A) had a decreased intensity in animal 1 while bands 

matching closest to Methanosphaera stadtmanae were decreasing in intensity in animal 2 

(arrow B). After 15d of fish oil supplementation (figure 6.4), no such effect was visible in 

animal 1 but animal 2 did have decreased intensities of bands relating to species matching 

closest to Methanosphaera stadtmanae (group ‘A’) and of two bands relating to 

Methanobrevibacter sp. (group B). The cluster of bands relating to Methanosphaera 

stadtmanae (group ‘A’) showed some peculiarity in that while one band was decreasing in 

intensity, other bands which were absent in control appeared in the treatment samples. Two 

bands relating to Methanobrevibacter sp. were also absent in animal 4 (arrows ‘C’ and ‘D’).  
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Figure 6.1 DGGE analysis of methanogen DNA for animals 1, 2 and 3. 
 

* Arrows in the figure indicate the site of changes detected in gels. L- ladder, C- control, T-treatment.  

Samples collected 8h (1am) after fresh pasture break at 72h and 15d of control/ fish oil supplementation 

(treatment). 

Lane 1- ladder, Lane 2- 72h, Lane 3- 15d, Lane 4- 72h, Lane 5- 15d, Lane 6-  72h, Lane 7- 15d , Lane 8- 

ladder, Lane 9-  72h, Lane 10-  15d, Lane 11- 72h, Lane 12- 15d, Lane 13- 72h, Lane 14- 15d, Lane 15- 

ladder. 
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Figure 6.2 DGGE analysis of methanogen DNA for animals 4, 5 and 6.  
 

* Arrows in the figure indicate the site of changes detected in gels. L- ladder, C- control, T-treatment. 

Samples collected 8h (1am) after fresh pasture break at 72h and 15d of control/ fish oil supplementation 

(treatment). 

 Lane 1- ladder, Lane 2- 72h, Lane 3- 15d, Lane 4- 72h, Lane 5- 15d, Lane 6-  72h, Lane 7- 15d , Lane 8- 

ladder, Lane 9-  72h, Lane 10-  15d, Lane 11- 72h, Lane 12- 15d, Lane 13- 72h, Lane 14- 15d, Lane 15- 

ladder. 
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Figure 6.3 DGGE analysis of methanogen cDNA for animals 1 to 6 at 72h after 

control or treatment. 

* Arrows in the figure indicate the site of changes detected in gels. L- Ladder, C- Control, T- Treatment. 

Samples collected 8h (1am) after fresh pasture break at 72h of control/ fish oil supplementation 

(treatment). 
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Figure 6.4 DGGE analysis of methanogen cDNA for animals 1 to 6 at 15d after 

treatment or control. 

* Arrows in the figure indicate the site of changes detected in gels. L- Ladder, C- Control, T- Treatment. 

Samples collected 8h (1am) after fresh pasture break at 15d of control/ fish oil supplementation 

(treatment). 

 

6.2.2 qPCR/qRT-PCR analysis 

The mcrA gene quantity (methanogen numbers) and mcrA gene expression values of all 

animals were analysed, except for animal 5, who was excluded from the statistical analysis of 

the results for the reasons detailed above. 

 

The mcrA gene quantity as measured by the amount of mcrA DNA present per 100ng of total 

DNA decreased numerically upon the initial 72h of fish oil supplementation (treatment) but a 
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significant decrease in methanogen quantities was detected only after 15d of fish oil 

supplementation (table 6.1, figure 6.5) and on this day amongst all the times analysed, a 

significant difference in mcrA gene quantity between control and  fish oil supplemented 

occurred only 8h (1pm) after the fresh pasture break was given to animals (p≤0.05, t=5.90). 

When the control and treatment values of mcrA gene quantity were averaged for 72h and 15d 

over all animals (table 6.2), a significant (p≤0.05, t=6.10) decrease was again observed in the 

treatment animals only 8h (1am) after break. 

 

The average mcrA gene expression values were numerically less than corresponding control 

values upon initial 72h of fish oil supplementation but a significant decrease was found only 

after 15d of fish oil supplementation at 4h (9pm) and 8h (1am) (p≤0.05, t=2.86, t=7.90) after 

fresh pasture break was given (table 6.4, figure 6.6). When all the values were averaged for 

72h and 15d of control and treatment for all animals (table 6.3), the comparative decrease in 

mcrA gene expression was again significant at 4h (9pm) and 8h (1am) after fish oil 

supplementation (p≤0.05, t=4.81 and t=4.30).  

 

Within the diurnal period, significant changes (p≤0.05) were observed between average mcrA 

gene expressions of control animals, 4h (9pm) and 8h (1am) after fresh pasture break was 

given to the animals (appendix B, table B.1). Generally, lowest gene expression was observed 

at 1pm and 5pm, i.e. 4h before and just before the next fresh pasture break and thereafter the 

gene expression peaked till 8h after which it started decreasing. A small but not significant 

peak in gene expression was again observed in the morning at 9am from whereon the gene 

expression again decreased. In the fish oil supplemented animals, no such significant changes 

were detected within the diurnal period (appendix B, table B.2). Though some small peaks 

(not significant) were observed, the time and the relative increase in gene expressions varied 

between animals. Generally, these peaks occurred at 1am (8h after fresh break) and 9am, but 

the mcrA gene expression was relatively stable from 12h (5am) after pasture break till the 

next pasture break (5pm). 

  

Similarly, the mcrA gene quantity was significantly high 8h (1am) after pasture break in 

control animals (appendix B, table B.3) but showed insignificant changes at other times. But, 

in the treatment animals, no significant changes were observed for mcrA gene quantity which 

generally remained stable throughout the diurnal period (appendix B, table B.4). 
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6.2.3 VFA and ammonia analysis 

Statistical analysis of VFA concentrations in rumen fluid of control and fish oil supplemented 

animals, showed a significant decrease in average (of 72h and 15d) acetic acid concentration 

(table 6.5, figure 6.7) upon fish oil supplementation (p≤0.05, t=2.63). Also, there was no 

significant change in acetic acid concentrations after 72h of fish oil supplementation, but the 

concentrations decreased significantly after 15d of fish oil supplementation. When average 

values of treatment and control periods were analysed, significant difference (p≤0.05, t=5.17) 

was observed at 16h after pasture break (9am). Also, significant changes in acetic acid 

concentration were observed between times (table 6.5, figure 6.7) within both the control and 

fish oil supplemented animals. Highest concentrations were observed 8h after fresh pasture 

break (1am) followed by a decrease at 16h (9am) to the lowest at 5pm (0h) or just before next 

pasture break was to be given. 

In spite of a numerical increase in propionic acid concentrations from control to fish oil 

supplemented group, the concentrations did not vary significantly between control and fish oil 

supplemented animals (figure 6.8, table B.6, appendix B). Also the highest (not significant at 

p≤0.05, but widest confidence interval) difference in propionic acid concentrations were 

observed for the 15d fish oil supplementation period at 8h (1am) after fresh pasture break. 

Within the diurnal period, propionic acid concentrations changed significantly for both 

control and fish oil supplemented animals, with highest concentrations at 8h after fresh 

pasture break (1am) followed by a decrease at 16h (9am) to the lowest at 5pm (0h) or just 

before next pasture break was to be given. There was no significant change in butyric acid 

concentration between control and treatment animals and the highest butyric acid 

concentrations were detected at 8h after fresh pasture break (1am) followed by a decrease at 

16h (9am) to the lowest at 5pm (0h) or just before next pasture break was to be given. The 

ammonia concentration also did not vary significantly between control and treatment animals 

but the highest ammonia concentration was observed at 8h after pastures break (1am) and low 

but almost similar mean ammonia concentrations at other two times. 
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Table 6.1 mcrA gene quantity for control and fish oil supplemented (treatment) animals at 72h and 15d. 

 

Time 

mcrA gene quantity for control at 72h (pg/100ng of total 
DNA) 

mcrA gene quantity for treatment at 72h (pg/100ng of total 
DNA) 

Paired t test 

1 2 3 4 5˟ 6 Mean 1 2 3 4 5˟ 6 Mean LSD 
5% 

t 
value 

5pm 0.28 0.36 0.32 0.07 0.07˟ 0.21 0.25 0.11 0.11 0.20 0.17 0.62˟ 0.16 0.15 0.16 1.70 

9pm 0.35 0.32 0.56 0.13 0.06˟ 0.20 0.31 0.09 0.06 0.18 0.22 2.16 0.14 0.14 0.23 2.08 

1am 0.36 0.37 0.11 0.32 0.31˟ 0.20 0.27 0.24 0.04 0.06 0.27 6.86˟ 0.09 0.14 0.15 2.55 

5am 0.28 0.17 0.11 0.03 0.17˟ 0.16 0.15 0.17 0.21 0.08 0.09 2.67˟ 0.28 0.17 0.11 0.39 

9am 0.22 0.13 0.42 0.17 0.02˟ 0.09 0.21 0.14 0.03 0.20 0.14 0.81˟ 0.16 0.13 0.13 1.59 

1pm 0.30 0.14 0.06 0.03 0.13˟ 0.16 0.14 0.22 0.12 0.08 0.09 2.23˟ 0.11 0.12 0.07 0.64 

MAUC 0.30 0.25 0.28 0.14 0.13˟ 0.17 0.23 0.16 0.09 0.13 0.17 2.78˟ 0.16 0.14 0.11 
 

2.15 
 

Time mcrA gene quantity for control at 15d (pg/100ng of total 
DNA) 

mcrA gene quantity for treatment at 15d (pg/100ng of total 
DNA) 

Paired t test 

1 2 3 4 5 6 Mean 1 2 3 4 5 6 Mean LSD 
5% 

t 
value 

5pm 0.11 0.34 0.36 0.21 0.15 0.12 0.22 0.16 0.09 0.30 0.13 0.23 0.14 0.17 0.13 0.85 

9pm 0.16 0.37 0.37 0.19 0.08 0.10 0.21 0.11 0.14 0.20 0.19 0.74 0.24 0.27 0.34 0.44 

1am 0.33 0.51 0.32 0.49 0.48 0.62 0.46 0.15 0.11 0.06 0.21 0.26 0.09 0.15 0.14 5.90* 

5am 0.12 0.14 0.07 0.03 0.57 0.41 0.22 0.26 0.38 0.15 0.08 0.31 0.07 0.21 0.25 0.15 

9am 0.05 0.18 0.32 0.21 0.06 0.04 0.14 0.10 0.09 0.31 0.07 0.32 0.33 0.20 0.19 0.82 

1pm 0.06 0.11 0.17 0.15 0.44 0.30 0.21 0.24 0.21 0.13 0.14 0.67 0.10 0.25 0.17 0.61 

MAUC 0.15 0.28 0.27 0.22 0.30 0.28 0.25 0.17 0.17 0.19 0.14 0.42 0.17 0.21 0.21 0.98 

*values are significant at p≤0.05,  MAUC- Mean area under curve for 20h, ˟values for 72h control and treatment of animal 5 excluded from statistical analysis. 
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Table 6.2 Paired t test between averages (72h and 15d) of mcrA gene quantity for control and fish oil supplemented (treatment) animals. 

 

Time 

Average mcrA gene quantity for control animals (pg/100ng 
of total DNA) 

Average mcrA gene quantity for treatment animals 
(pg/100ng of total DNA) 

Paired t test 

1 2 3 4 5˟ 6 Mean 1 2 3 4 5˟ 6 Mean LSD 
5% 

t 
value 

5pm 0.20 0.35 0.34 0.14 0.15 0.16 0.22 0.13 0.10 0.25 0.15 0.23 0.15 0.17 0.12 1.21 

9pm 0.25 0.34 0.47 0.16 0.08 0.15 0.24 0.10 0.10 0.19 0.20 0.74 0.19 0.25 0.36 0.09 

1am 0.35 0.44 0.22 0.41 0.48 0.41 0.38 0.20 0.07 0.06 0.24 0.26 0.09 0.15 0.10 6.10* 

5am 0.20 0.15 0.09 0.03 0.57 0.29 0.22 0.21 0.29 0.11 0.09 0.31 0.18 0.20 0.15 0.39 

9am 0.14 0.16 0.37 0.19 0.06 0.07 0.16 0.12 0.06 0.26 0.10 0.32 0.24 0.18 0.17 0.32 

1pm 0.18 0.13 0.12 0.09 0.44 0.23 0.20 0.23 0.17 0.10 0.12 0.67 0.10 0.23 0.12 0.67 

MAUC 0.23 0.27 0.27 0.18 0.30 0.22 0.24 0.16 0.13 0.16 0.15 0.42 0.16 0.20 0.18 1.27 

*values are significant at p≤0.05,  MAUC- Mean area under curve for 20h, ˟values for 72h control and treatment of animal 5 excluded from statistical analysis. 
 

 

 

 

Table 6.3 Paired t test between averages (72h and 15d) of mcrA gene expression for control and fish oil supplemented (treatment) animals. 

 

Time 

Average mcrA gene expression for control animals 
(pg/100ng of total RNA) 

Average mcrA gene expression for treatment animals 
(pg/100ng of total RNA) 

Paired t test 

1 2 3 4 5˟ 6 Mean 1 2 3 4 5˟ 6 Mean LSD 
5% 

t 
value 

5pm 0.36 0.53 0.70 0.13 0.59 0.46 0.46 0.30 0.32 0.53 0.36 3.49 0.58 0.93 1.26 0.96 

9pm 0.37 0.75 0.97 0.32 0.78 0.56 0.63 0.18 0.46 0.59 0.20 0.28 0.39 0.35 0.15 4.81* 

1am 2.49 1.35 1.63 1.92 4.31 1.45 2.19 0.47 0.38 0.33 1.58 2.26 0.75 0.96 0.74 4.30* 

5am 0.60 0.47 0.42 0.40 1.46 0.43 0.63 0.64 0.28 0.41 0.63 2.19 0.35 0.75 0.35 0.89 

9am 0.59 0.87 0.69 0.28 0.81 0.54 0.63 0.44 0.46 0.68 0.19 1.70 1.11 0.76 0.52 0.66 

1pm 0.36 0.24 0.45 0.32 1.16 0.25 0.46 0.36 0.16 0.25 0.87 3.90 0.38 0.99 1.17 1.15 

MAUC 0.88 0.76 0.86 0.63 1.65 0.67 0.91 0.41 0.36 0.48 0.64 2.02 0.61 0.76 0.59 1.30 

*values are significant at p≤0.05, MAUC- Mean area under curve for 20h, ˟values for 72h control and treatment of animal 5 excluded from statistical analysis. 
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Table 6.4 mcrA gene expression for control and fish oil supplemented (treatment) animals at 72h and 15d. 

 

Time 

mcrA gene expression for control at 72h (pg/100ng of total 
RNA) 

mcrA gene expression for treatment at 72h (pg/100ng of 
total RNA) 

Paired t test 

1 2 3 4 5˟ 6 Mean 1 2 3 4 5˟ 6 Mean LSD 
5% 

t 
value 

5pm 0.01 0.05 0.06 0.05 0.08˟ 0.37 0.11 0.18 0.43 0.47 0.02 0.16˟ 0.05 0.23 0.38 0.92 

9pm 0.53 0.58 0.42 0.32 0.27˟ 0.45 0.46 0.19 0.30 0.58 0.12 xxx 0.67 0.37 0.33 0.76 

1am 2.66 1.33 1.61 1.56 2.48˟ 0.74 1.58 0.44 0.34 0.28 1.88 xxx 0.93 0.77 1.33 1.68 

5am 0.72 0.33 0.47 0.23 0.82˟ 0.28 0.41 0.65 0.16 0.32 0.59 2.20˟ 0.39 0.42 0.27 0.16 

9am 0.72 0.92 0.82 0.13 0.36˟ 0.32 0.58 0.49 0.34 0.58 0.13 1.58˟ 1.11 0.53 0.64 0.23 

1pm 0.69 0.20 0.37 0.36 0.35˟ 0.24 0.37 0.31 0.07 0.24 0.90 1.79˟ 0.43 0.39 0.44 0.15 

MAUC 1.00 0.66 0.71 0.49 0.83˟ 0.42 0.65 0.40 0.28 0.42 0.64 0.95˟ 0.67 0.48 0.44 1.07 

Time mcrA gene expression for control at 15d (pg/100ng of total 
RNA) 

mcrA gene expression for treatment at 15d (pg/100ng of 
total RNA) 

Paired T test 

1 2 3 4 5 6 Mean 1 2 3 4 5 6 Mean LSD 
5% 

t 
value 

5pm 0.72 1.01 1.34 0.20 0.59 0.55 0.74 0.42 0.21 0.59 0.69 3.49 1.10 1.09 1.45 0.62 

9pm 0.21 0.91 1.53 0.32 0.78 0.67 0.74 0.17 0.63 0.61 0.27 0.28 0.10 0.34 0.35 2.86* 

1am 2.32 1.37 1.65 2.28 4.31 2.16 2.35 0.50 0.42 0.38 1.27 2.26 0.56 0.90 0.47 7.90* 

5am 0.49 0.61 0.37 0.57 1.46 0.59 0.68 0.64 0.40 0.51 0.67 2.19 0.31 0.78 0.38 0.71 

9am 0.45 0.82 0.56 0.43 0.81 0.75 0.64 0.39 0.57 0.77 0.24 1.70 1.12 0.80 0.45 0.93 

1pm 0.03 0.29 0.52 0.29 1.16 0.26 0.42 0.41 0.24 0.26 0.84 3.90 0.32 1.00 1.16 1.27 

MAUC 0.77 0.87 1.01 0.77 1.65 0.91 1.00 0.42 0.45 0.54 0.64 2.02 0.56 0.77 0.59 1.63 

*values are significant at p≤0.05, MAUC- Mean area under curve for 20h, ˟values for 72h control and treatment of animal 5 excluded from statistical analysis. 
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Table 6.5 Acetic acid concentration (mmol/L) in control and fish oil supplemented (treatment) animals. 

 

T
ime 

Acetic acid concentration  for control at 72h 
 

Acetic acid concentration for treatment at 72h Paired t test 

1 2 3 4 5 6 Mean 1 2 3 4 5 6 Mean LSD 
5% 

t 
value 

5pm 74.03 84.95 46.24 55.58 99.53 77.35 72.95 53.22 81.16 52.78 53.71 28.03 72.56 56.91 30.00 1.37 

1am 138.60 124.43 107.92 81.79 121.42 98.76 112.15 89.62 107.53 86.72 90.08 42.10 111.70 87.96 36.80 1.69 

9am 112.96 113.03 103.92 72.74 103.63 96.90 100.53 80.55 72.13 55.32 102.20 33.89 85.27 71.56 36.10 2.06 

MAUC 116.05 111.71 91.49 72.98 111.49 92.94 99.45 78.26 92.08 70.38 84.02 36.53 95.31 76.10 32.30 1.86 

Time Acetic acid concentration for control at 15d 
 

Acetic acid concentration for treatment at 15d Paired t test 

1 2 3 4 5 6 Mean 1 2 3 4 5 6 Mean LSD 
5% 

t 
value 

5pm 66.31 67.70 50.04 49.76 68.84 77.93 63.43 60.27 69.93 42.78 45.51 54.96 61.66 55.85 7.04 2.77* 

1am 94.30 91.23 84.58 104.99 85.28 121.74 97.02 109.62 111.40 118.76 62.24 75.86 86.45 94.06 32.91 0.23 

9am 97.00 115.14 57.83 102.07 80.53 112.98 94.26 92.73 88.40 78.34 46.58 70.30 82.83 76.53 27.21 1.67 

MAUC 87.98 91.33 69.26 90.45 79.98 108.59 87.93 93.06 95.28 89.66 54.14 69.24 79.35 80.12 22.90 0.88 

Time Acetic acid concentration for control average 
 

Acetic acid concentration for treatment average Paired t test 

1 2 3 4 5 6 Mean 1 2 3 4 5 6 Mean LSD 
5% 

t 
value 

5pm 70.17 76.32 48.14 52.67 84.18 77.64 68.19 56.75 75.54 47.78 49.61 41.50 67.11 56.38 16.84 1.80 

1am 116.45 107.83 96.25 93.39 103.35 110.25 104.59 99.62 109.46 102.74 76.16 58.98 99.07 91.01 18.84 1.85 

9am 104.98 114.08 80.88 87.40 92.08 104.94 97.39 86.64 80.27 66.83 74.39 52.09 84.05 74.05 11.60 5.17* 

MAUC 102.01 101.52 80.38 81.72 95.74 100.77 93.69 85.66 93.68 80.02 69.08 52.89 87.33 78.11 15.20 2.63* 

*values are significant at p≤0.05,  MAUC- Mean area under curve for 20h. 
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Figure 6.5 mcrA gene quantity in control and fish oil supplemented (treatment) 

animals after 72h and 15d. 
 

*Values plotted are average of data in table 6.1, over 20h diurnal period, error bars represent SE, n=6, 

˟values for 72h control and treatment of animal 5 excluded from statistical analysis. Arrows on the time 

axis indicate time of pasture break and fish oil supplementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 mcrA gene expression in control and fish oil supplemented (treatment) 

animals after 72h and 15d. 
 

*Values plotted are average of data in table 6.4, over 20h diurnal period, error bars represent SE, n=6, 

˟values for 72h control and treatment of animal 5 excluded from statistical analysis. Arrows on the time 

axis indicate time of pasture break and fish oil supplementation. 
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Figure 6.7 Acetic acid concentration (mmol/L) in control and fish oil supplemented 

animals. 
 

*Values plotted are average of data in table 6.5, over 20h diurnal period, error bars represent SE, n=6. 

Arrows on the time axis indicate time of pasture break and fish oil supplementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Propionic acid concentration (mmol/L) in control and fish oil 

supplemented animals. 
 

*Values plotted are average of data in table B.6 in appendix B, over 20h diurnal period, error bars 

represent SE, n=6. Arrows on the time axis indicate time of pasture break and fish oil supplementation. 
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6.3 Discussion 

DGGE analysis of both DNA and cDNA samples of control and fish oil supplemented 

animals did not show any distinct band changes across the treatments (figures 6.1 to 6.4). In 

general, there were few consistent changes, and considerable inter-animal variation. The 

observed band changes were matched most closely to Methanosphaera stadtmanae and 

Methanobrevibacter sp. Changes in the DNA bands were visible in animal 1 and 2 only, 

while changes in cDNA bands were visible in animals 1, 2 and 4. However, it was interesting 

to note that decreased feed intake in animal 5 reduced the number of both DNA and cDNA 

bands in this animal. This suggests some methanogen species in the rumen may survive under 

starvation conditions while other fragile or less predominant species may be eliminated or 

their activity decreased.  

But, DGGE was again demonstrated insufficient to deliver conclusive results as to the effect 

of dietary change (fish oil supplementation) on methanogen community. Given that, long 

chain polyunsaturated fatty acids which are an essential component of fish oil (appendix B, 

table B.1.5) have been found to have a direct toxic effect on methanogens (Dong et al. 1997; 

Fievez et al. 2003; Prins et al. 1972; Zhang et al. 2008) and that DGGE has proved successful 

in an earlier experiment of fish oil supplementation where changes in bacterial community 

were detected (Huws et al. 2010), it was expected that the same technique would be able to 

show distinct changes in the methanogen community, perhaps even within the diurnal period. 

But only animals 1, 2 and 4 showed some changes in the methanogen profile and animal 3 

and 6 did not show any changes. This also suggests the role of a possible animal to animal 

variation in methanogen community response to fish oil supplementation. While few species 

in animal 1, 2 and 4 were affected as to minimise their quantity, the effect in animals 3 and 6 

could be more generalised, e.g. fish oil supplementation may not be causing disappearance of 

specific methanogen species but may have caused an overall decrease in methanogen 

numbers. However, these shifts in methanogen numbers or their activity could not be 

analysed from DGGE analysis and therefore qPCR and RT-qPCR were required for this 

quantification. 

The observed qPCR results revealed that fish oil supplementation decreased methanogen 

populations numerically but not significantly at 72h after fish oil supplementation (table 6.1, 

figure 6.5). The significant decrease in methanogen quantity (per 100ng of total DNA) 

occurred only after fish oil supplementation for 15d and maximum difference was observed at 

8h (1am) after fresh pasture break was given to animals. An earlier in vitro experiment by 

Fievez et al., (2003) had reported a decrease in methanogen quantities after 48h of fish oil 



 129 

addition, but since under the actual grazing conditions, rumen environment is much more 

complex and stable (Hino and Russell, 1985), it needed a prolonged supplementation of fish 

oil for 15d to affect the methanogens in present experiment. Similarly, the significant 

decrease in mcrA gene expression also indicated that fish oil supplementation caused a 

decrease in methanogen activity (table 6.4, figure 6.6). Though the gene expression started 

decreasing after 72h of fish oil supplementation, a significant decrease was observed only 

after 15d of supplementation. This decrease in gene expression was significant at 4h (9pm) 

and at 8h (1am) after fresh pasture break. This indicates that in the present experiment, fish oil 

supplementation directly reduced the number of methanogens as well as their activity which 

is in accordance with earlier studies (Dong et al. 1997; Fievez et al. 2003; Zhang et al. 2008).  

The presence of high amount of unsaturated fatty acids in the fish oil (appendix B.5), may 

also divert the available H2 towards biohydrogenation of the fatty acids  decreasing the 

availability of H2 to methanogens, thereby, decreasing their activity. The findings of Fievez et 

al., (2003) that an increase in the amount of PUFA increased the suppression of 

methanogenesis also support this observation. 

Within the diurnal period significant changes were observed in both mcrA gene quantity and 

expression in the control animals (figure 6.5 and 6.6). The peak in mcrA gene quantity and 

mcrA gene expression occurred at 8h (1am) after animals were given fresh break. This 

coincided with the peak in VFA and NH3 concentrations in the rumen fluid. A higher 

concentration of VFA in the rumen fluid indicates a higher rate of fermentation at that time 

and more availability of H2 (end product of fermentation) to the methanogens thus causing an 

increase in their quantity and activity. After this peak both the mcrA expression and quantity 

decreased till morning at 9am when a smaller but insignificant increase was again observed in 

mcrA gene expression. The possible reason for this could be that animals spent less time 

grazing during the night and they would again graze the residual pasture mass in early 

morning. A parallel experiment on the grazing behaviour of these cows fed once daily had 

shown that they consumed most of the forage offered within first few hours of feeding and 

spent the rest of time ruminating and idling (Rugoho, unpublished data). Most of the time 

during night was spent in idling. In the present experiment, since they were offered fresh 

break at 5 in the evening, they would graze off fresh grass within the first few hours and 

hence a peak occurred in the night; spent night time ruminating or idling and graze again in 

the morning which would explain another smaller peak in mcrA gene expression and the VFA 

concentration in the morning. Minimum mcrA gene quantity, mcrA gene expression and VFA 

concentration was found at 5pm i.e. just before feeding or a fresh pasture break. This is 
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supported by earlier studies where the methane emission pattern matched with the grazing 

behaviour of sheep (Lockyer 1997). In cattle, Gao et al., (2011) measured methane emissions 

from a herd of feedlot cattle using an inverse dispersion technique in conjunction with open 

path lasers and reported that methane emissions corresponded with the feeding pattern of 

cattle.  

In the fish oil supplemented animals, though there was an increase in mcrA gene quantity and 

gene expression 4h (9pm) and 8h (1am) after fresh pasture break was given, it was not 

significant within the diurnal period. Interestingly, the mcrA gene expression did not decrease 

dramatically after 8h (1am) of fresh pasture break as in control animals but it decreased 

gradually till 16h (9am) when another slight increase was observed and then remained 

relatively stable till the next break was given. The mcrA gene quantity also, did not vary 

significantly within the diurnal period. Initially, addition of fish oil might have affected the 

rumen digestibility of organic matter (Wachira et al. 2000) by covering the feed particles  and 

thus instead of a sharp increase in methanogen quantity and expression after pasture intake, as 

was observed in control animals, a relatively low increase in methanogen quantity and 

expression was observed in fish oil supplemented animals.  

It has been reported that fish oil supplementation causes a shift in VFA proportion with an 

increase in propionic acid at the expense of acetic acid. Though no significant increase in 

propionic acid was observed in the present experiment, acetic acid concentrations decreased 

significantly upon fish oil supplementation, indirectly decreasing the acetic acid to propionic 

acid ratio which has been correlated many times with a decrease in methane production 

(Johnson and Johnson 1995; Russell 1998). It may be possible that fish oil has selective 

inhibitory effect on bacteria which produce acetic acid in rumen (Belenguer et al. 2010; Kim 

et al. 2008). But, there was no significant change in total VFA production upon fish oil 

supplementation. These findings are in contrast to a report where fish oil supplementation had 

been found to decrease the net VFA concentration (Shingfield et al. 2010). Yet, they are 

consistent with earlier studies where acetic acid concentrations were decreased upon fish oil 

supplementation but no significant effect of fish oil supplementation on total VFA 

concentration was observed (Fievez et al. 2003; Lee et al. 2005; Zhang et al. 2008). 

Thus, it can be summarized that fish oil supplementation was able to decrease methanogen 

numbers as well as methanogen activity. The inhibition may have been through one or a 

combination of different mechanisms i.e. decreasing ruminal digestibility through covering 

feed particles, diversion of H2 for biohydrogenation of the PUFA present in fish oil or, a 

direct effect on the methanogens (Czerkawski et al. 1966; Johnson and Johnson 1995; Soliva 
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et al. 2003). Since, the decrease in mcrA gene expression was relatively more than decrease in 

mcrA gene quantity, the effect of fish oil is likely to be more on methanogen activity than the 

population numbers. 

The estimation of mcrA gene quantity and mcrA gene expression through qPCR and qRT-

PCR provided a useful tool for studying the effect of fish oil as a possible methane inhibitor 

in pasture systems, though further studies to correlate the methane emissions with 

methanogen numbers and their activity and to prove this effect over a longer period need to be 

carried out. More importantly, it could be concluded that a diurnal pattern of methanogen 

activity exists in pasture grazing animals and it is related to the grazing pattern of animals. 

This is a significant advancement in the methanogenesis studies in pasture systems. A step 

forward from this would be to develop species specific primers which would help in analysing 

the effect of fish oil or any other mitigation agent on individual species and their activities, 

and help in exploration of other possible mitigation options.   
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Chapter 7 

General discussion 

Dairy cows in the South Island of New Zealand are commonly grazed on high quality 

pastures each day with minimum or no concentrate. In pasture based systems production is 

typically limited by the DMI, but high quality pastures encourage high DMI and high milk 

production. The South Island system of once daily allocation also encourages a grazing 

pattern where most of the daily DMI is consumed within a few hours and this produces a clear 

diurnal pattern of rumen fermentation (Gibbs and Laporte 2009). It has been reported that the 

amount of methane produced per unit of product decreases, with an increase in DMI (Johnson 

and Johnson 1995). Enteric methane produced from ruminants is of topical interest due to the 

energy loss it represents to livestock production and the widely held association with climate 

change. 

The rapid growth of the high intensity pasture based dairying has focused interest on the 

methane production of this system, and possible mitigation strategies given the practical 

difficulties of diet manipulation with a pasture base. Improved methods that could help 

achieve these aims by quantification of actual methanogenesis within specific diurnal 

windows of rumen activity were the subject of this series of experiments. 

The techniques currently available to measure methane production are not suitable for 

determining diurnal fluctuations in rumen methane production from grazing animals (Gao et 

al. 2011; Lockyer 1997; Ulyatt et al. 1999; Williams et al. 2011; Wright et al. 2004). 

Molecular techniques are attractive as they offer an alternative approach (Firkins 2010; 

Firkins et al. 2008; Zhou et al. 2011).  

The molecular fingerprinting technique, DGGE, had been reported to be successful in earlier 

studies (Knight et al. 2011; Mohammed et al. 2011; Ouwerkerk et al. 2008; Zhou et al. 2010)  

to identify changes in the rumen methanogen community under the influence of different diets 

or supplements. A decrease in the number of bands in DGGE profiles had been detected with 

chloroform administration, which is a strong chemical inhibitor of methanogenesis (Knight et 

al. 2011), and is known to cause a toxic effect on all microbes. In Chapter 3, DGGE was used 

to characterise the rumen methanogen community in dairy cows in a typical South Island 

system, by comparison of unsupplemented controls against diet treatments of known 

methanogen effect – cereal grain, palm oil, and monensin – in a series of cross-over design 
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experiments. In Chapter 5, it was also used to study diurnal changes in methanogen 

community under the influence of different feeding frequencies. Approximately, 22-25 bands 

were routinely detected, and the DGGE profile was found to be closely similar over all the 

experiments, suggesting the presence of a similar community in all animals even under 

different feeding conditions.  

Phylogenetic analysis of the DGGE bands revealed that the majority of the bands had closest 

matching (100%) with Methanobrevibacter sp. indicating that this is the most predominant 

species in rumen which is similar to many studies in cattle and sheep all over world 

(Ouwerkerk et al. 2008; Wright et al. 2007; Wright et al. 2008; Wright et al. 2006; Zhou et 

al. 2010), although bands closely matching Methanosphaera stadtmanae were also found. 

Thus, it is likely that irrespective of production system and geographical location, 

Methanobrevibacter sp. is dominant methanogen species in ruminants all over the world, 

despite some strains/ species being associated with specific diets in earlier studies (Wright 

and Klieve 2011). Due to shorter product size in this experiment, some of the bands could not 

be identified to species level which may have revealed any novel strains/ species in this 

system. But based on a combination of phylogenetic analysis and reference ladders, as had 

been done in previous studies (Mohammed et al. 2011; Zhou et al. 2010), 12 bands were 

identified and used for analysis of the methanogen community under different times and 

feeding conditions. Notably, using the same primers and protocol more bands were observed 

in the rumen samples of this study than of Ouwerkerk et al. (2008), which may suggest a 

more diverse methanogen community in this higher quality and intake forage system.  

Between animal variations in response to different supplements was detected. 

Methanosphaera stadtmanae was generally most affected by grain supplementation and 

different feeding management, along with Methanobrevibacter. Since these changes were not 

consistent in all animals across different experiments, it suggests that animal to animal 

variation has a significant contribution in response of methanogen community to any 

modification (Grainger et al. 2007).  

Overall, relatively minor changes with few clear differences in the DGGE profiles were 

observed between treatments in this experimental series, which suggests the rumen 

methanogen community is highly stable. However, the lack of observed differences compared 

with published reports of such distinct differences could be due to markedly different diets 

used in the earlier studies, or the sharp variation in the levels of supplementation (low to high 

concentrate), or the use of strong chemicals to eliminate methanogens (e.g. chloroform) 

(Knight et al. 2011; Mohammed et al. 2011; Ouwerkerk et al. 2008; Zhou et al. 2010).  
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Alternatively, it is also possible that supplementation given in present study would have 

caused changes in methanogen community but DGGE may not have been sensitive enough to 

detect them. DGGE detects major community changes, such as presence or absence of a 

species, which may not have happened with these supplements in the present pasture system 

due to very robust rumen environment. It is possible that the effect of these supplements could 

have been more on methanogen activity rather than the methanogen numbers which could not 

be detected by DGGE. 

Further, when DGGE analysis was conducted for both DNA and RNA/ cDNA samples over 

diurnal period, it showed decreased intensity in few bands of RNA/ cDNA during periods of 

very low intake (figures 5.1 to 5.8). It did show that while some species may not constitute a 

significant proportion of the population, they may still contribute significantly to methane 

production. But it does not provide highly sensitive and suitably robust qualitative or 

quantitative insight into comparative methanogen concentrations or activities between two 

times or between two treatments at a given time or periods of high intake. It was thus 

concluded that DGGE was not suitable to be used as a technique for determining diurnal 

changes in rumen methanogenesis in high intensity pasture systems. 

The qPCR and qRT-PCR techniques offered a viable alternative for measuring the 

methanogen community dynamics over the diurnal period. But the applicability of these 

techniques was initially limited due to the difficulty and cost involved in extracting high 

quality RNA and DNA from rumen samples (Yu and Morrison 2004). In Chapter 4, a method 

was developed for this study by adaptation and modification of two earlier methods of nucleic 

acid extraction (Gambino et al. 2008; Whitford et al. 1998) which made the analysis of a 

large number of rumen samples possible in routine experimental practice. This study 

demonstrated it is possible to extract DNA and RNA simultaneously from a rumen sample, 

which is both efficient and economical. The quality of RNA obtained after extraction is also 

higher than other published techniques (Kang et al. 2009), and it was shown to be efficient 

over different diets. It also proved more sensitive in determining mcrA gene expression than 

other methods (Kang et al. 2009) which is a crucial requirement for any study on 

methanogens.  

The mcrA gene and its expression has been reported to be suitable (Denman et al. 2007; Guo 

et al. 2008; Springer et al. 1995; Steinberg and Regan 2009) for quantifying  methanogen 

population and its activity (which can be an indicator of methane production). The use of 

mcrA targeted primers in qPCR and qRT-PCR for measuring methanogen population 

numbers and activity in vitro and in vivo with different diets has been documented earlier 
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(Denman et al. 2007; Guo et al. 2008). Therefore, in Chapters 5 and 6, the mcrA gene 

sequence was targeted for use in investigating methanogen quantity and activity in cattle 

grazing high quality forages, to determine any changes within the diurnal period. This is the 

first report of such work, and included free grazing cows under typical South Island pasture 

management.  

As discussed earlier, these cattle are routinely given once daily allocations of pasture. This 

encourages high consumption within the first few hours, and then inactivity until a fresh break 

is given (Gibbs and Laporte 2009). The rumen microbes are then routinely exposed to a high 

load of substrates in the first few hours (‘feast’) followed by a lean period (‘famine’). This is 

also reflected in the diurnal pattern of rumen parameters such as pH, VFA and NH3 

production (Wales et al. 2004). If the animals are given the same amount of feed spread over 

a longer period, it is assumed that the dramatic shifts in rumen environment would be 

decreased (Robles et al. 2007) and would have a stabilizing effect on rumen microbial 

population. Therefore, the qPCR and qRT-PCR quantifications for mcrA gene were done over 

the diurnal period to detect any diurnal pattern in methanogen numbers or activity, and any 

change in methanogen population or activity over the diurnal period under the influence of a 

different rumen environment. 

A diurnal pattern of methanogen activity was detected in these animals. A peak in mcrA gene 

expression occurred after 8h of morning feeding in both once a day and twice a day fed 

animals (figure 5.10, table 5.4). Also within the diurnal period, the methanogen number and 

activity changed significantly in animals fed once a day (tables 5.2 and 5.5) but it did not 

change significantly in animals fed twice a day (tables 5.3 and 5.6). It was concluded that 

animals fed once a day were exposed to more dramatic shifts in rumen environment which 

caused marked changes in their activity and numbers. However, feeding the animals twice a 

day did not significantly decrease the methanogen population numbers but had a significant 

effect on their activity. It may be because when animals were fed twice a day, the rumen pH 

went below 6 for a comparatively longer period (parallel unpublished data) causing a decrease 

in methanogen activity (Kessel and Russell 1997a).  Another possible explanation for this 

could be that availability of substrates for a longer period results in prolonged production of 

H2. This can cause a comparative increase in the partial pressure of H2 (Lee et al. 2003) at 

which other bacteria such as reductive acetogens can also proliferate and compete with 

methanogens for available H2 (Cottle et al. 2011). Thus, methanogen activity can be affected 

for the same amount of DMI. 



 136 

Further, the gap between morning and evening feedings was 7h instead of a 12h difference 

and thus when all animals were exposed to prolonged periods of no feeding in early morning, 

methanogen activity was lowest in the samples collected 4h and just before morning feeding.  

This supports earlier reports that methanogens’ activity is very sensitive to starvation (Kessel 

and Russell 1997a; b; Khafipour et al. 2009). Under unfavourable conditions, methanogen 

number is not affected, only their activity is decreased which again resumes upon favourable 

conditions (Kessel and Russell 1997a; b). It could then be inferred that the effect of different 

feeding frequencies or the presence of diurnal pattern in methanogens is more a function of 

their activity than their numbers.  

This technique thus proved competent in establishing a diurnal pattern of methanogen 

activity. In Chapter 6 the efficacy of this method was then tested in actual grazing conditions 

over the diurnal period, an area in which there are no existing studies. Since a diurnal pattern 

in ruminal parameters existed under grazing conditions in this typical production system 

(Gibbs and Laporte 2009), it was hypothesized that a similar pattern would exist in 

methanogen community also. To make a comparison, fish oil was used a treatment because 

the fish oil had been repeatedly demonstrated to be effective in decreasing methane 

production, methanogen numbers and their activity in previous in vitro and in vivo 

experiments (Fievez et al. 2003; Huws et al. 2010; Prins et al. 1972; Zhang et al. 2008), 

though typically using concentrate based diets.  

A diurnal pattern was detected in grazing animals also (figures 6.5 and 6.6, tables 6.1 to 6.4). 

The highest methanogen numbers and activity was detected 8h after fresh break was given 

(5pm) to animals, and in fish oil supplemented animals where rumen methanogenesis was 

likely to be dramatically reduced, this increase was correspondingly not significant. Another 

small insignificant peak was observed at 9am which was after the morning grazing by 

animals. The methanogen activity corresponded with the grazing pattern (Rugoho, 

unpublished data) of animals. This matched with earlier studies where a relation between 

methane production from a herd and its feeding pattern had been reported using inverse 

dispersion technique and a tunnel method (Gao et al. 2011; Lockyer 1997). 

The methanogen numbers didn’t show any significant change over the diurnal period in fish 

oil supplemented animals and their activity was also low but stable after 9am. This upheld the 

use of this treatment as an effective comparison to unsupplemented controls for determining 

diurnal rumen methanogen patterns. It is also possible fish oil supplementation decreased or 

delayed the rumen digestion of feed particles or caused a shift in the site of digestion towards 

intestine. But this is not supported by the limited effects of fish oil supplementation on 
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production parameters such as VFA concentrations that were observed. Acetic acid 

concentration did decrease in fish oil supplemented animals (figure 6.7, table 6.5) along with 

a numerical increase in propionic acid (figure 6.8, appendix B table B.6). The production of 

acetic acid has been reported to cause loss of more H2 to methane and formation of propionic 

acid to be more beneficial in terms of mitigating methane (Lana et al. 1998; Russell 1998). 

Though the ratio of acetic acid to propionic acid decreased with fish oil, no significant effect 

on total VFA production of animal could be found in animals with or without fish oil 

supplementation. It is thus possible that the fish oil may have affected methanogen numbers 

and activity through a multipronged effect; decreasing the digestibility of feed particles by 

engulfing them, diverting the H2 away from methanogens by biohydrogenation of PUFA 

present in fish oil and a direct toxic effect on the methanogens (Czerkawski et al. 1966; 

Johnson and Johnson 1995; Soliva et al. 2003). The possible use of fish oil as a mitigating 

agent in pasture systems thus needs to be explored further in conjunction with further 

digestibility and production studies. 

To conclude, the estimation of mcrA quantity and expression through qPCR and qRT-PCR is 

a reliable and feasible indicator of methanogen community behaviour, and was able to detect 

the influence of an external ruminal modification. It would appear this technique can be 

successfully applied in the pastoral systems to gain significant new understandings of the 

methanogen community. However, there is a need to correlate the changes in mcrA gene 

quantity and expression with the actual methane production to validate the use of this 

technique in measuring methanogenesis. Though some studies to this nature have been done 

earlier, but the methods used for RNA extraction were different and it has been shown earlier 

(Chapter 4) that as compared to other methods, the modified method developed for RNA 

extraction in this study is more sensitive to detect changes in mcrA gene expression over 

different samples and diets. Therefore, using this RNA extraction method, a higher degree of 

sensitivity would be achieved in establishing correlation between mcrA gene expression and 

actual methane production and thus this method may serve as a metabolic proxy for methane 

production at any given time. 

The clear diurnal pattern of rumen methanogen activity demonstrated in this work is the first 

report of its kind in grazing studies. This opens up new avenues for methane mitigation 

strategies involving some focal managemental changes which may include the use of specific 

diet supplements at particular times of day to alter total daily methane production, rather than 

the use of strategies that seek to universally reduce either methanogens or methanogenesis. 
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A next step ahead would be development of species- specific primers for performing inter-

species analysis over the diurnal period or under the influence of any rumen modification. 

This will help in analysing inter-species interactions for possible development of more 

effective mitigation options. Pyrosequencing, the modern approach to large scale sequencing 

of multiple DNA strands (Ahmadian et al. 2000; Huse et al. 2007) also offers a novel 

approach to study the whole microbial community within a given sample and using specific 

markers, multiple samples can be studied at the same time. It is currently still an expensive 

technique but with advances in technology, its usage is becoming more cost effective and 

error proof. In a complex rumen environment, it has the promise of combining diversity 

analysis with quantitative estimates (Brulc et al. 2010; Callaway et al. 2010; de Menezes et 

al. 2011). It may even be possible to apply this technique for mRNA analysis and gain 

information about specific microbial activity or the relative activities of different species 

under specific rumen conditions. It is hoped that this technique will provide important insights 

into inter-species relationships (Wright and Klieve 2011) within the complex rumen 

environment in the near future. 
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Appendix A 

Protocols 

A.1 DNA extraction protocol 

Protocol 

 To 0.5g of sample add 700µl of TE buffer and vortex them to mix the contents. 

 Transfer to a bead beating tube containing 0.5g of 0.1mm sterile zirconia/silica beads 

(catalog no. 11079101z, Daintree Scientific, 20 Kiama Pde., St. Helens, Tasmania 

7216) and add 20µl 20% SDS and 700µl of buffered phenol (pH of phenol phase 

6.7±0.2). 

 Bead beat the samples in a Mini Beadbeater
TM

 (Biospec products) at maximum speed 

for 3 cycles of 2min bead beating and 2min on ice.  

 Centrifuge for 5min at 6000rpm. Transfer the supernatant to a fresh, sterile microtube 

(MCT-175-C, 1.7ml ultra clear tubes, Axygen, INC. California 94587, USA) and add 

700µl of chloroform (Merck, KGaA, 64271, Darmstadt, Germany). Mix the samples 

by inversion. 

 Centrifuge for 10min at 10,000rpm. Transfer the supernatant into fresh microtube, 

taking care not to disrupt the interphasic protein layer, and add 20µl of 10mg/ml 

RNase enzyme (REF 10109134001, Roche Diagnostics GmbH, Mannheim, 

Germany).  

 Incubate the tubes in a 39
◦
C waterbath for 1 hour and then add an equal volume of 

phenol (700µl). Mix the samples by inversion and centrifuge at 10,000rpm for 10min. 

  To the supernatant add an equal volume of phenol: chloroform (350: 350µl), mix by 

inversion for 5min and centrifuge at 13,500 rpm for 10min.  

 Add 700µl of chloroform to the supernatant transferred in a fresh tube and centrifuge 

at 13,200rpm for 10min. 

 In order to precipitate the DNA, add 0.25X volume of 3M sodium acetate and 2.5X 

volume of absolute ethanol, where X is the volume of supernatant containing DNA. 

Keep under -20◦C for a minimum of 1 hour.  

 Centrifuge at 13,200rpm for 10min to pellet the DNA. Remove the supernatant. 

 Wash with 1ml of 70% alcohol and centrifuge at 13,200rpm for 10min. Remove the 

supernatant. 

 The precipitated DNA is then dried in a vacuum centrifuge at 60
◦
C and is resuspended 

in sterile distilled water and stored at -20
◦
C till further analysis.  
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A.2 Gel electrophoresis  

Reagents required 

 Agarose (DNase/RNase free) 

 10X TBE buffer distilled water 

 1 Kb/ 100bp ladder 

 Ethidium Bromide 

Table A.1 Composition of 10X TBE buffer. 

 
Component  Mass/ Volume per 1 Litre 

Tris Base 108g 

Boric Acid 55g 

0.5 M EDTA (pH 8.0) 20ml 

Distilled water Make up volume to 1 Litre 

Autoclave at 121◦C. 

Protocol 

 Make solution in a 500ml Schott bottle depending upon the concentration of agar 

required e.g. to make 100ml of 1% agarose gel, take 1g of agarose, 10ml of 10X TBE 

buffer and 80ml of distilled water and for 100ml of 2% agarose gel, take 2g of 

Agarose, 10ml of 10X TBE buffer and 80ml of distilled water. Label the bottle with 

date and concentration of the gel. 

 Melt the gel by microwaving for short intervals with the cap loose until the agarose is 

fully dissolved and the gel has attained a clear consistency. Add 2µl/ 100ml of 

ethidium bromide to the prepared gel. 

 Pour the gel into a container first for cooling the gel. 

 Meanwhile seal the sides of the gel setting tray with a masking tape. 

 Pour the gel from the container into the gel tray and insert combs inside the tray. Let 

the gel set for about 20min. 

 After setting, take out the combs from inside the gel carefully without damaging the 

wells. Remove sealing tape from the sides of the gel and put the tray into the 

electrophoresis tank containing 1X TBE running buffer. 

 Load 5µl of the standard, 1Kb ladder for genomic DNA or 100bp ladder for PCR 

products. 
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 On a parafilm take out 2µl of gel loading buffer. Pipette out 5µl of sample and mix 

with the loading buffer. Load this sample into the well in the gel. Repeat this for all 

the samples.   

 After loading all the samples run the gel on 95V for 30min or 45min depending upon 

the size of sample. 

 Examine the gel under UV light in Gel Doc XR
+
 System (catalogue no. 170-8195, 

Bio-Rad). 

A.3 PCR protocol 

Reaction setup for archaeal 16S rDNA specific PCR 

 

       Component         Volume in 50µl    Final concentration 

sdH2O    31.8l 

 10x  buffer   5.0l  

 dNTP mix   8.0l      0.2mM of each dNTP 

 MgCl2    2.0µl      2.5mM including buffer concentration 

 46F (10 pmol/L)  1.0l      0.2µM 

 1017R (10 pmol/L)  1.0l      0.2µM  

 Taq polymerase  0.2l      1U 

 Template gDNA/cDNA 1.0l      16-20ng/l 

Total volume       50.0l 

 

Reaction setup for archaeal V2V3 PCR 

 

       Component         Volume in 50µl    Final concentration 

sdH2O    31.8l 

 10x  buffer   5.0l 

 dNTP mix   8.0l     0.2mM of each dNTP 

 MgCl2    2.0µl     2.5mM including buffer concentration 

 344F-GC (10 pmol/L) 1.0l     0.2µM 

 522R (10 pmol/L)  1.0l     0.2µM 

 Taq polymerase  0.2l     1U 

 Product of first PCR  1.0l 

Total volume       50.0l 
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 10pmol/µl concentration of primers was prepared by doing 1:10 dilution of 100pmol/µl 

stock solution of primers.  

 dNTP mix was prepared by taking 5µl of each dNTP and adding it to 380µl of sterile 

distilled water. 

A.4 DGGE protocol 

Table A.2 Composition of denaturing solutions. 

 
Component (volume/mass per 120ml) 30% Denaturing Solution 60% Denaturing Solution 

40% Acrylamide 24ml 24ml 

20X TAE Buffer 3ml 3ml 

Formamide 14.4ml 28.8ml 

Urea 15.12g 30.24g 

 

Table A. 3 Compositon of 8% Acrylamide seal. 

 
Composition Volume in mixture 

40%  Acrylamide/Bis 5ml 

20X TAE 625µl 

Distilled Water 19.375ml 

 

Table A. 4 Composition of 20X TAE Buffer. 

 
Component Mass/volume per litre Final concentration 

Tris base 96.8g 800mM 

Glacial Acetic Acid 22.84ml  

0.5M EDTA pH 8.0  40ml 20mM 

Sterile Distilled Water Make up to 1 Litre  

 

 

 



 143 

A.4.1 Protocol for silver staining 

Solutions required: 

 Silver stain buffer A (10% Ethanol; 0.5% Acetic Acid) 

 Silver stain buffer B (0.1% AgNO3) 

 Silver stain buffer C (1.5% NaOH; 0.01% NaBH3; 0.015% formaldehyde). Has to be 

prepared fresh. 

 Silver stain buffer D (0.75% Na2CO3) 

Table A.5 Composition of silver staining buffer A. 

 
Component Volume in 1 Litre 

Absolute ethanol 100ml 

Acetic Acid (>80%) 5ml 

Sterile distilled water 895ml 

 

Table A.6 Composition of silver staining buffer B. 

 
Component Volume/mass in 1 Litre 

Silver nitrate 1.0g 

Sterile distilled water 1000 ml 

 

Table A.7 Composition of silver staining buffer C. 

 
Component Volume/mass in 1 Litre 

Sodium hydroxide 15.0g 

Formaldehyde (40% in water) 3.7ml 

Sodium borohydrate 0.1g 

Sterile distilled water make up volume to 1 Litre 
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Table A. 8 Composition of silver staining buffer D. 

 
Component Volume/mass in 1 Litre 

Sodium carbonate 7.5g 

Sterile distilled water 1000ml 

Staining method: 

This protocol is optimised for sliver staining of DNA and RNA in polyacrylamide DGGE 

gels.  For all incubations, gently agitate the gel while submerged in approximately 300ml of 

the appropriate solution. Handle only the gel support film.  Trim the PAG film, place the gel 

into the glass tray with the gel support film oriented against the bottom of the tray. 

 Cover the gel with silver stain buffer A and incubate for 5min. Discard the buffer. 

 Repeat steps 2 and 3 twice. 

 Incubate in silver stain buffer B for 10min (Keep buffer B as it may be used for 

staining 5 – 10 gels). 

 Wash the gel twice with distilled water for 10sec. 

 Incubate the gel in silver stain buffer C for 10-20min or until it stains and the bands 

are visible but with no background. Discard the buffer. 

 Incubate the gel in silver stain buffer D for 5-10min. Discard the buffer. 

A.5 Gel electrophoresis for isolating PCR product 

 Load 45µl of PCR product in a 1% gel and run it at 100V for 45min. Examine the gel 

under UV light and carefully excised the band ensuring minimum amount of extra gel. 

 Then followed with DNA extraction from the gel using gel extraction kit from Axygen 

(Catalogue no. AP-GX-250, Axygen, Raylab, Auckland, New Zealand). 5µl of the 

extracted product was again run on 1% agarose to check the yield. 

A.6 Cloning reaction and transformation 

Cloning reaction and transformation were carried out using TOPO
®
 TA Cloning

®
 kit by 

Invitrogen (Catalogue no.K4510-20, Auckland, New Zealand ) through chemical 

transformation using pCR
®
 2.1-TOPO

®
 vectors (Invitrogen, Auckland, New Zealand).   

A.6.1 Materials required 

 Water bath or heating block set at 42◦C. 

 SOC medium warmed at room temperature (available with the cloning kit). 

 40 mg/ml X-gal in dimethylformamide (DMF). 
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 37
◦
C shaking and non-shaking incubator. 

 LB + ampicillin plates prewarmed at 37◦C. 

 

Table A.9 Composition of LB broth and agar. 

 
Component Mass/volume per 1 Litre 

Tryptone 10.0g 

Yeast extract 5.0g 

Sodium chloride 10.0g 

Agar ( if required)  15.0g 

After Autoclaving, add,   

Ampicillin solution (100 µg/ml) 1ml (@1µl/1ml) 

 

A.6.2 Protocol 

The cloning reaction was set up as:  

Fresh PCR product    4µl 

Salt solution        1µl 

TOPO vector®     1µl 

 

i. Briefly centrifuge to combine all the components and incubate at room 

temperature for 15min. 

ii. Remove one tube of One Shot TOP
TM

 10 E. Coli competent cells (Invitrogen) per 

sample from -80
◦
C freezer and thaw on ice. 

iii. Add 2µl of the above cloning reaction to the tube of competent cells and gently tap 

the sides of tube to mix the contents. 

iv. Incubate on ice for 20min. 

v. Heat shock at 42
◦
C for 30sec and then place on ice. 

vi. Add 250µl of room temperature SOC medium to the tube and shake horizontally at 

37
◦
C, 200rpm for 1 hour. 

vii. Prewarm two LB + ampicillin agar plates and spread 40µl of 40mg/ml X-gal on 

the plates. Let them dry.  
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viii. Make dilutions of the ligation mix e.g. in one microtube add 50µl of ligation mix 

and 200µl of room temperature SOC medium and in the other tube add a different 

volume of ligation mix and make the volume to 250µl using SOC medium. 

ix. In the laminar flow spread the ligation mix on prewarmed LB + ampicillin plates 

and incubate at 37
◦
C overnight. 

x. After the colonies have grown pick up white colonies using sterilized tooth picks 

or pipette tips and transfer to culture tubes containing 3ml of LB media and 3µl of 

ampicillin (100mg/ml). 

xi. Shake at 37
◦
C, 250rpm for 16h. 

xii. Then follow with plasmid extraction. 

A.6.3 E. coli Plasmid Mini-preps 

Reagents required 

 Alkaline lysis solution I (250ml) 

50mM   Glucose (2.25g) 

25mM  Tris-Cl pH 8.0 (6.25ml from 1M) 

10mM  EDTA pH 8.0 (5ml from 0.5M) 

Add sterilised distilled water to make up the volume to 250ml and autoclave.  

 

 Alkaline lysis solution II (5ml). Prepared fresh. 

0.2N  NaOH (0.1ml from 10N) 

1%  SDS (0.5ml from 10%) 

4.4ml  Sterile water 

 

 Alkaline lysis solution III (100ml) 

60ml  5M Potassium Acetate 

11.5ml  Glacial acetic acid 

28.5ml  Sterile water 

Store at 4
◦
C.  

Keep solutions I and III on ice while using. 

Protocol 

Place alkaline lysis solutions I and III on ice and set the microcentrifuge at 4
◦
C. 

i. Transfer all culture to a 1.5ml microtube and spin for 1min at maximum speed. 

Discard supernatant. 
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ii. Add 250µl of solution I and vortex to resuspend cells. 

iii. Add 250µl of solution II and invert gently to mix, solution should clear slightly. 

iv. Add 350µl of solution III and invert gently to mix completely. 

v. Spin in centrifuge at maximum speed for 10min and then transfer supernatant to fresh 

tube without transferring the white precipitate. 

vi. Add 750µl (equal volume) of isopropanol and mix well. Spin at maximum speed for 

10min at 4
◦
C. Remove supernatant. 

vii. Wash pellet with 500µl of 75% ethanol and centrifuge at maximum speed for 2min. 

viii. Remove supernatant and let air dry for 15min. 

ix. Resuspend pellet in 50µl of TE buffer containing RNase A (5µl per ml).   

A.6.4 Restriction enzyme digest   

Restriction enzyme digest was done to separate the inserts from rest of plasmid. Enzyme     

Eco R1 (BioLabs, R0101S, 20,000 U/ml) was used for performing the reaction.  

Reaction set up 

Eco R1 enzyme  1µl 

Buffer 10X   2µl 

Mini prep (plasmid)  5µl 

Sterile distilled water  12µl 

    20µl 

i. Incubate at 37
◦
C for 2-3h. 

ii. Run on 2% agarose gel at 100V for 40min along with the ladder and the original 

PCR product. In the gel there will be two bands, one corresponding to the PCR 

product and the other for the plasmid residue. 

A.6.5 Sequencing 

The samples (plasmid mini-preps) having the right inserts as checked on 2% agarose gel 

were subjected to purification using AXYPREP
TM

 PCR cleanup kit (AXYGEN, catalogue 

no. AP-PCR-50). Quantify the DNA with Nanodrop
TM

 1000 spectrophotometer .The 

samples were then submitted for sequencing where they were prepared for sequencing 

using ABI Big Dye Terminator v3.1 cycle sequencing reactions with M13 forward primer.  
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A.7 Parallel extraction of RNA and DNA  

A.7.1 Reagents/Materials required 

 Sterile bead beating tubes (2ml screw cap tubes with o-ring), each containing 0.5g of 

0.1mm zirconia/silica beads. 

 10%  SDS (sodium dodecyl sulphate) solution  

 TE buffer pH 8.0 constituted in DPEC treated water (10mM Tris-HCl, pH 8.0; 1mM 

EDTA) 

 

Table A.10 Composition of TE buffer. 

 
Component Mass/volume per 1 Litre 

10mM Tris-HCl (pH 8.0) 1.21g 

1mM EDTA 0.37g 

Distilled water Make up volume to 1Litre 

Autoclave at 121◦C. 

 Phenol (pH 6.7±0.2) 

 Chloroform 

 3M sodium acetate, pH5.2 

 5M lithium chloride (final concentration 3M in solution)  

 70% ethanol solution 

 Absolute ethanol 

 1.7ml microtubes 

A.7.2 Protocol 
 

i. Thaw 0.5g of Whole Rumen Contents (WRC) or 200µl of rumen fluid (RF) sample 

(contained in microtube) over ice. 

ii. Add 500µl of TE buffer and mix by vortexing. Add to the corresponding labelled bead 

beating tube. 

iii. Add 10µl of 20% SDS to each of bead beating tube. 

iv. In the fume hood add 500µl of Phenol. 

v. Place tubes in the bead beater and beat for 2min. 

vi. Remove tubes from bead beater and place on ice for 2min. 

vii. Repeat steps ‘v’ and ‘vi’ twice (total of three repetitions). 
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viii. Centrifuge tubes in a refrigerated microcentrifuge (4
◦
C) at 6000rpm for 5min. Remove 

upper aqueous phase into a fresh tube and discard the interphase and lower phase. 

ix. Add 200µl of TE buffer and 700µl of chloroform and mix well by inversion. Centrifuge at 

10,000rpm, 4
◦
C for 10min. Remove upper aqueous phase into a fresh tube and discard the 

interphase and lower phase.  

x. Add 700µl of phenol and mix well by inversion. Centrifuge at 10,000rpm, 4
◦
C for 10min. 

Remove upper aqueous phase into a fresh tube and discard the interphase and lower 

phase. 

xi. Add an equal volume of phenol: chloroform (350µl: 350µl) solution to the tube and mix 

by inversion. Centrifuge at 13,200rpm, 4
◦
C for 10min.  Remove upper aqueous phase into 

a fresh tube and discard the interphase and lower phase. 

xii. Add 700µl of chloroform and mix by inversion. Centrifuge at 13,200rpm, 4
◦
C for 10min.  

Remove upper aqueous phase into a fresh tube and discard the interphase and lower 

phase. 

xiii. Measure the volume of aqueous phase (supernatant) and divide into two tubes. Add 5M 

lithium chloride 2.5 times the volume in tube and mix by inversion. 

xiv. Keep on ice for 30min. 

xv. Centrifuge at 13,200rpm, 4
◦
C for 30min. 

xvi. Remove the supernatant into 15ml tube for DNA precipitation and add equal volume of 

isopropanol. Keep in -20
◦
C freezer for at least 1h. 

xvii. Resuspend the pellet from step ‘xv’ in 100µl of TE buffer. Pool the volumes from both 

tubes (total of 200µl). 

xviii. Mix by vortexing. Add 20µl of 3M sodium acetate (0.1 times the volume) and 500µl of 

absolute ethanol (2.5 times the volume) which has been stored at -20
◦
C. Mix well and 

keep in -20
◦
C freezer for at least 1h. 

xix. Centrifuge at 13,200rpm for 25min. Drain supernatant. 

xx. Wash the pellet in 1ml of 70% ethanol. Centrifuge at 13,200rpm for 15min. 

xxi. Drain supernatant and air dry tubes for 15min. Resuspend the pellet in 100µl of TE buffer 

(pH 7.2). 

xxii. Check the quality of the RNA samples in denaturing gel electrophoresis and quantify by 

Qubit Fluorometer or Nanodrop.  

Parallel DNA extraction 

i. After the supernatant has been precipitated with equal volume of Isopropanol for 1 

hour at -20
◦
C (carried on from step xvi) centrifuge at 3000g for 30min. 
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ii. Remove the supernatant and resuspend the pellet in 500µl of TE buffer. Do not vortex 

but resuspend gently by inversion. 

iii. Centrifuge the 1.5ml Phase lock gel (Light)
TM

 suspension tubes (Eppendorf, 

Auckland, New Zealand) at 14000g (rcf) for 30sec. 

iv. Transfer the suspended DNA to 1.5ml Phase lock gel suspension tube and add Phenol: 

Chloroform:: 250 µl : 250µl to the tube. Mix thoroughly by inversion. 

v. Centrifuge at 14000g for 5min. 

vi. Transfer the supernatant to a fresh Phase lock gel suspension tube and add 500µl 

(equal volume) of chloroform. Centrifuge at maximum speed (14000g) for 5min. 

vii. Transfer the supernatant to a fresh 2ml tube and add 1/10 volume of sodium acetate 

(50µl) and 2.5 volume (1.5ml) of absolute ethanol. Incubate at -20
◦
C for at least 1h. 

viii. Centrifuge at 13200rpm for 20min. 

ix. Wash the pellet with 1 ml of 70% ethanol. Centrifuge at 13200 rpm for 10 minutes. 

Remove the supernatant. 

x. Resuspend the pellet in 500 µl of TE buffer and store at -20
◦
C till further analysis. 

xi. Check the quality of DNA on 1% agarose gel. 

A.8 Denaturing gel electrophoresis for RNA 

A.8.1 Reagents required 

 10X MOPS buffer (500ml) 

MOPS (pH7.0)  0.2M (20.9g)    

Dissolve MOPS first and adjust pH to 7.0. 

  3M Sodium acetate   20mM (3.33ml)   

  0.5M EDTA (pH 8.0)  10mM (10ml)  

   

Make volume to 500ml. Autoclave at 121
◦
C. 

 Formamide Loading Dye 

Formamide    8ml 

Sterile distilled water   1.8ml 

0.5M EDTA (pH 8.0)   0.2ml 

Xylene cyanol FF   10mg 

Bromophenol blue   10mg 
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 Denaturing loading buffer 

Formaldehyde    150µl 

Formamide    500µl 

10X MOPS    500µl 

Ethidium bromide   2µl 

 

 Agarose gel 

  DNA/ RNA grade agar  0.75g 

  10X MOPS    5ml 

  Sterile distilled water   37.5ml 

Melt Agarose and then add, 

  Formaldehyde    7.5ml 

 Running buffer 

  1X MOPS buffer (dilute from 10X MOPS) 

A.8.2 Protocol 

i. Spray the electrophoresis apparatus with RNase Zap and set the heating block to 65
◦
C. 

ii. Make up the Agarose gel and pour in a fume hood. Leave it to set for about 20min. 

iii. Make up the Denaturing Loading buffer. 

iv. Aliquot 15µl of denaturing loading buffer into the required number of microtubes (1 

per sample). 

v. Add 5µl of sample to the tubes containing 15µl of denaturing loading buffer and heat 

the samples at 65
◦
C for 10min. 

vi. Immediately place on ice to snap chill for at least 1min. Then while keeping on ice 

add 1µl of Formamide loading dye to each sample. 

vii. Place the gel in the gel tank and completely cover with 1X MOPS loading buffer. 

viii. Load the samples into the gel and run at 85V for 1 hour. 

ix. Examine under UV light in the Gel Doc System. 
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A.8.3  DNA Digestion 
DNA digestion was done to remove any residual DNA with Turbo DNA-free

TM
 ( Ambion). 

Protocol 

The standard protocol as described in the kit was followed and the reagents supplied with the 

kit were used. 

i. Add 45µl of RNA sample, 1µl of Turbo DNA-free and 4.5µl of 10X Turbo DNase 

Buffer in a microtube and mix gently. 

ii. Incubate at 37
◦
C for 30min. 

iii. Add 5µl of resuspended DNase Inactivation reagent (supplied with kit) and mix well. 

iv. Incubate at room temperature for 2min while mixing occasionally. 

v. Centrifuge at 10,000g for 1.5min and transfer RNA to a fresh tube without touching 

the white precipitate at the bottom.  

vi. Resuspend the RNA in 450µl of TE buffer to make up the volume to 500µl.  

vii. Centrifuge the 1.5ml Phase lock gel (Light)
TM

 suspension tubes (Eppendorf, 

Auckland, New Zealand) at 14000g for 30sec. 

viii. Transfer the RNA to 1.5ml Phase lock gel suspension tube and add Phenol: 

Chloroform :: 250µl : 250µl to the tube. Mix thoroughly by inversion. 

ix. Centrifuge at 14000g for 5min. 

x. Transfer the supernatant to a fresh Phase lock gel suspension tube and add 500µl 

(equal volume) of Chloroform. Centrifuge at maximum speed (14000g) for 5min. 

xi. Transfer the supernatant to a fresh 2ml tube and add 1/10 volume of Sodium Acetate 

(50µl) and 2.5 volume (1.5ml) of absolute ethanol. Incubate at -20
◦
C for at least 1 

hour. 

xii. Centrifuge at 13200rpm for 20min. 

xiii. Wash the pellet with 1ml of 70% ethanol. Centrifuge at 13200rpm for 10min. Remove 

the supernatant. 

xiv. Resuspend the pellet in 500µl of TE buffer and store at -80
◦
C till further analysis. 

xv. The integrity and quantity of RNA was again checked using Denaturing RNA Gel 

Electrophoresis and Qubit Fluorometer (Invitrogen, Auckland, New Zealand) or 

Nanodrop (NanoDrop Technologies, Thermo Fisher Scientific, Auckland, New 

Zealand). 
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A.9 PCR amplification of cDNA/ DNA samples using Methyl 
Coenzyme Reductase (mcrA) gene specific primers 

A.9.1 Reaction setup 

Component   Volume in 50µl Final concentration 

Sterile distilled water   31.8µl 

10X Buffer    5µl 

dNTP mix    8µl  0.2mM 

MgCl2     2µl  2.5mM including buffer concentration 

mcr-F     1µl  0.2µM 

mcr-R     1µl  0.2µM 

Taq Polymearse   0.2µl  1U 

cDNA/DNA template   1µl 

  50µl 

A.9.2 Program Parameters 
 

Initial denaturation at 95
◦
C  30sec       x 1 cycle 

Denaturation  at 95
◦
C   5sec      

Annealing at 60
◦
C   10sec     40 cycles 

Extension at 72
◦
C   30sec 

Final extension at 72
◦
C  3min       x   1 cycle 

10
◦
C     Hold 

Run the samples on 2% agarose gel with a 100bp standard to check the size of amplicon.  
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Appendix B 

Tables 

B.1 Tables for fish oil supplementation experiment  

Table B. 1 Paired t-test  on raw differences between times for average (of 72h and 

15d) mcrA gene expression (cDNA) of control animals. 
 

Time 
 (Time1- 
time 2) 

1 2 3 4 5˟ 6 Mean LSD 5% t value 

9pm-5pm 0.01 0.22 0.27 0.19 0.18 0.11 0.16 0.10 4.33* 

1am-5pm 2.13 0.82 0.93 1.79 3.72 1.00 1.73 1.16 3.83* 

5am-5pm 0.24 -0.06 -0.28 0.27 0.87 -0.02 0.17 0.42 1.04 

9am-5pm 0.22 0.34 -0.01 0.15 0.22 0.08 0.17 0.13 3.33* 

1pm-5pm -0.01 -0.29 -0.25 0.19 0.57 -0.21 0.00 0.35 0.01 

1am-9pm 2.12 0.60 0.66 1.60 3.54 0.89 1.57 1.19 3.39* 

5am-9pm 0.23 -0.28 -0.55 0.08 0.68 -0.13 0.01 0.45 0.03 

9am-9pm 0.21 0.12 -0.29 -0.04 0.04 -0.03 0.00 0.18 0.04 

1pm-9pm -0.02 -0.50 -0.53 0.00 0.38 -0.31 -0.16 0.37 1.13 

5am-1am -1.89 -0.88 -1.21 -1.52 -2.85 -1.02 -1.56 0.77 5.24* 

9am-1am -1.91 -0.47 -0.94 -1.64 -3.50 -0.92 -1.56 1.14 3.53* 

1pm-1am -2.13 -1.10 -1.18 -1.60 -3.15 -1.20 -1.73 0.84 5.31* 

9am-5am -0.02 0.40 0.27 -0.12 -0.65 0.10 0.00 0.39 0.02 

1pm-5am -0.24 -0.23 0.03 -0.08 -0.30 -0.18 -0.17 0.13 3.42* 

1pm-9am -0.23 -0.63 -0.24 0.04 0.35 -0.29 -0.17 0.35 1.23 

* values are significant at p≤ 0.05, individual values are calculated by subtracting the value of time 2 from 

time 1, -ve value represents a decrease in expression, ˟values for 72h control and treatment of animal 5 

excluded from statistical analysis. 
 

Table B.2 Paired t-test on raw differences between times for average (of 72h and 

15d) mcrA gene expression (cDNA) of fish oil supplemented animals. 
Time 

(Time 1-
Time 2) 

1 2 3 4 5˟ 6 Mean LSD 5% t value 

9pm-5pm -0.12 0.14 0.06 -0.16 -3.21 -0.19 -0.58 1.36 1.10 

1am-5pm 0.16 0.06 -0.21 1.22 -1.24 0.17 0.03 0.83 0.09 

5am-5pm 0.34 -0.04 -0.12 0.27 -1.30 -0.23 -0.18 0.62 0.74 

9am-5pm 0.14 0.14 0.14 -0.17 -1.80 0.54 -0.17 0.87 0.50 

1pm-5pm 0.06 -0.17 -0.28 0.52 0.41 -0.20 0.06 0.35 0.41 

1am-9pm 0.28 -0.08 -0.26 1.38 1.97 0.36 0.61 0.92 1.70 

5am-9pm 0.46 -0.18 -0.18 0.43 1.91 -0.04 0.40 0.83 1.24 

9am-9pm 0.26 0.00 0.08 -0.01 1.41 0.72 0.41 0.59 1.79 

1pm-9pm 0.18 -0.30 -0.34 0.68 3.62 -0.01 0.64 1.58 1.03 

5am-1am 0.18 -0.10 0.09 -0.95 -0.06 -0.40 -0.21 0.43 1.24 

9am-1am -0.03 0.08 0.35 -1.39 -0.56 0.37 -0.20 0.71 0.72 

1pm-1am -0.10 -0.22 -0.07 -0.71 1.65 -0.37 0.03 0.87 0.08 

9am-5am -0.21 0.18 0.26 -0.44 -0.49 0.76 0.01 0.51 0.06 

1pm-5am -0.28 -0.12 -0.16 0.24 1.71 0.03 0.24 0.78 0.78 

1pm-9am -0.08 -0.30 -0.42 0.68 2.21 -0.74 0.23 1.14 0.51 

* values are significant at p≤ 0.05, individual values are calculated by subtracting the value of time 2 from 

time 1, -ve value represents a decrease in expression, ˟values for 72h control and treatment of animal 5 

excluded from statistical analysis. 
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Table B. 3 Paired t-test on raw differences between times for average (of 72h and 

15d)  mcrA gene quantity (DNA) of control animals.  
Time 

(Time 1-
time 2) 

1 2 3 4 5˟ 6 Mean LSD 5% t value 

9pm-5pm 0.06 0.00 0.12 0.02 -0.07 -0.01 0.02 0.07 0.68 

1am-5pm 0.15 0.10 -0.13 0.27 0.33 0.24 0.16 0.17 2.40 

5am-5pm 0.00 -0.20 -0.25 -0.11 0.42 0.12 0.00 0.26 0.02 

9am-5pm -0.06 -0.19 0.03 0.05 -0.09 -0.10 -0.06 0.09 1.68 

1pm-5pm -0.01 -0.22 -0.23 -0.05 0.29 0.07 -0.02 0.20 0.31 

1am-9pm 0.10 0.10 -0.25 0.25 0.40 0.25 0.14 0.23 1.56 

5am-9pm -0.05 -0.19 -0.38 -0.13 0.50 0.13 -0.02 0.32 0.16 

9am-9pm -0.11 -0.19 -0.09 0.03 -0.02 -0.09 -0.08 0.08 2.51 

1pm-9pm -0.07 -0.22 -0.35 -0.07 0.37 0.08 -0.04 0.26 0.42 

5am-1am -0.15 -0.29 -0.13 -0.38 0.10 -0.12 -0.16 0.17 2.43 

9am-1am -0.21 -0.29 0.15 -0.22 -0.42 -0.34 -0.22 0.21 2.70* 

1pm-1am -0.16 -0.31 -0.10 -0.32 -0.03 -0.18 -0.18 0.12 3.98* 

9am-5am -0.06 0.01 0.28 0.16 -0.52 -0.22 -0.06 0.30 0.50 

1pm-5am -0.01 -0.02 0.03 0.06 -0.13 -0.06 -0.02 0.07 0.84 

1pm-9am 0.04 -0.03 -0.25 -0.10 0.38 0.17 0.04 0.23 0.39 

* values are significant at p≤ 0.05, individual values are calculated by subtracting the value of time 2 from 

time 1, -ve value represents a decrease in expression, ˟values for 72h control and treatment of animal 5 

excluded from statistical analysis. 

 

Table B. 4 Paired t-test on raw differences between times for average (of 72h and 

15d) mcrA gene quantity (DNA) of fish oil supplemented animals. 

 
Time 

(Time 1-
time 2) 

1 2 3 4 5˟ 6 Mean LSD 5% t value 

9pm-5pm -0.03 0.00 -0.06 0.05 0.51 0.04 0.09 0.22 1.00 

1am-5pm 0.06 -0.03 -0.19 0.09 0.02 -0.06 -0.02 0.10 0.39 

5am-5pm 0.08 0.20 -0.13 -0.06 0.08 0.03 0.03 0.12 0.65 

9am-5pm -0.01 -0.04 0.01 -0.05 0.09 0.10 0.02 0.07 0.63 

1pm-5pm 0.09 0.07 -0.15 -0.03 0.43 -0.04 0.06 0.21 0.76 

1am-9pm 0.10 -0.03 -0.13 0.03 -0.48 -0.10 -0.10 0.22 1.22 

5am-9pm 0.11 0.19 -0.08 -0.12 -0.43 -0.01 -0.06 0.23 0.62 

9am-9pm 0.02 -0.04 0.07 -0.10 -0.42 0.05 -0.07 0.19 0.94 

1pm-9pm 0.13 0.06 -0.09 -0.08 -0.07 -0.09 -0.02 0.10 0.62 

5am-1am 0.02 0.22 0.05 -0.15 0.05 0.09 0.05 0.13 0.95 

9am-1am -0.08 -0.01 0.20 -0.13 0.07 0.15 0.03 0.14 0.61 

1pm-1am 0.03 0.09 0.04 -0.12 0.41 0.01 0.08 0.19 1.08 

9am-5am -0.09 -0.24 0.14 0.02 0.02 0.07 -0.01 0.14 0.27 

1pm-5am 0.01 -0.13 -0.01 0.03 0.36 -0.07 0.03 0.18 0.45 

1pm-9am 0.10 0.11 -0.15 0.02 0.34 -0.14 0.05 0.19 0.61 

* values are significant at p≤ 0.05, individual values are calculated by subtracting the value of time 2 from 

time 1, -ve value represents a decrease in expression, ˟values for 72h control and treatment of animal 5 

excluded from statistical analysis. 
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Table B.5 Fatty acid composition (g/100g of total fatty acid) of fish oil used for 

supplementation in treatment animals. 

 

Fatty acid Fish oil 1*  Fish oil 2** 
C6:0 0.010 0.009 

C8:0 0.019 0.012 

C10:0 0.016 0.008 

C12:0 0.109 0.109 

C14:0 4.863 4.784 

C14:1 t9 0.018 0.016 

C14:1 c9 0.143 0.131 

C16:0 13.837 13.580 

C16:1 t9 0.020 0.020 

C16:1 c9 7.185 7.139 

7,10,13-
hexadecatrienoatecosatetraenoate 0.313 0.318 

C18:0 anteiso 0.030 0.027 

C18:0 3.230 3.170 

C18:1 t9 0.654 0.659 

C18:1 c9 29.003 28.899 

C18:1 c11 3.349 3.282 

C18:2 c9,12 (LA) 4.415 4.428 

C20:1 c11 4.809 4.788 

C20:4 0.634 0.653 

C20:5 (EPA) 4.861 5.065 

C22:0 0.058 0.061 

C22:1 t13 0.875 0.903 

C22:1 1.959 1.965 

C22:1 c13 1.172 1.177 

C22:5 1.545 1.600 

C22:6 (DHA) 5.442 5.737 

C24:0 0.028 0.026 

C24:1 0.403 0.399 

C26:0 0.011 0.012 

 *Fish oil 1 was used in first part of experiment, 

**Fish oil 2 used in second part of experiment. 
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Table B.6 Propionic acid concentration (mmol/L) in control and fish oil supplemented (treatment) animals. 

 

T
Time 

Propionic acid concentration  for control at 72h 
 

Propionic acid concentration for treatment at 72h Paired t test 

1 2 3 4 5 6 Mean 1 2 3 4 5 6 Mean LSD 
5% 

t 
value 

5pm 14.99 17.93 9.51 16.96 27.65 22.84 18.31 18.76 30.25 19.19 13.74 9.44 15.34 17.79 12.02 0.11 

1am 26.19 32.39 23.87 25.45 33.90 29.79 28.60 31.13 36.58 29.80 23.75 15.40 24.94 26.93 9.72 0.44 

9am 21.30 23.40 21.93 20.87 25.98 26.85 23.39 27.08 23.93 18.79 21.29 12.16 15.93 19.86 7.85 1.15 

MAUC 22.17 26.53 19.79 22.18 30.36 27.32 24.73 27.02 31.84 24.40 20.63 13.10 20.29 22.88 9.41 0.50 

Time Propionic  acid concentration for control at 15d 
 

Propionic  acid concentration for treatment at 15d Paired T test 

1 2 3 4 5 6 Mean 1 2 3 4 5 6 Mean LSD 
5% 

t 
value 

5pm 14.60 16.93 11.05 12.53 12.96 20.52 14.77 22.13 26.81 13.16 11.28 20.48 16.24 18.35 5.90 1.56 

1am 23.26 24.81 20.55 28.02 18.24 31.02 24.32 35.84 38.23 40.06 17.28 30.40 28.20 31.67 12.11 1.56 

9am 22.38 26.69 13.56 25.24 16.53 26.65 21.84 27.35 31.09 24.99 13.05 27.53 25.76 24.96 9.23 0.87 

MAUC 20.88 23.31 16.41 23.45 16.49 27.30 21.31 30.29 33.59 29.57 14.72 27.20 24.60 26.66 9.31 1.48 

Time Propionic  acid concentration for control average 
 

Propionic  acid concentration for treatment average Paired T test 

1 2 3 4 5 6 Mean 1 2 3 4 5 6 Mean LSD 
5% 

t 
value 

5pm 14.80 17.43 10.28 14.75 20.31 21.68 16.54 20.44 28.53 16.17 12.51 14.96 15.79 18.07 7.33 0.54 

1am 24.72 28.60 22.21 26.73 26.07 30.40 26.46 33.49 37.41 34.93 20.51 22.90 26.57 29.30 8.54 0.86 

9am 21.84 25.04 17.74 23.05 21.26 26.75 22.61 27.22 27.51 21.89 17.17 19.84 20.84 22.41 5.21 0.10 

MAUC 21.52 24.92 18.11 22.82 23.43 27.31 23.02 28.66 32.72 26.98 17.68 20.15 22.44 24.77 7.16 0.63 

*values are significant at p≤0.05, ˟ values not considered for statistical analysis, MAUC- Mean area under curve for 20h. 
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