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Abstract of a dissertation submitted in partial fulfilment of the 

requirements for the Degree of Bachelor of Science (Honours). 

Abstract 

Investigation of the molecular genetic basis of fly-strike resistance in NZ 

sheep: Analysis of the FABP4 gene. 

by 

Lucynda Emma Ruth Burrows 

 

Introduction: Fly-strike is a major economic and animal welfare issue in both the New Zealand 

and Australian sheep industries. There are several factors that predispose sheep to fly-strike, such 

as fleece-rot, urine staining of wool from the crutch and there is a strong genetic correlation 

(r=0.9) between fleece-rot and fly-strike. Previosuly, the fatty-acid binding protein gene FABP4 

has been associated with variation in fleece-rot in sheep, so in this study susceptibility to fly-strike 

was investigated in the context of variation in the FABP4 gene.  

Methods and materials:Blood samples were collected from sheep with and without fly-strike at 

shearing time and from different properties through out Canterbury. These samples were 

collected onto FTA cards for subsequent DNA typing. PCR-SSCP analysis was used to genotype a 

portion of the ovine FABP4 gene.   

Results: Four variants of FABP4 were found (A1, B1, C1 and D1). There was a difference between 

sheep with and without fly-strike and the presence/absence of the A1 and C1 variant, (P=0.0073) 

and (P=0.0154) respectively. Sheep with the A1 variant are less likely to get fly-strike than sheep 

with the C1 variant. The overall Chi-squared test was insignificant, indicating that it cannot be 

determined from the genotype whether sheep will or will not get fly-strike.  

Discussion: Based on these findings the development of a gene-marker test for selecting sheep 

that are genetically resistant to fly-strike is a possibility. However further studies need to be done, 

with a larger sample of sheep. The exact nature of why FABP4 causes sheep to be resistant or 

susceptible to fly-strike also needs to be determined. 

Keywords: Sheep: Fly-strike resistance: FABP4 
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Chapter 1 

Introduction  

Cutaneous myiasis, commonly referred to as fly-strike, is a serious problem for both the New 

Zealand and Australian sheep industries. Sheep are commonly struck on the breech and body, 

(Figures 1.1 and 1.2). It is also an animal welfare issue, especially given that the practice of 

mulesing to prevent fly-strike, is coming under scrutiny from animal welfare organisations 

(Davidson et al. 2006). Organophosphorus insecticides have been used historically to control fly-

strike, but this has led to the development of resistance to this class of insecticide (Board et al. 

1994). With all these problems associated with fly-strike, the idea of breeding sheep that are 

naturally less susceptible to it is an attractive proposition for reducing its impact on the sheep 

industry.  

 

Figure 1.1 Breech strike (Clark 2012). 

 

Figure 1.2 Body strike. (Farming Ahead 2012, www.farmingahead.com.au).  
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In the early 1970’s a program was established at Trangie near Dubbo, New South Wales (NSW), by 

the NSW Department of Primary Industries. It had the aim of examining the possibility of breeding 

sheep that are resistant to fly-strike. The Trangie sheep were scored for fleece-rot and fly-strike 

under both natural environmental conditions and after artificial wetting in sheds. Lines were bred 

for resistance and susceptibility using an index that included those scores for natural and induced 

fleece-rot and fly-strike. One of the important findings from this research was the observation of 

changes in wool attributes within the different selection lines. Sheep that were selected for 

resistance were found to have bright, white wool, with an even blocky tip that dried faster after 

wetting than susceptible sheep. They also had a higher level of antibodies to the bacteria 

Pseudomonas aeruginosa (P. aeruginosa), which is associated with the onset of fleece-rot (Colditz 

et al. 2006).  

A recent study by Smith et al. (2010) of fleece-rot resistance, identified the fatty acid binding 

protein (FABP)4 and Fibulin (FBLN)1 genes as key factors associated with fleece-rot resistance in 

sheep. In the Trangie Merino’s the susceptible line showed a significant association between two 

SNPs in FABP4 and post- and pre-wetting fleece-rot scores. This could account for between 2.8% 

and 3.5% of the phenotypic variation. In the Trangie resistant line seven SNPs from the two genes 

(three for the FABP4 gene and four for the FBLN1 gene) were found to be associated with fleece-

rot resistance scores.  

FABPs are hydrophobic ligand-binding cytoplasmic proteins first discovered in 1971. They are 

involved in lipid metabolism through their intracellular binding and transport of long-chain fatty 

acids. Other studies implicate the FABP family of proteins in cell signalling, the inhibition of cell 

growth and cellular differentiation. FABP4 has also been suggested to have a role in sebaceous 

gland differentiation (Tsuda et al. 2009). 

Lipids are vital to wool health as the loss of waxes and hydrophobicity is thought to be a major 

contributing factor to the development of fleece-rot (Norris et al. 2008). Lanolin is the lipid 

material in the fleece. It is sometimes referred to as wool fat and is secreted from the sebaceous 

glands of the follicle (Henderson 1965; Collins & Davidson 1997). Suint is the water-soluble 

material contained in the fleece that is produced by the sweat glands (Cottle 2010; Collins & 

Davidson 1997). Suint can act as a detergent for grease on wool and aid in its removal by rainfall. 

High levels of suint can also encourage retention of moisture within the fleece, causing 

susceptibility to fleece-rot, and fly-strike (Aitken et al. 1994).  

FABP4 has previously been found to be associated with fleece-rot resistance and susceptibility in 

the Trangie lines (Smith et al. 2010). Due to fleece-rots high correlation with fly-strike (r=0.9), and 

as a consequence of the previous research that suggested variation in FABP4 is associated with 
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fly-strike resistance in sheep, this study set out to determine whether there is an association 

between sheep with and without fly-strike and variation in the FABP4 gene. The underlying 

hypothesis is that there will be a difference between sheep with fly-strike and sheep without fly-

strike.  

In order to do this, sheep with and without fly-strike were identified at shearing time throughout 

the Canterbury region, and blood samples were taken from both groups. Using sequence 

information published by Yan et al. (2012) two primers were designed to amplify a variable region 

of the FABP4 gene containing part of exon 2 and intron 2. Five sequence variations (A1-E1) have 

been described within this region previously (Yan et al. 2012). Primers from this study will be used 

to genotype the blood samples collected from sheep with and without fly-strike, with the 

expectation that there will be a difference seen in the number of sheep with and without fly-

strike correlating to specific variants of the FABP4 gene.  
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Chapter 2 

Literature Review 

Fly-strike, also known as cutaneous myiasis is a serious problem for both the New Zealand and 

Australian sheep industries. The disease is predominantly caused by the fly, Lucilia cuprina (L. 

cuprina), which is found in both countries (Raadsma et al. 1988). Fly-strike has an estimated 

prevalence of 3-5% in the New Zealand sheep flock (Heath & Bishop 1995) and is estimated to 

cost the industry around $50 million annually (Beef + Lamb New Zealand 1999). The cost is 

multifactorial in nature and includes production losses through reduction in wool and body 

growth, morbidity, and treatment and control costs, including the use of insecticides, prophylactic 

lamb shearing and ewe crutching (Pickering et al. 2012a). Furthermore the long-term use of 

organophosphorus insecticides as a method of control has led to the development of resistance 

to this class of insecticide (Board et al. 1994).  

Fly-strike is not only a cost to the farming enterprise, but it is also considered a major animal 

welfare issue; especially with the practice of mulesing to prevent fly-strike coming under scrutiny 

from animal welfare organisations (Davidson et al. 2006).  

With all these issues, the idea of breeding sheep that are less susceptible to flystrike is considered 

an attractive way to reduce its impact on the industry. Breeding for fly-strike resistance could be 

done with the use of selective breeding (Raadsma et al. 1989), and potentially gene-marker tests, 

once a suitable gene-marker has been discovered.  

2.1 The species of fly that cause fly-strike 

The larvae from L. cuprina and Lucila sericata (L. sericata) cause cutaneous myiasis in sheep, 

which is commonly referred to as fly-strike.  In Australian around 90% of fly-strike is initiated by L. 

cuprina, but there are several other species involved as well. In New Zealand and Australia the 

main strike species are L. cuprina, L. sericata, Calliphora stygia (C. stygia), and Chrysomya 

rufifacies (C. rufifacies) (Levot 1995).   

2.1.1 Lucilia cuprina 

L. cuprina, also known as the “Austrilian Sheep blowfly”, is a small, shiny, green blowfly. In 

Victoria, Australia, it is found in 96% of all fly-strike cases. The maggots of L. cuprina are smooth 

and pale in colour. The young maggots cannot damage healthy tissue, but skin affected with 
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fleece-rot or soiled with urine or diarrhoea can weep fluid. This creates conditions that are ideal 

for maggots to establish in and inhabit the affected area (Department of Primary Industries 2010).  

The introduction of L. cuprina into New Zealand was the single biggest influence on the 

epidemiology and natural history of fly-strike in New Zealand. L. cuprina was discovered in New 

Zealand in 1988, although it was likely introduced in the late 1970s. There was no evidence of 

L.cuprina in the South Island before 1989 (Tellam & Bowles 1997). Of the two subspecies of L. 

cuprina found in Australia, only one is found in New Zealand; L. c. dorsalia, and molecular genetic 

studies suggest that this species was introduced from Australia (Heath & Bishop 2006). Since its 

establishment in New Zealand L. c. dorsalia has surpassed C.  stygia, L. sericata and C. rufifacies as 

the most common flies causing strike (Phillips 2009). 

 

Figure 2.1 Image of L. cuprina. (Fly Biology http://www.flyboss.com.au/susceptibility/fly-biology.php#.Unk-

zvkQ6So) 

2.1.2 Lucila sericata 

L. sericata is also known as the “Common Green Bottle Blowfly.” This fly is an important 

ectoparasite of sheep and is found in New Zealand, Australia and most parts of northern Europe. 

Adult female L. sericata lay up to 200-250 eggs at a time (Cruickshank & Wall 2002; Smith & Wall 

1998). In most regions of New Zealand L. sericata is the most common species found in fly traps 

(Gleeson & Heath 1997). 

 

Figure 2.2 Image of L. sericata. (http://badufos.blogspot.co.nz/2012/11/ufos-infest-denver-according-to-

fox.html). 
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2.1.3 Calliphora stygia 

C. stygia is also known as the “Brown Blowfly” (Figure 2.3). This is found in both Australia and 

New Zealand. In New Zealand, prior to the introduction of L. cuprina, C. stygia was one of the 

major species involved in primary fly-strike and the earliest reports of C. stygia being involved in 

fly-strike were in 1841 (Phillips 2009).  

 

Figure 2.3 Image of C. stygia. (http://www.dpi.vic.gov.au/agriculture/pests-diseases-and-weeds/pest-

insects/ag0081-sheep-flies-in-victoria). 

2.1.4 Chrysomya rufifacies 

C. rufifacies is also referred to as the “Hairy Maggot Blowfly”. It cannot initiate fly-strike, but once 

other species such as L.cuprina have initiated strike and damaged the skin, C. rufifacies can 

become involved in secondary strike. Once involved, the damage to the sheep increases within a 

matter of hours, because the C. rufifacies maggots are much larger and have more vigorous 

mouth parts than L.cuprina. C. rufifacies involvement can soon lead to the death of the sheep. C. 

rufifacies maggots often out compete the maggots of L. cuprina (Cottle 2010). 

 

Figure 2.4 Image of C. rufifacies. (http://www.dpi.vic.gov.au/agriculture/pests-diseases-and-weeds/pest-

insects/ag0081-sheep-flies-in-victoria). 

2.2 Life cycle of L. cuprina  

L. cuprina is the primary species involved in fly-strike and an adult fly can lay 200 eggs at one time 

(Figure 2.5). The presence of fly-strike on a sheep is a factor that attracts even more female flies 
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to lay their eggs on the sheep, further spreading the infection.  Another factor that attract female 

flies is the presence of fleece-rot (Tellam & Bowles 1997). 

Fly eggs hatch from eight hours to three days, depending on temperature, after they have been 

deposited on the skin of the sheep (Tellum & Bowles 1997; Australian Museum 2009). Once 

hatched, larvae require the presence of wet wool, the soiling of moist wool and wounded or 

inflamed skin to be able to initiate the “strike”. The 1st stage larvae establish themselves on the 

dermis of the sheep skin by the excretion and regurgitation of digestive proteases. Once the 

larvae reach the 2nd and 3rd instars (within two to three days after hatching) they have rasping 

hook mouth parts, which along with the proteases allows the larvae to penetrate deep into the 

dermis, where they can feed on tissue fluids, dermal tissue and blood (Tellam & Bowles 1997).  

 

 

Figure 2.5 The life cycle of the fly. (Government of Western Australia. Wa.gov.au). 

Flies spend a major part of their life cycle in the soil. Post-feeding the 3rd instar larvae burrow into 

the soil to pupate (Molyneux & Bedding 1984). This stage is dependent on soil temperature. At 

30oC the pupal stage takes about six days, whereas at 15oC it takes 25 days (Foster et al. 1975). 

The adult fly then emerges. Adults feed on plant and animal material and the females require 

protein before they can develop and lay mature eggs (Tellam & Bowles 1997). 

http://www.google.co.nz/url?sa=i&rct=j&q=fly+life+cycle&source=images&cd=&cad=rja&docid=uGfC9Ihlu7hITM&tbnid=jELZhVzzPoU2sM:&ved=0CAUQjRw&url=http://www.agric.wa.gov.au/PC_91844.html?s=0&ei=axdiUfi3Lu-TiAeCyoHoBA&bvm=bv.44770516,d.aGc&psig=AFQjCNHUSGqRh4-QkoaWM2ghB_WyzprHcw&ust=1365469413881593
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Much is known about the behaviour and activities of sheep flies, but less is known about the 

development and survival of the immature stages, especially after they leave the sheep to pupate 

in the soil (De Cat et al. 2012). In natural soils, larvae burrow down less than two inches.  Larvae 

tend not to wander more than a few feet from where they fall. If they mature on hosts that have 

died, they are found in the soil below and around the carcass. It is likely that there are many 

mortality factors operating against prepupae and puparia in soil. For example, most puparia are 

likely to be sensitive to soil moisture content (Norris 1965).  

Studies have found that there are several factors that affect the fly population. These factors 

include intra- and inter-specific competition and both the ambient temperature and microclimate 

(Fuller 1934, Nicholson 1948; Lane 1975). One study showed that nematodes feed on L. cuprina 

larvae, and this has been found to differ in relation to soil moisture and texture (Molyneux & 

Bedding 1984). 

2.3 A history of fly-strike in Australasia 

In the early 20th Century, fly-strike became a wide spread problem in Australia. It was uncommon 

until 1903, when it became a wide-spread problem in New South Wales and Victoria. This  

“emergence” of the disease coincided with introductions of Merinos from Vermont, in the United 

States of America. These Merinos had wool with a high grease content and pronounced skin 

wrinkles. It was soon realised that sheep’s body conformation, body wrinkling and wool 

characteristics all influenced how susceptible a sheep is to fly-strike (Colditz et al. 2001).  

2.3.1 The Trangie breeding programme  

In the 1970s a breeding program at Trangie was established by the New South Wales Department 

of Primary Industries. It had the aim of examining the possibility of breeding sheep that are 

resistant to fleece-rot and fly-strike. Trangie developed experimental conditions for inducing 

fleece-rot and fly-strike, using artifical wetting by overhead sprinklers of sheep temporarily 

housed indoors (McGuirk et al. 1978; Colditz et al. 2001). These sheep were scored for fleece-rot 

and fly-strike susceptibility, in the weeks following the artificial wetting. With these susceptibility 

scores, lines were then bred for resistance and susceptibility using an index that included scores 

for natural and induced fleece-rot and fly-strike (Colditz et al. 2006). 

2.3.2 History of fly-strike in New Zealand 

In New Zealand, fly-strike has been reported since 1870, but it was not until the 1920s that it 

became a major concern to farmers (Tellam & Bowles 1997). A survey at the time found that the 

primary fly species involved were L. sericata and C. stygia. Up until the 1980’s fly-strike in New 
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Zealand was a seasonal disease, however once the species L. cuprina was introduced into New 

Zealand in the late 1980s, the prevalence of fly-strike increased (Glesson & Heath 1997). As can be 

seen from Figure 2.6, fly-strike is more prevalent in the North Island, where weather conditions 

are typically more humid and wetter. This is more pronounced when compared to the lower half 

of the South Island, where fly-strike is less common (<0.5%).  

 

Figure 2.6 The percentage distribution of all sheep affected with fly-strike in New Zealand. (Tenquist & 

Wright 1976). 

2.4 Climate conditions  that promote fly-strike 

The wetting of fleeces by rainfall can cause bacteria, primarily P. aeruginosa, to cause fleece-rot 

(Levot 1995). The bacterial growth discolours the fleece, resulting in a range of colours from green 

to yellow and brown (Chin & Watts 1992). This condition makes the sheep very attractive to flies 

such as L. cuprina. Fly-strike is more commonly seen with fleece-rot in warmer months because L. 

cuprina needs soil temperatures of above 15 oC to complete its life cycle and adult flies need 

warm conditions to be active. During spring and autumn fly waves occur throughout pastoral 

zones, and rainfall during this time creates ideal conditions for fly-strike. Sheep need to remain 

wet for several days before fly-strike occurs, so in Australia during summer when the sheep can 

dry within hours of being wet fly-strike is not as prevalent (Levot 1995; Hacker 2010).  
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Larval infestation from fly-strike results in reduced wool quality and quantity, it reduces ewe 

fertility and it can cause death with heavy infestations (Tellam & Bowles 1997). Fly-strike is a 

major animal welfare problem and it is thought that the presence of dags is a strong indication of 

fly-strike susceptibility (Pickering et al 2012b). In Australia, with the right conditions, as many as 

three million sheep per year can die from the effects of fly-strike (Tellam & Bowles 1997). The 

prevalence of fly-strike varies annually due to the climate conditions influencing the 

attractiveness of sheep for flies and variation in the activity and breeding of flies. In New Zealand, 

it is possible for fly-strike to occur every month of the year if the weather conditions are mild in 

winter, as well as being warm and moist during the rest of the year (Heath 1994).  

2.5 When and where fly-strike occurs 

In New Zealand fly-strike “challenges” vary both regionally and seasonally. Most fly-strike occurs 

from November to March, during warm and humid climatic conditions. In some years and regions, 

fly-strike can occur from October to May, if not longer. Fly-strike does not typically occur in cooler 

temperatures, such as those seen in winter. Typically, flies “over-winter” as pupae or adults. Once 

soil temperatures rise above 12oC in the spring, the pupae hatch and the adult flies become active 

(West et al. 2009). 

2.5.1 Where sheep get fly-strike 

There are five main areas on the sheep where fly-strike can occur; the breech (crutch), poll, pizzle, 

tail and body (Figure 2.7).  

Breech strike is the most common, due to this area being warm and moist (Tellam & Bowles 

1997). Breech strike can be further divided into crutch strike, which occurs from the tail base to 

the border of the udder or scrotum, and tail strike that usually occurs around the stump or sides 

of the tail (Phillips 2009). 
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Figure 2.7 Areas of the sheep that are commonly struck by flies. he large black line cuts off the section of 

the sheep that has 2.5% prevalence for fly-strike from the rest of the sheep. (Fleming 

2003). 

Both breech and body strike are typically preceded by the bacterial dermatitis that develops when 

the fleece and skin become wet after extended periods of rainfall, or when the breech becomes 

damp from continuous soiling. The normal defence barriers of the skin breakdown under bacterial 

challenge and this provides an area that is more attractive to the female fly to lay her eggs. The 

moist bacteria-laden skin is also an ideal environment for the larvae to survive in, and grow on, 

once hatched (Colditz, Mahony and Elkington 2006). The breech is a more favourable area to 

strike when weather conditions are dry, but during wet conditions body strike becomes 

significantly more likely, with the back, withers and shoulders being targeted. Other areas that are 

less commonly struck include the flank, poll, pizzle, belly, udder, foot and scrotum (Phillips 2009). 

2.5.2 What attracts flies to sheep? 

Conditions that are indicators for body strike susceptibility are the presence fleece-rot and 

mycotic dermatitis. For head strike the main indicator is the presence of horns or a deep wrinkle 

at the horn site (Karlsson & Greeff 2012). There are three host barriers that have been identified 

that are involved in the development of resistance to fly-strike. These are the wool, the skin, and 

the immune system (Smith et al. 2010).  

Wool characteristics and body conformation that favour prolonged wetting of the fleece result in 

the bacterial dermatitis, known as fleece-rot, which predispose sheep to infestation (Norris et al. 

2008). Fleece-rot and fly-strike have been reported to occur as a disease complex, with a strong 

interdependence when the strike occurs on the body of the sheep (i.e. the shoulders, back and 
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flanks) (Colditz & Tellam 2000). In Eastern Australia, fleece-rot is the most important factor 

predisposing sheep to body strike. Fleece-rot causes inflammation and ulceration of the skin 

which attracts flies to lay their eggs. Fleece-rot also provides moisture for the eggs to hatch along 

with soluble protein for the hatched larvae to feed on (Smith et al. 2010).  

Urine and faecal stains on the wool, eye or skin damage caused by grass seeds, footrot affected 

hooves, wear around the horns on rams that have been fighting, mulesing wounds and lambing 

stain on ewes are also all attractive areas on the sheep for flies (Levot 1995). 

2.5.3 The physiological effects of fly-strike on sheep 

There are numerous effects of fly-strike on the sheep and as a result of the feeding activity of the 

maggots. These effects are both mechanical and chemical (Heath & Bishop 2006). The feeding of 

the larvae causes a reduced wool staple length due to the stress response of the sheep.  This is 

indicated by elevated cortisol levels, elevated interleukin-6 levels, elevated serum amyloid A 

levels and elevated haptoglobin levels. Struck sheep often have a fever and reduced feed intake 

(Phillips 2009). 

At the third larvae stage, the maggots release a toxin that elicits an acute-phase response in the 

host and can cause rapid progression of the disease. This can lead to mortalities within three days 

(Karlsson & Greeff 2012). Death due to fly-strike is usually a result of bacterial toxaemia and 

systemic toxaemia resulting from the large quantities of ammonia that are released by the larvae 

into the sheep (Tellam & Bowles 1997). One hundred L. cuprina larvae are capable of producing 

and excreting 80mg of ammonia nitrogen each day. L. cuprina larvae thrive in these alkaline 

environments, with the optimum pH for larval collagenase activity, growth and survival being pH 

8.0 to 9.0. The pH of the skin and fleece of infested sheep can rise to 8.5 + 0.3 and skin 

temperatures during myiasis can reach 53oC (Guerrini 1988). 

Sheep that are infected with the larvae of L. cuprina have been shown to mount an immune 

response, by producing anti-L. cuprina anibiodies (Skelly & Howells 1986). Bowles et al. (1992) 

described the cellular reaction of sheep struck by flies. They observed that within 48 hours the 

cellular infiltrate was comprised primarily of leukocytes, including a large number of CD45 + ve T 

cells. Neutrophils and eosinophils made up the major cell types found at the wound surface. The 

increased presence of neutrophils is a result of the physical damage done to the skin. Bowles et al. 

(1992) reported that during both primary and secondary fly infections there was an increase in 

eosinophil numbers in the skin.  
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Larval challenge resulted in a marked depression in wool production, not only during the 

challenge period, but also during a 30 day post-treatment period (Broadmeadow et al. 1984). 

While longitudinal growth did not change, the fibre diameter decreased. Fleece tenderness was 

also found, with the occurrence of brushed-ended fibres, indicating the fleece had begun to shed. 

This is due to the increased circulation of cortisol that is released as a result of stress associated 

with fly-strike (Broadmeadow et al. 1984).  

O’Sullivan et al. (1984) showed an increase in rectal temperature and respiration rate of sheep 

infestated with larvae. They concluded that this was a systemic reaction to the larval challenge. 

When the number of larvae on the sheep decreased the sheep’s rectal temperature and 

respiration rate declined. Metabolic challenges faced by the sheep infected with the larvae were 

reported to be due to the absorption of toxins by the sheep: either exogenous toxins produced by 

the larvae and/or an endogenous toxin that is a result of tissue damage (O’Sullivan et al. 1984). 

Anorexia can occur soon after the larval challenge and continue progressively during the 

infestation, resulting in the liveweight loss. It is not until a larval challenge is over that sheep feed-

intake increases along with an increase in liveweight (O’Sullivan et al. 1984).  

Burrell (1990) showed that sheep that have been vaccinated against P. aeruginosa are more 

resistant to fleece-rot and fly-strike, but a commercial vaccine is not currently available (Colditz et 

al. 2006).  

2.6 Methods to prevent fly-strike 

There are a range of management strategies commonly used on farm to prevent and reduce the 

risk of fly-strike. These include shearing, crutching, mulesing and the application of various 

chemical dips.  

2.6.1 Shearing and crutching  

Shearing decreases the likelihood of fly-strike by reducing the time available for larval 

establishment. This is because short wool dries faster than long wool when wet. Shearing also 

improves the effectiveness of insecticides when they are applied to sheep, by allowing greater 

penetration of the chemical through the wool and onto the skin (Tellam & Bowles 1997). 

Crutching is also widely used as a way of removing dags and urine stained wool from around the 

breech area, therefore reducing the attractiveness of the area to flies (Tellam & Bowles 1997). 

Crutching mid-way between shearing is a common preventive measure to prevent breech strike 

(Hacker 2010).  
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2.6.2 Mulesing 

In order to provide a more permanent solution to breech strike, an operation known as mulesing 

was developed. Mulesing involves the surgical removal of both the wool and skin from around the 

breech area. This results in scarring when the wound heals. This scarred area is devoid of wrinkles 

and/or skin folds, thus there is less wool available for contamination with either urine or faeces. 

As a result this area becomes less attractive to the female flies (Tellam & Bowles 1997; Plant & 

Coombes 1988). Mulesing reduces the occurrence of breech strike as well as increasing the 

survival rate of sheep that get breech strike (Plant & Coombes 1988).  

While there are clear benefits of mulesing, there is also considerable producer and public 

opposition to this procedure, as it is a stressful procedure for sheep (Tellam & Bowles 1997; 

James 2006). Australia has seen a phased withdrawal of mulesing, and this presents particular 

challenges for the pastoral wool industry, as the mustering and treatment of sheep is more 

difficult and expensive than the practice of mulesing in some more intensive farming situations. 

There is currently no accepted alternative to mulesing, although there are several options under 

evaluation (Hacker 2010). 

2.6.3 Dipping and chemical prophylaxis 

Insecticides are heavily relied on in the wool industry as a method of controlling fly-strike. Not 

only are insecticides applied as a method to prevent fly-strike, they are also used as a dressing to 

already fly-struck areas on sheep. There has been a wide range of chemicals and insecticides used 

to control fly-strike. For example the earliest treatment for fly-strike used mixtures of arsenic 

trioxide, copper sulphate, sulphur and cresylic acid.   

Introduced in late 1940’s organochlorines were used extensively, but they were withdrawn from 

use in 1958 due to residue problems caused by the persistence of these insecticides in the 

adipose tissue of sheep. In this time fly larvae also developed resistance to this class of insecticide, 

particularly dieldrin. The organochlorines were replaced by a range of organophosphate 

insectides including: diazinon, fenthion, coumaphos, chlorfenvinphos, carbophenothion and 

malathion. These have been very successful as they can also be used to control lice on sheep as 

well as fly-strike. In the last 40 years organophosphorus insecticide use has become widespread, 

due to their relatively low cost of production, and the double benefit of controlling both lice and 

flies (Tellam & Bowles 1997).  
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There is now wide-spread resistance of L. cuprina to organophosphates, particularly diazinon. 

While organophosphate insecticides are still in use, their period of protection has changed from 

12 weeks to 4-6 weeks (Tellam & Bowles 1997).  

The most recent method of preventing fly-strike is with the use of insect growth regulators, such 

as triflumuron, dicyclanil and benzoyl-ureas diflubenzuron (Nottingham et al. 2001). These work 

by affecting the moulting process and development of larvae (West et al. 2009).  

2.6.4 Fly-trapping 

Fly-trapping has been shown to reduce the density of the fly population and the strike incidence. 

The placement of bait-bins on a sheep property which kept quantitative historical records of fly 

numbers and strike incidence, indicated that fly-strike and L. cuprina numbers were lowered by 

their presence (Anderson et al. 1990; Cook 1990; Urech et al. 2004). Chemical attractants lure 

flies into the devices which then traps them. The trapped flies die from starvation and 

dehydration (Tellam & Bowles 1997). 

The development of a practical, effective and economical trapping system for the L. cuprina could 

make fly populations and strike incidence suppression a feasible method for controlling fly-strike. 

Such control methods could reduce the use of insecticides, which would also decrease the 

associated residues in sheep products (Urech et al. 2004).  

Studies over the last 60 years have focussed on the type of volatile components emitted by 

natural sources that attract sheep flies. These studies have found that L. cuprina orientates 

towards bacterial strains that produce chemical attractants and volatile compounds from the 

myiatic lesions of sheep (Khoga et al. 2002; Urech et al. 2004).  Therefore flytraps that contain 

such chemical attractants and volatile compounds can be used to reduce fly numbers and fly-

strike. Liver and sodium sulphate has been found to be the best attractant for L. cuprina (Urech et 

al. 2002).  

LuciTrap is a commercially available fly trap, which has been shown to reduce L. cuprina 

populations and the incidence of fly-strike when used at a recommended rate of 1 trap per 100 

sheep (Urech et al. 2009). 

2.6.5 Vaccination 

Several studies have shown that sheep that have been vaccinated against P. aeruginosa are more 

resistant to fleece-rot and fly-strike (Burrell 1990), but commericial vaccines are not currently 

available.  
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In the past, fly vaccine development studies have shown that the sheep’s immune system is able 

to recognise components of the maggots as foreign and are able to generate immune responses 

(Colditz et al. 2006). However another trial in which sheep were repeatedly immunised in such a 

way as to induce a hypersensitivity reaction to the maggots, revealed that despite exhibiting good 

levels of protection to the first larval challenge, the initial level of protection did not persist after 

repeated challenges (Bowles et al. 1987). The immune response of sheep that are repeatedly 

challenged with maggots declines over time, which contrasts the strong increase in immune 

response observed for other pathogens such as viruses and bacteria (Colditz et al. 2006). This is 

believed to occur because when vaccinated sheep are challenged with live fly maggots, the 

maggots secrete a molecule that inhibits a key pathway in the mobilisation of the immue system, 

thus enabling the establishment of fly-strike. This occurs in vaccinated sheep, because the vaccine 

contains individual components of the maggots, which is injected into the sheep, and recognised 

as foreign generating a specific immune response. The live maggots are able to modulate the 

sheep immune system, preventing it from recognising the maggots as foreign invaders (Colditz et 

al. 2006).  

With the ongoing study of the host-immune response to myiasis and larval-host interactions it is 

possible that an affective vaccine against fly-strike will be designed in the future (Otranto 2001). 

2.6.6 Resistance to fly-strike 

Dr H.G. Belschner began the research into breeding sheep that were resistant to fly-strike at 

Trangie in the 1930s. The programmes primary objective was to develop sheep that are resistant 

to flystrike, while still maintaining other production attributes (McGuirk et al. 1980): 

1. Measured characteristics such as fleece weight, fertility and resistance to fly-strike; 

2.  Developed measurement techniques and management procedures for the breeding 

flock; 

3. Collected data from the lambs born;  

4. Estimated genotypic and phenotypic parameters; 

5. Formulated breeding plans and promoted these to the industry and breeders.  

Fly-strike and fleece-rot occurrence has a high genetic correlation (r =0.9), and therefore can be 

selected together when breeding for fly-strike resistant sheep (Morris 2009). For Merino sheep 

the susceptibility to body-strike is heritable, and was estimated by Raadsma 1989 to be 0.35-0.4. 

It has also been suggested that a major gene may account for 20% of the phenotypic variation in 

fleece-rot and 15% of the variation in body strike for Merino sheep (Mortimer 2001).  
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2.6.7 Fleece characteristics and fly-strike resistance 

The fleece is composed of the wool fibre, wax, suint and extraneous matter such as dirt, water, 

fungi and bacteria. Wool fibres are composed predominantly of fibrous proteins, keratin, and are 

coated by wax and suint. The sebaceous glands produce a lipid-rich wool wax or lanolin. The 

sebaceous glands are found in the dermis of various animals and the chemical composition of 

sebum is distinct in each species and even within members of the same species (Nikkari 1974: 

Cheng & Russell 2004). Wool wax is secreted by the sebaceous glands in order to protect the wool 

fibres from external damage. The wax is a mixture of cholesterol, lanosterol, fatty acids (e.g. 

palmitic and isostearic acid) and hydroxy fatty acids. Suint produced by the sweat glands contains 

diverse water soluble compounds, such as electrolytes (e.g. potassium carbonate and sulphate), 

fatty acids, organic acids, amino acids, urea and other nitrogenous compounds. These compounds 

provide nutrients for a variety of bacteria that survive in the fleece, including  P. aeruginosa,  

Bacillus subtilis, Enterobacter cloacae and Proteus mirabilis (Figure 2.8) (Emmens & Murray 1982). 

During periods of prolonged rainfall suint acts as a detergent that aids in the removal of wax from 

around the wool fibres. During this time the chemical composition of the wool wax is also altered. 

These conditions can give rise to both yellowing of wool and fleece-rot. Resistance to fleece-rot or 

yellowing have been described in sheep that have higher wax content than those which are more 

susceptible (Lipson et al. 1982; Evans and McGuirk 1983; Aitken et al. 1994). 

The sebaceous wax in wool is an efficient barrier against water, and can reduce the ease with 

which the fleece of a sheep is wetted and penetrated. The penetration of the fleece by water, and 

the subsequent wetting of the skin is necessary for fleece-rot to develop. Resistance to fleece-rot 

is associated with the waterproofing effect of a high sebaceous wax content. The fatty acids in the 

wax lower the pH of the wool and skin surface which inhibits bacterial growth (Lambers et al. 

2006). The components of sebum which are hypothesised to have the greatest antibacterial 

effects are oleic and palmitoleic acids. Oleic and palmitoleic acid are thought to inhibit fatty acid 

synthesis in bacteria (Smith & Thiboutot 2008).  
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Figure 2.8 Image of human hair follicle, and the sebaceous gland releasing sebum (wool wax). 

(http://www.pc.maricopa.edu/Biology/rcotter/BIO%20205/LessonBuilders/Chapter%2014%2

0LB/Ch14LessonBuilder_print.html).   

Reduction of the wax on the skin surface occurs due to wetting, and an increased amount of 

Pseudomonas sp. can be found in the fleece a day after wetting has occurred. This time period 

corresponds to the commencement of breakdown of the skin wax-layer and an increase in 

content of cholesterol and lanosterol in the skin wax (Merrit & Watts 1978; James et al. 1984). It 

has been theorised that the increase in cholesterol and lanosterol content of the wool during 

fleece-rot and dermatitis is due to bacterial action. Cholesterol is a powerful emulsifying agent in 

wool wax, and it seems likely that the physical breakdown in the skin-wax layer is caused by 

Pseudomonas sp. (Goodrich & Lipson 1978). The changes in wool wax seen in wetting 

experiments represent an increase in the hydrophilic character of the wax (Hay & Mills 1982; 

James et al. 1984).  

Important predisposing factors for body strike are: the presence of fleece-rot and bacterial lesions 

of the skin fleece contaminated with P. aeruginosa (and particularly in high rainfall areas) and 

mycotic dermatitis, (which is an infection of the skin with the bacteria Dermatophilus 



 19 

congolensis). These predisposing factors in sheep are present in combination with moisture, an 

abundance of soluble proteins and odours (Emmens & Murray 1982). These bacteria are not 

invasive but produce various extracellular enzymes and toxins which exacerbate the dermatitis, 

and attracts flies, thus increasing the risk of body strike (Burrell et al. 1982; Chin & Watts 1992) 

There is a high correlation between fleece-rot and body strike (0.7-0.9) and the resistances to 

both conditions has a moderate heritability (h2 = 0.35-0.4) (Raadsma et al. 1989).  

Common fly-strike species display an orientation towards the wind in response to an olfactory 

stimulus, known as the anemotactic response. Various sulphur compounds, ammonia and carbon 

dioxide in elevated levels, along with volatile organic acids and indolic compounds are produced 

by bacteria (P. aeruginosa, B. subtilis, P. mirabilis, E. cloacae) in wounds or disintegrated animal 

tissue. These compounds can act as ovipositor stimuli to attract several species of fly  including L.  

cuprina, and L. sericata (Emmens & Murray 1982; Khoga et al. 2002).  

2.7 Protein and resistance to fleece-rot and fly-strike 

The fatty acid-binding proteins (FABP) are small molecular-weight proteins which have a high 

binding affinity for long-chained fatty acids. These proteins transport fatty acids from the cell 

membrane to the sites of β-oxidation and triacylglycerol and phospholipid synthesis. FABPs come 

from a family of small cytoplasmic proteins that are around 14-15kDa in size, and are conserved 

through evolution from Drosophila to humans (Tuncmans et al. 2006). FABP’s are found in almost 

all cell types.  

There are about nine different types of FABPs that are recognised by the tissue in which they are 

found in. These included: (1) L-FABP or FABP1 which is found in the liver, (2) I-FABP or FABP2 

which is found in the intestines, (3) H-FABP or FABP3 which is found in the heart, (4) A-FABP or 

FABP4 which is found in the adipocyte tissue. (5) E-FABP or FABP5 which is found in the 

epidermis, (6) IL-FABP or FABP6 which is found in the ileal tissue, (7) B-FABP or FABP7 which is 

found in the brain tissue, (8) M-FABP or FABP8 which is found in myelin, and finally (9) T-FABP or 

FABP9 which is located in the testis (Bai et al. 2013). FABP4 has been described in humans, mice, 

pigs, chickens and cattle and it has been shown to have a conserved structure in all these species, 

with four exons interrupted by three introns (Yan et al. 2012). 

The FABP are found in adipocytes and macrophages, and play an important role in the molecular 

pathway that integrates metabolic and inflammatory responses. FABPs show a tissue-specific 

expression pattern and they are often regulated by the metabolic demands of the cells in which 

they are found. FABPs have a role as cytoplasmic lipid chaperones and mediate other lipid signals 
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via their interaction with functional targets. Both adipocytes and macrophages express the same 

two FABP isoforms; FABP4 and FABP5 and both isoforms are expressed at similar levels in 

activated macrophages. They are regulated by various metabolic and inflammatory mediators 

(Tuncmans et al. 2006). FABP4 is expressed in adipocytes and is regulated by peroxisome-

proliferator-activated receptor-ƴ (PPARƴ) agonists, insulin and fatty acids. The locus for the 

macrophage/adipocyte FABP4 gene is vital in the regulation and dysregulation of metabolic and 

inflammatory responses in their relation to metabolic diseases. FABP4 acts to coordinate 

functional interactions between macrophages and adipocytes in the adipose tissue (Figure 2.9) 

(Furuhashi et al. 2007).   
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Figure 2.9 Function of FABP4 in the adipocyte and macrophage. (a) FABP4 interacts with hormone-sensitive 

lipase (HSL) to potentially modulate its catalytic activity and integrates several signalling 

networks that control inflammatory responses. In addition FABP4 is also important in 

controlling adipocyte lipid hormone production. (b) In the macrophages, FABP4 regulates 

inflammatory responses. In both macrophages and adipocytes, FABP4 has a critical role in 

integrating lipid signals to organelle responses, particularly in the endoplasmic reticulum (RE). 

In the diagram AP1 is adaptor receptor protein 1; IGF is insulin like growth factor; IRS is insulin 

receptor substrate and TNF is tumour necrosis factor. (Furuhashi & Hotamisligil 2008). 

2.7.1 The structure of FABPs and FABP4 

All FABPs bind long-chain fatty acids and they all have small structural differences between the 

isoforms that result in different ligand selectivity, binding affinity and binding mechanisms. FABPs 
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have a wide range of sequence diversity, from 15% to 70% sequence identity between different 

members. However all FABPs share an almost identical three-dimensional structure. Generally, 

one or two conserved basic amino-acid side chains are required to bind the carboxylate site of a 

fatty-acid ligand in the binding pocket of a FABP (Simpson et al. 1999).  

All FABPs have a 10-stranded antiparallel β-barrel structure, which is formed by two orthogonal 

five-stranded β-sheets. The binding pocket is found inside the β-barrel, the opening of which is 

framed on one side by the N-terminal helix-loop-helix ‘cap’ domain, and fatty acids are bound to 

the interior cavity (Chmurzynska 2006; Furuhashi & Hotamisligil 2008).  

All FABP have a conserved fingerprint which derives from three motifs. Motif 1 includes the G-x-W 

triplet, which forms part of the first β-strand (βA). Motif 2 spans the C terminus of strand 4 (βD) 

and includes stand 5 (βE). Motif 3 encodes strand 9 (βI) and 10 (βJ). In FABP4, potential functional 

domains include a nuclear localization signal (NLS) and its regulation sites, nuclear export signal 

(NES) and a hormone-sensitive ligase (HSL) binding site 17, 26, 100.  Further detail can be found in 

the review by Furuhashi & Hotamisligil (Figure 2.10) (2008).  
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Figure 2.10 The structure of human FABP4 in complex with palmitic acid. (a) Ribbon diagram of FABP4. The 

bound palmitatic acid is shown as a cyan (the O atoms in red) CPK model. Phe75 is in 

magenta. The N- and C-termini are indicated as N and C. (b) the ligand-omitted electron-

density map is contoured at the 2.5σ level. Key hydrogen bonds are depicted in broken lime 

green lines. The palmitate structure is shown in yellow and cyan. The structure overlay of a 

folded form of bound oleate acid into the observed electron density is shown in red. (Marr et 

al. 2006). 

2.7.2 FABP4 in sheep 

In sheep FABP4 has been shown to be involved in the regulation of macrophage endoplasmic 

reticulum (ER) stress and it functions as a cytosolic lipid chaperone in macrophages (Erbay et al. 

2009). The adipose tissues house some of the most active lipid metabolism of any tissue. 

Adipocytes respond to insulin by the activation of glucose transport, the esterification of fatty 

acids into triacylglycerol and the synthesis of fatty acids (Baxa et al. 1989). FABP4 supplies long-

chain fatty acids that are used as an energy source for muscle growth and maintenance. The long 

chain fatty acids tend to be used for fat storage within muscle fibres (Dervishi et al. 2011).  
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Figure 2.11 Overview of the Ovis aries FABP4 gene (GenBank www.ncbi.nlm.nih.gov/gene/1.) 

A study by Smith et al. (2010) looking at fleece-rot resistance identified the FABP4 and FBLN1 

genes as key factors associated with fleece-rot resistance in sheep. In the Trangie Merino lines the 

susceptible line showed a significant association between the single nucleotide polymorphisms 

(SNPs) FABIn20237 and FABIn30360 and difference in post- and pre-wetting fleece-rot scores, 

(P<0.05) This accounted for between to 2.8% to 3.5% of the phenotypic variation. Significant 

results were also seen in the Trangie resistant line.  

Table 2.1 The difference between post-wetting trails of three populations of sheep and SNP associated with 

fleece-rot resistance. (Adapted from Smith et al. 2010).  

 

In the pre-wetting studies seven SNPs from two genes (three for the FABP4 gene and four from 

the FBLN1 gene) were found to be associated with fleece-rot resistance scores.  
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Yan et al. (2012) have studied the FABP4 gene in sheep. In their study two regions of the ovine 

FABP4 were analysed; in region 1 (exon 2-intron 2) they found five specific FABP4 sequences (A1-

E1). The sequence analysis showed that there were three nucleotide substitutions and one 

deletion in the intron. Four different patterns were detected in region 2 (exon 3-intron 3) with 

four nucleotide substitutions being revealed (A2-D2). The authors suggested that the variation 

seen in the FABP4 gene might underpin the differences seen in the fat and lean lines of sheep; 

with A1 having the highest frequency of 51% in fat line and C2 having the highest frequency of 59% 

in the lean line (Yan et al. 2012). 

Bakhtiarizadeh et al. (2013) showed that the expression of FABP4 in the fat-tail of Lori-Bakhtiari 

sheep was significantly higher than both the investigated tissues of the Zel sheep breed. Various 

other studies have reported the differential expressions of FABP4 in different adipose tissues, and 

that the gene expression of FABP4 is higher at the time of adipocyte differentiation 

(Bakhtiarizadeh et al. 2013).  

2.7.3 Other roles for FABP4 

Previous studies have suggested that FAPB4 is directly related to fatness traits and in beef cattle 

may be a potential marker for tenderness and intramuscular fat content (Michal et al. 2006; Jurie 

et al. 2007; Hoashi et al. 2008; Barendse et al. 2009; Lee et al. 2010). FAPB4 is expressed in the 

adipocytes, and therefore the relevance of FABP4 in the muscle tissue is a relative measure of the 

amount of intramuscular adipose tissue or of the number of intramuscular adipocytes, which 

represents a proportion number of the total muscle volume (Jurie et al. 2007). This is in 

agreement with the findings of Avilés et al. (2013) who showed the FABP4 marker (g7516G>C ) 

was significantly associated with the percentage of intramuscular fat and the variation in the 

marker explained 0.22% of the variation in the trait.  

Jurie et al. (2007) found that independent of genotype and muscle effect, the FABP4 protein 

content of muscle was significantly correlated with triacylglycerol content, strengthening the idea 

that FABP4 expression is associated with intramuscular fat content. This study provided evidence 

that FABP4 expression as measured by mRNA level and protein content is a good indicator of 

intramuscular adipocyte numbers, as well as oxidative enzyme activities and that FABP4’s 

expression is associated with fatty acid catabolism, therefore fat turn-over, and this may be a 

major metabolic indicator of the ability of animals to deposit intramuscular fat according to breed 

and muscle type (Jurie et al. 2007). 
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2.7.4 FABP4 association with wool wax:   

Lipids are vital to barrier function as the loss of waxes, and hydrophobicity in general, is thought 

to be a major factor protecting skin and wool from the development of fleece-rot reviewed 

(Norris et al. 2008). Three genes: Adenosine triphosphate (ATP)-binding cassette transporter sub-

family C member 11 (ABCC11), FABP4 and fatty acid desaturase 1 (FADS1) were found to play an 

important role in lipid metabolism. Members of the ATP-binding transport protein superfamily, 

including ABCC11, are involved in the transport of sphingolipids, glycerophospholipids, cholesterol 

and fatty acids in epidermal lipid reorganization during keratinocyte terminal differentiation 

(Smith et al. 2010).  

FABP4 has been shown to be induced in phoshatase and tensin (Pten)-null keratinocytes, 

suggesting a role in sebaceous gland differentiation (Tsuda et al. 2009). FABP4 has been 

suggested to selectively enhance the activities of peroxisome proliferator-activated receptor 

gamma (PPARwhich is a member of the nuclear hormone receptor family, that regulates genes 

involved in sebaceous differentiation (Michalik & Wahli 2007). Keratinocyte-specific Pten-null 

mice display distinct phenotypes, including wrinkled skin, ruffled shaggy and curly hair. 

Histological examination showed that these mice have acanthosis, sebaceous gland hyperplasia 

and accelerated hair follicle morphogenesis (Suzuki et al. 2003). Tsuda et al. (2009) study found 

the FABP4 gene to be the strongest induced gene in the Pten-null keratinocytes; this suggests that 

FABP4 plays a role in the development of the sebaceous gland hyperplasia seen in these mice 

(Michalik & Walter 2007; Tsuda et al. 2009).  

FABP5 (another isotype of FABP) has been shown to be localised in sebaceous glands (Watanabe 

et al. 1996) and has been suggested to regulate sebaceous gland activity by modulating lipid 

signaling and/or lipid metabolism in sebocytes (Lin & Khnykin 2013).  
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Chapter 3 

Methods 

3.1 Blood sample collection 

156 blood samples were taken from sheep with fly-strike and 130 from sheep without fly-strike 

and these samples were collected from 18 different farms throughout the greater Canterbury 

region. Samples were collected with farmer consent and according to normal farm management 

practices.  

Sheep were identified as having fly-strike when maggots could be seen on the skin of the sheep as 

they were being shorn and the wool was discoloured and bad smelling. Sheep that had previously 

had fly-strike were also identified by having areas of pink skin with no wool growth, obvious scar 

tissue from maggot damage and flakey dry skin that had been damaged by maggots.  

Sheep of various age and breed with fly-strike were identified at shearing, and blood samples 

were taken from them by cutting the lower part of the ear near the tip, where the prominent vein 

ends, Figure 3.1. Electrical side-cutters were used, to clip the ear, as these do not get 

contaminated by blood when the ear is clipped.  

 

Figure 3.1 Use the electrical side cutters to make a cut in the bottom tip of the ear. (Instruction for Sheep 

Blood Collection on FTA Card ). 

Blood drops where collect onto FTA cards. The FTA cards were labelled according to farm and the 

presence or absence of fly-strike. The blood was allowed to dry and was stored in darkness at 

room temperature.  
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Figure 3.2 Collecting blood onto the FTA cards. (Instruction for Sheep Blood Collection on FTA Cards).  

Control sheep were matched to the struck sheep by being from the same property as the sheep 

with fly-strike. 

The blood samples were taken to the Lincoln University Gene Marker laboratory for testing.  

 

Figure 3.3 Active fly-strike and healed fly-strike (From  

http://www.liveexportshame.com/what_is_animal_welfare.htm and Curran 2006 

respectively). 

3.2 PCR-SSCP analysis and genotyping of ovine FABP4 (undertaken by Dr H 
Zhou) 

Two PCR primers, 3’-CAGGAATTTGATGAAGTCACT-5’ and 3’-GTAACATGGTTCAGAGCTAG-5’, were 

designed based on the published sequences JX290313-JX290317 (Yan et al., 2012; Appendices A 

and B) to amplify a variable region of ovine FABP4 containing part of exon 2 and intron 2. The 

primers were synthesised by Integrated DNA Technologies (Coralville, IA, USA). 

PCR amplification was performed in a 15-μL reaction containing the genomic DNA on one 1.2-mm 

punch of FTA card, 0.25 μM of each primer, 150 μM dNTP’s (Bioline, London, UK), 2.5 mM of 

Mg2+, 0.5 U of Taq DNA polymerase (Qiagen, Hilden, Germany) and 1× the reaction buffer 

supplied with the enzyme. The thermal profile consisted of 2 min at 94 oC, followed by 35 cycles 
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of 30 s at 94 oC, 30 s at 60 oC and 30 s at 72 oC, with a final extension of 5 min at 72 oC. 

Amplification was carried out in S1000 thermal cyclers (Bio-Rad, Hercules, CA, USA). 

Amplicons were visualized by electrophoresis in 1% agarose (Quantum Scientific, Queensland, 

Australia) gels, using 1 x TBE buffer (89 mM Tris, 89 mM boric acid, 2 mM Na2EDTA) containing 

200 ng/mL of ethidium bromide. 

A 0.7-μL aliquot of each amplicon was mixed with 7 μL of loading dye (98% formamide, 10 mM 

EDTA, 0.025% bromophenol blue, 0.025% xylene-cyanol). After denaturation at 95 oC for 5 min, 

samples were rapidly cooled on wet ice and then loaded on 16 cm × 18 cm, 14% 

acrylamide:bisacrylamide (37.5:1) (Bio-Rad) gels. Electrophoresis was performed using Protean II 

xi cells (Bio-Rad), at 250 V for 18 h at 11 oC in 0.5 × TBE buffer. Gels were silver-stained according 

to the method of Byun et al. (2009). 

3.3 Statistical analysis 

Of the 156 and 130 blood samples collected from sheep with flystrike and without flystrike 

respectively, only 92 sheep with fly-strike and 93 without fly-strike were genotyped in total. These 

were then tested using an odds ratio test to look at the presence/absence of each allele, and a 

Chi-square analysis to see if there was a significant difference between the presence and absence 

of various alleles and the presences and absence of fly-strike.  
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Chapter 4 

Results 

4.1 Variants of FABP4 

The previously identified A1, B1, C1 and D1 variants of the exon-2-intron 2 region of the FABP4 gene 

were all identified in the blood samples collected. Although there is an E1 variant (Yan et al. 2012) 

of this region of the gene, it was not detected. The variant sequences have been previously 

deposited into GenBank with accession numbers JX290313-JX290317 (Yan et al. 2012). In the 185 

sheep of various breeds studied, the B1 variant was the most common, with very few D1 variants 

found.   

 

Figure 4.1 The PCR-SSCP banding patterns for the different combinations of variants of the FABP4 gene. 

The different banding patterns on the gel showed the variation in the FABP4 gene. Figure 4.1 

could be identified as two unique bands. B1 also has a two bands pattern. but they are spaced 

further apart than the A1 variant bands. The C1 variant with A1 as a heteropzygote has a single 

banding pattern further away from the  A1  bands, while the D1 variant also found with A1 in 

(Figure 4.1) has one band in close proximity to A1  bands.  

 

 

B1/B1      A1/A1    A1/A1     A1/B1    A1/D1      B1/B1     A1/C1 
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Table 4.1 Sequence variation in ovine FABP4. (Adapted from Yan et al. 2010). 

 

Three nucleotide substitutions and a nucleotide insertion/deletion have previously been 

described by Yan et al. (2010). This shows the difference between the four variants of FABP4 

found in this study.  

Table 4.2 Number of sheep with and without fly-strike observed with variant A1, B1, C1 or D1. 

Variant With fly-strike Without fly-strike 

A1 25 43 

B1 62 68 

C1 53 33 

D1 13 6 

 

4.2 Chi-squared 

Table 4.3 Chi-squared table based on variant frequency, expressed as percentage of sheep with and 

without fly-strike carrying the respective variant.  

Variant With flystrike Without flystrike 

A1 16 25 

B1 42 52 

C1 35 20 

D1 7 3 

 

Chi-squared equals 21.746 with 3 degrees of freedom. The two-tailed P value is less than 0.0001. 

This demonstrated that there is a highly significant association between the variants of FABP4 and 

resistance/susceptibility to fly-strike in sheep.  
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4.3 Odds ratio 

Figure 4.2 Results of the odds ratio test 

 

 

 

 

 

The odds ratio test (Table 4.4) gives a significant p value for the A1 and C1 variants, 0.0073 and 

0.0154 respectively. These results suggest that sheep with the C1 allele are more likely to have fly-

strike than sheep with the A1 variant. B1 and D1 do not show a significant difference, meaning if 

the sheep has the B1 variant present it is just a likely to get fly-strike as it is to not get fly-strike. 

There was a very small number of sheep that expressed the D1 variant, thus the insignificant result 

is not surprising, and it is possible that it might reach significance in a larger study.  

Those sheep with the A1 variant had 0.4677 the expected likelihood of getting flystrike while 

those with the C1 variant had 1.8791 times the expected likelihood of getting flystrike.  

 

 

Variant Odds ratio P value 

A1 0.4677 0.0073 

B1 0.8216 0.3978 

C1 1.8791 0.0154 

D1 2.2286 0.1144 
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Chapter 5 

Discussion 

The aim of this study was to determine if there is an association between fly-strike resistance in 

sheep and variations in the FABP4 gene. Sheep with the A1 variant of FABP4 were less likely 

(P<0.0073) to get fly-strike than those without A1. However it is still impossible to say absolutely if 

a sheep carrying the A1 variant will, or will not get fly-strike.  

There was also a difference seen with the presence of the C1 variant compared to the absence of 

the C1 variant, with C1-carrying sheep being more likely to be struck by flies.  

Sheep that carry the B1 variant showed no significant difference in the presence and absence of 

fly-strike and very few sheep were found that carried the D1 variant. No sheep were found that 

were homozygous for D1 (Appendix C), therefore any affect is more likely to be the result of the 

other FABP4 allele they are carrying.  

Although the results showed that sheep carrying the A1 variant are less likely to get fly-strike than 

those that are not, and that sheep with the C1 variant are more likely to get fly-strike than those 

without it, it is still impossible to predict which sheep will and will not get fly-strikes. The chi-

square test performed on the results was highly significant (P= 0.0001) which suggest that 

genotype of the sheep can determine how likely a sheep is to get flystrike or not.  

In this study, four variants of FABP4 were detected (A1-D1).  In contrast Yan et al. (2012) detected 

five specific sequences (A1-E1), E1 was not found in these fly-strike and non-fly-strike sheep. The E1 

variant in Yan et al. (2012) was only found in a few sheep they studied, thus it is not that 

surprising that it was not found in this study due to the small number of sheep tested here. Larger 

studies may detect its presence in future.  

Yan et al. (2012) also found that some sequences were not observed in some of the breeds, and 

the variant frequencies between some breeds were quite different (Appendix B). They suggested 

that the variation seen in the FABP4 gene might underpin the differences seen in fat and lean 

lines of sheep that they studied; with A1 having the highest frequency 51% in the fat line and C1 

having the highest frequency 59% in the lean line.  

There seems to be some correlation between the work of Yan et al. (2012) and the present study. 

While the variations in FABP4 were in Hardy-Weinberg equilibrium in the sheep studied here, 
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Hardy-Weinberg equilibrium could not be analysed in the lean and fat lines as individual genotype 

data was not available. Given that the lean and fat lines are selection lines that have been inbred 

for many years (Yan et al. 2012) it would however seem unlikely that they are in Hardy-Weinberg 

equilibrium (Appendix C).  

In the present study, sheep with the A1 variant were the least likely to get fly-strike, and these 

sheep in Yan et al. (2012), were the sheep predominately found in the fat line. This could be due 

to the higher carcass fat content of these sheep, which means these sheep may have higher lipid 

content in their wool. Wool wax contains fatty acids, which coats the wool and skin and inhibits 

bacterial growth by lowering the pH of the skin surface (Lambert et al. 2006). This would need 

further investigation to be confirmed.  

The C1 variant in Yan et al’s. (2012) study was more common in their lean line and fly-strike was 

also more prevalent with this variant of FABP4 in this study. In contrast to the situation above, 

this may suggest that the likely mechanism behind this effect is that fewer lipids are present in 

the wool of the C1 variant sheep, making it easier for bacteria to grow. If more bacteria grow 

and/or produce different odours in the right conditions, this might cause fleece-rot, which attracts 

flies. As concluded above, further research is also required to test this theory.  

Smith et al. (2010) was the first study to report gene expression changes in the skin of sheep 

before, during and after the induction of fleece-rot challenge. At each time gene expression 

responses were compared between the Trangie resistant and susceptible populations of sheep 

and it was found that the FABP4 and FBLN1 genes had different expression patterns between 

these phenotypic extremes. Further gene association studies identified FBLN1 and FABP4 as key 

factors in the ability of sheep to resist fleece-rot. Validation of these markers in other populations 

could lead to vital tests for marker-assisted selection that would ultimately increase the resistance 

of sheep to fly-strike, thus reducing its prevalence. This study supported Smith et al.’s contention 

that FABP4 is an important gene involved in the susceptibility and resistance of fleece-rot, and 

therefore fly-strike susceptibility and resistance, but as stated above further work needs to be 

done to define the role that FABP4 plays in both fleece-rot and fly-strike susceptibility.   

5.1 Other considerations in how FABP4 variation may affect fly-strike 

susceptibility 

From the literature there is evidence of FABP4’s role in adipose tissue metabolism. It could 

therefore be assumed that differences in fly-strike susceptibility and resistance in sheep carrying 
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different variants of the FABP4 gene could also be associated with the differences in fat 

deposition, which can be further differentiated between breeds.  

Bakhtiarizadeh et al. (2013) used Lori-Bakhtiari and Zel sheep to investigate the differences in 

gene expression in fat-tail and visceral adipose tissue. Their results showed that the expression of 

FABP4 was significantly higher in the fat-tail of Lori-Bakhtiari sheep than that of both the fat-tail 

and visceral tissue of the Zel sheep. The higher expression of the FABP4 gene in the fat-tail tissue 

of Lori-Bakhtiari sheep can be related to more fatty acid transportation into the fat-tail compared 

with the Zel’s adipose tissue (fat-tail and visceral adipose tissue) (Bakhtiarizadeh et al. 2013).  

If adipose fat is a factor that is causing fly-strike resistance in sheep then the higher expression of 

FABP4, leading to more fatty acid transport into various areas of the body could be a mechanism 

for this. In order to test this, the breech strike resistance of the Lori-Bakhtiari sheep could be 

tested compared to that of thin-tail breeds. Based on the raw comparison of Yan et al. (2012) and 

the present study (Appendix D) it is possible that the fat-tail sheep will have a higher frequency of 

the A1 variant, and less fly-strike present, while the thin tail sheep will have a higher frequency of 

the C1 variant and more fly-strike present.  

5.2 Other evidence that FABP4 may affect sebaceous gland lipid 

production in animals 

FABP4, along with ABCC11 and FADS1 have a role in lipid metabolism and have been found to be 

involved in the transport of sphingolipids, glycerophospholipids, cholesterol and fatty acids in 

epidermal lipid reorganization during keratinocyte terminal differentiation (Smith et al. 2010). 

Tsuda et al.’s (2009) study found the FABP4 gene to be the strongest induced gene in the Pten-

null keratinocytes; this suggests that FABP4 plays a role in the development of the sebaceous 

gland hyperplasia seen in these mice. It has recently been suggested that FABP4 selectively 

enhances PPAR, a member of the nuclear hormone receptor family, which regulates genes 

involved in sebaceous differentiation (Michalik & Walter 2007; Tsuda et al. 2009). Therefore 

variations in FABP4 could influence changes in sebaceous gland production, resulting in different 

levels of wool wax secretions, and even different lipids and long chain-fatty acids secretions into 

the wool.  

The wool wax of sheep is considered to be an important barrier from infection. Older sheep are 

more resistant to Dermatophilus congolensis infection, because they can better maintain the 

integrity of the wool wax layer (Roberts 1963). In association with this, older sheep show greater 

resistances to fleece-rot and fly-strike than younger sheep (Belschner 1937). Warren et al. (1983) 
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found that mature sheep have a thicker wax layer than lambs, which could be why older sheep 

have a greater resistance to fleece-rot and fly-strike. Roberts (1863) found that the resistance to 

fleece-rot is associated with the waterproofing effect of high sebaceous wax content. In addition, 

he found that younger sheep have a relatively high incidence of fleece-rot, and suggested this 

could be due to the greater penetrability of their more open fleeces (Robert 1963). This would 

also make them more susceptible to fly-strike. In order to determine FABP4’s role in fleece-rot 

and fly-strike development the expression of FABP4 could be compared between age groups. As 

younger sheep are more likely to get fleece-rot and fly-strike, it is possible that they have a lower 

expression of FABP4 than older sheep. However it could also be due to the acquisition of 

immunity with age.  

5.3 Fly-strike resistance, animal odour and the role of lipids 

Studies have focused on the orientation of L. cuprina towards fleece and chemical attractants 

(Eisemann 1995; Morris et al. 1998) and the identification of volatile components from bacterial 

strains isolated from myiatic lesions of sheep (Khoga et al., 2002). These chemicals attractants 

from bacterial strains produce different odours which are likely to vary with the different 

variations of FABP4 in sheep, and therefore affect their resistance or susceptibility to fly-strike. In 

order to test this a similar study to that done by Emmens & Murry (1982) could be done, where 

samples of wool from sheep that had been genotyped for FABP4 could be cultured with fleece-rot 

causing bacteria in vitro and exposed to flies to see if there is a difference in fly-strike occurring 

with the wool from sheep with different variations of FABP4.  

5.4 The implications of FABP4 potentially affecting flystrike susceptibility 

in the context of the gene being associated with variation in other 

traits 

As the FABP4 gene appears to be associated with fat and lean lines of sheep (Yan et al. 2012), and 

various carcass traits in cattle (Michal et al. 2006; Jurie et al. 2007; Hoashi et al. 2008; Barendse et 

al. 2009; Lee et al. 2010) it is important to note that selecting sheep on their potential for fly-

strike resistance may also affect their carcass trait characteristics. This could conflict with current 

consumer demands, especially as a major issue affecting the consumption of red meat is the need 

for improvement of lean meat yield, eating quality and human nutritional value. Consumers want 

meat with less fat, and this is most efficiently achieved by producing relatively leaner slaughter 

animals on farm (Pethick et al. 2011). Further study on the effects of FABP4 on leanness and 
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fatness carcass traits of sheep and its association with fly-strike resistances and susceptibility are 

required, in order to demonstrate a clear correlation. 

As mentioned above, there is a high correlation between fleece-rot and body strike (0.7-0.9), 

which has a moderate heritability of 0.35-0.4 (Raadsma et al. 1989). Therefore it is feasible to 

breed sheep that are resistant to fleece-rot, and in turn resistant to fly-strike. This idea has been 

the bases of the long standing breeding project at Trangie, NSW.  However these sheep have been 

bred based on artificially induced fleece-rot and fly-strike in order to select sheep for resistance or 

susceptibility. This makes the idea of a commercial gene-test more compelling, as it means sheep 

do not need to be exposed to fleece-rot causing bacteria or fly-strike, which can cause wool 

production loses, as affected wool must be removed from the main line of fleeces (Henderson 

1965). Sheep infected with fly-strike have a reduced feed-intake, high temperatures and show a 

reduction in wool production (Guerrine 1988). Exposing sheep to fleece-rot and fly-strike for 

research purposes would require ethical approval that looked at what is in the best interest of the 

animal. 

Further studies would need to be done before a commercial gene test could be developed. Fly-

strike might never be completely eradicated, however a gene test along with improved 

management practices could reduce the prevalence of fly-strike along with the use of chemical 

dips. Reducing fly-strike would save millions of dollars for the sheep industry. Management 

practices that might be incorporated along with gene-marker test selection include the use of fly-

traps and crutching in-between shearing times.  

5.5 Limitations in this study of FABP4 and flystrike resistance 

This was the first study to look at FABP4s association specifically with fly-strike. Therefore much 

more work needs to be done in this area. Although there is much research on FABP4 function as 

an intracellular transporter, there is no current research about how variations in FABP4 cause 

sheep to be more resistant or susceptible to fly-strike.  

A major limitation to this study was the timing of year. The study began at the start of February, 

and collections of blood samples from sheep with fly-strike continued until May. It is unfortunate 

that the study did not begin early in the summer (December of the previous year) as this would 

allow for a greater sampling period, during peak fly-strike season. A further limitation is the time 

restraints of the study. Running the study over a period of two or three years would allow for 

more samples to be collected.  
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The sample size is another limitation, although it does relate to the timing of sampling. A greater 

sample size allows for a greater confidence in results.  

Blood samples were collected based on the presence or absence of fly-strike, and the presence of 

fly-strike included sheep that had suffered from fly-strike, but had recovered. The two groups of 

fly-struck sheep were not separated. These sheep could show different genetic effects, but they 

would have to be separated in order to determine if this was the case.  

Another limitation is that the sheep used were not recorded sheep, and there is no way of 

knowing if sheep from any given farm are related. Because the pedigree of these sheep is 

unknown it is impossible to know if there are any sire affects associated with their 

resistance/susceptibility. It is not known if there were half-siblings in this study, but there could 

be numerous other genes that could have been co-inherited through the sire-line and which could 

have various effects on traits that influence fly-strike susceptibility and resistance. 

5.6 Suggestions for the future study of flystrike resistance with the 

possible role of FABP4 in variations in susceptibility 

Future research should focus on the effect of FABP4 variations on the resistance and susceptibility 

sheep have to fly-strike. Although there were some significant results in this study much 

improvement could be made. In future studies the following should occur: 

 The use of recorded sheep, therefore their pedigrees can be traced, and if need be their 

sire and dam can be genotyped.  

 More animals should be used in the trial. If the effect of FABP4 variations is small.  

• Sheep should be separated into categories based on breed, gender, and age, as there is a 

difference seen between these traits and susceptibility to fly-strike. Female sheep are 

more likely to get fly-strike.  

• The types of fly-strike occurring should also be recorded, such as breech, tail, pizzle, poll 

and body. The prevalence of the different types of fly-strike can vary at different times of 

year and between different classes of animals.  

• In this trial sheep with fly-strike along with sheep that showed evidence of having had fly-

strike were put into the same group. In future studies these sheep should be separated, 

as it could be a genetic effect causing the sheep to recover from the fly-strike, through 

innate or acquired immunity.  
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• Details of the region where sample collection took place should also be recorded. In the 

present study samples were taken from sheep throughout the Canterbury region. Areas 

within this region can vary considerably, and recording factors such as humidity, altitude, 

temperature and rainfall can affect the prevalence of fly-strike.  

• The time of year should also be recorded, because as mentioned above the type of fly-

strike occurring can vary with the time of year.   

• The breeding program at Trangie (NSW, Australia) has selectively breed sheep to be 

susceptible or resistant to fly-strike, and therefore would be ideal sheep to genotype for 

the FABP4 gene in future studies.  

 The breed of fly causing the fly-strike could also be recorded in future studies. This would 

require the collection of maggots to identify the species of fly. The fly-strike would have 

to be active in order to do this.  

The method of identifying sheep with fly-strike at shearing time and taking blood samples 

accordingly worked well in the present study, and would work well in future studies. Shearing 

time is an ideal time to collect blood sample from sheep with and without fly-strike, as it is easy to 

identify sheep that have been fly-struck as they are being shorn. It is also an easy time to collect 

the blood from the sheep as they are being held by the shearer. In some cases the shearer will 

unintentionally cut the sheep, allowing for blood collecting without having to additionally cut the 

sheep. Many farmers shear, or crutch during the summer months. This is when fly-strike is most 

prevalent, and it is an ideal way to get many blood samples, without having to bring the sheep in 

again.  
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Chapter 6 

Conclusion 

It is generally accepted that breeding for resistance to myiasis could be a good long-term solution 

against this significant issue. There are several notable traits found that increase susceptibility to 

breech strike. The main indicator traits that have been identified for myiasis in the breech area 

are: accumulated faecal matter, urine stains, wrinkles, breech wool coverage and other wool 

traits. The FABP4 gene has previously been associated with fleece-rot resistance (Smith et al. 

2010), making it an ideal candidate gene to investigate for fly-strike resistance in sheep. In this 

study sheep with the A1 variant of FABP4 had significantly less fly-strike than sheep without the A1 

variant and sheep with the C1 variant had significantly more fly-strike than those without it. This 

suggests that the A1 and C1 variants could be markers for the selection of fly-strike resistance into 

breeding programs. With further study it might be possible to develop a gene-marker test, which 

will allow farmers to selectively breed sheep that are resistant to fly-strike. 
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Appendix A 

Published sequences of FABP4 

The gene bank accession numbers of FABP4: JX290313-JX290317.  

A.1 Ovis aries fatty acid binding protein 4 (FABP4) gene, FABP4-A variant, 

exon 2 and partial cds 

ORIGIN       

        1 tgtgggcttt gctaccagga aagtggctgg catggccaaa cccactgtga tcatcagtgt 

       61 aaatggggat gtggtcaaca ttaaatcaga aagcaccttt aaaaatactg agatgtcctt 

      121 caaattgggc caggaatttg atgaagtcac tccagatgac aggaaagtca aggtgaggaa 

      181 taaagaactg gagcagagta aaagcctggt ttataaacga ctgctgccta tatatagcaa 

      241 gccattttgt agaaggagga aagccattcc attataagcc aaaaagctca gattgctagc 

      301 tctgaaccat gttactgttg atatttagtt ggtgaattgt ctcccattta 

A.2 Ovis aries fatty acid binding protein 4 (FABP4) gene, FABP4-B variant, 

exon 2 and partial cds 

ORIGIN       

        1 tgtgggcttt gctaccagga aagtggctgg catggccaaa cccactgtga tcatcagtgt 

       61 aaatggggat gtggtcaaca ttaaatcaga aagcaccttt aaaaatactg agatgtcctt 

      121 caaattgggc caggaatttg atgaagtcac tccagatgac aggaaagtca aggtgaggaa 

      181 taaagaactg gagcagagta aaagctgatt tataaacgac tgctgcctat atatagcaag 

      241 ccattttgta gaaggaggaa agccattcca ttataagcca aaaagctcag attgctagct 

      301 ctgaaccatg ttactgttga tatttagttg gtgaattgtc tcccattta 

A.3 Ovis aries fatty acid binding protein 4 (FABP4) gene, FABP4-C variant, 

exon 2 and partial cds 

ORIGIN       

        1 tgtgggcttt gctaccagga aagtggctgg catggccaaa cccactgtga tcatcagtgt 

       61 aaatggggat gtggtcaaca ttaaatcaga aagcaccttt aaaaatactg agatgtcctt 

      121 caaattgggc caggaatttg atgaagtcac tccagatgac aggaaagtca aggtgaggaa 

      181 taaagaactg gagcagagta aaagcctgat ttataaacga ctgctgccta tatatagcaa 
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      241 gccattttgt agaaggagga aagccattcc attataagcc aaaaagctca gattgctagc 

      301 tctgaaccat gttactgttg atatttagtt ggtgaattgt ctcccattta 

 

A.4 Ovis aries fatty acid binding protein 4 (FABP4) gene, FABP4-D variant, 

exon 2 and partial cds 

ORIGIN       

        1 tgtgggcttt gctaccagga aagtggctgg catggccaaa cccactgtga tcatcagtgt 

       61 aaatggggat gtggtcaaca ttaaatcaga aagcaccttt aaaaatactg agatgtcctt 

      121 caaattgggc caggaatttg atgaagtcac tccagatgac aggaaagtca aggtgaggaa 

      181 taaagaactg gagcagagta aaagcctgat ttataaatga ctgctgccta tatatagcaa 

      241 gccattttgt agaaggagga aagccattcc attataagcc aaaaagctca gattgctagc 

      301 tctgaaccat gttactgttg atatttagtt ggtgaattgt ctcccattta 

 

A.5 Ovis aries fatty acid binding protein 4 (FABP4) gene, FABP4-E variant, 

exon 2 and partial cds 

ORIGIN       

        1 tgtgggcttt gctaccagga aagtggctgg catggccaaa cccactgtga tcatcagtgt 

       61 aaatggggat gtggtcaaca ttaaatcaga aagcaccttt aaaaatactg agatgtcctt 

      121 caaattgggc caggaatttg atgaagtcac tccagatgac aggaaagtca aggtgaggaa 

      181 taaagaactg gagcagagta aaagcctgat ttataaacaa ctgctgccta tatatagcaa 

      241 gccattttgt agaaggagga aagccattcc attataagcc aaaaagctca gattgctagc 

      301 tctgaaccat gttactgttg atatttagtt ggtgaattgt ctcccattta 
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Appendix B 

Raw data from FABP4 gene analysis 

LAB  ID Farm 
Fly-
strike FABP4 

JT 23 JT N aa 

OP 17 OP Y aa 

RJ 19 RJ N aa 

TB 7 TB Y aa 

TB'5 TB N aa 

CC 21 CC N ab 

CC 26 CC N ab 

GL4 GL Y ab 

JT 28 JT N ab 

JT 32 JT N ab 

R 7 R N ab 

RJ 18 RJ N ab 

RJ 24 RJ N ab 

RJ 25 RJ N ab 

RJ 26 RJ N ab 

RJ 27 RJ N ab 

RJ 4 RJ Y ab 

TB 1 TB Y ab 

TB 10 TB N ab 

TB 2 TB Y ab 

WP 9 WP N ab 

BT4 BT Y ab 

DH4 DH Y ab 

JW11 JW Y ab 

JW12 JW Y ab 

JW21 JW N ab 

JW23 JW N ab 

JW27 JW N ab 

JW5 JW Y ab 

TB'6 TB N ab 

TB'7 TB N ab 

CC 32 CC N ac 

CC 6 CC Y ac 

BT6 BT N ac 

JW24 JW N ac 

CC 11 CC Y ad 

RJ 22 RJ N aa 

CC 22 CC N bb 

CC 30 CC N bb 

GL7 GL N bb 

JT 22 JT N bb 
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JT 4 JT Y bb 

KP 2 KP Y bb 

MM 13 MM N bb 

MM 2 MM Y bb 

MM 4 MM N bb 

MS 10 MS N bb 

MS 11 MS N bb 

MS 12 MS N bb 

MS 5 MS Y bb 

R 5 R N bb 

RJ 13 RJ N bb 

RJ 14 RJ N bb 

RJ 15 RJ N bb 

RJ 17 RJ N bb 

RJ 20 RJ N bb 

RJ 21 RJ N bb 

RJ 3 RJ Y bb 

RJ 5 RJ Y bb 

RJ 7 RJ Y bb 

TB 13 TB N bb 

TB 14 TB N bb 

TB 3 TB Y bb 

WP 4 WP Y bb 

DH11 DH N bb 

DH5 DH Y bb 

JW16 JW N bb 

JW17 JW N bb 

JW18 JW N bb 

JW19 JW N bb 

JW20 JW N bb 

JW26 JW N bb 

JW30 JW N bb 

TB'1 TB Y bb 

TB'3 TB Y bb 

CC 15 CC Y bc 

CC 9 CC Y bc 

JT 11 JT Y bc 

JT 12 JT Y bc 

JT 24 JT N bc 

JT 25 JT N bc 

JT 29 JT N bc 

JT 6 JT Y bc 

TB 15 TB N bc 

WP 7 WP N bc 

BT3 BT Y bc 

JW2 JW Y bc 

JW25 JW N bc 
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JW28 JW N bc 

TB'4 TB Y bc 

TB'8 TB N bc 

CC 10 CC Y bd 

CC 13 CC Y bd 

CC 33 CC N bd 

GL10 GL N bd 

JM 1 JM Y bd 

JM 3 JM Y bd 

MM 14 MM N bd 

OP 36 OP Y bd 

TB 12 TB N bd 

TB 6 TB Y bd 

OP 21 OP Y bb 

RJ 10 RJ Y bb 

RJ 12 RJ Y bb 

RJ 16 RJ N bb 

RJ 11 RJ Y cc 

WP 2 WP Y cc 

RJ 1 RJ Y cd 

JT 10 JT Y cc 

KP 3 KP Y cc 

KP 5 KP Y cc 

JW3 JW Y cc 

JT 15 JT Y ac 

JT 21 JT N ac 

KP 13 KP N ac 

KP 20 KP N ac 

KP 23 KP N ac 

MM 3 MM N ac 

MM 6 MM N ac 

MS 1 MS Y ac 

GL3 GL Y cc 

JM 15 JM N cc 

JM 16 JM N cc 

JM 17 JM N cc 

KP 1 KP Y cc 

MM 12 MM Y cc 

OP 19 OP Y cc 

OP 24 OP Y cc 

R 6 R N cc 

TB 4 TB Y cc 

JW6 JW Y ab 

JW9 JW Y ab 

GL11 GL N ab 

JT 30 JT N ab 

JT 31 JT N ab 
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JT 8 JT Y ab 

KP 17 KP N ab 

KP 18 KP N ab 

WP 8 WP N ab 

BT2 BT Y ac 

BT5 BT N ac 

DH1 DH Y ac 

DH10 DH N ac 

DH8 DH N ac 

GL9 GL N ac 

JT 26 JT N ac 

JW15 JW Y ac 

MM 10 MM Y ac 

MM 9 MM N ac 

OP 18 OP Y ac 

TB 8 TB Y ac 

GL6 GL Y ad 

JM 18 JM N ad 

DH7 DH N bb 

BT1 BT Y bb 

JW1 JW Y bb 

JW10 JW Y bc 

JW13 JW Y bc 

CC 28 CC N bc 

DH2 DH Y bc 

DH3 DH Y bc 

GL 1 GL Y bc 

JT 13 JT Y bc 

JT 7 JT Y bc 

JW4 JW Y bc 

KP 12 KP N bc 

KP 6 KP Y bc 

KP 7 KP Y bc 

KP 9 KP Y bc 

OP 1 OP Y bc 

OP 10 OP Y bc 

OP 16 OP Y bc 

OP 20 OP Y bc 

OP 26 OP N bc 

OP 5 OP Y bc 

R 3 R Y bc 

RJ 9 RJ Y bc 

TB 11 TB N bc 

TB 9 TB N bc 

TB'2 TB Y bc 

JM 11 JM N cd 

JM 6 JM Y cd 
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JT 9 JT Y cd 

R 2 R Y cd 

TB 5 TB Y cd 

 

Raw data: 

Alleles With flystrike Without flystrike 

aa 3 3 

ab 12 23 

ac 9 15 

ad 2 1 

bb 17 28 

bc 27 13 

bd 6 4 

cc 12 4 

cd 5 1 

 93 92 

 

Allele frequencies of raw data: 

Allele With flystrike Without flystrike 

A1 29 45 

B1 79 96 

C1 65 37 

D1 13 6 

 186 184 

 

Allele frequency as a percentage: 

Allele With flystrike Without flystrike 

A1 16 25 

B1 42 52 

C1 35 20 

D1 7 3 
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Appendix C 

Raw comparison of lean and fat lines of sheep from Yan et al. (2012) study, with the presence and 

absence of fly-strike in the present study, and variations in the FABP4 gene. The main difference 

between the fat and lean line of sheep in Yan et al. (2012) study is that the A variant was not 

found in the lean line of sheep.  

 A B C D 

Fly-strike 25 62 53 13 

No Fly-strike 43 68 33 6 

Lean 0 3 89 8 

Fat 51 31 4 13 

 

Hardy Weinberg equation:  
 
Allele frequencies of the FABP4 gene for sheep with fly-strike. P=1. Chi-squared test = 0.012. The 

chi-squared test shows that the population of sheep with fly-strike is not Hardy Weinberg 

equilibrium.  

Alleles Observed Expected  Difference 

aa 0.022 0.027 0.005 

ab 0.130 0.132 0.002 

ac 0.098 0.113 0.015 

ad 0.022 0.028 0.006 

bb 0.185 0.164 0.021 

bc 0.293 0.280 0.013 

bd 0.065 0.070 0.005 

cc 0.130 0.120 0.010 

cd 0.054 0.060 0.006 

dd 0 0.007 0.007 

 
Allele frequencies of the FABP4 gene for sheep without fly-strike. P=1, Chi-squared test = 0.054 

Alleles Observed Expected  Difference 

aa 0.043 0.082 0.034 

ab 0.247 0.26 0.013 

ac 0.161 0.126 0.035 

ad 0.011 0.023 0.012 

bb 0.301 0.205 0.096 

bc 0.140 0.199 0.059 
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bd 0.043 0.036 0.007 

cc 0.043 0.0.48 0.005 

cd 0.011 0.018 0.007 

dd 0 0.002 0.002 


