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D dimension of the space 
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D12 effective diffusion coefficient 

dref reference diameter at reference temperature 

dVSS VSS molecular diameter 

e internal energy 

Econd conduction energy 

Econdensate condensation energy 

Eevaporate evaporated energy 

EK kinetic energy of the flow above the substrate 

Erad radiative energy from surrounding 

Et relative translational energy 

f gas distribution function 

Fgas-drop drag force exerted by the surrounding gas molecules to the 

droplet 

Fη net flux of η 

g equilibrium state of f 

h enthalpy of the fluid 

h the convection heat transfer coefficient 

J*P dimensionless total molecular flux 

JP total molecular flux 

k Boltzmann constant 

kcond thermal conductivity  

kf thermal conductivity of fluid 

Kn Knudsen number 

KnGLL gradient length local Knudsen number 

L length  

Lc characteristic length 

M molecular mass 

m mass  

mr reduced mass of the collision partners 
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n number density 

NA Avogadro’s number 

P pressure 

p momentum  

Pr Prandlt number 

qconv convection heat transfer 

qj abscissas of the Gaussian quadrature 

QP evacuation rate 

R gas constant 

r radius 

Re Reynolds number 

Rf uniform distributed random number between 0 and 1 

Ru universal gas constant 

s Stefan-Boltzmann constant 

SP volume displacement rate 

T temperature 

tcol,avg average time between particle collisions 

tP process cycle time 

ui,pre speed of molecules in i velocity bin before the collision 

V volume  

v velocity of a gas molecule  

Vave average flow velocity 

vr relative velocity of the collision partners 

vth,avg average translational thermal speed 

We Weber number 

wj weights of the Gaussian quadrature 

Wα weight coefficient 

Zrot rotational relaxation collision number 

Δtcol mean collision time 
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AMOS accumulated mass of gas molecules that strike onto substrate  

APCVD Atmospheric pressure CVD 

BGK Bhatnagar-Gross-Krook 

BL Borgnakke-Larsen 

CER collision en route 

CFD Computational Fluid Dynamics 

CFL  Courant–Friedrichs–Lewy 

CVD Chemical Vapour Deposition 

DD-QDS directional decoupled QDS 

DREAM  DSMC Rapid Ensemble Averaging Method 

DSMC Direct Simulation Monte Carlo 

EFM Equilibrium Flux Method 

EIM Equilibrium Interface Method 

EPSM Equilibrium Particle Simulation Method 

HS hard sphere 

LBM Lattice Boltzmann method 

LPCVD Low pressure CVD 

MAPE  Mean Absolute Percentage Error 

MBE Model Boltzmann Equation 

MC Monotonized Central Difference 

MINMOD Minimum Modulus 

NTC No Time Counter 

PDSC parallelised DSMC code 

PP-CVD Pulsed Pressure CVD 

QDS Quiet Direct Simulation 

TDEFM True Directional Equilibrium Flux Method 

TD-QDS true-directional QDS 

UHV-CVD ultra high vacuum CVD 

VHS variable hard sphere 

VSS variable soft sphere 



xx 

 

Acknowledgement 

There is a Chinese proverb that says jade can only become a useful tool if it 

undergoes fine craftsmanship. I am very lucky to be in the good hands of a master 

craftsman. He is knowledgeable, resourceful and systematic. However, what 

defines him most is his patient devotion in supervising his apprentices. From the 

bottom of my heart, I thank my supervisor, Dr. Mark C. Jermy, for all the fruitful 

discussion, advice, clear direction on the research work, and understanding and 

support, in both academically and financially. He is undoubtedly a role model to 

me, professionally and personally.  

I would also like to thank my co-supervisor, Dr. Susan P. Krumdieck, who 

is practically the “guru” in the Pulsed Pressure Chemical Vapour Deposition 

technique. Her insightful advice and explanations enriched my knowledge on this 

novel deposition technique. I am also thankful to Prof. Chong-sin Wu, who is my 

associate supervisor. Through his research group, I have had a chance to learn and 

work on this fascinatingly fast modelling technique for my PhD research. His 

hospitality during our visit to Taiwan was also greatly appreciated.  

A very important person who helped me tremendously on this work was Dr. 

Hadley M. Cave. He is effectively the originator of the computational coding in 

my thesis work. His guidance and friendship gave me a wonderful start to my 

research work. 

Another key person in helping to complete my thesis research was Dr. 

Matthew R. Smith who owns a brilliant mind. He always gave me the best 



xxi 

 

solution in the midst of my frustrations over debugging and running the 

computational codes, and saved my day. 

To my friends in the Advanced Energy and Material Systems Laboratory, 

Dr. Vilailuck Sirwongrungson and Darryl Lee, I thank them for all the useful 

discussions and explanations on the experimental work. I also owe enormous 

appreciation to Luke Sinclair, Vivian How and Wen Eng Ong for their generous 

help in proof reading this thesis. Their devotions of time and friendships I will 

cherish in my memory for my whole lifetime. 

To my late father and my mother, I thank them for their unconditional love 

and support. Both of them have only the educational level of primary school. 

However, they knew the importance of education for their children and have 

given me all the support they could and the opportunity to endeavour to higher 

education. 

Finally, I am grateful to my beloved wife, Kerrie Wan. Her endless love, 

understanding and support are indescribable in words. She completes me. To my 

lovely boy, Zhong Han Lim, he may not aware of it at his current toddler age but 

my limited time spent with him during these busy years on thesis research work 

was a way of great support from him. Also, the arrival of my little baby girl, Wan 

Rou Lim, who is still in her mommy’s tummy during the production of this thesis 

is certainly a great motivation to me in completing this thesis.  



xxii 

 

Abstract 

The objective of this thesis is to develop an easy-to-use and computationally 

economical numerical tool to investigate the flow field in the Pulsed Pressure 

Chemical Vapour Deposition (PP-CVD) reactor. The PP-CVD process is a novel 

thin film deposition technique with some advantages over traditional CVD 

methods. In the PP-CVD process, a controlled volume of the precursor solution is 

injected into the continuously evacuated reactor in timed pulses. The precursor 

solution can be in either liquid or gas phase. The large, time-varying density 

gradient drives a complex flow field in the reactor.  

In this thesis, a method to perform rapid approximations of the PP-CVD 

flow field is presented. The numerical modelling of the PP-CVD flow field is 

carried out using the Quiet Direct Simulation (QDS) method, which is a flux-

based kinetic-theory approach. The QDS method calculates fluxes of conserved 

properties between cells by enforcing a Maxwell-Boltzmann velocity distribution 

locally within the computational cell at every time step. Fluxes are determined by 

the discretisation of the Maxwell-Boltzmann velocity distribution into a small 

number of velocity groups. Two approaches are considered for the flux 

reconstruction, which are the true directional manner and the directional splitting 

method. 

Both the true directional and the directional decoupled QDS codes are 

validated against various numerical methods which include EFM, direct 

simulation, Riemann solver and the Godunov method. Both two dimensional and 
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axisymmetric test problems are considered. Good agreements are obtained 

between the results of the QDS method and that of the other numerical methods 

for all simulated test cases. 

Simulations are conducted to investigate the PP-CVD reactor flow field at 

1 Pa and 1 kPa reactor base pressures. The simulations reveal that an under-

expanded jet develops during the injection phase of the PP-CVD process and 

dissipates soon after the end of the injection phase. The uniformity of the flow 

field in the reactor restores after the jet dissipates. The time required to establish 

the quasi-steady under-expanded jet is found to be about 3-5 ms, and the jet 

dissipates within 1 ms after the end of injection. The directional flux splitting 

QDS scheme is found to be slightly more accurate compared to the true 

directional QDS scheme. 

The assumption of the local Maxwell-Boltzmann equilibrium distribution 

used in the QDS scheme is verified by examining the gradient length local 

Knudsen number based on the density, and by estimating the average number of 

particles collisions within each computational cell in one time step. The validity 

of the local equilibrium assumption is found to be satisfactory at 1 kPa reactor 

base pressure but not at 1 Pa. The limitation of the QDS scheme in PP-CVD flow 

simulation is also investigated. The limit of the rarefaction level in the flow that 

allows the assumption of the local equilibrium in the QDS schemes to be made is 

identified. It is found that the directional decoupled QDS scheme is able to 
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simulate PP-CVD flow field with reactor pressure higher than 400 Pa at 

reasonable accuracy. The numerical dissipation of the scheme is also quantified. 

A droplet flash evaporation model is presented to model the evaporation 

and transport of the liquid droplets injected. The solution of the droplet flash 

evaporation model is used as the inlet conditions for the QDS gas phase solver. 

The droplet model is found to be able to provide pressure rise in the reactor at the 

predicted rate. All the droplets are found to be fully evaporated within 5 cm of the 

inlet nozzle, which agree with visual observations during the experiments. 

A series of parametric studies are conducted for the PP-CVD process. The 

numerical study confirms the hypothesis that the flow field uniformity is 

insensitive to the reactor geometry. However, a sufficient distance from the 

injection inlet is required to allow the injected precursor solution to diffuse 

uniformly before reaching the substrate. It is also recommended that placement of 

the substrate at the reactor’s centre axis should be avoided. 

The second order directional decoupled axisymmetric QDS solver is used 

to perform parametric study of the flow field for the PP-CVD process to deposit 

thin film coating on two concentric cylinders. The simulations conducted focus on 

the injection phase of the PP-CVD process in the 2
nd

 generation PP-CVD reactor 

with two concentric cylinders as the substrate. Overall, the simulation results 

show that good flow field uniformity can be achieved near the substrate surfaces. 

The flow field uniformity is found to decrease when the total mass of precursor 

solution injected is increased. This is as expected from the theoretical prediction. 
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The future work required for the development of the QDS scheme is 

proposed. A hybrid scheme is proposed to improve the accuracy of the simulation. 

Future extension of the scheme with cut cells will allow PP-CVD reactor 

modelling with more complex reactor geometries.  
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1 Introduction 

1.1 Thin Film Deposition Technologies and Applications 

Thin film deposition is an industrial technique for forming thin layers of solid 

material on a target surface. The coating formed is considered a thin film when 

the thickness is between a few nanometres and about ten micrometres (Seshan, 

2002). When formed by chemical reaction, the source material which is used to 

form the thin film is called the precursor. The target surface where the thin film is 

deposited is termed the substrate. In general, the purpose of the thin film coating 

is to enhance or add some material properties to the substrate surface. For 

example, the enhanced or added material properties may include: surface hardness, 

wear resistance, thermal insulation, corrosion protection, conduction pathways, 

biocompatibility or antireflection. Thin film deposition techniques can be 

classified into four basic types of process: vacuum evaporation, glow-discharge 

processes, liquid phase chemical processes and gas phase chemical processes 

(Seshan, 2002). 

The vacuum evaporation technique is used to deposit thin films with no 

chemical reaction involved throughout the process. The material is vaporised by 

boiling or subliming through various ways which include: resistive heating, 

exposure to electron beams, radiation, crucible heated by conduction and lasers. 

The evaporated precursor is transported through the vacuum chamber and 

condenses to form a solid film on the substrate surface.  
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The glow-discharge technique is basically a sputtering method to eject 

surface atoms from an electrode surface into the gas phase. The ejected atoms are 

in thermodynamic non-equilibrium. Consequently, the atoms will not only form a 

thin film on the substrate but also onto any surface within the reactor such the 

reactor walls or reactor components. Hence, reactor cleaning becomes one of the 

problems in the glow-discharge technique. 

Liquid phase chemical processes are thin film depositions from the liquid 

phase through chemical reactions. This method is usually used to form inorganic 

thin films. The substrate is commonly immersed, sprayed or flow coated in a 

liquid media. The growth of the thin film is accomplished via electrochemical or 

chemical plating processes.  

Gas phase chemical processes involve thin film formation from a gas or 

vapour phase via chemical vapour deposition and thermal oxidation. These 

processes are generally referred to as Chemical Vapour Deposition (CVD). The 

source materials are injected into the reactor in the gas or liquid phase. In the case 

of liquid materials, vaporisation occurs to transform the source materials into the 

vapour phase upon reaching the substrate. The substrate is usually heated in order 

to activate the chemical reaction of the source materials on the substrate surface 

for thin film formation.  
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1.2 Pulsed Pressure Chemical Vapour Deposition 

Pulsed Pressure CVD (PP-CVD) is an innovative CVD technique developed by 

Versteeg et al. (Versteeg, Avedisian, & Raj, 1995a). It has shown improved 

performance over conventional CVD methods including high precursor 

conversion efficiency, film quality and substrate conformity (Krumdieck, 

Kristinsdottir, Ramirez, Lebedev, & Long, 2007; Krumdieck, Lee, & Raatz, 2003; 

Krumdieck & Raj, 1999; Siriwongrungson, Alkaisi, & Krumdieck, 2007). 

Krumdieck et al. continue in developing the PP-CVD technique at the University 

of Canterbury in Christchurch, New Zealand to the present date.  

The operating cycle of the PP-CVD process consists of an injection and 

pump-down phase. During the injection phase, a controlled volume of precursor 

solution at high supply pressure is injected into a continuously evacuated reactor 

volume.  The injection of precursor mixture is carried out within a short period via 

an ultrasonic atomizer or choked orifice. This causes the reactor pressure to 

increase to a maximum value rapidly. The process is followed by a pump-down 

phase when the reactor inlet valve is closed. The reactor volume is continuously 

evacuated by a vacuum pump to return to its initial pressure before the next pulse 

cycle begins.  

The rapid injection of precursor solution leads to a high vapour 

concentration near the reactor inlet during the injection phase. The continuous 

evacuation of the reactor chamber causes the fluid density to reduce significantly 

along the distance from the inlet to the outlet. The fluid density also reduces 
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significantly with time after the end of the injection phase. This pulsed process 

cycle results in a highly unsteady flow field with large density gradients 

throughout the reactor volume. 

Experimental results conducted on laboratory scale PP-CVD reactors have 

demonstrated several advantages of this deposition technique. The thin film 

produced by the PP-CVD process is highly uniform and conformal. The PP-CVD 

process has high deposition rates and high precursor conversion efficiency. It has 

also been shown experimentally that the deposition performance of the PP-CVD 

process is relatively less sensitive to the change of the reactor geometry than 

steady flow CVD process (Krumdieck, Baluti, Marcus, & Peled, 2005). Therefore, 

the PP-CVD reactor can be easily scaled up to industrial applications and may be 

readily adapted to new coatings and substrates.  

 

1.3 Conventional Computational Fluid Dynamics Method 

Computational Fluid Dynamics (CFD) is a numerical approach to study the 

phenomena and problems related to fluid dynamics. The conventional CFD 

methods were developed in order to solve the theoretical governing equations of 

fluid dynamics numerically in discrete time and space. The three basic ways of 

discretising time and space are finite difference, finite volume, and finite element. 

The theoretical governing equations of fluid dynamics, which are the 

Navier-Stokes equations, are formulated based on the concept of continuum. The 

continuum assumption treats a fluid as a continuous medium in which the fluid 
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macroscopic properties are considered to be continuous functions of position and 

time. The Navier-Stokes equations are differential equations that describe the 

physics of a viscous flow. In some flow conditions, where the viscous effect 

becomes negligible, the Navier-Stokes equations can be simplified to the Euler 

equations. Hence, in the conventional CFD approach, the Navier-Stokes solver is 

used to provide a solution for viscous flows while the Euler solver is employed for 

handling inviscid flows. 

In CFD, the time marching technique is implemented to solve either the 

Euler or Navier-Stokes equations with a time derivative. There are two different 

schemes in the time marching technique, namely the explicit and implicit scheme. 

The explicit scheme determines the spatial difference equations from the values 

obtained in the previous time step. This scheme is simple and easy to implement 

but generally has poor stability and convergence efficiency. In the implicit scheme, 

the spatial unknowns are solved by the means of a simultaneously solving the 

difference equations applied at all the grid points arrayed at a given time step 

(Anderson, 1995). The implicit scheme has greater stability and convergence 

efficiency than the explicit scheme. However, it is more costly in time and 

computing resources. It is also more complicated for implementation. Both the 

explicit and implicit time marching schemes have been well developed as useful 

CFD tools. 
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1.4 Kinetic Theory Based Methods 

An alternative approach in CFD is to take into account kinetic theory and the 

particle-based nature of gases in simulating the flow field. In general, instead of 

solving the continuum based governing equations, these methods describe the 

fluid as a large collection of particles analogous to molecules. The fluid particles 

are grouped according to their properties at the molecular level, which are the 

microscopic properties. The macroscopic properties of these particle groups are 

calculated from the microscopic properties. The motion and collision between the 

particles are tracked to determine the change in the state of the flow. Some 

examples of kinetic theory based methods include: Direct Simulation Monte Carlo 

(DSMC) method, Lattice Boltzmann method (LBM), the Bhatnagar-Gross-Krook 

(BGK) scheme, the Equilibrium Particle Simulation Method (EPSM), the 

Equilibrium Flux Method (EFM), the True Directional Equilibrium Flux Method 

(TDEFM) and the Quiet Direct Simulation (QDS) method, the Chapman-Enskog 

method and the kinetic method that solves the Grad's 13 moment equations. 

The Direct Simulation Monte Carlo (DSMC) method has earned the 

reputation as a successful kinetic theory based method that provides accurate 

solutions of fluid flows. The DSMC method is developed by Bird and has 

attracted many researcher’s interest since the 1960s (Bird, 1963). In the DSMC 

method, simulated particles are used to represent a collection of the physical gas 

particles. The simulated particles are allowed to undergo a free movement phase 

without any intermolecular interaction. At the end of the free flight phase, 
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simulated particles that have reached the destination computational cells are 

assembled and undergo probabilistic intermolecular collisions. Post-collision 

velocity of each simulated particle is updated to represent the change of the flow 

field after one computational time step. The free flight and collision phase are 

then repeated iteratively until the simulation is completed.   

 Another branch of kinetic theory based methods is to solve the Boltzmann 

distribution function, which represent the time evolution of the particle 

distribution within a defined phase space. The LBM is a common example of a 

kinetic theory based solver that solves the Boltzmann equation. In the LBM, the 

Boltzmann equation is solved by discretising the Boltzmann distribution function 

into discrete velocities, space and time. A finite velocity set is used to represent 

the velocity distribution of the particles. The changes of the locations and 

velocities of the particles are due to the movement of the particles in a discrete 

space with the associated discrete velocities and the collision between the 

particles in a discrete time. 

The BGK scheme simplifies the Boltzmann equation by replacing the 

collision term with Bhatnagar-Gross-Krook (BGK) simplified collision model 

(Bhatnagar, Gross, & Krook, 1954). The BGK scheme solves the time-dependent 

gas evolution equation by the construction of numerical fluxes at the 

computational cell interfaces. The relaxation of the gas particles is then performed 

in the computational cell within each time step to update the change in the state of 
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the flow field. The BGK scheme is capable of simulating non-equilibrium flow in 

order to provide more realistic solutions. 

The EPSM (Pullin, 1980) is regarded as a continuum flow solver to 

provide a DSMC solution with infinite intermolecular collisions. Similarly to the 

DSMC method, simulated particles are used to represent the collections of 

physical gas molecules. The simulated particles undergo a free movement phase 

as in the DSMC. However, the EPSM does not perform the selection of random 

collision partners as in the DSMC during the collision phase. Instead, the 

simulated particles are assigned new velocities from the local Maxwell-

Boltzmann velocity distribution based on the state of the cell.  

The EFM was proposed by Pullin (Pullin, 1980) and uses directional 

splitting method to compute fluxes analytically across the interface of two 

computational cells. The EFM fluxes are constructed by assuming a Maxwell-

Boltzmann equilibrium distribution of the molecular velocities locally in the 

computational cells. This means the EFM fluxes are derived with no density 

gradient locally within the cell during a small time step, approaching the limit of 

an infinite number of particles within each computational cell. Hence, the EFM is 

considered as a method that provides the Euler solution of a flow field.  

The TDEFM (Smith, 2008; Smith, Macrossan, & Abdel-jawad, 2008) also 

computes molecular fluxes based on the Maxwell Boltzmann equilibrium 

distribution function as in the EFM. However, the TDEFM considers multiple 

moments over both velocity and physical space to provide a more general form of 
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the distribution compared to the EFM. In the TDEFM, the analytical solution to 

the molecular fluxes, based on the Maxwell-Boltzmann equilibrium distribution, 

is computed. During the free flight phase of the gas molecules, the TDEFM fluxes 

are allowed to move to an arbitrary destination cell whether or not the cells have a 

shared interface. This means that the TDEFM fluxes can travel to a diagonal cell 

which shares only a vertex with the source cell. Such fluxing methods are termed 

true directional methods (Smith, et al., 2008).  

The QDS (Smith, Cave, Wu, Jermy, & Chen, 2009) method calculates 

molecular fluxes between cells by enforcing a Maxwell-Boltzmann equilibrium 

distribution of velocities throughout the flow field at every time step. The QDS 

fluxes are determined by carrying mass, momentum and energy between cells via 

the discretisation of the Maxwell-Boltzmann velocity distribution into a small 

number of masses and velocities determined from the weights and abscissas of a 

Gauss-Hermite quadrature. This allows the QDS to be a fast and accurate method 

since the error functions involved in evaluating the moments of the equilibrium 

distribution are avoided. The QDS method is discussed in detail in Chapters 5 and 

6. 

 

1.5 Motivation of Present Work 

The potential for industrial scale-up directly from process parameters determined 

through laboratory research appears possible in the PP-CVD process. This 

initiates the research in controlling the PP-CVD process, the reactor design and 
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materials to be deposited. In optimising the design of a PP-CVD reactor, a 

thorough understanding of the flow dynamics in the time-variant reactor pressure 

region is required. The difficulties of experimental measurement and flow field 

visualisation in the low density reactor volume are hurdles for experimental 

investigation of the PP-CVD flow field. A more feasible way to study the flow 

dynamics in the reactor is through numerical simulation. Thus, it is necessary to 

identify simulation tools in order to simulate the flow in the reactor numerically.  

Previously, the DSMC method has been adopted for the numerical 

investigation of the PP-CVD flow field. The simulation solver used in the 

previous study is called the parallelised DSMC code (PDSC). With the recent 

developments in PDSC, Cave has performed a remarkable first attempt to 

simulate a gas flow field in PP-CVD reactor at realistic pressures during the 

injection phase (Cave, 2008; Cave et al., 2007). However, being a pure DSMC 

solver, the computational expense of simulation with the PDSC is remarkably 

high especially when the density of the simulated gas is increased and when 

unsteady simulations are conducted. The results obtained have also shown a large 

amount of statistical scatter. Moreover, PP-CVD reactors are usually equipped 

with liquid-injection delivery systems where a liquid precursor solution is injected 

directly into the reactor. Hence, the numerical modelling and simulation of the 

PP-CVD reactor with liquid-injection delivery system is yet to be developed. 

Difficulties also arise in simulating the PP-CVD flow using conventional 

CFD solvers. Due to the highly complex flow throughout the reactor, it would be 
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difficult to obtain converged solutions with a Navier-Stokes equations solver. The 

computational expenses are also high to simulate such complex and unsteady flow 

using the Navier-Stokes solver (Lin, 2008). However, it should also be noted that 

it is sometimes possible to model PP-CVD flow with conventional CFD solvers at 

a cost of slow convergence and extra effort in simulation setup.  

For the purpose of industrial scale-up and commercialisation the PP-CVD 

reactor, the ease of use and computational speed of the numerical tool are the 

main concerns. A computationally economic solver is important to provide a rapid 

simulation tool for PP-CVD reactor design and operating condition selection. A 

simulation tool that requires relatively less CFD expertise is also essential to allow 

its usage by industrial engineers.  

 

1.6 Research Objectives 

The objective of this research is to develop a rapid simulation tool to obtain an 

approximated solution of the liquid and gaseous flow in the PP-CVD reactor 

volume. The numerical solution is used to understand the PP-CVD flow field 

phenomena in order to optimise the design parameters of the reactor. Therefore, 

the scope of this research focuses mainly on the transport phenomena of the flow 

field in the PP-CVD reactor including: 

1. further development of the existing PDSC to simulate numerically the 

transport phenomena of precursor with polyatomic molecular structure in 
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the PP-CVD reactor flow regime with inelastic collisions between 

precursor molecules 

2. development of a rapid simulation tool to model the PP-CVD flow field 

during the injection and pump down phase 

3. modelling of the fast evaporation and transport phenomena of liquid 

precursor solution in the pulse pressure flow regime 

4. numerically investigate the PP-CVD flow field 

5. parametric simulation of new reactor design concepts in preparation for 

commercialising the PP-CVD reactor for industrial purposes 

 

1.7 Thesis Organisation 

This thesis is organized in the following order: 

 Chapter 1, an introduction of the thesis is given. 

 Chapter 2, the background of the Chemical Vapour Deposition (CVD) 

process, various techniques in CVD and detailed introduction of the 

PP-CVD process are described. 

 Chapter 3, the characterisation of fluid flow and various fluid flow 

simulation tools are discussed. 

 Chapter 4 the PP-CVD flow field, modelling considerations and 

method are presented.  

 Chapter 5, the development and the detail of true directional QDS 

method are first described. It follows with the preliminary PP-CVD 
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flow field simulation using the true directional QDS solver. Then, a 

validity check of the assumptions used in the QDS method are 

performed and discussed. 

 Chapter 6, a simple analysis of the numerical dissipation inherent in 

QDS method is carried out. Next, the directional decoupled QDS 

method is presented to improve the simulation results of PP-CVD flow 

field modelling. Validity checks on the assumptions used in the QDS 

method are again performed and discussed. Lastly, the limitation of the 

QDS method in simulating PP-CVD flow is discussed. 

 Chapter 7, the modelling of the liquid droplet flash evaporation in PP-

CVD reactor volume is presented.  

 Chapter 8, parametric simulations of the existing and new reactor 

design concepts are conducted and discussed. 

 Chapter 9, the conclusion of the present work is given. 

 Chapter 10, suggested future work is presented in order to improve the 

existing QDS solver as well as to extend the QDS solver in modelling 

objects with complex geometries. 

 The Gauss-Hermite parameters are given in Appendix.  
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2 Background 

2.1 Chemical Vapour Deposition Process Overview 

In general, there are three elementary phases in Chemical Vapour Deposition 

(CVD) of thin films. These three phases include the transport of reactants from the 

supply source to the substrate, the adsorption and decomposition of the reactants 

near or on the substrate surface, and the nucleation and crystal growth on the 

substrate surface (Taga, 2001). The CVD reactor is considered cold wall reactor 

when only the substrate is heated. The overall physical and chemical processes 

involved in a cold wall CVD reactor with liquid precursor solution delivery 

system can be demonstrated in Figure 2.1.  

 

Figure 2.1 Schematic of mass transport and surface kinetics in a typical CVD process 

[diagram courtesy of Krumdieck, S.P.]. 
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Each step in the deposition process can be summarised as followings: 

1. Atomization of liquid precursor solution through an ultrasonic atomizer 

2. Transport of the liquid precursor solution droplets in the reactor 

3. Evaporation of liquid precursor solution droplets 

4. Mass transport of the precursor solution into the reactor and near the 

substrate surface 

5. Diffusion of the precursor solution to the substrate surface through 

concentration gradient 

6. Adsorption of precursor solution onto the substrate surface 

7. Thermal decomposition of the precursor solution molecules 

8. Possible gas phase reactions rather than surface reaction on substrate 

surface 

9. Evaporation of un-reacted precursor solution from substrate surface 

10. Nucleation of precursor followed by surface diffusion and crystal lattice 

incorporation 

11. Desorption of reaction products from the substrate surface 

12. Diffusion of the reaction products away from the substrate  

13. Transport of the reaction products out of the reactor in exhaust 

The precursor solution is also referred as reactant.  

Throughout the entire CVD process, in general, there are three growth rate 

limiting steps, the slowest of which controls the overall deposition rate. The three 

possible growth rate limiting steps are mass transport of the first kind, mass 
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transport of the second kind and surface kinetics control (Choy, 2003; Morosanu, 

1990): 

1. Mass Transport of the First Kind - the rate limiting step where the main 

gas flow in the process controls the deposition rate. The main gas flow 

includes the reactant feed to, and the product removal from, the 

deposition zone. This type of process control occurs for high to ultra-

high deposition temperatures e.g. ≥ 1450°C (Choy, 2003). 

2. Mass Transport of the Second Kind - the growth rate limiting step 

depends on the reactant transfer between the main gas flow and the 

substrate surface. The mass transfer between the main gas flow and the 

substrate surface is by diffusion or convection. As the diffusion 

coefficients vary only weakly with temperature, the growth rate depends 

weakly on temperature. Hence, the film growth rate is almost constant 

for this type of process control. 

3. Surface Kinetic Control - the surface kinetics or reaction rate becomes 

the limiting step of the process. Surface kinetics include chemical 

reactions, reactant adsorption, product desorption, surface migration and 

lattice incorporation. The deposition temperature is low at this type of 

process control. The growth rate depends strongly on the deposition 

temperature which activates the surface chemical reactions.  

The flow field modelling of the steps in Figure 2.1 is vital in order to 

understand and, hence, control the growth rate limiting step in the CVD process. 
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This allows CVD reactor design and optimization for required deposition 

applications to be performed efficiently. In the current research project, steps 1, 2, 

3, 4, 5, 12, and 13 are the main focus of interest. 

 

2.2 Characterisation of CVD Flow  

The reactions, and hence the deposition, throughout the CVD process are closely 

related to the mass transport phenomena of the precursor. Therefore, a thorough 

understanding and modelling of the mass flow through the reactor is an important 

step in reactor design and optimization. As there are wide varieties of CVD 

reactor configurations and operating pressures, the flow inside the reactor can be 

in a viscous flow, a free molecular flow, or in a transition state which is 

intermediate between viscous and molecular flow. For the fluid in a viscous state, 

the flow can be laminar or turbulent. In a CVD system, two dimensionless 

numbers are commonly used to characterise the fluid flow in the reactor. The two 

numbers are the Knudsen number, Kn, and the Reynolds number, Re. 

The Knudsen number expresses the ratio of the molecular mean free path to 

the characteristic length perpendicular to the flow direction. The molecular mean 

free path, λ, is defined as the average distance travelled by a molecule before 

colliding with another molecule, which is given in Equation (2.1) as: 

 
Pd

kT
22

   (2.1) 
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where k is the Boltzmann constant, T is the fluid temperature, d is the effective 

molecular diameter and P is the pressure. The Knudsen number is used to identify 

the state of the gas flow among the viscous, transition and molecular regimes. 

Hence, it is an expression of the relative level of the fluid flow rarefaction.  

In a flow with a low Knudsen number, typically Kn < 0.01, the gas is 

considered to be in a state of viscous flow (Roth, 1990). The gas density is 

sufficiently high that intermolecular collisions dominate the effect at the 

molecular level and the flow can be modelled in terms of the continuum flow 

properties (Bird, 1994). The Navier-Stokes equations provide the conventional 

mathematical model of continuum gas dynamics. The mass transport in 

continuum flow CVD reactors are highly dependent on: the bulk gas flow velocity, 

the fluid physical properties, the pressure gradient between the inlet and outlet of 

the reactor and the solid surfaces geometry that interact with the flow. This 

continuum flow pattern determines the precursor arrival rate to the substrate 

surface (Jones & Hitchman, 2009).  

However, when the Knudsen number is greater than 1, the gas in the flow is 

in the molecular state. The mean free path of the fluid molecules is large which 

causes the molecules to move in random motion. Hence, the molecular effect has 

a significant influence on the flow pattern and the continuum model of the flow 

properties becomes invalid. In this case, a discrete particle or molecular model is 

needed to express the flow phenomena. 
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Generally, an overall characteristic dimension based on the flow geometry, 

such as diameter of the pipe for an internal flow through a circular pipe, is chosen 

in determining a single overall Knudsen number for the complete flow. However, 

this can be misleading. For some flows with significant macroscopic property 

changes in certain regions or throughout the flow, such as the presence of strong 

shock structure, the local continuum flow condition may be invalid. Hence, the 

limit of continuum flow model can be specified more appropriately if a local 

Knudsen number which is defined based on a scale length of the macroscopic 

gradient (Bird, 1994; Oran, Oh, & Cybyk, 1998), given in Equation (2.2) as: 
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where Q can be any of the macroscopic properties (i.e. density, velocity, or 

temperature).  

The Reynolds number measures the ratio of inertia to viscous forces, which 

is given in Equation (2.3) as: 

 


 ULUL
Re  (2.3) 

where  is the fluid density, U is the flow velocity, L is a characteristic length  is 

the dynamic viscosity and  is the kinematic viscosity. The Reynolds number is 

used to characterise the different flow regimes of a fluid in motion such as laminar 

or turbulent flow. Considering a fluid flow inside a circular pipe, the flow is in 
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laminar flow regime when the Re is less than 2000. The viscous forces are 

dominant in laminar flow where the flow field is rather smooth with constant fluid 

motion. The turbulent flow occurs when the Re is more than 4000. The inertial 

forces become dominant. This results small disturbance in the flow causes eddies. 

The flow is in the transition regime when the Re is between 2000 and 4000 with 

the presence of both laminar and turbulent flow (Potter, Wiggert, Hondzo, & Shih, 

2002). Because of the low precursor flow rate, most conventional CVD systems 

operate in the laminar flow regime. 

 

2.3 Chemical Vapour Deposition Techniques 

 CVD process requires a heating system with temperature control to activate the 

chemical reaction of the precursor molecules on substrate surface at an elevated 

temperature. CVD reactors can be classified by the heating strategy adopted in the 

reactor system (Seshan, 2002). The two types of heating approaches used in CVD 

reactors are the hot-wall and cold-wall reactor systems. 

For the hot-wall reactor system, the entire reactor is heated in an isothermal 

oven. This provides a uniform thermal field on the substrate to allow uniform thin 

film growth. However, due to the whole reactor being heated, the reaction of the 

precursor molecules occur not only on the substrate but also on the reactor wall 

and other heated components in the reactor. This could become a source of 

particle contamination which reduces the deposition quality and causes a poor 
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precursor conversion efficiency. It also increases the operating cost due to 

cleaning and maintenance problems (Choy, 2003). 

In the cold-wall reactor system, only the substrate is heated and, hence, the 

thermally activated precursor reactions occur only on the heated substrate. The 

substrate is usually heated by a heater through conduction heat transfer. This 

improves significantly on the particle contamination and high cost problems faced 

by the hot-wall reactors. However, it proposes challenges in controlling the 

heating system for uniform substrate heating. 

Regardless of the different type of heating strategy, CVD reactors are 

categorised depending on the operating pressure range. Atmospheric pressure 

CVD (APCVD) reactors operate within the viscous flow regime at atmospheric 

pressure. Low pressure CVD (LPCVD) operates at below atmospheric pressure 

whereas ultra high vacuum CVD (UHV-CVD) operates at pressure typically 

below 0.1 Pa (Ohring, 2002; Schuegraf, 1988).  

APCVD reactors are continuum flow CVD reactors where the reactant 

vapours are convected through the reactor from inlet to outlet by the bulk gas flow. 

A boundary layer which is the solid-fluid interaction zone is formed near the 

substrate. The precursor molecules in the bulk flow diffuse to the deposition 

surface due to the concentration gradient and being consumed across the boundary 

layer. Hence, the thin film growth rate in APCVD reactors is limited by the mass 

transport of the second kind as discussed in section 2.1. APCVD reactors are able 

to provide high film growth rate but obtaining film uniformity is challenging due 
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to the diffusion limited growth regime (Jones & Hitchman, 2009). Since the 

deposition depends on the diffusion of the precursor vapour to the substrate 

surface and the diffusivity decreases with increasing pressure, it is important to 

ensure reactant depletion does not occur anywhere on the substrate surface with 

consequent poor film uniformity (Ohring, 2002). Several methods such as 

showerhead and planetary reactors are used to improve the uniformity of the film 

growth in APCVD reactors.  

LPCVD process was introduced into the CVD marketplace in 1976 

(Schuegraf, 1988) to improve the diffusion limiting problem encountered in the 

APCVD process by reducing the operating pressure. Since the gas diffusivity 

increases at lower pressure, a better film uniformity can be achieved. This allows 

a simpler reactor design compared to APCVD reactors. However, the challenge in 

LPCVD approach is to increase the concentration of the reactant vapour in the 

reduced pressure environment in order to maintain film growth rate and hence the 

throughput of thin film production.  

UHV-CVD reactors operate at very low pressure where the Knudsen 

number of the flow is generally greater than 1. The reactant vapour flow in the 

reactor is in the free molecular regime where the gas molecules are in random 

motion. Hence, the reactant vapour in a UHV-CVD reactor is considered to be in 

a “well-mixed” condition due to the random molecular movement that encourages 

uniform film deposition. The film quality can be controlled by controlling the 

reactant product cleanup through a good vacuum exhaust system. The deposition 



23 

 

rate in the UHV-CVD process, however, is usually low because of the necessity in 

keeping the mass flow rate of the reactant vapour low enough for maintaining the 

low operating pressure range.  

 

2.4 Pulsed Pressure Chemical Vapour Deposition 

The innovative Pulsed Pressure Chemical Vapour Deposition (PP-CVD) was 

developed by Versteeg et al. at Cornell University in Ithaca, New York, U.S.A. as 

a promising technique for producing high uniformity thin films efficiently 

(Versteeg, Avedisian, & Raj, 1995b). A research scale PP-CVD reactor was then 

built in 2000 by Krumdieck at the Advanced Energy and Material System, 

Laboratory (AEMS Lab) at the University of Canterbury, Christchurch, New 

Zealand. The development of the PP-CVD process has been actively carried out 

by the research group led by Krumdieck (Cave, Krumdieck, & Jermy, 2008; 

Krumdieck, Cave, Baluti, Jermy, & Peled, 2007; Krumdieck, Kristinsdottir, et al., 

2007; Krumdieck, Siriwongrungson, Reyngoud, & Barnett, 2010; 

Siriwongrungson, et al., 2007).   

PP-CVD reactor is a cold-wall low pressure CVD reactor in which only the 

substrate is heated to activate the chemical reaction of the precursor molecules. 

The unique feature of PP-CVD reactor is to deliver a controlled volume of 

reactant solution into the reactor in a timed pulse manner. In PP-CVD unlike the 

conventional CVD technique, the reactant solution is injected into the 

continuously evacuated reactor volume without the use of carrier gas. Figure 2.2 
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shows the schematic diagram of a PP-CVD reactor. In general, the PP-CVD 

reactor can be broken down into three subsystems: injection, reactor and exhaust. 

The injected precursor solution can either be gas which is injected through an 

orifice on top of the reactor or liquid which is supplied using an ultrasonic nozzle.  

Liquid precursor solution supplied to the low pressure reactor chamber is flash 

evaporated. The rapidly injected precursor solution diffuses uniformly to the 

vicinity of a heated substrate and reacts at the surface to form a solid thin film. 

The outlet of the reactor chamber is fitted to a vacuum pump for continuous 

evacuation of the reactor chamber as well as reaction product removal. 

 

Figure 2.2 Schematic of Pulsed Pressure Chemical Vapour Deposition (PP-CVD) reactor. 

[diagram courtesy of Krumdieck, S.P.]. 

 

  The operating cycle of the PP-CVD process consists of an injection and 

pump-down phase.  During the injection phase, a metered quantity of precursor 
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solution at high supply pressure is injected into a continuously evacuated reactor 

volume, increasing reactor pressure to a maximum rapidly. The timed injection of 

the precursor solution causes the reactor pressure to be time-variant. The pressure 

of an operating cycle inside the PP-CVD reactor chamber can be illustrated in 

Figure 2.3. The rapid injection of precursor solution during the injection phase (0 

< t < ti) causes a sudden increase of the reactor pressure from its base pressure 

Pmin to peak pressure Pmax. At process time t = ti, the injection valve is closed. The 

process is then followed by a pump-down phase (ti < t < tp) when the reactor 

pressure decreases back to the base pressure before the next pulse cycle begins. 

The period after the pressure returns to the minimum but before the next injection 

phase is called relaxation time. This cycle is repeated continuously throughout the 

whole deposition process.  

 

Figure 2.3 Schematic of Pulsed Pressure Chemical Vapour Deposition (PP-CVD) reactor. 
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The rapid injection of precursor solution leads to a high vapour 

concentration near the reactor inlet during the injection phase while the 

continuously evacuated reactor chamber causes the fluid density to reduce 

significantly with time after the end of the injection phase, and with the distance 

from the inlet.  This pulsed process cycle produces a highly unsteady flow field 

with large density gradient throughout the reactor volume.   

 

2.4.1 Mass Transport Model of PP-CVD Process 

The novelty of the pulsed injection in PP-CVD is to control the molecular flux in 

the reactor to be as uniform as possible before arriving to the substrate surface. 

Under uniformly distributed precursor vapour, it is then expected that the film 

growth rate depends solely on the precursor molecules arrival rate and deposition 

temperature. Experimental results have demonstrated the expected behaviour of 

film growth rate where the growth rate is limited by the reaction kinetic at low 

temperature while limited by the precursor supply rate at high temperature 

(Krumdieck & Raj, 2001a). In the same paper, a growth rate model based on the 

simple Langmuir surface mass balance describes the arrival rate of precursor to 

the surface by the gas kinetics and depends only on the precursor partial pressure. 

Good agreement was obtained between the model derived and the experimental 

results. This shows the potential of pulsing, which yields non-steady state flow 

field, in PP-CVD technique allows the deposition rate to not be limited by 

diffusion as in the conventional steady flow CVD technique. 
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The precursor injection time and the pulsed cycle time are important in 

controlling the uniformity of the flow field in PP-CVD. Due to the sudden 

increase in the reactor pressure when the precursor solution is pulse injected into 

the low pressure PP-CVD reactor, the precursor solution undergoes a rapid 

expansion. When the pressure inside the reaction chamber is increasing at a 

sufficiently fast rate, the expansion forces will be dominant over the viscous 

forces, causing an expansion mass transport regime to occur (Krumdieck, Cave, et 

al., 2007). It has been demonstrated experimentally that the mass transport field 

remains uniform throughout the reactor volume for the maximum pressure up to 

16 kPa. In the experiment, the injection time and pulse cycle time was maintained 

at certain ranges. These time ranges are determined based on the reactor design 

variables which are the reactor geometry and exhaust pump rate (Krumdieck, et 

al., 2005). 

A study has been carried out to model the molecular flux within the PP-

CVD reactor (Krumdieck, Lee, et al., 2003). Considering the ideal gas law and 

assuming a constant reactor temperature, TR, the number of molecules, n, inside 

the reactor with volume, VR, at any time, t, can be expressed in Equation (2.4) as: 
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NVtP
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where NA is the Avogadro’s number and Ru is the universal gas constant. The 

vacuum pump used to evacuate the reactor continuously with volume 

displacement rate, SP, and conductance, C, operates at evacuation rate, QP, which 

is given in Equation (2.5) as: 
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The molecular balance inside the reactor chamber during one pulse cycle can then 

be expressed in Equation (2.6) as: 
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where nL is the molecular leak rate, which is negligible compared to the vacuum 

pump speed and nmin is the number of molecules in the reactor at the minimum 

pressure. By integrating Equation (2.6) from t = 0 to any time t during the pulse 

cycle, the dimensionless reactor pressure, P
*
(t), is defined in Equation (2.7) as: 
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where  is the time constant of the reactor, Pmax and Pmin are the peak and base 

pulse pressure, respectively, given in Equation (2.8) as:  
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PS, VS and TS are the pressure, volume and temperature of the precursor supply 

volume, respectively. It should be noted that the processing time of a pulse cycle 

needs to be at least 4 times that of the reactor time constant for the maximum and 

minimum pressure to be repeated continuously throughout the entire deposition 

process (Baluti, 2005).  
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The molecular incidence rate,  striking on a unit area of the reactor 

internal surface, which is termed the molecular flux, is expressed using the gas 

dynamics relation given in Equation (2.9) as: 
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where M is the molecular mass. Since the PP-CVD process is an unsteady process, 

the molecular flux is a time-variant function. By combining Equations (2.7) and 

(2.9) and integrating the molecular flux over the process cycle time, tP, the total 

molecular flux per unit area per pulse cycle is given in Equation (2.10) as: 
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By defining J = tP, the dimensionless total molecular flux, J
*

P, can then be 

expressed in Equation (2.11) as: 
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2.4.2 Development and Deposition by PP-CVD 

PP-CVD reactors have been developed and investigated in various deposition 

experiments with a wide variety of materials. An early deposition experiment was 

to deposit lithium tantalite (LiTaO3), which is a useful optical film, on sapphire 

from a liquid metalorganic precursor of lithium hexa-t-butoxide (Xie & Raj, 1993). 

Another liquid metalorganic precursor, titanium dioxide or titania (TiO2), was 
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then deposited on sapphire from titanium tetra isoproxide (TTIP) (Versteeg, et al., 

1995a). Titania films have broad range of applications such as semiconductors 

and thermal barrier coatings.   

The recent investigations and depositions using PP-CVD technique are 

mainly from Krumdieck et al. Some of the studies on deposition of TiO2 from 

TTIP conducted by Krumdieck et al. include: the investigation of conversion 

efficiency and growth rate over temperature range of 400 to 700ºC (Krumdieck & 

Raj, 1999), the effect of temperature and precursor injection rate on the growth 

rate and morphology of TiO2 film deposition (Krumdieck & Raj, 2001b), and 

conversion efficiency, crystallographic orientation and microstructure of TiO2 

films (Krumdieck & Raj, 2001a). A kinetic model and experimental 

characterisation of the PP-CVD reactor using TTIP as the precursor to deposit 

TiO2 films has also been conducted (Krumdieck, 2001). TiO2 film deposition has 

been further studied for conformal step coverage over a range of deposition 

temperatures (Siriwongrungson, et al., 2007). Other than TiO2 films, deposition of 

solid yttria-stabilised zirconia (YSZ) films from a metalorganic precursor has also 

been studied (Krumdieck, Sbaizero, Bullert, & Raj, 2002). A deposition of yttria-

stabilised zirconia (YSZ) films onto solid oxide fuel cell electrodes to act as an 

electrolyte layer has also been conducted (Krumdieck, Sbaizero, Bullert, & Raj, 

2003).   
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3 Numerical Modelling of Fluid Dynamics 

3.1 Fluid Flow Characterisation 

Fluid mechanics is the branch of physics that deals with the behaviour of liquids 

and gases in relation to the corresponding properties in the presence of various 

forces. It can be divided into fluid statics and dynamics. Fluid statics is the study 

of fluids with no relative motion. Conversely, fluid dynamics is the study of fluid 

in motion and in most practical examples shearing stresses exist between fluid 

particles which cause a velocity gradient in the flow field. 

In the presence of a force, transmitted through the fluid by pressure, the 

fluid is deformed. Deformation, through compression or dilation, may be a change 

in volume without a change in shape. Or, this may include a change in aspect ratio, 

a shear deformation, or a combination of the two. The fluid is compressed if 

subjected to an increase in pressure which consequently results an increase in the 

fluid density. In general, the fluid is considered incompressible if the changes in 

density are less than 3%, throughout the flow field (Potter, et al., 2002). This 

corresponds to a low speed flow, in general. At a Mach number less than 0.3, the 

fluid flow may be treated as incompressible flow. On the other hand, the flow is 

regarded as a compressible flow if the changes in the density are significant 

anywhere in the flow where the Mach number is greater than 0.3. 

A fluid flow may also be classified as either viscous or inviscid. Viscosity 

can be defined as the internal resistance to shearing deformation. Hence, viscosity 

is related to the shear stress which results in deformation and energy dissipation of 
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the fluid in motion. Viscous flow is considered to be when the effects of viscosity 

are important and cannot be neglected. However, when the viscous effects do not 

influence the flow significantly, an approximated flow condition is used which is 

called inviscid flow. The viscous effect becomes negligible if the shear stresses in 

the flow are small or act over a small area since the viscous effects require 

substantial surface area in order to affect the flow significantly. Thus, the inviscid 

flow condition may be assumed for flow over a short distance. What is more, as 

discussed in section 2.2, the Reynolds number is a measure of inertial forces over 

the viscous forces present in the flow. For a flow where the inertial forces are 

strongly dominant, the flow may also be treated as inviscid flow. 

In solving a fluid dynamics problem, the choice of the flow modelling 

technique depends on the classification of the flow. As defined and discussed in 

section 2.2, the Knudsen number may be used to identify the flow regime of a 

flow problem. Figure (3.1) shows the Knudsen number limits of various 

mathematical models developed in the study of fluid dynamics. At Kn  0.01, the 

mean free path of the gas molecules is small enough to allow sufficient collisions 

between molecules to exchange energy and attain near-equilibrium condition. An 

inviscid continuum flow model such as the Euler equation solver will be able to 

provide an accurate solution of the flow. For 0.01  Kn  0.1, there are relatively 

fewer collisions between gas molecules. The viscous effect is significant in 

influencing the flow and cannot be neglected. Hence, a continuum model which 

takes viscous effect into account is needed to model the flow. When the Kn grows 
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larger than 0.1, the flow becomes rarefied. The collisions between gas molecules 

are rare. At this condition, continuum breakdown occurs which prohibit the use of 

continuum techniques to model the flow. 
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Figure 3.1 Knudsen number limits of various mathematical models, based on (Agarwal, Yun, 

& Balakrishnan, 2001; Bird, 1994). 

 

Another branch of modelling techniques is to represent the flow by discrete 

particles based on the kinetic theory. The flow field is described mathematically 

by the famous Boltzmann equation, which will be discussed in detail in section 

3.4. As the Boltzmann equation is a mathematically complex model to solve, 

various methods have been developed to approximate the solution to the 

Boltzmann equation. Some of these methods are discussed in this chapter. 
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3.2 Computational Fluid Dynamics 

There are three approaches in the philosophical study of fluid flow phenomena 

which are the experimental, theoretical and computational fluid dynamics. Among 

these three, computational fluid dynamics (CFD) is the relatively newly 

developed approach. The foundations of experimental fluid dynamics were 

established in the 17
th

 century in France and England. Theoretical fluid dynamics 

was then developed in the 18
th

 and 19
th

 century primarily in Europe (Anderson, 

1995). It was only in the latter half of the 20
th

 century that the numerical approach 

of studying fluid dynamics began to bloom after the advent of high speed digital 

computer facilities. CFD is robust in solving complex flow fields expeditiously 

with reliable accuracy. This has made CFD to be a partner of equal importance to 

both pure theoretical and pure experimental approaches. The three approaches 

often complement one another.  

 In the CFD approach, numerical methods and computational algorithms 

are developed to solve the governing equations of fluid flow in order to predict the 

flow field phenomena. The governing equations are usually discretised into 

discrete equations and computed by advancing them in space and time. The 

appropriate representation of the flow field is obtained with a collection of 

numbers. 

Although the various CFD methods are often significantly different from 

each other, the CFD procedures consist of three general stages: pre-processing, 

simulation and post-processing. The pre-processing is a stage to generate a 
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computational mesh on the flow field over or within a defined geometry of 

interest. The flow field volume is divided into discrete computational cells. This is 

often the most important stage. The choice of mesh size and structure usually has 

a significant influence on the simulated solution, especially in the conventional 

CFD methods. The boundary and initial conditions are also defined in the pre-

processing stage. In the simulation stage, the flow field is first initialised based on 

the initial conditions specified. Then the discrete governing equations, which 

usually represent the conservation of the fluid properties in respective 

computational cells, are solved in the manner of advancing in space throughout 

the whole flow field. The boundary conditions are applied to the inlet, outlet and 

interfaces between the flow field and any solid object within the flow field or wall 

boundaries that define the computational domain. In some instances, other 

equations are solved alongside the conservation equations, such as chemical 

reactions or heat transfer. The computed solution is then advanced in time to 

update the changes in the flow field over space and time until a satisfactory 

solution has been reached. In the post-processing stage, the computed solution is 

analysed and presented either in graphical or merely numerical form using 

appropriate post-processing software or techniques.  

 

3.3 Conventional Computational Fluid Dynamics Method 

The fundamental principles in fluid dynamics are that energy, momentum and 

mass are conserved. These principles are commonly expressed in partial 
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differential form to represent the state of the fluid in a defined control volume. 

This is the basis of all governing equations derived in the study of fluid dynamics. 

The well accepted governing equations of fluid dynamics are the famous Navier-

Stokes equations for viscous flow or Euler equations when inviscid flow is 

considered. The Navier-Stokes, Euler, and Burnett equations are formulated 

assuming the concept of a continuum. The continuum assumption treats a fluid as 

a continuous medium with the fluid macroscopic properties, which are considered 

to be continuous functions of position and time (Fox, McDonald, & Pritchard, 

2003). Hence, the conventional CFD methods are based on macroscopic 

continuum equations. 

When the fluid in a flow is treated as inviscid condition, the behaviour of 

such a gas is governed by the Euler equations. The continuity equation given in 

Equation (3.1) as: 

   0



V

t





 (3.1) 

where ρ is the fluid density, t is the time, V


 is the flow velocity vector and   is 

the gradient operator given in Equation (3.2) as: 
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 (3.2) 

The conservation of momentum equation is given in Equation (3.3) as: 

 Pg
Dt

VD





  (3.3) 
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where g


 is the vector for gravitational field, P is the pressure and the substantial 

or material derivative is defined in Equation (3.4) as:   

  QV
t

Q

Dt

DQ








 (3.4) 

where Q represents any fluid property. Lastly, the energy equation is given in 

Equation (3.5) as: 

  Tk
Dt

DP

Dt

Dh
  (3.5) 

where h = e + P/ρ is the enthalpy of the fluid with internal energy e, k is the 

thermal conductivity and T is the fluid temperature. In the conventional CFD 

methods, the Euler equations are solved when the viscous effect in the flow is 

negligible such as in the flow with infinitely high Reynolds number. 

The Navier-Stokes equations are the equations used in the conventional 

CFD methods to solve for flow when the viscous effect is not negligible. The 

continuity equation has the same form as in Equation (3.1). The conservation of 

momentum equation is given in Equation (3.6) as: 

 Pg
Dt

VD





  (3.6) 

where μ is the first coefficient of viscosity which can be taken from measurements 

or the Sutherland’s law, κ is second coefficient of viscosity in which Stokes’ 

hypothesis can be used to assume κ = -2/3μ (White, 1991), δij is the Kronecker 

delta function where δij =1 if i = j while δij =0 if i ≠ j where the subscripts i and j 
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denote the three coordinate directions. The energy equation is given in Equation 

(3.7) as: 
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Due to the mathematical complexity of solving the governing equations in 

their partial differential form, the conventional CFD method was built up in order 

to solve these theoretical governing equations numerically in discrete time 

intervals and spatial locations. The three basic ways of discretising time and space 

are finite difference, finite volume, and finite element.  

In the conventional CFD methods, extra care is needed in meshing of the 

computational domain in order to ensure accurate results, convergence and 

stability of the simulation. There are generally three different types of meshes: 

structured, unstructured and hybrid meshes. Both structured and unstructured 

meshes have their own benefits and disadvantages while the hybrid meshes 

attempts to combine the advantages of both. Structured meshes usually require 

less computational resources to solve and the algorithm is more efficient for 

simple problems. For complex flow problems, unstructured meshes tend to have 

better performance than structured meshes due to better mesh alignment to the 

flow field. However, it requires extra effort and computational resources to 

generate and store the connectivity information between the cells. Whether 

structured or unstructured meshes are used, it is important to ensure that proper 

continuity exists across the interfaces between computational cells so that the 
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discrete solutions can be assembled to represent the complete solution of the flow 

field. Hence, the conventional CFD methods suffer from the major disadvantage 

that poor alignment of the grid with the flow field may result in significant errors 

because flux can only occur between elements which share an interface.  

What is more, in unsteady flow simulations, it would be difficult to fit the 

constantly changing flow field into a fixed computational mesh. In such instance, 

an adaptive mesh may be used where the computational mesh changes according 

to the instantaneous solution of the flow field in order to ensure the gird aligns 

well with the flow. This will cost extra computational resources which may 

reduce the computational efficiency. 

The need to solve the complete set of the governing equations for every 

computational cell is the main reason for high computational cost requirement. 

Due to the complexity of the governing equations, the computational cost is 

already high in the conventional CFD methods. This is made worse when a time 

dependent turbulent model is required in the simulation, for which extra equations 

must be solved.  

 

3.4 Boltzmann Equation and Lattice Boltzmann Method (LBM) 

Lim has done a review of the Boltzmann equation and used a lattice Boltzmann 

model for simulating compressible flows. The discussion of the distribution 

function, the derivations of the Boltzmann equation and LBM in this section are 

adapted from Lim’s master thesis (Lim, 2004). 
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3.4.1 Distribution Function  

In classical statistical mechanics, the goal is to derive all the equilibrium 

properties of a macroscopic molecular system from the laws of molecular 

dynamics. Thus, statistical mechanics predicts the equilibrium state of a given 

system (Huang, 1987). Unlike the continuum assumption used in traditional fluid 

dynamics, statistical mechanics is concerned with the collection of particles and 

determines the macroscopic properties of a fluid system by averaging across all 

the particles. Each particle carries an individual mass, m, and microscopic velocity, 




. The macroscopic properties such as the density, , macroscopic velocity, u


, 

and internal energy, e, are then determined by averaging the respective values of 

the particles in the collection of particles around a given position. 

A distribution function  33 xddtxf ),,(


is defined to represent the number 

of particles which have an individual position lying within a volume element xd 3  

about x


 and velocity lying within the velocity-space element 3d  about 


 at time 

t. The volume elements xd 3  and 3d  are not the same as the infinitesimal 

quantities used in differential mathematics. Instead, they are finite volume 

elements which are large enough to contain a very large number of particles. On 

the other hand, they are also small enough to be considered as a point when 

compared to the macroscopic dimensions.   

A phase space spanned by the position x


 and the velocity 

 of a particle is 

introduced to define the distribution function of  txf ,,


 more precisely. The 
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schematic of a six-dimensional phase space is shown in Figure (3.2). A point 

 


,x  in the phase space, such as the point A in Figure (3.2), represents the state 

of a particle at the position of x


 with the velocity of

. The state of the entire 

collection of N particles is represented by N points in this phase space. 

 

A  




 

x


 

3d  

xd 3   

Figure 3.2 Schematic of the six-dimensional phase space. 

 

The total number of particles within a volume element can be found by 

constructing a volume element about a point in the phase space. For example, a 

volume element xd 3 3d  is constructed about point A in Figure (3.2). The 

distribution function  33 xddtxf ),,(


 is, by definition, the number of points 

contained in each volume element. The distribution function  txf ,,


 is 

considered continuous by assuming each volume element consists of a large 

number of points and the density gradient between these points is small. Hence, 

an approximation can be made for the entire phase as given in Equation (3.8): 

   3333 ),,(),,( xddtxfxddtxf


 (3.8) 
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Consequently, the total number of particles in the phase space can be determined 

from Equation (3.9) as: 

   33),,( xddtxfN


 (3.9) 

3.4.2 Boltzmann Equation  

The Boltzmann equation is a time evolution function of the particle distribution 

function. The particle distribution function changes with time due to the fact that 

the particles constantly travel in and out the volume element in the phase space. 

The motion of the particles is due to the particles’ translation with their original 

velocity. When the particles are subjected to an external force field the particles’ 

velocities change. Eventually, collisions occur between particles which further 

change the particles’ velocities. 

The Boltzmann equation can be derived by tracking the changes of positions 

and velocities of the particles in a volume element 33 xdd  constructed about 

point A in the phase space with the coordinates of ),( 


x  as shown in Figure (3.3). 

After a small time step of ∆t, the coordinates of point A, ),( 


x  shifts to the new 

phase at point A′ with the coordinates changed to ))/(,( tmFtx 


 . The 

parameter F


 in the new coordinates is the external force acting on the particles. 
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Figure 3.3 Schematic of time evolution of a volume element in phase space (Huang, 1987) . 

 

In the absence of collisions, the number of particles within the volume 

element will be conserved. There are no particles entering or leaving the volume 

element. All the particles within the volume element will travel to new location 

without the collisions between the particles. The evolution equation for the 

particle distribution function can then be expressed in Equation (3.10) as 

  3333 ),,(),,( xddtxfxddttt
m

F
txf





  (3.10) 

By cancelling the 33xdd  term on both sides of the equation, Equation (3.10) is 

then reduced to Equation (3.11): 

 ),,(),,( txfttt
m

F
txf 





  (3.11) 

When the collisions between particles are considered, Equation (3.11) has to 

be modified. The collisions between particles will change the particles’ velocities. 

As a result, some of the particles will enter or leave the control volume. Therefore 
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the number of particles within the volume element will no longer be conserved. 

Thus, the collision term, Ω, is introduced and added into Equation (3.11) to 

describe the change in the particle distribution due to the effects of collisions 

between particles. The collision term is added into the distribution function and 

expressed in Equation (3.12) as: 

 ttxfttt
m

F
txf col ),,(),,( 





 (3.12) 

In order to express the Boltzmann equation in the differential form rather 

than the difference form as in Equation (3.12), the Taylor expansion is applied to 

the left-hand side of Equation (3.12) to the first order in ∆t to form Equation (3.13) 

as: 
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By substituting Equation (3.13) into Equation (3.12), the Boltzmann equation is 

expressed as a partial differential equation given in Equation (3.14) as: 
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By letting Δt  0, the first order error term in Equation (3.14) O(Δt ) can be 

neglected and the Boltzmann equation in the differential form is given in Equation 

(3.15) as: 
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For flow fields with an absence of external forces, such as in the case of a 

non-rotating rotor or stationary flow channel, the external force term in the 

Boltzmann equation is normally neglected. Hence, the Boltzmann equation 

without considering external force acting on the flow field can be written in 

Equation (3.16) as: 

 colx f
t

f








  (3.16) 

One of the important terms in the Boltzmann equation is the collision term, 

Ωcol. As mentioned above, the velocities of the particles within a volume element 

change due to the collisions between particles and the particles will be able to 

travel in and out of the volume element. Thus, the total number of particles inside 

a volume element will vary. In other words, the collision term is the rate of 

change in the density of the particle distribution function. 

Due to the mathematical difficulty in solving the Boltzmann equation 

analytically, numerical approaches are adopted to solve the Boltzmann equation. 

However, it is very computationally expensive to evaluate the collision term in the 

Boltzmann equation as given in Equation (3.16). One of the important 

considerations in modelling the collision term is that the basic conservation laws 

of physics (conservation of mass, momentum, and energy) have to be satisfied. By 

letting η denote any of these conservative properties, either mass, momentum, or 

energy of the particles, the restriction of a collision model can be written in the 

following integral form given in Equation (3.17) as: 
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   03dcol  (3.17) 

It is common to approximate the collision term using various simplified 

collision models. This allows the simplified Boltzmann equation to be modelled 

which is generally named as the Model Boltzmann Equation (MBE). A variety of 

MBEs have been proposed such as the higher order Chapman-Enskog expansions, 

the Fokker-Planck approximation (Risken, 1989) and the ellipsoidal model by 

Holway (Holway, 1966). One of the simplest models, which is commonly adopted 

in the majority of MBEs reported recently, is the Bhatnagar-Gross-Krook (BGK) 

simplified collision model (Bhatnagar, et al., 1954), which was also developed 

independently by Welander at about the same time (Welander, 1954). In the BGK 

model, the rate of change in the density of the particle distribution function is 

assumed to be proportional to the difference between the present distribution 

function and the equilibrium distribution function. The BGK collision model is 

called   single-relaxation-time model and is given in Equation (3.18) as: 

 )(
1 eq

col ff 


 (3.18) 

where  is the relaxation time and eqf  is the Maxwell-Boltzmann distribution 

function. 

 

3.4.3 Equilibrium Boltzmann Equation  

The equilibrium distribution function is the solution to the Boltzmann equation as 

shown in Equation (3.16). It describes the state where the Boltzmann equation 
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achieves the equilibrium condition and no longer depends explicitly on time. The 

equilibrium distribution function is called the Maxwellian-Boltzmann equilibrium 

distribution function. It can be derived from the Boltzmann H-theorem (Huang, 

1987), and is given in Equation (3.19) as: 
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where n is the number density of particles within the volume element, m is the 

molecular mass, kB is the Boltzmann constant, T is the macroscopic temperature, 

D is the dimension of the space, 


 is the microscopic velocity and u


 is the 

macroscopic velocity. 

 

3.4.4 Chapman-Enskog Expansion and Recovery of the Navier-Stokes 

Equation  

Although the Boltzmann equation is derived with a different approach compared 

to the derivation of the governing equations used in traditional fluid dynamics, it 

describes the fluid flow phenomena in the same manner as traditional fluid 

dynamics. In fact, the governing equations of fluid dynamics, which are 

formulated based on the concept of a continuum, can be recovered from the 

Boltzmann equation by applying the Chapman-Enskog expansion.  

The Chapman-Enskog expansion uses an asymptotic expansion of the 

distribution function near the equilibrium distribution to approximate the 
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Boltzmann equation (Huang, 1987). It is assumed that the distribution function 

can be expanded into a series form as given in Equation (3.20): 

        n

n

n fffff 





0

2210    (3.20) 

with  nf  getting smaller as n increases. The first term in Equation (3.20) is the 

equilibrium distribution function which says that   eqff 0 where  is a 

parameter representing the perturbations from the equilibrium phase space 

distribution.  

The Euler equation, which describes an inviscid flow in traditional fluid 

dynamics, can be represented by the zeroth-order terms of the Chapman-Enskog 

expansion. The Navier-Stokes equation, which governs a viscous flow, can be 

viewed as the first-order terms of the Chapman-Enskog expansion (Huang, 1987). 

In recent years, the Burnett equations have been developed as the second-order 

terms of the Chapman-Enskog expansion to provide solution for a flow with 0.1 < 

Kn <10 as shown in Figure 3.1. 

 

3.4.5 Lattice Boltzmann Method  

The Lattice Boltzmann method (LBM) is a MBE method that utilizes a finite set 

of discrete molecular velocities to discretise the Boltzmann distribution function. 

Hence, a discrete velocity, space and time on lattice grid is used to solve the 

Boltzmann equation. In LBM, the velocity in the phase space is discretised into a 
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velocity set. The number of velocities 


 in a velocity set is finite. The subscript 

α denotes the α
th

 module of the velocity set in the discrete phase space with α = 

1…M where M is the total number of velocities in the velocity set. Each one of 

the velocities in the velocity set represents a microscopic velocity of a particle. 

Besides, the position space is also discretised in such a manner to allow the 

particles that travel with velocity 


to arrive at a corresponding node after a 

given time step. In other words, a particle with the velocity of 


 will travel from 

a given grid node of x


 to a destination grid node of tx  


. Figure (3.4) 

illustrates two common examples of the velocity sets and grid models. 

 

Figure 3.4 Schematic of velocity set of a 7-velocities LB model on a hexagonal grid (left) and 

velocity set of a 9-velocities LB model on a square grid (right). 

 

The evolution equation for the LBM is the difference form of the Boltzmann 

equation and is given in Equation (3.21) as: 

    ),,(),,( txftttxf


 (3.21) 

where the collision term is the BGK simplified collision term (Bhatnagar, et al., 

1954) and is given in Equation (3.22) as: 
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
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The macroscopic quantities can be evaluated by employing the Chapman-

Enskog assumption. The macroscopic quantities are determined from the 

microscopic quantities and the equilibrium distribution function. Hence, the 

macroscopic quantities are defined in Equation (3.23) as: 

   


dtxfY eq ,,  (3.23) 

where η is any of the microscopic conservative quantities of a particle such as 

mass, density, momentum, and energy. Y is the corresponding macroscopic 

quantity. 

After discretising the phase space, Equation (3.23) is then approximated by 

Equation (3.24) as: 

        txfWdtxfY eqeq ,,,, 
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 


   (3.24) 

where Wα is a weight coefficient. Equation (3.24) is then rewritten in Equation 

(3.25) as: 

    txfY
eq

,, 



 


  (3.25) 

where the equilibrium distribution function for α
th

 velocity module is given in 

Equation (3.26) as: 

    txfWdtxf eqeq
,,,,  


  (3.26) 

One of the important limitations inherent in most of the MBE methods such 

as LBM is that finite limits must be constrained on the velocity space which is 
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theoretically limitless in extent. These limits are chosen in order to ensure the 

scheme has a negligible number of particle velocities that lie outside the range of 

the discretised velocity space. Consequently, the macroscopic velocity is limited. 

Therefore, the basic LBM has great difficulty in simulating compressible flows at 

high Mach numbers (Alexander, Chen, Chen, & Doolen, 1992; Sun, 1998; Sun & 

Hsu, 2004).  

Moreover, the LBM is well known to have instability problems that arise 

frequently when solving non-isothermal flows with large temperature variants. 

This may be due to the equilibrium distribution function used in the basic LBM 

not being equivalent to the Maxwell-Boltzmann equilibrium distribution function 

(Xu & Luo, 1998). Hence, the equilibrium distribution obtained in solving non-

isothermal flows cannot simultaneously guarantee the fulfilment of Boltzmann’s 

H-theorem which ensures the equilibrium velocity distribution function is at the 

maximum entropy state (Sterling & Chen, 1996; Succi, 2001).  This limits the 

basic LBM to the simulation of isothermal flows.  

 

3.5 Direct Simulation Monte Carlo Method 

The Direct Simulation Monte Carlo (DSMC) method is a particle-based technique 

developed in the 1960s which takes into account kinetic theory when simulating 

the flow field. It was first developed by Bird for investigating the translational 

relaxation of a monatomic gas (Bird, 1963). Since it was introduced, the DSMC 

technique has become a notable kinetic theory based simulation method 
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particularly for near continuum and rarefied flows. It has been implemented in a 

variety of applications including CVD reactor modelling (Cave, 2008; Coronell & 

Jensen, 1992), supersonic jet simulations (Teshima & Usami, 2001), hypersonic 

flows in astronautic studies (LeBeau & Lumpkin III, 2001) and microfluid flow 

modelling (Karniadakis & Beşkök, 2002). 

In the DSMC method, a number of simulated particles are chosen to 

represent a very large number of actual gas particles within a computational cell. 

The DSMC method models the macroscopic behaviour of the gas by decoupling 

the ballistic motion of the gas particles and their intermolecular collisions over a 

time step which is smaller than their mean collision time. The computational grid 

is chosen to be a size that is less than the mean free path of the gas. The 

intermolecular collisions are simulated in a probabilistic manner.  

It has been shown that the DSMC method solves the Boltzmann equation 

statistically (Bird, 1970b). The DSMC method has also been proven 

mathematically to provide a solution to the Boltzmann equation if the number of 

simulated particles used is close to the actual amount of gas particles (Wagner, 

1992).  

 

3.5.1 Typical DSMC Implementation Procedures 

The implementation of the DSMC method is much relatively simpler than that of 

both conventional CFD methods and the LBM. It is, however, strongly based on 

the assumption that the flow can be split into free flight phase and collision phase. 
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Hence, the accuracy of DSMC method depends heavily on the choices of the 

simulation time step and the computational grid size. The accuracy also depends 

upon the methods used to model the physical processes during the simulation. In 

particular, the molecular collisions process and the sampling technique to obtain 

the flow properties from the limited number of simulated particles used.   

After setting up the simulation domain with boundary conditions and 

initialising the simulated particle velocities and positions, the simulated particles 

are moved in free flight without collision. The simulated particles are allowed to 

move in a true directional manner. This means they are able to move not only to 

adjacent cells sharing an interface but to diagonally adjacent cells as well within 

one time step. The simulated particles are moved and indexed to a new position x 

in the grid which is given in Equation (3.27) as: 

 tvxx   (3.27) 

where x is the vector of the original locations, v is the vector of particle velocities 

and Δt is the time step used. Typically, no external forces are involved during the 

free flight phase. Thus, the particle velocities remain unchanged. To allow such a 

free flight condition, the time step chosen which separates the free flight phase 

and collision phase needs to be less than the mean collision time Δtcol. Generally, 

Δt  Δtcol/5 is recommended  (Bird, 2006). 

During the free flight phase, the interaction of the simulated particles with 

the flow boundaries is also enforced. The inflow and outflow boundaries can be 

implemented through a constant free stream or periodic boundary conditions. The 
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interaction of simulated particles with the solid surfaces can be implemented as 

either specular or diffuse reflection. The specular reflection considers a complete 

elastic collision with the surface where the velocity component normal to the 

surface is reversed while maintaining the same tangential component. The diffuse 

reflection, however, destroys all incident velocities on the surface. Simulated 

particles are assumed to reach thermal equilibrium with the solid surface and 

assigned a velocity sampled from the Maxwell-Boltzmann equilibrium 

distribution function using the wall temperature and zero bulk velocity. The 

simulated particles are then released from the surface in random directions.  

At the end of the free flight phase, the simulated particles are indexed to the 

computational grid to sample the local flow properties within the computational 

cell prior to collision. The size of the sampling cell is important as the sampled 

cell properties dictate the collision rate of the simulated particles. In general, the 

collision partners are chosen within the sampling cell, or sometimes within a sub-

cell, to allow collisions within a time step Δt. Thus, the cell size used needs to be 

smaller than the mean free path of the physical gas molecules λ, and is commonly 

chosen to be in the order of λ/3. Besides, having sufficient simulated particles 

within the sampling cell is also required in order to calculate the macroscopic 

flow properties in the cell with an acceptable level of statistical scatter. Generally, 

the amount of simulated particles is chosen to ensure the number of particles per 

computational cell is maintained at about 20 throughout the simulation (Bird, 

2006). 
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Lastly, the collisions of the simulated particles are simulated during the 

collision phase which changes the particles velocities and internal energies. 

During the collision phase, the simulated particles undergo probabilistic collisions. 

The efficient No Time Counter (NTC) scheme (Bird, 1994) is commonly used in 

many DSMC codes. In the NTC scheme, the number of simulated particle pairs to 

be selected for collision is given in Equation (3.28) as: 

 
 

2

max
tvnN

N
rTc

pair





 (3.28) 

where n is the number density of the physical gas, Nc is the number of simulated 

particles within the sampling cell, σT is the total collision cross section and vr is 

the relative velocity of the collision partners. The collision partners are chosen 

randomly using an acceptance-rejection method with the condition given in 

Equation (3.29) as: 
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v
R




  (3.29) 

where Rf is an uniform distributed random number between 0 and 1. Post-collision 

velocities of each simulated particle are updated accordingly at the end of the 

collision phase. 

The free flight and collision phase are then repeated iteratively until the 

simulation is completed. Due to the stochastic particle collision treatment in the 

DSMC method, there is usually statistical scatter in the results especially for flows 

approaching the continuum regime. An ensemble average of a number of runs is 

usually made to reduce the statistical scatter in the result. For steady flow, an 
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ensemble average is made of several runs after the steady state is reached whereas 

an ensemble average of separate runs is carried out for unsteady flow.  

 

3.5.2 Collision Models Adopted in DSMC Method 

Referring to Equation (3.28), the total collision cross section σT is determined 

depending on the collision model being used. There are various collision models 

developed. The three common collision models are the hard sphere (HS) model, 

variable hard sphere (VHS) model and variable soft sphere (VSS) model. The 

total collision cross section for these three models depends on the deflection angle 

after collision χ, the relative velocity vr of the collision partners, and the distance 

of closest approach b. These parameters are illustrated in Figure (3.5). The details 

of each collision model can be found in the text by Bird (Bird, 1994). 

  

b 

b 

χ 

χ 
vr 

 

 

vr
*
 

 

 

 
 

Figure 3.5 Collision parameters of a binary collision. 
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The simplest collision model is the hard sphere model in which the collision 

is fully elastic. The hard sphere collision partners will collide if b  d12 where d12 

is the mean molecular diameter of the two molecules. The total collision cross 

section is independent of the deflection angle χ and is given in Equation (3.30) as: 

 2

12dT    (3.30) 

The HS model is advantageous in that it is easily calculated. However, the total 

cross section is independent of the relative translational energy in the collision so 

the HS model provides an erroneous relationship between the viscosity coefficient 

and temperature. 

The variable hard sphere (VHS) molecular model was introduced to 

overcome the error encountered in the HS model (Bird, 1994). In the VHS model, 

the molecular diameter is expressed as a function of the relative velocity of the 

collision partners. This function usually takes the form of simple inverse power 

law. Hence, the total collision cross section of the VHS model is given in 

Equation (3.31) as: 

 2
VHST d   (3.31) 

where the molecular diameter, dVHS, is given in Equation (3.32) as (Bird, 1994): 
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where m is the mass of the gas molecule, k is the Boltzmann constant, μref is the 

viscosity coefficient at reference temperature Tref, ω is the temperature exponent 
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of the viscosity coefficient (commonly known as the viscosity index), Γ represents 

the gamma function and Et is the relative translational energy given in Equation 

(3.33) as: 

 2
r

21

21
t v

mm

mm

2

1
E


  (3.33) 

The deflection angle of VHS model is given in Equation (3.34) as: 

 




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d

b
2 1cos  (3.34) 

 In the VHS model, the momentum transfer cross section is equivalent to the 

total collision cross section. This results in discrepancies between the VHS and 

the inverse power law model when  the molecular diffusion is important in the 

flow field (Koura, Matsumoto, & Shimada, 1991). Following the discovery of this 

problem, a variable soft sphere (VSS) model was introduced (Koura & 

Matsumoto, 1991). The molecular diameter in the VSS model varies as a function 

of the relative velocity in a similar manner to the VHS model but the deflection 

angle is determined by Equation (3.35) as: 
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where α is a VSS molecular parameter which is the exponent of the cosine of the 

deflection angle. The total collision cross section in the VSS model can be 

calculated using Equation (3.31) by replacing with the VSS molecular diameter 

dVSS given in Equation (3.36) as (Bird, 1994): 
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where dref  is the reference diameter at temperature Tref and mr is the reduced mass 

of the collision partners given in Equation (3.37) as: 
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  (3.37) 

For polyatomic molecules, there are internal degrees of freedom in the 

rotational and vibrational modes, in addition to the translational degree of freedom. 

During the collision of polyatomic molecules, the internal energy of the molecule 

is exchangeable with the translational energy. This is defined as an inelastic 

collision. A variety of phenomenological approaches have been proposed to 

model the energy exchange between the translational and internal degrees of 

freedom with the DSMC method. The Borgnakke-Larsen (BL) model is a widely 

accepted phenomenological collision model that gives adequate accuracy at low 

computational expenses (Borgnakke & Larsen, 1975). The BL model, using a 

statistical method, considers a fraction of the total number of collisions to be 

inelastic and subjected to internal energy exchange. More detail of the BL model 

will be discussed in section 4.3. 
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3.5.3 Advantages and disadvantages of DSMC method 

The DSMC method is always numerically stable and does not suffer from 

convergence problems. Due to the nature of the technique in simulating the 

behaviour of the real gas directly, the DSMC simulated particles can carry and 

transfer mass, momentum and energy between any two locations in the flow field, 

not just between elements with a shared interface. Such flow property transport 

methods are termed true directional fluxing. Therefore, setting up a mesh that is 

aligned with the flow is not a requirement for the DSMC method. This saves 

significant pre-processing effort and time in setting up a simulation. In addition, 

the stochastic collision between selected collision partners carried out in DSMC 

method allows gradual and selective transfer of momentum and energy. This 

enables the DSMC method to be capable of handling non-equilibrium effects 

accurately. 

However, due to the nature of particle tracking, DSMC method imposes an 

expensive computational cost especially in solving near continuum or continuum 

flows. The requirements for time step, sampling cell size, and the number of 

particles per cell set the limiting conditions for the applicability of DSMC method. 

For high density flows, the mean collision time and mean free path of the 

molecules are significantly smaller. This results in longer computational time in 

the DSMC method due to the restriction of having small time steps and higher 

memory requirements for smaller sampling cells while a larger amount of 

simulated particles are needed. 
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Furthermore, the DSMC algorithm requires the use of random numbers and 

is thus subject to statistical scatter. Hence, it requires an averaging of the results 

over a large number of time steps to reduce the scatter in the sampled macroscopic 

properties. This further increases the computational cost of the simulation 

especially for unsteady flows. In raising the computational speed to extend the 

applicability of DSMC method, various studies have been performed in either 

parallelising or hybridising the basic DSMC algorithm.  

In parallelising the DSMC method, the computations of the simulation are 

carried out over multiple computer processors. The DSMC method is well suited 

for parallelisation since the coupling of the simulated particles occurs only during 

the collision phase while the collisions between particles are purely local and 

independent of the information in the other cells. A large number of studies in 

parallelizing DSMC computation have been conducted by various research groups 

including Boyd’s (Dietrich & Boyd, 1996), LeBeau’s (LeBeau, 1999) and Wu’s 

(Wu & Lian, 2003).  

In hybridising the DSMC method, the basic DSMC algorithm is usually 

coupled to a continuum solver. Such hybrid methods will enable non-continuum 

regions to be detected through the use of a continuum breakdown parameter and 

the flow field in these regions is simulated by DSMC method, while continuum 

flow regions are computed using an appropriate numerical continuum method 

such as the Navier-Stokes equations solver. The major challenge for the 

hybridisation of the DSMC and the continuum solver is the detection of the flow 
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regime for the respective solver and the information coupling between the solvers. 

Examples of the study on the hybridisation of DSMC-continuum method include 

the hybrid continuum/particle approach for modelling subsonic rarefied flows by 

Sun et al. (Sun, Boyd, & Candler, 2004) and the coupled DSMC-NS scheme 

using unstructured meshes by Wu et al. (Wu, Lian, Cheng, Koomullil, & Tseng, 

2006).  

 

3.6 Other Kinetic Theory Solvers 

The main reason that DSMC method is not widely used in all fluid flow problems 

is the computational expense and statistical scatter apparent in the results. Many 

efforts have been made to make the computation process of the DSMC method 

faster for use in near continuum flows including Macrossan’s -DSMC scheme 

(Macrossan, 2001) and collision limited DSMC schemes (Sharma & Long, 2004; 

Titov & Levin, 2007). Despite these advances, direct simulations used as 

continuum solvers are still very expensive solutions compared to finite volume 

solvers solving the Euler equations. A continuum method, derived from kinetic 

theory with the conceptual strengths of direct simulations and the speed of 

continuum solvers would be extremely useful in situations where a quicker result 

yet with accuracy in an acceptable range is desired. For example, in the PP-CVD 

reactor flow field simulations for the design of reactor and operational conditions, 

a fast approximated solution is needed. For this reason, several kinetic theory 

based solvers are studied and briefly described.  
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3.6.1 Equilibrium Particle Simulation Method 

In the high collision rate limit of the DSMC method, the particle velocity 

distributions approach that of the Maxwell-Boltzmann equilibrium distribution 

and moments of the Boltzmann equation reduce to the Euler equations (Gombosi, 

1994). For this, Pullin has proposed the Equilibrium Particle Simulation Method 

(EPSM) as a continuum flow solver to provide a DSMC solution at the infinite 

collision limit (Pullin, 1980). Hence, technically, EPSM represents a solution to 

the Euler equations.  

In EPSM, the standard collision phase in the DSMC is replaced by a 

different method. The collision phase is arguably the most computational 

expensive phase in the DSMC procedure. During collision phase in EPSM, the 

simulated particles are assigned new velocities from the local Maxwell-

Boltzmann velocity distribution based on the state of the cell. Similar to the 

DSMC, these particle locations remain unchanged during this “collision” phase. 

The new velocities are generated randomly in each cell for each time step. 

However, since the velocities are generated randomly from the equilibrium 

distribution, EPSM also exhibits statistical scatter in the results and as such 

requires averaging over a large number of time steps in the same way as the 

DSMC method.   
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3.6.2 Equilibrium Flux Method 

Pullin also proposed the Equilibrium Flux Method (EFM) in which fluxes are 

calculated analytically across the interface of two cells by taking the moments of 

the equilibrium function at the location of the shared interface (Pullin, 1980). The 

EFM fluxes are derived by assuming an equilibrium distribution of the molecular 

velocities locally in the computational cells. This equilibrium, molecular velocity 

distribution is the Maxwell-Boltzmann velocity probability distribution function 

given in Equation (3.19). 

Consider a typical one dimensional cell surface with the conserved 

macroscopic properties η given in Equation (3.38) as: 
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where ρ is the density, and cp is the specific heat for constant pressure. By using 

the velocity distribution function and the conserved properties on either side of the 

surface, the net flux of η, Fη, across the cell surface can be expressed as: 

   EFM,EFM, FFF 
 (3.39) 

where the superscripts + and – denote conditions on the left and right of the 

surface, respectively. The flux due to the gas molecules transporting from the left 

to the right of the surface can be determined by evaluating the integral given in 

Equation (3.40) as: 

  




0

dvvfvF EFM,   (3.40) 
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while the flux due to the gas molecules transporting from the right to the left of 

the surface is computed by evaluating the integral given in Equation (3.41) as: 

  



0

dvvfvF EFM,   (3.41) 

Using the equilibrium molecular velocity distribution on either side of the surface, 

the integral in Equation (3.40) can then be expanded to the form given in Equation 

(3.42) as: 
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where cv is the specific heat for constant volume,   is the ratio of specific heats 

and the variables W
+
 and D

+
 are given in Equation (3.43) as: 
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Similarly, Equation (3.41) can be expanded to the form given in Equation (3.44) 

as: 
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where the variables W
–
 and D

–
 are given in Equation (3.45) as: 
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EFM is not subject to the statistical scatter inherent in the DSMC or the 

EPSM methods. However, the extension of the EFM to two or higher spatial 

dimensions is performed by calculating a series of one dimensional fluxes across 

the shared interfaces between cells. This is called the direction decoupled method 

which is commonly adopted in conventional CFD methods. The EFM method has 

been implemented in various studies, for example, Macrossan applied the EFM in 

computing the non-equilibrium chemical reaction in a flow (Macrossan, 1989).  
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3.6.3 True Direction Equilibrium Flux Method 

Smith (Smith, 2008) has developed the True Direction Equilibrium Flux Method 

(TDEFM) which represents the more general form of the EFM and takes multiple 

moments over both velocity and physical space. The TDEFM is the analytical 

solution to molecular fluxes selected from the Maxwell-Boltzmann equilibrium 

distribution of any source cell to an arbitrary destination region during the free 

flight phase of the gas molecules. This allows fluxes to be exchanged between all 

cell locations and is not restricted to only the shared interface.  

The true directional nature of the scheme has the advantage of providing 

more accurate solutions. It has been shown that directional decoupled methods 

may produce non-physical results such as negative temperatures or densities at 

strong shocks interaction region when the cell structure is not well aligned with 

the physical structure in the flow (Cook, 1998). The directional decoupled solvers 

may also produce asymmetrical solutions for flow problems in which symmetrical 

results are expected. Figure (3.6) shows the comparison of the solution between 

directional decoupled solvers (i.e. EFM and Van Leer (van Leer, 1982)) and the 

TDEFM for radially imploding or exploding flows on rectangular meshes. For this 

problem, there is a low pressure cylindrical region initially enclosed in a high 

pressure surrounding. It is expected that a cylindrically symmetric shock wave 

will propagate toward the centre, causing an increase in temperature and density 

as the shock travels inwards. The comparison shows that the directional decoupled 

solvers produce asymmetrical solutions. 
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Figure 3.6 Comparison of solutions to the implosion problem using a 50 × 50 mesh: (top left) 

initial condition where γ = 9/7, TH/TL = 1.0, ρH/ρL = 10; (top right) EFM; (lower left) Van 

Leer (Van Leer, 1977) and TDEFM (lower right) Contours are of density (ρ/ρL) at t = 0.098 

(Smith, et al., 2008). 

 

Although the true directional approach produces more accurate results, the 

directional decoupled method is often used for its simplicity in implementation. 

Complexity may arise when implementing true directional computation in a flow 

field across an object. For example, extra precaution is needed in the wall 

boundary treatment for flows over the corners of a solid object. Gas particles 

should not be allowed to flow diagonally across the corners. The geometrical 
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simplicity of the directional decoupled approach also enables simpler 

implementation of higher order reconstruction schemes in order to limit numerical 

diffusivity. 

The TDEFM and EFM fluxes are equivalent when the kinetic Courant–

Friedrichs–Lewy (CFL) number approaches zero (Smith, et al., 2008). Hence, by 

considering the time step Δt  0, the differences between TDEFM and EFM exist 

only in higher spatial dimensions when flux computation in the EFM is direction 

decoupled while the TDEFM is true directional.  

The TDEFM fluxes are also derived by assuming the Maxwell-Boltzmann 

equilibrium distribution of the molecular velocities, (given in Equation (3.19)), 

exists locally in the computational cells. The following equations of the TDEFM 

fluxes are summarized from the PhD thesis of Smith where the detail of the 

derivation is shown (Smith, 2008). Consider a gas particle located at position x in 

the source cell with uniform flow properties within the computational cell. The 

mass flux of  the gas particle as shown in Figure (3.7) moves to a destination cell 

at a location between xD,L and xD,R during a time step, t, is given in Equation (3.46) 

as: 



70 

 

 

 

 

 

 




































































































































tRT2

xxtu
erfM

tRT2

xxtu
M

tRT2

xxtu
erfM

tRT2

xxtu
M

tRT2

xxtu
erfM

tRT2

xxtu
M

tRT2

xxtu
erfM

tRT2

xxtu
Mf

RDLS

42

2
RDLS

c

LDLS

32

2
LDLS

c

RDRS

22

2
RDRS

c

LDRS

12

2
LDRS

cm

,,,,

,,,,

,,,,

,,,,

exp

exp

exp

exp

 (3.46) 

where u is the bulk velocity, T is the temperature and R is the gas constant. 
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Figure 3.7 Schematic of TDEFM flux moving from source to destination cell. 

 

The momentum flux of a gas particle that moves from the source cell to the 

destination cell during a time step, t, is given in Equation (3.47) as: 
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The energy flux of gas particle that moves from the source cell to the destination 

cell during a time step, t, is calculated using Equation (3.48) as: 
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The corresponding TDEFM coefficients Mc, M1 to M5, Pc, P1 to P5, Ec, and E1 to 

E5, are given in the appendix of Smith’s PhD thesis (Smith, 2008). 

  As the TDEFM considers the transfer of particle fluxes in a true directional 

manner, it eliminates the direction decoupling induced errors that are encountered 

in the EFM and other conventional CFD solvers. The TDEFM algorithm is 

unconditionally stable. The calculated fluxes are theoretically valid for any value 

of the time step although the time step is usually determined in a manner that 

keeps the CFL number below unity to ensure physical correctness. However, the 

major disadvantage of the TDEFM is the expensive computational resources 

required due to the need of evaluating the numerous error functions in the particle 

fluxes calculations. 
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3.6.4 Quiet Direct Simulation Method 

The Quiet Direct Simulation (QDS) method is a kinetic-based flux scheme that 

computes true-direction fluxes of mass, momentum and energy with high 

computational efficiency. In QDS, the space of the flow field is discretised into a 

uniform Cartesian grid. In each computational cell the molecular velocity is 

represented by the Maxwell-Boltzmann equilibrium distribution approximated by 

a Gauss-Hermite quadrature. A list of the Gauss-Hermite quadrature is given in 

Appendix A. This molecular velocities distribution is usually discretised into N 

(typically 3 or 4) molecular speeds in each coordinate direction. The speeds are 

chosen according to the local bulk velocity and temperature. In other words, the 

physical gas molecules are represented by N molecular groups in each coordinate 

direction.  

The computation of the flow in each time step is divided into streaming and 

collision phases. In the streaming phase, the flux of molecules from a source cell 

to its nearest neighbouring cells are calculated by assuming collisionless flight. 

The fraction of molecules that move from a source cell to each neighbouring 

destination cell is calculated and stored. The remainder are retained in the source 

cell. A global kinetic CFL criterion is used to adjust the time step as the 

simulation progresses. This prevents molecules streaming beyond neighbouring 

cells and maintains the physical realism of the flow. The time step is chosen such 

that the fastest discretised molecular group moves within a distance no more than 

a set fraction of the grid spacing, typically set to be ≤ 0.5. The mass, momentum 
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and energy carried by these fluxes are then determined and added to each 

destination cell. 

At the end of the streaming phase the fluxes of mass, momentum and energy 

to each cell are summed with the quantities remaining in the cell from molecules 

which did not leave. In the collision phase, an infinite collision rate was assumed 

and forcing the molecular velocity distribution in the cell takes the form of the 

Maxwell-Boltzmann equilibrium distribution function. Hence, it is fair to consider 

that the solution provided by QDS is essentially an Euler solution of the flows. 

There are several advantages in the QDS scheme for flow simulation. In its 

original form, QDS fluxes are streamed in the true directional manner (Smith, et 

al., 2009). It was recently extended to axisymmetric flow field computation in the 

directional decoupled manner for convenient formulations (Lim, Smith, Jermy, 

Wu, & Krumdieck, submitted). Because the calculation of the property fluxes is 

deterministic, QDS exhibits no statistical scatter. The QDS formulations do not 

involve complex mathematical functions such as the error functions which are 

important function for flux computation in many kinetic theory based schemes. 

This enables QDS solvers to be computationally inexpensive and exceptionally 

well-suited as a rapid flow simulation tool. The QDS algorithm is also suitable for 

parallelization with its highly local nature in the flux computation. Furthermore, 

QDS has a large dynamic range, is easily extendable to multiple dimensions and 

species. The major disadvantage with the original scheme was its diffusivity. 

However, this problem was partially alleviated by extending the QDS scheme to 
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the second order which resulted in a reduction in the numerical diffusion with no 

effect on the high stability of the scheme (Lin, Smith, Cave, Huang, & Wu, 2011; 

Smith, et al., 2009) . 

Within the scope of this thesis work is the exploration of the applicability of 

the QDS method as a rapid simulation tool in the study of the PP-CVD flow 

simulation. A fast approximation of the reactor flow field during a PP-CVD 

process, with acceptable accuracy, is desired. A speedy solution is important 

particularly for the customization of the PP-CVD reactor design and the selection 

of operational conditions that allow a specific application of the thin film 

deposition technique to be performed.  
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4 PP-CVD Reactor Flow Field Modelling 

4.1 PP-CVD Flow Field dynamics 

As discussed in Chapter 2, the PP-CVD process consists of a series of pulse 

cycles. Each pulse cycle is made up of an injection phase followed by a pump 

down phase. During the injection phase, a controlled volume of precursor solution 

(also known as reactant) is injected into the continuously evacuated reactor at high 

supply pressure, PS. The supply pressure is usually controlled by a gas pressure 

regulator which is used to adjust the pressure from a highly pressurised source 

vessel. The injection is carried out at a discrete time interval. At the end of the 

injection phase, the supply system stops and the reactor inlet is closed. At this 

stage, the pressure in the reactor volume is at its peak pressure, Pmax. The pulse 

cycle continues with the pump down phase where the reactor is evacuated by a 

vacuum pump to reduce the pressure in the reactor volume to its initial base 

pressure, Pmin. The pump down phase is relatively much longer, in the order of 

more than 10 times, compared to the injection phase. In fact, in an experimental 

study of deposition uniformity in two different reactor sizes, it has been found that 

good flow field uniformity was obtained for the ratio of pump down time to the 

injection time tP/ti  20 for a small reactor and tP/ti  40 for a large reactor 

(Krumdieck, Cave, et al., 2007). A PP-CVD pulse cycle ends when the reactor 

pressure is restored to its base pressure and the PP-CVD process continues with 

another pulse cycle. 
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In general, the reactant in the PP-CVD reactor experiences continuous 

expansion during both injection and pump down phases. Convective flow from 

inlet towards outlet and from the reactor centre to the outer radius of the reactor 

occurs throughout the pulse cycle. However, the flow field dynamics are 

physically different between the phases. The PP-CVD flow field undergoes a 

rapid change especially during the injection phase. The PP-CVD flow field 

dynamics also depend significantly on the reactant delivery system, which can be 

categorised by the chemical phase of the supplied reactant delivery system: as gas 

or liquid. 

 

4.1.1 PP-CVD reactor with gas delivery system  

In the PP-CVD process where the precursor solution is introduced into the reactor 

in gaseous form, the reactant vapour is injected from a high pressure source 

volume into the reactor through an orifice during the injection phase. As the 

pressure ratio of the source volume to the considerable quiescent reactor volume 

is greater than 10, the flow will develop into a highly under-expanded jet 

(Woodmansee, Iyer, Dutton, & Lucht, 2004). In fact, due to the rapid injection of 

the reactant vapour into the continuously evacuated reactor chamber, the flow 

field in the PP-CVD reactor develops into an unsteady under-expanded jet during 

the injection phase. This jet dissipates soon after the end of the injection phase 

when the inlet orifice is closed.  
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Figure 4.1 shows the schematic of a steady, under-expanded jet structure. 

When a choked flow condition occurs at the orifice and the high-pressure gas is 

exhausted to a much lower pressure environment, a rapidly expanding jet is 

created in the low pressure region. An expansion fan is formed at the exit of the 

orifice. These expansion waves diverge rapidly and reflect at the jet boundary as 

compression waves. The interaction of these expansion and compression waves 

results in a barrel-shaped intersecting shock inside the jet boundary. A normal 

shock, which is called Mach disc, is formed at the end of the intersecting shock 

and separates a highly supersonic region upstream at the jet core from a subsonic 

region downstream. This shock structure is repeated to form a series of Mach 

diamonds which usually decrease in size in the downstream direction (Crist, 

Sherman, & Glass, 1966). 

 

 

Figure 4.1 Schematic of a steady under-expanded jet structure (Crist, et al., 1966). 

 

During the pump down phase, the under-expanded jet structure dissipates 

quickly. The flow field becomes highly uniform as soon as the jet structure 
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dissipates completely. Due to the only driving force for the flow field during the 

pump down phase being the evacuation at a relatively slow rate at the reactor 

outlet, the reactor flow field is mainly driven by the pressure gradient within the 

reactor volume. The flow rate throughout the reactor is relatively slow at this 

stage. The flow field is considered to be in a quasi-equilibrium state which will be 

examined and discussed in section 5.8 and 6.5. 

 

4.1.2 PP-CVD reactor with liquid reactant delivery system  

In this PP-CVD process, a metered quantity of liquid precursor solution is injected 

into the continuously evacuated reactor chamber through an ultrasonic atomiser. 

The injection of the precursor solution is done over a discrete timed interval. A 

dilute gas called a push gas, aid the injection of the liquid reactant from the supply 

sample loop. Usually, a noble gas or relatively inert diatomic gas, at high supply 

pressure is used as the push gas. The ultrasonic atomiser is used to generate 

micrometer scale liquid droplets of the reactant when entering the reactor chamber. 

A detailed description of the PP-CVD reactor with liquid reactant delivery system 

can be found in the PhD thesis by Siriwongrungson (Siriwongrungson, 2010). 

When the liquid precursor solution droplets enter the low pressure PP-CVD 

reactor chamber, the droplets flash evaporate. Flash evaporation is an instant 

boiling process when a liquid (usually slightly pre-heated) is exposed to a sudden 

pressure drop below its saturation pressure. The sudden reduction of pressure 

results in the energy of the fluid being unable to be contained in the liquid as 
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sensible heat. Hence, the surplus heat is transformed into the latent heat of 

vaporization causing the subcooled liquid to turn into superheated fluid. When 

there is an absence of dissolved gas inside the liquid, the flash evaporation process 

occurs only at the surface level of the liquid (Billet, 1989; Saury, Harmand, & 

Siroux, 2002).  

 In this study, the experimental conditions of Siriwongrungson’s PhD 

research work are considered. In Siriwongrungson’s experimental study, the 

precursor solvent, toluene, is used with titanium tetraisopropoxide (TTIP) which 

is completely dispersed in the solvent with a precursor concentration of 0.15 

mol%. As the precursor is very dilute in the injected solution, only the solvent is 

modelled for simplicity. A numerical study of PP-CVD reactor flow using QDS 

method with multiple species, it was found that the precursor concentration 

distribution shows a similar flow phenomena to that of the solvent (Cave et al., 

2011). The injected precursor solution is generally at a pressure of 50 - 70 kPa and 

at a temperature of about 310 K. The reactor initial (base) pressure and 

temperature are about 100 Pa and 293 K, respectively. Hence, the operating 

pressure and temperature of the PP-CVD process is far below the critical state of 

Toluene, of which the critical temperature is 591.75 K and critical pressure is 

4.126 MPa (Lemmon, McLinden, & Friend, retrieved July 19, 2011).  

As an approximation of the phase change of the precursor solution in the 

reactor chamber, the phase diagram of Toluene as shown in Figure 4.2 is used. To 

estimate the instantaneous pressure inside the spherical droplet, the Young–



80 

 

Laplace equation is utilised to estimate the pressure difference between the liquid 

enclosed in the droplet and the surrounding gas vapour, ∆P, which is shown in 

Equation (4.1) as (Frohn & Roth, 2000): 

 
r

2
P s
  (4.1) 

where r is the radius of the spherical droplet and σs is the surface tension of the 

droplet as a function of temperature. The ultrasonic atomiser used in 

Siriwongrungson’s experimental study was SONO-TEK 8700-120 cone shape 

micro spray. This atomiser generates droplet with median diameter of 18 m 

(Sono-TekCorporation, 1997). As an example, the surface tension of Toluene at 

310 K is about 0.0264 N/m (Lemmon, et al., retrieved July 19, 2011) while the 

reactor base pressure, Pmin, is at 100 Pa. Hence, the pressure of the liquid enclosed 

in the droplet of the precursor solution, Pd, when entering into the reactor can be 

estimated by Equation (4.2) as: 

 Pa
m

m
N

PaPPPd 33.3033
1018

0264.02
100

6min 






 (4.2) 

As shown in Figure 4.2, Toluene at the PP-CVD supply conditions when enters 

into the reactor is expected to become superheated at the much lower pressure 

inside the reactor. Therefore, it is assumed that “instant” boiling of the liquid 

droplets occurs on the droplet surface; hence the evaporation is considered to be 

flash evaporation.  
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Figure 4.2 Saturation phase diagram of Toluene (Lemmon, et al., retrieved July 19, 2011). 

 

The pressure inside the reactor chamber increases rapidly due to the flash 

evaporation of the precursor solution. At the end of the injection phase, when the 

ultrasonic atomiser is stopped, the liquid droplets are expected to be fully 

evaporated. During the pump down phase, the evaporated vapour is driven by the 

pressure gradient within the reactor volume caused by the vacuum pump. The 

flow field becomes highly uniform at this stage. The pressure of the reactor 

decreases back to the base pressure before the next pulse cycle. The modelling of 

the PP-CVD process with liquid droplet injection will be discussed in detail in 

chapter 7. 
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4.2 PP-CVD Processes Modelling 

4.2.1 Modelling of PP-CVD Reactor Flow Field  

As discussed in section 2.1, there are several steps involved in the PP-CVD 

deposition process. The scope of this research work covers the modelling of the 

flow dynamics inside the PP-CVD reactor chamber during both injection and 

pump down phases for PP-CVD reactor with a gas or liquid reactant delivery 

system. The scope of this modelling work includes: 

1. Choked flow inlet condition and the unsteady development of the quasi-

steady under-expanded jet for gas-fed reactor. 

2. Droplet injection via ultrasonic atomizer, flash evaporation and mass 

transport of the liquid reactant droplets for liquid-fed reactor. 

3. Mass transport of the precursor solution vapour during the flow expansion 

from the reactor nozzle inlet to the substrate region throughout the initially 

quiescent reactor condition. 

4. The continuous evacuation of vacuum pump at the reactor outlet. 

5. The dissipation of the jet structure in the gas-fed reactor and the pressure 

gradient driven flow of the precursor solution vapour during the pump 

down phase. 

It has been shown experimentally that the film growth rate in the PP-CVD 

process depends mainly on the activation energy of the reaction, the local 

substrate temperature, the absorption and reaction rate of the precursor on the 

substrate surface and the precursor solution vapour arrival rate onto the substrate 
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surface (Krumdieck, 2001; Krumdieck & Raj, 2001b). The modelling of the 

substrate surface temperature distribution, precursor absorption and reaction on 

the substrate are not within the scope of this modelling work. Hence, it is assumed 

that the substrate surface temperature is uniform and no depletion of the gas 

molecules occurs on the substrate surface. The precursor solution vapour arrival 

rate, however, is included in the scope of this project. In the following subsections, 

some of the aspects related to modelling the PP-CVD reactor flow field will be 

discussed. 

 

4.2.1.1 Substrate surface temperature distribution  

The substrate surface temperature distribution is mainly affected by the heat 

conduction from the heater to the substrate. A very simple approximation was 

carried out based on Helium gas to compare the convection heat transfer on the 

substrate surface due to the gas flow to the conduction heat transfer across the 

substrate surface. The substrate radius and thermal properties of idea Helium gas 

at an initial reactor temperature of 300 K are tabulated in Table 4.1. 

 

Table 4.1 Substrate radius and thermal properties of idea Helium gas at 300 K (Incropera & 

DeWitt, 2001). 

Substrate radius, r [m] 0.0375 

Dynamic viscosity,  [N·s/m
2
] 2×10

5
 

Prandlt number, Pr 0.682 

Thermal conductivity, kf [W/m·K] 0.152 
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The empirical correlation for the average Nusselt number, Nu , for an 

external flow over flat plate is given in Equation (4.3) as (Incropera & DeWitt, 

2001): 

 3
1

6640 PrRe.Nu 2
1

  (4.3) 

where Re is the Reynolds number given in Equation (4.4) as: 

 


Ur
Re   (4.4) 

Note that the substrate radius is used as the length of the flat plate in this 

approximation analysis. The convection heat transfer coefficient, h, can be 

calculated using Equation (4.5) as: 

 
r

kNu
h

f
  (4.5) 

The convection heat transfer per unit temperature change, convq , can then be 

estimated by Equation (4.6) as: 

 Ahqconv   (4.6) 

where A = r
2
 is the area of the substrate surface. Based on the simulation results 

of the PP-CVD flow field at two operating conditions, the convection heat transfer 

on the substrate surface can be roughly estimated and is given in Table 4.2. The 

two operating conditions simulated are with reactor base pressure of 1 Pa and 1 

kPa, respectively, which will be discussed in detail in Chapter 5. The data 

considered in this estimation is based on the flow condition during the injection 
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phase, 4 ms after the start of injection when the flow has developed into a quasi-

steady state.  

Table 4.2 Estimation of convection heat transfer on substrate surface for PP-CVD flow field 

at 2 different reactor base pressures. 

Reactor base pressure, Pmin [Pa] 1 1000 

Density near substrate [kg/m
3
] 1.5×10

-5
 2.0×10

-3
 

Maximum velocity near substrate [m/s] 784.563 152.978 

Nusselt number 3.245 13.223 

Convection heat transfer coefficient [W/m
2
·K] 13.154 53.598 

Convection heat per unit temperature [W/K] 0.058 0.237 

 

The estimated convection heat transfer per unit temperature is compared to 

the approximated conduction heat transfer from the heater which is placed 

beneath the substrate. The conduction heat transfer per unit temperature can be 

estimated using Fourier’s law given in Equation (4.7) as: 

 
L

Ak
qcond


  (4.7) 

where L is the substrate thickness which is about 5 mm. The stainless steel 

substrate used has the thermal conductivity, kcond, of about 15 W/mK (Incropera 

& DeWitt, 2001). Hence, the conduction heat transfer from the heater to the 

substrate surface is estimated to be 13.25 W/K, which is much higher compared to 

the convection heat transfer estimated above. Hence, the convection heat transfer 

due to the gas flow on the surface is considered to have a negligible effect on the 

temperature distribution on the substrate surface. Therefore, the heat transfer and 

temperature distribution on substrate surface is dominated by the material 

conduction instead of the fluid flow convection.  
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4.2.1.2 Reactant arrival rate onto the substrate surface and deposition uniformity  

The precursor solution vapour arrival rate onto the substrate surface is to be 

modelled and is used to determine the surface deposition uniformity. The 

accumulated mass of gas molecules that strike onto the substrate surface (AMOS) 

was computed. In the present work, AMOS is used primarily to determine the 

uniformity of the reactant arrival rate onto the substrate surface. It is also thought 

that AMOS is directly related to the uniformity in the gas flow field within the 

PP-CVD reactor.  

As shown in Figure 4.3 below, the total mass of the gas molecules that 

strikes onto the substrate surface within a computational grid with the size of ∆r at 

a time t1 is computed. Furthermore, such total mass of the gas molecules that 

strikes onto the substrate surface is accumulated between the computational times 

of t1 to t2. This accumulation of the mass of the gas molecules that strikes onto the 

substrate surface is used to define AMOS between the computational times of t1 to 

t2. For uniform surface deposition, a uniform value in AMOS is expected along 

the substrate radius R.  

Moreover, to justify the uniformity of the total mass on the substrate surface, 

AMOS over the annular area of the substrate surface was computed and used as 

the key parameter to investigate the uniformity of the particles arriving at the 

substrate surface. The detail of the uniformity calculation will be discussed in 

Chapter 8. 
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Figure 4.3 Illustration of the accumulated mass of gas molecules strikes onto the substrate 

surface (AMOS). 

 

4.2.1.3 Boundary Conditions  

For the inflow boundaries in the PP-CVD simulation, choked flow 

conditions are used for PP-CVD reactor with a gaseous precursor solution 

delivery system. A choked flow condition occurs at the inlet orifice if the pressure 

ratio of the gas supply pressure, PS, to the reactor pressure, PR, satisfies the 

condition given in Equation (4.8) as (Anderson, 1990): 

 
1

2

1 







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







R

S

P

P
 (4.8) 

In the present gas injected simulations, Helium gas with  = 5/3 is used. Hence the 

pressure ratio of PS / PR ≥ 2.053 is required. Consider two cases in which the 

reactor base pressure of Pmin = 1 Pa and 1 kPa, respectively. For the first case with 
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Pmin = 1 Pa, the supply pressures PS = 10 kPa and the maximum reactor pressure 

PR = 100 Pa. For the second case, the supply pressures PS = 40 kPa while the 

maximum reactor pressure PR = 5 kPa. Thus, the pressure ratio of PS / PR ≥ 100 

and 8 for the first and second case, respective, are obtained. For this, the choked 

flow condition at inlet can be assumed at all times. For the PP-CVD reactor with a 

liquid precursor solution delivery system, a droplet flash evaporation model is 

used to provide the inflow condition for the gas phase simulation. The droplet 

flash evaporation model will be described in detail in Chapter 7.  

For the outflow boundary, a constant volumetric flow rate is used to 

represent the constant vacuum pump evacuation of the PP-CVD reactor. The 

outflow rate can be approximated based on the vacuum pump evacuation rate by 

calculating the number flux to the outlet surface under equilibrium conditions. 

The number of molecules crossing the outlet cross section, N, can be determined 

by Equation (4.9) as (Roth, 1990): 

 nAvN av  (4.9) 

where A is the area of the cross section, n is the number of molecules per unit 

volume (also known as the number density), and vav is the average velocity in the 

Maxwell-Boltzmann equilibrium distribution which can be calculated by Equation 

(4.10) as: 

 
m

kT
vav



8
  (4.10) 
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where k is the Boltzmann constant, T is the gas temperature and m is the 

molecular mass. The mass flux of molecules m to be removed from the reactor 

can be determined by Equation (4.11) as: 

 PP nmQQm    (4.11) 

where QP is the evacuation rate of the vacuum pump. The fraction of molecules to 

be removed from the reactor, x, can then be calculated by Equation (4.12) as: 

 
Av

Q

Nm

nmQ
x

av

PP 


  (4.12) 

 Therefore, in implementing the evacuation outflow boundary conditions for PP-

CVD flow simulations, a fraction x of the QDS mass fluxes which strike on the 

outlet boundary are removed from the flow.  

The validation of this outflow boundary condition is assessed by comparing 

the average reactor pressure calculated in the QDS simulations during the pump-

down phase and the experimental result (Siriwongrungson, 2010). In the 

experimental work, the process time for a single pulse cycle is about 10 s with a 1 

s injection phase. The total precursor solution injected within a pulse cycle is 

about 43 μg. For a feasible simulation time, the pulse cycle time was scaled down 

to 1 s with 0.1 s injection phase in this comparison. The total amount of 4.2 μg 

Toluene, the precursor solvent used in the experiment, was injected as droplets 

into the reactor in the simulation. The droplet flash evaporation model described 

in Chapter 7 is used to model the vaporisation of the liquid droplet. The vaporised 

Toluene is used as the inlet condition. Figure 4.4 shows the computational 
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geometry used for the simulation conducted in order to assess the outflow 

boundary treatment.  
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Figure 4.4 Schematic of PP-CVD reactor geometry. 

 

Table 4.3 lists the key parameters used in the simulation. 

Table 4.3 Simulation conditions for PP-CVD flow field simulations. 

Initial Pressure, Pi 100 Pa 

Initial Temperature, Ti 293 K 

Injection time, ti 0.1 s 

Reactor evacuation rate, QP 0.46 L/s 

Median droplet diameter 18 μm 

Mean droplet velocity 8 m/s 

Droplet spray angle 6° 

QDS velocity bin, N 4 per coordinate direction 

Simulation time step, ∆t 
variable time step with 

maximum CFL < 0.5 

Slope limiter MINMOD 

 

Figure 4.5 shows the comparison of measured pressure in the experimental 

and average reactor pressure profiles in the PP-CVD process with liquid reactant 

delivery system during one pulse cycle.  
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Figure 4.5 Comparison of experimental (left) and simulated (right) pressure of the PP-CVD 

reactor during one pulse cycle. Note: simulation and experiment used different injection 

pulse lengths and cycle periods.  

 

From Figure 4.5, although the process times used in the experiment and 

simulation are different, similar pressure profiles are seen. The simulated pressure 

profile also agrees well to the predicted reactor pressure profile as shown in 

Figure 2.3. The pressure was recorded for a continuous PP-CVD process over a 

series of pulses but only one pulse cycle is shown in Figure 4.5 for this 

comparison. Hence, the processing time at 235 s for the experimental result shown 

in Figure 4.5 should be interpreted as the start of an injection phase. The injection 

phase was stopped at 236 s. During the pump down phase in the experiment, the 

reactor pressure returns to the initial pressure about 10 s after the start of a pulse 

cycle. This means a pulse cycle is completed after t/ti = 10. From the simulated 

results, the average reactor pressure restored to the initial pressure at t/ti = 12.5, 

which is close to that of the experimental value. This justifies the use of the outlet 

boundary condition for the simulation, expressed in Equation 4.12, to provide a 

good approximation of the actual reactor exhaust conditions by the vacuum pump. 
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It is also noted that the experimental decrease of reactor pressure is slightly faster 

than the average reactor pressure calculated in the simulation. This is due to 

precursor depletion on the substrate surface, which accelerates the pressure drop 

within the reactor, but was not modelled in the simulation. It is also noted that the 

experimental data shows a shoulder at the beginning of the injection phase. The 

origin of this feature is not yet understood. It may be due to two distinct phases in 

the development of the spray, for example a period of coarse atomisation as the 

spray establishes, which is not modelled in the simulation. 

Figure 4.5 can also be used to partly assess the validity of the droplet 

evaporation rate model which is described in detail in Chapter 7. In the simulation, 

the reactor pressure reached the peak value at the end of the injection phase. This 

agrees to that of the theoretical prediction for the PP-CVD process, as shown in 

Figure 2.3. This shows that the droplet flash evaporation model described in 

Chapter 7 is capable of providing a good approximation for the droplet 

vaporisation rate, which provides an inlet condition for the gas phase simulation. 

Note that the peak pressure from the simulation result is lower than that of the 

experimental measurement due to a smaller amount of precursor solution being 

injected.  

For the wall boundary conditions, specular reflected wall treatment is used 

which will simulate the slip wall boundary condition. This is justified in two ways. 

First, the time scale for the gas molecule flow across the substrate surface was 

calculated and compared to the simulation time step. Second, a linear gradient in 
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velocity from the jet core to the wall was assumed. The shear stress was then 

calculated and compared to the dynamic pressure within the reactor at a chosen 

time. 

Table 4.4 shows the comparison between the estimated time for the flow to 

travel across substrate surface and the instantaneous time step used at 4 ms in the 

two cases simulated in Chapter 5. This comparison is made using the data from 

the simulation time at 4 ms because the quasi-steady jet structure that impinges on 

the substrate surface was developed by this time. When the jet impinges on the 

substrate surface, the flow speed across the substrate surface is high enough that a 

boundary layer may be formed due to the wall shear stress. Also, the velocity 

gradient between the centreline of the reactor (i.e. the jet core) and reactor wall is 

strong at this time. 

Table 4.4 Comparison between the estimated time for the flow to travel across substrate 

surface and the instantaneous time step used at 4 ms. 

 Case I Case II 

Substrate radius 0.0375 m 

Average bulk velocity above 

substrate 
784.563 m/s 152.978 m/s 

Estimated time for the flow to travel 

across substrate 
4.7810

-5
 s 2.45110

-4
 s 

Instantaneous time step 510
-8

 s 610
-8

 s 

 

From Table 4.4, it shows that the time step used is much smaller than the 

time for the gas molecules flow across the substrate. Thus, there is insufficient 

time for boundary layer development within each time step. Because both 

simulations were unsteady flow, the flow field changes in every time step. 
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Therefore, it can be assumed that boundary layer formation is negligible and slip 

wall treatment is justified. 

By assuming a linear gradient in velocity from the jet core to the reactor 

wall, the shear stress, , at 4 ms of the flow time was then estimated using 

Equation (4.13) as: 

 
reactor

twalltcentreline

R

uu

dr

du ,, 
   (4.13) 

where ucentreline,t is the axial velocity at the centre of the reactor (i.e. at the jet core), 

uwall,t is the axial velocity at the reactor wall and Rreactor is the reactor radius. The 

dynamic pressure, Pdyn, within the reactor was also estimated using Equation (4.14) 

as: 

 
2

2

1
aveavedyn VP   (4.14) 

where ave is the flow density and Vave is the average flow velocity. Table 4.5 

shows the comparison between the shear stress and the dynamic pressure within 

the reactor at flow time of 4 ms in the two cases simulated in Chapter 5.  

 
Table 4.5 Comparison between the shear stress and dynamic pressure at 4 ms. 

 Case I Case II 

Dynamics viscosity 210
-5

 Pas 

Reactor radius 0.059 m 

ucentreline,t 1166.3 m/s 622.76 m/s 

uwall,t 457.74m/s 47.79 m/s 

 0.24 Pa 0.19 Pa 

ave 8.6710
-6

 kg/m
3
 0.0017 kg/m

3
 

Vave 543.695 m/s 112.16 m/s 

Pdyn 1.282 Pa 10.693 Pa 
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From Table 4.5, it shows that the dynamic pressure is much higher than the 

wall shear stress estimated in both cases. Hence, it can be concluded that the wall 

shear stress can be neglected and this justifies the use of the slip wall condition in 

the simulation. 

 

4.2.2 Continuum breakdown parameter  

The continuum approach in fluid mechanics assumes that the change of fluid 

properties in a flow occurs gradually without discontinuities i.e. the flow property 

gradients are continuous and smooth. This is valid when the perturbation of the 

molecular velocity distribution from the Maxwell-Boltzmann equilibrium 

distribution is small. Also, the number of molecules within the region of interest 

needs to be sufficiently large in order to define the macroscopic properties by 

averaging the microscopic properties of the molecules. What is more, there should 

be a sufficient number of intermolecular collisions for the molecules to relax and 

re-establish the equilibrium condition. 

In certain flow conditions such as highly rarefied or hypersonic flow, the 

continuum assumptions may become invalid. The failure of the continuum 

assumption is commonly termed continuum breakdown. There are two main 

reasons for continuum breakdown to occur. First, the scale length of macroscopic 

properties gradients are small enough to causes the fluid molecules to flow 

downstream before the local equilibrium condition is established. Second, the 

number of intermolecular collisions between the fluid molecules is insufficient for 
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the molecules to exchange properties and relax to the equilibrium molecular 

velocity distribution. Due to the considerably low operating pressure in PP-CVD 

process and the rapid expansion of the flow, especially during the injection phase, 

continuum breakdown may take place.  

The transition of continuum to molecular flow is usually characterised by 

the operating pressure in vacuum system (Roth, 1990). As discussed in section 2.2, 

the Knudsen number, Kn, is commonly used to characterise the rarefaction of the 

flow. However, the Kn is independent of local flow conditions. In a flow where 

the Kn is considerably low, the thermal equilibrium condition is usually expected. 

In a flow with sufficiently high speed or with a significant macroscopic property 

gradient in certain regions, the fluid molecules may travel downstream before the 

local continuum flow condition is established. Hence, Bird (Bird, 1970a) 

proposed a breakdown parameter that predicts the continuum breakdown in an 

expanding gas flow, which is given in Equation (4.15) as:  

 
 
Dt

D
PB





ln1
  (4.15) 

where  is the collision rate and D/Dt is the substantial derivative. It has been 

found that continuum breakdown occurs for PB > 0.02 in both steady and unsteady 

flow. 

This idea was then extended by Boyd’s research group (Boyd, Chen, & 

Candler, 1995; Wang & Boyd, 2003) to allow simpler calculation of the 
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breakdown parameter based on gradients of other fluid properties. The gradient-

length local Knudsen number was proposed and is given in Equation (4.16) as: 

 



GLLKn  (4.16) 

where  is the local mean free path, η is the flow property (e.g. density, 

translational temperature or velocity) and   is the spatial gradient of the flow 

property. Studies found that continuum breakdown occurs when KnGLL > 0.05 

(Boyd, et al., 1995). 

Krumdieck et al. also proposed an alternative breakdown parameter based 

on the time dependent mean free path evolution in a rapidly expanding gas 

(Krumdieck, Cave, et al., 2007). This breakdown parameter takes into account the 

spatio-temporal change of the mean free path compared to the local average 

molecular velocity, which is given in Equation (4.17) as: 

 
Dt

D

v
B

av

1
  (4.17) 

where vav is the average molecular velocity. This breakdown parameter is 

developed based on the observation that the rate of mass transport due to 

sufficiently rapid flow expansion through a control volume will be greater than 

the intermolecular collision rate. This leads to the establishment of the equilibrium 

condition. Equation (4.17) can also be broken into spatial and temporal 

components given in Equation (4.18) as: 

 
dt

d

v
Bu

v
BwhereBBB

av

temp

av

spattempspat




1
;

1
 (4.18) 

where u  is the bulk velocity within the control volume. 
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4.3 PP-CVD Reactor Flow Field Modelling Method 

4.3.1 Numerical modelling of CVD flow field 

There have been significant numbers of work published in CVD flow field 

modelling. In the conventional CVD technique, the deposition occurs mainly after 

the flow field within the reactor has reached steady flow condition. Hence, most 

of the literatures reported on numerical modelling of CVD flow concentrate on 

steady flow field simulations. Coronell and Jensen conducted an analysis of 

transition regime flows in a horizontal, multiple-wafer Low Pressure Chemical 

Vapour Deposition (LPCVD) reactors using DSMC method. Average sampling of 

the steady flow results were performed to study the effect of various number of 

wafers, wafer spacing, wafer radii, molecular mass and inlet flow rate. The 

simulations were conducted on dedicated workstations while the reactor pressures 

were limited in the mTorr range (Coronell & Jensen, 1992).  

Kotecki et al. has employed a two-dimensional CFD model to examine the 

heat and mass transport in two metalorganic CVD (MOCVD) reactors (Kotecki et 

al., 1994). In their model, the steady state Navier-Stokes equations were solved 

using a finite element method based on the Galerkin procedure. However, the 

modelled bulk fluid velocity was very low and no shock waves present in the 

reactor flow field. In their investigation of fine particle transport in a low-pressure 

parallel plate CVD reactor, Setyawan et al. has used commercial CFD code Fluent 

to perform the numerical simulation of the reactor flow field (Setyawan, Shimada, 

Ohtsuka, & Okuyama, 2002). The reactor operating pressures considered in their 
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study are at 2.0 and 4.0 Torr. Two millions computational nodes with unstructured 

triangular/tetrahedral meshes were used in the numerical simulation while viscous 

dissipation was neglected. Vanka et al. also employed the conventional finite 

volume based numerical method to study the mixed convection flow in an 

atmospheric pressure CVD (APCVD) with an impinging jet at the reactor inlet 

(Vanka, Luo, & Glumac, 2004). The reactor pressure range considered was 

between 0.5 to 1.0 atm and steady state solution was simulated.  

 

4.3.2 Previous attempts of modelling the PP-CVD reactor flow field 

In the conventional steady state CVD techniques, the pressure variation within the 

reactor throughout the deposition process is minor. Hence, in the numerical study 

of CVD flow, most of the reported works used either conventional CFD methods 

for deposition flow in low Knudsen number regime or DSMC method for CVD 

process at low operating pressure. There has been hardly literature documenting 

the unsteady expansion of an under-expanded jet into a confined volume in which 

the pressure constantly rises, as is the case in PP-CVD, could be found. Therefore, 

few modelling techniques were explored within the research group members in 

simulating the PP-CVD reactor flow field.   

By considering the sublimation rate of naphthalene at different location 

within the PP-CVD reactor, Baluti has studied the relation of the injection time to 

the processing time of a pulse cycle in both experimental and numerical 

approaches using Navier-Stokes solver (Baluti, 2005). The sublimation uniformity 
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was defined and compared between PP-CVD process and steady condition. The 

modelling of the PP-CVD flow field has also been conducted preliminarily by Lin 

(Lin, 2008) using the parallelized UNIC-UNS Navier-Stokes solver. Lin’s 

simulations indicate that at initial reactor pressures above approximately 1000Pa, 

the Navier-Stokes equations are able to capture the flow field accurately. However, 

the results have unrealistic values for the gas temperature (on the order of 10,000 

K) at lower pressures. 

Cave (Cave, 2008) then developed a kinetic theory based approach for 

modelling unsteady non-continuum flows, centred on the particle-based Direct 

Simulation Monte Carlo (DSMC) method. Due to the computational limitation of 

the DSMC technique in relatively dense and unsteady PP-CVD flow fields, Cave 

attempted the simulation of the PP-CVD reactor flow field through parallel 

computation based on the parallel DSMC (PDSC) code developed by Wu et al. 

(Wu, Chou, Lee, Shao, & Lian, 2005; Wu & Lian, 2003). An unsteady sampling 

routine for a general PDSC was developed to allow the simulation of time-

dependent flow problems in the near continuum range encountered in PP-CVD 

flow fields.  

In PDSC, the computational mesh of the flow domain is first generated 

using appropriate commercial meshing software. The DSMC technique as 

discussed in section 3.5 is implemented on the computational mesh using a 

particle ray-tracing technique. This utilises the cell connectivity information 

provided by the meshing data and allows boundary treatment of complex 
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geometries. Important features of PDSC include parallel processing with dynamic 

domain decomposition (Wu & Tseng, 2005), combination of variable time-step 

scheme with solution-based adaptive mesh refinement (Wu, Tseng, & Wu, 2004), 

and conservative weighting schemes for treating trace species and chemical 

reaction functions for hypersonic air flows (Wu, Hsiao, Lian, & Tseng, 2003).  

PDSC uses the multilevel graph partitioning tool ParMETIS (Karypis, 

Schloegel, & Kumar, 2011) to decompose the computational domain and 

distribute the computational cells amongst the processors. The communication 

between processors is optimized by transferring flow particle data between 

processors only for particles that strike the inter-processor boundaries after all 

other particles on each processor have been moved. This allows maximization of 

the parallel speed-up. A post-processing procedure called DSMC Rapid Ensemble 

Averaging Method (DREAM) is utilised in PDSC to improve the statistical scatter 

in the results (Cave et al., 2008). By using DREAM, a combination of time and 

ensemble-averaged data was built up by repeating runs over small number of 

sampling intervals prior to sampling the point of interest. The repeated runs are 

restarted using Maxwell-Boltzmann distributions based on macroscopic properties 

obtained by the original unsteady sampling of the PDSC. 

 

4.3.3 Importance of inelastic collision in PP-CVD modelling 

In the previous modelling attempts, the PP-CVD flow field was modelled using 

mainly monatomic molecules as an initial modelling approach. The intermolecular 
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collisions were treated as purely elastic where the kinetic energy is conserved 

after the collision in the simulations. However, most of the thin film 

manufacturing processes involve both precursors and solvents with large 

molecules in polyatomic molecular structures. Besides molecular translational 

energy, for polyatomic molecules, there exists an internal energy exchange in the 

molecular rotational (or vibrational) mode during the collisions exists which is 

considered as an inelastic collision. The effect of inelastic collisions on the PP-

CVD reactor flow field, particularly the mass and momentum distributions on the 

substrate surface, is uncertain. Hence, it is necessary to first investigate the effect 

of inelastic collisions between diatomic or polyatomic molecules to the PP-CVD 

reactor flow field, especially in the region near the substrate. 

 

4.3.3.1 Molecular structure and internal energy  

A molecule may consist of a single atom (monatomic) or as a collection of atoms 

bound together by intermolecular forces (Anderson, 1990). A molecule which 

consists of two atoms is termed as diatomic molecule while polyatomic molecule 

has more than two atoms. The amount of macroscopic energy of a gas is 

calculated by adding up the different modes of energy held within the molecules. 

In general, the modes of energy of a molecule can be divided into translational, 

rotational, vibrational and electronic energy. Figure 4.6 shows examples of each 

mode of molecular energy. 
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The translational energy is also termed as the kinetic energy of a molecule 

and exists due to the movement of the centre of mass of the molecule. This is the 

only form of molecular energy that is possessed by a monatomic molecule. Since 

the space has 3 geometrical components (such as x, y and z in a Cartesian space), 

the movement of the molecule on each coordinate direction can contribute to the 

total kinetic energy. Hence, the molecule is considered to have 3 thermal degrees 

of freedom in the translational mode of energy. 

The rotational energy is associated with the rotational movement of the 

molecule about the three orthogonal axes. The amount of rotational energy is 

proportional to the rotational moment of inertia around each axis. For diatomic 

and linear polyatomic molecules, the moment of inertia about the intermolecular 

axis is very small and hence is usually neglected. Therefore, diatomic or linear 

polyatomic molecules are considered to have 2 thermal degrees of freedom in the 

rotational mode. However, for non-linear polyatomic molecules, there are 3 

thermal degrees of freedom in rotational mode.  

The vibrational energy is related to the vibration of each individual atom 

with respect to an equilibrium location within the molecule. Such vibration can be 

modelled by the connection between the atoms with a spring. The sources of this 

mode of internal energy are the linear motion of the atoms along the springs and 

the potential energy contained within the springs. Thus, there are 2 thermal 

degrees of freedom in vibrational mode for diatomic molecules while larger 

molecules possess a larger number of thermal degrees of freedom.  
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The electronic energy is associated with the motion of the electrons orbiting 

the nucleus of each atom and the potential energy of the electrons in the orbit. Due 

to the complexity in modelling the motion of electrons, the concept of thermal 

degrees of freedom is usually not useful in describing the electronic energy. The 

electronic energy is also usually neglected in the modelling of the macroscopic 

energy of a gas. 
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Energy source:

1. Kinetic energy
2. Potential energy

(thermal degrees of freedom – 2)

(a) Diatomic molecule

(b) Translational energy

(c) Rotational energy

(d) Diatomic molecule

(e) Vibrational energy

(a) Diatomic molecule

Energy source:

Translational kinetic energy of the 
centre of mass (thermal degrees of 

freedom – 3)

Energy source:

Rotational kinetic energy; (thermal 
degrees of freedom – 2 for diatomic; 2 

for linear polyatomic; and 3 for 

nonlinear polyatomic)

Rotational energy about the 

internuclear axis for a diatomic 
molecule is negligibly small.

CO2; linear polyatomic molecule

H2O; nonlinear polyatomic molecule

Energy source:

1. Kinetic energy of electrons in orbit
2. Potential energy of electrons in orbit

 

Figure 4.6 Modes of molecular energy (Anderson, 1990). 
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4.3.3.2 PDSC modelling with internal energy exchange 

For diatomic and polyatomic molecules, the characteristic temperature is the 

key to determine whether the rotational or vibrational mode of the molecules is 

activated. In general, the characteristic temperature of rotation is small while the 

characteristic temperature of vibration is significantly high. Bird shows examples 

of the characteristic temperatures of some common diatomic molecules. The 

characteristic temperatures of rotation are in the order of 2 - 80 K whereas the 

characteristic temperatures of vibration are in the order of 800 - 6000 K (Bird, 

1994). Hence, it may be assumed that the rotational energy mode is fully excited 

in the typical operating temperature range of the PP-CVD process while the 

vibrational energy mode can be neglected.  

In modelling inelastic molecular collisions in DSMC method, the energy 

exchange method of Borgnakke and Larsen (BL) (Borgnakke & Larsen, 1975) is 

commonly applied. The BL method is a phenomenological approach that gives 

adequate accuracy with low computational expenses in modelling the internal 

energy exchange. In the BL method, a statistical collision model is used to 

determine the amount of energy exchange between the translational mode and 

other internal modes stochastically. The post-collision energies for relaxing 

collisions are sampled from equilibrium energy distributions for the collision. A 

detailed description on selecting particles for BL internal energy exchange and the 

procedure for computing the rotational energy exchange has been outlined by 

Lilley (Lilley, 2005). The BL inelastic collision model was used to calculate the 
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rotational energy exchange in the PDSC simulations to study the effect of inelastic 

molecular collisions in the PP-CVD flow.  

 

4.3.3.3 Requirement of inelastic molecular collisions in PP-CVD flow simulation 

Simulations of the PP-CVD flow regime were conducted to examine the necessity 

of modelling inelastic molecular collisions, which involve translational and 

rotational energy exchange during the molecular collisions. A quasi-steady jet 

flow in a PP-CVD reactor was simulated using the PDSC, and comparisons made 

between flow simulations with and without the BL inelastic collision model. 

Diatomic VHS nitrogen gas with a supply pressure of 10 kPa and temperature of 

293 K at choked flow conditions was injected into the PP-CVD reactor at initial 

pressure of 1 Pa and a temperature of 293 K. An absorbing wall was used as the 

outflow condition where a fraction of particles that collide on the outlet were 

destroyed at the reactor exit to allow a quasi-steady jet flow to be developed in the 

reactor. The simulations were performed on the University of Canterbury’s IBM 

System p5™ 575 node utilizing 64 processors. Each simulation took 

approximately two days to develop the quasi-steady jet in the flow domain. 

Figure 4.7 shows the computational geometry of the PP-CVD reactor used 

for the simulation investigating the effect of inelastic collisions on the reactor 

flow field using PDSC. The inelastic collision model parameters such as the 

rotational relaxation collision number, Zrot, and the characteristic temperature of 

rotation are taken from Bird’s textbook (Bird, 1994).  
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Figure 4.7 Schematic of PP-CVD reactor geometry for PDSC simulation. 

 

Figure 4.8 shows the comparison of the density contour of the steady jet 

simulated in PP-CVD reactor between the PDSC simulations with and without the 

BL inelastic collision model. Figure 4.9 shows the comparison of the Mach 

number contour of the same simulation results.   

substrate

substrate

with elastic 

molecular collisions

with inelastic 

molecular collisions

 

Figure 4.8 Comparison of density contour of PP-CVD flow simulations with elastic (top) and 

BL inelastic (bottom) collision model. 



109 

 

 

with elastic 
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with inelastic 

molecular collisions

 

Figure 4.9 Comparison of Mach number contour of PP-CVD flow simulations with elastic 

(top) and BL inelastic (bottom) collision model. 

 

It should be noted that the BL inelastic collision model used considers only 

the exchange of translational and rotational energy during the inelastic molecular 

collision. From the simulation results, flow simulation with inelastic molecular 

collisions provides a thicker shock pattern with that is slightly lesser in density 

distribution near the inlet nozzle. This was due to some molecular energy being 

distributed to the extra rotational energy mode. This causes less translational 

energy to be held by the molecules and results in slower molecular movement 

near the inlet nozzle. However, both simulations with or without inelastic 

molecular collisions produced similar flow patterns and uniformity in the region 

near the substrate in the reactor. Therefore, it was concluded that internal energy 
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exchange during molecular collisions in PP-CVD flow simulation can be ignored 

for simpler simulation setups. 

 

4.3.4 Selection of modelling techniques for PP-CVD flow 

It is within the scope of this research work to develop a rapid and easy-to-use 

simulation method for modelling the reactor flow field during a PP-CVD process 

with acceptable accuracy. A fast numerical solution is of particular interest for the 

purpose of customization of the PP-CVD reactor design, operational conditions 

selection, as well as the scaling up of the PP-CVD process to be a practical 

industrial tool for thin film deposition. 

Although the previous attempt to simulate PP-CVD flow field during the 

injection phase using PDSC (Cave, 2008) produced constructive results in 

modelling the PP-CVD flow field, the computational expense was high. Besides, 

despite much effort being made, the simulations show statistical scatter in the 

results. What is more, it requires a high level of expert skill and time for the 

manual creation of the computational grid during the pre-processing stage and the 

sampling of the results during the post-processing stage.  

The modelling of the PP-CVD flow field is also possible to be carried out 

using continuum-based CFD solvers. However, this also involves much expert 

skill and time to manually create a computational grid and post process the results. 

The unstructured meshes used require prior knowledge of the flow in order to 

obtain meaningful and converged solutions. Due to the complexity of the 
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governing equation in the Navier-Stokes solver, the computational speed is slow. 

It also requires the use of high power computational facilities. In order to scale up 

the PP-CVD reactor design for industrial applications, a rapid modelling method 

is desired. It is important that the chosen modelling method be feasible for the 

alternation of the reactor design and operational conditions in order to suit various 

industrial deposition purposes. Moreover, a simulation tool that requires relatively 

less CFD expertise in the industrial or chemical engineers from the thin film 

production plants is also preferred.    

Modelling techniques that are based on the kinetic theory provide 

alternatives for PP-CVD fluid flow simulations. One of the kinetic theory based 

modelling techniques is the model Boltzmann equation (MBE) which discretises 

the Boltzmann distribution equation as discussed in section 3.4. One of the 

popular MBEs, to date, is the Lattice Boltzmann Method (LBM) (Succi, 2001). In 

LBM, a finite molecular velocity set is used and stored at lattice nodes to 

represent the molecular velocity distribution of the flow. The discretised 

Boltzmann equation is evolved in time explicitly. LBM uses simple structured 

Cartesian computational meshes which enables easy simulation setup. Other 

advantages of the LBM include fast computation, applicability to mesoscopic 

physical processes modelling and efficient parallel computing. However, the 

LBM is limited to model incompressible or weakly compressible flow. The 

modelling errors in LBM grow with Mach number. LBM is also well known to 

have instabilities in non-isothermal flow. Many efforts have been spent to 
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accommodate compressibility effects in LBM but at the cost of increased 

complexity.  

Another alternative technique for flow modelling that is based on kinetic 

theory is the Quiet Direct Simulation (QDS) method as discussed in section 3.6.4. 

The Quiet Direct Simulation (QDS) method is a relatively new kinetic theory 

based numerical simulation tool that computes fluxes of mass, momentum and 

energy with extremely high computational efficiency. The QDS solver requires 

very little input from the user to specify the geometry of the flow domain, initial 

and supply conditions of the flow field and choices of boundary conditions in 

order to set up a simulation. There is no pre-processing step required to generate 

the computational grid as the space of the flow field is discretised into a simple 

uniform Cartesian grid. The formulation of the QDS scheme is simple and straight 

forward which allows easy extension and development of the scheme by expert 

users. Therefore, for the purpose of rapid approximation of the PP-CVD flow field 

in designing the reactor and operation conditions, QDS is a method worthy of 

investigation to be a feasible numerical simulation tool. 

 

4.3.5 Assumptions in PP-CVD flow field simulations 

There are some assumptions commonly made in all the PP-CVD flow field 

simulations presently worked on. This section outlines the assumptions made in 

this modelling process.  
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The ideal gas condition is considered in the gas phase simulations. As 

discussed above, the precursor is considered to be very dilute in the solvent, hence 

only the solvent species is simulated to study the flow field uniformity throughout 

the PP-CVD process.  

The heat transfer from the heated substrate surface to the flow field is 

neglected due to the insignificant amount of convection heat transfer based on the 

convection heat transfer coefficient estimated in section 4.2.1 above. In practice, 

the substrate temperature, Ts, is usually maintained at about 400 - 600C while the 

average temperature of the gas flow, Tave, is about 300 K in the reactor. The 

amount of convection heat transfer qconv from the heated substrate to the gas flow 

can be estimated by Equation (4.19) as: 

  avesconv TTAhq   (4.19) 

Using Equation (4.19), the convection heat transfer is estimated to be about 

13.25 W and 56.0 W for the PP-CVD flow field with base pressure of 1 Pa and 1 

kPa, respectively, and is simulated in Chapter 5. The dynamic simulation time 

step used in a typical PP-CVD flow simulation using QDS is in the order of 10
-8

 s. 

Thus, the convection heat transfer on the substrate surface can be estimated to be 

about 1.310
-7

 J to 5.410
-7

 J, respectively. Based on the flow velocity listed in 

Table 4.2, the kinetic energy of the flow above the substrate, EK, can be estimated 

by Equation (4.20) as: 

 
2

K mV
2

1
E   (4.20) 
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where m is the mass of the gas molecule within the cells adjacent to the substrate 

surface. Using Equation (4.20), the kinetic energy of the flow above the substrate 

surface can be approximated to be about 7.110
-6

 J to 2.310
-5

 J for the PP-CVD 

flow field with base pressure of 1 Pa and 1 kPa, respectively, and is simulated in 

Chapter 5. The convection heat transfer is in one order, or lower, less than that of 

the kinetic energy of the flow on the substrate surface. This indicates that 

negligible heat energy is transferred from the heated substrate to the gas flow and 

has an insignificant influence on the flow phenomena. Therefore, the substrate 

surface temperature was not included in the flow field modelling by the PP-CVD 

reactor volume being assumed to be initially isothermal at the gas temperature.  

Another crucial assumption in the QDS method is that thermal equilibrium 

is established locally within each computational cell by the end of the time step, 

allowing the molecular velocity distribution to be approximated with the 

Maxwell-Boltzmann distribution. In investigating the validity of the local 

equilibrium assumption, the gradient length local Knudsen number, KnGLL, is 

adapted. In general, for an expanding flow, thermal equilibrium among the 

particles’ energy modes cannot be maintained when the particle collision rate 

becomes so low that continuum breakdown occurs. Hence, the KnGLL discussed in 

section 4.2.3 and given in Equation 4.9 is used as one of the parameters to check 

the validity of local thermal equilibrium in QDS. As studied by Boyd, the 

criterion for continuum breakdown occurs when KnGLL > 0.05 (Boyd, et al., 1995). 

When Boyd’s continuum assumption condition is satisfied, it signifies that the 
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local density gradient within the computational cell is not high enough to transport 

the particles downstream before thermal equilibrium condition is re-established in 

each time step. 

The validity of the thermal equilibrium assumption may also be tested by 

considering the average time between particle collisions tcol,avg estimated by 

Equation (4.13) as:  

 
avgth

avgcol
v

t
,

,


  (4.21) 

where  is the molecular mean free path and vth,avg is the average translational 

thermal speed given in Equation (4.14) as: 

 
m

kT
v avgth

3
,   (4.22) 

where k is the Boltzmann’s constant and m is the mass of an individual molecule. 

Titov and Levin (Titov & Levin, 2007) found, in a collision-limited DSMC 

scheme, that 2 collisions per time step per particle are sufficient for the computed 

non-equilibrium distribution to relax to one differing negligibly from the 

corresponding Maxwell-Boltzmann equilibrium distribution. In the present 

analysis, the average time between particle collisions is compared to the 

computational time step, Δt. The equilibrium assumption may be considered valid 

for t/tcol,avg ≥ 2 which indicates there is at least 2 collisions per particle occurs 

within a computational time step to allow the re-establishment of equilibrium 

conditions within each computational cell. The speed and accuracy of the QDS 

scheme will also be discussed in the subsequent chapters. 
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 In the extension of the QDS solver to accommodate injection of liquid 

droplets as the inlet condition for simulating the flow field in a PP-CVD reactor 

with liquid reactant delivery system, a few further assumptions have been made. 

The liquid droplets generated from the ultrasonic atomiser are assumed to be fully 

atomised and spherical with uniform temperature space-wise. The injected 

droplets are assumed to be flash evaporated at the droplet surface as discussed in 

section 4.1.2 above at the droplet surface temperature. The evaporation occurs on 

the droplet surface where a vapour rich layer adjacent to the liquid surface is 

formed due to the flash evaporation. The vapour is then transported to the 

surroundings by diffusion. Each of these assumptions will be discussed in detail 

and justified in Chapter 7. 
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5 Quiet Direct Simulation (QDS) Method 

5.1 Development of the Quiet Direct Simulation (QDS) method 

The QDS method is a relatively new numerical approach for simulating complex 

fluid flow and transport phenomena. It is a flux-based kinetic theory method 

which was introduced about a decade ago as an alternative method for fluid 

dynamics simulations. The QDS method originated with Albright et al. in 2002. It 

was proposed and termed as Quiet Direct Simulation Monte Carlo (QDSMC) 

method to carry out the direct simulation Monte Carlo (DSMC) computation 

without involving random sampling of the fluid particles. It was first developed 

and implemented to first order accuracy as a modelling technique for plasmas 

(Albright, Daughton, Lemons, Winske, & Jones, 2002) and simple Eulerian flows 

(Albright, Lemons, Jones, & Winske, 2002).  The QDS method was then applied 

with a random time step to simulate a typical diffusion equation and an improved 

simulation time was achieved (Peter, 2007).  

The QDSMC method was then reformulated to be a conservative, finite 

volume scheme and was implemented to second order accuracy (Smith, et al., 

2009). The reformulated QDSMC scheme was renamed as the QDS scheme due 

to the lack of stochastic processes. Recently, the QDS method was extended to a 

second-order axisymmetric solver (Lim, et al., submitted). Some ongoing 

developments of the QDS method include parallel implementation and multiple 

species computation (Cave, et al., 2011), application to an arbitrary governing 

probability distribution function for solving viscous flow (Smith, Kuo, Cave, 
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Jermy, & Wu, 2010), and investigation of the inherent viscosity of the QDS 

scheme (Jermy, Lim, & Cave, 2010). 

 

5.2 Maxwell-Boltzmann equilibrium velocity distribution function and 

Gauss-Hermite quadrature 

As described in section 3.4.3, the Maxwell-Boltzmann distribution is an 

equilibrium distribution function to express the distribution of molecules’ thermal 

velocities when the gas molecules are at the thermal equilibrium condition. The 

Maxwell-Boltzmann velocity distribution function has the form of a normal 

probability distribution: 
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where u is the bulk velocity of the gas and 2 is the variance of the velocity 

distribution in which  = RT  where R is the gas constant and T is the 

temperature.   Hence, p(v)dv is the probability of finding a gas  molecule with a 

velocity in the range v → v + dv.  By using a Gaussian quadrature (or Gauss-

Hermite quadrature) , the integration of moments of Equation (5.1) over an 

infinite velocity range can be represented by the sum of a series of weights, 

multiplied by the value of f (v) evaluated at N discrete velocities qj: 
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where wj and qj are the weights and abscissas of the Gaussian quadrature and are 

known as the Gauss-Hermite parameters (Zwillinger, 2003). The abscissas are the 

roots of the Hermite polynomials which can be defined by: 

 11 22)(   nnn nHqHqH  (5.3) 

where H-1 = 0 and H0 = 1. The weights can be determined from: 
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Equation (5.2) becomes exact when the function f(v) is a linear combination of the 

2N - 1 polynomials x
0
, x

1
, … , x

2N – 1
.   

The QDS method assumes a sufficiently high collision rate in each 

computational cell such that the velocity distribution relaxes completely to the 

Maxwell-Boltzmann local equilibrium distribution during the time step. In the 

QDS method, the Maxwell-Boltzmann equilibrium velocity distribution is 

discretised into a chosen number of “velocity bins” in each spatial dimension, 

typically 3 - 4 bins, as shown in Figure 5.1. In general, these “velocity bins” can 

be visualized as collections of gas molecules that have the same velocity and are 

spaced evenly across each computational cell. The mass fraction of the 

computational cell carried in each bin is determined by the weights of the Gauss-

Hermite quadrature which is given in Equation (5.5) as: 
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The associated velocity of each bin is represented by the corresponding abscissa 

which is given in Equation (5.6) as: 

 jj quv 22  (5.6) 

p
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Figure 5.1 Discretisation of Maxwell-Boltzmann velocity distribution into QDS “velocity 

bins”. 

 

These bins are centred on the local mean (bulk) velocity. Choosing either an 

odd or even number of bins has a certain level of computational limitation. On 

one hand, if a small odd number of bins (e.g. 3) are used, the majority of the gas 

molecules velocities are represented by the bulk velocity with zero thermal 

velocity resulting in an under-prediction of the thermal flux. On the other hand, 

using an even number of bins will result in over-prediction of thermal flux since 

no particle with zero thermal velocity is considered.  

 

5.3 First-order QDSMC scheme 

The first order QDSMC algorithm proposed is a time marching explicit Eulerian 

flow solver (Albright, Lemons, et al., 2002). In the first order QDSMC scheme, 

the concept of “velocity bins” is represented by a chosen amount of fluid particles. 
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Therefore, the first order QDSMC scheme is a particle-based scheme. For a given 

computational mesh, the fluid at a grid point xi is represented by J particles with 

known fluid properties of quantities of density (i), velocity (ui), velocity variance 

( 2

vi ) and energy (Ei). The particle masses, velocities and internal energies can be 

represented, respectively, in Equation (5.7) to (5.9) as: 
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where ∆x is the grid size,  is the total number of degrees of freedom ( = 2(- 1)
-

1
) where  is the specific heat ratio) and  is the number of simulated translational 

degrees of freedom (i.e. for one-dimensional simulations,  = 1). All particles are 

transported to a new position in the computational mesh over a simulation time 

step ∆t as given in Equation (5.10) at:   

 tvxx iji
new
ij   (5.10) 

The grid properties of mass, momentum and energy at the new time step are 

then determined by linearly distributing the quantities of mass (mP), velocity (vP) 

and internal energy (P) carried by each particle to the mesh in the form given in 

Equation (5.11) to (5.13) as: 

 PiP
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where the linear weights, WPi, for each particle are defined by Equation (5.14) as: 
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where xP is the position of the particle within the cell. The macroscopic 

equilibrium temperature, Ti, of each cell can be calculated in the manner used by 

the conventional finite volume solvers and given in Equation (5.15) as: 

 


























2

2

11

i

i

i

i

v

i
m

p

m

E

C
T  (5.15) 

where Cv is the gas specific heat at constant volume which can be determined by 

Equation (5.16) as: 

 
1




R
Cv  (5.16) 

 

5.4 Second order true directional QDS scheme 

The first order particle-based QDSMC scheme has been extended to a second 

order, two-dimensional flux-based scheme (Smith, et al., 2009). This scheme 

replaces the concept of interpolating particles properties onto a grid point, as in 

the QDSMC scheme, by a finite volume approach, where fluid properties (density, 

momentum, temperature) are piecewise linear in the computational cell. Spatial 



123 

 

gradients of the fluid properties are used to calculate the flux from a source cell to 

any arbitrary destination volume. Mass, momentum and energy are conserved by 

adding the fluxed quantities to the destination cells.   

The 2N flux scheme presented by Smith et al. (Smith, et al., 2008) is 

employed to calculate the two-dimensional, true-direction fluxes.  In the 2N flux 

scheme, the Maxwell-Boltzmann equilibrium velocity distribution function is 

discretised to N “velocity bins” in x- and y-directions, respectively, and are used 

to calculate the QDS flux.  N true directional fluxes are computed in each 

coordinate direction in order to produce a total of 2N fluxes in the two-

dimensional case. These fluxes are then combined to create a total of N
2
 fluxes in 

each computational cell. Hence, for two-dimensional simulations with j = 1,…,J 

bins generated in the x-direction while k = 1,…,K in the y-direction, the amount of 

mass, velocity components and the energy carried in each bin can be calculated, 

respectively, by Equation (5.17) to (5.20) as: 
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where Vc is the volume of the cell, ∆xL and ∆yL represent the locations on the cell 

in the x- and y-direction, respectively, from where the flow properties are taken. 

For example, for a flux moving to the right of the cell centre, ∆xL = 0.5(∆x – vxjdt) 

where dt is the time step. This is illustrated in Figure 5.2 which shows the addition 

of a linear variation of density within a computational cell. 

 
  (a)                                             (b)                                             (c)  

Figure 5.2 Examples of addition of in-cell gradients.  (a) No gradient, conventional first 

order scheme, (b) conventional finite volume implementation where fluxes are calculated at 

cell interfaces and (c) implementation when calculated fluxes are volume to volume 

(direction decoupled) as opposed to calculated at flux interfaces (Smith, et al., 2009) . 

 

The true directional QDS scheme is basically a direction coupled volume-

to-volume solver. Thus, conditions within a region of space are required such that 

particles moving to a region right of the source cell are likely to have their 

properties defined by a region in the right half of the cell. In the present QDS 

scheme, fluxes moving to the right are assumed to take their quantities from the 

reconstructed state at ΔxL to the right of the cell center. This corresponds to the 

displacement of the centre of mass of the flux which moves into the destination 

cell. Left moving fluxes have properties constructed in a similar manner such that 

∆xL = 0.5(-∆x – vxjdt). The fluxes are then moved in free flight, justifying the use 

of a linear interpolation routine. 
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In addition, the property gradients are calculated using a slope limiter in 

order to prevent unphysical and unstable oscillations in the solution. In the 

calculation of Equations (5.17) to (5.20), the gradients of the flow properties are 

determined using the MINMOD (Minimum Modulus) or the MC (Monotonized 

Central Difference) slope limiter  (Van Leer, 1977). As an example, the density 

gradient in axial flux calculation using the MC slope limiter is given in Equation 

(5.21) as: 
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where the MINMOD slope limiter is given in Equation (5.22) as: 

  
 
 
 
















ababb

baaba

ab

ba

 and 0SIGN if

 and 0SIGN if

0SIGN if0

,MINMOD  (5.22) 

The fluxes generated in a source cell are then allowed to undergo free flight 

in true direction to any location determined from the velocity as shown from 

Figure 5.3 (a) to 5.3 (b). In conserving the flow properties transported from a 

source cell to a location that may overlap multiple destination cells, the amount of 

a fluxed property being added to each of the destination cells is computed 

according to the ratio of the overlap area, A, to the area of the source cell, AS. The 

overlap area, A, can be calculated by Equation (5.23) as: 

 
2dtvvA ykxj  (5.23) 
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vk·∆t

 

  (a)  (b)  

Figure 5.3 Schematic of QDS fluxes of flow properties transported from (a) source to (b) 

destination cell. 

 

Thus, the mass, mflux,jk, components of momentum, pflux,xj, and pflux,yk, and energy, 

Eflux,jk, which are added to each of the destination cells (and subtracted from the 

source cell) are calculated, respectively, by Equation (5.24) to (5.27) as: 
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5.5 Axisymmetric second order QDS 

The simple calculation of the flux being transported to a destination cell in a 

Cartesian mesh based on the overlap area, which is given in Equations (5.24) to 

(5.27), becomes more complicated for axisymmetric simulations on a cylindrical 

Source cell 

Destination cell 

vxjdt 

vykdt 
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polar mesh. For that, the second-order flux-based QDS scheme has been extended 

to axisymmetric flow computation (Cave, 2010). Two important corrections must 

be applied in calculating the mass and momentum fluxes as the volume of the 

cells vary in the radial direction. The first correction is needed in the calculation 

of the overlap area due to the fluxes that move away from the axis expanding into 

a larger cell volume and vice versa. The second correction is applied to the 

momentum calculation in each cell because of the variation in the force due to 

static pressure across the top and bottom cell interfaces.  

The calculation of the overlap area for the radial component of fluxes shown 

in Equation (5.23) needs to be corrected to take the change in cell volume into 

account at different radii. Using the illustration in Figure (5.4) for a flux having 

radial velocity, vr, over a time step, ∆t, the ratio between the displaced volume, Vd, 

(which has centroid at radius r and radial width ∆r) to the original volume of the 

mass flux, Vo, can be calculated depending on the direction of the radial velocity 

given in Equation (5.28) or (5.29) as:  
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Figure 5.4 Schematic showing the relationship between displaced and original volumes used 

to calculate the fluxes in axisymmetric QDS (Cave, 2010). 

 

The ratios in Equation (5.28) or (5.29) can be multiplied directly to the radial 

component of the mass, momentum and energy fluxes to accommodate the 

variation of volume in the source and destination cells. These ratios, however, are 

suitable for the first order simulation only. For second order computation, the 

effect of the property gradients must be considered. The radial flux from a source 

cell at radius, rcell, (with lower and upper boundaries, rL, and rR, respectively) to a 

cell of greater radius can be demonstrated in Figure 5.5.  
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Figure 5.5 Schematic for the derivation of second order expressions of radial fluxes for 

axisymmetric QDS simulations (Cave, 2010). 

 

Considering that there is a constant density gradient across the cell, B = dρ/dr, the 

centre of mass of the source cell, rcm, can be determined using Equation (5.30) as: 
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where mcell is the total mass of the cell, rR is the upper boundary of the cell, α is 

the axisymmetric angle (usually π) and r1 = rR - vrj∆t.  The mass of the element 

between r and r+Δr can then be expressed by Equation (5.31) as: 
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where the constant C = ρcm – Brcm. Integrating Equation (5.31) between r1 and rR, 

the net mass flux between the two cells is given in Equation (5.32) as: 
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Hence, while the mass carried by the axial fluxes remains the same as in Equation 

(5.24), the amount of mass carried by the radial fluxes is calculated by Equation 

(5.33) as: 
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A momentum correction is required at each time step to account for the 

pressure change along the control volume elements in the radial direction for 

axisymmetric flows. This is because the force due to the static pressure across the 

top and bottom interfaces of an axisymmetric cell also varies in the radial 

direction as shown in Figure 5.6.  The correction of the amount of momentum to 

be added to the destination cell can be determined by Equation (5.34):  

 txrPp    (5.34) 

where P is the pressure in the cell, α is the axisymmetric angle (usually π), Δr and 

Δx are the radial and axial size of the cell, respectively, and Δt is the simulation 

time step. 
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Figure 5.6 Schematic of the forces due to static pressure P on an axisymmetric cell (Cave, 

2010). 

 

Without the momentum correction, an artificial radial flux appears towards the 

axis of the symmetry, even when the bulk radial velocity is zero in the flow field. 

 

5.6 Dynamic time step adjustment and boundary conditions 

The simulation time step duration ∆t is reset at each time step in order to maintain 

the maximum Courant–Friedrichs–Levy (CFL) number in the flow field at a 

chosen value, always less than 1 and usually 0.5.  In the current implementation, 

the CFL number is determined by Equation (5.35) as: 
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where qj(max) is the maximum abscissas value of the QDS “velocity bins”.  This 

CFL restriction is not necessary for the numerical stability of this explicit scheme. 

It is used to maintain physical realism where a particle is prevented from 

travelling more than the distance of one cell size before the collision step is 

carried out and local thermal equilibrium is established.   

The boundary conditions are implemented by introducing virtual or ‘ghost’ 

cells at all walls, inflow and outflow boundaries (Smith, et al., 2009). Fluxes from 

flow field cells crossing all of the boundaries are destroyed. The depletion of these 

fluxes is replaced by the fluxes originating from the ghost cells. The macroscopic 

properties of the ghost cells are determined accordingly depending on the type of 

the boundary implemented.  

For all wall boundaries, the specular reflection scheme is applied to 

implement the slip wall boundary condition, since the QDS scheme is essentially 

an Euler solver. The ghost cells introduced at the wall boundaries have the same 

flow properties as the adjacent cells within the flow field but a reversed flow 

direction normal to the wall. Due to the variation in the cell volume in the radial 

direction of the axisymmetric simulation, the density in a ghost cell at a different 

radius from the adjacent flow field cell is adjusted to ensure a zero net mass or 

energy flux and correct momentum flux.   

For the inflow boundaries, the ghost cells usually have properties equal to 

the free stream conditions. For the gas injected PP-CVD flow simulation, choked 

flow conditions are to be assigned to the ghost cells at the inflow boundary. For 
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the liquid injected PP-CVD flow simulations, the use of ghost cells at the inlet 

boundary is turned off. A droplet flash evaporation model is used instead to 

provide the inflow condition for the gas phase simulation. The droplet flash 

evaporation model will be described in detail in Chapter 7.  

For the outflow boundary, the ghost cells usually have properties 

extrapolated from values within the adjacent flow field cells to ensure gradients of 

density, momentum and energy are equal to zero across the outflow boundary. 

However, for the PP-CVD flow simulation, an outflow rate determined from the 

vacuum evacuation rate as described in Section 4.2.2 is used to specify the flow 

properties of the ghost cells.  

 

5.7 Model Validation 

5.7.1 Explosion of a Cylindrical Cavity  

To validate the axisymmetric second order true directional QDS 

implementation, a simulation was conducted on the explosion of a cylindrical 

cavity of high temperature. The simulation was conducted with the axisymmetric 

QDS codes by using 4 velocity bins per coordinate direction and MINMOD slope 

limiter in calculating properties gradients. The QDS simulation result was 

compared to that of the simulation using one-dimensional EFM method discussed 

in Chapter 3. The EFM simulation of this test case was carried out by Cave (Cave 

et al., 2009). In the simulation, 200 radial cells are used with a total radius of r = 
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1.0 m while the 200 axial cells are used for the length of the cylinder of L = 1.0 m. 

The cylindrical cavity, which has a radius of 0.5r, is initially at temperature Ti = 

100 K while the surrounding temperature is at Ts = 1.0 K. The density is initially 

uniform at ρ = 1.0 kg/m
3
 everywhere. The gas constant R = 1.0 J/(kg∙K) and the 

ratio of specific heats is 5/3. The simulation time step was reset after each time 

step with the condition CFL < 0.5 maintained.  

Figure 5.8 shows the comparison of the radial temperature variation for the 

explosion of the cylinder cavity at a time of 0.025 s between the axisymmetric 

QDS and the EFM (Pullin, 1980) simulations. From Figure 5.7, the similarity 

between the results indicates that the second order true directional axisymmetric 

QDS code is working correctly. The slight difference between the results, in 

particular near the shock front at about r = 0.6 m indicates that the second order 

QDS method shows reduced numerical diffusion compared to the first order EFM.     
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Figure 5.7 Temperature profile comparison for the explosion of a cylindrical cavity problem 

between the axisymmetric QDS method and the first-order EFM at a flow time of 0.025s.  
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5.7.2 Shock Wave Flow in a Pipe with a Sudden Expansion 

As a further validation for the second order true directional axisymmetric QDS 

algorithm, the propagation of a Mach 2 shock wave in a circular pipe through a 

sudden expansion was simulated. This validation simulation was also performed 

by Cave (Cave, et al., 2009). This problem has been widely studied 

experimentally and numerically. One of the studies was to investigate the flow of 

gases at various Mach numbers through tubes of varying ratios of cross sections 

using both experimental and numerical approaches (Jiang, Takayama, Babinsky, 

& Meguro, 1997). In the numerical approach, a second-order, dispersion-

controlled scheme was employed to solve the axisymmetric Euler equations.  

Figure 5.8 show the geometry and boundary conditions of the axisymmetric 

QDS simulation for a Mach 2 shock through a sudden pipe expansion with R/r = 

2.0. The simulation gas was ideal argon with a ratio of specific heats of 5/3 and a 

gas constant of R = 208.2 J/(kgK). For completeness the undisturbed flow 

conditions at (2) are ρ2 = 1.0 kg/m
3
 and T2 = 300 K. The conditions behind the 

shock can be determined from the Rankine-Hugoniot conditions and are ρ1 /ρ2 = 

2.286, T1/T2 =2.078 and the axial velocity is 363 m/s. The variable time step 

scheme was used so the maximum kinetic CFL number in the simulation domain 

was 0.5 with 100 square cells along the radius r. Four QDS velocity bins were 

used in each coordinate direction in a 2N flux scheme.  
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Figure 5.8 Geometry and boundary conditions for the simulation of Mach 2 shock through a 

sudden pipe expansion.  

 

As a point of comparison, THE QDS METHOD was compared to a direct 

simulation (DS) based on the PDSC (Wu, et al., 2004).  The PDSC algorithm was 

modified to effectively become equivalent to the Equilibrium Particle Simulation 

Method (EPSM) solver (Pullin, 1980). Rather than manually setting particle 

velocities to equilibrium values, each simulation particle was forced to undergo a 

minimum of four collisions after a free-flight advection stage. Previous 

investigations have shown that this is sufficient to bring the particles 

approximately into thermal equilibrium (Sharma & Long, 2004). It has also been 

studied by Titov and Levin, using a collision-limited DSMC scheme, that two 

collisions per time step per particle are sufficient to relax the particles into a 

velocity distribution with negligible difference compared to the corresponding 

Maxwell-Boltzmann equilibrium distribution (Titov & Levin, 2007). The solver 

was then further modified to become analogous to the first order QDS solver by 

randomly redistributing particle locations within the computational cell. It was 
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necessary to use a direct simulation for comparison since the conventional CFD 

solvers are direction-coupled and therefore cannot be compared directly to a true 

direction method like the QDS method. Furthermore, traditional finite volume 

CFD methods attempt to solve the Euler equations directly, whereas the DS 

method is based on kinetic theory in the same way as the QDS method. The 

simulation time step for the DS solver was set to be 5×10
-6

 s which was found to 

be sufficiently short so that CFL < 0.5 for the entire simulation. A large number of 

particles (a peak of approximately 4.38 million at the sampling time step) were 

used to reduce the statistical scatter in the simulations. Here 50 square cells along 

the radius r were used so that the computational expense for the DS was 

reasonable (the QDS simulation used the same number of cells for this 

comparison). The DS result required approximately 34.2 hours for 45 ensemble-

averaged runs on a PC cluster system of twelve Athlon XP2100s, whereas the 

QDS simulation took 29 s on a single Intel 3.33GHz Dual Core processor with 

4GB of system RAM. Figure 5.9 shows a comparison between the methods at a 

flow time of 0.01 s. Although the DS results remain scattered, they clearly show 

the positions of the primary flow features, which can be seen to compare closely 

to the features in the QDS simulation. 
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Figure 5.9 Comparisons of density [kg/m
3
] contours for a Mach 2 shock through a sudden 

pipe expansion between QDS (top) and DS (Cave, et al., 2009).  

 

5.8 PP-CVD Simulations by True Directional Axisymmetric QDS 

The second order true directional axisymmetric QDS method is applied to 

simulate the reactor flow field for the gas injected PP-CVD process. Two cases 

were simulated at two different operating pressure conditions as described in 

Table 5.1. In both simulations ideal Helium gas, at choked inlet flow conditions, 

is injected into the reactor through an orifice. The initial reactor flow field is at 

stationary. Both simulations were carried out on a desktop computer with 

3.00GHz Intel Core 2 Duo CPU and 4GB of RAM using 312,744 uniform square 

cells with 0.25 mm cell size.  
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Table 5.1 Simulation conditions for PP-CVD flow field simulations using the QDS method. 

 Case I Case II 

Supply Pressure, Ps 10 kPa 40 kPa 

Pulse Range, Pmin → Pmax 1 Pa → ~100 Pa 1 kPa → ~5 kPa 

Injection time, ti 0.1 s 

Supply Temperature, Ts 293 K 

Initial Temperature, Ti 293 K 

QDS velocity bin, N 4 per coordinate direction 

Simulation time step, ∆t variable time step with maximum CFL < 0.5 

Slope limiter MINMOD 

 

Figure 5.10 shows the computational domain for both cases.   
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Figure 5.10 Schematic of PP-CVD reactor geometry. 

 

 

5.8.1 Case I: 1 Pa initial reactor pressure 

5.8.1.1 Case I: Injection phase 

Figure 5.11 shows, plotted on a natural logarithm scale, the density contours (left) 

and the pressure contours (right) of Case I conditions during the first 4 ms of the 

injection phase. It is noted that the under-expanded jet with a wide shock structure 

develops during the injection phase. These results capture the shock structure and 

flow development with far higher resolution and computational efficiency than the 
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DSMC simulations given in the thesis by Cave (Cave, 2008). The contour plots in 

Figure 5.11 show a wide initial bow shock at the exit of the inlet orifice, followed 

by the development of a shock wave pattern and the evolution of the shear layer 

and formation of a Mach disk during the unsteady flow development period. After 

4.0 ms, a quasi-steady under-expanded jet structure, which was discussed in 

section 4.1.1, is seen and impinges onto the substrate region. The formation and 

evolution of constantly changing expansion and compression waves are captured 

in clear details by the QDS solver. Similar flow could also be seen in the 

numerical studies performed using the space-time conservation element solution 

element (CE/SE) method on unsteady jet flows from a rocket nozzle (Chang, 

Chang, & Chang, 2005). This demonstrates the capability of the QDS solver in 

modelling unsteady flow phenomena at low computational cost. 
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Figure 5.11 Loge(density) [kg/m
3
] contour (left) and Loge (pressure) [Pa] contour (right) for 

the unsteady flow development of an under-expanded jet in a PP-CVD reactor at Case I 

conditions during first 4 ms of the injection phase. 
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As discussed in section 4.3.5, in the QDS method it is assumed that that 

thermal equilibrium is established locally within each computational cell by the 

end of the time step. Based on this assumption, the molecular velocity distribution 

is approximated with the Maxwell-Boltzmann distribution. In investigating the 

validity of the local equilibrium assumption, the gradient length local Knudsen 

number, KnGLL, discussed in section 4.3.5 was calculated at the simulation times 

of 0.5 ms and 4 ms. At 0.5 ms, the Mach disc position was stabilised in the flow 

field while the flow developed into a quasi-steady state at 4ms. The criterion for 

continuum breakdown occurs is KnGLL > 0.05. Figure 5.12 shows the contours of 

the gradient length local Knudsen number based on density, (KnGLL) plotted on 

natural logarithm scale at the simulation times of 0.5 ms and 4 ms, respectively, 

for Case I. It is noted that in the most of the shock regions loge(KnGLL) > loge(0.05) 

~ -3 and thus the continuum assumption cannot be considered valid in Case I. 
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Figure 5.12 loge[(KnGLL)] contours at 0.5ms (top) and 4ms (bottom) at Case I conditions. 

 

The validity of the thermal equilibrium assumption is also tested by 

calculating the ratio of computational time step to the average time between 

particle collisions, t/tcol,avg, as discussed in section 4.3.5. A criterion of t/tcol,avg 

≥ 2 is used to validate the assumption of the computed non-equilibrium 

distribution to relax sufficiently close to the corresponding Maxwell-Boltzmann 

equilibrium distribution. Figure 5.13 shows the contours of the t/tcol,avg plotted on 

a natural logarithm scale at the simulation times of 0.5 ms and 4 ms, respectively, 

for Case I. The equilibrium assumption may be considered valid where 

loge(t/tcol,avg) ≥ 0.69. In Figure 5.13, it is seen that this condition is not satisfied 

anywhere in Case I either at t = 0.5 s or t = 4 s, except near the orifice exit. 
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Figure 5.13 loge(t/tcol,avg) contours at 0.5ms (top) and 4ms (bottom) at Case I conditions. 

 

5.8.1.2 Case I: Pump-down phase 

The pump-down phase of the PP-CVD operating cycle at Case I conditions was 

also simulated. The reactor pressure at the end of the injection phase is estimated 

to be 100 Pa based on experience with such reactors. Figure 5.14 shows the 

density contours (left) and the pressure contours (right) plotted on a natural 

logarithm scale of the unsteady flow development during first millisecond of the 

pump-down phase at Case I conditions.   
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Figure 5.14 loge(density) [kg/m
3
] contour (left) and loge(pressure) [Pa] contour (right) for the 

unsteady flow development of an under-expanded jet in a PP-CVD reactor at Case I 

conditions during first millisecond of the pump down phase. 

 

It is noted that the quasi-steady jet structure developed during the injection phase 

shortens towards the inlet nozzle and does not impinge on the substrate. The flow 

is quite uniform near the substrate region, promoting uniform precursor deposition. 

The inlet nozzle shuts off at 0.1 s and within one further millisecond the jet 

structure has dissipated. The resulting flow field is rather uniform during the 

remaining pump-down process. Information on the jet formation and dissipation, 
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and the structure of the flow field near the substrate, is useful for the design and 

choice of operating conditions for PP-CVD. 

The ratio of the average time between particle collisions to simulation time 

step was calculated to estimate the number of particle collisions per time step per 

particle within a computational cell.  Figure 5.15 shows the contours of the 

t/tcol,avg at 0.10001 s (10 µs after the end of injection phase at 0.1 s) and 0.1001 s 

(after the jet structure has dissipated), respectively, during the pump-down phase 

for Case I. Figure 5.15 shows that (t/tcol,avg) ≥ 0.5, i.e. two collisions per time 

step per particle, is not achieved during the pump-down phase simulation in Case 

I. 

 

Figure 5.15 (t/tcol,avg) contours at 0.10001s (top) and 0.1001s (bottom) at Case I conditions. 
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Figure 5.16 shows the contours of the gradient length local Knudsen number 

based on density at the simulation times of 0.10001 s (10 µs after the end of 

injection) and 0.1001 s, respectively, for Case I.  

  

Figure 5.16 (KnGLL) contours at 0.10001s (top) and 0.1001s (bottom) at Case I conditions. 

 

As discussed above, continuum breakdown occurs when KnGLL > 0.05. The 

contour plots in Figure 5.16 shows that (KnGLL) is less than 0.05 everywhere 

except in a limited region near inlet nozzle with (KnGLL) close to 0.05 soon after 

the inlet jet is shut down. However, these regions are unlikely to have a significant 

effect on the flow field. It is also noted that (KnGLL) decreases in time during the 

pump-down phase. Therefore, although the number of collisions was low and the 

two collisions per time step per particle condition is not satisfied, the local density 

gradient within the computational cell was not high enough to transport the 

particles downstream before thermal equilibrium condition was established. 
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Hence, the assumption that equilibrium is re-established locally in each time step 

in the current QDS scheme is partially justified for the PP-CVD process during 

the pump-down phase. 

 

5.8.2 Case II: 1 kPa initial reactor pressure 

5.8.2.1 Case II: Injection phase 

Figure 5.17 shows, plotted on natural logarithm scale, the density contours (left) 

and the pressure contours (right) of the simulation results for Case II conditions 

during the first 4 ms of the injection phase. The pressure ratio between the 

precursor solution supply and the reactor volume is lower in Case II compared to 

that in Case I. This results in a lower degree of expansion waves being formed at 

the exit of the inlet nozzle compared to Case I. Hence, the under-expanded jet has 

a much narrower shock structure during the injection phase compared to Case I 

and, consequently, lower rates of mass transport in the radial direction. Again, 

complicated flow phenomena such as the initial bow shock at the exit of the inlet 

orifice, the shear layer evolution and eventually Mach disk formation during the 

unsteady flow development period were captured in clear detail. The flow field 

eventually becomes quasi-steady at about 1 ms. 
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Figure 5.17 loge(density) [kg/m
3
] contour (left) and loge(pressure) [Pa] contour (right) for the 

unsteady flow development of an under-expanded jet in a PP-CVD reactor at Case II 

conditions during first 4 ms of the injection phase. 



150 

 

The thermal equilibrium assumption in the current QDS scheme was also 

tested for Case II. Figure 5.18 shows the contours of the of the gradient length 

local Knudsen number based on density plotted on natural logarithm scale at the 

simulation times of 0.5 ms and 4 ms, respectively, for Case II. 

  

Figure 5.18 loge[(KnGLL)] contours at 0.5 ms (top) and 4 ms (bottom) at Case II conditions. 

 

As shown in Figure 5.18, (KnGLL) is generally less than 0.05 (i.e. 

Ln(KnGLL) ≤ -3) except in some limited regions near the Mach disc in the shocks 

where (KnGLL) ~ 0.14. However these regions are unlikely to have a significant 

effect on the flow field. Therefore, it may be assumed that continuum breakdown 

does not occur in most of the regions of the flow field simulated in Case II. This 

indicates that the local density gradient within the computational cell was not high 
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enough to transport the particles downstream before thermal equilibrium 

condition could be established. Thus, the assumption that equilibrium is re-

established locally in each time step in the current QDS scheme is justified at this 

higher initial reactor pressure.  

Furthermore, the ratio of the simulation time step to the average time 

between particle collisions was also calculated for Case II. Figure 5.19 shows the 

contours of t/tcol,avg plotted on a natural logarithm scale at the simulation times of 

0.5 ms and 4 ms, respectively, for Case II.   

 

Figure 5.19 loge(t/tcol,avg) contours at 0.5ms (top) and 4ms (bottom) at Case II conditions. 

 

From Figure 5.19, the ratio of t/tcol,avg > 2 or loge(t/tcol,avg) > 0.69 occurs in most 

regions except near the Mach disc. This indicates that there are at least two 

successive particle collisions in most regions of the flow field providing an 

insignificant difference between the actual physical non-equilibrium distribution 
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and the Maxwellian equilibrium distribution.  Therefore, the equilibrium 

assumption in the QDS method remains reasonable for the flow field of Case II. 

 

5.8.2.2 Case II: Pump-down phase 

The pump-down phase of the PP-CVD operating cycle at Case II conditions was 

also simulated with the reactor pressure at the end of the injection phase estimated 

to be 5 kPa. Figure 5.20 shows the density contours (left) and the pressure 

contours (right), plotted on a natural logarithm scale, of the unsteady flow 

development during the first millisecond of the pump-down phase at Case II 

conditions. At 0.1 s, which is the end of the injection phase, the quasi-steady jet 

structure has the length of about three quarters of the reactor length and not 

impinging on the substrate, as observed in Case I. This suggests that the mass flux 

onto the substrate region is reasonably uniform across the substrate, which is the 

desired condition for uniform film deposition. The jet structure also dissipates 

rapidly in about 1 ms, after the inlet jet has been shut off at 0.1 s. This is followed 

by a considerably uniform flow field in the remaining pump-down process. 
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Figure 5.20 loge(density) [kg/m
3
] contour (left) and loge(pressure) [Pa] contour (right) for the 

unsteady flow development of an under-expanded jet in a PP-CVD reactor at Case II 

conditions during first millisecond of the pump down phase. 

 

The validity check on the thermal equilibrium assumption in the current 

QDS scheme was again performed for the Case II pump-down phase simulation. 

Figure 5.21 shows the contours of the gradient length local Knudsen number 

based on density at the simulation times of 0.10001s and 0.1001s, respectively. As 

discussed above, it can be considered that continuum breakdown does not occur 

for (KnGLL) < 0.05.  The contour plots in Figure 5.21 shows that (KnGLL) is less 
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than 0.01 throughout the domain, permitting the continuum assumption to be valid 

in the flow field based on (KnGLL). The local density gradient within the 

computational cells is not high enough to transport the particles downstream 

before thermal equilibrium condition is re-established locally within one time step. 

 

  

Figure 5.21 (KnGLL) contours at 0.10001s (top) and 0.1001s (bottom) at Case II conditions. 

 

The ratio of the simulation time step to the average time between particle 

collisions, (t/tcol,avg) is shown in Figure 5.22 at 0.10001 s and 0.1001 s, 

respectively, during the pump-down phase for Case II. Using the condition of 

(t/tcol,avg) ≥ 2 for estimating at least two collisions per time step per particle 

occurs to bring the particles’ velocity distribution acceptably close to the 

Maxwellian equilibrium distribution, Figure 5.22 shows (t/tcol,avg) > 4 in the 

simulation everywhere. 



155 

 

 

Figure 5.22 (t/tcol,avg) contours at 0.10001 s (top) and 0.1001 s (bottom) at Case II 

conditions. 

 

5.8.3 Discussion 

The simulation results in both Case I and II show that the flow field developed 

into a quasi-steady under-expanded jet structure, which impinges onto the 

substrate during the injection phase of the PP-CVD process. The impingement of 

the jet with high density concentration at jet core is undesirable from the CVD 

perspective due to the formation of a boundary layer on the substrate in this 

reactor configuration. Consequently, this results in non-uniformity of the mass 

flux onto the substrate. Such non-uniformity of particles’ arrival on the substrate 

surface, if sustained, would result in non-uniform deposition of the precursor onto 

the substrate. However, PP-CVD reactors are typically operated with short 

injection pulses. In fact, the simulation result of the pump-down phase shows that 
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the quasi-steady jet moves away from the substrate region as the pressure 

increases during the injection phase. At the end of the injection phase at 0.1s (in 

both Case I and II), the quasi-steady under-expanded jet does not impinge on the 

substrate surface. The uniformity of the flow field near the substrate region at the 

end of the injection phase and throughout the pump-down phase is also noted. 

Film deposition is thought to continue for some considerably long period after the 

gas supply is cut off and the jet structure has dissipated. The flow field is more 

uniform once the jet structure has gone. This encourages uniform film deposition 

on the substrate surface since the majority of the actual deposition process occurs 

during the pump down phase. Hence, the non-uniformity of deposition incurred 

during the injection phase is negligible. 

Figures 5.11 and 5.17 have shown that the time required for the quasi-steady 

structure of the jet to establish is 4 ms in Case I and 1 ms in Case II. The time 

required for the quasi-steady structure to dissipate is about 1 ms for both cases as 

noted from Figure 5.14 and 5.20. Knowledge of these times, not previously 

available, enables judicious choice of the injection pulse length and repetition 

frequency. Besides, comparing Case I and Case II, it is seen that high density 

gradient between the inlet and initial condition in the reactor causes higher rates 

of mass transport in the radial direction, as in Case I. Hence, the lower initial 

reactor pressure achieves a more uniform distribution of precursor solution before 

being transported to the substrate region. 



157 

 

These simulation results have also demonstrated some of the problems 

inherent in using the QDS method throughout the whole PP-CVD flow field. Two 

features of the QDS scheme limit its accuracy in low Mach number flows. One of 

the important assumptions in the QDS scheme is the Maxwell-Boltzmann 

equilibrium distribution of molecular velocities. The validity of this assumption 

may be checked by calculating the gradient length local Knudsen number and 

average number of collisions per computational cell per time step as seen in 

Figures 5.12, 5.13, 5.15, 5.16, 5.18, 5.19, 5.21 and 5.22. The second issue in the 

QDS scheme is the separation of collision and streaming that leads to excessive 

numerical diffusion of momentum. Consequently, this results in a very high 

effective viscosity of the gas when the grid spacing is larger than the mean free 

path. These two inherent problems in the second order true directional QDS 

scheme will be addressed in detail in Chapter 6. The problems are improved by 

recasting the QDS algorithm to approximate the EFM fluxes across the 

computational cell surfaces by using the moments of the discrete velocity 

distribution function (the QDS “velocity bins”) employed by QDS method. This 

improvement is termed the directional decoupled QDS (DD-QDS) method and 

will be discussed in detail in Chapter 6. In addition, although the spatial gradients 

are evaluated to the second order in the QDS scheme, the temporal gradients (time 

integration) is to the first order only and this also limits the accuracy of the 

scheme. 
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6 Quiet Direct Simulation Method Part II 

As mentioned in Chapter 5, there are two features in the basic second order true 

directional QDS scheme that limit its accuracy in simulating highly rarefied or 

low Mach number flows. The first issue is related to the moments of the discrete 

velocity distribution function used to construct QDS fluxes. The second problem 

in limiting the accuracy of the QDS scheme is the artificial viscosity which is also 

one of the major concerns in conventional CFD methods. 

In QDS scheme, a Maxwell-Boltzmann equilibrium distribution of 

molecular velocities is assumed. This distribution is valid for a gas in local 

thermal equilibrium where the gas has undergone an infinite relaxation time and 

reached a state with no spatial gradients in the macroscopic properties (density, 

bulk velocity, and temperature) to disturb the equilibrium conditions. The validity 

of this assumption may be checked by calculating the gradient length local 

Knudsen number and average number of collisions per time step as discussed in 

Section 4.3.5. From the results shown in Section 5.8, the assumption of a local 

thermal equilibrium can be considered valid for low pressure flow up that is 

greater than 1 kPa. 

In the basic true-directional QDS (TD-QDS) scheme discussed in Chapter 5, 

streaming and collision of the gas molecules are separated. The flow molecules 

are allowed to transport in free flight from a source cell to any of the neighbouring 

cells without collision. Then, the gas molecules are assumed to undergo infinite 

collisions at the destination cells to form a Maxwell-Boltzmann velocity 
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distribution. This results in an error in thermal transport of the gas molecules 

which diminishes with increase of Mach number in the flow field making the 

basic QDS scheme well suited for high speed, inviscid Eulerian flows. However, 

it leads to excessive artificial viscosity in the scheme which causes inaccuracy in 

the calculation of low speed viscous flow regions.  

Section 6.1 of this chapter aims to investigate and quantify the numerical 

dissipation in the basic QDS scheme. In Section 6.2, improvements are made to 

reduce the inaccuracy due to the mentioned inherent problems by recasting the 

QDS scheme as an approximation to the Equilibrium Flux Method (EFM) which 

is termed the directional decoupled QDS (DD-QDS) method. 

 

6.1 Analysis of Numerical Dissipation in the Basic QDS Scheme 

By considering a control volume element with a defined number of gas molecules, 

each gas molecule has its individual position, mass m and microscopic (molecular) 

velocity within the control volume element. In the time evolution of such a control 

volume element in a flow field, the motion of the molecules is due to the 

molecules’ translation with their original velocity. If a collision occurs between 

molecules, this will change the molecules’ velocities. The molecules’ velocities 

would further change if the molecules are subjected to an external force field.   

In the basic QDS scheme, the gas molecules are allowed to stream from a 

source cell to any of its neighbouring cell, both adjacent and diagonal, in free 

flight manner without taking the collision between molecules into consideration. 
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Molecules’ collisions are only taken into account within the destination cells. 

Hence, without collisions during streaming, the changes in the molecules’ 

velocities prior to arrival in the destination cell are under predicted. The collisions 

between molecules will essentially result in the retardation of the molecular speed 

of the fastest molecules and increase of the slower i.e. tending towards bulk speed. 

Overall, it causes the reduction in the amount of QDS fluxes reaching the 

destination cell and in the speed of those which do reach the destination cell. Thus, 

collisionless streaming in QDS scheme leads to an excess transport of momentum 

and energy of the gas molecules compared to that experienced in the real gas. 

Hence the computed flow field becomes more dissipative than the physical gas 

flow. 

 

6.1.1 Scheme viscosity of QDS with 3 velocity bins 

The numerical dissipation in the basic QDS scheme has been investigated and 

quantified for a two-dimensional shear flow in which the bulk axial velocity is 

aligned with the grid (Jermy, et al., 2010) and will be described in detail in this 

Section. In this study of the numerical dissipation, a basic QDS scheme with 3 

molecular speeds (3 moments of the discrete velocity distribution function) is 

used i.e. N = 3 “velocity bins” per coordinate direction are being considered. The 

molecular speed of the central velocity bin in the y-direction will be zero and this 

group of molecules will not transport any momentum in the y-direction. The other 

two velocity bins have nonzero molecular speeds and hence will transport y-
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momentum in the x-direction. By considering the quantity of momentum 

transported and the relation between shear stress and viscosity for a real fluid, the 

effective viscosity of the modelled gas in the QDS scheme may be quantified.  

Figure 6.1 shows a schematic of a simple shear flow between two adjacent 

cells with computed momentum flux in the y-direction on a square Cartesian grid. 

The density and temperature is assumed to be uniform throughout the flow field 

with the bulk velocity aligned with the x-axis. The gas in the top cell (in blue) is 

moving at an average speed of ū = u + ∆u and the gas in the lower cell (in red) at 

ū = u, in the x-direction. 
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Figure 6.1 Schematic of a simple shear flow showing the computed fluxes  (Jermy, et al., 

2010). 

 

The subscript 1 and 3 in the y-velocity, v, denote the two velocity bins which have 

nonzero thermal speeds in the discrete velocity distribution. The highest of the 

molecular speeds in the y-direction carries a flux of x-momentum into the adjacent 

cell. 

The net momentum fluxed to the lower cell ∆p can be determined by 

subtracting the amount of momentum fluxed to the upper cell from the amount of 
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momentum fluxed to the lower cell of each discrete velocity bin which is 

illustrated in Equation (6.1) as: 
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where wi and qi are the weights and abscissas of the Gaussian quadrature, 

respectively, as described in Section 5.2. In the QDS scheme with 3 discretised 

molecular speeds, the thermal speeds of both outlying velocity bins are the same 

(|v1| and |v3|) and have equal weights (w1 and w3). Thus, Equation (6.1) can be 

further simplified to Equation (6.2) as: 
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The effective shear stress can then be calculated from this net amount of 

momentum transferred as shown in Equation (6.3): 
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The effective shear stress derived in Equation (6.3) may be compared to the 

physical shear stress given in Equation (6.4) as: 

 
y

u




   (6.4) 

where  is the dynamic viscosity of the gas. Hence, an effective dynamic viscosity 

of the QDS scheme can be expressed in Equation (6.5) as: 
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or an effective kinematic viscosity of the QDS scheme can then be expressed in 

Equation (6.6) as: 
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where w1 = 0.2954 and |q1| = 1.2247 for the QDS scheme with 3 discretised 

molecular speeds. Hence, it can be expressed in Equation (6.7) as:   
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which allows the expression of the effective kinematic viscosity of the QDS 

scheme to be given in Equation (6.8) as: 

 xRTx
m

kT
Nscheme  2887.02887.03,  (6.8) 
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The effective kinematic viscosity in Equation (6.8) may then be compared to the 

physical kinematic viscosity of a gas which is given in Equation (6.9) (Jeans, 

1904):  

 
m
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cphysical

3

3

1

3

1
  (6.9) 

where c is the average thermal speed of the gas molecules and λ is the mean free 

path. Therefore, a ratio of the effective numerical to physical viscosity is given in 

Equation (6.10) as: 
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Equation (6.10) indicates that the basic QDS scheme will only reproduce the 

correct viscous behaviour if the grid spacing is of the order of the gas molecules’ 

mean free path. In air at standard temperature and pressure, for example, the mean 

free path of the gas is of order 10
-8 

m. It is not feasible to have such grid spacing 

with currently available computing speeds and memory. 

 

6.1.2 Scheme viscosity of QDS with 4 velocity bins 

The derivation of the scheme viscosity is extended for the QDS scheme with 4 

molecular speeds, i.e. N = 4 velocity bins per coordinate direction. The same 

consideration of a flow with uniform gas density and temperature while the bulk 

velocity is aligned with the x-axis is assumed, as shown in Figure 6.1. In the 
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following derivation, the subscripts 1 to 4 in the y-velocity, v, denote the index of 

the velocity bins which have nonzero molecular speeds in the discrete velocity 

distribution. For the QDS scheme with 4 molecular speeds, the discretised y-

velocities can be expressed in terms of the abscissas, qj, of the Gauss-Hermite 

quadrature as jj qRTvv 2 where jv  is the bulk y-velocity and qj = [-1.65068, 

-0.524648, 0.524648, 1.65068]. Hence, v1 and v2 are the y-velocity in downward 

direction while v3 and v4 are the y-velocities in upward direction. Hence, the total 

momentum fluxed to the lower cell can be expressed in Equation 6.11 as: 

     
















  2

2

2

1

x

xtv
uum

x

xtv
uump lowerupper  (6.11) 

and the momentum fluxed to upper cell is expressed in Equation 6.12 as: 
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The net momentum fluxed to the lower cell ∆p can then be determined by 

subtracting the amount of momentum fluxed to the upper cell from the amount of 

momentum fluxed to the lower cell of each discrete velocity bin which is 

illustrated in Equation (6.13) as: 



166 

 

 

 

 

 

 

 

































































































































































































































































x

tv
qRTu

ww
x

x

tv
qRTu

ww
x

x

tv
qRTuu

ww
x

x

tv
qRTuu

ww
x

x

tv
um

x

tv
um

x

tv
um

x

tv
um

x

xt
vvmu

x

xt
vvuump

i
i

i
i

i
i

i
i

i

iiii

i
iiii

442

332

222

4

1

112

4
4

3
3

4

1

2
2

1
1

243221

2

2

2

2

)()(













 (6.13) 

where wi are the weights of the Gaussian quadrature, respectively. In the QDS 

scheme with 4 discretised molecular speeds, the thermal speeds of the velocity 

bins are symmetrical. Thus, |v1| = |v4|, |v2| = |v3|. The weights of the Gauss-Hermite 

quadrature are also symmetrical where w1 = w4 and w2 = w3. Thus, net momentum 

fluxed to the lower cell ∆p can be simplified to equation (6.14) as: 
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The summation of the weights of the Gauss-Hermite quadrature is equal to  . 

Hence, the summation of weights can be simplified in Equation (6.15) as: 
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Therefore, the net momentum fluxed to the lower cell ∆p can be further simplified 

to equation (6.16) as; 
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Using the expression of the net momentum flux in Equation 6.16, the 

effective shear stress of QDS scheme with 4 velocity bins can be expressed in 

Equation (6.17) as: 
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This expression of the scheme’s effective shear stress is compared to the physical 

shear stress given in Equation (6.4). As a result, an effective dynamic viscosity of 

the QDS scheme with 4 velocity bins is obtained and given in Equation (6.18) as: 
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or the effective kinematic viscosity is given Equation (6.19) as: 
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where w1 = 0.0813128 and w2 = 0.804914 for the QDS scheme with 4 discretised 

molecular speeds while jj qRTv 2 with |q1| = 1.65068 and |q2| = 0.524648.  

Consequently, the effective kinematic viscosity of the QDS scheme with 4 

velocity bin is given in Equation (6.20) as:   

 xRTNscheme  444037.04,  (6.20) 
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It should be noted that at a high Reynolds number, turbulent flow occurs 

which introduces eddy viscosity to the flow field. The eddy viscosity will increase 

the apparent viscosity above the gas physical viscosity. Thus, the value of the 

apparent viscosity will depend on the local turbulence intensity and eddy 

spectrum size. As a result, it can be considered that the eddy viscosity would bring 

the apparent (effective) viscosity of the real gas closer to the simulated (scheme) 

viscosity. 

Besides, from the above derivations, the viscosity in the QDS scheme may 

be speculated based on the number of “velocity bin”, N, used, which can be 

expressed in Equation (6.21) as: 
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where CN is a coefficient that relates to the weights and abscissas of the Gaussian 

quadrature for the corresponding N “velocity bins” used in the scheme. By 

referring to the values of the weights and abscissas of the Gaussian quadrature for 

different number of “velocity bin” used as tabulated in Appendix, the value of the 

scheme viscosity when different numbers of “velocity bins” are used can be 

estimated as shown in Table 6.1: 
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Table 6.1 Estimated scheme viscosity for different numbers of “velocity bins” used. 

Number of “velocity bin”, N 
Scheme viscosity, m

2
/s 

Multiplier: × RTx  

3 0.2887 

4 0.4440 

5 0.3332 

6 0.4280 

7 0.3520 

8 0.4241 

9 0.3625 

 

From Table 6.1, it can be seen that when N is an odd number the scheme viscosity 

increases when the number of “velocity bins” used increases. In reverse, when an 

even number of “velocity bins” are used, the scheme viscosity decreases when the 

number of “velocity bins” used increases. 

 

6.2 Directional Decoupled QDS Scheme 

In the effort of improving the accuracy of the QDS scheme by reducing the 

numerical dissipation, the basic QDS scheme is modified to employ split fluxes 

instead of true directional fluxes. The main difference between the split flux 

method and the true directional flux method is that the QDS fluxes are computed 

at the cell centre in the true directional method whereas the split fluxes are 

computed at the cell interfaces. This is termed as the directional decoupled QDS 

(DD-QDS). In the true directional QDS (TD-QDS) scheme as described in 

Section 5.4, fluxes are transported from one cell volume to another and 

reconstructed at the centre location of the cell. The flux reconstruction location 
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can be viewed as the average location within the region of gas deemed to travel to 

the destination region. This means that the fluxes travel from one cell centre to 

another in the TD-QDS scheme. However, in the DD-QDS scheme, the flux 

reconstructions occur at the cell interfaces. The net flux across all cell surfaces is 

calculated in order to determine the average conserved properties, which are 

stated at the cell centre, within each cell. This effectively implies that the fluxes 

travel a distance of half the cell length, which reduces the inherent numerical 

dissipation spanwise.  

The DD-QDS is essentially similar to the conventional kinetic-theory 

approaches such as Pullin’s Equilibrium Flux Method (EFM) (Pullin, 1980) and 

Macrossan’s Equilibrium Interface Method (EIM) (Macrossan & Oliver, 1993). 

However, as mentioned in Section 3.6, the need of evaluating computationally 

complex functions, which are the error function and exponential function, is 

avoided in the QDS method. Hence, the DD-QDS method is considered an 

improved version of the conventional flux calculator by employing the concept of 

the QDS velocity bins to efficiently approximate the EFM expressions (Lim, et al., 

submitted). 

In the DD-QDS scheme, the assumption of a local thermal equilibrium is 

used in each computational cell where the molecular velocity is represented by the 

Maxwell-Boltzmann equilibrium distribution and approximated by a Gauss-

Hermite quadrature, as discussed in Section 5.2. However, instead of using 

Equation (5.2), the integration of moments of the velocity probability distribution 
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over infinite velocity range within the flow field is evaluated by introducing the 

Heaviside step function Hs. This permits the fluxes to split to approximate the 

EFM flux expressions given in Equation (6.22) as: 
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where Hs(x) = 1 if x > 0, else Hs(x) = 0.  

Let the thermal velocity v = v – u. The split fluxes to approximate the EFM 

fluxes expressions that shown in Equation (3.40) and (3.41) are formed by taking 

the moments of the conserved macroscopic property, η, around f(v). Hence, the 

split fluxes in the DD-QDS method are given in Equation (6.23) and (6.24) as: 
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where ηj are the conserved macroscopic properties of the j
th

 QDS “velocity bin” 

given in Equation (6.25) as: 
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where the velocity of the bin is vj = jj quv 22 and εj is the internal energy 

of the molecular structure in the bin such as the rotational, vibrational, or 

electronic energy.  

Consider a control volume element of the flow field for a computational cell 

as shown in Figure 6.2. The conserved macroscopic properties of cell i updated 

after one time step k + 1 can be computed by applying the divergence theorem and 

is given in Equation (6.26) as: 
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where V is the cell volume, F is the net flux normal to the surface of area A and 

the subscripts L and R indicate the conditions on the left and right sides of the cell 

interface (or top and bottom sides of an annular cylindrical cell as shown in Figure 

6.2), respectively. ηi,p is the  momentum correction applied to account for the 

pressure change along the control volume elements in the radial direction for 

axisymmetric flows as discussed in Section 5.5 and given in Equation (6.27) as: 
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where Pi is the cell pressure, r is the cell width in the radial direction and α is the 

axisymmetric angle (usually π).  
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Figure 6.2 Control volume element for a single cell of a cylindrically axisymmetric 

geometry(Lim, et al., submitted). 

 

In the second order DD-QDS scheme, the split fluxes at the cell interface are 

reconstructed in a manner similar to the conventional reconstruction method 

(Zhang & Zhuang, 1991). Hence, by taking a Taylor series expansion of the split 

fluxes at the cell interface, a second order accurate expression for the net fluxes 

FR and FL are given in Equation (6.28) and (6.29), respectively, as: 
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where the flux gradients dF/dr are calculated from the finite difference 

approximations of F
+
 and F

–
 using a slope limiter to maintain positivity. As 

discussed in Section 5.4, the gradients of the fluxes are determined using the 

MINMOD (Minimum Modulus) or the MC (Monotonized Central Difference) 

slope limiter (Van Leer, 1977). For example, the gradient in radial flux calculation 

using the MC slope limiter is given in Equation (6.30) as: 
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where the MINMOD slope limiter (Roe, 1986) is given in Equation (6.31) as: 
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6.3 Dynamic time step adjustment and boundary conditions 

Similar to that used in the TD-QDS scheme as discussed in Section 5.6, the 

simulation time step duration ∆t is reset at each time step in order to maintain the 

maximum Courant–Friedrichs–Levy (CFL) number in the flow field at a chosen 

value, always less than 1 and usually equal to 0.5.  In the DD-QDS 

implementation, the CFL number is determined by Equation (6.32) as: 
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where qj(max) is the maximum abscissas value of the QDS “velocity bins”. Ghost 

cell boundary conditions are also implemented in the DD-QDS scheme at all walls, 

and inflow and outflow boundaries (Smith, et al., 2009), as discussed in detail in 

Section 5.6.  

 

6.4 Validation of the Directional Decoupled QDS Scheme 

6.4.1 1-D Shock Tube Problem  

To validate the DD-QDS code and to compare the performance between DD-QDS 

and TD-QDS codes, the simulation of a standard 1-D shock tube problem was 

conducted. In this problem, the gas in a tube is at rest initially and separated into 

two regions at different pressures and densities by a diaphragm. The initial 

conditions for left and right side of the diaphragm were chosen as (l, Pl, Ul) = (10, 

10, 0) and (r, Pr, Ur) = (1, 1, 0) where  is the density, P is the pressure, U is the 

velocity while the subscripts l and r denote the left and right sides of the 

diaphragm, respectively. 

The diaphragm is removed at t = 0, causing a shock to propagate through 

the tube. Figure 6.1 shows that after the removal of the diaphragm the flow is 

separated into four different regions by three shock waves that develop: a normal 

shock that separates region 1 and 2, a contact discontinuity between region 2 and 

3, and a rarefaction wave that separates region 3 and 4.  
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Figure 6.3 Schematic of the flow structure in a shock tube. 

 

The modelled gas has a specific heat ratio of γ = 1.4 and a gas constant of R 

= 1.0. The length of the tube, L = 1 m, was divided into 200 cells. The boundary 

conditions were implemented as outflow conditions on both sides. The simulation 

time, tf, was set to 0.1 s. After this time, no wave reached the boundaries, hence, 

the choice of the boundary conditions is not critical.  

The simulation was conducted with the second order DD-QDS and TD-

QDS codes using 4 velocity bins per coordinate direction and MINMOD slope 

limiter in calculating the property gradients. Dynamic time steps were used in 

which the simulation time step is adjusted after each time step with the CFL < 0.5 

condition maintained. The simulation results were compared to the analytical 

results of the Riemann solver (Toro, 2009). Figure 6.4 shows the normalized 

density, temperature, velocity and pressure profiles at tf = 0.1 s.  
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Figure 6.4 Normalised density (top left), temperature (top right), velocity (bottom left) and 

pressure (bottom right) distribution of the shock tube problem. 

 

From Figure 6.4, both the DD-QDS and the TD-QDS solver are shown to be 

able to capture the physics of the shock, contact discontinuity and rarefaction 

waves. It can also be noticed that the DD-QDS solver, in general, produced 

slightly more accurate results compared to the TD-QDS in this problem. It should 

also be noted that a slight overshoot of the temperature occurred in the solution 

from the DD-QDS. This may be due to the low amount of numerical dissipation 

inherent in the scheme. 

As a measure of accuracy of the schemes, the Mean Absolute Percentage 

Error (MAPE) was calculated for both the TD-QDS and the DD-QDS for the 
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quantities of density, temperature and pressure. By considering the Riemann 

solution to be the benchmark solution, MAPE can be calculated by Equation (6.33) 

as: 
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where n is the number of cell, ηi is the macroscopic quantity at cell i and ηi,ref is 

the macroscopic quantity of the Riemann solution at cell i. Table 6.2 show the 

comparison of MAPE for both the TD-QDS and the DD-QDS for this problem. 

Table 6.2 MAPE between the TD-QDS and the DD-QDS for 1D shock tube problem 

Solver 
MAPE 

Density, ρ Temperature, T Pressure, P 

TD-QDS 1.84% 1.35% 8.79% 

DD-QDS 1.32% 0.88% 1.01% 

 

From Table 6.2, both the TD-QDS and the DD-QDS produced solutions 

considerably close to those of the Riemann solver. As noted from Equation (6.33), 

a perfect match of the solutions would give the value of the MAPE to be zero. It 

can also be clearly seen that the results of the DD-QDS have a closer match to the 

benchmark solution. Hence, it can be said that the DD-QDS solver produced more 

highly accurate results than the TD-QDS in this problem. 

 

6.4.2 Shock-Bubble Interaction  

As a validation of the accuracy of the DD-QDS code, a test problem for the 

interaction of shock waves with a spherical bubble was simulated. The problem of 
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shock-bubble interaction was first studied experimentally by Rudinger and 

Sommers to understand the fundamental mechanics associated with turbulence 

generation and mixing (Rudinger & Somers, 1960). Haas and Sturtevant then 

studied this problem to investigate the nature of shock refraction at low Mach 

numbers (Haas & Sturtevant, 1987). Numerical simulations on this problem have 

also been carried out to study the Mach number effects on the shock-bubble 

interaction (Picone & Boris, 1988; Zabusky & Zeng, 1998). Most of these 

simulations involve multi-species flow. Figure 6.5 shows the geometry of the 

problem together with the initial and boundary conditions for the simulation of 

shock-bubble interaction in a 1.0 unit length cylindrical channel with radius R = 

0.5 unit length. The spherical bubble, with radius r = 0.2 unit length, is initially 

located at 0.4 unit length downstream from the channel inlet. The simulated gas 

was an ideal gas with a ratio of specific heats of 1.4 and a gas constant of R = 1.0. 

The inlet boundary was kept at the initial flow condition at all times while the 

outflow condition was extrapolated from the adjacent flow field cells. Reflecting 

wall boundary conditions are applied along the walls of the tunnel. 

0.0 0.1 0.4 1.0  

Figure 6.5 Geometry, boundary and initial conditions for the simulation of shock-bubble 

interaction. 
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The simulation was conducted with the axisymmetric DD-QDS code by 

using 3 velocity bins per coordinate direction and MINMOD slope limiter in 

calculating the property gradients. In the simulation, 200 radial cells and 400 axial 

cells are used. The computational cells of the bubble were generated at t = 0 in a 

staircase manner with the cells taking the properties of either the bubble or the 

surroundings, but never values in between. A dynamic time step was used in 

which the simulation time step was adjusted after each time step to maintain CFL 

< 0.25 everywhere. The simulation was carried out until 0.2 s when the shock 

wave is just about to reach the outflow boundary. 

The DD-QDS simulation result was compared to that of the simulation 

using EFM (Smith, 2008) as a validation. Figure 6.6 shows the comparison of the 

density contour between the simulation results of the DD-QDS solver and the 

EFM solver at the simulation time of 0.2 s. As a consequence of the interaction 

with a right-moving incident shock, the bubble region, with a lower density than 

the surroundings, expands radially outward and deforms into a kidney-shape 

vortex. At the same time a re-entrant jet forms at the upstream interface, as 

visualised by Haas & Sturtevant (Haas & Sturtevant, 1987) and also predicted by 

Picone & Boris (Picone & Boris, 1988) and Bagabir et al. (Bagabir & Drikakis, 

2001). The comparison shows that the DD-QDS solver is able to capture shock-

bubble interaction flow field features similar to the EFM. The backward-moving 

reflected shock and right-moving transmitted shock have an almost exact match in 

position to that in the EFM result. This shows the DD-QDS scheme’s capability to 
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produce closed, approximated solutions to the problem with simpler formulations 

and higher computational efficiency. Both simulations, using the DD-QDS and 

the EFM, were carried out on a single desktop computer with 3.00 GHz Intel Core 

2 Duo CPU E6850 processor and 4 GB of RAM. The simulation required 254 s to 

compute 0.2 s of flow using the DD-QDS solver compared to 369 s by using the 

EFM solver. Hence, the DD-QDS solver has significantly greater computational 

efficiency with equivalent accuracy to the EFM for this problem.     

 

DD-QDS

EFM

I

T

R
S

 

Figure 6.6 Comparison of density [kg/m
3
] contour at 0.2 s for shock-bubble interaction 

simulation between results from present QDS scheme (top) and results from EFM (bottom); 

I is the incident shock, R is the reflected shock, T is the transmitted shock, S is the contact 

surface. 

  

The DD-QDS simulation result was also compared to that of the simulation 

using the TD-QDS solver as discussed in Section 5.4. Figure 6.7 shows the 



182 

 

comparison of the density contour between the simulation results obtained from 

the DD-QDS solver and the TD-QDS solver at the simulation time of 0.2 s.  

DD-QDS

True directional QDS

 

Figure 6.7 Comparison of density [kg/m
3
] contour at 0.2s for shock-bubble interaction 

simulation between results from DD-QDS scheme (top) and results from true directional 

QDS (bottom). 

 

It is clearly seen in Figure 6.7 that the deformation of the bubble in to a kidney-

shaped, vortical structure is more pronounced in the DD-QDS simulation result. 

This can be ascribed to the lower numerical dissipation in the DD-QDS scheme. 

The vortical roll-up at the shock-bubble interface has also been captured at higher 

resolution in the result of the DD-QDS solver compared to that of the TD-QDS 

code. It is also noted that the transmitted shock (the curved shock front) is 

travelling slightly faster in the DD-QDS simulation compared to that of the TD-

QDS indicating lower effective viscosity in the flow field simulated by the DD-
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QDS code. This confirms that improvement is made by using the DD-QDS 

scheme to reduce the numerical viscosity in the QDS method in order to produce a 

more accurate simulated solution of the flow field. 

 

6.4.3 Mach 3 Flow over a Forward Facing Step 

The second test problem in validating the DD-QDS code is the Mach 3 flow over 

a forward facing step in a high speed two-dimensional wind tunnel. This test 

problem was introduced by Emery (Emery, 1968) and has been used in several 

studies including Woodward & Colella in testing a few numerical schemes 

(Woodward & Colella, 1984) and Keats & Lien who used a Godunov scheme 

(Keats & Lien, 2004). Figure 6.8 shows the geometry of the problem with a 

uniform Mach 3 flow over a step which is located 0.6 unit lengths from the inlet 

of the tunnel. The simulated gas was an ideal gas with a ratio of specific heats of 

1.4 and a gas constant of R = 1.0. Initially, the flow is uniform everywhere with 

density of 1.4, pressure of 1.0, and velocity of 3.0. The inlet boundary was kept as 

the initial flow condition while the outlet boundary condition was extrapolated 

from the adjacent flow field cells. Reflecting wall boundary conditions are applied 

along the walls of the tunnel.  
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Inlet
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Figure 6.8 Geometry and boundary conditions for the simulation of Mach 3 flow over a 

forward facing step. 

 

The simulation was conducted with the second order DD-QDS code by 

using 4 velocity bins per coordinate direction and the MINMOD slope limiter for 

calculating property gradients. The variable time step scheme was used so that the 

maximum kinetic CFL number in the simulation domain was 0.5. 200 square cells 

across the inlet wall of the tunnel were used.  

The simulation result is compared to that of the second order Godunov 

method employed by Keats and Lean on an adaptively refined mesh (Keats & 

Lien, 2004) and to that of the second order TD-QDS method used by Smith et al. 

(Smith, et al., 2009). Figure 6.9 shows a comparison of the density contours at 4 s 

between the results of Keats and Lien’s Godunov scheme and the DD-QDS 

scheme. Figure 6.10 shows the comparison between the results from the TD-QDS 

scheme and the DD-QDS scheme. These comparisons show that the DD-QDS 

code has captured the flow field features such as the Mach stem and rarefaction 

fan around the corner of the step with results very close to the other two methods. 

The shock positions on the walls have also shown close matches between the DD-

QDS and the two other methods. 
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Figure 6.9 Comparison of density [kg/m
3
] contour at 4 s for Mach 3 flow over a forward 

facing step between results from Keats and Lien’s Godunov scheme (Top, taken from (Keats 

& Lien, 2004)) and the DD-QDS scheme (bottom); 30 contours: 0.2568 ≤ ρ ≤ 6.607. 

 

 

 

Figure 6.10 Comparison of density [kg/m
3
] contour at 4 s for Mach 3 flow over a forward 

facing step between results from the TD-QDS scheme (Top, taken from (Smith, et al., 2009)) 

and the DD-QDS scheme (bottom); 30 contours: 0.2568 ≤ ρ ≤ 6.607. 
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The DD-QDS simulation was conducted on a single desktop computer with 

3.00 GHz Intel Core 2 Duo CPU E6850 processor and 4 GB of RAM. The 

simulation consumed 22 min to compute 4.0s of flow using the second order DD-

QDS solver. By comparison, the same problem was simulated using a second 

order True Directional Equilibrium Flux Method (TDEFM) and a Riemann solver 

on a single laptop computer with 1.73 GHz Intel dual core T2250 processor and 2 

GB of RAM (Smith, et al., 2009). The TDEFM required 201 min to compute 4.0 s 

of flow while the Riemann solver required 77 min. Although the DD-QDS 

simulation was carried out on a machine with about double the speed, it should be 

noted that less than half the computational time was taken compared to the other 

two methods. 

 

6.5 PP-CVD Simulations by Directional Decoupled QDS 

The second order true directional axisymmetric DD-QDS solver is used to 

simulate the reactor flow field for the gas injected PP-CVD process. The same 

two Cases studied in Section 5.8 with the TD-QDS were simulated as a 

comparison check on the improvement made by introducing the DD-QDS scheme 

in the PP-CVD reactor flow field simulations. The simulation conditions for the 

simulated Cases are described in Table 6.3. Ideal Helium gas at a choked flow 

condition is used as the inlet conditions with the reactor flow field initially 

stationary. A constant evacuation volumetric flow rate as discussed in Section 

4.2.2 is used as the outflow conditions. Specular reflected wall conditions were 
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used for all wall and substrate surfaces. Both simulations were carried out on a 

desktop computer with 3.00GHz Intel Core 2 Duo CPU and 4GB of RAM using 

312,744 uniform square cells with 0.25mm cell size.  

Table 6.3 Simulation conditions for the PP-CVD flow field simulations using the DD-QDS 

method. 

 Case I Case II 

Supply Pressure, Ps 10 kPa 40 kPa 

Pulse Range, Pmin → Pmax 1 Pa → ~100 Pa 1 kPa → ~5 kPa 

Injection time, ti 0.1 s 

Supply Temperature, Ts 293 K 

Initial Temperature, Ti 293 K 

QDS velocity bin, N 4 per coordinate direction 

Simulation time step, ∆t variable time step with maximum CFL < 0.5 

Slope limiter MINMOD 

 

Figure 6.11 shows the reactor geometry and boundary conditions used for both 

Cases.   

 

  345mm 

325mm 

3
7
.5

m
m

 

5
9
m

m
 Inlet 

Orifice 

 1 mm 
substrate 

Vacuum pump exhaust 

Axis of symmetry

  345mm 

325mm 

3
7
.5

m
m

 

5
9
m

m
 Inlet 

Orifice 

 1 mm 
substrate 

Vacuum pump exhaust 

Axis of symmetry

r 

x 

 

Figure 6.11 Schematic of the PP-CVD reactor geometry. 
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6.5.1 Case I: 1 Pa initial reactor pressure 

6.5.1.1 Case I: Injection phase 

Figure 6.12 shows the density contours (left) and the pressure contours (right) 

plotted on a natural logarithm scale. They show the development of an under-

expanded jet during the first 4 ms of the injection phase in Case I conditions. By 

comparison to Figure 5.11, the development of the under-expanded jet during the 

injection phase is similar but at much higher resolution. More flow field details 

have been captured clearly which can be attributed to lower numerical dissipation. 

Similarly to Figure 5.11, the contour plots in Figure 6.12 show the development of 

a shock wave pattern at the exit of the inlet orifice, evolution of the shear layer 

with the vortex roll-up and the formation of a Mach disk and barrel shock during 

the unsteady flow development period. After 4.0 ms, a quasi-steady under-

expanded jet structure is seen and impinges onto the substrate region. This 

demonstrates the capability of the DD-QDS solver in modelling unsteady flow 

phenomena and capturing more flow field detail compared to the TD-QDS solver. 

Therefore, the accuracy in the numerical simulation is improved. 
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Figure 6.12 DD-QDS results: Loge(density) [kg/m
3
] contour (left) and Loge(pressure) [Pa] 

contour (right) for the unsteady flow development of an under-expanded jet in a PP-CVD 

reactor at Case I conditions during the first 4 ms of the injection phase. 

 

In the DD-QDS scheme, the assumption of thermal equilibrium 

establishment locally within each computational cell by the end of each time step 

is also applied in order to allow the molecular velocity distribution to be 
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approximated with the Maxwell-Boltzmann distribution. Hence, it is necessary to 

investigate the validity of the local equilibrium assumption. The same procedures 

of the validity check discussed in Section 5.8 have been carried out on the 

simulation results of the DD-QDS. First, the gradient length local Knudsen 

number based on the density (KnGLL)ρ, discussed in Section 4.3.5, was calculated 

to check whether continuum breakdown occurs in the flow field at the chosen 

simulation times. The (KnGLL)ρ also indicates that the potential for the molecule to 

move due to the local density gradient within the computational cell. When the 

local density gradient is not high enough, there will be less potential for the 

physical molecules to transport out of the computational cell before the thermal 

equilibrium condition is established. In this Case, equilibrium condition being re-

established locally in each time step in the current QDS scheme would be justified. 

As discussed in Section 4.3.5, the criterion for continuum breakdown occurring is 

KnGLL > 0.05 (Boyd, et al., 1995). Hence, the threshold of (KnGLL) < 0.05, or 

loge[(KnGLL)-3.0, is used to ensure that continuum breakdown does not occur 

and that the local density gradient is not high enough to transport the gas 

molecules downstream before the thermal equilibrium condition is re-established 

within the computational cell. 

The (KnGLL)ρ was calculated at the simulation times of 0.5 ms and 4.0 ms. 

These simulation times were chosen because the Mach disc position was 

stabilised in the flow field by about 0.5 ms while the flow developed into a quasi-

steady state by 4.0 ms. Figure 6.13 shows the contours of (KnGLL) plotted on a 



191 

 

natural logarithm scale at the simulation times of 0.5 ms and 4.0 ms, respectively, 

for Case I. It is noted that loge[(KnGLL)-3.0 occurs throughout the flow field 

indicating that the continuum assumption is valid in Case I when simulating with 

the DD-QDS solver. 

  

Figure 6.13 DD-QDS results: loge[(KnGLL)] contours at 0.5 ms (top) and 4 ms (bottom) at 

Case I conditions. 

 

The second parameter used for the validity check of the thermal equilibrium 

assumption is t/tcol,avg. This is determined by calculating the ratio of the 

computational time step to the average time between particle collisions as 

discussed in Section 4.3.5. As stated in Section 4.3.5, a criterion of t/tcol,avg ≥ 2 

(Titov & Levin, 2007) , or loge(t/tcol,avg)≥0.69, is used to validate the 

assumption of the computed non-equilibrium distribution to relax sufficiently 

close to the corresponding Maxwell-Boltzmann equilibrium distribution. Figure 

6.14 shows the contours of the t/tcol,avg plotted on a natural logarithm scale at the 
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simulation times of 0.5 ms and 4.0 ms, respectively, for Case I. It is noted that the 

condition of loge(t/tcol,avg)≥0.69 is not satisfied anywhere in Case I either at t = 

0.5 ms or t = 4.0 ms, except near the orifice exit. This indicates the computational 

time step used in the simulation is much smaller than the average molecules’ 

collision time preventing the sufficient relaxation of the molecules. Therefore, the 

DD-QDS solver may not be able to calculate such non-equilibrium flow 

accurately. However, it is able to provide a promising qualitative approximation 

of the flow field at 1 Pa initial pressure condition. 

  

Figure 6.14 DD-QDS results: loge(t/tcol,avg) contours at 0.5 ms (top) and 4 ms (bottom) at 

Case I conditions. 

 

6.5.1.2 Case I: Pump-down phase 

The pump down phase of the PP-CVD operating cycle at Case I conditions was 

also simulated using the DD-QDS code. As described in Section 5.8.1.2, the 
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reactor pressure at the end of the injection phase is estimated to be 100 Pa based 

on experience with such reactors. Figure 6.15 shows the density contours (left) 

and the pressure contours (right) plotted on a natural logarithm scale.  
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0.1 s 
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Figure 6.15 DD-QDS results: loge(density) [kg/m
3
] contour (left) and loge(pressure) [Pa] 

contour (right) after inlet orifice closes (at 0.1 s) in the PP-CVD reactor at Case I conditions. 

 

The inlet nozzle was shut at 0.1 s. It can be observed that the jet structure has 

dissipated during the first 0.5 ms of the pump down phase. The resulting flow 

field is rather uniform for the remaining pump-down process. 

To estimate the number of particle collisions per time step per particle 

within a computational cell, the ratio of the simulation time step to the average 
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time between particle collisions was calculated. Figure 6.16 shows the contours of 

the loge(∆t/tcol,avg) at 0.10001 s (10 µs after the end of injection) and 0.1001 s 

(after the jet structure has dissipated), respectively, during the pump-down phase 

for Case I. Figure 6.16 shows that (∆t/tcol,avg) ≥ 2 or loge(t/tcol,avg)≥0.69 i.e. two 

collisions per time step per particle is not achieved during the pump-down phase 

simulation in Case I. 

 

Figure 6.16 DD-QDS results: loge(t/tcol,avg) contours at 0.10001 s (top) and 0.1001 s 

(bottom) at Case I conditions. 

 

Figure 6.17 shows the log scaled contours of the gradient length local 

Knudsen number based on density at the simulation times of 0.10001 s and 

0.10010 s, respectively, for Case I. The contour plots in Figure 6.17 show that 

(KnGLL)ρ is everywhere less than 0.05, or loge(KnGLL)ρ < -3, soon after the inlet jet 

was shut down. This indicates that although the number of collisions was low and 

the two collisions per time step per particle condition is not satisfied, the local 
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density gradient within the computational cell was not high enough to transport 

the particles downstream before the thermal equilibrium condition was established. 

Hence, the assumption that equilibrium is re-established locally in each time step 

in the DD-QDS scheme is partially justified for the PP-CVD process during the 

pump-down phase. 

 

Figure 6.17 DD-QDS results: loge(KnGLL) contours at 0.10001 s (top) and 0.1001 s (bottom) 

at Case I conditions. 

 

6.5.2 Case II: 1 kPa initial reactor pressure 

6.5.2.1 Case II: Injection phase 

Figure 6.18 shows the density contours (left) and the pressure contours plotted on 

a natural logarithm scale (right) of the simulation results using the DD-QDS for 

Case II conditions during the first 4 ms of the injection phase. Again, the similar 
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flow phenomena as seen in the TD-QDS simulation in Section 5.8.2 is captured in 

the simulation using the DD-QDS. However, Figure 6.18 demonstrates the 

improved accuracy in the DD-QDS computation to acquire enhanced detail of the 

flow field, especially the evolution of the shear layer and vortex trailing on the jet 

boundary during the unsteady flow field development. The flow field eventually 

becomes quasi-steady at about 3.0 ms. 
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Figure 6.18 DD-QDS results: loge(density) [kg/m
3
] contour (left) and loge(pressure) [Pa] 

contour (right) for the flow field in a PP-CVD reactor at Case II conditions during first 4 ms 

of the injection phase. 
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Figure 6.19 shows the contours of (KnGLL)plotted on a natural logarithm 

scale at the simulation times of 0.5 ms and 4.0 ms, respectively, for simulation 

results of the DD-QDS for Case II. It is shown that loge[(KnGLL)-3.0 

throughout the flow field at all times. Hence, it may be safely assumed that 

continuum breakdown does not occur in Case II and the local density gradient 

within the computational cell was not high enough to transport the particles 

downstream before the thermal equilibrium condition was re-established after 

each time step. This justifies the assumption of local thermal equilibrium in the 

DD-QDS scheme at initial reactor pressure of 1 kPa. 

  

Figure 6.19 DD-QDS results: loge[(KnGLL)] contours at 0.5 ms (top) and 4.0 ms (bottom) at 

Case II conditions. 

 

The ratio of the simulation time step to the average time between particle 

collisions was then calculated for Case II for the simulation results of the DD-

QDS. Figure 6.20 shows the contours of t/ tcol,avg plotted on a natural logarithm 
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scale at the simulation times of 0.5 ms and 4.0 ms, respectively, for Case II. From 

Figure 6.20 it is observed that loge(t/tcol,avg)≥0.69 (or t/tcol,avg ≥ 2) in most 

regions except a small region near the Mach disc. However, this region is unlikely 

to have a significant effect on the flow field, especially near the substrate region 

which is the region of interest in the simulation. Hence, in general, this suggests 

that there are at least two successive particle collisions in most regions of the flow 

field providing an insignificant difference between the actual physical non-

equilibrium distribution and the Maxwellian equilibrium distribution. This, again, 

reasonably justifies the equilibrium assumption in the DD-QDS method in 

simulating the flow field of Case II.  

  

Figure 6.20 DD-QDS results: loge(t/tcol,avg) contours at 0.5 ms (top) and 4 ms (bottom) at 

Case II conditions.  
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6.5.2.2 Case II: Pump-down phase 

The pump-down phase of the PP-CVD operating cycle at Case II conditions was 

also simulated using the DD-QDS code. The reactor pressure at the end of the 

injection phase is estimated to be 5 kPa. Figure 6.21 shows the density contours 

(left) and the pressure contours (right) plotted on a natural logarithm scale. 

Similar to that of Case I, the jet structure also dissipates rapidly in about 0.5 ms, 

after the inlet jet has been shut off at t = 0.1 s. A considerably uniform flow field 

is expected in the remaining pump-down process. 
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Figure 6.21 DD-QDS results: loge(density) [kg/m
3
] contour (left) and loge(pressure) [Pa] 

contour (right) after inlet orifice closes (at 0.1 s) in a PP-CVD reactor at Case II conditions. 
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The validity of the thermal equilibrium assumption in the DD-QDS scheme 

was also checked for the Case II pump-down phase simulation. Figure 6.22 shows 

the log scaled contours of the gradient length local Knudsen number based on 

density at the simulation times of 0.10001 s and 0.1001 s, respectively. It can be 

observed that loge(KnGLL)ρ is, overall, less than -5. This means that the local 

density gradient within the computational cells was not high enough to transport 

the particles downstream before the thermal equilibrium condition is re-

established locally within one time step. Therefore, the continuum assumption can 

be considered valid in the flow field based on (KnGLL)ρ. 

 

Figure 6.22 DD-QDS results: loge (KnGLL) contours at 0.10001 s (top) and 0.1001 s (bottom) 

at Case II conditions. 
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Figure 6.23 shows the ratio of the simulation time step to the average time 

between particle collisions, (∆t/tcol,avg), at 0.10001 s and 0.1001 s, respectively, 

during the pump-down phase for Case II. It can be seen in Figure 6.23 that 

loge(∆t/tcol,avg) ≥ 2.5 everywhere in the simulation result which is greater than the 

required criterion of loge(∆t/tcol,avg) ≥ 0.69. 

 

Figure 6.23 DD-QDS results: loge(t/tcol,avg) contours at 0.10001 s (top) and 0.1001 s 

(bottom) at Case II conditions. 

 

6.5.3 Discussion 

6.5.3.1 Inherent numerical dissipation in QDS scheme 

Using the simplified numerical dissipation analysis discussed in Section 6.1.2, the 

effective kinematic viscosity inherent in QDS scheme with 4 discretised 

molecular speeds can be estimated using Equation (6.20). It is noted that the 
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kinematic viscosity is a function of the gas temperature.  Table 6.4 shows the 

estimated effective kinematic viscosity υscheme for both the DD-QDS and the TD-

QDS schemes of the PP-CVD flow field simulations for both Case I and Case II 

conditions as above. To allow a general characterisation of the flow, the average 

temperature of the flow field at flow time of 4 ms when the flow reach a quasi-

steady state, is used in the calculation of the kinematic viscosity. 

 

Table 6.4 Effective kinematic viscosity for both the DD-QDS and the TD-QDS schemes for 

PP-CVD flow at 4 ms. 

Case I (Pmin = 1 Pa) II (Pmin = 1 kPa) 

Scheme (N = 4) DD-QDS TD-QDS DD-QDS TD-QDS 

Average 

temperature, Tave 

[K] 

368.542 458.540 303.901 304.366 

Average velocity, 

Vave [m/s] 
610.101 453.695 287.03 112.16 

υscheme [m
2
/s] 0.0971 0.1083 0.0882 0.0883 

 

From Table 6.4, it can be noted that both QDS schemes have a similar 

effective kinematic viscosity overall. However, the DD-QDS shows slightly lower 

numerical viscosity compared to the TD-QDS at Case I conditions. This is 

consistent with the finding from the simulation results of the DD-QDS that more 

detailed flow phenomena have been captured compared to the results of the TD-

QDS simulations. For example, the vortical roll-up of the shear layer development 

in the under-expanded jet. Hence, it can be concluded that the DD-QDS has 
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slightly lower numerical dissipation in the scheme which promotes accuracy in 

the solution.  

The estimated νscheme is about 2 orders of magnitude (200 times) higher than 

the physical kinematic viscosity of the gas, which is about 0.0005 m
2
/s for Helium 

gas at standard conditions (Potter and Wiggert, 2002). This is due to the cell size 

used (Δx = Δy = 2.5×10
-4

 m) being a few orders of magnitude higher than the 

physical mean free path. However, it should be noted that the apparent viscosity 

in a real fluid will be increased by the eddy viscosity for turbulent flows. The 

value of the apparent viscosity will depend on local turbulence intensity and eddy 

spectrum size. Besides, the similarity of the present results of the QDS and that of 

the DSMC (Cave, 2008; Cave, et al., 2007) suggests that the numerical dissipation 

does not significantly affect the simulation of high Mach number flows or the low 

pressure PP-CVD reactor flows simulated here. Both of these flows are inertially 

dominated. Nevertheless the artificially high viscosity should be borne in mind 

when interpreting future QDS results. 

The numerical diffusion can be minimized by reducing cell size but an 

increase in computational time will be experienced. The numerical diffusion in the 

QDS scheme is in proportion to the cell size (Jermy, et al., 2010). For the 

particular PP-CVD reactor simulation of interest, simulation with cell size of Δx = 

2.5×10
-4

 m requires 4 hours for 1 ms of flow time. Reducing the cell size to Δx = 

1.25×10
-4

 m halves the viscosity of the simulated gas, and increases the 

computational time to 72 hours to compute 1 ms of flow time. For the purpose of 
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exploring PP-CVD reactor design, the speed of simulation is prioritised over the 

quantitative accuracy of the flow field computed.  

Figure 6.24 shows the comparison of loge(density) contour plots between 

the simulation results with grid size of Δx = 2.5×10
-4

 m and Δx = 1.25×10
-4

 m. 

During the injection phase of the PP-CVD process, the flow field develops into a 

quasi-steady state after the first 4 ms in the 1 s injection phase. The flow remains 

in quasi-steady state for about 99.6% of the injection time. From Figure 6.24, it 

shows that halving the grid size, which consequently halves the viscosity, has 

little effect on the flow field, especially after the quasi-steady jet has developed. 

 t = 0.5 ms t = 4.0 ms

dx = dy = 0.125 mm

dx = dy = 0.25 mm dx = dy = 0.25 mm

dx = dy = 0.125 mm

 

Figure 6.24 Comparison of loge(density) [kg/m
3
] contour plots for PP-CVD simulation with 

grid sizes of 0.25 mm and 0.125 mm. 

 

Figure 6.25 shows the accumulated number of particles colliding with the 

substrate face (AMOS) for three different cell sizes used throughout the 

simulation time of 3 ms. As shown in Figure 6.25, the difference in the amount of 

particles colliding at the substrate wall between runs with a cell size of Δx = 

2.5×10
-4

 m and Δx = 1.25×10
-4

 m is much less compared to that between runs 
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with a cell size of Δx = 5.0×10
-4

 m and Δx = 2.5×10
-4

 m. From Figure 6.25, it is 

also noted that AMOS increases linearly with the radius since the annular area of 

the computational cell normal to the axial direction is linearly proportional to the 

radius. 
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Figure 6.25 Accumulated mass of molecules colliding onto the substrate wall (AMOS) [kg] 

from simulations of 3 different cell sizes. 

 

To characterise the uniformity of the flow field near the substrate surface, 

AMOS per unit cell area normal to the axial direction is calculated and plotted as 

shown in Figure 6.26. It should be noted that non-uniformity in AMOS per area in 

Figure 6.26 is expected since the results are plotted for only the first 3 ms of the 

injection phase, which is a very small fraction of the whole deposition cycle. 

Regardless, the difference in the AMOS per area between runs with a cell size of 

Δx = 2.5×10
-4

 m and Δx = 1.25×10
-4

 m is less than that between runs with a cell 
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size of Δx = 5.0×10
-4

 m and Δx = 2.5×10
-4

 m. Hence, a cell size of Δx = 2.5×10
-4

 

m is used to allow speedy computation with reasonable quantitative accuracy. 

Although the quantitative accuracy reduces with the high value of numerical 

viscosity, the qualitative flow field phenomena, especially the shock position and 

structure, are not jeopardised. In fact, for the purpose of exploring PP-CVD 

reactor design and selecting operating conditions, the qualitative simulation result 

is sufficient. 

 

Figure 6.26 Accumulated mass of molecules colliding onto the substrate wall (AMOS) per 

substrate annular area [kg/m
2
] from simulations of 3 different cell sizes. 

 

For the simulation with 0.25 mm cell size, the average Reynolds number 

based on the physical viscosity of the gas is estimated using the average flow 

velocity in each simulation and is tabulated in Table 6.5. The average Reynolds 

number calculated using the physical viscosity ranges from about 2×10
4
 to 1×10

5
, 

which indicates that the inertia forces are dominant instead of the viscous forces 
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in the flow field of the PP-CVD process with gas injection. Hence, it is less likely 

for the numerical viscosity to have significant erroneous influence on the flow 

field phenomena. However, the average Reynolds number calculated using the 

estimated scheme viscosity shows a rather low values indicating high numerical 

dissipation in the simulation.  

Table 6.5 Average Reynolds number calculated using estimated scheme viscosity (Rescheme) 

and physical viscosity (Rereal) of Helium. 

Case I (Pmin = 1 Pa) II (Pmin = 1 kPa) 

Scheme (N = 4) DD-QDS TD-QDS DD-QDS TD-QDS 

Average velocity, 

Uave [m/s] 
610.101 453.695 287.03 112.16 

Rescheme 741.22 494.16 384.02 149.95 

Rereal 143983.89 107072.12 67740.1 26470.05 

 

It should also be noted that at high Reynolds number, turbulent flow occurs 

which introduces eddy viscosity to the flow field in addition to the gas physical 

viscosity. To improve the accuracy of the numerical result of such supersonic 

flow, an appropriate turbulent model is needed which should be considered in the 

future work. 

 

6.5.3.2 Limitation of DD-QDS scheme in low pressure PP-CVD flow simulation 

The local thermal equilibrium assumption excludes the QDS scheme from use in 

simulating highly rarefied flows. Due to the larger mean free path of the 

molecules in highly rarefied low pressure flow, the gas may not reach equilibrium 
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condition during the computational time step used. The limitation of the QDS 

scheme is investigated by utilising the gradient length local Knudsen number, 

(KnGLL)and the ratio of computational time step to the average time between 

particle collisions, t/tcol,avg. 

A series of simulations at various minimum reactor pressures have been 

carried out in order to estimate the limit of the QDS scheme in simulating low 

pressure flow with a justified assumption of local thermal equilibrium. As seen 

from Figure 6.13 and 6.19, the threshold of (KnGLL) is met for the flow pressure 

as low as 1 Pa, which is the lowest possible reactor pressure in the current 

experimental PP-CVD reactor. However, the calculation of t/tcol,avg shows that 

the low frequency of molecular collisions with 1 Pa initial reactor pressure 

condition hinders the restoration of local thermal equilibrium. Hence, simulations 

of the same PP-CVD flow condition have been conducted, changing only the 

reactor initial pressure from 1 Pa to 100 Pa, 200 Pa, 300 Pa and 400 Pa. Figure 

6.27 shows the loge(t/tcol,avg) contours of the PP-CVD reactor flow simulations 

with initial pressures of 200 Pa, 300 Pa and 400 Pa. 
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Pmin = 200 Pa

Pmin = 300 Pa

Pmin = 400 Pa

 

Figure 6.27 DD-QDS results: loge(t/tcol,avg) contours at 4 ms of the PP-CVD reactor flow 

simulations with initial pressures of 200 Pa (top), 300 Pa (middle) and 400 Pa (bottom). 

 

Since (KnGLL)  0.05 has been met for runs with Pmin = 1 Pa as shown in the 

results from Case I above, it requires only to check if t/tcol,avg ≥ 2 in order to set a 

limit for the QDS scheme in simulating PP-CVD flows. From Figure 6.27, it can 

be seen that t/tcol,avg ≥ 2, or loge(t/tcol,avg)≥0.69 has been just met in the 

simulation with Pmin = 400 Pa in most regions but not for simulations with Pmin 

lower than this. Thus, it can be considered that the QDS is able to produce 

numerical solution with reasonably accuracy to the PP-CVD flow with Pmin = 400 

Pa or greater.  
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The gradient length local Knudsen number, (KnGLL)and the Knudsen 

number, Kn, are also calculated for the series of simulations conducted and are 

tabulated in Table 6.6 below. This is done in order to determine the limit of the 

QDS that satisfy both (KnGLL) and t/tcol,avg conditions as mentioned above. The 

maximum values of (KnGLL) and the corresponding Kn for the simulations with 

Pmin = 400 Pa, can be used to set a limit for which the QDS scheme provides 

simulation results that are considered reasonably valid for low pressure flows. 

When (KnGLL)  1.857×10
-7

 or Kn  0.00164 continuum flow assumption can be 

deemed valid. 

Table 6.6 Minimum and maximum values of (KnGLL) and Kn at 4 ms for the series of PP-

CVD reactor flow simulation conducted at different Pmin with diameter of the reactor Dreactor 

= 0.118m. 

Pmin [Pa] 

(KnGLL)ρ Kn (/Dreactor) 

min max min max 

1 8.892e-17 5.891e-04 2.188e-05 5.61591 

100 1.630e-19 9.376e-07 2.188e-06 0.00820 

200 4.809e-19 3.487-07 2.188e-06 0.00387 

300 1.926e-19 3.694e-07 2.188e-06 0.00213 

400 3.295e-20 1.857e-07 2.188e-06 0.00164 
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7 Droplet Flash Evaporation and Transport in PP-CVD 

The precursor solution is delivered in a carrier gas from a liquid bubbler in the 

conventional CVD system. Through the liquid bubbler, the carrier gas becomes 

saturated with the precursor solution at the pressure and temperature in the 

bubbler. There are several issues with the conventional liquid bubblers. The liquid 

precursor solution is usually not fully saturated with the carrier gas and hence the 

precursor vapour can easily condense on the injection tube walls and fittings 

before reaching the reactor inlet. This causes cleaning and material wastage 

problems. Besides, it takes some time for the flow and liquid temperature in the 

bubbler to stabilize during start-up that causes chemical wastage (Jones & 

Hitchman, 2009). 

As mentioned in Chapter 2, one of the novelties of PP-CVD technique is to 

allow direct injection of liquid precursor solution into the reactor chamber via an 

ultrasonic atomiser. This eliminates the problems in the use of bubbler as well as 

simplifies the reactor design. In the current PP-CVD reactor, an ultrasonic 

atomiser is used to generate liquid droplet from the injected precursor solution at 

the reactor inlet. The ultrasonic atomiser used in this study was SONO-TEK 

8700-120 cone shape micro spray from SONO-TEK. This model is rated to 

generate liquid droplet at median diameter of 18 micrometers (Sono-

TekCorporation, 1997). The liquid droplet of the precursor solution flows into the 

PP-CVD reactor by the means of pressure difference between the solution supply 

pressure and the low pressure of the continuously evacuated reactor. As discussed 
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in section 4.1.2, the injected liquid droplet evaporates sufficiently quickly due to 

the sudden pressure drop to below its saturation pressure, which is termed as flash 

evaporation. 

The fast evaporation phenomenon of a liquid droplet in a quiescent low 

pressure environment seems to be a relatively less studied research. However, the 

investigation of droplet evaporation in jet flow, at high or atmospheric pressure is 

well-studied due to the well development in the industrial applications, ranging 

from fuel injection for combustion system to spray dryers for producing dried 

powder. Maxwell (Maxwell & Harman, 1890) established the classical diffusion 

theory to express the mass flux of a single spherical droplet in a medium with 

given parameters.  An empirical correlation was developed for mass transfer 

number in the case of a sprinkler droplet falling through a moving airstream 

(Fröessling, 1938). A heat transfer analogy was then proposed that the heat 

transfer number in the same situation should be correlated in the similar manner 

with heat transfer data (Ranz & Marshall, 1952). Later, an expression for the 

growth rate of a droplet in terms of the total local condensation rate in a cloud for 

continuum region, free molecule regime and the transition regime was proposed 

(Barrett & Clement, 1988). This was followed by the development of a model for 

predicting evaporation and temperature changes in water drops travelling through 

air. The model was evaluated with laboratory data (Kincaid & Longley, 1989). 

Some rather recent reports on droplet evaporation investigation include a 

molecular dynamic method was developed to describe the liquid-vapour interface 
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of argon and water liquid droplet (Minkowycz & Sparrow, 2000), a diffusion 

model for evaporation of a single spherical droplet in gaseous medium at 

moderate pressure (Kozyrev & Sitnikov, 2001), and investigation on the problem 

of non-isothermal droplet evaporation and condensation in the near-continuum 

regime (Qu, Davis, & Swanson, 2001). An experimental study of droplet 

evaporation and coalescence in simple jet flow was also conducted to investigate 

the effect of turbulence on droplet evaporation (Nijdam, Stårner, & Langrish, 

2004). 

 

7.1 Concept and Formulations 

Based on a molecular approach, the flash evaporation model presented in this 

study models the evolution of the basic macroscopic properties (mass, momentum 

and energy) of a liquid droplet exposed to low pressure vapour. A Lagrangian 

tracking method is used where the quantities of mass, momentum and energy 

exchanged with the vapour phase are multiplied by a factor during the droplet-gas 

coupling calculation. This is done to represent the actual quantity of droplets 

injected over the injection phase of the PP-CVD process. Each representative 

droplet at high supply pressure enters into the low pressure reactor environment 

and experiences a sudden drop of pressure to below the saturation pressure at its 

supply temperature. Hence, the fluid molecules on the droplet surface flash 

evaporate from liquid to gas phase resulting in the decrease of droplet size and 

energy, consequently the temperature. The conservation equations of the 
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macroscopic properties of each representative droplet are used as the droplet flash 

evaporation model equations. The droplet is assumed to be spherical with uniform 

temperature. The detail of the assumptions and the corresponding justification will 

be discussed in section 7.3. 

 

7.1.1 Conservation Equation for Mass 

The mass rate of change of a representative droplet is described with the 

Maxwell’s diffusion equation in continuum regime (Pruppacher & Klett, 1997) 

with some modification for the present simulation conditions as given in Equation 

(7.1): 
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where m is the mass of the droplet, r is the droplet radius, M is the molar mass, R 

is the universal gas constant, Pg and Tg are the pressure and temperature of the 

surrounding gas respectively, T is the droplet temperature, P = 2s/r is the 

Young–Laplace equation for pressure inside an equilibrium spherical droplet with 

a surface tension, s (Frohn & Roth, 2000), and D12 is the effective diffusion 

coefficient given by Equation (7.2) as (Kimpton & Wall, 1952): 
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The diffusion coefficient in Equation (7.2) was derived based on the assumption 

that the gas and liquid phase molecules are rigid elastic spheres of masses, m1 and 
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m2, with molecular diameters, 1 and 2, respectively. For the current simulations, 

the hard sphere diameter of Toluene estimated by Rubio et al. is used, which is 

5.72Å (Lim, et al., submitted). The mean molecular diameter, 12, is defined as 

(1 + 2)/2 while the total number density, n, is the summation of the number 

density of the gas and liquid phase molecules. Due to the limited research in 

measuring the self diffusivity of Toluene in low pressure environment, the 

calculated diffusion coefficient of Toluene in the present work is compared to the 

binary diffusion coefficient of Benzene in air. Benzene (C6H6) is chosen in this 

comparison for its closed molecular structure and weight to Toluene (C7H8). At 

the atmospheric pressure, the binary diffusion coefficient of Benzene in air is 

about 0.88×10
-5

 m
2
/s (Incropera & DeWitt, 2001). The calculated diffusion 

coefficient in the present simulation condition using Equation (7.2) is in the order 

of 3×10
-5

 m
2
/s. The slightly higher diffusion coefficient in present work is within 

the expectation due to the large density gradient of the evaporated vapour between 

the droplet surface and the low pressure reactor volume. This causes large 

concentration difference which results in higher the diffusion coefficient 

determined. 

 

7.1.2 Conservation Equation for Momentum 

The droplets generated from the ultrasonic atomiser are driven away in to the 

reactor chamber by the pressure gradient between the inlet and the outlet of the 

reactor as well as the initial momentum of droplets. Thus, convection and 
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diffusion of moving viscous fluid is needed to be considered. The transport of the 

representative droplet is modelled by considering the momentum conservation of 

the droplet. The momentum rate of change of a simulated droplet is calculated 

from the momentum exchange between the representative spherical droplet and 

the surrounding gas, utilizing the drag coefficient. The change in droplet 

momentum, p, in a time step is given in Equation (7.3): 
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where Fgas-drop is the drag force exerted by the surrounding gas molecules to the 

droplet, g  and gV


 are the density and velocities of the surrounding gas, 

respectively, d is the droplet diameter, V


 is the droplet velocities, and CD is the 

drag coefficient given in Equation (7.4) (Clift, Grace, & Weber, 1978): 
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which is valid for Reynolds number, Re < 3×10
5
. The Reynolds number can be 

calculated using Equation (7.5): 
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where g is the viscosity of the surrounding gas. 
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7.1.3 Conservation Equation for Energy 

As the droplets evaporate, energy is being transferred from liquid to gas phase 

resulting in the change of the droplet temperature. Hence a non-isothermal droplet 

evaporation effect needs to be taken into account in the present droplet 

evaporation model. This can be done by considering the energy conservation of 

the droplet. The conservation of energy of a representative droplet considers the 

net change of energy within the droplet, E , to be equal to the total energy across 

the boundary of the spherical droplet which can be expressed in Equation (7.6): 

 
dt

dT
cr

3

4
EEEEE p

3
condevaporatecondensaterad    (7.6) 

where  is the droplet density and cp is the specific heat of the droplet. 

The radiative energy from surrounding, radE , can be calculated by using 

Equations (7.7): 

 )(4 442 TTrsE surrad    (7.7) 

where  is the emissivity, s is the Stefan-Boltzmann constant, Tsur is taken to be 

the average surrounding room temperature where the PP-CVD process is 

conducted and T is the droplet temperature.  

The condensation energy due to the re-condensed vapour from the 

surrounding when colliding with the droplet, condensateE , is calculated by using 

Equations (7.8): 

 gdropgascollcondensate eNE   
   (7.8) 
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where  is the mass accommodation coefficient, eg is the molecular energy of the 

surrounding gas, nVrN dropgascoll


 2

   is the molecular collision rate between the 

droplet and the surrounding gas at number density of n. In the present work, the 

mass accommodation coefficient is assumed to be 1 for simplicity, which is the 

same as in the non-isothermal droplet evaporation study conducted by Qu et al. 

(Qu, et al., 2001).  

The evaporated energy, evaporateE , is calculated using Equation (7.9): 

 Tc
dt

dm
E pevaporate 
  (7.9) 

Note that the term dm/dt in Equation (7.9) is the mass rate of change of the droplet. 

The specific heat value of cp was a curve-fitted value as a function of temperature 

based on the saturation data given by Lemmon et al. (Lemmon, et al., retrieved 

July 19, 2011).  

Lastly, the conduction energy, condE , due to the heat transfer through 

conduction from the droplet to the surrounding vapour can be determined by using 

Equation (7.10): 

 
r

TT
r4kE sur2

condcond


   (7.10) 

where kcond is thermal conductivity. In the present simulation condition, the 

thermal conductivity of Toluene used is 11.2×10
-3

 W/m·K, which is obtained from 

the experimental investigation conducted by Vargaftik et al. (Vargaftik, Zaitseva, 

& Yakush, 1968). 
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7.2 Implementation of Droplet Flash Evaporation Model  

The droplet model is coupled to the present QDS algorithm as an inlet condition 

to the gas phase flow simulation during the injection phase of the PP-CVD 

process. Figure 7.1 shows the flow chart of the droplet model-QDS solver 

coupling.    

 

Figure 7.1 Flow chart of coupling the droplet model to gas phase solution by QDS solver. 

 

A representative number of droplets are initialized with droplet size and 

velocity selected stochastically from the log-normal distribution of those 

properties for a typical spray. It has been studied experimentally to measure 

droplet velocity and diameters distribution at the exit of a discharge nozzle during 

sudden blowdown (Hervieu & Veneau, 1996) and of an ultrasonic atomiser 

(Nijdam, et al., 2004) by using Phase-Doppler Anemometry (PDA). It has been 

found that both droplet size and velocity of a typical spray generated have log-

normal distribution profile at the nozzle exit. This is in consistency with the 
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product specification of the Sono-Tek MicroSpray
™

 nozzles in predicting the 

spray shape (Sono-TekCorporation, 1997).  

In the present droplet evaporation model, a log-normal distribution of 

droplet diameter, velocity and spray dispersion angle is initialised with median 

diameter of 18 m, mean velocity of 8 m/s and spray dispersion angle of 6º, 

respectively, based on values from the ultrasonic atomiser product specification 

and experimental investigation. Figure 7.2 below shows a sample plot of the 

droplet size and velocity distribution profile generated and used in the present 

simulations. It can be shown in Figure 7.2 that the random number generator 

employed in the solver is capable of simulating the desired initial droplets’ 

properties profile. The actual median diameter of the droplet generated in the 

solver is 17.58 μm, while average x-velocity and y-velocity of the droplet 

generated is 8.21 m/s and 0.87 m/s, respectively. These agree well to that given by 

the atomiser manufacturer. It is also noted from the simulation results that all 

droplets were fully evaporated within a distance of 50 mm from the nozzle inlet, 

which agrees to the visual observation in the experiment.  
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Figure 7.2 Plot of the droplet size (top), x-velocity (middle) and y-velocity (bottom) 

distribution profile. 
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After the droplet properties are initialised, the droplet location within the 

flow field is identified. This is important to obtain the local gas phase properties 

needed for calculating the droplet evaporation and evolution. Then, molecular 

properties of the evaporated droplets are calculated and added to the QDS gas 

phase solution. Due to gas-droplet collision, the molecular properties of 

condensed gas molecules are added into the colliding droplet. The state of each 

droplet is checked at the end of each time step for the completeness of the 

evaporation.  

 

7.3 Validation of the Droplet Flash Evaporation Model  

In PP-CVD process, the rapid injection of precursor solution together with the 

flash evaporation of the precursor solution droplets cause a high vapour 

concentration region near the reactor inlet. Hence, the mean free path of the gas 

molecule is generally small at this region. This allows the assumption of the 

droplet flash evaporation takes place in a continuum flow regime. Figure 7.3 

below shows the plot of the gradient length local Knudsen number based on the 

density (KnGLL), which is defined in Chapter 4, for a PP-CVD flow field with 

liquid injection inlet. As noted from Figure 7.3, the (KnGLL) is less than 0.05 (as 

loge[0.05] ≈ -3) throughout flow field in the reactor that indicates the flow can be 

treated as continuum condition. 
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Figure 7.3 Plot of Log Scale (KnGLL) for a PP-CVD flow field with liquid injection inlet at t = 

100ms. 

 

The present droplet flash evaporation droplet assumes uniform temperature 

of the droplet. This can be justified by utilising the Biot number (Bi). The Biot 

number is a dimensionless number used in transient heat transfer analysis which is 

defined as the ratio of the heat transfer resistances inside of and at the surface of 

an object when undergoing convective heat transfer as given in Equation (7.11): 

 
fcond

c

k

hL
Bi

,

  (7.11) 

where h is the convection heat transfer coefficient, Lc is the characteristic length 

which is the diameter of the droplet in present study and kcond,f is the thermal 

conductivity of the droplet. The Bi gives an estimated index whether or not the 

temperatures inside an object will vary significantly in space when convection 

heat transfer takes place on its surface. As a general guide, the spatial temperature 

gradient inside the object is negligible if Bi < 0.1 (Incropera & DeWitt, 2001). In 

the present droplet flash evaporation model, the droplet diameter is used as the 

characteristic length which as a median value of 18×10
-6

 m. The conductivity of 

the liquid droplet is estimated at the order of 0.1 W∙m
-1

∙K
-1

 based on the published 
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experimental data for Toluene (Ramires, 2000) while the thermal conductivity of 

the surrounding Toluene vapour in the reactor is about 0.0112 W∙m
-1

∙K
-1

 

(Vargaftik, et al., 1968). Hence, the convection heat transfer coefficient h is 

estimated using the empirical correlation for external flow over a sphere 

(Incropera & DeWitt, 2001) and found in the order of 1.5 W∙m
-2

∙K
-1

. The Bi is 

then being estimated to be about 2.77×10
-4

 which justifies the uniform 

temperature assumption within the droplet. 

The assumption of spherical droplet is considered in the present droplet 

evaporation calculation can be justified by examining the Weber number (We) of 

the typical droplet. The Weber number is an important dimensionless parameter 

that is used in the investigation of liquid droplet deformation breakup. The Weber 

number that measures the ratio of the dynamic pressure to the pressure due to the 

surface tension  can be defined in Equation (7.12): 

 


 dU
We

gg
2

  (7.12) 

where g is the density of the environment gas, Ug is the relative velocity of gases 

and droplet and d is the diameter of the droplet. The deformation and breakup of 

liquid droplet at Weber number near the critical value has been extensively 

studied. The critical We number, which indicates the limit of droplet deformation 

and breakup, ranges from 2 to 99 depending on the surface tension, regime of 

flow, turbulence structure of the flow and viscosity of the liquid (Khavkin, 2004). 

Hence, the droplet is conservatively considered remain in spherical form for We < 
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2. Therefore, in present study, consider a typical droplet generated from the 

ultrasonic atomiser with mean diameter of 18×10
-6

 m and mean velocity of 20 m/s 

enters the low pressure reactor where the initial density of the stagnant gas in the 

reactor is about 3.78×10
-3

 kg/m
3
. The surface tension of the droplet is estimated at 

about 0.024 N/m (Lemmon, et al., retrieved July 19, 2011) for Toluene at 330 K 

which is used as the precursor solution in the present simulations. The Weber 

number can then be calculated to be in the order of 0.0011 which is a much 

smaller value compared threshold value of the Weber number for droplet 

deformation and breakup. Thus, the assumption of spherical droplet in the present 

study is justified. 

There is very little droplet evaporation and condensation data reported under 

precisely controlled conditions of pressure and temperature particularly non-

isothermal evaporation at low pressure environment. What is more, in the present 

study of the PP-CVD process, Toluene as the precursor solution is used but most 

of the droplet evaporation studies were conducted using water droplet. Hence, to 

validate the present droplet flash evaporation model, flash evaporation of a water 

droplet is considered. The numerical result is validated against the experimental 

measurements of the non-isothermal evaporation of a single water droplet (Taflin, 

Zhang, Allen, & James Davis, 1988). In the experiment conducted, a single water 

droplet was injected into an electro-dynamically balanced chamber consists of dry 

air at atmospheric pressure and two different surrounding gas temperatures, T∞. 

Slight air was flown through the chamber to maintain the humidity at near zero. 
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The water droplet is trapped in the chamber where angular light scattering 

measurements of the droplet size as a function of time was performed. This single 

droplet evaporation problem was also investigated by Qu et al. in their analytical 

model for non-isothermal droplet evaporation and condensation (Qu, et al., 2001).  

Figure 7.4 shows the comparison of the simulation results of the present 

droplet flash evaporation model to both experimental and simulation results from 

Taflin et al. and Qu et al., respectively. Qu et al. used three different numerical 

models to solve this problem which are non-isothermal droplet evaporation in 

near-continuum regime, non-isothermal droplet evaporation in continuum regime 

and isothermal droplet evaporation. Good agreement between the results has been 

obtained. From Figure 7.4, the results calculated using QDS has close matches to 

both experimental and numerical model of non-isothermal droplet evaporation in 

the continuum regime. Therefore, this enables validation of the non-isothermal 

droplet flash evaporation model developed for the QDS simulation of the flow 

field in PP-CVD reactor with liquid injection. 
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Comparison between Theory and experiment for water droplet evaporation 
at atmospheric pressure in dry air

 

Figure 7.4 Comparisons of water droplet evaporation at atmospheric pressure in dry air. 
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8 Parametric Simulations of PP-CVD Reactor Flow Field 

In both Chapter 5 and 6, the QDS method was developed to simulate the PP-CVD 

flow field in the reactor volume. Although the numerical viscosity that is inherent 

in the QDS scheme remains high when a grid size of few orders larger than the 

gas mean free path is used, the similarity between the results obtained from the 

QDS solver and the Parallelised DSMC (PDSC) solver (Cave, 2008; Cave, et al., 

2007) demonstrates that QDS method as a feasible and simple simulation tool to 

obtain rapid approximations to the PP-CVD flow field. In fact, the QDS method 

provides significant improvement to the DSMC method in terms of requirements 

of the computational resources and reduced statistical scatter in the results. This is 

important for exploring PP-CVD reactor designs and selecting operating 

conditions. 

In this chapter, together with the liquid droplet flash evaporation model 

described in chapter 7, the QDS scheme is used to simulate the precursor solvent 

flow field in different experimental PP-CVD reactor designs and applications. 

Simulations with varying reactor or substrate geometries, substrate position, the 

amount of injected precursor solvent and reactor initial conditions were performed.  

The simulations conducted in chapter 5 and 6 revealed that the critical part 

of the PP-CVD process is the injection phase. The injection jet structure has 

shown to be the limiting factor that leads to the high flow field uniformity 

required at the start of the pump down phase. During the pump down phase, the 
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jet structure disperses in a very short period and the reactor flow field remains 

uniform throughout the rest of the pump down phase. 

As described in section 4.2.1, the amount of precursor solution vapour that 

arrives onto the substrate surface is computed as a measure of surface deposition 

uniformity. The accumulated mass of gas molecules that strike onto the substrate 

surface (AMOS) was computed. To justify the uniformity of the total mass onto 

the circular substrate surface, AMOS over annular segment of the surface area 

was computed and used as the key parameter to investigate the uniformity of the 

particles arriving to the substrate surface. 

Based on the computed AMOS, two methods are further developed in order 

to conduct the parametric study for assessing the effect of reactor design or 

process operating conditions to the flow field uniformity near substrate region in 

the PP-CVD reactor during the injection phase. First, the increase of the AMOS 

between chosen injection times is calculated. The increase in AMOS is then 

normalised to illustrate the relative increase. This allows the estimation of the 

amount of gas molecules that being transported from inlet to the substrate region. 

Figure 8.1illustrates the concept of relative increase of AMOS calculation. The 

difference of AMOS at times t1 and t2 is determined to track the amount of gas 

molecule being transported to the substrate surface. The relative increase of 

AMOS between time t1 and t2 can be calculated using Equation (8.1): 
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Figure 8.1 Illustrates of the relative increase in AMOS computation. 

 

Second, the AMOS at each computational cell, (AMOS)i, is normalised to 

the average value, (AMOS)av. (AMOS)av can be calculated using Equation (8.2): 

 

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where Ncell is the number of computational cell used across the substrate surface. 

A non-dimensional parameter UAMOS, which is developed from the PP-CVD flow 

field uniformity calculation used in the experimental study (Baluti, 2005), is used 

to quantify the overall uniformity in AMOS and given in Equation (8.3) as: 
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8.1 Parametric Simulations of PP-CVD Reactor Flow Field 

8.1.1 Parametric Simulations of PP-CVD Reactor Flow Field 

The second order true directional axisymmetric QDS solver described in chapter 5 

is used to simulate the PP-CVD injection phase of a cylindrical reactor with a 

cylindrical pin as the substrate. Figure 8.2 shows the geometries of the reactor and 

substrate as well as the substrate locations in the reactor used in the simulations. 

These dimensions are equivalent to the design used in the experimental study 

conducted by the research group at Advanced Energy and Material Systems 

(AEMS) laboratory of University of Canterbury for the titanium dioxide (TiO2) 

film deposition on a stainless steel pin (Krumdieck, et al., 2010).  

L = 350mm

50mm

R
R

=
 3

9
m

m

2.5mm

21mm

pin

20mm (exhaust)

Substrate 

surface of 

interest

Droplet 

injection

Axis of symmetry
 

Figure 8.2 Schematic of the geometry for the cylindrical reactor with a circular pin as 

substrate. 

 

In this study, the precursor solvent, Toluene, with a ratio of specific heats of 

1.089 and a gas constant of R = 90.2384 J/(kg·K) is chosen to be the simulation 

species. A representative droplet at temperature of 333 K with diameter and 

velocities determined stochastically based on a log-normal distribution of typical 
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spray as described in chapter 7 is injected into the reactor at each time step during 

the simulated 1.0 s injection phase. The injected droplets have a median diameter 

of 18 m, a mean velocity of 8 m/s and the maximum spray dispersion angle of 6º 

(Sono-TekCorporation, 1997). A multiplication factor of 20 to the representative 

droplet is used in order to provide total injected amount of about 43 μg of Toluene 

throughout the 1 s injection phase simulated, which is the amount used in the 

experimental deposition.  

The initial reactor flow field is at stationary. The simulations were carried 

out on a desktop computer with 3.00GHz Intel Core 2 Duo CPU and 4GB of 

RAM using uniform Cartesian cells with 0.5 mm cell size. The cell size was 

chosen based on the feasible simulation time for the entire injection phase. Table 

8.1 describes the simulation conditions used in this study. For all wall boundaries, 

the specular reflection scheme is applied to implement the slip wall boundary 

condition.  

Table 8.1 Simulation conditions for PP-CVD flow field in the cylindrical reactor with 

circular pin as substrate. 

Initial Pressure, Pmin 100 Pa 

Initial Temperature, Ti 293 K 

Injection time, ti 1.0 s 

Spatial accuracy 2
nd

 order 

QDS velocity bin, N 4 per coordinate direction 

Simulation time step, ∆t 
variable time step with 

maximum CFL < 0.5 

Slope limiter Monotonized Central Difference 

Reactor evacuation rate, QP 0.46 L/s 

Median droplet diameter 18 μm 

Mean droplet velocity 8 m/s 

Maximum spray angle 6° 
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The main goal of this study is to explore the effect of various reactor 

geometries to the flow field uniformity near the substrate surface. This is done by 

varying the reactor length L and reactor radius RR.  

 

8.1.2 Results  

Figure 8.3 shows the density contours plotted on a natural logarithm scale as the 

flow develops throughout the injection phase for the original reactor design as 

shown in Figure 8.2 above. In Figure 8.3, only the gas phase of the results is 

plotted. 
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Figure 8.3 loge(density) [kg/m
3
] contour in a cylindrical PP-CVD reactor with a circular pin 

as substrate during injection phase. 

 

Note that the colour scale changes after 0.2 s to accommodate the overall increase 

in density of the flow field. The injected liquid Toluene droplets flash evaporate 

and the evaporated vapour expands and propagates rapidly along the length of the 
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reactor. From the contours plotted, it can be seen that the flow field in the region 

near the cylindrical pin where deposition occurs is considerably uniform.  

To further investigate the effect of different reactor geometries on the 

uniformity of the flow field near the pin, two more simulations were conducted by 

reducing half the reactor length L and radius RR, respectively, which is 

summarized in Table 8.2 below. All other conditions in the simulation setup 

remain unchanged.  

Table 8.2 Parametric simulations for PP-CVD flow field in the cylindrical reactor with 

circular pin as substrate. 

 Reactor length, L Reactor radius, RR 

Initial design 350 mm 39 mm 

Case 1 175 mm 39 mm 

Case 2 350 mm 20 mm 

 

Figure 8.4 shows the increase of AMOS between 20 ms and 1 s during the 

injection phase, which was normalised to the value of AMOS at 20 ms to 

demonstrate the relative increase. The gas vapour is estimated to reach the pin 

surface at about 20 ms. Hence, Figure 8.4 provides an approximation of the 

amount of precursor solution that interacts with the substrate surface throughout 

the injection phase. In Figure 8.4, zero substrate length indicates the front end of 

the pin, which is at the distance of 279 mm from the inlet of the reactor by 

referring to Figure 8.2. In this parametric simulation, the circular surfaces at both 

ends of the pin are not considered in the analysis of uniformity. This is because 

there are only 5 computational cells used across the radius of the pin with the 

chosen grid spacing. Hence, it is considered insufficient data on AMOS across the 



236 

 

pin radius to provide a good representative calculation of the average value and 

uniformity in AMOS. 

 

Figure 8.4 Increase in AMOS after 20 ms for the flow field in the cylindrical PP-CVD 

reactor with a circular pin as substrate during injection phase. 

 

Table 8.3 tabulates the uniformity in AMOS calculated using Equation (8.2).  

Table 8.3 Flow field uniformity near substrate region for the cylindrical PP-CVD reactor 

with circular pin as substrate. 

 Uniformity in AMOS, UAMOS 

Initial design 0.978514 

Case 1 0.969431 

Case 2 0.979756 

 

8.1.3 Discussion 

In this section, the second order true directional axisymmetric QDS solver was 

used to simulate the PP-CVD injection phase of a cylindrical reactor with a 

cylindrical pin as the substrate. When the second order axisymmetric directional 

decoupled QDS (DD-QDS) scheme as described in Chapter 6 was subsequently 
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developed, these simulations were not repeated with the DD-QDS solver. This is 

because the numerical dissipation was not thought to influence the results greatly 

as demonstrated in Table 6.4. 

The initial reactor design with L = 350 mm and RR = 39 mm has the lowest 

increase in AMOS. By reducing the reactor length or radius, the volume of the 

reactor reduces as listed in Table 8.4.  

Table 8.4 Volume of the cylindrical reactor at different length or radius. 

 Volume, cm
3
 

Case 1 0.652 

Case 2 0.326 

Case 3 0.088 

 

Hence, the overall density of the injected precursor solution increases. This allows 

the increase in the frequency of gas molecules colliding with the substrate wall as 

shown in Figure 8.4. By reducing the radius of the reactor, the increase in AMOS 

is the highest among the 3 cases simulated. The uniformity of the increase in 

AMOS seen in Figure 8.4 also confirms the flow field uniformity as demonstrated 

in Figure 8.3.  

Table 8.3 further illustrates the uniformity of flow field near the substrate 

surface. All cases have UAMOS above 96%. However, for closer assessment, the 

uniformity decreases in case 2 which the reactor length is halved. This indicates 

that a reasonable length is required to allow the accelerated evaporated vapour 

from the high density inlet region to relax into a uniform flow along the reactor 

length driven mainly by the pressure gradient. 
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When comparing the uniformity between case 1 and 3, the uniformity of the 

flow field increases when the reactor radius is halved. As the substrate is 

relatively much smaller than the reactor radius, for example the pin radius is only 

about 12.5% of the reactor radius in case 3, there is sufficient room between the 

reactor wall and the substrate for the gas molecules to self-diffuse into a “well-

mixed” condition. Therefore, in this application, the initial reactor radius could be 

reduced by half in order to increase the deposition efficiency with more gas 

molecules strikes on the substrate surface to enhance the film deposition without 

compromising the uniformity of the deposition. 

 

8.2 Reactor of 2
nd

 Generation PP-CVD System 

8.2.1 Simulation Setup 

In the effort of improving the ease of use of the PP-CVD reactor relating to the 

reactor maintenance, substrate placement and reactor outlook, a second generation 

PP-CVD system has been designed and developed by D. Lee in the University of 

Canterbury’s AEMS laboratory as his master thesis project (details to be 

published in Lee’s master thesis). The initial design of the reactor for the second 

generation PP-CVD system is shown in Figure 8.5.  
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Figure 8.5 Schematic of the reactor geometry for the 2
nd

 generation PP-CVD system. 

 

The second order true directional axisymmetric QDS solver described in 

chapter 5 is again used to assess a few design parameters of the reactor by 

simulating the flow field of the PP-CVD process during the injection phase. In 

this parametric study, Toluene with a ratio of specific heats of 1.089 and a gas 

constant of R = 90.2384 J/(kg·K) is chosen to be the simulation species. 

Representative droplets at temperature of 293 K with initial diameter and 

velocities determined stochastically based on a log-normal distribution of typical 

spray as described in chapter 7 is injected into the reactor. Each droplet is injected 

at a chosen frequency together with a multiplication factor of 20 in order to allow 

a total amount of about 43 μg of Toluene droplets to be supplied throughout the 

simulated 1.0 s injection phase.  
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The initial reactor flow field is at stationary. The simulations were carried 

out on a desktop computer with 3.00GHz Intel Core 2 Duo CPU and 4GB of 

RAM using uniform Cartesian cells with 1 mm cell size. The cell size was chosen 

based on the feasible simulation time for the entire injection phase. Table 8.5 

describes the simulation conditions used. 

Table 8.5 Simulation conditions for flow field in the 2
nd

 generation PP-CVD system. 

Initial Pressure, Pmin 100 Pa 

Initial Temperature, Ti 293 K 

Injection time, ti 1.0 s 

Spatial accuracy 2
nd

 order 

QDS velocity bin, N 4 per coordinate direction 

Simulation time step, ∆t 
variable time step with 

maximum CFL < 0.5 

Slope limiter Monotonized Central Difference 

Reactor evacuation rate, QP 0.46 L/s 

Median droplet diameter 18 μm 

Mean droplet velocity 8 m/s 

Maximum spray angle 6° 

 

The objective of this study is to explore the effect of various key parameters 

for the reactor geometries to the flow field uniformity near the substrate surface. 

This is done by varying the expansion chamber length Lexp, distance between the 

reactor top wall and the substrate surface Ltop, and the distance between the 

reaction chamber wall and the heater Rgap. Table 8.6 lists the change in the 

geometry of each simulation case conducted in this study. 
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Table 8.6 Parametric simulations for the 2
nd

 generation PP-CVD reactor. 

 Lexp, mm Ltop, mm Rgap, mm 

Case 1 336  66  75  

Case 2 168  66  75  

Case 3 336  33  75  

Case 4 336  132  75  

Case 5 336  66  37  

Case 6 336  66  150 

 

8.2.2 Results  

Figure 8.6 shows the density contours plotted on natural logarithm scale as the 

flow develops throughout the injection phase for the initial reactor design as 

shown in Figure 8.5.  

0.005s 0.05s 0.1s 0.2s

0.4s 0.6s 0.8s 1.0s

 

Figure 8.6 loge(density) [kg/m
3
] contour of the flow field in the 2

nd
 generation PP-CVD 

reactor during injection phase. 
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Figure 8.7 shows the comparison of the increase in AMOS between 0.2 s 

and 1 s during the injection phase, which was normalised to the value of AMOS at 

0.2 s to demonstrate the factor of increment. As noted from Figure 8.5, the gas 

vapour is estimated to reach the substrate surface at about 0.2 s. 

 

Figure 8.7 Increase in AMOS after 0.2 s for the flow field in the 2
nd

 generation PP-CVD 

reactor during injection phase. 

 

Table 8.7 shows the uniformity in AMOS calculated using Equation (8.3).  

Table 8.7 Flow field uniformity near substrate region for the 2
nd

 generation PP-CVD reactor. 

 Uniformity in AMOS, UAMOS 

Case 1: Initial design 0.960618 

Case 2: Half Lexp 0.958104 

Case 3: Half Ltop 0.960730 

Case 4: Double Ltop 0.960483 

Case 5: Half Rgap 0.960289 

Case 6: Double Rgap 0.960855 
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8.2.3 Discussion  

One of the main concepts for the design of the 2
nd

 generation PP-CVD reactor is 

to allow the injected precursor vapour to have sufficient time to fully evaporate, 

expand and disperse uniformly along the length of the expansion chamber before 

reaching to the reaction chamber and eventually to the substrate surface. The 

evaporated vapour propagated into the reaction chamber at about 0.1 s and 

reaches the substrate surface, which is a circular plate placed on top of the heater, 

at about 0.2 s. From Figure 8.6, it is shown that uniform flow field was achieved 

in the reaction chamber, particularly in region near the substrate surface.   

The increase in AMOS in the 2
nd

 generation PP-CVD reactor as shown in 

Figure 8.7 is much less than that in the cylindrical reactor as shown in Figure 8.4. 

This is due to the much larger volume in the 2
nd

 generation PP-CVD reactor 

compared to the cylindrical reactor. This suggests that a greater amount of 

precursor solution supply is required in the 2
nd

 generation reactor in order to 

maintain or increase the deposition rate of the PP-CVD process conducted in the 

existing cylindrical reactor.  

Besides, the effect of varying a few reactor design parameters to the 

increase in AMOS can also be interpreted from Figure 8.7. The increase in AMOS 

reduces when the distance between the top wall of the reactor and the substrate 

surface Ltop as well as the distance between the reaction chamber side wall and the 

heater Rgap are doubled. This is due to the larger overall volume of the reactor for 
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the gas molecules to fill in resulting less gas molecules being transported to and 

reflected from the substrate surface.  

To increase the amount of gas molecules arrival near the substrate region, 

the reactor volume can be reduced by reducing Lexp, Ltop or Rgap. As observed from 

Figure 8.7, the increase in AMOS after the first 0.2 s of the injection phase was 

raised when either Lexp, Ltop or Rgap was halved. However, when reducing Lexp, it 

should be carefully examined whether there is sufficient distance along the 

expansion chamber length for the gas molecules to diffuse into a uniform flow 

field before reaching the reaction chamber. The effect of reducing Ltop or Rgap to 

the flow field uniformity near the substrate region should also be checked. This is 

done by estimating the uniformity in AMOS for each simulated case as tabulated 

in Table 8.7. 

By using the uniformity in AMOS for the initial reactor design as reference, 

the uniformity in AMOS decreases when Lexp or Rgap was halved. By reducing Lexp, 

there was less time for the gas molecules to develop into a “well-mixed” condition 

before reaching the reaction chamber. When Rgap was reduced, the cross sectional 

area along the side wall of the heater reduced. This results in greater compression 

of the flow field along the side wall of the heater compared to that in the initial 

design of the reactor. Thus, higher flow speed along the height of the heater is 

encountered in the case of halving Rgap. At the outer radius of the substrate, a low 

density region in the flow may occur due to the flow being diverted by the 90 

corner around the edge of the substrate. Hence, a faster speed in the gas flow 
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before reaching the corner results in lower density in the flow field after the 

turning which consequently results in lower AMOS near the edge of the substrate 

compared to other locations on the substrate surface. 

The uniformity in the flow field near the substrate surface, however, was 

increased when Ltop was halved or Rgap was doubled. Reducing Ltop provides 

narrower space between the top wall of the reaction chamber and substrate surface 

which increase the frequency of the gas molecules being reflected between these 

two surfaces and enhance the flow field uniformity. Increasing Rgap, on the other 

hand, prevents the sudden increase of the flow speed along the side wall of the 

heater. This allows the gas molecules to diffuse in rather random manner which 

enhances the uniformity of the flow field. 

 

8.3 Deposition on Concentric Cylinders in the 2
nd

 Generation PP-CVD 

Reactor 

8.3.1 Simulation Setup 

The 2
nd

 generation PP-CVD reactor is used to deposit titanium dioxide (TiO2) film 

on two concentric cylinders as shown in Figure 8.8. The purpose of this 

simulation is to study the PP-CVD reactor flow field when a substrate with 

slightly complex geometrical configuration is considered. In all previous PP-CVD 

reactor flow field simulations, flow over a flat surface is considered. Those are 

external flow conditions. In this section, an internal flow along the passage 
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bounded between the two concentric cylinders is investigated. The second order 

directional decoupled axisymmetric QDS solver described in chapter 6 was used 

to simulate the flow field during the injection phase of the PP-CVD process 

conducted in the 2
nd

 generation PP-CVD reactor with two concentric cylinders as 

substrate. Figure 8.9 shows the geometries of the computational domain used in 

the simulations. These dimensions are equivalent to the final design of the 2
nd

 

generation PP-CVD reactor of D. Lee at the Advanced Energy and Material 

Systems (AEMS) laboratory of University of Canterbury.  

 

 

Figure 8.8 Schematic of the geometry for the two concentric cylinders. 
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Figure 8.9 Schematic of the geometry of 2
nd

 generation PP-CVD reactor and the position of 

the two concentric cylinders. 

 

In this parametric study, Toluene with a ratio of specific heats of 1.089 and 

a gas constant of R = 90.2384 J/(kg·K) was chosen to be the simulation species. 

Representative droplets at temperature of 333 K with initial diameter and 

velocities determined stochastically based on a log-normal distribution of typical 

spray as described in chapter 7 was injected into the reactor. As learned from the 

study in section 8.2 above, a greater amount of precursor solution is recommended 

for the 2
nd

 generation PP-CVD reactor to increase the deposition efficiency. 

However, at the current stage, the actual injection time and the amount of injected 
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precursor solution for the thin film deposition on the two concentric cylinders in 

the 2
nd

 generation reactor are yet to be decided in the experimental work. Hence, 

in this parametric simulation, one droplet was injected at a chosen frequency 

together with a multiplication factor of 20 in order to allow a total amount of 43 

μg of Toluene droplets to be supplied throughout the simulated 0.1 s of the 

injection phase. Note that for the same amount of injected droplets a shorter 

simulation time was used compared to that of the simulations in Section 8.2. This 

enables greater volume of precursor solution being injected throughout the 0.1 s 

simulation. This simulation time was chosen in order to perform feasible 

computation with a smaller grid size, which is 0.25 mm, compared to that used in 

Section 8.2. 

The initial reactor flow field was stationary. The simulations were carried 

out on a desktop computer with 3.00GHz Intel Core 2 Duo CPU and 4GB of 

RAM using uniform Cartesian cells with 0.25 mm cell size. The smaller cell size 

was chosen compared to that used in Section 8.2 in order to reduce the numerical 

dissipation in the simulation results as described in section 6.5.3. Table 8.8 

describes the simulation conditions used in this parametric study. 
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Table 8.8 Simulation conditions for the parametric study of deposition on two concentric 

cylinders in the 2nd generation PP-CVD reactor. 

Initial Pressure, Pmin 100 Pa 

Initial Temperature, Ti 293 K 

Injection time, ti 0.1 s 

Spatial accuracy 2
nd

 order 

QDS velocity bin, N 4 per coordinate direction 

Simulation time step, ∆t 
variable time step with maximum 

CFL < 0.5 

Slope limiter MINMOD Difference 

Reactor evacuation rate, QP 0.46 L/s 

Median droplet diameter 18 μm 

Mean droplet velocity 8 m/s 

Maximum spray angle 6° 

 

The goal of this study is to explore the effect of various operating conditions 

for the PP-CVD process to the flow field uniformity near the surfaces in the 

passage bounded between the two concentric cylinders. This was done by varying 

the amount of injected precursor solution, minj, and increasing the initial pressure 

of the reactor, Pmin. Table 8.9 lists the change in the setup of each simulation case 

conducted in this study. 

Table 8.9 Parametric simulations the parametric study of deposition on two concentric 

cylinders in the 2nd generation PP-CVD reactor. 

 minj, g Pmin, Pa Lexp, mm tinj, s 

Case 1: Current design 43 100 338 0.1 

Case 2: Double minj 86 100 338 0.1 

Case 3: 10x minj 430 100 338 0.1 

Case 4: Pmin = 1 kPa 43 1000 338 0.1 
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8.3.2 Results  

Figure 8.10 shows the density contours plotted on a natural logarithm scale as the 

flow develops throughout the injection phase for the current reactor design (Case 

1) as shown in Figure 8.9.  

5 ms 10 ms 15 ms 20 ms

25 ms 50 ms 75 ms 100 ms

 

Figure 8.10 loge(density) [kg/m
3
] contour of the flow field in the current design of the 2

nd
 

generation PP-CVD reactor with the two concentric cylinders in position during injection 

phase. 
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Comparing the results in Figure 8.10 to those of Figure 8.6, the results 

shown in Figure 8.10 demonstrates a flow field with more detailed flow 

phenomena. This may due to several reasons: 

1. TD-QDS code is used in the simulations in Section 8.2 while DD-QDS 

code is used in Section 8.3. As discussed in Chapter 6, the numerical 

dissipation inherent in DD-QDS is slightly lower than that in TD-QDS. 

Hence, this enables a more detailed flow field dynamics to be captured. 

2. The computational cell size used in Section 8.2 is 1 mm which is 4 times 

larger than the cell size used in Section 8.3. This could also attribute to 

lower numerical dissipation in the simulations in Section 8.3. 

3. The total amount of injected precursor solution is much higher in the 

simulations in Section 8.3 compared to that of Section 8.2. This causes 

the concentration gradient between the inlet and outlet of the reactor 

increases significantly for the simulation in this section. As a result, the 

net transport of the precursor solution is faster which causes a jet-like 

flow structure to be seen in Figure 8.10. 

Figure 8.11 shows the comparison of the relative increase in AMOS on 

surface A as indicated in Figure 8.9, between 5 ms and 0.1 s of the injection phase. 

Figure 8.12 shows the same relative increase in AMOS on surface B. As noted 

from Figure 8.10, the gas vapour is estimated to reach the substrate surface at 

about 5 ms. 
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Figure 8.11 Increase in AMOS at surface A after 5 ms for the flow field in the 2
nd

 generation 

PP-CVD reactor during injection phase. 

 

 

 

Figure 8.12 Increase in AMOS at surface B after 5 ms for the flow field in the 2
nd

 generation 

PP-CVD reactor during injection phase. 
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Table 8.10 shows the uniformity in AMOS near surface A and B of the two 

concentric cylinders as indicated in Figure 8.8 during the injection phase. 

Table 8.10 Flow field uniformity near substrate surface A and B of the two concentric 

cylinders for the 2
nd

 generation PP-CVD reactor. 

 Uniformity in AMOS, UAMOS 

 Surface A Surface B 

Case 1: Current design 0.996944 0.998510 

Case 2: Double minj 0.995214 0.998183 

Case 3: 10x minj 0.989635 0.994720 

Case 4: Pmin = 1 kPa 0.996430 0.994235 

 

8.3.3 Discussion 

From Figure 8.10, it can be seen that the evaporated vapour propagates much 

faster along the length of the reactor compared to that of section 8.2. This can be 

interpreted from the increase in flow density in the reaction chamber as early as 5 

ms, compared to the increase of the flow density in the same region occurs at 

about 0.1 s in Figure 8.6. This is mainly due to the greater number of droplets 

injected. Thus, higher flow density occurs near the nozzle inlet leading to higher 

pressure gradient across the length of the reactor, which consequently allows 

faster movement of the gas molecules in the direction towards the reaction 

chamber.  

The gas molecules speed up in the expansion chamber upon reaching the 

reaction chamber where part of the flow expands and disperses into the reaction 

chamber. However, the main thrust of the flow continues to move along the length 

of the reaction chamber until reaching and being reflected by the top wall of the 
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reactor. The flow field near the passage surfaces was rather non-uniform when the 

flow first propagated to the passage of the two concentric cylinders at about 15 ms. 

However, the flow field within the passage soon became considerably uniform 

from 20 ms onwards. Non-uniformity in the flow field remained at the centre axis 

of the reactor throughout the injection phase due to the jet-like flow structure 

developed from the high flow field density at the inlet with relatively higher initial 

momentum. This suggests that substrate placement at the centre of the reaction 

chamber should be avoided. Despite of such non-uniformity at the centre axis of 

the reactor, the flow field within the passage of the two concentric cylinders is 

considered uniform throughout the injection phase.  

From Figure 8.11 and 8.12, the increase in AMOS at both surfaces A and B 

illustrate that flow field uniformity is achievable if the injected mass is doubled 

but non-uniformity in the flow field increased noticeably if the injected mass was 

increased tenfold. This has further been shown from the uniformity in AMOS 

calculated and tabulated in Table 8.10 in which uniformity in AMOS decreases as 

the amount of injected mass increases. By increasing the injected mass 

significantly, the concentration gradient between the inlet and outlet of the reactor 

increases. This results in higher transport rate of the molecules in the direction 

along the reactor height due to diffusion. This reduces the “mixing” time of the 

gas in the expansion chamber to diffuse into a uniform flow field. Besides, due to 

the increase in the injected mass, the overall pressure in the reactor volume 

increases swiftly. As a result, the pressure gradient between the reactor centre and 
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the outer radius of the reactor reduces in time. Hence, the degree of flow 

expansion decreases in time due to the bulk acceleration of the gas in radial 

direction decreases. Consequently, the gas was unable to expand uniformly before 

reaching the reaction chamber.  

The uniformity in AMOS is also decreases slightly when the initial reactor 

pressure Pmin was increased from 100 to 1000 Pa. This is because the pressure 

gradient between the inlet and outlet of the reactor, which is the main driving 

force of the flow field, decreases as the initial reactor pressure is being raised. 

This confirms the observation from the experimental deposition and emphasises 

the advantage of conducting PP-CVD process at low pressure, usually between 

100 to 1000 Pa based on the experience in the experiments.  
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9 Further Improvement in the Current QDS Scheme 

This thesis concentrates on developing an efficient and economical numerical tool 

for modelling PP-CVD flow field in the reactor. The computational time 

comparisons for the validation cases in Chapter 5 and 6 demonstrate that QDS 

could be considered a much faster numerical scheme compared to other solvers 

such as the Euler equations solver, the kinetic theory based EFM solver and the 

particle based Parallel Direction Simulation Monte Carlo code (PDSC). The 

simulation results presented promise that QDS is capable to provide rapid 

approximation of the PP-CVD flow field. Hence, the main objective of this 

project has been met.  

However, there are two features of the QDS scheme that limits its accuracy 

in simulating low Mach number flow or highly rarefied flow. As mentioned in 

Chapter 6, the first issue in QDS is the inherent numerical viscosity in the scheme. 

The second issue in QDS is related to the assumption of local thermal equilibrium 

within the computational cell which may cause sizeable inaccuracy in the solution 

for high Knudsen number flow, as checked in both Chapter 5 and 6. In this 

chapter, further improvement of the current QDS scheme is discussed focusing 

mainly on overcoming the two inherent problems in the QDS scheme.  
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9.1 Collisions en route in QDS flux 

In both true directional and directional decoupled QDS scheme discussed in 

Chapter 5 and 6, respectively, the free movement phase and collision phase of the 

gas molecules are separated. It is generally known that collision between gas 

molecules makes their velocity tend towards the average. When the gas molecules 

traverses between the computational cells without collision, the lack of reduction 

in the gas molecules’ speed enables greater than the physically correct amount of 

QDS flux to be transported from a source cell to the destination cell. This results 

in excessive momentum and energy to be transported which leads to high 

numerical dissipation spanwise which is related to the high value of scheme 

viscosity.  

A simple collision en route (CER) model has been proposed to consider the 

effect of intermolecular collision during the free movement phase of the gas 

molecules in QDS (Jermy, et al., 2010). In this model, the movement phase of the 

molecules in i velocity bin of the QDS scheme is considered. The retardation of 

the molecular velocity in i velocity bin due to intermolecular collision with 

molecules in i  j velocity bin are computed based on the assumptions below:  

1. Each coordinate direction is treated independently.  

2. Hard sphere model is considered in collision step. 

3. The intermolecular collisions are wholly elastic and one-dimensional. 
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4. Collisions in the destination cell are neglected since Maxwell-

Boltzmann velocity distribution is forced in the destination cell in 

which infinite collisions are assumed. 

5. The number density and bulk velocity do not change during a 

computational time step, Δt. 

6. The speeds of the collision partners after the collision are the same.  

Based on these assumptions, the average number of collision, ij, between 

molecules in i velocity bin at speed vi and molecules in j velocity bin at speed vj, 

in a time step Δt can be determined by Equation (9.1) give as: 

 tvvn jiijjij    (9.1) 

where ni is the number density of molecules in i velocity bin and ij is the 

collision cross section given in equation (9.2) as: 
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   (9.2) 

where d is the effective hard sphere molecular diameter. Considering the 

intermolecular collision of molecules in i velocity bin with molecules in all other 

N velocity bins used in the QDS scheme, the average intermolecular collisions 

experienced by molecules in i velocity bin, i, can be expressed by Equation (9.3) 

as: 
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In QDS, the number density of molecules in the j velocity bin, nj, can be 

expressed in term of the weights of the Gaussian quadrature, wj, as given in 

Equation (9.4) as: 

 

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w
nn   (9.4) 

Hence, Equation (9.3) can be rewritten in Equation (9.5) as: 
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 (9.5) 

where u  is the mean velocity of the cell. 

The speed of the molecules in the i velocity bin is then determined. By 

applying the conservation of momentum of the collision partner during the 

collision and assumption 6 as above, the post-collision speed of molecules in i 

velocity bin, vi,post,1 after one collision is given in Equation (9.6) as: 
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where vi,pre is the speed of molecules in i velocity bin before the collision. By 

recurring application of Equation (9.6), the speed of molecules in i velocity bin 

after i collisions is given in Equation (9.7) as: 
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A preliminary implementation of the CER model into QDS code was 

checked by solving a 2D channel flow (Jermy, et al., 2010). The second order 2D 

QDS scheme with N = 3 velocity bin in each coordinate direction was used to 

study the effect of CER model. The MC slope limiter was used for properties 

gradients calculation. Uniform Cartesian grid was used to model the flow domain 

in a 1 m  1 m channel. The gas is ideal with gas constant R = 1.0 J/(kg∙K) and the 

ratio of specific heats is 5/3. The simulation time step was reset after each time 

step to maintain CFL < 0.1. The bounce-back boundary condition was used to 

implement non-slip wall boundary condition at the upper and lower wall 

boundaries by using ghost cells. The inflow and outflow boundaries are periodic. 

The flow is stationary initially. In each time step, the speed in each velocity bin is 

incremented by an amount equivalent to the acceleration induced by a pressure 

gradient of -0.01 Pa/m.  

Figure 9.1 shows the comparisons of the simulation results for the basic 

QDS scheme and QDS schemes with CER model implementation using molecular 

diameter of 2.510
-12

 m and two fixed collision number of i = 0.5 and i = 2.0. 

With molecular diameter of 2.510
-12

 m, the collision number, i, is about 0.2. 

Two larger collision numbers of i = 0.5 and i = 2.0 were chosen to test the 

implementation of the CER model. It can be seen in Figure 9.1 that the numerical 

viscosity was clearly reduced with the increase of collision number.  
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Figure 9.1 2D channel flow simulated by QDS with basic and CER schemes (Jermy, et al., 

2010). 

 

The CER model proposed attempts to reduce the numerical dissipation in 

the current QDS scheme by imposing collision during the flight of the molecules. 

However, the CER model at its present form is flawed.  

First, the assumption of both collision partners will have the same speed 

after collision is questionable. Consider a single species analysis, the molecular 

masses of the collision partners are the same. By applying the conservation of 

momentum and kinetic energy throughout the collision, the two collision partners 

will exchange velocity after the collision if the intermolecular collisions are 

assumed to be elastic and one-dimensional. If the collision is in two dimensional, 

the post-collision velocities depend on the angle of deflection during the collision. 

Therefore, the post-collision velocities for the molecules are in most cases not the 

same.  
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Second, there is a problem in Equation (9.7) when the number of collisions 

between molecules is large. The denominator of the first and third terms in 

Equation (9.7) considers taking 2 to the power of i. When the number of collision, 

i, is larger, for example i > 10, post-collision speed of molecules in i velocity 

bin will reach to the value of the bulk velocity. This results in the velocity 

distribution within the computational cell collapses to a single peak at bulk 

velocity with zero variance. This is essentially equivalent to the local temperature 

of 0 K. Such instant cooling in the gas molecules is illogical. Hence the present 

CER model encounters instability when there are many intermolecular collisions.  

Although the proposed CER model is based on several questionable 

assumptions, the model serves its purpose in demonstrating the principle of 

collision during the flight of the gas molecules. Further work on addressing the 

collision en route effect in the QDS scheme is expected to improve the 

quantitative accuracy of the scheme. 

 

9.2 Hybridisation of QDS-BGK solver 

Theoretically, the assumption of local thermal equilibrium is not valid in realistic 

engineering problem. There is always existence of shear and heat stresses that 

cause thermal non-equilibrium amongst gas molecules. Thus, the fluxes in QDS 

scheme obtained by discretising the Maxwell-Boltzmann equilibrium distribution 

function do not accurately represent the physical fluxes. In the flow region where 

the molecular mean free path is small, the number of intermolecular collisions is 
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high enough to promote energy exchange between molecules. This enables the 

molecules to relax closely to thermal equilibrium condition and hence the gas 

molecules can be treated in thermal equilibrium with negligible inaccuracy. 

However, in highly rarefied flow where the mean free path is large, the 

intermolecular collision is rare. The error of treating a thermal non-equilibrium 

condition with thermal equilibrium assumption becomes significant. The limit of 

the thermal equilibrium assumption in simulating PP-CVD flow has been 

investigated and discussed in Chapter 5 and 6. 

To simulate thermal non-equilibrium flow, direct simulation solver such as 

DSMC which has been discussed in Chapter 3 is one of the excellent methods. 

However, regardless of recent advances, DSMC is computationally expensive and 

associated with large amount of statistical scatter in the results. 

Another approach to handle thermal non-equilibrium flow is by solving the 

Boltzmann equation. Due to the complexity in solving the collision term of the 

Boltzmann equation, the popular BGK collision model as discussed in Chapter 3 

is usually used to replace the collision term of the Boltzmann equation by simpler 

source term. This leads to the gas-kinetic BGK scheme developed by Xu et al. 

(Xu, 1998; Xu, 2000; Xu, 2001; Xu, Kim, Martinelli, & Jameson, 1996; Xu & 

Prendergast, 1994). The BGK scheme solves the time-dependent gas evolution 

equation at the cell interfaces and then performing the relaxation within each time 

step. Unfortunately, such BGK solver requires a significant amount of 

computational power due to the requirement of solving the complex evolution 
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equations over the entire range of molecular velocities at each step of the solution. 

The requirement in calculating the Maxwell-Boltzmann distribution function at 

cell interfaces which involves evaluation of error functions also incurs expensive 

computational cost.  

In order to preserve the computational speed gained by using QDS method 

in simulating PP-CVD flow while extending the scheme capability of solving 

flow field with wide range of Knudsen number, a hybrid QDS-BGK scheme is 

proposed. The nature of using conserved properties in flux reconstruction in both 

QDS and BGK allows easy fluxes transfer between both schemes in the 

hybridisation implementation. In fact, the BGK scheme can be implemented in 

directional decoupled approach and perform fluxes reconstruction at the cell 

interfaces. This is well-suited to be hybridised with the directional decoupled 

QDS scheme in which fluxes reconstruction is conducted at cell interfaces as well. 

 

9.2.1 BGK Model  

The detailed description and derivations of the BGK scheme can be found in the 

report by Xu (Xu, 1998, 2001), only the brief overview of the implementation and 

key equations are described in this section. The starting point of the BGK scheme 

is applying the BGK collision model to the Boltzmann equation. The BGK 

equation is then obtained. The BGK equation in the x-direction is given in 

Equation (9.8) as: 
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where f the gas distribution function and g is the equilibrium state of f which can 

be represented by the Maxwell-Boltzmann equilibrium distribution as given in 

Equation (3.19). Both f and g are functions of space, x, time, t, molecular 

velocities, u and v, and internal variable . The intermolecular collision time, , is 

related to the viscosity and heat conduction coefficients. The relation of the 

conserved properties, which are the density, , momentum, px and py, and energy, 

E, with the distribution function f is given in Equation (9.9) as: 
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where  is the component of the vector of the moments given in Equation (9.10) 

as: 
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The general solution of the BGK equation at a cell interface, xj+½, and time, 

t, is given in Equation (9.11) as: 
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where x' = xj+½ - u(t - t') is the trajectory of a molecule’s motion and f0 is the 

initial gas distribution function f at the beginning of each time step, which is 

written in Equation (9.12) as: 
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where the subscript l and r denotes the left and right hand side of the cell interface, 

respectively. The equilibrium state g is given in Equation (9.13) as: 
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where g0 is the local Maxwell-Boltzmann distribution function at the cell interface 

and H(x) is the Heaviside function defined in Equation (9.14) as:  

 









0,1

0,0
)(

x

x
xH  (9.14) 

All the corresponding spatial (al, ar, la , ra ) and temporal (Al, Ar, A ) slopes have 

the general form given in Equation (9.15) as: 
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In Equation (9.12), gl and gr are the local Maxwell-Boltzmann distribution 

functions located to the left and right of the cell interface, respectively. With the 

definition of the Maxwell-Boltzmann distributions, it can be expressed in 

Equation (9.16) that: 
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where K is the total number of degrees of freedom, λ is related to the gas 

temperature m/2kT and k is the Boltzmann constant. The parameters on the right 

hand side of Equation (9.16) can be determined from the values of the conserved 

properties at the cell interface. The parameters corresponding to gl is evaluated 

using conserved properties reconstructed from cell j and given in Equation (9.17) 

as: 
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while the parameters corresponding to gr is evaluated using conserved properties 

reconstructed from cell j+1 in similar manner. 

The reconstructed conserved properties (density, momentum and energy) 

are denoted by )(
2

1jj xW  by for values interpolated from the left side of the 

interface xj+½ while )(
2

11  jj xW  for values interpolated from the right side of the 

interface. In second order BGK method, the reconstruction is performed using 
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flux limiter  
jj ssL , . For example, the van Leer limiter (Van Leer, 1977) is 

given in Equation (9.18) as: 
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where        jjjj ssignssignssS , and the property gradients are given in 

Equations (9.19) as: 
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where Wj are the values of conserved properties at cell j and ∆x is the grid spacing. 

Hence, after reconstruction, the interpolated values of conserved properties at the 

cell interface are given in Equation (9.20) as: 
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Next, the spatial slope, al, can be determined by using Equation (9.15) and 

Equation (9.21) given below as:  
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where the matrix 
lM has the form given in Equation (9.22) as: 
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where  
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The slope on the right side of the cell interface, ar, can also be evaluated in similar 

manner using properties from cell j+1.  

In equation (9.12), τ(alu + Al) and τ(aru + Ar) are the terms that accounts for 

the deviation of a distribution function away from a Maxwell-Boltzmann 

distribution in solving thermal non-equilibrium problem. Al and Ar can be 

determined from Equation (9.23) given as: 
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The equilibrium state, g0, at the cell interface found in Equation (9.13) is 

given in Equation (9.24) as:  

 
  22

00
2

2

0
00






 













Uu

K

eg  (9.24) 

where the moments are given in Equation (9.25) as: 
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The slope, la  and ra , of g can then be found using the general form in Equation 

(9.15) and through the relation in Equation (9.26) as: 
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where the matrix 0

M can be determined in similar manner as in Equation (9.22) 

using U0 while ra  is calculated similarly using conserved properties evaluated at 

xj+1. Lastly, the temporal slope, A , is computed using Equation (9.27) as: 
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where  

 

05

04

03

02

01

0

1

1

1

12

1

1


















































































































t

tt

t

tt

t

t

e

ete

e

teet

e

et

  

The collision time, τ, has the form given in Equation (9.28) as; 
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Finally, the time dependent numerical fluxes in x-direction across all cell 

interfaces can be computed using Equation (9.29) as: 
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By integrating Equation (9.29), the total density, momentum and energy transport 

are computed over a time step. 

 

9.2.2 Hybridisation of QDS-BGK solver  

Since the flux reconstruction is carried out at the cell interfaces in both directional 

decoupled QDS (DD-QDS) and BGK model described above, the hybrid 

implementation of QDS-BGK solver is straight forward. What is more, both 

models use the conserved properties to compute the time dependent fluxes. Hence, 

the flux transfer between both solvers has little problem. The QDS fluxes are 

employed in regions of thermal equilibrium while the BGK model is employed to 

compute fluxes in thermal non-equilibrium regions. To distinguish the regions, the 

gradient length local Knudsen number, KnGLL, given in Equation (4.4) can be used. 

Using criterion for continuum breakdown proposed by Boyd (Boyd, et al., 1995) 

where KnGLL > 0.05, the BGK solver is employed. 

The computational efficiency of the hybrid QDS-BGK solver is expected to 

decrease due to the extensive computation involve in BGK solver. However, the 

numerical accuracy can be promisingly increased. Hence, an appropriate weight 

up between the simulation time and improvement in accuracy should be 

conducted in the hybrid QDS-BGK simulation. This is important to justify the 

solver feasibility to remain as a rapid simulation tool for PP-CVD reactor design 

in various industrial applications.   
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10 Conclusion 

In the present work, the axisymmetric, second-order QDS scheme has been tested 

for its suitability as a numerical tool to provide rapid approximation of the PP-

CVD flow field. The simulations of the highly unsteady low pressure flow field 

encountered in the PP-CVD process demonstrate QDS’s capability in producing a 

good approximation of such complex flow field. The simulations also show 

excellent computational efficiency of the QDS method compared to the previous 

attempt using DSMC method. The validity of the local equilibrium assumption 

used in QDS method has been tested extensively. The time taken to establish and 

dissipate the quasi-steady jet structure in the PP-CVD reactor has been determined.  

From the thorough review of various numerical tools, a selection of the most 

feasible numerical solver to perform rapid simulation of PP-CVD flow field has 

been made. A rapid simulation tools is required for the purpose of reactor design 

in order to meet various industrial applications. A slight modification of the 

existing reactor design or deposition operating condition is usually required for 

different substrate or precursor material. In order to comply with the various 

industrial applications within limited time allowance, a fast approximated solution 

of the PP-CVD flow field at acceptable accuracy is essential. The current QDS 

solver has shown its capability of providing acceptable PP-CVD flow field 

simulation results within days. 

The development of QDS method in modelling the gas phase transport 

phenomena in the PP-CVD reactor volume has been conducted. The basic true-
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directional QDS (TD-QDS) algorithm was modified for simulating PP-CVD flow 

field. Moreover, an algorithm based on the directional decoupled QDS (DD-QDS) 

method was coded to simulate PP-CVD flow field with the expectation of 

reducing numerical dissipation in the QDS scheme. Validations of both TD-QDS 

and DD-QDS solvers to various test cases in both two dimensional and 

axisymmetric were performed. 

From the simulations of the flow field in the PP-CVD reactor with gas 

precursor solution injection, the flow field develops into a quasi-steady state after 

the first 4 ms in the 1 s injection phase. The flow stays in quasi-steady state for 

about 99.6% of the remaining injection time. The quasi-steady jet dissipates 

within 0.5 ms of the end of injection. This information is essential for the design 

of PP-CVD reactors and operating cycles. Additionally, the simulation results 

show that the technique of pulsed injection of precursor solution into a 

continuously evacuated reactor in the PP-CVD process will produce uniform flow 

field within the reactor.  Such uniform flow field is desired to promote uniform 

thin film deposition. 

A liquid droplet flash evaporation model has been developed to model 

liquid precursor solution evaporation in the PP-CVD reactor with liquid precursor 

solution injection. The liquid droplet flash evaporation model serves to provide a 

rather realistic inlet condition to the QDS solver that simulates the gas phase of 

the PP-CVD flow field. From the simulations of the flow field in the PP-CVD 
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reactor with liquid precursor solution injection, the flow field becomes 

considerably uniform after about 60 mm from the reactor inlet.  

The gradient length local Knudsen number based on density,  (KnGLL), and 

the average number of intermolecular collision per computational cell per time 

step are used to identify the limit of QDS method in simulating PP-CVD flow. It 

is found that the simulation results are considered acceptably valid for low 

pressure flows at 400 Pa or above with (KnGLL)  1.857×10
-7

 or Kn  0.00164. It 

is thought that most of the PP-CVD processes operate at base pressure higher that 

400 Pa. Hence, the existing QDS solver is concluded to be able to simulate PP-

CVD flow field at acceptable accuracy. However, caution should be taken during 

result interpretation for future simulations with reactor pressure lower than 400 Pa.  

The simulation results also show that the flow field uniformities (a 

percentage variation in AMOS) in the few variants of the PP-CVD reactor 

geometry are above 96%. Such uniformity in the flow field is deemed acceptable 

in producing uniform thin film deposition on the substrate. Hence, it is claimed 

that the flow field uniformity is insensitive to the few variants of the reactor 

geometry configuration tested. It should also be noted that this conclusion is 

limited due to the small number of reactor configurations modelled. Provided 

there is sufficient distance between the substrate location and the reactor inlet, a 

uniform flow field is achievable on the substrate surface. It is however observed 

that higher flow field uniformity can be achieved with a lower reactor base 

pressure. 
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11 Future Work 

In this thesis, the current QDS solver handles wall boundaries which are parallel 

to the Cartesian grid used only. However, in PP-CVD, depositions on object with 

complex geometries such as airfoil or synthetic bones for body repairing implants 

are often required. Therefore, the extension of the present QDS solver to model 

computational domain with irregular shaped wall boundaries will very much 

improve the applicability of the solver.  

In this chapter, the continued development of QDS is discussed focusing 

mainly on extending the current QDS scheme to handle flow boundaries with 

complex geometries. This enhances the QDS solver to be one of the practical 

simulation tools in facilitating the design of PP-CVD reactor and operational 

conditions for various industrial deposition applications. 

 

11.1 Modelling of Flow Field with Complex Geometry 

One of the advantages in QDS solver is its simplicity in computational mesh 

generation. The complicated mesh generation using commercial meshing software 

is not required. Instead, uniform Cartesian grid with wall boundary aligned to the 

computational grid is used. This feature enables excellent simulation efficiency. In 

order to maintain such simplicity while extending the solver’s capability to model 

arbitrary complex geometries, a simple yet efficient grid generation technique is 

desired. 



277 

 

One of the flexible and efficient alternatives to the conventional boundary 

fitted mesh generation method is the Cartesian cut cell approach (Causon, Ingram, 

Mingham, Yang, & Pearson, 2000; Ingram, Causon, & Mingham, 2003). In the 

Cartesian cut cell method, solid regions of the wall boundaries are cut out of the 

background Cartesian mesh. Special treatment of these cut cells is applied while 

the remaining flow field cells are simulated as normal. Flux balance along the cut 

edges of a cut cell is computed using finite volume approach. Hence, this method 

is well suited for flow solvers that utilise split flux method such as the directional 

decoupled QDS.   

 

11.1.1 Cartesian cut cell method  

In the cut cell method, the wall boundaries are represented by polylines with a set 

of data points defined in an anti-clockwise direction. The intersections of a 

polyline with the Cartesian grid are used to determine the location of the cut cells 

that have the sides coincident with the boundary segment. Consider a line segment 

as shown in Figure 11.1 with (xs, ys) and (xe, ye) as the start and end coordinates of 

the line segment, respectively.  
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Figure 11.1 Intersection points of a line segment, adapted from (Causon, et al., 2000). 

 

The grid index, (Is,Js), of the cell containing the start point of the line can be 

determined by Equation (11.1) as: 
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where int(x) returns the integer part of x and (x0, y0) is the origin of the Cartesian 

mesh. The grid index, (Ie, Je), of the cell containing the end point of the line can 

be found in the similar manner. The slope of the line, Q, is also calculated and 

identified as one of the slope categories as shown in Figure 11.2.  
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Figure 11.2 Sub-type of cut cell categorized by the slope of the line segment, Q (Causon, et 

al., 2000). 

 

From the grid indexes of the start and end points of the line segment 

together with its slope, all intersection points of the line segment on the 

computational grid can be determined in sequential manner along the line from 

the start point. For example, referring to Figure 11.1, since (xs, ys) lies in the cell 

(Is, Js) with Q identified to be sub-type one from Figure 11.2, point a must lie 

above or on the right side of cell (Is, Js). Hence, there are two possible coordinates 

for point a, which are (xi, ya') or (xa', yj). xi = x0 + (i + 1)∆x and yj = y0 + (j + 1)∆y 

are known grid coordinates. xa' and ya' can be calculated using the line equation 
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constructed from (xs, ys) and (xe, ye). In this case, it is found that xa' > xi, which is 

not possible. Therefore, the intersection point a must lie of the right side of cell (Is, 

Js) with coordinates of xa = xi and ya = ya'. This procedure is repeated to find all 

subsequent intersection points until (xe, ye).  

The cases for other sub-type of cut cell with Q computed in other three 

quadrants are deal with analogously. Each grid cells intersected by the line 

segment together with the intersection points are recorded. Once all the cut cell 

intersections points have been established, the cells that intersect with wall 

boundaries are tagged as cut cells. Thus, three primary cell types are formed in the 

computational domain, which are the flow field cell, cut cell and solid boundary 

cell. 

 

11.1.2 Reconstruction of fluxes on cut cell  

After establishment of the cut cell, QDS fluxes are computed in the spilt flux 

manner as described in Chapter 6, except proportioned area is used at cut 

interfaces in the flux calculation. For example, as shown in Figure 11.3, a 

proportioned L2 is used to determine the cut interfacial area when calculating the 

flux on right side of the cell, F2.  Hence, the net fluxes of the cut cell in x-

direction can be calculated using Equation (11.2) as: 
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LFLFnLF
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where A is the area of the cut cell, L1, L2 and L3 are the length of the cut cell 

interfaces while n is a normal vector. 

 

L1, F1, n

L2, F2
L3, F3

Solid 

boundary

L1, F1, n

L2, F2
L3, F3

L1, F1, n

L2, F2
L3, F3

Solid 

boundary
 

Figure 11.3 Fluxes in x-direction of a cut cell. 

 

 To calculate the flux across the cut interface, F1, as shown in Figure 11.3, a 

ghost cell R inside the solid boundary is used as shown in Figure 11.4. The 

conserved properties in cell R is obtained by extrapolating from cell (i, j) after 

applying reflected or bounce back boundary conditions to enforce slip or non-slip 

wall, respectively.  

 

Figure 11.4 Gradient calculation for cut cell (Causon, et al., 2000). 



282 

 

For second order spatial accuracy, a different gradient calculation is needed 

for cut interface. The property gradients on cut cell (i, j) are divided into fluid 

gradients and solid gradients. These two types of gradients are calculated 

separately. The fluid gradients in x- and y-direction can be determined by 

Equation (11.3) given as: 
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where ∆xi+1/2,j = xi+1,j – xi,j, ∆yi,j+1/2 = yi,j+1 – yi,j, and G is a slope limiter function 

as given in Equation (5.21) for MC slope limiter or Equation (5.22) for MINMOD 

slope limiter. The solid gradients in x- and y-direction can be determined by 

Equation (11.4) given as: 
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 (11.4) 

where ∆xi,R = xR – xi,j, ∆yj,R = yi,j – yR. A length average technique is then used to 

obtain the unique gradients in the cut cell, which is given in Equation (11.5) as: 
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where ∆xf = |AB|, ∆xs = |BC|, ∆ys = |CD|, ∆yf = |DE|, referring to Figure 11.4. The 

reconstructed property can be found within the cut cell from Equation (11.6) as: 

 









y

x
ji U

U
rUyxU ,),(  (11.6) 

where r is the normal distance vector from the cell centroid to the cut interface. 
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Appendix 

Gauss-Hermite Quadrature (Zwillinger, 2003) 

 

 


