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ABSTRACT

Gene expression is a thoroughly regulated process. The cooperation between prox-
imal and/or distal regulative genomic elements allows precise positioning of the
transcription machinery on gene’s promoter and modulates the synthesis of tran-
scripts. Transcription factors (TFs) are proteins able to bind these regulative loci. The
availability of these sites is in turn regulated by chromatin structure. In cancer the
delicate equilibrium between accessible and precluded TF binding sites gets altered. In
prostate cancer (PCa), androgen stimulation plays a central role in sustaining cancer
growth. Primary PCa, after treatment, recurs in about a third of cases with a more
aggressive, androgen insensitive phenotype. Specific genetic alterations have been re-
ported to drive primary cancer development and the transition to castration resistant
prostate cancer (CRPC). From these notions, the connection between chromatin
state, gene expression and PCa development can be hypothesized. The assay for
transposase-accessible chromatin coupled with sequencing (ATAC-seq) was used to
study the chromatin organization of samples representing different PCa progression
stage collected at the Tampere University Hospital. This dataset was analyzed to-
gether with previously generated transcriptomic and publicly available chromatin
immunoprecipitation followed by sequencing (ChIP-seq) data. From ATAC-seq data,
peaks and differentially accessible regions (DARs) were detected. Correlation be-
tween ATAC-seq features and gene expression was calculated to assign each gene to
a proximal or distal regulative region. At a global level, this analysis reported weak
correlation between the two measurements. Nevertheless, expression of differentially
expressed genes (DEG) showed a stronger correlation with accessible features. This
observation supports the idea of alternative binding pattern utilization across PCa
progression. To understand which transcriptional programs are involved in this
process, TF binding sites were searched in candidate regulatory regions using ChIP-
seq peaks. The transcription factor with highest number of binding sites across all
ATAC:-seq features is the androgen receptor (AR). Moreover, FOXA1 and HOXB13



were observed to co-localize with AR in two distinct sets of DARs with increased ac-
cessibility in PC or reduced accessibility in CRPC. This observation supports the idea
of AR central role in driving PCa and lead to ask which TF co-modulate its activity
in CRPC. To investigate this aspect and identify clusters of TF sharing target genes, a
regulative network was built. Hierarchical clustering yielded two components: first
a core, heavily connected module composed of AR, ERG, FOXA1 and ESR1, second
a group of 43 TF sharing less target genes. This result confirms the central role of
AR and highlights other TF, e.g. SP1, FLI1 and TP63 as its co-modulators.

All the identified TF share a fundamental structural organization: all of them have
a DNA-binding domain and at least one regulatory domain. Moreover, the molecular
structure of all these proteins show at least one intrinsically disordered region (IDR).
These regions are flexible, display reduced hydrophobicity and net charge along their
surface. In solution, intrinsically disordered proteins (IDPs) exist as a continuum of
conformers with a structure that fluctuates from random coil to folded. To collect
and organize literature-derived evidences of this phenomenon, the DisProt database
was developed in 2006. Unfortunately, its updates were discontinued in 2013. To
lead its manual annotation process, a dedicated web-service was created together
with a completely re-designed web-application. While DisProt data is of the highest
quality, the database size is limited. To extend intrinsic protein disorder annotation
to the whole protein universe, MobiDB was created. This database collects data from
eleven specialized external data sources and fifteen different tools for ID, secondary
structure and low-complexity regions prediction. Using data from these resources
the structure of above mentioned TFs was characterized and the emergent pattern of
DNA-binding domain and IDRs detected.

Altogether these results demonstrate how integrated data analysis of multiple high
throughput sequencing (HTS) measurements can help in dissecting the regulatory
complexity of PCa by identifying sets of TFs involved cancer progression. Moreover,
by utilizing these computational resources, structural features of identified proteins
can be inferred. In general, these results provide a clear overview of the complexity of
cellular phenomena, showcasing a data-driven workflow for detection of TFs involved

in a disease and their structural characterization.
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THVISTELMA

Geenien ilmentyminen on vahvasti siddelty biologinen prosessi. Proksimaalisten ja
distaalisten sddtelyalueiden yhteistyé mahdollistaa transkriptiokoneiston tarkan ko-
hdentamisen geenin promoottoriin ja siten transkriptioaktiivisuuden sditelyn. Tran-
skriptiotekijdt sitoutuvat geenien sidtelyalueille, joiden saavutettavuutta siddellddn
kromatiinirakenteen avulla, sitd avaamalla tai sulkemalla. Hienovarainen tasapaino
saavutettavien ja suljettujen sditelyalueiden vililli muuttuu merkittavisti syopa-
soluissa. Eturauhassy6vissd androgeenilld on keskeinen rooli jatkuvan syopikasvun
yllapitimisessd, ja se on myos yleinen hoitokohde. Hoitojen seurauksena noin
kolmasosa eturauhassyopiakasvaimista kehittyy aggressiivisiksi, androgeenista riip-
pumattomiksi kasvaimiksi, joita kutsutaan yleisesti nimelld kastrattioresistentti etu-
rauhassyopa (castration resistant prostate cancer, CRPC). Tiettyjen geneettisten
muutosten tiedetddn johtavan eturauhassy6vin tai sen kastraatioresistentin muodon
kehittymiseen. Niistd lihtokohdista voidaan olettaa, ettd kromatiinirakenteen, gee-
nien ilmenemisen ja eurauhassy6vin etenemisen vililli on yhteys . Viitoskirjassa
kromatiinirakennetta tarkasteltiin ATAC-seq (transposase-accessible chromatin cou-
pled with sequencing) - menetelmilli Tampereen yliopistollisessa sairaalassa keratyistd
potilaiden eturauhassyopandytteistd, jotka edustivat syovin eri vaiheita. Analyysissd
hySdynnettiin aikaisemmin samoista ndytteisti tuotettua geenien ilmenemisdataa
(RNA-seq), sekd julkisesti saatavilla olevaa transkriptiotekijéiden sitoutumisdataa
(ChIP-seq). ATAC-seq datan avulla tunnistimme useita syopain liittyvid muutoksia
kromatiinin rakenteessa. Yhdistimalld havaitut kromatiinirakenteen muutokset gee-
nien ilmenemismuutoksiin pystyimme liittimain geenit sddtelyalueisiinsa. Vaikka
koko genomin mittakaavassa yhteydet sditelyalueiden ja geenien ilmentymistasojen
vililld olivat heikkoja, sy6vin etenemiseen liittyvien geenien sidtelyalueiden muu-
tokset liittyivit selkeimmin niiden ilmenemiseen. Saadut tulokset tukevat ajatusta
siitd, ettd eturauhassyovin etenemiselle on tunnusomaista transkriptiotekijoiden

sitoutumiskohtien muuttuminen patologisella tavalla.
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Ymmirtaiksemme, mitkd transkriptiomekanismit liittyvit syovin kehittymiseen
ja etenemiseen, kidvimme lapi transkriptiotekijoiden sitoutumisalueita ChIP-seq
ATAC-seq-analyysissa havaituilla muuttuneilla kromatiinialueilla. Lisiksi FOXA1 ja
HOXB13 transkriptiotekijoiden havaittiin sitoutuvan samothin kohtiin androgeenire-
septorin kanssa alueilla, jotka avautuivat aikaisen vaiheen eturauhassydvissi ja sulkeu-
tuivat CRPC:ssd. Saatu havainto tukee AR-geenin keskeistd roolia eturauhassy6vin
etenemisessd ja saa pohtimaan, mitkd transkriptiotekijat liittyvit sen aktiivisuuden
muokkaamiseen CRPC:ssd. Vastataksemme tihin kysymykseen tunnistimme tran-
skriptiotekijijoukkoja, joilla on paljon yhteisid kohdegeeneja. Transkriptiotekijdiden
ryhmittely hierarkisen klusteroinnin avulla paljasti kaksi ryhmidi: Ensimmiiseen ryh-
miin kuuluivat geenit AR, ERG, FOXA1 ja ESR1, jotka muodostavat AR-sidtelyn
joilla oli vihemmin yhteisid kohdegeeneja. Saatu tulos validoi AR-geenin keskeista
roolia ja nostaa esiin muiden sadtelijoiden, kuten SP1:n, FLI1:n ja TP63:n, merkityk-

sen AR:n rinnakkaissiitelijoind .

Kaikilla transkriptiotekij6illd on samankaltainen proteiinirakenne: ne sisiltavit
DNA:-sitoutumisdomeenin ja vahintdin yhden sddtelyyn liittyvd domeenin eli pro-
teiinin osa-alueen. Tamin lisiksi kaikilla on vihintddn yksi rakenteellisesti jirjestiy-
tymiton domeeni. Nimd jirjestdaytymattomatomat alueet ovat taipuisia, vain lievisti
hydrofobisia, eiki niilld tyypillisesti ole sihkdvarausta. Jirjestiymattdman protei-
inirakenteen omaavilla proteiineilla (intrinsically disordered proteins, IDPs) on nes-
teessd useita mahdollisia rakenteita jotka voivat vaihdella satunnaisesta rihmasta
tdysin jarjestiyneeksi , laskostuneeksi muodoksi. DisProt-tietokanta luotiin nditd
proteiineja tutkivan kirjallisuuden kartoittamiseksi ja yhteenkokoamiseksi. Uusi
verkkosivusto luotiin ohjaamaan julkaistun tiedon kuratointia ja tietokanta toteutet-
tiin uutena verkkosovelluksena. Vaikka DisProt tietokannan data on huippulaatu-
lisaksi, jotta jirjestymiattomien alueiden annotointi voidaan tehdd kattavasti kaikille
tunnetuille proteiineille . ModiDB tietokantaan on keritty tietoja yhdestitoista
eri tietokannasta ja viisitoista eri algoritmia jirjestdytymattdman proteiiniraken-
teen, proteiinin sekunddirirakenteen ja epatyypillisen aminohappokoostumuksen
omaavien alueiden ennustamista varten. Niiden tyokalujen avulla analysoimme

edellimainittujen transkriptiotekijoiden DNA-sitoutumisdomeenien ja jirjestymit-
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tomien alueiden rakennetta. Nimai tulokset osoittavat kuinka eri tyyppisten uu-
den sukupolven sekvensointimenetelmien tulosten analysointi yhdessi auttaa selvit-
timain monimutkaisia sddtelyprosesseja. Transkriptiotekijoiden analyysilld voidaan
paremmin ymmartid eturauhassyovin syntyd ja etenemisti kastraatioresistentiksi
muodoksi. Lisdksi kehitettyjen menetelmien avulla pystytddn selvittimain tunnistet-
tujen transkriptiotekijoiden proteiiniakennetta. Viitdskirjassa saadut tulokset tarjoa-
vat yleiskuvan solunsisdisten prosessien monimutkaisuudesta ja tuovat esiin lasken-
nallisia lihestymistapoja tauteihin liittyvien transkriptiotekijoiden tunnistamiseksi

ja karakterisoimiseksi.
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1 INTRODUCTION

Conditional activation of gene expression regulates intracellular concentration of
transcripts. A gene is expressed if transcription factors (TFs) bind on its promoter,
trigger the formation of a pre initiation complex (PIC) and the RNA polymerase II
is able to leave the promoter and transcribe the entire gene body. This mechanism
requires coordinated interaction of proximal and distal TF. Signal transduction path-
ways are cellular systems devoted to sense and transmit an extracellular signal to the
nucleus and stimulate gene expression. The final effectors of these signal cascades are
TFs.

In the nucleus of eukaryotic cells, genomic DNA interacts with specialized pro-
teins to form chromatin whose basic discrete units are nucleosomes. Gene tran-
scription requires precise chromatin structural organization. Its three-dimensional
structure may block the interaction between TF and DNA while nucleosome posi-
tioning may cause RNA polymerase to stall. Cellular stimuli may result in chromatin
structure reconfiguration allowing or inhibiting gene expression. The combination
of chromatin structure, TFs intracellular concentration and reaction to external

stimulation drives gene expression which is at the basis of every cellular process.

Alterations to these mechanisms lead to pathological phenotypes. In cancer, aber-
rant regulation of signaling pathways alters cellular phenotype, cell cycle and results in
uncontrolled proliferation. Prostate cancer (PCa) develops from prostate epithelium.
These cells are physiologically sensitive to testosterone stimulation that is required for
development of primary and secondary male sexual traits in physiological condition.
Androgen receptor (AR) is the intracellular sensor for testosterone. Testosterone-
bound AR dimerizes and migrates to the nucleus where it binds androgen responsive
elements and activates expression of AR-inducible genes. Upon upregulation, AR
stimulation leads to AR-inducible genes overexpression, uncontrolled cellular pro-
liferation and tumor mass formation. After first-line treatments, in about a third

of cases, PCa recurs with a more aggressive, androgen-insensitive phenotype. This
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observation leads to the hypothesis that altered gene expression and alternative uti-
lization of regulative programs can be explained by diverse and extensive chromatin
reconfiguration at different disease stages.

The AR is an example of intrinsically disordered protein (IDP). This protein
class is characterized by a flexible tertiary structure, reduced hydrophobicity and
net charge. Many proteins, especially in higher eukaryotes, display at least one in-
trinsically disordered region (IDR). As opposed to globular proteins, IDPs have no
enzymatic activity but have an important role in molecular recognition processes
such as protein-protein, protein-ligand and protein-DNA interactions. Their flex-
ibility and adaptability allows a one-to-many interaction pattern. Recently, it has
been shown that intrinsic protein disorder is involved in membrane-less organelles
formation by phase separation of nuclear factors controlling gene expression [1] and
the genome scanning performed by TFs to select binding sites [2]. Because of the
central role in interaction networks, phase separation and aggregation, experiments
and computational resources for analysis and annotation of IDP are widely available.
DisProt [3] is a repository of manually curated annotations on intrinsic protein
disorder. Manual curation ensures the highest data quality and allows the generation
of a controlled vocabulary to describe the molecular aspects of these proteins. Devel-
opment of curated and integrated data sources for the retrieval and visualization of
IDP annotation is thus crucial for their study. Main limitation of this approach is
its throughput. Because of this, prediction tools and indirect evidences from third-
party sources have been collected in MobiDB. These two databases together provide
complete and extensive structural and functional annotation of intrinsic protein
disorder. Among the others, these tools simplify the structural characterization of
TF involved in any disease including PCa, supporting planning of experimental study

these proteins and with implications in drug and therapy design.
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2 LITERATURE REVIEW

2.1 Epigenetic control of gene expression

Each somatic human cell, in its nucleus, contains forty-six molecules of genomic
DNA accounting for six billion base pairs (bp). The length of the DNA molecule
composing chromosomes varies from 85 mm to 16 mm with the longest one (chro-
mosome 1) made of 250 Mbp and the smallest (chromosome 21) made of 60 Mbp. If
connected, these molecules would be about 1.8 m long. The average diameter of a
human somatic cell is 10 pm, and the cell nucleus has a diameter of 6 pm. These di-
mensions impose a spatial constraint on the nuclear organization of DNA molecules
implying a compression mechanism to store the genetic information. Chromatin is

the complex of DNA and proteins in the nucleus devoted to this task.

2.1.1  Chromatin organization

First and fundamental chromatin units are nucleosomes (Figure 2.1A). Each of them
is formed by eight histonic subunits. Histones are basic proteins with a core structural
domain highly conserved across all eukaryotic organisms. Four couples of subunits
form one nucleosome: two copies of histone H2A, H2B, H3 and H4, respectively.
Multiple histone variants have been identified and have been associated with different
biological processes: utilization of histone variants marks genomic loci for specific
process, e.g. H2A.Z and H3.3 variants have been associated with reduced nucleosome
stability, nucleosome depleted regions at active genes promoters and transcription
initiation. On the other hand, H2A.X is involved in DNA breakage repair and V(D)]

recombination in lymphocytic cell differentiation. [4, 5]

Histones structure is characterized by the histonic domain fold and an unfolded N-

terminal tail of about 30 residues. This long tail is recognized by epigenetic readers and
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146 bp H2A - H28

Figure 2.1 Nucleosome structure and basic levels of chromatin organization. A. Nucleosomes are
composed of 8 histonic subunits. DNA wraps around histones with a period of 146 bp.
Rendered from PDB structure 1AOI [6]. B. Histones and DNA interact to form nucleosomes.
Multiple DNA-bound histones form a "bead on a string" structure. Nucleosomes interact to
achieve denser organization forming the 30 nm fiber. Adapted from 7.

writers and is target of post translational reversible modifications, e.g. methylation,
acetylation, phosphorylation, ubiquitination, sumoylation and lactylation [8, 9].
Different functional meaning have been assigned to modification of histone residues:
H3K4me3 has been associated with transcriptional repression, while H3K27me1 and
H3K27ac have been associated with active transcription [ 10, 11]. These unfolded
regions are important regulators of chromatin structure and are implied in epigenetic
control of gene expression.

DNA binds a nucleosome by wrapping around it (Figure 2.1A). Under optical
microscope, the complex of nucleosomes and DNA looks like a "bead on a string":
DNA wraps around the histonic octet with a periodicity of 146 bp and a short
inter spread stretch of DNA separates each couple of nucleosomes [12]. Multiple
nucleosomes may interact forming a fiber-like structure called 30 nm fiber (Figure
2.1B). Interactions among histone tails from adjacent nucleosomes reduce their spatial
distance and histone H1 stabilizes the interaction forming this structure achieving
50-fold compression of the genetic information [5].

Other non histonic proteins have the ability to bind chromatin and induce even
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higher order condensation. These proteins give rise to tertiary structures and form
oligomeric molecular complexes by coordinating multiple chromatin fibers. For
example, the Polycomb proteins, bind specific sequences on the genome and are
responsible for deposition of H3K27me3, a repressive histone mark, and induce
chromatin compactation [13]. The chromatin packing process achieves an extremely
efficient degree of compression and limits the interaction between transcription

factors, transcription machinery and their genomic targets.

From an evolutionary perspective, chromatin may have evolved primarily as a
mechanism to repress gene expression, viral insertions and transposition events in
eukaryotic genomes [14]. Regions of active and inactive transcription have been
detected in nuclei of eukaryotic cells via chromatin conformation capture experiments
[15]. Active compartments are associated with euchromatic nuclear regions, loosely
packed DNA and higher gene expression. On the other hand, inactive compartments
are associated with heterochromatic regions, denser chromatin and reduced gene
expression. [ 16] Chromatin gets remodeled as a response to external stimuli, e.g. in
macrophages the TLR pathway activates NF-«B sensitive genes. Here, two waves of
expressed genes can be detected, with the latter being induced by the products of the
former. [17]

2.1.2 Interplay between chromatin structure, transcription factors and

gene expression

Chromatin organization represents a fundamental layer of gene expression regulation:
by chromosomal packing the access to genetic information is denied to the transcrip-
tion machinery and thus, the synthesis of genic products inhibited. TFs, on the other
hand, are proteins responsible for activation of gene expression at specific genomic
loci. Basal TFs recognize DNA sequences located in proximity of genes transcription
start site (T'SS), bind them and induce formation of pre initiation complex (PIC).
Nevertheless, TFs have also distal binding sites. Binding to these elements has been
shown to be required for releasing the transcription machinery from the promoter.
In mammals, enhancers dysfunction is linked to developmental malformations high-
lighting their central role in coordinating transcription [20, 21]. Transcription factors
bound to proximal elements are required for effective assembly of the transcription

machinery but enhancer binding and activation influences transcription rate [22].
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Figure 2.2 Models of interaction between TF and transcriptional coactivators through IDR. A. At en-
hancer loci, IDRs mediate interaction between TFs bound to DNA and soluble transcriptional
coactivators. B. At super-enhancer loci, enhancer-bound TFs interact with multiple copies
of coactivator proteins forming phase-separated droplets. Inside these droplets, interaction
among TF, RNA polymerase subunits and other cofactors is facilitated. Adapted from 19.

Transcription factors bound to enhancer elements can recruit chromatin remod-
ellers. These proteins induce structural changes in chromatin conformation resulting
in a loop that puts the TF in spatial proximity of the PIC assembling on a gene
promoter. The interaction between basal TF and enhancer-bound TF results in the
release of DNA polymerase from promoter and initiation of transcription. Recently,
gene expression has been associated with the idea of transcription factories [1]. These,
are loci of stable enhancer-promoter interaction, polymerase condensation and tran-
script initiation. Moreover, in some other cases, the enhancer-promoter interaction
has been observed to persist during transcription elongation phase [23]. On top of
this, enhancers can show additive effect: more than one enhancer can contact a gene
promoter resulting in increased transcript synthesis [22]. Some genomic loci longer
than regular enhancers display unusual enrichment for TF binding sites and H3K27ac
histone modifications. They have been shown to work as interaction hubs and to
be implied in regulation of multiple genes; because of this they have been termed
super-enhancers [24].

Enhancer cis-regulatory function does not extend throughout entire chromo-
somes, in fact it is bound within topologically associated domains (TADs). These

are genomic compartments with preferential intra-domain interactions. A TADs
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forms between two distal convergent CTCF binding sites, defined insulators. The
CTCEF transcription factor binds CCCTC sequence motifs on the genomic DNA and
recruits Cohesin monomers. Between two convergent CTCF binding sites, cohesin
can dimerize forming a ring around DNA resulting in an extended loop defined TAD
[25, 26]. Genes located in the same domain are regulated similarly: [27] it has been
shown that enhancers interact preferentially with promoters within the same TAD
[28, 29, 30]. Notably, transcription stimulation has been shown to correlate with
an augmented number of enhancer-promoter interactions [28, 30]. However, albeit
having been postulated to be the fundamental unit of gene expression, TAD cannot
fully explain observed gene expression variability [31].

Transcription factors regulate gene expression by binding to target sequences on
the genome. These are recognized by specialized structural domains called DNA
binding domains. However, TFs activity is influenced by a number factors, ranging
from local chromatin structure and post-translational modifications, DNA methy-
lation and others [32, 33]. Moreover, empirical observations show that among all
possible binding sites available in the genome, only a subset is occupied i vivo. Dif-
ferent mechanisms have been proposed to explain this observation, either involving
cooperative binding of multiple TFs [34] or the sequence composition in the vicinity
of binding domain [35].

2.2 Prostate cancer

2.2.1 Epidemiology, diagnosis and clinical treatment

In 2020, in the US, prostate cancer (PCa) will be the most newly diagnosed cancer,
accounting for more than thirty thousand deaths (10% of total cancer deaths) [36].
Prostate cancer is described as an age-related disease: the probability of developing it
doubles from 60 to 70 years and men older than 80 have more than 10% chance of
disease development [36]. Big geographical and ethnic variations in diagnosis rates
exist. These differences are partly due to different practices in prophylactic screenings,
lifestyle and migration patterns. In the last 40 years a general increase in diagnosis has
been observed and it has been correlated with the increased utilization of prophylactic
screening [37, 38]. Along with age and African ancestry, PCa risk factors include

obesity, smoking and stature. Familial history and a susceptible genetic background
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are considered risk factors as well [38].

Prophylactic screening are based on detection and quantification of prostate-
specific antigen (PSA). This is a peptidase secreted by the prostatic epithelium that,
in physiological conditions, liquefies semen and should not be detected in plasma.
Its presence in blood is used as biomarker, and a quantification assay is routinely
used in clinical practice. PSA blood concentration correlates with PCa grade and
is used to stratify the risk of PCa development and its status. A threshold value of
10ng mL ! would entitle a patient for prostate biopsy. Prostate cancer diagnosis is
based on microscopic evaluation of prostate tissue obtained by needle biopsy, the
procedure implies a pathologist grading the sample with a Gleason score from 1 to
5 based on morphological characteristics of the tissue sample. Patient risk is then
stratified using the PSA concentration, histological evaluation and clinical stage. To
improve risk stratification MRI [39, 40, 41] and new biomarkers have been tested
[42, 43]. An epigenetic test quantifies DNA methylation and reaches discriminatory
power similar to PSA [43]. Recently, an automatic method for PCa detection from
whole slide scan images using machine learning has been proposed [44] and genomic
characterization from free circulating tumor DNA are either available commercially
and or under active development in academic settings [45, 46, 47]. From tissue biopsy
molecular biomarkes can be used to classify tumor aggressiveness and identify more

aggressive cases.

The risk of dying from PCa depends on age and comorbidity. Today, the proba-
bility of dying from other causes is greater than the probability of dying from PCa.
For all stages of PCa combined, the 5 years overall survival rate is 98% [36]. The
10 years risk of death ranges from 3% to 18%, while, for men with comorbidity, 10
years mortality rate from other causes rises to 33% or higher [48, 49]. Men diagnosed
with localized disease have mainly treatment choices depending also on the detected
prostate-specific antigen (PSA) levels: expectant management or hormonal therapies.
The first option consists of watchful waiting, based on palliative cures of symptoms,
and active surveillance. This option involves repeated PSA measurements and biopsies
to monitor the disease progression. The other option represents the most effective
alternatives for more severe clinical manifestations (e.g. those with PSA level greater
than 10 ngmL 1) [49]. The main goal is to reduce testosterone production. Multiple
strategies exist to achieve this: orchiectomy or surgical removal of testis is the most

effective treatment able to deplete up to 95% of testosterone production. Medical
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castration is another strategy consisting in the utilization of chemical compounds to
inhibit testosterone secretion from testis.

Prostate cancer relapse happens in about a third of case, even after years [50, 51].
First-line treatment for these cases is androgen deprivation therapy. This therapy, al-
though effective, has some adverse effects: it is associated with toxicity, decreased bone
mineral density, metabolic change, sexual disfunction, hot flashes, cardic morbidity

and cognifive disfunctions [49].

2.2.2 Genomics

Early studies The genetics and genomics of prostate cancer have been studied since
the 80s: first identified mutations were large chromosomal alterations in chromo-
somes 10p, 10q, 8p, 8q, and 17q [52, 53, 54, 55]. These loci code for important
oncogenes and tumor suppressor genes such as 7P53, RB1, NKX3-1 and PTEN. The
first observed alterations were 10q24 deletion and mutations in 8p [52]. In 1994, loss
of heterozygosis (LOH) was observed in chromosome 17p in a locus associated with
expression of TP53 [56]. Later, in 1990, RB1 deletion was reported to induce more ag-
gressive phenotype in a cell line model [57]. In early 90s deletion of 8p was confirmed
by multiple independent groups and, in 1997, the tumor suppressor gene NKX3-1
identified in 8p21 [58, 59]. In 1992, the first AR mutation associated with primary
PCa was reported [60]. In later time, AR mutations, especially amplifications have
been associated with CRPC [61]. The PTEN tumor suppressor gene was identified
in chromosome 10923.1 in 1997 [62] and shown to be involved in downregulation of
PI3K/Atk pathway. The first amplification of the ¢-Myc locus was observed in 1986
[63], and was consistently detected in many subsequent studies. Alterations of this
oncogene have been associated with CRPC progression when co-occurrencing with
PTEN mutations [64, 65].

Structural alterations Copy number alteration (CNA) are commonly detected
in primary PCa. About three quarters of primary tumors display some kind of
CNA [66, 67]. Common alterations are deletions localized in 8p, 13q, 6q, 16q, 18q
and 9p. Common gains are observed in CRPC in chromosome 7, 8q and X [66].
Moreover, in about 50% of cases a fusion event between TMPRSS2 and ERG is detected
(TMPRSS2:ERG) [68]. This mutation puts the ERG gene, which codes for an ETS
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transcription factor, under control of the TMPRSS2 promoter, which is sensitive
to androgen stimulation. This fusion achieves androgen-dependent transcriptional
control of ERG resulting in enhanced cellular motility. Other members of the ETS
gene family have been observed fused to TMPRSS2, e.g. ETV1 [68], ETV4 [69]
and FLI1[70]. Deletion of chromosome 10q implies deletion of the PTEN tumor
suppressor gene. This gene is involved in the PI3K/Akt pathway and clonal fraction
of this mutation correlates with cancer progression. The TMPRSS2:ERG fusion
has been identified as gatekeeper of PCa characterizing the transition from BPH to
primary PCa. Accumulating mutations in aforementioned tumor suppressor genes
and oncogenes coupled with treatment-induced clonal selection drive the transition
to CRPC. Clonal fusion events have also been identified as happening in different
locations within tumor nuclei generating multiple cellular subpopulations with

convergent evolutionary trajectories [71].

Primary PCa In recent years, with the advent of next generation sequencing tech-
nologies, large cohorts have been analyzed confirming early genomic observations.
The The Cancer Genome Atlas (TCGA) project characterized 333 primary PCa
samples [72]. According to common genomic features, samples were clustered in six
groups. The first four involve fusion or overexpression of ETS genes: the first and
largest cluster with ERG, the second with ETV1, the third with ETV4 and the fourth,
smaller cluster with FLI1. In total 53% of samples showed a mutation involving an
ETS gene. The remainder portion exhibit missense mutations in SPOP, FOXA1 and
IDH1. Commonly observed CNA involved amplification of chromosome 8, deletion
of 6, 13 and 16 with different proportions across clusters. Although many structural
variants have been identified and used to classify samples, PCa is generally described
as a low-mutation cancer, and in general the overall mutational burden is lower than
the burden showed by other tumors of epithelial origin. The DNA methylation
pattern was found to be altered in these samples and widespread hypermethylation
detected. Methylation-based clustering defines four clusters largely overlapping with
the previously defined ones. The observed methylation patterns suggest widespread
genomic silencing at early stage of the disease. As PCa growth is sustained by testos-
terone, a steroid hormone with a nuclear receptor coded by the AR gene, AR activity

was quantified. AR is located on chromosome Xq12 in a frequently amplified locus.
In the TCGA cohort, AR activity is increased in SPOPI and FOXA1 clusters. On
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the other hand, clusters showing ETS fusions do not show increased AR activity.
Moreover, SPOP1 mutations are mutually exclusive with TMPRSS2:ERG fusions and
the transition to CRPC in presence of SPOPI mutation is driven by the accumulation
of mutations in PTEN and AR.

Castration resistant prostate cancer Hallmark of the transition to CRPC are in-
dependence from androgen stimulation, loss of chromosome 17p, 7P53 and resistance
to apoptosis due to BCL2 overexpression [73], altered cell cycle due to mutations
in RB1 and CDK genes as well as abnormal activation of PI3K/Akt pathway and
alterations to DNA repair system [74]. The earliest evidences of AR mutations were
reported in the fist half of 90s with observations regarding CRPC cells growth with
minimal testosterone stimulation or in its total absence [60, 61, 75, 76, 77, 78, 79,
80]. Sequencing experiments have identified recurrent structural alterations either
in the AR gene body [81] or in an upstream enhancer region [82]. Nevertheless,
other mechanisms may lead to AR reactivation: alterations in splicing producing
AR variants lacking the ligand-biding domain or protein stabilization from other
cofactors [83] are commonly observed. Moreover, paracrine hormonal stimulation
has been reported and linked to gain of function mutations in enzymes of the di-
hydrotestosterone biosynthetic pathway [84]. Activation of PI3K/Akt pathway is
due to deletions of the PTEN tumor suppressor gene in 50% of metastatic CRPC
or, less frequently, amplification of other genes from the same pathway [85]. The
TP53 gene localizes in chromosome 17p, a frequently deleted locus, linked to cancer
recurrence and metastasis [86, 87, 88, 89, 90, 91]. Overexpression of BCL2 has been
reported since 1993 [92, 93, 94, 95] when resistance to chemotherapy in cell lines was
first observed [96]. Mutations in BRCA 1, BRCA2 and ATM are observed in about
20% of metastatic CRPC. Also the WINT pathway has been reported to be altered
in about a fifth of cases, most frequently because of a mutation in CTNNBI [97],
ZNRF3 and RNF43, RSPOP2 [85]. Many mutations described above are target of
specific drug treatment and used as biomarkes to design personalized treatments for
patient suffering from advanced CRPC [83, 85, 98].
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2.3 Intrinsically disordered proteins

Early observations on the relationship between enzymes structure and function are
from 1961 when random coil behavior and loss of enzymatic activity was observed
in bovine pancreatic ribonuclease [99]. From this and subsequent observations, it
was postulated that protein structure determines function and its alterations hinder
enzymatic activity. Although this paradigm holds for many proteins, since the 90s a
novel class of protein lacking fixed three-dimensional structure has been character-
ized and, in 1999, P.E. Wrigth and H. J. Dyson proposed to re-assess the traditional
structure-function paradigm in light of these new observations [100]. These pro-
teins, in physiological conditions, do not have a globular structure and behave like
random-coils [101] or as an ensemble of inter-converting conformers [ 102, 103, 104,
105, 106] (Figure 2.3). This class of proteins has been called intrinsically disordered
proteins (IDPs) and their biological function is tightly linked to their biophysical
properties [ 100, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116]. Activation
of calcineurin upon interaction between an intrinsically disordered region (IDR) and
the Ca?*-calmodulin complex was one of the first examples of this phenomenon [ 107,
108]. Early observations on histone N-terminal tail suggested that acetylation reduces
rigidity [107]. These early results were generated with iz vitro systems, thus whether
this phenomenon happens 7 vivo was soon addressed. The proto-oncogene c-Fos
and the cell-cycle inhibitor p27XP! both have IDR in the domains used for molecu-
lar interactions and have been shown to maintain their flexibility also in crowded
environment, like cell nucleus [109]. In viruses, IDRs are involved in assembly of
macromolecular complexes, e.g. the TMV particle nucleation process is initiated
and stabilized by coat proteins with negatively, highly flexible IDRs facing the inner
cavity of the nascent rod-shaped viral particle and interacting with the single stranded
viral RNA; other examples are the assembly of icosaedral viruses and, in bacteria,
assembly of the flagellum [110]. In humans, the presynaptic protein a-synuclein,
associated with Parkinson disease and insurgence of other neurological disorders,
lacks of a rigid globular structure and can fold in multiple conformations [111]. Also
the N-terminal domain of many nuclear hormone receptors display high flexibility
and have been shown to change conformation upon interaction with small molecules
(e.g. hormones) [106]. Transcriptional co-activators CBP and p300 acetylate histones

and stabilize molecular interactions between TFs and the transcriptional machinery

32



Figure 2.3 Cartoon representation of TP63 DNA-binding domain. Backbone of the protein is represented
as a tube. For this drawing, structure from 61 homologous PDB entries were superposed and
the tube size is proportional to the root mean square deviation (RMSD) per residue between
C-alpha pairs. The white to red color ramping is used to visualize sequence conservation.
Conformers from liquid NMR experiment are displayed as black traces. Rendered from PDB
structure 2RMN [125] with ENDscript 2.0 [126].

while displaying more than 50% of residues in IDR [105]. Many more examples
could be listed, and, among the others TP53, chaperon proteins and BRCA1 have
been characterized to have at least one IDR [112].

As show above, intrinsic protein disorder is present in all kingdoms of life but is
enriched in eukaryotic organisms and displays a positive correlation with organism
complexity. About a third of eurkaryotic proteins display at least one intrinsically
disordered region (IDR) [117, 118, 119, 120]. It has been shown that intrinsic protein
disorder arises at a later stage of the evolutionary process [ 121] and could be linked to
more complex molecular functions required by eukaryotic cells for their functioning.
Three quarters of proteins mutated in human cancers are estimated to have at least
an intrinsically disordered region (IDR) [122, 123, 124].

Intrinsically disordered proteins represent a major component of the dark pro-
teome [127]. This term is used to describe the subset of protein universe whose
three-dimensional structure has never been observed. It has been estimated that more
than half of the proteins in higher eukaryotic proteomes is constituted by at least one
unobserved IDR [128].

Since early studies, sequence composition of IDP appeared to be biased [ 103, 120,
129, 130, 131]. Some residues have been associated with intrinsic protein disorder

and thus defined disorder-promoting residues (Pro, Glu, Lys, Ser and Gln). They are
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characterized by net charges and reduced hydrophobicity. While showing enrichment
for disorder-promoting residues, IDP show depletion of structure-promoting residues
(Trp, Tyr, Phe, Cys, Ile, Leu and Asn) [107, 132, 133].

2.3.1 Biological functions

Absence of a defined three-dimensional structure makes these proteins unsuitable for
enzymatic functions but entails them to function as regulators of many biological
processes including transcription and cell cycle [ 105, 112, 134, 135].

The functional classification of IDP has been a major topic of discussion since
early reports. Five broad functional categories were first proposed [101] and this
classification has been later refined with the addition of newly discovered classes [ 136].
Currently, the six major ones are: entropic chains, display sites, chaperons, effectors,

assemblers and scavengers:

* Entropic chains were the first observed type of intrinsically disordered regions
(IDRs), they can be described as protein regions that carry out functions which
directly benefit from conformational disorder [136]. Linkers between globular
domains, loops and spacers are typical examples of IDRs with entropic chain

function.

* Display sites are IDRs targetd by PTM. Their flexibility facilitates the modifica-
tion deposition, inducing an energy loss that allows the interaction with other
proteins. These regions are well studied because of their intimate involvement
in cellular signaling [122, 135, 137, 138, 139].

® Chaperons are proteins that help other proteins or RNA to fold properly.
Enhanced flexibility helps chaperons to adapt to many binding partners and

enable fast intermolecular interaction.

e Effector proteins interact with other proteins and modify their behavior. IDP
with this function, sometimes, can alter the activity of other parts of the same

protein.

® Assemblers take part in the creation of higher order molecular complexes.
Proteins with this function have multiple IDR that concurrently bind different

partners helping to bring together subunits of large complexes.
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® Scavenger proteins bind and neutralize small ligands. Their role is to regulate

ligand availability for other molecules.

Display sites, chaperons, effectors, scavengers and assemblers share the fundamen-
tal function of molecular recognition. Prior or upon interaction they may undergo
structural modifications that induce an entropic loss resulting in a disorder-to-order
transition [ 140, 141, 142]. The unbound protein in its disorder state and the reduc-
tion in entropy that drives the folding process are the key factors that regulate these
interactions [101]. In other words, these regions may fold upon binding and the
likelihood of this process has been correlated with the secondary structure elements
present (or predicted) in the protein sequence [121]. Using intrinsic disorder for
molecular recognition has some additional benefits: first, these proteins show rapid
association/dissociation kinetics, which allow for rapid response to external stim-
uli. Second, since their backbone is extremely flexible they can adapt to multiple
interaction partners and thus be involved in many regulative patways. Intrinsically
disordered proteins interaction promiscuity is allowed by the large number of confor-
mations the unbound state of the protein can take and the ability to fold in different
ways upon upstream stimuli. Because of this, these proteins tend to occupy a central
positions in biological networks. IDPs, often act as stimuli integration hubs. Adap-
tation to multiple cellular environments [ 140, 143] and interaction with proteins
from different signaling pathways makes them able to integrate stimuli into coherent
responses. These proteins represent the conserved core of protein signaling networks,
are responsible for signal integration and altogether constitute the ability of a cell to
react and adapt to multiple stimuli [ 144]. Moreover, in some instances, the disorder
state is maintained upon molecular interaction [101].

Because of their critical role, the intracellular concentration of IDPs is lower
than globular proteins. In their unbound disordered state, they are susceptible to
proteolytic cleavage. Moreover, IDP transcripts tend to have more predicted miRNA
binding sites and ubiquitination sites as well as higher decay rates [ 145]. Moreover,
dosage sensitivity has been associated with intrinsic protein disorder: many dosage-
sensitive genes have been shown to code for proteins with extensive IDRs [146].
From these observations emerges that IDP have short half-lives and are present at low
concentration in the cell. In some cases, however, IDPs get stabilized by interactions
with other molecules, leading to avoidance of proteasomal degration, thus allowing

the creation of multimeric functional complexes [147].

35



To summarize, IDP are a class of proteins which, in solution, lack of defined
three dimensional structure. This feature makes them well suited for signaling and
molecular recognition functions. Many examples folding-upon-binding IDP exist,
but this phenomenon is not observed in all cases. These proteins tend to occupy
central positions in signaling and protein-protein networks and because of this their

intracellular concentration is carefully controlled.

2.3.2 Role of intrinsic protein disorder in gene expression regulation

Transcription factors structural features are involved in binding specificity, regulation
and sensing. For instance, the N-terminal domain of TP53 is annotated as IDR. It
binds TP53 DNA binding domain blocking unspecific interactions with the DNA.
This self-inhibition boosts the specificity of protein-DNA interactions [ 148]. Other
TFs display IDRs outside the DNA binding domain which have been implied in
directing binding site recognition, thus regulating site-specific selection [2].
transcription factors are key regulators of eukaryotic gene expression. Structural
organization of these proteins is substantially conserved: a globular DNA binding
domain and an activation domain characterize the structure of a vast majority of these
proteins. Activation domains are involved in interactions with other TFs or small
ligands and are characterized by low-complexity, flexible, IDR. Mutations in these
domain abolish transcription and may give rise to pathological phenotypes [149].
The interaction among activation domains not only activate the TF but stabilizes
DNA binding, interactions with cofactors, recruitment of the polymerase complex

and activation of the transcriptional process [ 150].

Enhancer-bound TFs recruit the Mediator complex and other cofactors to activate
gene expression at promoters. Super-enhancer are genomic loci with higher density of
enhancer elements and TF binding sites. It has been reported that the binding of a TF
on these loci, induces recruitment of the Mediator complex and BRD4. Formation
of this complex is driven by weak interactions among IDR from the enhancer-bound
TFs, MED1 Mediator subunit and BRD4. As a result, phase-separated droplets form
at these loci [19] (Figure 2.2B). Within these temporary nuclear sub-compartments
RNA polymerase subunits can diffuse and the transcription machinery assembled
[19]. These findings were confirmed with the OCT4, GCN4 and ER TFs [151].

Enhancer propensity to form these condensates is not only encoded in IDRs sequences

36



but also in the number of binding sites composing the enhancer, in the strength of
protein-DNA interaction and in the TF (and cofactors) intracellular concentration
[152]. DNA binding is required to stabilize droplets and its formation stabilizes weak
IDR-IDR interaction as reported by thermodynamic analysis [ 152]. This mechanism
suggests that the cooperative role of all molecular species involved is important
to achieve correct biochemical composition and precise genomic localization of

trascriptional condensates.

2.3.3 Computational methods for intrinsic protein disorder detection

and prediction

Given the distinctive features of IDPs, the challenges in obtaining three-dimensional
models of their structures and their existence as a structural continuum of conformers,
a plethora of prediction methods have been developed. Each tool uses a different
approach to predict this property, and they can be grouped in three main categories:
biophysical properties-based methods, machine learning-based methods and meta-
predictors (Table 2.1). In the MobiDB [ 153, 154] database fifteen different tools are
used to predict intrinsic protein disorder and secondary structure populations for

the entire protein universe:

® Mobi 2 [155] annotates protein sequence with mobility and ID information
from missing electron densities, high B-factor (X-ray and electron microscopy)
and inter-model mobility from NMR ensembles. Identifies also linear intercting
peptides (LIPs).

e 82D [156] uses backbone chemical shifts from NMR-resolved structures to
predict populations of secondary structures and define protein states (fully

structured, partially folded, disordered).
® Random Coil Index (RCI) [157, 158, 159] quantifies the propensity of a polype-

tide to assume a random coil conformation using NMR chemical shifts. The

method relies on an empirically determined equation.

e [UPred [160, 161, 162] uses a manually curated table of pairwise energy values
to compute probability of a residue to lie in an IDR [176].

* Anchor [163, 164] is a specialized predictor to identify disordered segments

able to undergo disorder-to-order transition. The prediction process relies on
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Table 2.1 Overview of intrinsic protein disorder prediction methods.

Name Reference Predicted feature Prediction model
Mobi 2 155 IDRs, LIPs Biophysical properties
IDRs, secondary
82D 156 structure Biophysical properties
populations

RCI 157,158,159 IDRs Biophysical properties

IUPred 160, 161, 162 IDRs Biophysical properties
IDRs,

Anchor 163, 164 disorder-to-order Biophysical properties
likelihood

ESpritz 165 IDRs Machine learning

FELLS 166 Seconda.ry SUUCTUIE  \fachine learning
populations

RING 2.0 167 ‘Intra- agd inter-chain Biophysical properties
interactions

DisEMBL 168 IDRs Biophysical properties

GlobPlot 169 IDRs, secondary Biophysical properties
structure elements

RONN 170 IDRs Machine learning

VSL2b 171,172 IDRs Macl.nne learning, meta-

predictor

SEG 173 Low-complexity Biophysical properties

Pfilt 174 Low-complexity Biophysical properties

Dynamine 175 Backbone flexibility ~ Machine learning

previous identification of IDR with IUPred [160, 161, 162]. The classification
is based on two more criteria: first it calculates the number of inter-molecular
contacts a residue can make with neighboring residues to ensure it cannot fold,
then it calculates the number of favorable intra-molecular contacts with the
interaction partner to ensure there is an energy gain in the interaction and thus

the ability to fold.

® ESpritz [165] refer to an ensemble of four predictors using a bidirectional

recurrent neural network (BRNN) [177] to predict intrinsic protein disorder
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from sequence alone. Different tools are trained on different data sets to predict
intrinsic protein disorder derived from specific experimental techniques: X-ray
from PDB, DisProt, NMR and MxD [178]. A final consensus prediction is

computed by averaging predictions from the separate tools.

FELLS [166] aggregates structural predictions and sequence propensities from
different sources: Espritz-NMR [165] and a method derived from the Espritz
neural network architecture called FESS. This is an alignment-free method
based on bidirectional recurrent neural network (BRNN) [177].

RING 2.0 [167] identifies residue-residue interactions via analysis of RINs
derived from PDB structures. It is able to identify inter and intra chain covalent

and non-covalent bonds, 7t—7 stacks and 7r—cation interactions.

DisEMBL [168] defines ID from a two-states model of protein structures: each
residue can either be ordered or disordered. The state assignment is performed
based on three criteria: DSSP [179] secondary structure prediction, high B-

factor and X-ray missing electron density.

GlobPlot [169] classifies protein residues in two states: random-coil and sec-
ondary structure. It uses a scale computed from Russel/Linding propensity
scale [180] and DSSP [179] secondary structure prediction from a set of rep-
resentative proteins selected from SCOP [181, 182]. For an input protein
sequence, for each residue, a cumulative score is computed using the propensity
scale and the classification is performed by peak detection over the computed
signal. Peak detection assigns the "random-coil" class if the signal function

derivative is positive and "secondary structure" otherwise.

RONN [170] uses a bio-basis function neural network (BBFNN) to compute
the probability of a fixed-size stretch of amino acid to be disordered. The
prediction is based on the computation of a distance value between the input
query and a set of known prototype sequences. The classification is then made

according to the closest (most similar) prototype sequence.

VSL2b[171, 172]: is a meta-predictor combining the outputs of two SVM-based
predictors (VSL2-L and VSL2-S) trained independently to detect long and short
stretches of disordered residues. The input features are based on statistical,
physico-chemical and evolutionary properties of the protein sequence. The

meta-predictor takes as input the disorder probabilities computed from the
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two components and outputs the class probability of observing disordered or
ordered state. This meta-predictor is trained independently of the other two

components.

Moreover, in MobiDB, low complexity regions and backbone flexbility are pre-

dicted using dedicated tools:

e SEG [173] is one of the first algorithms developed to predict low-complexity
regions. It uses sequence composition of a fixed length window to predict its

complexity score.

e Pfilt [174] is an algorithm designed to mask out regions of low complexity,
coiled-coil regions and regions with extremely biased amino acid compositions.
It was developed to control for error rate in PSI-BLAST alignments and improve

on the SEG family of algorithms.

® Dynamine [175] computes proteins backbone dynamics using a linear regres-
sion model and a sliding window approach to achieve residue-level flexibility

prediction.

2.4 High throughput sequencing methods

DNA sequencing is a technique to determine the sequence of nucleotides forming a
DNA molecule. The first proposed experimental procedure was the Sanger method
developed in 1975 by Dr. Frederick Sanger [183]. This leverages on DNA polymerase
and radiolabelled nucleotides to manually reconstruct the sequence of a given DNA
molecule. The main limitation of the Sanger approach was its throughput, the manual
intervention needed to reconstruct the input sequence was a limiting factor to the
quantity of analyzed genetic material.

Thanks to the momentum generated by the Human Genome Project (HGP) [ 184,
185, 186], in the second half of the 90s a series of new technologies emerged improving
the Sanger approach. Main improvement was the shotgun method. In summary, this
technique requires random fragmentation of the original genetic information, am-
plification and division into smaller overlapping segments, sequencing and sequence
reconstruction by assembling the read data into the original segments. To generate

sequence data for the HGP, the pyrosequencing method was introduced [187]. The
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novelty of this method was the "sequencing by synthesis" approach that allowed
to read a DNA strand concomitantly to its synthesis. In brief, upon insertion of a
known new base, a detectable light signal is emitted. An optical sensor detects such

signal allowing the reconstruction of the input sequence.

After the completion of the HGP, more efficient and cost-effective sequencing
methods have been developed. They leverage on the knowledge generated during the
project to further improve the sequencing throughput. Collectively these methods
are called next-generation sequencing (NGS) methods. Capillary elettrophoresis was
developed for the HGP to parallelize the Sanger and pyrosequencing methods [188].
Furthermore, the Illumina dye method improves on parallelization using dense chips
of anchored oligonucleotides and an improved chemistry to synthesize template DNA
molecules i72-situ [ 189]. The sequencing reaction is carried out using a sequencing by
synthesis approach. Pacific Biosystems developed a real-time single molecule sequenc-
ing technology. This system works using immobilized DNA polymerase on top of a
detector sensing labeled nucleotides as they get inserted into a nascent DNA strand
[190]. Other methods were proposed and involved different approaches, for instance
Applied Biosystems developed the SOLID" technology implementing a sequencing
by ligation technique. This technology relies on a ligation reaction between a known
sequence fragment and a labelled oligonucleotide reporting two known bases [191].
These technologies paved the way to large genomic, transcriptomic and metagenomic
studies while changing the way classical subjects like molecular biology, genetics and

virology are studied.

Third generation sequencing technologies have been deployed in recent years.
These machines improve on read lengths, portability and spectrum of applications.
Pacific Biosystem, improving on their previous real-time single molecule system, leads
the competition with the Oxford Nanopore Technology which is able to produce
reads as long as few kilobases. The idea of Nanopore sequencing is to use a biological
pore of known diameter to feed a single nucleic acid molecule to a polymerase
molecule, then read the nascent DNA or RNA molecule in a sequencing by synthesis
fashion [192, 193].
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2.4.1 Transcriptome sequencing

RNA-sequencing (RNA-seq) was introduced in 2008 by independent authors studying
different eukaryotic systems (mouse, yeast and Arabidopsis) [ 194, 195, 196] during
the rapid expansion of NGS technologies. The introduction of this technology
marked a big leap into gene expression quantification by simplifying the experimental
procedure and reducing costs. Although the most popular application of RNA-seq
method is the quantitative analysis of transcriptome, this term can refer to any kind

of sequencing involving RNA.

NGS platforms are the most suited for RNA-seq studies as the amplification step
they require yields products in a concentration proportional to the original RNA
molecule concentration. Data analysis require assembly of reads against a reference

transcriptome before quantification.

According to the type of RNA under analysis, RNA-seq libraries are prepared in
different ways. RNA-seq library preparation requires an enrichment step to isolate
such molecules, smallRNA-seq a size selection step to enrich for short mature and
precursor miRNA. In either case a retrotranscription step is required to produce

cDNA before actual sequencing.

Traditional computational analysis involved artifacts and erratic reads removal.
Reads shorter than a fixed length can be discarded at this stage. Sequencing adapters
trimming is another integral part of the pre-processing procedure although questioned
in recent times [197]. After preprocessing, reads need to be aligned to a reference
genome. This step provides evidence of transcribed genomic regions. To quantify gene
expression, alignment to transcriptome and downstream transcripts quantification is
required. Optionally, quantified transcripts can be collapsed at gene level and used for
differential expression analysis. For smallRNA-seq analysis, miRNA quantificaion
is run using an encyclopedia of known miRNA sequences. Some tools are able to
estimate miRNA abundance taking into account also precursor sequences [198].

Usually, RNA-seq experiments are run to compare gene expression across dif-
ferent conditions. Genes that change their expression level significantly are called
differentially expressed genes (DEG). Over the years, multiple methods have been
developed to detect such genes and a wide variety approaches have been published
[199, 200, 201, 202]. Alignment-free methods have been also proposed for differential
gene expression analysis [203, 204].
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Irrespective of the quantification method, a filter for lowly expressed genes is
good practice for RNA-seq data analysis. The empirical distribution of mean (or
median) expression values can be computed from observed data, quantile values can
be calculated and used as thresholds to remove lowly expressed genes. Moreover,
sensitivity and specificity of differential expression detection can be tuned with few
parameters. First, log,-fold change is computed to describe gene expression change

across the two conditions:

G, .
FC; =log, [ = @.1)
g2<G >

2i

Where G,; and G,; represent the average expression of gene G; in the two condi-
tions. Moreover, the null hypothesis of no difference between condition is usually
tested. Commonly used tests are t-test and Mann Whitney U test, in either their
paired or unparied variants depending on the data. A significant p-value leads to reject
the null hypothesis implying that the observed difference is not due to randomness
or chance. Additionally, absolute median difference between estimated gene counts

can be computed:

diff, = G,; — G, 2.2)

For these values, an empirical distribution can be estimated and a filtering pro-
cedure applied to remove genes showing low difference across conditions. This
extra step increases the signal-to-noise ratio by removing genes with small average

expression values but high log,-fold change ratio.

2.4.2 Sequencing methods for chromatin structure and epigenetics

study

Study of epigenetics focuses on histone modifications, DNA methylation, the inter-
action between TFs and genomic DNA as well as all the proteins involved in these
mechanisms. In the pre-genomic era main methodology to study these interactions
was chromatin immunopurification (ChIP) which relied on antibodies-driven enrich-
ment of DNA-bound factors and subsequent chromatograpic purification. With the
advent of sequencing methodologies, the throughput of these assays was improved

by coupling them with sequencing (ChIP-seq) [205, 206]. From analysis of ChIP-seq
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data, TF binding sites and histone modifications can be mapped on target genomes.
This technique was used in large projects to define genome-wide modifications maps,
e.g. ENCODE [207] and ROADMARP epigenome [208]. Main limitation of ChIP-seq
is that it can probe a single TF or histone modification at the time. Because of this,

recent techniques have been proposed to simultaneously quantify binding of multiple
TFs, e.g. CUT&RUN [209], ChIP-exo [210] and SELEX-seq [211].

Chromosome conformation capture experiments provide insights into the pattern
of genomic DNA binary contact. According to the number of probed interactions
3C, 4C and 5C experiments can be distinguished: 3C techniques test one-vs-one
interactions allowing the study of specific interaction between an enhancer and a
promoter [212]. To identify all enhancer elements able to bind a specific promoter,
4C, also known as capture-on-chip techniques can be used [213, 214]. To study
all possible interaction within a given genomic region, 5C techniques have been
developed [215]. Similarly to ChIP-seq the main limitation of these techniques is
throughput, none of these is suitable for genome wide studies. Hi-C is a technique
that overcome this limitation and uses paired-sequencing to generate genome wide

contact maps allowing the identification of chromosome territories, TADs and loops
[216]

The assay for transposase-accessible chromatin coupled with sequencing (ATAC-
seq) approach has been proposed in 2013 [217]. The assay involves utilization of a
hyperactive viral Tn5 transposase to detect regions of accessible chromatin before
performing sequencing. Tn5 protein binds a linear DNA molecule and catalyzes
its insertion into host genome. In physiological condition the transposase is loaded
with a transposon sequence and catalizes its insertion with a cut-paste mechanism.
For this application the transposon sequence is replaced by adapters so that, while
the transposase catalyzes their deposition in nucleosome-free genomic regions, it
introduces a double strand break. This process generates DNA fragments suitable
for sequencing. Average length of these fragments is proportional to the length of
DNA stretch wrapped around nucleosomes. By analyzing the length distribution
and the aligned reads pattern, a detailed map of Tn5 accessible chromatin regions
and nucleosome position can be computed. This experimental approach can be used
to characterize regulative regions in genes promoters, enhancers and silencers, if
annotations are available. Moreover, from the analysis of peaks shape, TFs occupancy

can also be inferred: if a TF is bound to DNA, a footprint can be detected in the
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signal generated by the aligned reads. ATAC-seq is a powerful approach to study the
regulatory epigenome and its role in regulating gene expression. For instance, this
technique was used to characterize the cis-regulatory elements of the whole TCGA
cohort and the resulting data integrated with transcriptomic and other data type to

identify enhancers active in primary human cancers [218].
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3 AIMS OF THE STUDY

The general aim of my PhD project was to study biomolecules from their structural
perspective: first how the DNA structure contributes to the regulation of gene
expression in prostate cancer, and, second contribute to the knowledge on intrinsic
protein disorder by providing the research community with tools to describe and
study it. In the light of these broader aims, the aims of my publication can be

summarized as follows:

1. Characterize the relationship between chromatin accessibility and gene ex-
pression during prostate cancer progression by defining a group of relevant

regulative loci

2. Contribute to the study of intrinsic protein disorder by deploying web-based
resources to store and visualize literature-derived manually-curated and large-

scale automatically-generated ID structural annotations;

3. Identify regulative programs leading prostate cancer progression by detect-
ing transcription factor binding sites within putative regulative loci, analyze
co-binding patterns and characterize their structure with a computational ap-

proach and developed resources;
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4 MATERIALS AND METHODS

This chapter will be split in two main sections: the first will describe samples and
methods used to run the analysis presented in Publication I, while the second will
describe the overall organization of applications presented in Publication II and
Publication IIL.

4.1 Tampere PC cohort (Publication 1)

The study was performed on samples collected at the Tampere University hospital.
This material is part of the Tampere PC cohort which is made of freshly frozen
uncultured tissue biopsies from BPH, PC and CRPC patients [66]. The cohort
mimics PCa progression: BPH represents the normal control, PC the first cancer
stage and CRPC the advanced, treatment resistant stage.

Samples were collected using two different surgical procedures: radical prostate-
ctomy (RP) and trans-uretral radical prostatectomy (TURP). The former involves
complete removal of the prostate gland, while the latter is a minimally invasive pro-
cedure that involves insertion of a needle in the urethra to reach the pelvic cavity
and sample the prostate epithelium. TURP is known to induce ischemic damage to
the bioptic material which results alterations in gene expression [219]. Given the
mixture of sample collection methods, a substantial known batch effect is present
and will have to be handled in downstream analyses.

Samples from the Tampere PC cohort have been extensively characterized over
the years: shallow whole genome sequencing, RNA-seq, methylation and proteomics
data have been generated and analyzed [220, 221, 222, 223]. For the project presented
here, chromatin accessibility data (ATAC-seq) have been generated.

The composition of the cohort changed over time. In the first publication, in 1995
[66], 6 BPH, 31 PC and 9 CRPC were used for the study. In 2013, for the original
RNA-seq study [221], 12 BPH, 28 PC, and 13 CRPC samples were utilized.For the
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proteogenomic paper published in 2018, [222], 10 BPH, 17 PC, and 11 CRPC samples

were used.

4.1.1 RNA-seq

Gene expression quantification. Total RNA was extracted from 45 samples of the
Tampere PC cohort and used to generate sequencing libraries for RNA-seq [221]. Of
these, 37 had ATAC-seq data available: 10 BPH, 16 PC and 11 CRPC. Sequencing
reads have been aligned to human genome version 38 (GRCh38) with STAR version
2.5.3a[224] and gene counts were computed for 58,243 genes from Ensembl version
90 (August 2017) using GeneCount run mode from STAR. Unstranded, sample-specific

counts were collected in a 58,243%x37 data matrix G for further processing.

Preprocessing. For each gene, a vector g; of total gene expression values was calcu-

lated by summing over columns of matrix G:

g; :ZGij (4.1)
j

where 7 represents genes and ; represents samples. The empirical distribution of
total gene expression was computed and the value corresponding to its lower quartile
¢,5 computed. Genes with total gene expression lower than g,5 were discarded from
turther analysis. This procedure yielded 18,537 genes above threshold.

Removed genes show a consistently low expression across all samples. Because
of this, they have a very small information content for the biological process under
investigation (PCa progression). Thus, removing these genes enhances the signal-to-
noise ratio and improves the downstream differential expression analysis by removing
a source of unwanted noise. Moreover, genes with low read count are likely to suffer
from overdispersion, a phenomenon by which the observed read count variance is
substantially larger than the expected variance under certain statistical model. To
account for this phenomenon, DESeq2 [200] models gene expression using a negative
binomial distribution which depends on a dispersion parameter. The DESeq2 model
implements a Bayesian method to estimate such parameter from the input data. Thus,
by providing data with higher signal-to-noise ratio, dispersion estimation procedure

yields more accurate estimates improving the overall quality of the results.
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Differential expression analysis The prefiltering procedure yielded a 18,537x37
matrix of filtered gene expression values. It was used as input for DE analysis with
DESeq2 [200]. A design matrix modeling both the sample type (BPH, PC, CRPC)
and the collection method (TURP, RP) was generated to represent experimental
variables.

After model fitting, for each experimental variable, model coefficients were re-
trieved. Next, to address the problem of TURP-derived batch effect, coefficients
computed for the "collection method" variable were extracted and used as correction

factors:

7 2\ G;;

where Njj is the normalized value of gene 7 in sample 7, 33, G;; the library size of
the j" sample, B rpX T is the matrix of gene-specific 3 coefficients estimated by
the model multiplied by a binary vector X of length ; whose values are 1 for samples
collected with TURP and zero otherwise.

DESeq2 automatically computes log, fold-change and p-value for any given com-
parison. On top of these values, a vector of absolute median difference was computed:

diff. =N. —N.
13 lgl

e (4.3)

where diff; is the median difference for gene i, N; g and N, g, are the median
values in sample groups g, and g, from the N matrix. This metric introduces an extra
requirement to achieve the status of DEG.

The median log, fold-change value describes how different normalized median
gene expression values are. If calculated between small numbers, it results in high
values and thus, false positive DE calls. In other words, genes with barely detectable
expression but different enough values in the comparison get called as DEG. Using
the absolute median difference introduces and extra constrain helping in removing
these edge cases and thus improving the detection power. This procedure yields DE
calls with strong, detectable and clearly different signal between conditions.

To label any gene as DE, the following three criteria were used: first, the log,
fold-change was required to be greater than 1, FDR-corrected p-value to be lower than
0.05 and absolute median difference to be greater than 180. Two sets of DEG were
computed: BPH vs. PC and PC vs. CRPC. In the first 933 genes were detected, 508
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of which were upregulated and 425 downregulated. In the second, 533 were detected,

194 were upregulated and 339 were downregulated.

4.1.2 SmallRNA-seq

miRNA expression quantification. To run smallRNA-seq experiment, a size se-
lection step is performed before retrotranscribing RNA to DNA. This allows to select
RNA molecules of low molecular weight corresponding to miRNA and small non-
coding RNA. For this analysis, only miRNAs were quantified. To quantify miRNA
expression, sequencing reads were mapped to human mirBase database version 22
[225] allowing for single base deletion at 3’ or insertion at both ends. Expression
values for miRNA were computed by summing reads mapping either to mature
sequences or precursors. The resulting matrix was normalized with median-of-ratios
normalization. This procedure yielded quantification for 1,471 miRNA. The matrix

of normalized counts was then used to detect DE miRNA.

Differential expression analysis. Differential expression was detected for the two
comparisons described previously. Similarly to mRNA-seq, log, fold-change was
required to be greater than 1, FDR-corrected t-test p-value to be lower than 0.05 in
order to call a miRNA DE. No absolute median difference was used because of the
reduced number of quantified molecules. For BPH vs PC and PC vs CRPC, 26 and
51 DE miRNA were called respectively.

4.1.3 ATAC-seq

From ATAC-seq experiment, peaks and differentially accessible regions (DARs) were
detected (Publication I). Normalized ATAC-seq signals were analyzed together with
RNA-seq and smallRNA-seq data to identify regulatory regions relevant in PCa
progression. First, target genes for candidate regulatory regions were predicted. Next,
leveraging on publicly available ChIP-seq data, TF binding sites content of said regions
was analyzed to identify groups of TF involved in regulation of gene expression over
PCa progression, finally the identified TFs were used to build a regulative network.
Unsupervised clustering of this network yielded groups of TFs co-regulating large

numbers of genes (Figure 4.1).
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Figure 4.1 Worflow of the analysis performed to identify transcriptional programs from ATAC-seq, gene
expression and ChlIP-seq data.

Integrated analysis with RNA-seq. To assign candidate regulatory regions to
genes, Pearson and Spearman correlation coefficients between ATAC-seq and gene
expression signals were computed. A regulatory region was assigned to a gene if the
absolute value of any of the two correlation coefficients was greater than or equal to
0.5.

To compute correlation coefficients, samples shared among the two experiments
were used: if the gene was a protein coding gene, samples shared between RNA-seq
and ATAC-seq data set were used, otherwise, if the gene was a coding for a miRNA,
samples shared between ATAC-seq and smallRNA-seq data were used. Because of
this limitation, the sample size available for correlation analysis with miRNA was

lower and thus false positive ratio slightly higher.

Values of Pearson correlation coefficient tend to drop when the amount of varia-
tion between the two signals is not the same, e.g. the ATAC-seq signal varies a lot
between samples, while the RNA-seq does not or vice versa. In these cases, if the
data trend is consistent (i.e. the two signals vary consistently), the Spearman correla-
tion coefficient reports a substantial correlation because it quantifies the covariation
between data ranks instead actual values. Combining the two coefficients allows to

include these corner cases at the expense of a higher false positive rate.
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To control for increased false positive rate, a high threshold value was used. To
quantify it, null distributions were computed randomizing the signal values and
computing new correlation coefficients in all the genomic contexts described below.
Through this procedure, the threshold value was set to the above mentioned value
0.5).

For each gene, candidate regions were searched in different genomic contexts
(Figure 4.2):

* Gene’s TSS. ATAC-seq signal was quantified in a 1 kbp area centered on gene
TSS and normalized according to the DARs pipeline (Publication I). Corre-
lation values were computed between such accessibility value and expression

level of the annotated gene (Figure 4.2A).

* Gene’s promoter area. For each gene, an asymmetric promoter region of 1.1
kbp spanning 1 kbp upstream to 100 bp downstream of the TSS was defined.
Normalized intensity values of ATAC-seq peaks and DARs overlapping this
region were used to compute correlation with gene expression level (Figure

4.2B).

* Closest gene to each ATAC-seq feature. Genomic distance between each
peak or DAR and their closest gene was computed with HOMER [226]. Nor-
malized intensity value of ATAC-seq features and closest gene was computed
(Figure 4.2C).

® Genes and ATAC-seq features within the same TAD. TADs boundaries
from PCa cell lines were retrieved from publicly available data [227, 228].
Genes and ATAC-seq features localizing to the same TAD were detected and

correlation between all couples computed (Figure 4.2D).

Integrated analysis with ChIP-seq. To characterize transcriptional programs driv-
ing PCa progression, TF binding sites were searched in DARs with accessibility signal
showing strong correlation with gene expression. Genomic locations of TF binding
sites detected with ChIP-seq were retrieved from GTRD [229]. This database collects
uniformly processed peaks from ChIP-seq experiments ran in cellular models. In
brief, to generate this data, ChIP-seq reads were collected from different source and
aligned to the same genome version. Peaks were detected with four different methods

and clustered according to experimental conditions (e.g. cell line or treatment). For
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Figure 4.2 Schematic representation of genomic contexts used to assign genes their candidate regulatory
regions. A. Correlation between gene expression and chromatin accessibility signal quantified
in the TSS region. B. Correlation between gene expression and peaks or DARs overalapping
the proximal promoter region. C. Correlation between ATAC-seq peaks or DARs and their
closest annotated gene. D. Correlation between all genes and peaks or DARs within the same
TAD.

clustering, peaks got reduced to their centers, i.e. the center base of the binding site
and, finally, clusters for the same TF were joined into metaclusters. Cluster located
50 bp away from each other were grouped to generate the set of binding sites used in
this analysis. If a binding site from GTRD overlapped any DAR identified during the
correlation analysis, the TF was reported to be present in that feature. The overlap
procedure was implemented in R 3.5.2 using the findOverlaps function from the

genomicAlignments package (Bioconductor 3.5.2).

Building of a regulative network. From previous analyses a set of genes and a set
of accessible genomic features were identified. In these features TF binding sites have
been detected and a putative regulative function inferred. To discover groups of TF
co-regulating gene expression, a regulative network was built. For each TF, the list of
genes correlating with accessibility of features reporting a binding site was computed,
resulting in a list of putative regulated genes. For each couple of TFs the number
of shared genes was computed resulting in a contingency matrix. Couples of TFs
sharing less than 300 genes were discarded. From this filtered matrix, an undirected

weighted graph was built (Figure 5.2). Transcription factors were represented as nodes
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and the number of shared putatively co-regulated genes encoded in the edge weight.
In order to visualize it, edges were pruned and only the upper half of the edges weight
distribution retained. Edge color and width was set to reflect the weight value and

interesting genes were highlighted by increasing the node size (e.g. AR).

4.2 Web resources for intrinsic protein disorder annotation

(Publication I, Publication IlI)

The general structure of the two software applications developed for intrinsic pro-
tein disorder annotation is very similar (Figure 4.3), both of them are composed of
three software layers: a data layer powered by non-relational DBMS storing protein
annotations, a back-end layer querying the database and serving query results via
REST endpoints and a front-end layer making use of the back-end to display data via
a standard web browser. This separation of concerns improves modularity and code

re-usability, allowing to decouple the development of all components.

4.2.1 Databases

IDP annotations for both DisProt and MobiDB are stored in non-relational DBMS.
The engine of choice for both the applications is MongoDB 3.8. Data are stored
as JSON objects (also called documents) which are constituted of key-value pairs.
Sets of related documents are grouped in collections. In MongoDB, documents are
unrelated entities, thus, no joining operation can be performed across collections or

within a single collection of documents.

DisProt DisProt annotations are stored in an IDR-centric fashion: each IDR is
represented as a separate document within a collection. Each document has a unique
internal identifier and carries information about IDR localization on the protein
sequence. Moreover, an identifier for the protein of origin, experimental detection
method, reference to the experiment reporting paper, identifier for the person that
curated the annotation and timestamp are stored. Each IDR belongs to an IDP and
each IDP can have multiple IDR of variable length. To handle such redundancy,

a separate collection of entries representing proteins was designed. These, store
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Figure 4.3 Schematic representation of software stack used for IDP databases. Intrinsic protein disorder
annotations are generated by either manual curation of literature-derivered evidences or a
dedicated pipeline and stored in locally managed MongoDB instances. Upon user interaction,
the client layer sends HTTP requests to an underlying software layer that is able to interact
with a database instance. When the database operations are completed, the results of the
queries are sent back to the client layer in JSON format and get displayed in a standard web
browser.

protein data such as name, sequence, organism of origin and a list of alternative
names. Moreover, three lists of cross-references are available for each entry. The
first is a list of PDB identifiers representing 3D structures for the protein, the second
is a list of Pfam domain identifiers and the third is a list of annotations from the
previous release MobiDB. Next to the core data collections, DisProt stores data
about the biocuration team that generated the ID annotations. For this, a separate
collection was deployed. This data organization is easy to maintain but very close to
the relational paradigm: entries have a fixed schema with nullable fields. Implication
of this schema is the need to query multiple collections to fetch data for a single
protein. In the back-end, data aggregation routines had to be implemented in order to
provide data for front-end layer and headless REST calls. Overall, this organization
is very similar to relational DBMS with the extra complexity of implementing a the

aforementioned "join routines".
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MobiDB. The MobiDB database contains intrinsic protein disorder annotation
for every protein from the UniProt database [230]. Annotations are organized in
three tiers reflecting the confidence in information provided by the source. Internally,
MongoDB documents schema reflects this organization even if a single collection
holds data for all proteins. Here, each protein is represented by a document. Within
each document, along with basic data about the protein (protein name, synonims,
organism, sequence etc.) variable fields represent the available layers of data: the
mobidb_consensus field reports aggregated data from the three layers, mobidb_data
field lists all available data from the three data layers, finally special fields pdb and
bmrb report cross-references and metadata from these two specialized databases. This
internal organization conforms with the non-relational phylosophy. Documents
in the database do not have fixed structure and are completely unrelated one to the

other. This approach further simplifies database management.

4.2.2 REST back-end

In both DisProt and MobiDB, the back-end service is implemented using the Node.js
framework. DisProt back-end is implemented using Node.js 0.10, while MobiDB
using Node.js 6.9.0. These services are implemented as RESTful API: interaction
with the data is granted via standard HTTP requests using specific URL addresses.
Query parameters are either specified as query strings in URL of GET requests or
in the body of POST requests. Both services return JSON documnents. Advanced
users can use these bypassing graphical user interfaces as the endpoints are publicly
accessible. This functionality relies on the JS Restify library 3.0.2 for DisProt and
5.0.1 for MobiDB.

Both web-services use JSON as primary data format. This choice simplifies
the interaction with underlying MongoDB DBMS by matching its internal data
representation model. Utilization of Node.js further simplifies database interaction:
the JSON format is directly derived from JS objects representation, thus, using a
JS-based framework allows direct and transparent conversion between these two data

structures.
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4.2.3 Front-end

Front-end layers for the two applications rely on HT'TP endpoints exposed by their
respective back-ends. Using data returned by these calls, they process and visualize
them through a standard web-browser. These layers are developed using different
versions of the same JS framework: for DisProt, the front-end is implemented using
Angular.js 1.4.8 while for MobiDB Angular 4.4.4 [231] has been used. Version
differences imply a large amount changes in programming patterns. The main one is
the transition from vanilla JS (Angular.js) to Typescript, a syntactical superset of JS
that introduces static typing. The main advantage of using statically typed languages
is that they help programming tools, namely integrated development environments
and compilers, to understand code while writing it, allow the usage of tools for syntax
checking and static code analysis reducing bugs, syntactical errors and segmentation
faults. For both projects, the development of these layers was separate from others
improving overall modularity and code reusability.

Albeit technical differences, the architecture of these layers is very similar. Both
of them have an home page, an entry page and static pages to provide help and
information about the projects. DisProt front-end has also a browse page to surf
the content of the entire database with a tabular view. MobiDB, on the other hand,
implements a custom search engine. Graphically, also intrinsic protein disorder
annotations are depicted similarly: a widget, called features viewer, depicting a protein
as horizontal linear axis and annotations on vertical axis has been forked from public
space and adapted with advanced features to suit specific visualization needs for these
resources. MobiDB implements also sequence and structure viewers highlighting

annotations either on primary or tertialy protein structures.
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5 RESULTS

5.1 Gene expression regulation via chromatin accessibility

in prostate cancer progression (Publication I)

To characterize chromatin structure during PCa progression, ATAC-seq data were
generated. Reads were aligned to the human genome (GRCh38), quantified and peaks
detected. A custom procedure for signal normalization was implemented, the genome
split in non overlapping windows and DARs detected. Identified features were used
to investigate the role of chromatin accessibility in regulating gene expression during

PCa progression.

5.1.1 Identification of genes candidate regulatory regions

In order to establish the relationship between chromatin accessibility and gene ex-
pression, correlation between ATAC-seq signal and gene expression values (RNA-seq
and sRNA-seq) was computed. Both Pearson and Sperman correlation coefficients
were calculated. To identify either proximal and distal regulatory sites, the analysis

was run in different genomic contexts (Figure 4.2):

1. Gene’s TSS. Globally, correlation coefficients show only moderate values
(Spearman = 0.11, Pearson = 0.11). In PC to BPH comparison, enrichment of
upregulated DEG with increased accessibility at their respective TSS is observed
(Fisher exact test p < 1071¢). Several oncogenes related to PCa like MYC, AR
and BCL11A follow this pattern. In PC to CRPC comparison, an enrichment
of downregulated DEG with reduced chromatin accessibility in their respective
TSS was observed (Fisher exact test p =9.19-10 1),

2. In gene’s promoter area 418 peaks, one BPH to PC DAR, and 9 PC to CRPC
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Table 5.1 Number of genes with expression correlating with chromatin accessibility.

Genes DEG
TSS 713 99
Promoter DARs 10 2
Promoter peaks 414 68

DARs to closest gene 157 45
Peaks to closest gene 1,788 307

DARs in TAD 1,396 239
Peaks in TAD 8,697 861
Total available 20,008 1,424

DARs have strong correlation with expression of nearby gene. Eight out of
nine PC to CRPC DARs show increased accessibility. The only closing one is
located in the promoter of the MIR30A tumor suppressor miRNA [232] which
shows also downregulation in CRPC (log, fold-change = -1.24, Spearman p =
0.7 p=6.7-107).

3. The closest genes to each ATAC-seq feature shows strong association for
2265 peaks, 42 BPH to PC DARs and 136 PC to CRPC DARs. Distance
between peaks and genes varies from 769 kbp upstream to 1.03 Mbp with a
median of 602 bp and standard deviation of 105 kbp. For BPH to PC DARs it
varies from 89 kbp upstream to 188 kbp downstream with a median of 4.2 kbp
and a standard deviation of 51 kbp. Finally, for PC to CRPC DARs, distance
varies from 348 kbp to 782 kbp with a median of 8 kbp and a standard deviation
of 90 kbp.

4. Genes and ATAC-seq features within the same TAD mostly contribute
to the detected correlation. This observation supports the idea that distal
regulation controls changes in gene expression: 27,274 peak-gene pairs in 1,860
TADs and 3,535 DAR-gene pairs in 526 TADs were identified to have strong
correlation. Peak-gene pairs consist of 17,066 unique peaks and 8,697 unique
genes. DARs-gene pairs consist of 284 unique BPH to PC DARs and 1,037
PC to CRPC DARs. In other words 9.6% of all peaks, 16.4% of all BPH to
PC DARs and 29.6% of PC to CRPC DARs were associated with at least one
target gene within their TAD.
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Overall, from the joint analysis of gene expression and proximal accessible features
(analyses 1 and 2) a weak global correlation emerges. In spite of this, the change
in expression of some disease-relevant genes is strongly associated with change of
chromatin accessibility suggesting promoter reconfiguration during transitions from

benign hyperplasia, primary PCa and after androgen deprivation therapy.

From analyses 3 and 4 the role of distal regulation in driving cancer progression
emerges. The significant detectable correlation between accessibility signal and gene
expression suggests that these regions are actually involved in regulation of target

genes and may function as enhancers.

Taken together, 45.5% of genes were associated with at least one ATAC-seq feature.
The expression of 42 known oncogenes (e.g. EGFR, ERBB2, JUN, FGFR1 and FGFR?2),
27 tumor suppressor genes (e.g. NOTCH1, BRCA1, BRCA2, IL2) and 22 chromatin
remodellers (e.g. HDAC1, HDAC2, HDAC5, HDAC6, HDAC9, HDAC10, SMARCDI)
correlated with the chromatin accessibility of at least one peak. Furhtermore, the
expression of 4 oncogenes (JUN, PIM1, CARD11 and TFG), 5 tumor suppressor genes
(PTEN, NOTCH1, CDK6, FH, WT1) and 2 chromatin remodeling factors (HDAC7
and CHRACT) were strongly associated with DARs accessibility.

Genes with differential expression pattern, show stronger correlation with chro-
matin accessibility: 62.4% of them show correlation with at least one ATAC-seq
feature. This supports the idea that majority of progression-related gene expression
variation can be explained by chromatin accessibility in PCa progression. Chromatin-
accessible features associated with gene expression are mostly located upstream of
TSSs (median distance 5.6 kbp). Moreover, 44.2% (4,051) of the genes with expression
correlated to chromatin accessibility are linked to exactly one regulatory element
and 107 genes (1.2%) can be associated to 30 or more regulatory elements (mean =
1.7). Similarly 71.6% (13,983) of peaks or DARs correlating with gene expression are
associated with a single gene and 48 are linked to 30 or more unique genes, indicating

that those might be super enhancers (mean = 0.2).

At a global scale, the results of these analyses show that the degree of correlation
is not detectable: median correlations values are Pearson p = 0.04 and Spearman p =
0.03. Some ATAC-seq features, however, show strong correlation values (Pearson
p €[—0.8,0.92], Spearman p € [—0.79,0.85]) implying that chromatin structure is

relevant in regulation of key genes involved in the disease.
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Figure 5.1 Relative abundance of significant correlations detected in different genomic contexts. Raw
values are reported in Table 5.1.

5.1.2 Identification of transcriptional programs involved in prostate

cancer progression

Candidate regulatory regions were identified from previous analyses. These regions
were selected to display a strong correlation between Tn5 accessibility and expression

of target gene.

In order to detect TFs governing the expression of genes driving PCa progression,
a regulative network was generated. It connected TF sharing target genes via DARs
correlating with gene expression and displaying binding sites. Groups of TF sharing

target genes were identified and defined as regulative modules.

The module connected to most genes included AR, FOXAT1, ESR1, and ERG.
These TF are well known for their involvement in sustaining tumor growth. Another
module included, among the others, SP1, HOXB13, TP63 and FLI1 (Figure 5.2). The

genes connected to these latter TFs were a subset of those connected to the members
of the AR module.

Shared binding sites for PCa-specific TF were searched in accessible features to
study their co-localization pattern. Regions of interest were split by increased or
reduce chromatin accessibility and proportions of detected binding sites compared.
AR was the most frequent TF in all conditions in both comparisons: its binding sites
were present in 92% (215) and 48% (24) of opening and closing BPH to PC DARs.
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Figure 5.2 Regulative network of TFs involved in PCa progression. Target genes were assigned to each
TFs via the correlation analysis described in Section 5.1. From the network emerges a core AR
module and the secondary one of other factors. TFs described in Section 5.4 are highlighted
by larger, circled nodes. Edges are drawn between couples of TFs that share more than 278
genes (55% of the distribution of shared genes). Edge color and width are proportional to the
number of shared genes: wider, darker edges represent higher number of shared genes.

Among these, 58.1% of opening and 4.3% of closing DARs, reported binding sites
also for FOXA1 and HOXB13. This observation hints to increased availability of TF
binding sites for factors belonging to the AR module during transition to primary
PCa. On the other hand, in PC to CRPC comparison 25% (209) and 92% (177) of
opening and closing DARs, respectively, reported AR binding site. Of these, 6.4% of
the opening ones displayed FOXA1 and HOXB13 binding sites, while 39.2% of the

closing ones report this pattern.
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To investigate the role of TFs from the other module, the analysis was expanded
to all available TF. Opening DARs show augmented number of TF binding sites
for SP1, TP63 and FLI1 with respect to closing PC to CRPC DARs. This suggests
that, albeit sites available in primary PCa are target of AR and mostly stay open over
the transition to advance PCa, new sites open during the progression enabling other
TFs to bind and complement canonical AR regulative action. These TF, thus, act as
co-modulators of the AR-driven stimulation of gene expression contributing to the

more aggressive castration resistant phenotype observed in later stages of the disease.

5.2 DisProt (Publication Il)

5.2.1 Database description

DisProt collects high quality literature-derived manually-curated annotations on IDPs.
Two types of documents are stored in the database: "protein" and "disordered region"
(IDR) documents. The former collects general information on a protein, while the
latter holds disorder evidences from literature. Nomenclature of both proteins and
IDR have been standardized with respect to previous database releases.

Protein information is taken from UniProt and stored in DisProt in a sequence-
centric manner. Proteins isoform are stored separately because isoforms are produced
by different mRNA. On the other hand cleaved proteins are merged in unique entries
because they originate from the same precursor chain.

Disordered regions information is stored in an evidence-centric manner. For
each experiment on a region, separate documents are stored. This pattern allows for
simpler tracking of literature reference and for the introduction of a system to flag
inconsistencies. DisProt reports three types of inconsistency: ambiguous sequence,
ambiguous literature and ambiguous experiment. The fist type aims at reporting dis-
order evidence determined in non-physiological sequences, e.g. engineered sequence
or fragments. The second is used to describe unclear statements about regions and the
third issued when experimental conditions used to determine the disorder state of the
region are too different from physiological state. Each region carries also functional
annotations. The set of controlled terms used to describe IDR functions were gen-
erated during the annotation process by expert biocurators that reviewed literature

and generated the data. These terms are organized in three separate sets aiming to
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Table 5.2 DisProt organisms. Organisms with less than 5 annotated proteins were aggregated.

Organism Number of IDP
Homo sapiens 231
Saccharomyces cerevisiae 49
Escherichia coli 44
Mus musculus 44
Bos taurus 31
Rattus norvegicus 30
Arabidopsis thaliana 20
Drosophila melanogaster 13
Human immunodeficiency virus type 1 group M 9
subtype B

Escherichia coli O157:H7 8
Gallus gallus 7
Bacillus subtilis 6
Escherichia coli 6
Mycobacterium tuberculosis 6
Glycine max 5
Methanocaldococcus jannaschii 5
Oryctolagus cuniculus 5
Spinacia oleracea 5
Sus scrofa 5
Others 227
Total 756

describe different functional aspects of IDR by standardizing the terminology.

Proteins collected in DisProt 7 come from 198 different organisms (Table 5.2) and
have been studied using 36 different experimental procedures (Table 5.3).

5.2.2 Disorder functional ontology

The term "intrinsically disordered protein" is used to describe a continuum of struc-

tural states a protein can take. These range from folded to fully unfolded. The
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Table 5.3 Experimental methods used to identify IDRs in DisProt. Methods with less than 10 annotated
IDR have been aggregated.

Method Number of IDR
Nuclear magnetic resonance 1,434
Missing electron density 1,329
Circular dichroism spectroscopy far-UV 932
Sensitivity to proteolysis 239
Proton-based nuclear magnetic resonance 198
Size exclusion/gel filtration chromatography 179
Circular dichroism spectroscopy near-UV 102
Sodium dodec‘yl sulfate polyacrylamide gel 93
electrophoresis

Fourier transform infrared spectroscopy 82
Small-angle X-ray scattering 78
Dynamic light scattering 64
NMR-based hydrogen-deuterium exchange 61
Analytical ultracentrifugation 54
Fluorescence intrinsic 51
Immunochemistry 29
Stability at thermal extremes 28
Differential scanning calorimetry 26
Fluorescence polarization/anisotropy 24
Site-directed spin-labelling electron paramagnetic 2
resonance spectroscopy

Rotary shadowing electron microscopy 19
High relative B-factor 14
Mass spectrometry-based high resolution

hydrogen-deuterium exchange B
Atomic force microscopy 11
Electrospray ionization fourier transform ion 1
cyclotron resonance mass spectrometry

Viscometry 10
Others 61
Total 5,162
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structural state of IDP and IDR has functional implications: IDP in a structured
state may have different functions than in a unstructured state, thus it is important

to categorize functional implications a structural state can have.

The DisProt ontology is inspired from Gene Ontology [233, 234], the most widely
used, standardized resource for description of biological molecular species. The Gene
Ontology is organized in three branches: biological process, molecular function and
cellular component. Altogether these three branches can be used to categorize genic
product with a standardized terminology. Similarly, the DisProt ontology, is divided
into three branches that describe three different functional aspects of IDPs. The main
focus of these terms is on the molecular function because it is the most different from
globular proteins and enzymes. Other two branches aim at describing molecular
structural transition an IDP undergoes in order exert its function and the interaction
partner it binds to perform it. The DisProt ontology provides basis for standardized

description of IDPs functional aspects.

5.2.3 Biocurator interface

As mentioned above, DisProt data has been manually annotated by a team of expert
curators. To achieve this, they used a dedicated publicly available interface specifically
developed for this purpose. Upon login, a biocurator could search a dedicated tempo-
rary collection to retrieve older entries or generate new ones. In either case, protein
data from UniProt [230, 235], disorder predictions from previous MobiDB release
[154] and Pfam annotations [236] were collected and stored in the DisProt database
(Figure 5.3A). Next, the curator could add data from literature to describe a disorder
region and store it remotely using the aforementioned graphical interface (Figure
5.3B). To generate a new annotation, biocurators had to insert intrinsically disordered
region coordinates on a protein chain together with a PubMed id of a paper reporting
the experimental identification. On top of these mandatory information, curators
could report experimental detection methods, cross-reference PDB [237, 238], add

functional annotation, name the region and add a free text comment.
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Figure 5.3 DisProt biocurator interface. A. Graphical representation of the algorithm used to prefetch
data upon biocurator request to generate a new entry or update an existing one. B. The web
form used by biocurators to upload literature-derived annotations on IDRs for an hypothetical
protein.
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5.2.4 Data accessibility

DisProt data are accessible through the web-interface and a REST application pro-
gramming interface (API) (Figure 4.3). The web-interface featured a tabular view that
allows for quick subset and search of entries. This view allowed to download the
entire dataset or a subset generated by filtering the table. Multiple download formats
were available.

For each protein, an entry page was available. At its top it showed general in-
formation from UniProt, followed by a summary view of all annotated IDRs and,
finally, a detailed list reporting all IDR annotations. For each region, coordinates on
the protein, experimental identification procedure, literature reference and name of
the curator are reported.

Advanced users could take advantage of the REST API to directly query the
database and download custom subsets of the data or extend third-party applications

by including DisProt annotation in other custom views.

5.3 MobiDB (Publication Ill)

5.3.1 Database description

MobiDB represents the central repository of intrinsic protein disorder annotation
because it provides intrinsic protein disorder annotation for the entire protein uni-
verse. Data in the database is organized in three tiers: the top one is made of manually
curated data from external databases, the second is derived from indirect experimental
evidences and the third is made of predictions. For each protein, three annotation
types are available: direct evidences of ID, LIPs and secondary structure population.
These two complementary aspects shape documents in MobiDB. Annotations dis-
played in the web interface are a synthesis of all available information computed by

prioritizing curated and indirected evidences but detailed data are visualized as well.

Curated annotations. Curated annotations are collected from ten databases. UniProt
and DisProt provide general curated disorder annotation. DisProt annotation was
propagated to homologous proteins using GeneTree [239] alignments. FuzDB [240]

provides data for regions involved in fuzzy complexes which are relevant for pro-
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tein complex formation, regulation and higher-order assemblies. ELM [241] and
IDEAL [242, 243] provide curated annotation for LIPs. The term "LIPs" is vague in
litearature: in ELM, these features are reported as "SLiMs" (short linear interacting
motifs), in previous literature they are referred as "MoREs" (molecular recognition
features), while in IDEAL they are called "ProS" ("protean” segments"). In MobiDB,
the term linear intercting peptide (LIP) is used to describe such features from all these
different sources aiming at unifing the terminology. More annotations are pulled
from two specialized databases Disordered Binding Site database (DIBS) [244] and
Mutually Folding Induced by Binding database (MFIB) [245]. The former reports
annotation for folding upon binding proteins, while the latter for mutually induced
folding regions. Gene3D [246] provides curated annotations and prediction on pro-
tein structure, complementing MobiDB annotation. Curated and predicted Pfam
[236] structural domains are also used. Moreover, CoDNaS [247, 248] provides

indirect annotations for conformational diversity from NMR experiments.

Indirect annotations. Indirect annotations are derived from PDB [249, 250] and
BioMagResBank (BMRB) [251]. Disorder information can be inferred from X-ray
crystal structures deposited at PDB by analyzing three parameters: high temperature,
missing residues and mobile residues. These analyses are carried out using the MOBI
2.0 [155] and RING [167] servers. High-temperature is calculated from B-factor
regions, while missing residues are inferred from X-ray and cryo-EM structures
by comparing the experimental PDB sequence with the observed crystallized one.
Mobile residues are calculated using structural ensemble from NMR experiments by
comparing the displacement of protein backbone in different aligned models. Also
LIP can be inferred from molecular structures and are calculated by comparing inter-
and intra-chain contacts. In this context, they are defined as regions with double
number of inter-chain than intra-chain contacts. Chemical shifts are measurement of
fluctuations in protein structures and BMRB is a publicly available repository for such
data. NMR experiments allow for measurement of chemical shifts and their analysis
allows the reconstruction of ensemble of secondary structure elements transiently
forming in a peptide chain. This data is useful to identify protein regions that fold
for a short period of time (up to the millisecond scale) and help to overcome the
order/disorder dicotomy. Together with secondary structure populations, MobiDB

reports experimental conditions at which these transient folding was observed. If
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Figure 5.4 Visualization of the annotations from MobiDB 3.0 on protein sequence and structure. In red,
IDRs as computed from mobile residues on the two reported PDB structures. In blue, residues
sitting in a folded region on the protein. Entry: FLI1, UniProt: Q01543.

multiple chemical shifts were available, an overview was calculated and presented to

the user.

Predictions. Intrinsically disordered protein predictions are computed using ES-
pritz [165], IUpred [ 160, 161, 162], DisEMBL [169] and VSL2b [171]. DynaMine
[175] is used to predict backbone flexibility, Anchor [164] to predict binding sites
within disordered regions and LIPs. Secondary structure elements are predicted with
FELLS [166], 82D [156] and RCI [157, 158, 159]. Separate predictions are merged
in a consensus using the MobiDB-lite tool [252] which implements a majority vote
strategy to unify separate predictions and enforces 20 consecutive residues to report a
disordered region [252].

5.3.2 Data accessibility and visualizations

Similarly to DisProt, data stored in MobiDB are accessible via standard web browser
and using a REST application programming interface (API) (Figure 4.3). The web
interface, for each entry, all available data are reported with a specialized interactive
feature viewer. Data are organized in subsets and the user can select which to display.
Four groups are defined: curated, indirect, predictions and interaction. Data in the

feature viewer are organized in vertical tracks with the protein sequence acting as
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Figure 5.5 DisProt annotations for TFs involved in PCa progression. A. AR - DisProt: DP00492. UniProt:
P10275. Pfam: zinc finger nuclear hormone receptor-type (PF00105), nuclear hormone
receptor ligand-binding domain (PF00104). Gene3D: erythroid transcription factor GATA-
1, subunit A (3.30.50.10), retinoid X receptor (1.10.565.10). B. SP1 - DisProt: DP00378.
UniProt: P08047. Pfam: Zinc finger C2H2-type (3x PF00096). Gene3D: classic Zinc Finger
(3.30.160.60). Pfam and Gene3D domains are listed from N- to C- terminal. Color codes are
the same as Figure 5.6.

horizontal axis. Each feature, in each track, is color coded to simplify interpretation
(Figure 5.5 and Figure 5.6). By selecting any feature, textual information are displayed.
Data contributing to a specific feature track can be shown by clicking on the track
label. Features derived from molecular structures can also be viewed in an interactive
three-dimensional viewer that depicts the structure maintaining the color code of
the main viewer (Figure 5.4). Same features can be displayed also on the primary
sequence with a dedicated widget that behaves similarly to the three-dimensional
viewer (Figure 5.4).

The MobiDB API can be used by advanced users to interact with the database and
retrieve specific subsets or organism-specific data and perform custom queries. The
web-interface provides access a set of pre-computed datasets and implements a search

engine which allows the user to browse the database.

5.4 Structural features of transcription factors involved in

primary prostate cancer progression

Transcription factors from the modules described in Section 5.1.2 share structural

features. Structural annotations for all these proteins are available in PDB and Pfam.
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Intrinsic protein disorder annotations for AR and SP1 can be found in DisProt,
while ID annotations for FOXA1, HOXB13, FLI1 and TP63 can be retrieved from
MobiDB.

AR The AR TF is a nuclear steroid receptor. Pfam reports three structural domain:
an N-terminal modulatory domain, a C-terminal hormone binding domain and a
DNA binding domain (Figure 5.5A). Receptor activation upon hormone binding
on the C-terminal domain, induces the folding of a helix disclosing a groove that
binds to the N-terminal modulatory domain. This displacement allows the protein
to dimerize and to bind its target sequence on the DNA. The DNA binding domain
is composed of two zinc-fingers: the first binds to the DNA major groove, while
the second stabilizes this interaction and is required for receptor dimerization. The
folding-upon-binding event that characterize AR activation is reported in DisProt by
three experiments. These, characterize a region spanning 342 residues with different
techniques. The three sources agree on the transition induced by the ligand and report
it as a "disorder to order transition". They also add that the region is involved in
protein binding and in modulation of the activity of a partner molecule, the hormone.
To describe the role in dimerization, this region is annotated to be involved in the

assembly of molecular complexes.

SP1 Pfam annotation for SP1 reports only the DNA binding domain which is made
of three zinc finger modules. DisProt complements this annotation reporting data
from nine experiments on two distinct IDRs. The first region is 63 amino acids long,
from Pro 153 to Ile 215. The second IDR is 153 amino acids long, from Thr 342 and
Thr 495. These regions correspond to binding sites detected to interact with TAF4
and to dimerize (Figure 5.5B).

FOXA1 For FOXAT1 (Figure 5.6A), three Pfam domains are reported: the forkhead
N-terminal region, the forkhead domain and a C-terminal region homologue to the
Hepatocyte Nuclear Factor 3 (HNF3) ¢ and 3 chains. Within this last domain,
MobiDB reports a linear motif from ELM. No indirect ID annotation from X-ray or
NMR data is reported from PDB. Predictions from MobiDB-lite report an IDR from
Glu 269 to Pro 392, in a region between the forkhead domain and the C-terminal
domain. Inspecting results from single predictors, heterogeneous predictions can be

retrieved. Although such diversity, MobiDB-lite consensus prediction is backed by
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Figure 5.6 Summary of available annotations for TFs involved in PCa progression. A. FOXA1 - UniProt:
P55317. Pfam (N-terminal to C-terminal): Fork-head N-terminal (PF08430), Fork head domain
(PF00250), Forkhead box protein C-terminal (PF09354). B. HOXB13 - UniProt: Q92826.
Pfam: homeobox protein Hox1A3 N-terminal (PF12284), homeobox domain (PF00046). C.
TP63 - UniProt: Q9H3D4. Pfam: p53 DNA-binding domain (PF00870), p53 tetramerisation
domain (PF07710), sterile alpha motif domain (PF07647). D. FLI1 - UniProt: Q01543. Pfam:
Pointed domain (PF02198), Ets domain (PF00178). The "Consensus" track reports aggregated
annotations from databases and predictions, "Consensus (derived)" aggregated annotations
from databases only. Pfam, ELM and MFIB tracks report annotations from respective database.
"Missing residues”, "LIPs" and "Mobile" tracks report evidences from missing electron densities
of X-ray-determined structures, linear intercting peptides and mobile residues in NMR structural
ensembles deposited in PDB. Finally, "MobiDB-lite" reports the consensus annotation from all
predictors run by the MobiDB-lite meta-predictor.
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secondary structure predictions from FeSS and flexibility prediction from DynaMine:
this region shows the lowest propensity to form helices or sheets, while predicted

backbone flexibility is relatively high.

HOXB13 Two domains are annotated for HOXB13 (Figure 5.6B) from Pfam: A13
N-terminal domain and the homeobox domain. A portion toward the N-terminal of
the protein has been studied with X-ray crystallography, thus, six crystal structure
of this fragment are available from PDB. Altogether, they provide indirect evidence
of a LIPs from Arg 217 to Tyr 223. From missing electron density, two short IDR
can be inferred. The first one from Asp 209 to Gly 216 or Arg 217, depending on
the PDB entry, and the other from Lys 277 to Pro 284, the last residue of the protein.
These two regions are annotated around the homeobox domain. The ambiguity in
region boundaries from missing electron densities (Gly 216 or Arg 217) is reported
in the feature viewer as a conflict. For this protein, the consensus computed by
MobiDB-lite reports a completely folded or structured protein. This result emerge

from the disagreement of all underlying predictors.

TP63 For TP63 (Figure 5.6C), the N-terminal TP53 DNA-binding domain, TP53
tetramerization domain and a C-terminal SAM interaction domain are reported
from Pfam. From ELM, a degron motif from TP53 N-terminal domain is retrieved.
Curated annotations from the MFIB database report two features overlapping the
tetramerization domain. These annotations refine the Pfam ones by reporting that
these features are TP63/TP73 specific and add the information about mutually in-
duced folding event. ELM and MFIB annotations are used in MobiDB to infer LIPs
locations. For TP63, a large amount of indirect intrinsic protein disorder evidences
is available. From X-ray resolved structures from PDB, a similar conclusion can be
drawn. Because the crystallized protein is just a fragment of the whole peptide chain,
only partial description of its structural organization can be drawn. Nevertheless,
from inspection of the X-ray data, indirect evidences of a short LIP region overlapping
the tetramerization domain can be inferred. Missing electron density in the same crys-
tal from PDB reports a folded regions with ambiguous short missing residues. From
mobile portions of structural ensemble derived from NMR experiments deposited at
PDB, an IDR can be indirectly derived: five experiments contribute to build evidences
of multiple short IDR overlapping the tetramerization domain. Evidences from chem-

ical shifts complement these observations by providing more precise annotations of
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secondary structure elements within the DNA-binding and tetramerization domains.
Predictions from MobiDB-lite and secondary structure elements confirm the indirect
evidences derived from databases. MobiDB-lite predicts three IDR: one overlapping
with the DNA-binding domain, and the other two localized in the neighborhood of
the tetramerization domain. Prediction of secondary structure elements from FeSS,

confirm these predictions showing lowest prediction scores for helix and sheets.

FLI1 The FLI1 gene codes for an ETS TF. Pfam annotation coherently reports
(Figure 5.6D) the ETS DNA-binding domain toward the C-terminus of the protein.
The sequence of the domain confers these TFs their binding specificity. Like other
proteins of the same family, FLI1 shows a highly conserved Pointed domain toward the
N-terminus which is used for protein interaction. Indirect evidences from databases
report IDR flanking these two domains. LIPs annotation derived from PDB structures
is ambiguous and depends on the stucture under analysis. Missing electron densities
agree on a IDR downstream of the ETS domain. Residues on the flanking region of
ETS domain are relevant for binding specificity of the transcription factor. Mobility
data from PDB extend this data by adding two IDRs on flanking regions of the Pointed
domain. Predictors report slightly different results: the MobiDB-lite consensus
reports one long region between the two domains. Inspecting predictions from
underlying tools, seven out of ten tools report an IDR close to the Pointed domain,
while five out of ten report another IDR downstream of the ETS domain. Secondary
structure predictions from FeSS report highest scores in regions annotated with
the mentioned structural domains. IDR annotation inferred either from indirect

evidences or predictions agree on their location outside structural domains.
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6 DISCUSSION

Prostate cancer growth is sustained by testosterone stimulation. After first line treat-
ment, primary PCa frequently relapses to a more aggressive, testosterone insensitive
form. Benign prostate hyperplasia is characterized by localized hypertrophy of the
prostate gland. Primary PCa differs from BPH for the elevate PSA secretion and
sensitivity to androgen stimulation. According to detected PSA level, treatment
options vary: watchful waiting, surgery, radiotherapy or hormonal treatment can
be used to treat primary PCa in the clinic. The relapsed stage, castration resistant
prostate cancer, can be treated with antiandrogen therapies.

Primary PCa is characterized by widespread genomic alterations, e.g. fusions,
amplifications, deletions and SNPs on chromosomes 7, 8, 13, 17 and X involving loci
conding for oncogenes and tumor suppressor genes such as ar, MYC, ERG, other ETS
genes and HOX genes. Transition to CRPC further selects for highly aggressive and
resistant phenotypes. Typical mutations of this stages are deletions of chromosome
17q that hosts TP53, BCL2 overexpression and abnormal activation of the PI3K/Akt
pathway.

Chromatin structure and gene expression are two fundamental processes altered
during cancer progression to CRPC. Chromatin structure regulates gene expression
by allowing or denying physical access to binding sites to TF and by acting on the
speed RNA polymerase II synthesize pre-mRNA [253, 254].

6.1 Role of enhancers in prostate cancer progression

To investigate how chromatin structure interact with gene expression, chromatin
accessibility across the three PCa stages was quantified with ATAC-seq. For the same
samples, methylation, RNA-seq and proteomics data were available.

Gene expression is a tightly regulated process, involving coordinated interaction

of many biochemically heterogeneous partners. First, responsive element recognition
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on genomic DNA involves protein-DNA interaction. This process requires that the
target genomic sequence is physically available for binding. Availability is determined
by factors like nucleosome positioning and overall chromatin compression. Next,
to activate gene expression, the transcription machinery must be assembled and
activated. This process requires interaction of multiple DNA bound factors and
cofactors. Extensive genomic DNA structural rearrangements and phase-separation
drive these interactions. In pathological conditions, this complex and finely regulated
mechanism gets altered. Such alterations result in cell cycle perturbation, tumor mass

development, subclonal evolution, migration and metastasis.

To elucidate the relationship between chromatin accessibility and gene expression,
correlation was calculated among ATAC-seq and RNA-seq in four different genomic
context. First, proximal accessible features were considered. Overall, weak correlation
between accessiblity of proximal elements and gene expression was detected. This
observation confirms previous results [ 255, 256, 257, 258] and hints at the role of
enhancers in gene expression regulations. To investigate this hypothesis, distal ATAC-
seq features were correlated with gene expression. Closest gene to any feature and all
pairs of genes and ATAC-seq features within the same TADs were also considered.
Detected global correlation was weak but a stronger relationship was observed for a

subset of DEG genes across disease stages.

Globally, through correlation analysis at least one regulatory region was assigned
to 84.7% genes with differential expression. The majority of these assignments were
from distal elements, highlighting the importance of enhancers in regulating gene
expression during PCa progression. The reduced sample size, however, may hinder
observations by introducing false positives: for example, strong correlations may be
detected due to one or few outlier samples. Moreover, in an effort to minimize this
phenomenon, too stringent threshold values might have been used resulting in an
increased false negative rate. Furthermore, TAD coordinates used to detect genes
and ATAC-seq features couples were determined in cellular models of PCa. These
may not describe the actual state of chromatin in the sample cohort resulting in
erratic associations between genes and ATAC-seq features. Another limitation of this
approach is to compute only direct correlations. Complex patterns of interaction
involving more than one enhancer with a single promoter, multiple enhancers or
multiple promoters have been shown to have an additive effect on gene expression
[24, 259, 260, 261].
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6.2 Transcription factors involved in prostate cancer

progression

Candidate regulatory regions were assigned to target genes through correlation analy-
sis. Next, to elucidate transcriptional programs active in PCa progression, TF with
binding potential to these regions were detected. Unsurprisingly, the one with the
highest count of binding sites across all conditions and comparisons is AR. Similarly,
on chromosome Xq12, expression of AR displays correlation with 48 peaks and 5
DARs from the PC to CRPC comparison, one of which overlaps with a previously re-
ported enhancer [262]. These DARs display binding sites for AR, FOXA1, HOXB13
and ERG. These observations confirm the role of AR and other members of this

module in PCa establishment and progression.

AR shares high number of putatively regulated genes with FOXA1 and HOXB13
[263]. Co-localizing binding sites for these three TFs were observed in DARs with
increasing availability from BPH to PC comparison and reduced availability in PC
to CRPC. This observation supports the idea that collaborative function of these
proteins is required for primary PCa establishment, while for castration resistance,
cooperative action of these factors becomes less prominent in favor of other co-
modulating TFs. Co-modulators do not replace AR but rather collaborate to drive
androgen independent tumor growth as demostrated by the reduced number of co-
occuring binding sites for factors from the AR module in newly accessible features
from PC to CRPC comparison. In section 5.1.2 three more co-modulating TFs were
described: SP1, TP63 and FLI1.

The FOXA1 oncogene codes for a transcription factor belonging to the forkhead
protein family. It is known to have pioneering activity by recruiting bromodomain-
containing proteins and histone methyltrasferases. These proteins increase local
H3K27ac and H3K4me1/me2/me3 that, in turn, recruit other chromatin remodeling
proteins to reposition histones. Augmented accessibility allows binding of AR to en-
hancer elements, interaction with the initiation complex assembling on the promoter

of a target gene and activation of the transcription machinery [264].

The HOXB13 tumor suppressor gene codes for a protein belonging to the home-
obox family which is involved in cell differentiation during development. Specifically,
HOXB13 belongs to the AbdB subfamily which is involved in differentiation of
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posterior domain development including urogenital tract. HOXB13 interacts with
AR [265]. The AR-HOXB13 complex represses expression of genes with androgen
responsive elements alone and stimulates genes with both androgen and HOX re-
sponsive elements in their promoter [265]. It has also been shown that the HOXB13
germline variant G84E is a susceptibility factor for PCa development [266].

The SP1 gene codes for an ubiquitous TF interacting with AR [267, 268], while
P63 codes for a protein member of the TP53 family. FLI1 codes for an ETS family
factor similar to ERG. Inhibition of SP1 inhibits tumor growth in cellular models
[269].

Moreover, other transcription factors from the regulative network (Figure 5.2) are
involved in PCa-related processes. For instance, RUNX1 together with RUNX2 is
known to be involved in metastasis formation [270]. Moreover, RUNX1 has been
show to be a downstream target of AR signaling and to have different functions in pri-
mary PCa and CRPC [271]. The expression of the prostate-restricted homeodomain
containing TF NKX3-1 is sustained across different PCa stages and is anticorrelated
with expression of MYC in murine models [272]. Similarly, expression of peroxisome
proliferator-activated receptor gamma (PPARG) correlates with tumor grade and may
be involved in progression [273]. Other TFs, e.g. MYC, MAX, TP53, have been
known since early days of PCa biology research and their alterations have been since
then associated with progression and aggressive phenotype [71]. Over-expression
of the glucocorticoid receptor NR3Cl1 is associated with anti-androgen treatment
and overall survival [274]. Finally, other TFs are associated with neuroendocrine
phenotype, e.g. ERG, FOXA2 [275].

Altogether these findings show the relevance of these TFs in PCa progression and
the feasibility of using complementary data types to investigate complex phenomena
in the framework of cancer biology. Functional studies, though, are needed to confirm
these results although 7 silico analyses provide candidates for functional validation
and highlight the synergistic role of computational and experimental methods. From
these analyses a set of candidate modulatory TF has been identified and has been

associated with a consistent number of genes involved in PCa progression.

The detection of all the mentioned TF relied on the utilization of GTRD, a curated
database reporting uniformly processed binding sites from ChIP-seq experiments.
This choice limits the number of discoverable sites to the ones present in the database,

precluding novel sites discovery. Although this limitation, the data is extremely valu-
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able because of the uniform processing pipeline used to standardize them. Utilization
of multiple peak calling algorithms boosts confidence on reported loci [229, 276].
On the other hand, all the data provided by GTRD come from cellular models which
may not describe the DNA-protein interaction pattern of clinical samples under

analysis.

In ATAC-seq features, often, multiple binding sites are observed. With the ap-
proach used for the analysis, all detected TFs are associated with a correlating gene.
To understand which binding site is occupied and reduce the number of associations,
a motif occupancy analysis could be run. In this case, the reduced sample size would
have severely limited the confidence in results. Experimental functional validation
would have been the ultimate proof of the predicted relationship between chromatin

accessibility, transcription factor presence and gene expression regulation.

6.3 Structural features of transcription factors involved in

primary prostate cancer progression

Intrinsic protein disorder is widespread in eukaryotes and the number IDP coded
by a genome correlates with organism complexity. Intrinsically disordered proteins,
mainly work as inter- and intra-molecular interaction hubs. The regulation of gene
expression essentially works by allowing or denying molecular interaction among
TFs, DNA and other proteins. It has been long acknowledged that TFs are a class
of proteins with widespread intrinsic protein disorder content. For example, AR
annotation from DisProt reports a large IDR involved in hormone binding, while SP1
annotation reports two IDR involved in dimerization and protein-protein interac-
tion. These observations support molecular recognition function of IDPs. However,
DisProt annotation is not available for the vast majority of proteins. The manual
curation process required to add data both limits the amount of data that can be
processed and ensure highest quality possible. However, albeit data quality, the
curation process is not error-free and is prone to personal interpretation and misun-
derstanding. Nonetheless, because of data quality, DisProt serves as golden standard
for training new prediction methods, benchmarking existing ones and providing

detailed annotation on IDP.

MobiDB extends DisProt annotations to the entire protein universe. Proteins are
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stored by their UniProt id, allowing direct linking of the two resourses. Annotations
from UniProt, DisProt and a number of other specialized resources can be retrieved.
Intrinsic protein disorder functional annotation is missing but, among identified TFs
a pattern in the localization of IDR emerges: overlap with known structural domain
is minimal. Transcription factors in vivo do not occupy all available binding sites,
it has been shown that only a subset is actively used and that TFs scan the genome
for their binding sites. Many speculations about the mechanism involved have been
proposed and recently one has been reported to involve IDR with specific localization
outside the DNA binding domain. Both the extent and sequence of these regions
influence its binding specificity [2]. Intrinsic protein disorder, thus, can be linked
both to protein-protein [277] and protein-DNA interactions [2, 148].

Altogether DisProt and MobiDB provide extensive annotations on intrinsic pro-
tein disorder. The IDP community relies on DisProt as the golden standard for
high quality, manually curated data and on MobiDB as central repository for large
scale protein annotation data. With the works presented in this thesis major updates
to the two projects have been carried out and completely redesigned databases and
web-applications have been deployed. Moreover, their utilization for iz silico protein
structure characterization has been presented. Currently, DisProt has been updated
to version 8 by adding more annotations, improving the ID ontology and by deploy-
ing an updated web-interface [3] and soon a new major version of MobiDB will be
released. Annotations provided by these two databases are helpful in the study of
specific proteins from any biological process as they provide functional insights for
regions involved in protein interactions and regulation. In the context of PCa these
data can be used to characterize the structural features of protein regions relevant for
cancer progression and establishment, guiding the design and interpretation of other

experiments, drug design and, possibly, discovery of novel actionable targets.
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7 CONCLUSION

Proximal regulative elements are required to localize the transcription machinery on
genes promoters. On the other hand, distal cis-regulation is a fundamental mechanism
to modulate transcription. Chromatin structure influences the ability of TFs to bind
their regulatory sites. Similarly, TF binding may induce chromatin remodeling by
recruiting specialized proteins. In pathological states, this mechanism is altered:
chromatin gets remodeled resulting in increased accessibility of otherwise precluded
TFs and vice-versa. Binding events on these loci modulate the expression of target
genes in an abnormal manner. In cancer, these alterations are commonly observed.
Because of this, characterization of the regulatory landscape of cancerous cells will

have a clinical impact.

Prostate cancer growth is sustained by testosterone stimulation. After first line
treatments, relapse happens in about a third of cases. CRPC cells become androgen-
independent and can proliferate also in absence of hormonal stimulation. This switch
can be explained by a selective sweep introduced by pharmacological treatments.
Differential expression pattern can be largely explained by changes in chromatin
accessibility: different genomic regions are involved in regulation of genes responsible
for the transitions from BPH to PC finally to CRPC. The set of TFs binding these
regions is restricted with AR being the most detected. Pioneering TF FOXA1 and
HOXB13 are also found in many instances. Other TF can be detected in the two
transitions with alternative patterns.

The structural organization of these proteins is substantially conserved. They
share the ability to bind DNA via a DNA binding domain. To regulate such process
all these factors display at least one IDR. These regions are characterized by high
degree of flexibility and are often involved in molecular recognition and condensation
driving the formation of phase-separated droplets in the nucleus. This process has
been linked to PIC formation, transcriptional factories and chromatin remodeling

complexes at super-enhancer loci. DisProt and MobiDB provide extensive annotations
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for this phenomenon: they collect manually curated, database derived, indirect
annotations and intrinsic protein disorder predictions from different resources and
serve them through unified, standardized web interfaces. DisProt data is curated
manually by a group of curators that also develops a controlled vocabulary of term
to describe intrinsic protein disorder molecular function. MobiDB, on the other
hand, brings together a multitude of other databases and tools. This extensive set of
data is presented concisely and graphical tools are available to visually inspect them.
Detailed data can be also retrieved from the online platform. Together these two
resources consolidate the knowledge on intrinsic protein disorder and put the basis
for greater underestanding of this property in all biological processes.

Altogether this dissertation provides insights into the regulatory landscape and
of PCa demonstrating how the developed resources can be used to computationally
understand and characterize the structure of detected proteins. This data-driven
approach could be extended to the study of any disease or biological process. Tran-
scriptomic and epigenetic data can be used to identify candidate regulators of the
process and structural annotations databases can be used to characterize their three-
dimensional structure. Common structural features can be further analyzed to find
differences, e.g. by detecting common sequence motifs or used for antibody design,

in drug design or repurposing.
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ABSTRACT

The Database of Protein Disorder (DisProt, URL:
www.disprot.org) has been significantly updated and
upgraded since its last major renewal in 2007. The
current release holds information on more than 800
entries of IDPs/IDRs, i.e. intrinsically disordered pro-
teins or regions that exist and function without a
well-defined three-dimensional structure. We have
re-curated previous entries to purge DisProt from
conflicting cases, and also upgraded the functional
classification scheme to reflect continuous advance
in the field in the past 10 years or so. We define
IDPs as proteins that are disordered along their en-
tire sequence, i.e. entirely lack structural elements,
and IDRs as regions that are at least five consecu-
tive residues without well-defined structure. We base
our assessment of disorder strictly on experimen-
tal evidence, such as X-ray crystallography and nu-
clear magnetic resonance (primary techniques) and
a broad range of other experimental approaches
(secondary techniques). Confident and ambiguous
annotations are highlighted separately. DisProt 7.0
presents classified knowledge regarding the exper-
imental characterization and functional annotations
of IDPs/IDRs, and is intended to provide an invalu-
able resource for the research community for a better
understanding structural disorder and for developing
better computational tools for studying disordered
proteins.

INTRODUCTION

Our traditional view of protein structure and function is
deeply rooted in the structure—function paradigm which
stated that the polypeptide chain of proteins needs to fold
into a stable three-dimensional (3D) structure, which is
a prerequisite of the functioning of the protein. The ex-
treme explanatory power and success of this model is at-
tested by more than hundred thousand high-resolution
structures in the Protein Data Bank (PDB) (1) and many
Nobel Prizes awarded for describing structures central to
understanding important cell-biological phenomena. It has
been suggested almost 20 years ago, however, that many
proteins or regions of proteins in various proteomes lack
such stable 3D structure, and are rather intrinsically dis-
ordered under native, physiological-like conditions (thus
named IDPs/IDRs, respectively) (2-4). The recognition of
this structural phenomenon brought a radical change in the
structure—function paradigm, and critically extended the
general appreciation of the role of dynamics in protein func-
tion. It has been recognized that structural disorder, which
is prevalent in all organisms, plays roles primarily in cellular
signaling and regulation (5). Because of that, IDPs/IDRs
are often implicated in diseases (6) and represent important
drug targets (7).

The structural and functional characterization of disor-
dered proteins represents a special challenge, because they
exist as an ensemble of rapidly interconverting conforma-

tions. Although they cannot be crystallized and thus can-
not be directly characterized by X-ray crystallography, there
are a variety of techniques that can report on their highly
dynamic structural state at low- or even high spatial and
temporal resolution (3). The current best structural descrip-
tion of IDPs/IDRs is by structural ensembles, which can
be solved by a combination of experimental and computa-
tional approaches and are collected into a dedicated struc-
tural database, PED (8).

Studies of the structure—function relationship of dis-
ordered proteins have shown that in certain cases their
function arises directly from the disordered state (entropic
chains), whereas in many other cases their function em-
anates from molecular recognition accompanied by induced
folding to specific binding partners, such as another pro-
tein, RNA or DNA molecule (9,10). In these functions, the
sensitivity to regulated remodeling of the disordered struc-
tural ensemble is an excellent substrate for protein regula-
tion, as exemplified by frequent post-translational modifi-
cations (11) and special modes of allosteric regulation (12)
involving IDPs/IDRs.

Due to the prevalence and importance of structural disor-
der, several dedicated databases covering various aspects of
IDPs/IDRs have appeared in the past decade. DisProt is the
primary repository of disorder-related data on sequence-
and functional annotations, focusing on disordered proteins
or regions with experimental verification (13,14). Several
other databases are based on predictions of disorder, such
as D?P2, which contains disorder protein predictions by a
variety of predictors on 1765 complete proteomes (15), Mo-
biDB, which features three levels of annotations, manually
curated, indirect and predicted for all UniProt sequences
(over 80 million) (16), and IDEAL, which contains man-
ual annotations of interaction regions undergoing induced
folding, sites of post-translational modifications and assign-
ments of structural domains (17). In addition, as already
mentioned, PED is the database that gathers structural in-
formation on IDPs/IDRs, in the form of structural ensem-
bles (8). The interaction of IDPs/IDRs with their target(s) is
most often mediated by short continuous stretches of amino
acids such as Molecular Recognition Elements/Features
(MoREs/MoRFs) (18) and short/eukaryotic linear mo-
tifs (SLiMs/ELMs), which have been collected in the
ELM database (19). Less frequently, partner interactions
of IDPs/IDRs may also be mediated by intrinsically dis-
ordered domains (IDDs), i.e. longer regions that conform
to the definition of domains as functional, evolutionary
and structural units (20). Although probably still underap-
preciated, some of these IDDs may be found in the Pfam
database of protein families which includes their annota-
tions and underlying multiple sequence alignments (21).

DisProt is central to all IDP-related research efforts, be-
cause it collects and presents in a structured way the core
experimental evidence reported for structural disorder in
proteins. To give a new impetus to the field, we have sig-
nificantly updated and upgraded it with new features. This
new release—DisProt 7.0—contains more than 800 entries
of IDPs/IDRs. We have also re-defined and extended func-
tional categories laying the basis for a functional ontology
of IDPs, now encompassing 7 major classes and 35 sub-
classes, all based on published experimental data.



Detection and characterization of IDPs

Technical advances in the field of biophysical and struc-
tural biology in the last 50 years have provided the scientific
community with an arsenal of techniques to tackle the chal-
lenging characterization of IDPs/IDRs (4,22). The various
methods differ in their extent of sophistication, and hence in
their technical demand, as well as in the nature of the infor-
mation they provide. Nuclear magnetic resonance (NMR)
and X-ray crystallography provide site-specific information,
whereas other methods provide more qualitative and global
information (e.g. far-UV circular dichroism, size-exclusion
chromatography; SEC).

The rise of the field of protein disorder has greatly ben-
efited from structural biology, because structures deposited
in the PDB (1) have been instrumental for the development
of disorder predictors, often trained on regions of missing
electron density. Developments of multidimensional het-
eronuclear NMR also enabled the structural characteriza-
tion of disordered proteins of increasing size (23,24). In par-
ticular, heteronuclear single quantum coherence (HSQC)
experiments are most commonly used to define protein
disorder irrespective of whether residue-specific chemical
shifts are available or not, as crowded HSQC spectra, char-
acterized by a poor spread of resonances, are typical of
IDPs/IDRs. The same feature of low spread of proton res-
onances is also apparent in one-dimensional proton-based
NMR spectra, which offers the obvious advantage of not re-
quiring isotopic labeling. Following assignment of the spec-
trum, quantitative estimations of disorder can be obtained
through various NMR observables, such as chemical shifts,
relaxation rates, residual dipolar couplings and resonance
intensities in paramagnetic relaxation enhancement exper-
iments. These data enable probing sequence-specific struc-
tural information in IDPs/IDRs. A particular strength of
NMR is that it can be increasingly applied under truly in
vivo conditions, in live cells (25). Therefore, these two experi-
mental approaches, X-ray crystallography and multidimen-
sional NMR, are considered as the ‘primary techniques’
providing evidence for structural disorder on a per residue
basis in DisProt.

It should not miss our attention, though, that due to the
expenses of isotopic labeling in NMR and the high rate
of failure in protein crystallization, it would be unreason-
able to only rely on these two approaches to document
protein disorder. Therefore, beyond X-ray crystallography
and NMR, a plethora of alternative biochemical and bio-
physical approaches (termed ‘secondary techniques’) pro-
vide orthogonal information on protein disorder in DisProt
(4,22). The various approaches are of course not equivalent
in terms of reliability, resolution and accuracy and suffer
from specific drawbacks and limitations. Structural disorder
is often based on far-UV CD spectroscopy, which is overall
quite reliable, but does not enable discrimination between
ordered and molten globular forms. Near-UV CD, beyond
being able to unveil the lack of ordered structure, has the
advantage of distinguishing between globular and molten
globule forms. Another hallmark of disorder is anomalous
sodium dodecyl sulphate-polyacrylamide gel electrophore-
sis migration, where IDPs have a high apparent molecular
mass. IDPs/IDRs also behave anomalously in SEC, light
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scattering (DLS, MALS), and in small-angle X-ray scat-
tering in that they display hydrodynamic radii (RH) and
radii of gyration (Rg) higher than expected, reflecting an
extended conformation.

Fluorescence spectroscopy is another common method
to assess disorder. Intrinsic fluorescence probing the chem-
ical environment of tryptophan residues provides informa-
tion about their solvent-accessibility, whereas thermal dif-
ferential scanning fluorimetry—similar to differential scan-
ning calorimetry—can highlight the lack of a cooperative
thermal transition and hence absence of ordered structure.
Fluorescence resonance energy transfer between external
fluorophores can even generate information on distance dis-
tributions and help solve the structural ensemble of the IDP
(26). Hyper-sensitivity to proteolysis is also commonly used
to map out disordered regions of proteins. Recently, native
mass spectrometry exploiting nano-electrospray ionization
(27,28) and high-speed atomic force microscopy operating
at the single-molecule level (29) have emerged as attractive
alternatives to address structural disorder.

As a last statement, it is noteworthy that the higher the
number of independent experimental lines supporting dis-
order, the higher the reliability of the annotation. Further-
more, multi-dimensional information may help realize that
structural disorder is not a single homogeneous structural
state along an order-disorder binary classification coordi-
nate, it rather represents a continuum of states from the fully
ordered to the fully disordered. Similarly, many examples of
biological relevant disorder in fragments that are missing
from the full length protein have been reported. Further-
more, numerous functional examples of ‘conditional disor-
der’, i.e. instances where a disordered region functions by
transitions to or from a folded state (30), or when disor-
der is only observed in a fraction of similar structures (31),
lead to ambiguity and clearly points to the need for car-
rying out complementary experiments. In addition, an ex-
treme case leading to conflicting results is represented by
instances where a protein region, predicted to be ordered, is
not defined in the electron density in one crystal structure
while being ordered in another one (for an example see (32)
and DisProt entry DP00133). Do these ambiguous regions
represent a new class of disorder that escape detection us-
ing the currently available disorder predictors (thus setting
the scene for their improvement), or « contrario are they the
result of static disorder that arises from experimental condi-
tions or domain wobbling? Combining information from a
variety of sources may help clarify these cases and also im-
prove meaningful descriptions of IDPs as conformational
ensembles (33,34), which may lead to future descriptions of
the structure—function relationship of IDPs.

Database structure and implementation

Database records. The technology of DisProt has been up-
dated and is now based on a document-oriented MongoDB
database. Stored documents are of two types, ‘protein’ in-
cluding general information about the protein and ‘disor-
dered region (DR)’ including evidence of disorder from lit-
erature. Protein information is retrieved from UniProt and
includes cleavage sites and chain/peptide boundaries for
polyproteins and processed proteins. DisProt is sequence-
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DP00086 - Cellular tumor antigen p53

Organism  Human

Taxonomy  Eukaryota > Metazoa > Chordata > Craniata > Vertebrata > Euteleostomi > Mammalia > Eutheria > Euarchontoglires > Primates > Haplorrhini >
Catarrhini > Hominidae > Homo

Synonyms | P53_HUMAN; Antigen NY-CO-13; Phosphoprotein p53; Tumor suppressor p53
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Figure 1. DisProt sample entry, human p53 protein (DP00086). Several experiments have been carried out to characterize the human p53 protein. DisProt
reports literature evidence for IDRs. In particular, 11 different IDR evidences (Region Evidences) have been collected from nine different papers by two
different curators. Most of these are related to the N-terminus and come from different types of experiments (Disorder Region Details). Disorder regions
and the number of DisProt evidences, separated into confident and ambiguous annotations, can be compared with structural information from the Pfam
and MobiDB databases in the Disorder Overview. DisProt also provides function annotation of IDRs by reporting molecular function, transition and
partner terms (Functional Annotation). A literature reference is provided for each annotated IDR, linked to the relevant PubMed entry.



centric and different isoforms correspond to different en-
tries as in the previous version. Cleaved proteins are merged
into a single entry as they are products of the same native
sequence. DisProt accession numbers now follow a single
format and all previous entries with a * xxx” suffix were re-
moved. DR records are evidence-centric, i.e. different docu-
ments are stored for different experiments even when related
to the same region. Forcing a one-to-one paradigm allows
to track annotation evidence type and the corresponding
literature source unambiguously. DR records also include
experimental evidence quality tags for ambiguous annota-
tions. Sometimes experiments are carried out on engineered
sequences or fragments which may prove ambiguous to gen-
eralize for the entire sequence (AMBSEQ). Moreover, dis-
order boundaries are occasionally not clear from the liter-
ature (AMBLIT) or experiments are performed under ex-
tremely non-physiological conditions (AMBEXP). The ma-
jor improvement from previous versions is the manually cu-
rated functional annotation of the regions. Whenever pos-
sible, curator-associated functions based on literature evi-
dence are indicated by selecting terms from a new ontol-
ogy built for describing disorder-related functional modes.
If none of the current terms in the new ontology give a
proper description of the functional mode, the curator may
propose a new term to be added to the ontology. Acceptance
of the new term will require approval by the IDP/IDR on-
tology committee.

Annotation pipeline. The new DisProt data have been gen-
erated by a community effort through a web server interface
accessible upon registration. The same infrastructure can be
used both to create and update entries. Curators provide an
annotation through a submission form where all fields are
validated on the client-side and a sequence viewer allows the
comparison of assigned regions with structure information
(Pfam domains, MobiDB disorder). Of note, the name of
the curator is clearly visible in the entry to allow proper at-
tribution of credit. The pipeline is fully automatic and can
be potentially applied to the entire UniProt database. The
DisProt public database is a snapshot of the community an-
notations.

Entry page. The entry page features four different sec-
tions (Figure 1). A protein information table gives the pro-
tein name, gene, synonyms, identifiers, taxonomy and ‘ho-
mologous’ entries inferred from sequence similarity. An in-
teractive feature viewer reports DisProt disorder regions
separated into confident and ambiguous annotations, col-
ored brown for intrinsically disordered regions and purple
for context-dependent regions. Pfam domains along with
PDB and predicted disorder derived from MobiDB are also
shown. Below, a detailed feature viewer provides different
visualization layers to highlight different functional aspects
(ontology terms) and the strength of available disorder ev-
idence. Each position in the sequence is colored according
to the number and type of evidence. Last but not least, the
full curator-generated list of region evidences is reported on
the bottom of the page and can be filtered by selecting an
element (region) in the feature viewer. Figure 1 shows the
current DisProt annotation for the human p53 protein. The
combination of DisProt and PDB annotation clearly shows
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how p53 contains several segments undergoing disorder to
order transitions. Evidence for disorder from the literature
in the central p53 DNA binding domain, for which many
crystal structures are available in the PDB, is ambiguous
and highlighted with AMBLIT. Similar conflicts can prob-
ably be found in scores of DisProt entries and demonstrate
the importance of flagging ambiguous data.

Browsing and searching data. Both browsing and search-
ing functionalities are provided in a single solution from
the ‘Browse’ page. A sortable, customizable and filterable
table lists all entries by protein. Alternatively, another table
listing all regions is available and accessible through the ‘re-
gions’ button. Complex queries can be simulated applying
different filters to different columns. Specific entries can be
selected manually and customized views can be generated
by adding or removing columns. Filtered and/or selected
data can be downloaded both in text and JSON formats.
Alternatively, the ‘Search’ page allows the user to search for
specific words in a free-text form or to search for DisProt en-
tries similar to a query sequence. Output for either search is
a provided in a simplified form.

Feedback page. DisProt users are highly encouraged to
suggest additional disorder annotations or changes to ex-
isting annotations using the ‘Feedback’ page. This contains
a drop-down menu guiding the choice of feedback provided
(e.g. website experience, novel annotations) and a message
field. For feedback related to data entries, the user is asked
to provide either the UniProt or DisProt ID and (where pos-
sible) a PubMed reference. All messages are reviewed by the
curators and integrated in the database as time permits.

Web technology. The DisProt server is implemented in
Node.js (https://nodejs.org) using the REST (Representa-
tional State Transfer) architecture. The data can be accessed
through the web interface or programmatically exploit-
ing the RESTful functionality. Please refer to the ‘Help’
section of the website for details on using the DisProt
web services. The web interface is built using Angular.js
(https://angularjs.org) and Bootstrap (http://getbootstrap.
com) frameworks. The feature viewer is implemented on top
of the Bio.js library.

Database content: upgrades and updates

Entries in DisProt 7.0 came from three major sources: (i)
from the previous version of DisProt (where conflicting
cases have been re-annotated), (ii) novel cases identified as
PDB entries with long regions of missing electron density
and (iii) proteins identified by text-mining in PubMed ab-
stracts for keywords ‘intrinsically disordered’, ‘intrinsically
unstructured’ and ‘structural disorder’. New proteins se-
lected based on disorder content (estimated based on Mo-
biDB data) were prioritized (if appropriate information was
available in SwissProt) to concentrate on well-studied and
most interesting cases. New proteins were also selected by
curators themselves to exploit their specific previous knowl-
edge. All entries from previous versions were re-annotated
to remove inconsistencies. One hundred and ninety-eight
previous entries were completely removed and 469 modi-
fied. Recurring problems being fixed were wrong organism
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Table 1. DisProt annotation content

Method /function Proteins Regions Residues
Nuclear magnetic resonance (NMR) 333 592 32926
X-ray crystallography 326 683 20 742
Circular dichroism (CD) spectroscopy, far-UV 261 352 53935
Sensitivity to proteolysis 75 95 13961
Size exclusion/gel filtration chromatography 62 67 12 206
Proton-based NMR 53 69 7723
SDS-PAGE gel, aberrant mobility on 34 34 6326
Other methods 237 273 41833
Disorder transition 564 1505 151 498
Molecular function 489 1199 106 670
Molecular partner 444 1108 119 665

Distribution of DisProt annotation based on experimental evidence (method) and disorder function (function). As each annotated disorder region corre-
sponds to one piece of experimental evidence, multiple regions can map to the same sequence segment. If a protein is annotated multiple times with the
same type of experiment it is counted once. The number of residues is the sum of region lengths.
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Figure 2. Distribution of disorder segment lengths. Segment lengths are binned in groups of 10 residues, e.g. the column 10 showing lengths between 10
and 19 residues. The current DisProt release is distinguished by experimental technique (X-ray in green, NMR in blue and other methods in red). The
previous DisProt release is shown in a single gray bar as it did not have the experimental technique in a machine-readable format.

or isoform assignments, wrong IDR positioning, untracked
disorder evidence (e.g. missing explicit literature reference)
and weak evidence (e.g. based on very short fragments,
please note that the minimal length of an IDR in DisProt 7.0
is 5 residues). Moreover, disorder annotations based on not
traceable author/curator statements were discarded. Where
necessary, a curator comment now highlights criticisms rel-
ative to a given evidence/experiment, e.g. if the experiment
has been carried out on an engineered protein. Regions
annotated as structured in previous DisProt releases were
removed (33 regions). Information related to experiments
has been simplified by skipping technical details regarding
experimental conditions. However, weak experimental evi-
dence is filtered out by the curator during annotation and
tagged with one of three ambiguous labels. Overall, DisProt
7.0 includes 804 entries and 2167 disordered regions, with
a total of 92 432 amino acids with clear experimental and
functional annotations (Table 1), and the length distribu-

tion of disordered regions has significantly changed from
the last release of DisProt (Figure 2).

New feature: functional classification

IDPs/IDRs carry out important functions in the cell. The
field has settled on the notion that structural disorder rep-
resents a continuum of states from fully folded to fully un-
folded (random coil-like), and function may come from
any of the states and transitions between them. That is,
their function may come directly from the disordered state
or from molecular recognition and binding to partner
molecule(s). We derive our classification from the logic of
the gene ontology classification scheme (35), which is based
on three structured ontologies ascribing functional terms to
gene products (proteins) in terms of their associated biolog-
ical processes (BP), cellular components (CC) and molecu-
lar functions (MF). Apparently, the CC and BP ontologies
do not depend on the disordered status of the protein, they



Table 2. Major functional categories of the MFUN ontology of DisProt
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MFUN code Generic functional category

Functional category

MFUN_01 Entropic chain

MFUN_02 Molecular recognition: assembler

MFUN_03 Molecular recognition: scavenger

MFUN_04

Molecular recognition: effector

MFUN_05 Molecular recognition: display site

MFUN_06 Molecular recognition: chaperone

Flexible linker/spacer

Entropic bristle

Entropic clock

Entropic spring

Structural mortar

Self-transport through channel
Assembler

Localization (targeting)

Localization (tethering)

Prion (self-assembly, polymerization)
Liquid-liquid phase separation/demixing (self-assembly)
Neutralization of toxic molecules
Metal binding/metal sponge

Water storage

Inhibitor

Disassembler

Activator

cis-regulatory elements (inhibitory modules)
DNA bending

DNA unwinding

Phosphorylation

Acetylation

Methylation

Glycosylation

Ubiquitination

Fatty acylation (myristolation and palmitoylation)
Limited proteolysis

Protein detergent/solvate layer
Space filling

Entropic exclusion

Entropy transfer

The functional schemes are an open hierarchy. One goal of sharing information with the community through DisProt is to refine our views of the functional

modes of IDPs.

simply reflect the intracellular location of the protein and
the BP it participates in, which can be kept without refer-
ence for the disordered status (35). The situation is entirely
different with MF, which describes the elemental activities
of a protein at the molecular level. In this regard, IDPs basi-
cally differ from folded proteins, such as enzymes or ligand-
binding receptors, because their mode of action and type
of function are usually completely different from those of
folded proteins. Therefore, we have developed a novel classi-
fication scheme that merges and expands previous schemes
that suggested thirty (36) and six (9) different categories, to
provide classified descriptors for their MFs. Because pre-
vious categories (9,36) lacked coherence (for example, they
treated structural transitions and interaction partners at the
same level), we created a rational scheme that distinguishes
these different types of ontologies (cf. Table 2 and ref. (3)).

The three sub-ontologies are as follows: (i) molecular
function of disorder (MFUN): describes the type of func-
tional readout of function (such as molecular chaperone);
(ii) molecular transition (TRAN) necessary for function
(such as disorder-to-order transition); and (iii) molecular
partner (PART) that is recognized by the disordered protein
(such as protein/RNA/DNA /small molecule). The MFUN
ontology is described in detail in Table 1. The TRAN on-
tology can be further simplified to two IDR states (disorder
and transition) to highlight different types of behavior, e.g.
in the feature viewer of each DisProt entry.

CONCLUSIONS AND FUTURE WORK

We have presented an updated and completely re-worked
version of the DisProt database. It now features state-of-
the-art database and web technology, enabling program-
matic access of interested parties. The content was ex-
panded by defining a standardized set of experimental tech-
niques and a novel functional ontology of disordered seg-
ments. Both allow for a richer description of disorder which
may be used for further analyses. The other main improve-
ment in DisProt is a complete re-annotation of existing en-
tries to remove inconsistencies and an expansion of ca. 50%
over the previous release, which also resulted in a signifi-
cant shift in the length coverage of disordered regions in the
database. This advance was made possible by a distributed
annotation effort coordinated by the COST Action NGP-
net (URL: ngp-net.bio.unipd.it) involving a dozen different
groups and close to 40 annotators. The longer term main-
tenance of DisProt is provided by the Italian node of the
European bioinformatics infrastructure Elixir. In the future
we hope that DisProt can be able to provide disorder anno-
tations for UniProt.

Finally, we hope that the upgrade of DisProt will encour-
age the scientific community to deposit experimental evi-
dence for disorder within this unique repository, and that
this renewed momentum will lead to an increased awareness
of the importance of intrinsic disorder in proteins.
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ABSTRACT

The MobiDB (URL: mobidb.bio.unipd.it) database of
protein disorder and mobility annotations has been
significantly updated and upgraded since its last ma-
jor renewal in 2014. Several curated datasets for in-
trinsic disorder and folding upon binding have been
integrated from specialized databases. The indirect
evidence has also been expanded to better capture
information available in the PDB, such as high tem-
perature residues in X-ray structures and overall con-
formational diversity. Novel nuclear magnetic reso-
nance chemical shift data provides an additional ex-
perimental information layer on conformational dy-
namics. Predictions have been expanded to provide
new types of annotation on backbone rigidity, sec-
ondary structure preference and disordered bind-
ing regions. MobiDB 3.0 contains information for
the complete UniProt protein set and synchroniza-
tion has been improved by covering all UniParc se-
quences. An advanced search function allows the

creation of a wide array of custom-made datasets
for download and further analysis. A large amount
of information and cross-links to more specialized
databases are intended to make MobiDB the cen-
tral resource for the scientific community working
on protein intrinsic disorder and mobility.

INTRODUCTION

The protein structure-function paradigm is a cornerstone
of molecular biology, offering a mechanistic understanding
of processes ranging from enzyme catalysis, signal transduc-
tion to molecular recognition and allosteric regulation. Un-
derlying this paradigm is the assumption that proteins be-
come functional by assuming a well-defined structure, typ-
ically described by the coordinates of all its atoms. A solid
foundation of this view is provided by the 130 000 struc-
tures of proteins and complexes in the Protein Data Bank,
PDB (1). However, it is increasingly recognized that many
proteins do not obey this rule. Intrinsically disordered pro-
teins (IDPs) or regions (IDRs) are devoid of order in their
native unbound state (2-4). Intrinsic disorder is prevalent
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in the human proteome (5), appears to play important sig-
naling and regulatory roles (2) and is frequently involved
in disease (6). The discovery of intrinsic disorder and its
prevalence and functional importance is transforming the
field of molecular biology. As intrinsic disorder is emerging
as a general phenomenon, databases are collecting and pre-
senting disorder related data in a systematic manner. Mo-
biDB has been a major contributor by providing consensus
predictions and functional annotations for all UniProt pro-
teins, driving the field ahead (7,8). The MobiDB upgrade
we present in this paper is essential for several reasons.

There is a rapid advance in the functional understand-
ing of intrinsic disorder. The functional classification of
IDPs/IDRs is becoming ever more elaborate, with sev-
eral newly recognized functional mechanisms (9). For ex-
ample, the central role of intrinsic disorder in the forma-
tion of membraneless organelles, such as nucleoli and stress
granules, by liquid-liquid phase separation has been char-
acterized recently (10-13). A wide range of experimen-
tal observations on the structure-function relationship of
IDPs/IDRs is furthering our understanding of disordered
states and of the manners in which they function (14-16).
These developments have also played a central role in the re-
cent update of the DisProt database (17), the central repos-
itory of experimentally characterized IDPs and IDRs. The
re-curated version of this database contains experimental
observations of disorder for more than 800 protein entries
and a renewed functional ontology schema. The experimen-
tal evidence on which it rests has also been significantly aug-
mented to include a broad range of biophysical techniques.
DisProt is the basis for most developments in disorder pre-
dictors (18,19), and its recent update is a major motivation
for a new version of MobiDB.

Additional developments in the field make this release
timely. A major source of intrinsic disorder is the identifi-
cation of residues with missing atomic coordinates in the
PDB, which can now be augmented by cryo-electron mi-
croscopy (cryo-EM) data. This is having a tremendous im-
pact on structural biology (20,21). Structural descriptions
of IDPs and IDRs under physiological conditions have also
greatly advanced and are starting to appear in dedicated
databases such as IDEAL (22), DIBS (23) and MFIB (24).
IDPs and IDRs can perform key roles in molecular recogni-
tion by folding upon binding of short linear motifs (SLiMs)
covered in the ELM database (25). Generally, the full func-
tional characterization of IDPs and IDRs requires the de-
scription not just of their free (disordered) states (26,27),
but also of their residual dynamics in the bound states (28).
Fuzzy (disordered) complexes can be found in FuzDB (29)
and structural ensembles describing the free form (30) in
the protein ensemble database (PED (31)). Techniques such
as in-cell Nuclear magnetic resonance (NMR) spectroscopy
(32,33) and single-molecule fluorescence (34) will soon help
study these structures in the physiological state. In reflec-
tion of all these developments, we are now launching a sig-
nificantly updated version of our database, MobiDB 3.0.
The new version incorporates additional curated data from
specialized databases. Novel annotation features include
disorder derived from publicly available NMR chemical
shift data (35) and an extended list of predictors. Database

" Intrinsic disorder
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= Secondary structure
%'\Q‘“\ populations
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Figure 1. Overview of different annotation data types (A) and levels of
accuracy (B) in MobiDB 3.0.

searches are facilitated by an improved search algorithm,
pre-calculated data and new sections in the database.

DATABASE DESCRIPTION

MobiDB 3.0 is intended to be a central resource for large-
scale intrinsic disorder sequence annotation. This new ver-
sion is organized by both type of disorder annotation and
quality of disorder evidence (Figure 1). Disorder informa-
tion is grouped in three different sections: disorder, linear
interacting peptides (LIPs) and secondary structure pop-
ulations. The latter represents the conformational hetero-
geneity of IDPs and IDRs as the ability to populate differ-
ent secondary structure populations in solution. LIPs are
structure fragments that interact with other molecules pre-
serving an elongated structure or folding upon binding. The
data in MobiDB is organized hierarchically. The top tier is
formed by manually curated data from external databases
and represents the highest quality annotations. Annotations
derived from experimental data such as X-ray and NMR
chemical shifts are indirect but far more abundant. At the
bottom, predictions provide disorder annotation at lower
confidence than experimental evidence. The main disorder
definition in MobiDB is provided by a consensus combin-



Table 1. Overview of databases integrated into MobiDB 3.0
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Database Type Comment URL

UniProt Curated Disorder http://www.uniprot.org/

DisProt Curated Disorder http://www.disprot.org/

FuzDB Curated Disorder http://protdyn-database.org/
ELM Curated LIPs http://elm.eu.org/

MFIB Curated LIPs http://mfib.enzim.ttk.mta.hu/
DIBS Curated LIPs http://dibs.enzim.ttk.mta.hu/
IDEAL Curated LIPs http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/
Gene3D Curated/Prediction Structure http://gene3d.biochem.ucl.ac.uk/
Pfam Curated/Prediction Domains/Families http://pfam.xfam.org/

CoDNaS Indirect Conformational diversity http://ufq.ung.edu.ar/codnas/

ing all available sources prioritizing curated and indirect
evidences over predictions in analogy to the previous ver-
sion (8). In the following, we will describe the main re-
cent improvements since the previous release. The database
schema, web interface and server have been completely re-
designed and the underlying technology updated. The fea-
ture viewer showing sequence annotations is now fully dy-
namic and allows the generation of high quality images for
publications with a click. Where available, MobiDB anno-
tation is projected directly onto the structure and shown in
anew 3D viewer. The look and feel and organization of the
page and loading latency were also improved.

New curated data

MobiDB 3.0 includes different sources of manually curated
disorder annotations (Table 1). These annotations fall into
two categories: disorder and LIPs. LIPs are binding regions
presumed or demonstrated to be intrinsically disordered
that fold upon binding. These come under different names
such as SLiMs or MoR Es (molecular recognition elements)
in the literature. The IDEAL database calls them ‘protean’
segments (ProS) (22). MobiDB includes both ‘verified’ and
‘possible’ ProS from IDEAL, where verified means disorder
has been experimentally observed in the isolated molecule.
The Database of Disordered Binding Sites (DIBS, (23)) col-
lects cases where a disordered region folds upon binding
with a globular domain and the Mutual Folding Induced
by Binding (MFIB, (24)) database includes disordered re-
gions that fold upon binding with another disordered re-
gion. ELM (25) provides SLiM annotations involved in
binding and post-translational modifications. General dis-
order annotation, i.e. without any knowledge about tran-
sition driven by interactions, is collected from UniProtKB
(36), DisProt (17) and FuzDB (29). UniProtKB provides
manually curated disorder annotations under the region
field in the features section. FuzDB collects cases of fuzzy
complexes, where conformational diversity has a functional
role in the regulation and formation of protein complexes
or higher-order assemblies. DisProt has been recently re-
vamped and MobiDB now propagates DisProt disordered
regions by homology transfer. Regions homologous to ex-
perimentally characterized IDRs are mapped across ho-
mologs obtained from GeneTree alignments (37). Regions
with identity and similarity >80% and an alignment of at
least 10 residues are retained as homologous IDRs. Gene3D
(38) contributes complementary order annotation to the
MobiDB consensus calculation, while Pfam (39) is used

to highlight protein domains. Lastly MobiDB also maps
CoDNaS information to highlight conformation diversity
in globular regions. CoDNaS measures structural differ-
ences among conformers of the same protein (40).

New indirect annotations

Previous releases of MobiDB provided indirect annotations
from the PDB through missing residues in X-ray struc-
tures and mobile regions from NMR ensembles as calcu-
lated with the Mobi software (41). In the current release,
this annotation has been complemented with additional
indirect information from experimental data in the PDB
and chemical shifts from the Biological Magnetic Reso-
nance Data Bank (BMRB) (35). The new Mobi 2.0 software
(42) is used to extract LIPs and disorder information from
PDB files. Disorder is encoded by three different parame-
ters: high-temperature, missing and mobile residues. High-
temperature residues are detected from B-factor regions for
X-ray and cryo-EM structures using a threshold propor-
tional to the resolution of the structure. Missing residues
are available for all experimental types and obtained com-
paring the experimental sequence (i.e. PDB SEQRES en-
tries) with the observed residues in the structure (i.e. PDB
ATOM entries). A mobility estimate is provided for NMR
structures by comparing C, displacement and local confor-
mations in different aligned models (41). LIPs are identified
by comparing intra- versus inter-chain contacts calculated
using RING (43). The closest atoms between two residues
are used to establish a contact which is then distinguished by
chemical type (e.g. hydrogen bond, salt bridge, m—r stack).
LIPs are identified as any region where the number of inter-
chain contacts is at least two times the number of intra-
chain contacts (42).

MobiDB 3.0 better exploits the power of NMR spec-
troscopy to probe the structural properties of proteins in
solution, as well as their dynamics on a wide range of
timescales (44). Chemical shifts quantify structural fluctu-
ations of proteins up to the millisecond timescale and are
relatively easy to measure. Using chemical shifts to ob-
tain information about the statistical populations of dif-
ferent structural motifs allows for a more comprehensive
structural description of proteins in solution than static
structures or binary definitions such as ‘ordered’ and ‘dis-
ordered’ (44). MobiDB 3.0 uses chemical shift data from
BMRB directly as reported without applying chemical shift
re-referencing methods. The software packages 82D (45)
and Random Coil Index (RCI) (46) are used to calculate
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Table 2. Overview of tools used into MobiDB 3.0

Tool Type Description

Mobi 2.0 Indirect Missing, high-temperature and mobile residues from PDB structures
RING 2.0 Indirect Residue interactions from PDB structures, used to define LIPs
RCI Indirect Random coil index from BMRB chemical shifts

32D Indirect Secondary structure populations from BMRB chemical shifts
DynaMine Prediction Random coil index

FeSS Prediction Secondary structure prediction component of FELLS
MobiDB-lite Prediction Long disorder based on consensus

DisEMBL Prediction Disorder. Versions: 465, Hot-loops

ESpritz Prediction Disorder. Versions: DisProt, NMR, X-ray

IUPred Prediction Disorder. Versions: Short, Long

VSL2b Prediction Disorder

GlobPlot Prediction Globular regions, used as opposite of disorder

SEG Prediction Low complexity

Pfilt Prediction Low complexity

two-dimensional ensembles in terms of secondary structure
populations (44) and backbone flexibility. Secondary struc-
ture populations are calculated only for residues with at
least three atom types with measured chemical shifts, as us-
ing fewer chemical shifts results in less accurate mappings of
the populations (45). MobiDB 3.0 reports the experimen-
tal conditions at which the chemical shifts were measured
as the structural properties of some proteins can change
drastically between different conditions (e.g. binding part-
ners, lipids, pH) and these can help elucidate protein func-
tion (44). When an entry in MobiDB is associated to mul-
tiple chemical shifts, an overview of the predominant sec-
ondary structure conformation is provided in a consensus
track. This can be expanded in the feature viewer to show
experimental conditions such as pH, temperature, binding
partners, molecular state, sample information and the title
of the corresponding BMRB entries.

New predictors

MobiDB 3.0 includes the same set of disorder predictors
used in the previous release: ESpritz (47), [Upred (48), Dis-
EMBL (49) and VSL2b (50). Consensus generation is han-
dled by MobiDB-lite (51), which uses a stronger majority
threshold and enforces at least 20 consecutive disordered
residues to provide highly specific predictions. This is com-
pleted by a continuous representation of the fraction of
methods predicting disorder for each residue. DynaMine
(52), Anchor (53) and FeSS (54) are now also part of the an-
notation pipeline. DynaMine (52) predicts backbone flexi-
bility where 1.0 means complete order (stable conformation,
i.e. rigid) and 0 means fully random bond vector movement
(highly dynamic, i.e. flexible). Anchor predicts binding re-
gions located in disordered proteins, providing LIP annota-
tions for all proteins in the database. FeSS is a component of
the FELLS method (54) providing three-state (helix, sheet,
coil) secondary structure propensity. FeSS prediction confi-
dence can be interpreted similarly to the dynamic behavior
measured by 82D in chemical shifts, i.e. a propensity to re-
main in a given state of secondary structure. The complete
list of tools is available in Table 2.

The MobiDB-lite version used in MobiDB 3.0 has been
extended to provide a structural characterization of the dis-
order regions that can help interpret their functional role. It
distinguishes different types of disordered regions by mea-

suring the fraction of charged residues and net charge ac-
cording to a previous classification (55). The different types
are: positive polyelectrolites (D_PPE), negative polyelectro-
lites (D_NPE), polyampholites (D_PA) and weak polyam-
pholites (D_WC). A statistical analysis of the different dis-
order flavours was already performed on the MobiDB 2.0
data (8).

Usage and annotated data

MobiDB now contains all sequences from UniParc, the
most comprehensive non-redundant set of protein se-
quences. Entries are identified also by UniProtKB (36) ac-
cession numbers and can be retrieved by organism, taxon-
omy and other identifiers provided by UniProtKB. Predic-
tion results are combined with indirect disorder evidences
derived from PDB data (using Mobi 2) and data extracted
from manually curated third party databases. MobiDB an-
notations are used by DisProt (17) curators to guide the an-
notation of disorder regions. MobiDB data is made avail-
able to the public via a web interface allowing extensive
search functionalities and RESTful services for program-
matic access. MobiDB 3.0 includes a pre-calculated con-
sensus for all entries allowing real-time statistics and down-
load of entire datasets in different formats directly from the
web interface. The new database schema makes it possible
to perform complex search queries and to generate custom
datasets, for example retrieving all entries with manually cu-
rated annotations. The MobiDB update has been automa-
tized and is scheduled every three months due to the high
computational cost of generating predictions for new se-
quences.

DISCUSSION

MobiDB 3.0 improves on previous releases by adding de-
scriptions of conformational diversity and disorder-related
functions, both in terms of experimental data and pre-
dictions. A particular field where it may have a signifi-
cant impact is the establishment of a long-awaited disor-
der sequence-function relationship schema. The most reli-
able proxy to this goal is to assess the function of a pro-
tein by homology transfer, i.e. transferring functional an-
notation based on sequence similarity. Aligning IDR se-
quences is complicated by their high evolutionary variabil-



ity and often limits evolutionary analysis (56,57). New func-
tional terms introduced in the DisProt update (17), repre-
sent non-canonical functions probably only characteristic
of IDPs which are not incorporated in functional classifica-
tion schemes such as GO (58). A large-scale analysis of IDP
functional annotations will be necessary to find adequate
boundaries for transferring IDP functions by homology. As
sufficient data is now available in MobiDB 3.0, we expect a
rapid advance in the field of sequence-function correlations
of IDPs.

For proteins with sufficient NMR data, MobiDB now
features quantitative annotations incorporating structure
and equilibrium dynamics in a unified framework. These
large-scale quantitative annotations will help understand
the biological role of order and disorder, and serve as a basis
to construct predictive models. As NMR measurements of
proteins in their native complex environments, such as in-
side living cells, are becoming more common (59), we will
be able to address fundamental biological questions with
greater physiological relevance (60).

MobiDB is widely used by scientific community and by
third party services such as DisProt (17) and ProViz (61).
It has recently joined the InterPro consortium to provide
disorder annotation alongside protein domains and fami-
lies (62). MobiDB is becoming a thematic hub for IDPs in-
side the European sustainable bioinformatics infrastructure
(ELIXIR) and we encourage contributions of novel predic-
tors and datasets. Future work will focus on including IDP
annotations into core data resources such as UniProt.
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